
Problems and solutions:
Maintaining an integrated
system in a community
of volunteers

Thesis for the degree of Philosophiae Doctor

Trondheim, October 2009

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics
and Electrical Engineering
Department of Computer and Information Science

Thomas Østerlie

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

© Thomas Østerlie

ISBN 978-82-471-1808-5 (printed ver.)
ISBN 978-82-471-1809-2 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2009:204

Printed by NTNU-trykk

 I

Abstract

Motivation. Software maintenance is a significant part of the software life-cycle cost. Current

research focuses on the maintenance of application software. Despite increased focus on

systems integration, there is limited research on maintaining integrated systems. Before

progressing with informing software integration practice, researchers therefore need to better

understand the actual work of maintaining integrated systems.

Research. To this end, a study of maintaining an integrated system in practice has been

conducted. The study is conducted in the context of a community of volunteer software

integrators. The research combines field studies with document analysis, asking:

RQ1: How is knowledge of software failures developed during geographically

distributed software maintenance?

RQ2: How do software developers build knowledge of how to replace a business-

critical software system?

RQ3: What are the characteristics of large-scale software maintenance work in a

geographically distributed community of volunteers?

Contributions. The main empirical contribution offered by this thesis is insight into the social

and technical processes of maintaining an integrated system in a distributed community of

volunteer software integrators. It offers a view of software maintenance where multiple

stakeholders with different interests continuously negotiate over problems and their solutions.

Focusing upon scarcity of resources and contradictory interests brings out the inherently

political aspects of software maintenance.

C1: Knowledge of software failures is developed through a process of negotiating over

possible interpretations of available data, a process that is contingent upon situational

issues such as workload, priorities, and responsibilities

C2: A collective understanding of the scope, stakeholders, and sequence of activities for

rewriting software evolves in response to new problems emerging from the rewrite

efforts themselves as well as environmental changes

C3: Maintaining an integrated system in a community of volunteers is characterized by

scarcity of resources, an emphasis on coalition building, and volatility of stakeholders

Two contributions to software maintenance practice are offered:

C4: Recommendations for a lenient approach to coping with variability during

corrective maintenance

C5: Recommendations for an opportunity-driven approach to systems replacement

 II

Preface

This thesis is submitted to the Norwegian University of Science and Technology

(NTNU) for partial fulfilment of the requirements for the degree of Philosophiae

Doctor.

It is the concluding report from the research project titled 'Empirical Software

Engineering and Open Source Software Development'. The project has been funded by

Professor Reidar Conradi by the Department of Computer and Information Science,

NTNU, Trondheim.

The reported research has been conducted under the supervision of Professors Letizia

Jaccheri, Reidar Conradi, and Eric Monteiro.

 III

Acknowledgements

I would like to extend my thanks to Letizia Jaccheri for encouraging the research, for

being open to questions and discussions, and for giving me the freedom to approach the

research my own way. I would like to express my deepest gratitude to Reidar Conradi

for his role in funding the reported research as well as in his enduring patience with

seeing the research project through. His role has not been sufficiently acknowledged in

the papers reporting from this research. A special thanks to Eric Monteiro for guiding

and advising me on my way through the maze of academic life. His influence has been

formative to the way I conduct research.

I am indebted to the intellectual community, both locally at the department as well as

the broader national and international community of colleagues, that I have had the

pleasure of participating in throughout the period of this research.

I would like to offer deep gratitude to my co-authors Alf Inge Wang, Glenn Munkvold,

and Kirsti Berntsen with whom I shared endless hours of discussions with. I would also

like to offer thanks to the COSI project team at NTNU – Øyvind Hauge, Carl Fredrik

Sørensen, and Sven Ziemer – for enjoyable and productive cooperation, as well as

company during the many national and international project meetings. I am also grateful

for the intellectual community shared with colleagues in the software engineering

research group as well as Forskerfabrikken.

I am indebted to the industry partners in the COSI industrial R&D project for the

formative role they have played in developing my understanding of OSS. I would like

to extend a particular thanks to the Finish COSI research team – Juho Lindman and

Matti Rossi at the Helsinki School of Economics, as well as Pentti Martiin at Nokia

Siemens Networks – for letting me take part in their ongoing discussion on the nature of

OSS in a commercial context.

I offer my gratitude to the invaluable feedback and support provided by the community

of fellow researchers attending the PhD Days workshops, the national research seminar

held by the Department of Informatics at the University of Oslo.

I would also like to thank the anonymous reviewers who rejected early versions of some

of the papers included in this thesis. This was important feedback for us to change and

improve these papers.

Thank you to Tor Grønbech for unwavering help and support during periods of

hardship. Also thank you to Kjell Bratsbergengen for being supportive and

understanding during these periods. I want to thank family and friends for their

enduring support throughout the period of this research. I particularly want to

acknowledge the price paid and the many sacrifices made by my wife Grete in seeing

this research project through. It was a longer haul than any of us had expected.

