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Abstract: Despite progress in early detection and therapeutic strategies, breast cancer remains the
second leading cause of cancer-related death among women globally. Due to the heterogeneity
and complexity of tumor biology, breast cancer patients with similar diagnosis might have
different prognosis and response to treatment. Thus, deeper understanding of individual tumor
properties is necessary. Cancer cells must be able to convert nutrients to biomass while maintaining
energy production, which requires reprogramming of central metabolic processes in the cells.
This phenomenon is increasingly recognized as a potential target for treatment, but also as a source
for biomarkers that can be used for prognosis, risk stratification and therapy monitoring. Magnetic
resonance (MR) metabolomics is a widely used approach in translational research, aiming to identify
clinically relevant metabolic biomarkers or generate novel understanding of the molecular biology in
tumors. Ex vivo proton high-resolution magic angle spinning (HR MAS) MR spectroscopy is widely
used to study central metabolic processes in a non-destructive manner. Here we review the current
status for HR MAS MR spectroscopy findings in breast cancer in relation to glucose, amino acid and
choline metabolism.

Keywords: amino acid metabolism; breast cancer; choline phospholipids; glycolysis; HR MAS
MR spectroscopy

1. Introduction

Breast cancer is by far the most common cancer in women worldwide [1]. In Norway, there were
3415 diagnosed breast cancer cases among women in 2015 [2], making it the most frequent neoplasm in
this population group. Although the estimated five year survival in breast cancer patients in Norway
is almost 90% [2], predicting patient outcome is still a major challenge. Patients with similar clinical
diagnosis might have different prognosis and response to treatment due to the heterogeneity and
complexity of the disease.

Breast cancer heterogeneity is manifested at different molecular, i.e., omics levels (Figure 1).
Transcriptomics studies gene expression by measuring mRNA, the transcripts of DNA. At the mRNA
level, five intrinsic subtypes of breast cancer have been identified: luminal A, luminal B, basal-like,
HER2-enriched and normal-like breast cancer [3,4]. These subtypes have been found to correlate with
survival, with the luminal A subtype having the best prognosis while the basal-like subtype has the
worst prognosis and is considered the most aggressive [4].
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Figure 1. The omics cascade. Metabolomics is the final step in the cascade, and thus studies 
information closer to the phenotype than the preceding omics. 

At the proteomic level, differences in the expression of estrogen and progesterone receptors (ER 
and PgR, respectively), human epidermal growth factor receptor 2 (HER2) and the nuclear protein 
Ki-67 play an important role in current breast cancer clinical decision-making in terms of prognosis 
and optimal treatment plan. ER and PgR are transcription factors that activate important proliferation 
processes and production of growth factors upon binding with their ligands (the hormones estrogen 
and progesterone, respectively) [5]. Since ER activation also regulates the PgR-gene, less than 1% of 
PgR-positive (PgR+) cases are ER-negative (ER-) [6]. Over-expression of ER and/or PgR are found in 
approximately 70–80% of all breast cancer cases [7,8]. Due to the tumor’s dependency on hormonal 
stimuli, these patients are likely to benefit from endocrine therapy, and have a better prognosis than 
hormone receptor negative patients [7]. Over-expression of the tyrosine kinase associated receptor 
HER2, and amplification of its gene ERBB2, is found in 15–23% of all breast cancers [9]. HER2 over-
expression is associated with aggressiveness and poorer prognosis. However, targeted anti-HER2 
treatment improves progression-free survival and overall survival for these patients [10]. Ki-67 is 
present in proliferating cells, and is considered a marker of proliferation. Its level is also associated 
with breast cancer prognosis and may be included in clinical decision-making [11].  

Breast tumors not expressing ER, PgR and HER2 are classified as triple negative breast cancer 
(TNBC). This breast cancer subtype is biologically aggressive, is associated with a poor prognosis and 
is considered a clinically, histologically and molecularly heterogeneous disease [12,13]. For TNBC 
patients, chemotherapy is often a mandatory inclusion in the treatment plan, since these tumors are 
unresponsive to endocrine and anti-HER2 therapy. Furthermore, six breast cancer subtypes based on 
protein expression by reverse-phase protein array (RPPA) have been identified [14,15]. These protein 
subtypes display considerable overlap with the gene-expression intrinsic luminal A, luminal B, 
HER2-enriched and basal-like subtypes. In addition, two novel protein-defined subtypes were 
identified and termed reactive due to many of their characteristic proteins probably being produced 
by the tumor microenvironment. The reactive I protein subtype appeared as a subset of the luminal 
A intrinsic subtype while the reactive II protein subtype is a combination of intrinsic subtypes.  

