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Figure 5.3: The concurrence, C, plotted as a function of χ for

φ = 0 and φ = π, represented by extending the range of χ on

the polar axis. The direction of the emitted photon is

illustrated by marking the angle θC . The system in question is

an electron moving through water at v = 0.77c (= 1.001c/n),
emitting a photon of frequency ωk = 1016 rad s−1.

Hypothetically, if an experiment could set the velocity of a transversely
polarized initial particle so close to threshold that the maximal frequency by
Eq.(G.6) would lie within the frequency range where n > 1, it would be possible
to observe the degree of entanglement in the �nal state to vary between 0 and
1 with the frequency of the emitted photon. However, such an experiment is
probably not feasible, as it faces the same challenges outlined for relativistic
corrections in Chapter 3.

5.2 Separable States

In this section we will show analytically that for any given k there exists
parameters χ0 and φ0 such that the �nal state is separable. If the state of a
two-particle system is separable, either component particle will be left in a pure
quantum state after summing over the states of the other particle. To look for
such states of our system, we therefore sum over the states of the �nal charged
particle, then �nd a basis of polarization by the parameter α such that the
state of the photon is |kα0+〉. In other words, we �nd the parameters α0, χ0,
and φ0 by requiring that |S1,−|2 becomes zero. As the squared modulus of the
amplitude is a positive number, we note that any zero of the function must
coincide with a global minimum. We therefore begin by �nding the extrema of
the amplitude with respect to α
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Minimal Basis

To �nd the extrema of the amplitude, we set the partial derivative to zero

∂

∂α
|S1,−|2 = Sk

(
v2

c2
sin2 θC sin(2α) + cos(2α)

~ωk

E
F (χ, φ)

)
= 0 . (5.6)

Thus, for a given spinor orientation, χ, φ, there are polarization bases given by
α = α0 for which |S1,−|2 is extremal, where

tan(2α0) = −
~ωk

2E

F (χ, φ)

1

2

v2

c2
sin2 θC

. (5.7)

Recalling α is restricted to the range [0, π/2], we have two extrema of the ampli-
tude: a minimum corresponding to the cos(2α0) ≥ 0 solution, and a maximum
corresponding to the cos(2α0) < 0 solution.

Inserting the cos(2α0) ≥ 0 solution in Eq.(4.26), we write the amplitude in
the minimal basis as

|S1,−|2
∣∣
α0

= Sk

(
1

2

v2

c2
sin θC +

(
~ωk

2E

)2

(n2 − 1)−√(
1

2

v2

c2
sin2 θC

)2

+

(
~ωk

2E

)2

F 2(χ, φ)

)
. (5.8)

Here we have applied the trigonometric identity cos(arctan(x)) = 1/
√

1 + x2.
From Eq.(5.8) we see that the amplitude is zero when

F 2(χ, φ) =
(nv
c
− cos θC

)2
+

1

γ2
sin2 θC . (5.9)

Here we have applied the relativistic de�nition of the Cherenkov angle, Eq.(2.99),
in order to simplify.

Extremal Angles

Considering the form of Eq.(4.26), we see that a zero of the amplitude for
left-handed light must correspond to a minimum of F (χ, φ). We will therefore
locate the global minimum, χ0, φ0, and show that F (χ0, φ0) ful�ls the condition
given in Eq.(5.9). Setting the partial derivative with regard to φ to zero

∂

∂φ
F (χ, φ) = −1

γ
sinχ sinφ sin θC = 0 , (5.10)

we have extrema at φ = 0 and φ = π. Setting the partial derivative with regard
to χ to zero

∂

∂χ
F (χ, φ) =

1

γ
cosχ cosφ sin θC − sinχ

(
cos θC −

nv

c

)
= 0 , (5.11)
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we have extrema when

tanχ =
sin θC cosφ

γ(cos θC − nv/c)
. (5.12)

Keeping in mind that 0 ≤ χ ≤ π we conclude that the minimum of F (χ, φ) is
located at

φ0 = π , (5.13)

and

χ0 = arctan

(
sin θC

γ(nv/c− cos θC)

)
. (5.14)

Evaluating F (χ0, φ0) by Eq.(4.27), we �nd

F (χ0, φ0) = −
√(nv

c
− cos θC

)2
+

1

γ2
sin2 θC , (5.15)

which clearly ful�ls the condition given in Eq.(5.9). Thus, for a given k-vector
there will always exist some spinor orientation, χ0, φ0, for which the photon is
emitted in a pure state. Said pure state may be described as the state |kα0+〉.