 IV

Table of contents
ABSTRACT..I

PREFACE... II

ACKNOWLEDGEMENTS ...III

1. INTRODUCTION ... 9

1.1. RESEARCH MOTIVATION .. 9

1.2. RESEARCH SETTING ... 10

1.3. RESEARCH GOALS AND QUESTIONS .. 11

1.4. CONTRIBUTIONS .. 11

1.4.1 The papers... 11

1.4.2 Contributions of this thesis ... 17

1.5. THESIS STRUCTURE .. 18

PART I: RELATED WORK ... 21

2. RELEVANCE IN SOFTWARE ENGINEERING RESEARCH.................. 23

2.1. SOFTWARE ENGINEERING... 24

2.2. THE EMPIRICAL AGENDA IN SOFTWARE ENGINEERING.................................... 25

2.2.1 Professionalization of software development ... 25

2.2.2 The research-practice crisis ... 26

2.2.3 Empirical software engineering.. 27

2.3. RIGOUR OR RELEVANCE ... 28

3. SOFTWARE MAINTENANCE, LEGACY SYSTEMS, AND

INTEGRATION.. 31

3.1. SOFTWARE MAINTENANCE ... 32

3.1.1 Categories of software maintenance activities 32

3.1.2 The organizational level maintenance process....................................... 33

3.1.3 Individual process of implementing changes.. 34

3.1.4 Corrective maintenance.. 34

3.1.5 Debugging... 36

3.2. LEGACY SYSTEMS .. 37

3.2.1 Software evolution .. 37

3.2.2 Legacy systems explained ... 38

3.2.3 Increasing maintenance cost .. 39

3.2.4 The legacy systems dilemma ... 41

3.2.5 Coping with and replacing legacy systems... 42

3.3. MAINTAINING INTEGRATED SYSTEMS .. 44

3.3.1 Software integration ... 44

3.3.2 Integrated system .. 45

3.3.3 Challenges for maintaining integrated systems...................................... 45

4. OPEN SOURCE SOFTWARE AND SOFTWARE ENGINEERING 47

4.1. OPEN SOURCE SOFTWARE IN CONTEXT... 48

4.1.1 The mythologized view of OSS.. 48

4.1.2 Linux, OSS, and the New Economy... 48

4.1.3 Open Source Software, Free Software, Free/Open Source Software? ... 49

 V

4.2. OSS RESEARCH IN SOFTWARE ENGINEERING.. 50

4.2.1 Developing with OSS .. 50

4.2.2 Open source software development .. 51

4.3. RIGOUR AND IRRELEVANCE IN SOFTWARE ENGINEERING RESEARCH ON

OSSD .. 55

4.3.1 The rigorous development irrelevance ... 55

4.3.2 Otherness and irrelevance .. 56

4.3.3 Beyond the otherness relation... 57

PART II: THE RESEARCH ... 59

5. THE INTERPRETIVE RESEARCH APPROACH....................................... 61

5.1. ASSUMPTIONS ABOUT SOCIAL REALITY AND KNOWLEDGE 62

5.2. INTERPRETIVE FIELDWORK .. 63

5.3. ANALYSIS .. 64

5.4. RESEARCH CONTRIBUTIONS FROM INTERPRETIVE RESEARCH......................... 65

5.5. EVALUATION OF INTERPRETIVE RESEARCH .. 66

6. THEORETICAL FRAMEWORK: KNOWLEDGE-INTENSIVE WORK 69

6.1. WORK .. 69

6.2. KNOWLEDGE-INTENSIVE WORK ... 70

6.2.1 Sensemaking.. 71

6.2.2 Actor-network theory .. 72

7. RESEARCH SETTING: GENTOO... 75

7.1. THE GENTOO COMMUNITY... 75

7.2. THE GENTOO TECHNOLOGY ... 77

7.2.1 The Unix system architecture ... 78

7.2.2 The Portage package manager ... 79

7.2.3 The Gentoo software distribution infrastructure 80

7.2.4 Variability and Gentoo ... 81

7.3. ORGANIZATION OF THE MAINTENANCE PROCESS ... 83

7.3.1 Community organization... 83

7.3.2 The maintenance process.. 83

8. THE RESEARCH PROCESS .. 85

8.1. FIELDWORK ... 86

8.1.1 Archival reconstruction (January-February 2004) 86

8.1.2 Passive observation (March-April 2004) ... 87

8.1.3 Participant-observation (April-July 2004) ... 87

8.1.4 Gradual withdrawal from the field (August-December 2004)................ 88

8.1.5 Materials collected ... 88

8.2. STUDY OF CORRECTIVE MAINTENANCE WORK ... 90

8.2.1 Sampling problem reports .. 90

8.2.2 Assembling case narratives of corrective maintenance.......................... 91

8.2.3 Identifying themes and patterns .. 92

8.3. TESTING PRELIMINARY RESEARCH RESULTS .. 94

8.3.1 Organization of the group sessions .. 94

8.3.2 Materials collected ... 95

8.4. RESEARCH EVALUATION .. 95

 VI

8.4.1 Getting to grips with the field ... 96

8.4.2 Interaction particulars and whole .. 98

8.4.3 Interaction data and theory .. 99

8.4.4 Interaction with research subjects .. 100

8.4.5 The personal journey .. 101

PART III: RESULTS ... 103

9. EMPIRICAL FINDINGS.. 105

9.1. DEBUGGING AS COLLECTIVE ACTIVITY (C1) .. 106

9.1.1 Indirect data.. 107

9.1.2 Cyclic .. 107

9.1.3 Negotiated and contingent .. 109

9.2. REWRITE EVOLVES IN RESPONSE TO AN UNFOLDING ENVIRONMENT (C2) 110

9.2.1 The problem situation ... 110

9.2.2 An outline of the case narrative .. 111

9.2.3 The constituents of rewriting requirements .. 112

9.2.4 Reflexivity of the unfolding environment .. 112

9.3. THREE DEFINING CHARACTERISTICS OF MAINTAINING AN INTEGRATED

SYSTEM (C3).. 113

9.3.1 Scarcity of resources... 114

9.3.2 Emphasis on coalition building .. 115

9.3.3 Volatility of participants ... 117

9.4. DISCUSSION ... 118

9.4.1 Problem setting: an essential activity of software maintenance........... 119

9.4.2 Transferability of empirical findings .. 119

9.4.3 Trustworthiness of findings... 121

9.4.4 Implications for software maintenance research.................................. 123

9.4.5 Revisiting relevance.. 123

10. IMPLICATIONS TO SOFTWARE MAINTENANCE PRACTICE 127

10.1. RECOMMENDATIONS FOR A LENIENT APPROACH TO COPING WITH VARIABILITY

DURING CORRECTIVE MAINTENANCE (C4) ... 127

10.1.1 Curb up-front investment of effort for coping with variability 128

10.1.2 Support for remote debugging .. 128

10.1.3 Support for bootstrapping... 130

10.2. RECOMMENDATIONS FOR AN OPPORTUNITY-DRIVEN APPROACH TO SYSTEMS

REPLACEMENT (C5) ... 130

10.2.1 Long-term goals, short-term plans ... 131

10.2.2 Opportunity-driven ... 131

11. CONCLUSIONS AND FUTURE WORK... 133

11.1. CONCLUSIONS.. 133

11.2. LIMITATIONS.. 135

11.3. FUTURE WORK ... 136

12. GLOSSARY ... 137

REFERENCES.. 139

APPENDIX: PAPERS P1-P8 ..153

 VII

 VIII

 9

1. Introduction

This thesis summarizes and concludes the research project titled 'Empirical Software

Engineering and Open Source Software Development'. The project is undertaken as part

of the Ph.D. programme attended by the Department of Computer and Information

Science at the Norwegian University of Science and Technology. As the concluding

report of the research project, the purpose of this thesis is to provide the broader context

