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 A detailed revision of the state-of-the-art, the most relevant developments made in 

the field of predictive maintenance. Effort was put into producing a comprehensive 

survey and review as a starting point for new researchers into the field, and 

providing current researchers or practitioner a broader overview of all the 

approaches applied to achieve predictive maintenance with Industry 4.0 concept.  

 A systematic research of deep learning based fault identification and prediction. 

Several deep learning architectures have been investigated from practical 

applications to interpret their superiorities in fault identification and prediction in 



certain domains or with prerequisites, which could provide effective guidance to 

select suitable deep learning methods to implement predictive maintenance. Some 

novel applications of deep learning-driven fault diagnosis and prognosis 

approaches such as DNN-based degradation assessment, DBN-based error 

prediction, SAE-based feature reconstruction, and LSTM-based anomaly detection 

are also presented along with detailed case studies in the thesis, which demonstrate 

the superiorities of deep learning in self-learning, big data analysis, fault 

identification, and degradation assessment. 

 The framework for predictive maintenance concerning the Industry 4.0 is proposed 

in the thesis to achieve accurate failure prediction, efficient maintenance 

scheduling, extension of data sources and tracking degradation of equipment. As a 

result, the efficiency of maintenance implementation could be enhanced. The 

framework also provides an overall understanding and helpful guidance for 

researchers and practitioners to implement predictive maintenance in the Industry 

4.0 era. 

 An Industrial 4.0 scenario about the implementation of predictive maintenance for 

machining centers together with a case study of DBN-based backlash error 

prediction are demonstrated in the thesis. In the case study, a novel HDPS-BPSO 

maintenance implementation strategy is proposed to achieve predictive 

maintenance in practical applications. The numerical result in that case not only 

proves the superiority of deep learning methods in knowledge discovery with 

strong self-learning ability but also demonstrates the benefit of implementing 

predictive maintenance compared with preventive maintenance.  

 An experiment of fault classification and degradation assessment for rotary 

machinery is also presented in the thesis to provide a comprehensive comparison 

of different types of data driven models, in which DNN-based degradation 

assessment outperforms the other models and proves the advantages of deep 

learning. In this case, a novel SAE-LSTM approach is also proposed for anomaly 

detection to train data-driven models in an unsupervised learning environment 

when the empirical knowledge is missing and all data is collected without labels. 
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 Cyber-Physical Systems;  

 Internet of Things; 

 Big Data & Data Mining; 

 Internet of Service. 



Cyber-Physical Systems (Integrated Computational and Physical Capabilities)

Internet of Things (Connection to Devices )

Data Mining ( Discover Knowledge from Data )

Internet of Services (Infrastructure for Services via Internet)



real



 



Maintenance

Predictive MaintenancePreventive MaintenanceCorrective Maintenance

Deferred Immediate
Reliability-

based
Time-based

Opportunity Design-Out

Statistical-

based

Condition-

based 

 



 In deferred corrective maintenance, maintenance is performed in a planned 

manner, which means correction of fault may not be conducted once the 

failure occurs but according to the maintenance rules. And this rules may 

reduce costs or implementation time. 

 Immediate corrective maintenance will starts immediately once the failure or 

degradation is detected. 

 



 Cost effective in many capital-intensive processes. 

 Flexibility allows for the adjustment of maintenance periodicity. 

 Increased component life cycle. 

 Energy savings. 

 Reduced equipment or process failure. 

 Estimated 12% to 18% cost savings over reactive maintenance program. 

 



 Statistical-based predictive maintenance. 

 Condition-based predictive maintenance.  

 Equipment that requires maintenance is only shut down before imminent 

failure. 

 Reducing the total time spent maintaining equipment 

 Reducing maintenance costs by avoiding catastrophe damage.  



 Generating minimal interference in equipment during the operation. 

 Increasing availability and reliability of machines.  

 Extending life of equipment and processes.  

