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Abstract— This paper demonstrates that the sum and differ-
ence of the upper and lower arm voltages are suitable variables
for deriving a generalized state-space model of a modular mul-
tilevel converter (MMC) which settles at a constant equilibrium
in steady-state operation. The presented modeling approach
separates the multiple frequency components appearing within
the MMC as a first step of the model derivation, to avoid
variables containing multiple frequency components in steady
state. On this basis, it is shown that Park transformations at
three different frequencies (+ω, −2ω, and +3ω) can be applied
for deriving a model formulation where all state-variables settle at
constant values in steady state, corresponding to an equilibrium
point of the model. The resulting model accurately captures the
internal current and voltage dynamics and the coupling between
the different frequency components appearing in the variables
of a three-phase MMC. Independently of the control system
implementation, the derived equations are valid for accurate rep-
resentation of the MMC in the applied dqz reference frames, and
they can be linearized for utilization in eigenvalue-based analysis
of small-signal dynamics. Furthermore, the model can be utilized
for control system design by multivariable methods requiring any
stable equilibrium to be defined by a fixed operating point. Time-
domain simulations in comparison to an established average
model of the MMC, as well as results from a detailed simulation
model of an MMC with 400 submodules per arm, are presented
as verification of the validity and accuracy of the developed
model.
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I. INTRODUCTION

THE modular multilevel converter (MMC) is emerging
as the preferred topology for voltage source converter

(VSC)-based HVDC transmission schemes [1], [2]. Especially
in terms of its low losses, modularity, scalability, and low
harmonic content in the output ac voltage, the MMC topol-
ogy provides significant advantages for HVDC applications
compared to two- or three-level VSCs. However, the MMC
is characterized by additional internal dynamics related to
the circulating currents and the internal capacitor voltages
of the upper and lower arms of each phase [3], [4]. Thus,
the modeling, control, and analysis of the MMC is more
complicated than for other VSC topologies.

Different types of studies are necessary for design and
analysis of MMC-based HVDC transmission systems, requir-
ing various detailing levels in the modeling. A general
overview of MMC modeling approaches suitable for different
types of studies is shown in Fig. 1. The most detailed models
can simulate the switching operations of the individual sub-
modules (SMs) of the MMC, as indicated to the left of the
figure. Such models can be used for studying all modes of
operation and all the control loops of the MMC, including
the algorithms for balancing the SM voltages. If equal voltage
distribution among the SMs in each arm of an MMC can be
assumed, arm averaged models (AAM) can be introduced. An
AAM implies that each arm of the MMC can be represented
by a controllable voltage source associated with a corre-
sponding equivalent capacitance, and introduces a significant
reduction of complexity while still maintaining an accurate
representation of the internal dynamics [3]–[6]. Thus, AAM
models, or equivalent energy-based models, are suitable for
simplified simulations and analysis of MMCs, and are widely
used as basis for control system design [4], [6], [7].

A. State-Space Modeling of MMCs
When considering multivariable systems with coupled

dynamics, state-space modeling can be a flexible framework
for simulation and analysis [8]. Thus, various state-space
models of MMCs have been presented in the literature, includ-
ing switching cycle models [9] and continuous time average
models based on the AAM approach [5], [10]–[14]. Some
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Fig. 1. Overview of MMC modeling approaches and their areas of application.

of the developed state-space models have also been utilized
for applying linear quadratic regulator (LQR) strategies, as
discussed in [11], [12], [15], and [16]. However, the state-
space representation used in [11], [12], and [15] are simplified
models that do not represent all the internal dynamics of the
MMC, while the model used in [16] represents the MMC by
steady-state time-periodic (SSTP) state variables.

Models with SSTP characteristics imply that steady-state
operation is characterized by an orbit and not by an equilib-
rium point of the state variables. Furthermore, the currents and
capacitor voltages in each arm of the MMC contain multiple
frequency components [17]. This prevents straightforward
application of the Park transformation for obtaining state-
space models of three-phase MMCs represented in a single
synchronously rotating reference frame (SRRF) according
to the modeling approaches commonly applied for control
system design and small-signal stability analysis of two-level
VSCs [18]–[20]. Indeed, SSTP state-space models cannot
be directly used for system-oriented stability analysis based
on traditional eigenvalue techniques as commonly applied in
studies of power system stability. Instead, stability analysis of
such models will require advanced methods specifically devel-
oped for time-periodic systems, as recently studied in [21].

Obtaining a linearizable state-space model that can be
utilized by traditional techniques for eigenvalue-based stabil-
ity analysis requires a model formulation with a uniquely
defined equilibrium point for each operating condition, which
corresponds to all state variables settling to constant values
in steady state [22]. For an MMC, this implies that it is
necessary to derive a state-space model with a steady-state
time invariant (SSTI) solution in a set of suitably defined
SRRFs. As indicated in the middle of Fig. 1, such an SRRF
dqz model can be developed from an equivalent average model
in the stationary abc coordinates. The resulting nonlinear

SSTI representation can be used for calculating the steady-
state conditions corresponding to any feasible combination
of input signals, and a linear time invariant (LTI) model
suitable for eigenvalue analysis can be directly obtained by
linearization.

B. Related Works
Several approaches for obtaining LTI state-space models

of MMCs have been recently proposed in the literature,
motivated by the need for representing MMC HVDC trans-
mission systems in eigenvalue-based small-signal stability
studies. The simplest approach has been to neglect parts
of the internal dynamics of the MMC, and model mainly
the ac-side dynamics in an SRRF together with a simplified
dc-side representation, as in [23]–[25]. However, if the dynam-
ics associated with the internal equivalent capacitor voltages
of the MMC and the interaction with the circulating currents
are ignored, such models will imply significant inaccuracies.
Especially if a power balance between the ac- and dc-sides
of the converter is assumed in the same way as for a two-
level VSC model, like in [23] and [25], the model will only
be suitable for representing very slow transients. Therefore,
more detailed dynamic state-space models have been proposed
in [26]–[32], for representing two different cases, as explained
in the following.

1) The approaches presented in [26] and [27] are based
on the assumption that the modulation indices for the
MMC arms are calculated to compensate for the voltage
oscillations in the internal equivalent arm capacitor
voltage. This strategy for control system implementation
is referred to as compensated modulation (CM) and
limits the coupling between the internal variables of the
MMC and the ac- and dc-side variables. Thus, CM-based
control allows a simplified modeling of the MMC, where
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only the aggregated dynamics of the zero sequence
circulating current and the total energy stored in the
capacitors of the MMC are represented. As a result,
these models can provide accurate representation of the
ac- and dc-side terminal behavior of MMCs under most
conditions, but imply that the dynamics of the different
oscillating components of the internal variables cannot
be analyzed.

2) The approaches proposed in [28]–[30] and [32] con-
sider all the internal variables of the MMC, under
the assumption of a control system with a circulating
current suppression controller (CCSC) implemented in a
negative sequence double frequency SRRF [33]. Indeed,
the methods proposed in [28], [29], and [32] model
the MMC by representing the internal second harmonic
circulating currents and the corresponding second har-
monic arm voltage components in an SRRF rotating at
twice the fundamental frequency. However, the harmonic
superposition principles assumed in the modeling, corre-
sponding to dynamic phasor representation, could affect
the information about the nonlinear characteristics of the
MMC, and correspondingly limit the applicability of the
models in nonlinear techniques for analysis and control
system design. A similar approximation was also made
when separately modeling the fundamental frequency
and the second harmonic frequency dynamics of the
upper and lower arm capacitor voltages in [30].

C. Contributions
Compared to the previously published efforts on MMC

modeling, the main contribution of this paper is to present
a linearizable SSTI state-space representation of an MMC
with as few simplifications as possible in the derivation of the
model. Indeed, the proposed modeling approach is intended
for preserving the fundamental nonlinearity of the stationary
frame average model of the MMC that is used as a starting
point for the presented derivations. This is achieved by utiliz-
ing information about how the different variables of the MMC
contain mainly combinations of dc-components, fundamental
frequency components, double frequency oscillations, and
third harmonics, in steady-state operation. Using the sum (�)
and difference (�) between the variables of the upper and
lower arms of the MMC as state variables, a natural frequency
separation can be obtained, where the � variables contain
only fundamental frequency and third harmonic components
while � variables contain only dc and 2ω components. Since
the dc- and third harmonic components will be equal in all
three phases, they appear only as zero sequence components.
Therefore, application of appropriate Park transformations to
each set of variables results in separation of the frequency
components, allowing for derivation of a state-space model
with SSTI solution where all variables settle to a constant
equilibrium point in steady-state operation.

It should be noted that the presented nonlinear MMC
model with SSTI characteristics is suitable for nonlinear
control system design, for instance, by applying passivity
theory [34]–[36]. However, the model can also be directly
linearized to obtain a detailed small-signal model that can

be utilized for analyzing the dynamic characteristics of an
MMC and its control system as well as its interaction with any
ac-side or dc-side power system configuration.

The first contribution to the applied modeling approach
was presented in [31], where the SSTI state equations for
the internal �–� voltages and currents were derived for a
specific implementation of the insertion index calculation.
This paper extends the derivations from [31], to obtain a
model that is applicable independently of the implemented
strategy for calculating the modulation indices of the MMC.
Furthermore, the model derivation has been expanded to
include the effect of the zero sequence of the difference
between upper and lower modulation indices m�

z in the MMC
dynamics, which was neglected in [31]. This extension of
the model can be useful for representing the impact of the
third harmonic injection commonly introduced for increasing
the dc-voltage utilization of three phase converters [37], [38],
and in case a zero sequence component in the output voltage
is utilized to control the energy distribution within the MMC.
The applied techniques and derivations can also be useful
for SRRF modeling and analysis of MMC control strategies
implemented in the stationary frame, as investigated in [39].