for the eight previously published papers reporting from the research project. In addition

to summarizing the main contributions of the papers, the thesis also present an original

empirical contribution based on the totality of the reported research. With basis in the

empirical contributions, the thesis also offers a set of recommendations for software

maintenance practice.

The purpose of this chapter, however, is to provide the motivation for the study and to

briefly summarize the research reported in this thesis.

1.1. Research motivation

Research on maintenance effort over the past 30 years suggests that more than half the

total life cycle cost of software is spent on software maintenance (Calzolari et al. 1998).

Research also suggests that the maintenance burden is increasing. Pigoski (1997), for

instance, shows that maintenance costs have risen from 40% of the total life cycle cost

in the 1970s, through 55% in the 1980s, to 90% in the early 1990s. While the latter

figure may be somewhat exaggerated, many researchers report that organizations now

spend more time maintaining existing software than they do developing new ones

(Swanson and Dans 2000). As software maintenance is often defined as modifications

of software after its initial delivery (Basili 1993), increase in maintenance costs may

also be attributed the increased longevity of contemporary software (Swanson and

Beath 1989).

Research on software maintenance is growing. So far, though, software maintenance

research has predominantly focused on maintenance of application software (Mockerjee

2005). Banker et al. (1993) define application software as a set of software modules

performing a coherent set of tasks in support of a given organizational unit and

 10

maintained by a single team. This definition can be expanded to include standardized

software products. Several teams or even an entire software organization may also be

required to maintain large-scale application software. Over the past decade, however,

software integration has received increased attention. This can be attributed to three

developments within the software industry. With increased availability of off-the-shelf

products, component-based development has become a viable alternative to traditional

programming (Boehm and Abts 1999). Furthermore, individual and collaborating

organizations integrate previously separate and isolated systems to give them greater

market leverage (Lam and Shankararaman 2004). Software integration is also proposed

as a solution to avoid replacing or modifying the growing number of business-critical

legacy systems (Hasselbring 2000).

In the future, the number of integrated systems will therefore increase at the expense of

application software (Boehm 2006b). Yet, there is limited research on maintaining

integrated systems. However, to do research that is relevant to systems integration

practice, researchers have to better understand the actual work of maintaining integrated

systems. Rather than focusing on improving the process of maintaining integrated

systems, the reported research therefore explores how software integrators maintain

integrated systems in practice. Consequently, it seeks to inform research rather than

practice. As the relevance of software engineering research is largely driven by the

desire to directly address the needs of practitioners (Osterweil 2007), the reported

research can therefore be considered part of the ongoing discussion about research

relevance within software engineering.

Software engineering practice relies heavily upon the knowledge of individual software

developers and their interactions (Ye 2006). The research reported in this thesis

therefore focuses upon software maintenance as knowledge-intensive work. This is

called software maintenance work. The reported study draws upon research that sees

work and knowledge as interrelated (Brown and Duguid 1991), emphasising the

unexpected twists and turns as software integrators have to make sense of situations that

are puzzling, troubling, and uncertain (Weick 1995).

1.2. Research setting

Software maintenance as knowledge-intensive work is explored in the context of open

source software development (OSSD). OSSD is well suited for studying software

maintenance work, as it is often understood as a perpetual cycle of corrective, adaptive,

and perfective maintenance (Samoladas et al. 2004). To this end, an interpretive field

study of Gentoo has been undertaken. Gentoo is a community of volunteer software

integrators who maintain and operate a software system for distributing and integrating

third-party open source software (OSS) with various Unix operating systems. Chapter 4

will explain OSS more in detail. For now, however, OSS is merely software released

under a license that makes the source code open for anyone interested to read and

modify. The volunteers studied call themselves the Gentoo developers, and they release

the software they maintain as OSS. In addition, the community provides a GNU/Linux

distribution, Gentoo Linux, based upon the software distribution system. A GNU/Linux

distribution is a collection of software applications and libraries bundled together with

 11

the Linux operating system kernel. In a sense, it is the OSS equivalent of the shrink-

wrapped Microsoft Windows installation disc. As such, the Gentoo community can be

understood as the OSS world's equivalent of a vendor of shrink-wrapped software.

As of March 2006, the Gentoo community consisted of 320 official volunteer software

integrators distributed across 38 countries and 17 time zones. They call themselves the

Gentoo developers. None of the Gentoo developers were, to the best of my knowledge,

geographically co-located. As with most volunteer OSS communities, users are an

important part of the Gentoo community, contributing with problem reports as well as

source code. However, it is impossible to pinpoint the number of users active in the

community at any one time. It is still safe to say that Gentoo is a large-scale

maintenance effort.

