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Preface

This thesis is divided into four parts.
In the first part considers the stochastic partial differential equation -

SPDE approach to define non-separable space-time models. A review of
this approach for modeling in one and two dimensions by summarizing the
results in Lindgren et al. (2011). This is them considered when working with
the space-time models. The main objective considered in the work with the
space-time models was to study marginal properties of the implied multivari-
ate Gaussian distributions. This was made through the spectral properties
which was also considered when building Gaussian Markov random field
representations.

The second part is a draft of a paper on a class of space-time intrin-
sic models for areal data. It considers the issue of the needing of a lot
of constraints when fitting these models. The usual sum-to-zero ones are
computationally expensive to work with when the dimension is big. Two
approaches were considered in order to avoid the sum-to-zero constraints. A
simulation study was performed in order to compare the approaches and an
application to real data was also considered.

The third part presents a collection of contributed work in several appli-
cations of space and space-time models. Having in mind that useful methods
in practice can be better applied through a partnership between statisticians
and researchers. It was the case to be very stimulating working with experts.
Statisticians can can learn the weakness and robustness of statistical meth-
ods and refine them through a collaborative work.

Seems that didactic material available online is useful for the spreading
of new methods. With this in mind, the last part is an educative material on
spatial and space-time modeling with SPDE and using the Integrated Nested
Laplace Applications, Rue et al. (2009). It shows how use several features of
the INLA package to extend the modeling in some different directions. For
example, joint modeling of more than one outcome, each with a different
likelihood. This material has been used several times.
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Chapter 1

Introduction

In many research fields data are collected from a phenomena that evolves
over space and time. Some statistical models have been proposed in the
literature to model these kinds of data in order to understand the phenomena
observed considering both the spatial and temporal processes explicitly.

In this work we refer to these models as space-time 1.
A statistical model is an empirical stochastic model that is proposed

to model a set of observed data. A space-time statistical model is a kind
of statistical model that explicitly takes space-time variation into account.
Such variation may be due to the structure of the data collection resulting
from repeated measurements on individuals that occur near in time or space
or both.

A statistical model assumes a statistical distribution, or likelihood func-
tion, for the outcome, y. Usually we build a model for the expected value
of y based on two kinds of effects. The first relates to causal effects in the
response/outcome from factors/covariates of interest which are called fixed
effects. The second includes the structure of the data and is used to account
for extra variation in the outcome that is not explained by the fixed effects.
These two effects also form the basis for the analysis of longitudinal data,
Diggle et al. (2013).

This kind of mixed model is translated into the linear predictor as

η = Fβ +Zb

where F is a n × p + 1 known matrix with the first column with ones and
the last p columns including information from p covariates, β the regression

1We prefer the term space-time to spacetime, spatio-temporal or spatiotemporal since
it is the most frequent in both the British National and the Contemporary American
English, corpuses as seen at http://corpus.byu.edu on February 2016.

9
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10 Introduction

coefficients, or fixed effects, Z is a n×m known projection matrix for the m
dimensional random effects vector b. We have F and Z known and β and
b unknown.

An important concept in a statistical model is how y depends on η. The
key idea is to consider that given a particular ηi the observation yi is a
random variable. It is equivalent to say that given a condition F iβ+Zib we
can assume a probability density function or probability mass distribution
for yi. This is also called the likelihood function assumed for y. If we
have a Gaussian likelihood, y|η, τy ∼ Normal(η, τ−1

y I), τy is the likelihood
parameter to measure the uncertainty of y given η.

There are cases when an assumed likelihood has no additional parameter.
There are also cases when it is neccesary to specify a link function between
the expected value for y and η such as when we have a Poisson likelihood.
In these cases the log-link function is usually specified such that λ = exp(η)
for y|η ∼ Poisson(λ) and there is no additional parameter.

The main interest is to infer β, b and possible additional parameters.
Here, we briefly describe the inference for β and b. In most cases a Gaussian
distribution is assumed for the random effect b and for β as well. We can
therefore write the linear predictor as

η = Fβ +Zb = Ax

where A = [F Z] and x = [βT bT ]T and we can treat β and b jointly.
When the likelihood is Gaussian and given x ∼ N(0,Q(θ)), the dis-

tribution for x after observing y is also Gaussian with precision equal to
Qx|y(θ) = Q(θ) + τyA

TA. The expected value of x given the data, µx|y,
is obtained by solving Qx|yµx|y = y. The key ingredient to have computa-
tionally efficient inference for x is for Qx|y(θ), not only Q(θ) to be sparse.
When y|η is not Gaussian, the Integrated Nested Laplace Approximation -
INLA, Rue et al. (2009), can be used taking the benefits of the sparsity on
Qx|y(θ). The implementation in INLA package also includes η in x as well
as adding a τηI matrix in Q(θ) as well, where τη is a fixed big number, Rue
et al. (2017).

This modelling approach is powerful as we can consider several kinds of
stochastic models for b and for β as well. This can be seen through the
contributions described in this thesis. We divided these contributions into
four chapters and summarise them under the following headings:

1. Non-separable space-time models: In this chapter we consider
models based on non-separable Stochastic Partial Differential Equa-
tions (SPDE), and illustrate its marginal properties and Gaussian
Markov representations;
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2. Computational trick: In this chapter, we propose two approaches
to avoid the computationally expensive model constraints when fitting
space-time intrinsic interaction models;

3. Applications of Bayesian hierarchical models: This chapter de-
tails several projects where we have analysed data in partnership with
researchers from several diverse research fields. These collaborations
have led to a number of co-authored papers as well.

4. How to fit: In the final chapter, we present the educational contribu-
tion of this work in the form of a tutorial on the SPDE based models
and a book chapter.

We introduce each chapter in the next four sections.

1.1 Introduction to Part I

Space-time statistical modeling is a research field with several areas of on-
going research detailed in recent books about space-time statistical models.
Finkenstadt et al. (2006) present a collection of work on models for point
process, geostatistics and areal data. Cressie and Wikle (2011) focus on the
dynamic geostatistical models and Montero et al. (2015) focus on geostatis-
tical models. We review some of this work in the beginning of chapter 2.
This chapter also includes an intuitive introduction to the SPDE approach
and the GMRF representation from Lindgren et al. (2011) as a background
for the other chapters.

The use of SPDE’s for modeling data is not a new approach. There are
examples in the time series literature and in Cressie and Wikle (2011) for
the space-time case. Since the spectral density can be obtained from an
SPDE, it can be considered directly to analyse data, as in Fuentes (2007).
For the space-time case there is the approach in Sigrist et al. (2015). An
important fact is that the solution of a linear SPDE is a Markov random
field, Rozanov (1977). This is the case for fields whose spectral density
reciproca is a polynomial function of the frequencies.

The Matérn covariance function is probably the most used one in geo-
statistics. Therefore, the approach in Lindgren et al. (2011) was an impetus
for using SPDE’s in spatial statistics because it gives the explicit link be-
tween a linear SPDE and the Matérn covariance function. Additionally, it
was important from a practical point of view, because the Finite Element
Method - FEM was considered to build a GMRF representation and that it
was made available for practitioners in the INLA package, Rue et al. (2017).
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SPDE
model

spectral
density covariance

interpretation

sparse
precision

model
fitting

prior/posterior

Figure 1.1: Work flow with the SPDE model formulation.

Lindgren et al. (2011) have established an approach to work with SPDE
based models that can be schematically represented in Figure 1.1.

The SPDE itself has parameters that are related to the local properties
of the model which are translated into the conditional distributions in the
GMRF representation. One may find the physical interpretation from the
SPDE enough and build the prior distributions for the model parameters.
Others may need to see the marginal properties of the model. In this case
the covariance can be computed from the spectral density even though it is
not actually needed for the modeling.

Although there is no need to compute the covariance when working with
SPDE’s to fit the model for data, understanding the marginal properties of
the model is important as they provide additional information about the
process. The covariance can be computed from the spectral density and
we consider it in chapter 5. We consider the spectral density of the non-
separable models and the spatial marginal and temporal marginal densities
in order to compute the space-time covariance and marginal spatial and
temporal ones as well. The marginal properties of the models are them
considered to build a map to the model parameters. This work is also
important to guide practitioners to in prior elicitation whe fitting the model
for real data.

We consider the simplest space-time model one can derive using an SPDE
in chapter 3. We consider the heat equation model and provide the statistical
background including work done on the marginal properties of this model.
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We then review the GMRF representation based on the finite volume method
and provide a representation based on the finite element method. We show
how these representations work in a scenario.

In the chapter 4 we consider an model proposed in Stein (2005). This
model was purported to have good properties, however it failed on having an
easy to compute covariance. Thus, we propose an SPDE that gives the same
spectral density and providing a GMRF representation we can overcome this
issue.

Chapter 5 is on building models from an iterated version of the heat
equation with spatially correlated driving noise. The marginal properties of
the models were considered as having an implied covariance function. We
consider the sphere as the spatial domain for the intrinsically stationary and
the damped versions. The damped is considered also in R2. We show how
the marginal variance, marginal spatial correlation and marginal temporal
correlation are driven by the model parameters.

1.2 Introduction to Part 2

There are some models for modeling space-time phenomena where the spatial
setting is a set of non-intersecting areas and the time setting is also discrete.
The easiest way to model this case is to consider an interaction between a
spatial model and a temporal one. One approach is to consider an interaction
between a spatial model and a first order autoregression over time Martínez-
Beneito et al. (2008), Vivar and Ferreira (2009), Rushworth et al. (2014),
Ruiz-Cárdenas et al. (2012) and Blangiardo and Cameletti (2015). However,
none of these studies pay attention to the main spatial or temporal effect.

Knorr-Held (2000) considered a model where the main effects are consid-
ered and proposed four interaction cases for the space-time part. However,
three of such cases need to have sum-to-zero constraints that may become
computationally demanding when the number of areas or time steps increase.
We revisit these models and propose a way to avoid these linear constraints
in order to be able to fit these models even when the number of areas or
time steps are large.

1.3 Introduction to Part 3

The third part of this thesis introduces collaborative work involving appli-
cations of the Bayesian hierarchical models to practical problems conducted
during the PhD. Three were on the analysis of fisheries bycatch data, one on
fishery occurrence modeling, four on the analysis of old-age survival data,
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one on tuberculosis disease mapping, one on joint modeling of the preve-
lance of wasting, stunting, and underweight in children in Somalia and one
about the space-time relation between Twitter data and violent crime in
Amsterdam.

Fisheries bycatch

A set of three pieces of work are introduced in Section 6.1, these are three out
of seven chapters in a PhD titled “Elasmobranch Bycatch in the Canadian
Northwest Atlantic and Arctic Adjacent Seas: Composition, Biogeography,
and Mitigation” defended by Aurelie Cosandey-Godin on March, 12 2015
at the department of Biology, Dalhousie University, Halifax - Canada. One
of these chapters was published in the Canadian Jornal of Fisheries and
Aquatic Sciences in 2014, see Cosandey-Godin et al. (2014).

This thesis focused on the issue of bycatch or non-target catch in Cana-
dian commercial fisheries. In Canada, bycatch data is collected by at-sea
observer programs who provide information on the number (or weight) of
non-target species for a certain percentage of the fishing effort. These data
are spatially referenced by fishing location and typically also include in-
formation on the target species, fishing methods, and some environmental
variables such as depth and water temperature.

My main contribution to these chapters was to develop and apply space-
time models to the study of bycatch and to identify bycatch hotspots for
conservation purposes using the INLA/SPDE approach. These statistical
tools proved to be an efficient and powerful means to analyse, predict, and
evaluate management strategies to mitigate fisheries bycatch.

Fishery occurrence

The paper about collective memories and fish distribution shape, Macdonald
et al. (2017) will be part of the thesis work by Jed I. MacDonald at the
Faculty of Life and Environmental Science, University of Iceland, Reykjavík,
Iceland. In this paper a series of Bayesian space-time occurrence models
were considered to investigate wintering dynamics over 23 years, using point-
referenced fishery and survey records from Icelandic waters.

Old-aged survival and Tuberculosis

Four studies are introduced in Section 6.3 for which my contribution was
to set, describe and fit Bayesian hierarchical models for the analysis of old-
aged survival data. These were four out of nine papers in the PhD work
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entitled “Long-lived lives: The role of the contextual determinants” done by
Ana Isabel Correia Ribeiro. She defended her thesis on April, 4 2016, at the
University of Porto, Porto - Portugal, for a PhD degree in Public Health.

Similar work introduced in Section 6.4 was done for the analysis of Tu-
berculosis data.

Wasting, stunting and underweight

In the work presented in section 6.5, my contribution was to develop a way
to do joint modeling of the prevalence of wasting, stunting and underweight
among children in Somalia. The statistical model considered three spatial
continuous random fields shared across the linear predictor of each one of
the three outcomes. This work is part of the PhD thesis of Damaris K
Kinyoki who defended her thesis in May, 2017 which is publicly available
at the url http://wrap.warwick.ac.uk/93209/. The paper is published in
the BMJ Open journal, Kinyoki et al. (2016), and is free available at the url
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785320/.

Twitter data and violent cime

In this work presented in section 6.6 a joint space-time model of tweets and
crime data was developed to study relationships between the two datasets.
The data comprised tweets collected containing some key words and the
violent crime data both in Amsterdam. These data were geo-localized and its
exact time annotated as well. The joint model developed had a shared space-
time Gaussian field when considering the log-Gaussian Cox process. This
work was published in the Preproceedings of the 29th Benelux Conference
on Artificial Intelligence - BNAIC 2017, Stam et al. (2017).

1.4 Introduction to Part 4

It is very nice to propose models with good properties. However, it is useful
to provide the code in order to make the application of such models in prac-
tice straightforward. Additionally, tutorials illustrating such applications
can be seen as neccessary to complement new methodology. This is true as
the majority of practitioners are not able to do all of the work alone by only
looking into the methodological papers. Therefore, we as a field can work
together to present examples of how interesting new methods can be used
in practice. To complete the circle, it is common that practitioners using
an implementation ask questions and propose new analytical challenges that
guide future developments.

http://wrap.warwick.ac.uk/93209/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785320/
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The last part of this thesis is a tentative step in the direction of provid-
ing material for educating researchers and practitioners to use SPDE based
models. We started by working with the basic model and some extensions to
provide some examples of possible applications. Not long after that we were
facing specific questions from practitioners that motivated new examples.

This section presents two pieces of work. The first is the "The R-INLA
tutorial on SPDE models". It consists of a collection of examples on how to
fit models that contains an SPDE based random effect. The second is a book
chapter on some of the more complex models for space or space-time data,
from spatially misaligned data (Gaussian or not), a hurdle gamma model,
dynamic models and lowering the model time resolution on a space-time
model.

This was some work that required a significant amount of effort. An
effort was given to make the code as simple as possible and to illustrate one
point at a time. Also, we had to make sure that every detail was made clear,
especially for the book chapter. This book chapter is included at the end of
this part.



Part I

Non-separable space-time
models
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Chapter 2

Space-time modeling
introduction

In this chapter we briefly review the literature on space-time statistical mod-
els in Section 2.1.1. We then provide an intuitive background on the method-
ology that is basis for the work on the next chapters in this first part of the
thesis.

2.1 Literature review in space-time models

Space-time modeling is an area of ongoing research. Even though there are
several available statistical models in the literature, there is still room for
new developtments, for example for modeling over the sphere, Porcu et al.
(2017). We briefly review the developments made so far in this section split
into separable and non-separable space-time models.

2.1.1 Separable space-time models

This approach is the first step to move from one to two dimensional models
for the space-time models. Once a temporal and spatial model is defined,
then separable space-time models are easy to obtain. The spectral density
for a separable space-time process can be written as a product between a
purely temporal spectral density and a purely spatial spectral density. In
the kernel convolution approach, one can use a kernel that splits into a
purely temporal smoother times a purely spatial one Higdon (2002). When
one considers covariance, the Kronecker product between a temporal corre-
lation matrix and a spatial covariance matrix defines a separable space-time

19



20 Space-time modeling introduction

model at a finite set of space-time locations. This approach has an ap-
pealing computational advantage from the Kronecker product properties for
factorizations and determinants and is considered in several softwares.

There is a popular way to consider dynamic models as

ηt = Mηt−1 +wt

where M defines the temporal evolution structure of the model and wt is
a spatially structured innovation error vector. One widely used inference
approach considers a model based on covariance for the innovation error
and computations are done using the Kalman filter/smoother algorithm or
other modifications Cressie and Wikle (2011). Some non-separable dynamic
models linked to non-separable SPDEs along with discretizations using the
finite differences approach can be fitted considering modified Kalman filter
based algorithms, Cressie and Wikle (2011).

The one and two dimensional SPDE’s can be considered to build sep-
arable space-time SPDE based models and can be used as an alternative
way to define some space-time models. The idea is that one can use a one-
dimensional SPDE to describe the temporal evolution and another SPDE to
model the driving noise as spatially correlated. Therefore we have an SPDE
with partial derivatives with respect to time and driving white noise in time
correlated over space modeled considering another SPDE with partial deriva-
tives taken over space, Jones and Zhang (1997). That is a combination of
the models presented in previous sections,

(
δ

δt
+ ϕ)u(s, δt) = ξ(s, δt) (2.1)

τ(κ2 −∆)α/2ξ(s, δt) =W(s, δt) . (2.2)

The FEM approach can be considered for a discretization of u(s, t) over
both time and space, Lindgren and Rue (2015). The temporal process at
each spatial location discretized as in Section 2.3.1 and the the spatial pro-
cess at a time as in Section 2.3.2. This gives a precision matrix that is the
Kronecker product (ϕD+H)⊗Qα(τ, κ). This model has direct connection
with dynamic models and the single parameter evolution matrix, M = ρI,
for ρ = e−ϕδt, and the precision of the entire vector is the Kronecker product
between the precision for the AR1 model and the precision for w, Cameletti
et al. (2012).

2.1.2 Non-separable space-time models

Non-separable models can be built considering any of the five ways we have
listed in the beginning. Basically, non-separable space-time models are those
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having covariance that can not be written as a Kronecker product between
the temporal correlation and the spatial covariance. Similarly, the spectral
density of non-separable space time models cannot be written as a product
of a purely temporal spectral density and a purely spatial one.

When considering kernel convolution approach, non-separable space time
models are those where the kernel function does not splits into a purely
temporal kernel function times a purely spatial kernel function. That is, the
flexibility lies on the definition of the kernel function.

Most of the approaches for space-time modeling considers the covari-
ance directly, Cressie and Huang (1999), Gneiting (2002), Fonseca and Steel
(2011). However, the main limitation of working with this approach is that
it is simply too computational demanding as the non-separable models do
not factorize into smaller blocks of matrices. One common approach is to
consider low rank approximations, Rodrigues and Diggle (2010).

Stein (2013) defined three desired properties for a space-time model

1. have “any degree of smoothness in space and any (possibly different)
degree of smoothness in time";

2. “be smoother away from the origin than it is at the origin"; and

3. covariance “computed accurately and efficiently".

The separable models fail to fulfill the second requirement and the Stein’s
model only follows when α1 and α2 are integers.

However, he also wrote that

“As best as I am aware, no existing class of generalized covariance
functions satisfies all three of these requirements."

This quote is motivated by the fact that his model class proposed in Stein
(2005), and the particular case in Stein (2013), fail to have easy to compute
covariances.

One may think how important are these three desired properties. The
first desired property is related to one kind of model flexibility, the smooth-
ness. However, smoothness is one property that is hard to infer from real
data. Usually a space-time model is just one component of the model for
the observed data model and frequently an independent noise is also present.
Although it would be important to consider the correct smoothness of the
process in order to have the other terms of the models not affected. For ex-
ample, a smoother process plus noise may be equivalent to a less smoother
process plus a smaller nugget effect. An additional point is when consid-
ering parameter uncertainty where the actual result would be a mixture of
predictions weighted by each parameter value density.
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The second property is related to high frequency properties. Again an-
other term in the data model will be required in order for the model to be
purely identified. However, when the aim is just to capture the “big picture”
of the space-time variation of the phenomena the high resolution would not
be so important. This is also the case when dealing with very large amounts
of data.

The third desired property is not important when considering fitting
procedures that do not need the covariance to be computed. However, we
do agree that it is important to seek for a computationally efficient fitting
process. Towards this goal, the GMRF representation is an important ap-
proach.

In this work we consider models that are built based on stochastic differ-
ential equations - SDE. We review some models that are already presented
in the literature and build a discretization that gives a Gaussian Markov
Random Field - GMRF representation. That is we start with the stochastic
heat equation in chapter 3 for the case when the space is one-dimensional.
An iterated version is then considerd in chapter 4 as a SPDE approach for
the model class proposed in Stein (2005). The case with spatially correlated
driving noise is considered is presented in chapter 5.

2.2 Stochastic modeling ways

Let a stochastic process u(l) that evolves over a domain indexed by l. We
can have l = t : t for time l = s : s for space or l = (s, t) for space-time.
There are at least five ways to define a stochastic process, listed below.

1. Covariance: In this case, the covariance matrix for a finite set of
locations l1, ..., ln is

V (l, l′) = Cov(u(l), u(l′)) (2.3)

and should be positive definite. A simple covariance function is

V (l, l′) = σ2
ue
κ||l−l′‖

where ||l − l′ ‖ is the Euclidean distance, σ2
u is the marginal variance

and κ is a scale parameter. For a review on covariance functions see
Abrahamsen (1997).

2. Spectral density: The process is specified as

u(l) =

∫ ∞

−∞
eiwldZ(w), (2.4)
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where Z(w) is a stochastic spectral process with spectral distribution
F (w), Lindgren (2013). Also, F (w) =

∫w
s=−∞ f(s)∂s where f(w) ≥ 0

is a spectral density. The Bochner’s theorem states the following link
to the covariance function:

V (h) =

∫
eiwhdF (w). (2.5)

When considering discrete spectra and frequencies ωk, a one dimen-
sional process can be written as a sum of cosine functions

u(t) =

N∑

k=1

Akcos(ωkt+ φk)

where Ak and φk are random amplitudes and phases, respectively.

3. Kernel convolution: In this case the process is a smoothed/filtered
noise, written as

u(l) =

∫
k(l− u)W(l)du (2.6)

where W(.) is a white noise, k(.) ≥ 0 is a kernel function such that∫
k(u)du <∞ and

∫
k2(u)du <∞, Higdon (2002). In this case

V (l, l′) =

∫

u
k(l− u)k(l′ − u)∂u. (2.7)

4. Stochastic partial differential equations (SPDE) or stochastic or-
dinary differential equations for the unidimensional case, are stochastic
versions of differential equations. Consider the following SPDE

L1u(l) = L2W(l) (2.8)

where L1 and L2 are differential operators and W(.) is a white noise
process. Replacing L1 by a constant, it becomes similar to the kernel
convolution approach, however, with a very particular kernel function.
The autoregressive moving average model class in the one dimensional
case is another particular case. The ARMA process can be written
in this way. An example in the spatial case is in Bolin and Lindgren
(2011). Our interest is when L2 is replaced by a constant. In this case,
the process is Markovian, Rozanov (1977).

5. Conditional distributions are a more statistical sound approach and
are usually considered in discrete settings, either for discrete time or for



24 Space-time modeling introduction

areal (spatial) data. A Gaussian model of this class is called a Gaus-
sian Markov Random Field - GMRF which inherits sparse precision
matrices and allows for efficient computations, Rue and Held (2005).
However, there are continuous domain processes that are direct linked
to GMRF’s, Lindgren et al. (2011), and also approximations, Rue and
Tjelmeland (2001) and Datta et al. (2016).

A process is usually considered by its marginal properties and local prop-
erties. The covariance is a marginal property of the model while there are
conditional properties. The kernel convolution approach is closely related
to the covariance, Eq. 2.7. The SPDE and conditional approach consider
the dynamics of the process since it considers local behaviour of the process.
The spectral density approach has connection with the marginal properties
through Bochner’s theorem, Eq. 2.5. However it also give information about
the process dynamics. The power spectra of an SPDE can be obtained and
one can use the Bochner’s theorem to compute the covariance. But, there
is not always an analytical solution for the integrals involved.

When the reciprocal of a spectral density is a polynomial the process is
Markov, which is the case when L2 in Eq. 2.8 is replaced by a constant,
Rozanov (1977). A Markov process can be discretized into a GMRF that is
represented by a set of conditional distributions, Rue and Held (2005). This
allows for fast computations which will be explored in this work.

2.3 GMRF representations for 1D and 2D SPDE

We briefly review the SPDE apprach in the following sections.

2.3.1 One dimensional case

We start with a one dimensional model that is usually defined from a differ-
ence equation and will provide a link with a stochastic ordinary differential
equation. The first order auto-regressive model, named AR1 model, can be
defined from the following equation

ut − ρut−1 = σwt (2.9)

where wt ∼ N(0, 1).
The marginal distribution for this process at a finite set of time knots,

u = {u1, ..., un} can be obtained. Considering u1 ∼ N(0, σ2/(1 − ρ2)), the
stationary distribution, and ut ∼ N(ρut−1, σ

2) we have

π(u) = (2πσ2)-n/2
√

1-ρ2 exp- 1
2σ2 [(1-ρ2)u2

1+(u2-ρu1)2+...+(un-ρun-1)2] . (2.10)
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The sum inside the exponential can be written in matrix form as

u2
1 − ρ2u2

1 + u2
2 − 2ρu1u2 + ρ2u2

1 + ...+ u2
n − 2ρun−1un + ρ2u2

n−1

=
n∑

i=1

u2
i − 2ρ

n∑

i=2

uiui−1 + ρ2
n−1∑

i=2

u2
i

= uT [D(1,1+ρ2,1)
n + T (0,−ρ)

n ]u (2.11)

where D(a,b,c)
n defines an n dimensional diagonal matrix with a being the

first element, c the last element and all elements as b. The matrix T (a,b)
n is

a tridiagonal matrix with all the elements in the diagonal equal to a and all
the other non-zero elements equal to b, represented as

D(a,b,c)
n =




a
b

. . .
b

c



n×n

and T (a,b)
n =




a b
b a b

. . .
b a b

b a



n×n

.

(2.12)
One benefit of dealing with a sparse matrix comes from taking sparsity

into account when doing the Cholesky factorization and using it to compute
the determinant. An interesting fact in this parametrization for the AR1
model is that it does not even need the Cholesky factorization as we have
that |D(1,1+ρ2,1)

n + T (0,−ρ)
n | = 1− ρ2, see Eq. (2.10).

The model in Eq. 2.9 can be considered in the continuous case as

τ

[
ϕ+

∂

∂t

]
u(δt) =W(δt) (2.13)

where ϕ is a scaling parameter, τ is a local precision parameter, δt is the
time frame andW(δt) is a continuous unit variance white noise. For details,
see chapter 3 of Jones (1993). The corresponding parametrization for the
correlation at the distance δt is e−ϕδt, the exponential correlation function.
If this continuous process is sampled at equally spaced intervals t1, t2, ...,
with t2 − t1 = δt, then ρ = e−ϕδt. If δt = 1 we have ρ = e−ϕ.

The following SPDE

τ

(
ϕ2 − ∂2

∂t2

)1/2

u(δt) =W(δt) (2.14)

actually corresponds to the same model when the driving noise is Gaussian.
This can be seen when considering the spectral representation for d

dt as iω
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and for d2

dt2
as −ω2. Therefore we have F( ∂∂t) = |iω| = |ω| and F( ∂

2

∂t2
) =

| − ω2| = |ω|2 which gives the same spectral density as

f(ω) = (τ2π(ϕ2 + ω2))−1 . (2.15)

Therefore we can follow the discretization approach in Lindgren et al.
(2011). Let

Φ(t) = [φ1(t), ..., φNφ(t)]

be the temporal basis functions. Then define

H(0) = D = 〈Φ,Φ〉, H = 〈∇Φ,∇Φ〉 andH(k) = D−1H(k−1). (2.16)

This results in the joint distribution at the Nφ set of time knots being
Gaussian with a precision matrix equal to τ(ϕ2D +H).

Let 0 = u0 < u1 < ... < un < un+1 = T a set of (ordered) knots spanning
the time domain (0, T ). We can look at the case when piecewise linear basis
functions are considered and equally spaced knots such that a = ui−ui−1 for
i = 0, ..., n+ 1. With Dirichlet boundary condition, the distribution is given
at u1, ..., un with D = aIn, for In the identity matrix of dimension n, and
H = T (2a,−a)

n . Using Neumann boundary condition, the distribution is given
at u0, ..., un+1 and considering these m = n+ 2 time knots, D = D(a/2,a,a/2)

m

and H = D(a,2a,a)
m + T (0,−a)

m .
An interesting particular case is the limit case when ρ = 1, which cor-

responds to having ϕ = 0. This is then the first order random walk, Rue
and Held (2005). When considering the Neumann boundary condition and
a = 1, we have the precision matrix as τH and Eq. (2.11) becomes equal to
τuTHu. A computational detail in this case is that the determinant of H
can be avoided in most of the computations.

2.3.2 Two dimensional case

A simple model in two dimensions is the Laplace equation, where the second
derivative of the process with respect to each coordinate is zero as in

(
∂2

∂s1
+

∂2

∂s2

)
u(s) = 0 or ∇2u(s) = 0 or ∆u(s) = 0

where ∇2 = ∆ is the Laplace operator or Laplacian. One may understand
it better considering a numeric approximation for the Laplacian, as

∆f(x, y) ≈ f(x− h, y) + f(x+ h, y) + f(x, y − h) + f(x, y + h)− 4f(x, y)

h2
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where the value at a point is contrasted with the average over the neighbor-
hood allowing a local second order degree curvature.

A stochastic version was considered in Whittle (1954) in the context of
lattice data named as Simultaneous Autoregressions - SAR model. A general
version was considered in Lindgren et al. (2011) as

τ(κ2 −∆)α/2u(s) =W(s), (2.17)

where κ is a scale parameter and α is a smoothness parameter. When
W(s) is a Gaussian white noise process, it was shown in Lindgren et al.
(2011) that the solution for this SPDE is a Gaussian random field with
Matérn covariance, Matérn (1960). The case when W(s) is non-Gaussian
was considered in Bolin (2014) and Wallin and Bolin (2015).

Lindgren et al. (2011) proposed the use of the Finite Element Method
(FEM) approach. All the details are in the Appendices of this paper. We
will summarize it very briefly here. Let

Ψ(s) = [ψ1(s), ..., ψNψ(s)]

be a a set of Nψ basis functions. Consider the following matrices

C̃ = 〈Ψ, 1〉, C = 〈Ψ,Ψ〉, G = 〈∇Ψ,∇Ψ〉 (2.18)

and G(k) = G(C−1G)(k−1), for k = 1, 2, ... and set G(0) = C. The appendix
A.2 of Lindgren et al. (2011) contains the expressions for such matrices for
the case of Ψ(s), considered as piecewise linear functions at the nodes of a
mesh triangulation. Given τ , κ and α, the precision matrix Qα(τ, κ) at the
set of Nψ mesh nodes is

Q1(τ, κ2) = τKκ2 = κ2C +G (2.19)
Q2(τ, κ2) = τKκ2C−1Kκ2 = τ [κ4C + 2κ2G+G(2)] (2.20)
Qα(τ, κ2) = τKκ2C−1Qα−2(1, κ2)C−1Kκ2 for α = 3, 4, ... (2.21)

The power of this result is that the structure of the precision matrix only
depends on α. This is convenient when doing computations with numerical
linear algebra for sparse matrices as it implies that the reordering does not
change.

The α = 2 case corresponds to the considered elementary model in Whit-
tle (1954). The α = 1 case corresponds to the model based on conditional
autoregressions - CAR, proposed in Besag (1974) for discrete domains and
has been widely used. The κ = 0 case still has valid random measures, Ap-
pendix C.3 in Lindgren et al. (2011), and for α = 1 and κ = 0 it corresponds
to the Wijs process, Besag and Mondal (2005).
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Another appealing point is that a bigger α does not correspond to a
smoother process as it is directly related to the smoothness parameter in
the Matérn covariance function. In the precision term, we have it consider a
wider neighborhood for bigger α. The choice of α between 1 or 2 is equivalent
to choosing between CAR or SAR in the discrete case.

When α is not an integer, the field is no longer a Markov field, Rozanov
(1977). This limitation on integer α can be bypassed by considering the
approximation to the best Markov approximation, suggested in the reply to
the original paper, Lindgren et al. (2011). Also, recently it was proposed to
combine the discretization using FEM in space with a rational approxima-
tion, Bolin and Kirchner (2017). Yet another recent proposal is to consider
FEM and a quadrature approximation of an integral representation, Bolin
et al. (2017a) and Bolin et al. (2017b).