The modeling approach and the derivations required for
obtaining the presented generalized voltage-based state-space
model of an MMC with SSTI characteristics are presented in
detail in the following sections. The validity of the derived
model is demonstrated by time-domain simulations in com-
parison to the average model used as a starting point for
the derivations, and the accuracy of the obtained results is
verified by comparison to a detailed simulation model of an
MMC with 400 SMs per arm. Furthermore, an example of
linearization and small-signal analysis of the derived model is
presented, demonstrating how eigenvalue-based techniques can
be utilized for identifying and understanding potential small-
signal stability problems within the control and operation of
an MMC.

II. MMC MODELING IN THE STATIONARY FRAME

As a basis for deriving the model presented in this paper,
the MMC topology is briefly recalled, and the applied
�–� vector representation in the stationary reference frame
is introduced. A simplified steady-state frequency analysis of
the MMC variables is also presented as a starting point for the
following derivations.

A. Average Model Representation of the MMC Topology

The basic topology of a three-phase MMC is synthesized by
the series connection of N SMs with independent capacitors C
to constitute one arm of the converter as indicated in Fig. 2.
The SMs in one arm are connected to a filter inductor with
inductance Larm and equivalent resistance Rarm to form the
connection between one of the dc-terminals and the ac-side
output. Two identical arms are connected to the upper and
lower dc-terminals, respectively, to form one leg for each
phase j ( j =a, b, c). The ac-side interface is assumed to be a
filter inductor and/or the leakage inductance of a transformer,
which is modeled by an equivalent resistance and inductance,
R f and L f , respectively, [40].
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Fig. 2. MMC Topology and AAM (phase C).

Assuming that all the SM capacitor voltages are maintained
in a close range, the series connection of SMs in each arm can
be replaced by a circuit-based average model, corresponding
to the well-known AAM, as indicated in Fig. 2 for the lower
arm of phase c [4], [7]. If the MMC is modeled by the
AAM representation, each arm appears as a controlled voltage
source in the three-phase topology, while a power balance is
established between the arm and its equivalent capacitance.
Thus, each arm can be represented by a conventional power-
balance-based average model of a single-phase VSC, with a
modulated voltage source interfacing the filter inductor, and a
controlled current source interfacing the capacitor-side.

The output of the controlled voltage and current sources of
the AAM are here referred as the modulated voltages vU

mj and
vL

mj and modulated currents iU
mj and i L

mj , for the upper (U )
and lower (L) arms of a generic phase j , and are described
by the following equations:

vU
mj = mU

j vU
C j , vL

mj = mL
j v

L
C j

iU
mj = mU

j iU
j , i L

mj = mL
j i L

j (1)

where vU
C j and vL

C j are, respectively, the voltages across the
upper and lower arm equivalent capacitors. The corresponding
modulation indices for the upper and lower arms are denoted
as mU

j and mL
j , while iU

j and i L
j are the currents in the upper

and lower arms, respectively.

B. Modeling of the MMC With �–� Variables in the
Stationary abc Frame

As mentioned in the Introduction, the proposed state-space
modeling approach adopts the �–� representation as opposed
to the more commonly used Upper–Lower (U–L) arm nota-
tion, to ease the derivation of an MMC representation with
SSTI solution. More precisely, under this �–� representation,
it is possible to initially classify the 11 states and 6 control
variables for an average model of a three-phase MMC into two
frequency groups; i.e., the � variables that are associated with
the fundamental frequency ω, and the � variables which are

in turn associated with −2ω. As will be further explained in
Section II-C, the � variables can also contain a 3ω component
and the � variables will contain a dc component. However,
under balanced three-phase conditions, these components will
be equal in all phases and can be represented separately as
zero sequence components. It is therefore useful to redefine
the voltages and currents that are defined in Fig. 2 using the
�–� nomenclature, resulting in

i�
j

def= iU
j − i L

j , i�
j

def= (
iU

j + i L
j

)/
2

v�
C j

def= (
vU

C j − vL
C j

)/
2, v�

C j
def= (

vU
C j + vL

C j

)/
2. (2)

In this equation, i�
j is the current flowing through the

ac-side grid, whereas i�
j is the well-known circulating current

of the MMC. Moreover, v�
C j and v�

C j represent the difference
and the sum of voltages across the upper and lower equivalent
capacitors, respectively.

In addition, it is useful to define the modulation indices in
the �–� representation as

m�
j

def= mU
j − mL

j , m�
j

def= mU
j + mL

j (3)

and the modulated voltages from (1) as

v�
mj

def= −vU
mj + vL

mj

2
= −m�

j v�
C j + m�

j v�
C j

2

v�
mj

def= +vU
mj + vL

mj

2
= +m�

j v�
C j + m�

j v�
C j

2
. (4)

1) AC-Grid Current Dynamics: The three-phase ac-grid
currents dynamics i�abc are expressed using vector nomencla-
ture in the stationary frame as

Lac
eq

d i�abc

dt
= v�

mabc − vG
abc − Rac

eq i�abc (5)

where vG
abc is the grid voltage vector defined as [vG

a vG
b vG

c ]�,
whereas v�

mabc is the modulated voltage driving the ac-grid
current defined as [v�

ma v�
mb v�

mc]�. These modulated voltages
can be expressed as

v�
mabc = −1

2

(
m�

abc ◦ v�
Cabc + m�

abc ◦ v�
Cabc

)
(6)

where the upper and lower modulation indices and voltage
variables were replaced by their �–� equivalents for conve-
nience. It is worth noticing that the operator “◦” will be used
here to represent the element-wise multiplication of vectors
(e.g.,

[ a
b

] ◦ [ c
d

] = [ ac
bd

]
). Furthermore, Rac

eq and Lac
eq are the

equivalent ac resistance and inductance, respectively, defined
as R f + Rarm/2 and L f + Larm/2.

2) Circulating Current Dynamics: The three-phase circulat-
ing currents dynamics in the stationary frame can be written
using vector notation as

Larm
d i�abc

dt
= vdc

2
− v�

mabc − Rarm i�abc (7)

where vdc is defined as [vdc vdc vdc]� and v�
mabc is the

modulated voltage driving the circulating current defined as
[v�

ma v�
mb v�

mc]�. These voltage signals can be expressed as

v�
mabc = 1

2

(
m�

abc ◦ v�
Cabc + m�

abc ◦ v�
Cabc

)
(8)
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where the upper and lower modulation indices and voltage
variables were replaced by their �–� equivalents for conve-
nience here as well.

3) Arm Capacitor Voltage Dynamics: Similarly, the dynam-
ics of the voltage sum and difference between the equivalent
capacitors of the AAM can be expressed, respectively, as

2Carm
dv�

Cabc

dt
= m�

abc ◦ i�abc

2
+ m�

abc ◦ i�abc (9)

2Carm
dv�

Cabc

dt
= m�

abc ◦ i�abc

2
+ m�

abc ◦ i�abc. (10)

C. Simplified Frequency Analysis of the �–�
Variables in Steady State

It is well known that under normal operating conditions the
grid current i�abc of the MMC should contain only oscillations
at the grid frequency ω. However, the circulating current
usually consists of a dc value or a dc value in addition to
oscillating signals at −2ω, depending on whether the second
harmonic component is eliminated by control or not [3], [4].
Taking this into account in (5) and (7), it can be easily seen that
the modulated voltages v�

mabc should oscillate at ω, whereas
v�

mabc should have a dc component approximately equal to
vdc/2 and possibly a −2ω oscillation to shape the circulating
current. A simplified assessment of the steady-state frequency
components in the remaining state variables v�

Cabc and v�
Cabc

can then be based on the following considerations.
In the definitions of the upper and lower modulated voltages

given in (1), assume temporarily that the oscillatory compo-
nents present in the aggregated arm capacitor voltages vU

C j
and vL

C j are significantly smaller than their dc offset, which
in turn is approximately equal to vdc [4]. This assumption
would imply that (6) and (8) could be simplified to v�

mabc ≈
m�

abcvdc/2 and v�
mabc ≈ m�

abcvdc/2. Moreover, since the
steady-state frequency components of v�

mabc and v�
mabc are

imposed by the desired shape of their corresponding associated
currents as discussed above, m�

abc should therefore oscillate
at ω, whereas m�

abc should consist of a dc component in
addition to an optional −2ω frequency component in steady
state. Taking this into account, it can be further assumed that
m�

j ≈ m̂ cos(ωt) and m�
j ≈ m̂, for a positive constant value

m̂ ≤ 1. By inspecting the right-hand side of (9), it can be seen
that in steady state, the first product m�

j i�
j /2 gives a dc value

in addition to an oscillatory signal at 2ω, while the second
product m�

j i�
j gives a dc value in case a constant value of i�abc

is imposed by control (e.g., by the CCSC from [33]), or a dc
value in addition to a 2ω component otherwise. Thus, both
the cases will result in a dominant oscillation frequency of 2ω
in v�

C j .
Similarly for v�

C j , the first product on the right-hand side
of (10), m�

j i�
j /2, oscillates at ω, while the second product

m�
j i�

j oscillates at ω in the case the CCSC is used or will
result in a signal oscillating at ω superimposed to one at 3ω
otherwise. Note that if the assumption m�

j ≈ 1 is no longer
considered, but instead m�

abc is allowed to have a second
harmonic component superimposed to its dc value, the first

TABLE I

MMC VARIABLES IN �–� REPRESENTATION

term of (10) will also produce an additional component
at 3ω.