Having proven that a zero of the amplitude exists, we can �nd an explicit
expression for α0 by setting |S1,−|2 = 0, which by Eq.(4.26) gives

F (χ, φ) = − 2E

~ωk

v2

c2
sin2 θC sin2 α0

sin(2α0)
− ~ωk

2E

(n2 − 1)

sin(2α0)
. (5.16)

Combining this with Eq.(5.7), we �nd

cos(2α0) =

1

2

v2

c2
sin2 θC

1

2

v2

c2
sin2 θC +

(~ωk

2E

)2

(n2 − 1)

. (5.17)

This expression may also be reformulated as

sin2 α0 =
|S1,2|2

|S1|2
. (5.18)

Without commenting on this more rigorously, we can see intuitively that this
relates to the de�nition of our elliptical basis vectors as superpositions of the
linear polarization vectors by Eq.(2.63) and Eq.(2.64).

As we may see from the �gures of Section ??, there is a second spinor
orientation corresponding to a separable state. Determining this orientation
proceeds by the same math as presented above, but setting instead |S1,+|2 = 0.
Without doing so explicitly, we simply state that the second separable state
occurs at χ = π − χ0 and φ = 0.
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6 Conclusion

Modelling the source of Cherenkov radiation as a general spin polarized
relativistic plane-wave introduces e�ects beyond the established relativistic cor-
rections to the phenomenon. Said e�ects pertain to the polarization of emitted
light, as presented in Chapter 4 (notably in Eq.(4.26)), and to the degree of
entanglement between photon and charged particle, as presented in Chapter 5.
Inquiry into the question of whether it would be possible to detect such e�ects
experimentally is inconclusive. However, in particular the polarization e�ects
presented in this thesis are potentially far simpler to detect than the established
relativistic corrections as outlined in Chapter 3. This is primarily due to the
φ-dependence of the e�ects, and the fact that they are present at velocities
signi�cantly above threshold.

If spin polarization e�ects were to be detected in accordance with the anal-
ysis of Chapter 4, they would have potential applications in experiment. A
RICH-detector modi�ed to register the angular distribution of polarized pho-
tons could be used to study the spin degrees of freedom of an electron beam.
Such a device could prove a valuable experimental tool.

The e�ects are also interesting from a theoretical perspective. Presently,
there is no classical theory of analogous e�ects, and intuitively it seems it would
be challenging to construct such a theory within the assumptions presented in
Section 2.1. Furthermore, if the phenomenon was to best be described as a
charged particle interacting with an ensemble of dipoles, thereby causing them
to radiate, it seems peculiar it should be possible for said particle to emerge from
the medium in a pure quantum state, i.e., without having become entangled
with any of the dipoles of the ensemble. In the event that the results of this
thesis were to be con�rmed experimentally, they would potentially constitute
a compelling argument that it is in fact the charged particle itself which emits
radiation.

Main desirable qualities of the material for the observation of relativistic
e�ects in quantum mechanical Cherenkov radiation are as follows:

• As large a refraction coe�cient, n, as possible.

• Dielectric properties at as high a frequency as possible.

• Penetrability to electrons. Although one may consider performing ex-
periments with vacuum or waveguide channels allowing electrons to pass
through an impenetrable medium.

• Homogeneity, in order to avoid the in�uence of unrelated e�ects on the
experiment. The present results also assume the medium is isotropic, how-
ever, we have not considered whether anisotropic media would attenuate
or amplify spin polarization e�ects.
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It appears that the properties of currently known dielectrics lie just at the
edge of what is required to observe the polarization e�ects discussed in the
present thesis. It may perhaps be possible to employ metamaterials or other
materials with exotic properties in order to detect these e�ects, however, such
speculations are outside the scope of the thesis. One may also speculate that
corresponding e�ects of greater magnitude may be present for spin-1 particles, as
opposed to the spin-1/2 particles considered in the present thesis. Spin-1 parti-
cles are common subjects in RICH-detectors [5], and so it may be a worthwhile
future endeavour to evaluate spin polarization e�ects for particles of integer
spin as well. As a �nal cautionary remark, we note that the present discussion
does not take into account dispersion, absorption, or scattering in the medium,
and it is uncertain how these factors will a�ect the prospect of detecting spin
polarization e�ects in practice.
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A Notation and Conventions

