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Abstract 

Motivation. Software maintenance is a significant part of the software life-cycle cost. Current 

research focuses on the maintenance of application software. Despite increased focus on 

systems integration, there is limited research on maintaining integrated systems. Before 

progressing with informing software integration practice, researchers therefore need to better 

understand the actual work of maintaining integrated systems. 

Research. To this end, a study of maintaining an integrated system in practice has been 

conducted. The study is conducted in the context of a community of volunteer software 

integrators. The research combines field studies with document analysis, asking: 

RQ1: How is knowledge of software failures developed during geographically 

distributed software maintenance? 

RQ2: How do software developers build knowledge of how to replace a business-

critical software system? 

RQ3: What are the characteristics of large-scale software maintenance work in a 

geographically distributed community of volunteers? 

Contributions. The main empirical contribution offered by this thesis is insight into the social 

and technical processes of maintaining an integrated system in a distributed community of 

volunteer software integrators. It offers a view of software maintenance where multiple 

stakeholders with different interests continuously negotiate over problems and their solutions. 

Focusing upon scarcity of resources and contradictory interests brings out the inherently 

political aspects of software maintenance.  

C1: Knowledge of software failures is developed through a process of negotiating over 

possible interpretations of available data, a process that is contingent upon situational 

issues such as workload, priorities, and responsibilities 

C2: A collective understanding of the scope, stakeholders, and sequence of activities for 

rewriting software evolves in response to new problems emerging from the rewrite 

efforts themselves as well as environmental changes 

C3: Maintaining an integrated system in a community of volunteers is characterized by 

scarcity of resources, an emphasis on coalition building, and volatility of stakeholders 

Two contributions to software maintenance practice are offered: 

C4: Recommendations for a lenient approach to coping with variability during 

corrective maintenance 

C5: Recommendations for an opportunity-driven approach to systems replacement 
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1. Introduction 

 

This thesis summarizes and concludes the research project titled 'Empirical Software 

Engineering and Open Source Software Development'. The project is undertaken as part 

of the Ph.D. programme attended by the Department of Computer and Information 

Science at the Norwegian University of Science and Technology. As the concluding 

report of the research project, the purpose of this thesis is to provide the broader context 

for the eight previously published papers reporting from the research project. In addition 

to summarizing the main contributions of the papers, the thesis also present an original 

empirical contribution based on the totality of the reported research. With basis in the 

empirical contributions, the thesis also offers a set of recommendations for software 

maintenance practice. 

The purpose of this chapter, however, is to provide the motivation for the study and to 

briefly summarize the research reported in this thesis. 

1.1. Research motivation 

Research on maintenance effort over the past 30 years suggests that more than half the 

total life cycle cost of software is spent on software maintenance (Calzolari et al. 1998). 

Research also suggests that the maintenance burden is increasing. Pigoski (1997), for 

instance, shows that maintenance costs have risen from 40% of the total life cycle cost 

in the 1970s, through 55% in the 1980s, to 90% in the early 1990s. While the latter 

figure may be somewhat exaggerated, many researchers report that organizations now 

spend more time maintaining existing software than they do developing new ones 

(Swanson and Dans 2000). As software maintenance is often defined as modifications 

of software after its initial delivery (Basili 1993), increase in maintenance costs may 

also be attributed the increased longevity of contemporary software (Swanson and 

Beath 1989).  

Research on software maintenance is growing. So far, though, software maintenance 

research has predominantly focused on maintenance of application software (Mockerjee 

2005). Banker et al. (1993) define application software as a set of software modules 

performing a coherent set of tasks in support of a given organizational unit and 
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maintained by a single team. This definition can be expanded to include standardized 

software products. Several teams or even an entire software organization may also be 

required to maintain large-scale application software. Over the past decade, however, 

software integration has received increased attention. This can be attributed to three 

developments within the software industry. With increased availability of off-the-shelf 

products, component-based development has become a viable alternative to traditional 

programming (Boehm and Abts 1999). Furthermore, individual and collaborating 

organizations integrate previously separate and isolated systems to give them greater 

market leverage (Lam and Shankararaman 2004). Software integration is also proposed 

as a solution to avoid replacing or modifying the growing number of business-critical 

legacy systems (Hasselbring 2000).  

In the future, the number of integrated systems will therefore increase at the expense of 

application software (Boehm 2006b). Yet, there is limited research on maintaining 

integrated systems. However, to do research that is relevant to systems integration 

practice, researchers have to better understand the actual work of maintaining integrated 

systems. Rather than focusing on improving the process of maintaining integrated 

systems, the reported research therefore explores how software integrators maintain 

integrated systems in practice. Consequently, it seeks to inform research rather than 

practice. As the relevance of software engineering research is largely driven by the 

desire to directly address the needs of practitioners (Osterweil 2007), the reported 

research can therefore be considered part of the ongoing discussion about research 

relevance within software engineering.  

Software engineering practice relies heavily upon the knowledge of individual software 

developers and their interactions (Ye 2006). The research reported in this thesis 

therefore focuses upon software maintenance as knowledge-intensive work. This is 

called software maintenance work. The reported study draws upon research that sees 

work and knowledge as interrelated (Brown and Duguid 1991), emphasising the 

unexpected twists and turns as software integrators have to make sense of situations that 

are puzzling, troubling, and uncertain (Weick 1995). 

1.2. Research setting 

Software maintenance as knowledge-intensive work is explored in the context of open 

source software development (OSSD). OSSD is well suited for studying software 

maintenance work, as it is often understood as a perpetual cycle of corrective, adaptive, 

and perfective maintenance (Samoladas et al. 2004). To this end, an interpretive field 

study of Gentoo has been undertaken. Gentoo is a community of volunteer software 

integrators who maintain and operate a software system for distributing and integrating 

third-party open source software (OSS) with various Unix operating systems. Chapter 4 

will explain OSS more in detail. For now, however, OSS is merely software released 

under a license that makes the source code open for anyone interested to read and 

modify. The volunteers studied call themselves the Gentoo developers, and they release 

the software they maintain as OSS. In addition, the community provides a GNU/Linux 

distribution, Gentoo Linux, based upon the software distribution system. A GNU/Linux 

distribution is a collection of software applications and libraries bundled together with 
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the Linux operating system kernel. In a sense, it is the OSS equivalent of the shrink-

wrapped Microsoft Windows installation disc. As such, the Gentoo community can be 

understood as the OSS world's equivalent of a vendor of shrink-wrapped software. 

As of March 2006, the Gentoo community consisted of 320 official volunteer software 

integrators distributed across 38 countries and 17 time zones. They call themselves the 

Gentoo developers. None of the Gentoo developers were, to the best of my knowledge, 

geographically co-located. As with most volunteer OSS communities, users are an 

important part of the Gentoo community, contributing with problem reports as well as 

source code. However, it is impossible to pinpoint the number of users active in the 

community at any one time. It is still safe to say that Gentoo is a large-scale 

maintenance effort. 

1.3. Research goals and questions 

With basis in the view of software maintenance as knowledge-intensive work, the 

overall goal of the reported research is: 

To explore maintenance of an integrated system within the context it is 

developed and used. In particular, to explore the intertwined social and 

technical factors that influence software maintenance work in a community of 

volunteer software integrators. 

The following three research questions have therefore been asked: 

RQ1: How is knowledge of software failures developed during geographically 

distributed software maintenance? 

RQ2: How do software developers build knowledge of how to replace a 

business-critical software system? 

RQ3: What are the characteristics of maintaining an integrated system in a 

distributed community of volunteers? 

1.4. Contributions 

Included with this thesis are eight previously published papers reporting from the 

research project. Each of the papers has been published in peer-reviewed outlets. They 

therefore offer single research contributions from the research project. The papers are 

listed along with a brief summary of their individual contributions in Section 1.4.1. This 

thesis also provides five contributions with basis in the results reported in the papers. A 

brief overview of these contributions is presented in Section 1.4.2.  

����� ����	
	����

Out of 13 scientific and two popular-scientific papers published as part of the research 

reported here, eight peer-reviewed papers have been included with this thesis. This 
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section presents the individual papers (ordered chronologically) by providing: 

publication details, a short summary of the paper itself, before progressing with a brief 

outline of its individual research contribution, concluded with a description of my 

contribution to the finished product. 

The sequence of the papers reflects the order they were written and published, reflecting 

the learning process I have gone through conducting the reported research. The scope of 

the research was initially broad, focused upon theory before gradually becoming more 

empirically intensive. Each paper has gone through preliminary versions, duly 

commented by colleagues at the department. Earlier versions of several of the papers 

included have also been presented and discussed in various seminars, workshops, and 

conferences. Where appropriate, the revision history of the papers is provided to give a 

better account of the learning process. 

P1. Østerlie, T. "In the network: Distributed control in Gentoo/Linux", in 

Proceedings of the 4th Workshop on Open Source Software Engineering, co-

located with the 26th International Conference on Software Engineering 

(ICSE'04), Edinburgh, Scotland, May 25, 2004, pp. 76-81. 

Summary. The paper reports on control issues during adaptive maintenance. 

Drawing upon the tension between distributed versus centralized control, the 

paper seeks to explore alternative ways of understanding control other than the 

power to make decisions. 

The paper was selected as one of four accepted papers to be presented at the 

workshop. 

Research contribution. The paper offers a contribution to OSS research by 

exploring the tension between distributed and centralized control in OSSD. 

Much research on control in OSS communities focuses on who has the power to 

make decisions, decision-making structures, and the configuration of these. In 

contrast, this paper empirically illustrates how control can also be understood as 

the power to frame the problems that needs to be made decisions about. As such, 

control is distributed in that it is a function of the reciprocal influence among 

people and technology. Control is therefore understood as not only inherent in 

organizational structures or hierarchies, but locally embedded among human and 

technological actors in the problem framing process. 

My contribution. The paper is fully authored by myself.  

P2. Berntsen, K., Munkvold, G., and Østerlie, T. "Community of practice versus 

practice of the community: Knowing in collaborative work," The ICFAI Journal 

of Knowledge Management (II:4), December 2004, pp 7-20. 

Summary. This paper explores some theoretical implications for collaborative 

work when technology is given a prominent role. It proposes a shift of focus 

from the community aspect of collaboration towards the practice aspect. 
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Drawing upon work within science and technology studies, we illustrate the 

constitutive role technology plays in everyday work.  

Research contribution. The paper offers a contribution towards research on 

knowledge-intensive work, in that it illustrates the material aspect of knowledge 

in collaborative work. 

My contribution. While I wrote the initial draft, each author has contributed 

equally with text to the paper. 

Revision history. An early version of this paper appears in Proceedings of the 

27th Information Systems Research Seminar in Scandinavia (IRIS'27), August 

14-16 2004, Falkenber, Sweden. 

P3. Jaccheri, L., and Østerlie, T. "Can We Teach Empirical Software Engineering?", 

in Proceedings of the 11th IEEE International Symposium on Software Metrics 

(Metrics 2005), Como, Italy, September 19-22, 2005, pp. CD-ROM. 

Summary. Based on the experiences from organizing and teaching a national 

PhD course in empirical software engineering, the paper seeks to evaluate two 

different approaches to teaching empirical software engineering – classroom and 

seminar-based teaching. The comparison is based upon the responses to a 

questionnaire circulated among students attending two iterations of the course. 

Research contribution. The paper contributes to software engineering 

education by offering the description of a PhD level course in empirical software 

engineering: a well-defined syllabus, as well as an evaluation of two 

pedagogical strategies for teaching the syllabus. 

My contribution. I participated in formulating the questionnaire, analysing the 

responses, and in writing the related work section of the paper. 

Revision history. This paper was first published as AP10 (see page 16). P10 is 

an abridge variant of an early revision of P3. This early revision was rejected for 

the 10th IEEE International Metrics Symposium (Metrics'04). P3 is based upon 

the feedback received for AP10 and the review comments received from 

Metrics'04. 

P4. Østerlie, T., and Wang, A.I. "Establishing Maintainability in Systems 

Integration: Ambiguity, Negotiation, and Infrastructure", in Proceedings of the 

22nd IEEE International Conference on Software Maintenance (ICSM'06), 

Philladelphia, PA, September 24-27, 2006, pp. 186-196. 

Summary. This paper reports from the analysis of corrective maintenance work 

in the Gentoo community (Section 8.2). The paper revisits the concept 

maintainability in the context of software integration. The paper explores how 

maintainability can be understood as a function of the external environment 

within which the software is being maintained. Maintainability is therefore the 
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collective achievement of software integrators, users, failing software, and an 

infrastructure of diagnosis tools. 

Research contribution. The paper offers a contribution to software 

maintenance research by empirically illustrating how the maintainability of an 

integrated system is continuously enacted during corrective maintenance. This 

supplements existing research which views maintainability as a quality attribute 

or an architectural strategy. In contrast, the paper presents a view of 

maintainability, understood as the ease with which software can be understood 

and modified, where corrective maintenance is understood as a process of 

framing the problem resulting in the reported failure. 

My contribution. Paper written by me, except for the related work section that 

was written together with the second author who also created the figures. 

Revision history. This paper is a derivative of AP12. AP12 was initially 

submitted as a full-length paper to the Second International Conference on Open 

Source Systems (OSS'06), but accepted as short paper. However, the review 

comments received were formative for the direction of the revision to P4. An 

early revision of AP12 was also presented and commented during the 10th PhD 

Days, a PhD seminar held by the Department of Informatics, University of Oslo, 

February 9-10, 2006.  

P5. Jaccheri, L., and Østerlie, T. "Open Source Software: A Source of Possibilities 

for Software Engineering Education and Empirical Software Engineering", in 

Proceedings of the First International Workshop on Emerging Trends in FLOSS 

Research and Development, co-located with the 29th International Conference 

on Software Engineering (ICSE'07), Minneapolis, Minnesota, May 20-26, 2007, 

pp. 1-5. 

Summary. Paper reports from and reflects upon the work on teaching master 

level students by using principles from action research for organizing OSS 

education. 

Research contribution. The paper contributes towards the software engineering 

education with an approach to learning practice-based software engineering 

through action research in OSS communities. 

My contribution. Paper predominantly written by first author. I wrote the 

related work section as well as supplemented the analysis. 

P6. Østerlie, T., and Jaccheri, L. "A Critical Review of Software Engineering 

Research on Open Source Software Development", in Proceedings of the The 

Second AIS SIGSAND European Symposium on Systems Analysis and Design, 

Gdansk, Poland, June 5, 2007, pp. 12-20. 

Summary. The paper is based on a discourse analysis of the software 

engineering research literature on OSSD. It seeks to explore why software 
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engineering research on OSSD keeps on portraying OSSD as a homogenous 

phenomenon despite the fact that recent empirical studies show great variation 

of software development activities among OSS communities. Four ways the 

literature present OSSD as a homogenous phenomenon is identified. The paper 

finds that the software engineering research literature's view of OSSD is based 

in three assumptions collectively held by the discipline: assumptions about 

software engineering research, assumptions about how to do software 

engineering research, and assumptions about the object of study. 

Research contribution. The paper offers three contributions to software 

engineering research. First, it shows that assumptions about software 

engineering research may have produced a systemic bias in the research on 

OSSD. Second, it offers a set of suggestions for improving the situation. Third, 

the paper contributes with a possible approach for evaluating the effect research 

approaches and assumptions have on the object of study.  

My contribution. The paper is the result of several years of discussion about 

software engineering research on OSSD with the second author. It is still written 

in its entirety by myself. 

Revision history. A first revision of the paper was submitted to the Third 

International Conference on Open Source Systems (OSS'07), but rejected. While 

strongly disagreeing with the review comments, the paper still underwent major 

revision to pre-empt the concerns raised by the OSS'07 reviewers. 

P7. Østerlie, T., and Jaccheri, L. "Balancing Technological and Community Interest: 

The Case of Changing a Large Open Source Software System", in Proceedings 

of the 30th Information Systems Research Seminar in Scandinavia (IRIS 30), 

Tampere, Finland, August 11-14, 2007, pp. 66-80. 

Summary. This paper reports from an analysis of the process of rewriting and 

replacing a core component of the Gentoo software (Section 8.1). The paper 

seeks to explore how the interaction between the software and its context of 

development and use enable and constrain the rewriting process. It shows how 

adaptive maintenance as a continuous process of negotiating over the scope of 

the changes to be made, their sequence, and which actors to be involved in the 

process.  

Research contribution. The paper offers a contribution to software engineering 

research on systems replacement. Much research on rewriting and replacement 

focuses upon replacement strategies and planning of the rewriting effort. In 

contrast, this paper empirically illustrates how the plan for rewriting and 

replacing software is continuously unfolding. The paper offers a view of systems 

replacement as a process of framing the problems that the rewritten software is 

to resolve. 

My contribution. I wrote the text. The second author contributed as discussion 

partner and with concrete suggestions for improving the paper. 
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P8. Østerlie, T., and Wang, A.I. "Debugging Integrated Systems: An Ethnographic 

Study of Debugging Practice", in Proceedings of the 23rd International 

Conference on Software Maintenance (ICSM'07), Paris, France, October 2-5, 

2007, pp. 305-315. 

Summary. This paper reports from the analysis of corrective maintenance work 

in the Gentoo community (Section 8.2). It explores how software integrators 

debug an integrated system. We identify five characteristics of the debugging 

process: that it spans a variety of operating environments, it is collective, social, 

heterogeneous, and ongoing. The debugging process is a collective sensemaking 

process, influenced by both social and technical factors, rather than a purely 

individual, cognitive problem-solving activity.  

Research contribution. The paper offers a contribution to software 

maintenance research by identifying the five characteristics that sets the practice 

of debugging integrated systems apart from existing research on debugging. 

This suggests that the software failure is not unproblematic as a phenomenon, 

but rather subject to interpretation and negotiation. This raises concerns about 

the appropriateness of assuming that software failures are clearly identifiable 

and stable phenomena. That there is a clearly identifiable relation between the 

errors in the code and the observed failures is too simple. In system integration 

the problem is more complex.  

My contribution. Paper predominantly written by myself. Second author 

contributed the analysis and to the related work section. 

Revision history. An early revision of the paper was presented and commented 

during the 11th PhD Days, 21-22 September, 2006. The same revision was 

submitted to the 29th International Conference on Software Engineering 

(ICSE'07), but rejected. The review comments helped pinpoint significant 

problems with this early revision, and were formative for revising the paper. 

Additional papers (AP) published as part of the research project, but not included in this 

thesis. 

AP9. Østerlie, T., and Rolland, K.H.R. "Unveiling distributed organizing in open 

source software development: The practices of using, aligning, and wedging", in 

Proceedings of the Workshop on Open Source Software Movement and 

Communities, co-located with the First International Conference on 

Communities and Technologies (C&T'03), Amsterdam, Netherlands, September 

18, 2003, pp. 1-7. 

AP10. Jaccheri, L., and Østerlie, T. "Empirical Software Engineering Education", in 

Proceedings of the 11th Norwegian Conference on Information Systems 

(NokobIT'04), Stavanger, Norway, November 29-December 1, 2004, pp. 242-

249. 
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AP11. Østerlie, T., and Munkvold, G. "Ordering actors, organizing work", in 

Proceedings of the 28th Information Systems Research Seminar in Scandinavia 

(IRIS), Kristiansand, Norway, August 6-9, 2005. 

AP12. Østerlie, T. "Producing and Interpreting Debug Texts", in Proceedings of the 

Second International Conference on Open Source Systems (OSS'06), Como, 

Italy, June 8-10, 2006, pp. 335-336. 

In addition, the following popular scientific papers have been published in connection 

with the research reported in this thesis. 

AP13. Oksholen, T. "Frå vondt til verre" (eng. 'From bad to worse'), Gemini, issue 5, 

October 2005, pp. 28-29. 

This article is an interview with me. With basis in the reported research and 

existing research on software integration, I reflect upon the implications of 

software integration to organizations. Gemini is a national popular-scientific 

magazine. 

AP14. Søndenaa, T. "Forsker på open source-utviklere" (eng. 'Studies of open source 

developers'), Linux magasinet, issue 3, June 2007, p.30. 

This article is an interview with me. The interview reports on the research 

reported in this thesis to the national community of Linux enthusiasts and 

practitioners. Linux magasinet was a national trade magazine targeted at the 

national Linux and open source community. 

1.4.2 Contributions of this thesis 

Summarizing the individual papers reporting from the research project, this thesis offers 

five contributions. Three of these contributions are empirical, and two offer 

recommendations for software maintenance practice. The contributions are presented in 

their entirety in Chapters 9 and 10, respectively. An overview of the five contributions 

is provided in Figure 1-1. The figure illustrates the relationship between the individual 

papers reporting from this research and the five contributions offered in this thesis.  
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Figure 1-1 Relationship between papers and contributions 

The main empirical contribution offered by this thesis is insight into the social and 

technical processes of maintaining an integrated system in a distributed community of 

volunteer software integrators. In particular, the thesis offers a view of software 

maintenance where multiple stakeholders with different interests continuously negotiate 

over problems and their solutions. Focusing upon scarcity of resources and 

contradictory interests brings out the inherently political aspects of software 

maintenance. Whereas more or less clearly defined problems is the basic premise of 

application software maintenance research, the reported research shows that the 

essential activity of maintaining integrated systems is problem setting: the collective 

process in which situations that are unclear, problematic, and puzzling are progressively 

clarified. 

Specifically, three empirical contributions are offered. The first two contributions draw 

together results reported in the papers included with this thesis: 

C1: Knowledge of software failures is developed through a process of 

negotiating over possible interpretations of available data, a process that is 
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contingent upon situational issues such as workload, priorities, and 

responsibilities (in response to RQ1, documented by P2, P4, and P8). 

C2: A collective understanding of the scope, stakeholders, and sequence of 

activities for rewriting software evolves in response to new problems emerging 

from the rewrite efforts themselves as well as environmental changes (in 

response to RQ2, documented by P1, P2, and P7). 

Contribution C3 aggregates the results reported in C1 and C2 to form an original 

contribution from the totality of the reported research: 

C3: Maintaining an integrated system in a community of volunteers is 

characterized by a scarcity of resources, an emphasis on coalition building, and 

volatility of stakeholders (in response to RQ3, documented by P3, P5, and P6). 

Grounded in the empirical contributions, contributions C4 and C5 draw practical 

implications for software maintenance practice: 

C4: Recommendations for corrective maintenance practice. 

C5: Recommendations for systems replacement practice. 

1.5. Thesis structure 

The thesis is divided into three parts. Part I presents related work. The purpose of this 

part is to position the reported research within software engineering. This part 

introduces the topic of research relevance within software engineering. It also presents 

research on software maintenance and OSSD. Part II presents the reported research. 

Here, the interpretive research approach is presented first. Gentoo, the research setting, 

is then presented, before progressing with an overview of the research process and 

reflections upon the research. Part III presents the results of the reported research. This 

part consists of three chapters. The first chapter presents the empirical results of the 

research. Implications of the empirical results are then drawn for software integration 

practice. The issue of research relevance is then revisited in light of the reported 

research. Chapter 11 draws conclusions of the research and proposes future work. 

Chapter 12 offers a glossary with the key terminology used.  
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PART I: RELATED WORK 
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2. Relevance in software engineering 

research 

 

The software engineering discipline can be understood as a movement of industry and 

academic actors to professionalize software development. Research-informed practice 

has therefore been a key goal of the discipline. However, since the mid 1980s there has 

been a recurring discussion over the relevance of software engineering research (Basili 

et al. 1986; Fenton 1993; Potts 1993; Glass 1994). The discussion can be related back to 

the goal of research-informed practice, and that the relevance of software engineering 

research has largely been driven by the desire to meet the needs of practice (Osterweil 

2007). To make research more relevant to practice, the empirical agenda was proposed 

to increase the validity of research results through increased scientific rigour (Basili 

1993). 

This thesis asserts that in order to inform software engineering practice, researchers 

need to better understand what practitioners do when developing and maintaining 

software. While increased scientific rigour may increase the validity of the research 

results, it is argued that the problem is also that research results fail to address issues 

relevant to practitioners. Empirical studies, while scientifically rigorous, tend to focus 

on simplified small-scale problems that fail to grasp the complexities of software 

engineering practice. Software engineering researchers often know too little about these 

complexities to effectively inform research practice. Software engineering research 

therefore needs to be informed by practice before researchers can inform practice. As 

such, increased scientific rigour may actually contribute to further exacerbate research's 

lack of relevance to practice. 

With basis in the above proposition, this thesis and the research reported here can be 

considered part of the ongoing discussion on relevance and software engineering 

research. The purpose of this chapter is therefore to provide the background for the 

empirical agenda in software engineering as response to the problem of relevance. 

However, it is proposed that the turn towards science within software engineering 

research needs to be situated in the broader societal context of professionalizing work 

during the 20th century. It is within this context that the empirical agenda in software 
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engineering can be understood not only as a direct response to problems of research's 

relevance to practice, but also as a standard solution of the broader movement of 

professionalizing work that the software engineering discipline is part of. Drawing upon 

a standard solution, however, researchers only address a part of the problem of 

relevance within software engineering. 

However, before progressing further with elaborating this argument, we need a working 

understanding of software engineering first.  

2.1. Software engineering 

While several definitions of software engineering exist, the purpose of this section is not 

to synthesise a definite definition. Software engineering is an evolving discipline 

(Finkelstein and Kramer 2000), and definitions are inherently problematic when trying 

to grasp evolving phenomena. This section therefore seeks to establish a working 

understanding of software engineering rather than to formally define it. It does so by 

drawing upon previous works aimed at identifying the discipline. 

In their review of the computing literature, Glass et al. (2004) distinguish between three 

broad subfields within the computing disciplines: computer science, software 

engineering, and information systems research. This review implies that rather than 

being clearly delineated, there are sliding boundaries between the three subfields. 

Computer science is at one end of the scale. This subfield is predominantly concerned 

with computer concepts at technical levels of analysis. Information systems research 

resides at the other end of the scale. Information systems research examines topics 

largely related to organizational issues. However, systems and software-specific topics 

are also studied. Computer science researchers expect to contribute with new processes, 

methods, algorithms, and products. Information systems researchers, on the other hand, 

expect to explore theories, concepts, techniques, and projects.  

Software engineering resides between the two other subfields. Like information systems 

research, software engineering is concerned with systems and software-specific topics. 

However, like computer sciences, it does so predominantly at the technical level of 

analysis. While software engineering researchers to a certain extent expect to contribute 

with new processes, methods, algorithms, and procedures (Glass et al. 2002), there is 

also some focus on theory contributions (Sjøberg et al. 2008).  

Finkelstein and Kramer (2000) draw upon software engineering's focus on systems and 

software-specific topics in locating the discipline within a broader disciplinary 

landscape. They propose that software engineering can be considered a subfield of 

systems engineering. Systems engineering is concerned with hardware development, 

policy and process design, as well as software engineering (Sommerville 2001). Like 

systems engineering, software engineering is concerned with the specification, 

development, implementation, and maintenance of systems.  

Drawing upon the engineering aspect, Basili (1993) distinguishes software engineering 

from manufacturing. The purpose of engineering research is to observe existing 
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solutions, propose better solutions, implement these solutions, and evaluate them. 

Unlike hardware, however, software is often considered more complex to build and 

understand. As such, there is an increased need for control through tools and process 

models. Software engineering can therefore be understood as the disciplined 

development and evolution of software systems based upon a set of principles, 

technologies, and processes (ibid.). In this view, the purpose of software engineering 

research is therefore to provide and improve tools, techniques, and methods for 

practitioners to improve parts of the software process. In short: research-informed 

practice. The issue of research-informed practice will now be pursued in the context of 

professionalization of work. 

2.2. The empirical agenda in software 

engineering 

This section situates software engineering as part of the broader movement towards 

professionalization of modern work during the 20th century. As part of this movement, 

it is argued that the turn towards increased scientific rigour is a natural response to the 

problem of research relevance. To this end, the section is organized as follows. First, 

software engineering is situated as part of the movement towards professionalization of 

work. Then, the problems of research relevance and the research-practice crisis of the 

1990s is presented. The chapter is concluded with presenting empirical software 

engineering as the discipline's response to the crisis. 
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Software engineering researchers often trace the origins of the discipline back to the 

software crisis (Boehm 2006a). Increased hardware capacity during 1960s made larger 

and more complex software systems a possibility. The software crisis is therefore 

commonly attributed to the combination of increased largeness and complexity of 

software systems and the relative inexperience of software developers which led to late 

deliveries of systems, escalating costs and failed software projects (Friedman and 

Cornford 1989, p. 99). 

Looking towards the production industry and aiming to build upon its success since late 

19th century, software engineering was proposed as the solution to the software crisis: 

The whole trouble comes from the fact that there is so much tinkering with 

software. It is not made in a clean fabrication process, which it should be. What 

we need is software engineering. (Ludewig 1996, p. 25) 

As such, software engineering came to be defined as "the application of a systematic, 

disciplined, quantifiable approach to the development, operation, and maintenance of 

software; that is, the application of engineering to software" (IEEE 1990).  

However, the dichotomy between 'so much tinkering' and 'clean fabrication process' 

holds a clue to an alternative explanation of the software engineering discipline's 

origins. This explanation contextualizes software engineering in the movement towards 
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professionalization modern work during the 20th century. Professionalization of work is 

often traced back to the tension between the practice-based education of traditional 

trades' and theory-based academic training (Noble 1977). Professionalization has been 

characterized as the dual process of institutionalization on the one hand and 

development of professional knowledge on the other (Schön 1991).  

Professionalization has been contrasted with the experience-based knowledge of the 

traditional trades where customary activities are modified by trial and error. Professions, 

on the other hand, are identified by the application of general scientific principles, and 

standardized knowledge to concrete problems (Schön 1991). The development of a 

standardized professional body of knowledge is therefore an important part of 

professionalization. Schein (1972) provides a three-component model of professional 

knowledge (summarized in Table 2-1).  

Component Description 

1. Underlying theory of discipline Component provides the general principles upon which the 

body of knowledge rests. 

2. Applied science / engineering Resting upon the general principles from the underlying 

discipline, the component provides the applied knowledge 

from which the day-to-day diagnostic procedures and 

problem-solutions are derived 

3. Practical skills and attitudes Using the underlying applied science, the component concerns 

the performance of services to clients. 

Table 2-1 Schein's three-component model of professional knowledge 

In this context, the software engineering discipline can therefore be understood as a 

movement of industry and academic actors to professionalize software development, 

maintenance, and operations. Such a view is further corroborated by recent years' 

discussion on further institutionalizing the software engineering profession by licensing 

the title (Knight and Leveson 2002).  

With the above view of the software engineering discipline, the distribution of 

responsibilities between research and practice is such that researchers are to "establish a 

scientific and engineering basis for software engineering" (Basili 1993, p. 7). Software 

engineering practitioners, on the other hand, are to apply this knowledge in the 

development, operation, and maintenance of software. As such, research-informed 

software engineering practice has been a key goal of the discipline, and the relevance of 

software engineering research is largely driven by the desire to meet the needs of 

practice (Osterweil 2007). 
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Since the mid 1908s, studies examining the state of software engineering research have 

raised concerns over its lack of impact on practice. With the goal of research-informed 

software engineering practice in mind, this lack of impact on practice is of great concern 

among software engineering researchers. Glass (1994) calls this the research-practice 

crisis.  
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Reviewing the software engineering research literature to examine the validity of the 

claims that methods, tools, and techniques improve quality and productivity in software 

development, Fenton (1993) finds "very little empirical evidence to support the 

hypothesis that technological fixes, such as the introduction of specific methods, tools, 

and techniques, can radically improve the way we develop software systems". This is 

particularly troubling when the predominant contribution of software engineering 

research are such methods, tools, and techniques (Glass et al. 2002). Commenting on 

research's lack of impact on software engineering practice, Tichy et al. (1993) conclude 

that software engineering research is lacking in quality and thereby becoming less 

credible to practitioners. Glass (1994) traces the origins of the crisis to the different 

views of software development held by researchers and practitioners; research results 

simply fail to address issues relevant to practitioners. 

Tichy et al. (1995) surveyed 400 research papers within the broader field of computer 

science. Based on a random sample, they find that only 20% of the software engineering 

papers devote more than one fifth or more of the space to validation. Papers with no 

research validation are typically studies where the researcher implements a technology 

and shows that the technology works. Glass (1994) calls this advocacy research – 

researchers advocating a new technology without validating its effectiveness over 

existing technologies or its applicability to practitioners. 

Similarly, Zelkowitz & Wallace (1998) reviewed 612 software engineering research 

papers. The papers have been published in three leading software engineering journals 

and magazines at three intervals during a ten-year period from 1985 to 1995. The survey 

shows that in 58.7% of the papers there is no validation of the research claims or the 

validation is based on assertions. This figure rises to 66.8% if counting papers where 

validation was not applicable.  

As such, two reasons for the research-practice crisis were identified: 

• Lack of credibility of research 

• A gap between research interests and software engineering practice 
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A call for increased empirical research and scientific rigour rose within the software 

engineering research community in response to the research-practice crisis. To increase 

the credibility of research claims software engineering research needed to better validate 

its scientific claims (Zelkowitz and Wallace 1998), preferably through increased 

experimentation (Tichy 1998). The low ratio of validated research had to be rectified for 

the long-term health of the discipline (Tichy et al. 1995). Similarly, Fenton (1994, p. 

199) addressed existing research's lack of understanding of measurement theory, 

arguing that software engineering researchers "must adhere to the science of 

measurement if it is to gain widespread acceptance and validity". Summarized, 

researchers agreed that increased scientific rigour was needed to address the lack of 

credibility of research results. 
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The subfield within software engineering that emerged from this discussion came to be 

labelled empirical software engineering (Basili and Harrison 1996). Its focus is the 

systematic evaluation of software related artefacts for the purpose of characterization, 

understanding, evaluation, prediction, control, management, or improvement through 

qualitative or quantitative analysis through the application of the scientific method 

(Basili and Harrison 1996; Wohlin et al. 2000; Conradi and Wang 2003). The subfield 

has materialized in two annual conferences (The IEEE Symposium on Software Metrics 

since 1993, and The International Symposium on Empirical Software Engineering since 

2002; being merged to The International Symposium on Empirical Software 

Engineering and Measurement in 2007), as well as the Empirical Software Engineering 

journal since 1996 (Basili and Harrison 1996). The subfield has been further supported 

by a number of textbooks on the topic (e.g. Fenton and Pfleeger 1997; Shull et al. 

2007). 

Surveying 369 software engineering research papers in the period 1995-1998, Glass et 

al. (2002) finds that less than 10% of the papers report from empirical studies. However, 

the trend is towards more empirical studies within software engineering. Concerns 

about the state of scientific rigour in empirical software engineering research have 

recently been raised, though. Dybå et al. (2006) reviews 103 papers reporting on 

controlled experiments published from 1993-2002. They find the statistical power in 

reported software engineering experiments to fall substantially below accepted norms. 

Despite these concerns, recent years' evaluative reviews continued focus on research 

validation shows that the dominant view of empirical software engineering research is a 

field based on measuring the software process and its products (Segal et al. 2005).  

This view is strengthened by recent year's increased attention on evidence-based 

software engineering (EBSE) (Kitchenham et al. 2004; Dybå et al. 2005). Inspired by 

the results of evidence-based medicine, EBSE is regarded as a method for systematizing 

existing knowledge. Through a joint undertaking of systematic literature reviews, the 

goal of EBSE is "to provide the means by which current best evidence from research 

can be integrated with practical experience and human values in the decision making 

process regarding the development and maintenance of software" (Kitchenham et al. 

2004, p. 274). A much-used set of guidelines for such systematic reviews, however, 

express the need for scientific rigour as a key quality in filtering what can be considered 

proper evidence (Kitchenham et al. 2004). As such, EBSE enforces the dominant view 

of software engineering as a predominantly quantitative research field. 

2.3. Rigour or relevance 

We have now established software engineering as a movement of academic and 

professional actors to professionalize software development. This, we have seen, is part 

of the broader movement of professionalization of modern work in the latter half of the 

20th century. Other examples of professionalization can be found throughout modern 

working life, for instance in other fields of engineering, law, as well as in medicine and 

nursing. In his study of professional work, Schön (1991, p. 22) observes that "a 

profession involves the application of general principles to specific problems". Such 

general principles are based on a systematic, scientific knowledge formalized in theories 
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and models. Professional work, the application of such models and theories to particular 

problems, is therefore a form of applied science.  

Yet, the application of such formalized knowledge requires unambiguous problems. 

This, Schön (ibid., p.42) argues, is the premise of the dilemma of rigour or relevance:  

In the varied topography of professional practice, there is a high, hard ground 

where practitioners can make effective use of research-based theory and 

technique, and there is a swampy lowland where situations are confusing 

"messes" incapable of technical solution.  

Using the field of formal modelling as a formative example, Schön observes that the 

rigorous application of scientific knowledge is usefully employed to solve problems in 

undemanding areas, while failing to yield any results in more demanding and complex 

areas of the swampy lowlands. The problem, however, is that the high, hard ground is 

often of limited relevance to everyday practice. The messes of the swampy lowlands, on 

the other hand, are. The systematic development of a rigorous scientific knowledge base 

to turn a vocation into a profession can therefore be of limited relevance to practitioners 

of the profession. As such, a widening gap between research and practice may develop 

over time.  

A similar division of labour between researchers developing formalized knowledge to 

be applied by practitioners may be observed within software engineering (Subsection 

2.2.1 above). While the empirical agenda may have increased the validity of research 

results, there are few indications that this has improved research's impact on software 

engineering practice. For instance, Glass' (2007) appeal to software engineering 

practitioners to keep abreast with the findings published by experimental software 

engineering researchers suggests that the gap between software engineering research 

and practice remains. 

The empirical agenda addresses the issue of credibility through rigour. However, as 

shown in Subsection 2.2.2 above, lack of credibility is only one of two causes of the 

research-practice crisis. The other cause is the gap between research interests and 

software engineering practice. Yet, considering software engineering in the context of 

professionalizing work, increased scientific rigour appears as a stock response to the 

problem of relevance. As argued above, increased scientific rigour is not synonymous 

with 'relevant to practice'. Furthermore, increased scientific rigour also tends towards 

small-scale problems that fail to address the complexities of software engineering 

practice. 

This observation needs to be tempered by recent research showing that it may take 

between 15 and 20 years from the initial publication of an idea until it is widely used in 

products (Osterweil et al. 2008). As such, it may be too early to evaluate the effect of 

rigorous research. Still, with basis in Schön's (1991) work, it is reasonable to assume 

that more rigorous research may also be of less relevance to practice. Similar concerns 

have already been raised within the software engineering discipline. In surveying the 

computing literature Glass et al. (2002) finds that software engineering research is 

limited in its scope to software technical matters related to building software, improving 
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the way software is built, and analyzing or implement promising new concepts. 

However, they ask, maybe it is time for software engineering research to broaden its 

scope and to seek methods that may yield richer findings? 

This question is left hanging for now. It will be picked up again in 9.4.5, which relates 

the issue of research relevance to the reported research. 
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3. Software maintenance, legacy systems, 

and integration 

 

Software maintenance constitutes a significant part of the software life-cycle cost. 

Calzorella et al. (1998) report that estimates range from 50 to 80 percent of the total 

life-cycle costs are spent on maintenance. Research suggests that the maintenance 

burden is increasing. Pigoski (1997), for instance, shows that maintenance costs have 

risen from 40% of the total life cycle cost in the 1970s, through 55% in the 1980s, to 

90% in the early 1990s. While the latter figure may be somewhat exaggerated, many 

researchers report that organizations now spend more time maintaining existing 

software than they do developing new ones (Swanson and Dans 2000). As software 

maintenance is often defined as modifications of software after its initial delivery 

(Basili 1993), increase in maintenance costs may also be attributed the increased 

longevity of contemporary software (Swanson and Beath 1989). Research is therefore 

mainly concerned with identifying factors driving maintenance costs, as well as 

developing methods for managing and reducing these costs. 

So far, however, software maintenance research has mainly focused upon application 

software maintenance (Mockerjee 2005). Over the past decade, however, software 

integration has received increased attention. This can be attributed to three 

developments within the software industry. With increased availability of off-the-shelf 

products, component-based development has become a viable alternative to traditional 

programming (Boehm and Abts 1999). Furthermore, individual and collaborating 

organizations integrate previously separate and isolated systems to give them greater 

market leverage (Lam and Shankararaman 2004). Software integration is also proposed 

as a solution to avoid replacing or modifying the growing number of business-critical 

legacy systems (Hasselbring 2000).  

To this end, this chapter is organized as follows. Section 3.1 discusses software 

maintenance in general, with a particular emphasis on corrective maintenance and 

debugging as these are central topics for the reported research. Section 3.2 discusses the 

product of long-term software maintenance, legacy systems. How legacy systems 

increase the maintenance burden and different strategies for coping with them are 
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discussed. Section 3.3 concludes the chapter with a discussion of maintaining integrated 

systems. 

3.1. Software maintenance 

Software maintenance refers to the activities of modifying software after its initial 

delivery and implementation. Software maintenance therefore focuses upon the 

correction of defects and the modification of the software to perform new tasks or 

perform old tasks under new conditions (Dvorak 1994). This section provides an 

overview of software maintenance, the processes and activities of the processes. 

Particular emphasis is paid corrective maintenance and debugging, as this is important 

for the research reported in this thesis. 

To this end, the section is organized as follows. First, the scope of software 

maintenance is outlined (3.1.1). Organizational level maintenance process (3.1.2) and 

the individual process of implementing changes (3.1.3) are then presented. The section 

is concluded with a more in-depth presentation of corrective maintenance (3.1.4) and 

debugging (3.1.5).  
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Initially conceived as the correction of errors (Canning 1972), the scope of software 

maintenance has come to include corrections as well as enhancements. Swanson (1976) 

offers a typology of software maintenance activities. This typology is based on the 

cause for or purpose of the maintenance to be done. The typology consists of three 

categories: 

• Perfective maintenance: Performed to perfect the software in terms of its 

performance, processing efficiency or maintainability 

• Adaptive maintenance: Performed to adapt the software to changes in its data 

environment or processing environment 

• Corrective maintenance: Performed to correct processing, performance, or 

implementation failures in the software 

Highly influential within software maintenance research, and has been adopted by many 

researchers (Chapin et al. 2001). Kitchenham et al. (1999) proposes a fourth 

maintenance category, preventive maintenance. This expands the scope of the 

maintenance activities to include modification of both the software and its requirements, 

as both perfective and adaptive maintenance requires modification of system 

requirements. Adaptive maintenance entails new requirements to be added, while 

perfective maintenance only entails the modification of existing requirements. 

Preventive maintenance, on the other hand, only requires modification of the software. 

The maintenance categories have been used to develop profiles of the maintenance 

effort. These profiles have been developed to identify factors driving maintenance costs. 

In a much cited study, Lientz et al. (1978) finds that 17.4% of the maintenance effort 

was spent on corrective maintenance, 18.2% on adaptive, while 60.3% as perfective. 
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The remaining 4.1% was categorized as others. Yet, in a more recent study, Scach et al. 

(2003) finds that the distribution of corrective maintenance is more than three times that 

of Lientz et al.'s study. In comparison, Scach et al. find that 4.4% of the effort is spent 

on adaptive maintenance, while 36.4% is spent on perfective maintenance. The figures 

therefore indicate that corrective maintenance drives maintenance costs. Reducing the 

effort of corrective maintenance activities may therefore have a significant impact on 

overall the maintenance costs. 
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While the software maintenance activities are the same, the maintenance process may 

differ between organizations (Swanson and Beath 1990). Kitchenham et al. (1999) 

differentiates between the organizational level process of administrating change 

requests, and the individual maintenance engineers' process of implementing specific 

change requests. These two processes will be presented in turn.  

An organization with co-located software maintenance team or department is likely to 

have direct interaction between maintenance engineers and users or user representatives. 

Companies developing off-the-shelf software, on the other hand, often interact with 

users through a customer support department (Pentland 1992). Still, in all organizations 

software maintenance focuses upon the correction of defects and the modification of the 

software to perform new tasks or perform old tasks under new conditions (Dvorak 

1994). It is therefore common to refer to an idealized model of the maintenance process 

(Figure 3-1 below). 

 

Figure 3-1 Model of the maintenance process 

The change request is the point of departure for the maintenance process. In 

organizations with co-located maintenance team, users submit change requests. Users 

may range from end-user to user representatives (Swanson and Beath 1990). 

Commercial software companies receive change requests from customers. Change 

requests include both requests for adaptive, perfective, as well as corrective changes. 

Requests for corrections are sometimes called defect or problem reports. Preventive 

maintenance requests usually originate within the maintenance organization itself.  

While older literature reports on paper-based databases for administrating change 

requests (Basili and Perricone 1984), it is today common to administrate change 
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requests with issue tracking software (Serrano and Ciordia 2005). It is often 

recommended that a change control board (CCB) is responsible for managing change 

requests (van Vliet 2000). The CCB prioritizes incoming change requests as well as 

assigning change requests to maintenance engineers. The administration of change 

requests is closely tied with strategic decisions on release planning and long-term 

development trajectory of the software (Ruhe and Saliu 2005). 

Individual maintenance engineers, or teams of engineers, are then set to the task of 

implementing the requested changes. 
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All forms of categories of software maintenance activities – adaptive, perfective, 

preventive, and corrective maintenance – require that the maintenance engineer 

comprehend the program to be changed, understands how the program works, and how 

to make the desired changes without introducing new defects or breaking existing 

functionality (Vans et al. 1999). To reduce maintenance costs, researchers have studied 

factors influencing the effort of individual maintenance engineers. In particular, 

researchers have focused on studying how characteristics of the software product itself 

influence the effort required to modify the software, as well as how maintenance 

engineers come to understand the software to be modified.  

Studies of how the software product influences maintenance effort have focused on the 

relationship between maintainability and maintenance effort. Factors studied range from 

low-level syntactic structures such as code complexity (Gibson and Senn 1989; Banker 

et al. 1993), to high-level program structure such as design patterns (Voká et al. 2004). 

Based on the observation that maintenance engineers spend half their time studying 

source code and documentation (Oman and Cook 1990), researchers have studied how 

maintenance engineers understand source code. A number of models have been 

proposed to describe the cognitive processes used to acquire program comprehension 

(von Mayrhauser and Vans 1995). The models show how engineers use existing 

knowledge of the software to build new mental models of the software being 

maintained. The strategies employed for building mental models vary between the 

models (Shneiderman and Mayer 1979; Brooks 1983; Letovsky 1986; Pennington 1987; 

von Mayrhauser and Vans 1995). These models have been used to compare the effect of 

programming languages and paradigms on maintenance effort (Corritore and 

Wiedenbeck 1999; Corritore and Wiedenbeck 2001). Similarly, Shaft and Vans (2006) 

study how the fit between individual maintenance engineers' mental models of the 

software on the one hand and the modification tasks on the other impacts on the 

maintenance effort. 
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Corrective maintenance has been defined as the activities performed to correct defects 

in hardware and software (IEEE 1990). The point of departure for corrective 

maintenance is failing software. The core activity is therefore to correct underlying 

software defects. Early software maintenance research makes no distinction between 
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errors in code and errors in program behaviour, using the term error for both (Basili and 

Perricone 1984). While the terminology has been refined, there is still a lot of confusion 

in both the terms used and their interpretation among software maintenance researchers 

(Fenton and Neil 1999). However, underneath the differences in terminology and 

interpretations of terms, it is possible to identify a common causal model of software 

errors. Before progressing with a description of this model, however, it is necessary to 

clarify the terminology used, summarized in Table 3-1 below. 

Term Description 

Mistake Human error that is manifested in the source code as a defect  

Defect An incorrect statement of sequence of statements in the source code that may lead to 

an infection upon execution 

Infection An error in the program state that may lead to a failure 

Failure Externally visible deviation from correct program behaviour compared to 

requirements and specifications 

Infection chain A causal chain from defect to failure 

Table 3-1 Key terms in the causal model of software errors 

The terms mistake, defect, infection, and failure are used to distinguish between 

different types of errors (Zeller 2006). The mistake is a human error. The mistake is 

manifested in the program code as a defect. The defect is an error in the code. Upon 

execution, the defect produces an error in the program state, an infection. The infection 

may, or may not, lead to a failure. 

A failure is an externally observable error in program behaviour. The infection relates to 

the defect as a product of an executed defect. The causal chain from human mistake to 

failure is called the infection chain.  

The defect is also sometimes called a latent error. It is latent because the defect may not 

be executed during operation of the software, or the code may only produce an infection 

in very special cases. The relationship between the two is therefore contingent, 

depending upon the execution paths through the software. The term error trigger, 

defined as "the events that cause latent errors in programs to surface" (Sullivan and 

Chillarege 1991, p. 2), is also used to explain the relationship between defect and 

infection. 

The infection is itself latent, as an incorrect program state need not produce externally 

observable incorrect program behaviour. There is no 1-to-1 relation between mistake 

and failure (van Vliet 2000). For instance, an incorrect program state that is never used 

during execution will not lead to a failure. Conversely, a failure may be caused by more 

than one defect. A single defect may also cause several failures. Furthermore, defects 

may be hidden so deep in the software that it is impossible to locate and the defect is 

identified by the correction made (Endres 1975). 

While it is widely acknowledged that it is often difficult to determine what the defect 

really is, the corrective maintenance literature find the causal model of software errors 

useful. Figure 3-2 summarizes the model. 
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Figure 3-2 Causal model of software errors 

For the maintenance organization, two concerns need to be balanced when handling 

submitted problem reports. On the one hand, the need to correct failures that users 

experience. On the other hand, the need to prioritize failures with the most impact on 

the largest population of users. Some failures are more critical than others. Failures 

where the software crashes or it corrupts critical data are typically more critical than 

minor flaws in the user interface, for instance. It is therefore more important to address 

critical failures. However, as failures are magnitudes more expensive to correct during 

maintenance compared to testing, the criticality of the failure needs to be traded off 

against the population it affects. While critical to those affected, it may not always be 

cost-effective to correct failures that affect only a single user or a miniscule population 

of users (Adams 1984). Similarly, minor failures may be prioritized if they affect a large 

population of users. 
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Debugging encompasses the activities of analyzing and correcting reported failures. 

Analyzing the reported failure, is the activity of tracing along the infection chain from 

failure to defect (Cleve and Zeller 2005). The basic challenge facing any maintenance 

engineer is to determine the cause of reported failures (Endres 1975). As the 

maintenance engineer responsible for correcting failures rarely have direct access to the 

failing system, replicating the operating environment where the failure occurs is the first 

step towards analyzing the reported failure. From the maintenance engineer's point of 

view, the problem report therefore needs to contain sufficient information for the 

maintenance engineer to be able to replicate the operating environment as well as 

reproduce the failure (Zeller 2006). 

Once reproduced, the cause of the software failure has to be located; the defect leading 

to the infection and consequently the failure. A common observation among researchers 

is that maintenance engineers spend a lot of time chasing red herrings because there is 

little understanding of how to systematically debug software (Martin and McClure 

1983; Araki et al. 1991; Zeller 2006). To this end, software maintenance researchers 

have offered a number of techniques for locating faults like program slicing (Xu et al. 

2005), delta debugging (Misherghi and Su 2006), and hypothesis-driven debugging 

(Araki et al. 1991). With basis in the source code and additional data like 

documentation and stack traces, these techniques offer ways of analyzing failure by 

either from chunking statements in the source code to higher-level abstractions or 

mapping knowledge of the problem domain to the source code (von Mayrhauser and 

Vans 1995). 
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Once the defect is located, the maintenance engineer corrects the failure and verifies 

that the failure no longer occurs when trying to reproduce it. Tracing backwards along 

the infection chain, debugging can be modelled as a linear process going from well-

defined failures, through locating the defect, to correcting it as suggested by the grey 

line in Figure 3-3 below. As such, it builds upon the causal model of software errors. 

 
Figure 3-3 Debugging activities 

3.2. Legacy systems 

Software systems survive over time because they are adapted to the changes in the 

operating environment (Bennet 1995). If no remedial action is taken, however, the 

structural integrity of software systems will deteriorate (Eick et al. 2001). A legacy 

system is the product of software evolution (Lehman 1980). It is a software system that 

has survived over time, and is becoming increasingly difficult to modify (Bisbal et al. 

1999). Yet, it is critical to the host organization and cannot be disposed of easily.  

This chapter discusses the product of long-term software maintenance: legacy systems. 

To this end, it is organized as follows. First, a brief introduction to software evolution is 

given (3.2.1). Legacy systems (3.2.2) and the increasing maintenance costs incurred by 

them (3.2.3) is then discussed. The dilemma of keeping or replacing legacy systems is 

presented (3.2.4), before the chapter is concluded with coping strategies for legacy 

systems (3.2.5). 
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With some recent additions (Eick et al. 2001), software evolution research builds 

predominantly on the research reported by Belady and Lehman during the mid-1970s 

and early 1980s (Belady and Lehman 1976; Belady and Lehman 1978; Lehman 1979; 

Lehman 1980). Software evolution research takes the result of the software maintenance 

process as its object of study, software that has evolved over time due to maintenance. 

The research builds upon and seeks to explain the observation that large-scale software 

over time becomes increasingly difficult to modify.  

Software evolution research shows that software systems that survive over time do so 

because they are able to adapt to an evolving operating environment (Bennet 1995). 

With basis in change data from IBM, Belady and Lehman propose that the direct cause 

of the increasing maintenance burden is that over time the software's structure 
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deteriorates. Software evolution research also shows that as software systems change 

over time, they become increasingly difficult to maintain. This phenomenon has been 

called systems entropy (Belady and Lehman 1976) or more recently code decay (Eick et 

al. 2001). As the code decays, the maintainability of the legacy system decreases and it 

becomes increasingly costly to modify the system. 

While the direct cause of the increased maintenance burden is code decay, two 

dynamics leading to code decay have been identified. 

First, software evolves over time (Belady and Lehman 1976). It does so in order to 

respond to the changing functional requirements of the host organization. Unless the 

software adapts to the host organization's changing environment, it will be rendered 

obsolete (Parnas 1994). As such, there is a direct relation between the longevity of the 

software and the amount of changes it has undergone.  

Second, through adaptive maintenance, new functionality is added to the software. 

However, the nature of the changes and the process by which they are made may impact 

on the software structure. In some instances, the original program structure may not 

have been conceived with the new functionality in mind. As such, new program 

structure violating the original design principles has to be superimposed on the existing 

design to make the required changes (Lehman 1979). Developers unfamiliar with the 

design or with too little time to assess how best to implement modifications in 

accordance with the design may also violate the original design (Eick et al. 2001). Over 

time, software therefore often acquires layers of superimposed program structure.  

Unless remedial work is undertaken to amend the program structure, the code will 

therefore decay (Belady and Lehman 1976). Rephrased in software engineering 

terminology: unless preventive maintenance is undertaken to deliberately amend the 

program structure, the maintainability of the software will decrease. As such, the 

implications for software maintenance are clear. Maintainability is not something to be 

established once and for all through ensuring that quality attribute requirements are met 

during development (Boehm 1978; Cavano and McCall 1978). Nor is it merely 

established through choice of appropriate architectural techniques during design (Bass 

et al. 2003). Rather, continuous restructuring (Mens and Tourwe 2004) of the software 

is required to unify the design to avoid a layering of design. 
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Computerization has increased over the past 40 years. Many organizations find their 

portfolio of software systems growing, and many of these portfolios contain software 

systems that have been long-lived, but are still in operation (Swanson and Dans 2000). 

Aging systems often resists modification significantly. They therefore constitute a 

significant part of the host organization's maintenance burden. These systems are often 

called legacy systems (Brodie and Stonebraker 1995). 

While expensive to maintain, legacy systems are often difficult to decommission. The 

systems and the data they contain are vital assets for the host organization. They are 

typically the backbone of the host organization's information flow and the main vehicle 
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for consolidating information (Bisbal et al. 1999; Bianchi et al. 2003). Although 

constituting a significant maintenance burden, legacy systems are still operational 

because they have remained business-critical over an extended period of time. In its 

exclusive form, the term 'business-critical' is used about software whose failure may 

result in the failure of the business using the system (Sommerville 2001, p. 357). 

However, in a more inclusive form the term may be used about any software that is 

critical to the organization. Such an inclusive view of business-critical software also 

encompasses software providers whose survival relies on providing the software. 

Legacy systems are therefore typically distinguished by two defining characteristics: 

Characteristic Description 

Business-critical The software system provides data and functions that are critical to the 

organization 

Aging The software system has continued to be business-critical by evolving in 

response to the host organization's changing needs over time 

Table 3-2 Characteristics of legacy systems 
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The challenge facing host organizations is the increasing cost of adapting the legacy 

system to its changing environment. It has been of particular interest to identify the 

factors contributing to the increasing maintenance cost. Many factors have been 

suggested. One way of summarizing the factors contributing to the increased 

maintenance cost of legacy systems is to split them into internal and external factors. 

Internal factors are related to the legacy system's resistance to modification. External 

factors are related to the host organization and its environment. 

3.2.3.1 Internal factors 

Internal factors to increasing maintenance cost are summarized in Table 3-3 below. 

Factor Description 

Deteriorating systems structure Poor system structure (code decays) increases the maintenance 

effort and makes the introduction of new faults during 

maintenance more likely 

System largeness System largeness make program understanding a major, time-

consuming maintenance activity 

Table 3-3 Internal factors to increasing maintenance cost 

Deteriorating system structure has two causes: code decay and outdated programming 

techniques. Legacy systems remain relevant and thereby business-critical over an 

extended period of time by adapting to the host organization's changing environment 

(Lehman 1979). However, through continued adaptive maintenance over time its system 

structure deteriorates unless work is done to maintain or reduce system complexity 

(Lehman 1980, p. 216); the code decays. As the code decays the effort required to 

modify the source code increases (Eick et al. 2001). Outdated programming techniques 

such as variable aliasing and the use of single, large global data structures to save 

memory, for instance, may also have a negative impact (Bennet 1995). Such techniques 

may encourage types of maintenance that quickly degrade the systems structure. 
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Research suggests that larger systems tend to be longer-lived than smaller ones, as they 

are not perceived as "not so much a burden of maintenance as they are assets expected 

to provide corresponding returns to maintenance over a longer time period" (Swanson 

and Dans 2000, p. 294). Besides, small programs are usually not difficult to maintain 

(Bennet 1994). While system size is an indicator of system largeness, a system is large 

when it lies beyond the grasp of a single individual and must be maintained by a group 

of people (Belady and Lehman 1978). As such, system largeness also requires the 

coordination of people within teams, coordination among teams within an organization, 

and even coordination between organizations to perform. This increases the need for 

communication and coordination, and may also drive the maintenance costs up. 