As will be shown in the remainder of this paper, the third
harmonic in the � variable will be captured and isolated by
the zero sequence component after the application of Park’s
transformation at ω, without affecting its corresponding dq
components. This is similar to the case for the � variables,
as in addition to the −2ω signals, they present a dc value
which will be isolated as a zero sequence component after the
application of Park’s transformation at −2ω, without affecting
its dq components.

This initial classification of the state and control variables
according to their main oscillation frequencies is summarized
in Table I and is considered as the base for the methodology
and derivations presented in the following section.

III. NONLINEAR TIME-INVARIANT MMC MODEL WITH

VOLTAGE-BASED �–� REPRESENTATION IN dqz FRAME

In this section, the derivations needed for obtaining the
time-invariant state-space representation of the MMC with
voltage-based formulation are presented in detail on the basis
of the approach in [31]. The formulation of the MMC variables
such that the initial separation of frequency components can
be achieved constitutes the basis for the proposed modeling
approach, as illustrated in Fig. 3.

The illustration in Fig. 3 indicates that Park transformations
at different frequencies will be used to derive dynamic equa-
tions for equivalent dqz variables that are SSTI and become
dc-signals in their respective reference frames. More precisely,
the �-variables (v�

Cabc, i�abc and m�
abc) are transformed into

their dqz equivalents by means of a Park transformation
Pω at the grid fundamental frequency ω. By contrast, the
�-variables (v�

Cabc, i�abc and m�
abc) are transformed into their

dqz equivalents by means of a Park transformation P−2ω at
twice the grid frequency in negative sequence, −2ω. In addi-
tion, a transformation at 3ω will be applied to a virtual
two-phase system established from the zero sequence of the
voltage difference, v�

Cz , for obtaining an SSTI representation
of the third harmonic zero sequence component. The same
approach will also be applied to the zero sequence of the
modulation index difference m�

z . The representation of the
third harmonic zero sequence components as dq-variables
in an SRRF at 3ω implies that the number of states and
control variables for SSTI representation of a three-phase
MMC will increase to 12 and 7, respectively, for representing
the same dynamics as described by 11 states and 6 control
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Fig. 3. Proposed modeling approach based on three Park transformations
for achieving an SSTI solution for all MMC variables.

variables in the conventional time-periodic per-phase AAM
representation.

In the remainder of this section, the mathematical derivation
of dynamic equations with SSTI solution representing the
dynamics of a three-phase MMC will be expressed using the
approach illustrated in Fig. 3. The mathematical reformulation
consists in expressing the vector variables in the stationary abc
frame as a function of their dqz equivalents at their respective
rotating frequencies.

A. Voltage Difference Dynamics

1) Initial Formulation: The SSTI representation of the
voltage difference dynamics is derived in the following. The
starting point is indeed the SSTP dynamics given in (10), and
recalled in (11a) for convenience. The first step consists in
expressing the abc vectors in the stationary frame as functions
of their respective dqz equivalents. This can be seen in (11b),
where v�

Cabc, m�
abc, i�abc, m�

abc, and i�abc have been, respec-
tively, replaced by P−1

ω v�
Cdq z , P−1

−2ωm�
dq z , P−1

ω i�dq z, P−1
ω m�

dq z
and P−1

−2ω i�dq z. Notice that the choice of using the inverse
Park transformation matrix at ω (P−1

ω ) or at −2ω (P−1
−2ω) is

according to the frequency separation of the variables given
in Table I and Fig. 3.

2Carm
dv�

Cabc

dt
= m�

abc ◦ i�abc

2
+m�

abc ◦ i�abc (11a)

2Carm
d P−1

ω

dt
v�

Cdq z + 2Carm P−1
ω

dv�
Cdq z

dt︸ ︷︷ ︸
��

A

= P−1
−2ωm�

dq z ◦ P−1
ω i�dq z

2︸ ︷︷ ︸
��

B

+P−1
ω m�

dq z ◦ P−1
−2ω i�dq z︸ ︷︷ ︸

��
C

(11b)

The equation expressed in (11b) must be multiplied by the
Park transformation matrix at the angular frequency ω, so that
it can be solved for dv�

Cdq z/dt .
Multiplying ��

A by Pω , gives

Pω��
A = 2Carm Jωv�

Cdq z + 2Carm
dv�

Cdq z

dt
(12)

where Jω is defined as

Jω
def=
⎡

⎣
0 ω 0

−ω 0 0
0 0 0

⎤

⎦ . (13)

Furthermore, multiplying ��
B by Pω gives

Pω��
B = Pω

(

P−1
−2ωm�

dq z ◦ P−1
ω i�dq z

2

)

= M�
�B

⎡

⎣
i�
d

i�
q

i�
z

⎤

⎦ (14)

where M�
�B

is expressed in (15), as shown at the bottom of this
page. For simplicity, it will be considered that the system under
study is a three-phase three-wire system that does not allow
the existence of the zero sequence grid current, i.e., i�

z = 0.
Thus, the terms associated with i�

z in (14) are printed in gray.
Under this assumption, the dq components of (14) are time-
invariant, as the 3ω oscillatory signals that appear in M�

�B

are either multiplied by i�
z (third column of the matrix) or

associated with the zero sequence component (third row of the
matrix). However, it is possible to rewrite also the dynamics
of v�

Cz in SSTI form by means of additional mathematical
manipulations, as will be demonstrated separately.

Finally, multiplying ��
C by Pω gives

Pω��
C = Pω

(
P−1

ω m�
dq z ◦ P−1

−2ω i�dq z

) = M�
�C

⎡

⎣
i�
d

i�
q

i�
z

⎤

⎦ (16)

where M�
�C

is expressed in (17), as shown at the bottom of the
next page. Here, M�

�C
requires further mathematical manipula-

tion to achieve the desired SSTI performance, as the 3ω signals
also appear. Moreover, they affect not only the zero sequence
as in the previous case, but the dq components as well.

Replacing the definitions given in (12), (14), and (16) in
P−1

ω ��
A = P−1

ω ��
B + P−1

ω ��
C and solving for the voltage

M�
�B

= 1

4

⎡

⎢
⎣

m�
d + 2m�

z −m�
q 2m�

d cos(3ωt) − 2m�
q sin(3ωt)

−m�
q −m�

d + 2m�
z 2m�

q cos(3ωt) + 2m�
d sin(3ωt)

m�
d cos(3ωt) − m�

q sin(3ωt) m�
q cos(3ωt) + m�

d sin(3ωt) 2m�
z

⎤

⎥
⎦ (15)
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difference dynamics in their dqz coordinates results in

dv�
Cdq z

dt
= 1

2Carm

⎛

⎝M�
�B

⎡

⎣
i�
d

i�
q

i�
z

⎤

⎦+ M�
�C

⎡

⎣
i�
d

i�
q

i�
z

⎤

⎦

⎞

⎠− Jωv�
Cdq z.

(18)

Since neither M�
�B

nor M�
�C

is SSTI, the expression in (18)
does not directly provide an SSTI solution. This issue is treated
in the following.

2) Deriving the SSTI dq Dynamics of (18): First, the dq
dynamics of (18) are addressed. Since it is assumed that
i�
z = 0, only M�

�C
hinders an SSTI representation of the

dq dynamics, due to the appearance of the cos(3ωt) and
sin(3ωt) in the 2×2 submatrix at the upper left corner of M�

�C

in (17), referred to as M�2×2
�C

. A possible simplification results
from assuming that the MMC control will always set m�

z to
zero, as was done in [31], since m�

z multiplies all of the 3ω
oscillating signals. However, this leads to a restrictive model
from a control perspective, and therefore this assumption is
avoided here.

Taking inspiration from common engineering practices to
increase controllability in three-phase VSCs [37], the proposed
solution is to redefine m�

z as a third harmonic injection given
by

m�
z

def= m�
Zd

cos(3ωt) + m�
Zq

sin(3ωt) (19)

where m�
Zd

and m�
Zq

are two SSTI variables that will
define the amplitude and phase angle of the third harmonic
oscillations in m�

z .
Replacing the new definition from (19) in (17), results in

the submatrix

M�2×2
�C

= 1

2

[ (
m�

d + m�
Zd

) −(m�
q + m�

Zq

)

−(m�
q − m�

Zq

) −(m�
d − m�

Zd

)

]

+
[

cos(6ωt) sin(6ωt)
sin(6ωt) − cos(6ωt)

][
m�

Zd
m�

Zq

m�
Zq

−m�
Zd

]

︸ ︷︷ ︸
≈0

.

(20)

Thus, the elements with 3ω oscillations are replaced by a dc-
component and an oscillation at 6ω. As will be confirmed via
time-domain simulations, the 6ω oscillations are small and can
be neglected when studying the dynamics of the MMC.

3) Deriving SSTI Expressions for the Zero Sequence
Dynamics of (18): For convenience, the zero sequence state

equation from (18) is rewritten explicitly as

Carm
dv�

Cz

dt
= m�

z

2
i�
z

+ 1

8

(
m�

d i�
d + m�

q i�
q + 2m�

d i�
d + 2m�

q i�
q

)
cos(3ωt)

+ 1

8

(− m�
q i�

d + m�
d i�

q + 2m�
q i�

d − 2m�
d i�

q

)
sin(3ωt). (21)

By writing this equation on the same form as defined
by (19), the zero sequence dynamics of v�

Cz can be expressed
as

dv�
Cz

dt
= 1

Carm
[�d cos(3ωt) + �q sin(3ωt)] (22)

where �d and �q are defined as:

�d = 1

8

(
m�

d i�
d + m�

q i�
q + 2m�

d i�
d + 2m�

q i�
q + 4m�

Zd
i�
z

)

�q = 1

8

(− m�
q i�

d + m�
d i�

q + 2m�
q i�

d − 2m�
d i�

q + 4m�
Zq

i�
z

)
.