Mathematics

Vectors are denoted by boldface symbols, r, and the scalar product by r ·k.
The norm of a vector is denoted |r| = r. Vectors of unit length are denoted by
a hat

r = rr̂ = xx̂ + yŷ + zẑ . (A.1)

The nabla operator is de�ned, in Cartesian and cylindrical coordinates re-
spectively, as

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
, ∇ = ρ̂

∂

∂ρ
+ φ̂

1

ρ

∂

∂φ
+ ẑ

∂

∂z
. (A.2)

The Laplace operator is de�ned, in Cartesian and cylindrical coordinates re-
spectively, as

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, ∇2 =

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂φ2
+

∂2

∂z2
. (A.3)

Fourier transforms use the following convention:

f(t) =

∫ ∞
−∞

dω

2π
eiωtf(ω) , f(ω) =

∫ ∞
−∞

dte−iωtf(t) , (A.4)

f(r) =

∫ ∞
−∞

d3k

(2π)3
e−ik·rf(k) , f(k) =

∫ ∞
−∞

d3reik·rf(r) . (A.5)

Physical Quantities

Unless noted otherwise, this thesis makes use of SI-units.
The permittivity and permeability of a linear medium are denoted εε0 and

µµ0 respectively, where ε0 and µ0 denote the permittivity and permeability of
the vacuum, given by ε0 = 1/µ0c

2. Additionally, the index of refraction is given
by n =

√
εµ.

Transition amplitudes in perturbation theory are denoted by

Mi,f ≡ 〈f |H ′ |i〉 , (A.6)

where H ′ denotes the perturbation to the Hamiltonian. Summation over the
states of a system is indicated by suppressing the corresponding subscript, e.g.,

|Mi|2 ≡
∑
f

| 〈f |H ′ |i〉 |2 . (A.7)
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B Tables

Table B.1: Some noteworthy coe�cients of refraction. These

are approximate values, as the coe�cient of refraction in

general depends on wavelength.

Material n at wavelength

water [2, p. 457] 1.34 500 nm

Gallium Arsenide [3] 4 270 nm

silica aerogel [4] 1.03 400 nm

C4F10 [4] 1.0014 400 nm

Table B.2: Some noteworthy frequencies of light.

ω (×1015 rad s−1) ~ω (eV) λ (nm)

ultraviolet C 6.73�18.8 4.44�12.4 280�100

LHCb RICH range [5] 3.14�9.42 2.07�6.21 600�200

visible light 2.51�4.96 1.65�3.26 750�380

electron rest energy equivalent 7.76× 105 5.11× 105 2.43× 10−3
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C Delta Functions

The Dirac delta function δ(x) is de�ned as a distribution with the property∫ ∞
−∞

dxf(x)δ(x) = f(0) . (C.1)

In particular, we have

lim
µ→0−

lim
ν→0+

∫ ν

µ

dxδ(x) = 1 . (C.2)

One possible representation of the delta function is the limit of a box function
with unit area

δ(x) = lim
ε→0


1

ε
, if |x| ≤ ε ,

0 , if |x| > ε .
(C.3)

Owing to the property of Eq.(C.1), the fourier transform of the delta function
is simply δ(k) = 1. Thus an alternative representation of the delta function is

δ(x) =

∫ ∞
−∞

dk

2π
e−ikx . (C.4)

When a plane is mapped in polar coordinates ρ, φ, it may be desirable to
de�ne a "radial delta function" δρ(ρ) in order to emphasize the symmetry of
the distribution with respect to rotation about the origin. Similarly to the
expression δ(x)δ(y), such a function should integrate to one on an in�nitesimal
area about the origin. Expressing this requirement in polar coordinates, we �nd
that the radial delta function has the property

lim
ρ′→0

∫ ρ′

0

dρρδρ(ρ) =
1

2π
. (C.5)

One possible representation of a radial delta function exhibiting this property
is the limit of a rotationally symmetric step function:

δρ(ρ) = lim
ε→0


1

πε2
, if ρ ≤ ε ,

0 , if ρ > ε .
(C.6)
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D Hankel Functions

From Ref. [21].
In cylindrical systems one encounters the Bessel di�erential equation:

x2
d2

dx2
f(x) + x

d

dx
f(x) + (x2 + α2)f(x) = 0 . (D.1)