 



Reference Main Data Type Target Method  Type 

[Zarei et al., 
2014] 

Vibration signal Bearing fault  Neural Network Time Domain 

[J. Yang et 
al., 2007] 

Vibration signal Rolling elements Fractal Dimension Time Domain 

[Abdennadher 
et al., 2010] 

Electrical signal Electrolytic 
capacitor 

Z Transformation Frequency 
Domain 

[Liu et al., 
2010] 

Energy signal Induction motors Fast Fourier 
Transform 

Frequency 
Domain 

[Taj et al., 
2017] 

Maintenance data Subsystem of a 
cable plant 

Laplace 
Transformation 

Frequency 
Domain 

[Mehta et al., 
2015] 

Vibration signal 
spindle 

Short Time 
Fourier Transform 

Time-
Frequency 
Domain 

[Z. Zhang et 
al., 2013] 

Vibration signal Blower Wavelet 
Transformation 

Time-
Frequency 
Domain 

[Wu et al., 
2012] 

Vibration signal Gear faults Hilbert Huang 
Transformation 

Time-
Frequency 
Domain 

[C. Wang et 
al., 2008] 

Vibration 
acceleration 
signal 

Diesel valve trains Wigner Ville 
Distribution 

Time-
Frequency 
Domain 

     





Reference Target   Method 

[Kim et al., 2012] Prognosis of bearing faults SVM 

[Konar and 
Chattopadhyay, 2011] 

Bearing fault detection in induction motor SVM 

[Yoon et al., 1992] Fault diagnostics of crude units Rule-based ES 

[Baig and Sayeed, 
1998] 

Fault diagnosis of twin-spool turbofans Model-based ES 

[Ziyan et al., 2003] Vehicle fault diagnostics Case-based ES 

[B.-S. Yang, Di, et al., 
2008] 

Diagnosis of induction motors  

 

Random forest 

[Muralidharan and 
Sugumaran, 2013] 

Diagnosis of mono-block centrifugal pump DT 

[Sobanski, 2014] Diagnosis of voltage inverter FLS 

[B.-S. Yang, Oh, et al., 
2008] 

Predicting the operating conditions of machine T & Neuro-fuzzy 
System 



[Ghate and Dudul, 
2011] 

Fault classification for three-phase induction 
motor 

CCNN 

[G. Xiong et al., 2013] Fault diagnosis of large-scale power systems RBFNN 

[D. Peng et al., 2014] Diagnosis of turbine generator unit CPNN 

[Deuszkiewicz and 
Radkowski, 2003] 

Condition assessment of power transmission 
units 

CPNN 

[Phillips et al., 2015] Diagnosis mining trucks CCNN 

[Abed et al., 2014] Diagnosis of brushless DC motor Dynamic Neural 
Network 

[C.-C. Wang and James 
Too, 2002] 

Rotating machine fault detection SOM & LVQ 

[Rai and Upadhyay, 
2017] 

Degradation assessment of bearing SOM & SVM 

[Yam et al., 2001] Equipment deterioration detection in power 
plants 

RNN 

[Vachtsevanos and 
Wang, 2001] 

Prognosis of bearing failures DWNN 

[Zou et al., 2017] Diagnosis of a transformer PNN 

[Unal et al., 2014] Defects identification for rolling bearings GA-ANN 

[W. Wang, 2007] Prediction of spur gear condition value one 
step ahead 

NFN 

[D.-M. Yang et al., 
2002] 

Diagnosis of motor bearing BPNN 

[Khomfoi and Tolbert, 
2007] 

Fault diagnosis for multilevel inverter drive BPNN 

[J.-l. Zhao and Zhao] Fault diagnosis for missile electronic 
command system 

BPNN 

[Rohani et al., 2011] Predicting repair and maintenance cost BPNN 

[Huijie et al., 2015] Fault diagnosis in digital circuits BPNN 

[Saravanan and 
Ramachandran, 2010] 

Gear box fault diagnosis BPNN 

[Mehrjoo et al., 2008] Damage detection of truss bridge joints BPNN 



[Din and Marnerides, 
2017] 

Power load mapping DNN 

[L. Li and Dai Guilan, 
2017] 

Fault classification for semiconductor 

manufacturing process 

DNN 

[L. Wang et al., 2017] Identification for failures in wind turbine 
gearbox 

DNN 

[Jia et al., 2016] Processing massive fault data to evaluate the 
health condition rotating machinery 

SAE 

[Galloway et al., 2016] ator by 
mining information from spectrograms 

SAE 

[Sun et al., 2016] Fault diagnosis in induction motor SAE 

[C. Lu et al., 2017] Fault diagnosis for components in rotary 
machinery  

SAE 

[Guo et al., 2016] Dimension reduction for intelligent bearing 
condition monitoring 

SAE 

[F. Zhou et al., 2017] Fault classification for machinery equipment in 
multimode 