Although research has contributed to the discovery of several subgroups of breast cancer as 
stated above, there are still numerous unresolved aspects of breast cancer heterogeneity leading to 
inefficient treatment of patients [16]. Better understanding of the heterogeneous biology of breast 
cancer could contribute to finding new personalized treatments. One area that may contribute to better 
understanding of breast cancer is metabolomics. Reprogramming of energy metabolism is necessary 
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closer to the phenotype than the preceding omics.

At the proteomic level, differences in the expression of estrogen and progesterone receptors
(ER and PgR, respectively), human epidermal growth factor receptor 2 (HER2) and the nuclear protein
Ki-67 play an important role in current breast cancer clinical decision-making in terms of prognosis
and optimal treatment plan. ER and PgR are transcription factors that activate important proliferation
processes and production of growth factors upon binding with their ligands (the hormones estrogen
and progesterone, respectively) [5]. Since ER activation also regulates the PgR-gene, less than 1% of
PgR-positive (PgR+) cases are ER-negative (ER-) [6]. Over-expression of ER and/or PgR are found in
approximately 70–80% of all breast cancer cases [7,8]. Due to the tumor’s dependency on hormonal
stimuli, these patients are likely to benefit from endocrine therapy, and have a better prognosis than
hormone receptor negative patients [7]. Over-expression of the tyrosine kinase associated receptor
HER2, and amplification of its gene ERBB2, is found in 15–23% of all breast cancers [9]. HER2
over-expression is associated with aggressiveness and poorer prognosis. However, targeted anti-HER2
treatment improves progression-free survival and overall survival for these patients [10]. Ki-67 is
present in proliferating cells, and is considered a marker of proliferation. Its level is also associated
with breast cancer prognosis and may be included in clinical decision-making [11].

Breast tumors not expressing ER, PgR and HER2 are classified as triple negative breast cancer
(TNBC). This breast cancer subtype is biologically aggressive, is associated with a poor prognosis
and is considered a clinically, histologically and molecularly heterogeneous disease [12,13]. For TNBC
patients, chemotherapy is often a mandatory inclusion in the treatment plan, since these tumors are
unresponsive to endocrine and anti-HER2 therapy. Furthermore, six breast cancer subtypes based
on protein expression by reverse-phase protein array (RPPA) have been identified [14,15]. These
protein subtypes display considerable overlap with the gene-expression intrinsic luminal A, luminal
B, HER2-enriched and basal-like subtypes. In addition, two novel protein-defined subtypes were
identified and termed reactive due to many of their characteristic proteins probably being produced
by the tumor microenvironment. The reactive I protein subtype appeared as a subset of the luminal A
intrinsic subtype while the reactive II protein subtype is a combination of intrinsic subtypes.

Although research has contributed to the discovery of several subgroups of breast cancer as
stated above, there are still numerous unresolved aspects of breast cancer heterogeneity leading to
inefficient treatment of patients [16]. Better understanding of the heterogeneous biology of breast
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cancer could contribute to finding new personalized treatments. One area that may contribute to better
understanding of breast cancer is metabolomics. Reprogramming of energy metabolism is necessary
for tumor survival, growth and proliferation [17]. This field has gained increasing interest as it has
been found that signaling pathways controlled by genes of particular relevance to cancer (oncogenes,
tumor suppressors and DNA repair genes) orchestrate this metabolic switch [17–19]. The purpose of
this deregulation is to provide cancer cells with three basic needs: (1) rapid generation of ATP as a
source of energy; (2) increased synthesis of the four types of macromolecules: lipids, carbohydrates,
proteins and nucleic acids and (3) proper redox stability [17].

As metabolites are downstream of genes, RNA and proteins, metabolite levels can be considered
the ultimate response to genetic modifications or environmental changes including disease, drug and
dietary influences. Metabolomics therefore studies information closer to the observable biological
endpoints, i.e., the phenotype, when compared to the other omics levels. Depending on ongoing
cellular processes and on external factors, the metabolic profile will change dynamically. By examining
the metabolic portraits of breast cancer tissue, one can get a better understanding of complex biological
interactions or find new biomarkers related to specific subgroups of this disease [20]. The two main
analytical techniques within metabolomics are magnetic resonance (MR) spectroscopy and mass
spectrometry (MS), which are complementary techniques. This review focuses on relevant findings on
metabolic profiling of intact breast cancer tissue using high resolution magic angle spinning (HR MAS)
MR spectroscopy, supported by in vitro MR and MS findings.

MR spectroscopy of solids and semi-solid material (e.g., tissue), is characterized by anisotropic
interactions between nuclei, that arise due to the reduced mobility of molecules within these samples.
This gives rise to broad peaks, possibly concealing relevant spectral information. The same does not
occur in liquid solution state, as the rapid movement of the molecules averages out the anisotropic
interactions. Rapid spinning of a solid sample on its axis at an angle of 54.7◦ with respect to the
external magnetic field, referred to as the magic angle, mimics a liquid solution state in which the
anisotropy of the interactions is averaged to zero [21]. This method is called HR MAS MR spectroscopy,
and produces spectra of comparable resolution to that of conventional liquid solution MR spectroscopy.