1.3. Research goals and questions

With basis in the view of software maintenance as knowledge-intensive work, the

overall goal of the reported research is:

To explore maintenance of an integrated system within the context it is

developed and used. In particular, to explore the intertwined social and

technical factors that influence software maintenance work in a community of

volunteer software integrators.

The following three research questions have therefore been asked:

RQ1: How is knowledge of software failures developed during geographically

distributed software maintenance?

RQ2: How do software developers build knowledge of how to replace a

business-critical software system?

RQ3: What are the characteristics of maintaining an integrated system in a

distributed community of volunteers?

1.4. Contributions

Included with this thesis are eight previously published papers reporting from the

research project. Each of the papers has been published in peer-reviewed outlets. They

therefore offer single research contributions from the research project. The papers are

listed along with a brief summary of their individual contributions in Section 1.4.1. This

thesis also provides five contributions with basis in the results reported in the papers. A

brief overview of these contributions is presented in Section 1.4.2.

����� ����	
	����

Out of 13 scientific and two popular-scientific papers published as part of the research

reported here, eight peer-reviewed papers have been included with this thesis. This

 12

section presents the individual papers (ordered chronologically) by providing:

publication details, a short summary of the paper itself, before progressing with a brief

outline of its individual research contribution, concluded with a description of my

contribution to the finished product.

The sequence of the papers reflects the order they were written and published, reflecting

the learning process I have gone through conducting the reported research. The scope of

the research was initially broad, focused upon theory before gradually becoming more

empirically intensive. Each paper has gone through preliminary versions, duly

commented by colleagues at the department. Earlier versions of several of the papers

included have also been presented and discussed in various seminars, workshops, and

conferences. Where appropriate, the revision history of the papers is provided to give a

better account of the learning process.

P1. Østerlie, T. "In the network: Distributed control in Gentoo/Linux", in

Proceedings of the 4th Workshop on Open Source Software Engineering, co-

located with the 26th International Conference on Software Engineering

(ICSE'04), Edinburgh, Scotland, May 25, 2004, pp. 76-81.

Summary. The paper reports on control issues during adaptive maintenance.

Drawing upon the tension between distributed versus centralized control, the

paper seeks to explore alternative ways of understanding control other than the

power to make decisions.

The paper was selected as one of four accepted papers to be presented at the

workshop.

Research contribution. The paper offers a contribution to OSS research by

exploring the tension between distributed and centralized control in OSSD.

Much research on control in OSS communities focuses on who has the power to

make decisions, decision-making structures, and the configuration of these. In

contrast, this paper empirically illustrates how control can also be understood as

the power to frame the problems that needs to be made decisions about. As such,

control is distributed in that it is a function of the reciprocal influence among

people and technology. Control is therefore understood as not only inherent in

organizational structures or hierarchies, but locally embedded among human and

technological actors in the problem framing process.

My contribution. The paper is fully authored by myself.

P2. Berntsen, K., Munkvold, G., and Østerlie, T. "Community of practice versus

practice of the community: Knowing in collaborative work," The ICFAI Journal

of Knowledge Management (II:4), December 2004, pp 7-20.

Summary. This paper explores some theoretical implications for collaborative

work when technology is given a prominent role. It proposes a shift of focus

from the community aspect of collaboration towards the practice aspect.

 13

Drawing upon work within science and technology studies, we illustrate the

constitutive role technology plays in everyday work.

Research contribution. The paper offers a contribution towards research on

knowledge-intensive work, in that it illustrates the material aspect of knowledge

in collaborative work.

My contribution. While I wrote the initial draft, each author has contributed

equally with text to the paper.

Revision history. An early version of this paper appears in Proceedings of the

27th Information Systems Research Seminar in Scandinavia (IRIS'27), August

14-16 2004, Falkenber, Sweden.

P3. Jaccheri, L., and Østerlie, T. "Can We Teach Empirical Software Engineering?",

in Proceedings of the 11th IEEE International Symposium on Software Metrics

(Metrics 2005), Como, Italy, September 19-22, 2005, pp. CD-ROM.

Summary. Based on the experiences from organizing and teaching a national

PhD course in empirical software engineering, the paper seeks to evaluate two

different approaches to teaching empirical software engineering – classroom and

seminar-based teaching. The comparison is based upon the responses to a

questionnaire circulated among students attending two iterations of the course.

Research contribution. The paper contributes to software engineering

education by offering the description of a PhD level course in empirical software

engineering: a well-defined syllabus, as well as an evaluation of two

pedagogical strategies for teaching the syllabus.

My contribution. I participated in formulating the questionnaire, analysing the

responses, and in writing the related work section of the paper.

Revision history. This paper was first published as AP10 (see page 16). P10 is

an abridge variant of an early revision of P3. This early revision was rejected for

the 10th IEEE International Metrics Symposium (Metrics'04). P3 is based upon

the feedback received for AP10 and the review comments received from

Metrics'04.

P4. Østerlie, T., and Wang, A.I. "Establishing Maintainability in Systems

Integration: Ambiguity, Negotiation, and Infrastructure", in Proceedings of the

22nd IEEE International Conference on Software Maintenance (ICSM'06),

Philladelphia, PA, September 24-27, 2006, pp. 186-196.

Summary. This paper reports from the analysis of corrective maintenance work

in the Gentoo community (Section 8.2). The paper revisits the concept

maintainability in the context of software integration. The paper explores how

maintainability can be understood as a function of the external environment

within which the software is being maintained. Maintainability is therefore the

 14

collective achievement of software integrators, users, failing software, and an

infrastructure of diagnosis tools.

Research contribution. The paper offers a contribution to software

maintenance research by empirically illustrating how the maintainability of an

integrated system is continuously enacted during corrective maintenance. This

supplements existing research which views maintainability as a quality attribute

or an architectural strategy. In contrast, the paper presents a view of

maintainability, understood as the ease with which software can be understood

and modified, where corrective maintenance is understood as a process of

framing the problem resulting in the reported failure.