Chapter 3

Stochastic heat equation and
GMRF representations

In this chapter we consider space-time non-separable models derived from
the heat equation. We will start with a simple heat equation model and
its damped version, which is one of those considered in Heine (1955), and
consider a variation that allows for higher spatial dimensions as in Jones and
Zhang (1997). A Gaussian Markov representation is provided.

3.1 The stochastic heat equation and variations

The heat equation describes how heat spreads over space and time. It can
be written using the following homogeneous equation

∂u(s, t)

∂t
= γ∆u(s, t) (3.1)

where u(s, t) is the temperature at the d-dimensional location s and time
t, ∆ is the Laplace operator (Laplacian) and γ is the thermal diffusivity
parameter. This parameter expresses how fast the heat spreads over space.
An alternative parametrization can be made considering

ρ
∂u(s, t)

∂t
= ∆u(s, t) (3.2)

where ρ = 1/γ and is a persistency parameter over time.
The stochastic version of the heat equation can be written as

τ

[
ρ
∂

∂t
−∆

]
u(s, t) =W(s, t) (3.3)

29
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where W(s, t) is a space-time white noise term with unit variance and τ is
a local precision parameter that controls the size of the difference between
ρ ∂∂tu(s, t) and ∆u(s, t) when τ →∞ Eq. (3.3) approaches Eq. (3.1).

This model is only for the variation over time and space and the prop-
erties do not change with the addition of a constant to the process. The
variation over time and space are not separable and one can only modulate
how much comes from time and space by the parameter γ (or ρ). That is,
the stochastic heat equation defines an intrinsic random field.

Considering λ ∈ Rd the spatial frequency and ω ∈ R the temporal fre-
quency the spectral density can be written as

fh(λ, ω) =
1

(2π)d+1τ(ρ2ω2 + ‖λ‖4)
(3.4)

which has an intrinsicness point at f(0, 0). Working with intrinsic models in
real applications is usually considered to add a valid linear constraint. For
example, a sum-to-zero linear constraint is adequate as we only have a point
of intrinsicness. We will consider two GMRF representations for this model
and the empirical covariance under a constraint in Section 3.2.

A damped version of this model can be written as

τ

[
ρ
∂

∂t
−∆ + κ2

]
u(s, t) =W(s, t) (3.5)

and the spectral density can be written as

fhd =
1

(2π)d+1τ [ρ2ω2 + (κ2 + ‖λ‖2)2]
(3.6)

which is finite as κ > 0.
This model was considered in Heine (1955) for d = 1. The space-time

correlation at time lag l and spatial distance r is

corr(s, t) =
1

2

[
e−r

∗
Erfc(l∗ − r∗

2
√
l∗

) + er
∗
Erfc(l∗ +

r∗

2
√
l∗

)

]
(3.7)

where l∗ = lκ2/ρ and r∗ = κr and Erfc is the error function that can be
written as

Erfc(x) =
2√
π

∫

0
xe−t

2
∂t

and is more common in statistics books. The model decays faster as κ
increases or ρ decreases, as shown in Figure 3.1. The impact of κ on the
decay rate is bigger than the impact of ρ. This is evident when we compare
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Figure 3.1: Space-time correlation function of the one dimensional damped
heat equation model.
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the decay for the (ρ = 2, κ = 1) and (ρ = 1, κ = 2) cases. An important
feature is that the correlation dies faster along (0, l) or (r, 0) than along (r,
l) which is a characteristic of positive non-separability.

The marginal spatial spectral density is obtained integrating over the
temporal frequencies as

2

∫ ∞

0
fh(λ, ω)∂ω = 1/(4πρτ(κ2 + λ2)) .

Therefore, the spatial marginal covariance is obtained as

2

∫ ∞

0

cos(rλ)

4πρτ(κ2 + λ2)
∂λ =

e−rκ

4ρτκ
.

This is the well known exponential correlation function with range 1/κ and
marginal variance 1/(4ρτκ). Setting r∗ = 0 in 3.1, the temporal correlation
is Erfc(l∗), Jones and Zhang (1997), which depends on κ and φ. These
marginal correlation functions are shown in Figure 3.2 for some parameter
values.

We usually consider 2/κ as a practical range for the exponential correla-
tion function because the correlation at this distance is exp(−2) = 0.1353.
The Erfc function decays as the argument increases. ρ is inversely propor-
tional to the temporal lag and κ2 is directly proportional. Therefore ρ/κ2

acts as a range parameter for the temporal marginal correlation. In fact,
at the distance of

√
2πρ/κ2 the correlation is Erfc(

√
2π) = 0.1134 and this

expression can be considered as a practical temporal range for the marginal
temporal correlation. These two correlation values are shown in each plot
of Figure 3.2 as a dotted horizontal lines.

This model in one-dimensional space has potential applications for mod-
eling phenomena on a river or road, that evolves over time. However, a pos-
sible application will be when considering two dimensional Gaussian process
with different degree of smoothness in each direction. Gaussian process are
considered in modeling varing regression coefficients in the machine learning
literature, Rasmussen and Williams (2006). Varying regression coefficients
are also considered in the context of Generalized Additive Models (GAM),
Wood (2006). The advantage of the GMRF representation provided here is
that it allows for efficient computations.

Jones and Zhang (1997) proposed the following SPDE

τ

[
(κ−∆)α1/2 + ρ

∂

∂t

]
u(s, t) =W(s, t) (3.8)
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Figure 3.2: Marginal temporal covariance for different ρ and κ values (top)
and marginal spatial covariance for different κ values (bottom).
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which does enough smoothing when α1 > d. The spectral density is

fhda =
1

(2π)d+1τ [ρ2ω2 + (κ2 + ‖λ‖2)α1 ]
. (3.9)

The marginal spatial spectral density is

2

∫ ∞

0
fhda(λ, ω)∂ω = 1/[4πdρτ(κ2 + ‖λ‖2)α1/2]

which corresponds to the spectral density of the Matérn covariance with
smoothness equal to (α1 − d)/2 and range parameter 1/κ. The marginal
temporal correlation is

e−l
∗ −
√
πl∗Erfc(

√
l∗)

as in Jones and Zhang (1997). This model is a particular case of the model
class proposed in Stein (2005) considered in Chapter 4.

3.2 Two GMRF representations for the intrinsi-
cally stationary stochastic heat equation model

In this section we consider two GMRF representations for the space-time
model in Eq. (3.3). The first uses the Finite Volume Method (FVM) as
proposed in Fuglstad (2010) and we will only present the results. The second
uses the Finite Element Method (FEM).

3.2.1 Using the Finite Volume Method

The Finite Volume Method is comonly considered to solve problems of con-
servative laws of forms like the heat equation, Eymard et al. (2000). It
approximates the average integral value on a reference value rather than
pointwize approximations. Fuglstad (2010) considered the model given in
Eq. (3.3) in the one-dimensional space domain to derive the precision matrix
considering the FVM. We only present the results here and refer readers to
Fuglstad (2010) for details of the methods.

It was considered [0, L] as the spatial domain and [0, T ] as the time
domain. Neumann boundary conditions were considered as ∂

∂tu(0, t) =

0, t ∈ [0, T ] and ∂
∂tu(L, t) = 0, t ∈ [0, T ]. The approximation

divides both spatial and temporal domains into regular grids. That is
0 < t1 < ... < tM = T , k = t1 − t0, and 0 = s0 < ... < sN = L. Fur-
ther, define di = si+1 − si, for i = 1, ..., N − 1, and define spatial cells as
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E1 = [s1, s1 + d1/2], EN = [sN − dN−1/2, sN ] and Ei = [si− di/2, si + di/2]
for i = 2, ..., N − 1.

Let a diagonal matrix V = diag(V1, ..., VN ) where Vi is the length of the
interval Ei. Then define a tridiagonal matrix H(V ) as

H
(V )
ij =





− 1
di

if i = j = 1

−( 1
di−1

+ 1
di

) if 1 < i = j < N

− 1
dN−1

if i = j = N
1
di

if j = i+ 1 or j = i− 1

0 otherwise.

Additionally, let B = V − kγH(V ) and B(2) = BTV −1B. The resulting
precision matrix considers a precision matrix A for the initial state, at time
t0. The joint precision for the process at the space-time discretization grid
is given by

τ

k




V + k
τA −B 0 . . . 0

−BT V +B(2) −B 0

0
. . . . . .

...
... −BT V +B(2) −B
0 . . . 0 −BT B(2)




(3.10)

which has dimension equals to N(M + 1)×N(M + 1).
We can consider a small case to visualize what the precision looks like.

Given L = T = 5, k = 1, N = 6 and τ = γ = 1 the resulting precision matrix
is Figure 3.3. It shows a global tridiagonal pattern, that is the diagonal and
the interaction between the vector process at time t and t − 1. The main
diagonal is surrounded by two non-zero elements in each side due to the
pattern of the B(2) matrix. The interaction between time t and time t − 1
is surrounded by one element on each side, which is due to the −B matrix
that is tridiagonal.

3.2.2 Using the Finite Element Method

The FEM is a popular technique in applied mathematics and engeniering
among other numerical methods for working with Partial Differential Equa-
tions, Quarteroni (2009). A particular feature of this technique is its flexibil-
ity of working with complicated geometries, for example non-regular spatial
domains. Therefore it is interesting to consider it for spatial statistics.
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Dimensions: 36 x 36

−6

−3

−1.5

0.5

1

5.5

6

11

12

13

Figure 3.3: Precision matrix from FVM.

The discretization approach in this section considers the spatial dis-
cretization as in Lindgren et al. (2011). The spatial discretization was con-
sidered to write the process as a system of temporal SDEs. This is them
decoupled and the generalized eigenvalue/eigenvector problem is considered
to find the precision matrix. This diagonalization technique based in the
generalized eigenvalue problem is common to solve differential equations.
These steps are detailed next and follows from Lindgren et al. (2016).

First we consider the set of m spatial basis functions Ψ(.) and the ma-
trices C and G as in Lindgren et al. (2011) and as briefly outlined in Sec-
tion 2.3.2. We write the process u(s, t) as a function of the spatial basis
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functions and the process at time t: u(s, t) = Ψ(s)u.(t) as

〈Ψ(.),
∂

∂t
u(., t)− γ∆u(., t)〉Ω = 〈Ψ,Ψ〉Ω

∂

∂t
u.(t) + γ〈∇Ψ,∇Ψ〉Ωu.(t)

The set of basis function inherits the spatial properties of the process. We
can write the following coupled system of stochastic differential equations,

C
∂

∂t
u.(t) + γGu.(t) = τCW.(t), (3.11)

where W.(t) is a vector process with covariance equals to |δt|C−1.
Let U be a matrix of eigenvectors for the generalized eigenvalue problem

GU = CUΛ,

where Λ = diag(λ1, . . . , λNΨ
) is a diagonal matrix with the eigenvalues. The

eigenvalues are chosen so that UTCU = I and UUT = C−1. Introduce
z.(t) = UTCu.(t), and multiply Eq. (3.11) from the left, yielding

∂

∂t
z.(t) + γΛz.(t) =Wz.(t), (3.12)

whereWz.(t) is a vector process with covariance |δt|(UTCU)−1 = |δt|I. We
now have the system in Eq. (3.11) decoupled into m independent processes

∂

∂t
zk(t) + γλkzk(t) = τ−1W(t) (3.13)

where W(t) is a white noise process.
Each temporal process zk(t) can be considered as in Eq. 2.13 or Eq. 2.14.

Following Section 2.3.1 we have the temporal precision matrix as

τ(H + γD)

for the spatial basis weights for zk(t). The joint precision for all the zk(t)
processes z is

Qz = τ(H ⊗ I + γD ⊗ Λ2).

Transforming back to u = Uz we have its precision as

CUQzU
TC = τCU(H ⊗ I + γD ⊗ Λ2)UTC

= τ(H ⊗C + γD ⊗G(2)) (3.14)

where it was considered that CUΛkUTC = C(C−1G)k.
We consider the same scenario as in the previous section, where we have

L = T = 5, k = 1, N = 6 and τ = γ = 1. It gives the precision matrix
shown in Figure 3.4 considering Neumann boundary conditions both for the
time and space domains. The overall tridiagonal pattern is fromH⊗C and
the main diagonal and surrounding terms from D ⊗G(2). Notice that G(2)

has band width equal to five.



38 Stochastic heat equation and GMRF representations

Dimensions: 36 x 36
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Figure 3.4: Precision matrix from FEM.

3.2.3 Fixed initial condition example

Since this is an intrinsically stationary model, one needs to set at least
one constraint in order to compute the covariance for the constrained field.
Following Fuglstad (2010) we consider T = 10, L = 5, k = 1/100, N = 400
and a constraint in the initial state. That is, the process at t0 is

u(x, 0) =

{
10 if 0 ≤ x < 5

2
−10 if 5

2 ≤ x ≤ 5
.

We compare the marginal mean and marginal variance from both GMRF
representations under this scenario. The mean conditional on this starting
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condition and the marginal variance for both discretization approaches is
shown in Figure 3.5
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Figure 3.5: Marginal mean from the FVM discretization (top left) and
marginal variance (top right). Marginal mean from the FEM discretization
(bottom left) and marginal variance (bottom right).

We can also draw samples from the initial conditions considering each of
the derived precision matrix structures as shown in Figure 3.6.
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3.3 Constrained process covariance example

The spectral density for the model in Eq. (3.3) is

f(ω, λ) =
1

(2π)2τ(ω2 + γλ4)
(3.15)

which is a particular case of the proposed model in Stein (2013), where
expressions for the generalized covariance were derived.

Since the process is intrinsic, the variance is not finite. However, it is
intrinsically stationary and we can compute the covariance for a valid linear
transformation. In this case, we can consider a sum-to-zero constraint in
the process, that is

∫
R

∫
R u(s, t)dsdt = 0. The constrained process empir-

ical covariance is the generalized inverse of the precision matrix from the
discretization.

Consider the scenario when T = L = 5 and n = m + 1, that is, the
same time and spatial window size with the same discretization knots. In
order to understand the effect of γ we inspect the empirical covariance of
the constrained process for γ equal to 1/10, 1 and 10.

In this section we consider the generalized inverse of the precision matrix
from the FEM discretization in order to visualize some marginal properties
of the model. We can see the marginal variance computed for the constrained
process in Figure 3.7 considering different values for γ.

The first point to notice is the effect of the sum to zero constraint. Under
this constraint the marginal variance is not constant over the domain, similar
to what one can observe for random walk models. The behaviour is that
the marginal variance is lower in the center of the space-time domain and
lager near the boundary. This is clear also when looking at it shown over
time in the left plots in Figure 3.8 or over space in the right plots in this
Gigure. This is due to the different degree of smoothness along time and
space. Considering the case of γ = 1 we can see that the marginal variance
is near one at the spatial boundaries (either 0 or 5) for t between 2 and 3.
However, at the time boundaries (either 0 or 5) it is near 0.5 for s between
2 and 3. In resume, it varies more over space when looking at the same time
point than over time when looking at the same spatial location.

For γ = 1 we have the case where the SPDE has no coefficient multiplying
by the spatial operator, as we already have for the time derivative. This
case is shown in the plots in the center of Figure 3.7. What is shown in
these plots is the effect of the smoothing order. We observe that the second
order smoothing causes more variation in the process because the marginal
variance varies more over space than over time.
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We can see that when γ = 0.1 the marginal variance at each spatial
knot does not vary so much as shown in the bottom left plot. However, the
marginal variance does vary more at each time knot as seen in the mid left
plot. That is, the marginal variance varies mainly over space. The joint
variation is shown in the top plots for different γ values. As γ increases
the marginal variance starts to vary more over time and less over space.
This result makes sense as with higher γ we have a bigger spatial range
and, consequently, less variation over space for the process. One point here
is that the non-separability happens already in the marginal variance as λ
affects the marginal variance over both space and time.

Figure 3.9 presents the correlation over space for a specific time point
and over time at a specific spatial point. A key feature shown in this Figure
is the feature due the difference in the degree of smoothness of the process
over space and over time. Looking at the case when γ = 1, shown in the mid
left and mid right plots in Figure 3.9, one can see that the spatial correlation
is smoother than the temporal correlation because it goes less fast from 1 to
-1 along the spatial direction.

Another point to be noticed in Figure 3.9 is the effect of the γ parameter.
The γ parameter is proportional to the spatial range because for bigger
values of it the correlation decay is slower. Thus, the correlation over space
is higher as γ increases. However, when the range is relatively big with
respect to the size of the area, as in the case of γ = 10, we observe less
variation. The opposite is true for the temporal correlation, as γ increases
the temporal range decreases and this is a feature of the non-separability of
the implied covariance structure of this model.



42 Stochastic heat equation and GMRF representations

space

tim
e

−10

−5

0

5

10

space

tim
e

−10

−5

0

5

10

space

tim
e

−10

−5

0

5

10

space

tim
e

−10

−5

0

5

10

Figure 3.6: Two samples considering the initial condition and the FVM
discretization (top) and two samples considering the initial condition and
the FEM discretization (bottom).
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Figure 3.7: Constrained process marginal variance at each space-time dis-
cretization point for some values of γ.
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Figure 3.8: Marginal variance shown over time at each spatial location for
different values of γ (left plots). Marginal variance over space at each time
point for different values of γ (right plots).
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Figure 3.9: Temporal covariance for space fixed at bn/2 + 1c (left plots) and
spatial covariance for time fixed at bm/2 + 1c (right plots).
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Chapter 4

Stein’s model SPDE and a
GMRF representation

In this Chapter we consider the model proposed in Stein (2005). We provide
a SPDE formulation of this model by proposing an SPDE along with a
spectral representation that gives the same spectral density of Stein’s model.
We consider a GMRF representation for particular cases of the smoothness
parameters of this model.

4.1 Stein’s model

Stein (2005) proposed a non-separable model starting from the following
spectral density

f(w1, w2) = {c1(a2
1 + ‖w1‖2)α1 + c2(a2

2 + |w2|2)α2}−ν (4.1)

where c1 and c2 are scaling parameters, a1 and a2 are inverse range param-
eters and α1, α2 and ν are smoothness parameters. It is needs c1 > 0 and
c2 > 0 and to have it integrable it is needed a2

1 + a2
2 > 0 and a minimum

smoothing condition stated by

d1/α1 + d2/α2 < 2ν. (4.2)

For the space-time case we consider w1 the two dimensional frequency in
space and w2 the one dimensional temporal frequency, which gives d1 = 2
and d2 = 1. Therefore, the required smoothing order over space is twice as
over time.

Without loss of generality we can set a2 = 0 and consider x = |w2|
and use 3.241.4 of Gradshteyn and Ryzhik (2007) to compute the marginal

47



48 Stein’s model SPDE and a GMRF representation

spectral density as

f(w1) = 2

∫ ∞

0

∂x

(c1(a2
1 + ‖w1‖2)α1 + c2x2α2)ν

=
Γ( 1

2α2
)Γ(ν − 1

2α2
)

Γ(ν)α2c
1

2α2
2 c

ν− 1
2α2

1 (a2
1+ ‖ w2 ‖2)

α1(ν− 1
2α2

)
(4.3)

which means that the marginal spatial covariance is Matérn with scale a1 and
smoothness α1(ν−1/(2α2))−1. Similarly for time, by setting a1 = 0 we have
the marginal temporal covariance as Matérn with scale a2 and smoothness
α2(ν−1/(2α1))−1/2. Thus, with α1 = α2 = 1 and ν = 2, we have marginal
spatial as Exponential and marginal temporal as Matérn with smoothness
equals to 1.

This knowledge is useful because all the knowledge from the Matérn
covariance can be considered to help understanding and interpreting the
model parameters. For example, for choosing α1, α2 and ν. Notice that
setting ν = 2, α1 = 1 and α2 = 1/2 would give the Exponential temporal
covariance case. However, the smoothing condition is not verified for this
case. For ν = 2 and α1 = α2 = 1 the smoothing condition is satisfied
and it give both marginal covariances, spatial and temporal, as Matérn with
smoothness equals 1.

Analytical expression for the space-time covariance is not possible to
compute for all the range of the smoothness parameters. It can be computed
only few particular cases. The case when ν = 1 and α2 = 1 we have
Exponential temporal covariance for each spatial frequency. When a2 = 0,
c1 = 1 and α1 = 2, α2 = 1, and ν = 2, the analytical expression for the
covariance was given in Eq. (6) in Stein (2005).

The key point of our work with this model is based in two results from
Rozanov (1977). First, having α1 and α2 integers and ν half-integer gives the
reciprocal of Eq. (4.1) a polynomial in w1 and w2 and thus, the associated
process is a Markovian field. Second, a solution of a linear SPDE is a
Markovian random field. Therefore, we are working with a Markovian space-
time process and there will be explicit GMRF representations associated, like
in Lindgren et al. (2011).

The heat equation considered in Chapter 3 is a particular case, for d1 = 1.
Another particular case of this model, when ν = 1 = α2 = 1 and α1 > 2,
was considered in Jones and Zhang (1997) and Kelbert et al. (2005).

We will have a GMRF representation for this model in Section 4.3. This
provides a computationally efficient way for model inference. Then, by re-
placing the Stein’s third desired property by
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3. fitting process computationally efficient

we have a space-time model fulfilling all the three Stein’s like desired prop-
erties.

4.2 The SPDE formulation

Let the following SPDE

(
c1(a2

1 −∆)α1 + c2(a2
2 −

∂2

∂t2
)α2

)ν/2
u(s, t) = (2π)d+1W(s, t) (4.4)

where (s, t) is the space-time coordinate for s ∈ Rd and t ∈ R, ∆ =
∑d

i=1
∂2

s2i
and c1, c2, a1, a2, α1, α2 and ν the model parameters in Eq. 4.1.

One way of defining fractional operators is to consider the spectral repre-
sentations as F(−∂2/∂t2)a = |ω2|a = |ω|2a and F(−∆)a = ‖λ2‖a = ‖λ‖2a.
Thus, considering d = 2 and W(s, t) to be unit variance space-time white
noise we arrive at the spectral density in Eq. 4.1.

We have some particular cases of this model in Table 4.2 considering
different values for α1 and α2 and the condition needed for ν. The three
first cases, when one or both is 1/2 it is required ν > 2. For having ν = 2 in
such cases one can them consider a spatially correlated driving noise, as for
the models in Chapter 5. The next three cases it is required ν > 1 and we
can have, for example, ν = 2 and it does not implies interaction terms in the
spectrum. Thus, in the ν = 2 case both the spatial and temporal derivatives
are collapsed into the same noise giving a completely non-separable space-
time model.

An important fact for having integer values of α1, α2 and ν is that the
spectral density is a reciprocal of a polynomial and the associated process
is Markovian, Rozanov (1977). For such cases there may be a Markov rep-
resentation. Thus having Gaussian driving noise we can consider a GMRF
representation which allows for efficient computations in the fitting process.
Then, by replacing the third Stein’s desired property by

3. fitting process computationally efficient

we have a space-time model class that fulfilling all the desired (like) proper-
ties.

Setting a2 = 0 in Eq. (4.4) we have the c2|w2|2α2 term in Eq. (4.1).
However, if we replace the negated second order time derivative in the SPDE
by the positive first order one we have the c2|w2|α2 instead. Therefore,
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Table 4.1: Condition on ν for α1 and α2

α1, α2 Operator ν

1/2, 1/2
(
c1(a2

1 −∆)1/2 + c2(a2
2 − ∂2

∂t2
)1/2

)ν/2
> 3

1/2, 1
(
c1(a2

1 −∆)1/2 + c2(a2
2 − ∂2

∂t2
)
)ν/2

> 5/2

1, 1/2
(
c1(a2

1 −∆) + c2(a2
2 − ∂2

∂t2
)1/2

)ν/2
> 2

1, 1
(
c1(a2

1 −∆) + c2(a2
2 − ∂2

∂t2
)
)ν/2

> 3/2

1, 2
(
c1(a2

1 −∆) + c2(a2
2 − ∂2

∂t2
)2
)ν/2

> 5/4

2, 1
(
c1(a2

1 −∆)2 + c1(a2
2 − ∂2

∂t2
)
)ν/2

> 1

2, 2
(
c1(a2

1 −∆)2 + c2(a2
2 − ∂2

∂t2
)2
)ν/2

> 3/4

doubling α2 when considering the alternative first order time operator can
give the same power spectrum. Thus, two different operators can give the
same spectral density but it is a fundamentally different operator. This fact
matters when having non-Gaussian driving noise because the distributions
actually become different depending on how the operators are defined, Bolin
(2014).

An alternative parametrization for the SPDE in Eq. 4.4 is

τ [(1− γ∆)α1 + (1− ρ ∂
2

∂t2
)α2 ]ν/2u(s, t) = (2π)−(d+1)W(s, t) (4.5)

where there is one parameter less and the γ and ρ parameter can be easier
to interpret.

4.3 Obtaining the precision matrix

We now follow the steps in the sub-section 3.2.2. The first step is to project
the spatial properties to the spatial basis functions Ψ in order to have the a
system of stochastic differential equations.

We can take the case when α2 = 1 and ν = 2 to work with the following
space-time SPDE

(c1(a2
1 −∆)α1 + c2(a2

2 −
∂2

∂t2
))u(s, t) =W(s, t)

and we have the following system of SDEs

c1R(a1, α1)u.(t) + c2a
2
2Cu.(t)− c2Cü.(t) = CW.(t) (4.6)
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where R(a1, α1) is the precision matrix for a spatial Matérn field with scale
a1 and smoothness α1 − 1, as in Lindgren et al. (2011). For α1 = 1 we have
R(a1, 1) = a4

1C + 2a2
1G + G(2).

Then we consider the generalized eigenvalue problem and introduce
x.(t) = U>Cz.(t). Multiplying Eq.(4.6) by U> from the left we arrive
at a polynomial on Λ of order 2α1 multiplying x.(t) plus a term with second
order time derivative for x. When α1 = 1 we have

(c1a
4
1 + c2a

2
2)x.(t) + 2c1a

2
1Λx.(t) + c1Λ2x.(t)− c2ẍ.(t) = Ex.(t)

With respect to time, the above expression is a system of SDEs, zk(t),
each one with the operator of the form c2(ak/c2 − ∂2

∂t2
), where ak = (c1a

4
1 +

c2a
2
2) + 2c1a

2
1λk + c1λ

2
k. Considering the temporal basis functions ψ and the

D and H matrices as defined in the sub-section 3.2.2 and the scale as ak/c2

we have precision of the form c2((ak/c2)2D + 2ak/c2H +H(2)).
With a = c1a

4
1 + c2a

2
2, b = 2c1a

2
1 and so ak = a+ bλk + c1λ

2
k we have the

precision for the basis weights for xk(t) written as

Qk = (a2 + 2abλk + (2ac+ b2)λ2
k + 2bcλ3

k + c2
1λ

4
k)/c2D+

2(a+ bλk + c1λ
2
k)H + c2H

(2)

Thus, the joint precision for all the xk(t) processes is

(a2D⊗ I + 2abD ⊗ Λ + (2ac1+b2)D ⊗ Λ2 + 2bc1D ⊗ λ3 + c2
1D ⊗ Λ4)/c2+

2aH ⊗ I + 2bH ⊗ Λ + c1H ⊗ Λ2 + c2H
(2) ⊗ I .

Transforming back to u = Ux we have its precision as

a2/c2D ⊗C + 2ab/c2D ⊗G+ (2ac1 + b2)/c2D ⊗G(2)+

2bc1/c2D ⊗G(3) + c2
1/c2D ⊗G(4)+

2aH ⊗C + 2bH ⊗G+ 2c1H ⊗G(2) + c2H
(2) ⊗C .

(4.7)

Something can be said about the implied conditional distributions for
the discretization looking to the above matrix expression and link it to the
SPDE. First, setting a2 = 0 only changes a and so it seems to be redundant
to have two damping parameters. The first term is a diagonal matrix and the
elements in the first and second lines are related to the spatial interactions
as we have the D matrix, which is diagonal, from the temporal. Notice that
we have c2 in these two first lines and that dividing all the terms.

The first and last terms in the last line are the only temporal interac-
tion terms and the two remaining are the space-time interaction terms. c1

controls some of the temporal interaction as it is in a and the space-time
interaction. c2 is directly multiplying H(2).
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4.4 Particular case: iterated heat equation

We can consider an iterated heat equation SPDE as follows
(

(a2
1 −∆)α1/2 +

√
c2
∂

∂t

)ν
u(s, t) =W(s, t) . (4.8)

The spectral density is

f(w1, w2) =
(
(a2

1+ ‖ w1 ‖2)α1 + c2w
2
2

)−ν
/(2π)3

which is a particular case of having α2 = 1 in Eq. (4.1), without the constant
(2π)3.

Considering the minimum smoothing condition in Eq. (4.2) we do need
ν > 1/2 + 1/α1. We can choose α1 = 3 in order to have ν = 1 and no space-
time interactions in the spectra. For ν = 1 we already have in Eq. (3.8) the
SPDE proposed by Jones and Zhang (1997) and the need to have α1 > 2.

Without going into the details we can define the precision matrix that
matches the spectral density. The precision matrix for this case is

D ⊗R(a1, α1) + c2H ⊗C

In the next chapter we work with the case when the driving noise is spatially
correlated. Them an additional R(.) term is introduced in the precision, see
5.4.



Chapter 5

Iterated heat equation and
coloured driving noise

In this chapter we consider a class of non-separable space-time models de-
rived from the iterated heat equation with spatially correlated driving noise.
This is a particular case of the transport and diffusion equation mentioned
in Lindgren et al. (2011) and considered in Sigrist et al. (2015) because we
do not work with the transport term.

The model defined for the spatial and temporal coordinates s and t can
be written as follows

τ(ρ ∂∂t + 1− γx∆)αtu(s, t) = E(s, t)

(1− γE∆)αE/2E(s, δt) = WE(s, δt)

whereWE is space-time white noise, E(s, t) is a stationary white noise process
in time and spatially correlated, αt and αE are smoothness parameters which
will be usually fixed when estimating the other model parameters, τ , ρ, γx
and γE which are real positives. τ is a precision parameter, ρ is the time
correlation parameter and both γx and γE are spatial range parameters.

The main purpose of this chapter is to study the marginal properties of
the model. We actually do not need to compute covariances for fitting the
models, because the precision matrix is actually easier to compute from an
linear SPDE model and it is much better to work with due its sparsity. How-
ever, the knowledge about the meaning of the parameters in the marginal
properties can help to understand better the process and the parameters as
well. Furthermore, this knowledge is useful for defining prior distributions.
Also, in some cases one needs to sample from the model and them it is really
needed to have an idea of which parameter combinations to choose for.
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We have a particular model having not the damping term in the first
equation and thus the iterated intrinsically stationary heat equation in Sec-
tion 5.1. The iterated damped heat equation, as defined above, is considered
in Section 5.2. These two sections consider the sphere as the spatial domain.
For the damped case we also have the case when the spatial domain is the
R in Section 5.3. The precision matrix for these models taken from the
discretization is shown in Section 5.4. An application of these equations to
model daily global temperature data is considered in section 5.5.

5.1 Intrinsically stationary iterated heat equation

The model considered in this section is based on an iterated intrinsically
stationary heat equation with a stationary spatially correlated driving noise.
It can be written as

τ(ρ
∂

∂t
−∆)αtu(s, t) = E(s, t) (5.1)

(1− γE∆)αE/2E(s, δt) = WE(s, δt) (5.2)

where WE is a space-time white noise term, E(s, t) is a stationary process
with white noise properties in time and spatially correlated, αt and αE are
smoothness parameters which will be usually fixed when estimating the other
model parameters, τ , ρ and γE which are real positives and our main interest.
Notice that we are considering the range parameter γE instead of the scale
parameter κE for the Matérn driving noise.

From equations, Eq. (5.1) and Eq. (5.2), one can see that these param-
eters are related to the overall precision, temporal dependency and spa-
tial dependency, respectively. However, it is necessary to actually map the
marginal variance, temporal range and spatial range to these parameters in
order to understand their contribution in the model.

5.1.1 Spectral densities

When considering the sphere as the spatial domain, we have discrete spatial
frequencies k, k = 0, 1, ... and λk = k(k+1). With a continuous time domain
and with temporal frequencies ω ∈ R, the spectral representation is given
by

(iρω + λk)
αt ẑ(k, ω) = τ1/2Ê(k, ω)

(1 + γEλk)
αt/2Ê(k, ω) = ŴE(k, ω)
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and the spectral densities are obtained as follows

(ρ2ω2 + λ2
k)
αtSu(λk, ω) = τ−1SE(λk, ω)

(1 + γEλk)
αESE(λk, ω) =

1

2π

giving the spectral density as

Su(λk, ω) =
1

2πτ(ρ2ω2 + λ2
k)
αt(1 + γEλk)αE

(5.3)

which has intrinsicness at Su(0, 0).
We can rewrite Eq. (5.3) as

Su(k, ω) =
1

τ(1 + γEλk)αEρ2αt

1

2π(ω2 + (λk/ρ)2)αt
. (5.4)

to easily see that for each spatial frequency k > 0 we have a Matérn tem-
poral covariance with smoothness αt and scale parameter λk/ρ, Lindgren
(2013), page 226. As ρ/λk is the corresponding range parameter, we have
smaller temporal range for higher spatial frequencies. Thus, the local spa-
tial behaviour does have less effect on the temporal range than the overall
spatial behaviour.