Ex vivo HR MAS MR spectroscopy is widely used to study central metabolic processes related to
cancer progression. It gives qualitative and quantitative metabolic information from biological tissue
with minimal sample preparation. MS analysis, on the other hand, requires sample pretreatment,
e.g., derivatization and extraction, which can affect the metabolic profile. The metabolites detected
in intact, fresh frozen tissue using HR MAS MR spectroscopy can be considered less likely to be a
product of changes other than the innate biological processes of the tumor. A study showed that a
delay of freezing breast tumor tissue samples of up to 30 min after resection did not significantly
change the levels of individual metabolites measured by HR MAS MR spectroscopy [22]. In addition,
HR MAS MR spectroscopy is a non-destructive technique allowing subsequent analysis, for example
histopathological examination or gene expression profiling, of the tissue after MR spectroscopy.
Different analytical platforms have seen advances that facilitate the high-throughput collection of large
amounts of data from different molecular levels. The availability of multi-layer omics data provides a
unique opportunity to uncover a more comprehensive picture of biological systems. As the different
molecular levels are complementary, integrating omics data, rather than focusing on data from a single
omics layer, has the potential to improve models for clinical applications. Metabolic profiling alone
and in combination with complementary methods thus provides important information on cancer
biology, making HR MAS MR spectroscopy an attractive method due to its non-destructive nature [23].

One of the challenges when analyzing intact breast tissue using HR MAS MR spectroscopy is that
tumor biopsies obtained from breast cancer patients might contain fractions of adipose tissue. Signals
arising from adipose tissue cannot be separated from tumor cell lipids. Furthermore, the aliphatic side
chains of fatty acids within this tissue can give rise to large and broad peaks in MR spectra, potentially
overlapping with and influencing signals from important small metabolites. This effect can be limited
by using an appropriate MR pulse sequence, e.g., the Carr-Purcell-Meiboom-Gill (CPMG) sequence,
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which filters out signals from larger molecules such as lipids. However, absolute quantification using
CPMG spectra can be misleading unless proper action is taken, as metabolite peak intensities can differ
slightly due to variations in T2 relaxation times [24]. In order to ensure accurate absolute quantification,
the T2 relaxation effect should be corrected for [25].

An important limitation of MR spectroscopy is its relatively low sensitivity (micromolar range
compared to picomolar range for some MS-based methods), and thus the relatively few detectable
metabolites. Using proton MR spectroscopy in vivo, only a total choline (tCho) peak can be detected.
Yoon et al. however, showed that metabolites measured ex vivo using HR MAS MR spectroscopy
are correlated with in vivo imaging parameters obtained using MR imaging and positron emission
tomography (PET)-computerized tomography (CT) [26]. Analyzing breast cancer tissue, proton HR
MAS MR spectroscopy has identified more than 30 metabolites [27]. Many of these are involved in
pathways known to be important in cancer development and progression, predominantly glucose
metabolism, amino acid metabolism and choline phospholipid metabolism, which are discussed in
this review. A representative proton HR MAS MR spectrum from a breast cancer biopsy is illustrated
in Figure 2.
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Figure 2. A representative proton HR MAS MR breast tumor tissue spectrum acquired using a
Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence on a 600 MHz spectrometer. Black bars represent
excluded lipid regions. The spectral region shown excludes the water signal and above (>4.7 ppm) and
regions with characteristically high and broad lipid signals (<1.4 ppm).

2. Glucose Metabolism

Glucose is the major source for energy and carbon within mammalian cells and has three major
metabolic fates: glycogen synthesis, glycolysis or the pentose phosphate pathway (PPP) [28]. Glycogen
is the storage form of glucose in cells and has been found to be accumulated in cancerous cells [29] and
in the tumor microenvironment, suggesting aberrant glycogen metabolism as a possible therapeutic
target [30,31].