This equation has two linearly independent solutions: One which is regular in
the origin, called the Bessel function of the �rst kind Jα(x), and one which is
divergent in the origin, called the Bessel function of the second kind Yα(x). Ad-
ditionally, any linear combination of these solutions also constitutes a solution
of the equation. When we wish to model waves in the system described by Eq.
(D.1), the most convenient solutions are what we call the Hankel functions, also
known as Bessel functions of the third kind:

H(1)
α (x) = Jα(x) + iYα(x) , (D.2)

H(2)
α (x) = Jα(x)− iYα(x) . (D.3)

In the large argument limit, the asymptotic forms of these functions are pro-
portional to e±ix. Speci�cally, for the case of α = 0, the asymptotic forms
are:

For x� 1 :

H
(1)
0 (x) =

√
2

πx
ei(x−π/4) , (D.4)

H
(2)
0 (x) =

√
2

πx
e−i(x−π/4) . (D.5)

For 0 < x� 1 :

H
(1)
0 (x) = 1 + i

2

π
(ln(x/2) + γ) , (D.6)

H
(2)
0 (x) = 1− i 2

π
(ln(x/2) + γ) . (D.7)

Here γ = 0.57721... denotes the Euler-Mascheroni constant.
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E Pauli Matrices

From Ref. [22, p. 433].
The Pauli matrices are a set of three traceless 2× 2 matrices de�ned as

σ1 =

(
0 1
1 0

)
, (E.1)

σ2 =

(
0 −i
i 0

)
, (E.2)

σ3 =

(
1 0
0 −1

)
. (E.3)

They are Hermitian and unitary, and obey the relations

σiσj = δij + iεijkσk . (E.4)

and
σiσj = 2δij − σjσi , (E.5)

Here εijk is the Levi-Civita symbol, with the convention ε123 = 1. The trace of
products of Pauli matrices is of particular interest in the evaluation of transition
amplitudes. As the Pauli matrices are traceless, Eq.(E.4) implies

Tr {σiσj} = 2δij . (E.6)

Using Eq.(E.5) to iteratively commute the Pauli matrices, and evaluating the
remaining traces by Eq.(E.6) as we go, gives

Tr {σiσlσjσm} = 4δilδjm − 4δijδlm + 4δimδjl − Tr {σiσlσjσm} , (E.7)

i.e.,
Tr {σiσlσjσm} = 2δilδjm + 2δimδjl − 2δijδlm . (E.8)
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F The Dirac Equation

We consider a particle with momentum p and mass m, in a Cartesian coor-
dinate system de�ned by the unit vectors ê1, ê2, and ê3, as illustrated in Figure
F.1.

Figure F.1: The momentum vector p, making an angle β
with the 3-axis of the coordinate system.

The relativistic energy-momentum relation for a massive particle is

E =
√
p2c2 +m2c4 . (F.1)

Writing the Hamiltonian in terms of the momentum operator, we wish to avoid
the square root in Eq.(F.1). As Dirac discovered in 1928 [23], this can be done
by introducing non-commuting coe�cients α = (α1, α2, α3), and β

HD =
(
cα · p+ βmc2

)
. (F.2)

These coe�cients are de�ned by the relations

α2
i = β2 = 1 ,

αiαj + αjαi = 0 , i 6= j

αiβ + βαi = 0 ,

(F.3)

and may be represented by 4×4 matrices. Here, we shall use the representation

α =

(
0 σ
σ 0

)
, β =

(
1 0
0 −1

)
, (F.4)
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where σ = (σ1, σ2, σ3) denotes a vector comprised of the Pauli matrices (See
Appendix E). One may easily observe from Eq.(F.4) that a product of α- and
β-matrices is traceless if either the number of α-matrices or the number of
β-matrices is odd. Otherwise, the β-matrices may be eliminated by commuta-
tion, Eqs.(F.3), and we have

Tr {αi . . . αm} = 2Tr {σi . . . σm} . (F.5)

Applying this notation, the Schrödinger equation of motion in the position
representation reads

i~
∂

∂t
Ψ(r, t) =

(
−i~cα ·∇ + βmc2

)
Ψ(r, t) . (F.6)

This matrix equation is called the Dirac equation, and we suggest a plane wave
solution

Ψp,s(r, t) = u(p, s)e−iEpt/~eip·r/~ , (F.7)

where u is a column matrix called a spinor. Inserting the plane wave solution
in the Dirac equation, Eq.(F.6), we get an equation for the spinor

(Ep − cα · p− βmc2)u(p, s) = 0 . (F.8)