Since the zero sequence dynamics in (22) are still time-
varying in steady state, further reformulation is necessary to
obtain the desired model with SSTI solution. This can be
obtained by defining an auxiliary virtual state v�

C Zβ
, shifted

90° with respect to the original “single-phase” time-periodic
voltage difference signal v�

Cz according to the approach
from [31]. This approach is conceptually similar to the
commonly applied strategy of generating a virtual two-
phase system for representing single-phase systems in an
SRRF [41]. However, since the amplitudes of the different
sine and cosine components, �d and �q , are defined by
SSTI variables, the virtual signal v�

C Zβ
can be identified

directly from the existing variables without any additional
delay.

The real and virtual voltage difference zero sequence
variables can be labeled as v�

C Zα
and v�

C Zβ
, and together

they define an orthogonal αβ-system. This αβ-system can be
expressed by

dv�
C Zα

dt
= 1

Carm
[�d cos(3ωt) + �q sin(3ωt)] (23a)

dv�
C Zβ

dt
= 1

Carm
[�d sin(3ωt) − �q cos(3ωt)] (23b)

where (23a) is identical to (22), while (23b) is
obtained by replacing the terms cos(3ωt) and sin(3ωt)
that appear in (22) by sin(3ωt) and − cos(3ωt),
respectively.

Defining v�
C Zαβ

def= [v�
C Zα

v�
C Zβ

]�, (23a) and (23b) can be
written in compact form as

dv�
C Zαβ

dt
= 1

Carm

{
T−1

3ω [�d �q ]�} (24)

M�
�C

= 1

2

⎡

⎢
⎢
⎣

m�
d + 2m�

z cos(3ωt) −m�
q − 2m�

z sin(3ωt) 2m�
d

−m�
q + 2m�

z sin(3ωt) −m�
d + 2m�

z cos(3ωt) 2m�
q

m�
d cos(3ωt) + m�

q sin(3ωt) m�
q cos(3ωt) − m�

d sin(3ωt) 2m�
z

⎤

⎥
⎥
⎦ (17)
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where T3ω is a rotational transformation at 3ω as defined
by

T3ω
def=
[

cos(3ωt) sin(3ωt)
sin(3ωt) − cos(3ωt)

]
. (25)

Furthermore, by defining v�
C Z

def= [v�
C Zd

v�
C Zq

]� such
that

v�
C Z = T3ωv�

C Zαβ
, (26)

replacing (26) into (24), multiplying by T3ω, and solving for
the dynamics of v�

C Z gives

dv�
C Z

dt
= 1

Carm

{[�d �q ]� − Carm J3ωv�
C Z

}
(27)

where J3ω is defined as

J3ω
def=
[

0 −3ω
3ω 0

]
. (28)

Equation (27) will then produce an SSTI representation for
the dynamics of the zero sequence voltage difference v�

Cz . The
original oscillating SSTP signal of v�

Cz can always be recreated
by solving for v�

C Zα
= v�

Cz in (26), resulting in

v�
Cz = v�

C Zd
cos(3ωt) + v�

C Zq
sin(3ωt). (29)

4) Final Formulation: To summarize the SSTI voltage dif-
ference equations, it is useful to redefine a new augmented
voltage vector v�

Cdq Z (with capital Z), as

v�
Cdq Z

def= [
v�

Cd v�
Cq v�

C Zd
v�

C Zq

]�
(30)

as well as for the “�” modulation indices, as

m�
dq Z

def= [
m�

d m�
q m�

Zd
m�

Zq

]�
. (31)

Considering the new definitions v�
C Zd

, v�
C Zq

, and their
associated dynamics given by (27), and taking into account
the modified (sub)matrix M�2×2

�C
given in (20), the SSTP

dynamics of v�
Cdq z from (18) may be now expressed by

equivalent state equations with SSTI characteristics, by means
of the 4 × 1 state vector v�

Cdq Z as shown in (32), with JG
defined in (33)

Carm
dv�

Cdq Z

dt
= −JGCarmv�

Cdq Z

+ 1

8

⎡

⎢⎢
⎣

(
m�

d + 2m�
z

) −m�
q

−m�
q

(− m�
d + 2m�

z

)

m�
d m�

q
−m�

q m�
d

⎤

⎥⎥
⎦ i�dq

+1

4

⎡

⎢
⎢
⎢
⎣

(
m�

d + m�
Zd

) −(m�
q + m�

Zq

)
m�

d

−(m�
q − m�

Zq

) −(m�
d − m�

Zd

)
m�

q

m�
d m�

q 2m�
Zd

m�
q −m�

d 2m�
Zq

⎤

⎥
⎥
⎥
⎦

i�dq z. (32)

JG
def=
⎡

⎣
0 ω

−ω 0
02×2

02×2 J3ω

⎤

⎦ . (33)

B. Voltage Sum Dynamics

1) Initial Formulation: The SSTI dynamics of the voltage
sum can be derived in a similar way as for the voltage
difference. The starting point is indeed the SSTP dynamics
given by (9), as recalled in (34a) for convenience. The
first step consists in expressing the stationary frame abc
vectors present in (34a), as functions of their respective
dqz equivalents. This is done in (34b), where v�

Cabc, m�
abc,

i�abc, m�
abc and i�abc have been, respectively, replaced by

P−1
−2ωv�

Cdq z , P−1
ω m�

dq z , P−1
ω i�dq z, P−1

−2ωm�
dq z and P−1

−2ω i�dq z.
Notice that the choice of using the inverse Park transforma-
tion at ω (P−1

ω ) or at −2ω (P−1
−2ω) is again according to

the frequency separation of the variables given in Table I
and Fig. 3.

The resulting equation can be divided into three
parts: ��

A, ��
B , and ��

C , as indicated in (34b).
These three parts are treated consecutively in the
following:

2Carm
dv�

Cabc

dt
= m�

abc ◦ i�abc

2
+ m�

abc ◦ i�abc (34a)

2Carm
d P−1

−2ω

dt
v�

Cdq z + 2Carm P−1
−2ω

dv�
Cdq z

dt︸ ︷︷ ︸
��

A

= P−1
ω m�

dq z ◦ P−1
ω i�dq z

2︸ ︷︷ ︸
��

B

+ P−1−2ωm�
dq z ◦ P−1−2ω i�dq z︸ ︷︷ ︸

��
C

. (34b)

The equation expressed in (34b), needs to be multiplied by
Park’s transformation at −2ω, so that it can be solved for
dv�

Cdq z/dt . Multiplying ��
A by P−2ω gives

P−2ω��
A = 2Carm J−2ωv�

Cdq z + 2Carm
dv�

Cdq z

dt
(35)

where J−2ω is defined as −2 Jω. Furthermore, multiplying ��
B

by P−2ω gives (36), where M�
�B

is expressed in (37), as shown
at the bottom of the next page.

P−2ω��
B = P−2ω

(

P−1
ω m�

dq z ◦ P−1
ω

i�dq z

2

)

= M�
�B

⎡

⎣
i�
d

i�
q

i�
z

⎤

⎦.

(36)

As mentioned, it is assumed that there cannot be any zero
sequence grid current, i.e., i�

z = 0 (as indicated by the gray
color). However, (36) still does not produce an SSTI solution,
as the elements in the upper left 2 × 2 submatrix of M�

�B
in (37) contain sine and cosine signals oscillating at 3ω.
Note that this is also the case for the terms printed in gray
in (37), but they can be disregarded since they are multiplied
by i�

z = 0.
To address the remaining 3ω terms in (37), the same

solution as used in the previous section is applied. Since
all the oscillating terms are multiplied by m�

z , it is conve-
nient to redefine m�

z by a third harmonic injection according
to (19), as a function of the SSTI virtual variables m�

Zd
and
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m�
Zq

. Replacing (19) into (37) allows rewriting (36) as (38),
as shown at the bottom of this page. This equation will become
time invariant if it can be assumed that the oscillatory signals
at 6ω are negligible, which can be confirmed by time-domain
simulations.

In a similar fashion, the second component on the right-hand
side of (34b), ��

C , is multiplied by P−2ω, resulting in (39),
as shown at the bottom of this page, which can be considered
SSTI if the sixth harmonic components are neglected. Here
again, the validity of this approximation can be confirmed via
time-domain simulations.

2) Final Formulation: The SSTI dynamics of the voltage
sum vector v�

Cdq z are found by introducing (35) and the SSTI
parts of (38) and (39) into (34b) and solving for dv�

Cdq z/dt ,
resulting in

Carm
dv�

Cdq z

dt
= −J−2ωCarmv�

Cdq z

+ 1

4

⎡

⎢
⎣

2m�
z 0 2m�

d

0 2m�
z 2m�

q

m�
d m�

q 2m�
z

⎤

⎥
⎦ i�dq z

+ 1

8

⎡

⎢
⎣

(
m�

d + m�
Zd

) −(m�
q − m�

Zq

)

−(m�
q + m�

Zq

) −(m�
d − m�

Zd

)

m�
d m�

q

⎤

⎥
⎦ i�dq . (40)

C. Circulating Current Dynamics

The SSTI dynamics for the circulating current are derived
in the following. First, the equation of the stationary frame
dynamics from (7), as recalled in (41a) is rewritten by express-
ing the abc vectors in the equation as a function of their dqz
equivalents, as indicated in (41b)

Larm
d i�abc

dt
= vdc

2
− v�

mabc − Rarm i�abc (41a)

Larm
d P−1−2ω

dt
i�dq z + Larm P−1

−2ω

d i�dq z

dt

= vdc

2
− P−1

−2ωv�
mdq z − Rarm P−1

−2ω i�dq z. (41b)

Multiplying (41b) by P−2ω and solving for d i�dq z/dt gives

Larm

d i�dq z

dt
=
⎡

⎢
⎣

0
0

vdc

2

⎤

⎥
⎦− v�

mdq z − (Rarm + Larm J−2ω)i�dq z

(42)

where v�
mdq z

def= P−1
−2ωv�

mabc, and v�
mabc is defined in (8).