The marginal temporal spectral density can be computed considering
Eq. (5.4) and summing over the spatial frequencies

Su(ω) =
∞∑

k=0

2k + 1

4π
Su(k, ω)

=
1

8π2τρ2αt

∞∑

k=0

2k + 1

(1 + γEλk)αE (ω2 +
λ2
k
ρ2 )αt

. (5.5)

The marginal spatial spectral density is obtained by integrating with
respect to the temporal domain, that is

Su(k) =

∫

R
Su(k, ω)dω

=
Γ(αt − 1/2)

(4π)1/2Γ(αt)τρ(1 + γEλk)αEλ
2αt−1
k

(5.6)

which has intrinsicness at Su(0). This marginal spatial process has local
variance inversely proportional to τρ.
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5.1.2 Covariance

As the spatial domain is the sphere, the space-time covariance can be com-
puted considering Legendre polynomials, Wahba (1981), as

Cov(s, s
′
, t, t

′
) =

∞∑

k=0

2k + 1

4π
Pk(s

T s
′
/R)

∫

R
Su(k, ω)eiω(t

′−t)dω (5.7)

where sT s′ is the cosine of the angle between the points s and s′, R is the
radius of the sphere (we will consider R = 1) and Pk(·) are the Legendre
polynomials.

Since Eq. (5.6) has intrinsicness at Su(0), we can consider the covariance
for the non-intrinsic part, that is considering k > 0. It does correspond to
the covariance for a constrained process Z, for example, constrained to sum-
to-zero. The space-time covariance for this case is

Γ(αt − 1/2)

8π
√
πΓ(αt)τρ

∞∑

k=1

(2k + 1)Pk(s
T s
′
)

(1 + γEλk)αEλ
2αt−1
k

Mαt−1/2(|t− t′|, λk/ρ) (5.8)

whereMν(h, κ) is the Matérn correlation function given by

Mν(h, κ) =
(hκ)νKν(hκ)

2ν−1Γ(ν)
(5.9)

where h is the distance (or lag), κ is the scale parameter (inverse of the
range parameter), ν is the smoothness parameter and Kν(.) is the modified
Bessel function of the second kind of order ν, Lindgren (2013), page 226.

For the particular case of αt = 1, we have an exponential time covariance
for each spatial frequency. In this case the space-time covariance is

1

8πτρ

∞∑

k=1

(2k + 1)Pk(s
T s
′
)

λk(1 + γEλk)αE
e−|t−t

′|λk/ρ (5.10)

We can see the space-time covariance function for the constrained to sum-
to-zero process shown in Figure 5.1. The ρ and γE parameters are temporal
range and spatial range parameters. Thus, increasing these parameter slow
the decay of the correlation. However, as the model is not separable, we also
have that increasing γE decreases the range of the temporal correlation.

One can consider the marginal properties of the process in order to have
a better understanding of the process. This can be done by analyzing the
spatial covariance at a time point, the temporal covariance at a spatial loca-
tion, and the marginal variance as well. One can get the marginal properties
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Figure 5.1: Space-time correlation for some values of ρ and γE .
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by using the marginal spectral densities or by considering s = s′ or t = t′ in
Eq. (5.7). The marginal covariance can be computed considering s = s′ and
t = t′.

As αt and αE are usually fixed, we will consider a few combinations of
the smoothness parameters, that is considering the four combinations from
the αt ∈ {1, 2} and αE ∈ {1, 2}.

Marginal variance

We can compute the marginal variance considering the marginal (Matérn)
variance for each spatial frequency, that is vk = σ2

k/ak where

σ2
k = 1/(τ(1 + γEλk)

αEρ2αt)

and

ak =
2
√
πΓ(αt)

Γ(αt − 1/2)

(
λk
ρ

)2(αt−1/2)

.

giving

vk =
Γ(αt − 1/2)

2
√
πΓ(αt)τρ

1

(1 + γEλk)αEλ
2αt−1
k

. (5.11)

For αt = 1, vk term simplifies to

1

2τρ

1

λk(1 + γEλk)αE
.

One can then use the marginal variance in equation 5.8 for s = s′ and
t = t′. Then one has the non-intrinsic part of the marginal variance as

∞∑

k=1

2k + 1

4π
vk =

Γ(αt − 1/2)

8π
√
πΓ(αt)τρ

∞∑

k=1

2k + 1

(1 + γEλk)αEλ
2αt−1
k

(5.12)

where we have contributions from all the model parameters and that τ and ρ
contribute in the same way. Due to this fact, we have plotted this marginal
variance as a function of τρ in Figure 5.2.

Each plot in Figure 5.2 considers a different combination of the smooth-
ness parameters αt and αE . The plots in this figure show the log linear
relationship between τρ and the marginal variance. The τ , ρ and γE pa-
rameters are all inversely related to the marginal variance (they are in the
denominator of (5.12). The decay rate is the same for different values of γE
and for different cases of αt and αE . When changing from αt = 1 to αt = 2,
the impact from γE is bigger.
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Figure 5.2: Marginal variance as a function of the model parameters.
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Marginal spatial correlation

The spatial covariance at a point can be computed from (5.8) considering
t = t

′ , which is the same as the marginal spatial covariance. The non-
intrinsic marginal spatial covariance part is

Cov(s, s
′
, t, t) =

∞∑

k=1

2k + 1

4π
Pk(s

T s
′
)vk (5.13)

where vk is the variance from the Matérn temporal covariance at spatial
frequency k, Eq. (5.11). Notice that the vk term is a function of all the
model parameters.

It is useful to look at the correlation function instead. When computing
the correlation, the 1/(4π) term in Eq. (5.8) cancels. Eq (5.11) shows that
the term Γ(αt−1/2)

2
√
πΓ(αt)τρ

does not depend on k and also cancels. The remaining

term from (5.11) is 1/[λ2αt−1
k (1+γEλk)αE ]. It shows that the spatial marginal

correlation does not depends on τ neither on ρ.
The spatial marginal correlation non-intrinsic part can be written as

[ ∞∑

k=1

(2k + 1)Pk(s
T s′)

(1 + γEλk)αEλ
2αt−1
k

][ ∞∑

k=1

(2k + 1)

(1 + γEλk)αEλ
2αt−1
k

]−1

. (5.14)

The Legendre polynomial P1(·) dominates the other order polynomials and
the correlation can assume negative values, as shown in Figure 5.3.

Each plot in Figure 5.3 considers a different combination of the αt and
αE parameters. Different values of γE were considered in each plot. The hor-
izontal dashed gray lines were drawn at 0 and 0.139 to a practical reference
as the Matérn correlation at the distance of

√
8ν/κ is near 0.139.

The plots in Figure 5.3, shows that the spatial marginal correlation can
assume negative values, due to behavior of the Legendre polynomials. Ad-
ditionally, there is no short spatial range which is explained by the fact that
the spatial operator in Eq. (5.1) has a coefficient equal to one, which is rel-
ative to the unit radius sphere. However, what we actually see in Figure 5.3
is in combination with the spatial range from the driving noise, which is√

8(αE − 1). One can shorten the spatial range for the case when αt = 1,
considering γE values up to 1, as for bigger values the pattern is similar to
the αt = 2 case. When αt = 2 the spatial operator from the heat equation
dominates.
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Figure 5.3: Marginal spatial correlation as a function of the great circle
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Marginal temporal correlation

The temporal covariance at a point, or the marginal temporal covariance,
can be computed from (5.8) considering s = s

′ , which gives Pk(sT s) = 1.
Dividing it by the marginal variance gives the temporal correlation at a
spatial point, or the marginal temporal correlation. The non-intrinsic part
of the marginal temporal correlation is



∞∑

k=1

(2k + 1)Mαt- 1
2
(|t-t′|, λkρ )

(1 + γEλk)αEλ
2αt-1
k



[ ∞∑

k=1

(2k + 1)

(1 + γEλk)αEλ
2αt-1
k

]−1

(5.15)

and we can see that only τ does not affect it. In Figure 5.4 the marginal tem-
poral corelation is shown as a function of the time lag for some combination
of the other parameters.

In Figure 5.4 we have plots for different values of αt and αE . The lines
were drawn considering different combinations between γE and ρ. For αt = 2
there is almost no influence from γE . When αt = 1, a smaller γE means the
decay of the marginal temporal correlation is steeper.

One of the horizontal dashed gray lines is drawn at 0.139, in order to
relate to the Matérn practical range. It depends directly on ρ and for αt = 2,
it is slightly larger than 8 for ρ = 5 and below 2 for αt = 1. However, for
αt = 1 it depends considerably on γE , that is when γE increases, the marginal
temporal range also increases.

The αt = 1 and αE = 2 case

We now have a closer look at the case when αt = 1 and αE = 2. The non-
separability is seen in this case in the effect of γE on the temporal marginal
correlation. Different values of γE are considered for each value of ρ, shown
in each plot of Figure 5.5.

In each plot in Figure 5.5, when γE = 1, the practical temporal marginal
range is a bit lower than ρ and when γE decreases, it also decreases. For
γE = 0.1, the marginal temporal range is near 80% of ρ, for γE = 0.01 it is
near ρ/2 and for γE = 10−5, it is a bit bigger than ρ/5.

5.1.3 Marginal properties to model parameters

The spatial range is not affected by τ and ρ and a mapping from the spatial
range to γE is one-to-one as shown in Figure 5.6.

We also notice limits in the spatial marginal practical range in Figure 5.3.
Before making the map we visualize the limits as a function of τ in the left
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plot in Figure 5.6. For the case of αt = 2, the range is always near 1.4.
When αt = 1 the minimum range is around 0.75, and when αE = 1 the
maximum range is around 1.295 and when αE = 2 it is around 1.39.

The function to map from the marginal practical spatial range consid-
ering αt = 1 is shown in the right plot in Figure 5.6. γE has considerable
influence in the temporal practical range, for αt = 1. That is lower values for
γE imply a steeper decay in both spatial and temporal marginal correlation.

The temporal range depends on γE , mainly when αt = 1 and we plot the
mapping for different values of γE and each of the four smoothness scenarios
in Figure 5.7.

The practical temporal range as a function of ρ is approximately a line.
In log scale the practical temporal range for both axes is actually a line, as
shown in Figure 5.8. Therefore, the mapping can be considered by a linear
regression in log scale, where the coefficient is a function of γE .

The mapping procedure is as follows. First, choose γE from the desired
marginal spatial range. Then use it to choose ρ given the desired marginal
temporal range. At the end, consider ρ and γE to find τ given a desired
marginal variance. This last mapping is shown in Figure 5.9 for some values
of ρ and γE , for the four scenarios from the smoothness parameters.
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5.2 Damped iterated heat equation

In this section we consider a model based in the iterated damped stationary
heat equation with a stationary spatially correlated driving noise. The SPDE
can be written as

τ(ρ
∂

∂t
+ 1− γx∆)αtu(s, t) = E(s, t) (5.16)

(1− γE∆)αE/2E(s, δt) = WE(s, δt) (5.17)

where WE is a space-time white noise process with unit variance, E(s, t) is
a stationary process noise not correlated over time (white in time) and and
spatially correlated (coloured), αt and αE are smoothness parameters which
will usually be fixed when estimating the other model parameters, and τ , ρ,
γx and γE parameters are real positives.

We are primarily insterested in the τ , ρ, γx and γE parameters. τ is the
overall precision, ρ is the time persistency parameter and both γx and γE
are spatial range parameters. We can also consider a mapping from these
parameters to the practical parameters for the marginal variance, the tem-
poral range and the spatial range to better understand the process marginal
properties. However, before we go in this direction we consider the spectral
density.

5.2.1 Spectral densities

If the sphere is the spatial domain, we have discrete spatial frequencies k,
k = 0, 1, ... and λk = k(k + 1). With continuous time domain and temporal
frequencies ω ∈ R, the spectral representation is given by

τ(ρ|iω|+ 1 + γxλk)
αt ẑ(k, ω) = Ê(k, ω)

(1− γEλk)αt/2Ê(k, ω) = ŴE(k, ω) .

The spectral densities are obtained as follows

τ(ρ2ω2 + (1 + γxλk)
2)αtSu(λk, ω) = SE(λk, ω)

(1 + γEλk)
αESE(λk, ω) =

1

2π

giving the spectral density as

Su(λk, ω) =
1

2πτ(ρ2ω2 + (1 + γxλk)2)αt(1 + γEλk)αE
(5.18)

=
1

τ(1 + γEλk)αEρ2αt

1

2π(ω2 + (1 + γxλk)2/ρ2)αt
(5.19)
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where for each spatial frequency k we have a Matérn temporal covariance
with smoothness αt and scale parameter (1 + γxλk)/ρ, Lindgren (2013),
page 226. As (1 + γxλk)/ρ) is the corresponding range parameter, we have
smaller temporal range for higher spatial frequencies. Therefore, we also
have in this model the fact that the local spatial behaviour has less impact
on the temporal range. However, the damping term does attenuate the effect
of γx in this behaviour for this model.

The marginal temporal spectral density can be computed considering
Eq. (5.19) and by summing over the spatial frequencies

Su(ω) =

∞∑

k=0

2k + 1

4π
Su(k, ω)

=
1

8π2τρ2αt

∞∑

k=0

2k + 1

(1 + γEλk)αE (ω2 + (1+γxλk)2

ρ2 )αt
. (5.20)

The marginal spatial spectral density is obtained by integrating with respect
to the temporal domain

Su(k) =

∫

R
Su(k, ω)dω

=
Γ(αt − 1/2)

(4π)1/2Γ(αt)τρ(1 + γEλk)αE (1 + γxλk)2αt−1
. (5.21)

One can see that when γx = γE the marginal spatial covariance is Matérn
with range equals to γx and smoothness equals to αE + 2αt.

Therefore, all the knowledge about the Matérn covariance function can
be used to work with this model. This knowledge is very useful because
one can use it to define model parameters for doing simulations from the
model. Additionally, one can think on this marginal property in order to
define prior distribution for the spatial range parameter. The τρ term acts
like the inverse of the variance parameter in the Matérn covariance function.

5.2.2 Covariance

We can compute the space-time covariance using Eq. (5.7) where we can
now consider the sum from k = 0. The space-time covariance considering
spatial locations s and s′ and time points t and t′ is

Γ(αt − 1/2)

8π
√
πΓ(αt)τρ

∞∑

k=0

(2k + 1)Pk(s
T s
′
)Mαt- 1

2
(|t-t′|, (1+γxλk)/ρ)

(1+γEλk)αE (1+γxλk)2αt−1
(5.22)
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which is the sum of temporal Matérn temporal correlations for each k con-
sidering a scale equal to (1 + γxλk)/ρ.

When αt = 1 the space-time covariance simplifies to

1

8πτρ

∞∑

k=0

(2k + 1)Pk(s
T s
′
)

(γ2
x + λk)(γ

2
E + λk)αE

e−|t−t
′|(γ2

x+λk)/ρ (5.23)

as we have an exponential correlation function for each spatial frequency.
We can see the correlation plot shown in Figure 5.10 considering αt = 1

and αE = 2 and γx = γE with some configuration of γE and ρ. These range
parameters are easy to interpret as they are directly related to the decay
of the correlation function in each direction and this relation is very related
to what happens in the Matérn correlation function. Additionally, from the
marginal spatial spectral density we have that the ρ parameter does not
affects the marginal spatial covariance and there is no effect from ρ in the
correlation decay along the time lag. This is not the case for the marginal
temporal spectral density as we have γx and γE inside the summation in
Eq. (5.20). However, the effect from these parameters are not big in the
plots in Figure 5.10.

Marginal variance

We can compute the marginal variance considering the marginal (Matérn)
variance for each spatial frequency, that is vk = σ2

k/ak where

σ2
k = 1/(τ(1 + γEλk)

αEρ2αt)

and

ak =
2
√
πΓ(αt)

Γ(αt − 1/2)

(
1 + γxλk

ρ

)2(αt−1/2)

.

giving

vk =
Γ(αt − 1/2)

2
√
πΓ(αt)τρ

1

(1 + γEλk)αE (1 + γxλk)2αt−1
. (5.24)

For αt = 1, vk term simplifies to

1

2τρ

1

(1 + γxλk)(1 + γEλk)αE
.

Considering Eq. (5.22) for s = s′ and t = t′, the marginal variance is

∞∑

k=0

2k + 1

4π
vk =

Γ(αt − 1/2)

8π
√
πΓ(αt)τρ

∞∑

k=1

2k + 1

(1 + γEλk)αE (1 + γxλk)2αt−1
(5.25)
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Figure 5.10: Space-time correlation for the case of αt = 1 and αE = 2 for
some values of the other model parameters.
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where we have contributions from all the model parameters. This is in-
directly proportional to γx and γE , directly inversely proportional to ρτ .
Therefore, we show the log of the marginal variance as a function of log(τρ)
in Figure 5.11.

Each plot in Figure 5.11 considers a different combination of the smooth-
ness parameters αt and αE . The plots in this figure shows the log linear
relationship between τρ and the marginal variance. The decay rate is the
same for different values of γE and for different cases of αt and αE . When
changing from αt = 1 to αt = 2, the impact from γE is greater. The im-
portant point here is to notice that for τρ near one the marginal variance is
also near one.

Marginal spatial correlation

The spatial covariance at a point can be computed from (5.22) considering
t = t

′ , which is the marginal spatial covariance. This can be computed with

Cov(s, s
′
, t, t) =

∞∑

k=0

2k + 1

4π
Pk(s

T s
′
)vk (5.26)

where vk is the variance from the Matérn temporal covariance at spatial
frequency k, Eq. (5.24). Notice that the vk term is a function of all the
model parameters.

It is useful to look at the correlation function instead. When computing
the correlation, the 1/(4π) term in Eq. (5.22) cancels. In eq (5.24) the term
Γ(αt−1/2)

2
√
πΓ(αt)τρ

does not depend on k and also cancels. The remaining term from
(5.24) is 1/[(1+γxλk)

2αt−1(1+γEλk)αE ]. It means that the spatial marginal
correlation does not depends on τ neither on ρ.

The spatial marginal correlation between locations s and s′ can be writ-
ten as
( ∞∑

k=0

(2k + 1)Pk(s
T s′)

(1+γEλk)αE (1+γxλk)2αt1-1

)( ∞∑

k=0

(2k + 1)

(1+γEλk)αE (1+γxλk)2αt1-1

)−1

(5.27)
where the Legendre polynomials Pk(·) are evaluated considering the cosine
of the distance in a path along the sphere. The shortest path along a unit
radius sphere (the actual distance) is from 0 to π. The Legendre polyno-
mials can assume negative values, Pk(.) ∈ (−1, 1). However, for k = 0 it
is constant equals to 1 which corresponds to the lowest λk and this domi-
nates the summation terms giving an positive correlation values, as shown
in Figure 5.12.
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Figure 5.11: Marginal variance as a function of τρ for some values of the
other model parameters.



76 Iterated heat equation and coloured driving noise

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

αt = 1 αε = 1

spatial distance

co
rr

el
at

io
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

αt = 1 αε = 2

spatial distance

co
rr

el
at

io
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

αt = 2 αε = 1

spatial distance

co
rr

el
at

io
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

αt = 2 αε = 2

spatial distance

co
rr

el
at

io
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0

γx ,  γε

0.01, 0.01
0.01, 0.10
0.10, 0.01
0.10, 0.10

Figure 5.12: Marginal spatial correlation as a function of the great circle
distance for some combination of the model parameters.
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Each plot in Figure 5.12 considers a different combination of the αt and
αE parameters. Different values of γE were considered in each plot. We can
see how flexible is the marginal spatial correlation as we have great change
in its decay by changing the range parameters. The decay is also affected
by the smoothness parameters. Notice that for αt = αE = 1 we have the
correlation function for γx = 0.001 and γE = 0.1 the same as for γx = 0.1
and γE = 0.001.

Marginal temporal correlation

The temporal covariance at a point, or the marginal temporal covariance,
can be computed from (5.22) considering s = s

′ , which gives Pk(sT s) = 1.
Dividing it by the marginal variance gives the temporal correlation at a
spatial point, or the marginal temporal correlation. The marginal temporal
correlation is


∞∑

k=0

(2k+1)Mαt- 1
2
(|t-t′|, 1+γxλk

ρ )

(1+γEλk)αE (1+γxλk)2αt-1



( ∞∑

k=0

(2k + 1)

(1+γEλk)αE (1+γxλk)2αt-1

)-1

(5.28)
and we can see that only τ does not affect it. In Figure 5.13 the marginal
temporal correlation was shown as a function of the time lag for some com-
bination of the other parameters.

In Figure 5.13 we have four plots, each one for different combination
values of αt and αE . We can see that these smoothness parameters do have
effect on the marginal temporal correlation. Increasing these parameters
does increases the marginal temporal range. The lines were drawn consider-
ing different combinations between γx, γE and ρ. For αt = 2 the effect from
γx and γE is small. When αt = 1, a smaller values for γx or γE increases the
temporal range. This effect from γE is bigger than from γx.

The horizontal dashed gray lines is drawn at 0.139 in order to relate to
the Matérn practical range. This is the correlation at the distance equals the
square root of the smoothness times the range parameter. Thus, increasing
the smoothness the practical range and we are also seeing this effect for the
marginal temporal correlation.
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Figure 5.13: Marginal temporal correlation as a function of the temporal lag
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5.3 Iterated damped heat equation model in Rd

In this section we consider the iterated damped heat equation model con-
sidering the space domain as the Rd and looking closely at the case when
d = 2. The spectral density is

su(λ, ω) =
1

(2π)d+1τ [ρ2ω2 + (1 + γx ‖ λ ‖2)2]αt(1 + γE ‖ λ ‖2)αE
(5.29)

for λ ∈ Rd.

5.3.1 Marginal spatial covariance

Integrating out ω from Eq. 5.29 we have the spatial marginal spectral density

su(λ) = 2

∫ ∞

0
sz(λ, ω)∂ω

=
Γ(αt − 1/2)

2d+1πd+1/2τρ(1 + γx ‖ λ ‖2)2αt−1(1 + γE ‖ λ ‖2)αE
(5.30)

and considering γx = γE gives a marginal spatial Matérn spectral density.
For this case we have that at each time point the spatial covariance is Matérn
with smoothness equal to αE+2αt, range parameter equals to γx. Addition-
ally, considering γx = γE , from the Matérn covariance function we have the
marginal variance equals to

Γ(αt − 1/2)Γ(αE + 2αt − 1− d/2)γ−2αE−4αt+2+d
x

21+d/2π
d+1

2 Γ(αE + 2αt − 1)Γ(αt)τρ
.

Similarly to the previous model, this knowledge is important for working
with this model.

5.3.2 Marginal temporal covariance

Since the model is isotropic over space, Eq (5.29) can be written as function
of λ =‖ λ ‖. However, to compute analytical expression for the marginal
temporal covariance involves to integrate an expression that is not easy to
work with.

Considering the case when αt = 1 and αE = 2, the marginal temporal
spectral density is obtained as follows

su(ω) = 2π

∫ ∞

0
|λ|su(λ, ω)∂λ =

2 arctan ( 1
ρω )− π + 2ρω

4ρ3γ−1
E ω3(2π)(d+1)

(5.31)
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We have to analyze the behavior when ω → 0 in order to conclude about
intrinsicness. Using the L’Hôpital’s rule as

∂[2 arctan ( 1
ρω )− π − 2ρω]/∂ω

∂[4ρ3γ−2
E ω3(2π)(d+1)]/∂ω

=
1

4(2π)d+1γ−2
E (ρω2 + 1)

,

which gives that su(ω) > 0 for all ω, and particularly that limω→0 su(ω)
is a constant. Therefore, at each spatial point the temporal process is not
intrinsic.

We have already considered the marginal spectral density to understand
the marginal properties. For the case of su(ω), since the analytical expression
is not straightforward to make conclusions, we can compare its standardized
version with the standardized version of the spectral density of some com-
mon models. Thus, we show the behavior of su(ω) is shown in Figure 5.14.
We also include the standardized spectral density for the Exponential and
Gaussian covariance functions. We have that the marginal temporal covari-
ance of the studied model decays more slowly and with a heavier tail than
the Exponential, Matérn with ν = 0.5, and faster than the Gaussian at the
origin and has heavier tail as well.
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5.4 Discretization and precision matrix

The discretization approach consider the results in Lindgren et al. (2011).
It can be considered the approach to write it as a system of differential
equations, use the generalized eigenvalue problem to find the solution as in
Lindgren et al. (2016) as we have considered in the previous two chapters.
We can instead do find it heuristically by matching the precision matrix to
the power spectra.

Let us write the model as follows

τ(ρ ∂∂t + a− γx∆)αtu(s, t) = E(s, t)

(1− γE∆)αE/2E(s, δt) = WE(s, δt)
where a can be either zero, for the intrinsically stationary, or one, for the
damped version. This gives the following spectral density

su(λ, ω)−1 ∝
(
ρ2ω2 + (a+ γx ‖ λ ‖2)2

)αt (1 + γE ‖ λ ‖)αE

For the case when αt = 1 we have

su(λ, ω)−1 ∝ ρ2ω2(1 + γE ‖ λ ‖)αE + (a+ γx ‖ λ ‖2)2(1 + γE ‖ λ ‖)αE

5.4.1 The case with no damping

With no damping (a = 0) the spectral density for αt = 1 has the form

ρ2ω2(1 + γE ‖ λ ‖)αE + γ2
x ‖ λ ‖4 (1 + γE ‖ λ ‖)αE .

The first term translates into ρ2H⊗RαE (γE) where RαE (γE) is the precision
matrix associated to the driving noise precision defined as

R1(γ) = (C + γG) and R2(γ) = (C + 2γG+ γ2G(2)).

The second term translates into γxD ⊗G(2)RαE . Thus,

Q1,αE = τ(ρ2H ⊗RαE (γE) + γxD ⊗G(2)
s RαE (γE))

The αE = 1 case is possible with the current spde3a specification:

Q1,1 = τ [ρ2H ⊗C(I+γEC−1G) +D ⊗G(2)(I+γEC−1G)]

= τ [ρ2H ⊗C + ρ2γEH ⊗G+D ⊗G(2) + γED ⊗G(3)]

= τγE [ρ2H ⊗G+ ρ2/γEH ⊗C +D ⊗G(3) +

(G⊗D1/2)T
1

γE
(D1/2 ⊗G)], the actual way considered.

aSpecification using INLA:::inla.spde3.generic() in the INLA package
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5.4.2 The damped heat equation case

With damping (a = 1) the spectral density for αt = 1 has the form

ρ2ω2(1 + γE ‖ λ ‖)αE + (1 + γ2
x ‖ λ ‖2)2(1 + γE ‖ λ ‖)αE ) .

The first term translates as before while the second term translates into
D ⊗R2(γx)RαE (γE). Thus we have that

Q1,αE = τ(ρ2H ⊗RαE (γE) +D ⊗R2(γx)RαE (γE))

5.5 Application to daily temperature data

We consider the daily temperature data available at ftp.ncdc.noaa.gov/
pub/data/ghcn/daily. We considered the period from January, 1 2017 to
June, 30 2017. In this period there is data at 12862 stations. The locations
for these stations is shown in Figure 5.15. We can see that the locations are
spread in a very irregular way. Even thou it only considers on land stations,
there are countries with small number of stations and those with several,
the USA for example.

The main computational task in this model is the evaluation of the log
determinant of the resulting precision matrix. The state of the art in doing
so for one-core machines is implemented in the INLA package, r-inla.org.
However, there is a limitation in the memory use, since it is considered the
Cholesky decomposition. Thus, this application is just a proof of concept.
This is because that in order to do a proper analysis we still need further
developments in numerical solution for general large sparse matrix decom-
positions.

We can check how much can be done in a single core with over a hun-
dred of Gigabyte RAM machine. When doing the Cholesky factorization,
is is considered the reordering of the precision matrix that gives the lowest
number of non-zeros elements in the Cholesky factor, nnz. We considered
different mesh resolutions to analyse different number of days of data. One
case is the first 10 days of data with 10 time knots, so no reduction in the
time resolution. A second case is the 183 days of data with time knots at
each 10 days, k = 10. A third case considered the 31 days in January with
one knot at each day. Thus we are considering the increasing number of data
points when having the 10 and 31 days case at the same time that consid-
ering more data and lower temporal resolution, with 180 days and k = 10.
The number of non-zeros in the Cholesky factor versus nnz for these three
cases is shown in the top plot in Figure 5.16.

ftp.ncdc.noaa.gov/pub/data/ghcn/daily
ftp.ncdc.noaa.gov/pub/data/ghcn/daily
r-inla.org
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Figure 5.15: Locations of the stations considered.
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In the three cases shown in the top plot of Figure 5.16 we can see that
increasing the number of mesh nodes increases the number of non-zeros
delivers a larger nnz for all the cases. Also, that more data also increases
nnz. However, we can see that is worth of reducing the time resolution
when having more data to reduce nnz. The case with 183 days and k = 10
actually gives 18 time knots which is less than 31 days and therefore the nnz
increases slowly for increasing the number of nodes in the mesh.

In the bottom plot in Figure 5.16 we have two set of cases for working
with 31 days of data. We consider regular meshes, with triangles with same
size everywhere, and irregular meshes, with triangle sizes smaller where there
stations. For these two set of cases we have k = 2, k = 3 and k = 5. We
can see that using irregular meshes is better to reduce the nnz.

The mean temperature for the day t at location s, y(s, t) were modelled
considering the following model

y(s, t) ∼ N(βAltitude + f(latitude,month) +Au(s0, t0), τ−1
y )

where we have a fixed effect of altitude, a smoothed effect of latitude for
each month, and the space-time effect. For the later, we have A being
the projector matrix from the spatial mesh and temporal knots to the data
locations, u(s0, t0) is the process at the mesh nodes and time knots and
τu is the precision for independent error which is also called as the nugget
effect. The model assumed for u(s, t) is the model based in the intrinsically
stationary heat equation, having αt = 1 and αE = 1.

The results we are going to show consider 183 days of data with k =
10 and a very crude mesh with only 362 nodes. We also have fitted a
separable model, the one in Cameletti et al. (2012), just to have something to
compare with. Three goodness-of-fit measures were considered, the popular
deviance information criteria - DIC, the recently proposed widely applicable
information criteria - WAIC and logarithm of the cross-validated predictive
ordinates, CPO. These are shown in Table 5.1. We can see that these were
similar among the two different models.

space-time model DIC WAIC CPO
separable 10687588.44 10686084.08 5343048.83

non-separable 10687770.09 10686244.53 5343126.70

Table 5.1: Goodness-of-fit measures.

The summary for the posterior marginal distribution of τy and the log
of the three parameters of the space-time model is shown in Table 5.2.
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Parameter mean sd 2.5% Q. Median 97.5% Q. mode
τy 0.07 0.00 0.07 0.07 0.07 0.07

log(τ) -12.63 0.07 -12.79 -12.62 -12.53 -12.58
log(ρ) 7.18 0.05 7.11 7.18 7.30 7.15
log(γ) -5.68 0.07 -5.84 -5.68 -5.55 -5.66

Table 5.2: Summary of the posterior distribution for the model parameters.

With the fitted parameters we can drawn the marginal correlation func-
tions. In Figure 5.17 we have both the marginal spatial correlation and
the marginal temporal correlation. We considered the posterior mean and
to drawn the continuous lines and the quantiles to drawn the dashed lines.
We can see a very different behavior for the two kind of space-time models
considered.

The standard deviation of u(s, t) at the mesh nodes were computed.
This statistic was projected for the globe and shown in Figure 5.18 for two
time knots. We can see that the uncertainty is inversely proportional to the
density of stations.

In the Figure 5.19 we can see the mean of the posterior marginal distri-
bution for u(s, t) for the first 10 time knots, and in Figure 5.20 for the last
eight ones. As the spatial resolution of the model is small, we mainly have
the effect of latitude and season as it is bigger near the equatorial line and
becomes warmer in the north as time goes from January to June and colder
in the south.

5.5.1 Appendix: the code to fit the model

We insert bellow the code considered to fit the model.