Glycolysis, or the breakdown of glucose, results in the end product pyruvate in addition to ATP
and the reduced form of nicotinamide adenine dinucleotide (NADH) [19]. Pyruvate can follow one of
two pathways depending on the presence or absence of oxygen. Under aerobic conditions, pyruvate
enters the mitochondria where it is converted to Acetyl-coenzyme A (Acetyl CoA) by the pyruvate
dehydrogenase complex (PDC). The Acetyl CoA then enters the tricarboxylic acid (TCA) cycle which
yields CO2 as a byproduct, as well as NADH and the reduced form of flavin adenine dinucleotide
(FADH2). The NADH and FADH2 produced during glycolysis and the TCA cycle are high-energy
electron carriers that enter oxidative phosphorylation, also known as the electron transport chain.
During oxidation of NADH and FADH2, electrons are transferred from these coenzymes to oxygen
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and free energy is released. Glycolysis, the TCA cycle and oxidative phosphorylation yield two, two
and thirty-two molecules of ATP, respectively (Figure 3), and together comprise cellular respiration.Metabolites 2017, 7, 18 5 of 15 
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adenosine diphosphate; ATP: adenosine triphosphate; CoA: coenzyme A; FAD: oxidized flavin 
adenine dinucleotide; FADH2: reduced flavin adenine dinucleotide; NAD+: oxidized nicotinamide 
adenine dinucleotide; NADH: reduced nicotinamide adenine dinucleotide; NADP+: oxidized 
nicotinamide adenine dinucleotide phosphate; NADPH: reduced nicotinamide adenine dinucleotide 
phosphate; Pi: inorganic phosphate; ROS: reactive oxygen species. 
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oxidative phosphorylation [32], it is much less efficient as it yields only two molecules of ATP from 
glycolysis per glucose molecule. In both cancer cells and normal rapidly-proliferating cells, most of 
the pyruvate produced during glycolysis is converted to lactate whether oxygen is present or not; 
hence, their metabolism is termed aerobic glycolysis [19]. This metabolic switch is known as the 
Warburg effect, and was first observed by Otto Warburg [33]. The reduced efficacy to generate ATP 
has been suggested to be an adaption to facilitate the uptake and incorporation of nutrients into 
biomass needed to produce a new cell [19]. It is also suggested that the production of lactate is 
favorable to tumor cells, making them more destructive for the surrounding tissue and more resistant 
against the immune system [34]. To compensate for the inefficient ATP production, most tumors have 
an increased rate of glucose uptake. This property makes PET a highly sensitive and specific clinical 
tool to identify primary and metastatic lesions [35,36]. This technique uses the glucose analogue tracer 
18Fluorodeoxyglucose (FdG) to image and quantify glucose uptake, which has been found to be 
correlated with poor prognosis and to be highly dependent on the glycolytic rate [17,35,36]. 

Figure 3. Overview of cellular glucose and glutamine metabolism. Glucose can undergo three
fates: glycolysis (dark blue), glycogen synthesis (brown), or the pentose phosphate pathway (PPP),
which has an oxidative (dark orange) and non-oxidative (light orange) phase. The TCA cycle (black)
reactions that are recruited by glutaminolysis (gray) are marked ♦. Enzymes are shown in red. ADP:
adenosine diphosphate; ATP: adenosine triphosphate; CoA: coenzyme A; FAD: oxidized flavin adenine
dinucleotide; FADH2: reduced flavin adenine dinucleotide; NAD+: oxidized nicotinamide adenine
dinucleotide; NADH: reduced nicotinamide adenine dinucleotide; NADP+: oxidized nicotinamide
adenine dinucleotide phosphate; NADPH: reduced nicotinamide adenine dinucleotide phosphate;
Pi: inorganic phosphate; ROS: reactive oxygen species.

When little or no oxygen is available to oxidize pyruvate and NADH produced during glycolysis,
pyruvate is quickly reduced to lactate via the action of lactate dehydrogenase (LDH). The oxidized
form of NAD produced through this reaction fuels glycolysis creating a positive feedback loop
(Figure 3). Although the production of ATP via anaerobic glycolysis is 100 times faster than oxidative
phosphorylation [32], it is much less efficient as it yields only two molecules of ATP from glycolysis
per glucose molecule. In both cancer cells and normal rapidly-proliferating cells, most of the
pyruvate produced during glycolysis is converted to lactate whether oxygen is present or not; hence,
their metabolism is termed aerobic glycolysis [19]. This metabolic switch is known as the Warburg
effect, and was first observed by Otto Warburg [33]. The reduced efficacy to generate ATP has been
suggested to be an adaption to facilitate the uptake and incorporation of nutrients into biomass
needed to produce a new cell [19]. It is also suggested that the production of lactate is favorable to
tumor cells, making them more destructive for the surrounding tissue and more resistant against
the immune system [34]. To compensate for the inefficient ATP production, most tumors have an
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increased rate of glucose uptake. This property makes PET a highly sensitive and specific clinical
tool to identify primary and metastatic lesions [35,36]. This technique uses the glucose analogue
tracer 18Fluorodeoxyglucose (FdG) to image and quantify glucose uptake, which has been found to be
correlated with poor prognosis and to be highly dependent on the glycolytic rate [17,35,36].

The PPP, found to be elevated in cancer [37], is a major source of the reduced form of
nicotinamide adenine dinucleotide phosphate (NADPH), which is an electron carrier or antioxidant.
The PPP involves an oxidative (ox-PPP) and non-oxidative (non-ox-PPP) phase. The non-ox-PPP
provides a link to glycolysis as it converts ribose-5-phosphate (R5P) into the glycolytic intermediates
fructose-6-phosphate and glyceraldehyde-3-phosphate to promote cellular energy metabolism.
This pathway is reversible, being able to redirect the glycolysis intermediates to produce R5P to
increase biosynthesis of ribonucleotides when required for proliferation (Figure 3).