This equation has four independent solutions which will not be derived here
(see, e.g., Ref. [22, Chapter 7.1]). We write these solutions as two "particle
states" with Ep = E

u(p, 1) = N



1

0

cp3

E +mc2

cp+

E +mc2


, (F.9)

u(p, 2) = N



0

1

cp−

E +mc2

− cp3
E +mc2


, (F.10)
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and two "antiparticle states" with Ep = −E

u(p, 3) = N



− cp3
E +mc2

− cp+
E +mc2

1

0


, (F.11)

u(p, 4) = N



− cp−
E +mc2

cp3

E +mc2

0

1


. (F.12)

Note that E is still de�ned by Eq.(F.1). We have also de�ned p± = p1 ± ip2,
and a normalization factor

N =

√
E +mc2

2E
, (F.13)

chosen such that u†u = 1.
The particle states solve (E − HD)u = 0, whereas the antiparticle states

solve (E +HD)u = 0. Using this, we construct projection operators,

P+ =
E +HD

2E
, (F.14)

P− =
E −HD

2E
, (F.15)

which project any spinor onto the particle states or the antiparticle states re-
spectively. These operators are Hermitian, and obey the property

P 2
± = P± . (F.16)

It may also be shown that the set of states is complete∑
s

ui(p, s)u
†
j(p, s) = δij . (F.17)
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G Ginzburg's Energy Conservation

From Ref. [7].
Conservation of energy requires that the initial and �nal energies in a process

are equal. In the case of Cherenkov radiation, this requirement reads

Ep = Ep′ + ~ωk . (G.1)

Squaring this equation and applying the relativistic energy-momentum relation
E2 = p2c2 +m2c4, we have

p′2c2 = p2c2 + ~2ω2
k − 2~ωkEp . (G.2)

Conservation of momentum requires p′ = p − ~k. Thus, de�ning θ to be the
angle between p and k, we may write

c2~2k2 − 2c2~pk cos θ = ~2ω2
k − 2~ωkEp . (G.3)

Furthermore, the dispersion relation of light in a medium, k = ωn/c, gives

cnp cos θ =
~ωk

2
(n2 − 1) + Ep . (G.4)

Applying the relativistic expressions for momentum and energy, p = γmv and
E = γmc2, where γ = 1/

√
1− v2/c2 denotes the Lorentz factor, we may rewrite

this expression as a constraint imposed on cos θ by conservation of energy and
momentum. We de�ne the Cherenkov angle, θC , as the angle ful�lling this
constraint

cos θC =
c

nv

(
1 +

~ωk

2Ep

(n2 − 1)

)
. (G.5)

Classically, light is emitted in the forward direction θC = 0 when the particle
reaches the threshold velocity. However, the emitted power goes to zero in this
limit. In relativistic quantum mechanics, photons may in principle be emitted
in the forward direction from a particle above threshold velocity due to the
correction term in the Cherenkov angle. Setting cos θC = 1, we have by Eq.(G.5)
an upper limit on the energy of the emitted photon

~ωMAX =
nv/c− 1

n2 − 1
2Ep . (G.6)
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H Amplitudes

This appendix contains the calculations of the transition amplitudes for the
process |ψp〉 |0〉 → |ψp′〉 |kλ〉 at tree level in relativistic quantum mechanics.
The di�erent amplitudes will be denoted by the notation

Mm,lλ =M
(
u(p,m)→ u(p′, l) + εkλ

)
. (H.1)

In the interest of keeping the calculations tidy, we begin by evaluating two
matrix products which will appear repeatedly

σ

(
p3
p+

)
= ê1

(
p+
p3

)
+ iê2

(
−p+
p3

)
+ ê3

(
p3
−p+

)
, (H.2)

and

σ

(
p−
−p3

)
= ê1

(
−p3
p−

)
+ iê2

(
p3
p−

)
+ ê3

(
p−
p3

)
. (H.3)

We also de�ne an expression which will emerge as a common prefactor for the
amplitudes

Mk ≡
c2qAkN

′N

(E +mc2)(E ′ +mc2)
, (H.4)

as well as two quantities which allow us to write the amplitudes in a more
compact manner

a ≡ p′(E +mc2)− p(E ′ +mc2) , (H.5)

and
B ≡ E + E ′ + 2mc2 . (H.6)

With this, we are equipped to evaluate each amplitude.