### function to define the model
ciheat11 <- function(

cmd=c("graph", "Q", "mu", "initial", "log.norm.const",
"log.prior", "quit"), theta = NULL, args = NULL) {

interpret.theta <- function(n, theta)
return(list(gs=exp(theta[1]), gt=exp(theta[2]),

ge=exp(theta[3])))
graph <- function(n, theta) return(iheat11.objects$graph)
Q <- function(n, theta) {

gamma <- exp(theta)
q <- gamma[1]*gamma[3]*(
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Figure 5.17: Marginal spatial correlation (left) and the marginal spatial
correlation (right).
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Figure 5.18: Standard deviation of the posterior mean for u(s, t) at six time
points.



90 Iterated heat equation and coloured driving noise

Figure 5.19: Mean of the posterior mean for u(s, t) at the first 10 time knots.
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Figure 5.20: Mean of the posterior mean for u(s, t) at the last eight time
knots.



92 Iterated heat equation and coloured driving noise

(gamma[2]^2)*iheat11.objects$M0 +
(gamma[2]^2/gamma[3])*iheat11.objects$M1 +
iheat11.objects$M2 + (1/gamma[3])*iheat11.objects$M3)

return(q)
}
mu <- function(n, theta) return(numeric(0))
log.norm.const <- function(n, theta) return(numeric(0))
log.prior <- function(n, theta) ### N(0, 1)^3

return(sum(dnorm(theta, 0.0, 1, log=TRUE)))
initial <- function(n, theta) return(c(0,0,0))
quit <- function(n, theta) return(invisible())
cmd <- match.arg(cmd)
val <- do.call(cmd, args=list(n=as.integer(args$n),

theta=theta))
return(val)

}

### load the dataset
load('data/tmed17.RData')

### define the time knots and one-dimensional mesh over it
(days <- sort(unique(tmed$day)))
(ndays <- length(days)); k <- 10
(gt <- seq(trunc(k/2)+1, ndays, k));(nk <- length(gt))
tmesh <- inla.mesh.1d(gt, degree=1)

### convert the coordinates: Mollweide projection
coo.mollweide <- inla.mesh.map(cbind(tmed$long, tmed$lat),

'longlat', inverse=TRUE)

### build the mesh
mesh <- inla.mesh.create(globe=10)

### build the space-time projector matrix
Ast <- inla.spde.make.A(mesh, coo.mollweide,

group=tmed$day, group.mesh=tmesh)

#### non-separable model objects definition
fe <- inla.mesh.fem(mesh, order=3)
tfe <- inla.mesh.fem(tmesh)
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nm <- mesh$n*tmesh$n

iheat11.objects <- list(
M0=kronecker(tfe$g1, fe$g1),
M1=kronecker(tfe$g1, fe$c0),
M2=kronecker(tfe$c0, fe$g3),
M3=kronecker(tfe$c0, fe$g2))

iheat11.objects$graph <-
(Reduce('+', lapply(iheat11.objects, abs))>0)+0

riheat11 <- inla.rgeneric.define(
ciheat11, n=as.integer(mesh$n*tmesh$n),
iheat11.objects=iheat11.objects)

## formula
fns <- y ~ 0 +

f(st, model=riheat11, values=1:nm)

### data stack
datst <- inla.stack(data=list(y=tmed$tmed),

A=list(Ast),
effects=list(st=1:ncol(Ast)),
tag='tmedst')

nsres <- inla(fns, data=inla.stack.data(datst),
control.predictor=list(A=inla.stack.A(datst)),
num.threads=1)
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Abstract

A main interest in space-time modeling is to define models which
account for temporal changes in the spatial pattern, so called space-
time variation. In the disease mapping literature there are either
models considering an overall spatial variation, an overall temporal
variation plus a space-time variation or models that only consider the
space-time variation excluding the main effects. Intrinsically station-
ary models are often considered in the first case and proper auto-
regressive models in the latter case. For the ease of interpretation it is
beneficial to use both main and interaction effects in the model. How-
ever, if the number of areas and/or number of considered time points
are large this gets computationally challenging due to the required
number of linear constraints needed for the interaction term to ensure
identifiability of the main effects. We propose an alternative formula-
tion avoiding linear constraints entirely and trading them for computa-
tionally cheaper linear combinations in order to retain the usual effect
estimates. We illustrate the performance of this new approach based
on simulated data and compare it to the original approach. The re-
sults show that out approach reduces dramatically the computational
cost while leaving the relative risk estimates unchanged. Furthermore,
we model space-time variation of infant mortality in the Paraná state
in Brazil from 1996 to 2015. The R code using INLA to fit all models
is provided.

Disease Mapping, INLA, Space-time Interaction

1 Introduction

In disease mapping the analyzed outcome is usually the number cases or
deaths due to some disease observed for several non-overlapping but neigh-
bouring areas. These counts are frequently observed for several periods over
time. The expected number of cases can be computed considering the popu-
lation structure at each area and time. The ratio between the observed and
expected number of cases is termed Standardized Mortality Ratio (SMR) or
Standardized Incidence Ration (SIR). In the simplest case the log of SMR
or SIR is modelled linearly but more often generalised linear models are
considered. A Bayesian framework is attractive to borrow strength between
neighbouring regions (Lawson, 2013).

There are several models proposed in the literature for the space-time
variation in the relative risk. The main approach is to combine models for
variation over space with models for variation over time, the so called space-
time interaction of the main spatial and temporal effects (Clayton, 1996).
When both main effects are fixed effects, the interaction between them will
also be a fixed effect. When either of them is random the interaction is
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random as well. When both are random, the resulting space-time preci-
sion/covariance matrix is proportional to the Kronecker product between
the corresponding precision/covariance matrices.

The interaction between a fixed time effect and a random spatial ef-
fect was considered in Bernardinelli et al. (1995), resulting in a regression
on the time index with coefficients varying for each area. Assunção et al.
(2001) added an additional quadratic term for time also weighted by area-
specific weights. The use of B-splines with spatially structured coefficients
was proposed in MacNab and Dean (2001) and MacNab and Dean (2002).
These temporal trends are easier to interpret and have the flexibility to vary,
smoothly, over space. However, a random space-time interaction effect is ac-
tually more flexible because it is not required to follow any specific trend
imposed by the fixed term. The first approach in this direction was pro-
posed by Waller et al. (1997), where a spatially structured effect at each
time period was considered.

Knorr-Held (2000) proposed a general random effects modeling approach
in discrete time and discrete space resulting in four different interaction
types. The idea is to combine one of the two temporal effects, either struc-
tured or unstructured, with one of the two spatial effects. The type I in-
teraction is obtained when both unstructured main effects are combined,
the type 2 interaction when the structured temporal component is assumed
to interact with the unstructured spatial component, the type 3 when the
structured spatial component is assumed to interact with the unstructured
temporal component and finally the type 4 is obtained when both structured
effects are combined. Note that the interactions type 2, 3 and 4 are intrinsic,
i.e. their precision matrices do not have full rank. The resulting precision
matrix has rank deficiency equal to the number of areas for type 2, number
of time points for type 3, and number of time points plus number of areas
minus one, when using a first order random walk over time, or minus two,
when using a second order random walk for time, for type 4. Sum-to-zero
constraints can be applied to make the model proper (Rue and Held, 2005).
The use of such hard but also soft-constraints, where linear constraints are
specified with some uncertainty, requires solving a system with size equal to
the number of constraints (Rue and Held, 2010). This computation is not
only required once but several times during the fitting process. When con-
sidering a Markov chain Monte Carlo framework, adjustment of sum-to-zero
constraints is needed for every sample, and using the INLA approach (Rue
et al., 2009) for every posterior function evaluation. Thus, for models with
several sum-to-zero constraints it becomes prohibitive.

One option to avoid sum-to-zero constraints but keep the model flexibil-
ity is to consider a proper distribution for the random space-time interaction.
This approach was considered in Martínez-Beneito et al. (2008), Vivar and
Ferreira (2009), Ruiz-Cárdenas et al. (2012), Rushworth et al. (2014) and
Blangiardo and M. (2015), Ch. 8. The resulting models are easy to fit in
current available software and there the model estimation can be done in a
computationally efficient way. However, the interaction and the main effects
are confounded leading to difficulties in parameter interpretation.

In this paper, we propose an alternative approach which leads to iden-
tifiable and interpretable parameter estimates, but still allows for a compu-
tational efficient model estimation. From our simulation studies we found
that we can still choose which of the four space-time intrinsic interactions
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are suitable for the dataset being analyzed in a much shorter time than when
considering the original sum-to-zero constraints. The idea is to account for
the null space of the intrinsic prior distributions of the random effect only
after the model estimation. This is achieved by either considering a con-
trast parameterization or by making the prior proper through the addition
of a small diagonal term in the prior precision matrix. The null space is
adjusted for using linear combinations involving the posterior marginals of
the random effects.

The paper is structured as follows. In Section 2 we review the Knorr-
Held’s type 4 interaction model and the corresponding required identifiabil-
ity constraints. In Section 3 we propose to avoid the constraints and use
instead linear combinations to account for the null space of the space-time
type 2, 3 and 4 intrinsic interaction models. In Section 4 we use scaled in-
trinsic models to have interpretable and comparable parameterization across
different model components. A simulation study is presented in Section 5.
We applied these models to analyze the infant mortality rate in Paraná state
in Brazil, showing the results in Section 6. We end discussing our findings
in Section 7.

2 On the space-time intrinsic interactions

In this section we review an approach to model data collected at a set of n
areas over m time points, yit, i = 1, ..., n and t = 1, ...,m. Within a gen-
eralised linear model framework it is common to model the linear predictor
ηit, which is linked to the expected value of y via a suitable link function
g(·), so that E(y) = g−1(η). Assume

ηit = other effects+ vt + si + dit (1)

where vt is a temporal main effect common for all areas, si is a spatial main
effect common for all times and dit is a space-time interaction effect.

2.1 The main effects

Knorr-Held (2000) considered a BYM type model (Besag et al., 1991) for
both the main effects v and s. The temporal main effect is v = γ + α,
where γ is an unstructured random effect and α is a structured random
effect. Similarly, the main spatial effect was represented as s = φ+θ, where
θ is structured and φ is not. All random effects are assumed to be a priori
zero mean Gaussian with precision matrices τγI for γ, ταK for α, τφI for φ,
and τθR for θ. Here, I matrix denotes the identity matrix with the adequate
dimension andK and R denote the temporal and spatial structure matrices
as defined below.

The structure matrix for the structured temporal part, α, can be written
as K = H̃ −H where H is the temporal neighborhood structure matrix
and H̃ is the diagonal matrix with diagonal elements equal to the row sum
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of H. Here we assume a random walk of order 1 (RW1), which this leads to

K =




1 -1
-1 2 -1

. . . . . . . . .
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Analogously, the structure matrix for the spatially structured effect, θ,
can be formulated as R = G̃ − G, where G is the spatial neighborhood
structure, defined as

Gi,j =

{
1 if j ∼ i
0 otherwise,

where j ∼ i means "area j is neighbor to area i", and G̃ is a diagonal matrix
with elements equal to the row sum of G.

2.2 The space-time interactions

For the space-time interaction term, dit, four cases were proposed in Knorr-
Held (2000). The type 4 is the most complex and is obtained when the
precision matrix is

τdK ⊗R = τd(H̃ −H)⊗ (G̃−G)

= τd(H̃ ⊗ G̃− H̃ ⊗G−H ⊗ G̃+H ⊗G) (2)

Here, the first term is diagonal with the number of spatial neighbors times
the number of temporal neighbors, the second term accounts for the spatial
neighborhood weighted by the number of temporal neighbors, the third for
the temporal neighborhood weighted by the number of spatial neighbors, and
the last term accounts for the space-time neighborhood structure, specifying
spatial neighbors at time neighbors (a kind of second order neighbors). The
conditional distribution of a pixel dit is given in Knorr-Held (2000), section
2.2.4, and corresponds to

N

(
H̃tt

∑
j∼i djt + G̃ii

∑
k∼t dik −

∑
j∼i,k∼t djk

H̃ttG̃ii

,
1

τdH̃ttG̃ii

)
(3)

where j ∼ i denotes the set of neighboring areas to area i and k ∼ t the set
of neighboring time points to time t.

The interaction type 2 corresponds to the case in which the precision
matrix for d is given by τdK ⊗ I. This means in terms of Eq. (2) that
the matrix G̃ in the first and third term is replaced by an identity matrix
and the second and last term are not present. Thus each area has an spe-
cific structured temporal effect and the conditional mean in (3) reduces to∑

k∼t dik/H̃tt.
The interaction type 3 implies that precision matrix for d is τdI ⊗R. In

this case, the matrix H̃ in the first and second term of Eq. (2) are replaced by
an identity matrix and the last two terms disappear. It means that at each
time, there is a time specific structured spatial effect and the conditional
mean in (3) reduces to

∑
j∼i djt/G̃tt.
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2.3 The null space and constraints

We start by considering the two structured main effects and extend for the
type 2, 3 and 4 space-time interactions. We just give an overview of the
matter with focus in the practical application. All the details are in Chapter
3 of Rue and Held (2005).

The precision matrix of a first order intrinsic Gaussian Markov random
field (IGMRF) is given by a precision parameter multiplied with a structure
matrix. This matrix has rank deficiency equal to one which means that its
null space has dimension one as well. It implies that the precision matrix
has one eigenvalue, which is equal to zero. The associated eigenvector spans
the null space of the precision structure and has entries that are all equal to
the same constant. The specific value of this constant does not matter and
the eigenvector can actually be considered to be a vector of ones, 1. Here,
we can consider it to be 1

n1.
The practical implication is that the addition of a constant to all el-

ements of a first order IGMRF does not change its density. Therefore it
is invariant to the addition of a constant. One practical way to make the
IGMRF identifiable is to impose a sum-to-zero constraint, or equivalently
require to have zero mean. Thus, the sum-to-zero constraint is accounting
for its null space.

The interaction type 2 implies that each time series in d is one dimen-
sional a first order IGMRF, such as α. The structure matrix is K ⊗ I,
with I being a n-dimensional identity matrix. This results in a total rank
deficiency equal to n. The null space is the Kronecker product between the
null space of the temporal IGMRF and the n dimensional identity matrix,
named M2 = 1

n1m×1 ⊗ In. This leads to n sum-to-zero constraints since
one constraint is required for each area, or each one of the the n time series
in d.

The interaction type 3 specifies one spatial field at each time point t.
Thus, d is a spatially structured first order IGMRF, such as θ. The rank
deficiency of Im ⊗R is equal to m (assuming we have a connected graph).
The resulting null space can be defined as M3 = Im ⊗ 1n×1 1

m and the
constraints apply to the each of the m spatial fields in d.

The interaction type 4 is now an IGMRF along both directions, temporal
and spatial. The rank deficiency ofK⊗R is n+m−1. Practically speaking,
each of the n time series needs to sum-to-zero as well as each spatial field
at each of m − 1 time points. The needed constraints correspond to those
for the interaction type 2 plus m− 1 of those for interaction type 3. Or the
other way around, namely n − 1 of those for interaction type 2 plus all for
interaction type 3.

In practice often so-called soft constraints are considered, see Rue and
Held (2005) and Rue and Held (2010). These means that the linear com-
binations are specified with some uncertainty, which is equivalent to poste-
rior conditioning on observations of these linear combinations. To be more
specific, it implies conditioning a vector w of length k whereby w | δ ∼
N(Md,V). Here, M is a matrix of dimension k × (n ·m), where each row
specifies one of the k required sum-to-zero constraints. Further, V = vI
and v > 0 is small. The aim is to evaluate properties of the conditional
distribution for (d | w), which is Gaussian with precision matrix equal to

Q+MTV−1M , (4)
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see Eq. 2.34 in Rue and Held (2005). (Here, we use Q to denote a general
precision matrix for d). However, MTV−1M is a dense matrix making the
direct work with this precision matrix infeasible.

An alternative approach is to work with the unconstrained prior distri-
bution and correct the distribution later to be constrained, as in Eq. 12.21
in Rue and Held (2010). The evaluation of the conditional density of δ given
the soft constraint requires to work with the covariance matrix of the con-
straint given δ, which is equal to MTQ−1M+V which is a dense matrix of
dimension k. Therefore the additional cost is to factorize this matrix, and
the cost of k linear constraints is O(nk2). The Q−1 is considered through its
Cholesky factor which is already available in the model fitting. This compu-
tation is required once for each new hyperparameter in an MCMC algorithm
or each hyperparameter configuration in the INLA algorithm.

3 Avoiding the sum-to-zero constraints

In this section we present two approaches to avoid the computation of the
sum-to-zero constraints while doing the model fitting. The first approach
considers a contrast parameterization and the second the addition of a small
diagonal to the precision matrix. For both cases the constrained effect can
be computed after the fitting process considering the null space in a set of
linear combinations.

3.1 The contrast parameterization

The contrast parameterization is usually considered when working with fac-
tors as fixed effects in linear regression. In this case one level is set as the
reference level and there are coefficients for each one of the remaining levels
measuring the contrast effect from the reference level. This same strategy
can be considered for IGMRF in order to prevent intrinsic aliasing, Clayton
(1996).

Let x be a random vector following a first order IGRMF with precision
matrix Qx that has rank deficiency equal to k. The contrast parameteriza-
tion for a first order IGMRF implies setting k elements of x equal to zero.
Let I be a vector of length k identifying the elements of x that will be set
equal to zero. When considering k elements of x to be equal to zero, the
conditional distribution precision matrix of the remaining elements under
this condition, x|xI = 0, is just the original precision matrix but without
the I lines and I columns.

Let x(I) be a vector with same length of x where the elements a the I
entries are set to zero and the remaining elements have a precision matrix
equal to the precision matrix of x|xI = 0. The null space of Qx, Mx,
can be considered to define linear combinations when computing the overall
constrained random vector, x|Mxx = 0. These linear combinations can be
defined as I−Mx.

Next we illustrate the application of this idea for an RW1 model and
consider the linear combinations for the space-time case.
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3.1.1 A one dimensional example in time

Consider a RW1 for α = (α1, ..., αm)>, with precision matrix ταK. Instead
of constraining α to sum to zero, i.e. α1 = 0, one can set one of the elements
of α, αl say, to be zero. The conditional distribution of α | αl = 0 is
Gaussian where the precision matrix is the original precision matrix omitting
the l-th row and the l-th column, see Section 16.6.3 in Clayton (1996).

The implication is that the re-parameterized random walk on α(l) =

(α
(l)
1 , . . . , α

(l)
m )> models the differences α1−αl, ..., αm−αl. When modeling

data with a Poisson likelihood and log-link function, this corresponds to
modelling the log-risk at each time with respect to time l, instead of with
respect to the average period effect as it is done using the original sum-
to-zero constrained α. In fact α(l)

1 , . . . , α
(l)
l−1, α

(l)
l+1, . . . , α

(l)
m are shifted from

the original effects α1, . . . , αl−1, αl+1, . . . , αm by αl and αl itself is missing.
However, the original effects αt can be obtained based on the reduced set
α
(l)
t using

αt = α
(l)
t −

1

m

m∑

t=1

α
(l)
t (5)

which is a linear combination defined on α(l).
Let us consider a sub-dataset from the data analyzed in Section 6. The

observed and expected yearly number of deaths among children less than
one year old in Curitiba city from 1996 to 2015 are shown in the top plot
of Figure 1 together with the posterior mean and 95% credibility interval
for the infant mortality rate. We illustrate the constraint parameterization
considering two scenarios. In the first, we set α1 equal to zero and in the
second α10, which corresponds to the years 1996 and 2005, respectively.

The posterior for α and the 95% credibility interval are shown as contin-
uous line in the central panel of this Figure. The re-parameterized version
of it for α(1) and α(10) is shown in the same plot as dashed and dotted lines,
respectively. The medians are shifted with respect to the median curve for
α, by the median value of −α1 and −α10, respectively. The quantile based
95% credibility interval infer the difference between the risk at time t with
respect to the reference time and do not compare with the credibility in-
terval properties of α. The linear combinations to re-compute the original
α are shown in the bottom plot together with α obtained considering the
sum-to-zero constraint. Looking at this plot, one can see only numerical
differences between these quantities computed using the three different pa-
rameterizations. The same applies for the linear predictor quantiles, shown
in the top panel.

An equivalent soft constraint can be formulated that makes MTV−1M
in Eq. (4) diagonal. This happens because nowM is a row-vector of length
m, in which only element l is different from zero. Thus, MTVM is a
diagonal matrix of dimension m×m. Of note, here in the one dimensional
case we only have one constraint, i.e. k = 1, so that V−1 reduces to a
number, namely 1/v. Consequently, the structure matrix for α using this
soft-constraint has a high value, namely 1/v, added to the element (l, l):

(K(l))i,j =

{
Kij + 1/v if i = j = l

Ki,j otherwise.
(6)

and K(l) is positive definite for v > 0.
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relative temporal risk computed from each parameterization (bottom).
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3.1.2 A spatio-temporal example

Applying the contrast parameterization in a spatio-temporal setting, we do
need to set one time point l as a reference for the interaction type 2, one
area r as the reference area for the interaction type 3, and both, one time
point l and one area r, as the reference levels for the interaction type 4.
Compared to the original structure matrix, the new structure matrices will
have n rows and columns removed for type 2, m for type 3 and n +m − 1
for type 4 assuming a RW1 for time.

A special case occurs when there are no main intrinsic effects present in
the model formulation. In this case, only one overall sum-to-zero constraint
is needed to make a potential intercept in the linear predictor identifiable.
This element refers simultaneously to the area and time reference and only
this row and column are dropped from the precision matrix in (2). In the
soft constraint version the value 1/v will be added to the element k × l of
its diagonal.

The constrained sum-to-zero dit effects can be obtained analogously to
Equation (5). For the interaction type 2 we define the following linear com-
binations

dit = d
(l)
it −

1

m

m∑

t=1

d
(l)
it , (7)

given that d(l)it = 0 if t = l. Similarly for the interaction type 3 we have

dit = d
(k)
it −

1

n

n∑

i=1

d
(k)
it . (8)

For the interaction type 4 we have to account for both directions and add a
correction term as

dit = d
(k,l)
it − 1

m

m∑

t=1

d
(k,l)
it − 1

n

n∑

i=1

d
(k,l)
it +

1

n ·m
n∑

i=1

m∑

t=1

d
(k,l)
it . (9)

What about the linear combinations to regain the main effects α and θ?
These linear combinations are actually related to the null space of the

original precision matrix, which we will use in a different way in the following
section. Let M be the null space of the precision matrix of the unconstrained
space-time random effect of one type. The linear combinations can be writ-
ten considering the matrix C = (I−MM>) as d = Cd(k,l).

The corresponding soft constraint implies the addition of the value 1/v
to more than one element of the structure matrix of the space-time interac-
tion effect. The precision structure for the re-parameterized d assuming an
interaction type 4 is the originalK⊗G with a high value added to the diag-
onal corresponding to the time point l or area r. For example, if k = l = 1,
we have to add 1/v to the first n elements in the diagonal as well as to
elements n+ 1, 2 · n+ 1, . . . , (m− 1) · n+ 1. For the interaction type 2, the
value 1/v is added to the n elements of the precision matrix corresponding
to the area set as reference, while for the interaction type 3 it will be added
to the m elements corresponding to the reference time point.

3.2 Addition of a small diagonal

The contrast parameterization might be criticized for the need to select
reference categories. Here, we consider an alternative approach. The idea
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is based on an appealing argument for constructing IGMRF’s as a liming
case, see end of Section 3.3.2 and Eq. (3.37) in Rue and Held (2005). In
this construction, a small value γ > 0 is added to the entire diagonal of the
precision matrix of the IGMRF making it positive definite.

Theorem 1. Let x be a n-dimensional IGMRF with precision matrix Q
that has null space as the columns of the n × k matrix M, which are the
eigenvectors of Q with corresponding eigenvalues equals to zero. Let x(γ) be
a GMRF with precision matrix Q̃ = Q+ γI. The strong and weak norm of
the difference between the precision matrix of x |Mx = 0 and the precision
of (I−MMT )x(γ) are γ and γ

√
(n− k)/n, respectively. Thus the difference

between x |Mx = 0 and (I−MMT )x(γ) is controlled by γ.

Proof. Given in the appendix at section 8.1.

The matrix M appears in the linear combination Cx where C = I −
MMT , illustrated in Equations (5), (7), (8) and (9). Thus, if one consid-
ers the prior precision matrix Q̃ + γI to fit the model, the result can then
be considered to compute x(γ) considering the posterior for x, in order to
account for the null space. Therefore, one can avoid to account for the com-
putationally expensive constraints during the model fitting process. Notice
that even though adding a diagonal to Q will make the prior distribution
proper, the model will be still over-parameterized because the null space
remains unchanged.

4 Model scaling and prior distributions

In this section we discuss two key ideas that make the modelling with IGM-
RFs easier in terms of parameter interpretation and comparison between
different model components.

1. Scaling an IGMRF to make its hyperparameter marginally interpretable
and also comparable between different IGMRF effects in the model.

2. Prior distributions that are interpretable and practical for the applied
scientist.

4.1 Scaling an IGMRF

Any IGMRF has a local precision parameter, that controls the differences
between neighbours. Larger values indicate a stronger relationship, i.e. more
smoothing, while lower values indicate a weaker relationship, i.e less smooth-
ing. This parameter depends on the size and connectivity of the graph that
underlies the IGMRF, so that precision parameters of IGMRFs that have a
different size or are based on different graphs are not marginally comparable.
To make them comparable the structure matrix needs to be scaled so that
the marginal variances have a geometric average which is equal to one, see
Sørbye and Rue (2014) for details.

In the model given in Equation (1) a spatial main effect s is included
which splits in two components, a structured effect θ and an unstructured
effect φ. The structured effect θ follows an IGMRF. It has zero mean and
precision matrix τθR. The scaled precision matrix is given by τθR ·σ2GV (R),
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where σGV (R) denotes the generalized variance of R as proposed by Sørbye
and Rue (2014):

σ2GV (R) = exp

(
1

n

n∑

i=1

log(diag(R−))

)
.

Here, R− denotes the generalized inverse of R. It implies that the marginal
variance of each element of a random vector modeled as a scaled IGMRF is
one.

We then follow Riebler et al. (2016) and reparameterise the classical
BYM model as

si =
1√
τs
(
√
ωsθi +

√
1− ωsφi) (10)

where φ ∼ N(0, I). As both components φ and θ are standardized, τs > 0
is a precision parameter and 0 < ωs < 1 is a weight parameter defining
the proportion of the main spatial effect that is explained by the structured
component. The benefit from this parameterization is that we can consider
σs = 1/

√
τs as a marginal standard deviation parameter.

For the temporal effect α we scale the corresponding structure matrix K,
and for the space-time interaction term we we use the scaled versions of the
structure matrices R and K in the Kronecker product. Thus, the precision
parameter of the structured temporal effect α can be interpreted as the
inverse of the marginal variance giving standard deviation parameter σα =
1/
√
τα, and the space-time interaction term precision can be interpreted as

the inverse of the marginal variance giving standard deviation parameter
σd = 1/

√
τd.

Scaling all three IGRMF model components will allow us to compare the
posterior estimates of their precision (variance) parameters between them.

4.2 Definition of hyperprior distributions

Scaling the IGMRFs does not only allow us a comparison of the hyperpa-
rameter estimates, but also facilitates the assignment of hyper prior distri-
butions. This is because the precision parameter of a scaled IGMRF is the
marginal precision. Thus the square root of its inverse is the marginal stan-
dard deviation which measures the size of the effect in the scale of the linear
predictor.

Here, we consider the penalized complexity (PC) prior framework pro-
posed by Simpson et al. (2016). The main idea under this framework is to
consider a base model and the model component being considered as a more
complex case. In this idea, the parameter being considered measures the
deviation from the base model. For the random effects case, the base model
is the straight line, which has zero variance. Thus, the variance (or standard
deviation) measures deviation from the base model towards a more complex
one.

One nice feature of this way of setting prior distributions is that the base
model has positive density a priori. Therefore, this kind of prior supports
the Occam’s razor as the more parsimonious model is supported a priori. Let
ν > 0 being the parameter that controls deviations from the base model,
implying that the bigger ν the more complex is the model. The PC-prior
idea considers priors of the form P (ν > u) = α and thus we have to choose
u and α.
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We can use the BYM prior for the main temporal effect v. One alterna-
tive is to consider the first order autoregressive model, AR1. One advantage
in this model is when the parameterization is considered for the innovation
drawn from the stationary distribution. In this case the ρ parameter is the
lag one correlation or a persistence parameter and the precision parameter,
τv, is the marginal precision. Thus, we have σv = 1/

√
τv as the marginal

standard deviation and the PC-prior for this parameter is defined consider-
ing P (σv > 0.5) = 0.5. We also consider the prior for the standard deviation
of the other random effects with u = 0.5 and α = 0.5.

The ρ parameter, the persistence parameter, was considered having also
a PC-prior considering the base model as ρ = 1. In the AR1 model with
innovations with distribution equals the stationary one, when ρ = 0 we have
white noise and for ρ = 1 we have the straight line, there is no innovations.
Thus we can choose the base model as the case for ρ = 1. This means that
the PC-prior penalizes deviations from the straight line. Details about this
prior are in Simpson et al. (2016). The PC-prior parameters considered for
ρ considers that P (ρ > 0) = 0.9.

In the main spatial effect the mixing parameter, φ defines the proportion
of the variance due to the structured part. The PC-prior for this parameter
depends on the eigenvalues of the structure matrix, see Appendix A3 in
Simpson et al. (2016). Our choice considers the prior given the condition
that P (φ > 0.5) = 0.5.

These prior distributions for the five model parameters are shown in
Figure 4 together with the posterior distributions obtained in the application
of modelling infant mortality data in Paraná.

5 Simulation study

We perform three simulation cases with four scenarios each. In the first
two cases we considered the Ireland map divided into 26 areas and in the
third we considered the Columbus map containing 49 areas, both available
in the spde R package, Bivand et al. (2012). In the three cases we have
considered the number of time points to be equal 20. A Gaussian likelihood
was considered for the first case and a Poisson for the other two cases.

In each case we considered four scenarios for the three precision param-
eters: τv, τs and τd. In the first and third case it was considered τv, τs, τd as
(1, 9, 9), (9,1,9), (9,9,1) and (9,9,9) while in the second we have (1, 16,16),
(16,1,16), (16,16,1) and (16,16,16). Thus, because the parameterization of
the random effects is as in the previous section, these precision parameters
are marginal and so we can compare them and have the last scenario where
all the three effects are small and the first three scenarios when, respectively,
the main temporal effect is bigger, the main spatial effect is bigger and the
space-time interaction effect is bigger. We considered 250 data sets for each
of these four combination of the precision parameters and so 1000 samples
for each case in total.

The PC-prior for these precision parameters was considered with median
in the value used to sample. Thus, for example, for τd in the third scenario we
have P (σd > 1) = 0.5 and P (σd > 1/3) = 0.5 for the other three scenarios.
The ρ and φ parameter were considered both equal 0.75, with prior as in
the section 4. Thus P (ρ > 0) = 0.9 and P (φ > 0.5) = 0.5.
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The type 4 space-time interaction was considered to simulate the space-
time effect. The type 1, 2, 3 and 4 were fitted considering the original
sum-to-zero and both the contrast parameterization and the diagonal add
approach were considered for the interaction types 2, 3 and 4 as well. Thus,
for each simulated dataset we have 10 fitting results in total. The computer
considered in this study is an old machine with 32 cores, each one an AMD
Opteron(tm) Processor 6136 with only 800MHz and the cache with only
512KB. Our strategy to run the simulation study was to use only one thread
to fit each model and the 1000 replications were done in parallel. Thus, the
reported CPU time is at least three times bigger than one can have with a
common laptop and much smaller in a desktop with several cores.

We summarize the results here and present them in more details in the
Appendix 8.2.

In all the cases we have seen that the two approaches can be considered
with the objective of selecting the best space-time interaction type. This is
because the DIC, WAIC and CPO were smaller for the interaction type 4 in
general, which was the structure considered to simulate the datasets.

When the space-time effect is relatively bigger than a main effect, the
contrast parameterization approach causes some impact in the hyperparam-
eters for the main effects. This is because the space-time effect at one area or
one time point is assigned by the contrast parameterization to the respective
main effect.

The add diagonal approach makes the estimation for τd, ρ, τs and φ
affected too much as the space-time interaction structure takes over the
main temporal and spatial variations. So when having the interaction type
4 all these four hyperparameters are affected, when having the interaction
type 3, τs and φ are affected, and when having the interaction type 2, τv
and ρ are affected.

However, these two approaches can be considered to fit the relative risks
without problems since the mean squared errors - MSE for these are not
affected by the approach.

6 Application

In this section consider the number of born and children deaths in 399 munic-
ipalities in Paraná State, Brazil, from 1996 to 2015. This data is freely avail-
able in the web site of the Informatics Department of SUS, Departamento
de Informática do SUS - DATASUS, at http://datasus.saude.gov.br.