A general hypothesis when analyzing glucose metabolism in tumor tissue is that decreasing
levels of glucose reflects an increasing energy demand while the degree of lactate production
might indicate whether the glucose is guided towards TCA cycle or used for aerobic glycolysis.
The decrease in glucose has also been observed by proton HR MR-obtained spectra using tissue
extracts from breast cancer [38]. In accordance with a higher energy demand and thereby higher
glucose demand in tumors with actively proliferating cells, a previous study reported glucose levels
in tissue to be negatively correlated to Ki-67 expression [39]. Among gene expression subtypes,
luminal-like xenograft tumors express a higher glycolytic rate compared to more aggressive and fast
growing tumors of basal-like xenografts [40]. Further investigation of luminal A tumors from patients
suggested glucose concentration as one of the markers for further metabolic subgrouping, where
one of the suggested subgroups showed significantly lower concentration of glucose compared to
the others [41]. Glucose metabolism does not necessarily behave similarly in all breast cancer gene
expression subtypes, potentially contributing to the heterogeneity of the disease. In a more recent study,
the main metabolic differences in tumors from untreated breast cancer patients were examined [42].
This revealed three metabolic clusters, where one of the clusters (Mc2) was characterized by high
levels of glucose indicative of lower glycolytic rate. In one of the other clusters (Mc3), a higher
Warburg effect was evident based on the characteristic low levels of glucose and higher levels of
lactate. The gene expression subtypes were evenly distributed among these clusters, suggesting that
metabolic differences may provide an additional component of the heterogeneity of breast cancer
beyond gene expression.

Although metabolic prediction of treatment response prior to onset of neoadjuvant treatment has
currently not been achieved [43–45], increase in glucose levels during treatment for responders [44] and
5-year survivors [43] has been observed. If glucose is metabolized though aerobic glycolysis, regardless
of oxygen availability, lactate will be produced via the action of LDH. Lactate has been suggested as a
key player for cancer development and metastasis [34,46], and HR MAS MR spectroscopy analysis
showed lower levels of lactate in ER- breast tumors compared to ER+ tumors [47]. This was later
confirmed by MS analysis of breast cancer tissue extracts [48]. In addition, high levels of lactate, together
with high glycine levels, has been associated with poor-prognosis for patients with ER+ invasive ductal
carcinoma [49]. Accumulation of lactate in tissue extracts analyzed by MR spectroscopy has also been
shown to correlate with metastasis [50,51]. Furthermore, in patients diagnosed with locally advanced
breast cancer, higher lactate levels prior to treatment start was observed for those who did not survive
(5 years), supporting it as a poor-prognosis marker [43,45].

The characteristic of high glycolytic activity is being tested as a target in cancer therapy using
different approaches [52]. Direct inhibition of glucose metabolism using the glucose analogue
2-deoxy-D-glucose (2DG) has been extensively studied in cancer cells, especially in combination
with other treatments [53,54]. Although preclinical toxicity issues have been a concern regarding this
drug, it has been reported as well tolerated in patients [55]. By binding to the glucose transporters,
2DG inhibits glucose uptake and thereby all downstream pathways that rely on glucose to contribute
with intermediates in both glycolysis and mitochondrial oxidative phosphorylation. Other possible
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glycolytic targets include the hexokinases (HKs) where the use of 3-bromopyruvate (3-BrPA) has been
found to induce autophagy in breast cancer cell lines [56,57]. Notably, inhibiting glucose metabolism is
expected to drive cancer cells to use other sources, e.g., glutamine, for energy and substrate production
as a compensatory mechanism. Targeting multiple metabolic pathways simultaneously has therefore
been considered an alternative treatment strategy [52].

3. Amino Acid Metabolism

Although more than 500 different amino acids exist, only 20 commonly serve as building blocks
for proteins in the human body [58]. Amino acids can act as regulators or intermediate metabolites for
several important metabolic pathways necessary for cellular maintenance and growth. Cancer cells
have been shown to have increased consumption of amino acids and upregulation of corresponding
transporters, in addition to altered levels of enzymes that catalyze amino acid synthesis and/or
catabolism, thus amino acid metabolism presents several potential targets for cancer treatment and
patient stratification [59].