Nonetheless, in order to assess if (42) is SSTI, v�
mdq z

needs to be rewritten by expressing the abc vectors
in the equation as a function of their dqz equivalents,
resulting in

v�
mdq z = 1

2
P−2ω

(
P−1

−2ωm�
dq z ◦ P−1

−2ωv�
Cdq z

+P−1
ω m�

dq z ◦ P−1
ω v�

Cdq z

)
(43a)

v�
mdq z = M�

�B

⎡

⎣
v�

Cd
v�

Cq
v�

Cz

⎤

⎦+ M�
�C

⎡

⎣
v�

Cd
v�

Cq
v�

Cz

⎤

⎦ , (43b)

where M�
�B

and M�
�C

are expressed in (44) and (45), respec-
tively, as shown at the top of the next page.

If the sixth harmonic components are negligible, as can be
confirmed by time-domain simulations, M�

�B
given in (44)

can be considered as SSTI. However, this is not the case for
M�

�C
given in (45), as it presents nonnegligible third harmonic

oscillations. To overcome this obstacle, it is necessary to
replace into (45) and (43) the definitions of m�

z and v�
Cz given

in (19) and (29), respectively. This results in the following
definition

v�
mdq z = M�

�B

⎡

⎣
v�

Cd
v�

Cq
v�

Cz

⎤

⎦+ M�	
�C

⎡

⎢
⎢
⎢
⎣

v�
Cd

v�
Cq

v�
C Zd

v�
C Zq

⎤

⎥
⎥
⎥
⎦

, (46)

where M�	
�C

is given by

M�	
�C

= 1

4

⎡

⎣
m�

d + m�
Zd

−m�
q + m�

Zq
m�

d m�
q

−m�
q − m�

Zq
−m�

d + m�
Zd

m�
q −m�

d
m�

d m�
q m�

Zd
m�

Zq

⎤

⎦

+H6ωt . (47)

M�
�B

= 1

4

⎡

⎢
⎢
⎢
⎣

m�
d + 2m�

z cos(3ωt) −m�
q + 2m�

z sin (3ωt) 2
(

m�
d cos(3ωt) + m�

q sin(3ωt)
)

−m�
q − 2m�

z sin(3ωt) −m�
d + 2m�

z cos (3ωt) 2
(

m�
q cos(3ωt) − m�

d sin(3ωt)
)

m�
d m�

q 2m�
z

⎤

⎥
⎥
⎥
⎦

(37)

P−2ω��
B = 1

4

⎡

⎢
⎣

(
m�

d + m�
Zd

)
i�
d − (

m�
q − m�

Zq

)
i�
q

−(m�
q + m�

Zq

)
i�
d − (

m�
d − m�

Zd

)
i�
q

m�
d i�

d + m�
q i�

q

⎤

⎥
⎦+ 1

4

⎡

⎣
cos(6ωt) − sin(6ωt) 0

− sin(6ωt) − cos(6ωt) 0
0 0 0

⎤

⎦

⎡

⎢
⎣

m�
Zd

i�
d − m�

Zq
i�
q

−m�
Zq

i�
d − m�

Zd
i�
q

0

⎤

⎥
⎦

︸ ︷︷ ︸
≈0

(38)

P−2ω��
C = 1

2

⎡

⎢
⎣

2m�
z i�

d + 2m�
d i�

z

2m�
z i�

q + 2m�
q i�

z

m�
d i�

d + m�
q i�

q + 2m�
z i�

z

⎤

⎥
⎦+ 1

2

⎡

⎢
⎢
⎣

(
m�

d i�
d − m�

q i�
q

)
cos(6ωt) −

(
m�

q i�
d + m�

d i�
q

)
sin(6ωt)

(
−m�

d i�
d + m�

q i�
q

)
sin(6ωt) −

(
m�

q i�
d + m�

d i�
q

)
cos(6ωt)

0

⎤

⎥
⎥
⎦

︸ ︷︷ ︸
≈0

(39)
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M�
�B

= 1

4

⎡

⎢
⎣

2m�
z 0 2m�

d

0 2m�
z 2m�

q

m�
d m�

q 2m�
z

⎤

⎥
⎦+

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

m�
d cos(6ωt) − m�

q sin(6ωt) −m�
q cos(6ωt) − m�

d sin(6ωt) 0

−m�
q cos(6ωt) − m�

d sin(6ωt) −m�
d cos(6ωt) + m�

q sin(6ωt) 0

0 0 0
︸ ︷︷ ︸

≈0

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

(44)

M�
�C

= 1

4

⎡

⎢
⎣

m�
d + 2m�

z cos(3ωt) −m�
q + 2m�

z sin(3ωt) 2m�
d cos(3ωt) + 2m�

q sin(3ωt)

−m�
q − 2m�

z sin(3ωt) −m�
d + 2m�

z cos(3ωt) −2m�
d sin(3ωt) + 2m�

q cos(3ωt)

m�
d m�

q 2m�
z

⎤

⎥
⎦ (45)

H6ωt =
⎡

⎢
⎣

m�
Zd

cos(6ωt) + m�
Zq

sin(6ωt) m�
Zd

sin(6ωt) − m�
Zq

cos(6ωt) m�
d cos(6ωt) + m�

q sin(6ωt) −m�
q cos(6ωt) + m�

d sin(6ωt)

−m�
Zd

sin(6ωt) + m�
Zq

cos(6ωt) m�
Zd

cos(6ωt) + m�
Zq

sin(6ωt) −m�
d sin(6ωt) + m�

q cos(6ωt) m�
d cos(6ωt) + m�

q sin(6ωt)

0 0 m�
Zd

cos(6ωt) + m�
Zq

sin(6ωt) m�
Zd

sin(6ωt) − m�
Zq

cos(6ωt)

⎤

⎥
⎦

(48)

These expressions are SSTI if the sixth harmonic components
of H6ωt , from (47), as given in (48), at the top of this page,
are neglected.

Finally, replacing (44) and (47) in (46), and further in (42)
gives the SSTI dynamics of the circulating current, which can
be expressed as

Larm

d i�dq z

dt
=

⎡

⎢
⎢
⎣

0

0
vdc

2

⎤

⎥
⎥
⎦− (Rarm + J−2ωLarm) i�dq z

− 1

4

⎡

⎣
2m�

z 0 2m�
d

0 2m�
z 2m�

q
m�

d m�
q 2m�

z

⎤

⎦ v�
Cdq z

− 1

4

⎡

⎢
⎣

m�
d + m�

Zd
−m�

q + m�
Zq

m�
d m�

q

−m�
q − m�

Zq
−m�

d + m�
Zd

m�
q −m�

d

m�
d m�

q m�
Zd

m�
Zq

⎤

⎥
⎦ v�

Cdq Z

(49)

provided the sixth harmonic components are neglected. Notice
that the modulated voltages v�

mdq z driving the circulating
currents i�dq z are defined as

v�
mdq z

def= 1

4

⎡

⎢
⎣

2m�
z 0 2m�

d

0 2m�
z 2m�

q

m�
d m�

q 2m�
z

⎤

⎥
⎦ v�

Cdq

+1

4

⎡

⎢
⎣

m�
d + m�

Zd
−m�

q + m�
Zq

m�
d m�

q

−m�
q − m�

Zq
−m�

d + m�
Zd

m�
q −m�

d

m�
d m�

q m�
Zd

m�
Zq

⎤

⎥
⎦ v�

Cdq Z.

(50)

D. Grid Currents Dynamics

Finally, the derivation of SSTI expressions for the grid
current dynamics is presented in the following. The beginning
of the proof is the equation for the SSTP dynamics of the
grid current in the stationary reference frame from (5) and

(6), recalled in (51a) for convenience. As for the previous
cases, the dynamics are rewritten by expressing the abc
vectors present in (51a) as a function of their dqz equivalents,
as expressed in (51b)

Lac
eq

d i�abc

dt
= v�

mabc − vG
abc − Rac

eq i�abc, (51a)

Lac
eq

d P−1
ω

dt
i�dq z + Lac

eq P−1
ω

d i�dq z

dt

= P−1
ω v�

mdq z − P−1
ω vG

dq z − Rac
eq P−1

ω i�dq z. (51b)

Multiplying (51b) by Pω and solving for d i�dq z/dt gives

Lac
eq

d i�dq z

dt
= v�

mdq z − vG
dq z − Rac

eq i�dq z − Lac
eq Jω i�dq z (52)

where vG
dq z = [vG

d vG
q 0]�, v�

mdq z
def= Pωv�

mabc and v�
mabc is

defined in (6). Nonetheless, v�
mdq z needs to be assessed in

order to verify if (52) produces an SSTI solution. For this
purpose, v�

mdq z is rewritten by introducing into its definition
the expressions for the abc vectors as a function of their dqz
equivalents, yielding

v�
mdq z

def= −Pω
1

2

(
P−1

ω m�
dq z ◦ P−1

−2ωv�
Cdq z

+ P−1
−2ωm�

dq z ◦ P−1
ω v�

Cdq z

)

v�
mdq z

def= M�
�B

⎡

⎣
v�

Cd
v�

Cq
v�

Cz

⎤

⎦+ M�
�C

⎡

⎣
v�

Cd
v�

Cq
v�

Cz

⎤

⎦ (53)

where M�
�B

and M�
�C

are expressed in (54) and (55), as
shown at the bottom of the next page, respectively. Both
these matrices include nonnegligible third-order harmonic
components preventing the possibility of considering SSTI
solutions from (52). As in the previous section, it is necessary
to replace into (54), (55) and (53) the definitions of m�

z and
v�

Cz from (19) and (29), respectively. By this, the modulated
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voltage v�
mdq z can be expressed as

v�
mdq z = M�	

�B

⎡

⎣
v�

Cd
v�

Cq
v�

Cz

⎤

⎦+ M�	
�C

⎡

⎢
⎢
⎢
⎣

v�
Cd

v�
Cq

v�
C Zd

v�
C Zq

⎤

⎥
⎥
⎥
⎦

(56)

where M�	
�B

and M�	
�C

are given in (57) and (58), as shown at
the bottom of this page, and the dq components will result in
SSTI solutions if the sixth harmonic components are neglected.