Both deteriorating systems structure and systems largeness cause increasing 

maintenance cost, summarized in Figure 3-4 below. 

Figure 3-4 Relation between characteristics of legacy systems and internal factors 

3.2.3.2 External factors 

External factors for increased maintenance costs are related to the host organization and 

its environment. The factors are summarized in Table 3-4 below. 

Factor Description 

Obsolete hardware platform Hardware is expensive to maintain 

Obsolete software platform Legacy system lack clean interfaces and/or host organization's 

other software systems lack software for integrating with the 

legacy system  

Lack of skills The skills needed to maintain legacy systems are in short supply 

Table 3-4 External factors to increasing maintenance cost 

Both obsolete hardware and software platforms may be attributed system age. Obsolete 

hardware is less in supply, and therefore more expensive to acquire. As the functions 

and data provided by legacy systems are critical to the organization, there is a need for 

newer software systems to integrated with the legacy system. Obsolete software may 

make it more difficult to integrate the legacy system with new software systems in the 

host organization's portfolio.  As such, the obsolete software platform is also 

attributable to the business-criticality of legacy systems.  

Lack of skills can also be attributed system age. Over time knowledge of the legacy 

system details may be lost as the people who originally developed and maintained 

system leaves the host organization (Bisbal et al. 1999). Many legacy systems are also 



 
41 

poorly documented. Maintenance cost increases as new maintenance engineers need to 

learn system details. However, that engineers knowledgeable in the obsolete hardware 

and/or software platforms may be in short supply also may also drive the maintenance 

cost up.  

Figure 3-5 below summarizes the relation between increasing maintenance cost and 

external factors. 

 

Figure 3-5 Relation between characteristics of legacy systems and external factors 
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Legacy systems often pose a dilemma to host organizations. On the one hand, they 

constitute a significant and potentially increasing maintenance burden. On the other 

hand, they are business-critical and cannot be decommissioned. Herein lies the 

dilemma: continued maintenance as well as systems decommission and replacement 

constitute a significant investment and risk for the organization. 

There are three dimensions to the dilemma summarized in Table 3-5 below: cost, risk, 

and adaptability. 

Dimension Continued maintenance Systems replacement 

Cost Continued maintenance becomes 

increasingly expensive 

Systems replacement a major 

organizational investment 

Risk Comprehensive testing difficult, and 

new faults may be introduced  

New faults may be introduced during re-

implementation 

Adaptability Responsivity to adaptation can no 

longer be appropriately sustained 

Redevelopment is time-consuming, 

requiring the legacy system to be stable and 

irresponsive to adaption during the period 

of reimplementation 

Table 3-5 The legacy systems dilemma 

Both maintaining and replacing legacy system constitutes a significant organizational 

investment. The increased cost of continued maintenance may be related back to all of 

the external and internal factors (see Table 3-3 and Table 3-4 above).  Because legacy 
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systems are business-critical, their failure can potentially have serious impact on 

business (Bennet 1995). The risk of continued maintenance is related to deteriorating 

system structure. The chances of introducing new faults during maintenance increases 

as the code decays (Eick et al. 2001). Adaptability of a legacy system may be related 

back to both deteriorating system structure and obsolete software. Deteriorating system 

structure may make adaption impossible (Bisbal et al. 1999), and obsolete software may 

make it hard or even impossible to integrate with new systems. 
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Because of the legacy system dilemma legacy systems can be understood as large 

software systems that host organizations don't know how to cope with but that are vital 

to the organization (Bennet 1995). As such, research on legacy systems has typically 

focused on: 

• Methods for coping with the problems of legacy systems 

• Models for determining when it makes more economical sense to replace a legacy 

system rather than keep on maintaining it 

Models for the timing of systems replacement (Taizan et al. 1996) is outside the scope 

of this thesis, and will not be discussed further. However, methods for coping with the 

problems of legacy systems have been placed along the range of system evolution to 

system revolution (see figure ?? below). 

 

Figure 3-6 Methods for coping with legacy systems (adapted from Bisbal et al. 1999) 

3.2.5.1 Coping strategies 

At the far right of the scale is re-engineering. Re-engineering constitutes a 

redevelopment of the legacy system in a different programming language and/or in a 

different operating environment. It also often encompasses the restructuring of data. As 

such, software re-engineering is altering the implementation of an existing system while 

the basic functionality remains the same (Sneed 1995). This is time-consuming and 

requires a large organizational investment. Furthermore, legacy systems replacement 

faces the cut-over problem (presented below). Data salvage is a variant of re-

engineering, which does not fit properly into the figure above. In this approach, the 

software itself is replaced by other systems. The data, however, remains the same. 

At the other end of the scale is wrapping. This coping strategy seeks to encapsulate the 

legacy system. As such, it is a form of system integration (Hasselbring 2000). Rather 
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than modifying existing legacy systems, new systems interfacing with the legacy 

systems are introduced. By leaving the legacy system intact, wrapping seeks to bypass 

the problems related to continued maintenance as well as systems replacement. 

However, legacy systems wrapping may be expensive and difficult because of 

architectural mismatch between the legacy system and the systems seeking to interface 

with it (Sneed 2005). It is even argued that some forms of wrapping, like screen 

scraping, may compound the organization's maintenance problem as such wrappers do 

not address the serious problems legacy systems face (Bisbal et al. 1999). 

Restructuring holds the middle ground between re-engineering and wrapping. It is a 

form of perfective maintenance that seeks to decrease the cost and risk of continued 

maintenance by improving the system's maintainability (Mens and Tourwe 2004). It is 

not an activity exclusive to coping with the legacy systems dilemma, but addresses 

maintenance in general. However, as restructuring seeks to mend deficiencies with the 

existing system, it seeks to ammend problems related to code decay without as well as 

bypassing problems related to systems replacement. While a viable strategy with newer 

systems, some of the maintenance cost of legacy systems stems from obsolete 

platforms. As such, restructuring only resolves the internal factors to increased 

maintenance cost.  

3.2.5.2 The cut-over problem 

Coping strategies that seek to replace existing legacy systems with new software face 

the cut-over problem. The cut-over problem is related to time it takes to develop the 

replacement system. There are two dimensions to this problem: 

• Continued evolution of legacy system 

• Volatility of data 

Business-critical systems continued to evolve in response to the changing conditions of 

the host organization. However, in order to succeed with a 1-to-1 replacement of the 

legacy system, it needs to be functionally stable from the moment the re-engineering 

effort is planned until the system is replaced (Sneed 1995). The longer it takes to 

develop the replacement system, the harder it is for the host organization to avoid 

continued evolution of the system to be replaced. 

Incremental re-engineering, sometimes also called systems migration, seeks to address 

the problem of continued evolution. By gradually re-engineering a few procedures at a 

time, each re-engineering operation takes so short time that it is possible to freeze 

modification of the procedures in question (Bianchi et al. 2003). While addressing the 

problem of continued evolution, incremental re-engineering is still susceptible to the 

cutover problem.  

That the information contained in legacy systems may be vital assets for the host 

organization is a compounding factor to software re-engineering. As long as legacy 

systems are in use, new data will be added and existing data modified. This leads to the 

cutover problem. An un-concerted transition may cause data to be store in non-

synchronized databases: some in the legacy system and some in the replacement system. 

As it is practically impossible to freeze the data in a legacy system while re-engineering 
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it, the data needs to be transferred to the replacement system. This may be time-

consuming, and business-critical system cannot be out of operation for very long. 

Software integration has been proposed as a solution to the cut-over problem 

(Hasselbring 2000). By integrating new information systems with the legacy system, the 

problems of continued evolution and as well as volatility of data are bypassed. 

3.3. Maintaining integrated systems 

Current software maintenance research focuses upon the maintenance of application 

software maintenance. Banker et al. (1993) define application software as a set of 

software modules performing a coherent set of tasks in support of a given organizational 

unit and maintained by a single team. Despite increased interest in systems integration 

through component-based software development (Boehm and Abts 1999), Web services 

(Vogels 2003), and information and enterprise integration (Lam and Shankararaman 

2004), limited attention has so far been paid the implications of systems integration on 

software maintenance (Mockerjee 2005).  

The purpose of this section is therefore to discuss software integration in relation with 

software maintenance. To this end, the section is organized as follows. First, software 

integration discussed (3.3.1). Then characteristics of integrated systems are presented 

(3.3.2), before the section is concluded with a discussion of challenges related to 

maintaining integrated systems (3.3.3).  
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Software integration is the activity of building integrated systems. This thesis assumes 

an inclusive view of software integration, encompassing activities from component-

based development (Boehm and Abts 1999), through middleware integration (Vogels 

2003), to information and enterprise systems integration (Hasselbring 2000). While 

there are differences in scope and purpose between the different forms of software 

integration, software integration is characterized by its stakeholders.  

To understand the uniqueness of software integration, it is useful to compare it with 

application software development. There are two stakeholders – the developer and the 

user – in the most simplistic form of application software development. While some 

software systems may have multiple user groups, the basic scenario remains: someone 

uses the software, someone else maintains it. Similarly, teams or collections of teams 

within the organization often develop large systems. This modifies the most basic 

model of application software development somewhat. However, the organization as an 

entity is still in charge of the product, though (Banker et al. 1993). 

The basic premise of software integration is that software is composed of software 

provided by third-party organizations. Rather than developing an application, the 

software developer composes software by integrating third-party software. The 

developer is therefore called a software integrator. Whereas constellation of integrator-

user remains in software integration, a third stakeholder is introduced: the third-party 
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organization providing software, i.e. the provider. While providers may target software 

to specific organizations, they typically offer software with generic functionality within 

a specific domain. There is a one-to-many relationship between providers and software 

integrators. The provider's product is offered to many integrators. However, while some 

systems do indeed only integrate a single product, large-scale integration involves the 

integration of multiple products. As such, seen from the software integrator's point of 

view, the provider-integrator relationship is also one-to-many. The software integrator 

is typically in a relationship with many providers. 
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Application software is developed and maintained by a single team or organization that 

has full access to and is in complete control of the source code. Integrated systems, on 

the other hand, are composed of software products developed and maintained by third-

party organizations. Coming with more or less well-defined interfaces, the software 

products being integrated are usually treated as black boxes. Building upon the inclusive 

view of software integration, integrated systems may be composed of software 

components to enterprise information systems. In contrast to application software, no 

single stakeholder is in complete control of an integrated system. 

Hasselbring (2000) identifies three distinguishing characteristics of integrated systems. 

These are presented in Table 3-6 below. This table is expanded somewhat to 

differentiate between technical and organizational aspects of the three characteristics. 

Characteristic Technical Organizational 

Heterogeneity Difference in hardware 

platforms, operating systems, 

and programming languages. 

Conceptually, different 

programming and data models. 

Software maintained by 

multiple organizations 

organizing the maintenance 

process differently (see 3.1.2) 

Autonomy Software may be autonomous in 

execution, running on different 

computers within different 

organizations. Third-party 

software develops independent 

of the integrator's product. 

Providers are in control of the 

development trajectory of their 

own products, with limited or no 

coordination among providers. 

Distribution Integrated systems may be 

comprised of software executing 

on different computers. This is 

not always the case for COTS-

based systems, for instance.  

The maintenance effort is 

distributed among multiple 

organizations, both integrators 

and providers. 

Table 3-6 Characteristics of integrated systems 
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While systems integrators have access to the source code of the overall product they 

develop and maintain, they have limited, if any, access to the source code of the 

software they integrate. Furthermore, studies show that even when third-party software 

comes with source code, systems integrators tend not to spend time and effort to read 

and understand the product (Li et al. 2007). Consequently, one of Belady and Lehman’s 

(1978) well-known characteristic of systems largeness – that the system is outside the 
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intellectual grasp of a single individual – is accentuated when maintaining integrated 

systems. During maintenance of integrated systems, the system is even outside the grasp 

of a single group of individuals, too, as not even systems integrators fully grasp the 

products they integrate. Whereas the software maintenance research in general, and the 

corrective maintenance research in particular, builds on the assumption of source code 

as the key for systems knowledge, this is increasingly problematic with regards to 

maintaining integrated systems. 

Whereas a single team or organization is in control of the source code of application 

software (Banker et al. 1993), systems integrators have at best limited influence on the 

development trajectory of the third-party software they integrate. The direction, extent, 

and timing of changes to third-party software – in short the software's development 

trajectory –is under the provider's control (Hybertson et al. 1997). A variant of this is 

the situation where the provider goes out of business (Voas 1999). As such, maintaining 

integrated systems need to cater for the evolution of the third-party software. Several 

suggestions have been proposed (Hybertson et al. 1997; Edwards et al. 1999; Carney et 

al. 2000). 

Again, systems integration accentuates a characteristics of systems largeness: that the 

system reflects within itself a variation of human interests and activities (Belady and 

Lehman 1978). In the case of systems integration this relates to the multi-organizational 

relationship between vendors and integrators. Although well known to software 

maintenance research for decades, the characteristics of largeness are only reflected to a 

limited degree within the maintenance literature. For instance, with a few notable 

exceptions (Vans et al. 1999), studies of program software maintenance activities are 

based upon small-scale activities within the intellectual grasp of a single developer. 

Similarly, whenever variety of interests is addressed by the legacy systems literature, 

which is rarely, it is only superficially. Sneed (1995), for instance, delegates variety of 

interests to an issue of establishing the cost of maintaining the existing portfolio, and 

then justifying the systems replacement by demonstrating that re-engineering will 

provide a long-term return of investment. 

The differences between application software and integrated systems maintenance are 

summarized in Table 3-7 below. 

Characteristic Application software maintenance Integrated systems maintenance 

Source code Maintenance team full access to 

source code 

Systems integrators limited if any 

access to source code 

Ownership of products Maintenance team in complete 

control of source code 

Software being integrated is 

developed and maintained by 

numerous third-party 

organizations 

Control over products Host organization which the 

development team is member of is in 

complete control of the development 

trajectory of the application software 

Third-party organizations 

developing and maintaining 

software being integrated controls 

the trajectory of the product 

Program comprehension Small-scale maintenance activities 

graspable by single individual 

Large systems outside the 

intellectual grasp of a single 

individual 

Table 3-7 Comparison application software and integrated systems maintenance 
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4. Open source software and software 

engineering 

The reported research has studied maintenance of an integrated system in practice. This 

has been done in the context of a distributed community of volunteer software 

integrators who develop and maintain an OSS product. Developing and maintaining 

OSS in such distributed communities is often called OSS development. Yet, OSSD is 

not merely the research setting of the reported study. In this chapter it serves as a 

concrete example of how increased scientific rigour may contribute to further 

exacerbating research's lack of relevance to practice. This is based on the observation 

that after over a decade of research, OSSD remains largely irrelevant to the broader 

field of software engineering. While there is a significant stream of OSS research within 

software engineering, this research predominantly focuses upon how to use OSS to 

develop new products. Software engineering research on OSSD, however, remains 

limited.  

The argument pursued in this chapter is as follows. Driven by the unquestioned 

assumption that OSSD is completely different from software engineering, software 

engineering researchers have applied scientific rigorous methods to determine in what 

ways OSSD is different from software engineering (Østerlie and Jaccheri 2007a). Yet, if 

the goal of software engineering research is to be relevant to practice, situating OSSD in 

such an otherness relation removes its practical relevance. Based on the assumption that 

OSSD is completely different, software engineering research on OSSD therefore 

remains largely irrelevant as it fails to inform software engineering practice. 

The above argument is pursued in three steps. Section 4.1 traces the origins of the 

mythologized view of OSS as radically different to software engineering. Section 4.2 

provides an overview of the two major OSS research agendas pursued within software 

engineering studies of OSSD, and studies of developing software with OSS. Returning 

to the problem of relevance, Section 4.3 concludes the argument by showing how 

studies of OSSD may contribute to software engineering by focusing on showing how 

OSSD differs from software engineering. The result of continually situating OSSD in an 

otherness relation to software engineering is that OSSD remains a piece of curiosa that 

is largely irrelevant to software engineering. 
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4.1. Open source software in context 

Many have tried to grasp what OSS really is (Gacek and Arief 2004). Yet, the 

prevailing view of OSS is still software of superior quality developed through a 

revolutionary new software development approach by collectives of supremely talented 

volunteer software developers (Fitzgerald 2006). This view of OSS is based upon the 

mythology presented and circulated by OSS proponents since the mid-1990s. To 

understand this mythologized view of OSS, we need to go back to the specific point in 

time from which the term and its mythology arose: the state of the computing industry 

in the mid-1990s. 

Before progressing with this, however, a brief outline of how the mythologized view 

has been constructed by drawing historical lines of descent and the purpose such 

mythologizing has served is presented. 
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Many have sought to understand OSS by tracing its historical origins (DiBona et al. 

1999; Feller and Fitzgerald 2002). Some trace these origins back to the community of 

hackers at MIT's Artificial Intelligence (AI) Lab during the 1960s and 70s (Levy 1984). 

Others trace the origins back to the Unix-based ARPANET community of the 1970s 

and 80s (Moody 2001). Yet, others trace the origins of OSS to the convergence between 

the two communities in the Free Software Foundation (FSF) of the 1980s (Hannemyr 

1999). 

Regardless of which historical line is traced, attempts at tracing the origins of OSS all 

share the narrative of the hacker. The narrative of the hacker emphasises individual 

technical prowess and technological innovation (Himanen 2001). In this narrative, the 

hacker is the mythological maverick, the lone outsider who succeeds against superior 

odds. Fitzgerald (2006) argues that almost every aspect of this myth can be questioned. 

It is therefore useful to understand where such a view of OSS emerged. To do so we 

have to go back to the state of the computing industry in the mid-1990s and the rise of 

the New Economy. 

����
 &��!(*�)%%*�
�������+���������'�

The OSS term has a definite origin in time and space. It was coined in 1997 at a meeting 

between Linux proponents and the fledgling Linux industry (Perens 1999). The meeting 

takes place at a time when Microsoft dominates desktop computing. A latecomer in the 

Internet-market, Microsoft is by now also amassing market shares by distributing its 

Web browser together with its operating systems. Once actors in an open marketplace, 

Microsoft's competitors are rapidly loosing ground as the latecomer tightens its grip on 

the browser market. 

Similarly, since the late 1980s the Unix industry has been loosing ground to the more 

popular operating systems provided by Microsoft. However, by 1997 Linux is gaining 

increased popularity. Linux is a Unix-like operating system kernel developed by a 
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young Finish student and a ragtag band of volunteers. Without any financial backing its 

popularity is unlikely. At the same time, the Apache Web server dominates the Web 

server market. Like Linux, Apache has until then been developed by a loosely organized 

gang of volunteers with practically no financial backing (Østerlie 2003). 

By 1997, the promises of an Internet-based New Economy are gaining foothold. 

Investors are looking for new, and revolutionary business models (Behlendorf 1999). In 

this environment with Microsoft's market dominance on the one hand, and venture 

capital looking for alternative investments on the other hand, Linux proponents and 

representatives of the Linux industry see an opportunity and cease the moment. 

Together they form the Open Source Initiative (OSI). The term 'open source' is 

proposed to overcome resistance among investors to the politicized freedom discourse 

of Free Software (Perens 1999). Instead, the OSI seeks to further OSS as a fruitful 

venue for investment. 

It is in this context that we can understand the role genealogical lines of descent play in 

giving meaning to the term OSS. Mobilizing history in this particular way OSS 

proponents sought to establish OSS as both technically superior and innovative, as well 

as building an identity of the outsider who succeeds against superior odds. It is the story 

of how the David of the Linux industry will prevail against the Goliath of its time: 

Microsoft. 
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There is an ongoing controversy between the terms "free" and "open source" software. 

The Free Software Foundation, the organization administrating the GNU public licences 

does not agree that Free Software is a subset of OSS (Williams 2002). OSI, on the other 

hand, continues to regard Free Software as a subset of OSS. Free Software is licensed 

under the GNU public licenses. These licenses seek to ensure that software remains 

free. In this context, 'free' means freely and publicly available. Broadly speaking, the 

two GNU licences seek to ensure that nobody can derive commercial products based on 

GNU licensed software without providing the source code of derivative works. 

Similarly, OSI formulated a set of guidelines, the open source definition, to ensure that 

the source code remained publicly and freely available. Open source software is 

therefore software released under an OSI compliant license (Gacek and Arief 2004). 

However, unlike the GNU licenses, OSI opens the possibility of creating licenses that 

allows building commercial derivative products based on OSS. As such, the GNU 

licenses are a restrictive form of OSI compliant licenses. Free Software therefore also 

falls under the umbrella of OSS.  

To bypass or overcome this controversy, some researchers have opted for the term 

FOSS, Free Open Source Software (Scacchi 2007). The standard convention within the 

software engineering community, however, is OSS. The term OSS is therefore used in 

this thesis, too. 
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4.2. OSS research in software engineering 

Software engineering research on OSS has typically pursued one of two separate 

agendas. The first agenda sees OSS as a source of applications and reusable 

components. The other agenda studies OSS development, emphasizing the unique 

characteristics and attributes of developing software in distributed communities of 

volunteers. Each of these agendas will be presented in turn. Before progressing, it is 

worth noting that there is also a stream of software engineering research that uses OSS 

as data source to test and validate non-OSS related theories. This agenda is unrelated to 

OSS. It will therefore not be discussed. 
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While some researchers have focused on the use of OSS development tools (e.g. 

Serrano and Ciordia 2005), developing software with OSS components has been the 

predominant stream of OSS research in software engineering. While research on 

developing with OSS components plays a limited role in the reported research, it is still 

outlined in this subsection. This is done to provide context later in the chapter for 

making the argument that while research on OSSD remains largely irrelevant to the 

software engineering field, research on OSS has been highly successful. 

Research on developing with OSS components follows a long line of software 

engineering research on software reuse. The reuse literature revolves around the two 

issues of developing for reuse, and developing with reuse. Component-based software 

development is a form of developing with reuse that has gained increasing attention the 

past decade (Boehm and Abts 1999). Assuming the integrator's point of view, much 

research on commercial off-the-shelf software (COTS) has focused upon evaluation and 

selection of COTS. The core assumption of this research is that choosing the right 

software is considered critical to project success (Wang and Wang 2001). 

OSS offers new possibilities for component-based development (Madanmohan and 

Rahul 2004). The main reasons cited are availability (Wang and Wang 2001), decreased 

development costs (Fitzgerald and Kenny 2004), as well as shorter time-to-market, less 

development effort, and better system quality (Li et al. 2006). In addition, OSS code 

and publicly available project information opens new possibilities for software 

integrators to evaluate OSS components in terms of product characteristics (Li et al. 

2005) as well as project characteristics (Woods and Guliani 2005; Cruz et al. 2006). As 

such, following the line of research on evaluating COTS, research on developing with 

OSS has focused on ways of evaluating such components. 

It has also been argued that developing with OSS components is less risky as the source 

code is available (Ruffin and Ebert 2004). Yet, in a survey of off-the-shelf component 

adoption in the Norwegian software industry, Li et al. (2007) finds that software 

developers practically always treat OSS as a black box even though the source code is 

available. Similarly, even though the source code of abandoned OSS is available, 

software integrators seek to avoid the responsibility of maintaining the software they 

integrate. 
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The advantages and limitations of OSSD is a topic of much debate within the software 

engineering literature. On the one hand, objections have been raised about the lack of 

formal development processes (Wilson 1999), the effects of having little or no explicit 

design (Perkins 1999), as well as the limitation of the user-developer convergence 

(Messerschmidt 2004). On the other hand, repeated claims have been raised about the 

advantages of OSSD over software engineering methods. These claims include 

increases in development speed of development, reduction of effort, and higher quality 

of the end product (Dinh-Trong and Bieman 2005).  

However, Østerlie and Jaccheri (2007a) shows that such a research focus is based on the 

unquestioned assumption that OSSD is completely different from software engineering. 

This subsection goes more into detail on how OSSD has been studied as completely 

different from software engineering. It does so with basis in the view of OSSD as a 

particular software development approach characterised by close interaction between 

users and developers as well as being Internet-based. First, the key software 

development key practices are presented. Then, drawing upon OSSD as an Internet-

based approach to software development, issues related to the organization of the 

development effort. Finally, the subsection is concluded with a discussion of how 

existing empirical studies seek to understand in what ways OSSD is different from 

software engineering. 

4.2.2.1 OSSD as software development approach 

The software engineering literature often relates OSS to a particular software 

development approach. The two distinguishing characteristics OSSD are that it is 

Internet-based and based upon close interaction between users and developers. The 

software produced through OSSD is OSS. However, not all OSS is developed through 

OSSD. This is an important distinction. In addition to close interaction between users 

and developers, a defining characteristic of OSSD is that those contributing with code 

are also users of the software (Gacek and Arief 2004).  OSSD is therefore sometimes 

characterized as use-driven software development (Messerschmidt 2004). 

The central role of use is reflected in both OSSD's basic quality assurance practices of 

field testing and parallel debugging, as well as in the practice of developing 

requirements through use. Supporting the above practices is a process of rapid releases. 

Each of the four will be discussed in turn. 

Field testing and parallel debugging constitute the basic quality assurance mechanism of 

OSSD (Huntley 2003). Instead of testing the software thoroughly to pre-empt failures, 

software is released 'as is'. The software is tested through use in the field. This is done 

with the expressed intention that users notify the developers about software failures. It 

is the developers' task to correct reported failures. As such, there is a clear separation of 

work: "[s]omebody finds the problem, somebody else understands it" (Raymond 1998). 

This way of working is often referred to as parallel debugging (Feller and Fitzgerald 

2002).  The parallelism of the debugging effort unfolds along two axes: discovery and 

correction. Subjecting the software to their use profile, users test the software in parallel 
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to discover failures. Failures are considered a collective responsibility of the developers, 

who work in parallel to correct the failures. 

As there is a convergence between users and developers in OSSD, developers may also 

report software failures they discover through use. However, the convergence between 

users and developers are particularly important when it comes to product evolution. 

Rather than engaging in requirements analysis, new functionality is discovered through 

use. Østerlie (2003) shows how innovation in the Web server technology arise in the 

early stages of the Apache Web server project. The Apache developers were also Web 

masters using the Web server to offer services to clients. By using the Web server in 

different contexts, the Apache developers uncovered uses that lead to innovations that 

today is considered part of the Web server technology. Similarly, Scacchi (2002; 2004) 

illustrate how new functionality is discovered in OSSD through use-related practices. 

OSS is released in a rapid release cycle. Rapid release cycle is often found to be the 

third defining practice in addition to parallel debugging and discovering new 

functionality through use. Rapid release cycles are particularly important for enhancing 

the efficiency of field testing. Frequently releases of corrections play two roles. First, it 

is a way of avoiding double work related to duplicate failure reports. Second, through 

successive releases the software becomes increasingly reliable. The use of rapid release 

cycles has lead some researchers to consider (somewhat misguided) OSSD as a form of 

agile software development (Cockburn 2002). 

There is sometimes made a distinction between unstable and stable releases (Erenkrantz 

2003). When the software is released for field testing, the release is considered unstable. 

A release is considered stable when it has been subjected to subsequent rounds of field 

testing. Samoladas et al. (2004) interpret the frequent releases of updated software as a 

perpetual cycle of corrective and adaptive maintenance. As such, OSSD may be 

considered a form of prototyping.  

4.2.2.2 Organization of software development 

There has been some interest in OSS as organization of software development in 

distributed communities of volunteers. However, this line of research has been studied 

more closely within disciplines on the than software engineering. These studies have 

focused on issues such as the structure of volunteer communities (Crowston and 

Howison 2005) and the culture of such communities (Ljungberg 2000; Bergqvist and 

Ljungberg 2001) within information systems research, as well as developer motivation 

within economics (Bonaccorsi and Rossi 2003). Within software engineering, though, 

research on OSS as a form of organizing software development, has predominantly 

focused on distribution and coordination of effort. 

Interest in the distribution of effort revolves around two concerns. First, is the issue of 

shared understanding of the software. Within software engineering an explicit system 

design is used to build a shared understanding of the software among those working on 

it. Without a design, then, the question is how such a shared understanding of the 

system attained? Second, is the issue of coordination. Given that OSSD is based on 

volunteer work, it is hard to assign tasks. Rather, volunteers undertake tasks. Who, then, 
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will do the boring tasks? Without a formal organization to distribute work, how is work 

coordinated within large communities of volunteers? 

Mockus et al. (2002) finds that in the Apache community a group of 15 developers 

contribute with over 80% of the code. Yet, in the Mozilla community they find that 

groups of 22 to 35 developers contribute with the same amount of code to different 

parts of the software. The Apache community has an informal organization, where work 

is undertaken rather than assigned. However, the Mozilla community exercises a form 

of code ownership. With basis in these observations, it is proposed that for groups of 

more than 15 developers, explicit mechanisms of coordination are required. However, 

in groups of 15 or less, informal coordination mechanisms may work. The former 

proposal is corroborated by Dinh-Trong and Bieman (2005).  

Summarizing research on OSS organization of software development, Crowston and 

Howison (2005) propose an onion layered model. This model illustrates the observation 

that a small group of developers contribute with most of the functionality. In a layer 

outside, are co-developers who contribute with corrections and some functionality. 

Active developers contribute with problem reports, and exist in a layer outside the co-

developers. As such, although informally organized, communities of volunteers exhibit 

a clear distribution of work. 

4.2.2.3 Empirical studies of OSSD products 

Most of the empirical studies of OSSD within software engineering has focused on 

studying if and in what ways OSSD is different from software engineering. In 

particular, the claim that OSSD produces more reliable software than commercially 

developed software, or closed source software (CSS) has received much attention. 

Paulson et al. (2004) investigates the claim of higher reliability by comparing two OSS 

with two CSS products. Their study shows that the two OSS products have fewer 

defects than their CSS counterparts. While having no comparative data on the response 

time of problem reports, Paulson et al. (ibid.) attribute the difference in defect density to 

OSSD's rapid cycle of releases. 

Such a claim, however, may be supported by Mockus et al.'s (2002) comparative study 

of the Apache and Mozilla OSS products. Like Paulson et al. (2004), they find that the 

two OSS products exhibit a low defect rate. This may seem to corroborate Paulson et 

al.'s (ibid.) assertion that defect density is caused by rapid response to user problems. 

However, Mockus et al. (2002) find that development of the Apache Web server and 

Mozilla browser exhibits different response times. Apache responds rapidly to problem 

reports, while Mozilla responds much slower. The difference in response time is 

attributed the fact that Apache is a volunteer project (it was later to be backed by IBM), 

while Mozilla is company-backed. Mockus et al.'s (ibid.) conclusion is therefore that 

commercial software development inhibits rapid response time. As such, in contrast to 

Paulson et al. (2004), they attribute low defect density to the use of field testing . 

Replicating Mockus et al.'s (2002) study on the FreeBSD kernel, Dinh-Trong and 

Bieman (2005) corroborates that field testing leads to lower defect density. 

However, if field testing leads to lower defect rate, then OSSD should exihbit a greater 

degree of corrective maintenance compared to commercial software development. 
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Scach et al. (2002) compares the distribution of maintenance categories in two large 

OSS products with a CSS product. On the one hand, they find that the distribution of 

corrective maintenance in the OSS products is twice that usually reported within 

software engineering. On the other hand, they find the same distribution of maintenance 

activities in the CSS product. Using the distribution of maintenance categories as an 

indication of field testing, the evidence to support field testing as superior to pre-release 

testing is at best inconclusive. Consequently, claims that specific characteristics of 

OSSD should produce more reliable software products therefore remains 

unsubstantiated. 

Similarly, it has been claimed that OSSD produces more maintainable software. 

However, evidence to support such a claim is also inconclusive. On the one hand, Capra 

et al. (2007) find that OSS products show lower levels of entropy than CSS. This 

corroborates the assertion that OSS is more maintainable than CSS. However, these 

findings are contradicted by Samoladas et al. (2004). Studying the maintainability of 

five OSS products, Samoladas et al. (ibid.) find that these products suffer from the same 

deterioration of maintainability as previously reported with CSS. Yu et al. (2004) find 

similar deterioration of maintainability in a study of 400 successive releases of the 

Linux kernel. However, in a later comparison of Linux with FreeBSD, NetBSD, and 

OpenBSD Yu et al. (2006) find that only the Linux kernel suffer from maintainability 

deterioration. 

The conclusion to be drawn from existing empirical research is that the evidence to 

support claims of that OSSD or the product it produces are uniquely different from 

software engineering. Yet, researchers keep claiming that OSSD is uniquely different 

from software engineering (Scacchi 2007). The problems this causes for the relevance 

of OSSD to software engineering is discussed in the next section. 

4.3. Rigour and irrelevance in software 

engineering research on OSSD 

Early predictions that OSSD will revolutionize the way software is developed have 

failed to come through. Similarly, after a decade of research, the relevance of OSSD to 

the broader field of software engineering remains limited. Only a handful of studies of 

OSSD have yet to be published in software engineering outlets. The predominant focus 

of software engineering research is issues related to developing with OSS. It is therefore 

safe to say that OSSD research remains largely irrelevant to the broader field of 

software engineering. 

Fitzgerald and Kenny (2004) makes a similar observation. They argue that OSSD 

research lacks relevance to practitioners because researchers have mainly focused 

inwards on the phenomenon by identifying characteristics of OSS projects and products. 

Reviewing research on OSSD, Feller at al. (2006, p. 274) concludes that research on 

OSSD "requires greater discipline and rigor – deeper research, more quantitative data, 

and more robust cross case-analysis". Retaining the view that current dominance of 
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proprietary, closed source software will come to an end, Fitzgerald (2006) argues that it 

is OSS, not OSSD, that will revolutionize the software industry. 

This section elaborates Fitzgerald and Kenny's (2004) argument. It does so by relating 

the problem of relevance to the empirical agenda in software engineering. Chapter 2 

showed that the main motivation of the empirical agenda is to make research more 

relevant to practice through increased credibility. Credibility, in turn, is to come as a 

product of applying scientific rigorous research methods. With basis in on our review of 

software engineering literature on OSSD (Østerlie and Jaccheri 2007a), this section 

pursues the argument that scientific rigour may in fact have made OSSD less relevant 

for the broader field of software engineering. As such, the argument offered here 

questions Feller et al.'s (2006) call for increased scientific rigour and more quantitative 

data as a solution to the problem of relevance. 
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Despite recent studies showing greater diversity among OSSD projects (Michlmayr et 

al. 2005), our analysis of the software engineering literature showed that the literature 

continues to describe OSSD as a homogenous phenomenon (Østerlie and Jaccheri 

2007a). While such lack of precision is to be expected in early phases of exploring a 

novel phenomenon, we would have expected a more nuanced view after a decade of 

research. In our analysis, we therefore asked: under what conditions such an unbalanced 

view of OSSD could be maintained over time?  

Through our discourse analysis of the literature, we found that such a lack of nuances 

stem from three sources: strategies for describing OSSD as a homogenous phenomenon, 

the use of predominantly quantitative research methods, and a lack of diversity in the 

cases studied. Contextualizing these three issues in the software engineering discipline 

itself, our analysis showed that they had basis in two commonly held assumptions about 

the software engineering discipline: 

• Assumptions about the identity of software engineering 

• Assumptions about how to do software engineering research 

As discussed in Chapter 2, the software engineering discipline's identity is closely 

intertwined with the software crisis. Professionalizing software development is the 

software engineering discipline's response to the crisis. Software development by 

volunteers could be regarded as a threat to this very identity. As such, framing OSSD as 

completely different from software engineering reduces the applicability of OSSD 

outside the specific context where there is a convergence between users and developers. 

In so doing, we argue, the challenge posed by OSSD to the software engineering 

identity is neutralized. However, in the process, we find OSSD homogenized to 

software development by users for users. 

In terms of Schein's three-component model of professional knowledge (Table 2-1S), 

the purpose of software engineering research is to develop prescriptive models for 

managing the software development process. Compared to such prescriptive models, 

OSSD practice comes across as completely different to software engineering. On the 
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other hand, what exists of research on software engineering practice also shows that 

these prescriptive models of software development do not reflect software engineering 

practice very well (Robinson et al. 2007). However, rather than questioning the 

assumption that OSSD is completely different from software engineering, Sub-section 

4.2.2 shows how scientific rigorous methods for quantifying OSS products and process 

have been applied to quantify such differences. As such, through its application of 

scientific rigorous research, existing studies simply fail to address the unquestioned 

assumption of OSSD as completely different from OSSD. 

Our conclusion was that existing studies of OSSD keep situating the phenomenon in an 

otherness relation to software engineering. This, it will be argued in the next subsection, 

makes OSSD largely irrelevant to the software engineering field. 
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While existing software engineering research on OSSD tends to focus on the unique 

characteristics of software development in geographically distributed communities of 

volunteers, it has been observed that OSSD "is not software engineering done poorly … 

[it] is different" (Scacchi 2007, p. 459). This is not entirely unproblematic. 

Messerschmidt (2004), for instance, argues that since OSSD is completely different to 

software engineering, OSSD research only applies to the context of volunteer software 

development. The contribution of OSSD research to software engineering is therefore 

somewhat unclear. 

Golden-Biddle and Locke (1993) reflect upon the construction of convincing 

contributions in reported research. They identify three factors that make a contribution 

convincing. One of these factors is plausibility. Plausibility balances two concerns. A 

research contribution has to be distinctly different from existing research, on the one 

hand. On the other hand, the contribution needs to establish a connection with common 

concerns within the discipline. Failing to establish such a connection to common 

concerns, the contribution will come to be regarded as irrelevant. 

What is the connection between the concerns of the software engineering discipline if 

OSSD is completely different? While it interesting as a piece of curiosa, without such a 

connection OSSD studies will remain largely irrelevant to the software engineering 

practitioners. There is therefore no plausible contribution of OSSD. 
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The title of the research project reported in this thesis is 'Empirical software engineering 

and open source software development'. The problem of relevance to the broader field 

of software engineering has therefore been central to the research reported in this thesis. 

The last subsection in this part of the thesis dedicated related work will draw some 

implications of the problem of relevance to the role OSSD plays in this research. As 

such, these reflections serve as a bridge to the next part of the thesis that will report on 

the research.  
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The reported research started out on the assumption that OSSD is completely different 

from software engineering. For me, this was motivated by an anti-bureaucratic agenda. 

Over time, I had come to see software engineering as a movement towards 

bureaucratizing software development, and thereby stifling human potential (Mumford 

2006). From such a view, I found the collaboration between users and developers as a 

way of realizing human potential in software development. While I still retain such 

humanistic ideals, this chapter shows that I have come to question my initial 

assumptions about OSSD. 

Over time, however, I have become increasingly concerned with the lack of relevance 

of OSSD research in software engineering. Like Samoladas et al. (2004) I have 

therefore come to regard OSSD as a form of software maintenance based on a perpetual 

cycle of corrective and adaptive maintenance. Rather than emphasising possible 

differences between OSSD and software engineering, I have sought to bridge the gap 

between OSSD and the software engineering literature by treating software integration 

in a distributed community of volunteers merely as the research setting for exploring the 

practice of maintaining an integrated system. In the reported research, OSSD is 

therefore studied as an instance of software maintenance. 
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PART II: THE RESEARCH 
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5. The interpretive research approach 

This thesis builds upon and supplements the small, but growing body of research on 

software engineering practice. Various aspects of software engineering practice have 

been studied. These range from software design (Button & Sharock 1996; Walz et al. 

1993; Curtis et al. 1988), configuration management (Grinter 1999), rapid application 

development with prototyping (Beynon-Davies et al. 1999), software maintenance (Sim 

& Holt 1999; Sim & Holt 1998), to broader studies of work practices of software 

engineers (Singer et al. 1997; Low et al. 1996) along with the culture and community of 

software engineering (Sharp & Robinson 2004; Sharp and Robinson 2002; Sharp et al. 

2000; Sharp et al. 1999).  

To promote awareness of practice studies, researchers have focused upon clarifying 

methods for collecting and analysing data of software engineering practice (Lethbridge 

et al. 2005). While the mechanics of method is important, exclusive emphasis on 

method obscures a more fundamental shift of focus in practice studies. Rather than 

focusing on software engineering methods, tools and techniques independent of their 

context of use, these studies seeks to understand how methods, tools, and techniques are 

used in the broader social context of the development organization (Robinson et al. 

2007). Studying practice therefore requires a research approach to address its inherent 

social nature. To this end, the reported research draws upon interpretive research. There 

is currently little interpretive research within software engineering. This chapter 

therefore draws upon literature from information systems (IS) research in its 

presentation of the interpretive research approach. 

Interpretive research builds upon a set of assumptions about reality and knowledge that 

"emphasizes the importance of subjective meanings and social-political as well as 

symbolic action in the processes through which humans construct and reconstruct their 

reality" (Orlikowski and Baroudi 1991, p. 13). Section 5.1 discusses the assumptions. 

These assumptions have implications for the research methods considered appropriate 

when doing interpretive research. This is discussed in Section 5.2. Analysis interpretive 

research data is discussed in Section 5.3. Section 5.4 discusses the kinds of 

contributions interpretive research may offer, before Section 5.5 rounds off the chapter 

with by discussing how to evaluate interpretive research. 
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5.1. Assumptions about social reality and 

knowledge 

It is common within IS research to distinguish between three broad groups of research 

approaches: positivism, interpretivism, and critical research (Orlikowski and Baroudi 

1991). Table 5-1 briefly outlines and contrasts the three approaches' assumptions about 

social reality and knowledge.  

Approach Assumptions of social reality Assumptions about knowledge 

Positivism An objective physical and social world 

exist independent of humans 

Knowledge consists of facts that need to 

be verified or falsified 

Interpretivism Social reality is produced and reinforced 

by humans through their action and 

interaction 

Knowledge of reality is gained through 

language and action 

Critical 

research 

Social reality is historically constituted Knowledge is grounded in social and 

historical practices 

Table 5-1 Comparison of research approaches 

Positivism emerges from the natural sciences. Interpretivism and critical research 

emerges from the humanities. Positivist research is concerned with simplicity, 

testability, and hypotheses. Seeking towards the natural sciences for its general 

principles (component 1 in Table 2-1), software engineering research is practically 

exclusively positivist. Sjøberg et al.'s (2008) guidelines for evaluating software 

engineering theories is a good example. They emphasise the importance of testing 

theories empirically, and evaluating them in terms of simplicity. Simplicity is both 

related to parsimony (i.e. simplicity in the number of concepts used), as well as 

generality and explanatory power (i.e. how much simple constructs can explain). 

Interpretive research, on the other hand, draws upon phenomenology (Boland 1985) and 

hermeneutics (Lee 1994) for its underlying principles. Unlike positivism, interpretivism 

seeks to address the complexities of social reality, emphasising nuances over simplicity. 

It does so through human interpretations and meaning, seeking to understand how 

language and action brings particular social realities into being. From this follows the 

assumption that our knowledge of reality is also gained through language, 

consciousness, shared meanings, documents and other artefacts (Klein and Myers 

1999). Interpretive research therefore seeks to understand phenomena through the 

meanings that people assign to them in order to explain why they do what they do. 

Rather than seeking to grasp an external reality, then, the interpretive researcher seeks 

to "understand intersubjective meanings embedded in social life" (Gibons 1987, quoted 

in Orlikowski and Baroudi 1991, p. 13, my emphasis). 

Reality is therefore not a fixed object to be grasped independent of the social actors. 

Rather, social actors construct reality as they go about making sense of an ongoing flow 

of experience (Schütz 1967). This includes the researcher, who is seen as yet another 

social actor. The interpretive researcher does not seek to uncover de-contextualized 

facts or laws. Rather, human interpretation and meaning is seen as a product of the 

broader context from which they emerge (Walsham 1995). Yet, there is a continuous 

codetermination between people and the broader context they are part of. People 
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actively shape the context they are part of, but are in turn shaped by the context (Weick 

1995). 

5.2. Interpretive fieldwork 

As people actively construct social reality as they go about making sense of the ongoing 

flow of experience, the interpretive researcher seeks the insider's view of the 

phenomenon under study; seeking to uncover how the research subjects themselves 

bring the phenomenon into being through their actions and interactions. As such, the 

researcher approaches the field open minded and with a non-judgmental attitude 

towards the research subjects' activities (Robinson et al. 2007). 

Seeking ways to study phenomena as they unfold, interpretive research regards the 

research process as emergent. It is also emergent as it seeks to take into account the 

researcher's deepening understanding of the phenomena. Focusing on the intersubjective 

meanings embedded in social life, interpretive research therefore aims at developing a 

rich understanding of the research subjects' world-building activities (Walsham 1995). 

This requires the interpretive researcher to seek out and get close to the everyday 

activities of the people under study, placing himself in the midst of other people's lives 

and to observe them.  

A common argument pursued in the software engineering literature is that fieldwork 

should only be undertaken when it is impossible to control the variables (Tichy 1998). 

In contrast, fieldwork is the interpretive researcher's preferred method. Whereas natural 

scientific research seeks an objective distance to the object of study, the quality of 

interpretive research seeks immersion with the research subjects. It is by engaging with 

people that the researcher understands how they make sense of and give meaning to 

their experiences. Fieldwork enables just this form of immersion in the lives of other 

people. 

 

Figure 5-1 Implications of data collection methods on researcher's engagement with the field 

(Nandhakumar and Jones 1997) 
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Immersion has practical implications for the data collection methods considered 

appropriate during interpretive fieldwork. Nandhakumar and Jones (1997) provide an 

overview of the degree of immersion provided by different data collection methods. At 

the remote end of immersion is analysis of published data, while consultancy is the 

extreme variant of immersion. The more the researcher is engaged with the field the 

more flexible the fieldwork is to the researcher's unfolding understanding of the 

phenomenon under study (Lethbridge et al. 2005). 

Seeking immersion, interpretive research often takes the form of in-depth case study or 

ethnography (Walsham 1995). There is a sliding boundary between the in-depth case 

study and the ethnography. Both are predominantly based upon data collection methods 

ranging from interview to action research. Ethnographic research relies more upon 

participant observation, and the in-depth case study is more interview-based.  

The materials collected during interpretive fieldwork may include interviews, 

observations, and documents. The latter may include both documents internal to the 

organization, as well as press, media, and other publications (Walsham 2006). The kind 

of data collected is typically process data (Langley 1999). Process data deal with events, 

activities, and the sequence of these. Despite this primary focus on events, process data 

tend to be eclectic and may include both qualitative and quantitative data. This means 

that while interpretive research is predominantly qualitative, interpretive research is not 

necessarily restricted to qualitative data. 

5.3. Analysis  

Analysis is an ongoing process from the moment the interpretive researcher enters the 

field until the complete research report is written. It is an ongoing process of making 

sense of the fieldwork experience and the collected data. It is based on the view that 

"we come to understand a complex whole from preconceptions about the meanings of 

its parts and their interrelationship" (Klein and Myers 1999, p. 71).The analysis 

therefore emerges out of the broader context the researcher is part of, and both shapes 

and is shaped by this context. It is therefore common to talk of three dimensions of 

codetermination during analysis: 

• As an interaction between particular observations and their appropriate historical or 

political context 

• As an interaction between observations and theory 

• As an interaction between the researcher and the research subjects 

Since analysis is continuous throughout the research process, it useful to differentiate 

between informal and formal analysis. During fieldwork, the researcher engages in 

informal analysis to understand the world-building activities of the research subjects. 

This provides the researcher a better sense of the fieldwork experience. During periods 

of participant observation, for instance, informal analysis may take the form of writing 

out the notes that have been quickly and briefly jotted down in the notepad during the 

day's observation, and organizing them into more coherent field notes (Emerson et al. 

1995). By relating the day's observations to previous field notes, the researcher looks 
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for patterns in his observations for building informal theories. These informal theories, 

in turn, inform how the researcher continues to perform the fieldwork. This way, the 

researcher can adjust the fieldwork with basis in an increased understanding of the 

research setting. 

Formal analysis, on the other hand, usually commences upon withdrawing from the 

field. Whereas informal analysis is directly related to the fieldwork experience, formal 

analysis is related to the textual data collected during field. Seaman (1999), for instance, 

offers a method for formal data analysis based on coding. More generally, though, 

formal data analysis is a process of systematically going through the collected data, 

looking for recurring patterns, and incrementally generalizing from a multitude of 

singular observations to increasingly more generalized descriptions of activities 

(Fetterman 1998). Throughout this process, non-recurring details of the singular 

observations are omitted and recurring issues included. However, determining which 

details to omit in the final analysis and which to include is an iterative process of 

working on generalizing the descriptions while continuously returning to the more 

detailed analyses looking for recurring patterns that may shed light on the generalized 

description. 

The collected data is interpreted through theory. Theory acts as a lens to bring out 

particular aspects of the data. Particular observations are related to generalized 

theoretical concepts. Lee and Baskerville (2003) calls this theoretical generalization. As 

there is an interaction between data and theory this theoretical lens is likely to change 

during the research process (Klein and Myers 1999). The theoretical framework used 

for planning the research is therefore likely to be different than the theory used when 

reporting at the end of the research process. 

5.4. Research contributions from interpretive 

research 

Interpretive research contributes with in-depth understanding of phenomena. This is 

commonly reported in the form of thick descriptions. The thick description embraces 

the assumption that social reality is a "multiplicity of complex conceptual structures, 

many of them superimposed upon or knotted into one another" (Walsham 1995, p. 71).It 

is anti-reductionistic, seeking to strike the balance between conveying the complexity of 

human actions on the one hand, and appropriate simplification to render the complexity 

intelligible to the reader on the other hand. 

Interpretive research may offer five types of contributions, summarized in Table 5-2 

below. These types of contributions differ somewhat from contributions often 

associated with software engineering research – improved tools, techniques and 

methods (Basili 1993) – aimed at contributing towards the applied knowledge 

component of professional knowledge (Table 2-1). The first four types of contributions 

in the table below contribute towards theory. Such contributions are not directly aimed 

at informing practice, although Robinson et al. (2007) points out that rich descriptions 

may indeed help inform practice. However, specific implications for particular domains 
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of action may be drawn from interpretive research. Such implications are less of 

prescriptive than methods and techniques, emphasising tendencies rather than prediction 

(Walsham 1995). 

Type of contribution Example 

Development of concepts Ciborra and Lanzara (1994) develops the concept 'formative context' 

to explain the dynamics of innovation in organizations. 

Generation of theory Orlikowski (1996) develops a theory for a situated change perspective 

on organizational change. 

Challenge perceived views Bansler and Bødker (1993) reveal that there is a gap between the 

procedures prescribed by structured analysis and the way in which it 

is carried out. 

Contributions of rich insight Through an ethnographic study of eXtreme Programming (XP) 

practice, Sharp and Robinson (2004) offers rich insight into how an 

organization implements XP for software development. 

Implications for particular 

domains of action 

With basis in a study of IS development in the finance sector, 

Walsham and Waema (1994) draw a number of implications for the 

relationship between design and business strategy. 

Table 5-2 Types of contributions offered by interpretive research 

Theory can therefore be both the input to (see 5.3 above) and output of the interpretive 

research process. Theory developed through interpretive research can be a refinement of 

that used for planning the research, or it may be a newly formulated theory grounded in 

the empirical data. The theory developed through interpretive research is what Langley 

(1999) labels process theory. Process theory seeks to conceptualize events, activities, 

and choices ordered over time and to detect patterns among them. The purpose is to 

explain the outcome and mechanics of these activities and events. Process theory 

therefore encompasses single concepts describing the mechanics of processes. This is in 

contrast to variance theory that provides explanations of phenomena in terms of 

dependent and independent variables. It is in this latter meaning of the term software 

engineering researchers talk about theory (Sjøberg et al. 2008).  

5.5. Evaluation of interpretive research 

The credibility of reported research results are grounded in a broader understanding of 

knowledge and social reality (Pozzebon 2004). Research approaches therefore address 

research evaluation differently. Emphasising how well the reported research represents 

an objective reality, positivist research is evaluated with the theoretical constructs of 

validity and reliability. Interpretive research, on the other hand, does not see reality as 

an object independent of the social actors who try to understand it. Rather, reality is 

constructed as social actors try to make sense of it. The researcher has no privileged 

access to reality, and is therefore considered one of these social actors. The credibility 

of interpretive research is therefore grounded in the researcher's research practice. 

Interpretive researchers have approached research evaluation in different ways. Some 

researchers provide no explicit research evaluation in their reported research, as no 

universally valid judgements about the credibility of their results can be made. Garrat 

and Hodkinson (1998), however, argue that even though no pre-specified criteria can 

ensure universally valid judgements about any kind of research, reflecting upon how the 
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research may be evaluated can help refine and develop our collective understanding of 

how interpretive research is to be evaluated. Most interpretive researchers have 

therefore chosen to employ predefined schemas for evaluating their research results. 

A number of IS researchers have employed Golden-Biddle and Locke's (1993) schema 

for evaluating ethnographic fieldwork. The criteria in this schema ground the credibility 

of the reported research in the research report itself: 

• Authenticity: Was the researcher there? 

• Plausibility: Does the story make sense? 

• Criticality: Does the research offer something new to the research field? 

The most commonly used evaluation schema within interpretive IS research, however, 

is Klein and Myers' (1999) seven principles for evaluating interpretive field studies. 

Acknowledging the emergent nature of interpretive research, the principles are not 

intended as a predetermined set of criteria to be mechanistically applied to the research. 

Rather, they form a set of guidelines to be applied appropriately with judgement and 

discretion both in planning and conducting interpretive research, as well as in evaluating 

the resulting interpretations. 

Principle Description 

1. The fundamental principle 

of the hermeneutic circle 

This principle suggests that all human understanding is achieved by 

iterating between considering the interdependent meaning of parts 

and the whole that they form. 

2. The principle of 

contextualization 

This principle requires critical reflection of the social and historical 

background of the research setting 

3. The principle of interaction 

between researcher and 

subjects 

Requires critical reflection on how the research materials were 

socially constructed through the interactions between the 

researchers and participants. 

4. The principle of abstraction 

and generalization 

Intrinsic to interpretive research is the attempt to relate the 

particulars described in the unique instances observed to abstract 

categories and concepts that apply to multiple situations. 

5. The principle of dialogical 

reasoning 

Requires sensitivity to possible contradictions between the 

theoretical preconceptions guiding the research and the actual 

findings. 

6. The principle of multiple 

interpretations 

This principle requires the researcher to be sensitive to difference in 

interpretations among the studied subjects. 

7. The principle of suspicion Requires sensitivities to possible biases and systematic distortions 

in the narratives collected from the participants. 

Table 5-3 Klein and Myers' (1999) seven principles of interpretive fieldwork 

Where Klein and Myers' (ibid.) seven principles focuses on evaluating the reported 

research in terms of the research process, Golden-Biddle and Locke's (1993) offer 

criteria for evaluating the research in terms of the final reports. Yet, neither of the two is 

directly concerned with the research results themselves. This is particularly problematic 

when it comes to how well research results translate outside the particular study. While 

I will use Klein and Myers' schema for evaluating the reported research, I will 

supplement this with transferability (Patton 2002) to evaluate the research results. 

Rather than statistical generalization of quantitative methods or the theoretical 

generalization of Klein and Myers' principle of abstraction and generalization, 

transferability builds on the logic of similarity between two contexts. 
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6. Theoretical framework: Knowledge-

intensive work 

The reported research studies software maintenance as knowledge-intensive work. It 

draws upon research that sees work and knowledge as interrelated (Brown and Duguid 

1991). This research focuses upon work as it unfolds over time and looks to those 

working while many of the options and dilemmas remain unresolved. It emphasises 

how everyday work consists of unexpected twists and turns, and the ‘muddling through’ 

of practical decision-making and knowing (Orlikowski 2002). As work unfolds within a 

broader social and organizational context, it is structured by the rich texture of the 

context's constantly changing conditions. Rather than something to be taken as given, 

work is a collective achievement that needs to be continuously enacted (Weick 1988). 

The purpose of this chapter is to present the theoretical framework used in developing 

the results reported in this thesis. It combines two theories to study software 

maintenance as knowledge-intensive work. However, before progressing with a 

presentation of the two theories, the term 'work' and its use in the reported research 

needs to be explained. 

6.1. Work 

Broadly speaking, the term 'work' has four different meanings (Orr 1996): 

• Work as profession 

• Work as employment 

• Work as job description 

• Work as action 

In the first meaning, work is associated with an individual's profession as in 'software 

engineer'. In the second meaning, work is associated with the socio-economic 

relationship between the employer and the employee. In this meaning of the term, work 

is a transaction between the employer paying the employee's effort to a predefined end. 

The problem of the above meanings of the term is that they assume work as the activity 

of production without including the activities essential to production. 
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The third meaning of the word, work as a job description, overcomes this problem. Here 

work is a set of activities to be performed by the individual employee. This is often 

described in manuals, training courses, as well as in formal job descriptions. Here, work 

is seen as a set of clearly delineated activities. Brown and Duguid (1991, p. 40) calls 

this view of work 'canonical practice'. They criticise such descriptions for being abstract 

and detached, and consequently distort or obscure the intricacies of the actual work. In 

contrast, they propose the term non-canonical practice. Non-canonical practice is the 

fourth meaning of the term work. Non-canonical practice views work as it unfolds over 

time, and looks to someone at work on it, while many of the options and dilemmas 

remain unresolved. Furthermore, it sees work as a performed achievement of a 

collective of people and technological artefacts (Orr 1996). 

It is in the latter meaning of the term 'work' that is used in this thesis. 

The distinction between process and practice in software engineering is problematic. 

Software process is often defined as the sequence of steps performed for developing 

software (IEEE 1990). As such, software processes deal with prescription and formality 

(Highsmith 2002), and are described as software process models. Like canonical work, 

software processes are abstractions detached from the actual flow of work as it unfolds.  