Spin-up → Spin-up

The amplitude of the process is

M1,1λ = −cqAku
†(p′, 1)α · ε∗kλu(p, 1) . (H.7)
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We evaluate the matrix product

u†(p′, 1)α · ε∗kλu(p, 1)

= N ′N


(

1 0
cp′3

E ′ +mc2
cp′∗+

E ′ +mc2

)(
0 σ
σ 0

)


1
0
cp3

E +mc2
cp+

E +mc2



 · ε
∗
kλ

= N ′N

[
c

E +mc2
(
1 0

)
σ

(
p3
p+

)
+

c

E ′ +mc2
(
p′3 p′∗+

)
σ

(
1
0

)]
· ε∗kλ . (H.8)

Here, N =
√

(E +mc2)/2E and p± = p1±ip2, as de�ned in Appendix F. Apart
from the prefactor, the second term in Eq.(H.8) is equal to the complex conju-
gate (excluding the polarization vector) of the �rst term, with the substitution
p→ p′. Therefore we calculate only the �rst term explicitly, using Eq.(H.2)

(
1 0

)
σ

(
p3
p+

)
· ε∗kλ = [ê1p+ − iê2p+ + ê3p3] · ε∗kλ (H.9)

= [p− i(ê2p1 − ê1p2)] · ε∗kλ

= p · ε∗kλ − i[p× ε∗kλ]3 . (H.10)

The last step follows from the de�nition of the third component of the cross-
product. Thus we have the expression

M1,1λ = −Mk

[
(p · ε∗kλ − i[p× ε∗kλ]3)(E ′ +mc2)+

(p′ · ε∗kλ + i[p′ × ε∗kλ]3)(E +mc2)

]
. (H.11)

Alternatively, in terms of the quantities a and B,

M1,1λ = −Mk

[
(p · ε∗kλ)B + i[a× ε∗kλ]3

]
. (H.12)

Spin-down → Spin-down

The amplitude of the process is

M2,2λ = −cqAku
†(p′, 2)α · ε∗kλu(p, 2) . (H.13)
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We evaluate the matrix product

u†(p′, 2)α · ε∗kλu(p, 2)

= N ′N


(

0 1
cp′∗−

E ′ +mc2
− cp′3

E ′ +mc2

)(
0 σ
σ 0

)


0
1
cp−

E +mc2
− cp3

E +mc2



 · ε
∗
kλ

= N ′N

[
c

E +mc2
(
0 1

)
σ

(
p−
−p3

)
+

c

E ′ +mc2
(
p′∗− −p′3

)
σ

(
0
1

)]
· ε∗kλ .

(H.14)

Again the second term is equal to the complex conjugate of the �rst term, with
the substitution p → p′. Therefore we calculate only the �rst term explicitly,
using Eq.(H.3)

(
0 1

)
σ

(
p−
−p3

)
· ε∗kλ = [ê1p− + iê2p− + ê3p3] · ε∗kλ

= [p+ i(ê2p1 − ê1p2)] · ε∗kλ

= p · ε∗kλ + i[p× ε∗kλ]3 . (H.15)

Thus we have the expression

M2,2λ = −Mk

[(
p · ε∗kλ + i[p× ε∗kλ]3

)(
E ′ +mc2

)
+

(
p′ · ε∗kλ − i[p′ × ε∗kλ]3

)(
E +mc2

)]
. (H.16)

Alternatively, in terms of the quantities a and B,

M2,2λ = −Mk

[
(p · ε∗kλ)B − i[a× ε∗kλ]3

]
. (H.17)

Spin-up → Spin-down

The amplitude of the process is

M1,2λ = −cqAku
†(p′, 2)α · ε∗kλu(p, 1) . (H.18)
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We evaluate the matrix product

M1,2λ ∝ u†(p′, 2)α · ε∗kλu(p, 1)

= N ′N


(

0 1
cp′∗−

E ′ +mc2
− cp′3

E ′ +mc2

)(
0 σ
σ 0

)


1
0
cp3

E +mc2
cp+

E +mc2



 · ε
∗
kλ

= N ′N

[
c

E +mc2
(
0 1

)
σ

(
p3
p+

)
+

c

E ′ +mc2
(
p′∗− −p′3

)
σ

(
1
0

)]
· ε∗kλ .