SAE 

[Junbo et al., 2015] Roller bearing fault diagnosis SAE 

[Huijie et al., 2015] Fault diagnosis of hydraulic pump SAE 

[K. Li and Wang, 2015] Spacecraft fault diagnosis SAE 

[Gan and Wang, 2016] Fault location and severity ranking in rolling-
element bearing 

DBN 

[Tamilselvan and Wang, 
2013] 

Evaluating the health state of aircraft engine 
and electric power transformer 

DBN 

[H. Shao et al., 2015] Identification of rolling bearing faults DBN 

[AlThobiani and Ball, 
2014] 

Fault diagnosis of the valves in reciprocating 
compressors 

DBN 

[Fink and Weidmann, 
2013] 

Predicting railway operations failures DBN 

[S. Shao et al., 2016] Fault diagnosis of induction motor DBN 

[Y. Fu et al., 2015] Cutting states monitoring DBN 

[M. Ma et al., 2016] Bearing degradation assessment DBN 

[R. Zhao, Wang, et al., 
2016] 

Prediction of tool wear in a high speed CNC 
machine 

LSTM 

[de Bruin et al., 2017] Diagnosis time for railway track circuit LSTM 



[Liao and Ahn, 2016] Asset health assessment LSTM 

[Yuan et al., 2016] Fault diagnosis and remaining useful life 

estimation for aero engine 

LSTM 

[Malhotra et al., 2016] Prognosis for a pulveriser mill from multi-
sensor time-series data 

LSTM 

[Aydin and 
Guldamlasioglu, 2017] 

Engine condition monitoring LSTM 

[ElSaid et al., 2016] Predicting excess vibration events in aircraft 
engines 

LSTM 

[Janssens et al., 2016] Fault detection for rotating machinery CNN 

[Z. Chen et al., 2015] Diagnosis for a two-stage transmission 
gearbox 

CNN 

[Babu et al., 2016] RUL estimation from multi-variate time series 
sensor signals 

CNN 

[L. Zhang et al., 2016] Road crack detection for transportation 
maintenance 

CNN 

[W. Zhang et al., 2018] Bearing fault diagnosis under noisy 
environment and different working load 

CNN 

[Ding and He, 2017] Spindle bearing fault diagnosis CNN 

[Weimer et al., 2016] Visual defect detection CNN 

 



 

 Deep learning has had a long and rich history, but has gone by many names 

and waned in 

popularity. 

 Deep learning has become more useful as the amount of available training data 

has increased.  

 Deep learning models have grown in size over time as computer hardware and 

software infrastructure for deep learning has improved. 



 Deep learning has solved increasingly complicated applications with increasing 

accuracy over time. 



 Alleviating the problem through unsupervised pre-training for a hierarchy network. 

The basic idea is to train each layer in unsupervised fashion to predict its next input. 

This greatly facilitates subsequent supervised credit assignment through BP. One 

typical type of deep learning approaches is DBN, which is a stack of RBM.   

 Long short term memory (LSTM) like networks alleviate the problem through a 

special architecture unaffected by it. In a LSTM network employed Constant Error 

Carousels as activation and identity functions to discover the importance of events 

that happened thousands of discrete time steps ago. 

 omputers, especially GPU-based computers, 

have a million times the computational power of the early 1990s. This allows for 

propagating errors a few layers further down within reasonable time, which means 

the standard BP training is feasible a few layers deeper than when the gradients 

vanishing problem was recognized.  

 The space of neural network weight matrices can also be searched without relying 

on error gradients, thus avoiding the problem of gradients vanishing altogether. 

Actually, random weight guessing sometimes works better than more sophisticated 

methods [Hochreiter and Schmidhuber, 1996].  

 





 



Architecture Superiority for predictive maintenance 

DNN Degradation mapping, and failures identification, when enough 

history data could be obtained, and the complexity of target issue is 

relatively high. 

SAE Fault characteristics mining, extracting features or hidden 

information about failures from the raw input data and subsequently 

dividing them into different levels, dimensionality reduction, and 

discovering discriminative information about failures when the 

input dimensionality is large. 

DBN Energy-based models enable DBN to mine information hidden 

behind highly coupled inputs, which makes DBN a feasible method 

for fault diagnosis and prognosis when the target condition is 

beyond the historical data. In addition, it also has the ability to 

discover the discriminative information about failures when the 

input dimensionality is large. 