Like non-canonical work, research on software engineering practice seeks to study the 

process of doing tasks and how they are actually structured by the conditions of work 

and the world. However, the term practice is used with three different meanings within 

software engineering. The three meanings are summarized in Table 6-1. 

Meaning Description 

Software engineering research and 

practice 

In this context, 'practice' means software engineers developing 

software in contrast to software engineering researchers. 

Practice as oppose to process models "Process deals with prescription and formality, whereas 

practice deals with all the variations and disorderliness of 

getting work done." (Highsmith 2002, pp. 121-122) 

Best practice In this context, 'practice' is used to describe the best technique 

or method for achieving a goal. Software patterns, for instance, 

is a set of best practices for solving typical design problems 

object-oriented programming. 

Table 6-1 Meanings of 'practice' in software engineering 

To avoid confusion, this thesis uses the term 'software engineering practice' in the first 

meaning in the above table. Focus of the reported research, however, is on practice as 

opposed to process, the second meaning in the table. This is called 'software 

engineering work' to avoid confusion. Similarly, the term 'software process' is used in 

the meaning of an abstraction description of software development practice. The term 

process is used in a more general term about events, activities, and the sequence of these 

(Langley 1999). 

6.2. Knowledge-intensive work 

Much research focuses on the nature of knowledge, seeking distinctions such as tacit 

and explicit or codified and non-codified knowledge. Such discussions are bracketed in 
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this thesis. Instead, focus is upon how people express knowledge by acting 

knowledgeably in practice (Orlikowski 2002). To study software maintenance as 

knowledge-intensive work, this thesis draws upon a combination of sensemaking theory 

(Weick 1995) and actor-network theory (Latour 1987). Rather than providing a rigid 

framework to be applied to the collected data, they have informed the analysis. As such, 

the two theories have been used as a form of scaffolding to be removed once they are no 

longer needed to make sense of the collected data (Walsham 1993). 
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Sensemaking theory addresses how people make sense of situations that initially makes 

little sense through action (Weick 1988). The central question driving sensemaking is 

therefore 'what is going on?' rather than 'what to do next?' (Weick et al. 2005). Action is 

therefore point of departure for sensemaking.  

Action is driven by previous experience and presumptions; it is retrospective. To make 

sense of situations people act upon the ongoing flow of experience. Drawing upon 

sociological phenomenology (Schütz 1967), the distinction between singular and plural 

form of experience is important to sensemaking theory. Experience, in the singular 

form, is the ongoing stream of pure experience of the present moment. To make sense 

of the ongoing flow of experience we need to act upon it to chunk and classify it into 

experiences. Experiences, in the plural form, are therefore the product of retrospectively 

chunking and classifying moments from the ongoing flow of experience. Sensemaking 

is therefore retrospective action upon past experience (Weick 1995). 

While individual action is the point of departure for analyses of sensemaking, 

sensemaking is still inherently social. The term social is understood as the behaviour of 

two or more actors, and action as the behaviour to which subjective meaning is attached 

(Schütz 1967, p. xxii). Through our actions, we therefore take part in constructing the 

materials to make comprehensible situations. However, people are an intrinsic part of 

this environment. As such, through action sensemaking is social. 

This brings us back to the centrality of action as unit of analysis for sensemaking. 

Action always resides in the past, present, and the future. Action unfolds here and now. 

But we always act upon past experience. In the process however, we enact sensible 

environments. In so doing, we enable and constrain future actions (Weick 1995).  

While sensemaking theory emphasises the codetermination between human action and 

the context of human action, it lacks the theoretical apparatus for unpacking and 

analysing how artefacts in this environment influence human action. Because the 

centrality of artefacts in the maintenance process, it is important to supplement 

sensemaking with theoretical concepts for analysing how people go about producing the 

materials from which to make comprehensible situations. To this end, sensemaking is 

supplemented by actor-network theory. 
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Originally conceived as a theory for mapping scientific controversies (Latour 1987; 

Callon 1999), actor-network theory (ANT) has been broadened to the study of 

technological development including information systems development (Monteiro 

2000). The reported research draws on ANT as it offers theoretical concepts for 

bringing artefacts into the analysis of knowledge creation. It needs to be noted that ANT 

is not a stable body of theory. Rather, it is continuously revised and extended. The 

version of ANT used in this research has been labelled the sociology of translation.  

The sociology of translation is particularly concerned with the development of scientific 

knowledge. Emerging from the sociology of knowledge (Bloor 1976), ANT refutes that 

scientific knowledge is the product of a privileged scientific method. Instead, knowledge 

is the product of a patterned network of materially heterogeneous actors (Law 1992). 

This is a rather convoluted explanation of knowledge creation. The purpose of this 

subsection is therefore to progressively clarify this explanation by presenting the key 

terms of the sociology of translation. 

The actor is the basic concept of ANT. Actors may be human. The human actor is 

similar to what we call a stakeholder in software engineering. For ease of terminology, 

the term stakeholder is therefore used about human actors in this thesis. However, ANT 

does not limit the term actor to humans. Instead, the term is used about all physical 

entities involved in the knowledge-creation process. For instance, Callon (1999) treats 

scallops as actors in analysing how scientific knowledge of scallop farming is 

developed. Similarly, Latour and Woolgar (1979) brings laboratory scientists and 

technicians, laboratory equipment such as test tubes, reagents, and microscopes, as well 

as the scientific papers, patents, and conferences reporting scientific knowledge as 

actors in the analysis of how knowledge is created in laboratory sciences. 

Rather than privileging humans, ANT therefore treat all actors involved as equally 

important in the analysis of knowledge creation. The term 'materially heterogeneous 

actors' derives from this inclusive view of the actor. This inclusive view of actors is 

labelled the generalized principle of symmetry (Latour 1987). Like sensemaking, ANT 

sees knowledge as essentially social. With the generalized principle of symmetry, 

however, the scope of the social is expanded to include all actors: humans as well as 

non-humans. As many see social as exclusive to humans, it is useful to use the term 

'collective' instead. 

Returning to the definition of work as a collective achievement ,we see that it is the 

achievement of human as well as non-human actors. The analysis of software 

maintenance work therefore needs to include both stakeholders like users and software 

developers, in addition to product artefacts like source code and executing software, 

process artefacts like problem reports, as well as the tools used in developing and 

maintaining the software. They are all brought into the analysis of software maintenance 

work as actors. 

ANT was conceived to analyse scientific controversies and the mechanisms of resolving 

such controversies. To this end, ANT offers the term translation. Translation is the 
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mechanism through which different actors with different interests come to reach an 

agreement. This is often referred to as translation of interests. For anyone wanting to 

establish a fact, the basic constituent of knowledge, the first moment in the translation 

of interests is to define actors, endowing them with interests and problems to overcome 

(Callon 1999). The purpose of defining and endowing actors with such interests is to 

establish the fact as a solution to problems faced by the actors. By accepting the fact as 

true, the actors will meet their interests. As such, the defined actors' interests are 

translated or aligned with the translating actors' interest. Put another way: actors are 

patterned. Facts and knowledge come about as the product of such patterned networks 

of actors. 

Sensemaking is clear on how action folds the past, present, and future in one.  The same 

happens when translating interests, too. ANT, however, is not particularly clear on this. 

Yet, defining actors, endowing them with interests and problems to overcome is both 

retrospective and enactive. On the one hand the particular pattern of actors do not exist 

a priori. Rather, they are retrospectively constructed in the moment the moment of 

translation. However, bringing a set of actors into being, a particular form of reality is 

constructed. As such, translation is also enactive. While sensemaking emphasises the 

collective aspect of knowledge and understanding, it is weak on theorizing conflict. 

This is where the vocabulary of ANT comes to the rescue. 

It is worth noting that the interests endowed to actors do not exist a priori (Callon and 

Law 1982). Rather, the translating actor endows other actors with interests. However, 

these actors are not necessarily docile bodies in the hands of the translating actor. On 

the contrary, translation is a multilateral process of negotiation. The translation is in the 

hands of the other, the actors being translated (Latour 1987). As such, "[t]o describe 

enrolment is thus to describe the group of multilateral negotiations, trials of strength and 

tricks that accompany the interessement and enable them to succeed" (Callon 1999, p. 

74).  

Through mobilization, the actor-network is kept stable by making "a configuration of a 

maximal number of allies act as a single whole in place" (Latour 1987, p. 172). This 

renders the individual actors in the network invisible making them appear as a single 

unity, a process called black boxing. This way we see how actors are hybrids, 

collectives that take the form of "companies, associations between humans and 

associations between non-humans" (Callon 1991, p. 140). This also points to the 

analytical flexibility of ANT, entailing "that the 'actor' of an analysis is of the 'size' that 

the researcher chooses as most convenient relative to the direction of the analysis" 

(Monteiro 2000, p. 82). 

Translation is therefore the process of enrolling a sufficient body of actors by aligning 

these actors' interests so that they are willing to participate in particular ways of acting. 

It implies definition, and this definition is inscribed in material intermediaries. These 

intermediaries are actors in their own right. They are delegates who stand in for and 

speak for particular interests; they are the medium in which interests are inscribed. The 

operation or translation is therefore triangular: it involves a translating actor, actors that 

are translated, and a medium in which the translation is inscribed. 
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7. Research setting: Gentoo 

The setting for the reported research is the Gentoo community. This is a geographically 

distributed community of volunteer software integrators. They operate and maintain a 

system for distributing and integrating third-party OSS on different Unix operating 

systems. The purpose of this section is to provide an overview of the Gentoo 

community, its technology, and their work activities. To this end, the chapter is 

organized in three sections First, a brief overview of the Gentoo community is provided 

in Section 7.1. An overview of the Gentoo technology is provided in 7.2. The chapter is 

concluded with an overview of the formal organization of work within the Gentoo 

community in Section 7.3. 

7.1. The Gentoo community 

Gentoo started as a one-man effort to create a highly configurable GNU/Linux 

distribution, Gentoo Linux, in 2000. Over time the community and its technology has 

evolved. By 2006, the effort has grown into a community of geographically distributed 

volunteers across the world. By now, the software distribution system originally at the 

heart of Gentoo Linux has become the core product of the community. The software 

distribution system supports five different Unix operating systems in addition to 

GNU/Linux. 

Of over 100 commercial and non-commercial GNU/Linux distributions, DistroWatch 

(http://www.distrowatch.com) lists Gentoo Linux among the top 10 most widely used. 

Debian GNU/Linux , another volunteer-based GNU/Linux distribution, is Gentoo 

Linux' strongest competitor. Emphasising stability of use, Debian has had problems 

keeping up to date with the latest updates of the software they offer. Gentoo Linux, on 

the other hand, has had problems moving from an expert/developer's distribution, to a 

more easily managed distribution. 

As of March 30 2006
1
, the Gentoo community consists of 320 developers. Being a 

Gentoo developer is a formal title within the Gentoo community, indicating that the 

                                                

1
 This is the date I formally concluded the fieldwork. No new data have been collected since. 
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person has been formally adopted with development privileges to the community. The 

developers are geographically distributed across 38 countries. The distribution of 

Gentoo developers is summarized in Table 7-1 below.  

Continent Country Developers by country Developers by continent 

Africa   1 

 South Africa 1  

Asia   18 

 China 1  

 Israel 2  

 Japan 8  

 New Zealand 3  

 Singapore 2  

 Taiwan 1  

 Vietnam 1  

Australia   3 

Europe   132 

 Austria 7  

 Belgium 9  

 Cyprus 1  

 Denmark 5  

 Finland 1  

 France 6  

 Germany 32  

 Hungary 1  

 Iceland 1  

 Ireland 1  

 Italy 11  

 Norway 1  

 Poland 5  

 Portugal 2  

 Romania 3  

 Russia 1  

 Slovakia 1  

 Spain 3  

 Sweden 3  

 Switzerland 5  

 The Netherlands 6  

 United Kingdoms 26  

North America   138 

 Canada 8  

 USA 130  

South America   10 

 Argentina 1  

 Brazil 4  

 Chile 1  

 Colombia 1  

 Venezuela 3  

Unregistered   18 

Total 38 countries 320 developers 

Table 7-1 Distribution of Gentoo developers 

A majority of the developers are located in Europe and North America with respectively 

138 and 132 developers, for a total of 84% of the Gentoo developers. 130 of these 

developers are located in the USA alone, giving the country the highest population of 
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Gentoo developers. Second and third largest populations are found in Germany and the 

United Kingdoms with 32 and 26 developers respectively. 34 countries are represented 

by 10 developers or less. Only Germany, Italy, United Kingdoms, and USA are 

represented by more than 10 developers. To the best of my knowledge, no two Gentoo 

developers are geographically co-located. 

The geographic distribution of the Gentoo developers means that they are spread across 

17 time zones, from Pacific Standard Time in Western USA (UTC -8) to New Zealand 

Mean Time (UTC +12). Two ranges of time zones are not represented: the three pacific 

time zones between Western USA and New Zealand, and the four central Asian time 

zones between Moscow Time (UTC +3) and Western Standard Time (UTC +8). The 

majority of developers are found in two time zone ranges. 43% of the developers live in 

the four North American time zones from Pacific Standard Time (UTC  -8) in the West 

to Eastern Standard Time (UTC -5) on the East coast. 41% of the developers live in the 

three European time zones from Greenwich Mean Time (UTC ±0) in the West to 

Moscow Time (UTC +3) in the East. The largest time zone difference is 12 time zones. 

This is the distance between the Russian developer the developers on the West coast of 

the USA. 

To overcome the geographical and temporal distance, the Gentoo community has a 

number of Internet Relay Chat (IRC) channels, mailing lists, and Web-based forums for 

communication. IRC is the primary mode of communication, with the mailing lists 

providing a supportive role. The number of participants on the IRC channels and 

mailing lists far exceeds the number of Gentoo developers. In addition to the Gentoo 

developers, a lot of volunteers contribute to Gentoo with source code as well as problem 

reports. It is difficult to ascertain the number of such volunteers, as they come and go. 

However, it is important to note that such volunteer contributions of source code and 

problem reports are important to the Gentoo community. 

7.2. The Gentoo technology 

The Gentoo community develops and maintains a software distribution system for 

distributing and integrating third-party OSS with Unix-like operating systems. This 

system is released as OSS. A Unix-like operating system is an operating system that 

behaves in a manner similar to a Unix system, but does not necessarily conform to 

POSIX. Gentoo supports the following operating systems: GNU/Linux, FreeBSD, 

OpenBSD, NetBSD, Mac OS X, and Dragonfly. Gentoo's software distribution system 

is made up of two parts: an Internet-based infrastructure for distributing third-party 

OSS, as well as the Portage package manager for integrating third-party OSS on 

individual computers. The Gentoo community provides its own GNU/Linux 

distribution, Gentoo Linux, based upon the technology above. A GNU/Linux 

distribution is a collection of software applications and libraries bundled together with 

the Linux operating system kernel. It is called a GNU/Linux distribution as much of the 

core software is developed by the GNU project. 

Before progressing with a more in-depth presentation of the Gentoo technology, it is 

useful with an overview of the Unix system architecture. 
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Unix is a time-sharing operating system developed by AT&T's Bell Laboratories during 

the late 1960s and early 1970s (Ritchie 1984). It became a popular operating system at 

universities during the 1970s. By the early 1980s the Advanced Research Projects 

Agency by the US Defence Department had chosen Unix as the standard operating 

system for its Internet node. It is common to present the architecture of an executing 

Unix system as a four layered model (Tanenbaum 1992), as shown in the figure below. 

 

Table 7-2 The Unix system architecture 

At the bottom of the figure is Layer 1, the hardware layer. On top of the hardware layer 

is the operating system kernel, or simply the kernel. The kernel manages the system 

resources, and communicates between the software and the hardware. Linux is an 

example of an Unix-like kernel. The different BSD kernels are another example. System 

calls provide an interface for software to request services from the kernel. The system 

calls are part of the kernel. Most Unix-like operating systems provide slightly different 

system calls.  

Layer 3 contains runtime libraries. The runtime libraries offer an abstraction layer 

between the application software in layer 4 and the operating system. These are usually 

an implementation of the C library, such as the glibc implementation used by most 

GNU/Linux distributions. Runtime libraries handle the low-level details of passing 

information between the kernel and the application software layer. They are therefore 

operating system dependent. 
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At the topmost layer is the application software. This consists of application libraries as 

well as applications. Application libraries offer a collection of subroutines that multiple 

applications use. Unix-like operating systems have a great number of application 

libraries such as Qt a library offering functions for graphical user interfaces. The part of 

Unix-like operating systems that users typically relate to, are the applications. These 

follow to the definition of applications presented earlier in this thesis. 
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Portage is the Gentoo package manager. A package manager is an application that 

integrates software with a local computer's file system. There are many different 

package managers. RedHat Linux, for instance, uses a package manager called rpm. 

The BSD operating systems, on the other hand, use a package manager called ports. A 

Gentoo system is a computer using Portage to integrated third-party OSS with its local 

file system. An overview of Portage's architecture is provided in Figure 7-1 below. 

 

Figure 7-1 Overview of Portage's architecture 

Portage is a software application executing on a local computer. It integrates software 

packages with the computer's file system. In the GNU/Linux terminology, a software 

package, or simply package, is third-party software that can be integrated with the local 

computer's file system. While many package managers integrate pre-compiled 

packages, Portage compiles the software locally before integrating it with the file 

system.  

Portage uses an installation script, an ebuild, to integrate packages. There is one ebuild 

for every package supported by Gentoo. Gentoo often offers multiple versions of a 

package. For instance, both versions 1.5.7 and 1.6.0 of the Mozilla Web browser is 

supported. Multiple versions are often supported because the most recent version is 

considered experimental and unstable, or there may be compatibility issues with other 
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packages. Each version has a separate ebuild. There are ebuilds for software at layers 2 

to 4 of the Unix system architecture.  

All available ebuilds are stored in a local database. This database is called portdir. This 

is the variable name of the database used in the Portage source code. portdir organizes 

packages in categories. The categories are organized according to functionality. An 

example of such a category is app-text, which contain text-processing software 

packages like the Emacs text editor. Another example is net-www, which contain web 

browsers like Mozilla and Firefox. The portdir database is implemented as a simple 

directory hierarchy. Each category is a directory, and the ebuilds for a single package is 

organized in a sub-directory of its category. In addition to containing ebuilds, the 

package directories contain addition files like configuration files, auxiliary scripts, for 

instance. 

As of March 2006, Gentoo supported 8486 packages, for a total of 23911 ebuilds. The 

total SLOC of ebuilds in the repository is 671971. The installation scripts make up 

approximately 90% of the source code in the repository. The rest of the source code in 

the central repository is patches and configuration scripts to be used when integrated the 

software package on a local computer. 

The process of integrating a package with Portage follows the following process: 

1. Calculating dependencies to other packages. If the package to be integrated 

depends on other packages, this process is repeated for each package until all 

required packages have been integrated with the local system 

2. Download source code of the package 

3. Unpack the source code in a protected sandbox 

4. Configure source code 

5. Compile source code 

6. Integrate binaries and documentation with local file system 

7. Update the Portage database to store information about the newly integrated 

package 

Information about the software that Portage has integrated with the local file system is 

stored in another database, labelled by its file system path: /var/db/. /var/db/ is 

implemented as a simple directory hierarchy, with an identical structure to portdir. 

However, some addition information about the location of the package's files on the 

local file system is stored in this database. 
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The Gentoo software distribution system is based around a central repository of ebuilds. 

The portdir database stored locally on individual Gentoo systems is merely a replication 

of the central repository. Upon request, Portage synchronizes its local portdir over the 

Internet from the central repository, downloading new ebuilds and deleting ebuilds no 

longer supported by Gentoo. 
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The Gentoo developers are responsible for developing and maintaining the ebuilds in 

the central repository. To keep track of changes made to each ebuild, the repository and 

the ebuilds contained within it is under revision control using the CVS configuration 

management system. This leads to a two-layered versioning scheme, where individual 

ebuilds have revision numbers from CVS. These, though, are independent of the 

package's version number. The package's version number is part of the ebuild's file 

name (see Figure 7-1 above). Changes made to individual ebuilds are checked into the 

CVS repository. Once every hour, the central repository is updated with the latest 

updates from CVS. 

The schematic outline of the distribution system's infrastructure is outlined in Figure 7-2 

below. 
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As shown in Figure 7-2, there is no single Gentoo system. Rather, numerous instances 

run on computers distributed across the Internet. Distribution is a defining characteristic 

of integrated sytems (Hasselbring 2000). Distribution is the core factor for the 

potentially for immense variability among Gentoo systems. The individual state of 

Gentoo systems vary greatly. The dimensions of this variability will be discussed here. 

Heterogeneity is another defining characteristic of integrated systems (Hasselbring 

2000). The heterogeneity among the operating systems supported by Gentoo contributes 

to the variability among individual Gentoo systems. This variability can partly be 

explained with basis in the Unix systems architecture. Gentoo supports five different 

operating systems. Each has its own kernel, with slightly different system calls, and 

different runtime libraries. GNU/Linux, for instance, supports threading in the 

libthread runtime library. The BSD operating systems, however, support threading 

in the libc_r runtime library. Furthermore, the kernels run on different hardware 

platforms. MacOS X runs on the Apple PowerPC computer architecture. The Linux 

kernel is also supported for five different processor architectures. 

Autonomy is another source of variability among Gentoo systems. Some operating 

systems are more autonomous of Portage than others. Portage controls all software at 

layers 2 to 4 for Gentoo Linux. Apples's own package management software, on the 

other hand, controls much of the software on MacOS X. Here Portage co-exists with 

Apple's package management software. Apple's package manager is in complete control 

of the software in Levels 2 and 3. It is also in control of many application libraries in 

Layer 4. Portage has to take this into account when calculating dependencies. 

Individual Gentoo systems can be autonomously configured using optional features and 

virtual packages. Portage may be configured to support optional features, simply called 

optionals, across individual ebuilds. The IMAP mail protocol is an example of such a 

crosscutting feature. If IMAP is registered as an optional in the Portage configuration 

file, every ebuild having supporting IMAP will be compiled with IMAP support. 
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Figure 7-2 Distribution system's infrastructure 
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Similarly, functionality that may be provided by different packages are called virtual 

packages. For instance, Java applications only rely upon having a Java virtual machine 

installed on the local computer. It does not matter whether this is Sun's or IBM's Java 

machine. Similarly, many GUI applications rely functionality provided by either the 

GTK1 or GTK2 widget library. 

7.3. Organization of the maintenance process  
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Having experienced an exponential growth from a one-man project in 2000, the Gentoo 

community adopted a formal management structure in July 2003. The stated intent of 

the management structure was to resolve the chronic management, communication, and 

coordination issues the community was suffering under. The community was to be 

headed by a management team. The management team initially consisted of the Chief 

Architect along with the managers of the Gentoo projects. A project is a group of 

Gentoo developers formed for handling a particular general area. The Portage project, 

for instance, is devoted to maintaining and updating Portages core functionality and 

utilities. There are 32 such projects as of March 30 2006. 

A herd is a team of Gentoo developers responsible for a collection of packages. As of 

March 30 2006, there were 124 such herds. Each herd vary in size from a single 

developer, to over 20 developers. The purpose of the herds is to ensure that there is 

always somebody responsible for resolving incoming problem reports. Sometimes herds 

and projects overlap. For example the Portage project has an associated Portage herd. 
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Respective projects or herds handle maintenance modification decisions informally. The 

Portage project is somewhat unique, as it is responsible for maintaining and application 

and not ebuilds. This project therefore has a more formal decision process, where the 

project manager makes the decisions about modifications to the software. 

The corrective maintenance process, however, is organized more formally. Upon 

experiencing software failures, the user submits a problem report to the Gentoo defect 

tracking system. The Gentoo community uses Bugzilla, an open source defect tracking 

system (Barnson 2007). The problem report in Bugzilla consists of a set of predefined 

fields for classifying software failures. It also provides a text field called 'Additional 

comments' for attaching comments as well as textual data like stack traces to the 

problem report. 

Upon receiving a new problem report, the Bugwranglers, the Gentoo community's 

equivalent of a change control board for corrective maintenance, assigns the problem 

report to the responsible herd. The Bugwranglers assign the problem report with basis in 

the classification of the problem, without analysing the reported failure themselves. The 
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responsible herd assigns the problem report to a developer. The assigned developer then 

resolves the problem report.  Figure 7-3 summarizes the process. 

 

Figure 7-3 Overview of the corrective maintenance process 

The corrective maintenance process reaches closure in one of five ways, summarized in 

Table 7-3 below. Reaching a closure with one of the five resolutions to the problem 

report requires and understanding of the system causing the software failure. It is the 

process of reaching such an understanding that has been the focus of the reported 

research on corrective maintenance work. 

Resolution status Description 

Correction of problem The developer corrects the reported failure 

Mark with NEEDINFO flag Further work on the problem report is pending further information 

Reject as user failure The failure is found to be caused by problems with the user's 

Gentoo system 

Mark as duplicated The failure has previously been reported 

Forward upstream The failure is not connected with the way Gentoo integrates 

software. It is caused by a defect in the third-party software. 

Table 7-3 Closure of the corrective maintenance process 
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8. The research process 

Interpretive research is a result of the researcher's embodied, situated experience 

(Walsham 2006). It is a process marked by a plethora of more or less conscious 

decisions, evolving theoretical concepts, beliefs, and practical problems (Avgerou 

2005). The challenge when reporting the research is therefore to provide sufficient 

information to make an intelligible account of the big lines of the research project 

without overloading the reader with too much information. This chapter section seeks to 

strike a balance between reporting the different research activities performed and 

provide an outline of the most important decisions made during the study.  

To this end, the research process is split into three distinct periods: fieldwork, study of 

corrective maintenance, and testing of preliminary results. The overall goal of the 

project, to explore software maintenance practice as knowledge-intensive work, has 

been constant from beginning to end. However, each of the three periods reported in 

this chapter have their distinct focus and place in the overall research process. Figure 

8-1 below provides a timeline for the data collection activities undertaken as part of the 

research process. 

 

Figure 8-1 Timeline of data collection activities 

The purpose of this chapter is therefore to present the research process. It is therefore 

organized as follows. Sections 8.1 and 8.2 present the fieldwork and the study of 
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corrective maintenance respectively. Section 8.3 presents the activities performed to 

evaluate preliminary research findings, while Section 8.4 concludes this chapter with 

reflections on the evaluation of the reported research. 

8.1. Fieldwork 

In the period from January to December 2004 I performed empirical fieldwork. During 

this period, the research underwent a transformation from archival reconstruction of 

mailing list archives, to participant-observation. While participant-observation was the 

primary form of data collection during this period, it is supplemented with documents, 

problem reports, and data from mailing list archives. 

The initial focus of the reported research was to study how change requirements are 

developed in an OSS community. With basis in the observation that there are no formal 

processes for developing change requirements in OSSD (Scacchi 2002), the intent was 

to study this as a process of learning the requirements through use and development. 

Thinking in terms of knowledge-intensive work, developing change requirements was 

conceived as a form of working-as-learning (Brown and Duguid 1991). 

The scheduled empirical research coincided with the Gentoo community's efforts to 

replace Portage, the Gentoo package manager, beginning in November 2003. The code 

had become too difficult to comprehend, making Portage difficult to maintain. The 

effort to develop a new package manager was given the working title of PortageNG – 

next generation Portage. The PortageNG effort dwindled out during January-February 

2004. In its wake a series of failed attempts at replacing Portage were undertaken 

throughout 2004. The continued efforts at replacing Portage during 2004 therefore 

formed the focus of the empirical fieldwork reported here. 
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The original plan for the research project was to use a method for reconstructing 

mailing list archives developed in a previous study (Østerlie 2003). During the period 

from January to late February 2004 I worked with reconstructing the Gentoo developers' 

mailing list archives to study the development of change requirements. This study 

focused upon the PortageNG effort, both the activities leading up to PortageNG as well 

as the development of it. 

Archival reconstruction is a meticulous and time-consuming activity of systematically 

working through the mailing list archives. It involves a good deal of detective work to 

locate relevant e-mails and connect them, as well as relating these to documentary 

sources outside the mailing list. It is therefore a process of relating fragmented pieces of 

information gleaned from different documentary sources with each other. 

By February, though, I found progress to be lacking. There was a distinct lack of 

activity related to developing change requirements on the Gentoo developers' mailing 

list. Having gotten in touch with a Gentoo developer in connection with following a 

lead, I inquired about the lack of such discussions on the mailing lists. I learned that the 
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Gentoo developers used a number of Internet Relay Chat (IRC) channels for discussing 

change requirements. I also learned that the PortageNG effort had dwindled out and 

been abandoned in late January 2004. 
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With this new information, I adopted a different empirical strategy. The shift of 

empirical strategy coincided with a shift in theoretical focus. Whereas I had originally 

conceived the process of developing change requirements as a form of working-as-

learning (Brown and Duguid 1991), I was turning towards conceiving it as process of 

constructing facts (Latour 1987). I came to see change requirements as the product of 

constructing specific problems related to Portage and then proposing solutions for these 

problems. This shift of focus gained momentum when I used ANT when reporting from 

the fieldwork so far in late March (Østerlie 2004). 

In March I started observing the Gentoo developers on IRC. While there was much 

activity on the IRC channels, I found only parts of it of interest to my study. As such, I 

also started a retrospective analysis of PortageNG's demise. Identifying key 

stakeholders in the PortageNG effort, I sought to investigate their explanations of why 

PortageNG had been abandoned. These stakeholders were approached on IRC and on e-

mail. From these inquiries, I learned of a new effort, GentoolkitAPI. GentoolkitAPI was 

considered a less ambitious extension of PortageNG. The purpose of the GentoolkitAPI 

was to provide a stable API for third-party applications accessing the Portage databases. 

Observing on IRC channels is an indirect form of observation, in that I had no direct 

access to the Gentoo developers and users. Rather, I observed their activities through 

the traces they left on IRC, but also in the tools they used for collaborating. It is a form 

of observation through artefacts. This is a challenge that I reflect upon in 8.4.1. My 

access to the field was the same as those I studied, as no two Gentoo developers are 

geographically co-located. The field, however, differs from direct observations of co-

located software development.  
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Some time during April, I went from observation to participant-observation. Although 

having been a Gentoo Linux user since 2001, I often found it hard to relate to issues that 

were discussed in relation to replacing Portage. I therefore decided to participate in 

hopes of getting more of an understanding. From previous experience as an active 

Gentoo Linux user, I knew that submitting new ebuilds, reporting problem reports, and 

resolving incoming problem reports are key activities in Gentoo. I began participation 

by submitting a series of ebuilds that I had written for applications I was using at the 

time, but were not yet supported by Gentoo. I then started contributing towards 

resolving bug reports when these were discussed on IRC. I also submitted some 

problem reports of my own. 

Late April PortageAPI, an experimental API for Portage, was announced on the Portage 

IRC channel. Having followed the GentoolkitAPI for a while, I was curious to learn 

why two efforts aimed at the same target were launched. PortageAPI was an extension 
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of an effort to modularize Portage. Two Gentoo developers had tried and failed at this 

during March 2004. This modularization effort, labelled portage_mod, had failed. One 

of the two developers working on portage_mod was now trying a less ambitious plan 

for replacing Portage: writing an API to 'insulate the internals' of Portage, then rewrite 

the tools to access the internals through the interface, before re-engineering Portage in 

the end. I volunteered to developing unit tests for PortageAPI. 

Throughout May and June I worked full time developing unit tests, learning firsthand 

how hard the Portage code was to comprehend. In the beginning of July I went on 

summer vacation, only to learn the PortageAPI had been abandoned upon returning 

some weeks later. 
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Inquiring about the PortageAPI's demise, I was told that it was based upon the wrong 

assumption of Portage as a single-user application. Two developers were now rewriting 

Portage as a multiuser application. The multiuser application was to be based on a Unix 

deamon architecture. The effort was labelled the ebuild-daemon. Having invested a lot 

of effort in comprehending the Portage source code and writing tests for the 

PortageAPI, I decided that participating in the ebuild-daemon effort would be too time-

consuming. While continuing to participate in resolving failure reports for a while, I 

gradually reduced participation throughout August and September. 

By the end of September I was back to mostly observing, only asking questions to learn 

more about the activities of rewriting Portage. While the ebuild-daemon effort persisted, 

so did continued corrective and adaptive maintenance of the original Portage code, too. 

All in all, I found that the effort to maintain and adapt Portage had remained largely 

untouched by the many efforts to replace it throughout 2004. By early November 2004, 

yet another attempt at rewriting Portage appeared: omicron. This, however, was a 

complete reimplementation of the package manager. History seemed to repeat itself. 

One year after PortageNG had been announced as a complete reimplementation of the 

package manager system, yet another complete rewrite was attempted. 

At the time of writing up this thesis, Gentoo is still using the original Portage code. 

7���" <
����
�������������

Throughout the period of fieldwork a number of materials were collected. These are 

summarized in Table 8-1 below. 
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Data source Description 

Fieldnotes Each day's fieldnotes stored in a single file identified by its date for ease of 

reference. All files stored in a single folder. 

IRC logs Logs saved as one file per channel per day, for a total of 1027 files. For 

ease of reference, each file stored on the format <channel name>-<date> 

(e.g. gentoo-portage-2004.25.05). All logs saved in a single folder. 

Documentary database 70 documents related to 1) the efforts to replace Portage, or 2) background 

information on the Gentoo community, stored in the documentary database. 

For ease of reference, each document identified by its date and a serial 

number (e.g. 2004.01.27-#3), and stored in a separate folder. 

Mailing list archives Archives of 31 Gentoo-related mailing lists provided by the gmane project 

(http://www.gmane.org). Archives date back to April 7 2001. Accessible 

with mail client through a NNTP interface. Mail client provides full text 

search of the entire archive. 

Table 8-1 Summary of materials collected 

I made fieldnotes in the period from April through December 2004. These were jotted 

down in a note pad by the side of the keyboard. Particularly interesting passages from 

the IRC channels were copied into a separate file. At the end of the day, the day's 

fieldnotes were transcribed on my computer. Daily fieldnotes were made in the early 

stage of observation. As participation intensified, the extent of the fieldnote-taking 

decreased, to the point where I barely made any notes during the period of most 

extensive participation during May-June. As I started to gradually withdraw from 

participation from the end of August, the extent of these fieldnotes became more 

sporadic. The fieldwork was becoming familiar, and I did not find it necessary to make 

notes of the familiar. Issues that I judged to be of interest dried up as I gradually 

withdrew from the field. By December 2004 I barely made any fieldnotes at all. 

The Gentoo community has set up over 40 IRC channels dedicated the issues ranging 

from user support to Gentoo developer communication. During the period from April 

through December 2004 I had an IRC client connected to the following five channels:  

• Development of the Portage package manager 

• User support channel 

• General developer discussions 

• Java-related issues 

• MacOS X support for Gentoo.  

As there are no archives of the Gentoo IRC channels, my IRC client logged the activity 

on these six channels to disk, 24 hours a day, seven days a week. The period of June 20 

to 29 the logs are less comprehensive due to network problems. There are no logs in the 

period from June 30 to July 12 2004, as I was off on summer vacation during this 

period. 

Although I quit the archival reconstruction effort, the mailing list archives of the Gentoo 

developers' mailing list continued to be a source of information. While the Gentoo 

community does not archive its mailing lists, two independent mailing list archives are 

available: the Mailing list ARChive (http://www.marc.info) and Gmane 

(http://www.gmane.org). MARC provides archives for 31 of the Gentoo mailing lists, 

while Gmane archives 64 of the mailing lists. MARC provides complete archives of the 
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mailing lists from January 1 2001. GMane provides archives of the mailing lists from 

April 7 2002. While the MARC archives provide a more extensive history, I used the 

GMane archives because they are available with mail client through a NNTP interface. 

The mail client provides full text search of the entire archive. The MARC archives are 

only available through a Web interface with limited search capabilities. 

8.2. Study of corrective maintenance work 

By the end of 2004 I had completely withdrawn from the field. During the last months 

of fieldwork I had started working systematically through the materials collected so far. 

I continued this work until March 2006, interrupted during the period from June to 

September 2005. Drawing upon the materials collected during the fieldwork, I 

developed an overarching 40 pages case narrative (Patton 2002) of the many failed 

attempts at replacing Portage. Upon returning to the research in September 2005, I 

decided to supplement the study of replacing Portage with an in-depth analysis of 

corrective maintenance work.  

This section will present this study of maintenance work. The study is presented as a 

sequence of activities: sampling, constructing case narratives, identification of themes 

and patterns. While I performed all of these activities, the study unfolded more 

iteratively. However, I choose this sequential form for the purpose of presentation. 
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For better control of the data, the Gentoo community's defect tracking system's database 

was replicated on my computer with a simple script. Over 20.000 problem reports were 

downloaded. The first task was therefore to reduce the volume of data to identify 

information-rich problem reports for further analysis. Looking for information-rich 

problem builds on intensity sampling, which is a sampling strategy where cases that 

manifest the phenomenon intensely are studied (Patton 2002).  

Figure 8-2 The sampling process 

First the volume of data was reduced through periodization. From the fieldwork I knew 

that the Gentoo developers often discuss problem reports on the Gentoo IRC channels 
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and the dedicated developers mailing list. Combining several data sources was a way of 

identifying information-rich samples for further analysis. Supplementing the problem 

report with data from the collected IRC logs and the mailing list archives would also 

enable triangulation during analysis (Fetterman 1998). Only problem reports submitted 

in the period of my fieldwork were therefore included with the sample.  

The volume of problem reports was still too large for in-depth analysis. The reduced 

sample from the previous step was therefore prioritized to identify the most 

information-rich problem reports. Again, drawing upon experience from my fieldwork I 

knew that the Gentoo developers and users used a text field at the bottom of the 

problem reports to communicating back and forth during the corrective maintenance 

process. An operational indicator for information-rich problem reports at this stage in 

the sampling process was therefore reports with an extensive back and forth dialogue in 

this text field. I developed a small script to count the number of comments attached to 

this text field along with the problem report's unique identification number. The list was 

sorted with the problem reports with the most extensive back and forth dialogue at the 

top.  

This list was then used to identify information-rich problem reports. I knew from the 

fieldwork experience that the Gentoo developers practically always use the problem 

report's unique identification number when discussing reported problems. Going from 

the top of the list, I searched for the identification number in the IRC logs. Reports that 

had not been discussed on any of the IRC channels were discarded as not sufficiently 

information-rich. I also used a news client for searching for the problem report's unique 

identification number in the gmane.org mailing list archives. From the fieldwork, 

however, I knew that the most significant discussions about reported problems found 

place on the IRC channels. Problem reports with no e-mail discussions were therefore 

not necessarily excluded. 

7�
�
 2����$������
����
��
���������������������
�����
����

The second step of the study was to assemble case narratives. At this stage, each 

problem report was treated as a single case. Focus for the case narrative was corrective 

maintenance practice: the process of reporting defects and resolving problem reports. 

Contrary to the focus upon classifying defects and analysing their causes that dominates 

the research literature on corrective maintenance (Fenton and Neil 1999), the object of 

study is the activity itself. Assembling case narratives consisted of three activities. The 

process is outlined in Figure 8-3 below. 
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Figure 8-3 The process of assembling case narratives 

First, all data from the problem report was integrated with data from the IRC logs and 

mailing list archives. These were collected in a single Word document. This document 

was then used throughout the process of assembling case narratives. Next, the data in 

the word document was organized by laying it out sequentially in time. While the data 

usually started with the initial problem report, there were instances where the sequence 

of data started with a discussion on an IRC channel or mailing list. Laying out the data 

sequentially also meant splitting up the problem report, providing the IRC channel and 

mailing list discussions in between comments attached to the problem report. 

The final step was to write up the events of resolving the problem report as a narrative. 

This was a time-consuming process. Similar to Orr's (1996, p. 125) experience from 

analysing diagnosis work, that "[t]elling stories in diagnosis contexts makes some them 

extremely elliptical and barely recognizable to outsiders", I often found it hard to grasp 

the content of the raw data. While organizing the data sequentially provided a clear 

sequence of events for a problem report, I found particularly IRC discussions circular, 

convoluted, and full of implicit references to the problem report, documents, and stories 

circulating in the Gentoo community. 

Writing up case narratives was therefore a dialectic process of shifting between writing 

the narrative and working with the raw data. In writing out the narrative, I came across 

statements and issues that were unclear. I found implicit references that I had to figure 

out by looking through the different data sources. Once uncovered, the data of these 

implicit references were copied into the timeline. Particularly references to installation 

scripts and the data provided with these were uncovered in this dialectical process. 
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While writing the case narrative involves a degree of content analysis, cross case 

comparison is a more detailed content analysis that involves "identifying coherent and 

important examples, themes, and patterns in the data … quotations or observations that 

go together that are examples of the same underlying idea, issue, or concept" (Patton 

1987, p.149 quoted in Cope 2005, p.179). The process of finding themes and patterns 

was a form of cross-case comparison, where I studied compared the assembled case 

narratives. 

At this stage in the process I employed a technique called bracketing: 
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In bracketing, the researcher holds the phenomenon up for serious inspection. It 

is taken out of the world where it occurs. It is taken apart and dissected. (…) It 

is treated as a text or a document; that is, as an instance of the phenomenon 

being studied. (Denzin 1989, p.55-56 quoted in Patton 2002, p.486).  

Rather than focusing on the software failure and the nature of its corresponding defect, I 

bracketed these concepts analysing corrective maintenance practice as the process of 

submitting and resolving problem reports. The practice of corrective maintenance was 

reduced to the case study narrative. 

A number of patterns were identified during this process, which in turn where 

thematized. I will now use a concrete example to give an impression of this part of the 

process. Østerlie (2006) is an illustration of the relation between what would form the 

pivotal patterns and theme reported in this thesis. I had identified a pattern that I 

labelled interpreting. It was based on the following observed pattern:  

To make sense of failures reported in bug reports, the [Gentoo] developers 

discuss a number of possible sources for the failure. Of these possible 

explanations, I find that none are dismissed on conclusive evidence. (ibid., p. 

336). 

Furthermore, focusing upon the roles of different actors in the process, I identified a 

pattern I labelled producing debug texts, wherein the role of the user is to provide the 

Gentoo developer with more information about the software failure occurring on the 

user's local system. These two patterns were then thematized to the practice of 

producing and interpreting debug texts: 

(…) I find that none are dismissed on conclusive evidence. Instead, alternative 

explanations for reported failures are made more or less plausible by producing 

new debug texts, trying to reproduce the bug, and drawing on external texts like 

installation scripts, source code, documentation, and change logs. (ibid.) 

This is also an illustration of the use of an emic perspective during analysis. Emic 

analysis is sensitive to the vocabulary and practices indigenous to the studied subjects 

(Patton 2002). The term comes from anthropology, and is used in opposition to the etic 

perspective where categories created by the researcher are used to structure and drive 

the analysis. Assuming an emic perspective together with the technique of bracketing, 

are the two primary techniques used to study the practice of corrective maintenance 

from the insider's point of view.  

Constructing case narratives and identifying patterns and themes was an iterative 

process. Analysing all of the problem reports identified as information-rich would have 

been too time-consuming. Instead, I started by constructing case narratives for three 

problem reports. Then, while identifying patterns and themes, I would go back to 

construct case narratives for a new problem report to see if any new patterns or themes 

could be identified. I iterated between these two steps several times, until the number of 

new themes occurring in the case narratives dwindled away. Also, as the process 

progressed, I opted more and more for simply organizing the raw data of a case 
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chronologically and writing a small executive summary rather than writing a long case 

narrative. With experience in studying problem reports along with the emerging picture 

of patterns, I was able to identify patterns more easily. 

8.3. Testing preliminary research results 

Since 2003, I had grown increasingly uneasy about the espoused view of OSSD as 

completely different from software engineering (see Section 4.3). However, after 

writing up Østerlie and Wang (2006), I was growing increasingly concerned about the 

relevance of my research in relation to software engineering. The proof of the pudding, 

I decided, was to test the transferability of the preliminary research results outside the 

context of volunteer software development. 

Transferability is an approach for establishing the applicability of research results 

outside the research setting (Patton 2002). It is an indirect approach to generalization, as 

it is a speculation on the likely applicability of findings to other situations under similar, 

but not identical, conditions. This kind of generalization is case derived and problem 

oriented rather than statistical. To evaluate the transferability of preliminary the 

research results, I decided to organize group sessions with industrial software 

integrators. In the period from March to September 2006 I organized three such group 

sessions (summarized in Table 8-2). 

Date Description 

Session #1: March 

2006 

An international network of software researchers and senior software engineering 

practitioners with experience from the European software industry 

Session #2: May 

2006 

A group of senior software consultants working with systems integration in different 

large-scale software integration projects throughout the Norwegian software 

industry 

Session #3: 

September 2006 

A group of systems developers working with systems integration at the research and 

development department of an international telecom company based in Norway 

Table 8-2 Summary of group sessions 

While the groups work with software integration in the software industry, the particular 

selection of group selection was based on opportunity and convenience. Session #1 

came about in the wake of a department-wide call for presentations for a workshop 

being held locally for a network of international researchers and software engineering 

practitioners. Session #2 was held for a group of practitioners from a former employer 

of mine, an IT consultancy. Session #3 came about as a former colleague from the 

department invited me to present my research at a monthly colloquium at his current 

work place. 
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Each evaluation session was planned to last an hour: 30 minutes for presenting the 

research results, followed by 30 minutes of group discussion afterward. Before starting 

on the presentation of the research results, the participants were told that the purpose of 

the session was to learn more about similarities and differences between software 

maintenance in Gentoo and their experiences from an industrial setting. 
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To provide the audience with an understanding of the specifics of the Gentoo context, 

the presentation started with an overview of the research setting. This was then followed 

by an in-depth example of corrective maintenance work. The example emphasised on 

the indeterminate nature of reported defects, and the iterative process of producing data 

about the defect and interpreting the data. As such, the key finding presented was the 

process of negotiation over what the defect "really is", and consequently the social and 

technical nature of software defects. With basis in the negotiated nature of software 

defects, the last part of the presentation was devoted to the issue of maintenance 

problems. Focusing on the process of negotiation over what the problem "really is", I 

illustrated the similarities between problem setting in corrective and adaptive 

maintenance in Gentoo. 

The latter half of the session was left open to discussion and feedback from the 

practitioners. Apart from session #1 that was held as part of a workshop with a strict 

time schedule, the group discussion after the presentation lasted over 1 hour. The 

practitioners related the presentation to particular individual experiences. In session #2 

the practitioners even started discussing among themselves. Also, in all three instances, 

attendants approached me after the session to discuss the issues further. 
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I made brief notes during each session. Immediately after the sessions I made more 

extensive notes based on the feedback and my own reflections. 

8.4. Research evaluation 

In interpretive research, the credibility of the results is grounded in the research practice 

the results are a product of. The evaluation of the reported results is therefore to be 

grounded in the way data is collected, how they are analysed, as well as in the 

presentation's rigour of argumentation (Walsham 1995). Rather than delegating the task 

of evaluation to abstractions like validity and reliability (Kirk and Miller 1986), 

interpretive research accounts give the reader a more active role in evaluating the 

reported results. 

The purpose of this section is therefore to bring attention to parts of the research 

practice I consider important for evaluating the credibility of the reported research. 

Table 8-3 below provides an overview of how the seven principles for evaluating 

interpretive fieldwork have been addressed in this thesis. The remainder of this section 

reflects upon issues I consider important for evaluating the reported research, but not 

yet been previously addressed. 
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Principle Description Evaluation 

1. The principle of 

hermeneutic circle 

This principle suggests that all 

human understanding is achieved 

by iterating between considering 

the interdependent meaning of 

parts and the whole that they form. 

• Considering observations from 

Gentoo in relation to issues in 

the broader Internet-based OSS 

community (Section 8.1) 

2. The principle of 

contextualization 

The principle requires critical 

reflection of the social and 

historical background of the 

research setting. 

• Situating software engineering 

in the context of 

professionalizing modern work 

(Section 2.2) 

• Considering OSS as a product 

of the software industry during 

the 1990s (Section 4.1) 

3. The principle of 

interaction between the 

researcher and subjects 

Requires critical reflection on how 

the research materials were 

socially constructed through the 

interactions between the 

researchers and participants. 

• The use of observation for 

getting to grips with the field 

(Subsection 8.4.1) 

• The form of interaction with the 

Gentoo developers (Subsection 

8.4.4) 

4. The principle of 

abstraction and 

generalization 

Intrinsic to interpretive research is 

the attempt to relate the particulars 

described in the unique instances 

observed to abstract categories and 

concepts that apply to multiple 

situations. 

• Theoretical framework (Section 

6.2) 

• Use of theory in framing 

research contributions (Chapter 

9 and 10) 

5. The principle of 

dialogical reasoning 

Requires sensitivity to possible 

contradictions between the 

theoretical preconceptions guiding 

the research and the actual 

findings. 

• Describing how the theoretical 

framework changed throughout 

the research process (Subsection 

8.4.3) 

6. The principle of 

multiple interpretations 

This principle requires the 

researcher to be sensitive to 

differences in interpretations 

among the studied subjects. 

• The form of interaction with the 

Gentoo developers (Subsection 

8.4.4) 

• Emphasis on multiple 

stakeholders with different 

interests in the research 

contributions (Chapters 9 and 

10) 

7. The principle of 

suspicion 

Requires sensitivities to possible 

biases and systematic distortions in 

the narratives collected from 

participants. 

• The form of interaction with the 

Gentoo developers (Subsection 

8.4.4) 

Table 8-3 Summary of research evaluation 
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Section 5.2 discusses how the quality of interpretive research depends on researcher's 

level of immersion in the natural environment of the research subjects. This is not 

always possible, in which case the researcher needs to make plausible that there has 

been enough interaction with the research subjects and archival material to compensate 

for the lack of direct immersion (Pozzebon 2004). Doing Internet-based fieldwork, I had 

the field available at my desk. However, because I accessed the field through my 

computer, my engagement has been through textual media. The textual media include 

both real-time interaction in the case of IRC and – and to a certain extent e-mail – as 



 
97 

well as non-interaction in the case of archival data like mailing list archives, problem 

reports, and Web pages. 

Nandhakumar and Jones (1997) find textual analysis to offer the farthest distance to the 

research setting  (Figure 5-1). Compared to immersion, it has the maximum distance 

between the researcher and the research subjects. The purpose of this subsection is 

therefore to shed light on the methodical decisions made in order to compensate for the 

limitations inherent in doing Internet-based fieldwork. 

8.4.1.1 The problem of gaining entry to the field 

Rosen (1991) writes that "to understand social processes one must get inside the world 

of those generating it". While gaining access to the Gentoo community is a matter of 

subscribing to a set of mailing lists and connected to the IRC channels, getting inside 

the world of those generating the social processes was more of a problem. 

Acknowledging the limitations of working with only textual data, I sought ways of 

narrowing the distance between myself – the researcher – and the Gentoo developers – 

the research subjects. I initially turned to personal e-mail for inquiring about the Gentoo 

developers' interpretations of unfolding activities. However, the answers I received – 

when I did get any reply at all – were short, lacking in detail, and schematic. 

At the time, I attributed this to the e-mail medium. I therefore saw the possibility of 

real-time interaction offered by IRC as a way of increasing my engagement with the 

Gentoo developers. Yet, after having presenting the objectives of my research to the 

Gentoo developers I approached on IRC, I still found them uninterested in responding 

to my inquiries. Although having access to the research site, I found myself in a 

position where I was excluded from practically any form of meaningful interaction with 

people who could provide me with an insiders' view of the Gentoo developer 

community. 

Having no go-between within the community to function as an icebreaker (Fetterman 

1998), I opted for a two-pronged approach for gaining entry to the field. One, to make 

myself less of an outsider, I decided to adopt common conventions when interacting 

with the Gentoo developers. Two, in an effort to justify my inquiries, I decided to 

actively participate in the Gentoo community's software development activities.  

Having observed that it was common to sign e-mails with a GNU Privacy Guard 

(http://www.gnupg.org) signature, I started doing the same. In addition, I started paying 

close attention to the form of the Gentoo developers' IRC communication. I adopted 

conventions such as appending words I was unsure of their spelling with a '(sp?)'. This 

means, did I spell that correctly, invoking an IRC bot that would correct the word if 

misspelled. I also adopted the practice of correcting typographic errors with sed-like 

syntax. For instance, if I had written 'We need to calrify this', I would correct myself by 

writing 's/calr/clar'. I also learned the implicit rules of which questions to ask in public 

and when to use private IRC sessions. 

It is difficult to tell the effect adopting common conventions of interaction within the 

Gentoo community had on gaining entry. At least it made me stand less out as a sore 

thumb. Turning to participation, on the other hand, had a provably significant effect on 



 
98 

gaining entry to the field. However, unlike my presupposition that participation would 

justify my inquiries, it turned out that taking part in shared activities was the key to 

gaining entry. I will reflect upon this in what follows. 

8.4.1.2 The importance of participation 

Looking back at IRC log transcripts from the period prior to participation, I find my 

inquiries and questions to be abstract or general. It is even hard for myself to understand 

what I was asking about now, years after the fact. In comparison, I find the questions 

asked while being an active participant myself to be significantly more concrete and 

most of the time connected to particular issues of our shared activity. Concrete 

questions are commonly responded to with concrete answers. Through concrete 

questions about our shared activity, I was able probe deeper into the inner life of the 

Gentoo developer community. As such, participation was the key for gaining entry into 

the community's inner life. 

By engaging in shared activities, I could ask the Gentoo developers for practical advice 

on how to solve common problems. As such, I was to a certain extent able to indirectly 

observe the Gentoo developers through following their practical advice. I also found 

that practical problems I was facing were often the same problems the Gentoo 

developers themselves were facing. Practical advice to my questions therefore often 

turned out to be conventions of working shared within the Gentoo developer 

community. As such, while I was prevented from direct immersion with the Gentoo 

developers in their daily work, one participant was available for direction observation: 

myself. 

Obviously, there are limits to the usefulness of observing my own activities instead of 

direct observation of the Gentoo developers' activities. Experience is an important issue 

here. While having been a Gentoo Linux user for several years prior to commencing the 

fieldwork, I was also what the Gentoo developers would call a newbie. Active 

participation over a period of ten months is not sufficient for becoming a seasoned 

Gentoo developer. 

Still, for developing interpretations, these shortcomings are less of a problem. My 

access to the social reality of the Gentoo community through texts is exactly the same as 

the Gentoo developers' access. They relate to each other through the same textual media 

that I did. However, the limitation is that I have no data on the Gentoo developers' 

actual activities in going about their daily work. On the other hand, I have much data on 

their interaction while pursuing these individual activities. 
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That human understanding emerges from the iterating between particular observations 

and the whole they form, is a fundamental principle in interpretive research (Klein and 

Myers 1999). I will use scarcity of resources to exemplify such interaction in the 

reported research. Scarcity of resources is reported as a characteristic maintaining an 

integrated system in a community of volunteers in Contribution C3 (Section 9.3).  
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A first particular observation from the fieldwork is that the Gentoo developers avoid 

reproducing reported failures as long as possible. Rather, they use the 'Additional 

comments' field of problem reports to engage in a dialogue with the reporting user. A 

second particular observation was related to reproducing reported failures without 

disrupting one's own Gentoo system. To avoid this, the Gentoo developers try to 

reproduce failures in a virtual Gentoo system. They therefore maintain a 'barebones' 

virtual system that they copy when trying to reproduce reported failures. This copy of 

the virtual system is then updated with the required packages to reproduce the reported 

failure.  

To understand the social and historic setting of Gentoo (see Guided Klein and Myers' 

(1999) principle of contextualization), I actively followed key forums for the larger 

Internet-based OSS community. Developer burnout and lack of project progress because 

of too high workload was a recurring issue. The burnout of Linus Torvalds, leader of 

the Linux kernel project, in 2002 is one of the most high-profiled such incidents (Weber 

2004). In April 2004, Daniel Robins, the initiator and leader of the community, left 

Gentoo because of burnout. 

During the study of corrective maintenance work, I developed some descriptive 

statistics. These showed that the number of unresolved problem reports was 

continuously growing (see Exhibit 9-2). Individually, the two observations on use of the 

'Additional comments' field and virtual systems were seemingly unrelated. In the same 

way, the observations related to burnout had little relation to the previous two relations. 

However, considered these particular observations as a whole together with the growing 

number of unresolved problem reports, I realized that the reluctance for reproducing 

reported failures was related to scarcity of resources. 

As all the software has to be compiled from source code, building a virtual system from 

scratch is time-consuming. It may take as much as a day depending on the computer's 

hardware. That is why the Gentoo developers maintain a 'barebones' setup. Yet, 

compiling the required software to reproduce the problem may take hours. Instead, to 

avoid spending their limited resources, they use the 'Additional comments' field to 

engage in a dialogue with the reporting user instead. By considering the particular 

observations as a whole, I therefore came to interpret corrective maintenance work as a 

continuous process of balancing the effort spent on resolving individual problem reports 

towards the total workload. 
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I worked actively with theory throughout the research process. Theory use as well as 

theories used has changed throughout the research process. I initially used communities 

of practice theory (Brown and Duguid 1991; Lave and Wenger 1991; Orr 1996) as a 

guide for planning the research. During the fieldwork theory functioned as a form of 

scaffolding (Walsham 1995) for making sense of the fieldwork experience and the data 

collected. However, rather than seeking to apply a particular theory to the fieldwork, I 

used theory actively for exploring software maintenance as knowledge-intensive work.  
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The scaffolding was later taken down once it has served its purpose. Theory use 

therefore gradually underwent a shift towards the role of abstracting and generalizing 

from particular observations (Klein and Myers' (1999) principle of abstraction and 

generalization) for developing research results during analysis. 

Through an interaction with the collected data, the theories used also changed. Figure 

8-4 indicates significant moments in this process. The entire research process was an 

iterative process of interpreting collected data, reflecting upon the appropriateness of 

theory in relation with research findings, and revising theory (Klein and Myers' (1999) 

principle of dialogical reasoning). 