The observed rates time series for each area are shown in Figure 2. This
provides an overall impression of the trend, since too many time series are
in one plot. The rates mainly vary from near zero up to 4%, however, some
areas presents rates above 4% at some years. This variation is expected to
happen when the population at risk is not big. There is an overall decay
over the period, as seen clearly in the rate computed over the entire State
for each year, plotted in white line.

The maps shown in Figure 3 were drawn using the same classification
color, given in the legend in the map for the last year. For each map, the
number of areas with rate in each class is shown in the top right side of each
map. Due to the decay pattern observed in Figure 2, the number of areas
with higher rates decreases over the years, and the number of areas with
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Figure 2: Time series of the observed infant mortality rates at each area.

lower rates increases.
We fit the models considered in Section 2 considering the original con-

strained prior distribution for the random effects, the contrast parameter-
ization and the add diagonal approach considering the scaling and prior
distributions as defined in Section 4.

In Table 1 we have the DIC, WAIC and CPO differences with respect
to the model with the lower value, and the CPU time in minutes. The
computing time was dramatically reduced by considering the contrast pa-
rameterization or the diagonal add approach. Instead of take over a week to
fit the type 2 and type 4 with the sum-to-zero constraints, we have results
in near half hour.

Model DIC WAIC CPO CPU (min)
1 190.70 163.00 135.40 3.70
2 49.50 51.90 32.90 14139.80
3 134.40 135.50 86.90 55.20
4 0.00 0.00 0.00 15309.80

2d 238.00 256.20 141.00 9.50
3d 142.60 140.40 90.70 25.80
4d 193.00 211.50 111.20 29.70
2c 170.40 194.30 89.50 11.70
3c 141.70 148.00 90.60 25.70
4c 89.00 102.10 43.20 33.80

Table 1: DIC, WAIC and CPO differences to the lowest and the CPU time.

The lowest DIC, WAIC and CPO was obtained for the interaction type
4 with the sum-to-zero constraints. These values were 29280, 29333.7 and
14686.4, respectively. We observe in Table 1 that the second lowest DIC,
WAIC and CPO are when considering the interaction type 2 with sum-to-
zero constraints and the third with the interaction type 4 with contrast
parameterization.

If we consider the four interaction types with the sum-to-zero contrast,
the choice is the type 4. If we consider only the interaction type 1 and
the others with the contrast parameterization, the type 4 would be the
choice. However, considering the type 1 and the others with the add diagonal
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approach, the choice would be the interaction type 3.
We have the summary for the posterior marginal distribution of each one

of the hyperparameters considering the model fitted with the interaction
type four and the sum-to-zero constraints in Table 2. First, it suggests
that the two main effects have similar marginal precision and the space-time
interaction has a bigger one. Thus, the main spatial terms are bigger than
the space-time one. The main temporal term is very strongly structured
because ρ is near one. This is in line of what we can observe in Figure 2. For
the main spatial effect we have that the structured part is more important
than the unstructured.

Parameter Mean S.D. 2.5% Q Median 97,5% Q. Mode
τv 27.65 18.46 5.30 23.48 74.66 14.56
ρ 0.96 0.03 0.90 0.97 0.99 0.98
τs 29.16 4.56 20.97 28.92 38.83 28.52
φ 0.82 0.10 0.60 0.84 0.96 0.88
τd 69.19 9.76 52.22 68.41 90.47 66.80

Table 2: Summary of the posterior marginal distribution for each one of the
hyperparameters.

We have the prior and posterior distributions for each one of the hyper-
parameters in Figure 4.

The relative main temporal risk can be seen in Figure 5. This shows the
decrease we have seen in Figure 2.

The relative main spatial risk can be seen in Figure 6. We have here that
the West and and Northwest side are the region with an overall relative lower
risk rates. The south and northeast sides are the worse areas. Curitiba, the
capital of Paraná, has an overall relative low risk.

The relative space-time risk can be seen in Figure 7. We can see how
it changed over time. In the begin of the period we have the South, center
and some municipalities at the Northeaster, Northwest and near the ocean,
extreme east side, with relatively higher risks. Them it slowly changed over
time and more recently we have relatively higher risks at the Northwest side.

7 Discussion

The two proposed approaches to avoid the expensive sum-to-zero constraints
were evaluated in a simulation study. It showed a great computational time
reduction when the number of areas is more than few dozens. The savings
is of the order of days in computational time.

The relative risk can be computed accounting for the null space in the
linear combinations. These linear combinations considered to compute the
relative risks showed to be accurate when comparing with the true relative
risk in all the three simulation cases.

The hyperparameters of the main effects are affected by the approaches
considered. Thus the proposed approaches can be used as screening tools
when performing complex space-time models. This will deliver results in a
short time and make the practitioner more freely to evaluate among different
kind of model structures even when there is a lot of constraints needed.
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distribution of each hyperparameter.
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Figure 6: Posterior mean of the spatial relative risk considering model 4.
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We suggest to consider the scaled intrinsic models in order to facilitate
the prior assignment and to compare the different model components. The
scaled random effects standard deviation can also be compared to regression
coefficients of standardized covariates. So, it is useful to compare these two
kind of effects being fitted together in a model.
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8 Appendix

8.1 Proof appendix

A background for this result is the alternative limit argument for the first-
order IGRMF in the end of Section 3.3 in Rue and Held (2005).

Let a IGMRF, x = {x1, ..., xn}, with precision matrix Q that has eigen-
value/vector pairs written as

(0,w1), ..., (0,wk), (λk+1, ek+1), ..., (λn, en)

and we have that Q has rank deficiency equals k and the vectors w1, ...,wk

spans its null space. We can write

Q =

n∑

i=k+1

λieie
T
i and Q− =

n∑

i=k+1

λ−1i eie
T
i

where Q− is the generalized inverse of Q. A practical interpretation of Q−

is that it does corresponds to the covariance of the constrained version of x,
Cx, where C = I−MMT for M = [w1 . . .wk].

Let x(γ) to be a GMRF with precision Q̃ = Q + γI which is a positive
definite matrix with eigenvalue/vector pairs as

(γ,w1), ..., (γ,wk), (γ + λk+1, ek+1), ..., (γ + λn, en) .
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Therefore we can write

Q̃ = γMMT +
n∑

i=k+1

(γ + λi)eie
T
i and Q̃−1 =

1

γ
MMT +

n∑

i=k+1

1

γ + λi
eie

T
i .

Define the linear combination Cx(γ). The covariance of Cx(γ) is

CQ̃−CT = [I−MMT ][
1

γ
MMT +

n∑

i=k+1

1

γ + λi
eie

T
i ][I−MMT ]

= [I−MMT ][
n∑

i=k+1

1

γ + λi
eie

T
i ] =

n∑

i=k+1

1

γ + λi
eie

T
i

provided that MTM = I and eTi M = 0.
The difference between the precision of Cx and the precision of Cx(γ) is

n∑

i=k+1

λieie
T
i −

n∑

i=k+1

(γ + λi)eie
T
i = γ

n∑

i=k+1

eie
T
i .

The strong norm of this difference is γ while the weak norm is γ
√
(n− k)/n.

Thus, letting γ → 0+ gives the precision of Cx(γ) equivalent to the precision
of Cx.

8.2 Simulation results

8.2.1 Results for the first case

In Figure 8 we have the computing time in seconds. The type 1 takes less
time to fit while the type 4 is the more expensive which is expected due the
model structure and the number of constraints. In this small scenario, some
saving in the CPU time due to the new approaches of contrast parametriza-
tion or diagonal add only happens for the type 3 interaction.

We also have considered the number of evaluations of the p(θ|y) during
the optimization step to find the posterior mode for the hyperparameters.
We checked this because it can, sometimes, be a not easy task when the
model is not well specified. We have around 200 to 400 as number of function
evaluations for among most of the 10 fitting results. When considering the
diagonal add for type 3 it was a bit less and when considering the diagonal
add for type 4 it was around 100 function evaluations.

We have considered common goodness of fit statistics, the deviance in-
formation criteria - DIC, the widely applicable information criteria - WAIC
and the negative sum of the cross validated conditional predictive ordinate -
CPO. For each dataset we considered the difference to the lower value among
the 10 models fitted. Thus the difference for the best fit for each simulated
data is zero.

The DIC is shown in Figure 9 considering each one of the four scenarios.
The difference from the best fit is near zero in all the cases. It being a bit
off zero for type 1 and type 3. As we simulated from the type 4, this was
expected that this would have the best fit.

For the WAIC differences we have in Figure 10 that there were no differ-
ences among all the 10 models fitted for each data. Similarly for the CPO
as shown in Figure 11, all the 10 models fitted delivered similar results.
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Figure 8: CPU time and number of function evaluations for the first case.
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Figure 9: DIC differences considering for each scenario in the first case.
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Figure 11: CPO differences considering for each scenario in the first case.
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We also considered the mean squared error between the posterior mean
of the random effect and the simulated. For the main temporal random
effect we can see in Figure 12 that when this effect is bigger than the otters,
the errors are also bigger and equally bigger among all the 10 models fit-
ted. Similarly when the main effect or the space-time effect has the higher
variance. When the space-time effect has the higher variance, we have the
type 1 and type 2 fitted models delivering a bit higher errors for the main
temporal effect.
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Figure 12: Mean squared error for the main temporal random effect.

For the main spatial effect errors, shown in Figure 13, we have it bigger
when it has the bigger variance or when the space-time has it and we consider
type 1 or type 3 interaction type. Considering type 1 or type 3 also delivers
a bit bigger error for the main spatial effect when the main temporal effect
is bigger or when all the three effects has the same precision.

is shown in Figure 26. It was smaller when the fitted model considers
the type 4 space-time interaction, the same considered to simulate the data.
This is the similar no matter the approach being considered to deal with the
constraints. The bigger differences were for the case when this effect was
bigger than the other two, with τd = 1, when the fitted model considers type
1 or type 2.

We also considered the posterior mean for the five hyperparameters, τv,
ρ, τs, φ and τd. We can start looking for the posterior means of τd, shown in
Figure 15. We have that for most of the models being fitted, posterior mean
of τv is close to the value used to simulate the data. Exception happens
when considering the diagonal add approach and when the space-time effect
is the biggest. When adding the small diagonal for the space-time precision
prior we have this effect takes all the main temporal effect and so the higher
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Figure 13: Mean squared error for the main spatial random effect.
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Figure 14: Mean squared error for the space-time random effect.
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values for τv. This fact also happens for most of the other models being
fitted when the space-time effect is bigger, only not happening for the type
4 with constraint during the fitting process.
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Figure 15: Posterior mean for τv for the first case.

We have to remember that when considering the contrast approach, the
main effects being fitted does includes also the space-time effect for the set
to zero time. This fact can be clearly seen when looking in Figure 15 when
the main temporal effect is the biggest and in Figure 17 when the main
spatial effect is the biggest. For those two situations we have almost no bias
in the posterior for the respective precision parameter. Actually, this was
the best fit among the others.

In Figure 16 we have the posterior means for ρ. The results shown
here inherits the facts discussed for τv. Thus, we can see a near zero value
of ρ when using the diagonal add approach for the interaction type 3 and
4. When the temporal effect is the biggest the other approaches delivered
similar results. When the spatial is the case or when all the effects are of
the same size the type 1 and using the contrast approach for type 2 and
type 4 delivered a bit bigger posterior mean. When the space-time effect
is the biggest, the posterior mean for φ is smaller for type 2, which is the
space-time effect with temporal structure and spatially not structured.

The results for τs are shown in Figure 17. We have its posterior mean
smaller when considering the contrast approach for type 2 and type 4 for the
case when the main temporal is the biggest. This fact is more pronounced
when the space time effect is the biggest. When the main spatial effect
is the biggest we have the posterior mean for τs off when considering the
diagonal add approach. When the space-time effect is the biggest we have it
correct only for the type 2 and type 4 using the original approach. For the
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Figure 16: Posterior mean for ρ for the first case.

contrast approach τs suffers from the effect that we have the addition of the
space-time effect at one time, the one considered to be zero. The two main
facts, the higher τs when using the diagonal and the lower when using the
contrast are also present when all the effects have the same size.

The results for ψ are shown in Figure 18. In all the fitted models we have
it concentrated lower the value used to simulate the datasets. Similarly to
the facts for ρ when using the diagonal add approach, were we have it now
lower for type 3 and type 4, we have it here lower for type 2 and type 4 as
the space-time effect takes all the spatial variation.

The precision parameter for the space-time interaction does not suffer
any of the problems reported for the other parameters, as shown in Fig-
ure 19. We have no difference from considering the original sum-to-zero
approach to the contrast parametrization or to the diagonal add approach.
The differences are only due to the choice of its interaction type and we see
that when it is type 4 we have no bias.
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8.2.2 Simulation results for the second case

In Figure 20 we have the computing time in seconds. The type 1 takes less
time to fit while the for the interaction type 2, 3 and 4 with the sum-to-
zero constraints are more expensive. The number of areas and time points
in this case is the same as in the former. However, we have non-Gaussian
likelihood and so the second Laplace approximation is computationally de-
manding when accounting for the sum-to-zero constraints. This happens
even thou it is still not a lot of areas and times. Thus, already for this
relatively small problem there is some computational advantage by avoiding
the sum-to-zero constraints. We observe that when considering it the CPU
time is approximately three times higher than when considering the contrast
parametrization or the add diagonal approach. The number of function eval-
uations of the approximation for p(θ|y), bottom plot in Figure 8, was around
200 for all the 10 models fitted, just a bit smaller for type 4 when considering
the sum-to-zero constraints or the add diagonal approach.
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Figure 20: CPU time and number of function evaluations for the second
case.

The results for the DIC differences to the lowest for each dataset is shown
in Figure 21. We have that the interaction type 4 had the lowest DIC in
general. However, when considering the contrast approach it was around
10 DIC units bigger and when considering the diagonal add around one
DIC units bigger. Thus, even these differences, avoiding the sum-to-zero
approaches still signs to the correct space-time structure.

The results for the WAIC differences are in Figure 22. Similarly to
the DIC results it signs to the correct space-time structure no matter the
approach being considered to fit the model. However, seems that WAIC
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Figure 21: DIC differences considering for each scenario in the second case.

points out the correct model more clearly, specially when considering the
contrast parametrization approach for most of the scenarios.

The results for the CPO are shown in Figure 23. These are similar to
the DIC results.

The MSE results for the main temporal random effect we can see in
Figure 24. These are very similar considering the different approaches to fit
the models. It was a bit bigger only when the space-time effect is bigger
than the others and it was considered the interaction type 1 and type 2.

The main spatial effect error results are shown in Figure 25. There is
almost no difference for the scenario when the spatial effect is the biggest.
For the case when the space-time effect is bigger, the better results where
when considering the interaction type 1 and type 2.

The space-time interaction error is shown in Figure 26. It was smaller
when the fitted model considers the type 4 space-time interaction in each
scenario. The bigger differences were for the scenario when this effect was
bigger and smaller differences for the scenario when the three effects were
simulated with the same marginal precision.

The results for the posterior mean for the model hyperparameters are
similar to the first case. We have it for τv are shown in Figure 27, for ρ in
Figure 28, for τs in Figure 29, for φ in Figure 30, for τd in Figure 31.

These results are similar than the ones for the firs case. We also have the
parameters for the main effects affected when considering the small diagonal
add approach. Also, these are a bit off when the contrast parametrization
was considered.
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Figure 22: WAIC differences considering for each scenario in the second case.
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Figure 23: CPO differences considering for each scenario in the second case.
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Figure 24: Mean squared error for the main temporal random effect in the
second case.
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Figure 25: Mean squared error for the main spatial random effect in the
second case.
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Figure 26: Mean squared error for the space-time random effect in the second
case.
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Figure 27: Posterior mean for τv for the second case.
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Figure 28: Posterior mean for ρ for the second case.
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Figure 29: Posterior mean for τs for the second case.
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Figure 30: Posterior mean for φ for the second case.
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Figure 31: Posterior mean for τd for the second case.
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Figure 32: CPU time and number of function evaluations for the third case.

8.2.3 Simulation results for the third case

In Figure 32 we have the computing time in minutes. The type 1 takes less
time to fit while the type 4 is the most expensive to fit within each approach
as it has a precision structure less sparse. The proposed approaches, the
contrast parametrization and the diagonal add approaches were twice as
fast for type 3. For type 2 and 4 the CPU saving is very expressive in this
scenario. For the original sum-to-zero constraints it took around 10 to 14
minutes for type 2 and around 20 or more for type 4 while considering the
proposed approaches it took less than 2 minutes. The number of function
evaluations were near the same for all the cases.

Considering the DIC, WAIC and CPO, shown in Figures 33, 34 and 35,
respectively. We have that the smaller values were always for type 4, and this
should be the case as the datasets were simulated considering this model.
Additionally, the bigger values were mainly for type 1. The good result
was that both the contrast parametrization and add diagonal approaches
delivered these statistics near to the sum-to-zero constraint approach. Even
thou a difference near 10 for DIC and WAIC computed using both proposed
approaches, one will be still choosing the right interaction type. Using the
CPO this choice is even more clearly.

The mean squared error - MSE for the random effects is shown in Fig-
ure 36. The MSE for the main temporal effect is bigger for the case when
it has bigger marginal variance compared to the other two effects, as ex-
pected. All the approaches within each structured interaction type delivers
approximately the same MSE for the main spatial effect.

The MSE results for the third case is shown in Figure 37. The spatial
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Figure 33: DIC differences for the third case.
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Figure 34: WAIC differences for the third case.
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Figure 35: CPO differences for the third case.

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l

ll

l
ll
ll l

ll

l
ll l

ll

l
l
l l

ll

l
lll

ll
l llll ll

l
l

ll
l l

ll
l

ll
l

l

l

ll

l
l
l
lll

l

l

ll

l
l
l
lll

l

l

l

l
l
l
lll

l

l

ll

l
l
l
lll

l

l

l

l
l
l
ll

l

l

l

l
l
l
lll

l

l

l

l
l
l
lll

l

l

l

l
l
l
ll

l

l

l

l
l
l
ll

l

l

l

l

l
l
l
ll

llll llll llll llll lll l l l lll

9 9 1 9 9 9

1 9 9 9 1 9

1 2 2c 2d 3 3c 3d 4 4c 4d 1 2 2c 2d 3 3c 3d 4 4c 4d

0.01

0.10

0.30

1.00

0.01

0.10

0.30

1.00M
S

E
 −

 te
m

po
ra

l m
ai

n

Figure 36: MSE for the main temporal effect in the third case.
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Figure 37: MSE for the main spatial effect in the third case.

main effect MSE was bigger for type 1 and 3 in the case where the space-
time effect has the biggest marginal variance. For the other scenarios this
difference was small.

The MSE results for the space-time interaction effect is shown in Fig-
ure 38. The smaller MSE values were when the fitted model was the type
4. This result is irrespectively to the approach being considered to fit. As
expected, the bigger differences were for the case when this effect was the
biggest, with τd = 1. Comparing the different model fitting approaches
within the space-time interaction structure, no expressive differences were
found. Thus, the linear combinations considered were able to fit the original
effect.

We have the posterior mean results for τv in Figure 39, for ρ in Figure 40,
for τs in Figure 41, for φ in Figure 42 and for τd in Figure 43. As in the other
two cases, the posterior mean τd was near the value considered to simulate
for all the models fitted and approaches, 9 in the first two scenarios, 1 in
the third and 9 in the last scenario. For the other parameters, the results
are similar to the other two cases. An improvement here is that it was more
closer to the value used to simulate. Even for the φ parameter which showed
posterior mean results smaller in the two other cases and in this third case,
except when the space-time type is 1 or 3 and the diagonal approach is
considered, it is more closer to 0.75.
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Figure 38: MSE for the space-time effect in the third case.
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Figure 39: Posterior mean results for τv in the third case.
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Figure 40: Posterior mean results for ρ in the third case.
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Figure 41: Posterior mean results for τs in the third case.
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Figure 42: Posterior mean results for φ in the third case.
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Figure 43: Posterior mean results for τd in the third case.
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Part III

Application papers
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Chapter 6

Application papers

In this chapter we introduce each of the applications of Bayesian hierarchical
spatial and space-time models that I have been involved with. Seven of
these projects have already been published in peer reviewed journals of the
related area and one has been published in a conference preproceedings.
This chapter ends with the published version of those projects introduced
in Section 6.1.1 and in Section 6.3.3. The first one is in accordance with the
authors rights policy stated in http://www.nrcresearchpress.com/page/
authors/information/rights. The second is published in an open journal.

6.1 Space-time modelling of bycath fishery in
Canada

The direct impacts of overfishing on target stocks are being increasingly ad-
dressed. However, unwanted bycatch and discarding of non-target species
remains a key challenge of contemporary fisheries management. The follow-
ing sub-sections describes the work that focused on analysing and identifying
bycatch hotspots of a subclass of cartilaginous fish - elasmobranchs - which
includes sharks, skates, rays and chimeras in the Canadian Northwest At-
lantic waters and Arctic adjacent seas. The first subsection focuses on a
deep-water shark species captured accidentally in Greenland halibut (Rein-
hardtius hippoglossoides) fishery in Canadian Arctic waters in the regions
of the Baffin Bay and Davis Strait. The second subsection considers the by-
catch of pelagic shark in the Northwest Atlantic Canadian pelagic longline
fishery and finally, the third is a synthesis of all elasmobranch discards in
the Canadian Northwest Atlantic and Arctic adjacent seas.
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6.1.1 Bayesian spatiotemporal models to fisheries bycatch in
the Canadian Artic

In this paper space-time models were applied to analyse the number of
Greenland shark (Somniosus microcephalus) bycatch in Baffin Bay and
Davis Strait located between the Northeast coast of Canada and Green-
land. The data considered covered the period from 2008 to 2011. The
fishing season is typically short due to the ice-cover and spans from July to
November.

Therefore, an interesting point considered in the statistical analysis was
to model the space-time effect over consecutive months and replicated over
the years. One of the models considered in the analysis accounted for this
effect. The space-time precision matrix was

I4 ⊗Rm ⊗Rs

where Rs is the spatial precision matrix, Rm is the temporal structure for
the correlation between consecutive month within each year and I4 is a four
dimensional identity matrix to define the replication for the four years of the
within year space-time model.

In the analysis, we included several covariates, some with a linear effect
and another with smoothed effect modeled with a random walk prior.

To select the best predictive model, different space time random effects
and likelihoods - Poisson or negative binomial, and three different ways to
consider zero-inflation were evaluated. All the different models were com-
pared according to the deviance information criteria. A cross-validation test
was also performed where the mean square error between the log of positive
outcomes and the respective linear predictor predictive mean was compared
1. This was computed considering 1100 observations randomly selected from
the total of 1641 available.

The paper was published in the Canadian Journal of Fisheries and
Aquatic Sciences, Cosandey-Godin et al. (2014) and is included in this
chapter. Supplementary material including similar data and R code
developed are available to the public on the R-INLA website and
on the fist author’s GitHub repository (https://github.com/GodinA/
cjfas-bycatch-INLA-SPDE).

1This sentence feels like it ends early? Did you mean to add "was compared"

https://github.com/GodinA/cjfas-bycatch-INLA-SPDE 
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6.1.2 Predicting shark bycatch hotspots in a pelagic longline
fishery

In this work, bycatch models were built similarly using at-sea observer data,
but one additional dataset was introduced to estimate total bycatch rates.
In Canada fishermen logbook data is collected in the pelagic longline fishery.
It provides the most complete census of all fishing activities and contains
information about the area fished, fishing effort, vessel and gear specifica-
tions and species landed, but does not record discards. The at-sea observer
data from scientific observers fills this gap as it records all catch, including
bycath that is discarded. However, the at-sea observer programs typically
covers only 5% to 10% of the total fishing effort.

Hence, at-sea observer data was used to build a model accounting for
covariates and the space-time variation. The logbook data was then consid-
ered as a prediction scenario and the predictions were done considering the
fitted model. Models and predictions were analysed for three main pelagic
shark bycatch in this Canadian fishery, namely porbeagle (Lamma nasus),
blue sharks (Prionace glauca) and shortfin mako (I surus oxyrinchus).

One important objective of this chapter was to indentify areas where
bycatch risks were higher than average, i.e., identifying bycatch hotspots
there is a based in the predictive posterior distribution. To achieve this,
Bolin and Lindgren (2014) methodology was applied. At least three types
of hotspots maps (excursion sets) can be generated:

1. individual hotspots map per time (year in our case);

2. one summary map showing combined hotspots over the whole time-
period combining the largest areas where bycatch threshold was ex-
ceeded at least in one year,

3. one summary map showing only hotspots that were consistent over the
whole time-period, i.e., largest area where the bycatch threshold was
exceeded every time.

The results were shown to be important for dynamic management over
space and time as time was also considered to define varying hotspots. This
work was submitted for publication to Conservation Biology on November
14, 2014 but was since rejected and will be re-submitted with improvements.
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6.1.3 Elasmobranch discards in the Northwest Atlantic and
Arctic Adjacent seas: Composition and biogeography

The main objective of this chapter was again to identify bycatch hotspots
and estimate total bycatch, in this case, specifically discards levels. However,
the scope and complexity of the dataset was much greater considering that
all fishing activities within the Canadian Northwest Atlantic and Arctic
Adjacent Seas were considered. In total, now 55 fishing gear configurations,
categorized into one of 11 major gear categories were included in the analysis.

From a conservation perspective, the results presented in this chapter
provide the most comprehensive analysis of the distribution of elasmobranch
discards and cumulative impacts across fisheries in the Canadian Northwest
Atlantic waters and Arctic adjacent seas and included 17 years (1996-2012) of
data. The emphasis was placed on deep-water species, which remain poorly
studied. Twenty of the most frequently caught elasmobranch bycatch species
were analysed in the chapter.

Therefore, the distribution pattern and dynamics differed considerably.
To further facilitate the use of the space-time models efficiently (shorten the
computation time) for this large geographical area, we aggregated the data
considering Dirichlet Tessellation tiles.

From a statistical point of view, the main difference was that the data
considered was not count data but weight and as such, two-part models were
developed - one to model the occurrence and a subsequent model to model
continuous positive discarded weight. Therefore the predictions were done
considering samples drawn from the predictive distribution of both models.
The statistical analysis included covariate information that were important
to identify species specific hotspots and estimate cumulative discards.

6.2 Can collective memories shape fish distribu-
tions? A test, linking space-time occurrence
models and population demographics

A particular interest in this paper was in the role of spatial memory in shap-
ing distribution patterns. The dataset consists of 48724 occurrence/absence
records of Atlantic herring Clupea harengus from logbook data of fishing
activity around Iceland over 23 years.

Covariates reflecting local-scale environmental factors including
temporally-lagged prey biomass and recent fishing activity, and through an
index capturing distributional persistence over time, we derived two proxies
for spatial memory of past wintering sites. Incorporating space-time cor-
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relation structure and time-varying regression coefficients improved model
performance. The capacity to predict distribution patterns one step ahead
has important implications for the spatial management of herring stocks
throughout the North Atlantic, and for other species exhibiting some hom-
ing tendency.

This paper was published in Ecography, Macdonald et al. (2017). An
extensive supplementary material includes a similar dataset, the code used
and some outputs for reproducing figures and tables.

6.3 Spatial modelling of log-age survival rate in Eu-
rope

In this section we introduce the work done for analysing old age survival
in Europe. The first analysis considered data from 18 European countries
and a spatial model was derived for each gender and for two time periods
to model the logit of the probability parameter in the clustered/clumped
Binomial model and excursions maps were produced to find areas with low
or hight rates. The second one consider five countries and it was considered
a smoothed covariate effect for each country and gender. The third only
considered municipalities of Portugal and more covariates with smoothed
interaction with gender. The fourth considered data from census areas in
Porto and focused in model effect from neighbourhood on the old age sur-
vival.

6.3.1 Where do people live longer and shorter lives? An
ecological study of old-age survival across 4404 small
areas from 18 European countries

The main purpose in this work was to estimate the 10-year survival rate
to express the population aged 75-84 years old who reached 85-94 years of
age, considering census data from years 1991, 2001 and 2011 at 4404 small
geographical areas in 18 European countries.

The statistical analysis to model the survival rate for women and men
jointly consider a spatial effect for each of the two different 10 years periods,
1991 to 2001 and 2001 to 2011. In France, the decennial censuses took
place in 1990 and 1999 so there is an interval of 9 years in the first period.
Because of that difference, we used the clustered/clumped Binomial model,
Cbinomial(m,n,p). To use this model, we have to consider the deaths instead
survival counts. This model is defined as follows. Suppose that ’z’ represents
the death probability of a person and it is Binomial(n,p) distributed, where
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’p’ is the death probability of that person after one year and ’n’ is the number
of years of the period under analysis. Then, to define the variable ’u’, we
assume 0 when z=0 and 1 if z > 0. It gives P(u = 0) = (1 − p)n and
Prob(u = 1) = 1 − (1 − p)n. It happens that for each area we have ’m’
persons in the beginning of the period. So, let y = u1 + . . .+uk the number
of persons who died at the end of the period of ’n’ years. This variable, y, is
Cbinomial(m,n,p). In our study, we have n = 9 for France in the first period
under analysis and n = 10 for all other countries and periods.

There were tested 80 different structure models. The basic model was
just a Generalized Linear Model, as we have modeled the rate considering
gender and year only. The other models were built taking into account
the spatial structure,with and without interactions with gender and year.
Moreover, an independent (unstructured) random effect was considered, and
we allowed it to vary by area ’i’, by area and gender ’ki’, by year and area
’it’, and by area, gender and year ’kit’. So, we created five scenarios to
evaluate the unstructured random effect (URE) ’u’: one without it and four
different variations units for the URE. Considering the spatially structured
random effect (SSRE) ’s’, we considered the scenario without SSRE and
fifteen scenarios for having any kind of SSRE. By combining these 5x16
scenarios we ended up fitting 80 models to our data.

The SSRE models we evaluated consider different interaction structures
from a basic model and the four groups formed by gender and year. The
basic model is just the Besag’s model varying over areas ’i’, considering
the graph defined by the neighbourhood structure from the map. So, when
considering this model and the URE by area ’i’ we have the well know BYM
model, see Besag et al. (1991), and the linear predictor considering gender,
year, ui and si can be written as

ηkit = β0 + β1genderkit + β2yearkit + si + ui .

The model with minor DIC was the one with SSRE effect correlated across
gender (the same for each year) and URE for each gender, area and year.

We considered the excursions method, see Bolin and Lindgren (2014),
to find areas with significant hight and low survival old-age rate. The areas
with low or hight survival rate for each gender were determined and showed
into maps.

This paper was published in the Journal of Epidemiology Community
Health, Ribeiro et al. (2016).
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6.3.2 The association between socioeconomic deprivation
and old-age survival in European small areas - a cross-
national analysis

In this work it was considered part of the data from the paper in previous
section in order to account for the effect from the deprivation index available
for the set of 1911 small areas of five European countries. It was considered
the 2001 and 2011 census data.

In the statistical model the outcome was the 85-94 years old population
in 2011 at area i, yi. They were considered the survivors and the 75-84 years
old population in 2001 at area i, ni were considered as the number of trials
in the Binomial likelihood. Therefore we have pi as the survival rate which
was modeled considering

logit(pi) = ηi = βxi + f(xi) + si

where si is a spatial random effect considered as

si = τ(
√
φui +

√
1− φvi

as described in Riebler et al. (2016), βxi represent the linear effect from
gender and country and f(xi) represent the non-linear/smooth depriva-
tion index effect which depends on country and gender. Therefore we
have f(xi) = ei,k,l, where j = {1, 2} denotes gender, k =country and
e = {1, ..., 10} denotes deprivation class.

The deprivation effect smoothed effect model consider a random walk
prior over the 10 deprivation classes replicated for each country and gender.
Therefore it can be represented as one curve over deprivation for each coun-
try and gender combination: 10 curves in total. This accounts for interaction
of the deprivation effect with country and gender. The posterior mean and
credibility intervals showed interesting interaction effects, as shown in Fig-
ure 6.3.2. These interaction effects were related to the welfare regimes of
each country.

The paper is under review.

6.3.3 Socioeconomic deprivation, healthcare access and en-
vironment on old-age survival in Portugal

In this work it was considered a subset of the data in the work on the
previous section, those from 228 municipalities in Portugal. Two additional
covariates were considered in addition to the to the deprivation index. A
healthcare access index based on availability of long-term care and social
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Figure 6.1: Interaction effect between deprivation, gender and Country.
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support facilities, geographical access to healthcare facilities, and availability
of health professionals.