LSTM By stacking memory cells, information of previous inputs can be 

kept in the output to some degree, carried by cell state, which makes 

LSTM an outstanding tool to mimic time series. 

CNN Strong capacity to discover knowledge behind large data especially 



for image-based data.  And due to the ability to learn complex and 

robust representation via its convolutional layer, filters in 

convolutional layers may extract local patterns in raw data and 

further build complex patterns for machine health monitoring 

through stacking these convolutional layers. 







image-based data.

 



































 

 

 

 



 High demands on data access, data quality and data fusion from multiple sources 

for data sharing and data publication. Since these sources of data often operate 

in a heterogeneous environment, integration between the systems is problematic 

[Aljumaili et al., 2015].  

 The capability to deal with industrial big data. To leverage big data, industrial 

businesses need the ability to support different types of information, the 

infrastructure to store massive data sets, and the flexibility to leverage the 

information once collected and stored. In other words, enabling historical 

analysis of critical trends to enable real-time predictive analysis [J. Liu et al., 

2007]. 

 The prediction accuracy for predictive maintenance. The inaccurate predictive 

information may result in either unnecessary maintenance, such as early 

replacement of components, or production downtime because of unexpected 

machine failures. Therefore, the accuracy of remaining useful life prediction, 

particularly the long-term prediction, which gives sufficient time to prepare for 

a maintenance operation, plays an essential role in the full realization of the 

potentials of predictive maintenance [J. Liu et al., 2007]. 

 



3.2.2.1 Cloud computing environment 

3.2.2.2 Industrial big data environment 



3.2.2.3 Smart Factory 

 



 It provides an overall understanding and helpful guidance for researchers and 

practitioners to implement predictive maintenance in the fourth industry 

revolution. 

 It can collect and leverage all available data and information from types of data 

resources such as mounted sensors, control systems, or cloud database to 

evaluate the working condition. 

 Intelligent fault diagnosis and prognosis can be made to detect when, where, 

which equipment and which component may have impending failures. 

 Faults and degradation could be accurately predicted and assessed through deep 

learning models for maintenance scheduling optimization. 

 Zero failure performance and subsequent zero defect manufacturing can be 

reached since all the potential faults could be predicted and fixed before they 

occur. 

 It can make predictive maintenance decision to prevent occurrence and 

development of failures effectively, ensure the safety of equipment, and reduce 

the total cost of maintenance by minimizing the number of unnecessary 

maintenance performance. 





 



 

 Mechanical sensor systems to monitor parameters such as acceleration, 

displacement, velocity, torque, location, strain, and cutting forces (static and 

dynamic). 

 Optical transduces such as photo detectors, and lasers. 

 Thermal transducers such as thermocouples, and thermography. 

 Audible sensors such as ultrasonic sensors, and acoustic emission sensors 

 Environment sensors systems such as the spectrometer, PH indicators, and 

temperature sensors. 



 

 

 



 



Prognosis DiagnosisPrognosis Diagnosis

 



 









 

maintenance scheduling optimization

 



 Maintenance scheduling optimization

scheduling 

scheduling 



 

 



















 

 

 





 

 



 









 

 Sensor selection and data acquisition  

 Data preprocessing  

 Data mining  

 Data record and publication 

 Decision support  

 Maintenance implementation  
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Once this stack of RBM is trained, it 

can be used to initialize a multi-layer neural network for classification or regression [Erhan 

et al., 2010].

5.4.1.1 Restricted Boltzmann machine 

 



 

       

 

 

 

 

 

 



 

 

 

 

 

 

 

 

   

 

 

 



5.4.1.2 DBN construction for fault diagnosis and prognosis  
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wavelet coefficient-based and energy-based



wavelet coefficients and energy

wavelet coefficients and energy
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Function Formula Range 

Tanh 
 

 

Maxout   

Rectified Linear   

 



 

 







 







 





 

 



6.7.1.1 Feature normalization 

coefficient-based and 

energy-based

energy-based

 energy-based



6.7.1.2 Feature representation with SAE 







 

6.7.2.1 Architecture of LSTM 
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6.7.2.2 Application of LSTM in anomaly identification 







 



LSTM Cell N-1 LSTM Cell 1LSTM Cell 2





 



perception to represent and interpret the signs of faults. During the experiment, 

all the original features represented through WPD are used as inputs without selection. 
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