My contribution. Paper written by me, except for the related work section that

was written together with the second author who also created the figures.

Revision history. This paper is a derivative of AP12. AP12 was initially

submitted as a full-length paper to the Second International Conference on Open

Source Systems (OSS'06), but accepted as short paper. However, the review

comments received were formative for the direction of the revision to P4. An

early revision of AP12 was also presented and commented during the 10th PhD

Days, a PhD seminar held by the Department of Informatics, University of Oslo,

February 9-10, 2006.

P5. Jaccheri, L., and Østerlie, T. "Open Source Software: A Source of Possibilities

for Software Engineering Education and Empirical Software Engineering", in

Proceedings of the First International Workshop on Emerging Trends in FLOSS

Research and Development, co-located with the 29th International Conference

on Software Engineering (ICSE'07), Minneapolis, Minnesota, May 20-26, 2007,

pp. 1-5.

Summary. Paper reports from and reflects upon the work on teaching master

level students by using principles from action research for organizing OSS

education.

Research contribution. The paper contributes towards the software engineering

education with an approach to learning practice-based software engineering

through action research in OSS communities.

My contribution. Paper predominantly written by first author. I wrote the

related work section as well as supplemented the analysis.

P6. Østerlie, T., and Jaccheri, L. "A Critical Review of Software Engineering

Research on Open Source Software Development", in Proceedings of the The

Second AIS SIGSAND European Symposium on Systems Analysis and Design,

Gdansk, Poland, June 5, 2007, pp. 12-20.

Summary. The paper is based on a discourse analysis of the software

engineering research literature on OSSD. It seeks to explore why software

 15

engineering research on OSSD keeps on portraying OSSD as a homogenous

phenomenon despite the fact that recent empirical studies show great variation

of software development activities among OSS communities. Four ways the

literature present OSSD as a homogenous phenomenon is identified. The paper

finds that the software engineering research literature's view of OSSD is based

in three assumptions collectively held by the discipline: assumptions about

software engineering research, assumptions about how to do software

engineering research, and assumptions about the object of study.

Research contribution. The paper offers three contributions to software

engineering research. First, it shows that assumptions about software

engineering research may have produced a systemic bias in the research on

OSSD. Second, it offers a set of suggestions for improving the situation. Third,

the paper contributes with a possible approach for evaluating the effect research

approaches and assumptions have on the object of study.

My contribution. The paper is the result of several years of discussion about

software engineering research on OSSD with the second author. It is still written

in its entirety by myself.

Revision history. A first revision of the paper was submitted to the Third

International Conference on Open Source Systems (OSS'07), but rejected. While

strongly disagreeing with the review comments, the paper still underwent major

revision to pre-empt the concerns raised by the OSS'07 reviewers.

P7. Østerlie, T., and Jaccheri, L. "Balancing Technological and Community Interest:

The Case of Changing a Large Open Source Software System", in Proceedings

of the 30th Information Systems Research Seminar in Scandinavia (IRIS 30),

Tampere, Finland, August 11-14, 2007, pp. 66-80.

Summary. This paper reports from an analysis of the process of rewriting and

replacing a core component of the Gentoo software (Section 8.1). The paper

seeks to explore how the interaction between the software and its context of

development and use enable and constrain the rewriting process. It shows how

adaptive maintenance as a continuous process of negotiating over the scope of

the changes to be made, their sequence, and which actors to be involved in the

process.

Research contribution. The paper offers a contribution to software engineering

research on systems replacement. Much research on rewriting and replacement

focuses upon replacement strategies and planning of the rewriting effort. In

contrast, this paper empirically illustrates how the plan for rewriting and

replacing software is continuously unfolding. The paper offers a view of systems

replacement as a process of framing the problems that the rewritten software is

to resolve.

My contribution. I wrote the text. The second author contributed as discussion

partner and with concrete suggestions for improving the paper.

 16

P8. Østerlie, T., and Wang, A.I. "Debugging Integrated Systems: An Ethnographic

Study of Debugging Practice", in Proceedings of the 23rd International

Conference on Software Maintenance (ICSM'07), Paris, France, October 2-5,

2007, pp. 305-315.

Summary. This paper reports from the analysis of corrective maintenance work

in the Gentoo community (Section 8.2). It explores how software integrators

debug an integrated system. We identify five characteristics of the debugging

process: that it spans a variety of operating environments, it is collective, social,

heterogeneous, and ongoing. The debugging process is a collective sensemaking

process, influenced by both social and technical factors, rather than a purely

individual, cognitive problem-solving activity.

Research contribution. The paper offers a contribution to software

maintenance research by identifying the five characteristics that sets the practice

of debugging integrated systems apart from existing research on debugging.

This suggests that the software failure is not unproblematic as a phenomenon,

but rather subject to interpretation and negotiation. This raises concerns about

the appropriateness of assuming that software failures are clearly identifiable

and stable phenomena. That there is a clearly identifiable relation between the

errors in the code and the observed failures is too simple. In system integration

the problem is more complex.

My contribution. Paper predominantly written by myself. Second author

contributed the analysis and to the related work section.

Revision history. An early revision of the paper was presented and commented

during the 11th PhD Days, 21-22 September, 2006. The same revision was

submitted to the 29th International Conference on Software Engineering

(ICSE'07), but rejected. The review comments helped pinpoint significant

problems with this early revision, and were formative for revising the paper.

Additional papers (AP) published as part of the research project, but not included in this

thesis.

AP9. Østerlie, T., and Rolland, K.H.R. "Unveiling distributed organizing in open

source software development: The practices of using, aligning, and wedging", in

Proceedings of the Workshop on Open Source Software Movement and

Communities, co-located with the First International Conference on

Communities and Technologies (C&T'03), Amsterdam, Netherlands, September

18, 2003, pp. 1-7.