The statistical model consider a smoothed effect for the three covariates
by means of a random walk prior on the 10 classes for each of the three co-
variates replicated for gender to account for the interaction with gender. The
spatial random effect were considered as in the previous work, as described
in Riebler et al. (2016).

This paper was published in the Geospatial Health an Open Jornal and
we include it at the end of this chapter. The URL for this paper is http:
//geospatialhealth.net/index.php/gh/article/view/581/0.

6.3.4 The influence of socioeconomic, biogeophysical and
built environment on old-age survival in a Southern
European city

In this work a fine spatial resolution analysis considering 109 aggregated cen-
sus block groups in the city of Porto. The outcome were the population aged
85-94 years old in 2011 and the population aged 75-94 years old in 2001. The
socioeconomic deprivation index was considered along with neighbourhood
characteristics by means of a physical environment index and a walkability
index. These physical environmental is based in air pollution variables, cli-
mate and greenspace availability. The walkability index consider residential
density, street connectivity and land use mix.

For each of the three covariates it was considered smoothed a effect by
means of a random walk prior replicated for gender to account interaction
effects between gender and each covariate. The spatial random effect were
considered as in the previous work, as described in Riebler et al. (2016).
The excursion method was also considered to find areas with low or hight
old-age survival rate.

6.4 Tuberculosis inequalities and socio-economic
deprivation in Portugal

The objective of this paper was to investigate Tuberculosis (TB) spatial dis-
tribution and the association to socio-economic deprivation. We analysed all
TB cases notified in Portugal from 2010 to 2014, as counts by municipalities,
disaggregated by gender and quinquennial age groups.

We did not find a statistically significant association between TB no-
tifications and the economic deprivation index. However, it was found for

http://geospatialhealth.net/index.php/gh/article/view/581/0
http://geospatialhealth.net/index.php/gh/article/view/581/0
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components of this index named as “percentage of manual workers” and “per-
centage unemployed”. It was defined 20 cases per 100 000 as the threshold to
determine high-/low-risk municipalities. A significance level of 0.05 was set
up when applying the excursions methodology to find the high- and low-risk
areas.

The paper was published in the International Journal of Tuberculosis
and Lung Disease, Apolinário et al. (2017).
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6.5 Assessing comorbidity and correlates of wast-

ing and stunting among children in Somalia us-
ing cross-sectional household surveys: 2007 to
2010

This work consider data collected at individual level and spatially refer-
enced by the survey clusters in Somalia over years 2007 to 2010. A total of
73778 children aged 6-59 months from 1066 survey clusters were considered.
The main objective was to analyse factor to explain wasting, stunting and
underweight.

The proposed model for the the logit of the probability of each outcome
k, k = {1, 2, 3}, in each survey cluster i. It can be represented as follows

logit(pk,i) = αk,i + sk,i

where αi,k represents the fixed effect part and sk,i represents the random
effect part. The fixed part consider effects from covariates to each outcome
as particular to each one while the spatial effect has common components
described next.

The spatial effect for each outcome is based on a set of three spatial
random field in a way that each one is present in the linear predictor for two
outcomes. It can be represented as

s1,i = u1,i + β2,1u2,i

s2,i = u2,i + β3,2u3,i

s3,i = u3,i + β1,3u1,i .

where u1 is the shared component for wasting and stunting; u2 is the shared
component for stunting and underweight; u3 is the shared component for
wasting and underweight. The β2, 1, β3, 2 and β1, 3 parameters measures
the sharing spatial effect between wasting and stunting, between stunting
and underweight and between wasting and underweight, respectively.

The paper is published in the BMJ Open journal, Kinyoki et al.
(2016), and is free available at the url https://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4785320/.

6.6 Relation between Tweets and violent crime

In this work crime data and Tweets were collected over two separate time
periods of 68 and 108 days within the city of Amsterdam. Tweets contain-
ing three kind of key words were considered. The first related to physical

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785320/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785320/
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violence, the second with aggressive moods states and the third related to
substance abuse.

For each kind of key word Tweets it was considered as a realization of
a log-Gaussian Cox point process, considering the likelihood approximation
approach proposed by Simpson et al. (2015) and extending it for the space-
time case. The linear predictor for each one was considered as

η(s, t)k = αk + ε(s, t)k

for k = 1, 2, 3, αk an intercept for the key work type k, ε(s, t)k being the
k-replica of a space-time continuous Gaussian process modeled assuming a
prior distribution with spatially marginal Matérn covariance structure and
marginally temporal first order autoregressive.

The linear predictor for the crime data was modeled as

η(s, t)0 = α0 + ε(s, t)0 + βkε(s, t)k

were the α0 is the intercept, ε(s, t)0 is a space-time Gaussian random field
particular for violent crimes and βk is a coefficient to capture the association
to each kind of Tweet. Thus, βk different from zero indicates association.
The posterior distributions for β1 and β2 were off zero in the two periods
while all the three were off zero for the first period.

This work was published in the Preproceedings of the 29th Benelux Con-
ference on Artificial Inteligence - BNAIC 2017, Stam et al. (2017).
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Applying Bayesian spatiotemporal models to fisheries bycatch
in the Canadian Arctic
Aurelie Cosandey-Godin, Elias Teixeira Krainski, Boris Worm, and Joanna Mills Flemming

Abstract: Understanding and reducing the incidence of accidental bycatch, particularly for vulnerable species such as sharks, is
a major challenge for contemporary fisheries management. Here we establish integrated nested Laplace approximations (INLA)
and stochastic partial differential equations (SPDE) as two powerful tools for modelling patterns of bycatch through time and
space. These novel, computationally fast approaches are applied to fit zero-inflated hierarchical spatiotemporal models to
Greenland shark (Somniosus microcephalus) bycatch data from the Baffin Bay Greenland halibut (Reinhardtius hippoglossoides) gillnet
fishery. Results indicate that Greenland shark bycatch is clustered in space and time, varies significantly from year to year, and
there are both tractable factors (number of gillnet panels, total Greenland halibut catch) and physical features (bathymetry)
leading to the high incidence of Greenland shark bycatch. Bycatch risk could be reduced by limiting access to spatiotemporal
hotspots or by establishing a maximum number of panels per haul. Our method explicitly models the spatiotemporal correlation
structure inherent in bycatch data at a very reasonable computational cost, such that the forecasting of bycatch patterns and
simulating conservation strategies becomes more accessible.

Résumé : Comprendre et minimiser les répercussions relatives aux prises accessoires accidentelles, et plus particulièrement
celles touchant les espèces vulnérables, tel le requin, constituent de nos jours un défi de taille en gestion halieutique. Par la
présente recherche, nous soumettons que les approximations intégrées et agglomérées de Laplace (INLA) ainsi que les équations
différentielles partielles stochastiques (EDPS), représentent de puissants outils de modélisation de la répartition des prises
accessoires dans l’espace et le temps. Ces nouvelles approches informatiques, efficaces et innovantes sont ici utilisées afin de
reproduire des modèles spatiotemporels hiérarchiques à inflation zéro en les appliquant aux données relatives aux prises
accessoires du requin du Groenland (Somniosus microcephalus) dans la pêche au filet maillant du flétan noir (Reinhardtius
hippoglossoides) de la baie de Baffin. Les résultats obtenus démontrent que les prises accessoires du requin du Groenland sont
dispersées dans l’espace et le temps et varie de manière considérable selon les années. Certains facteurs quantifiables, tels le
nombre de panneaux de filet par trait et la quantité de prises totale de flétans noirs, ainsi que certaines caractéristiques
physiques, telle la bathymétrie, influent sur la fréquence des prises accessoires du requin du Groenland. Conséquemment, les
probabilités de prises accessoires pourraient être réduites en limitant l’accès de pêche dans les endroits spatiotemporels à haut
risque ou encore, en établissant une quantité maximum de panneaux de filet par trait. Ces méthodes modélisent d’une façon
nette et précise la structure des corrélations spatiotemporelles inhérentes aux données sur les prises accessoires, et ce, à un coût
informatique des plus raisonnables, rendant désormais possible et accessible le calcul des prévisions quant au nombre de prises
accessoires ainsi que la planification de stratégies efficaces en conservation des espèces.

Introduction
High levels of bycatch are a predominant problem in many

fisheries around the world and contribute greatly to broader con-
cern about overfishing (Kelleher 2005; Davies et al. 2009). Bycatch
commonly refers to the part of the catch that is not a legal target
of the fishery; it may be retained and landed but is often discarded
(dead or alive) (FAO 2011). It tends to be particularly problematic
for long-lived marine megafauna such as sharks, marine turtles,
seabirds, and marine mammals (Lewison et al. 2004; Hall et al.
2000). Under the ecosystem approach to fisheries management, a
core objective is to reduce and eliminate bycatch (Pikitch et al.
2004; Garcia et al. 2003). One of the first steps in addressing by-
catch issues is to identify and prioritize key conservation and
management areas (Kirby and Ward 2014). These priority areas are
often referred to as “hotspots” and are locations where bycatch
patterns indicate abnormally high risk (e.g., Huang and Yeh 2011;
Cambiè et al. 2012; Roe et al. 2014). Detailed information on by-

catch patterns and their drivers can help establish effective spa-
tial management, such as time–area closures and spatially explicit
gear restrictions and catch quotas. These tools are increasingly
used in marine resource management to better integrate multiple
and often divergent economical and environmental objectives
(Dunn et al. 2011; Douvere 2008). However, such regulations re-
quire some understanding of the spatiotemporal dynamics of the
system.

Bycatch data are most often collected by at-sea observer pro-
grams and composed of the presence and absence (either count or
mass) of nontarget species georeferenced by fishing location. They
typically also contain information concerning the target species,
vessel and gear specification, fishing effort, and environmental
information like depth and sea surface temperature. Like many
fishery datasets, bycatch data are characterized by complicated
statistical features, such as excess of zeros, nonlinearity and
nonconstant variance structure, and spatiotemporal correlation
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(Ciannelli et al. 2008). These characteristics violate the assump-
tions underlying basic statistical techniques such that more so-
phisticated models are required. Statistical tools that explicitly
model the sources of zero observations (Martin et al. 2005) are
commonly used in fisheries science and custom practice in by-
catch studies (e.g., Minami et al. 2007; Barlow and Berkson 2012;
Murray and Orphanides 2013).

To deal with nonlinearity and nonconstant variance, bycatch
data are often modelled with well-established techniques used
in catch-per-unit-effort (CPUE) standardization and stock assess-
ments. These methods include generalized linear models (GLMs)
(e.g., Megalofonou et al. 2009; Jannot and Holland 2013), general-
ized additive models (GAMs) (e.g., Minami et al. 2007; Murray and
Orphanides 2013), and, to a lesser extent, generalized linear mixed
models (GLMMs) (e.g., Trebilco et al. 2010) and generalized addi-
tive mixed models (GAMMs) (Bjorge et al. 2013). For a detailed
discussion of these models in fisheries research, see Venables and
Dichmont (2004).

Other techniques rely on matching animal telemetry and fleet
distribution data to infer spatial overlap and derive bycatch
predictions (e.g., Harden and Willard 2012; Roe et al. 2014;
McClellan et al. 2009). These techniques offer advantages over
fishery-dependent data but are limited to species with available
tracking information. Bayesian hierarchical models have also
been proposed for estimating bycatch probabilities (Gardner et al.
2008; Sims et al. 2008; Moore and Read 2008), but have not been
widely adopted, likely because of high computational costs and
complex estimation routines. However, these methods do repre-
sent very powerful approaches for dealing with complex ecologi-
cal datasets with multiple sources of uncertainty (Cressie et al.
2009) and are readily used in other areas of fisheries science (e.g.,
Rivot et al. 2008; Yu and Leung 2010; Harley and Myers 2001).

Hierarchical models can simplify complex interactions by al-
lowing parameters to vary at more than one level via the intro-
duction of random effects. The expected value of the response is
then expressed conditional on these random effects. Mixed mod-
els, such as GLMMs and GAMMs, are examples, the first being a
fairly straightforward extension of linear regression (Venables
and Dichmont 2004). Trebilco et al. (2010) modelled seabird by-
catch in the eastern Australian tuna and billfish pelagic longline
fishery using GLMMs with a random effect for each fishing vessel.
Ortiz and Arocha (2004) standardized CPUE indices of billfish by-
catch in the Venezuelan tuna longline fishery with all year inter-
actions treated as random effects. Hierarchical approaches are
very well-suited to nested data, such as bycatch data, where, for
example, fishing sets are sampled from a trip, sampled from a
vessel, which is part of a larger fleet. In this setting, errors associ-
ated with both the data and uncertainties about the ecological
process are included, which results in more robust statistical in-
ference (Cressie et al. 2009; Wikle 2003). The advantages of using
hierarchical Bayesian models emerge more so as complexity in-
creases, when, for example, spatiotemporal variability needs to be
modelled explicitly (Cressie et al. 2009). The Bayesian framework
also offers the advantage of providing full inference, such that
model parameters and uncertainty can be quantified, which has
great utility in applied conservation (Wade 2000; Wintle et al.
2003).

The ad hoc approach often taken in bycatch studies is to model
space using a nonrandom factor variable, like a 5° × 5° grid cell
(e.g., Brodziak and Walsh 2013) or geographical fishing boundar-
ies (e.g., Bjorge et al. 2013; Barlow and Berkson 2012). Others
commonly include one or two geographic coordinates (latitude
and (or) longitude) in their models (e.g., Yeh et al. 2013; Jiménez
et al. 2009; Orphanides 2010). Representing latitude and longitude
as continuous variables offers the advantage that the data are not
isolated in separate units, but these variables are still only incor-
porated into models as fixed effects and, as such, do not include
spatial dependency. When fishing locations are georeferenced in

space and the main research questions revolve around spatial predic-
tions, the most appropriate statistical approaches are geostatistics-
based models, which intrinsically incorporate the first law of
geography: “Everything is related to everything else, but near
things are more related than distant things” (Tobler 1970). Hierar-
chical Bayesian models extend the concept of multilevel structure
to include a spatial random effect (Gaussian random field, GRF).
This random field is a stochastic process indexed in space that
essentially represents all spatially explicit processes that may
have an effect on the bycatch pattern. This is the real advantage of
these models; they are built to approximate and include uncer-
tainties with the entire bycatch phenomena as opposed to only
uncertainty associated with discretely observed data. In so doing,
bycatch hotspots cannot only be rigorously identified, they can
also be better forecasted for management planning (Clark et al.
2001).

Hierarchical Bayesian models have traditionally relied on
Markov chain Monte Carlo (MCMC) simulation techniques, which
are computationally expensive and technically challenging, con-
sequently limiting their use. However, a new statistical approach
is now readily available, namely integrated nested Laplace approxi-
mations (INLA) via the R-INLA package (http://www.r-inla.org). INLA
methodology and its powerful application to modelling complex
datasets has recently been introduced to a wider nontechnical
audience (Illian et al. 2013). As opposed to MCMC simulations,
INLA uses an approximation for inference and hence avoids the
intense computational demands, convergence, and mixing prob-
lems sometimes encountered by MCMC algorithms (Rue and
Martino 2007). Moreover, included in R-INLA, the stochastic par-
tial differential equations (SPDE) approach (Lindgren et al. 2011) is
another statistical development that models GRFs much faster
(similar to kriging) as well as constructs flexible fields that are
better adept to handle datasets with complex spatial structure
(Lindgren 2013). This is often the case with fisheries data, since
fishermen tend to target particular fishing grounds, resulting in
clustered spatial patterns and large regions without any values.
Together, these new statistical methods and their implementa-
tion in R allows scientists to fit considerably faster and more
reliably complex spatiotemporal models (Rue et al. 2009).

The aim of this paper is to analyze bycatch data using hierar-
chical Bayesian spatiotemporal models fitted using these two
novel techniques. We present an analysis of Greenland shark
(Somniosus microcephalus) bycatch in the Canadian gillnet fishery in
Baffin Bay. We demonstrate how our approach can yield answers
to the ubiquitous questions behind bycatch studies, that is, to
(i) identify times and areas of higher bycatch risk (which may give
insight into the species biology, i.e., suitable habitat); (ii) identify
environmental and fisheries drivers affecting bycatch rates; and
(iii) identify plausible mitigation measures. In this paper, we first
fully describe the Greenland shark bycatch data, briefly discuss
relevant aspects of INLA and SPDE, and specify all models that
were investigated. We then address model selection, inference,
and goodness of fit. Details on the final model are provided in
Appendix A, and all R codes and datasets are available on the
R-INLA website. In closing, we discuss future opportunities for the
INLA framework in relation to bycatch studies.

Materials and methods

Greenland shark bycatch dataset
Baffin Bay and Davis Strait are two large basins between Nunavut’s

Baffin Island and Greenland that connect the Arctic and Atlantic
oceans. These regions sustain the only large-scale commercial
fisheries in Canada’s Arctic. A Greenland halibut (Reinhardtius
hippoglossoides) fishery in Baffin Bay began in 1996 as a small ex-
ploratory fishery but has been expanding greatly since 2001 (DFO
2014). Greenland sharks are commonly caught as bycatch and
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discarded (MacNeil et al. 2012). Currently, estimates of their bio-
mass, productivity, and fishing mortality are unknown, which
limits the ability to predict fishing impact on the Greenland shark
population. As a result, there is concern that the species could
become overexploited because of presumed low productivity;
hence, a precautionary approach to their management is advo-
cated (Davis et al. 2013). Investigating bycatch data, one of the only
available sources of information for the species, can provide in-
sights into the shark’s biology and help establish appropriate
management efforts.

At-sea observers are assigned to monitor the Greenland halibut
fishery (DFO 2014). Observers record location of the net (at the
start of the haul), target species (R. hippoglossoides) and mass cap-
tured, number of gillnet panels, mesh size, soak duration, depth
at which the net was set, and bycatch mass and count per haul.
Count information has only recently (since 2008) been recorded
for pelagic species, including Greenland sharks.

The observer dataset used for this case study represents 79.2% of
the total fishing effort (number of hauls) of the Baffin Bay gillnet
fleet over the 4-year period (2008–2011). Data were collected by a
Newfoundland and Labrador-based observer company and ob-
tained from Fisheries and Oceans Canada (DFO).

Gillnet vessels tend to be relatively small in size (65 feet; 1 foot =
0.304 m) and are allowed to carry a maximum of 500 nets per trip
(DFO 2014). Fishermen usually set several gillnets a day with on

average about 40–50 panels in each gillnet (DFO 2005). Since 2007,
a large portion of the Greenland shelf 11 750 km in the southeast
was closed to fishing for the protection of narwhal (Monodon
monoceros) and deepsea corals (DFO 2007). Gillnet effort is concen-
trated in areas to the north and south of the closure (Fig. 1). The
fishery has expanded over the years, for example, the northeast of
Baffin Bay (71°N) is a new fishing ground where the Greenland
shelf projects into Canadian waters and provides suitable depths
for halibut fishing.

There were 1647 hauls from 26 trips, spanning 2008 to 2011,
with all observations occurring between the months of July and
November. Three hauls were discarded because there was no in-
formation on the mass of Greenland halibut captured; none of
these hauls had shark bycatch. Another three hauls were inside
the closure or outside the 200 nautical mile (1 n.mi. = 1.852 km)
Canadian Exclusive Economic Zone (EEZ) and hence were also
disregarded. In addition, 25 hauls had recorded mass of Greenland
sharks but no associated counts. The majority of these (21 records)
were less than 300 kg. For each of these entries, we assumed a
count of one, which makes sense given the average mass of a
shark in the others hauls (127 kg). Hereinafter, a total of 1641 hauls
were included in the analysis (Table 1). We refer to each haul as a
fishing geolocation, 147 (9%) of which recorded bycatch of Green-
land shark; counts varied from 1 to 40 sharks per haul.

Fig. 1. (a) Spatial distribution of the observed Greenland halibut gillnet fishing hauls, location of the fishing closure (solid line), and Canadian
Exclusive Economic Zone (dashed line); (b) mesh used to calculate the Gaussian (Markov) random field in the SPDE approach; and (c) image of
a free-swimming Greenland shark.
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In addition to the observed data, ocean depth was extracted
from the National Oceanic and Atmospheric Administration
(NOAA) global relief model ETOPO1 (Amante and Eakins 2014).
Spatial data were projected from latitude–longitude locations on
the surface of a sphere into locations on a plane using NAD83
(CSRS) – UTM zone 19N, a coordinate reference system suitable for
use in Canada between 66°W and 72°W. The relationship between
shark bycatch and four variables of potential interest (duration
(soak time in hours and decimal minute), number of gillnet pan-
els, total catch of Greenland halibut (in metric tonnes, t), and the
bathymetry (metres, m)) were included in the models. Exploratory
analysis revealed no clear relationships between Greenland shark
bycatch and these covariates, with the exception of some evidence
of a nonlinear relationship with bathymetry (Fig. 2).

Hierarchical spatiotemporal model structure
Similar to a GLM framework, the response, in our case the

observed Greenland shark bycatch (count) at a particular fishing

geolocation and time, is assumed to have a distribution that
belongs to the exponential family, and the parameters of the
family (�) are linked to a structured additive predictor � through
a link function g(·) such that g��� � �, where the linear predictor �

is defined, in our case, as follows:

(1) � � �0 � �1Duration � �2Panels � �3TC.tspp

� �
k�1

K

fk(Bathymetry)wk � f(·)

where �0 is the intercept, and �1, �2, and �3 are the (linear) regres-
sion coefficients for our covariates: duration or soak time in hours
and decimal minutes (Duration), number of gillnet panels (Panels),
and catch (t) of Greenland halibut (TC.tspp), respectively. The func-
tion fk is the sum of smooth functions defining the random effect of
bathymetry (m), where regression coefficients vary with bathymetry
values (K values), and wk is a vector of known bathymetry values
defined for each of the fishing geolocations. This is equivalent to a
smooth function used in GAMs. f(·) is a semiparametric function
defining the spatiotemporal random effect included in the model
(Table 2). All of these components form the (nonobservable) latent
field defined as � = {�0, �, f}, where � and f are the covariates and
smooth functions, respectively, included in the linear predictor with
their appropriate priors (�).

The latent field is characterized by a joint normal (Gaussian)
multivariate distribution with mean 0 and precision matrix Q���

Table 1. Summary of the dataset showing the total
number of hauls with bycatch (>0), number of ob-
served hauls, mass (kg), and counts of Greenland shark
bycatch per year.

Year
Hauls with
bycatch Hauls Mass (kg) Counts

2008 46 411 5 027 66
2009 34 378 8 765 83
2010 20 374 4 435 21
2011 47 478 92 425 400

Fig. 2. Relationship between Greenland shark bycatch counts and covariates of interest. Results of fitting both a Poisson regression (solid
line) and a generalized additive model (broken line) are shown.
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(i.e., � � N�0, Q�1����). Each observation yi depends on a linear
combination of a subset of the elements of � defined as follows:

(2) yi|�, � � p�yi	�j

Aij
j, �	
The term Aij is the generic element of an observation matrix A

defined by the SPDE approach. Each yi is independent and identi-
cally distributed given the latent field �. Simplistically, the SPDE
method allows one to fully evaluate the continuous GRF as a dis-
cretely indexed random process (i.e., a Gaussian Markov Random
Field; Lindgren and Rue 2013), and it does so by subdividing the
domain D (the area of the ocean where the fishing fleet is active)
into triangular tiles, creating an index mesh (Lindgren and Rue
2013). Further built-in R-INLA commands are then used to con-
struct the observation matrix A that extracts the values of the
spatiotemporal random field at the measurement locations and
time points used for the parameter estimation. The likelihood is
linked to the latent field through �* (�* = A�) as

(3) p(y|�, �) � 

i�1

n

p(yi|�
�, �)

Since the Greenland shark bycatch data are counts character-
ized by many zeros, we evaluated Poisson and negative binomial
distributions, as well as their zero-inflated versions. R-INLA offers
different forms of zero-inflation, namely Types 0, 1, and 2. In a
nutshell, Type 0 is a hurdle model that treats the response vari-
able as being in a “perfect state” where the probability of bycatch
can only be positive (i.e., does not include zero), whereas Types 1
and 2 are mixture models (2 being an extension of 1, that allows
for additional zero probability), which describe the probability of
being in an “imperfect state” where positive events (e.g., bycatch)
may occur but are not certain and, as such, include both zero and
nonzero values. For more details refer to Martin et al. (2005) and
the R-INLA website. Table 2 lists all spatiotemporal correlation
structures evaluated in our models. Please see Cameletti et al.
(2012) and the R-INLA website for further documentation on these
latent random field models.

Inference, goodness of fit, and prediction
All analyses were performed using R (R Development Core

Team 2013), specifically the R-INLA package (Rue et al. 2009). The
INLA procedure, in accordance with the Bayesian approach, cal-
culates the marginal posterior distribution of all random effects
and parameters involved in the model. There are different options
offered in R-INLA with which to approximate the posterior mar-
ginal distributions; we used the most accurate one, the Laplace
(Martins et al. 2013). We also used the default and recommended

settings for priors (Held et al. 2010). These priors are vague priors
or approximations of “non-informative” priors, which have little
influence on the posterior distributions; hence, results are mostly
derived from the data (similar to a frequentist approach). Prior
sensitivity tests were conducted on the final best model. Further
information on priors is provided in Appendix A.

To use the SPDE approach, the first step is to create a mesh on
which the GRF is to be built; this mesh defines the spatial domain
of interest (�; Fig. 1b). This is straightforward in R-INLA, but still
requires some tuning. The mesh function creates by default a
constrained refined Delaunay triangulation (CRDT) for the set of
spatial locations provided (i.e., uses the observed fishing locations
as the triangle nodes). If desired, the mesh could be derived from
another set of points, for example, a regular grid. However, using
the discrete fishing locations offers precision and efficiency. With
CRDT, smaller size triangles can be defined in areas that have
been sampled (fished) and larger ones in areas with no informa-
tion (no fishing). This saves computational costs and increases the
accuracy of the spatial field where there is fishing. Best mesh
designs have more regular-shaped triangles and include some
outer extension to avoid the “boundary effect” (increased vari-
ance at borders; Lindgren and Rue 2013). Different mesh designs
were evaluated to investigate their effects during model selection.

Best candidate models were selected based on deviance infor-
mation criterion (DIC; Spiegelhalter et al. 2002). Further model
selection was performed on the three best models using cross-
validation; 10 samples, each with 1100 observations, were ran-
domly drawn from the dataset (total of 1641 observations) and
fitted with each model; the remaining 541 observations were used
for validation. DIC values and the mean squared error (MSE) using
the log of the positive observed values and the linear predictor
were calculated for each cross-validation. Note that MSE was only
computed for the positive counts (bycatch of shark), since it is
bycatch events that we are interested in predicting accurately.

A final model was chosen for model inference and prediction of
bycatch hotspots for 2008–2011. Estimated bycatch can be pre-
dicted over the whole spatial domain (�) determined by the mesh
(Fig. 1b). However, in our case study, there are large areas of Baffin
Bay that are not fished. To avoid predicting bycatch in areas where
fishing is unlikely, we first created a lattice of 1 km × 1 km grid
cells over � and selected only the cells within a 5 km radius
around our observed fishing locations. Note that these numbers
(1 and 5 km) are arbitrary; we could choose a larger or smaller grid
cell or radius, since we can predict bycatch everywhere in �.
However, predictions on finer grids and larger areas of � will be
more computationally intensive.

Bathymetry for each 1 km × 1 km grid cell was extracted from
the NOAA TOPO1 raster. Since Greenland halibut catch also fluc-
tuated in space and time, we interpolated catch for each grid cell
using a weighted mean, where the weights are proportional to
exp(–distance/a), where a is equal to 0.5 km, that is inversely
proportional to the distance. Spatial predictions of the expected

Table 2. Spatiotemporal correlation structures considered.

Identifier Spatiotemporal structure

m0 None
m1 Constant: f(s, t) = f(s) is a Matérn correlation structure with � = 1, where scale and variance need to be estimated
m2 Different each year: f(s, t) is a Matérn correlation structure like model m1 but with a different realization every year
m3a Correlated in consecutive years: f(s, t) is a combination of model m1 with additional correlation structure between

neighbouring years
m3b Exchangeable correlation between years: f(s, t) is similar to model m3a but correlation structure between years

is repeated (i.e., the correlation between years 1 and 2 is the same as that between years 1 and 4)
m4 Different for each month: similar to model m2 but the time index is month rather than year
m5a Correlated in consecutive months of the same year: same structure to model m3a for month
m5b Exchangeable correlation between months of the same year (e.g., 2009–2007 has the same correlation with

2009–2008 as with 2009–2009)
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bycatch for each year were then obtained by running the final
model with the mean values of the other covariates (Duration =
15.94 and Panels = 43.33) and the grid values of the bathymetry and
halibut catch. Results were then plotted on the 1 km × 1 km grid.

R scripts and datasets are available on the R-INLA website
(http://www.r-inla.org).

Results

Model selection
DIC results of all models tested are presented in Table 3. Models

ran from less than 10 s to 45 min on an Apple Darwin 10.8.0 (64-bit)
platform with 2.4 GHz Intel Core 2 Duo Processor. Models fitted
with a more elaborate spatiotemporal random field performed
better than those with no random field (m0) or one that is con-
stant over time (m1), irrespective of the likelihood. Models with
spatial correlation among years (m3a and m3b) did not perform as
well as the others, which treated years as independent.

Correlation among months was very high (around 90%), such
that m5 models were very similar. For further model selection,
m2, m4, and m5a were investigated. DIC and MSE results from
these models’ validation simulations are shown in Fig. 3. All mod-
els with the exception of their Type 0 zero-inflated Poisson and
negative binomial versions have similar DIC values (Fig. 3). How-
ever, MSE results show that the zero-inflated Type 2 Poisson and
negative binomial likelihood performs better with all three mod-
els (i.e., MSE values are smaller). However, when these models
were tested with different mesh designs with more triangulations
and different boundaries, the Poisson likelihood’s DIC values
were very sensitive (large fluctuations with zero values), whereas
the negative binomial likelihoods were stable irrespective of
the mesh used. For this reason, the zero-inflated Type 2 negative
binomial likelihood and the most parsimonious mesh (simplest
boundary and lesser number of triangulations) were selected.

All three models provide similar prediction performance, as
seen from the MSE boxplots in Fig. 3. Model m4 is not a practical
model for predictions purpose, since each month is an inde-
pendent realization of the random field. Under m2, we have a
common spatial pattern for months within each year and no cor-
relation between years. Under m5a, we have a high correlation
between consecutive months, within each year. Note that this
may have arisen because of observed hauls in consecutive months
but very close in time. For this reason and because it is a simpler
model, we selected m2 as our final model. This model includes a
different realization of a spatial correlation structure every year.
The model ran for less than 6 min on our platform. Inference,
posterior means, and simulations of fitting model m2 with a zero-
inflated negative binomial (Type 2) model are presented below.
Additional details on the structure of this final model can be
found in Appendix A.

Inference and prediction
Results for all parameters are shown in Table 4 and Fig. 4. Du-

ration of the hauls (soak time) had no significant effect. The num-
ber of gillnet panels was positively correlated with the amount of

bycatch. For every 10 panels, the expected bycatch increased by
approximately 30%. Total halibut catch was negatively correlated,
such that higher expected bycatch was associated with hauls
where less Greenland halibut was captured. Shallower waters
(<1000 m) were associated with higher bycatch, whereas deeper
waters (>1000 m) were associated with less bycatch; however, the
credible intervals were large (Fig. 4). The spatial correlation range

Table 3. DIC values for all models tested.

m0 m1 m2 m3a m3b m4 m5a m5b

Poisson 2630.46 1400.51 1171.36 1176.61 1177.74 1144.19 1139.26 1143.51
zpoisson0 1678.52 1394.45 1375.65 1380.46 1376.68 1376.66 1370.33 1368.60
zpoisson1 1665.22 1321.45 1178.56 1180.23 1180.35 1151.52 1153.06 1137.73
zpoisson2 1859.05 1352.43 1186.43 1189.52 1187.79 1160.64 1165.65 NA
nbinom 1442.40 1297.25 1182.62 1183.76 1181.94 1149.13 1157.12 1163.13
znbinom0 1484.98 1415.29 1389.23 1391.14 1390.26 1385.27 1388.60 1400.54
znbinom1 1442.79 1298.10 1185.19 1186.59 1184.92 1154.65 1160.51 1168.08
znbinom2 1448.39 1292.72 1172.73 1174.23 1173.77 1153.38 1159.47 1168.11

Note: Poisson and negative binomial with 0, 1, 2 are referring to the zero-inflated types. Note that model m5b with zero-inflated
Poisson 2 had a very large DIC suggesting that the model was inappropriate (NA).