Although glucose is considered the main energy source in human cells, amino acids such
as glutamine can be utilized to produce ATP through refilling of intermediates to the TCA cycle.
Glutamine is normally considered a non-essential amino acid, however studies have shown that
in rapidly dividing cells, including both normal and cancer cells, it is conditionally essential [60].
Glutamine can be transported into the cell, where it is hydrolyzed to glutamate and ammonium
by the enzyme glutaminase (GLS or GLS2). Glutamate has several metabolic fates in human cells:
protein synthesis, conversion into α-ketoglutarate to enter the TCA cycle, to act as a precursor for
the important antioxidant glutathione or to provide the amino group for non-essential amino acids
such as alanine, aspartate, serine and glycine [59,60]. Significant amounts of glutamine carbon have
been found to be converted to lactate and secreted from cancer cells in vitro, in a similar manner as
glucose [17,61]. This reaction involves the malic enzyme and leads to synthesis of CO2, pyruvate and
NADPH, the latter being a reducing equivalent and as such is important for lipid and nucleotide
synthesis. Through this pathway, increased glutaminolysis in proliferative cells can fulfill an important
proportion of their NADPH demands [17,61]. An overview of glutamine metabolism is shown in
Figure 3.

Increased glutamine transporter activity and GLS expression have been found in several
cancers [18,61]. In breast cancer, elevated GLS expression has been associated with high grade and
metastatic disease [62,63]. Triple negative breast cancers (TNBC) have been shown to have elevated
GLS levels both in vivo and in vitro [63]. In addition, in a study comparing the metabolic profiles of
TNBC tissue to triple positive breast cancer, TNBC were shown to have lower glutamine and higher
glutamate levels, supportive of increased glutamine metabolism in this subgroup of patients [64].
GLS inhibitors as antitumor treatment for TNBC have shown promising results in preclinical studies,
and are currently being tested in clinical trials [63,65].

Glutathione, a tripeptide of glutamate, cysteine and glycine, is a major cellular antioxidant [66],
and as such provides protection from reactive oxygen species (ROS) that oxidize and damage cellular
proteins, lipids and nucleic acids and may ultimately cause cellular dysfunction or death [67]. It has
been hypothesized that high levels of glutathione could contribute to treatment resistance by reducing
the effectiveness of drugs intended to damage cancer cells [68]. Additionally, cancer cells with
lower levels of glutathione were found to be more sensitive to radiation therapy [68]. Furthermore,
in a chemoresistant breast cancer cell line, decreased glutathione levels were suggested to be an
essential event in treatment-induced reduction of their resistant properties [69]. In a study investigating
the effect of anti-angiogenesis treatment (bevacizumab) of breast cancer in a neoadjuvant setting,
lower glutathione levels were detected in patients receiving bevacizumab compared to patients
receiving chemotherapy only, suggesting that anti-angiogenesis treatment may induce oxidative stress
to promote apoptosis [44].
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Taurine is another amino acid whose relevance in cancer has been investigated. However, findings
for this metabolite vary with different types of cancer [23], and the involved mechanisms are still
unclear. Taurine is not incorporated into proteins, but is still essential with functions related to cell
membrane stability and facilitation of ion transport. Elevated levels of taurine in breast tissue compared
to normal tissue have been reported in studies using HR MAS MR spectroscopy [70,71]. Taurine has
also been negatively associated with axillary lymph node spread [39], and was found to be lower in
ER- compared to ER+ tumors [47] and in HER2-positive (HER2+) compared to negative tumors [72].
ER- and HER2+ tumors are generally more aggressive, and when comparing patients with a poor or
good prognosis based on clinical parameters (lymphatic spread, tumor size and hormone receptor
status) lower taurine levels in tissue from the poor-prognosis patients were detected [39]. A study
using two different human breast cancer cell lines showed that treating cells with taurine inhibited
growth and induced apoptosis by regulating apoptosis-related proteins of mitochondria [73].

Taurine levels have also shown potential for monitoring treatment response, where breast cancer
patients with a clinical response to neoadjuvant doxorubicin treatment had a larger decrease of taurine
compared to non-responders [45]. A similar study of breast cancer patients receiving neoadjuvant
combinational chemotherapy (FEC-100 and taxanes) with or without bevacizumab also showed
decreased taurine levels in responders compared to non-responders after treatment [44]. The finding
was however not confirmed in patients receiving epirubiucin and/or paclitaxel, where metabolic
profiles could not separate patients with a stable disease from partial responders, possibly due to less
extreme response groups in this study [43].

Glycine is a small, non-essential amino acid with important metabolic functions in the human body.
Glycine can be derived from glycolysis through its precursor serine from 3-phosphoglycerate, or from
choline by oxidation of choline to betaine which is further converted to sarcosine and finally glycine.
Mitochondrial serine hydroxymethyltransferase 2 (SHMT2), the primary catalyst for converting serine
to glycine, is shown to be one of the most frequently over-expressed metabolic enzymes in human
tumors [74].