Figure 8-4 Interaction data and theory 
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I spent a lot of time talking with Gentoo developers throughout the period of conducting 

fieldwork. I did so to bringing forth different interpretations about the process of 

replacing Portage. This is similar to Klein and Myers (1999) principle of multiple 

interpretations, stressing that multiple stakeholders will express different interpretations 

of events and sequences of events. I would also use such conversations as occasions of 

testing other Gentoo developers' interpretations. Always making sure not to embarrass 

anyone but revealing their private interpretations, I would for instance ask: "I have 

heard that Portage-NG failed because people could not agree on programming language. 

Was it really so?". Posing questions this way often provoked the respondent into giving 

his own interpretation of facts. In the case above, for instance, the respondent answered: 

The big problem wasn't the 'what' but the 'how'. waiting for the community to 

provide requirements without anyone leading the project doesn't work. and the 

'requirements' that were provided were mostly crap. that and the AI vision killed 

it. 

While sometimes using the above technique to test my own preliminary interpretations, 

I also used key informants for giving feedback on preliminary versions of papers. This 
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in order to test my own interpretations. The result of such discussions varied. In 

commenting on an early draft of Østerlie (2004), the informant stated that while finding 

no factual errors he was unfamiliar with the topic and style of reporting.  

In working on Østerlie and Wang (2007), another informant challenged our 

interpretation. The draft paper included in-depth empirical material on controversies 

over the cause of reported failures. The informant diligently analysed each of the 

controversies in an effort to determine whose diagnosis of the reported failure was 

correct. He argued that corrective maintenance activities could not be understood unless 

we also understood the real nature of the reported failure. While not being directly 

useful to the paper, the informant's focus on understanding whose diagnosis was correct 

or not made me revisit our emphasis in analysing corrective maintenance. 
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This research project has been a personal journey for me in several ways. My 

understanding of the OSSD phenomenon has evolved since I started the research 

reported here. My initial view of OSSD was that of something completely different 

from software engineering. The project follows up my research on OSSD that I did for 

my master thesis (Østerlie 2003). My interest in operating systems during lower level 

university studies led me to Linux in the mid-1990s. While this was initially a technical 

interest, it also exposed me to the Internet-based hacking culture. Hacking and OSSD 

were synonymous in my eyes. Inspired by the work of Hannemyr (1999) and Levy 

(1984) on the one hand, and Braverman-like analyses of formalization, automation, and 

down-skilling on the other hand (Orr 1996), I had come to consider hacking as a way of 

embracing the craftsmanship and know-how involved in developing software. In 

contrast, I considered software engineering with its emphasis on formalization of 

software development methods and processes as a way of down-skilling software 

developers. Influenced by the discourse on technology as a means to counter oppressive 

working place conditions (Bjerknes and Bratteteig 1995), I therefore saw the 

emancipatory potential in hacking's emphasis on craftsmanship practical know-how. 

Looking back, I have to admit that my initial view of OSSD as completely different 

from software engineering seems almost embarrassingly naive. I no longer think that 

OSSD is completely different from software engineering, and I am not entirely sure that 

formalization of software development processes and techniques will down-skill 

software developers. Yet, my deep appreciation of what software developers do in 

practice has remained throughout the duration of the study. Some of this is obviously 

connected to my own background within home computing. I received my first computer 

aged 11. It was a low-cost ZX Spectrum clone, but no official Spectrum data tapes 

worked with it. I therefore had to write my own software. Since then, I have always had 

an enduring fascination with the practice of developing software. 

I hope that my understanding of the complex disciplinary field I am moving within has 

evolved over the years. Yet, in many ways the same concern I brought into the research 

project remains: the relationship between research and practice. This relationship was 

initially conceived as the adversary relationship between the art and craft of hacking on 

the one hand, and the down-skilling intention of software engineering on the other. 
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Throughout the process of doing this PhD I have to come appreciate the dialectical 

relationship between research and practice. The importance of researchers to both try to 

inform practice and in turn be informed by practice.  
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PART III: RESULTS 
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9. Empirical findings 

 

The main empirical contribution offered by this thesis is insight into the social and 

technical processes of maintaining an integrated system in a distributed community of 

volunteer software integrators. In particular, this chapter presents three empirical 

contributions that offer a view of software maintenance where multiple stakeholders 

with different interests continuously negotiate over problems and their solutions. 

Focusing upon scarcity of resources and contradictory interests brings out the inherently 

political aspects of software maintenance. So far, software engineering research has 

focused upon developing methods, tools, and techniques independent of their context of 

use. The politics of software development has therefore been of limited concern. Yet, 

with practice studies' emphasis on the social context of software engineering, the 

politics of software development becomes an important issue. 

While the politics of software development is well-established within the related field of 

information systems research (Howcroft and Wilson 2003), emphasising that 

importance on multiple stakeholders with different interests in software maintenance 

practice is novel within software engineering. This thesis therefore contributes to the 

body of software engineering practice research with a first step towards explicitly 

addressing politics in such studies. This thesis also contributes to software maintenance 

research with a critical evaluation of the basic assumption that software maintenance is 

essentially a cognitive problem solving activity. This is based on the premise that 

maintenance engineers are faced with more or less clearly defined problems. Yet, 

Contributions C1 and C2 show that the essential activity when maintaining integrated 

systems is problem setting: the collective process in which situations that are unclear, 

problematic, and puzzling are progressively clarified. This chapter therefore concludes 

that the basic assumption no longer holds true when maintaining integrated systems. 

This chapter is therefore organized as follows. Sections 9.1 and 9.2 present 

contributions C1 and C2 respectively. These contributions summarize and draw together 

results previously reported in the empirical papers included with this thesis (see Figure 

1-1). With basis in these two contributions, Section 9.2 presents contribution C3. This 

contribution aggregates the findings reported in C1 and C2 to form an original 

contribution reported in this thesis. Section 9.5 discusses the contributions. 
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9.1. Debugging as collective activity (C1) 

This section presents contribution C1, by summarizing the research reported in Østerlie 

and Wang (2006; 2007). It is based upon participant-observation of corrective 

maintenance, as well as document analysis of problem reports (see Section 8.2). An 

overview of Gentoo's corrective maintenance process is provided in 7.3.2. The 

contribution is summarized as follows: 

Knowledge of software failures is developed through a process of negotiating 

over possible interpretations of available data, a process that is contingent upon 

situational issues such as workload, priorities, and responsibilities 

The contribution is offered in response to RQ1: 

How is knowledge of software failures developed during geographically 

distributed software maintenance?  

An often used definition of debug is to detect, locate, and correct defects in a computer 

program (IEEE 1990). Debugging is therefore seen as a linear process where the 

maintenance engineering locate defects by tracing along the infection chain from more 

or less well understood problem, the failure (Zeller 2006). The solution to the problem 

is to correct the defect. Building upon scientific principles, it has been proposed that 

debugging should be hypothesis-driven, based on accurate, factual data (Araki et al. 

1991). 

The description of debugging offered here differs from the linear view presented above. 

Here debugging is found to be a cyclic process where the reported problem is not 

always clearly understood before there is a solution to it. This activity focuses upon 

understanding the reported failure, rather than locating and correcting the defect causing 

it. Debugging is therefore understood here as the process of finding out what the 

reported problem really is. This is a collective process shaped by social as well as 

technical factors. It is a process of trial and error, where the relevance and validity of 

available data is contestable. Debugging is therefore driven by plausibility rather than 

accuracy. 

The implication of this contribution is that the software failure is not an unproblematic 

phenomenon during software maintenance. It is subject to interpretation and 

negotiation. Integrators' understanding of what constitutes a software failure is 

contingent upon situational issue such as workload, priorities, responsibilities, as well as 

available technical data. Failures are therefore not necessarily stable phenomena to be 

grasped with scientific principles. 

To this end, this section is organized as follows. First, in the Gentoo community 

knowledge of software failures is predominantly based on indirect data (9.1.1). Then the 

cyclic nature of debugging is presented (9.1.2). Finally, the section is concluded with a 

presentation of the negotiated and contingent nature of debugging in the Gentoo 

community (9.1.3). 
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Understanding a reported failure is not an individual activity. Rather, it is a collective 

process where Gentoo users and developers together make sense of the failure. They 

engage in a collective sensemaking process where knowledge of the failure is primarily 

attained through indirect data. This data is produced by running diagnostic tools on the 

failing system. In Østerlie and Wang (2006) we label such textual data, along with other 

textual information provided in problem reports, debug texts. There are two reasons 

why knowledge of reported failures is based on indirect data: 

• Reproducing reported failures is often difficult 

• Software being integrated is treated as a black box 

First, reproducing failures is often difficult. To reproduce a reported failure, the Gentoo 

developers often have to reproduce the configuration of the failing system. Yet, because 

of the potentially large and non-deterministic variability of Gentoo systems (see 7.2.4), 

reproducing a failing system's configuration may be difficult in practice. Reporting from 

a longitudinal study of large-scale software maintenance, Adams (1984, p. 13) makes a 

similar observation: that the typical failure "requires unusual circumstances to manifest 

itself, possibly in many cases the coincidence of very unusual circumstance". 

Reproducing reported failures is also difficult, or at least inconvenient, as it may be 

time-consuming to reproduce the configuration of a failing system (see 8.4.2).  

Second, while the Gentoo developers have access to the third-party software being 

integrated, they usually treat it as a black box. This is related to the Gentoo developers' 

role as software integrators. The software being integrated is mostly developed and 

maintained by third-party OSS communities. Only some Gentoo developers may be 

familiar with the source code of the software. Reproduction, essential for locating 

defects in source code, is therefore less relevant when debugging black boxes. 

Standard Unix development software as well as Gentoo-specific diagnostic tools are 

used to generate data about the failing system and the reported failure. Debug texts 

therefore play two roles in debugging reported failures. They stand in for the source 

code, as the Gentoo developers treat the software they integrate as black boxes. The 

debug texts are also delegated the task of communicating information about a remote 

failing system, instead of reproducing the failure. 
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The Gentoo users and developers use the 'Additional comments' field to exchange 

debug texts when resolving problem reports. Debug texts only provide a limited 

glimpse of the failing system. The data is not exhaustive, but rather open to 

interpretations. It is therefore not necessarily obvious what the software failure really is. 

Rather, users and developers are often confronted with problem situations. A problem 

situation is a situation where it is clear that something is not right, but it is rather unclear 

what the problem is (Schön 1991). As such, software failures often have to be 

constructed from the materials of situations that are problematic, uncertain, and 

puzzling. Exhibit 9-1 below is an example of such a problem situation. 
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Developer A: This particular Web page crashes both the Mozilla and Galeon Web browsers. 

Developer B: That doesn't happen on my computer. 

Developer A: I've built the applications for the Athlon T-Bird processor architecture, and both have 

been compiled with the GTK2 widget library. I generally assume it's my using GTK2 that messes it up. 

Developer B: It might be GTK2. I've compiled both Web browsers with the GTK1 widget library on 

my system. 

Developer D: Well, that page works on my Epiphany Web browser compiled with the GTK2 library. 

Developer C: And it works with my installation of Mozilla compiled with GTK2. 

Developer D: This other Web page crashes my Phoenix Web browser, but not Mozilla or Galeon. 

Developer A: The Web page crashes on my Epiphany installation, as well. It seems it's my Mozilla 

build that's flakey. 

Developer C: But boingboing.net crashes my Epiphany installation. I've compiled it for the PentiumII 

processor architecture, though.  

Developer A: boingboing.net crashes Galeon on my system, too. 

Developer B: boingboing.net working for Mozilla on my system. 

Developer C: Hmm… It seems the problem is related to Mozilla compiled with the GTK2 widget 

library and the Xft font library. Weird thing is that boingboing works on my Galeon installation…  

Developer A: Now here's a very good reason to only build for one processor architecture, stable source 

tree and only do point releases. Variation kills reproducibility. 

Exhibit 9-1 Excerpt from Gentoo developers' IRC channel (gentoo-dev-2004.04.16) 

Two factors are of particular note here.  One, that it is not obvious to the user reporting 

the failure what information is relevant. Two, the Gentoo developers do not have direct 

access to the failing system. They therefore have to interact with the user to establish an 

understanding of the failure.  However, without first having an understanding of the 

failure, it is difficult for the Gentoo developers too to determine what constitutes 

sufficient and relevant information for analysing the failure.  

The Gentoo developers therefore interact with the reporting user in order to make sense 

of the reported failure. This interaction therefore takes the form of a cyclic process of 

producing and interpreting debug texts using the problem report's 'Additional 

comments' field for communication between the stakeholders. Table 9-1 below 

illustrates the frequency of this interaction between users and developers. 

Number of additional comments 2002 2003 2004 

1 2948 4900 9620 

2 2882 4584 7913 

3 1967 3451 5472 

4 1311 2665 3767 

5+ 3652 8315 12567 

Average 4.225862069 4.797742003 4.787183202 

Table 9-1 Frequency of interaction in 'Additional comments' field 

The table shows that most problem reports have between 1 and 4 additional comments 

attached to them. Drawing upon information rich samples (see 8.2), the reports analyzed 

during the study of corrective maintenance belong to the category of problem reports 

with 5 or more additional comments. While a significant amount of problem reports 

have 5 or more additional comments attached, they are not statistically representative 

for the entire population of problem reports. This, however, implies that the reason for 

the interaction between users and developers are contingent upon the nature of 

particularly problematic failures. This is not the logic pursued in the reported research. 
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Yet, the argument pursued here is that the interaction between users and developers 

come as a result of the problems of reproducing failures. This is contingent upon the 

autonomous and heterogeneous characteristics of integrated systems. These 

characteristics make it difficult for the Gentoo developers to reproduce reported 

failures. Instead of reproducing reported failures, the Gentoo users and developers 

therefore have to debug with indirect data. As such, the form of generalization pursued 

here is that of extreme cases (Patton 2002). It is upon studying the mechanisms of the 

information-rich samples that we learn about mechanisms that are to a smaller or larger 

degree shared by all instances of debugging in Gentoo, and possibly even when 

debugging integrated systems in general. 
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It is not always possible to determine what the reported failure "really is". It is not 

always obvious. Nor are the debug texts conclusive. Rather, the debug texts are open to 

interpretation. During the cyclic exchange between developers and user, a number of 

possible interpretations are discussed. Alternative interpretations of what the reported 

failure really is are constructed from combining elements from different debug texts, 

trying to reproduce the failure, drawing on external texts like installation scripts and 

change logs. 

Problem solving reaches its closure when the problem is solved. In the context of 

debugging, the problem is solved when the defect causing the failure has been 

corrected. Negotiations, on the other hand, have no such clearly defined closure 

mechanisms. As such, interpreting debugging as a process of negotiation shifts 

analytical emphasis towards the closure mechanisms. The research reported here 

identifies two formal forms of closure: resolution or rejection of the problem report. 

However, these are the forms of closure, not the mechanisms leading to closure. 

The question we therefore seek to address in both Østerlie and Wang (2006; 2007) is 

how problem reports reach their closure. In addition to being based upon the evidence 

put forward by the debug texts, we find that closure is contingent upon situational issues 

such as workload, priorities, and responsibilities. Closure mechanisms are discussed 

further in 9.3.2. 

Østerlie and Wang (2006) illustrates this as a process where users provide debug texts 

and the developers interpret them. Over time the number of interpretations of the 

reported failure varies, until the problem report reaches its closure. This is illustrated in 

Figure 9-1 below. 
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Figure 9-1 Producing and interpreting debug texts 

9.2. Rewrite evolves in response to an unfolding 

environment (C2) 

This section presents Contribution C2, by summarizing the research reported in Østerlie 

(2004) and Østerlie and Jaccheri (2007b). It is based upon the fieldwork conducted 

during 2004 as well as the materials collected during the fieldwork (see Section 8.1). 

The contribution is summarized as follows: 

A collective understanding of the scope, stakeholders, and sequence of activities 

for rewriting software evolves in response to new problems emerging from the 

rewrite efforts themselves as well as environmental changes 

This contribution is offered in response to RQ2: 

How do software developers build knowledge of how to replace a business-

critical software system? 

Both Østerlie (2004) and Østerlie and Jaccheri (2007) reports from the activities of 

rewriting and replacing Gentoo's package manager, Portage. While Østerlie (2004) 

offers in-depth analysis of a single event in the process of rewriting and replacing, 

Østerlie and Jaccheri (2007) offers a longer case narrative, exploring the tension 

between the need for functional stability to rewrite Portage on the one hand, and the 

various social interests of the Gentoo community on the other hand.  

This section builds upon these two papers, offering an interpretation of the efforts to 

replace Portage as a continuous process where rewriting evolves in response to an 

unfolding environment.  
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Portage provides functions and data that are critical to Gentoo. It is therefore business-

critical (see Table 3-2) to the Gentoo community. Over time, however, it has become 

increasingly difficult to modify. By November 2003, only four Gentoo developers know 

problem reported time closure of
problem report

number of
multiple
inter-
pretations

7
6
5
4
3
2
1
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the source code well enough to maintain the package manager. This puts a lot of strain 

on these four developers.  

While initially designed to integrate third-party software on Gentoo Linux, Portage has 

been adapted to work on several Unix-like operating systems (see 7.2.2). Similarly, 

Portage has been adapted to work with Web applications as well as regular software 

(Østerlie and Jaccheri 2007b). With little attention on reducing the complexity of the 

source code, Portage's system structure has deteriorated (Eick et al. 2001). As one 

developer put it, the source code is 'very fragile' as it has 'evolved rather than being 

designed'. Complex interdependencies between functions and modules make it difficult 

to comprehend parts of the source code without a complete understanding of the whole. 

It is therefore difficult to modify the source code without breaking existing 

functionality. 

Portage also has complex interdependencies with third-party software that integrates 

with Portage. A number of third-party applications call functions in the Portage source 

code or access Portage's databases directly. As described in Østerlie (2004), such 

interdependencies often lead to problems with the third-party software when Portage 

database schemas are changed or when the source code is modified. 

While four Gentoo developers have sufficient understanding of Portage's source code to 

modify it without breaking existing functionality, they have little control of the effects 

this may have on third-party software. Belady (1978, p. 118) defines system largeness 

as a "program that is too large to fall fully within the intellectual grasp of a single 

individual". While Portage's source code is not outside the intellectual grasp of a single 

individual, Portage's interdependencies with third-party software makes it outside the 

grasp of a single individual. As such, it exhibits a form of system largeness. 

Portage has been maintained for no more than four years at the time of the study. Still, it 

exhibits characteristics similar to legacy systems (see  Table 3-3 and Table 3-4). It 

suffers from: 

• Deteriorating system structure 

• System largeness 

• Lack of skills for maintaining the software 

The Gentoo community is therefore facing its own legacy systems dilemma (see 3.2.4). 

Portage is the core of the Gentoo software distribution system and cannot be 

decommissioned. Yet, only four developers able to modify the source code. If these four 

leave, the community stands the risk that no one is able to maintain Portage any longer. 
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To address this situation, the Gentoo developers want to rewrite and replace Portage. 

We describe three efforts to rewrite and replace the package manager in Østerlie and 

Jaccheri (2007b): 
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• Next generation Portage (November-December 2003): A complete rewrite of the 

package manager with a modularized plug-in architecture. 

• Modularized Portage (February-March 2004): A modularization of the existing 

code base. 

• Portage API (May-June 2004): Preparation for a modularizing Portage by 

encapsulating the package manager's source code and databases from Portage-

specific third-party applications. 
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The process of rewriting and replacing Portage does not follow a clear sequence of 

activities from analysis of current situation, to planning the strategy for rewriting and 

replacing the software, to the implementation of the plan. Rather, the process is marked 

by a series of efforts with the shared intent of replacing Portage. Judged in terms of the 

assumption that software replacement can only succeed if properly planned (Sneed 

1995), the efforts to rewrite and replace Portage appear as a series of false starts that fail 

because of poorly planning. Obviously, seen from the point of view of iterative re-

engineering (Bianchi et al. 2003), the efforts may be interpreted as activities in an 

iterative process. Yet, research on iterative re-engineering presupposes an overall plan 

of action. This is not present for replacing Portage. 

We therefore proposed that the process of replacing Portage may be understood as an 

unfolding negotiation over the scope of the rewrite, the sequence of activities, and the 

stakeholders to be involved in the process (Østerlie and Jaccheri 2007b). These, then, 

are the constituents of rewriting requirements: 

• Scope 

• Sequence of activities 

• Stakeholders 

For instance, in Østerlie and Jaccheri (2007b) we explore the tension between the need 

for functional stability for replacing Portage on the one hand, and the various social 

interests of the Gentoo community on the other hand. The key insight developed in the 

paper is how the efforts to rewrite Portage unfold within and are part of the 

continuously emerging context of development and use. Bringing this context of 

development and use into the analysis brings out the complex and interdependent 

relations Portage finds itself. These, in turn, shape the requirements for rewriting 

Portage. 
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Instead of judging the failure to replace Portage in terms of what the Gentoo developers 

could or should have done, we therefore sought to understand the dynamics of the 

efforts to rewrite and replace Portage. Focusing upon the activities, we find that all 

efforts share a common goal: that of encapsulating the Portage application to reduce its 

coupling with third-party software. With this goal in mind, the attempts at rewriting 

Portage take on less of the appearance of false starts and rather appear a process where 
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the Gentoo developers are actively trying to get to grips with the problems associated 

with rewritign and replacing Portage. 

Rather than false starts, the knowledge gained through the attempts at rewriting 

Portgage is not lost. Instead, it feess back into the new attempts at rewriting so that an 

understanding of the problem is built incrementally by trying to rewrite.  

The scope, the stakeholders involved, and sequence of activities for replacing Portage 

differs between the three efforts to rewrite Portage. Yet, the challenge faced by each 

effort is the same, to strike a balance between the need for keeping the parts to be 

rewritten stable, and the need for continued adaption. This balance point, however, is 

continuously negotiated and renegotiated and the strategies for rewriting and replacing 

Portage have to respond to this. 

Through their attempts to rewrite and replace Portage, the Gentoo developers both 

partake in creating the environment that rewriting Portage is part of, as well as reacting 

to this environment. There is a codetermination that rewriting and replacing Portage 

needs to take into consideraton. 

This is exemplified in Østerlie and Jaccheri (2007b) when a Gentoo developer explains 

why next generation Porrage failed: " A rewrite is a MAJOR waste of extremely limited 

resources … The amount of time it'd take would really drag out on the developers that 

want new features and simplifications". The Gentoo developers learn from previous 

attempts, and these attempts enable and restrict further attempts. After next generation 

Portage, a complete rewrite was no longer possible as the Gentoo developers had 

learned that this scope would require too much resources. 

What we see, is that the process of rewriting Portage is driven by the question "what is 

going on?" rather than "how to proceed from here?" (Weick 1995). It is a sensemaking 

process where an understanding of how to proceed with rewriting and replacing Portage 

emerges in response to an unfolding environment.  

9.3. Three defining characteristics of maintaining 

an integrated system (C3) 

This section presents contribution C3. Contribution C3 aggregates the findings reported 

in C1 and C2 to form an original contribution of this thesis. It does so by identifying 

three defining characteristics of maintaining an integrated system. As such, it reports on 

the totality of the research. The contribution is summarized as:  

Maintaining an integrated system in a community of volunteers is characterized 

by a scarcity of resources, an emphasis on coalition building, and volatility of 

stakeholders 

The contribution is offered in response to RQ3: 
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What are the characteristics of maintaining an integrated system in a distributed 

community of volunteers? 

Each of the three characteristics will now be now discussed in turn. 
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Scarcity of resources is a key theme recurring in three of the four empirical papers 

included with this thesis  In the context of Gentoo, scarcity of resources is related to two 

issues: 

• Scarcity of manpower 

• Scarcity of information 

Scarcity of manpower is part of the analysis in all three of the papers. Particularly, in 

Østerlie and Wang (2007) we illustrate this with the growing gap between reported and 

resolved problem reports in the defect tracking system database (see Exhibit 9-2 below). 

Scarcity of manpower for rewriting Portage from scratch is also a recurring explanation 

for the repeated failures in replacing Portage (Østerlie and Jaccheri 2007b). 

Date 

New problem 

reports 

submitted 

Problem reports 

closed 

Open problem 

reports 

Number of 

Gentoo 

developers 

January 6 2003 269 Not available 1893 102 

January 5 2004 837 428 4479 259 

January 3 2005 700 390 7877 Not available 

January 16 2006 799 447 9083 320 

Exhibit 9-2 Weekly debugging workload (Østerlie and Wang 2007) 

There is also scarcity of information. While we address this in Østerlie and Wang 

(Østerlie and Wang 2007), scarcity of information is particularly developed through our 

use of the term 'ambiguity' in Østerlie and Wang (2006). Ambiguity is to be understood 

as scarcity of information resources.  

As such there are limits to the resources available for performing the many maintenance 

activities of the Gentoo community. Prioritizing which resources to bear on what 

problems is therefore important for the Gentoo developers. Determining what problems 

to spend the limited resources on is open to negotiation. While such negotiations over 

resources are essentially non-technical, all four empirical papers included with this 

thesis shows how such negotiations typically unfold in guise of technical issues. Some 

examples are in place to illustrate this.  

Østerlie (2004) reports from the negotiations over introducing a programmable interface 

for third-party applications to access Portage's package database. Presented as a 

technical problem of preventing third-party applications from breaking whenever the 

database schema is modified, the reported incident can also be interpreted as a 

negotiation over boundaries. The base question being, where is the boundary between 

third-party applications and Portage to be drawn? Who is responsible for maintaining 

the third-party applications? The Portage developers, or the third-party application 
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developers? Being a process of negotiating over the technical boundaries, it is at the 

same time a negotiation over responsibilities. Summarized: negotiation over boundaries 

is a negotiation over whose resources are to be spent on resolving which problems. 

Similarly, both Østerlie and Wang (2006; 2007) address the issue of negotiating over 

boundaries. In these papers the technical surface discussion is one of software failures 

and their causes. At the surface, it is therefore a negotiation over problems and possible 

solutions. However, negotiations over reported failures are at the same time a process of 

negotiating over boundaries.  

There are two dimensions to the negotiation over boundaries during corrective 

maintenance. One, the boundary of the failure. The essential technical discussion is 

whether or not the reported failure really is a failure. Is the failure only located to the 

reporting user's computer? If the failure is bounded to the user's system, it is labelled 

user error. This leads us to the second dimension: boundary of responsibilities. User 

errors are the responsibility of the user. However, if the problem is not merely bounded 

to the user's system, commonly corroborated through reproducing the problem, it may 

be the Gentoo developers' responsibility to resolve the problem. Yet, this is conditional 

on whether the failure is caused by the way the software is integrated. If it is a defect in 

the software itself, the third-party provider of the software is responsible for resolving 

it. Again, it is a process of negotiating over which resources to spend on what problems.  
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Emphasis on negotiation shifts the analytical focus towards closure mechanisms. The 

software maintenance literature, focusing upon problem solving, sees identification of 

the cause of the problem as closure mechanism. When analysing software maintenance 

in terms of negotiation, however, the closure mechanisms are rather different. While the 

conclusion may be technical, the closure mechanism is the building of coalitions. 

The importance of building coalitions is discussed most in-depth in Østerlie and 

Jaccheri (2007b). A central point of that paper is to show how the repeated failures to 

replace Portage stem from the problem of building sustainable coalitions. We discuss 

this in terms of balancing between technical and community interests. Building 

coalitions is a process of translating interests and aligning them with one's own.  

We illustrate this process by drawing translation diagrams. Table 9-2 below is an 

example of such a diagram, illustrating a moment in the process of rewriting Portage 

where a group of developers, collectively labelled the Portage-ng developers, seek to 

translate the interests of various actors to their own interest of rewriting Portage as a 

modular system. They do so by framing problems that the other actors encounter in 

meeting with their interests, and how they will overcome these problems through the 

solution proposed by themselves. 



 
116 

 

Table 9-2 Translating interests (Østerlie and Jaccheri 2007) 

This emphasises the importance of mobilizing both technical and non-technical actors in 

building coalitions. This is best illustrated in Østerlie (2004). This paper shows that in 

both technical and non-technical actors are mobilized in building a coalition for 

developing a programmable interface for third-party applications to access Portage's 

database. The non-technical actors include the third-party developers and the Portage 

developers. The technical actors include a set of problem reports, corrupted Portage 

databases, as well as semi-functioning applications. 

Engaging collectively with users in making sense of reported failures is reported as part 

of contribution C1. This collective engagement can be interpreted as a form of coalition 

building. Users and developers form temporary coalitions to achieve the joint goal of 

resolving problem reports. However, these coalitions are precarious. As discussed in 

Østerlie and Wang (2007) the user needs to present the failure as a likely problem 

related with the way Gentoo integrates software. This is an effort to establish the 

problem as an obligatory passing point for reaching the interests of both the Gentoo 

developers (fault free software) and the user (a non-failing system). The users do so by 

mobilizing debug texts to strengthen their claim that the reported failure is related with 

the way Gentoo integrates software. The Gentoo developers, on the other hand, seek to 

curb the workload of incoming problem reports. They do so by mobilizing data to 

counter the coalition of technical and non-technical data presented by the user. 

On the other hand, the Gentoo developers cannot be too dismissive of incoming 

problem reports. That users report failures is a key quality assurance mechanism in the 
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Gentoo community. Users who loose confidence in the Gentoo developers' 

responsiveness to reported failures are likely to move on to another GNU/Linux 

distribution. The Gentoo developers therefore need to establish the corrective 

maintenance process as an obligatory passing point for reaching the users' interest, too. 

Corrective maintenance can therefore be interpreted as a dual process of building 

coalitions to resolve particular problem reports, and sustaining coalitions for users to 

continue reporting failures in the future. 
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Maintenance work in the Gentoo community is characterized by a volatility of 

participants. This characteristic amplifies the need for coalition building. Volatility of 

participants in the maintenance activities is most clearly visible in corrective 

maintenance. This is exemplified in Table 9-3 below. 

Range of problem 

reports submitted 

Number of 

submitters 

Number of user 

submitters 

Number of Gentoo 

developer submitters 

1-2 2574 2480 94 

3-5 687 629 58 

6-10 321 273 48 

11-20 145 108 37 

21-100 75 39 32 

101+ 1 1 0 

Total 3803 3530 269 

Table 9-3 Participants in corrective maintenance in 2002 

The table shows that almost 68% of participants in corrective maintenance work report 

one or two problem reports. 18% submit three to five problem reports, while 14% 

submitted more than five problem reports during 2002. In practice, this means that there 

is little sustainability in the process. Rather, coalitions formed to correct reported 

failures are temporary. 

Similarly, the process of rewriting and replacing Portage is marked by volatility of 

actors. The inability of sustaining coalitions over an extended period of time is a 

contributing factor to the repeated failures in replacing Portage. The same are the 

overlapping initiatives for replacing Portage. While overlapping initiatives for replacing 

Portage may be an expression of a lack of coordination within the community, it is 

striking that relatively fresh community members undertake many of these initiatives. 

Coalition building becomes important in these instances in two ways. It shows existing 

initiatives inability to enrol new stakeholders with their initiative. However, it also 

shows how new stakeholders need to enrol others with their initiatives to gain entry into 

the community. 

We see two different examples of how this is treated. Portage-C is a one-man effort to 

rewrite Portage in C with a modular architecture. A young graduate student undertakes 

it. While addressing both the issue of modularity and performance that are central to the 

Portage-NG effort, the Portage-C initiative is met with complete silence. It is simply 

ignored by the Gentoo community. While the Portage-C developer makes an effort to 

enrol the Gentoo developers with his effort to replace Portage, he fails.  
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On the other hand the Portage API is met with another form of reaction. This is also an 

initiative undertaken by a newcomer to the Gentoo community, and is an attempt to 

establish a programmable interface for third-party software to interface the existing 

Portage code. While clearly overlapping with the GentoolkitAPI, the Gentoolkit 

developers abandon their efforts and enrol with the Portage API initiative. While the 

Portage API developers succeed with enrolling the Gentoolkit developers, they fail to 

sustain this coalition in the face of yet another newcomer's efforts at rewriting Portage 

as a multiuser application. Still, unlike the Portage-C developer who fades out of the 

Gentoo community, the Portage API developer will over time become one of the central 

Gentoo developers. 

9.4. Discussion 

This section discusses the contributions presented above. While Section 8.4 evaluates 

the research in terms of the reflections on the research process, Subsections 9.5.1 and 

9.5.2 will evaluate aspects of the reported findings. Subsection 9.5.3 draw two 

implications of the research for software maintenance research, while 9.5.4 concludes 

this discussion by revisiting the issue of rigour and relevance. 
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Having more or less well-defined problems is the basic premise of application software 

maintenance research. As such, software maintenance has been understood as individual 

problem solving activities and the management of these activities. In some areas of the 

research literature, this premise is explicit. In the case of empirical studies of 

maintenance tasks (Voká et al. 2004) and program comprehension (Vans et al. 1999), 

for instance, research subjects are provided with clearly defined problems to resolve. 

Similarly, the research on corrective maintenance procedures take the failure as its point 

of departure (Zeller 2006). The failure is the equivalent of a more or less well-defined 

problem. In other areas of the research literature, however, the premise is implied. Much 

research focuses upon managerial issues such as controlling the change process and 

planning how to cope with legacy systems (Sneed 1995). However to control change 

and plan how to cope, there needs to be a problem to be addressed. As such, it is 

implied that the premise is more or less well-defined problems.  

Yet, the empirical findings reported in this chapter show that this premise is 

problematic. The point of departure of maintenance activities is not well-defined 

problems. Rather, the essential activity of maintaining an integrated system is a 

collective process in which situations that are unclear, problematic and puzzling are 

progressively clarified. In the case of debugging, contribution C1 shows that the Gentoo 

users and developers engage in a cyclic process of making sense of reported failures. In 

the case of systems replacement, contribution C2 shows that the problem to be resolved 

in rewriting Portage is continuously under question and negotiation. 

Problem setting is the collective activity of making sense of situations that are unclear, 

problematic, and puzzling – problem situations. The term embodies a duality: 'setting' is 

both a noun and verb. The noun is synonymous with 'environment'. 'Problem setting' 
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can therefore be understood as the environment of the problem. The verb, on the other 

hand, is defined as 'put, lay, or stand (something) in a specified place or position'. As a 

verb, 'setting' is the activity of creation. 'Problem setting' is therefore to be understood 

as the activity making sense of problem situations by constructing the environment of 

the problem. 

Rather than viewing software maintenance as the activities related to discovering causes 

of problems in the world, problem setting therefore emphasises the activities of 

constructing problems. Constructing the environment of the problem is an act of 

intervention. Intervening to making sense of problem situations, the situation also 

changes. The problems to be addressed are not only out there in the world to be 

discovered, but also immanent in the human activity of constructing them. The process 

of problem setting is therefore inseparable from the product emerging from the process: 

the problem. This is an ontological shift from an objectified world-view, towards an in-

process view of objects (problems in this situation) as immanent in human activity. 

This use of the term 'problem setting', is slightly differently than originally formulated 

by Schön (1991). This thesis therefore contributes to theory by elaborating on Schón's 

original meaning of the 'problem setting'. Schön differentiates between the process and 

the product of problem setting, stating that "[p]roblem setting is a process in which, 

interactively, we name the things which we will attend and frame the context in which 

we will attend to them". This explanation of problem setting uses the term 'frame' the 

same way as it is used in Østerlie (2004), as the construction of problems. However, 

drawing upon the duality of meaning of the term 'setting', 'problem setting' is interpreted 

as both the process of constructing problems as well as the product of the process; i.e. 

the environment of the problem. 
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Mockus et al. (2002) raises the question of how software engineering can learn from 

OSSD? The premise of the question is the idea that OSSD is something different than 

software engineering as Scacchi (2007) puts it. This premise is problematic. Chapter 4 

discusses the historic background of OSS, and how different actors have used the term 

to position themselves in an otherness relation to dominant market positions within the 

computing industry. In Østerlie and Jaccheri (2007a) we argue that the software 

engineering community sees OSSD as a direct threat to its identity: that of a movement 

of industry and academic actors to professionalize software development. We therefore 

seek to illustrate how this community uses OSS' otherness position to argue that OSSD 

is less relevant to software engineering because it is something completely different.  

Returning to the original question, I would say that the question is, regardless of 

whether I have studied software maintenance in a geographically distributed community 

of volunteers or not: how do the findings transfer outside this research setting? This is a 

valid question, whether we speak of transferability of the findings to similar 

communities or to in-house software development departments. Another valid question 

is: are the findings are limited to system integration? 
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These two issues related to transferability of the findings reported in this chapter will be 

discussed below. 

9.4.2.1 Transferability outside the research setting 

The empirical findings above are based on a study of a single community of volunteers. 

I sought to investigate the transferability of the research findings by presenting 

preliminary results from the reported research to groups of professional system 

integrators (see Section 8.3). 

Presenting for professional system integrators was a deliberate attempt to see whether 

the results were recognizable outside the context of volunteer software development. At 

this moment in the research process (March-September 2006), I was still caught up with 

the idea of OSSD as completely different from software engineering. The choice of 

professional software developers therefore builds on the logic of opposition: if the 

results transfer to professional system integration, which I regarded as the complete 

opposite of OSSD, the transferability of the results were good.  

The general feedback at all three sessions was that practitioners recognized my 

description of corrective software maintenance work from their industrial experience. In 

particular, the following technical issues of familiarity were emphasised by the 

practitioners: 

• The lack of clearly definable problems, and that the primary work when doing all 

forms of software maintenance during systems integration, not only corrective 

maintenance, is to understand what the problem really is 

• The lack of traceable defects and the issue of interaction defects is something the 

practitioners say they are often facing 

• The issue of interaction defects were the problem is in the interface between two 

components or systems 

• The practitioners also identified with the situation where it is unclear which 

information is relevant to understand the problem situation at hand 

The feedback substantiates that the findings presented as contribution C1 is to a certain 

degree transferable outside the research setting.  

Participants in the third session pointed out that problem situations were often an 

occasion for what they called 'organizational politics'. Working in a large corporation, 

they used the term organizational politics about a form of blame game. The blame game 

was an effort to limit the work of the department. The departments' limited resources 

motivated this. In these situations, integrators reluctantly found themselves finding 

technical data that could be used to place the blame of the problem outside of their own 

department.  

Participants in the other two sessions touched upon similar issues in the passing only. 

However, scarcity of, or at least limited, resources is well known within the 

maintenance literature. Indeed, it is one of the central concerns of the literature. Much 

software maintenance research is motivated by the need to reduce the maintenance 

burden. With unlimited resources, there would be little need for organizations to reduce 
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the maintenance burden. Access to and control over scarce resources is therefore 

important for continued survival in organizations (Morgan 1997). It is therefore likely 

that most organizations have to deal with the different interests of multiple stakeholders 

during software maintenance. The answer to the first of the above challenges is 

therefore that the reported findings are likely to apply in industrial software 

maintenance, as well. 

9.4.2.2 Transferability beyond maintenance of integrated systems 

This research finds the problem situation to be an occasion for struggles over limited 

resources within the organization. So far the problem situation has been identified as a 

key concern when maintaining integrated systems. Yet, a senior practitioner in the first 

group session argued that problem setting was the key activity in application software 

maintenance as well. There is no software maintenance research to corroborate this, 

however. Yet, some research may seem to indicate that this is the case. Martin and 

McClure (1983) for instance, observes that maintenance engineers often waste a great 

deal of effort looking for defects in wrong places. It is likely that some maintenance 

engineers do waste time looking for defects in the wrong places during debugging. Yet, 

this observation may also be grounded in the value-based view that debugging should 

progress from well-defined failures to their resolution. Such an interpretation is likely 

when considering software engineering as a movement away from trial and error-based 

approach of the trades towards the professionalization of software engineering through 

the application of scientific principles (Section 2.2). 

The problem situation, however, has been emphasized in related realms of action. Schön 

(1991) observes that engineers face only a limited number well-defined problems in the 

daily work. Orr (1996) studies the use of technical manuals in diagnosing faulty of 

copying machines. He finds that technical manuals can only address problems that 

present themselves as givens. Yet, users can typically resolve such problems 

themselves. Maintenance engineers therefore face problem situations, which technical 

manuals fail to capture. Similarly, Gasser (1986) observes that users device 

workarounds to errors in information systems. It is therefore likely that problems 

reported during software maintenance are those users are unable to resolve themselves 

through workarounds. With basis in Schön and Orr's observations, it is therefore likely 

to assume that maintenance engineers are faced with problem situations during 

application software maintenance, too. 

The conclusion of the above discussion is therefore that the political view of software 

maintenance as a continuous struggle over limited resources is therefore likely to be a 

fruitful view of software maintenance in general.  
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How much trust can we put in the findings reported in this chapter?  

Research findings never come about in a complete isolation. Rather, as Golden-Biddle 

and Locke (1993) argues, it resides in the tension between familiarity and uniqueness. 

On the one hand, reported research findings need to establish a sense of familiarity and 

relevance to the reader. The text seeks to establish a connection with the disciplinary 
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background of the readers. This is not sufficient, however, for research findings to be 

plausible contributions. They also need to provide a sense of distinction and innovation. 

As such, in establishing the plausibility research findings, the research account needs to 

provide readers with the means to bridge the gap between the familiar and the 

distinctive new of the subject matter. 

While there is a small, yet growing body of qualitative research on software engineering 

practice, the research methods and subject matter is still esoteric within the software 

engineering community. Offering distinctive different results compared to mainstream 

software engineering research has not been a challenge in this research. Making the 

research sufficient familiar to the software engineering community, on the other hand, 

has been a significant challenge. To make the research more familiar to the reader, I 

deliberately adopted a style of reporting that is common within this research 

community. In this style of reporting the researcher's personal voice is anonymously 

present in the text. When directly present the voice is impersonal, indicating personal 

distance and objectivity. While still I believe the choice of reporting style was a 

necessity to address this particular community, I also see that it is not entirely 

unproblematic in terms of the trustworthiness of the research findings. Understanding 

the researcher's partiality and subjective interpretations are important in evaluating 

interpretive research.  

This problem is further compounded by our limited use of raw qualitative data in the 

papers. Again, this is a function of my goal to address the software engineering 

community. The standard document format of software engineering conferences papers 

leaves little room for qualitative data. Developed for reporting quantitative research, the 

paper length is usually limited to 8 or 10 pages. I have therefore chosen to limit the use 

of empirical material in the papers. I could of course have compensated for this by a 

more liberal use of raw empirical material in this thesis. Yet, this is a paper collection, 

not a monograph. The purpose of the thesis is to summarize previously reported 

research, not further elaborate or substantiate it. 

To compensate, I have therefore opted to make the presentation of the research process 

as transparent as possible (Chapter 8). I do so in two ways. First, Sections 8.1 and 8.2 

describe in the procedural aspects of the research process in detail. Second, I reflect 

upon the how the research results have emerged in the triangular interaction with data, 

theory, and the research subjects (Subsections 8.4.2, 8.4.3, and 8.4.4). In both instances, 

I have faced the challenge of striking the balance between providing sufficient amount 

of information to make the process of developing the results transparent without 

overloading the reader with copious amounts of details. 

Using more empirical illustrations may have increased the authenticity of the text. Yet, 

empirical illustrations alone are not sufficient to determine the trustworthiness of the 

findings. Methodical transparency and use of empirical data are complimentary. Still, I 

believe I have struck a sufficiently good balance. As the papers have been accepted in 

peer reviewed conferences, it seems that the software engineering community agrees 

that the reported research is trustworthy. Obviously, in the end it is up to the reader to 

evaluate how well I have succeeded establishing the trustworthiness of the reported 

research. 
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Two implications for software maintenance research may be drawn from the reported 

research. First, software maintenance research on maintaining integrated systems need 

to shift focus away from studying maintenance only as the individual activity of solving 

well-defined problems towards the collective activity of constructing problems out of 

materials of situations that are puzzling, troubling, and uncertain. As such, it suggests a 

shift from individual 'problem solving' toward the collective process of 'problem 

setting'. 

Problem setting emphasises the collective nature of software maintenance work. With 

this view, software maintenance work is the achieved performance of multiple 

stakeholders with different interests. Focusing upon the contradictory interests brings 

out the inherently political aspects of software maintenance work. Such aspects are 

rarely touched upon in application maintenance research. This research usually assumes 

that stakeholders shared interests. Whenever the issue of multiple interests is addressed, 

the task of resolving such conflicts is delegated to, or translated into, an organizational 

structure with clearly defined roles and responsibilities. 

Yet, Østerlie (2004) shows how organizational structures is but one actor to be drawn 

upon as a closure mechanism. As such, it is argued that the empirical contributions 

offered by this research contributes towards establishing the need for software 

maintenance researchers to focus on issues of conflict and differing interests when 

studying software maintenance. While most maintenance research acknowledges that 

software is maintained within organizations and that the quality of the software is a 

function of the quality of the social relations of the organization, few researchers have 

drawn the consequence of this. The reported research therefore offers a first foray into 

this area, by identifying some of the social dynamics of maintaining integrated software. 

A second implication of the reported research is therefore that existing experimental 

studies of individual maintenance engineers performing limited maintenance activities 

with basis in more or less clearly defined problems need to be supplemented with 

studies that emphasise the contingent, negotiated nature of software maintenance. 
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Have focused on quantitatively determine whether and in what ways OSSD is different 

from software engineering, researchers have failed to establish the relevance of OSSD 

to software engineering in general (Chapter 4). The research reported in this thesis 

brackets the question of how OSSD differs from software engineering, as this is based 

on the false premise that OSSD is a homogenous phenomenon (Østerlie and Jaccheri 

2007a). The above discussion on generalization indicates that the findings translate 

outside OSSD. This thesis is therefore offered as an example of how OSSD can be 

made more relevant to software engineering by studying it as a special case of software 

maintenance. 

The results reported in this chapter also suggest that studies of software engineering 

practice may supplement scientific rigorous studies to make research more relevant to 
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practice. Practice studies have so far met limited understanding within software 

engineering (Robinson et al. 2007). Some of this may be caused by these studies 

tenuous relationship with the overall goal of software engineering: the 

professionalization of software development through the application of scientific 

principles. Practice studies' relationship to this goal is tenuous in two ways. 

• Their relevance to practice is unclear, as they do not contribute to the applied 

science component of software engineering knowledge with improved methods, 

tools and techniques to improve parts of the software process. 

• They rely upon a different underlying theory of the discipline. 

There is a trend towards scientism within software engineering. Scientism is a form of 

methodical monism where only natural scientific methods are considered appropriate 

for developing valid knowledge. This is probably, as Shaw (2001) observes, a result of 

a discipline coming of age where we have yet to recognize what our research strategies 

are and how to establish their results. It is therefore worth noting that such methodical 

monism reifies the view of OSSD as completely different from software engineering 

(Østerlie and Jaccheri 2007a). The research reported in this thesis illustrates the 

importance of capturing the complexity of the social context to better understand what 

practitioners really do when maintaining integrated systems. This is in contrast with the 

experimental research on program comprehension that reifies the view of software 

maintenance as individual, cognitive problem solving (von Mayrhauser and Vans 1995). 

The danger of methodical monism is therefore that the natural sciences seek to generate 

facts that are independent of the social context. However, for practitioners it is exactly 

this context that is of importance. As such, studies of software engineering practice may 

supplement existing focus on scientific rigour to capture the complexities of real-life 

software engineering. By better reflecting upon these complexities, research may 

become more relevant to practice. 

Software engineering has developed a strong theoretical core consisting of more or less 

standardized terminology and well-established models. It has often-cited references 

with clearly defined terminology like the IEEE Standard Glossary of Software 

Engineering Terminology (IEEE 1990). Glass et al. (2004) also observe that software 

engineering research rarely draw upon reference disciplines. Both are indicators of a 

strong, coherent theoretical core. As such, software engineering researchers tend to 

approach the research with a priori concepts that are applied to the object of study. 

Different research approaches, however, have different views on where and how 

concepts arise (Alvesson and Deetz 2000). Rather than approaching the fieldwork with 

concepts to be applied, the reported research exemplifies how familiar concepts may be 

revisited and supplemented with meaning that emerges from the local research setting. 

This research revisits and give additional meaning to maintainability (Østerlie and 

Wang 2006) as well as debugging (Østerlie and Wang 2007) which supplements a 

priori definitions in the research literature.  

The danger of theory is that research becomes narrow, caught up in surface phenomena 

and conventional meanings (Alvesson and Deetz 2000). Such a narrow focus, in turn, 
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may make research less relevant to practice. Yet, by grounding our understanding of 

terminology in local meanings, researchers may hope to address concerns that are more 

relevant to practitioners. Practice studies are well suited for this kind of exploration of 

the local meaning of familiar concepts. Offering an example of how studies of software 

engineering practice may explore familiar concepts, the reported research may be 

considered a response to Osterweil' (2007) question of whether software engineering 

researchers should explore more. 
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10. Implications to software maintenance 

practice 

With basis in the empirical findings presented in the previous chapter, this chapter 

draws implications to software maintenance practice. In particular, it offers a set of 

recommendations for corrective maintenance and systems replacement. These are 

offered as contributions C4 and C5. This chapter is therefore organized as follows. First, 

Section 10.1 offers a set of recommendations for a lenient approach to coping with 

variability during corrective maintenance. Here it is suggested that rather than pre-

empting problems related to variation, it may be more beneficial to address problems as 

they arise. Section 10.2, offers a set of recommendations for an opportunity-driven 

approach to systems replacement. Here, it is argued that rather than careful planning 

requiring stable coalitions over time, it may be more beneficial to emphasise the process 

of planning. The shift of focus towards planning emphasises a contingent and 

opportunistic approach to systems replacement.  

10.1. Recommendations for a lenient approach 

to coping with variability during corrective 

maintenance (C4) 

The configuration among individual installations of an integrated system may vary 

greatly. Variability is therefore a significant concern during maintenance of integrated 

systems. Existing research recommends technical solutions to control and reduce such 

variability (Crnkovic and Larsson 2002). This section draws implications of the 

empirical findings reported earlier for coping with such variability in practice. It offers a 

set of recommendations for a more lenient approach. With basis in Contribution C3, 

these recommendations seek to strike a balance between investing scarce resources in 

pre-empting future problems through increased control of variability, with the effort 

required to handle such problems as they arise. Hybertson et al.'s (1997) makes a similar 

argument, offering a set of simple heuristics for modest tracking of third-party software 

in integrated systems. Building on C1, this section supplements these heuristics with a 

set of recommendations for organizing the corrective maintenance process to better 

handle problems of variability when they occur. 
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An expressed goal of the Gentoo community is that individual systems should be 

continuously updated rather than reinstalled. This, combined with frequent updates of 

the third-party packages supported by Gentoo would suggest the potential for immense 

variability among Gentoo systems. However, Gentoo's response to the issue of variety is 

diametrically opposite of that recommended by the research literature. While Portage 

supports dependency handling among packages, controlling variability is not much of a 

concern to the Gentoo developers. The mechanism for enforcing dependencies between 

software packages is only used when software depends on a specific version of another 

package.  

With basis in the reported research, however, the following is recommended: 

Recommendation 1:When manpower is scarce, cope with problems related to 

variability as they arise rather than invest in controlling and limiting variability 

among installations of an integrated system. 

Increased control is a strategy that seeks to pre-empt anticipated problems. This requires 

an up-front investment of effort. However, instead of spending a lot of effort to pre-

empt potential problems, resources are spent on addressing actual problems. The 

recommendation for a lenient approach to coping with variability resembles the 

implications Adams (1984) draws for software reliability. Reporting from a study of 

nine software products over a 10 years period, Adams (1984) observes that most 

reported problems in large-scale software only occur once. Commenting upon Adams' 

study, Littlewood (1986) observes that the reason for this observation is related to 

variation of configuration of individual computers running the software. With basis in 

the observation that only a fraction of the defects will impact on a large population of 

users, Adams recommends not spending effort eliminating all defects during testing but 

rather to address the high-impact failures reported during use. The resemblance between 

the two strategies is to spend effort when required, rather than to pre-empt potential 

problems. 

This is obviously not an argument against testing software before releasing it. Nor is it 

an argument not to impose certain degree of control on the variability. Rather, it is an 

argument against what may be an overzealous attempt to control problems that may not 

be that difficult to keep in check during maintenance.  The Gentoo community 

complements the lenient approach for coping with variability with a closer integration 

of users in the corrective maintenance process. This leads to the next recommendation. 
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The research literature emphasises the need to reproduce software failures on the 

maintenance engineer's system (Zeller 2006). Detailed and often complex schemas for 

describing software failures have been proposed to support the reproduction of failures. 

Configuration management systems are used to limit the variability of application 

software. Each release of an application is numbered, and the release number 

corresponds with a set of revisions of the source files in the configuration management 
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system. Failures therefore relate to a particular release, and the release may therefore be 

used for tracing the differences in source files since the last failure free release. 

Similarly, Carney et al. (2000) stress the importance of having the entire integrated 

system under configuration management for controlling variability. The result is to 

release the integrated system as a monolith as it is common for application software. 

Yet, this approach presumes that the integrator is in complete control of the software 

being integrated. While this may be possible when developing an integrated system 

from off-the-shelf components, this is not the case when integrating information 

systems across organizational boundaries (Hasselbring 2000). Yet, without such control, 

the integrated system may be difficult, if not even impossible, to debug (Voas 1999). 

With the above assumption in mind, the Gentoo community's lenient approach to 

variability should therefore be problematic in a process where software quality relies 

more on field-testing and peer review than rigorous testing prior to release (Huntley 

2003). The Gentoo developers, however, handle the situation by engaging in a 

collective process with the users. With basis in the reported research, the following is 

therefore recommended: 

Recommendation 2: When variability among installations is great, supplement 

the problem report with alternative communication channels to support remote 

debugging rather than developing complex classification schemas to support 

reproduction of failures. 

The problem report seeks to decouple the user experiencing the failure from the 

maintenance engineer responsible for correcting the reported failure both geographically 

and temporally. The Gentoo developers seek to interface the failing system both more 

directly and more indirectly. More directly by engaging with the user. More indirectly 

by not engaging with the software failure on their own system, but through debug data 

produced by the user. This is in contrast to the completely decoupled corrective 

maintenance process espoused by the OSS literature, where someone finds and reports 

the failure while somebody else corrects it (Huntley 2003). 

However, based upon the reported research, simply adding an additional clear text field 

like Bugzilla's 'Additional comments' may not suffice. The empirical data shows the 

need for developers and users to communicate more directly. In the case of Gentoo this 

is handled through IRC channels. Any form of chat-like communication would probably 

suffice. However, the empirical data show three important features of IRC which are 

important when debugging: 

• Real-time communication facilitates tighter interaction between stakeholders 

• The IRC client provides a brief history of previous statements so that people may 

catch up on threads of discussion 

• The possibility of paging particular individuals so they can join the conversation 

 As software users are seldom co-located with the software developers within the same 

organization, providing a more direct means of communication between users and 
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developers is not necessarily limited to geographically distributed software development 

teams. 
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An implicit assumption of existing schemas for classifying software failures is that the 

reporting user has already understood what the failure is. In the documentation for the 

Bugzilla defect tracking system (Barnson 2007), for instance, each of the fields for 

describing software failures are thoroughly presented. However, the part of the problem 

report that is most used by the Gentoo community, the Additional comments field, is 

described by a single sentence: "Here you may add additional comments". Yet, it is 

exactly this field that is of most help during problem situations. 

To encourage users to use defect tracking systems, it may be useful to substitute 

comprehensive classification schemas that seek to describe failures exhaustively with a 

schema where only a minimum of information about the problem situation is required 

of the user. Instead, the problem report could facilitate communication between users 

and developers akin to the way the 'Addition comments' field is used by the Gentoo 

community. 

Recommendation 3: Provide users with simplified schemas for reporting 

failures in order to bootstrap the corrective maintenance process. 

The reported research may therefore suggest that a focus on schemas for reporting 

software failures may be counter constructive when maintaining integrated systems. 

Because users and developers have to deal with problem situations, it is difficult to 

determine the value of the predefined fields of the problem report (discussed in 9.1 

above). A similar issue arose during one of the practitioner presentations (see 8.3). The 

practitioners' experience with defect tracking systems was that non-technical users did 

not use them for reporting software failures. Rather, the users were overwhelmed by the 

problem reporting schemas, and instead chose to report the problem by phone or e-mail 

instead. 

As such, the research may suggest that the function of the problem report may be 

limited to bootstrapping the corrective maintenance process. 

10.2. Recommendations for an opportunity-

driven approach to systems replacement (C5) 

The research literature emphasises the need for thorough planning when replacing 

legacy systems. Sneed (1995, p. 24), for instance, stresses that the success of systems 

replacement "depends to a great degree on proper planning". Acknowledging the need 

for an operational system during reengineering, more recent literature proposes 

incremental approaches to systems replacement (Bianchi et al. 2003). Yet, a well-

planned process is still emphasised as a key to success even here (Sneed 2005). This 

section draws implications for systems replacement practice. With basis in Contribution 

C2, a set of recommendations for an opportunity-driven approach to systems 
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replacement is offered. Rather than emphasising the importance of a plan, these 

recommendations suggest that software developers should focus on the activity of 

continuous planning throughout the process of replacing the system. These 

recommendations are offered as Contribution C5 from the reported research. 
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Thinking in terms of coalition building, the long-term plan requires a coalition that is 

stable over time. Yet, the volatility of participants in the process of rewriting Portage 

made such stable coalitions difficult (see 9.3.3). In contrast to the literature, then, the 

view of systems replacement offered by contribution C2 emphasises that systems 

replacement is contingent and depends upon building coalitions. With basis in this view 

of systems replacement, the following recommendation is offered: 

Recommendation 1: During systems replacement, formulate long-term goals 

and focus on plans that require temporal rather than long-term coalitions. 

This recommendation is based upon two observations of the systems replacement 

process: 

• Emergent understanding 

• Translation of plans into action 

First, the issue of emergent understanding. This is an issue developed in Østerlie and 

Jaccheri (2007b) as well as in both Østerlie and Wang (2006 and 2007). Rather than 

seeing knowledge as discoverable, these papers argue that understanding a situation 

requires intervention. Through intervention the situation changes (Weick 1995). As 

such, knowledge about systems replacement and the process of replacing a system is not 

something that can be completely grasped beforehand. Rather, understanding is 

emergent and contingent. As such, it is important to adapt to the changing environment. 