AP10. Jaccheri, L., and Østerlie, T. "Empirical Software Engineering Education", in

Proceedings of the 11th Norwegian Conference on Information Systems

(NokobIT'04), Stavanger, Norway, November 29-December 1, 2004, pp. 242-

249.

 17

AP11. Østerlie, T., and Munkvold, G. "Ordering actors, organizing work", in

Proceedings of the 28th Information Systems Research Seminar in Scandinavia

(IRIS), Kristiansand, Norway, August 6-9, 2005.

AP12. Østerlie, T. "Producing and Interpreting Debug Texts", in Proceedings of the

Second International Conference on Open Source Systems (OSS'06), Como,

Italy, June 8-10, 2006, pp. 335-336.

In addition, the following popular scientific papers have been published in connection

with the research reported in this thesis.

AP13. Oksholen, T. "Frå vondt til verre" (eng. 'From bad to worse'), Gemini, issue 5,

October 2005, pp. 28-29.

This article is an interview with me. With basis in the reported research and

existing research on software integration, I reflect upon the implications of

software integration to organizations. Gemini is a national popular-scientific

magazine.

AP14. Søndenaa, T. "Forsker på open source-utviklere" (eng. 'Studies of open source

developers'), Linux magasinet, issue 3, June 2007, p.30.

This article is an interview with me. The interview reports on the research

reported in this thesis to the national community of Linux enthusiasts and

practitioners. Linux magasinet was a national trade magazine targeted at the

national Linux and open source community.

1.4.2 Contributions of this thesis

Summarizing the individual papers reporting from the research project, this thesis offers

five contributions. Three of these contributions are empirical, and two offer

recommendations for software maintenance practice. The contributions are presented in

their entirety in Chapters 9 and 10, respectively. An overview of the five contributions

is provided in Figure 1-1. The figure illustrates the relationship between the individual

papers reporting from this research and the five contributions offered in this thesis.

 18

Figure 1-1 Relationship between papers and contributions

The main empirical contribution offered by this thesis is insight into the social and

technical processes of maintaining an integrated system in a distributed community of

volunteer software integrators. In particular, the thesis offers a view of software

maintenance where multiple stakeholders with different interests continuously negotiate

over problems and their solutions. Focusing upon scarcity of resources and

contradictory interests brings out the inherently political aspects of software

maintenance. Whereas more or less clearly defined problems is the basic premise of

application software maintenance research, the reported research shows that the

essential activity of maintaining integrated systems is problem setting: the collective

process in which situations that are unclear, problematic, and puzzling are progressively

clarified.

Specifically, three empirical contributions are offered. The first two contributions draw

together results reported in the papers included with this thesis:

C1: Knowledge of software failures is developed through a process of

negotiating over possible interpretations of available data, a process that is

 19

contingent upon situational issues such as workload, priorities, and

responsibilities (in response to RQ1, documented by P2, P4, and P8).

C2: A collective understanding of the scope, stakeholders, and sequence of

activities for rewriting software evolves in response to new problems emerging

from the rewrite efforts themselves as well as environmental changes (in

response to RQ2, documented by P1, P2, and P7).

Contribution C3 aggregates the results reported in C1 and C2 to form an original

contribution from the totality of the reported research:

C3: Maintaining an integrated system in a community of volunteers is

characterized by a scarcity of resources, an emphasis on coalition building, and

volatility of stakeholders (in response to RQ3, documented by P3, P5, and P6).

Grounded in the empirical contributions, contributions C4 and C5 draw practical

implications for software maintenance practice:

C4: Recommendations for corrective maintenance practice.

C5: Recommendations for systems replacement practice.

1.5. Thesis structure

The thesis is divided into three parts. Part I presents related work. The purpose of this

part is to position the reported research within software engineering. This part

introduces the topic of research relevance within software engineering. It also presents

research on software maintenance and OSSD. Part II presents the reported research.

Here, the interpretive research approach is presented first. Gentoo, the research setting,

is then presented, before progressing with an overview of the research process and

reflections upon the research. Part III presents the results of the reported research. This

part consists of three chapters. The first chapter presents the empirical results of the

research. Implications of the empirical results are then drawn for software integration

practice. The issue of research relevance is then revisited in light of the reported

research. Chapter 11 draws conclusions of the research and proposes future work.

Chapter 12 offers a glossary with the key terminology used.

 20

 21

PART I: RELATED WORK

22

23

2. Relevance in software engineering

research

The software engineering discipline can be understood as a movement of industry and

academic actors to professionalize software development. Research-informed practice

has therefore been a key goal of the discipline. However, since the mid 1980s there has

been a recurring discussion over the relevance of software engineering research (Basili

et al. 1986; Fenton 1993; Potts 1993; Glass 1994). The discussion can be related back to

the goal of research-informed practice, and that the relevance of software engineering

research has largely been driven by the desire to meet the needs of practice (Osterweil

2007). To make research more relevant to practice, the empirical agenda was proposed

to increase the validity of research results through increased scientific rigour (Basili

1993).

This thesis asserts that in order to inform software engineering practice, researchers

need to better understand what practitioners do when developing and maintaining

software. While increased scientific rigour may increase the validity of the research

results, it is argued that the problem is also that research results fail to address issues

relevant to practitioners. Empirical studies, while scientifically rigorous, tend to focus

on simplified small-scale problems that fail to grasp the complexities of software

engineering practice. Software engineering researchers often know too little about these

complexities to effectively inform research practice. Software engineering research

therefore needs to be informed by practice before researchers can inform practice. As

such, increased scientific rigour may actually contribute to further exacerbate research's

lack of relevance to practice.