Glycine has been found to be tumor size-dependent, where tumors larger than 2 cm had
significantly higher concentrations of glycine as well as choline compared to smaller tumors [70].
Additionally, glycine has been suggested as a prognostic biomarker in studies comparing tissue samples
from patients with a poor or good prognosis based on clinical parameters (lymphatic spread, tumor size
and hormone receptor status) [39,72], where high glycine levels were associated with a poor prognosis.
Higher levels of glycine were also confirmed in tissue samples from the poor-prognosis basal-like
compared to the good-prognosis luminal-like breast cancer xenograft models [75], with gene-expression
data suggesting that increased glycine levels were derived from the choline pathway. The hypothesis
of glycine levels being predictive for poor prognosis was supported in a study comparing 5-year
survivors to non-survivors [49], where non-survivors had higher levels of glycine and lactate in
surgically removed tumor tissue. Studies have also shown that non-survivors have higher glycine
levels after neoadjuvant treatment compared to surviving breast cancer patients [43,45]. Together, these
results suggest high glycine levels in breast cancer to be a marker of poor prognosis.

4. Choline Phospholipid Metabolism

Choline is an essential organic compound functioning as a precursor for phosphatidylcholine
(PtdCho), one of the most abundant phospholipids in eukaryotic cellular membranes [76]. PtdCho
is formed de novo from choline via the Kennedy pathway shown in Figure 4. Choline is first
transported into the cell and phosphorylated to phosphocholine (PCho) by the enzyme choline
kinase. A cytidyldiphosphate (CDP) group is then added to PCho, forming the high-energy
donor CDP-choline. To synthetize PtdCho, a lipid anchor such as diacylglycerol (DAG) is added
by the enzyme DAG-cholinephosphotransferase [76]. The breakdown products of PtdCho are
1-acylglycerophosphocholine and glycerophosphocholine (GPC), the latter of which is subsequently
converted to choline, thereby completing the choline cycle (Figure 4). Since lipid second messengers are
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synthesized via choline phospholipid metabolism, this pathway plays an additional role in lipid-based
signal transduction. Proton MR spectral peaks for Cho, PCho and GPC are detected in vivo as a single
peak, i.e., tCho; using ex vivo proton HR MAS MR spectroscopy, however, these choline-containing
metabolites can be detected separately and have been found to be expressed at higher levels in cancer
than in normal or adjacent non-involved breast tissue [39,70,77].Metabolites 2017, 7, 18 9 of 15 
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Choline-containing compounds are considered essential to sustain cell proliferation in terms of
being substrates for membrane multiplication for new cells [78,79]. Tumor cells grow rapidly and
therefore require high production of phospholipids like PtdCho. The abnormal high production of
PtdCho from choline and choline-containing compounds has therefore been studied as an element of
cancer metabolic reprogramming for several decades [23] and is an emerging metabolic hallmark for
tumor progression [80].

Choline containing metabolite levels have been found to correlate with enzymes involved in
choline phospholipid metabolism. Increased tCho and PCho in cancer has been attributed to a
higher choline uptake [81,82], as well as increased expression and activity of the enzymes choline
kinase alpha (CK-α) [82,83], the isoform which is primarily upregulated in cancers [84] together
with phospholipases C [82,85] and D [82,86] and glycerophosphocholine phosphodiesterases [87,88]
(Figure 4). The expression of CK-α is shown to correlate with GPC and PCho levels in vitro [85] and
ex vivo [89]. The glycerophosphodiester phosphodiesterase domain containing 5 (GDPD5), which
encodes for the enzyme glycerophosphocholine phosphodiesterase that catalyzes the degradation
of GPC to free choline (Figure 4) has been found to be positively correlated with PCho, tCho and
PCho/GPC levels in human breast tumors [87].

Choline phospholipid metabolism has been investigated as a target for antitumor treatment,
with CK-α inhibition showing antiproliferative effects in both cancer cell lines and xenograft models
of human tumors [90]. Promising results combined with low toxicity profiles for the CK-α inhibitor
RSM-932A have led to the drug being currently tested in a phase I clinical trial [91].

Nevertheless, many of the mechanisms governing altered choline phospholipid metabolism
in cancer are still not fully understood. Malignant transformation, rather than rapid proliferation,
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has been suggested as the main driver for abnormal choline metabolism, as non-cancer proliferating
cells were found to sustain low PCho, GPC and tCho levels in cell culture [92]. In the same study,
the ratio between GPC and PCho was inverted from higher GPC/PCho to higher PCho/GPC with
immortalization of cells, suggesting the latter ratio to be a marker for aggressiveness. Similar results
were observed in a study comparing triple negative and triple positive cell lines by HR MAS
MR spectroscopy of intact cells, where the triple negative cell line had higher PCho levels [93].
In contradiction, ex vivo studies have found GPC/PCho to be elevated in breast cancer subtypes
with worse prognosis [47,75]. The discrepancy may be due to the association of higher PCho/GPC
to aggressiveness being based on in vitro studies that do not take the effects of the tumor
microenvironment into account. Acidic extracellular pH, for example, has been found to significantly
increase GPC and decrease PCho levels [94]. Despite of lacking consensus regarding choline metabolite
ratios, increased levels of one or more of the individual metabolites constituting tCho are consistently
observed in tumors and are associated with cancer aggressiveness. Decreased tCho signal detected
in vivo has therefore been suggested as a marker of tumor response to treatment [95,96].