Replacing the dq components from (57) and (58) in (56)
and further in (52), and neglecting the sixth harmonic compo-
nents, gives the SSTI dynamics of the grid current as:

Lac
eq

d i�dq

dt
= −vG

dq − (
Rac

eq + Jω Lac
eq

)
i�dq

+
[−m�

d − m�
Zd

m�
q + m�

Zq
−2m�

d

m�
q − m�

Zq
m�

d − m�
Zd

−2m�
q

]

v�
Cdq z

+
[−m�

d − 2m�
z m�

q −m�
d m�

q

m�
q m�

d − 2m�
z −m�

q −m�
d

]
v�

Cdq Z.

(59)

For the sake of completeness, the SSTI formulation of the
zero sequence component of v�

mdq z from (56) is also defined

in the following. The time-varying signal v�
mz from (56) is first

rewritten as

v�
mz = v�

m Zd
cos(3ωt) + v�

m Zq
sin(3ωt) (60)

where the expressions of v�
m Zd

and v�
m Zq

are given as

v�
m Zd

= 1

4

(− m�
d v�

Cd − m�
q v�

Cq − 2m�
Zd

v�
Cz

)

+ 1

4

(− m�
d v�

Cd − m�
q v�

Cq − 2m�
z v�

C Zd

)
(61a)

v�
m Zq

= 1

4

(− m�
q v�

Cd + m�
d v�

Cq − 2m�
Zq

v�
Cz

)

+ 1

4

(
m�

q v�
Cd − m�

d v�
Cq − 2m�

z v�
C Zq

)
. (61b)

Since the variables of (60) oscillate at 3ω in steady state,
a similar approach as in Section III-A-3 is used; i.e., an
auxiliary virtual variable v�

m Zβ , which is 90° phase-shifted
from v�

mz (renamed v�
m Zα for convenience) is created. This is

obtained by replacing the sin(3ωt) and cos(3ωt) that appear
in (60) by sin(3ωt) and − cos(3ωt), respectively, as given by

v�
m Zα

= v�
m Zd

cos(3ωt) + v�
m Zq

sin(3ωt) (62a)

v�
m Zβ

= v�
m Zd

sin(3ωt) − v�
m Zq

cos(3ωt). (62b)

M�
�B

= 1

4

⎡

⎢
⎢
⎣

−m�
d − 2m�

z cos(3ωt) m�
q + 2m�

z sin(3ωt) −2m�
d

m�
q − 2m�

z sin(3ωt) m�
d − 2m�

z cos(3ωt) −2m�
q

−m�
d cos(3ωt) − m�

q sin(3ωt) m�
d sin(3ωt) − m�

q cos(3ωt) −2m�
z

⎤

⎥
⎥
⎦ (54)

M�
�C

= 1

4

⎡

⎢
⎣

−m�
d − 2m�

z m�
q −2m�

d cos(3ωt) + 2m�
q sin(3ωt)

m�
q m�

d − 2m�
z −2m�

q cos(3ωt) − 2m�
d sin(3ωt)

m�
q sin(3ωt) − m�

d cos(3ωt) −m�
q cos(3ωt) − m�

d sin(3ωt) −2m�
z

⎤

⎥
⎦ (55)

M�	
�B

= 1

4

⎡

⎢
⎢
⎣

−m�
d − m�

Zd
m�

q + m�
Zq

−2m�
d

m�
q − m�

Zq
m�

d − m�
Zd

−2m�
q

−m�
d cos(3ωt) − m�

q sin(3ωt) m�
d sin(3ωt) − m�

q cos(3ωt) −2m�
Zd

cos(3ωt) − 2m�
Zq

sin(3ωt)

⎤

⎥
⎥
⎦

+
⎡

⎢
⎣

−m�
Zd

cos(6ωt) − m�
Zq

sin(6ωt) m�
Zd

sin(6ωt) − m�
Zq

cos(6ωt) 0

m�
Zq

cos(6ωt) − m�
Zd

sin(6ωt) −m�
Zq

sin(6ωt) − m�
Zd

cos(6ωt) 0

0 0 0

⎤

⎥
⎦

︸ ︷︷ ︸
≈0

(57)

M�	
�C

= 1

4

⎡

⎢
⎣

−m�
d − 2m�

z m�
q −m�

d m�
q

m�
q m�

d − 2m�
z −m�

q −m�
d

m�
q sin(3ωt) − m�

d cos(3ωt) −m�
q cos(3ωt) − m�

d sin(3ωt) −2m�
z cos(3ωt) −2m�

z sin(3ωt)

⎤

⎥
⎦

+
⎡

⎢
⎣

0 0 m�
q sin(6ωt) − m�

d cos(6ωt) −m�
q cos(6ωt) − m�

d sin(6ωt)

0 0 −m�
q cos(6ωt) − m�

d sin(6ωt) −m�
q sin(6ωt) + m�

d cos(6ωt)

0 0 0 0

⎤

⎥
⎦

︸ ︷︷ ︸
≈0

(58)
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Fig. 4. Summary of the MMC equations in dqz frame.

Furthermore, (62) is written in vector form as in (63), with the
definitions given in (64) and with the rotational transformation
T3ω defined in (25)

v�
mZαβ

= T−1
3ω v�

mZ , (63)

v�
mZαβ

def= [
v�

m Zα
; v�

m Zβ

]�; v�
mZ

def= [
v�

m Zd
; v�

m Zq

]�
. (64)

Finally, an extended definition of the modulated voltage dif-
ference is introduced as v�

mdq Z
def= [v�

md v�
mq v�

m Zd
v�

m Zq
]� and

is expressed as

v�
mdq Z =

⎡

⎢
⎢⎢
⎢
⎣

−m�
d − m�

Zd
m�

q + m�
Zq

−2m�
d

m�
q − m�

Zq
m�

d − m�
Zd

−2m�
q

−m�
d −m�

q −2m�
Zd−m�

q m�
d −2m�

Zq

⎤

⎥
⎥⎥
⎥
⎦

⎡

⎢
⎣

v�
Cd

v�
Cq

v�
Cz

⎤

⎥
⎦+

⎡

⎢
⎢⎢
⎢
⎣

−m�
d − 2m�

z m�
q −m�

d m�
q

m�
q m�

d − 2m�
z −m�

q −m�
d

−m�
d −m�

q −2m�
z 0

m�
q −m�

d 0 −2m�
z

⎤

⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢⎢
⎣

v�
Cd

v�
Cq

v�
C Zd

v�
C Zq

⎤

⎥
⎥⎥
⎦

. (65)

E. Summary of MMC Model With SSTI Solution

As a result of the presented derivations, the MMC SSTI
dynamics can be represented by the differential equations
in (32), (40), (49), and (59), corresponding to the 12 SSTI state
variables of the arm voltages difference v�

Cdq Z , arm voltages
sum v�

Cdq z , circulating currents i�dq z, and grid currents i�dq .
Moreover, the model assumes seven SSTI control inputs,
represented by the sum and difference of the modulation
indices m�

dq z and m�
dq Z . The modulated voltages v�

mdq Z and
v�

mdq z are expressed by the algebraic equations given in (65)
and (50), respectively. In addition, the model receives three
physical SSTI inputs represented by the voltage at the dc
terminals vdc and the dq components of the grid voltage, vG

dq .
Finally, the proposed MMC model with SSTI solution is
graphically represented in Fig. 4.

This presented model is generally valid for SSTI represen-
tation of the MMC, independently of how the time-invariant
components of the modulation signals m�

dq z and m�
dq Z are

obtained. Thus, the model can be combined with any control
system that can be modeled by SSTI equations as, for instance,
utilized in [36], [39], and [42]. Thus, the model can also
provide a detailed representation of the internal dynamics of
MMCs with CM-based control. However, as shown in [43],
an SSTI representation of cases with CM-based control can
be more easily obtained from �� energy-based modeling of
the internal voltage dynamics.

IV. MODEL VALIDATION BY TIME-DOMAIN SIMULATION

To validate the developed modeling approach, the results
from time-domain simulation of the following three different
models are shown and discussed in this section.

1) The proposed time-invariant MMC model from Fig. 4
as derived in Section III, representing the SSTI dynam-
ics of the arm voltages difference, arm voltages sum,
circulating currents, and grid currents. The simulations
result obtained with this model are identified in the
figure legends by a � symbol as a superscript for each
variable.