With basis in the above proposition, this thesis and the research reported here can be

considered part of the ongoing discussion on relevance and software engineering

research. The purpose of this chapter is therefore to provide the background for the

empirical agenda in software engineering as response to the problem of relevance.

However, it is proposed that the turn towards science within software engineering

research needs to be situated in the broader societal context of professionalizing work

during the 20th century. It is within this context that the empirical agenda in software

24

engineering can be understood not only as a direct response to problems of research's

relevance to practice, but also as a standard solution of the broader movement of

professionalizing work that the software engineering discipline is part of. Drawing upon

a standard solution, however, researchers only address a part of the problem of

relevance within software engineering.

However, before progressing further with elaborating this argument, we need a working

understanding of software engineering first.

2.1. Software engineering

While several definitions of software engineering exist, the purpose of this section is not

to synthesise a definite definition. Software engineering is an evolving discipline

(Finkelstein and Kramer 2000), and definitions are inherently problematic when trying

to grasp evolving phenomena. This section therefore seeks to establish a working

understanding of software engineering rather than to formally define it. It does so by

drawing upon previous works aimed at identifying the discipline.

In their review of the computing literature, Glass et al. (2004) distinguish between three

broad subfields within the computing disciplines: computer science, software

engineering, and information systems research. This review implies that rather than

being clearly delineated, there are sliding boundaries between the three subfields.

Computer science is at one end of the scale. This subfield is predominantly concerned

with computer concepts at technical levels of analysis. Information systems research

resides at the other end of the scale. Information systems research examines topics

largely related to organizational issues. However, systems and software-specific topics

are also studied. Computer science researchers expect to contribute with new processes,

methods, algorithms, and products. Information systems researchers, on the other hand,

expect to explore theories, concepts, techniques, and projects.

Software engineering resides between the two other subfields. Like information systems

research, software engineering is concerned with systems and software-specific topics.

However, like computer sciences, it does so predominantly at the technical level of

analysis. While software engineering researchers to a certain extent expect to contribute

with new processes, methods, algorithms, and procedures (Glass et al. 2002), there is

also some focus on theory contributions (Sjøberg et al. 2008).

Finkelstein and Kramer (2000) draw upon software engineering's focus on systems and

software-specific topics in locating the discipline within a broader disciplinary

landscape. They propose that software engineering can be considered a subfield of

systems engineering. Systems engineering is concerned with hardware development,

policy and process design, as well as software engineering (Sommerville 2001). Like

systems engineering, software engineering is concerned with the specification,

development, implementation, and maintenance of systems.

Drawing upon the engineering aspect, Basili (1993) distinguishes software engineering

from manufacturing. The purpose of engineering research is to observe existing

25

solutions, propose better solutions, implement these solutions, and evaluate them.

Unlike hardware, however, software is often considered more complex to build and

understand. As such, there is an increased need for control through tools and process

models. Software engineering can therefore be understood as the disciplined

development and evolution of software systems based upon a set of principles,

technologies, and processes (ibid.). In this view, the purpose of software engineering

research is therefore to provide and improve tools, techniques, and methods for

practitioners to improve parts of the software process. In short: research-informed

practice. The issue of research-informed practice will now be pursued in the context of

professionalization of work.

2.2. The empirical agenda in software

engineering

This section situates software engineering as part of the broader movement towards

professionalization of modern work during the 20th century. As part of this movement,

it is argued that the turn towards increased scientific rigour is a natural response to the

problem of research relevance. To this end, the section is organized as follows. First,

software engineering is situated as part of the movement towards professionalization of

work. Then, the problems of research relevance and the research-practice crisis of the

1990s is presented. The chapter is concluded with presenting empirical software

engineering as the discipline's response to the crisis.

�
�� ����������
���
�������������
���������	�����

Software engineering researchers often trace the origins of the discipline back to the

software crisis (Boehm 2006a). Increased hardware capacity during 1960s made larger

and more complex software systems a possibility. The software crisis is therefore

commonly attributed to the combination of increased largeness and complexity of

software systems and the relative inexperience of software developers which led to late

deliveries of systems, escalating costs and failed software projects (Friedman and

Cornford 1989, p. 99).

Looking towards the production industry and aiming to build upon its success since late

19th century, software engineering was proposed as the solution to the software crisis:

The whole trouble comes from the fact that there is so much tinkering with

software. It is not made in a clean fabrication process, which it should be. What

we need is software engineering. (Ludewig 1996, p. 25)

As such, software engineering came to be defined as "the application of a systematic,

disciplined, quantifiable approach to the development, operation, and maintenance of

software; that is, the application of engineering to software" (IEEE 1990).

However, the dichotomy between 'so much tinkering' and 'clean fabrication process'

holds a clue to an alternative explanation of the software engineering discipline's

origins. This explanation contextualizes software engineering in the movement towards

26

professionalization modern work during the 20th century. Professionalization of work is

often traced back to the tension between the practice-based education of traditional

trades' and theory-based academic training (Noble 1977). Professionalization has been

characterized as the dual process of institutionalization on the one hand and

development of professional knowledge on the other (Schön 1991).

Professionalization has been contrasted with the experience-based knowledge of the

traditional trades where customary activities are modified by trial and error. Professions,

on the other hand, are identified by the application of general scientific principles, and

standardized knowledge to concrete problems (Schön 1991). The development of a

standardized professional body of knowledge is therefore an important part of

professionalization. Schein (1972) provides a three-component model of professional

knowledge (summarized in Table 2-1).

Component Description

1. Underlying theory of discipline Component provides the general principles upon which the

body of knowledge rests.

2. Applied science / engineering Resting upon the general principles from the underlying

discipline, the component provides the applied knowledge

from which the day-to-day diagnostic procedures and

problem-solutions are derived

3. Practical skills and attitudes Using the underlying applied science, the component concerns

the performance of services to clients.