Second, the issue of translating plans into actions. The problem with plan-based 

approaches to systems replacement is that it considers translating the plan into practical 

action trivial. Acting according to plan requires stable coalitions. The plan will only be 

translated into practical action when it is in the actors' interest to do so. However, by 

understanding that systems replacement unfolds as part of a continuously emerging 

context of development and use, we see the problem with keeping coalitions stable over 

time. Actors' interests change, and new problematic situations will arise. 

�:�
�
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Rather than focusing on the plan and its execution, a practical implication of the 

reported research is to emphasise planning. 'Planning' is proposed here as an activity 

immanent in the process of replacing systems. Regarding planning as a continuous 

activity throughout the process of replacing a system seeks to address that 

understanding is emergent and that plans are negotiated entities. An important aspect of 

the carefully laid plan is to retain control of the systems replacement effort. Panning, on 

the other hand, deemphasises the need for controlling the entire replacement process. 
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Yet, if control of the process is regarded as important in order to succeed, how to 

succeed without control? This leads to the next recommendation: 

Recommendation 2: Seek smaller, temporary coalitions rather than overall 

control. 

The practical implication for systems replacement is therefore to seek smaller, 

temporary coalitions. While replacing the entire software system in one go has clear 

attractions, the likelihood of succeeding can be quite small. Emphasising the contingent 

character of systems replacement, planning seeks a shift of focus towards building and 

sustaining coalitions. Coalitions need to be built and sustained in order to meet the 

stated goals of systems replacement. This, in turn, emphasises the need for seizing upon 

opportunities for building new coalitions as they arise within the organization. 

The problem that legacy systems' need to adapt even in periods of rewriting, can be 

related to the sustainability of the effort. Incremental reengineering therefore seeks to 

make the rewriting steps so small that it is possible for the legacy system to adapt 

during maintenance. 

While a technical problem, the problem of sustainability can also be understood within 

the context of coalitions. The continued problem with replacing Portage is closely 

related to the problems of sustaining coalitions. Interpreted in terms of coalition 

building, complete systems replacement requires a stable coalition over time. 

Sustainability of coalitions is closely related to stability of actors, but also a stability of 

actors' interests. In organizations with many actors with different interests, the initial 

problem will be to enrol a sufficient number of actors in a coalition. Then, sustaining 

the coalition is an even further problem. 

As such, regardless of the technical challenges related to systems replacement, the 

practical implications of a pluralist perspective on software maintenance organizations 

is that it can be more realistic to seek temporary coalitions with a few actors that only 

need to be sustained over a shorter period of time. 
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11. Conclusions and future work 

 

This thesis concludes the research project titled 'Empirical software engineering and 

open source software development'. The project has been conducted as part of the Ph.D. 

programme attended by the Norwegian University of Science and Technology. The 

thesis has summarized the empirical study undertaken as part of the project. This has 

been done in three parts. In part one of the thesis, the reported study was situated within 

the software engineering discipline. The ongoing discussion of relevance and software 

engineering research is presented in here. Part two of the thesis presented the empirical 

study performed. In addition to reporting on the research process, the interpretive 

research approach as well as the research setting is introduced in this part. The final part 

is dedicated the results of the reported research. Two kinds of results were reported. 

First, the empirical contributions offered by the research were reported. With basis in 

the empirical contributions, implications for software maintenance practice are drawn.  

The purpose of this chapter is to briefly outline the conclusions of the reported research, 

discuss limitations of the research, as well as indicate potential avenues for future work. 

11.1. Conclusions 

The goal of the reported research has been to inform software engineering research. 

This is a response to the research community's worries over lack of relevance to practice 

(see Chapter 2). The reported research is based on the view that we do not fail to inform 

practice because our research lacks credibility. Rather, we as a research community fail 

to inform practice because we know too little about practice to study issues relevant to 

practitioners. To meet our collective goal of informing practice, the software 

engineering research community first needs to be informed by practice. To this end, I 

have conducted a study of software maintenance practice. The study was conducted in 

the context of a community of volunteer software integrators. Three research questions 

were posed (Section 1.3). 

Research questions 1 and 2 dealt with software maintenance as knowledge-intensive 

work. They were concerned with how system integrators in a geographically distributed 

community of volunteers build knowledge for two kinds of software maintenance 
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activities: corrective maintenance and software replacement. Whereas most software 

maintenance research is based on the premise that maintenance activities follow from 

more or less clearly defined problems, I found problem setting to be an essential activity 

of maintaining an integrated system. Problem setting is the collective process in which 

situations that are unclear, problematic, and puzzling are progressively clarified.  

The shift from problem solving to problem setting broadens the scope of software 

maintenance activities. Problem solving is concerned with software maintenance as an 

individual cognitive activity. Existing maintenance research has therefore focused upon 

understanding the cognitive mechanics of problem solving and developing tools for 

supporting individual developers. Yet, problem setting broadens the scope to include 

both the social and technical processes involved when maintaining an integrated system. 

Building upon this observation, I answered research question 3. This research question 

was concerned with the characteristics of large-scale software maintenance work in a 

geographically distributed community of volunteers. With basis in the social and 

technical processes identified in response to research questions 1 and 2, I found problem 

setting to be a process where multiple stakeholders with different interests continuously 

negotiate over problems and their solutions. I call this multilateral software 

maintenance. Maintaining an integrated system in a community of volunteers is 

therefore characterized by a scarcity of resources, an emphasis on coalition building, 

and volatility of stakeholders. Focusing upon scarcity of resources and contradictory 

interests brings out the inherently political aspects of multilateral software maintenance. 

The following conclusions can therefore be drawn with basis in the reported research. 

A conclusion for software maintenance is that researchers need to acknowledge the 

multilateral character of systems integration. This means that the basic premise of 

application software maintenance – that a single team or organization is in control of the 

development trajectory of software (Banker et al. 1993) – is no longer tenable. Rather, 

multilateral software maintenance means that no single stakeholder is in control of the 

entire integrated system. Instead, multiple stakeholders with different, sometimes 

conflicting interests are in control of the development trajectory of different parts of the 

integrated system.  

As far as existing research acknowledges that multiple and conflicting interests may 

exist during software maintenance, the methods proposed invariably leaves it to a single 

stakeholder to resolve such conflicts. Yet, it is the very lack of such central authority 

that characterizes multilateral software maintenance. Instead of relying upon 

maintenance methods that assumes that there is some form of central control, 

multilateral software maintenance calls for pragmatic strategies based on building 

coalitions. This is exemplified in contributions C4 and C5. 

A conclusion for software engineering is that we as a community have mostly missed 

out on the opportunity for learning from the experiences of OSSD so far. This thesis 

proposes that software engineering is a community of industry and academic actors with 

the shared goal of professionalizing software development. Learning from experience to 

build a body of professional knowledge is an important part of professionalization. Yet, 
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as we show in Østerlie and Jaccheri (2007a) software engineering researchers continue 

to treat OSSD as different. In so doing, we as a community are missing out on an 

important opportunity for learning that may offer significant contributions to the 

professional body of knowledge we are collectively building. By continuing to quantify 

artefacts of OSSD, we fail to move beyond the dichotomy between OSSD and software 

engineering. Moving beyond this dichotomy is important for us to start learning from 

OSSD. To do so, software engineering researchers also need to study how OSSD is 

developed and maintained in practice. 

The need to study practice is not limited to software engineering research on OSSD, but 

applies to software engineering research in general. This research shows that the 

concept of problem solving only partially addresses the activities of maintaining an 

integrated system. Yet, software maintenance as mainly an individual problem solving 

activity remains the basic premise of much research. The reported research empirically 

demonstrates that the individual problem solving is only part of the collective activities 

of problem setting. As such, while existing experimental research on software 

maintenance is scientifically rigorous, it is in the case of software integration based on 

the mistaken premise of more or less well-defined problems. To develop research that is 

relevant for practice, the theory applied  in scientifically rigorous experiments needs to 

be calibrated with research on actual software development practice. 

11.2. Limitations 

This thesis reports from a study of software maintenance work in a single 

geographically distributed community of volunteers. While this research strategy has 

the potential of developing in-depth data, it also faces two potential limitations: 

• The results may be inapplicable outside the context of the particular case 

• With basis in a community of volunteers, the results may have little relevance to 

commercial software development which is the main concern of software 

engineering 

While I have made efforts to test the transferability of the reported research to industrial 

system integration (see 8.3 and 9.4.2), the results could have been made more credible 

by doing a comparative study of system integration in a commercial organization and a 

geographically distributed community of volunteers. Although predominantly 

descriptive, this study proposes 'problem setting' as a way of conceptualizing the 

maintenance of integrated systems (see 9.4.1). A comparative study would support 

better development of this concept. However, time and resources did not permit that 

such a comparative study to be undertaken. 

Practically unlimited access to data is an advantage of studying geographically 

distributed communities of volunteers. This gives immense amounts of data. Yet, for 

me there was also a significant limitation to doing such research: I had no immediate 

access to those I studied. Although being available through e-mail and IRC, I found in-

depth communication with the research participants limited. While I did discuss drafts 

of some papers to selected community members (see 8.4.4), I think the results would 
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have benefited from arranging group sessions with selected Gentoo developers similar 

to those held for professional system integrators (see 8.3). With the possibility of 

commenting both upon concrete events and situations as well as my interpretations of 

these, I believe such group sessions could have provided important feedback to improve 

the results of this study. 

11.3. Future work 

The motivation of the reported research is that there is very little research on 

maintenance on integrated systems. While there is a clear shift of focus towards 

software integration, the software maintenance research community does not seem to 

have fully grasped the implications of such a shift for their object of study. As such, 

studying the maintenance of integrated systems appears a fruitful avenue for further 

research. 

Offering a view of software maintenance work where multiple stakeholders with 

different interests continuously negotiate over problems and their solutions, this thesis 

offers an outline of a political perspective on software maintenance. Following a turn 

towards studying maintenance of integrated systems, further development of such a 

political perspective should be particularly relevant to software maintenance research. 

Existing research is based on an implicit understanding of the social as harmonic. This 

may not be an altogether misleading assumption when studying application software 

maintenance where a single team or organization is in complete control of the software. 

However, in the context of integrated systems where no one organization or actor is in 

complete control, a political perspective's emphasis on multiple stakeholders with 

different interests seems particularly fruitful. 

Furthermore, while the reported research does study maintenance in the context of 

development and use, the implications of this relationship remains unresolved by the 

reported research. Yet, it is implied that there is a reciprocal relationship between the 

two. In the future, it would be particularly interesting to study this relationship even 

further. In developing a political perspective on software maintenance the interaction 

between use and development is particularly important, as individual and groups of 

users are important stakeholders in the maintenance process. 

The context of the reported study is a distributed community of volunteers. In the 

future, it would be interesting to explore a political perspective on software maintenance 

in the context of a large commercial organization. Whereas the Gentoo community's 

organizational structures are not particularly strong, the theoretical perspective offered 

by Østerlie (2004) to draw hierarchies into the analysis of the process of problem setting 

as merely yet another actor would be particularly interesting in the context of formal 

hierarchies. 

Some practitioners participating in the group sessions (see Section 8.3) indicated that 

making sense of problem situations is also a central activity in application software 

maintenance. It may therefore be interesting to test whether the premise of more ore less 

clearly defined problems is valid in application software maintenance, too. 
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12. Glossary 

Application library A collection of subroutines that multiple applications use. 

Application software A set of software modules performing a coherent set of tasks in support of 

a given organizational unit and maintained by a single team. 

Business-critical Software whose failure may result in the failure of the business using the 

system. 

Component A unit of code that integrators can combine with other components and 

integrate into a system in a predictable way 

Debugging The activity of diagnosing problematic situations related to failing 

software. 

ebuild Installation script used by Portage to integrate software packages with 

Gentoo systems. 

Gentoo system A computer using Portage to integrated third-party OSS with its local file 

system. 

GNU GNU is a recursive synonym for 'GNU is not Unix', and is used as the 

brand for the Free Software Foundation's Unix-like operating system. 

GNU/Linux distribution A collection of software applications and libraries bundled together with 

the Linux operating system kernel. It is called a GNU/Linux distribution 

as much of the core software is developed by the GNU project. 

Integrated system A software system composed of black-boxed software. The black-boxed 

software may range from software components to enterprise information 

systems. 

Kernel Short for operating system kernel. 

Legacy system Software system that is expensive to maintain, but still operational 

because it is business-critical. 

Open source software Software released under a license compliant with the Open Source 

Definition. 

Operating system kernel The kernel manages system resources, and communicated between the 

software and the hardware. 

Optional Short for optional feature. 

Optional feature A global configuration option in Portage that enables optional features 

across individual ebuilds. IMAP support is an example of such an 

optional feature. 
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Package Short for software package. 

Package manager A software application that integrates software with a local computer's 

file system. 

portdir Portage's package database. 

Portage Gentoo's package manager. 

Problem report A standardized schema for reporting software failures 

Problem setting The collective process where problematic situations are progressively 

clarified. 

Problematic situation A situation that is puzzling, troubling, and uncertain. It is a situation 

where it is unclear what the problem really is.  

Process data Data of events, activities, and the sequence of these. 

Process theory Theory that seeks to conceptualize events, activities, and choices ordered 

over time and to detect patterns among them. The purpose is to explain 

the outcome and mechanics of these activities and events. 

Runtime libraries Libraries that handle the low-level details of passing information between 

the kernel and the application software layer. 

Software integration The process of developing integrated systems. 

Software package Third-party software that can be integrated with a computer's file system. 

System calls Part of the operating system kernel that provides services for to request 

services from the kernel.  

Unix-like An operating system that behaves in a similar manner to a Unix system, 

but does not necessarily comply with POSIX. 

/var/db The database Portage stores information about the packages that have 

been integrated with the computer's file system. 

virtual package Functionality that may be provided by different packages. The 

functionality of the Java virtual machine, for instance, may be provided 

by Sun's Java VM as well as IBM's Java VM. 
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Abstract

This position paper reports on the findings of an
empirical pilot study of Gentoo Linux. Gentoo Linux is
an open source Linux distribution developed by a
geographically distributed community of volunteers. The
reported findings are based on the analysis of a specific
episode using actor network theory. With basis in the
analysis, it is argued that control in this specific episode
can be interpreted as both distributed and local at the
same time. Control here being the power to define a
problem and make the decision about the appropriate
solution to the problem defined. Control, it is argued, is
distributed in that it is the function of reciprocal
influence among several human and non-human actors.
Furthermore, it is argued that control can be interpreted
as not inherent in organizational structures or
hierarchies, but locally embedded among actors in the
decision making process.

1. Introduction

Geographical distribution is one of the distinct
characteristics of open source software development. Open
source software development has been connected with
teams of geographically distributed developers ever since
Raymond’s first description of the bazaar [1]. Despite the
geographical distribution of developers, Raymond
describes control in the bazaar as centralized, headed by
the ’benign dictator’.  Using open source software
development as an example of computer-supported
distributed work, Moon and Sproull [2] argue that an
enabling condition for the success of the Linux kernel are
the "capabilities a single leader brings to a project". They
argue that the "clear locus of decision-making, singular
vision, and consistent voice" are important in controlling
this kind of collaborative effort. This supports
Raymond’s notion of the ’benign dictator’. Control in
these two works is therefore understood as centralized.

Mockus and Herbsleb [3] describe the Apache open
source web server community in two contradictory ways.
On the one hand there is a formal organizational structure
for making decisions about code integration. On the other

hand, they report that work is not assigned but that
individual developers choose what to do themselves. "The
choices are constrained, however, by various motivations
that are not fully understood." Understanding control as
the power to define problems and their appropriate
solutions, and thereby making decisions about what tasks
to prioritize, Mockus and Herbsleb’s description points to
a tension between centralized and distributed control.

Picking up on Mockus and Herbsleb’s observation,
this paper raises the question whether control always is
centralized in open source software development? How
can we understand the tension between distributed and
centralized control?

The paper is organized as follows. Section 2 presents
the empirical findings. The section contains a short
presentation of the Gentoo Linux case, details of the
method employed, and a detailed presentation of the
reported episode itself. Section 3 discuses how control
can be interpreted in the reported episode. The conclusion
draws implications of the discussion, and formulates
directions for future work.

2. The case

This section presents the empirical findings. For
context, an overview Gentoo Linux is presented first.
Then the methods of data collection and analysis that
form the basis for this position paper are described. The
reported episode is described afterwards, after which the
episode is analysed in terms of the mechanics of framing
the problem to be solved and what actors take active part
in framing the problem.

Gentoo Linux is an open source Linux distribution
developed by a geographically distributed community of
volunteers. Aiming for advanced users, the distribution is
a mix between Linux from scratch and a regular Linux
distribution. Gentoo Linux provides the minimum of
support for installing a bare bones Linux system. In this
way the user can build an installation from the bottom
up, tuning it to his exact needs; be it a workstation
installation, a secure server, or a gaming system. That is
why Gentoo Linux is also called a meta distribution.

Portage, Gentoo Linux’ software distribution system,
is the technology that makes this possible. Portage keeps



track of the third party software, also called packages,
available for Gentoo Linux at any one time. At the time
of writing there are over 6000 packages available. Portage
also keeps track of which packages have been installed on
the local system. Information about installed packages is
stored in a database. For each installed package this
database contains information such as the absolute path
for every files installed by the package, the compiler flags
the package was built with, and the package’s license.

When installing new packages, Portage compiles the
software on the local system. The user can therefore fine-
tune such things as compilation flags and additional
software support. This information is stored in a set of
configuration files.

2.1. Method

The episode reported in this position paper is part of
the empirical evidence collected during a pilot study of
Gentoo Linux. Data for this pilot study was collected
with a number of methods. Archival data was collected
from the Gentoo web site at

http://www.gentoo.org, and from the Gentoo
mailing list archives accessed through the

news.gmane.org service. The IRC logs that form the
basis of the analysis which this position paper is based
on, were downloaded from Gentoo’s home pages. In
addition, the pilot investigation involved participatory
observations with a software consultant using Gentoo
Linux as development platform, and a semi-structured
interview with one of the Gentoo Linux developers. The
interview was performed according to the guidelines laid
down in [4]. Ethnographic field notes [5] were taken in
connection during the participatory observation and later
written out as a full field report

The episode reported in this position paper is
primarily based on the IRC log of the Gentoo managers’
meeting from December 15 2003. Using actor network
theory, an analysis was performed on basis of the log
supplemented by the interview. Actor network theory is a
method borrowed from the field of science and technology
studies. It is a method for analysing the relationship
between the technological and the social [6,7]. Unlike
traditional software engineering methods that teaches us
to categorizes entities into classes such as roles, instances,
technical artefacts, organizational artefacts, just to
mention a few, actor network theory attributes symmetry
to all entities in the network by promoting them to
actors. This reflects the basic assumption that all entities
in the network are capable of acting upon each other.

Central to actor network analysis is identifying the
actors and associations between them. Thinking of actors
as nodes and associations as connections between the
nodes, the network appears. The network is composed of
heterogeneous nodes—technical and non-technical, human
and non-human, etc.—that are associated for a period of
time. However, the actor network is reducible neither to
an actor alone, nor to a network. In addition, the network

is seen as constantly shifting, and not as a representation
of the original or final state.

In actor network theory the network is an analytical
structure constructed by the analyst. Instead of thinking of
the actor network as a representation of things out there, it
is a conceptual frame, a perspective to interpret social and
technological processes. The episode reported in sections
2.2, 2.3, and 2.4 is related as interpreted through the
perspective of actor network theory.

2.2. The episode

The Gentoo managers’ meeting is a biweekly meeting
for Gentoo developers to coordinate activities. The
managers’ meeting is arranged over the Internet, using
IRC. During the Gentoo manager’s meeting December 15
2003 [8], the issue of third party utilities operating on
Portage’s database and configuration files is discussed.
Some of these utilities mangle the configuration files,
while other utilities no longer work because the Portage
database format has changed. One of these utilities,

qpkg, a utility for querying Portage’s database,  has
accumulated over 20 unresolved bug reports in Gentoo
Linux’ bug tracking system. The source of all these
problems is identified to be code that is out of
synchronization with the rest of the system. This kind of
problem has been resolved before by introducing the
maintainer role. The maintainer is responsible for keeping
specific parts of code in synchronization with the rest of
the system. The conclusion is that the code in question is
outdated because it has not been assigned a maintainer.

An additional response to the problem is to introduce
an abstraction layer, an API, on top of Portage’s database
and configuration files. All utilities accessing the
configuration files and database must do so through this
API. Two Gentoo developers are assigned to develop and
maintain this API.

There is dissent among the participants at the meeting
about priorities. Gentoo Linux’ chief architect proposes to
base the API on Portage’s own code. The two developers
in charge of the API, while agreeing that this would be a
good idea, argue that there are other factors that are more
important to take into account when resolving the
problem. Especially the issue of missing maintainers for
utilities accessing the Portage database and configuration

files. The qpkg utility is used as an example of these
difficulties. The utility was included in the distribution

by a developer who later left the project. qpkg
implements its own code for accessing Portage’s database.
Responsibility for the utility was handed over to someone
else when the original developer left Gentoo Linux. This

second developer went on leave, and qpkg was left un-
maintained. The problem, while technical in symptoms,
is something more and something else. It is also
symptomatic for the problems to be addressed by the API

developers, in that qpkg, like the other utilities,
implement its own code for accessing Portage’s database
and configuration files directly. Without any guarantee for



how long the developers for these utilities will stick
around Gentoo Linux, the situation that the API is to
address is to keep the way utilities access Portage’s
database and configuration files synchronized even after
the original developers leave.

2.3. Framing the  problem

The decision to introduce an API on top of Portage’s
database and configuration files is an answer to a problem
the Gentoo developers want to solve. Thinking in terms
of actor networks, the problem can in fact be
conceptualized as an actor. However, it is not an actor that
exists before the meeting starts. It is actually a
constructed actor. The problem is "a list of ... trials ...
hooked to a name of a thing and to a substance" [7,
p.122]. The way the problem is given substance, its
framing, is the topic of this section.

In the transcript from the Gentoo manager meeting
December 15 2003, one of the developers participating in
the meeting states that there are a "slew of util[itie]s lying
about". He associates these with mangled Portage
configuration files, in that the utilities "hack, slash and
mutilate the ... config[uration] files". Then he associates
the Portage database with the "util[itie]s lying about", as
"these util[itie]s misreads /var/db [the Portage database,
author’s comment], so as not to be consistent with
[P]ortage".  Another problem with the "util[itie]s lying
about" is that they have overlapping functionality, and
none do their tasks particularly well:

"we don’t need five half-working use flag editors. we
need one really good one"

The problem is framed by the developer associating
different actors, framing a problem in such a way that the
other developers understand it as their problem, too.
Figure 1 illustrates how the different actors are associated
in framing the problem.

Having framed the problem as a shared problem, its
cause is established. The cause of the problem is that the
utilities lying about have not been properly updated, as "a
few of the existing tools [the same as the utilities lying
about, author’s comment] don’t work with portage 2-0.50
due to API changes [in Portage, author’s comment]". That

is also why the qpkg utility does not work any longer,

since there are "20+ bugs [reports] about qpkg" that
remain unresolved in the bug tracking system. The
technical cause of the problem is outdated code, but this
is more a representation of the larger problem:

"now I have 20+ bugs about qpkg assigned to me, it’s
a mess, and nobody wants to touch it. Who is
responsible to maintain it now?"

Figure 1 The problem framed

The symptom is that the utilities lying about have not
been updated, but this is caused by the fact that there are
no one maintaining the "slew of util[itie]s lying about".
In this way, the maintainer replaces the problem in the
actor network, providing a solution to the situation.

Control is exercised in deciding what activities are to
be undertaken, how and when. There are hundreds of
unresolved bug reports in Gentoo Linux’ bug tracking
system. In making the decision about which of these bug
reports are to be resolved, decisions about what activities
to prioritize are made.  Framing the problem can therefore
be understood as the power to determine the activities to
be undertaken. From this follows that the task of
identifying who is in power in the episode above, is the
task of identifying who has the power to frame problems.

2.4. Who frames the problem?

At first glance, the problem facing the developers
seems to be framed by one of the developers participating
in Gentoo manager meeting. As a response to the problem
the maintainer role is introduced. The maintainer role, as
an actor decoupled from a person, was once constructed to
resolve similar situations. In framing the problem at hand
in this particular way, the answer to introduce a
maintainer becomes a given. Following this line of
thinking, one can go as far as saying that the maintainer
role participates in shaping the problem. If you have a
hammer, all you see are nails. The knowledge among
discussion participants that this role exists can be
considered constitutive to the problem framing. Looking
at the episode this way, the maintainer role is turned from
passive to active in framing the problem.

It is highly unlikely that every bug experienced by
Gentoo Linux users is reported in the bug tracking
system. However, the bugs that are used to frame the
problem are those reported in the bug tracking system.
Bugs are given priority, severity, status, and assigned to a
given person or group of persons for resolution. A bug is
resolved when it is fixed or labelled invalid. As long as a
bug remains unresolved but assigned to a developer, the



bug is a reminder to the assignee. In this sense, bug
reports are also active in framing the problem.

Framing the problem is not a function of a single
developer or a closed group of developers. Instead, it can
be interpreted as the function of a number of actors, both
human and non-human. Neither is the power to frame the
problem one-sided in that one actor forces other actors to
do something they do not want to. Instead, framing is a
reciprocal relationship between the Gentoo developers, the
maintainer role, and the bug reports.

3. Discussion

This discusses how control can be interpreted in the
above episode above. Three aspects of control are
discussed. First the implication of the episode in terms of
control and organizational hierarchies is discussed. Then
we discuss how control can be interpreted as distributed
among human and non-human actors. Finally, it is argued
that actor network theory makes the interpretation of
control as reciprocal among actors likely.

3.1. Relation of control and organizational hierarchy

Gentoo Linux is split into projects and sub-projects.
Herds consisting of maintainers are responsible for
keeping a set of packages up to date. This is how the
Gentoo developers describe their organization in terms of
hierarchies and distribution of roles. However, by
conceptualizing the way the Gentoo developers talk about
the organization during the Gentoo Managers’ meeting as
an actor network, another view appears. In framing the
problem that the API resolves, the maintainer is
introduced as an actor in the network. In contrast Gentoo
Linux’ chief architect does not get through his idea to
base the API directly off Portage.

Looking at the organizational hierarchy, the architect is
placed farther up than the developer. If control and
organizational hierarchies were related, the chief architect
would have the power to make his view the prevailing. In
the episode above, this does not happen, though. Why
not?

Control can be understood as local in the way actors
enrol other actors and are enrolled themselves in the
immediate actor network. If control was inherent in the
hierarchy, the chief-architect should have gotten his view
through.  That he does not get his view through can be
explained by him never enrolling the chief architect role,
considered an actor in an actor network analysis, in the
immediate actor network.

The implication of the above interpretation is that
there need not be an inseparable relation between
organizational hierarchy and control. Control can be
locally embedded among actors in the immediate
network. The actors brought together by the hierarchy
have no essential relation to each other, but can instead be
understood as dispersed actors temporarily brought
together through the hierarchical ordering. By viewing of

actors as inherently dispersed, thinking of the
organization as an actor network shows that the
hierarchical description of organization is just that: a
hierarchical description of organization, an abstraction. As
such organizational hierarchy need not be inherently
connected with control.

3.2. Control is distributed and heterogeneous

In saying that a corrupted configuration file is the
same as a missing maintainer, technical (the corrupted
configuration file) and organizational (the maintainer)
actors are treated as equals. By treating all actors
symmetrically this way at the same level of analysis,
control can be interpreted as the mutual relationship
between heterogeneous actors. Control is not the
relationship between action and structures of signification,
legitimization and domination [9], but in the direct
relationship between actors in the network. A possible
implication of this interpretation is that control is no
longer purely social, but a function of human and non-
human actors, of technological and non-technological
actors, of organizational and non-organizational actors.
Control becomes orthogonal. It is a function between all
actors in the network, regardless of classification schemes.
Actors are no longer higher or lower in the organizational
hierarchy, technical or non-technical, human or non-
human; they are all and the same: actors in the network.

3.3. Control as reciprocal

In saying that control can be understood as local to the
immediate network of actors, control becomes both the
actors’ ability to frame problems, and the ability to limit
other actors’ framing activities. Control can therefore be
understood as more than the traditional control relation
within a set of actors

A_B
C_D
D_B
A_E
but as a relationship where actors reciprocally control

each other, understood as the relation of
(A, B, C, D, E)
 In the latter relationship lies the argument that control

is distributed. Control can’t be reduced to an actor A’s
ability to overcome actor B’s and thereby exert control
over B, as implied in the relationship A_B. It is not one-
sided, but distributed. A must not only overcome B’s
resistance, but the resistance of the other actors in the
immediate network. In this sense, in exerting control over
B, A exposes itself to the controlling power from the
other actors.

4. Conclusion

This paper has argued that traditional notions of
control may be inadequate in describing distributed



control in Gentoo Linux. Control, it is claimed, need not
be limited to the people who seem to be making
decisions. Rather, control can be interpreted as distributed
among both human and non-human actors. In reported
episode, control is distributed among a number of Gentoo
developers, the maintainer role, and bug reports. In this
sense, control is not distributed in terms of geographical
distribution, but distributed as in shared among a handful
of human and non-human actors.

While Gentoo Linux is geographically distributed, the
interpretation of distributed control is not connected with
the geographical distribution. It is, rather, connected with
the distribution of elements within an actor network. The
key points of distributed control are:
a) that control need not be inherent in the organizational

hierarchy, but can be interpreted as embedded in the
immediate  actor network

b) that control need not be inherent in structures, but
can be distributed among actors,

c) that control can’t always be reduced to a function of
human agency, but may at times be understood as the
function of all actors in the network such as tools and
organizational roles

d) that control can be a reciprocal relationship between a
set of actors

Thinking of distribution this way, similar analysis of
distributed control could therefore be equally applicable in
geographically co-located software development efforts,
too. Distribution is not geographically, but instead
understood as distributed among actors.

In arguing that control is distributed in Gentoo Linux,
this position paper addresses only the mechanics of
control through following the construction of networks
through enrolling. The rules of this construction are left
untouched. How is it that some actors in the network
inscribe stronger behaviour than others? What are the rules
for enrolling actors, and what are the rules for excluding
actors as valid to be enrolled? These issues need to be
addressed in future studies.

The decision to do an API on top of the Portage
database and configuration files were only a month and a
half old when this pre-study was done. At the time of
writing, the API has still to be integrated in a large scale.
It is available in Gentoo Linux, but very few utilities
actually use the API. A point of future study is to follow
up how the implementation of the API and its integration
with utilities goes. How is access through the API
enforced? How are bugs connected with not using the API
handled? What are the effects of introducing the API?
Does it lead to lesser problems for utilities integrating
with Portage’s database and configuration files?
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Abstract: How do software developers, field service technicians, and medieval 

cathedral builders accomplish collaborative work? This paper looks at how they learn 

from each other by building and sharing knowledge across time and space. 

To illustrate this, we first present Community of Practice (CoP) as a way of 

understanding collaborative work which puts focus on the community and its social 

interaction. CoP, introduced by Lave and Wenger (1991), is based on the fundamental 

belief that dividing theory from practice is unsound. Hence CoP contradicted 

traditional theories of learning, where learning and working often are conceived as 

separate processes. Using Orr’s (1996) rendition of service technician’s work, it is 

shown that stories act as repositories of accumulated wisdom in keeping track of 

facts, sequences and their context. Representations made by a CoP to aid their work, 

are termed Reifications which can be stories, tools, artefacts etc. Practice is seen as a 

duality of Participation and Reification which both require and enable each other. We 

find however, that CoP based analyses tend to focus on the human actors in that you 

start out by looking for the communities and what defines them. We also present 

examples of alternative approaches that illuminate the technology and artefacts that 

are present in collaboration. Berg(1997) uses Actor-Network Theory (ANT) to 

illustrate the responsibility awarded to artefacts in the process of documenting a 

hospital-patient’s fluid balance. Hutchins(1995) describes navigation as a joint 

accomplishment of artefacts and people. Turnbull(1993) sees a wooden template as a 

chief enabler of building gothic cathedrals without use of structural mathematics. 

Facets of knowledge/knowing is discussed, their accumulation and transfer by 

stressing the value of both the social and the technical approach. 

Keywords: collaborative work, communities of practice, actor-network theory, role 

of technology, knowledge sharing
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1. Introduction 

What is it that software developers do when building software systems? And 

what is it that field service technicians do when fixing broken copying 

machines? For that matter, what did medieval cathedral builders do when 

raising tall stone cathedrals across Europe? What do software developers, field 

service technicians, and medieval cathedral builders have in common? In the 

context of this paper, the answer is they achieve their goals through 

collaborative work: they build and share knowledge and learn across time and 

space.  

Researchers in different academic fields have made attempts to describe and 

explain collaborative work. The IS researcher wants to understand the 

collaborative efforts involved in developing software (Naur, 1992). The 

ethnographer (Orr, 1996) wants to describe and understand how field service 

technicians collaborate on fixing broken copying machines, and the historian 

(Turnbull, 1993) wants to know how cathedral builders managed to raise a 

multitude of tall stone cathedrals all across Europe in a relatively short period of 

time.  

Let’s turn the coin and rephrase the questions posed above. How are software 

systems built? How are broken copying machines fixed? How is the building of 

gothic cathedrals achievable? There is of course no single answer to these 

questions, but they raise the issue concerning the constituents of collaboration. 

This paper discusses how different research traditions have opened the black 

box of collaborative work, trying to explain collaborative work with different 

approaches. This is not an exhaustive literature review on the topic, but rather 

the beginnings of one. 

The paper is structured as follows. First, we present Community of Practice 

(CoP) as a way of describing and understanding collaborative work. After 

discussing the contribution to understanding collaborative work provided by the 

thinking around CoP, we discuss the approach’s shortcomings in addressing the 

role of technology in collaborative work. We then present alternative 

approaches to describing and discussing collaborative work which are specific 

on the role of technology. After discussing these approaches’ contribution to 

understanding collaborative work, we conclude by drawing the implications that 

such an approach has on the way we think about collaborative work and the 

sharing of knowledge and knowing.  

2. Programming as theory building 

Naur (1992) argues that software development is more than just production of a 

program and certain texts. Successful software development is a question of 

having the appropriate theory, as in a mental model, of the software system. 

With certain kinds of large programs, the continued adoption, modification, and 
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correction of errors depends on knowledge possessed by a group of developers 

who are closely and continuously in connection with the software system. The 

developers’ knowledge transcends that which is recorded in the documentation: 

they possess a theory of the software. "[A] person who has or possesses a theory 

… knows how to do certain things and in addition can support the actual doing 

with explanations, justifications, and answers to queries, about the activity of 

concern" (ibid., p. 229). The notion of theory was proposed by Ryle (1949) in an 

effort to describe the difference between intellectual and intelligent behaviour. 

Ryle claims that intelligent behaviour is the ability to do certain things without 

having any concrete knowledge to build this behaviour on.  

Naur's perspective on software systems development is that of the individual 

developer. While his contribution is significant in that it provides 

argumentation for viewing software systems development as a knowledge 

intensive activity, it fails to address the dynamics of collaborative work. Even 

though he argues that the theory of the software system must be shared by a 

group of developers, the theory is still embedded in the individual. By not being 

specific on the description of how the theory is shared, Naur only manages to 

point out that software development is in fact collaborative work. The context 

surrounding the development of software is not included in Naur’s discussion.  

The question, then, becomes: how is knowledge shared, across time and space, 

and how does context play a role? The related topic of how knowledge is built or 

acquired across time and space will be touched upon in our discussion. 

3. Communities of practice 

The way people work differs from the abstract ways organizations describe that 

work in manuals, training programs, organizational charts, and job descriptions 

(Brown and Duguid, 1991). Communities of practice (Wenger, 1998) is a 

concept used to better understand the activities and processes going on in work, 

and what kinds of social engagements provide a better context for learning and 

innovation to take place. 

CoP was first introduced by Lave and Wenger (1991). It is based on the 

fundamental belief that dividing theory from practice is unsound. Hence CoP 

contradicted traditional theories of learning, where learning and working often 

are conceived as separate processes. Instead, CoP argues that learning should be 

contextualized by acknowledging its presence and allowing it to continue to be 

an integrated part of work. Based on the fieldwork of Orr (later published as 

Orr, 1996) Brown and Duguid (1991) illustrate how formal descriptions of work 

and learning often are abstracted from actual practice, and how knowledge is 

socially constructed through informal interaction. Orr did his fieldwork by 

observing a group of Xerox repair technicians who met regularly in informal, 

common areas trading stories and insights around their work (repairing 

different types of copying machines). The workers actually made a point out of 
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spending more time in each other's company. This slack initially seemed like an 

excellent opportunity for productivity improvements. However, Orr's fieldwork 

shows that these activities were actually a very important part of becoming, 

being and remaining a good technician. It was central to how the technicians 

learned, how they improved their skills, how they formed bonds as a community 

of practice, and how they transferred and honed their knowledge and expertise 

amongst themselves. 

The creation and transformation of knowledge in the Xerox case is related to 

social interaction among technicians. Taking form as storytelling, the knowledge 

transfer made the technicians capable of sharing not only the type of knowledge 

that could be read out of books, but also the type of knowledge not explicitly 

stated in the company’s instruction manuals. The practice included sharing both 

the explicit and the tacit/implicit. What was said and left unsaid thus served as 

an intrinsic part of solving the problem. According to Brown and Duguid (1991) 

stories act as repositories of accumulated wisdom and it allows people to keep 

track of the sequence of behaviour and of their wisdom, in keeping track of the 

facts and their context. In a highly situated and improvisational approach, the 

technicians were able to construct a shared understanding out of bountiful 

conflicting and confusing data.  

Communities of practice rely on the informal depiction that each member 

generates of it: who is part of the community, which are the different modes of 

participation that are accepted, who knows what, what cultural tools are used to 

mediate communication and interaction, and so forth. The depictions of the 

community are iterative and evolve continuously as community members share 

experiences, take action and interact with each other, as well as the outside 

world which is reasoned about. A shared understanding is negotiated and 

emerges from scattered pieces of knowledge and knowing. The differentiation 

between knowledge and knowing is described by Cook and Brown (1999, p.381) 

in that “[k]nowledge and knowing is seen as mutually enabling (not competing). 

We hold that knowledge is a tool of knowing, that knowing is an aspect of our 

interaction with the social and physical world.”  

In general, Wenger (1998) defines a CoP along three dimensions: 

1. a joint enterprise that is continually renegotiated by the members of the 

community 

2. mutual engagement, that bind the members together into a social entity  

3. a shared repertoire of common resources that the members have 

developed over time (routines, vocabulary, artefacts, experiences, stories, 

etc.).  

The resources developed by the community can somehow be considered the 

accumulated knowledge and knowing of the community. 

This informal, narrative and contemplative nature or aspect of a CoP, does not 

preclude that a community may also make formal representations, checklists, 
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tools etc. as well as to define concepts and ideas, to aid them in their endeavours 

of work (ibid., pp. 62-71). These representations are termed Reifications. 

Practice can be seen as a duality of Participation and Reification in which both 

require and enable each other. "Participation is not merely that which is not 

reified (ibid., p.66). On the contrary, they take place together. … There is no 

reification without participation … [and vice versa]". The reifications/artefacts 

play a key role since they are often used as explicit representations of the 

informal model that is shared among the members. Reifications may also 

function as boundary objects through which different communities can relate to 

each other. A boundary object has a common denominator that each community 

can identify and relate to, but may play different roles and have extra meanings 

within the CoP, in line with the context and joint enterprise of that particular 

CoP.  

Discussion of shortcomings 

In CoPs the relation between the subject and the "world" assume that the 

subject adapts to the surroundings by means of participating in communities of 

practice. The artefacts and technology which aid their existence remain self-

evident and in the background. Practice - implicitly understood as knowing, 

which means doing and learning how to do, is explained, understood and 

interpreted by means of the human subject.  

In order to see the artefact in the theory of CoP, the artefact must either be the 

central joint enterprise, or a boundary object. Brown and Duguid’s example of 

the Xerox technician’s CoP has the artefact, its representations and interactions 

within the customers organizations as "The central joint enterprise" around 

which the CoP evolves. The machine/artefact is also a boundary object that 

connects their CoP to their customers' communities of practice.  

CoPs allow the artefact a place on the agenda in a more or less informal fashion 

as reifications of human action. They play a critical role in cultivating and 

coordinating knowledge but are only considered to be frozen reifications that 

must be interpreted by the human actors. A similar point has been made by 

Prout (1996 in Timmermanns and Berg 2003, p.9) saying that "Work is 

constructed as done on and through machines, but not by them". 

4. Illuminating the elusive technology 

A relevant question is then: Does the theory of CoP adequately cover the 

relevant aspects of collaborative work? The poignant catch here is the word 

relevant. The relevance of various theories depend on the direction of interest in 

the application of theory. Wenger states in his introduction (1998) that his 

purpose is "…  to propose … what I call a social theory of learning … which 

comes close to developing a learning-based theory of the social order. In other 

words, learning is so fundamental to the social order we live by that theorizing 
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about one is tantamount to theorizing about the other." No wonder, then, that 

CoP has become widely used, outside its original scope of learning.  

CoP has been widely adopted within both communities studying organizational 

knowledge as well as within management theory. Contu and Willmott (2003) 

contend that many of these renditions have disregarded or failed to see, some 

aspects of Lave and Wenger’s (1991) original work such as: "… embryonic 

appreciation of power relations as media of learning" (Contu & Willmott 2003, 

p. 283) in that the topic of power relations in a situated learning context often is 

not addressed by those who embrace the concept of CoP into their own 

discourses. There may be many reasons for this end result, Contu and Willmott 

(ibid.) reason about both the present oversight of power relations and for the 

subsequently necessary re-inclusion of power relations into the situated 

learning discourse.  

We intend to show that in a similar fashion, other embryonic appreciations also 

tend to disappear when using CoP for theorizing on communities that include 

artefacts as reifications. Wenger’s concept of the boundary object that mediates 

understanding between communities, albeit sometimes very selective 

understandings, is both illuminating and useful. Various artefacts and 

technologies may constitute such boundary objects, along with other reifications 

such as narratives, rules and norms, etc. The concept is a powerful one for 

grasping constituents of communication and collaboration between different 

communities in illustrating that it allows them to cooperate without a unilateral 

(universal) consensus on activities, purposes and priorities. However, the 

deeper aspects of the reifications as resources within the community and across 

communities is little expanded in CoP. CoP divulges some aspects of artefacts in 

communities, but remains ignorant or uninterested in others.  

It is our observation that common concepts concerning the humane inhibit the 

inclusion of non-human aspects into our discourses of societies, organizations 

and activities. And so we mostly turn a blind eye to the technologies we interact 

with. When we do address technology, acknowledging its presence, it tends to 

be in an instrumental dichotomous fashion where the humans are either in total 

control or at its mercy. We wish to expand our concepts of both the artefacts and 

the humane, to stretch the dichotomy into a duality ascribing more than 

structure or mediation to the artefacts. Wenger does describe such a duality, but 

the focus of Cop is still mainly on the social aspects.  

5. Making technologies explicit 

Marc Berg uses actor-network theory (ANT) to take a closer look at artefacts 

within work practices, both the IT system and other artefacts. Berg’s studies 

show that some qualities of technology as artefact may be seen as universal in 

holding both knowledge and a transformational power of informal practical 

world aspects into formal representations. 
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Marc Berg (1997) takes a detailed look at practice in a hospital intensive care 

unit. His case describes each minute part of a work process which aims at 

documenting a hospital-patient’s fluid balance, which is a sum of what fluid 

goes in and what comes out. In observing and recording each minute detail of 

the particular process, separate elements are identified. This hybrid consisting 

of several people, various artefacts, routines and experiences comprises 

everything that is needed for the activity of measuring a patient's fluid balance 

to proceed. The formal tools, the artefacts, come to life only as part of real life 

activity. 

The shape of the bag of diffusion liquid with its quantity scale gives input to the 

nurse for the number to be entered into the fluid balance spreadsheet. The 

granularity of the scale defines the level of accuracy. The size and shape of the 

drinking cup and the urine container also re-represents (as in representing 

again) the separate liquid in- and outputs of the patient’s body into formal 

representations. These formal representations can again be entered into the 

spreadsheet. The person entering the number needs no knowledge of medical 

theory, diagnosis, treatment, or purpose for performing this specific task. The 

only interpretation necessary by the human is reading the quantity scale in 

order to enter it into the spreadsheet. "The task of producing formal 

representations is delegated to the mundane artefacts which perform, in 

Latour’s terms, ‘the practical task of abstraction’" (Berg 1997, p.144)  

Berg focuses on the interrelationships between the artefacts and the human 

workers in saying that through these interlockings, new competencies can be 

achieved and higher levels of complexity in work tasks can be achieved. People 

can be seen as communicating/interlocking via the tools without intimate 

knowledge of the other parts of the process chain. The distributed nature of the 

activity, shared between the artefacts and human actors effect a distribution of 

control and responsibility across the heterogeneous ensemble of humans and 

artefacts. The individual actors have no overview of the complete process, and 

cannot affect global workarounds based on an overall picture. The humans are 

not in control of the overall task. On the other hand, neither are any of the 

artefacts. The human actors introduce workarounds in performing their own 

particular tasks pertaining to the unexpected contingencies of either their 

colleagues or the artefacts. Another shape or functionality, in effect a different 

inscription in the involved artefacts, would however shape the human actors 

tasks differently. 

Another point of Berg is that the ensemble of humans and artefacts–the actor 

network–cannot bee seen as stable once the artefacts are in place. In line with 

the view of artefacts and humans as equal actors in producing the end result of 

an activity or process, then all actors within the network are affected when 

changes occur in the forces influencing the network. Most work processes have 

aspects of drift in which work is continually redesigned to adapt to the 

particular circumstances. This drift also introduces the need to continually 

adapt the use and/or functionality of the artefacts. A quaint analogy of this need 
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for adapting artefacts can be related to perhaps our most archaic artefact of all–

the hammer. A modern-day hammer comes in various shapes and sizes–

adapted to each craft’s particular need. The cleft in today’s carpenter hammer 

arose from the need to pull out misplaced iron nails. This functionality was 

inconceivable in the times of wooden pegs. 

While Berg places technology as embedded locally, Hutchins (1995) is 

concerned with the "circulation" of cognition in collaborative work. 

Traditionally human cognition has been placed within the mind of the 

individual, as previously exemplified by Naur’s notion of programming as 

theory building. A basic idea in distributed cognition is that human activity does 

not take place solely in the heads of people, but that the environment–social, 

physical, and artefactual–provides a cognitive context from where cognition 

actually should be delineated. Looking at the practice of navigating ships, 

Hutchins (1995) develops a methodological and analytical framework for 

understanding how cognitive achievements can be conceptualised as a joint 

accomplishment of artefacts and people. According to Hollan et al. (2000) in 

distributed cognition, one expects to find a system that can dynamically 

configure itself to bring subsystems into coordination to accomplish various 

functions. At the core of Hutchins’ argumentation lies an assumption of equality 

between people and artefacts in structuring practice. In this way the centre of 

attention in collaborative activities are the interdependencies between people, 

and between people and artefacts.  

Similarly Turnbull’s (1993) study of medieval cathedral building can be 

understood in terms of collaborative work. Medieval cathedrals were built in a 

discontinuous process by different groups of masons. Turnbull's challenge is to 

explain how masons could build these tall buildings without knowledge of 

structural mechanics. During the 13th century 50 cathedrals were raised 

throughout Europe. Turnbull envisions the cathedral building site as an 

"experimental laboratory" in which the key elements were the template, 

geometry, and skill" (p.322). The argument is that the collective work of 

cathedral builders was not one of human ingenuity alone, but also manifest in 

artefacts. Turnbull shows how wooden templates for building arches circulated 

between building sites, acting as accumulations of every design decision that 

had to be passed on. Because a template is easy to replicate, it could circulate 

among builders at a site, and among building sites across Europe. In this way, 

knowledge of gothic cathedral building, as manifested in the template, could 

circulate and spread. Also, argues Turnbull, the template has an organizing 

effect, having the power to organize large number of workers. Turnbull’s 

approach is specific on the role technology plays in transferring knowledge and 

indirectly coordinating collective work. 
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6. Discussion 

We have so far discussed different approaches to describing and understanding 

collaborative work. The approaches were presented in two parts. We first 

presented CoP as an approach to describe and understand collaborative work, 

arguing that this approach conceals or fails to address many of the inscribed 

qualities of the technology. We then presented different examples making 

technology more visible. We focused on describing these approaches as 

dissimilar in terms of the role technology play in their way of describing and 

understanding collaborative work. In this section, we attempt to extract 

similarities in the topics these approaches handle. We see two topics running 

through all the works presented above: 

• knowledge accumulation and knowledge transfer 

• different facets of knowledge  

6.1 Knowledge accumulation and transfer 

Knowledge accumulation is a question of where knowledge is stored. While 

stored gives mechanistic associations, it is not intended in this way. Rather, it is 

used to describe that different knowledge is embedded in different actors. It is a 

question of who/what has knowledge. The who/what dimension follows from 

the differences between the different approaches presented above. The 

communities of practice approach, exemplified by Julian Orr’s (1996) 

ethnographic study of field service technicians and copying machines, views 

knowledge as embedded in the practices of human actors. It is the field service 

technicians and the human users of the copying machine that has knowledge of 

the machines. The user knows the specifics of a given machine, while the field 

service technicians know the general problems associated with series and 

models of machines as well as possibly having knowledge of the history of the 

specific machine.  

The distinction between knowing and doing is not made explicit. The 

epistemological assumption in CoP is that doing or knowing is socially situated. 

Knowledge is an intrinsic property of people’s engagement in communities of 

practice. Accumulation of knowledge is attributed to the human actors in a 

"collective mind of the community". Application of the knowledge is solely 

explained by means of human agency. 

Conversely, in Marc Berg’s (1997) study of cooperative work in hospitals, 

knowledge is explicitly accumulated along a process chain. This process chain 

consists of humans as well as technology in a chain of distributed links. The 

separate artefact links in the process chain also have knowledge inscribed in 

them. The various liquid vessels have the appropriate size, shape and 

measurement scales appropriate for their appointed task of collecting liquids 

and turning them into a numeral representation. The vessels know, as Mol 
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(2003) would put it. This is similar to Turnbull (1993) who argues that 

knowledge of building cathedrals is based on the key elements of the template, 

geometry, and skill (p.322). The template, however, plays an important role in 

accumulating knowledge outside humans. It "encapsulated every design 

decision that had to be passed down to the man doing the carving in shop and 

quarry" (ibid.). The way the artefact accumulates knowledge, is a primary 

explanatory factor in Turnbull’s work, as the building of gothic cathedrals was a 

discontinuous process. It is this discontinuity that is missed by solely looking 

towards humans as knowledge accumulators. 

Narration is an important aspect in the communities of practice approach to 

collaborative work. The narrative is a way of transferring knowledge. Knowledge 

is transferred through social interaction, through narratives, through talking 

about machines. Turnbull, Hutchins, and Berg on the other hand, see 

knowledge transfer as the circulation of artefacts among people and among 

communities. In this line of thinking knowledge is shared through circulating 

artefacts among people. Which is it? Which of these approaches are correct? Is 

knowledge accumulated in people and shared through social processes, or is 

knowledge accumulated in artefacts are shared through the circulation of 

artefacts? Our argument is that both are valid, important and dependant of each 

other. 

6.2 Facets of knowledge 

In line with Nonaka and Takeuchi’s (1995, p. 235-240) assault on what they 

term "false" dichotomies we argue that the dichotomy of human versus artefact 

is such a false dichotomy. "The dynamic and simultaneous interaction between 

two opposing ends of ’false’ dichotomies creates a solution that is new and 

different. In other words, A and B create C, which synthesizes the best of A and 

B. C is separate and independent of A and B, not something ’in between’ or in 

’the middle’ of A and B" (ibid., p. 236). Rather the concepts of knowledge 

accumulation and knowledge transfer must be seen in the light of the dynamic 

integration of three of the synthesized "false" dichotomies that Nonaka and 

Takeuchi put forward (p.237) namely explicit versus tacit knowledge, body 

versus mind, and individual versus organization. Nonaka and Takeuchi, 

however, do not include the artefacts in their theorizing. This is in line with 

Cook and Brown (2003, p.381) who state that: "Organizations are better 

understood if explicit, tacit, individual and group knowledge is treated as four 

distinct and coequal forms of knowledge (each doing the work the others 

cannot), and if knowledge and knowing are seen as mutually enabling (not 

competing). 

In accepting Berg’s argument that knowledge and knowing is distributed among 

actors, and that no single actor has the complete picture of the collaborative 

work process, we argue that knowledge can be accumulated in both humans and 

artefacts. In this way, knowledge and knowing can be shared through the 
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circulation of artefacts and accessed, interpreted and applied by people. CoP 

stresses that the interpretation and application is activated through social 

interaction. This, for us, is the consequence of applying Berg’s argument to the 

topic of knowledge and knowing accumulation and sharing in collaborative 

work. What we are saying is that a medieval mason, although skilled at building 

brick walls and columns, is unable to raise a gothic cathedral without the 

template. Conversely, a person not skilled in masonry is unable to build a 

cathedral no matter how many templates he is in possession of. Using CoP alone 

to analyze this example fails to appreciate the qualities of the artefacts. Focusing 

on the technology renders the social barely visible. 

Based on the above discussion, it may be argued that the CoP approach is 

mainly concerned with the social aspects regarding establishing and sharing of 

knowledge/knowing. As Wenger (1998, p.141) puts it "knowing is defined only 

in the context of specific practices, where it arises out of the combination of a 

regime of competence and an experience of meaning", while Turnbull and Berg 

are more concerned with how knowledge is made durable and transferable 

across social contexts.  

The body versus mind dichotomy can be seen as an illustration of the skills that 

the human has acquired as opposed to the abstract depictions or 

representations we have of those skills. Knowledge/knowing as read from text 

books can be seen as knowledge transfer in an abstract manner. Know-how may 

be analyzed and put into words and numbers in order to externalize its content 

and make it explicit. In the process of abstraction and transfer, something is 

lost. Nonaka and Takeuchi give the name tacit knowledge to the part of know-

how that cannot be externalized. Wenger (1998) states that "[c]lassifying 

knowledge as explicit or tacit runs into difficulties, however because both 

aspects are always present to some degree … what counts as explicit depends on 

the enterprise we are involved in" (p. 69) . In other words, that which may be 

inexpressible and tacit in one CoP may be "easily" expressible in another CoP 

whose joint enterprise is different. In order not to confuse Polanyi’s (1983) use 

of the term tacit knowledge with that described by Nonaka and Takeuchi, which 

we discuss in the following, we use the term implicit knowledge of that which 

may be difficult to express.  

Only some part of knowledge/knowing is transferable in an abstract and explicit 

way. CoPs alleviate the problem by strategies that achieve Learning by doing, 

socializing and telling stories, which will indirectly include extra dimensions in 

knowledge transfer without needing the same level or type of abstraction. The 

narratives include the context of each situation that indirectly may infer these 

implicit aspects. The scope of interpretations increases when we abstract. In 

doing, socializing and telling stories we can direct, align, combine, and recreate 

our understandings to get a clearer picture, in order to narrow or redirect the 

scope. Through stories people build up a repertoire for improvisation. 

Narratives are reactivated by adding new elements. They naturally integrate the 

implicit elements as well as the explicit and are tuned to balance between 
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content and context. In seeing texts, mathematics and books as examples of the 

embodiment of formal abstractions, we can infer that these abstractions in the 

form of artefacts like books, represent knowledge made durable in a way that 

allows explicit knowledge accumulation and transfer. The transfer of implicit 

knowledge is seen to be more cumbersome. However we believe that the 

"simple" artefact as exemplified by the mason’s wooden template is the 

embodiment of part of the gothic architects acquired implicit 

knowledge/knowing. The use of the technology of a template is an embodiment 

of parts of the explicit knowledge that does without the formal mathematical 

kind of abstraction. In lack of a CoP with a narrative way of transferring some of 

the implicit aspects, the template will perform a similar job. The template 

accumulates and transfers knowledge/knowing in a less formal and less abstract 

fashion which is durable, scales and transfers differently and perhaps better, 

than structural mechanics and mathematics.  

We find that Wenger’s theory of CoP with its reifications misses out on this 

formative aspect, that technology may hold in that it fails to recognize that 

different characteristics of different technologies as exemplified by the book, the 

template, and the liquid container.  

In leaving the dichotomies of the explicit versus tacit (implicit), body versus 

mind, and individual versus organization behind in regards to knowledge 

transfer and accumulation, we argue that the dichotomy of humans versus 

artefact can be left behind, too.  

7. Conclusion 

In the introduction the same question were asked in two different ways. By 

rephrasing the questions our intention was twofold. First, to illustrate how 

different types of questions focus our attentions differently, and thus lead us 

towards different approaches in our understanding of collaboration. Second, to 

"implicitly" prepare the reader on the content of the rest of the paper, and 

hopefully provoke the reader to reflect a bit on the issue. In short the first type 

of questions emphasised the community aspect of collaboration–the "what" 

questions–while the second type of questions were directed towards the practice 

part of collaboration–the "how" questions. Our intention was not to favour any 

of the approaches, but to stress the importance of both and illustrate how they 

accent different aspects to our understanding of collaboration.  

To sum up we demonstrate how a focus on the technology might provide 

different insights to the CoP example of Orr’s service technicians and how the 

social position of CoP gives additional insights to the examples of Turnbull’s 

templates and Berg’s liquid vessels.  