2) The AAM of a three-phase MMC, where each arm is
represented by a controlled voltage source and where
the internal arm voltage dynamics is represented by an
equivalent arm capacitance as indicated in the lower
right part of Fig. 2 [4], [5], [13]. This model includes
nonlinear effects except for the switching operations and
the dynamics of the SM capacitor voltage balancing
algorithm, as indicated in Fig. 1. The model is simulated
in Matlab/Simulink with the SimPowerSystem toolbox.
The simulation results obtained with this model are
identified in figure legends by “AAM.”

3) An electromagnetic transient (EMT) simulation imple-
mented in EMTP-RV of an MMC having 400 SMs
per arm, with a capacitance of 0.01302F each. The
MMC is modeled with the so-called “Model # 2:
Equivalent Circuit-Based Model” from [40]. This model
includes nonlinear effects, the switching operations and
the dynamics of the SM capacitor voltage balancing
algorithm from [33], as indicated in Fig. 1. The sim-
ulation results obtained with this model are identified in
figure legends by “EMT.”
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Fig. 5. CCSC and standard SRRF grid current vector control.

All the simulations are based on the MMC HVDC single-
terminal configuration shown in Fig. 2, with the parameters
given in Table II in the Appendix. The MMC is operated with
the well-known CCSC technique described in [33], and with
standard SRRF vector control for the grid current, similar to
the case analyzed in [31]. The modulation index input signals
for the time-invariant MMC model are calculated directly from
the voltage references resulting from the conventional control
loops according to

[
m�

dq Z

m�
dq z

]

= 2

vdc

[−I4×4 04×3

03×4 I3×3

][
v�∗

mdq Z

v�∗
mdq z

]

(66)

where In×m is the identity n × m matrix. This strategy for
calculation of the insertion indices is referred to as “uncom-
pensated modulation” (UCM) [31]. The resulting control struc-
ture providing the modulation signal inputs to the developed
MMC model is shown in Fig. 5. For comparing the simulated
models, it should be considered that the AAM and EMT
reference models are conventional stationary frame models of
a three-phase MMC, while the derived model with SSTI solu-
tion represents the MMC dynamics by variables transformed
into a set of SRRFs. Nonetheless, comparison of transient
and steady-state response is simpler when the variables have
SSTI representation. Thus, in most cases, the results obtained
from the reference model are transformed into the appropriate
SRRFs to ease the comparison. However, the results from the
models with SSTI solution can also be transformed to the
stationary phase coordinates, as will be demonstrated by an
example. All the results are plotted in per unit quantities.

It is also worth mentioning that the verification of the
scientific contribution represented by the proposed modeling
approach should be done first and foremost with respect to the
model it has been derived from, i.e., the AAM. This initial
comparison, where the AAM is considered as the reference
model, is the most important for evaluating the accuracy of the
proposed modelling approach and the impact of the simplifi-
cations introduced as part of the presented derivations. Thus,
the analysis of simulation results that will follow is mainly
focused on the SSTI dqz model and the AAM. Nonetheless,
for a more practical-oriented comparison, the results from the
“EMT” model have been included in the figures, to indicate

Fig. 6. Comparison of the derived SSTI model with the AAM and EMT
models: arm capacitor voltage sum. (a) dq components. (b) Zero sequence.

the accuracy of the proposed modeling approach, as well as
the AAM, with respect to a detailed switching model of the
MMC.

To excite the MMC dynamics in the different models, first
a step of the ac-side reactive current reference corresponding
to a step of reactive power flow from zero to −0.1 p.u. is
introduced at t = 0.05 s. Second, the ac-side active current
reference is changed in a step corresponding to a reduction of
the active power reference from 1 to 0.5 p.u. at t = 0.15 s.
Finally, the zero sequence modulated voltage reference v�∗

m Zd
is changed from 0 to 0.02 p.u. at t = 0.35 s, and at the same
time v�∗

m Zq
is changed from 0 to −0.01 p.u.

The dynamic response of the voltage sum variables v�
Cdq z

for the simulated scenario are illustrated in Fig. 6. More
precisely, the dq components of this variable are given in
Fig. 6(a), while its zero sequence component is shown in
Fig. 6(b). From the curves in Fig. 6, it can be seen how the
results from the AAM used as reference, as well as from the
detailed EMT model, are practically identical to the results
from the model with the SSTI solution derived in this paper.
This is true for both transient and steady-state conditions.
Notice that the steady-state value of v�

Cz changes with respect
to each of the reference steps, as the use of the CCSC implies
that there is no closed-loop regulation of the capacitive energy
stored in the MMC. Furthermore, the nonzero steady-state
values of v�

Cdq reflect the 2ω oscillations that this variable
has in the stationary abc reference frame. It can also be
noticed that the perturbation introduced at t = 0.35 s is
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Fig. 7. Comparison of the derived SSTI model with the AAM and
EMT models: arm capacitor voltage difference. (a) dq components. (b) Zero
sequence component transformed to scalar, time-periodic, representation.

slightly increasing the 6ω oscillations in v�
Cdq of the reference

AAM- and EMT-models. As expected, the SSTI model only
manages to capture accurately the average dynamics after this
perturbation, since the 6ω components have been neglected in
the derivation of the model.

The dynamics of the energy difference variables v�
Cdq z are

depicted in Fig. 7. More precisely, Fig. 7(a) illustrates the
behavior of the dq components during the simulated scenario,
while Fig. 7(b) shows the results for the zero sequence compo-
nent. In terms of accuracy, both of the subfigures show how
the proposed model with SSTI solution accurately captures
the behavior of the AAM- and EMT-MMC models used
as reference. This is particularly true for the case of v�

Cdq
as almost no distinction can be made between the voltage
waveforms resulting from the models. For v�

Cz , however, it is
possible to notice a slight mismatch between the derived
model and the AAM, particularly during the transient behavior
between t = 0.15 s and t = 0.2 s and between t = 0.35 s
and t = 0.4 s. This is indeed associated with the neglected
sixth harmonic components in the mathematical derivation of
the proposed model with SSTI solution. Nonetheless, the error
is very small and does not have a noticeable influence on the
general dynamics of the model.

Notice that the comparison between the reference models
and the proposed MMC model with SSTI solution in Fig. 7
has been presented using the SSTP signal v�

Cz instead of its
equivalent SSTI version v�

C Z defined in Section III. This is

Fig. 8. SSTI representation of the voltage difference zero sequence.

done for simplicity, as the dynamics of the virtual system used
to create v�

C Z do not directly exist in the reference AAM-MMC
model. However, for the sake of completeness, the dynamics
of the SSTI v�

C Z in the 3ω SRRF as obtained with the proposed
model are depicted in Fig. 8, where it can be confirmed that
both the v�

C Zd
and v�

C Zq
variables reach a constant value in

steady-state operation.
As already stated, it is always possible to reconstruct the

SSTP variables in the abc stationary frame and in upper U and
lower L arm coordinates from the SSTI dqz variables in their
�–� representation. For example, consider the SSTI variables
v�

Cdq z and v�
Cdq Z that result from the proposed modeling

approach, as plotted in Figs. 6–8. From these variables it
is possible to reconstruct the natural MMC SSTP variables
vU

Cabc and vL
Cabc using the fact that v�

Cabc = P−1
−2ωv�

Cdq z,
v�

Cabc = P−1
ω [v�

Cd; v�
Cq; (v�

C Zd
cos(3ωt) + v�

C Zq
sin(3ωt))]�,

vU
Cabc = v�

Cabc + v�
Cabc, and vL

Cabc = v�
Cabc − v�

Cabc. The
result of this calculation is shown in the upper part of Fig. 9,
where vU

Ca and vL
Ca calculated from the derived model are

compared with the total (summed) upper and lower arm
capacitor voltages of the EMT model, yielding in an accurate
match. Furthermore, the zoomed plot in the lower part of Fig. 9
emphasizes the behavior close to the step at t = 0.15 s, and
also shows the voltages of the first 10 SMs (out of the 400)
present in the EMT model. This figure shows that even if
the individual SMs voltages of each arm are not identical,
the aggregate voltage vU,L

C for an MMC with high number
of levels can be accurately represented by the proposed SSTI
modeling approach.1

The dynamics of the circulating currents i�dq z are shown
in Fig. 10, where Fig. 10(a) depicts the dynamics of the dq
components. Fig. 10(b) shows the zero sequence component
multiplied by three, since this signal corresponds to the dc
current idc flowing into the dc terminals of the MMC. From the
figure it can also be concluded that the proposed model with
SSTI solution replicates quite accurately the current dynamics
of the reference models. It can be noticed that the accuracy
of the model is very good for the zero sequence component
i�
z . However, for the dq component, it is possible to notice

the effect of neglecting the sixth-order harmonics in the SSTI

1This is as expected, and is confirmed with a similar accuracy as demon-
strated for the SSTP AAM model in [40].
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Fig. 9. Comparison between the derived SSTI model and the AAM and EMT models in the stationary phase coordinates: capacitor voltage sum of the upper
and lower arms.

Fig. 10. Comparison of the derived SSTI model with the AAM and EMT
models: circulating current. (a) dq components. (b) Zero sequence.

model. Although these components are very small, they are
present in the reference AAM and EMT MMC models, and
can be noticed in the curves. Yet, the proposed model captures
most of the current dynamics, and accurately represents the

Fig. 11. Comparison of the proposed SSTI model with the AAM and EMT
models: grid current dq components.

average value of the 6ω current components. An example of
how the sixth harmonic oscillations appear as superimposed
to the average dynamics of the presented SSTI model is
shown in the zoomed-in view of the steady-state operation
of i�dq depicted in the small plot inside Fig. 10. Interestingly,
a mismatch between the AAM and the EMT models is also
observed in these variables, due to the discontinuous switching
effects that have been neglected in the AAM and SSTI models.