Fig. 3. Model evaluation and selection. Shown are deviance
information criterion (DIC) and mean squared error (MSE) boxplots
under different likelihood families and spatiotemporal structures,
considering different samples of the data. Grey shades refer to m2
(dark grey), m4 (medium grey), and m5 (light grey) models. Note
that m5 refers to the m5a model.

Table 4. Posterior estimates (mean and 95% credibility
interval) of model parameters with negative binomial
zero-inflated Type 2 likelihood and m2 spatiotemporal
structure.

Parameters Mean Q 0.025 Q 0.975

Duration (hours and
decimal minutes)

0.0053 −0.0170 0.0275

Number of gillnet panel 0.0271 0.0100 0.0446
Total halibut catch (t) −0.1023 −0.1814 −0.0250
n 2.0316 0.9754 3.2489
 0.7557 0.3753 1.1876
Nominal range (km) 174.7362 75.2938 291.5277
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(nominal range) was 175 km with 95% credible interval (75, 292).
The posterior mean of the overdispersion parameter (n) was 2.03
and the 95% credible interval was (0.98, 3.25). Since this overdis-
persion parameter was significantly greater than zero, we can
conclude that there was evidence that bycatch was clustered. The
posterior mean of  was 0.76 with 95% credible interval (0.4, 1.19).
This indicated that the extra probability of zero was also signifi-
cantly dependent on the linear predictor (i.e., greater values of the
linear predictor resulted in less zeros).

Predicted versus observed bycatch of Greenland shark are
shown in Fig. 5. The model was able to predict with more accuracy
small to medium bycatch events (1–10 sharks per haul) but under-

estimated rare catch of large numbers of sharks (>20 sharks). This
is expected since the zero-inflated negative binomial distribution
is a generalization of the Poisson distribution, which assumes a
variance equal to the mean, such that larger means are associated
with larger errors. The mean and standard deviation of the yearly
spatial random field are shown in Fig. 6. The final model included
a different realization of the GRF every year, and accordingly, the

Fig. 4. Mean and the 2.5% and 97.5% quantiles for the posterior
distribution of the bathymetry smoothed regression effect.

Fig. 5. Observed versus predicted Greenland shark bycatch (counts)
of the final model, including a negative binomial zero-inflated
Type 2 likelihood and m2 spatiotemporal structure.

Fig. 6. Summary of the spatial random effect (Gaussian random
field) every year included in the final model with negative binomial
zero-inflated Type 2 likelihood and m2 spatiotemporal structure. For
the coloured version of this figure, refer to the Web site at http://
www.nrcresearchpress.com/doi/full/10.1139/cjfas-2014-0159.
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spatial effects differ from year to year. The southeastern part of
Baffin Bay has always been negatively correlated with Greenland
shark bycatch, while the waters near the coast (fished in 2009,
2011) and the northeastern fishing ground (fished in 2010, 2011)
were positively correlated with Greenland shark bycatch. Stan-
dard deviation patterns for the spatial random field are driven by
the amount of information; there is reduced uncertainty where
fishing occurred. Prediction of bycatch risk (expected mean
counts) of Greenland shark is shown in Fig. 7. Each year is differ-
ent, but high levels of bycatch remain the same throughout the
year (i.e., no month effect). Shallower waters observed in 2011
and the northernmost area in 2011 were associated with nearly
100 times higher bycatch risk, calculated as the exponential dif-
ferences between the mean linear predictor values of these re-
gions: exp[3.1 – (–1.5)].

Discussion
The objective of this study was to detail a computationally effi-

cient and statistically powerful approach to analyze spatially ex-
plicit bycatch data and provide an example of its application using
the case study of Greenland shark bycatch in Canadian gillnet
fisheries in Baffin Bay. The first part of this discussion is con-
cerned with the biological results and management applications,
while the second part focuses on the model and modelling ap-
proach and future applications to bycatch studies.

Our results provide novel insight into the pattern of Greenland
shark bycatch in gillnet fisheries. There is evidence that fishing
locations less than 175 km apart are spatially correlated, hence

sharing similar underlying processes (e.g., oceanographical, bio-
logical, fisheries). In our case, most of the fishing clusters are
spatially dependent, with the exception of the southernmost and
northernmost fishing clusters. This suggests that spatially explicit
bycatch management could potentially be considered for these
two regions. Greenland shark bycatch patterns are distinct from
year to year, but hotspots remain the same for the fishing season.
Given that the fishing season is currently short, limited by the
ice-free season during the summer months, it is sensible that
bycatch hotspots remain constant throughout the year. Maps
show clear evidence of bycatch hotspots (100 times higher risk),
particularly in shallower areas in coastal fjords near Broughton
Island as well as to the northeast of Baffin Bay. Some of these
coastal areas (Scott Inlet and Sam Ford Trough) may be nursery
grounds for the species (N. Hussey, unpublished data), which may
explain the higher incidence of bycatch in these areas. The north-
east hotspot, on the other end, appeared to be associated with
larger (>200 kg) individuals (A.C. Godin, unpublished data),
which were present across a broad geographic area in the region
(Campana et al. 2013). The northeast hotspot was only present in
2011, although was fished as well in 2009. This area may be of
some biological importance to the species, but future bycatch
monitoring and tracking studies are required here. Greenland
shark bycatch is clustered; where bycatch occurs, it is more likely
to catch more than one shark in the same haul, which supports
recent tracking data suggesting that Greenland sharks have
schooling behavior (N. Hussey, unpublished data). Note that we
assume the count of a single animal in hauls with observed

Fig. 7. Simulated posterior means of the relative risk of Greenland shark bycatch (counts) in the Baffin Bay Greenland halibut gillnet fishery
for the years 2008–2011. For the coloured version of this figure, refer to the Web site at http://www.nrcresearchpress.com/doi/full/10.1139/
cjfas-2014-0159.
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bycatch mass but missing count information, such that this
“clustering” parameter is most likely larger than estimated.

Given the increasing commercial fishing interest in the region
(Christiansen et al. 2014) and the recent expansion of gillnet fish-
eries, and high postrelease mortality associated with gillnets
(usually >70%; e.g., Manire et al. 2001; Thorpe and Frierson 2009),
precautionary management that aims at minimizing bycatch of
Greenland shark is timely. Our modelling approach allows fore-
casting of bycatch patterns on a year-by-year basis at a high spatial
resolution. In our case study, hauls set in shallower waters, with
more gillnet panels, and less halibut yield resulted in more shark
bycatch. Hence, sensible bycatch management options could be to
limit fishing in hotspots (e.g., using time–area closure or spatially
explicit discard quotas), set a maximum number of gillnet panels
per haul, or limit fishing to deep waters (>1000 m). The relation-
ship with low halibut yield associated with higher shark bycatch
is less intuitive. Greenland halibut may display some avoidance
behaviors when confronted with higher abundance of predators,
but more likely, habitat conditions along the Baffin coast (e.g.,
temperature, salinity) are not as favourable for Greenland halibut
as they are for Greenland sharks. The above is by no means an
exhaustive list of mitigation options, but highlights those that
can be directly inferred from our model results. We caution the
readers that the analysis is based on a limited dataset with only
4 replicated years. The data were statistically challenging with
overdispersion, zero-inflation, and discontinuous temporal and
spatial domains (i.e., patchy fishing pattern), and not all fishing
grounds were fished every year. Our case study was not attempt-
ing to describe the full cost–benefit of bycatch mitigations, but
rather to present an effective modelling scheme for inference and
predictions, which could eventually be used to quantitatively as-
sess the effect of spatially explicit management scenarios.

Our analysis captures the variations in fishing effort as well as
the correlation with bathymetry and fishery variables, in addition
to the spatiotemporal random effect. This spatiotemporal random
field was necessary to rigorously capture the heterogeneity of
Greenland shark bycatch. In general, bycatch studies always find
that spatial and temporal factors are very influential factors for
bycatch distribution, while other factors are of lesser importance
(e.g., Megalofonou et al. 2009; Winter et al. 2011). Hotspots are
sensitive to the structure of the data; Viana et al. (2012) showed
that omitting the hierarchical and spatial and temporal structure
in the modelling pattern of discards in the Irish Sea greatly affects
the ability to characterize hotspots. This strongly indicates that
there is a need to better incorporate space (and time) within the
modelling scheme when analyzing bycatch data. However, there
has been a slow progress in this area, most likely due to the
unique difficulties arising from the spatial structure of fisheries
data and the large computational burden of fitting complex spa-
tiotemporal models.

The proposed Bayesian hierarchical spatiotemporal models are
extremely powerful and flexible, specifically when the focus of
the study is to quantify the spatial magnitude and uncertainty of
this process. This is because the latent field is explicitly specified
in the hierarchical model, such that information can be directly
extracted from the model. To our knowledge, no applied bycatch
studies to date have included such random processes to better
capture the spatial and temporal correlation in the data (but see
Sims et al. 2008; Viana et al. 2012). This is somewhat surprising
considering the fact that the use of GRFs is very popular in the
field of epidemiology (Best et al. 2005), where the research interest
is analogous to bycatch studies: describing the variation of a bio-
logical process over space and time.

However, it is our hope that INLA, SPDE, and their R interface
will allow fisheries bycatch scientists to explore these sophisti-
cated models, which can now be more easily fitted. INLA avoids
the vast computational demands of MCMC methods, and SPDE
directly models georeferenced data rather than gridding the data

first, which necessarily results in a substantial loss of informa-
tion. Moreover, probability maps can easily be obtained from the
posterior distribution, and results are more intuitive and inter-
pretable (i.e., the probability is explicit) for nonstatisticians than
p values (Wade 2000). Unfortunately, many fisheries receive very
little observer coverage, mostly because of the expense associated
with such programs. Hence, observer-based bycatch datasets are
often of poor quality, and maps of raw bycatch rates can be mis-
leading (Sims et al. 2008). In such cases, it is especially important
to include the hierarchical structure and spatiotemporal hetero-
geneity to better estimate total bycatch and hotspot locations for
the fleet of interest. The framework we developed here allows for
this and can be extended to complex situation where multispecies
bycatch occurrences are of interest (Sims et al. 2008). Moreover,
since the computational cost is low and time constraints not an
issue, scientists can now simulate a large number of cost–benefit
scenarios with which to investigate best management options.

R-INLA is continuously evolving, greatly extending the scope of
models available to applied scientists. These methods have now
been applied in health sciences (Bessell et al. 2010; Li et al. 2012;
Musenge et al. 2012; Wilking et al. 2012), climate research
(Cameletti et al. 2012), ecology (Johnson et al. 2011; Haas et al. 2011;
Holand et al. 2013; Illian et al. 2013), and recently in marine ecol-
ogy research (Muñoz et al. 2012). The package interface resembles
the glm function in R, such that scientists already familiar with
these common tools should find it straightforward to use R-INLA.
An advantage of the Bayesian approach is that prior knowledge
can be incorporated into the model to get more precise posterior
distributions. Instead of using noninformative priors (default
priors in R-INLA), user-friendly commands for prior specificity are
currently undergoing development (H. Rue, personal communica-
tion). Moreover, there is great interest in bycatch studies in com-
bining datasets from different sources (e.g., oceanographic data)
to better predict high incidental catch. Each subset of data may be
described by a different family of distributions. Fitting models
with different likelihoods is nearly impossible with most popular
R packages, but is implemented in R-INLA. See Martins et al. (2013)
for a complete overview of INLA’s new features.

The models that we have proposed here are not yet widely used
in fisheries and aquatic sciences. To this end, we have demon-
strated the merits of using Bayesian hierarchical spatiotemporal
models, for bycatch studies in particular, but have gone further
to present an effective way of fully implementing these models
(R-INLA). Bycatch studies tend to have a strong ecological focus,
seeking insight into the causal drivers of bycatch frequency and
spatial distribution. However, increasing demand for mapped
products for fisheries spatial planning is requiring scientists to
look into new statistical techniques that can explicitly include the
inherent uncertainties associated with the observations, sam-
pling, models, and parameters, such that accurate predictions of
bycatch can be obtained and included in decision-making. Under
a Bayesian hierarchical model, all uncertainties (e.g., resulting
from sampling bias and uncertainty due to the variability across
space (and time)) are incorporated, and as such it is straightfor-
ward to obtain posterior predictive probability distributions for
nonsampled areas as demonstrated in our case study. By making
available both the data and the code necessary to implement the
models for our particular application, we hope to facilitate the
uptake of these powerful approaches by marine scientists.
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Appendix A

Model
In the generalized linear model (GLM) framework, we define a

link function that maps the mean of the response to the linear
predictor. For example, under the assumption that the response
variable has a negative binomial (NB) distribution and that the
bycatch at location s at time t is equal to k with dispersion param-
eter n, then we can write P[Y(s, t) = k] as

NB[k, n, 
(s, t)] �
�(k � n)

�(n)�(k � 1)

(s, t)[1 � 
(s, t)]

The mean of the above distribution, ��s, t� � n
1�
�s, t�


�s, t�
, is linked to

the linear predictor �(s, t) by �(s, t) = exp[�(s, t)], where

�(s, t) � X(s, t)� � f(s, t)

Note that in the above expression, X(s, t) is the design matrix
with p fixed covariates, � = (�0, …, �p) is the regression coefficients
vector, and f(s, t) introduces the spatiotemporal structure via ran-
dom effects by considering a Gaussian random field (that is spa-
tially and temporally correlated) as per Cameletti et al. (2012). To
proceed, we consider f(s, t) to be a realization of a continuously
indexed spatial process (random field) changing in time denoted by

{ f(s, t) : (s, t) � D � �2 × �}

These realizations are used to make inference about the process
and to predict it at desired locations. Usually, we deal with a Gaussian
field (GF) that is completely specified by its mean and spatiotemporal
covariance function cov�f�s, t�, f�s ′, t ′�� � �2cov��s, t�, �s ′, t ′��, defined
for each (s, t) and (s ′, t ′) in �2 × �. Unfortunately, implementation
of a GF suffers from the so-called “big n problem” because it re-
quires the factorization of the covariance matrix to compute the
likelihood (see Diggle and Ribeiro 2007); this arises particularly
with large datasets in space and time. One solution is to represent
a GF as a discretely indexed random process (i.e., a Gaussian
Markov random field, GMRF; see Rue and Held 2005). This pro-
posal is based on the work of Lindgren et al. (2011), where an
explicit link between GFs and GMRFs is proven through the use of
stochastic partial differential equations (SPDE). This is the ap-
proach taken here.

By assuming a zero-inflated negative binomial distribution rather
than a standard negative binomial distribution, we are allowing
for additional probability of Y(s, t) = 0. For example, under the
Type 2 formulation, we have

P[Y(s, t) � k] � p(s, t)Ik�0 � [1 � p(s, t)] × NB�k, n, 
(s, t)]

where p(s, t) is the extra probability added to the negative bino-
mial for k = 0 (a similar relationship exists between the Poisson
and zero-inflated Poisson distribution). The extra probability of
zero, p(s, t), depends on the linear predictor �(s, t) (i.e., the extra
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probability depends on the covariates and on the spatiotemporal
random effect). That is

p(s, t) � 1 � (exp[�(s, t)]/{1 � exp [�(s, t)]})

This means that the probability of zero bycatch at location s at
time t is inversely proportional to the linear predictor �(s, t),
which makes sense because under the negative binomial distribu-
tion, for example, we have �(s, t) = exp[�(s, t)] (i.e., �(s, t) is pro-
portional to the expected number of sharks that were recorded as
bycatch). We also have �(s, t) = exp[�(s, t)]/{1 + exp[�(s, t)]} propor-
tional to �(s, t), and writing this in one equation, we arrive at

P[Y(s, t) � k] � [1 � �(s, t)]k�0 � [�(s, t)] × NB[k, n, 
(s, t)]

The parameter  can be thought of as a hyperparameter that con-
trols both the impact of the linear predictor on the extra probability
at zero as well as that for the positive counts. When  = 0 we have
�(s, t) = 1 and simply P[Y(s, t) = k] = NB[k, n, 
(s, t)], namely, no extra
probability at zero. Because �(s, t) � (0, 1) and  > 0 if  increases,
�(s, t) also increases and the extra probability of zero decreases.

Priors
We used the default priors and hyperparameters currently im-

plemented in R-INLA. For further information, refer to the R-INLA
documentation available on the website (http://www.r-inla.org).
Note that this is an active area of research for the R-INLA team.

For the overdispersion parameter n (size), represented as log(n),
the prior is a loggamma(1, 1). For the  parameter on the Type 2
zero-inflated model, we assume N(0.693, 1) for log().

Every components of the latent field � = {�0, �, f} have priors.
For the smooth function of bathymetry, we assumed a random
walk of order one, which is defined in terms of a Gaussian distri-
bution N(0, �1R1), where R1 is the (fixed and known) structure
matrix, and �1 is the precision parameter. To model the spatial
correlation, we assume a spatial Matérn correlation using the
SPDE approach, with parameters 
1 = log(�) and 
2 = log(�) and
priors defined in Lindgren and Rue (2013).

The SPDE framework allows the easy linkage of different GRFs
in time and in this way develop a dynamic model where the spa-
tial field evolves according to time-varying processes, for exam-
ple, an autoregressive process. For these dynamic models (i.e.,
m3a, m3b, m5a, and m5b), we also had an additional correlation

parameter � for time, log�1��
1���, with a Gaussian prior.

Table A1. Summary of the default
priors used in the model tested.

log(n) loggamma(1, 1)
log() N(0.693, 1)
�0 N(0, ∞)
�j, j = 1, 2, 3 N(0, 1/0.001)
�1 Gamma(1, 0.00005)

1 N(0, 10)

2 N(0, 1)

log�1��
1��� N(0, 0.15)
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Abstract
Spatial inequalities in old-age survival exist in Portugal and

might be associated with factors pertaining to three distinct
domains: socioeconomic, physical environmental and healthcare.
We evaluated the contribution of these factors on the old-age sur-
vival across Portuguese municipalities deriving a surrogate mea-
sure of life expectancy, a 10-year survival rate that expresses the

proportion of the population aged 75-84 years old who reached
85-94. As covariates we used two internationally comparable mul-
tivariate indexes: the European deprivation index and the multiple
physical environmental deprivation index. A national index was
developed to evaluate the access to healthcare. Smoothed rates
and odds ratios (OR) were estimated using Bayesian spatial mod-
els. Socioeconomic deprivation was found to be the most relevant
factor influencing old-age survival in Portugal [women: least
deprived areas OR=1.132(1.064-1.207); men OR=1.044(1.001-
1.094)] and explained a sizable amount of the spatial variance in
survival, especially among women. Access to healthcare was asso-
ciated with old-age survival in the univariable model only; results
lost significance after adjustment for socioeconomic circum-
stances [women: higher access to healthcare OR=1.020(0.973-
1.072); men OR=1.021(0.989-1.060)]. Physical environmental
deprivation was unrelated with old-age survival. In conclusion,
socioeconomic deprivation was the most important determinant in
explaining spatial disparities in old-age survival in Portugal,
which indicates that policy makers should direct their efforts to
tackle socioeconomic differentials between regions. 

Introduction
In high-income countries, premature mortality has plateaued

at very low levels, and, consequently, old-age survival is now the
mechanism that regulates life-expectancy (Rossi et al., 2013).
Old-age survival is then a good general indicator of population
health and development (Huisman et al., 2004). Although overall
mortality variation decreased, survivors have become increasingly
heterogeneous with respect to mortality risk, which suggest that
mortality inequalities are shifting to older ages as survival in early
life improves (Huisman, et al., 2004; Engelman et al., 2010).

Despite being a relatively small country, spatial inequalities
have been identified in Portugal (Santana, 2015), particularly
regarding cardiovascular disease (Ferreira-Pinto et al., 2012),
fractures (de Pina et al., 2008), cancer (Alves et al., 2016), suicide
(Santana et al., 2015a), tuberculosis (Apolinário et al., 2017) and
all-cause mortality (Santana et al., 2015b). Moreover, recently,
important spatial inequalities in the distribution of old-age sur-
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vival have been revealed (Ribeiro et al., 2016a, 2016b). A myriad
of factors can account for the spatial inequalities in old-age sur-
vival that include a complex network of factors of different natures
affects population health over the time (Ribeiro, et al., 2016b).

Socioeconomic factors may play an important role in explain-
ing these spatial differentials, as the association between socioeco-
nomic position and health is one of the oldest and most solid find-
ings in public health (Mackenbach et al., 2008). However, diverse
studies have shown that in southern Europe the association
between health and socioeconomic deprivation tends to be rather
modest compared to western Europe (Mackenbach, et al., 2008;
Gotsens et al., 2013; Borrell et al., 2014; Hoffmann et al., 2014;
Mari-Dell’Olmo et al., 2015). It is then crucial to explore the influ-
ence of other key health determinants, such as the physical envi-
ronment (the material features that surrounds population and
includes physical, chemical and biological agents external to the
human body (Porta, 2001) and access to healthcare, i.e. the ability
to obtain appropriate health services when needed (Obrist et al.,
2007). 

Regarding, physical environment, there is considerable evi-
dence that the characteristics of the physical environment con-
tribute to extend or shorten life expectancy among older adults
(Takano et al., 2002; Lv et al., 2011; Robine et al., 2012). From all
age groups, the elderly are certainly the most affected by the
impact of climate extremes (Yu et al., 2012) and air pollution (Bell
et al., 2013). It is also important to note that detrimental physical
environments are not randomly distributed. Several studies have
found that physical and socioeconomic deprivations coincide in
space (the so-called environmental injustice) (Fecht et al., 2015).
Consequently, these two items should be taken into account when
addressing health inequalities (Lee, 2002). Similarly, access to
healthcare is a vital aspect, especially at older ages, due to the
heavy burden of chronic diseases and to higher susceptibility to
infections. The likelihood of surviving beyond a certain age is cer-
tainly affected by the use of healthcare resources (Vogt and Vaupel,
2015). The importance of healthcare is patent in several European
studies, which reveals that the fast increase in old-age survival of
the past decades can be mostly attributed to improvements in
healthcare (Mackenbach et al., 2011; Peters et al., 2015; Vogt and
Vaupel, 2015).

These intricate relations between population health and socioe-
conomic, physical and healthcare factors can only be understood
with the use of theoretically sound and validated indicators that
grasp the multifactorial nature of these influences (Wills and
Briggs, 1995). Multivariate ecological indexes of socioeconomic
deprivation are becoming common place (Department for
Communities and Local Government, 2011; Guillaume et al.,
2016) as epidemiology research shifts from its traditional biomed-
ical focus to an eco-social approach. Yet, multivariate indexes
about the physical environment and access to healthcare (at least
specific to older populations) are still uncommon. Only recently
has this kind of indexes become available in Portugal. In 2016, a
multivariate index of socioeconomic deprivation was created
under robust methods and theories (Guillaume et al., 2016; Ribeiro
et al., 2017) and started to be used to study the link between depri-
vation and health outcomes at the individual level (Antunes et al.,
2016) and also at the ecological level (Ribeiro 
et al., 2016a). In 2015, a multivariate index of physical environ-
ment deprivation (MEDIx) for Portuguese municipalities was
developed using sound and internationally validated methodolo-
gies (Ribeiro et al., 2015). Significant and plausible associations

between this measure and mortality were found showing its poten-
tial to understand the role of physical environment in diverse
health outcomes. 

In this study we aimed to evaluate the role of the socioeconom-
ic, physical environmental and healthcare factors on old-age sur-
vival in Portugal. We derived a measure of old-age survival for the
278 municipalities of Portugal based on census data. As covariates,
we used evidence-based ecological indexes.

Materials and Methods

Study area
The study was conducted in Continental Portugal (which

excludes the archipelagos of Madeira and Azores) using munici-
palities as units of analysis. Municipalities are commonly the
smallest unit for health data dissemination and, apart from the
large urban areas, they tend to be homogeneous in terms of social
and economic profile. Two hundred and seventy eight municipali-
ties exist in Continental Portugal with an average population of
36,143 inhabitants in 2011.

Old age survival
Because life expectancy and mortality data in old ages was not

disclosed for municipalities, we derived a measure of old-age sur-
vival that expresses the probability of the people aged 75-84 years
to survive an additional ten years, i.e. surpass the average life
expectancy (Ribeiro et al., 2016b):

                                                                                                 

                                                                       
Eq. 1

where ri is the ten-year survival rate, i(=1,…,278) the area, y the
population aged 85-94 years old in 2011 and n the population aged
75-84 years old ten years before (in 2001). This and similar indi-
cators are straightforward and understandable metrics to estimate
survival at advanced ages in small areas, which solely require a
time series of population census data (Poulain et al., 2004;
Magnolfi et al., 2007; Ribeiro et al., 2016b). 

Covariates

Socioeconomic deprivation
The European Deprivation Index (EDI) was used to classify

small areas according to their level of socioeconomic deprivation.
It was constructed in three steps using both individual and area
level census data as has been detailed elsewhere (Guillaume et al.,
2016). In brief: i) construction of an individual level indicator of
deprivation based on the European Union Statistics on Income and
Living Conditions (EU-SILC) information, which is available at
http://ec.europa.eu/eurostat/web/microdata/european-union-statis-
tics-on-income-and-living-conditions; ii) identification of vari-
ables available both at the individual level (EU-SILC) and at the
area level (2001 national population census); and iii) determina-
tion, at the individual level, whether the set of area level variables
from the census selected at step 2 were associated with the indica-
tors of individual deprivation created in step 1.

The associated census variables were then included in the EDI
formula, whose final score was based upon the weighted sum of
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these variables. The weights were the regression coefficients mea-
suring the association between the indicator of individual depriva-
tion and the variables from the census that were also available at
the individual level identified in step 2. The score for Portugal was
based upon the weighted sum of the following variables expressed
as percent: overcrowded households; households with no bath or
shower; household with no indoor flushing toilets; households
occupied by non-owners; women aged ≥65; individuals with low
education level; individuals in low income occupations; and indi-
viduals unemployed as discussed by Ribeiro et al. (2017).

The EDI index was normalised and then classified into ten
classes (C1 – the least deprived to C10 – the most). Cut-offs for
these theoretical deciles were defined based on standard deviations
from the overall mean and customised so that the classes included
a more even number of observations (cut-offs = -1.28, -0.84, -0.52,
-0.25, 0, 0.25, 0.52, 0.84, and 1.28). This approach avoids the well-
known problems of using empirical quintiles, which assume homo-
geneity of risk within groups (Bennette and Vickers, 2012). The
geographic EDI score distribution across Portuguese municipali-
ties is shown in Figure 1 (classes correspond to quintiles instead of
deciles to facilitate visualisation).

Access to healthcare
Some measures of access to healthcare have been developed in

Portugal, but these were for the overall population (not exclusively

for the elderly) and/or they only accounted for hospital services
(Polzin et al., 2014; Santana, 2015). Therefore we derived an index
of access to healthcare for the older population starting by retriev-
ing all datasets on healthcare availability and accessibility (the two
domains of healthcare access for which data are available).
Variables were obtained at the municipality level for the year 2001
(whenever possible) and for Continental Portugal from two data
sources: Hospitals and Primary Care Centers Surveys from
Instituto Nacional de Estatística (INE) - National Institute of
Statistics (INE, 2001a, 2001b) and Social Map from the Ministry
of Solidarity, Employment and Social Security (Carta social,
2008). From 49 datasets, those with too many missing/censored
and zero values were discharged (n=16 datasets selected).

We calculated the rates to express the population exposure to
the variables created (n=16), which were then characterised and
transformed to become more normally distributed. Subsequently,
bivariate correlations were computed to identify variables exces-
sively correlated and therefore discharged (n=10 variables select-
ed). Finally, principal component analysis was run to derivate a
summary measure expressing access to healthcare in each munici-
pality. The three principal components that explained 72% of the
variability in the latent variable access to healthcare were as fol-
lows. First, availability of long-term care and social support facil-
ities including the capacities of the day-care centres; the nursing

                   Article

Figure 1. Spatial distribution of socioeconomic deprivation, access to healthcare and physical environmental deprivation in Continental
Portugal.
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homes; and home care. Second, availability and geographical
accessibility to healthcare facilities - population weighted mean
distance to public hospitals (maternities and paediatric hospitals
excluded) computed using the Network Analyst extension of
ArcGIS 10.4.1 (ESRI, Redlands, CA, USA) and a street network
dataset provided courtesy of ESRI; primary care centres including
extensions; pharmacies; and mobile pharmacy posts. Third, avail-
ability of health professionals – medical doctors by place of resi-
dence; nurses by place of work; dentists by place of residence; and
pharmacists by place of work.

For each municipality, i, each component score was multiplied
by the proportion of the variation explained.

HCA scorei = 0.25340 * 1st componenti + 0.23857 * 2nd compo-
nenti + 0.22924 * 3rd componenti                                    (Eq. 2)

Similarly to socioeconomic deprivation, after standardisation,
the index was categorised into 10 classes based on theoretical
deciles. The geographic distribution of the index across Portuguese
municipalities is shown in Figure 1 (again classes correspond to
quintiles).

Physical environmental deprivation
The measure of multiple physical environmental deprivation

(PT-MEDIx) was built at the municipality level using data from the
years 2001 and 2011 and developed in four stages fully described
elsewhere (Ribeiro et al., 2015). The PT-MEDIx covered five
dimensions of the physical environment: air pollution (particulate
matter, nitrogen dioxide, carbon monoxide); climate (temperature);
drinking water quality (trihalomethanes and nitrates); green space
availability; and industry proximity. Municipalities in the highest
quintile of exposure received a score of +1 for harmful factors and
-1 for beneficial factors. The PT-MEDIx of each municipality
equalled the sum of these scores and ranged from -1 (the least envi-
ronmental deprivation) to +4 (the most). We treated all factors as
equal contributors to environmental deprivation because any
weighting would be arbitrary without robust evidence (Richardson
et al., 2010; Pearce et al., 2011). The geographic distribution of
PT-MEDIx across the Portuguese municipalities is shown in
Figure 1.

Statistical model
Bayesian Hierarchical Spatial models were used to estimate

the effect of each covariate in old-age survival. We assumed that
the response variable, number of survivors in each area i and gen-
der j would (Yij) follow a binomial distribution, where pij is an
unknown survival rate and nij the population aged 75-84 years old
ten years before:

Yij~Bin (nij, pij)                                                                  (Eq. 3)

The logit of the survival rate is modelled considering gender
and the interaction between the covariates and gender xij and area:

logit(pij) = ηij = genderj + fj (xi) + si                              (Eq. 4.1)

where ηij is the linear predictor, genderj an intercept specific for
each gender, fj(xi) the gender-specific effect of each covariate
(which assumes the value xi for the area i), and si the area-specific
effect. The function fi assumes a nonlinear effect of the covari-

ates, which is modelled as a first order random-walk prior over
the covariates’ classes, i.e. a normal distribution, whose mean at
each class is an average over the neighbouring classes (Martino
and Rue, 2009). As xi was categorised into classes, we can sim-
plify fj (xi) into elj, which denotes the effect of covariate class l for
gender j.

The area-specific effect si was modelled considering a Besag,
York and Mollie’s (BYM) model (Besag et al., 1991) with a
parametrisation as suggested by Dean and colleagues (2001):

                         
(Eq. 4.2)

where υi is the structured effect and νi the unstructured effect. The
υi effect was scaled in order to make the model more intuitive and
interpretable, so that φ expresses the proportion of the spatial effect
due to the structured part and 1/τ is the marginal variance of sj. A
penalised complexity prior was considered.

Considering the model defined by equations 3 and 4.1, the
exponential of the gender main effect is the ratio between the
men’s odds of survival and women’s, i.e. the gender odds ratio
(OR). The exponential of elj is the ratio between the odds of sur-
vival of the covariate class  and gender  and the overall odds for
the entire population – the covariate and gender-specific OR. For
example, an OR of 1.15 in a certain covariate class (e.g., the least
socioeconomically deprived) and gender (e.g., women) means that
for that gender and covariate class the odds of survival is 15%
higher than the overall odds survival of the entire population of
that gender. OR and 95% credible intervals (95% CrI) were
derived from their posterior means and quantiles. An OR would be
considered significantly higher or lower if its 95% CrI does not
include the value 1. Posterior distributions were obtained using the
Integrated Nested Laplace Approximation (INLA), which was
implemented in the R INLA library (Rue et al., 2009).

The model produced by equation 4.1 was our final, but we
started with a simple model, where we only included the gender-
specific intercept and the spatial effect  and then introduced each
covariate successively. The order of entering each covariate was
based on the strength and significance of associations observed in
the univariable models. These models were also run to assess the
unadjusted influence of each covariate. Three measures of good-
ness of fit, Deviance Information Criteria (DIC), Watanabe-Akaike
information criterion (WAIC) and Conditional Predictive Ordinate,
(CPO) were used to compare models. The relative reduction in the
variance of spatial effect (τ) was also evaluated to ascertain to what
extent covariates contributed to explaining the spatial variation of
old-age survival. The presence of interactions between covariates
was also tested. Finally, we did explore the correlation between the
covariates by computing the Pearson’s correlation coefficient (r). 