(H.19)

Here both terms must be calculated explicitly. Evaluating the �rst term by
Eq.(H.2), we �nd

(
0 1

)
σ

(
p3
p+

)
· ε∗kλ = [ê1p3 + iê2p3 − ê3p+] · ε∗kλ

= [(ê1p3 − ê3p1)− i(ê3p2 − ê2p3)] · ε∗kλ

= [p× ε∗kλ]2 − i[p× ε∗kλ]1 . (H.20)

For simplicity, we calculate the second term of Eq.(H.19) by its complex conju-
gate, allowing us to apply Eq.(H.3).

(
1 0

)
σ

(
p′−
−p′3

)
· ε∗kλ = [−ê1p′3 + iê2p

′
3 + ê3p

′
−] · ε∗kλ

= [−(ê1p
′
3 − ê3p

′
1)− i(ê3p′2 − ê2p

′
3)] · ε∗kλ

= −[p′ × ε∗kλ]2 − i[p′ × ε∗kλ]1 . (H.21)

Thus we have the expression

M1,2λ = −Mk

[(
[p× ε∗kλ]2 − i[p× ε∗kλ]1

)(
E ′ +mc2

)
−

(
[p′ × ε∗kλ]2 − i[p′ × ε∗kλ]1

)(
E +mc2

)]
. (H.22)

Alternatively, in terms of the quantities a and B,

M1,2λ = Mk

[
[a× ε∗kλ]2 − i[a× ε∗kλ]1

]
. (H.23)
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Spin-down → Spin-up

The amplitude of the process is

M2,1λ = −cqAku
†(p′, 1)α · ε∗kλu(p, 2) . (H.24)

We evaluate the matrix product

u†(p′, 1)α · ε∗kλu(p, 2)

= N ′N


(

1 0
cp′3

E ′ +mc2
cp′∗+

E ′ +mc2

)(
0 σ
σ 0

)


0
1
cp−

E +mc2
− cp3

E +mc2



 · ε
∗
kλ

= N ′N

[
c

E +mc2
(
1 0

)
σ

(
p−
−p3

)
+

c

E ′ +mc2
(
p′3 p′∗+

)
σ

(
0
1

)]
· ε∗kλ .

(H.25)

Here, the �rst term may be taken directly from Eq.(H.21), substituting p′ → p

(
1 0

)
σ

(
p−
−p3

)
· ε∗kλ = −[p× ε∗kλ]2 − i[p× ε∗kλ]1 . (H.26)

Similarly, we have the complex conjugate of the second term from Eq.(H.20),
substituting p→ p′

(
0 1

)
σ

(
p′3
p′+

)
· ε∗kλ = [p′ × ε∗kλ]2 − i[p′ × ε∗kλ]1 . (H.27)

Thus we have the expression

M2,1λ = −Mk

[
−
(
[p× ε∗kλ]2 + i[p× ε∗kλ]1

)(
E ′ +mc2

)
+

(
[p′ × ε∗kλ]2 + i[p′ × ε∗kλ]1

)(
E +mc2

)]
. (H.28)

Alternatively, in terms of the quantities a and B,

M2,1λ = −Mk

[
[a× ε∗kλ]2 + i[a× ε∗kλ]1

]
. (H.29)
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The following is an excerpt from the code used to produce the plots for this
thesis. The full code can be found as an attachment to the digital version, or
at https://github.com/JonasLW/Cherenkov-Radiation.git.

# Version: Python 2.7

from __future__ import division

import pylab as py

from scipy import integrate

# NOTE: These functions employ natural units. c = hbar = 1. Give

masses and frequencies

# in units of eV.

# Functions for basic quantities related to the physical system

def Gamma( v ):

"""Returns the Lorentz factor as a function of velocity."""

return 1/py.sqrt(1-v**2)

def CosCh( n, m, v, w ):

"""Returns cosine of Cherenkov angle as function of refraction

coefficient, mass, velocity, and frequency."""

f = 2*Gamma(v)*m # For readability

result = ( 1 + (n**2-1)*w/f )/(n*v)

if py.ndim(result) > 0:

result[ result>1 ] = py.nan

result[ result<0 ] = py.nan

elif result > 1 or result < 0:

result = py.nan

return result

def ChAngle( n, m, v, w ):

"""Returns Cherenkov angle as function of refraction coefficient,

mass, velocity, and frequency."""

return py.arccos( CosCh(n,m,v,w) ) # Angle is always positive

def SinCh( n, m, v, w ):

"""Returns sine of Cherenkov angle as function of refraction

coefficient, mass, velocity, and frequency."""

return py.sin( ChAngle(n,m,v,w) )