Finally, the dynamics of the dq components of the grid
current are shown in Fig. 11. It can be seen that for these
variables, the results from the reference models and from
the derived model with SSTI characteristics are practically
identical.

V. EXAMPLE OF LINEARIZATION AND

EIGENVALUE ANALYSIS

As mentioned in the Introduction, one of the main
advantages of the obtained MMC model with SSTI solution,
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Fig. 12. Block diagram of SSTI equations for linearization.

compared to SSTP models, is that it can be linearized and
interfaced with larger system models for eigenvalue-based
analysis of stability and small-signal dynamics. For presenting
an example of such linearization and eigenvalue analysis, the
nonlinear time-invariant (NTI) model presented in Section III
and a corresponding model of the control system from
Section IV are first interconnected as shown in Fig. 12. This
interconnected model is represented by a subset of ordinary
differential equations f expressed as

ẋ(t) = f (x(t), u(t)) (67)

where x represents the states of the system as defined by

x =

⎡

⎢
⎢
⎣ξ i�dq

� ξ i�dq

�
︸ ︷︷ ︸

Controllers

i�dq
�

i�dq z
�

v�
Cdq z

�
v�

Cdq Z
�

︸ ︷︷ ︸
MMC

⎤

⎥
⎥
⎦

�

∈ �16 (68)

and u represents the inputs as defined by

u =

⎡

⎢⎢
⎣i�∗

d i�∗
q v�∗

m Zd
v�∗

m Zq
i�∗
d i�∗

q
︸ ︷︷ ︸

Control Inputs

vG
d vG

q vdc
︸ ︷︷ ︸
System Inputs

⎤

⎥⎥
⎦

�

∈ �9.

(69)

The nonlinear model from (67) can be linearized around
a steady-state operating point by means of the Jacobian
linearization method [8], [22], [44], resulting in an LTI repre-
sentation expressed as

�ẋ(t) = A(x0, u0)�x(t) + B(x0, u0)�u(t). (70)

Thus, each element Aij and Bij of the matrices A and B are
related to the equations f as

Aij = ∂ fi (x, u)

∂x j

∣
∣
∣
∣
(x0;u0)

; Bij = ∂ fi (x, u)

∂u j

∣
∣
∣
∣
(x0;u0)

. (71)

Any equilibrium point, defined by (x0, u0), can be calcu-
lated by solving the nonlinear system of equations from (67)
by setting ẋ(t) equal to zero. The obtained LTI model lin-
earized at (x0, u0) can be used for evaluating small-signal
dynamics and stability by eigenvalue analysis.

To validate the small-signal modeling of the MMC and its
controller, the results from a time-domain simulation of two
different models are shown and discussed in the following. For
this validation, the SSTI model is linearized at the operating
point defined by ac active and reactive powers equal to
1 and 0 p.u., respectively, and the response is shown for a
step of the ac-side active current reference i�

d ∗, corresponding
to a step of the ac-side active power of −0.2 p.u. The
linearized model is referred to as “LTI” in the legend, while
the “EMT” corresponds to the same detailed simulation model

Fig. 13. LTI time-domain validation. (a) Grid currents. (b) Circulating
currents.

Fig. 14. Eigenvalue trajectories for variation of CCSC response time τ�
i ,

from 5 to 1 ms.

Fig. 15. Participation factors for the eigenvalues λ1,2—the system parameters
are the same as used for Fig. 13.

as used in the previous section. As depicted in Fig. 13,
the linearized version of the proposed time-invariant model
reproduces accurately the MMC dynamics around a given
operating point.

Once the LTI model is validated, the eigenvalues of the
A matrix from (70) can be calculated for modal analysis of the
MMC to gain insight into the system dynamics. As this section
only concerns the application of the proposed model for small-
signal stability analysis, the following study is focused on the
impact of the tuning of the CCSC on the internal dynamics.
In Fig. 14, the trajectory of the eigenvalues is shown for
a variation of the response time τ�

i of the CCSC, from
5 to 1 ms. As shown in the figure, the pair of eigenvalues
λ1,2 crosses to the right-hand plane when τ�

i is decreased, and
the system becomes unstable for a fast CCSC with τ�

i below
approximately 1.5 ms. For understanding the origin of λ1,2,
participation factor analysis is conducted for the system [22].
The absolute values of the participation factors are plotted
in Fig. 15 for the same parameters as used in Fig. 13.

The participation factor analysis shows that the potentially
unstable eigenvalues λ1,2 are mostly associated with the zero
sequence arm capacitor voltage differences, i.e., v�

C Zdq , but
there is also a small contribution from v�

Cdq , i�dq , and the
integral states ξi�dq

of the circulating current controllers.
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Fig. 16. Time-domain simulation for validating the results from Fig. 14, showing the impact of the CCSC parameters on the stability of the system. Results
from the SSTI model (top) and results from the detailed EMT model (bottom) are shown.

With the parameters used for the results in Fig. 15, the imag-
inary part of λ1,2 is equal to 937 rad/s, which corresponds to
a frequency of 150 Hz. Thus, for an unstable case, this mode
should correspond to an exponentially increasing oscillation
of 150 Hz in the 3ω SRRF. However, when transformed back
into the stationary reference frame by applying (29), this mode
should result in an exponentially increasing dc-component of
the zero sequence voltage difference v�

Cz . Thus, the same
instability should appear in all aggregated arm voltages of the
MMC, with opposite directions for the upper and lower arms.

For demonstrating the unstable behavior predicted by the
eigenvalue analysis, the results from a time-domain simulation
are presented in Fig. 16, where the upper plot shows the results
of v�

C Z from the “LTI” model and the lower plot shows the
arm-capacitor voltages v

U,L
Cabc of the “EMT” model (in abc

frame). At t = 0 s, the gains of the CCSC controllers are set
to obtain a response time of τ�

i = 5 ms. At t = 0.025 s,
τ�

i is changed to 1 ms, which corresponds to an unstable
behavior according to Fig. 14. For perturbing the system, a step
of −0.2 pu is applied to the active current reference at t =
5 ms. At this point, the instability becomes clearly noticeable.
Finally, at t = 0.95 s, τ�

i is changed back to 5 ms, and the
system returns to stable operation. It can also be confirmed
from the figures that the instability appears as predicted from
the eigenvalue analysis, with an increasing oscillation of v�

C Zd

and v�
C Zq

in the 3ω SRRF, which reflects in exponentially
deviating dc-components of the arm capacitor voltages of the
EMT model.

It can be noted that the results presented above are in
concordance with the findings in [32]. However, in [32]
the linearized model was based on dynamic phasors and
harmonic superposition, while the model in this paper is
obtained directly from reformulation and SRRF transformation
of the dynamic equations of the AAM. Thus, the presented
results are mainly intended as a simple verifiable example
of how the generalized voltage-based SSTI representation
of the MMC developed in this paper can be utilized for

linearization and eigenvalue-based analysis of small-signal
dynamics.

VI. CONCLUSION

This paper presents a modeling approach for obtaining a
state-space representation of an MMC where all variables
reach a constant equilibrium in steady-state operation. This
was achieved by applying a voltage-current-based �–� rep-
resentation, which enabled separation of the MMC variables
according to their oscillation frequencies as part of the initial
model formulation. A procedure for deriving equivalent time-
invariant dqz representations of all state variables by applying
three different Park transformations was presented, referring
the variables to three different reference frames, rotating at
once, twice, and thrice the fundamental grid frequency. The
resulting model accurately represents the dynamic coupling
between the dominant frequency components appearing within
an MMC. The model can also be directly linearized at any fea-
sible operating condition, and allows for accurate eigenvalue-
based analysis of the internal dynamics of an MMC.

The presented modeling approach can be considered
independent of the modulation and control strategy adopted,
as only the physical equations of the MMC have been math-
ematically manipulated, gaining a more generalized model
compared to previous efforts. Thus, the model can be easily
expanded with representation of various MMC control
strategies. Furthermore, the model can be interconnected
with any suitable dynamic models of the ac-side and dc-side
system, for detailed small-signal eigenvalue analysis of an
individual MMC HVDC terminal, or an HVDC transmission
scheme integrated in a larger power system configuration.

The results from a time-domain simulation of an established
averaged arm model as well as from a detailed model of an
MMC with 400 SMs per arm validate the approach presented
in this paper. These results verify how the derived state-
space model with SSTI solution accurately captures the MMC
internal dynamics while imposing that all the state variables
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TABLE II

NOMINAL VALUES AND PARAMETERS (τx , ζx : RESPONSE
TIME AND DAMPING FOR VARIABLE “x”)

settle to a constant equilibrium in steady-state operation. The
validity of the corresponding linearized model and an example
of the results from eigenvalue-based analysis of small-signal
stability have also been verified by time-domain simulations.

Further utilization and extension of the presented modeling
approach can enable a wide range of studies related to analysis
and control system design for MMCs. As the derived model
can be linearized, it can be utilized for studies of various mul-
tivariable control techniques and optimization methods. Since
the developed MMC model with SSTI dynamics preserves the
mathematical information about system nonlinearities, it is
also suited for application of techniques for multivariable
nonlinear analysis and control.

APPENDIX

The main parameters are listed in Table II. Also, the Park
transform Pnω used in this paper is shown in (72), where n = 1
for the “�” variables and n = 2 for “�” variables

Pnω = 2

3

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

cos(nωt) cos

(
nωt − 2π

3

)
cos

(
nωt − 4π

3

)

sin(nωt) sin

(
nωt − 2π

3

)
sin

(
nωt − 4π

3

)

1

2

1

2

1

2

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

.

(72)
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