Changes in choline-containing compounds during neoadjuvant chemotherapy have also been
detected ex vivo. Cao et al. [43] reported a decreasing trend in GPC levels during treatment, while
Euceda et al. [44] detected decreased levels of all the constituents of tCho. In the latter study, choline
and PCho were also significantly lower in patients exhibiting a good pathological response compared
to pathological non-responders at the end of treatment. These findings point to a decrease in choline
phospholipid metabolism as an effect of breast cancer therapy, which appears more prominent in
responders. This decrease may reflect an attenuation of malignancy and aggressiveness in the treated
tumors. Metabolic profiles of intact breast tumor tissue have provided indications that changes
in choline phospholipid metabolism during treatment are associated with prognosis. In patients
diagnosed with locally advanced breast cancer receiving neoadjuvant chemotherapy [45], long-term
survivors (≥5 years) had higher levels of tCho pre-treatment when compared to non-survivors. In a
larger study [43], long-term survivors, but not non-survivors, exhibited a significant decrease in GPC as
an effect of neoadjuvant chemotherapy. Elucidating the molecular basis underlying the tCho changes
in tumors responding to treatment may therefore be useful in improving patient outcome.

Choline phospholipid metabolism seems to be a factor contributing to breast cancer heterogeneity
determined at different molecular levels. Regarding the protein level, ER+ tumors have been associated
with higher PCho and lower GPC and choline levels compared to ER- tumors [47]. In the previously
mentioned study defining three metabolic clusters of breast cancer [42], one of the clusters (Mc1)
was defined by significantly higher levels of GPC and PCho and exhibited higher levels of the
gene for CK-α. Integrated pathway analysis identified glycerophospholipid metabolism as the most
significantly different pathway between this cluster and the others.

Distinct differences in choline metabolite profiles have been observed between luminal-like and
basal-like xenografts. Moestue et al. [75] found that the more aggressive basal-like tumor xenografts
had a higher GPC and lower PCho concentration than the less aggressive luminal-like xenograft
models. To evaluate how well the models represent human breast cancer, GPC and PCho levels
in breast cancer tissue from patients were examined. A higher GPC/PCho ratio in triple negative
compared to ER+/PgR+ breast cancer was observed, in concordance to the basal-like and luminal-like
subtypes, respectively. The same GPC and PCho trends between the gene expression subtypes was
observed in two other separate studies [40,89].

Differences in how these choline-containing compounds are affected by treatment have also been
observed between basal-like and luminal-like xenografts. Moestue et al. [97] found that treatment
with inhibitors of the PI3K pathway significantly increased PCho in basal-like, but not in luminal-like,
tumor xenografts, which coincided with decreased proliferation. This suggests that breast cancer
heterogeneity at the metabolic level could be exploited to further stratify treatment and to determine
new possible drug targets for specific patient subgroups. When looking into a heterogeneous panel of
TNBC xenograft models, however, Euceda et al. [98] found that PCho levels were significantly lower
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in xenografts treated with an mTOR/AKT/PI3K inhibitor than in untreated controls. This can be
considered contradictory to the increased PCho levels in basal-like xenografts after treatment with PI3K
inhibitors in [97], since there is a high degree of overlap between the basal-like and TNBC subtypes.
In general, tCho response to breast cancer treatment seems to depend not only on subtype, but also
on factors such as the drug being administered and the time period following treatment when the
metabolites are measured. However, the distinct differences in choline metabolite profiles observed
in luminal-like and basal-like xenografts have also been found to correlate with gene expression
differences [75,89], indicating the need to combine data levels for better breast cancer stratification.

5. Conclusions

Metabolic profiles of breast tumors can be generated from intact tissue using proton HR MAS MR
spectroscopy. This technique has been applied to study metabolites involved in the cancer-relevant
pathways of glucose metabolism, amino acid metabolism and choline phospholipid metabolism.
This review has provided a description of the said pathways as well as an overview of the main
metabolic findings within them concerning breast cancer, focusing on proton MR detectable metabolites
in intact tumor tissue, supported by in vitro and MS findings. HR MAS MR spectroscopy has proved
to be a valuable tool in the characterization of breast cancer, with an important benefit being its
translational potential to the in vivo setting. Since metabolites may serve as phenotypic markers
resulting from both genome and proteome alterations, MR metabolomics can potentially be used to
provide important predictive and prognostic information. Future studies combining metabolic profiles
with data from other platforms could potentially lead to a more refined stratification of breast cancer
patients and improved treatment strategies targeting metabolic pathways.
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