Turnbull illustrates that technologies as abstractions, in this case as a wooden 

template, can hold and transfer knowledge as design information between 

communities with similar community skills/knowing in effect communities that 
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have the skill to build with brick and mortar. The template works as a boundary 

object that traverses the community boundaries through both time and space, 

and comes across with a similar meaning, close enough to enable another 

master builder to decide to build a gothic rather than a Romanesque church. If 

this story looses sight of the technology, the artefact, then the transferral of 

knowledge becomes a mystery. The powerful qualities of this simple artefact are 

vital to the whole "plot". It scales better than the numerical mathematics, on 

which we rely today, in that it transcends language barriers and non-existent 

structural mathematics and it is durable in withstanding wear and tear. It 

travels well. So, just any technology will not do. Technologies have different 

characteristics which relate differently to different societal factors. Which 

technology is best at any point in time and setting will depend of the whole 

dizzying network of factors that make up and influence our social world, 

including the artefacts and what reifications we may establish in our 

communities. In analyzing possible relationships between the social and the 

non-human, and focusing at least equally on both, we may identify aspects of 

technology that grant us to be better equipped in reaching our goals.  

Berg describes a use of technology where the artefacts are links in a production 

chain. Loose the liquid-container’s specific qualities and the process is seriously 

hampered. The containers design is a product of knowing how best to collect 

and transfer the liquid in question into abstractions suitable for their entry into 

the liquid chart. Now this particular example is not so advanced as to render it 

impossible to establish a workaround if the vessel should disappear, but it 

clearly illustrates the distribution of responsibility and control, power and 

action into the separate links. The end link of the chain need have no suitable 

knowledge of what the whole process is about, let alone the differing links 

within the chain. There is no social interaction involved in the production of the 

end result in relation to a specific patient. The activities of the communities that 

designed the different artefacts may be long gone and the resulting process 

chain can scarcely be described as a community. However, if one look at the 

human actor as constituent of a particular link in the chain, CoP would see this 

actor as a part of a community where probably several people carry out that 

same activity for different patients. The liquid vessels would be the boundary 

object mediating the interaction with the next human actor in the chain. In 

effect the CoP based analyses focuses on the human actors because you start out 

by looking for the communities and what defines them.  

Orr's service technicians discuss the technology in their community through 

sharing stories. Through these narratives of humans and artefacts, the 

technicians iterate, rephrase, recombine various bits of knowledge and 

experience to build new knowledge, knowing and tactics in coping with the 

machines. Their stories are their common stored knowledge, which sit in their 

collective memory and make sense in light of different contexts and experiences. 

Wenger uses this example to stress the importance of the community’s collective 

work of producing the knowledge that enables them to carry out their work. 

However, through these stories, the machines gain a life of their own. The fact 
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that contexts vary, different machines of the same make behave both similarly 

and differently, is constantly contributing to and feeding the activity of the 

community. In this case the artefact need not be seen as a boundary object 

mediating meaning between communities, but also an actor with its own 

agenda, albeit based on their initial design. The qualities of the machines are 

highly relevant not only as the focal point of the CoP of service-technicians but 

also as part of the community, or as actors in the CoP as ANT would allow. 
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Abstract

We report about an empirical software engineering 

course for PhD students. We introduce its syllabus and 

two different pedagogical strategies. The first strategy 

is based on individual learning and presentations. The 

second relies also on social activities to support 

learning and knowledge sharing. The syllabus, which 

has been used for three iterations of the course, is 

available at our web site together with student essays, 

evaluation data, and other documentation produced 

during course runs.  

1. Introduction 

Empirical software engineering (ESE) is a sub field 

of software engineering which aims at applying 

empirical theories and methods for the measuring, 

understanding, and improvement of the software 

development process in organizations. ESE is by its 

nature a multi-disciplinary field as software engineers, 

industry actors, statisticians, pedagogues, and 

psychologists have traditionally been cooperating.  

In this paper, we report on a PhD level course in 

empirical software engineering that has been run three 

times. The course held during the autumn of 2002 was 

based on individual presentation. During the spring of 

2003 the course was based on group work held. This 

was replicated when the course was held in 2004. 

The main objective of empirical software 

engineering education is to train software engineers in 

empirical evaluation of the tools, techniques, and 

technologies used in software engineering. It is in this 

context, that we see the importance in discussing the 

strategy for teaching empirical software engineering. 

We are of the opinion that ESE is relevant for both 

practitioners and researchers. For practitioners it is 

about evaluating tools and techniques for use in 

concrete cases [18]. While it is equally important to 

teach ESE to each of these two groups., we report on a 

course for teaching ESE to software engineering 

researchers in this paper. We believe that our findings 

are equally applicable for teaching ESE to 

practitioners. 

There are some fundamental challenges for an ESE 

research project to succeed. First, researchers in 

general and PhD students in particular must be well 

acquainted with existing methods. Second, ESE 

research is a major undertaking and it is a cooperative 

activity within a research group. Third, the research 

needs to be relevant outside the research community. 

The research group must therefore have access, 

knowledge of and familiarity with the software 

industry in order to study concrete and real situations, 

and to generate industry relevant research questions. 

Lastly, the research problems must also be relevant 

within the academic field of software engineering. 

Research problems therefore have to be significant to 

both the international research community and the 

local industry. This means that research problems and 

questions must be shared and understood by the all 

members of the research team and by the industrial 

actors. These challenges need to be addressed by a 

PhD level course in empirical software engineering. 

Our course is an attempt to make our PhD students 

acquainted with the state of the art within ESE as well 

as reflect on investigations done by others and in 

which they have possibly participated.  

Our course has been run three times and its 

syllabus, program, and evaluation is available at [16]. 

We have evaluated the pedagogical effects of the 

course by exploiting Bloom´s taxonomy of learning 

(which is well known and used by the software 

engineering community) and qualitative methods for 

data collection and analysis [29] as applied in the ESE 

field.

This paper is structured as follows. Section 2 

introduces the aspects of software engineering 

education which have been relevant to our work and 

some learning issues in research education. Section 3 

describes our course, its syllabus, pedagogical goals 
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and the two different strategies. Section 4 is about the 

evaluation of the course. Discussion and conclusions 

are given in section 5.  

2 Background 
Software engineering, as a field, has, among others, 

two supporting disciplines–software engineering 

education and ESE. Software engineering education 

focuses on training "software professionals" for the 

industry [25], while ESE focuses on evaluating the 

tools and techniques used, developed, and intended for 

use in the industry through empirical validation. There 

is an element of training required in making the 

transition from trained software professional, with or 

without working experience, to become an ESE 

researcher.

2.1 Software Engineering Education 

The software engineering education literature 

moves along a dual axis; one axis for education 

content and one for pedagogy. We use the two axes to 

reflect on the current state within software engineering 

literature in this section. 

The education content axis is delimited by two 

extremes: industry driven and principles driven. Meyer 

[25] argues that the contents of software engineering 

education must be driven by the principles on which 

software engineering is based: 

"What matters is teaching [the students] 

fundamental modes of thought that will accompany 

them throughout their careers and help them grow in 

this ever-changing field. The ones who blossom are 

those who can rise beyond the tools of the moment in 

harmony with the progress of the discipline. ([25] 

p.29)" 

On the other end is the work of Lethbridge [24]. 

Based on a survey of 168 software engineers, he finds 

significant differences between curricula taught at 

colleges and universities and the actual knowledge 

required in the industry. Lethbridge argues for aligning 

existing curricula with skills required by the industry. 

Where Meyer [25] is specific on the need to distance 

education from the industry’s immediate, short-term 

requirement, Lethbridge writes little of the long-term 

requirements that Meyer addresses with his principles. 

In this sense, their approaches can be classified as 

addressing short-term requirement vs. addressing long-

term requirements. Guidelines for Software 

Engineering Education [4] adopt a middle ground 

approach to education contents. They address the long-

term issues and are based on the body of knowledge 

for software engineering [1]. This body of knowledge, 

however, is based upon expert opinions within the 

industry.  

Along the second axis, there are two strategies: the 

first strategy is based on lectures and individual 

learning. The second strategy is based on learning by 

doing, also known as project-based learning. Both 

Meyer [25] and [4] favor project-based learning. 

Unlike the education content, they argue in favor of 

project-based learning to "prepare our students for the 

real challenges they will face" ([25] p.33). They also 

argue that it is easier to learn from personal mistakes 

rather than mistakes related by a lecturer. 

2.2 Learning issues in research education 

Provided that it is possible to teach somebody how 

to become a good researcher, there are three kinds of 

courses that can be offered as part of research 

education: 

1. General courses on research methods at both 

undergraduate and post graduate level are usually 

offered by social science faculties. These courses 

address research issues such as scientific method 

and nature of evidence, advocacy versus evidence-

based approaches, writing and reviewing research 

proposals, how to use bibliographies and citation 

searches, project planning, selecting results and 

places to publish, outlining and structuring 

research papers, the peer review process, 

presenting posters and papers at conferences, 

publishing in academic and engineering journals, 

etc..[5]

2. Courses on research methods in computer science 

address some of the research issues above, such as 

scientific method and nature of evidence, 

customized to the IT field. At our department, for 

example, there is a common introductory course 

for all PhD students, which addresses general 

research issues in IT like those discussed for 

example in [12].   
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Table 1 Bloom’s taxonomy of learning customized to ESE 

Level Definition Sample 

verbs

Sample behavior Sample behavior ESE 

Knowledge Student recalls or 

recognizes information, 

ideas, and principles 

in the approximate 

form in which they 

were learned. 

Write 

List

Label

Name 

State

Define

The student will 

define the 6 levels 

of Bloom's 

taxonomy of the 

cognitive domain. 

The students will be able to 

define the content of the different 

papers.

Comprehension Student translates, 

comprehends, or 

interprets information 

based on prior 

learning. 

Explain 

Summarize 

Paraphrase

Describe

Illustrate 

The student will 

explain the 

purpose of 

Bloom's 

taxonomy of the 

cognitive domain. 

The students will explain the 

purpose of the give methods and 

investigations.  

Application Student selects, trans- 

fers, and uses data 

and principles to 

complete a problem 

or task with a mini- 

mum of direction. 

Use

Compute 

Solve

Demonstrate

Apply 

Construct 

The student will 

write an 

instructional 

objective for each 

level of Bloom's 

taxonomy.  

The student will be able to use 

one method for experimentation. 

Analysis Student distinguishes, 

classifies, and relates 

the assumptions, 

hypotheses, evidence, 

or structure of a 

statement or question. 

Analyze

Categorize 

Compare 

Contrast 

Separate

The student will 

compare and 

contrast the 

cognitive and 

affective domains. 

The students will compare and 

contrast different methods and 

investigations. 

Synthesis Student originates, 

integrates, and 

combines ideas into a 

product, plan or 

proposal that is new 

to him or her. 

Create

Design 

Hypothesize

Invent 

Develop 

The student will 

design a 

classification

scheme for 

writing 

educational 

objectives that 

combines the 

cognitive, 

affective, and 

psychomotor 

domains.  

The students will design an 

investigation by choosing and 

perhaps combining different 

methods. 

Evaluation Student appraises, 

assesses, or critiques 

on a basis of specific 

standards and criteria.  

Judge

Recommend

Critique 

Justify

The student will 

judge the 

effectiveness of 

writing objectives 

using Bloom's 

taxonomy.  

The students will judge the 

effectiveness of using empirical 

software engineering methods.  
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3. Courses like the one we describe in this paper, 

which address empirical research methods in 

software engineering. These courses do not exist 

in isolation but in education and research context 

that may or may not include general research 

courses or courses specific for IT research. As far 

as we know, there is at least one paper that reports 

on teaching ESE [15] as part of a software 

engineering course. Undergraduate students work 

in projects, and the teachers play the role of the 

customer. In one project the customer is a 

hypothetical company wanting the students to 

perform empirical studies (mainly experiments) to 

evaluate different alternative techniques, e.g., 

different kinds of reviews. Students are not asked 

to plan the studies but only to perform them, as 

planning and running would take too much of the 

course. The syllabus of the empirical software 

engineering part is [32]. 

2.2 Software engineering education and 

research education at IDI 

The software engineering group at IDI has thirty 

years experience with project based software 

engineering education. One of the author of this paper, 

Jaccheri, has more than ten years experience with 

teaching project based software engineering, software 

quality and metrics issues to software engineering 

students, both in Italy and in Norway, as well as 

reflecting and writing about this [17] [18] [19]. IDI has 

7 years experience with an introductive course for IT 

researchers, which is mandatory for all new PhD 

students. Jaccheri has had the main responsibility for 

this course for one year. IDI graduates twenty PhD 

candidates each year and the software engineering 

group has graduated a total of 19 software engineering 

PhD students.  

3. Empirical software engineering course 

The course reported in this paper is offered to PhD 

students within software engineering. While the course 

has been run three times, we mainly report on the first 

two times as the third time we ran the course as a 

replication of the second time. The first and the second 

times had some common characteristics and some 

different characteristic. In the following section we 

discuss the common characteristics and afterwards we 

introduce the characteristics that were different for the 

two. 

3.1 Common characteristics 

In the following section we discuss the common 

characteristics for the course.

3.1.1 Students 

The empirical software engineering course counts as 

7.5 European Credit Transfer System (ECTS). This is 

equivalent to 12 hours work for 15 weeks, 2 hours in 

class and 10 hours of other learning activities, for a 

total of 180 hours. The course was run once during the 

autumn of 2002 at the Norwegian University of 

Science and Technology (abbreviated NTNU) for PhD 

students by the software engineering group, and once 

during the summer of 2003 at Simula Research 

Laboratory in Oslo for both University of Oslo and 

NTNU PhD students.

Some of the students worked in empirical software 

engineering research projects, while others worked in 

other kinds of software engineering projects. All 

students had a general course about research methods 

in IT as part of their curriculum. Some students even 

had a course on research methods in general. The 

students age, gender, nationality, and scientific 

background differed.  

3.1.2 Syllabus 

The course has had the same syllabus throughout. 

Here, we refer to a consolidated bulk of literature, 

which is used as syllabus for the course. 

The syllabus is divided into three parts: motivation, 

method, and actual investigations.  

Motivation: In [33] and in [31], motivations for 

the existence of the ESE field are given. These 

papers provide also a classification of existing 

software engineering research papers according to 

the kind of empirical method used in the 

respective research.

Methods: [32] provides an introduction to the 

field, with special emphasis on experiments. [22], 

[9], [28], [3], [8], [29], [2], and [14], provide 

concrete methods for performing, and analyzing 

investigations. [27] and [6] are about Data 

Analysis Methods.  

Actual studies: [13], [23], [11], and [28] are about 

concrete investigations.  

The course ended with a final oral exam with the 

teacher and an ESE expert outside of the university as 

examiner.  

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE



3.2 Differing characteristics 
Here we introduce the characteristics that differed.

3.2.1 Pedagogical goals and teaching strategy for 

Autumn 2002 

In the autumn 2002 iteration of the course, the goal 

was to make the students acquainted with the contents 

of the syllabus. The course was held in a classroom 

context where students were met two hours a week for 

13 weeks (totally 26 hours in class).  

At each meeting, one student presented one paper 

from the syllabus. The teachers responsible for the 

course provided feedback and stimulated discussion 

around the paper.  

3.2.2 Pedagogical goals and teaching strategy for 

Summer 2003

In the summer 2003 version of our course, the 

pedagogical goals were:  

1. given our syllabus which introduces a possible 

overview of empirical software engineering 

knowledge, let our students know about the 

syllabus at a level with is as high as possible 

according to the  Bloom´s taxonomy [7].  

2. establish a Norwegian network of young 

researchers within the field of software 

engineering. 

Bloom’s taxonomy is reported in Table 1. The last 

column of the table (Sample behavior ESE) gives our 

interpretation of the taxonomy when applied to the 

ESE domain.  

The second iteration of the course was organized as a 

three days event (21 hours). Here we list in 

chronological order the main tasks of the course.  

a. Students were informed about the syllabus and the 

course web page [16]. One month before course 

start and were asked to read the entire syllabus 

before the course started. 

b. Short introduction to the course content by the 

teacher.

c. Introduction to the field of empirical software 

engineering by discussing examples of interaction 

with the Norwegian software industry by two 

Norwegian research managers.  

d. Group work with the goal of extracting the main 

issues from the syllabus. Each group had to find 

and list research hypotheses, data, and their 

analysis. Moreover each group had to summarize 

one method to plan and perform investigations, 

and to summarize one investigation.  

e. Practical exercises coordinated by a performance 

and theater instructor with the goal to introduce 

students to performance work and to stimulate 

cooperation among students.  

f. Production of a five minutes movie advertising the 

field of empirical software engineering.  

g. Choosing an actual study in the syllabus, 

characterize the investigation presented in the 

chosen study according to motivations, method, 

measurements, and data analysis method. The goal 

of this exercise was to simulate the planning and 

execution of an empirical investigation.  

h. Group work with the goal of obtaining a deep and 

critical understanding of the issues presented in 

the syllabus, also in light of the experience 

acquired during the previous exercises. Each 

group had to: choose one research hypothesis and 

its motivation (business, education, others); list 

and comment investigation planning and risks 

(what can go wrong); define (or reuse) guidelines 

for designing and running empirical 

investigations; choose one actual investigation.  

i. Essay writing. Each student had to write an 

individual essay. The essay assignment was 

“Extract from [22] and from the other papers in 

the Methods part of the syllabus, the most 

important guidelines for designing and running 

empirical investigations. Characterize the 

investigation presented in the chosen actual study, 

according to these guidelines. This means that you 

have to comment about the motivations, the 

method, the measurements, and the data analysis 

method”. The essay was supposed to be handed in 

two weeks after the seminar and one week before 

the oral exam. Recalling that students have 180 

hours allocated to this course, we expected that 

students worked full time writing the essay during 

these two weeks.

4. Course evaluation

Based on running the course twice we wanted to 

evaluate it in order to plan its third iteration. One goal 

of this evaluation was to get general suggestions for 

improvement. We wanted to reflect about the two ways 

of teaching ESE–individual presentations or group 

assignments. 

Educational evaluation is a sub field of educational 

research for which there is an extensive bibliography 

along with national and international standards [26]. 

To the best of our knowledge our course is one if the 

few offered internationally within the field. The 

number of new software engineering PhD students in 

Norway is of the magnitude of ten. While there is a 

need to teach such a course and to reflect over its 
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learning effects and the benefits and risk of different 

pedagogical strategies, we are aware that time is not 

mature for a formal evaluation of the course involving 

professional pedagogues and psychologists of the 

education service at our university.  

However, we have designed and run an evaluation 

of the two first iterations of the course. Our evaluation 

attempts to reflect about how much the students had 

learnt from attending the course.  

We decided to implement our investigation as an e-

mail-based questionnaire [29] that we circulated to all 

students attending the courses.  

We decided to use Bloom’s taxonomy. The 

columns Level, Definition, Sample verbs, and Sample 

behavior are taken directly from the Bloom taxonomy 

of educational objectives [7]. Column “Sample 

behavior ESE” is our contribution.  

We decomposed the level of learning reached by 

students with respect to the Bloom taxonomy in three 

categories, one for each part of the syllabus: 

motivation, method, and actual studies (see section 

3.1.2 Syllabus). We wanted to know how much each 

student has learnt from each part of the syllabus.

The questionnaire had to be formulated in such a 

way that we could assess what the students have learnt 

and how well they have learnt. To this end we 

formulated the two questions: 

When did you take the Empirical software 

engineering course? (Autumn 2002 or Summer 

2003?) 

Have you ever participated in an Empirical 

software engineering investigation? If yes, prior or 

after attending the course?

Our goal was to measure how much of the course 

contents the students had learnt from attending the 

empirical software engineering course. We formulated 

the following question in order to measure how much 

of the course contents the students had learnt: 

In your own words, what were the primary 

objectives of the Empirical software engineering 

course?

We did not ask directly what the students had 

learnt, but what they thought were the primary 

objectives of the course. We did this to make sure the 

students answered what they had learnt from the 

course contents, not what the teachers were supposed 

to teach them. To see how well the course succeeded 

in teaching the students the overall goal, to run 

empirical evaluations, we asked the following: 

On the basis of what you have learned in this 

course, would you be able to plan and run an 

empirical investigation? 

Finally, we formulated the final question: 

Do you have further comments on the course? 

If we had asked the wrong questions, we hoped the 

students would tell us so in answering this question. 

We were also interested in feedback on how to better 

the course, and thought this question provided an 

opportunity for such feedback.  

Based on lists of the participants in the ESE course, 

we circulated the questionnaire to all participants by e-

mail. We included an introductory letter explaining 

that we wanted to use the data for both improving the 

course and as material for a paper, that all responses 

would be treated confidentially, and a date within 

which we would like to receive the responses by. The 

responses to our questionnaire were on free form and 

are available at [16]. 

We e-mailed the survey to the seventeen students 

attending the two courses. In the end, due to data 

discard, we had ten responses to analyze.  

The data from the questionnaire and our analysis 

can be found at [16]. 

The “stories” written by students provide a 

valuable piece of knowledge for those evaluating 

our course. To the question “In your own words, 

what were the primary objectives of the Empirical 

software engineering course?".

Table 2: Coding conventions. 

 Word/phrase in free form question Translated meaning 

Coding key 1 Learn 

insight 

overview 

aware

Bloom’s taxonomy: knowledge level 

Course topic: all 

Coding key 2 Run experiment Bloom’s taxonomy: application level  

Course topic: actual studies  

Coding key 3 Plan and run experiment Bloom’s taxonomy: synthesis level 

Course topic: actual studies 

Coding key 4 Tradition Bloom’s taxonomy: depends on other coding keys 

Course topic: motivation  
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To the question “On the basis of what you have 

learned in this course, would you be able to plan and 

run an empirical investigation?” students write answers 

like:  

• “Yes. But more concrete skills about how to 

design questionnaire and how to analyze data should 

be learned”. 

• “Not without more input, but I would have a 

better starting point for the planning phase. A lot of 

the work in the planning phase would consist of 

deciding how the investigation should be formed, and I 

think I have a better understanding about the basic 

concepts and where I could find out more about 

them.” 

To analyze our data, we employed the method of 

coding [25] for extracting qualitative data and map 

them into Bloom’s taxonomy of learning. Based on the 

responses and our interpretation of Bloom’s taxonomy, 

we therefore formulated a set of coding keys to ensure 

identical coding of free form replies for both the 

taxonomy and the course topics (Table 2).  

• Coding key 1 enabled us to translate 

sentences like “Provide some insight into typical 

methods used in the field” into level knowledge for 

topic method.

• Coding key 2 enabled us to code sentences 

like “Yes - it would give me an important starting 

point, but I would always need to confer and discuss 

afterwards possible investigations and their plans with 

people with experience” into level application for 

topic actual studies.

• Coding key 3 says that whenever a student 

declares to have knowledge to plan an experiment, the 

level for actual studies is synthesis since Create, 

Design, Hypothesize, Invent, and Develop are sample 

verbs for synthesis level in the Bloom taxonomy. 

Example is a sentence like: “Yes, I can design an 

empirical study now”. 

• Coding key 4 says that whenever a student 

acknowledges that the goals of the course encompass 

the traditions of the field, we assigned a value to the 

motivation field. Example: in response to the question 

“In your own words, what were the primary objectives 

of the empirical software engineering course?” one 

student replied “To given an overview of the main 

methods and traditions of empirical software 

engineering”.

Along with the coding keys, we made extra rules 

for coding that can be found at [16] together with the 

data set. 

There is a slight difference between the levels 

obtained for autumn 2002 and summer 2003. 

However, taken in consideration the number of 

subjects (10) and the measurement scale (ordinal), it 

does not make sense to try statistical generalization.  

5. Discussion and Conclusions 

The ESE course is now mandatory for all new 

software engineering PhD students at NTNU. We had 

only 4 new software engineering PhD students in 

2004. For this reason, the teacher (Jaccheri) decided to 

organize the 4 students as a group with which she 

interacted as a performing member for the third 

iteration of the course. 

The transition from 2003 to 2004 benefited from the 

evaluation we report in this paper. The 2004 iteration 

is organized in a similar way to 2003 and it is based on 

group activities. The most important change with 

respect to 2003 is the introduction of a “summary 

writing” activity that proceeds the seminar. This is an 

individual activity during which each student is 

supposed to write a structured summary of the main 

characteristics of the content part. Students get the 

assignment one month before the seminar. In this way, 

the 2004 iteration is more oriented toward individual 

learning that the 2003 iteration but still much more 

group oriented than the 2002 one. The learning goal of 

this summary activity is that students must have 

reached a knowledge level of the Bloom´s taxonomy 

before seminar starts. The next version (fourth) of the 

course will run during autumn 2005.  

The main contribution of this work is the 

description of a course in the field of empirical 

software engineering. First, the presented syllabus [16] 

can be used as a basis for a dialog in the ESE 

community about which topics are of most importance 

when educating the future researchers in the field. 

Second, the two presented pedagogical strategies can 

be discussed further to find out which one or which 

combination of the two is better suited for which 

context. Another contribution is our customization of 

Bloom´s taxonomy of learning to the ESE field.  

Like every other course, there are at least two axes: 

one axis for education content and one for pedagogy. 

These two axes can be used also to reflect over this 

course or similar ones. Which part of the content are 

we satisfied with and why? Which pedagogical 

strategy work better in which situation? According to 

our evaluation, students are generally satisfied with 

syllabus and the way it is structured into motivation, 

methods, and actual studies. Students appreciate 

examples provided by the papers in the investigation 

part. Concerning the method part, there is need to 

focus more attention on case studies and interpretative 

studies. Teachers and examiners are satisfied with the 
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essays and we believe that the guidelines provided in 

[22] are a good tool to characterize investigations  

Other ESE courses are offered at other universities, 

like the one documented in [15]. However, if one asks 

colleagues about how they learnt to become 

researchers in software engineering, or more specific 

empirical software engineering or measurement, the 

answer is often vague. Experienced researchers rely on 

tacit knowledge which is learnt and shared locally by 

research groups and internationally by research 

communities. A contribution of this paper is that it can 

be an example for those who provide and want to 

provide similar courses.  

Concerning our evaluation, we are aware that the 

evaluation of the two pedagogical strategies has 

limitations if one regards it as a piece of educational 

research evaluation. First the sample size (10) is too 

limited. Second we ask students to evaluate their own 

learning perception. Third, though we map the initial 

knowledge of each student, we do not take gender, 

age, language, and country of origin into 

consideration. Students have different age, gender, 

nationality, and scientific background. While 

heterogeneity enhances learning challenges and 

possibilities, it poses serious problems to a formal 

evaluation of the learning effects of the course. 

However, the evaluation, in addition to content and 

pedagogy, are relevant to the ESE community and to 

the software engineering community. This because 

despite several empirical studies being conducted with 

students as subjects [10], there is a lack of frameworks 

for evaluating the learning effects of software 

engineering courses. Our work is of interest for the 

measurement community as it can serve as an example 

for those who want to evaluate the pedagogical effects 

of courses where such experiments take place.  

One of the goals of our course is that of establishing 

a Norwegian network of young researcher in the field 

of software engineering. From the students’ 

questionnaire answers and for living and working 

together with these students, we evaluate the project 

based version of the course to be successful to respect 

to this goal.  

There remain three open questions. First, that of 

comparing our course with other similar courses 

offered internationally. Secondly, one question which 

is not attacked by our work is: is it possible to teach 

PhD students how to cooperate with external actors? 

The final issue that we have not discussed is empirical 

software engineering education for practitioners and 

not only for researchers. 
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Abstract 
 

This paper investigates how maintainability can be 

established in system integration (SI) projects where 

maintainers have no direct access to the source code of 

the third-party software being integrated. We propose 

a model for maintainability in SI focusing on post-

release activities, unlike traditional maintainability 

models where focus is on pre-release activities. Our 

model describes maintainability as a process 

characterized by ambiguity and negotiation that is 

supported through an infrastructure of debugging and 

coordination tools. Further, we describe how the 

process going from a software failure to establishing 

the fault causing the failure can be managed in SI. The 

results presented in this paper are based on 

observations from an ethnographic study of the Gentoo 

open source software (OSS) community, a large 

distributed volunteer community of over 320 

developers developing and maintaining a software 

system for distributing and integrating third-party OSS 

software packages with different Unix versions.  

 

1. Introduction 
 

It has been repeatedly established over the past 30 

years that more than half of the total life-cycle cost of 

software systems goes into software maintenance 

activities. The figures vary between 50 to 80 percent of 

the total life-cycle cost [6]. This research indicates that 

the maintenance burden has been increasing over the 

decades rather than decreasing. To face this challenge, 

maintainability has been proposed as a software 

quality measure. This measure is used to assess how 

easy it is to maintain a system and what decisions to 

make in design of a system to limit the maintenance 

costs. Existing research on maintainability builds on 

the premise of application software that is maintained 

by a single team of developers with full access to and 

control over the source code. However, with increasing 

attention on systems integration (SI) through 

component-based development [5], Web services [22], 

and information and enterprise systems integration 

[14], this may no longer be a valid premise. A number 

of distinguishing characteristics of SI diverge from 

application software: systems integrators usually have 

limited or no access to the source code of the software 

being integrated, and control over the development and 

maintenance of the software being integrated is carried 

out by numerous third-party organizations [11]. Given 

these differences, we ask: how can maintainability be 

established in SI? 

In this paper, we seek to explore a possible solution 

to this problem; a solution that rests upon the premise 

of software maintenance as knowledge-intensive work. 

By studying the activities involved with reporting 

software failures and determining their related faults, 

we propose that corrective maintenance in SI unfolds 

within an environment of ambiguity [1]. Ambiguity is 

an uncertainty where the correct meaning of a 

phenomenon cannot be established given sufficient or 

appropriate information. Instead, ambiguity involves 

uncertainties that cannot be resolved or reconciled due 

to the absence of agreement on boundaries, clear 

principles, or solutions. Ambiguity means that multiple 

meanings or several plausible interpretations of the 

observed phenomenon exist, and their meaning can 

only be established through negotiation. The process of 

establishing certain interpretations of ambiguous 

phenomenon as stable scientific facts has been a 

primary concern within the field of science studies. In 

these accounts, this process is seen as unfolding within 

an infrastructure of experimental tools, scientific 

artifacts, social interaction, and practices [15]. It is an 

infrastructure of scientific facts; the behind-the-scenes, 

messy or boring items that form a crucial part of how 

facts are made. 

Building upon the notions of ambiguity, 

negotiation, and infrastructures, we propose that 

maintainability can also be understood as a function of 

the external environment within which the software is 

being maintained. Maintainability is a function of the 



infrastructure of tools used during maintenance, the 

texts produced by these tools, knowledge about the 

system embedded in the tools, and tools for supporting 

and coordinating interaction between developers. This 

supplements existing models that focus on 

maintainability as a function of characteristics of the 

application software. The proposed explanation is 

based on an empirical study of maintenance work in a 

large-scale open source software (OSS) integration 

project. OSS is well suited for studying software 

maintenance, as OSS development is often understood 

as a perpetual cycle of perfective and corrective 

maintenance [20]. 

Limiting our inquiry to the issue of maintainability 

in connection with corrective maintenance in SI, we 

study the activities involved with reporting software 

failures and determining the related fault. Through a 

detailed narrative analysis of these activities, we 

propose a model for the corrective maintenance 

process that supports our suggestion for establishing 

maintainability in SI. 

The rest of the paper is organized as follows. 

Section 2 reviews existing research on maintainability 

and approaches to establishing maintainability during 

pre-release activities. Section 3 describes the research 

methods employed and the materials collected during 

our field study. Section 4 describes a detailed narrative 

analysis of the activities with reporting software 

failures and determining the corresponding faults. 

Section 5 concludes the paper by discussing our 

findings in relation to establishing maintainability in 

SI. 

 

2. Related work 
 

Intended as an indicator of the costs of maintaining 

a software system, maintainability can be broadly 

defined as the ease with which a software system can 

be understood and modified [10]. By making the 

software more maintainable, i.e. increasing its 

maintainability, organizations should be able to reduce 

the maintenance effort and free needed resources for 

more new system development. Maintainability can be 

viewed from different perspectives. In this section we 

presents two of these: 

• establishing and assessing maintainability using 

software quality models; and 

• making a system maintainable by using design 

techniques when creating the software 

architecture of the application 

We then conclude the section by discussing the 

issue of maintainability in relation to OSS 

development. 

2.1. Quality-based approaches 

McCall [18] provides an overall description of 

approaches to developing software based on software 

quality frameworks. At the outset of a software 

development effort quality factors are identified based 

on the specifics of the software being developed. 

Maintainability is one such quality factor. Once the 

important factors are identified, they are specified as 

requirements of the systems development by providing 

their definition, identifying supporting software 

attributes, and providing measurements to assess their 

attainment. The software development is then 

periodically measured in a quantitative fashion to 

assess if the software product is capable of meeting its 

identified requirements. Based on this assessment of 

the software product's quality, decisions are made as to 

efforts needed to improve the software product. This 

process is repeated until the quality requirements, in 

this case the requirements for maintainability, are met 

and the product can be released. 

Several approaches to assessing the software 

product's maintainability have been proposed. McCall 

[18], Martin & McClure [17], Boehm et al. [4], and 

ISO9126 define maintainability as a quality factor in 

their quality models. Wherein McCall limits 

maintainability to include only corrective maintenance, 

both Boehm et al., Martin & McClure, and ISO9126 

provide definitions that encompasses both corrective, 

perfective, and adaptive maintenance. Boehm et al. 

defines maintainability to include the quality criteria 

testability, understandability, and modifiability. Martin 

& McClure argues for an expanded view of 

maintainability, arguing that its definition needs to be 

expanded with a high degree of reliability, portability, 

efficiency, and usability in addition to the attributes 

provided by Boehm et al. Landing on the middle 

ground, ISO9126 defines maintainability as 

analyzability, changeability, stability, and testability. In 

all of the above models, the quality criteria are broken 

into a set of metrics for measuring code characteristics. 

2.2. Architecture approach 

In the software architecture domain, software 

maintainability is a quality of the end-system the 

developer can obtain by carefully choosing the correct 

structures and making the correct decisions when 

designing the system. Different terms are used to 

describe maintainability. 

In Bass et al. [2], maintainability is described in 

terms of the quality attributes modifiability and 

testability. Modifiability describes the costs of 

changing the system. Typical changes can be both 

changes of functionality as well as changes of non-



functional properties of the system like performance, 

availability, change of operating system etc.  

Testability refers to the ease with which software can 

be made to demonstrate its faults through (typically 

execution-based) testing. To obtain a high level of 

modifiability and testability in a system, the developers 

must consider both architectural and non-architectural 

aspects. The architectural aspects typically concerns 

important design decisions that affect the way the 

software is organized, structured and decomposed. 

Non-architectural aspects typically concern 

implementation details, graphical layout of user-

interfaces etc. Bass et al. use the term architectural 

tactics for important design decisions that affects the 

software architecture. Several such tactics have been 

collected over the years based on experiences from 

several software projects. Examples of tactics to obtain 

high maintainability involves recommended design 

guidelines for object-oriented systems like maintaining 

semantic coherence, hide information, restrict 

communication paths, use of intermediary, etc. There 

are also similar tactics to obtain a high level of 

testability in a system. 

 

2.3. OSS and maintainability 
 

The OSS development cycle have three 

distinguishing characteristics. First, source code is 

made available on the Internet, released early, long 

before all functionality is in place and faults have been 

eliminated. Second, by releasing the software early, 

developers around the world can contribute code, 

adding new functionality and improving the present 

functionality. This is often called parallel development 

[9]. Parallel debugging is the third characteristic of the 

development cycle, wherein failure reports and fixes 

are submitted to the project. This process has been 

characterized as a perpetual cycle of perfective and 

corrective maintenance.  

Seeing OSS development as software maintenance, 

the question can be raised whether the success of OSS 

development can be explained by the software's 

maintainability? In determining the categories of 

maintenance work in two large OSS products, 53.4% 

of all changes to the source code of these products 

stem from corrective maintenance [21]. Given that the 

cost of corrective maintenance are at least an order of 

magnitude more expensive to fix than those found 

during testing [7], the question concerning OSS 

success and maintainability becomes even more 

pressing. 

In measuring the maintainability index of five OSS 

projects, Samoladas et al. [20] finds that OSS code 

quality suffers from the very same problems observed 

in closed source software (CSS) projects. 

Maintainability deterioration over time is a common 

phenomenon in CSS, and they project that is 

reasonable to expect this as OSS products age, too.  In 

a comparison of OSS and closed source software 

products, Paulson et al. [19] investigates the claim that 

OSS succeeds because of code simplicity. Measuring 

the overall project complexity, average complexity of 

all functions, and average complexity of functions 

added, they find that for all three metrics the OSS 

projects had higher complexity than the CSS projects. 

Similarly, they compare the perfective maintenance of 

OSS and CSS by measuring the growth rate of the 

projects. They find that OSS and CSS have similar 

growth rate. Albeit based on a limited population, the 

inference from combining the conclusions of 

Samoladas et al. and Paulson et al. is that the 

maintainability of OSS and CSS is mostly the same. 

Paulson et al. also reports that faults are found and 

fixed more rapidly in OSS projects. Holding to the 

definition of maintainability as the ease with which a 

software system can be understood and modified, 

questions may be raised with basis in these findings as 

to how to understand maintainability? It seems that 

commonly used maintainability metrics do not 

correspond to the actual facts of maintainability as 

measured in ease of which software systems can be 

understood and modified.  

 

3. Methods and materials 
 

This paper reports on one of the authors' study of 

software maintenance in a large OSS community. The 

study is based on the view that to better understand 

software engineering, "it is imperative to study … 

software practitioners as they solve real software 

engineering problems in real environments" [16]. As 

such, the study has been conducted as ethnographic 

fieldwork, expanding on a growing body of 

ethnographic studies of software engineering practice. 

Ethnography is a research method where the researcher 

participates with the subjects being studied. Through 

longitudinal observations of naturally occurring 

activities, the researcher builds an increased 

understanding of the object under study. However, if 

we want to understand how software is developed in 

practice, it is important not to start out assuming what 

we want to explain. Therefore the ethnographer does 

not give any prior significance to particular features of 

practice. Giving primacy to the empirical data, 

ethnography is a systematic approach for reaching 

empirically validated conclusions. 

In Section 3.1 we present the research setting. In 

Section 3.2 we present the data collection process. In 



Section 3.3 the data analysis process is presented, and 

in Section 3.4 we discuss the validity of our findings. 

 

3.1. Research setting 
 

This paper reports on an ethnographic study of the 

Gentoo OSS community. As of March 2006 Gentoo is 

made up of over 320 developers distributed across 38 

countries and 17 time zones. We use the term 

community here about those involved with Gentoo, as 

users play an important role in OSS development [9]. 

Enumerating the number of users in the community is 

difficult because there are no lists of purchased 

licenses or registered users available. 

Gentoo is a large systems integration project. 

Broadly speaking, the Gentoo community develops 

and maintains a software system for distributing and 

integrating third-party OSS software packages with 

different Unix versions. The software is distributed in 

the form of installation scripts, one script for every 

supported version of each package distributed. As of 

March 30 2006 Gentoo distributes one or more 

versions of 8486 software packages, for a total of 

23911 installation scripts. As well as integrating 

software for 5 different hardware architectures for the 

GNU/Linux operating system, the installation scripts 

can also integrate software with both the MacOS X, 

FreeBSD, and OpenBSD operating systems. Such 

heterogeneity is a defining characteristic of integrated 

systems [11]. 

In distributing software developed by other OSS 

projects, the development and maintenance of these 

packages are outside the control of the Gentoo 

community. Such autonomy is also a distinguishing 

characteristic of integrated systems [11], but also 

manifest a variety of human interests and activities. In 

defining largeness of software systems, Belady & 

Lehman [3] find variety to be a distinguishing 

characteristic. In terms of largeness, the software 

distributed is outside the scope of a single individual 

and require not only one group of people to develop 

and maintain the software, but numerous groups; both 

the Gentoo community developing and maintaining the 

installation script and the third party OSS communities 

who develop and maintain the software distributed. 

Furthermore, the installation scripts developed and 

maintained by the community is also outside the grasp 

of a single individual. Gentoo is organized into 124 

teams, each responsible for a discrete set of installation 

scripts. 

There are complex interactions between parts of 

Gentoo, both technologically and socially. Complex 

interaction is another characteristic of largeness. 

Technologically these interactions manifest themselves 

in the specific relations between different packages and 

that the same package is supported both on different 

hardware platforms and for different operating 

systems. This is made further complex by the 

introduction of virtual packages, identical functions 

that are provided in different packages. Socially, the 

complex interactions are not only between members of 

the Gentoo community or among the teams, but also in 

the interface between the Gentoo community and the 

OSS communities developing the software distributed 

by Gentoo. 

So far, we have used the term Gentoo without any 

clear definition. This is done on purpose, as the term 

itself is ambiguous. The term has three meanings. First, 

it is used for talking about the Gentoo community of 

developers and users. Second, it is used about the 

Gentoo GNU/Linux distribution. Sometimes the term 

Gentoo Linux is used to specify this. Third, Gentoo is a 

software system for distributing OSS software 

packages for different Unix implementations. The 

distributed packages are developed by third-party OSS 

projects, and the Gentoo community develops and 

maintains installation scripts for these packages. These 

scripts are made available through a central repository. 

The term Gentoo is ambiguous; it is particularly 

problematic to draw a clear boundary between Gentoo 

Linux and the Gentoo software distribution system. At 

the heart of Gentoo Linux is the Gentoo distribution 

system. Historically, however, the distribution system 

has grown out of the Gentoo Linux distribution. The 

term Gentoo is used interchangeable between the two, 

and often used by developers as a means to avoid 

drawing the problematic boundary between the two. 

Technically speaking, there are both installation scripts 

and other files distributed by the Gentoo distribution 

system that are particular to Gentoo Linux. However, 

most installation scripts distributed are not specific for 

the GNU/Linux distribution. 

The lack of consensus on boundaries is a trait of 

ambiguity. Both variety and complex interactions 

produces unclear technological boundaries and 

ambiguity in the Gentoo software product. 

 

3.2. Data collection 
 

The first author conducted the ethnographic 

fieldwork. We therefore present this section in first-

person view. Participant-observation is the primary 

method for data collection in ethnographic fieldwork 

[12]. In this study this meant that I observed the 

Gentoo developers online through dedicated Gentoo 

IRC channels, dedicated mailing lists, the Gentoo Web 

site, and Web-based front-ends for Gentoo's defect 

tracking system and revision control system. My 



participation included submitting and assisting in 

resolving bug reports, submitting installation scripts, as 

well as participating in a large restructuring effort of 

Gentoo's package manager. I used both Gentoo Linux 

and MacOS X with a Gentoo installation as operating 

systems on my workstations during the period of 

fieldwork. I made no formal interviews with 

participants in the Gentoo community, but conducted 

informal talks with participants on a regular basis to 

test my own informal theories. 

Throughout the period, I made daily field notes 

[12]. In addition, the Gentoo IRC channels were 

logged to disk throughout the period of study; one file 

each day for each IRC channel totaling 1027 files. 71 

documents were collected throughout the period and 

organized in a documentary database. I also surveyed 

online data sources that provide static data. These 

include the Gentoo bug tracking database, the Gentoo 

mailing list archives, and the Gentoo revision control 

system. As the Gentoo Web site is under revision 

control, I did not organize relevant documents from 

this Web site in the documentary database. Instead, I 

decided to rely on Gentoo's revision control system. 

 

3.3. Data analysis 
 

Ethnographic data analysis is an ongoing process 

from the moment the field worker enters the field until 

the complete research report is written. During field 

work the data analysis is informal. Upon withdrawing 

from the field, the data analysis is gradually 

formalized. Informal data analysis is a continuous 

activity through out the period of fieldwork. Because 

this analysis is closely connected with the daily details 

of fieldwork, there are no clear links between this 

analysis and the topics discussed in this paper. We 

have therefore opted for a more general description of 

the activities of informal analysis, and instead present 

the details of the formal analysis as this is closely 

connected with the topic of this paper. 

Informal analysis takes the form of writing out the 

notes that have been quickly and briefly jotted down in 

the notepad during the day's observation, and 

organizing them into more coherent field notes. By 

relating the day's observations to previous field notes, I 

continuously looked for patterns in my observations 

for building informal theories. These informal theories, 

in turn, inform how I continued performing the 

fieldwork. This way, I was able to better fit the way I 

performed my fieldwork with basis in an increased 

understanding of the research setting. 

Upon withdrawing from the field the first author 

spent a year working systematically through the 

collected data, looking for recurring patterns. Once the 

recurring patterns are identified and formulated, formal 

data analysis commenced. Formal data analysis is a 

process of incrementally generalizing from a multitude 

of singular observations to increasingly more 

generalized descriptions of activities. Throughout this 

process, non-recurring details of the singular 

observations are omitted and recurring issues included. 

However, determining which details to omit in the 

final analysis and which to include is an iterative 

process of working on generalizing the descriptions 

while continuously returning to the more detailed 

analyses looking for recurring patterns that may shed 

light on the generalized description. 

During formal analysis we identified a set of bug 

reports in the Gentoo bug tracking system. The bug 

reports were identified to capture the width of bug 

reports submitted. The selection criteria were based on 

the field notes and experiences from the fieldwork. 

Upon identifying a set of relevant bug reports, we went 

through each report, reconstructing a time line for the 

bug report based on the bug report activity log feature 

provided by the defect tracking system. Into this time 

line we also placed discussions about the bug from the 

Gentoo IRC channel logs collected during the period of 

fieldwork, the Gentoo mailing list archives, and the 

Gentoo Web forums. In this timeline we simply cut 

and pasted from the various data sources. With basis in 

this, we wrote an executive summary of the bug 

report's life cycle as well as writing out a complete 

narrative of the bug report's life cycle with 

explanations. 

With basis in these narratives, one for every bug 

report in the set, we started relating our data to theory. 

At this stage we focused on establishing relevance and 

context of our observations. We tried a number of 

theories for interpreting our data; ranging from social 

theories on decision-making, via theories on 

distributed cognition from the field of computer 

supported cooperative work, to more standard software 

engineering theory on software maintenance. From this 

analysis the focus on maintainability, which led us to 

the last part of the formal analysis, which is to write up 

the results and analysis presented in section 4. 

 

3.4. Research validation 
 

Ethnographic research does not follow a step-wise 

process. Rather, the data collection requires flexible 

responses to the specific circumstances of the moment. 

This flexibility also means that the research design 

changes in the face of in-field realities that the 

researcher could not anticipate at the outset of the 

study. It is therefore difficult to ground the study's 

validity in the procedural rigor of controlled 



experiments. Instead, the validity is established 

through a rigor in argumentation by following the 

seven principles for conducting fieldwork [13] as 

shown in Table 1. 

 

4. Results and analysis 
 

Following the definition of maintainability as the ease 

with which a software system can be understood and 

modified, we are focusing on the aspect of system 

comprehension in this paper. In this section we discuss 

systems comprehension in relation to each of the three 

concepts raised in the introduction – ambiguity, 

negotiation, and infrastructure – relating them to the 

empirical data collected and existing literature. The 

main point is that systems comprehension is a 

collective process of generating a consensus-based 

comprehension of the system and how it causes the 

observed failures. 

 

4.1. Ambiguity 
 

Some software systems fail. A software failure is an 

externally observable error in the program behavior. 

Software failures are caused by software faults that are 

triggered under specific circumstances during 

execution. Upon experiencing a software failure that 

cannot be corrected locally, Gentoo users submit a bug 

report to the Gentoo defect tracking system 

(http://bugs.gentoo.org). The bug report is analyzed by 

Gentoo developers and resolved either by rejecting the 

reported failure as a real failure, by correcting the fault 

causing the failure, or by forwarding the report 

upstream. As the Gentoo developers repackage 

software developed by external OSS projects, 

forwarding bug reports upstream means that the failure 

is not caused by Gentoo specific code or interaction of 

components distributed by Gentoo, but found to be 

caused by faults in the third-party software. This is the 

overall description of Gentoo's corrective maintenance 

process. 

Gentoo uses Bugzilla, a Web-based OSS defect 

tracking system. In Bugzilla, failures are reported as 

bug reports in a standardized Web form. Bugzilla 

provides a standardized schema for describing the 

failure and for administration of bug reports. This 

schema is mostly used for assigning bug reports and 

tracking their status. A recurring pattern in the use of 

Bugzilla is that the Gentoo users and developers use 

the optional text field at the end of the bug report, 

named Additional comments, during corrective 

maintenance. Why is that? 

 

Table 1. Research validation 
Principle Description Validation 

1. The fundamental principle of the 

hermeneutic circle 

This principle suggests that all human 

understanding is achieved by iterating 

between considering the interdependent 

meaning of parts and the whole that they 

form. 

Discussion of the iteration between the day's 

findings and previous field notes during 

informal data analysis, and the process of 

working on generalized descriptions while 

returning in detailed analysis, Section 3.3. 

2. The principle of contextualization This principle requires critical reflection of 

the social and historical background of the 

research setting 

Discussion of the shift from application 

software to SI, Section 1. Relating Gentoo to 

SI and discussing of the historical relationship 

between Gentoo Linux and distribution 

system, Section 3.1. 

3. The principle of interaction between 

researcher and subjects 

Requires critical reflection on how the 

research materials were socially constructed 

through the interactions between the 

researchers and participants. 

Discussion of interviews during participant 

observation, Section 3.2. 

4. The principle of abstraction and 

generalization 

Intrinsic to interpretive research is the attempt 

to relate the particulars described in the 

unique instances observed to abstract 

categories and concepts that apply to multiple 

situations. 

Presentation of ambiguity, negotiation, and 

infrastructure as theoretical constructs, 

Section 1. Relating the analysis to these 

constructs, Section 4. 

5. The principle of dialogical reasoning Requires sensitivity to possible contradictions 

between the theoretical preconceptions 

guiding the research and the actual findings. 

Discussion of establishing relevance and 

context of observations, Section 3.3. 

6. The principle of multiple interpretations This principle requires the researcher to be 

sensitive to difference in interpretations 

among the studied subjects. 

Central topic throughout analysis and 

conclusion, Sections 4 and 5. Multiple 

interpretations the process of negotiation is 

discussed in Section 4.3.  

7. The principle of suspicion Requires sensitivities to possible biases and 

systematic distortions in the narratives 

collected from the participants. 

Discussion of no clear principles for resolving 

bug reports, Section 4.2. 

 



 It need not be obvious what the failure "really is". 

Reporting failures is a balancing between providing too 

little information and too much information, but 

sufficient and relevant information [23]. However, it is 

difficult for a user to determine what sufficient and 

relevant information is when it is not obvious what the 

failure really is. Instead, the process of describing the 

failure is often a series of exchanges where the 

developers ask the user reporting the failure to generate 

more information about the failure. These exchanges 

may span over days, weeks, or even months before the 

bug report is resolved, and this is what the Additional 

comments field of the bug report is used for. 

Martin & McClure [17] argue that programmers 

doing corrective maintenance "do not know where to 

look and often waste a great deal of effort looking in 

the wrong place". The exchanges back and forth 

between Gentoo users and developers may seem like a 

process of trial and error like that described by Martin 

& McClure. However, the view that corrective 

maintenance is a question of following the infection 

chain from the observed failure to its fault, 

presupposes that the observations of the software 

failure are unambiguous. However, as Endres [8] 

notes, "[t]here is, of course, the initial question of how 

we can determine what the error really was". He 

equates the error with the correction made, noting that 

this is not always correct but sometimes the bug lies 

too deep to be grasped or corrected. In SI the most 

significant problem is that failures are caused by 

external packages that the Gentoo community cannot 

control. Typically, this would lead to rejecting the bug 

report [23], but in Gentoo this problem is so prevalent 

that the developers have to bypass it.  

The software being integrated by Gentoo is 

developed and maintained by other OSS projects, 

While some Gentoo developers may be quite familiar 

and knowledgeable of the source code of the 

components they integrate, most treat the software 

being integrated as a black box. It is therefore usually 

not possible to trace the infection chain of the failure. 

Instead the Gentoo developers use standard Unix tools 

and diagnostic tools developed specifically for Gentoo 

to generate indirect information about the failure. 

Along with the textual information provided in the bug 

report, we call the output of these tools debug texts. It 

is often impossible to establish what the failure "really 

is" from these indirect observations. However, during 

this exchange between users and developers, the users 

iteratively provide developers with additional debug 

texts in an attempt to reconcile the data. During this 

process multiple interpretations of what the failure 

"really is" are constructed from combining elements 

from the different debug texts. "Ambiguity means that 

a group of informed people are likely to hold multiple 

interpretations or that several plausible interpretations 

can be made without more data or rigorous analysis 

making it possible to assess them" [1]. As such, these 

failures can be considered ambiguous because what the 

failure "really is" cannot be established given sufficient 

information. Instead, this information gives rise to 

several plausible interpretations of the failures. 

With ambiguity the possibility of clear cause-effect 

relationships and exercised qualified judgment 

becomes seriously reduced. Cast another way, the 

understandability of the software becomes seriously 

reduced. Instead, an understanding of the software 

failure and its corresponding fault is established 

through negotiation. 

 

4.2 Negotiation 
 

Gentoo as a software system lies outside the 

intellectual grasp of a single individual, requiring 

several organized groups of people to develop and 

maintain it (see section 3.1). As no single individual 

can have complete systems comprehension, 

understanding failures and their corresponding faults 

becomes a collective activity where individual Gentoo 

developers' partial comprehension is combined. This is 

further accentuated by the fact that there is no single 

Gentoo installation, but thousands of Gentoo 

installations where software failures occur. As such, 

the users' knowledge of local system configuration is 

an important part of the knowledge required to 

generate a comprehension of the software failure. An 

understanding of the failure is therefore reached 

through an iterative process where the user produces 

new debug texts and the developers generate 

interpretations of these texts by negotiating over the 

meaning of the texts. These negotiations often lead to 

new requests for debug texts in an iterative cycle until 

a consensus interpretation of the failure is reached. As 

such, negotiation is the collective process of sharing 

existing system comprehension and generating new 

through the production of debug texts. However, this is 

also a process of reducing the number of 

interpretations to reach a closure of the bug report. 

Through consensus interpretations are made invalid. 

During negotiation there is often a wide variety in 

interpretations of the source of failures. It is often hard 

to find the source of failures resulting from 

unpredictable interaction of several packages, and as 

"deciding upon who is to blame is a political process" 

[23]. Complex interactions among the packages 

provided by Gentoo produce similar situations in 

Gentoo. Such interaction effects can also be observed 

in the interface between the software distributed by 

Gentoo and the underlying operating system. Varying 



standards of system calls among Unix versions can 

also increase the complexity of the failure. This is a 

sort of interaction effect akin to architectural mismatch 

[5]. Finally, failures may also be caused by specific 

configurations of the user's system. Common to the 

above failures is that it is hard to locate the fault. The 

failures are ambiguous in the sense that they lack clear 

boundaries. 

Negotiation is the approach for overcoming this 

problem. As such it is very much like the political 

process described by [23]. If it cannot be resolved 

technically, the fault is located through consensus. 

However, there are no clear principles for doing so. For 

instance, one might assume that failing to reproduce a 

failure would be an indication that the fault is with the 

user's local configuration and be grounds for rejecting 

the bug report. Sometimes irreproducibility means the 

rejection of a bug report. At other times, irreproducible 

failures or even failures found to be caused by user 

configuration are resolved. What we see is that the 

criteria for resolving or rejecting failures varies from 

bug report to bug report. This is but one of many 

examples of a pattern of no clear principles to 

determine what constitutes a valid failure or for 

resolving unclear boundaries in failures. 

Such a lack of clear principles is another trait of 

ambiguity, and can be seen as the result of several 

people with differing priorities and practice doing 

corrective maintenance. This is a reasonable 

explanation and can in part explain the lack of clear 

principles. However, the explanation should not 

overshadow the interpretation that some of this lack of 

principles is also a product of the ambiguity of 

software failures as a result of the complexity and 

variability of Gentoo. This can explain the uncertainty, 

complexity, instability of principles, and uniqueness in 

the way bug reports are handled. The lack of clear 

principles raises issues of power, but this is outside the 

scope of this paper. 

One might be tempted to see the process of 

negotiation as a way of reducing or overcoming 

ambiguity. Yet, at its very heart lies the need for 

ambiguity. It is not uncommon that developers refuse 

to assist in helping to resolve bug reports even though 

the fault can be identified within their area of 

responsibility. When this happens, ambiguity plays a 

role in getting the bug report back on track again. If 

there were no room for interpretation, there would be 

no way of proceeding with resolving the bug report. 

However, with multiple interpretations it is possible to 

pursue another interpretation in order to resolve the 

bug report. 

 

 

4.3. Infrastructures 
 

In the above analysis we have moved from the 

ambiguity generated in the technical domain to the 

social processes of interpretation and negotiation to 

cope with and handle this ambiguity. In this section we 

will once again return to the technical domain, albeit 

with a definite connection to the social. From the 

above analysis we see that knowledge and systems 

comprehension may be understood as a product or an 

effect of various materials. It occurs in the form of 

debug texts, in the skills for using the debug tools 

embodied by the Gentoo users and developers, and in 

the knowledge about the system and typical failures 

embedded in the debug tools. Not only is systems 

understanding the product of these materials along with 

the tools and people generating them, but through 

knowledge about the system and frequently occurring 

failures embedded in the tools the tools themselves 

participate in generating the possible interpretations. 

As such, corrective maintenance is made possible by 

this network, or infrastructure, of tools and people 

[15]. 

We find that the Gentoo infrastructure of debug 

tools consists of two groups of tools. Tools in the first 

group are standard Unix tools like, for instance, 

strace for tracing system calls and signals or ldd 

for printing shared library dependencies. These are 

debug tools known to most Unix developers. The other 

group of tools is the custom tools specifically made for 

Gentoo. Among these are tools that are distributed as 

part of Gentoo, tools available from private home 

pages of developers and super users, and tools 

available from an unofficial repository for Gentoo 

tools. Debug tools are also proposed and discussed on 

the IRC channels, and it is common for people to 

submit debug tools they have developed as bug reports 

in the Gentoo defect tracking system. 

The infrastructure of debug tools is used for 

generating debug texts. As such, their role is to 

generate data and to support the negotiation over 

possible interpretations of these data. We include the 

Bugzilla defect tracking system as part of the 

infrastructure of debug tools, too, since it both supports 

the communication among developers as well as being 

used for marking duplicate bug reports. Duplicates 

often provide valuable information on invariants of a 

software failure. 