Results
On average, the old-age survival rates were 32.3% (maxi-

mum=39.7; minimum=27.5) among men and 43.7% (67.2; 34.5)
among women. The presence of spatial inequalities in the distribu-
tion of survival is depicted in Figure 2, showing a nearly two-fold
difference between areas. In general terms, higher survival rates
were concentrated in the North and Central coasts of the country
and in the urban municipalities, whereas the lowest were found
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concentrated in the South and in the northern inland.
In Figure 3, the survival rates are represented as a function of

each covariate. In general, survival rates decreased with socioeco-
nomic deprivation in both genders. On the other hand, survival
rates neither seemed to increase nor decrease in a clear fashion
according to healthcare access and physical environmental depri-
vation. We found a significant but moderate correlation between
the covariates: physical environmental deprivation was negatively
associated with socioeconomic deprivation (r= -0.288, P<0.001)
and access to healthcare was also negatively associated with
socioeconomic deprivation (r= -0.344, P<0.001). 

The results obtained with the univariable and multivariable
models are shown in Table 1 (univariable), Table 2 (multivariable,
men) and Table 3 (multivariable, women). Among women, in the
multivariable model, a rather linear association between old-age
survival and socioeconomic deprivation was observed and this
association persisted even after the inclusion of the remaining
covariates [least deprived areas OR=1.132 (1.064-1.207)] (Table
3). In the null model (no covariates, only spatial effect), the percent
variability attributed to the spatial random effect was 65%. We
then added one variable each time to assess its impact on old-age
survival. The variance attributed to the spatial effect was reduced
by 31.4% after including socioeconomic deprivation in the model.
The inclusion of the remaining variables did neither cause much
change in the adjustment parameters nor in the variance explained
by the spatial effect. After adjustment for socioeconomic depriva-
tion the association with healthcare access, which was slightly

associated with survival in the univariable model (Table 1), was no
longer significantly associated with survival [lowest access to
healthcare OR=0.961 (0.901-1.009)]. Similarly, no significant
association was found between survival and physical environmen-
tal deprivation and no interaction effects were observed between
covariates. For men we reached similar results although the mag-
nitude of the associations was considerably smaller.

Socioeconomic deprivation was significantly associated with
survival among men [OR=1.044 (1.001-1.094)] (Table 2). In the
null model (no covariates, only spatial effect), the percent variabil-
ity attributed to the spatial random effect was 51%. Compared to
what was observed for women, the reduction of spatial variance
caused by the introduction of socioeconomic deprivation in men
was comparatively smaller (13.1% vs 31.4% in women). As with
women, neither access to healthcare nor environmental deprivation
were significantly associated with old age survival for men.

Discussion
In this study we aimed at investigating the contribution of three

important multidimensional determinants on old-age survival in
Portuguese municipalities. We found that socioeconomic depriva-
tion was the most relevant factor, explaining a considerable share
of the spatial variance in old-age survival, especially among
women. Despite evidence showing that physical environment and
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Figure 2. Spatial distribution of old-age survival rates posterior means in Continental Portugal. 
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healthcare do affect older people’s health (Takano et al., 2002; Lv
et al., 2011; Robine et al., 2012; Vogt and Vaupel, 2015), those fac-
tors did not play such a major influence as socioeconomic depriva-
tion for older people’s chances of survival.

To date very few studies have compared the relative impor-
tance of factors pertaining to different domains, such as social,

economic and physical environmental ones (Domínguez-Berjón et
al., 2010; Ferreira-Pinto et al., 2012; Hood et al., 2016). These
studies have used indicators (outcomes and covariates) that are not
directly comparable to ours, but they all acknowledged that socioe-
conomic deprivation had the strongest effect. The prominent role
of socioeconomic deprivation in shaping a population’s health has
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Figure 3. Old-age survival rates posterior means as a function of socioeconomic deprivation, access to healthcare and physical environ-
mental deprivation in Continental Portugal.
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been the matter of discussion for centuries and its influence is still
observed in our time. For instance, in the United Kingdom and the
United States, socioeconomic deprivation seems to explain most of
the spatial inequalities in health and life expectancy (Woods et al.,
2005; Hood et al., 2016). The latter authors report the following
relative contributions to health in the United States of socioeco-
nomic factors (47%), health behaviour (34%), clinical care (16%)
and the physical environment (3%). However, in our study the
association between old-age survival and socioeconomic depriva-
tion was significant but its contribution in explaining spatial effects
was modest, only 31% among women and 13% in men. It is plau-
sible that other factors, which we did not measure, counterbal-
anced the effects of socioeconomic deprivation (e.g., formal and
informal social and economic support).

In the city of Porto in northern Portugal, we conducted a simi-
lar study (Ribeiro et al., 2016a), where we analysed the impact of
the socioeconomic deprivation, built and physical environment on
old-age survival across the neighbourhoods of the city. In this
study, we found that more than 41% of the differences between
neighbourhoods could be attributed to the socioeconomic charac-
teristics of the neighbourhoods. We also found that the measures
that described the physical environmental characteristics (built and
biogeophysical) of the neighbourhoods were not associated with
old-age survival at all. In other words, socioeconomic factors are
also the biggest drivers of the spatial differentials in old-age sur-
vival in Porto. Although the associations were similar to those we
found in the present study that entails the entire country, it is
important to point out that the percent of variability explained by
socioeconomic deprivation was considerably lower in Portugal as
a whole (31% in women and 13% in men) than in Porto. This is
likely a consequence of using municipalities as unit of analysis in
the present study. These are relatively large areas that might not
suffice to detect and capture spatial inequalities and associations
whenever there is considerable within-area variability in outcomes
and covariates. 

Our current study is ecological in nature and, consequently, we
could not ascertain causal relations neither the mechanism by
which socioeconomic aspects affects survival. There are numerous
theories trying to conceptualise that. One of the most relevant is
the (neo)material model, which states that most deprived people
have poorer health due to lack of material conditions at home and
in the living context (work, school, neighbourhood, region) being
particularly relevant (Skalická et al., 2009). However, our results
do not fully accord to this theory. For instance, and contrasting to
other studies (Pearce et al., 2010), we did not find socioeconomic
deprivation to be directly related to physical environmental depri-
vation expressed by us as a combination of different exposures
(green space availability, air/water pollution, climate). Indeed, we
observed the exact opposite (negative correlation, r=-0.288,
P<0.001) showing taht affluent areas had the poorest physical
environmental conditions. But, we did find evidence that health-
care is less available in more deprived areas (negative correlation,
r=-0.354, P<0.001) suggesting that some form of environmental
unfairness exists in Portugal, as observed in another national study
(Nogueira, 2010). 

Physical environment did not affect old-age survival in our
study, which was also found in the Porto study (Ribeiro et al.,
2016a). Poor physical environments were concentrated in affluent
urbanised areas (where there is a concentration of pollution
sources, such as industry and traffic) but the positive influence of
having good material resources and facilities (e.g., healthcare,

jobs, housing conditions, etc.) might conceal the detrimental
effects of living in a more hazardous environment. The absence of
an association with physical environmental aspects might also be
attributed to the mortality patterns in very old population strata;
among the oldest, the top mortality cause is cardiovascular disease
(CVD, responsible for over 40% of the deaths after the 85 years
old). In a previous work about the development of PT-MEDIX
(Ribeiro et al., 2015), we did not find a significant association
between physical environmental deprivation and CVD, but, on the
other hand, we observed a strong dose-response relation with can-
cer mortality. Therefore, the impact of physical environment might
be modest among the oldest population groups that are less affect-
ed by cancer mortality. 

Despite the evidence stating that access to healthcare play an
important role in extending life expectancy and survival
(Mackenbach et al., 2011; Peters et al., 2015; Vogt and Vaupel,
2015) we found that after controlling for socioeconomic character-
istics, access to healthcare was no longer associated with old age-
survival. Indeed a dozen of studies have found that, when com-
pared with socioeconomic factors, access to healthcare play a
much smaller role (Ferreira-Pinto et al., 2012; Kim, 2014; Kim and
Kim, 2014). Social and economic conditions adversely affect peo-
ple’s ability to access healthcare (e.g., ability to pay for travelling
and medical costs) and to understand health information (Hood 
et al., 2016), which may exert a much stronger influence than the
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Table 1. Univariable associations among old-age survival and
socioeconomic deprivation, access to healthcare and physical
environmental deprivation (men).

                            OR (95% CrI)
                                                     Men                            Women

Socioeconomic deprivation 
1*                                                    1.051 (1.008-1.101)                1.146 (1.079-1.222)
2                                                       1.042 (1.008-1.080)                1.087 (1.038-1.138)
3                                                       1.040 (1.004-1.086)                1.083 (1.031-1.142)
4                                                       1.004 (0.971-1.035)                1.029 (0.986-1.074)
5                                                       0.974 (0.935-1.007)                0.994 (0.951-1.037)
6                                                       0.991 (0.959-1.026)                0.986 (0.943-1.033)
7                                                       0.991 (0.954-1.031)                0.937 (0.884-0.986)
8                                                       0.983 (0.947-1.021)                0.925 (0.876-0.971)
9                                                       0.969 (0.931-1.005)                0.940 (0.894-0.991)
10°                                                  0.959 (0.915-1.001)                0.903 (0.850-0.955)

Access to healthcare                                                                                    
1#                                                     1.029 (0.993-1.070)                1.036 (0.981-1.094)
2                                                       1.036 (1.005-1.074)                1.055 (1.010-1.107)
3                                                       1.023 (0.995-1.056)                1.037 (0.994-1.088)
4                                                       1.010 (0.982-1.040)                1.004 (0.957-1.046)
5                                                       1.003 (0.975-1.034)                1.014 (0.971-1.065)
6                                                       0.983 (0.948-1.011)                0.986 (0.938-1.030)
7                                                       0.986 (0.957-1.014)                0.978 (0.934-1.019)
8                                                       0.982 (0.949-1.012)                0.997 (0.952-1.057)
9                                                       0.975 (0.942-1.004)                0.976 (0.934-1.023)
10§                                                   0.976 (0.937-1.012)                0.923 (0.862-0.982)

Physical environment                                                                                    
-1^                                                   0.979 (0.931-1.022)                0.960 (0.901-1.014)
0                                                       0.992 (0.961-1.023)                0.965 (0.923-1.004)
1                                                       0.974 (0.937-1.004)                0.967 (0.922-1.006)
2                                                       0.992 (0.958-1.021)                1.012 (0.974-1.055)
3                                                       1.026 (0.992-1.070)                1.042 (0.996-1.035)
4$                                                     1.039 (0.989-1.106)                1.058 (0.992-1.147)
OR, odds ratio; CrI, credible interval. *Least deprived; °most deprived; #higher; §lower; ^least environ-
mentally deprived; $most environmentally deprived. Statistically significant results are in italics.
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availability, quantity and/or geographical accessibility to health-
care (the components of healthcare access captured in our index
(Obrist et al., 2007) in the Portuguese context. 

The main limitation of this study is related with the use of
aggregated data. Scale might have influenced our results. We con-
ducted this analysis at the municipality level and this unit can have
as few as 1,830 inhabitants in Portugal or hold over 500,000 inhab-
itants, and 30% of the Portuguese population resides in municipal-
ities with >150,000 inhabitants (INE, 2016). Consequently, we
might have failed to detect important associations and inequalities.
This may also explain the different proportion of explained vari-
ability we observed in Porto (41%) compared with Portugal as a
whole (between 13 and 31%). In Porto, we had the opportunity of
using a much smaller geographical unit, which is more appropriate
for small-area studies of environment and health, since this
approach minimises within-area variation, is better to control for
potential confounding across areas and captures slight variations in
outcomes and covariates (Elliott and Savitz, 2008). However, due

to lack of high-resolution data for the entire country, we could only
use municipalities as the unit of analysis. The Modifiable Areal
Unit Problem (MAUP) is another potential source of bias. A differ-
ent arrangement of the spatial units might have yielded different
results.

Another plausible limitation was that our study was grounded
on the assumption that people have lived in the same area during
10 years. However, results from census and original research sup-
port the belief that our results are not driven by migration pat-
terns: only about 6% of the Portuguese reported to reside in anoth-
er geographical unit five years ago and, according to Tatsiramos
and colleagues (2006), migration of those aged ≥75 years is infre-
quent, especially in southern Europe (~1.0 to 1.5%). Moreover,
using data from EPIPorto cohort, a landmark epidemiological
cohort study in Portugal that has been ongoing for over 15 years
(http://ispup.up.pt/research/research-structures/cohorts/), we were
able to estimate the frequency of residential mobility in a large
Portuguese city. The cohort was constituted in 1999-2003 com-
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Table 2. Association among old-age survival and socioeconomic deprivation, access to healthcare and physical environmental depriva-
tion (men).

                                                                        Model 1                                                   Model 2                                            Model 3
                                                                   OR (95% CrI)                                         OR (95% CrI)                                   OR (95% CrI)
                                                  (socioeconomic deprivation only)                    (plus healthcare)                        (plus healthcare and
                                                                                                                                                                                     physical environment)

Socioeconomic deprivation 
1*                                                                                 1.051 (1.008-1.101)                                                1.043 (1.001-1.092)                                        1.044 (1.001-1.094)
2                                                                                   1.042 (1.008-1.080)                                                1.035 (1.001-1.073)                                        1.035 (1.001-1.073)
3                                                                                   1.040 (1.004-1.086)                                                1.034 (0.999-1.079)                                         1.033 (0.999-1.077)
4                                                                                   1.004 (0.971-1.035)                                                1.006 (0.975-1.037)                                        1.006 (0.976-1.037)
5                                                                                   0.974 (0.935-1.007)                                                0.978 (0.939-1.009)                                        0.977 (0.939-1.008)
6                                                                                   0.991 (0.959-1.026)                                                0.991 (0.960-1.023)                                        0.989 (0.957-1.020)
7                                                                                   0.991 (0.954-1.031)                                                0.991 (0.956-1.029)                                        0.989 (0.954-1.026)
8                                                                                   0.983 (0.947-1.021)                                                0.986 (0.952-1.002)                                        0.987 (0.952-1.022)
9                                                                                   0.969 (0.931-1.005)                                                0.973 (0.935-1.008)                                        0.974 (0.936-1.008)
10°                                                                              0.959 (0.915-1.001)                                                0.967 (0.922-1.008)                                        0.970 (0.926-1.011)
Access to healthcare                                                                                                                                                                                                                            
1#                                                                                                                                                                    1.020 (0.988-1.061)                                        1.021 (0.989-1.060)
2                                                                                                                                                                      1.025 (0.997-1.062)                                        1.024 (0.997-1.060)
3                                                                                                                                                                      1.016 (0.991-1.049)                                        1.016 (0.991-1.047)
4                                                                                                                                                                      1.005 (0.978-1.038)                                        1.005 (0.980-1.033)
5                                                                                                                                                                      1.003 (0.977-1.033)                                        1.002 (0.977-1.030)
6                                                                                                                                                                      0.986 (0.951-1.010)                                        0.987 (0.957-1.014)
7                                                                                                                                                                      0.989 (0.960-1.013)                                        0.988 (0.960-1.012)
8                                                                                                                                                                      0.987 (0.955-1.015)                                        0.987 (0.957-1.014)
9                                                                                                                                                                      0.983 (0.950-1.011)                                        0.984 (0.952-1.011)
10§                                                                                                                                                                  0.987 (0.949-1.022)                                        0.986 (0.950-1.021)
Physical environment                                                                                                                                                                                                                            
-1^                                                                                                                                                                                                                                           0.995 (0.950-1.039)
0                                                                                                                                                                                                                                                1.001 (0.972-1.032)
1                                                                                                                                                                                                                                                0.974 (0.938-1.004)
2                                                                                                                                                                                                                                                0.991 (0.959-1.019)
3                                                                                                                                                                                                                                                1.017 (0.985-1.058)
4$                                                                                                                                                                                                                                               1.023 (0.978-1.082)
DIC                                                                                         2268.58                                                                     2269.45                                                             2269.15
WAIC                                                                                      2263.53                                                                     2264.69                                                             2263.71
CPO                                                                                       -1066.65                                                                    -1070.99                                                            -1072.39
Reduction of spatial effect**                                             13.1                                                                           18.7                                                                    23.7
OR, odds ratio; CrI, credible interval; DIC, deviance information criteria; WAIC, Watanabe-Akaike information criterion; CPO, conditional predictive ordinate. *Least deprived; °most deprived; #higher; §lower; ^least
environmentally deprived; $most environmentally deprived; **percent reduction in the variance of the spatial effect (structured and unstructured). Statistically significant results are in italics.
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prising a representative sample of 2,485 adults (≥18 years of age)
residing in Porto municipality (Ramos et al., 2004). From wave 1
(1999-2003) to wave 2 (2005-2008) of the cohort, a 6-year period,
6.5% (n=162) of the participants changed their neighbourhood of
residence, but this percentage was significantly lower among the
75 years olds (n=4; mobility 2.0%). Furthermore, evidence sug-
gests that residential mobility is most likely to cause an underes-
timation of spatial inequalities and socioeconomic effects (Bryere
et al., 2015).

Finally, the location of nursing homes might have lower sur-
vival among their community residents, and this could have influ-
enced the analysis (Shah et al., 2013). Presence of nursing homes,
in particular in municipalities, could lead to an underestimation of
old-age survival. However, we did not find any match between the
spatial distribution of the areas of high and low survival and that of
Portuguese nursing homes. Finally, we were not able to evaluate
the role of other potentially important aspects, like social support
or certain features of the built environment, which might account
for the remaining spatial effect that our statistical model was not
able to explain. Our study has numerous strengths as well. First,

very few studies have dealt with three important determinants of
human health and survival: socioeconomic deprivation, physical
environment and access to healthcare. More importantly, we have
used robust measures that express how advantaged or disadvan-
taged small areas are in terms of socioeconomic circumstances,
physical environment and access to healthcare. These measures
were constructed based on sound theories and methods, which
allow us to be confident about the study findings. The EDI and PT-
MEDIX were built for other countries, with which data our results
are internationally comparable. Also, multivariable indexes con-
tribute to a better understanding and monitoring of multidimen-
sional phenomena as they measure the cumulative burden of health
detrimental factors at population level (Wills and Briggs, 1995;
Corvalán et al., 2000). Statistically speaking, we have used robust
spatial statistics that allowed us to account for the small number
problem and extract the true spatial pattern of old-age survival in
Portugal. Finally, we also accounted for spatial autocorrelation as
we employed a BYM framework to model the spatial effect.
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Table 3. Association among old-age survival and socioeconomic deprivation, access to healthcare, and physical environmental depriva-
tion (women).

                                                                        Model 1                                                   Model 2                                            Model 3
                                                                   OR (95% CrI)                                         OR (95% CrI)                                   OR (95% CrI)
                                                  (socioeconomic deprivation only)                    (plus healthcare)                        (plus healthcare and
                                                                                                                                                                                     physical environment)

Socioeconomic deprivation                                                                                                                                                                                                                 
1*                                                                                 1.146 (1.079-1.222)                                                1.135 (1.068-1.210)                                        1.132 (1.064-1.207)
2                                                                                   1.087 (1.038-1.138)                                                1.080 (1.032-1.131)                                        1.080 (1.032-1.129)
3                                                                                   1.083 (1.031-1.142)                                                1.074 (1.025-1.132)                                        1.072 (1.023-1.128)
4                                                                                   1.029 (0.986-1.074)                                                1.032 (0.990-1.077)                                        1.032 (0.990-1.077)
5                                                                                   0.994 (0.951-1.037)                                                0.994 (0.952-1.035)                                        0.994 (0.952-1.035)
6                                                                                   0.986 (0.943-1.033)                                                0.981 (0.939-1.026)                                        0.978 (0.937-1.022)
7                                                                                   0.937 (0.884-0.986)                                                0.940 (0.889-0.987)                                        0.941 (0.890-0.987)
8                                                                                   0.925 (0.876-0.971)                                                0.931 (0.889-0.976)                                        0.933 (0.886-0.978)
9                                                                                   0.940 (0.894-0.991)                                                0.942 (0.897-0.991)                                        0.943 (0.899-0.991)
10°                                                                              0.903 (0.850-0.955)                                                0.916 (0.862-0.969)                                        0.920 (0.866-0.973)
Access to healthcare                                                                                                                                                                                                                            
1#                                                                                                                                                                    1.020 (0.971-1.073)                                        1.020 (0.973-1.072)
2                                                                                                                                                                      1.032 (0.994-1.083)                                        1.032 (0.994-1.081)
3                                                                                                                                                                      1.021 (0.984-1.070)                                        1.020 (0.984-1.066)
4                                                                                                                                                                      0.994 (0.947-1.032)                                        0.996 (0.950-1.032)
5                                                                                                                                                                      1.014 (0.977-1.067)                                        1.011 (0.975-1.061)
6                                                                                                                                                                      0.987 (0.941-1.025)                                        0.988 (0.944-1.025)
7                                                                                                                                                                      0.979 (0.933-1.015)                                        0.980 (0.935-1.015)
8                                                                                                                                                                      1.004 (0.964-1.062)                                        1.003 (0.964-1.058)
9                                                                                                                                                                      0.993 (0.954-1.038)                                        0.992 (0.954-1.036)
10§                                                                                                                                                                  0.957 (0.896-1.008)                                        0.961 (0.901-1.009)
Physical environment                                                                                                                                                                                                                            
-1^                                                                                                                                                                                                                                           0.993 (0.945-1.041)
0                                                                                                                                                                                                                                                0.987 (0.952-1.019)
1                                                                                                                                                                                                                                                0.972 (0.928-1.006)
2                                                                                                                                                                                                                                                1.003 (0.971-1.040)
3                                                                                                                                                                                                                                                1.020 (0.985-1.067)
4$                                                                                                                                                                                                                                               1.025 (0.974-1.093)
DIC                                                                                         2481.10                                                                     2481.43                                                             2481.53
WAIC                                                                                      2471.92                                                                     2473.54                                                             2472.88
CPO                                                                                       -1252.19                                                                    -1255.65                                                            -1257.34
Reduction of spatial effect**                                             31.4                                                                           33.5                                                                    35.6
OR, odds ratio; CrI, credible interval; DIC, deviance information criteria; WAIC, Watanabe-Akaike information criterion; CPO, conditional predictive ordinate. *Least deprived; °most deprived; #higher; §lower; ^least
environmentally deprived; $most environmentally deprived; **percent reduction in the variance of the spatial effect (structured and unstructured). Statistically significant results are in italics.
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Conclusions
Important spatial inequalities in the distribution of old-age sur-

vival across Portuguese municipalities were discovered.
Socioeconomic deprivation was found to be the most important
determinant of old-age survival. However, further studies are need-
ed to identify the unaccounted factors that might explain spatial
differentials in old-age survival. Our results suggest policy makers
should direct their efforts to tackle socioeconomic differentials
between regions and guarantee equitable distribution of the health-
care resources.
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Educational work
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Chapter 7

Tutorial on SPDE models and
book chapter

In this chapter we introduce the tutorial about SPDE models in INLA and
the book chapter containing four kinds of example on modeling with INLA.

7.1 The R-INLA tutorial on SPDE models

The purpose of writing "The R-INLA tutorial on SPDE models" was to
help spread the SPDE modeling approach and to show the flexibility of its
implementation in the R-INLA package to build more complex models to
analyse data. This was in line with the idea of educating researchers and
practitioners on how to use models already developed as a kind of way to
prepare them for the more complex SPDE models to be developed. It seems
to be useful for practitioners and has become popular, with more than 10,000
downloads in 2016.

Development of this tutorial began in March, 1 2013 with a toy simulated
example and an example looking at rainfall data in the Paraná state in
Brazil. Then we started adding more complex examples to provide sample
code for doing similar analysis in published papers and others to answer
questions posted in the r-inla mailing list or privately. The case of modeling
misaligned data and hurdle Gamma were taken out from this tutorial and
published as part of the book Chapter presented in the next Section. The
current version is structured into five Chapters.

Next, we include its abstract and table of contents.
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Abstract

This tutorial will show you how to fit models that contains at least one effect specified
from an SPDE using the ‘R-INLA‘. Up to now, it can an SPDE based model can be
applied to model random effects over continuous one- or two- dimensional domains. How-
ever, the theory works for higher dimensional cases. The usual application is data whose
geographical location is explicitly considered in the analysis. This tutorial explores ’R-
INLA’ functionalities by using examples. It starts with simple models and increases in
complexity.

In Chapter 1 includes a section introducing the random field models and the Matérn
class. We illustrate some features of this class in figures. The we introduce the main re-
sults in [Lindgren et al., 2011] intuitively linking to images of the matrices involved being
computed for a illustrative small case with few spatial locations. We show how to fit a
geostatistical model for a simulated data, the toy example, covering from the mesh build-
ing, model definition, data preparation, showing results, doing predictions and considering
results from different meshes. We also show how to build a mesh considering non-convex
domains, spatial polygons objects and domains with holes or physical boundaries.

In Chapter 2 we consider three examples. We consider the daily average rainfall from
rainfall collected at 616 gauge stations in the Paraná state in Brasil over year 2011. For
this data we show a detailed analysis including code to compute geographical covariates,
smoothed regression an prediction. The second example in this Chapter consider survival
analysis for the Leukaemia dataset, analysed in [Henderson et al., 2003]. We show how to
consider the parametric Weibull case and also the non-parametric Cox proportional haz-
ard case. For this case we have the implementation internally considers a new structure
of the data in order to perform a Poisson regression. The last example in this Chapter
considers simulated data to illustrate the approach of modeling the SPDE model param-
eters by a regression which is the case of having covariates in the covariance, proposed in
[Ingebrigtsen et al., 2014].

In Chapter 3 we have a collection of examples were copy random fields to model two
or more outcomes jointly. It includes a measurement error model in order to account for
spatially structured measurement error in a covariate. A coregionalization model con-
sider the case for three outcomes were the fist outcome is in the linear predictor for
the second one and both are in the predictor for the third outcome, as proposed in
[Schimdt and Gelfand, 2003]. An example considering copying a part or the entire lin-
ear predictor from one outcome in a linear predictor to another one ends this chapter.
It shows a slight different way from the coregionalization model to jointly model three
outcomes.

The log Cox point process model is considered in Chapter 4. In this case we show how
to fit a Log-cox point process using the direct approximation for the likelihood as proposed
in [Simpson et al., 2016]. We also take the opportunity to show how to consider the joint
modeling of the process and the locations, under the preferential sampling as proposed in
[Diggle et al., 2010].

Finally, Chapter 5 presents several cases to example analysis of space-time data. We
start by an example having discrete time domain as in [Cameletti et al., 2012]. We extend
this example considering the time as continuous by considering time knots along with
temporal function basis functions for projection. We also extend the coregionalization
example for the space-time in this Chapter. The space-time model is also applied for
modeling regression coefficients in a dynamic regression example having the regression
coefficients varying over space-time. We consider the space-time version of the log-Cox
point process model for a dataset and also illustrates an approach to deal whit the case of
having a large space-time point process data.



Since this tutorial is more a collection of examples, one should start with the tuto-
rial marked as Read this first! at the tutorials link in the R-INLA web page, http:
//www.r-inla.org, more precisely at http://www.r-inla.org/examples/tutorials/

spde-tutorial-from-jss. If you are in a rush to fit a simple geostatistical model, we
made a short tutorial without the details as a vignette in the INLA. Thus one can have it
just typing vignette(SPDEhowto) for a two dimensional example or vignette(SPDE1d)

for a one dimensional example. We built a Shiny application to help one to understand
the mesh building. It depends on the shiny package. This application opens by typing
demo(mesh2d).
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7.2 Book chapter "Advanced modeling"

The purpose of this contribution was to publish two examples from an earlier
versions of the SPDE tutorial and other examples on space-time models for
areal data. We end up expanding the example dealing with misaligned data
into one for Gaussian likelihood and the other for non-Gaussian. These ex-
amples consider two correlated SPDE models considering the copy strategy
available in INLA to model multivariate outcomes with a common shared
model. In the example, either the semicontinuous model or the hurdle
Gamma model is applied to modeling daily rainfall using the copy strat-
egy giving one SPDE model shared between two linear predictors, one for
the rain occurrence, considered as a Bernoulli process, and the other for
the positive rain amount, considered as a Gamma process of the continuous
valued outcome. The examples considering areal data were two on dynamic
space-time models one considering the group strategy in INLA to build Kro-
necker precision models and other considering the data augumented strategy.
The last example considers the case when one wants to build a space-time
model considering knots over time in order to lower the time resolution.

This contribution is the 8th Chapter in Blangiardo and Cameletti (2015).
The cover of this book is shown in Figure 7.2. We present the table of
contents, the preface and this chapter in the next pages.
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Figure 7.1: Cover of the "Spatial and Spatio-temporal Bayesian Models with
R-INLA" book
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Preface

This book presents the principles of Bayesian theory for spatial and spatio-temporal
modeling, combining three aspects: (1) an introduction to Bayesian thinking and
theoretical aspects of the Bayesian approach, (2) a focus on the spatial and
spatio-temporal models used within the Bayesian framework, (3) a series of
practical examples which allow the reader to link the statistical theory presented
to real data problems. All the examples are coded in the R package R-INLA, and
based on the recently developed integrated nested Laplace approximation (INLA)
method, which has proven to be a valid alternative to the commonly used Markov
Chain Monte Carlo (MCMC) simulations.
The book starts with an introduction in Chapter 1, providing the reader with the

importance of spatial and spatio-temporal modeling in several fields, such as social
science, environmental epidemiology, and infectious diseases epidemiology. We
then show why Bayesian models are commonly used in these fields and why we
focus on the INLA approach. We also describe the datasets which will be used
in the rest of the book, providing information on the topics that will be used as
illustration.
As all the examples are run in R, in Chapter 2 we introduce the basic concepts of

the R language. Chapter 3 describes the Bayesian methods: first we introduce the
paradigms of this approach (i.e., the concepts of prior and posterior distributions,
Bayes theorem, conjugacy, how to obtain the posterior distribution, the computa-
tional issues around Bayesian statistics for conjugated and non conjugated models).
We also include a small section on the differences between the frequentist and the
Bayesian approach, focusing on the different interpretation of confidence intervals,
parameters, and hypothesis testing.
Chapter 4 discusses the computational issues regarding Bayesian inference. After

the Monte Carlo method is introduced, we consider MCMC algorithms, providing
some examples in R for the case of conjugated and non conjugated distributions.
The focus of the chapter is the INLA method, which is a computationally powerful
alternative to MCMC algorithms. In particular, the R-INLA library is described by
means of a small tutorial and of a step-by-step example.
Then in Chapter 5 we present the Bayesian modeling framework which is used

in the fields introduced in Chapter 1 and focuses on regression models (linear and
generalized linear models). In this context, we introduce the concept of exchange-
ability and explain how this is used to predict values from variables of interest, a
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topic which will be expanded later in the chapters on spatial and spatio-temporal
modeling. The last section of this part is devoted to introducing hierarchical models.
Chapter 6 focuses on models for two types of spatial processes: (1) area

level—introducing disease mapping models and small area ecological regressions
(including risk factors and covariates) and then presenting zero inflated models for
Poisson and Binomial data; (2) point level—presenting Bayesian kriging through
the stochastic partial differential equations (SPDE) approach and showing how
to model observed data and also to predict for new spatial locations. Chapter 7
extends the topics treated in Chapter 6 adding a temporal dimension, where we
also include the time dimension in the models.
Finally, Chapter 8 introduces new developments within INLA and focuses on

the following advanced applications: when data are modeled using different likeli-
hoods, when missing data are present in covariates, a spatio-temporal model with
dynamic evolution for the regression coefficients, and a spatio-temporal model for
high-frequency data on time where a temporal resolution reduction is needed.
We would like to thank many people who helped with this book: Håvard Rue

for his precious contribution, his endless encouragement and for introducing us to
Elias Krainski, who became involved in the book; Finn Lindgren, Aurelie Cosandey
Godin and Gianluca Baio for reading drafts of the manuscript and providing useful
comments; Philip Li, Ravi Maheswaran, Birgit Schrödle, Virgilio Gómez-Rubio,
and Paola Berchialla, who provided some of the datasets; finally, a huge thank to
our families who have supported us during all this time.
We hope that this book can be helpful for readers at any level, wanting to famil-

iarize or increase their practice and knowledge of the INLAmethod. Those who are
approaching the Bayesian way of thinking for the first time could follow it from the
beginning, while those who are already familiar with R and Bayesian inference can
easily skip the first chapters and focus on spatial and spatio-temporal theory and
applications.

Marta Blangiardo and Michela Cameletti
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