# Amplitudes summed over final state spin

https://github.com/JonasLW/Cherenkov-Radiation.git
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# Expressions do not include S_k, as this cancels in calculating

physical quantities

def F( n, m, v, w, chi, phi ):

"""Function containing the spinor angle dependence of the squared

amplitudes."""

return py.sin(chi)*py.cos(phi)*SinCh(n,m,v,w)/Gamma(v) -

py.cos(chi)*( n*v-CosCh(n,m,v,w) )

def TermOne( n, m, v, w ):

"""Recurring term in amplitudes."""

return 0.5*( v*SinCh(n,m,v,w) )**2

def TermTwo( n, m, v, w ):

"""Recurring term in amplitudes."""

return 0.5*w/( Gamma(v)*m )

def AmpMinSq( n, m, v, w, chi, phi, a ):

"""Returns squared transition amplitude of left-elliptical light,

as function of spinor angles phi and chi, and basis a."""

A = TermOne( n, m, v, w )

B = TermTwo( n, m , v, w )

return A + (n**2-1)*B**2 - py.cos(2*a)*A +

py.sin(2*a)*B*F(n,m,v,w,chi,phi)

def AmpPlusSq( n, m, v, w, chi, phi, a ):

"""Returns squared transition amplitude of right-elliptical light,

as function of spinor angles phi and chi, and basis a."""

A = TermOne( n, m, v, w )

B = TermTwo( n, m, v, w )

return A + (n**2-1)*B**2 + py.cos(2*a)*A -

py.sin(2*a)*B*F(n,m,v,w,chi,phi)

def AmpTotSq( n, m, v, w ):

"""Returns squared transition amplitude summed over polarization

states."""

A = TermOne( n, m, v, w )

B = TermTwo( n, m, v, w )

return 2*A + 2*(n**2-1)*B**2

def RateFac( v ):

"""Converts a squared transition amplitude into a transition rate

density, in SI-units [1/rad].

Integrate transition rate density over w and phi for total

transition rate of process."""

c = 299792458

q = 1.6*10**(-19)

h = 1.1*10**(-34)

return 10**(-7)*q**2*c/(h*v*2*py.pi)
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def RateTot( n, m, v, w, chi, phi, a ):

return RateFac(v)*AmpTotSq(n,m,v,w)

# Utility functions for integration

def QuadArr( Func, a, b, args=()):

"""Integrates Func from a to b for args. One element of args may

be array.

Outputs array of integrated values.

args is tuple of floats and/or ints and/or numpy arrays.

Currently only one element of args may be array.

The purpose of this function is to calculate an array of values

where each element requires an integral."""

l = 1

for arg in args:

if type(arg) is not float and type(arg) is not int:

l = len(arg)

break

argarr = py.transpose( py.array([ py.ones(l)*arg for arg in args

]) )

return py.array([ integrate.quad(Func,a,b,args=tuple(ars))[0] for

ars in argarr ])

def IntegrateOmega( Func, n, m, v, wlims, chi, phi, a ):

"""Takes a function Func and integrates it over w.

Func must take the appropriate arguments.

wlims may be array used otherwise for plotting. Will then

integrate over these values.

Can not handle wlims input as meshgrid.

Output in SI-units, however performs integral in natural units.

Assumes Func output in SI-units."""

h = 1.1*10**(-34)

fac = 1.6*10**(-19)/h

R = lambda W,N,M,V,CHI,PHI,A : py.nan_to_num(

Func(N,M,V,W,CHI,PHI,A) )

return fac*QuadArr( R, wlims[0], wlims[-1], args=(n,m,v,chi,phi,a)

# Sample script for numerical calculation and plotting of

# a quantity which contains an integral over omega.

res = 1000

n = 1.3 # Refraction coefficient of medium

m = 5.11*10**5 # Particle mass (eV)

v = py.linspace( 1/n, 1, res ) # Particle velocity (c)

w = 6.59 # Photon frequency (eV)

wlims = ( 0, w ) # Integration limits for photon frequency
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chi = py.pi/2 # Spinor polar angle

phi = py.pi # Spinor azimuthal angle

a = py.pi/4 # Polarization basis parameter (alpha)

c = 299792458

r = IntegrateOmega( RateTot, n, m, v, wlims, chi, phi, a )*2*py.pi

fig = py.figure()

ax = fig.add_subplot( 111 )

ax.plot( v, r, linewidth=1.5 )

ax.set_xlabel( '$v/c$' )

ax.set_ylabel( '$R$' )

fig.show()
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