While the Gentoo developers are not explicit on the 

process of developing and maintaining the Gentoo-

specific debug tools nor on the importance of this job, 

in practice they are performing a process where 

knowledge about typical error situations and typical 

diagnostic actions are inscribed in tools. As typical 



failures change over time, tools are made obsolete and 

new tools are added either in the official distribution or 

on the unofficial locations such as home pages and the 

tools repository. It is quite common to see references to 

Web pages with tools on the developers' IRC channel. 

This devising of relevant debug tools and the demise of 

irrelevant tools is a continuous process contingent 

upon the current reported failures. 

 

4.4. A proposed maintainability model 
 

We see, then, that developing and maintaining 

Gentoo involves ambiguity both in product as 

described in the research setting and in process as 

described in the results and analysis above. This 

ambiguity of process and product manifests itself in the 

corrective maintenance activities. Tracking down the 

source of failures is a process of generating systems 

comprehension through the production and 

interpretation of debug texts. We see from the above 

analysis that tracking down the bug need not be all that 

simple in practice. It need not be obvious what the bug 

"really is". Rather, it is subject to interpretation and 

negotiation. A number of possible interpretations are 

discussed, and none are dismissed on conclusive 

evidence but rather made less plausible. Alternative 

explanations for what the failure "really is" are 

constructed from combining elements of the different 

debug texts. The explanations are made more or less 

plausible both by producing new debug texts, trying to 

reproduce the failure, drawing on external texts like 

installation scripts and change logs, or simply by 

refusing to enter a discussion over possible 

interpretations. 

What we see then, is that reaching an agreement as 

to what the failure really is, is made with both 

ambiguous and inconclusive evidence and is more or 

less open throughout the process. Finding the source of 

the problem is a process where the person reporting the 

failure and those trying to understand it work together 

to find relevant pieces of information and producing 

additional debug texts. Making the software 

maintainable can therefore be interpreted as a 

collective process including both the person submitting 

the bug report, those trying to understand and resolve 

the problem, as well as the tools involved in producing 

the various debug texts being interpreted. The software 

is made maintainable by iteratively producing debug 

texts, extracting fragments of information from these 

texts and assembling these fragments into meaningful 

combinations. 

With basis in this, we propose a model to describe 

the corrective maintenance process to support our 

explanation of maintainability. We present two views 

of this model. Figure 1 shows the cyclic process of 

producing new debug texts and generating new 

interpretations through negotiation. The vertical arrow 

in the middle of the cycle illustrates the number of 

interpretations. 

 

 
Figure 1. Cyclic view of the corrective 
maintenance process 

 

Through iterations of the process, the number of 

interpretations may contract or expand. This is shown 

in Figure 2. This figure provides a temporal view of 

the process from the bug report is submitted until it is 

closed. The number of interpretations is a function of 

both the level ambiguity and the degree of consensus 

among developers. Reaching the point of closure can 

therefore be achieved through the elimination of 

ambiguity or simply by reaching a consensus about 

how to resolve the bug report by possibly rejecting it 

without any technical basis. These are the extremes. 

More commonly, though, bug reports reach their 

closure through reducing the ambiguity and reaching a 

consensus. 

 

 

 
Figure 2. Temporal view of the corrective 
maintenance process 

 

5. Conclusion 
 

With this basis, we return to our research question: 

how is maintainability established in systems 

integration? We find that maintainability is established 

through the development, operation, and maintenance 

of a debug infrastructure. This infrastructure mostly 

supports interaction between developers, like the way 



Bugzilla, IRC, and mailing lists are used in Gentoo. 

The infrastructure must also consist of tools that 

generate relevant debug information. This is done by 

constantly evaluating the usefulness of existing debug 

tools towards the typical failures reported. For Gentoo, 

we see that this is a continuous process of developing 

new tools, revising existing tools, and the demise of 

tools that are no longer useful. 

With basis in this we may rephrase our solution to 

the problem of establishing maintainability in SI. 

Maintainability in SI may be established through an 

infrastructure that bridges both the geographical and 

knowledge gaps between actors in the corrective 

maintenance process. 
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Abstract

Open source projects are an interesting source for soft-
ware engineering education and research. By participat-
ing in open source projects students can improve their pro-
gramming and design capabilities. By reflecting on own
participation by means of an established research method
and plan, master’s students can in addition contribute to
increase knowledge concerning research questions. In this
work we report on a concrete study in the context of the Net-
beans open source project. The research method used is a
modification of action research.

1 Introduction

Open source software (OSS) has shaped software engi-
neering education programs over the past decade [9]. OSS
development poses serious challenges not only to the com-
mercial software industry, but also to academic institutions
that educate software engineers. Motivated by their passion
for programming, some of our students love participating
in OSS projects; some have even been participating in OSS
projects for years.

With increased focus on adoption and use of OSS, the
Norwegian industry and public sector is looking for soft-
ware engineers with OSS skills and knowledge. ”Highly
qualified personnel are the principal product of universities,
and play a major role in developing absorptive capacities
in firms” [3]. We therefore see it as our role to develop
educational programmes to make software engineering stu-
dents acquainted with the theoretical aspects of OSS devel-
opment, as well as with the technical and social skills to
participate in OSS projects. This way, we are feeding back
OSS v.2 engineers [6].

For students OSS is an arena for learning, and the indus-
try needs software engineers acquainted with the theoreti-
cal and practical aspects of OSS development. Our research
question is therefore: How can we make use of OSS com-
munities for formal education purposes? How do we, as

software engineering teachers and researchers, tackle this
challenge so that we provide a sound and motivating envi-
ronment for software engineering education?

We have developed an approach for teaching master level
students by using principles from action research [2] for or-
ganizing OSS education. We design assignments for master
level students, who have to act as both developers and re-
searchers in OSS projects. As developers they have to par-
ticipate in a given OSS project. As researcher, the student
has to define one or several research questions based on the
existing literature on OSS development, to be addressed by
participating in an OSS project.

We have been running these kinds of projects since 2002
and all the reports are available online [4]. In this paper, we
report from one such project. We will present a case that
will provide the choice of the project, the research ques-
tions and the answers we found to them. More important,
we will summarize lessons learned from combining an ed-
ucation and empirical approach to OSS research. We dis-
cuss how the choice of the research questions, the research
methods, the literature, and the choice of the OSS project
are dependent on each other.

Evaluation of education results is always a challenge, es-
pecially when there is no baseline to compare to. It is al-
ways difficult for the student to have a double set of goals
in mind. The first set of goals are related to participation
(understanding the code, understanding the dynamics in the
community, finding a way to contribute). The second set of
goals are related to observation and research. Some students
have never participated in a research project before and
they struggle to understand the connection between their
research questions and the actual learning process. The re-
search results, which are a secondary product of the student
projects, could be of interests to the educational community
if we manage to aggregate them in a consolidate framework.

The structure of this paper is as follows: Section 2 pro-
vides the foundations of this work at the intersection be-
tween software engineering education and empirical soft-
ware engineering. Section 3 presents our case and Section
4 provides discussion and our conclusions.

1
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2 Context

2.1 Empirical software engineering educa-
tion

We teach a five year Master of Technology program in
computer science at IDI1, NTNU2. For the past 30 years,
an important part of this graduate program has been to offer
students realistic and industry-relevant software engineer-
ing projects in close collaboration with the Norwegian soft-
ware industry [7].

There is an increased use of OSS in Norwegian software
companies, and some companies even participate in OSS
projects. We therefore see the need for educating students
with the knowledge and skills to participate in such projects.
This way the industry can give back to OSS communities.
To this end we provide project assignment for our master
students to participate in an OSS projec in their fifth, and
final, year. The main constraint and source of feedback, in
addition to teacher supervision, is the interaction with this
OSS project. The students may influence what kind of tech-
nology to work with. The goals of the project include defin-
ing relevant research questions, the study of existing litera-
ture on OSS development, selecting an OSS project based
on characteristics defined by the student, and to participate
actively in this project. Students admitted to these projects
must attend two supporting courses with exams.

2.2 Research-based education

At IDI we have a tradition for combining software en-
gineering research and education in various forms. On the
one hand we have been designing and running experiments
where students act as subjects. On the other hand, our best
master students have been given the chance to work as ju-
nior researchers in our research projects [1].

In the approach for teaching OSS to master level students
we report on in this paper, we combine these two perspec-
tives. Students are subjects of the investigation by partic-
ipating in the OSS project under study. Students are re-
searchers, too, as we formulate project assignments so that
the student together with the supervisor and other senior re-
searchers contribute to the definition of research questions,
data collection and analysis. This can be understood as a
form of action research (AR) [2].

AR is a research method that may be well suited for em-
pirical research in the context of education. It originates
from the social sciences, and is used for learning from ex-
perience by intervening into various systems. One orienta-
tion of AR is Canonical Action Research (CAR), proposed
by Davison et al. [2].

1The Department of Computer and Information Science
2The Norwegian University of Science and Technology

CAR is an iterative process consisting of two main com-
ponents: carefully planned and executed cycles of activi-
ties, and a continuous process of problem diagnosis. This
has the dual function of improving practice in an organi-
zation through a change process, while also contributing to
knowledge about the object of the study.

3 The case

In this section we present an example from one student
study. This study was based on an assignment designed ac-
cording to the principles laid out above. The study is avail-
able at [4]. The assignment did not constrain the research
questions asked by the student. The only constraint was that
AR should be used as methodology for the study. In what
follows, we first present the canonical description of each
phase in the research project, followed by a presentation of
how this step was performed in the study we report from.

3.1 Diagnosis

This phase involves the researcher diagnosing the orga-
nizational situation from the information that is available.
The objectives of the CAR project will control what is stud-
ied here, along with experiences from previous CAR iter-
ations. Goals of the diagnosis phase include determining
causes of a problem, and study the environment in order to
allow proper actions to be planned.

The assignment was for the student to participate in and
contribute to OSS development in order to better understand
how firms can benefit from using OSS. The goal was to
determine the effects of using formal techniques in OSS
projects, like explicit planning, ownership, inspection and
testing in OSS projects, as they occur in commercially con-
trolled OSS projects. Through the study, it was intended to
see if the commercial use of OSS leads to a more manage-
able process.

The research goal and hypotheses were created from a
literature survey that was done in the first two months of the
project.

3.1.1 Research questions

Two research questions were formed:
Q1: Are developers who are not directly hired by the

controlling organization able to affect the decision pro-
cesses?
The rationale for this research question was to uncover how
commercially operated OSS projects view volunteer devel-
opers. In case of any confusion of roles, especially with
regard to paid vs. non-paid developers, the use of OSS may
be less suitable.
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Q2: How much of the decision process is open to the
whole community, and to what extent are decisions taken
inside the organization that is controlling the open source
project?
For OSS projects where decisions are not multilateral, par-
ticipants may feel there are conflicts in the community, as
described in [8].

3.1.2 Project selection

As the number of potential OSS projects to choose from is
large, project selection was initiated to find a project that
suited the study well. Project selection and research ques-
tions are related, as the studied artifact must be suitable for
the research goal. OSS communities have widely differ-
ent differing characteristics; they vary in size, have different
goals, and may have reached different levels of maturity. As
the project aimed at investigating commercial ties in OSS
development, the selection process aimed to identifying a
project where this connection was clear.

After compiling a list of known OSS projects, each
project was evaluated according to the following criteria:

• Should consist of 10-50 active developers

• Community allows entrance in a supporting role

• Formal techniques (project planning, etc.) are used in
the OSS development

• Implementation is done in either Java or C++, to which
the researcher is acquainted.

• Available public mailing lists, chat, and bug tracking.

• Software has general usefulness for researcher

Based on this evaluation, the student chosen the Net-
beans project.

3.2 Planning

In CAR, the planning phase should generate a course of
action for collecting data. The planned actions should be
generated to manipulate the object in order to better under-
stand it.

A data collection strategy was developed during the ini-
tial planning phase of the student project. With qualitative
data analysis, the goal was to capture as much interaction
with other people as possible, thoughts and opinions during
the project. The following elements were emphasized in the
plan:

1. Identities and roles of people that participate in these
discussions.

2. The process which is used for accepting or discussing
contributions, and how decisions for inclusion of are
made.

3. Communication around changes will be useful for later
analysis, to see how decision-making is done.

4. Information about how a contribution fits into sched-
ules and personnel allocation is interesting.

3.3 Intervention

In CAR, intervening in an organization requires that a
plan for collecting data is present. Proper data collection
techniques should be applied before, during, and after the
intervention.

The study was executed with two iterations of AR. The
researcher started with little knowledge of the decision pro-
cesses in the Netbeans project. A meritocratic leadership
was assumed to exist in addition to the maintainer organiza-
tion’s influence on the product. Actions that were planned
for the first iteration included finding open bugs, making
significant changes in order to fix the issue, and following
through the inclusion of the change into the main version.

Finding issues that were easy to work with was harder
than expected. A total of three bugs were addressed in this
phase, but with regard to the number of code lines the con-
tribution was very small.

From the interactions in this process, Netbeans was
found not to significantly differ from meritocratic hierar-
chies in other OSS communities. However, one surprising
discovery was that most contributors seemed to be employ-
ees of the maintainer organization.

3.4 Evaluation

In CAR, results from the intervention phase should be
analyzed in the context of the current understanding of the
problem and the goals of the research.

Data analysis was performed according to a pre-defined
plan that involved considering the observations in context
of theory. Davison et al. state that theory provides a ba-
sis for delineating the scope of data collection and analysis
[2]. Assessing findings in a broader context also increases
confidence in the results.

Tangible results that were found from the project in-
cluded findings in the Netbeans community that there may
be problems in attracting a large volunteer work force.
However, the Netbeans project does implement the OSS
model well, and values all outside contribution. Further
investigation will be needed to see if these tendencies are
universal to other OSS projects where commercial organi-
zations are maintainers.
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The planned time schedule was found to be unproblem-
atic. However, it would be preferable to have more time for
participating in the project. Joining an OSS project, getting
familiarized with the project artifacts, while also contribut-
ing to it, takes considerable effort.

3.5 Reflection

Reflecting is the last phase of CAR, in which the re-
searcher reflects on the results of an iteration can determine
whether additional iterations are necessary, or the lessons
learned can be used to further refine research questions. If
the goals of the project have been accomplished, then it
could be decided to terminate further investigation.

Actions for the second iteration would focus on partici-
pating to one module within Netbeans, and looking closer
at the artifacts surrounding it. The “JavaCVS” module was
selected. Only one bug lead to a successful resolution dur-
ing this iteration, which incidentally was unrelated to the
JavaCVS module. Lessons learned during this supported
the notion that few participants outside of Netbeans were
active.

After this iteration, the action research cycle was ended,
as the time constraints were exhausted, and sufficient infor-
mation to discuss research questions had been collected.

In retrospect, there are many ways in which participation
to OSS for education can be made smoother. First, focus-
ing on OSS as a social discipline can help the researcher to
get access to the project artifacts, and contribute to valuable
knowledge both about culture and product. By applying
action research, the researcher should go to length to col-
laborate with other people during the project execution, for
instance through discussing ideas and technical solutions in
mailing lists or newsgroups.

Second, a good recommendation is to focus research on
one restricted domain, like a particular module or functional
area. While this was not extensively practiced in this case,
it is beneficial to commit to one particular role in order to
get a more likely “open source situation”.

Netbeans is evaluated to be a good choice as it is main-
tained by a larger software company, Sun Microsystems,
that also invests significant resources to sustain it. Netbeans
is a development tool that is used to aid in the development
of Java-based applications.

Experience from the project, however, show that the
project selection criteria may not have been optimal. The
following was noted after the completion of the project:

Maturity: Selecting an OSS project that has a low level
of maturity may have the disadvantage of being signifi-
cantly different from an ideally run OSS project. However,
if an OSS project is mature, well-tested, and close to a re-
lease, much of the remaining tasks will be polish. If the
goal of the project is to contribute to an OSS project, the

researcher should at least be aware of possible difficulties.
In this case with Netbeans, contributing to it was difficult
due to the difficulty of understanding complex bug reports.

Size of project: Larger OSS projects may suffer from
awareness problems. Entering an open source project con-
sisting of thousands of source files requires either excellent
skill, or good documentation.

4 Discussion and conclusions

The final goal of this work is providing guidelines on
how to exploit open source software for education and em-
pirical purposes. At the time of writing we can provide
several examples of projects that exploit open source soft-
ware for education and empirical purposes, all available at
sumaster.

There are four main axes around which to organize an
evaluation of our goal:

1. Research questions: Working on the research ques-
tions is a time-consuming task that required a good
understanding of the domain. Here there is a trade-
off between learning and research issues. While stu-
dents appreciate the freedom of the assignment as a
positive learning experience, it is more effective from
a research perspective to provide students with prede-
fined research questions. These can be taken from re-
lated literature or from previous research projects the
teacher/researcher has been working with. There is a
relationship between research questions and projects.
For example in the case reported in this paper, the re-
search questions are about the interaction between pro-
fessionals and volunteers in the OSS projects and this
makes it necessary to select a project in which com-
mercial actors play a significant role. From the point of
view of the industrial professional who evaluated our
work and also from discussions with other researchers,
it was found that it is better not let students to choose
research questions.

2. Research methods: Action research has worked well to
balance student’s learning, and the output of the study.
A deep understanding of the problem itself is not nec-
essary before intervention in projects.

The effort necessary to contribute to an open source
project should not be underestimated. A common
problem for both projects, was that the students started
with too ambitious goals, and therefore may have run
into some difficulties.

The different iterations used by the researcher to eval-
uate the problem may take considerable time and en-
ergy. The effect of this, is that learning about open
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source development in general, will be a continuous
process throughout the entire intervention period.

For the sake of presentation and discussion we have
presented our case according to the five phases in ac-
tion research (diagnosis, planning, intervention, eval-
uation, and reflection). We are still discussing how
the different phases overlap with each other. Take for
example the project selection phase which we regard
as a sub-phase of diagnosis. In other action research
projects, the choice of the projects to work with may
happen before the whole research process is started.
The same is valid for research questions (or goals)
which can be less open to be decided inside the AR
cycle than in our case. Evaluation and reflection are
two related phases that could be merged together.

3. Literature: The open source literature is cross-
disciplinary and this influenced the choice of the re-
search questions which in turn influenced the size and
the nature of the project.

A literature review must be performed to update the
content of the supporting course and provide a theoret-
ical background that reflects the evolution of the OSS
research field. This is an ambitious task as OSS re-
search efforts have been published in the main soft-
ware engineering conferences and journals in the last
few years. There is also an increasing number of books
on this subject that have been published in the last cou-
ple of years. This makes the task of maintaining a map
of open source literature a challenging one.

4. Choice of the open source project: In communicat-
ing with OSS projects, problems in the last project
included entry difficulties and problems handling the
size of the project. The technical competence needed
to contribute was here higher than anticipated. More
participation in mailing lists and newsgroups may have
been helpful to react to this problem.

Guidelines for using OSS in education should stress that
it is a social and complex discipline. Learning both empiri-
cal methods and getting an introduction to the open source
is difficult. As mentioned, we have an ongoing project that
is run according to the same principles in the case reported
here and we plan to propose the same kind of projects, both
500 hour and 1000 hour projects in the next academic year.

Concerning the research method, we are satisfied with
the use of action research and we believe that this paper
is a valuable description of how to use this method. Con-
cerning the research questions, there will always be a phase
in which the student and the supervising researcher select
new ones starting from consolidated questions in the gen-
eral literature or provided by this family of projects. The
choice of the open source project is an interesting topic of

discussion. While it is in the interest of the teacher/research
to decide the project in which the student work, we have
to keep in mind that one of the principles of OSS partici-
pation is motivation and interest. Students choosing such
assignments are do so for the love of participating in OSS
projects. By letting the student participate in this project,
the teacher/researcher could get valuable insights in the spe-
cific project.

The perspectives of the industry here is similar to that
of the researcher in that industrial actors are naturally inter-
ested in letting students work on the OSS projects they sup-
port to increase activities in these projects. By replicating
these kinds of projects we aim to develop a characterization
of both OSS projects and research issues.
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ABSTRACT 

This paper asserts that the software engineering (SE) 

research literature describes open source software 

development (OSSD) as a homogenous phenomenon. 

Through a discourse analysis of the SE research literature 

on OSSD, it is argued that the view of OSSD as a 

homogenous phenomenon is not grounded in empirical 

evidence. Rather, it emerges from key assumptions held 

within the SE research discipline about its identity and 

how to do SE research. As such, it is argued that the view 

of OSSD as a homogenous phenomenon may constitute a 

systematic bias in the SE research literature. Implications 

of this are drawn for future SE research to avoid 

reproducing this bias. 

Keywords 

Software engineering, open source software development, 

literature review. 

INTRODUCTION 

Over much of the past decade, researchers have studied 

the open source software (OSS) phenomenon. After two 

annual conferences on open source systems (Damiani et 

al., 2006, Scotto and Succi, 2005), numerous special 

issues within multiple research fields (Adam et al., 2003, 

Clarke, 2006, Feller et al., 2002, Scacchi et al., 2006, von 

Krogh and von Hippel, 2003), as well as several cross-

disciplinary paper collections on OSS (Feller et al., 2005, 

Koch, 2004), it is fair to say that OSS research is 

maturing as a multi-disciplinary field defined by its object 

of study, the OSS phenomenon. Researchers have 

approached the phenomenon from a diversity of angles; 

among these motivations of OSS developers (Lakhani and 

Wolf, 2005), social organization of OSS communities 

(Crowston and Howison, 2005), OSS business models 

(Karels, 2003), as well as OSS development (OSSD). 

OSSD is the topic of this paper.  

Software engineering (SE) publications have been a major 

channel for OSSD research. After working with the SE 

research literature on OSSD for almost a decade, we have 

grown increasingly concerned with what we find to be a 

black and white view of OSSD. This paper therefore starts 

with the following assertion: the SE research literature 

describes OSSD as a homogenous phenomenon. Such a 

description of OSSD is problematic. Recent empirical 

studies show great diversity in the phenomenon. 

Michlmyer et al. (2005), for instance, observe "how 

greatly development practices and processes employed 

differ across [OSSD] projects". Yet, describing OSSD as 

a homogenous phenomenon loses this diversity. While it 

is reasonable that early research lacks nuances, a more 

nuanced view is expected as research matures. However, 

this paper asserts that this is not the case for SE research 

on OSSD. The following research question is therefore 

asked: under what conditions can the view of OSSD as a 

homogenous phenomenon be made and maintained over 

time? 

This paper seeks an answer to this question through a 

critical literature review of published SE research on 

OSSD. In particular, it seeks an answer to the question by 

examining how underlying assumptions about both the 

field of SE as well as about the object of study, OSSD, 

enables and constrains how SE researchers can describe 

OSSD. As such, the methodology of this paper is 

discourse analysis (Phillips and Hardy, 2002). This is 

therefore not a study of the OSSD phenomenon itself, but 

rather how it is described in the SE research literature. 

This paper makes three contributions. First, it contributes 

to SE research on OSSD by arguing the case for a 

potential systematic bias in existing research: that of 

treating OSSD as a homogenous phenomenon. Second, it 

motivates the need for diversifying our approach to 

studying OSSD. Whereas existing reviews of SE research 

focus on increased scientific rigour and validation of 

research (Fenton, 1994, Zelkowitz and Wallace, 1998), 

there has been little focus on how approaches to SE 

research and the assumptions espoused by these 

approaches influence the object of study. To the SE 

research community at large this paper therefore 

contributes with a possible approach for evaluating the 

effect research approaches and assumptions have on the 

object of study. Third, although limited to a survey of SE 

research on OSSD, the paper may hopefully inspire 

similar reflections on the implications of research 

approaches within other parts of SE research. 

The remainder of the paper is structured as follows. First 

the methods and materials that this review is based on are 

presented. We then ground the assertion that the SE 

literature treats OSSD as a homogenous phenomenon in 
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an analysis of the SE research literature. The research 

question is revisited in the discussion where we show how 

the view of OSSD as a homogenous phenomenon 

emerges from three different assumptions. The paper is 

concluded by drawing implications of the analysis for SE 

research on OSSD. 

METHODS AND MATERIALS 

This literature review is approached with discourse 

analysis. Discourse analysis is a method for studying 

individual texts for clues to the nature of a discourse. It is 

the study of how interrelated texts, the practices of their 

production, dissemination, and reception – collectively 

labeled the discourse – brings phenomena into being. The 

phenomenon studied here is OSSD. Discourse analysis 

examines how language constructs phenomena, rather 

than how it reflects and reveals them. As such, it 

embodies a strong constructivist philosophy, and is not 

just a method but also a methodology. 

Although discourses are inscribed and enacted in 

individual texts, the discourse itself exists beyond these 

material manifestations: "discourses are shared and social, 

emanating out of interactions between social groups and 

complex societaly [sic] structure in which the discourse is 

embedded" (Phillips and Hardy, 2002). As such, 

discourse analysis seeks to understand the context within 

which the discourse is embedded and emerges from. 

Discourses are therefore analyzed along three dimensions: 

texts, discourse, and context. 

Discourses have no clear boundaries. "We can never 

study all aspects of a discourse, and inevitably have to 

select a subset of texts for manageability" (Phillips and 

Hardy, 2002). The remainder of this section describes our 

method for selecting this subset of texts to analyze. 

Stage 1: Publication Selection 

During the first stage, publications outlet for SE research 

on OSSD had to be identified. Webster and Watson 

(2002)  presents two approaches for identifying relevant 

literature to review: 1) search through leading journals 

within the field, and 2) with basis in known literature go 

backwards by reviewing citations and forwards using 

research indexes to look for papers citing the known 

literature. This review follows the first approach, using 

the selection of six leading journals identified by Glass et 

al. (2002). 

Stage 2: Selection of Texts 

Once the journals had been identified, individual 

publications on OSSD research were identified. The 

selected journals were accessed through digital libraries. 

The digital libraries were used to identify individual 

papers by searching for publications with the keyword 

'open source'. The journals are available through different 

digital libraries. Table 1 lists the journals reviewed with 

the provider of the digital library. As the digital libraries 

are continuously updated with new publications, the date 

of the search is also provided in the table. There are slight 

variations in the searchable fields supported by the digital 

libraries. Although these variations have minor impact on 

the papers identified at this stage, a list of the searchable 

fields supported by the digital library has been included 

for reference in Table 1. 

Stage 3: Refining the Paper Selection 

Searching for the keyword 'open source' in the above 

digital libraries returned a total of 120 papers. At this 

stage the subset of papers identified by the digital libraries 

were manually refined. As some of the digital libraries do 

not support searching for phrases, some of the returned 

papers were not on OSSD. Rather, they had been returned  

 

Journal Date of search Digital library Searchable field(s) 

Information Software and 

Technology 

February 21 2007 

Journal of Systems and 

Software 

January 30 2007 

Science Direct 

(www.sciencedirect.com) 

Title, abstract, keywords 

Software Practice and 

Experience 

January 30 2007 Wiley InterScience 

(www.interscience.wiley.com) 

Full text, abstract, article title, 

author, author affiliation, 

keywords, references 

IEEE Software January 30 2007 

IEEE Transactions on Software 

Engineering 

January 30 2007 

IEEE Xplore 

(ieeexplore.ieee.org) 

Full text, document title, author, 

abstract 

ACM Transactions on 

Software Engineering and 

Methodology 

January 30 2007 The ACM Digital Library 

(portal.acm.org) 

Title, abstract, author, full text 

(where available) 

Table 1 Journals with corresponding digital libraries 
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as both the word 'open' and 'source' was found in the 

searchable fields. To remove such papers from the subset 

of texts to analyze, the papers were searched for the 

phrase 'open source'. Papers without this phrase were 

removed from the subset of texts to analyze. 

A number of the papers identified were either a) reports 

on design research where the product has been released as 

OSS, b) research where OSS is used as a data set to 

validate non-OSSD methods or techniques, or c) opinion 

pieces. As these are not studies of OSSD, they were also 

removed from the subset of texts to analyze. 

52 papers were left after two rounds of refining the subset 

of texts. This is summarized in Table 2. 

Journal Total papers Not studies 

of OSSD 

OSSD 

papers 

analyzed 

Information 

Software 

and 

Technology 

7 6 1 

Journal of 

Systems and 

Software 

13 8 5 

Software 

Practice and 

Experience 

15 14 1 

IEEE 

Software 

62 23 39 

IEEE 

Transactions 

on Software 

Engineering 

8 7 1 

ACM 

Transactions 

on Software 

Engineering 

15 10 5 

Total 120 68 52 

Table 2 Papers selected 

Writing Up the Discourse Analysis 

Two interests had to be balanced in writing up this 

review. With the reader and evaluator in mind, it is 

important to be as concrete as possible in building a 

credible case for the assertion that the SE research 

literature describes OSSD as a homogenous phenomenon. 

In practice this means making direct references to 

individual texts. However, it is counter to the goal of the 

analysis to point out problems, faults, or shortcomings of 

individual research texts. It is not the goal of the analysis 

to single out individual researchers and attack their 

research. Furthermore, discourse analysis is concerned 

with individual texts only in the way they provide clues to 

the nature of the discourse.  

To balance these two interests, only texts that are often 

cited by other research and can therefore be considered 

formative to OSSD research are quoted in the analysis 

below. The danger of such an approach is that the analysis 

may seem anecdotal and poorly grounded. Yet, the 

purpose of discourse analysis is not to bring evidence or 

establish truths by bringing forth deep or hidden 

structures in a body of texts. Rather, the analysis in this 

paper is one of many ways of reading the body of SE 

research texts on OSSD. As such, the analysis provides a 

particular lens to view the texts with. The best validation 

of the analysis is therefore for the reader to approach the 

same body of literature with the provided lens to 

determine whether or not the discourse analysis provides 

a fruitful way of understanding the literature. 

ANALYSIS 

The purpose of this section is to illustrate in what ways 

OSSD is described as a homogenous phenomenon in the 

SE research literature. Four ways are identified: 1) 

statements about the OSSD model, 2) statements that 

OSSD is different from SE, 3) studies critically 

addressing early claims that OSSD produces superior 

software, and 4) studies of OSS adoption in commercial 

software development. Each of these approaches is 

discussed in turn.  

Statements About the OSSD Model 

Raymond's (1998) seminal paper on describes two 

different approaches to developing software: the 

organized cathedral and the buzzing activity of the self-

organizing bazaar. The bazaar model of software 

development has a number of distinguishing 

characteristics: openness, self-organizing, creative, rapid 

cycle of releases with frequent incremental updates of the 

source code (Raymond, 1998). With the advent of the 

Open Source Initiative (Perens, 1999), the bazaar model 

of software development is renamed the open source 

software development model. Espoused in this early 

period of advocacy literature is the view of OSSD a 

specific approach to developing software. 

Statements about such a specific approach to developing 

software appears in different forms in the SE literature. 

Some authors talk of the OSSD model, others about the 

OSSD cycle, while others talk about the OSS paradigm of 

software development. While it is sometimes noted that 

there is variation in this specific approach to developing 

software, the "basic tenets of OSS development are clear 

enough, although the details can certainly be difficult to 

pin down precisely" (Mockus et al., 2002). It is therefore 

possible to talk about a generic OSSD model (Feller and 

Fitzgerald, 2002). As such, statements about a specific 

OSSD model in the SE research literature reproduce the 

advocacy literature's view of OSSD as a homogenous 

phenomenon. 

A variation of this is to make statements about salient 

characteristics of OSS or OSSD. SE research paper 
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frequently describe OSSD as geographically distributed 

software development, that work is not assigned but 

undertaken, that there are no plans, that OSS is developed 

by communities of volunteers, or of there being a 

particular social organization to OSSD. Statements about 

salient characteristics with OSSD are made with general 

significance. They apply to all instances of OSSD, 

assuming that OSSD is a specific approach to developing 

software. Such statements about salient characteristics 

with OSSD espouse the view of OSSD as a homogenous 

phenomenon. 

Making such statements about OSSD as a specific 

approach to developing software serves two functions in 

the research literature: to generalize bottom-up and top-

down. 

By generalizing from the bottom-up, single instance of 

OSSD are made to stand in and represent the larger 

phenomenon of OSSD. This form of overgeneralization 

within the OSS research is also observed by Crowston & 

Howison (2005): "most research on FLOSS [Free/Libre, 

Open Source Software] has been case studies of particular 

projects, [and] has so far allowed the perception that there 

is a distinctive FLOSS organizational pattern and set of 

practices to go largely unquestioned". To generalize from 

a single instance of OSSD to the larger phenomenon 

requires homogeneity of the phenomenon, that all 

instances of OSSD are comparable. 

Top-down generalization is mainly used to motivate 

research on OSSD. A typical top-down generalization can 

be formulated as "Our interest in studying this particular 

instance of OSSD originated in the popularity gained by 

the open source model in the last few years through the 

delivery of successful products such as Linux, Apache, 

and Mozilla". The effect of top-down generalization is to 

motivate research on a single instance of OSSD by 

grounding it in the larger phenomenon. By mobilizing 

well-known successful instances of OSSD, it is assumed 

that all instances of OSSD are worth studying. Again, this 

form of generalization assumes homogeneity of the 

phenomenon; that any instance of OSSD can stand in for 

the larger phenomenon. 

Although bottom-up generalization is most prevalent in 

early research SE literature on OSSD, the most recent 

observation is found in a research publication from 2006. 

Top-down generalizations, however, are in one form or 

another more prevalent throughout the period of the 

reviewed literature. 

Statements that OSSD is Different From SE 

Describing OSSD as different from other forms of 

software development has been a common theme since 

the early advocacy literature. To begin with it was the 

cathedral versus the bazaar (Raymond, 1998), it was 

hacking as opposed to the mechanical forms of 

commercial software development (Hannemyr, 1999), 

and later that OSSD is "different from proprietary, or 

traditional, or commercial or whatever other forms of 

software development it is that exist besides [it]" 

(Crowston and Howison, 2005). 

Similar statements about dichotomous relations between 

OSSD and other forms of software development are 

reproduced in the SE research literature on OSSD. These 

statements are made in three ways. The first two ways are 

direct ways of stating the dichotomous relationship 

between OSSD and SE. First, as direct statements that 

OSSD is different from SE. SE is not always referenced 

directly, but referenced as " the usual industrial style of 

software development" or "usual methods applied in 

commercial software development". The implication is 

clear, however, that OSSD is different from SE.  

The second way of placing OSSD in a dichotomous 

relationship with SE is similar to the above approach, but 

instead of saying that OSSD is different from SE, authors 

say that OSSD is not an engineering method. The implied 

comparison is still OSSD versus SE. All such statements 

are based in a basic black and white schema: that of 

OSSD on the one hand and SE on the other. 

The third way of making statements that OSSD is 

different from SE, is indirect. It is indirect in that it makes 

no reference to SE, "the usual style industrial style of 

software development", or variations thereof. Instead, the 

comparison is implied by describing OSSD in terms of 

work not being assigned, no explicit system-level design, 

and no project plan, schedule or list of deliverables. 

OSSD is here characterized by reversing salient 

characteristics of SE: that in SE work is assigned, there is 

explicit system-level design, and there is a project plan, 

schedule or list of deliverables. As such, OSSD is placed 

in a dichotomous relationship with SE reproducing the 

two broad categories of OSSD on one hand and SE on the 

other. 

By situating OSSD in a dichotomous relationship with SE 

implies homogeneity of OSSD; that it is meaningful to 

situate the phenomenon at large in contrast to SE.  

Myth-Busting Studies 

Early OSS advocacy literature makes claims about the 

superiority of OSSD compared to commercial software 

development. In an effort to develop a deeper and more 

refined understanding of the OSSD phenomenon, 

researchers have put these myths about OSSD to the test 

by comparing OSS with close source software (CSS). 

These studies aim at providing a more correct 

understanding of the OSSD phenomenon by challenging 

empirically unsubstantiated claims. Among these are 

claims that OSSD compared to CSS produces more 

maintainable software, simpler designs, software with 

lower defect density, software with higher quality and 

reliability, and that OSSD fosters more creativity. 

There are two common denominators of these studies. 

One, the research approach is to generate quantitative 

measures from products of the software process, 
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particularly source code and defect reports. Two, these 

studies compare OSS with CSS either explicitly in the 

research questions or in discussing the findings. 

The earliest of these myth-busting studies date back to 

2002, with a predominance of such research published 

from 2004 and onwards. While most of the tested myths 

are debunked, the studies' significance in the context of 

this paper is that they build upon the basic dichotomy of 

OSS in contrast to CSS. In the process of refining our 

knowledge of OSSD, these studies reproduce a black and 

white view of OSSD as a homogenous phenomenon by 

performing comparisons with the two generic categories 

of OSS and CSS. 

OSS Adoption in Commercial Software Development 

A number of studies on OSSD adoption in commercial 

software development have been published recent years. 

These studies focus on the adoption of OSS components 

or OSS tools in commercial software development. 

Numerous researchers have pointed out the tight 

relationship of OSSD and commercial software 

companies (Koru and Tian, 2005). However, the 

relationship between OSS and commercial actors remains 

largely unexplored. The studies on OSS adoption 

therefore aim to broaden our understanding of the OSSD 

phenomenon by investigating this relationship. 

The problem with this literature is two-fold. One, it 

assumes that OSS is essentially different from 

commercial off-the-shelf software and therefore requires a 

unique approach for evaluation. Two, although studying 

OSS in a commercial setting, these studies do not 

challenge the view of OSSD as completely different from 

SE. Instead, they focus on how commercial companies 

make use of OSSD products. Little, if any, attention is 

paid to the development of OSS in a commercial context. 

By omission these studies therefore reproduce the view of 

OSSD as completely different from commercial software 

development or SE; a view grounded in the assumption of 

OSSD as a homogenous phenomenon. 

DISCUSSION 

The analysis above illustrates the ways in which OSSD is 

described as a homogenous phenomenon by the SE 

research literature. The purpose of this section is to 

address the research question by discussing the conditions 

under which the statement that OSSD is a homogenous 

phenomenon can be made and sustained in the context of 

SE research. As such, this part of the paper broadens the 

analysis from the discourse itself to its context: SE 

research. 

Assumptions About Software Engineering Research 

Glass (2003) observes that “[f]or most of SE’s history, 

authors have eagerly told practitioners what they ought to 

be doing … [b]ut rarely have those ‘ought’ been 

predicated on what practitioners actually are doing". 

Singer et al. (1997) observe that there is little in the SE 

research literature about what it is that the software 

engineers do on a day-to-day basis, the kinds of activities 

they perform, and the frequency with which these 

activities take place. While there exist a strain of 

empirical studies of SE in practice, this has had little or no 

impact on the mainstream SE research literature. It is 

therefore unproblematic to state that OSSD is different 

from SE: OSSD practice does differ from prescriptive 

models for software development.  

SE is a movement of industry and academic actors to 

professionalize software development by applying 

engineering to software through the "application of 

systematic, disciplined, quantifiable approach to the 

development, operation, and maintenance of software" 

(IEEE, 1990). The idea of a software crisis is central to 

this movement. Practically every SE textbook discusses 

the software crisis, and both SE professionals and 

researchers keep discussing the continued software crisis 

(Glass, 2003). Professionalizing software development is 

the SE movement's answer to the crisis – to a certain 

extent even its reason to be. The success of OSSD – 

software developed by volunteers – can be seen as a direct 

challenge to the very identity of SE, defying the central 

claim that professionalizing software development will 

resolve the software crisis. 

That the SE research literature maintains the claim that 

OSSD is different from SE can be interpreted as a way of 

meeting this challenge. Refuting the general applicability 

of OSSD outside the specific context where there is a 

convergence between user and developer can be 

interpreted as a direct answer to the challenge 

(Messerschmidt, 2004). Another approach is to 

characterize OSSD as the inverse of SE as illustrated in 

the above analysis. Similarly, in comparing OSSD 

practice with predictive software development models, 

publishing SE researchers bypassing the problematic issue 

that the SE research discipline actually knows little about 

the field they are trying to address: SE in practice. 

As such, maintaining the claim that OSSD is different 

from SE and CSS development serves the purpose of 

strengthening the SE research discipline. Yet, the effect of 

this is that OSSD is treated as if it was a single, 

homogenous phenomenon. And the question remains: 

how different is OSSD and SE practice? 

Assumptions About How To Do Software Engineering 

Research 

The predominance of empirical studies of OSSD 

reviewed for this paper, are based on either source code 

measurements or measures extracted from defect tracking 

and revision control systems. Of the empirical studies 

reviewed, only three were not based on measurements of 

products of OSSD. One of these was an ethnographic 

study (Scacchi, 2004), one a questionnaire survey (Ajila 

and Wu, 2007), and the third based on undisclosed 

observational research (Breuer and Valls, 2006). The 
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dominant approach for SE research on OSSD is therefore 

to measure the products of the software process. 

This approach to studying OSSD grows out of a problem 

particular to the situation of SE during the 1990s: 

researchers' observation of a widening gap between 

software engineering research and practice (Glass, 1994). 

The software engineering research community was 

becoming increasingly concerned with its lack of impact 

on practice. Researchers looked for ways to address this. 

Tichy et al. (1993) concluded that instead of informing 

practice, SE research was lacking in quality and thereby 

becoming less credible for industry. Similarly, in a review 

of the SE research literature, Fenton (1993) found "very 

little empirical evidence to support the hypothesis that 

technological fixes, such as the introduction of specific 

methods, tools, and techniques, can radically improve the 

way we develop software systems". 

The diagnosis of the problem situation is outlined in a 

number of surveys of the SE research literature. In a 

survey of 612 SE research papers, Zelkowitz and Wallace 

(1998) found that 58.7% of the surveyed papers had no 

validation of research claims or the validation was based 

on assertions. Similarly, in a survey of 400 research 

papers within the broader field of computer science, 

Tichy et al. (1995) found only 20% of the SE papers 

devoted more than one fifth or more of the space to 

research validation. Glass (1994) labels research lacking 

in validation advocacy research – researchers advocating 

a new technology without validating its effectiveness over 

existing technologies or its applicability to practitioners. 

A call for increased empirical research and scientific 

rigour within the software engineering research 

community rigour rose in response to the problem 

situation. To bridge the gap between theory and practice, 

researchers had to move from a research-and-transfer 

model to an industry-as-laboratory approach (Potts, 

1993). Software engineering research needed to better 

validate its scientific claims (Zelkowitz and Wallace, 

1998). The low ratio of validated research had to be 

rectified for the long-term health of the field (Tichy et al., 

1995). However, validation was only one aspect of this 

increased concern with scientific rigour. Scientific rigour 

also require better understanding of measurement theory. 

Fenton (1994) argues that software engineering 

researchers "must adhere to the science of measurement if 

it is to gain widespread acceptance and validity". 

Quantitative data based on measuring products of the 

software development process (i.e. source code and data 

extracted from defect tracking and revision control 

systems) are well suited for doing comparative research. 

The myth busting studies make use of this, by comparing 

OSS and closed source software (CSS) to verify claims 

made by early OSS advocates that characteristics of OSS 

differ from CSS. The myth busting studies can be 

understood as an amalgamation of the OSS and SE 

discourses in that the scientific approach of empirical SE 

is applied on open issues raised by the OSS advocacy 

literature. While the advantage with measurement-based 

research is the ability to compare, the problem in this case 

is that the basis of the comparison is the product of OSSD 

on one side and the product of what is called CSS 

development on the other. While the studies have been 

performed with the highest scientific rigour, the 

amalgamation between the OSS and SE discourses 

reproduces the very broad distinction of OSS and CSS. 

Operating with only two broad categories absolves the 

researcher from discussing the comparability of the 

categories. The question is how comparable measures 

based on products of the software development process 

are. How comparable is the defect density of a single-user 

application developed by two OSS developers, the mean 

number of developers on the SourceForge.org OSS portal, 

with that of a large multi-team development effort like the 

Linux kernel, for instance? This is a problem that cannot 

be met only by "greater discipline and rigour – deeper 

research, more quantitative data, and more robust cross 

case analysis" (Feller et al., 2006). The problem itself a 

product of the research methods employed on OSSD. As 

such, it beckons a call for increased multiplicity of 

research approaches. 

Assumptions About the Object of Study 

Table 3 summarizes the instances of OSSD studied 

empirically in the analyzed subset of texts. It is striking 

how a handful of instances of OSSD keep recurring. 

OSSD case Number of studies 

Mozilla 4 

Linux kernel 4 

Other (unspecified) 3 

Apache 2 

FreeBSD 2 

SourceForce.net 1 

OpenBSD 1 

NetBSD 1 

Debian 1 

FreshMeat.net 1 

KOffice 1 

The GNU Compiler 

Collection 

1 

OpenOffice 1 

Table 3 Summary of OSS cases studied 
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Have early descriptions of OSSD been turned into 

prescriptions for choosing instances of OSSD to study? Is 

that why there are so few cases? Of the cases studied, all 

comply with the description of OSS projects as mainly 

volunteer, adhering to the rapid release and fix software 

development cycle. There are no empirical studies of 

OSSD in an industrial setting. Studies on OSS adoption 

are disregarded, as they are not studies of OSSD in an 

industrial setting, but rather how OSS is used in a 

commercial setting. 

Fitzgerald (2006) raises concerns about the possibility of 

a broadening gap between the focus of OSSD research 

and the OSSD phenomenon itself as OSSD is shifting 

from geographically distributed software development in 

communities of volunteers towards development by 

commercial actors. To meet the concern, Fitzgerald (ibid.) 

proposes that "the open source phenomenon has 

undergone a significant transformation from its free 

software origins to a more mainstream, commercially 

viable form – OSS 2.0". 

Is this altogether new? Perens (1999) reports that the 

Open Source Initiative, and the OSS term itself, 

originated in a meeting between advocates and the 

fledgling Linux industry in 1997. The goal of the meeting 

was to make free software a viable alternative for the 

mainstream software industry by de-politicizing it. 

Commercial interests were always strong in the Apache 

community (Behlendorf, 1999), even prior to IBM 

deciding to adopt Apache as its official Web server and 

hiring many of the Apache developers in 1998. Cygnus 

Solutions is an early commercial actor building upon and 

driving development of the GNU Compiler Collection 

(Tieman, 1999). Similarly, RedHat Software, Inc. has 

developed and maintained OSS for their GNU/Linux 

distribution since 1995 (Young and Rohm, 1999). In an 

effort to meet the stiff competition from Microsoft, 

Netscape released the source code of their web browser as 

the Mozilla OSS browser in 1998 to differentiate 

themselves from the competition. 

While all empirical studies of Mozilla reviewed for this 

paper do note the commercial heritage of the source code 

and that Netscape hires most of the core developers of the 

Mozilla project, none have studied the relationship 

between the company and the community. The Mozilla 

studies are good examples of how the gap between OSSD 

research and the OSSD phenomenon that Fitzgerald 

(2006) is concerned about has already developed within 

SE research on OSSD. Although recent research suggests 

that commercial interest in OSS is increasing (Ghosh, 

2007), this can hardly be argued as a shift in the 

phenomenon itself. Rather researchers' focus on 

community-based OSSD has overshadowed the 

commercial ties, which were never been truly explored. 

As such, the premise of Fitzgerald's (2006) problem can 

be understood as a product of existing research's focus on 

OSSD as geographically distributed, community-based 

software development. 

IMPLICATIONS FOR SE RESEARCH ON OSSD 

Through a discourse analysis of the SE research literature, 

this paper has argued that the assertion that SE research 

describes OSSD as a homogenous phenomenon is not 

grounded in empirical research. The research question 

'under what conditions can the view of OSSD as a 

homogenous phenomenon be made and maintained over 

time?' is answered by situating the OSSD discourse in 

context of SE research at large. It is argued that the 

conditions are to be found in assumptions about the SE 

research field, how to do SE research, and about the 

phenomenon of OSSD itself. As such, treating OSSD as a 

homogenous may be a potential bias running throughout 

the SE research literature on OSSD. 

However, this is not a black-and-white picture. Some 

researchers raise issues about diversity of OSSD 

practices. However, the full impact of such observations 

has yet to materialize in SE research on OSSD. This 

section concludes the paper by drawing implications of 

this for SE research on OSSD. 

Usefulness of the OSS Term 

As shown in the analysis, SE researchers often use the 

term OSSD to make generic statements about a particular 

approach to software development. However, this is 

problematic and does to a certain extent assume that 

OSSD is a homogenous phenomenon. Gacek and Arief 

(2004) notes that the only common characteristic of 

OSSD is that software product is released under an 

license compliant with the Open Source Definition. As 

such, the usefulness of the term OSSD is limited and 

espouses a certain view of the phenomenon. 

Researchers may avoid this problem by being specific 

about the instances of OSSD studied instead of relying 

upon generic descriptions of OSSD. Being specific on the 

salient characteristics of the studied instances is a basis 

for discussions on the generalization of research findings. 

Here are some issues worth focusing on when being more 

specific about the studied instance of OSSD. 

Sizes. How many developers are involved? What kind of 

software is developed, and how what is its size? 

Commercial and/or community. Some OSS projects are 

completely community driven, other are controlled by 

companies, and other in turn are community-based with 

strong commercial ties. Issues worth considering are 

therefore: Is the case studied community driven or headed 

by a company? How many of the community members 

are hired to contribute, and how many are volunteers? 

What is the distribution of volunteers and hired 

developers?  

Geographical distribution. One of the issues motivating 

OSSD has been that of studying successful examples of 

distributed software development. Many cases of OSSD 

are geographically distributed. Issues worth discussing 

when writing up research are: What is the geographical 
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distribution of the developers? Are any groups of 

developers geographically co-located? How many groups 

of co-located developers exist? Does the geographical co-

location have any impact on the organization of the 

project? What is the impact of the geographical 

distribution on coordination within the project? What 

tools are used for bridging the geographical gap between 

developers?  

Developer demography. While there exist much research 

on the motivation of OSS developers, we know little 

about who they are. Apart from Dempsey et al.'s (1999) 

study of the distribution of contributors to the UNC 

MetaLab's Linux Archives by studying the domain of 

their e-mail addresses, there is a distinct lack of research 

about who OSS developers are. Future research could 

focus on improving our understanding of who the people 

developing OSS are. 

Implications for Method 

We have illustrated how the dominant approach for 

studying OSSD within SE reproduces the view of OSSD 

as a homogenous phenomenon. Leading OSSD 

researchers call for "greater discipline and rigour – deeper 

research, more quantitative data, and more robust cross 

case analysis" (Feller et al., 2006). However, the problem 

is not caused by a lack of methodical discipline or rigour, 

but rather with the taken-for-grantedness of the 

phenomenon studied. As such, more cross case analysis 

may indeed worsen the problem. 

Instead, there is a need for diversifying approaches to 

studying OSSD. The phenomenon needs to be approached 

with methods that can shed further light on the practice of 

OSSD, not only on the products of the process. It may be 

worth looking towards recent studies of OSSD practice 

within the field of computer supported cooperative work 

(Ducheneaut, 2005). This research uses ethnographic 

methods. While studying the product of OSSD may give 

the impression of homogeneity of the phenomenon, 

studies of OSSD practice can challenge this by looking at 

the specifics of practice may reveal if such is really the 

case. 

Implications for Case Selection 

There is a poverty of OSSD cases studied, both in the 

distribution of individual cases but also in that they are all 

studies of community-based OSSD. There is no research 

on OSSD in an industry setting. Little attention is paid to 

the relationship between commercial organizations and 

OSS communities. How do commercial actors 

participation in OSS communities impacts on their 

internal development processes? Future research should 

address this by studying such instances of OSSD.  

Furthermore, an implication of the problem with using 

top-down generalization for case selection is that the 

rationale for case selection has to be grounded in salient 

characteristics of the selected case. Case selection needs 

to address two questions: What are the salient 

characteristics of this case that makes it worth 

researching? What dimensions of the OSSD phenomenon 

can it shed further light on? 
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Abstract. This paper studies the process of rewriting and replacing critical parts of a 
large open source software (OSS) system. Building upon the notions of installed based 
and transition strategies, we analyze how the interaction between the OSS and the 
context within which it is developed and used enables and constrains the process of 
rewriting and replacement. We show how the transition strategy emerges from and 
continuously changes in response to the way the installed base is cultivated. By 
demonstrating a mutual relationship between the transition strategy and the installed 
base, we show how the transition strategy in this particular case changes along three 
axes: the scope of the rewrite, the sequence to replace existing software, and the actors 
to be involved in the process. The paper is concluded with some implications for how to 
study the process of rewriting and replacing OSS. 

Keywords. Open source software development. Rewrite and replacement. 
Transition strategy. Installed base. 

Introduction 

Parallel development, a rapid release schedule, actively involved users, and 
prompt feedback are described as key characteristics of open source software 
(OSS) development (Feller & Fitzgerald 2002). Empirical studies of OSS 
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development have therefore primarily focused on the cyclic process of corrective 
and adaptive maintenance (German 2005), its organization (Crowston & Howison 
2005), and analysis of the products of this process (Paulson et al. 2004, 
Samoladas et al. 2004, Mockus et al. 2002). Describing the process of rewriting 
the FreeBSD kernel, Jørgensen (2001) shows that unlike the discretely delineated 
tasks of adaptive and corrective maintenance, rewriting OSS is a longitudinal 
process that does not lend itself well to parallel development, rapid release 
schedule, and active user involvement. While we know that large and successful 
OSS products are rewritten–for instance the original Apache code was rewritten 
and replaced with a modular design in 1995, and several large subsystems of the 
Linux kernel, like virtual memory handling, have been rewritten and replaced 
throughout the kernel's life cycle–we find that rewriting and replacing is an 
underdeveloped topic within OSS research. 

Building upon Jørgensen's (2001) work, we study the repeated attempts at 
rewriting and replacing a core OSS system. The empirical basis for this paper is a 
study of the Gentoo Linux distribution. The background for the study is that the 
Gentoo package manager, the core of the Gentoo Linux distribution "is very 
fragile [because it has] evolved rather than being designed", as one of the Gentoo 
developers puts it. Studying the attempts at rewriting and replacing the package 
manager provides an excellent opportunity to study the problems associated with 
rewriting and replacing critical parts of a large OSS system. To this end, we ask: 
How does the interaction between the OSS and the context within which it is 
developed and used enable and constrain the process of rewriting and 
replacement? In this paper we analyse this by studying the relationship between 
the installed base and transition strategies (Hanseth and Monteiro 1998) in the 
process of rewriting and replacing the Gentoo package manager. 

The remainder of the paper is structured as follows. The second section 
motivates the study of rewriting and replacing OSS through the notions of 
transition strategies and installed base. These two terms are elaborated. The third 
section outlines the case; presenting the research setting, as well as describing 
three attempts at rewriting and replacing the package manager. In the fourth 
section we discuss the case along two dimensions that surface in the case: the 
issue of resources and transition strategies as a process. The final section contains 
concluding remarks, where we describe how we have addressed the research 
question and implications of our findings to the study of rewriting and replacing 
OSS. 

Methodologically, the paper is based on an interpretive case study (Klein & 
Myers 1999) of the Gentoo OSS community. The data was primarily collected 
during a ten months programme of participant-observation conducted from March 
to December 2004. Since the OSS community is geographically distributed, 
participant-observation took the form of observing and participating on the 
Internet Relay Channels (IRC) that the community use for communication, by 
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submitting and resolving failure reports, as well as contributing with code. 
Throughout the period of fieldwork the IRC channels we participated on were 
logged to disk; one file each day for each IRC channel totalling 1027 files. A key 
informant also provided us with his IRC logs, stretching back to April 2003. No 
formal interviews of participants in the OSS community were undertaken, 
although informal talks with participants–both on e-mail and on IRC–were 
conducted on a regular basis to test our informal theories about the fieldwork. 71 
documents were collected throughout the period and organized in a documentary 
database. Online data sources that provide static data were surveyed. These 
include the Gentoo bug tracking database, the Gentoo mailing list archives, and 
the Gentoo revision control system. As the Gentoo Web site is under revision 
control, relevant documents from this Web site were not organized in the 
documentary database. Instead, we decided to rely on Gentoo's revision control 
system. This archival material provided us with data from 2002 to the end of 
2005. A more thorough presentation of the research is provided in (Østerlie and 
Wang 2006). 

Theory 

Jørgesen (2001) describes the process of implementing symmetric multi-
processing, a significant new feature, in the FreeBSD operating system kernel. 
Although the paper describes in detail the practical arrangements for making the 
significant change and folding it into the main code base, the paper tells little 
about the context and rationale for organising the process this way. However, the 
paper provides little information about how the OSS developers decide upon the 
specifics of this process of going from one version of the software to other. We 
expand upon Jørgensen's (ibid.) work, by examining how OSS developers make 
such decisions. We do so by analysing the OSS an information infrastructure (II) 
(Hanseth and Monteiro 1998), studying the process of rewriting and replacing the 
Gentoo package manager in terms of transition strategies and installed base. 

Transition strategies 

The transition strategy is a plan outlining how to go from one stage of the II to the 
other (Monteiro 1998). However, the transition strategy is caught in a dilemma, 
"where the pressure for making changes … has to be pragmatically negotiated 
against the conservative forces of the economical, technical, and organizational 
investments in the … installed base" (ibid., p. 230). Controversies over a 
transition strategy are therefore negotiations about how big changes can–or have 
to– be made, where to make them, and when and in which sequence to deploy 
them. 
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Whereas Jørgensen (2001) describes the sequencing when rewriting a clearly 
delineated part of the software, thinking in terms of transition strategies enables 
us to study the larger process of rewriting software encompassing what is to be 
rewritten and the scope of the changes, important factors in the process of 
rewriting the Gentoo package manager. 

Installed base 

The installed base can be defined as the interconnected technologies and practices 
that are institutionalised in an organization (Hanseth and Monteiro 1998). 
Adopting this view, we see that changes cannot be made to software artefacts in 
isolation, but must always take into account the other elements of the installed 
base that the artefact is connected to. 

This points towards two important elements when thinking in terms of 
installed base. One, II's must evolve by extending and improving the existing 
installed base, or cultivating the installed base as it is called (ibid.). Two, as II's 
grow, it becomes increasingly hard to extend and improve it because of the many 
elements that have to be changed in the process. This is called the inertia of the 
installed base (ibid.). 

Actor-network theory 

Like II, actor-network theory (ANT) is the underlying ontology for this study as 
well. We therefore mobilise a limited ANT vocabulary inscribed in and circulated 
by Callon (1986) and Latour (1987) for the case description and analysis of this 
paper. Well aware of recent movement toward fluids and fiery objects both within 
ANT and IS research, we choose to mobilise this vocabulary as it translates well 
our interest in bringing forth the chronic tension of multiple and at times 
contradictory interest in cultivating the Gentoo installed base. 

A major focus of ANT is to provide a way of tracing and explaining the 
process of how networks of actors, actor networks, become more or less stable 
through the alignment of interest. Particular to ANT is that the notion of actors 
encompasses both human and non-human actors such as software technologies, 
documents, and so on.  

The process wherein networks of aligned interest are created and maintained, 
is called translation. Through the process of translation the translating actor 
defines other actors, endowing them with interests and problems to be overcome. 
By framing a problem in such a way that it determines a set of actors, the 
translating actor defines and aligns the other actors' interests with his own (Callon 
1986). The problem is framed in to establish the translating actor as an obligatory 
passing point by enrolling and mobilising the other actors to pass through this 
point to achieve their interests. 
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Translation is therefore the process of enrolling a sufficient body of actors by 
aligning these actors' interests so that they are willing to participate in particular 
ways of acting. It implies definition, and this definition is inscribed in material 
intermediaries (Latour 1986). These intermediaries are actors in their own right. 
They are delegates who stand in for and speak for particular interests; they are the 
medium in which interests are inscribed. The operation or translation is therefore 
triangular: it involves a translating actor, actors that are translated, and a medium 
in which the translation is inscribed. 

The Case of Rewriting and Replacing Portage 

GNU/Linux distributions, complete operating systems that integrate the Linux 
operating system kernel with a collection of software libraries and applications, 
are an intrinsic part of the success of Linux. Since the beginning of the Linux 
kernel development in the early 1990s, communities of OSS developers have 
created GNU/Linux distributions. As GNU/Linux distribution consists of 
thousands of different software libraries and applications, distribution developers 
primarily repackage third-party OSS, doing whatever adaptations required for the 
third-party software to function on their specific GNU/Linux distribution. At the 
time of writing, there are over 300 Linux distributions, large and small–some 
developed commercially, others developed by volunteers–registered with the 
DistroWatch (2006) Web site. In this paper we report from a study of the OSS 
community developing the Gentoo Linux distribution, rated by DistroWatch 
among the ten most widely used distributions. 

Starting out as a one-man volunteer project in 2000, by 2003 the number of 
volunteer Gentoo developers had grown to over 200. The number of third-party 
software libraries and applications, collectively labelled packages, supported by 
the Gentoo Linux distribution had also grown. From being a GNU/Linux 
distribution, Gentoo had over time been turned into a generalized software system 
for distributing OSS software packages for different Unix operating systems like 
BSD and MacOS. By 2003 Gentoo suffered increasingly from growth pains. 

Organizationally, they Gentoo developers addressed the growth pains by 
introducing a formal management structure in June 2003: "The purpose of the 
new management structure is to solve chronic management, coordination and 
communication issues in the Gentoo project" (GLEP 4). Technically, by mid-
2003 growth pains were putting a strain on the Gentoo package manager, Portage, 
the software that integrates packages on local Gentoo systems. It is from the 
repeated attempts at rewriting and replacing the package manager that we report 
in this paper. Although all of the Gentoo developers can agree that the package 
manager needs to be rewritten and replaced, this turns out to be problematic. 
After numerous attempts, the Gentoo developers give up. Why is it that they fail 
to rewrite and replace the package manager? We provide an overview of these 
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attempts in the rest of this section, before we address the above question during 
the discussion in section 4.

First attempt 

It is mid-November 2003. Four developers make a forceful declaration of intent 
during the biweekly Gentoo managers' meeting: "We are aggressively working on 
plans for next generation Portage, which is not going to simply be a rewrite or a 
new version but beyond people's wildest expectations". The source code of the 
current version of Portage "is very fragile [because it has] evolved rather than 
being designed". It has become difficult to comprehend and maintain, preventing 
the Gentoo developer community at large from participating in developing and 
maintaining the package manager. Currently, only a "small group [of Gentoo 
developers] really know how to make significant contributions to the code". 

To enrol the Gentoo developer community with the rewrite effort, the four 
developers provide an architecture diagram (see Figure 1). The diagram 
graphically lays out the main parts of the package manager, the interface between 
these parts of the system, and which features will be supported as components. 

 

Figure 1  Portage-ng architecture diagram 

By rewriting Portage with a core system and "a solid API for components 
[where] major parts that are now core Portage are going to be implemented as 
components", the four developers explain, "components can be developed by 
different teams [of Gentoo developers", turning Portage into "a true community 
project". To achieve this end, they continue, Portage "is not just to be 'robust 
enough' but incredibly reliable". 

The architecture diagram serves to meet the interests of two other actors. 
Performance of the package manager has been a point of discontent among the 
people administrating Gentoo systems. Furthermore, a number of Portage-specific 
applications that are part of the Gentoo software distribution operate directly on 
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Portage's database and configuration files. A recurring problem with changing the 
format of these configuration files and databases, is that some of the Portage-
specific tools cease to function. To meet these interests, the four developers are 
developing a prototype of the core system.  

The prototype is realized in GNU Prolog, as this programming language can 
meet the above interests. Prolog can provide "robust, provably correct code". 
GNU Prolog has an API for components to be written "in C for performance 
when needed". However, the final choice of realization language is to grow out of 
the requirements. "Right now," the four developers explain, "we are at the 
blueprint stage … the plan is to get a solid blueprint, then make it a community 
project at the earliest possible point". While the four develop the blueprint and the 
prototype, they enrol the Gentoo developer community at large to formulate 
requirements for the rewrite. 

No one in the community questions the rationale for rewriting Portage from 
scratch with a modular architecture. However, the choice of Prolog for a 
prototype produces resistance. How can Prolog resolve the problem of 
performance, when "Prolog could be very slow"? one developer asks. Also, how 
can Portage be turned into a true community project when only very few Gentoo 
developers are familiar with the predicate-logic programming paradigm of 
Prolog? The choice of realization language will produce a high entry-barrier, 
some developers argue.  

The promised Prolog prototype fails to manifest, and in mid-December 2003 a 
competing prototype realized in Ada appears. Throughout November and 
December the four developers planning to rewrite Portage keep on trying to enrol 
the Gentoo developer community with their plan by pointing out time and again 
that the choice of realization language is to emerge from the requirements. 
However, instead of formulating requirements, the Gentoo developer community 
delve into endless discussions about the best programming language for rewriting 
Portage. 

By February 2004 all activities on this attempt to rewrite Portage have ceased. 

Second attempt 

On February 18 2004 a new CVS module called Portage-mod is imported into the 
Gentoo CVS repository with the following note attached: "All current work 
between me and George moved from remote cvs to Gentoo cvs!". Where Portage-
ng is a complete rewrite of Portage from scratch, Portage-mod is an effort to take 
the existing Portage code and modularize it. Niles, a Gentoo developer, is heading 
the effort with help from George, a newcomer to Gentoo and not yet an official 
Gentoo developer.   

While Niles is modularizing the existing Portage source code, George will help 
writing unit tests. According to the README file imported with the CVS 
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module, the plan is that the "[d]evelopment of a package structure should 
facilitate the later development of an consistent Portage API, development of this 
API is part of this project and development should … begin once Portage 
modularization is done and a unit testing framework is done." 

Development on Portage_mod is undertaken in parallel with the continued 
development and maintenance of Portage. When the code is modularized, the plan 
is to rework changes made to Portage during the period of modularization into the 
modularized version. However, it turns out that the changes made are too 
significant to achieve this, and this second attempt at rewriting and replacing 
Portage is laid to rest. 

Interlude 

"I have a feature request for you", Bob states on the Portage developers' IRC 
channel. It is mid-April 2004. Bob is a newcomer to the Gentoo community, 
having only recently been adopted by the Gentoo community to introduce web 
application support for Gentoo. "The configuration tool for web applications need 
to edit the Portage database," he continues, "so that a single web application may 
be installed multiple times on different locations in the file system. " The Portage 
developers cannot see the purpose of such functionality. A discussion ensues. In 
the end Bob argues that if the Portage developers cannot provide this functionality 
for him, he cannot provide support for web applications in Gentoo. Reluctantly 
the Portage developers agree with Bob about a technical solution to address his 
requirements. 

Third attempt 

In wake of the second attempt at rewriting Portage, the remaining developer from 
that effort sets out to write an API on top of the existing implementation of 
Portage. There is unanimous support for this effort among the other Gentoo 
developers. The effort, while a continuation of parts of the second attempt at 
rewriting Portage, also enrols the interests of two other developers who have been 
working to establish an API to insulate Portage-specific applications from 
Portage's configuration files and databases. This will solve the recurring problem 
of these applications breaking when the format of the configuration files and 
databases are changed. Furthermore, the API will insulate the core functionality 
of Portage, so that after the API is in place modularization of Portage may find 
place without disrupting users. 

Work on this third attempt at rewriting Portage ceases after a month and a half. 
The developer working on the API explains the situation:  

The whole API was designed around a single using application [that] would instigate the 
reading of the configuration, etc. … that doesn't fit in at all with distributed computing and/or 
remote management [which is something] people will ask for and/or want to implement 
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themselves down the track. [It is therefore] better to preempt it now than find we've shot 
ourselves in the foot later. 

The new approach for Portage is to completely rewrite it with a core running as 
a Unix daemon with user applications calling the daemon remotely. 

Upon the first author ending the fieldwork in December 2004, there are two 
independent efforts at rewriting Portage. One effort by a young engineering 
student who has rewritten the core Portage functionality in C, who fails to attract 
the Portage developers' attention. Another effort by one of the Portage developers 
to use experience from Portage to write an independent package manager. This, 
he specifies, is "not a Portage killer, but rather an independent implementation". 
However, in the future, his package manager may come to replace Portage. As of 
writing this paper in November 2006, a new version of Portage 2.0.51 is released, 
being simply the same code as in 2003 only with bug fixes and feature 
enhancements.  

Although all of the Gentoo developers can agree that the package manager 
needs to be rewritten and replaced, after numerous attempts they give up. Why is 
it that they fail to rewrite and replace the package manager? 

Discussion 

A number of problems are raised in connection with rewriting Portage. Complex 
interdependencies between both modules and functions within the software makes 
it is difficult to understand parts of the software without a complete understanding 
of the whole. Interdependencies also make it difficult to make changes without 
breaking existing functionality. Because of this, only four Gentoo developers 
know the source code well enough to make changes. Combined with the recurring 
problems of third-party applications, many of which operate directly on Portage's 
different data bases with their proprietary data structures, ceasing to function after 
changes have been made to Portage, the number of developers who can make 
meaningful changes to Portage limits its continued development and maintenance 
of Portage. 

This is the situation that the Gentoo developers time and again present and 
draw upon for motivating and explaining the interests and interest groups for 
rewriting the Portage code and to justify their suggested solutions. The texture of 
the situation remains largely unchanged throughout the period. The problems they 
frame and the interests the Gentoo developers construct all emerge from this 
context. In this section we will look closer at how this context enables and 
constrain the process of rewriting and replacing Portage. 
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Mobilizing resources, balancing interests 

Why do the repeated attempts at rewriting Portage fail? Towards the end of April 
2004, the Gentoo developers describe the first attempt at rewriting Portage as "hot 
air", "vaporware", and "mostly a buzzword". A predominant explanation for the 
repeated failures is exemplified by the following quote: 

A rewrite is a MAJOR waste of extremely limited resources. Unless Gentoo gets MANY more 
Portage devs OR can manage without a Portage update for 6-12 months, a rewrite won't 
happen in any reasonable time … In the mean time, what happens with the existing 
implementation? Do you [have people] work on it? Or do you let it sit idle/stagnant. The 
amount of time it'd take would really drag out on the developers that want new features and 
simplifications … Resources are why the rewrites failed. 

The issue of limited resources is the recurring explanation. The demise of both 
next generation Portage and Portage modularized are explained in terms of the 
strain on developer resources. However, given the number of Gentoo developers, 
the programming resources within the community are significant. It is these 
resources the next generation Portage developers want to tap in by turning 
Portage into "a community project". It is therefore not because resources 
themselves are scarce that the rewrite efforts fail. The problem facing those who 
want to rewrite Portage can be framed by Glass (1999, p.104)'s befuddlement: "I 
don’t know who these crazy people are who want to write, read and even revise 
all that code without being paid anything for it at all." Similarly, based on the 
observation that the interests, needs, and know-how of OSS community members 
varies greatly, Bonaccorsi & Rossi (2003, p.1244) asks: "[h]ow is it possible to 
align the incentives of several different individuals"? 

It is this selfsame problem the various efforts to rewrite Portage is facing: how to 
align the interests of the community at large in order to mobilize the resources for 
rewriting? In the first attempt at rewriting Portage, turning the package manager 
into "a true community project" goes through the four developers who will 
rewrite Portage with a core system and "a solid API for components [where] 
major parts that are now core Portage are going to be implemented as 
components". By framing a set of problems and actors whose interests are 
blocked by these problems, the four developers tries to mobilize resources (Callon 
1986) for rewrite and replace Portage. These translations are summarized in 
Figure 2 below. 
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Figure 2  The Portage-ng developers' translations 

 
However, it is not only a question of mobilizing any odd resources. The 

problem of the next generation Portage developers is that they want to mobilize 
particular resources. By translating interests into modules that clearly delineated 
boundaries between actors and their interests, and by inscribing these as boxes in 
an architecture diagram, the four developers make the architecture diagram stand 
in for their translations, making them more durable. Through the use of boxes, 
labels, and clearly separating between boxes, the architecture diagram provides an 
overview of dependencies between various parts of the architecture; in other 
words: it inscribes a sequence of work. 

By saying that the programming language for realizing next generation Portage 
is to emerge from the requirements, they are mobilizing resources to do the 
requirements work first, while leaving to the small next generation Portage team 
to write the core system first. As such, the resources they want to mobilize are for 
writing the plugins. However, the effect of proposing Prolog in the design and for 
the prototype is that resources are spent in discussing implementation language 
details and problems with using Prolog. While the Prolog prototype is intended to 
act as a focal point for mobilizing resources for developing plugins, as it fails to 
materialize there is no mobilization and resources become scarce. 

However, the explanation that resources is the reason why the rewrites failed 
has to been seen in as deeply embedded in and emerging from the context. It is 
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worth noting that although a number of objections over the plan for the first 
attempt at rewriting Portage, nobody questioned the feasibility of the effort. Yet, 
six months down the line, the Gentoo developers argue that lacking resources is 
why the effort failed. What has happened? 

Resources are scarce because there is a competition for resources within 
Gentoo, as well as the constant need to attract new developer resources. The 
whole Gentoo effort relies on the sustained interest of users and developers. As 
observed with many large OSS projects, the key process for quality assurance is 
users reporting failures to the developers (Feller & Fitzgerald 2002). As Mockus 
et al. (2004) observes: the number of people reporting software failures greatly 
exceeds the number of developers. The sustained interest of user is therefore 
important for the Gentoo community. 

The mechanism for sustaining this interest lies in the continued improvement 
and enhancement of the software, "improvements and simplifications" as put in 
the above quote. What we see throughout the period is therefore that the existing 
Portage application continues to change. Attracting new developers is a concern 
for the community, as the number of unresolved failure reports is continuously 
growing for Gentoo. Adding functionality to Portage is also seen as a way of 
recruiting new developers. A concrete example is the way Bob is recruited to the 
community by the promise that he can implement web application support for 
Gentoo. However, being a member of the community involves responsibilities, 
and resolving failure reports is one of these responsibilities. So, recruiting new 
developers by adding new features to Portage is not only a way of enhancing the 
software, but also a way of mobilizing resources for addressing the growing 
number of failure reports. 

When the Gentoo developer above questions how the Gentoo community can 
manage without a Portage update for 6 to 12 months, he is alluding to constant 
need for balancing between the need for technical stability for rewriting Portage 
on one hand, and the need for adding new functionality to attract new 
development resources and keep existing developers interested in the project.  

Transition strategy as a processes 

Whereas in Jørgensen's (2001) description of the process of rewriting the 
FreeBSD kernel the scope of the changes and the sequence of actions seem 
unproblematic, we see that rewriting and replacing Portage is a continuous 
process of negotiating over the scope of the changes to be made, their sequence, 
and which actors to be involved in the process. It is about formulating a transition 
strategy (Monteiro 1998) for the transition from one version of the package 
manager to the other. 

Formulating this transition strategy is a process of continuously balancing 
numerous interests. On the one hand there is the interest in keeping stable the 
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features of the software to be rewritten. On the other hand, use of the software to 
be rewritten continues to evolve and users have interest in the existing software to 
evolve accordingly. A balance must be struck between these interests. However, 
this balance point is continuously negotiated and renegotiated, and any attempt to 
rewrite the software has to remain flexible to these changes. 

As much as formulating a transition strategy is about imposing stability of the 
entire package manager, it is a negotiation over what parts to keep stable and 
what to change. We see this in the focus in the attempts to rewrite Portage: going 
from a complete rewrite of the whole artefact, to a modularization of the existing 
code, to the introduction of an API on top of the existing code. It is a longitudinal 
process of translation spanning months, during which the identity of actors and 
the boundaries of what is to remain stable with Portage and what can change are 
continuously negotiated. The actors' margins of manoeuvre, their possibilities of 
making incontestable statements about the efforts to rewrite and replace, is 
delimited through this process of translation. 

When one of the Portage developers in hindsight says that rewriting Portage 
from scratch "is a MAJOR waste of extremely limited resources", the statement 
tells us nothing about why next generation Portage failed. Nor does it tell us 
anything general that rewriting software from scratch requires a lot of resources. 
Rather, the statement bears testament of how the Gentoo developers' margins of 
manoeuvre is limited by the installed base. There is no longer room to state that it 
is possible to rewrite Portage from scratch. Again, this does not provide us with 
the means to make generalized statements that rewriting software artefacts from 
scratch is never feasible because of a continuously changing installed base. 

Furthermore, what we see is that to better control the process of rewriting and 
replacing, the boundaries of the involved actors are limited. From encompassing 
the entire Gentoo developer community with the rewrite of next generation 
Portage, the scope of involved actors are seriously reduced in both Portage 
modularized and the attempts at writing an API on top of the existing code. When 
a Gentoo developer in hindsight explains that "waiting for the community to 
provide requirements … doesn't work", the statement tells us nothing about why 
next generation Portage failed. Nor does it leave us any margins of manoeuvre to 
make generalized statements about the number of actors involved that can be 
involved in successfully rewriting and replacing information systems. Rather, 
what it does tell us is that how the inertia of the installed base limits the Gentoo 
developers' margins of manoeuvre in making statements about the number of 
involved actors in the process of rewriting and replacing software. 

What we can generalize, however, is this. The formulation of a transition 
strategy is constituted through a continuous negotiation with the installed base. 
This process of negotiation is a process of balancing the interests of the involved 
actors – both technical and non-technical. It is a process initiated by the 
construction of problems and actors with interests, but it is also a process from 
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which new problems emerge. With new problems, existing actors change and new 
actors emerge. As interests "are what lie in between actors and their goals, thus 
creating the tension that will make actors select only what, in their own eyes, 
helps them reach these goals amongst many possibilities" (Latour 1987, pp. 109-
110), new relationships between actors change. As actors and their interests 
change, so does that which lies in between them: the interests. As such, rather 
than being an end product in itself, the transition strategy is continuously 
formulated and reformulated through a process of continuously emergent 
problems, actors, and interests enables and constraints the task of rewriting and 
replacing Portage. 

Concluding remarks 

In this paper we show how a transition strategy for rewriting and replacing OSS 
emerges from and continuously changes in response to the installed base. There is 
a mutual relationship between transition strategies and the context of use and 
development. The way transition strategies changes the context feeds back to 
change the transition strategy. We show how this mutual influence changes the 
transition strategy along three axes: the scope of the rewrite, the sequence to 
replace the package manager, and the actors to be involved in the change process. 

While the entire Gentoo community can agree upon the need to replace the 
existing system, we show how the existing system's ability to continuously meet 
the community's interests are greater than the perceived benefits of replacing the 
system. Although the introduction of an API on top of Portage redirects existing 
connections to Portage, the transition strategies of the Portage developers were 
unable to redirect new connections to the existing Portage code, like those made 
for web application support. We show that battling the inertia of the installed 
base, then, is not only about changing existing connections from the software 
being replaced towards its replacement (Hanseth and Monteiro 2002). It is also 
about the ability to redirect new connections to the installed base to the 
replacement software throughout the process of rewriting and replacement. 

In order to understand and analyse processes of rewriting and replacement, it is 
therefore important to understand the rationalities and logics in play by different 
actors. It is important not only to take the actors' own explanations of the world 
for real, but also to understand the logic and rationality of their explanations in 
the eyes of the other actors without giving any undue privilege to either view. 
Furthermore, statements of the world need to be contextualized, when were they 
made and in response to what, in order for the information systems researcher not 
to be locked into single actors' views as true and thereby seeing other actors' 
views as false. As information systems researchers it is also important not to lock 
on to and give priority to some actors' techno-economic rationalities, but rather to 
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remain sensitive to our own academic techno-economic bias and challenge this 
through careful analysis of the statements made by those we study. 
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Abstract 
 

This paper explores how software developers debug 

integrated systems, where they have little or no access 

to the source code of the third-party software the 

system is composed of. We analyze the practice of 

debugging integrated systems, identifying five 

characteristics that set it apart from existing research 

on debugging: it spans a variety of operating 

environments, it is collective, social, heterogeneous, 

and ongoing. We draw implications of this for software 

maintenance research and debugging practice. The 

results presented in this paper are based on 

observations from an ethnographic study of the Gentoo 

OSS community, a geographically distributed 

community of over 320 developers developing and 

maintaining a software system for distributing and 

integrating third-party software packages with 

different Unix versions. 

 

1. Introduction 
 

Software maintenance constitutes a significant 

factor (between 50 and 80 percent) in the total life-

cycle costs of software systems [1]. Research suggests 

that software developers spend much of the 

maintenance effort simply trying to understand the 

software [2]. Current research is based on the premise 

that source code is the primary data source for 

understanding the software during debugging. Models 

of software errors proposed in the software engineering 

literature are based on the premise that software 

failures can be traced back to faults in the source code 

[3]. 

However, with increased attention on systems 

integration these are problematic premises. In 

component-based development [4], Web services and 

service-oriented architecture, along with information 

and enterprise systems integration [5], systems 

integrators have limited, if any, access to the source 

code of the integrated software. Even when integrating 

with open source software (OSS) components, research 

suggests that few systems integrators actually access 

the source code [6]. As such, systems integrators face 

the situation of having to debug systems without the 

source code to build an understanding of the problem 

upon. We therefore ask: without the source code, how 

do systems integrators make sense of problems when 

debugging integrated systems? 

Debugging integrated systems is largely unexplored 

in the research literature. The debugging process must 

be understood before it can be improved upon. This 

motivates a shift of focus from improving the 

debugging process, towards exploring how software 

developers debug integrated systems in practice. To 

this end, we have explored the practice of debugging 

integrated systems through an ethnographic study of 

the Gentoo OSS community. Gentoo is a 

geographically distributed community of volunteer 

systems integrators maintaining and operating a 

software distribution system for distributing and 

integrating third-party OSS with various Unix 

operating systems. Similar to existing studies of 

community-based OSS development [7], debugging is 

a core activity in the Gentoo community's software 

development process, too. The community is therefore 

well suited for studying the practice of debugging 

integrated systems. 

The shift of focus towards debugging practice 

requires that we draw upon research on practice. In this 

study we therefore draw upon research on practice and 

problems in organization science. This research shows 

that in real-world practice problems do not present 

themselves to practitioners as given [8]. Rather, 

problems have to be constructed from the materials of 

problematic situations that are puzzling, troubling, and 

uncertain. The process of constructing well-defined 

problems out of problem situations is often called 

sensemaking [9]. We will use sensemaking as a 

theoretical lens for exploring the practice of debugging 

integrated systems. 

This paper contributes to debugging research by 

identifying five characteristics that sets the practice of 

debugging integrated systems apart from existing 

research on debugging: it spans a variety of operating 
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environments, it is collective, social, heterogeneous, 

and ongoing.  

The remainder of the paper is organized as follows. 

Section 2 presents existing work on debugging, 

illustrating the central role of source code as data 

source for debugging. The theoretical lens of 

sensemaking is also presented here. Section 3 describes 

the research methods employed and materials collected 

during the ethnographic fieldwork. Section 4 describes 

the overall debugging process in the Gentoo 

community. Section 5 is an analysis of debugging in 

Gentoo applying the theoretical lens of sensemaking. 

We conclude the paper by discussing the implications 

of our findings for software maintenance research as 

well as debugging practice in Section 6.  

 

2. Related work 
 

In this section we will illustrate how debugging can 

be understood as a linear process from problem to its 

solution. Such a linear model requires that the 

debugging developer can trace a causal chain from the 

software failure to its corresponding fault. To this end, 

we argue, source code is critical. Without the source 

code, tracing such causal chains becomes harder. This 

motivates our use of sensemaking as theoretical lens 

for analyzing how software developers understand 

problems when debugging integrated systems. 

 

2.1. Debugging 
 

Debugging is the process of locating and correcting 

the cause of an externally visible error in the program 

behavior [3]. Araki et al. [10] proposes a model for 

systematic debugging where debugging is viewed as a 

process of developing hypotheses about the cause of 

errors, expected program behavior, and how to modify 

the program to correct errors, and to refute or verify 

these hypotheses. Zeller [3] proposes a similar model. 

These models may be summarized as a stepwise 

process from a well-defined problem to its solution (as 

illustrated in Figure 1).  

Much of the existing research on debugging focuses 

on the process of locating the cause of errors. Broadly 

speaking, three approaches have been suggested [11]. 

The bottom-up approach to debugging involves reading 

program statements in the source code and chunking 

these into higher-level abstractions. In the top-down 

approach, software developers reconstruct knowledge 

about the problem domain and map this to the source 

code. A mixed model approach has also been 

suggested. 

Figure 1 Linear model of debugging 

 
Several techniques, like delta debugging [3], and 

tools, like Eden [10], have been proposed to support 

the process of locating the cause of errors in the source 

code. 

 

2.2. Sensemaking 
 

The subsection above illustrates how existing 

research describes debugging as a linear problem 

solving process, progressing from a well-defined 

problem to its solution (illustrated by the dashed line in 

Figure 1). For systems integrators, however, problems 

do not present themselves as given. Rather, problem 

situations are ambiguous and open to multiple 

interpretations [12].  

Research within organization science shows that 

interaction among actors increases in ambiguous 

situations. In a study of field service technicians 

repairing copying machines, Orr [13] shows that to 

make sense of a faulty machine the technicians engage 

in an ongoing dialogue about the machine with the 

customer. Similarly, in a study of modern 

professionals, Schön [8] finds that the daily work of 

practitioners is not about problem solving, but rather 

about problem setting; the kind of work professionals 

undertake to make a situation that is initially 

ambiguous, puzzling, troubling, and uncertain into 

something that makes sense. 

Confused by ambiguity people engage in 

sensemaking [9]. The basic premise of sensemaking is 

that a person or a group's collective experiences of a 

problem situation are progressively clarified. Rather 

than starting with well-defined problems, sensemaking 

is a framework for analyzing how practitioners make 

sense of a situation that initially makes little sense. In 

contrast to problem solving starting with well-defined 

problem, the question driving sensemaking is not 

'which of the available means are best suited to solve 

the problem?' but rather 'what is going on?'. To make 

sense of a problem situation, people act on basis of 

previous experience. By actively engaging with the 

problem situation, understanding emerges as people 

make retrospective sense of what occurs by enlarging 

small cues from the available data and forming a 
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structure to provide meaning. Another central premise 

of sensemaking is therefore that action precedes 

understanding. 

 

3.  Methods and materials 
 

This research is based on the first author's 

ethnographic study of the Gentoo OSS community. 

This section briefly describes the research setting and 

the ethnographic fieldwork this study is based upon. A 

more detailed description of the research including a 

more thorough discussion on research validation can be 

found in [12]. 

 

3.1. Research setting: Gentoo 
 

Gentoo is an OSS community of volunteers 

maintaining and operating a software distribution 

system for distributing and integrating third-party OSS 

with various Unix operating systems. In addition, the 

community provides a GNU/Linux distribution, 

Gentoo Linux, on top of the software distribution 

system. The community consists of 320 official 

developers distributed across 38 countries and 17 time 

zones
1
. To the best of our knowledge, none of the 

developers are geographically co-located. As with most 

OSS communities, users are an important part of the 

Gentoo community, contributing with problem reports 

as well as source code. However, it is impossible to tell 

how many users are active in the community at any 

one time. 

For the remainder of the paper we will use the term 

Gentoo about the Gentoo software distribution system, 

Gentoo Linux about the GNU/Linux distribution 

provided on top of Gentoo, and the Gentoo community 

when talking about the community of volunteer 

systems integrators. These volunteers call themselves 

Gentoo developers. 

Gentoo distributes third-party OSS packages in the 

form of installation scripts. The installation scripts are 

stored in a central repository. One script exists for 

every version of each of the 8486 supported packages, 

for a total of 23911 installation scripts. The total SLOC 

of installation scripts in the repository is 671971
2
. The 

installation scripts make up 90% of the source code in 

the repository. The rest are mainly patches and 

configuration files. The installation scripts are written 

and maintained by the Gentoo community. While some 

Gentoo developers may be quite familiar and 

knowledgeable of the source code of the components 

they integrate, most treat the software being integrated 

                                                             
1
 Unless otherwise stated, all provided figures are of March 

30, 2006, the day the fieldwork was concluded 
2
 Data generated with SLOCCount [14] 

as a black box. Up to six different Unix versions may 

be supported by a single installation script: 

GNU/Linux, FreeBSD, OpenBSD, NetBSD, MacOS 

X, and Dragonfly. For GNU/Linux, five different 

processor architectures may also be supported in the 

script. 

The repository is mirrored on every Gentoo system. 

A Gentoo system is a computer system using Gentoo 

for integrating third-party OSS on the local system. 

The Portage package manager is the application that 

integrates third-party packages locally on Gentoo 

systems, calculating dependencies to other packages, 

downloading the source code, as well as configuring, 

compiling and integrating the package with the Gentoo 

system's live file system. 

 

3.2. Ethnographic fieldwork  
 

Data was collected during a ten months period of 

participant-observation. Participant-observation is the 

predominant method for ethnographic fieldwork [15]. 

In this study, participant-observation meant that the 

first author participated in the Gentoo community by 

submitting and resolving problem reports, interacting 

with the Gentoo users and developers on Internet Relay 

Chat (IRC) and e-mail, as well as participating in a 

major restructuring effort of the Portage package 

manager. 

During the ten months period of participant-

observation the first author wrote field notes at the end 

of each day of fieldwork [16]. In addition to the field 

notes, four of the Gentoo IRC channels were logged to 

file, one file per day for each channel, totaling1027 

files.  

Ethnographic research does not follow a step-wise 

process [17]. Rather, ethnographic data analysis is an 

ongoing process from the moment the field worker 

enters the field until the complete research report is 

written. During the field work the data analysis was 

informal. Upon withdrawing from the field, the first 

author spent a year working systematically through the 

collected data, looking for recurring patterns. This 

formal data analysis was a process of incrementally 

generalizing from a multitude of singular observations 

to increasingly more generalized descriptions of 

activities. Throughout the process, non-recurring 

details of the singular observations were omitted and 

recurring issues included, leading to the analysis 

presented in this paper. 

 

4. The Gentoo debugging process 
 

As reported in previous studies of community-based 

OSS development [7], debugging is a central activity 
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for the Gentoo community, too. New installation 

scripts are made available in the repository after 

marginal quality assurance. Instead, users are expected 

to report problems. As such, debugging plays a central 

role as a quality assurance mechanism in Gentoo. The 

debugging process (illustrated in Figure 2) is managed 

through an installation of the Bugzilla defect tracking 

system [18]. While Bugzilla is the name of a product, 

unless otherwise noted we will use the term Bugzilla 

about Gentoo's installation of this system for the ease 

of reference.  

Figure 2 Overview of the debugging process 

 
  

4.1. Roles 
 

The distribution of roles in the Gentoo community's 

debugging process is similar to that reported in existing 

research on community-based OSS development [7]. 

Users submit the majority of problem reports in the 

Gentoo community. The Bugwranglers is the name of 

the change control board responsible for assigning 

newly submitted problem reports to the relevant herd. 

A herd is a team of Gentoo developers responsible for 

a collection of third-party packages. There are 124 

such herds, varying in size from a single Gentoo 

developer to over 20 developers. The herd is 

responsible for resolving problem reports. 

4.2. Responsibilities

Gentoo integrates software from hundreds of different 

third-party providers. When debugging, the Gentoo 

developers are responsible for problems related to the 

way the third-party OSS packages are integrated. They 

are not responsible for resolving defects in the third-

party software. Similarly, the Gentoo developers are 

not responsible for problems related to the 

configuration of a particular Gentoo system. In the 

latter case, user support is handled on dedicated IRC 

channels, mailing lists, and Web forums, not through 

Bugzilla. 

4.3. Submitting and assigning reports 
 

Users submit problem reports when they have run

out of resources locally to resolve a problem. New

problem reports are submitted through a standardized

Web-based form. The form defines a number of fields

to describe the problem, including a short description

of the failure situation, the operating system and

hardware platform of the failing Gentoo system, the

component where the problem has occurred, the

package's version number, as well a longer description

of the problem situation including steps to reproduce,

which software packages are affected, the

reproducibility of the problem, any error messages

generated when the software fails, as well as a

standardized systems information of the user's system

generated by running a Gentoo-specific tool. 

When a new problem report is submitted to

Bugzilla, an e-mail is sent to the Bugwranglers'

mailing list. The Bugwranglers will assign newly

submitted problem reports to the relevant herd. 

 

4.4. Resolving problem reports 
 

Once the Bugwranglers have assigned a problem

report to a herd, an e-mail is sent to the herd's mailing

list. Herds have different ways of distributing work.

Many developers scan incoming problem reports to see

if they immediately can resolve the report. Other herds

formally distribute problem reports among themselves. 

Resolving a problem report does not necessarily

mean that the problem itself is resolved. This is one of

the ways defect reports are resolved. The other ways

are to mark the report as a duplicate, to mark it with the

flag NEEDINFO meaning that the user has to provide

additional information about the system or software

failure itself, to reject the problem report as the

problem is a user problem, or to mark the problem

report as upstream. The latter option is used when the

reported problem is caused by a defect in the third-

party software itself. 

Reaching the closure with one of the above five

resolutions to problem reports requires an

understanding of the system causing the software

failure. In the next section we will analyze how this

understanding is produced. 

 

5. Results and analysis 
 

With basis in the overview of the Gentoo debugging

process above, we will now revisit the research

question posed in the introduction: how do systems

integrators make sense of problems when debugging

integrated systems? We do so with the theoretical lens

4



of sensemaking. Our focus in this analysis is therefore 

on what people do, rather than prescribing what should 

have been done to improve the debugging process. We 

do so by identifying five characteristics of debugging 

an integrated system; (C1) it spans a variety of 

operating environments, (C2) it is collective, (C3) 

social, (C4) heterogeneous, and (C5) ongoing. 

 

5.1. C1: Variety of operating environments 
 

Zeller [3] states that to fix a problem, the developer 

must first be able to reproduce it. Although many 

reported problems are reproducible, the Gentoo 

developers often face problems they are unable to 

reproduce, or at least problems that are not easily 

reproduced. This is illustrated in Exhibit 1. 

Exhibit 1. Excerpt from Gentoo developers' 
IRC channel (gentoo-dev-2004.04.16) 

Developer A: This particular Web page crashes both the Mozilla and 

Galeon Web browsers. 

Developer B: That doesn't happen on my computer. 

Developer A: I've built the applications for the Athlon T-Bird processor 

architecture, and both have been compiled with the GTK2 widget library. I 

generally assume it's my using GTK2 that messes it up. 

Developer B: It might be GTK2. I've compiled both Web browsers with the 

GTK1 widget library on my system. 

Developer D: Well, that page works on my Epiphany Web browser 

compiled with the GTK2 library. 

Developer C: And it works with my installation of Mozilla compiled with 

GTK2. 

Developer D: This other Web page crashes my Phoenix Web browser, but 

not Mozilla or Galeon. 

Developer A: The Web page crashes on my Epiphany installation, as well. 

It seems it's my Mozilla build that's flakey. 

Developer C: But boingboing.net crashes my Epiphany installation. I've 

compiled it for the PentiumII processor architecture, though.  

Developer A: boingboing.net crashes Galeon on my system, too. 

Developer B: boingboing.net working for Mozilla on my system. 

Developer C: Hmm… It seems the problem is related to Mozilla compiled 

with the GTK2 widget library and the Xft font library. Weird thing is that 

boingboing works on my Galeon installation…  

Developer A: Now here's a very good reason to only build for one 

processor architecture, stable source tree and only do point releases. 

Variation kills reproducibility. 

 

All of the four Web browsers mentioned in the 

exhibit are based upon Mozilla's rendering engine. This 

rendering engine is integrated on a Gentoo system 

along with Mozilla. As such, the installation scripts of 

the other three Web browsers have dependencies to 

Mozilla. 

As developer A observes in Exhibit 1, the variety of 

operating environments makes reproducing problems 

difficult. This is similar to Littlewood's [19] 

explanation of Adams [13] observation that in large-

scale software maintenance most reported problems are 

irreproducible: irreproducibility is an effect of the 

variety of operating environments in the population of 

systems. There are three dimensions of variety of 

operating environments among Gentoo systems: 

operating system, configuration of individual 

packages, and system evolution. 

Gentoo distributes software for six different 

operating systems. Although most installation scripts 

in the Gentoo repository do not support for all of the 

operating systems at once, many packages support 

multiple operating systems. However, operating 

systems work in different ways, as illustrated in 

Exhibit 2. 

Exhibit 2. Excerpt from Gentoo developers' 
IRC channel (gentoo-dev-2004.10.10) 

Developer A: [making reference to a stack trace attached to the problem report 

being discussed] why is it that the thing [the linker] can't find pthread? is that 
because of a missing -pthread [flag being passed to the linker] 

Developer B: sounds like glibc was upgraded [glibc is a Unix runtime library] 
Developer A: an upgraded glibc still has pthreads alright? 

Developer A: without that symlink the system grinds to a halt 
Developer B: needs -lpthread I guess. 

Developer C: well the cross-platform way is to use gcc's -lpthread, because 

not all systems have libpthread. bsd has libc_r for example 

 

In the above exhibit, understanding the problem is 

made difficult by the way different operating systems 

support, in this particular case, multi-threading. Both 

of the above exhibits illustrate that reproducibility is 

not only made difficult by the variety in operating 

environment among Gentoo systems, but the variety of 

operating environments also makes problem 

understanding difficult. 

Exhibit 1 illustrates how debugging is made further 

complicated by the way individual packages are 

configured upon integration with a Gentoo system. 

Such configuration of individual packages is the 

second dimension of variety among Gentoo systems. 

There are two dimensions to individual package 

configuration: optionals and virtuals.  

Packages can have optional functionality that may 

be compiled into the package when it is integrated on a 

Gentoo system. This local configuration of individual 

packages is similar to what Carney et al. [4] describes 

as installation-dependent products in COTS 

development, a form of modification of a generic 

software product that is intended by the provider but 

may still vary from system to system. With virtual 

configuration different third-party packages may 

provide the same functionality. Exhibit 1 illustrates 

this, as both GTK1 and GTK2 may provide widget 

library support for the four Web browsers in question. 

Packages depend on other packages. Although such 

package dependencies are inscribed in the installation 

scripts, these dependencies are only convenient for 

reproducing a freshly setup Gentoo system. However, 

many Gentoo systems have been running for a long 

time. New versions of packages are continuously being 

added to the Gentoo distribution system's repository, 

while old and unsupported versions of packages are 
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being removed. Yet, how up-to-date every package on 

a Gentoo systems is, varies greatly. This is the fourth 

dimension of variety in operating environments among 

Gentoo systems: system evolution. 

Although the number of combinations of packages 

on a single Gentoo system is finite, package 

configurations and the effects of system evolution 

often makes it practically impossible to replicate the 

system configuration required to reproduce the 

problem. The situation debugging Gentoo is therefore 

similar to Araki et al.'s [10] observation of debugging 

concurrent programs. Because the state of concurrent 

programs may be non-deterministic, programmers 

often say that debugging is almost completed when 

they have figured out how to reproduce the problem. 

Similarly, the Gentoo developers spend a great deal of 

time understanding the reported problem. Similar to 

Schön's [8] observation, problems do not present 

themselves to the Gentoo developers as given, but have 

to be constructed from the materials of problematic, 

uncertain, and puzzling situations. 

 

5.2. C2: Collective 
 

When problems do not present themselves as given, 

the Gentoo developers need to establish what is going 

on. A fundamental aspect of sensemaking is that a 

person or a collective’s experiences of a situation are 

progressively clarified [9]. By collectively engaging 

with the reported problem, comparing configurations 

of libraries, processor architectures, and applications, 

the Gentoo developers collectively work towards an 

understanding of the problem situation as seemingly 

"related to Mozilla compiled with the GTK2 widget 

library and the Xft font library" (see Exhibit 1). By 

extracting cues from the environment, information 

about processor architectures, widget libraries, which 

Web pages crashes which browser, the developers 

collectively makes sense of the problem situation. 

In a study of field service technicians diagnosing 

and repairing copying machines, Orr [13] describes 

how technicians and users collectively make sense of 

faulty machines. Although provided with detailed 

guidelines for diagnosing and repairing copying 

machines, service technicians were often faced with 

confounding machine behavior going beyond the 

official documentation. To make sense of the faulty 

machine behavior, the service technicians interact with 

the customer to create a context for the behavior. By 

recreating the machine's history, its past quirks and 

problems, the customer and service technician engage 

in a process of constructing a context where the service 

technician can make sense of the faulty machine. 

Repairing the machine is not a process of finding the 

problem causing the faulty behavior and then repairing 

it. Rather, the problem is to understand what the 

problem is. By interacting with the customer and the 

faulty machine, the service technician creates a setting 

where the faulty behavior makes sense and can be 

resolved. 

As the variety of operating environments often 

makes it difficult for the Gentoo developers to 

reproduce reported problems, we find the Gentoo 

developers and users collectively working together to 

make sense of reported problems. They typically use 

the problem report for interacting, adding new 

comments to the Additional comments field at the 

bottom of the problem report as illustrated in Exhibit 3. 

Exhibit 3. Excerpt of problem report 
illustrating use of Additional comments field 

Description:      Opened: 2003-01-02 02:41 

Basically, I can't even configure the package and it fails complaining 'required 

file `../depcomp' not found'.  I have re-integrated the autoconf and automake 

packages, but I still get the same problem. 
[error output provided] 

[systems information provided] 
 

Comment #1 From Developer A 2003-01-02 04:32:56 

Which version of automake and autoconf do you use? 

 
Comment #2 From User 2003-01-02 04:43:33 

[version information about automake and autoconf packages on local system 
provided] 

 
Comment #3 From Developer A 2003-01-02 04:52:19 

Seems to be the required versions. Could you please try -r16 and/or -r18 of if 

the xmms package to see if it works for you? 
 

Comment #4 From User 2003-01-02 04:58:44 

Nope, both die in exactly the same way. I did have this installed at first, but 

then it tried to update the package a while ago and it just wouldn't install 
properly. Is there a package that xmms requires that might be broken? 

[new error message provided] 
 

Comment #5 From Developer A 2003-01-02 05:23:06 

Could it be you are running out of disk space or memory and swap? 

 
Comment #6 From User 2003-01-02 05:26:27 

[information about available diskspace on local system's hard drive partitions 

provided] 
I doubt that diskspace or memory is a problem, although that tmpfs device is a 

tad full!! 
[information about local system's memory use provided] 

 
Comment #7 From Developer A 2003-01-02 05:33:02 

Version 1.3 of the xmms installation script is latest. which version do you 
have? Attach the output of the command 'head /usr/portage/media-

sound/xmms/xmms-1.2.7-r15.ebuild' 
 

Comment #8 From User 2003-01-02 05:35:59 

Version 1.3 [output of running head command provided] 

 

Comment #9 From Developer B 2003-01-02 06:05:58 

This has to do with the version of automake/autoconf being used by the 

emerge process.  My feeling is that xmms is using a version that is not 
compatible with its config process.  I will, therefore, adjust xmms's ebuild to 

make sure it calls the correct version.  Please stand by for an updated ebuild 
that you can test. 

 
I have never seen this kinda thing with the xmms package. 

 
Comment #10 From Developer A 2003-01-18 14:06:31 

What about just adding a --add-missing to: 
[script provided] 
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Comment #11 From User 2003-01-19 18:04:44 

Ok, really strange... I just integrated the KDE-3.1_rc6 package and xmms 
installed without any problems. 

 
Comment #22 From Developer A 2003-01-19 19:02:59 

Well, I did add the --add-missing to the -r18 of the xmms installation script 
anyhow. 

 

Exhibit 3 illustrates how Gentoo developers and 

users collectively work together to make sense of 

reported problems. 17 days pass from the date the 

problem is reported until it is resolved illustrating that 

collective debugging can be a longitudinal process. 

The exhibit illustrates a typical exchange, where the 

developer asks the user to generate new data about the 

failing Gentoo system. This often entails the user 

running one or more diagnosis tools, producing output 

texts that are attached to the failure report. As 

illustrated by Exhibit 1, developers often use IRC for 

discussing problem reports in detail. There is a mailing 

list that is used for this, too. The user is often asked 

several times to generate new information, in a cyclic 

process between users producing data and developers 

interpreting the available data [12]. 

This observation is somewhat different to existing 

reports from community-based OSS development. 

Huntley [20], for instance, argues that debugging is a 

task that in nature lends itself to distribution, as finding 

problems is "a task that can be performed by thousand 

or even millions of end-users without any involvement 

of the core development team". Since most software 

failures are limited in scope, he continues, involving 

only a small fraction of the code, a well-controlled 

debugging process can be distributed among large 

number of programmers. We, on the other hand, 

observe that such a distinct separation between 

describing and understanding problems is problematic. 

Contrary to the clear separation between problem 

description and analysis on Figure 1, Exhibit 3 

illustrates that the process of making sense of the 

problem is not decoupled from the process of 

describing the problem. To make sense, the Gentoo 

developers and the user must act by engaging with the 

problem. This may seem like a process of trial-and-

error, but from a sensemaking perspective action 

precedes understanding [9]. By collectively engaging 

with the problem, the Gentoo developers and user 

create materials from which they may construct the 

problem. As such, the debugging process observed in 

the Gentoo community is more a process of creating 

the problem retrospectively, rather than being driven 

by a process of formulating hypotheses and rejecting or 

verifying them. It is therefore a process driven by 

plausibility rather than accuracy [9]. Failed efforts to 

solve problems feed back into the debugging process 

with new materials to set the problem anew, or with 

requests for new information from the user. The 

problem and its causes are constructed in retrospect, 

once the solution is in place. 

 

5.3. C3: Social 
 

Debugging plays a key quality assurance 

mechanism in Gentoo. Installation scripts are released 

with only a minimum of quality assurance; with the 

expectation that problems related to way software is 

integrated on Gentoo systems will be reported. Exhibit 

3 illustrates how debugging can be a longitudinal, 

although low-intensity activity. Although a low-

intensity activity, Exhibit 4 shows the sheer number of 

problem reports submitted to Bugzilla on a weekly 

basis exceeds the number of problem reports the 

Gentoo developers are able to close. The exhibit is 

based on Bugzilla statistics published by the Gentoo 

developers in the Gentoo Weekly Newsletter [21]. The 

developer count is generated from the Gentoo 

developer list [22]. 

Exhibit 4. Weekly debugging workload 

Date 

New 

reports  

Reports 

closed 

Open 

reports 

Number of 

developers 

January 6 2003 269 Not 

avail. 

1893 102 

January 5 2004 837 428 4479 259 

January 3 2005 700 390 7877 Not avail. 

January 16 

2006 

799 447 9083 320 

 

The increasing gap between new and closed 

problem reports may be partly explained by the way 

the Gentoo community uses Bugzilla; problems 

reported on outdated versions of packages are ignored 

and never marked as resolved, and the Gentoo 

developers use problem reports for tracking issues as 

well. Yet, despite a steady increase in the number of 

Gentoo developers, the workload of debugging exceeds 

the capacity of the Gentoo developers as the increasing 

number of open problem reports show. There is 

therefore a need for the Gentoo developers to prioritize 

among problem reports. 

The problem report provides a field for rating a 

problem's severity. However, an understanding of 

problems often is retrospective (Section 5.2).  

Knowing the severity of a problem is therefore also 

retrospective, and prioritizing is therefore problematic 

without starting to make sense of the reported problem. 

In this situation, the Gentoo developers have to 

balance between several interests. On the one hand, 

they have to prioritize problem reports that may 

potentially affect the many Gentoo systems. That 

reported problems are reproducible imply that the 

problem may affect many systems. Prioritizing 

reproducible problem reports comes at the expense of 
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irreproducible problem reports, or reports on problems 

that occur only on one or few systems. 

Commenting on similar tradeoffs for prioritizing 

problem reports reported by Adams [23], Littlewood 

observes that with a large population of operating 

environments there may always be one or more 

problems that are unique to a particular user's operating 

environment. However, the user would be extremely 

disgruntled if the problem was not resolved, as the 

problem would be recurring at appreciable rates in his 

environment. 

Similarly, because of the variety of operating 

environments among Gentoo systems, many reported 

problems will not be reproducible and are particular to 

a single or a small group of Gentoo systems. For the 

debugging process to function properly as a quality 

assurance mechanism, the Gentoo developers have to 

keep users interested in submitting problem reports in 

the future. The developers therefore have to balance 

the need for resolving problem reports that will 

increase the reliability of Gentoo for the most users, 

with debugging problems they are unable to reproduce 

or problems that are particular to a single user's system. 

To curb the workload, enforcing the boundaries of 

one's responsibilities is an important part of debugging 

practice. Although the responsibilities are clearly 

delineated in theory (section 4.2), establishing 

responsibilities is more of an open question. Zeller [3] 

views such a lack of clarity as a political process of 

deciding who is to blame. Assuming the perspective of 

sensemaking, however, determining responsibilities is 

an inherent part of the retrospective process of making 

sense of problems. Exhibit 5 is a dialogue aggregated 

from a problem report and discussions about this 

problem report on the Gentoo developers' IRC channel. 

Exhibit 5. Enacting responsibilities 

Statement Researchers' commentary 

Reporting user: I have installed my 

system from scratch 

 

The problem is related to the way 
Gentoo integrates software, and 

therefore the Gentoo developers' 
responsibility 

Developer A: [making reference to the 

systems information provided with the 

problem report] Is using an x86 profile 

for an amd64 machine troublesome? 

 

The reported problem is related to 
the way the user's Gentoo systems 

configuration; therefore the user's 
responsibility 

 

Developer B: [making reference to the 

installation script] Turning off the 

optional esound support might solve the 

problem.  

 

The problem may be related to 
how the package integrates with 

the esound package, and the third-
party provider's responsibility. 

Developer A: [making reference to the 

compiler error  provided with the 

problem report] Why is it that the thing 

can't find pthread? is that because of a 

missing -pthread 

 

The problem is related to the use 

of the pthreads library, and 
therefore the responsibility of 

another herd. 

Developer B: sounds like the glibc 

library was upgraded 

Related to the user's system 

configuration, and his 

responsibility 

 

By extracting cues from the situation ('installed my 

system from scratch'), from the systems information 

and error messages provided with the problem report, 

as well as information from the installation script, the 

Gentoo developers and the user bridge the ideal 

division of responsibilities (Section 4.2) and the 

concrete details of the problem. They produce a reality 

of responsibilities by their actions. However, this 

construction of reality is in itself constrained by their 

understanding of responsibilities. The model of 

responsibilities precedes the discussion of the 

particular problem, acting as a guide for extracting 

cues from the data. As Weick [9] puts it, sensemaking 

is enactive of sensible environments. 

Although debugging is a technical activity, the 

above analysis shows how social issues like keeping 

users interested and determining responsibilities are 

closely intertwined with the technical activities of 

debugging. 

 

5.4. C4: Heterogeneous 
 

Heterogeneity is one of Hasselbring's [5] three 

characteristics of systems integration: "heterogeneity 

comes from different hardware platforms, operating 

systems, database management systems, and 

programming languages". This is similar to what the 

variety of operating environment among Gentoo 

systems (section 5.1). Similarly, Belady & Lehman 

[24] presents variety as a root cause of program 

largeness. While Hasselbring's notion of heterogeneity 

is technical, Belady & Lehman's understanding of 

variety includes both the social and the technical. 

Similar to Hasselbring, we find heterogeneity to be 

a characteristic of the Gentoo debugging process, but 

like Belady & Lehman our view of heterogeneity 

transcends the technical. While the purpose of the 

debugging process is to keep Gentoo running, we find 

that keeping Gentoo running is not solely a technical 

endeavor. Rather, to keep Gentoo running requires 

maintenance of both the technology and the 

community. The debugging process is therefore 

heterogeneous in the sense that it serves a variety of 

interests and activities, where the social and the 

technical are closely intertwined (Section 5.3). 

Section 2.1 shows that existing research is based on 

the premise that source code is the primary data source 

for debugging. Debugging Gentoo is heterogeneous in 

the respect that instead of relying on source code, 

understanding of problems is constructed from a 

heterogeneous ensemble of data sources: problem 

reports, debug data generated by the failing software 

and various diagnosis tools, as well as discussions on 

IRC, mailing lists and Web forums (Sections 5.1 and 

5.2). 
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5.5. C5: Ongoing 
 

Although debugging is a central activity in the 

Gentoo community, it is not the only responsibility the 

Gentoo developers have. Within the community, the 

developers are responsible for keeping abreast with the 

latest developments for the third-party OSS packages 

of their herd–writing new installation scripts and 

updating existing scripts to incorporate patches made 

available outside of the packages' release cycles–as 

well as being active on the IRC channels and mailing 

lists discussing and assisting other developers. In 

addition, the Gentoo developers have outside 

responsibilities like daytime jobs, and school. 

As such, debugging is one activity in the ongoing 

flow of activities making up the day of the Gentoo 

developers. While it may be a low-intensity activity 

(see Section 5.3), debugging is not an activity the 

developers can devote all their attention to as 

illustrated by Exhibit 6. 

Exhibit 6 Extract from the Gentoo developers' 
IRC channel (gentoo-dev-2004.07.17) 

Developer A: Have you ever taken a look at bug 33877 ? 

Developer B: Yes, but there's a contention for my time. Getting 

Java working well has been a higher priority. 

 

The amount of problem reports to be addressed 

makes debugging a time-consuming activity. Although 

reflecting upon alternative interpretations of the 

problem situation (see Exhibits 1,2, and 3), the 

resources available for rigorous analysis of the problem 

situation are limited. Instead, the Gentoo developers 

often act to get a better understanding of the problem. 

As such, they engage in sensemaking rather than 

problem solving. 

To cope with these constraints the Gentoo 

developers have to be pragmatic. Problem solving is 

the selection of the best-suited means to an established 

end. While the debugging literature presupposes that 

the end to be met is to correct the reported problem, we 

find the debugging process is equally much about 

establishing such ends. Schön [8] argues that by 

focusing on problem solving, we ignore the problem 

setting: "the process by which we define the decisions 

to be made, the ends to be achieved, the means that 

may be chosen". 

As such, solving reported problems is but one of 

many outcomes of the debugging process. The process 

of problem setting need not conclude that there is a 

problem. The overarching goal of the debugging 

process is to reach a closure for problem reports. 

Resolving a problem report is not synonymous with 

solving the reported problem. It may be, but problem 

reports are also resolved by providing users with 

workarounds for the reported problem, by concluding 

that the problem is local to the user's system, or by 

concluding that the problem is in the third-party 

software. 

 

6. Discussion and concluding remarks 
 

In this paper we have explored how software 

developers debug integrated systems. We identify five 

characteristics of the debugging process: it spans a 

variety of operating environments, it is collective, 

social, heterogeneous and ongoing. 

This description differs from the debugging process 

described in the research literature. It is less of a linear 

process going from a well-defined problem to its 

solution, and more of a cyclic process where the 

problem is not always understood before there is a 

solution to it [12]. The debugging process is a 

collective sensemaking process [9], influenced by both 

social and technical factors, rather than a purely 

individual cognitive problem solving activity [2]. In 

contrast to researchers' advocating a hypothesis-driven 

debugging processes [3, 10], we find the Gentoo 

community's debugging process to be driven by 

plausibility rather than accuracy. 

This suggests, then, that the software failure is not 

unproblematic as a phenomenon, but rather subject to 

interpretation and negotiation. Software developers' 

understanding of what constitutes a software failure is 

contingent upon situational issues such as workload, 

priorities, responsibilities, as well as technical data. 

Furthermore, this research illustrates that software 

failures are not necessarily stable. 

This has implications for software maintenance 

research on integrated systems, as it raises concerns 

about the appropriateness of assuming that software 

failures are clearly identifiable and stable phenomena. 

That there is a clearly identifiable relation between the 

errors in the code and the observed failures is too 

simple. In system integration the problem is more 

complex. 

Although apprehensive about generalizing from a 

single case study, we contend that our findings may 

have implications for debugging practice. An important 

problem with debugging integrated systems is to 

understand what the problem is. It is therefore difficult 

to determine what data is relevant prior to engaging 

with the problem. Comprehensive schemas for 

classifying problems as proposed by various defect 

classification standards, but also found in many defect 

tracking systems including Bugzilla, are of limited use. 

Instead, defect tracking systems need to support 

interaction between the reporting user and the software 

developer resolving the reported problem. Users have 
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little understanding of what is relevant for debugging 

the system. As such, defect tracking systems need to 

provide reporting users with simple guidelines for 

describing the problem situation and what information 

to be provided for bootstrapping the debugging 

process. 
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