Table 2-1 Schein's three-component model of professional knowledge

In this context, the software engineering discipline can therefore be understood as a

movement of industry and academic actors to professionalize software development,

maintenance, and operations. Such a view is further corroborated by recent years'

discussion on further institutionalizing the software engineering profession by licensing

the title (Knight and Leveson 2002).

With the above view of the software engineering discipline, the distribution of

responsibilities between research and practice is such that researchers are to "establish a

scientific and engineering basis for software engineering" (Basili 1993, p. 7). Software

engineering practitioners, on the other hand, are to apply this knowledge in the

development, operation, and maintenance of software. As such, research-informed

software engineering practice has been a key goal of the discipline, and the relevance of

software engineering research is largely driven by the desire to meet the needs of

practice (Osterweil 2007).

�
�
 ��������
����	�
�������������

Since the mid 1908s, studies examining the state of software engineering research have

raised concerns over its lack of impact on practice. With the goal of research-informed

software engineering practice in mind, this lack of impact on practice is of great concern

among software engineering researchers. Glass (1994) calls this the research-practice

crisis.

27

Reviewing the software engineering research literature to examine the validity of the

claims that methods, tools, and techniques improve quality and productivity in software

development, Fenton (1993) finds "very little empirical evidence to support the

hypothesis that technological fixes, such as the introduction of specific methods, tools,

and techniques, can radically improve the way we develop software systems". This is

particularly troubling when the predominant contribution of software engineering

research are such methods, tools, and techniques (Glass et al. 2002). Commenting on

research's lack of impact on software engineering practice, Tichy et al. (1993) conclude

that software engineering research is lacking in quality and thereby becoming less

credible to practitioners. Glass (1994) traces the origins of the crisis to the different

views of software development held by researchers and practitioners; research results

simply fail to address issues relevant to practitioners.

Tichy et al. (1995) surveyed 400 research papers within the broader field of computer

science. Based on a random sample, they find that only 20% of the software engineering

papers devote more than one fifth or more of the space to validation. Papers with no

research validation are typically studies where the researcher implements a technology

and shows that the technology works. Glass (1994) calls this advocacy research –

researchers advocating a new technology without validating its effectiveness over

existing technologies or its applicability to practitioners.

Similarly, Zelkowitz & Wallace (1998) reviewed 612 software engineering research

papers. The papers have been published in three leading software engineering journals

and magazines at three intervals during a ten-year period from 1985 to 1995. The survey

shows that in 58.7% of the papers there is no validation of the research claims or the

validation is based on assertions. This figure rises to 66.8% if counting papers where

validation was not applicable.

As such, two reasons for the research-practice crisis were identified:

• Lack of credibility of research

• A gap between research interests and software engineering practice

�
�� ��	����
�������
���������������

A call for increased empirical research and scientific rigour rose within the software

engineering research community in response to the research-practice crisis. To increase

the credibility of research claims software engineering research needed to better validate

its scientific claims (Zelkowitz and Wallace 1998), preferably through increased

experimentation (Tichy 1998). The low ratio of validated research had to be rectified for

the long-term health of the discipline (Tichy et al. 1995). Similarly, Fenton (1994, p.

199) addressed existing research's lack of understanding of measurement theory,

arguing that software engineering researchers "must adhere to the science of

measurement if it is to gain widespread acceptance and validity". Summarized,

researchers agreed that increased scientific rigour was needed to address the lack of

credibility of research results.

28

The subfield within software engineering that emerged from this discussion came to be

labelled empirical software engineering (Basili and Harrison 1996). Its focus is the

systematic evaluation of software related artefacts for the purpose of characterization,

understanding, evaluation, prediction, control, management, or improvement through

qualitative or quantitative analysis through the application of the scientific method

(Basili and Harrison 1996; Wohlin et al. 2000; Conradi and Wang 2003). The subfield

has materialized in two annual conferences (The IEEE Symposium on Software Metrics

since 1993, and The International Symposium on Empirical Software Engineering since

2002; being merged to The International Symposium on Empirical Software

Engineering and Measurement in 2007), as well as the Empirical Software Engineering

journal since 1996 (Basili and Harrison 1996). The subfield has been further supported

by a number of textbooks on the topic (e.g. Fenton and Pfleeger 1997; Shull et al.

2007).

Surveying 369 software engineering research papers in the period 1995-1998, Glass et

al. (2002) finds that less than 10% of the papers report from empirical studies. However,

the trend is towards more empirical studies within software engineering. Concerns

about the state of scientific rigour in empirical software engineering research have

recently been raised, though. Dybå et al. (2006) reviews 103 papers reporting on

controlled experiments published from 1993-2002. They find the statistical power in

reported software engineering experiments to fall substantially below accepted norms.

Despite these concerns, recent years' evaluative reviews continued focus on research

validation shows that the dominant view of empirical software engineering research is a

field based on measuring the software process and its products (Segal et al. 2005).

This view is strengthened by recent year's increased attention on evidence-based

software engineering (EBSE) (Kitchenham et al. 2004; Dybå et al. 2005). Inspired by

the results of evidence-based medicine, EBSE is regarded as a method for systematizing

existing knowledge. Through a joint undertaking of systematic literature reviews, the

goal of EBSE is "to provide the means by which current best evidence from research

can be integrated with practical experience and human values in the decision making

process regarding the development and maintenance of software" (Kitchenham et al.

2004, p. 274). A much-used set of guidelines for such systematic reviews, however,

express the need for scientific rigour as a key quality in filtering what can be considered

proper evidence (Kitchenham et al. 2004). As such, EBSE enforces the dominant view

of software engineering as a predominantly quantitative research field.

2.3. Rigour or relevance

We have now established software engineering as a movement of academic and

professional actors to professionalize software development. This, we have seen, is part

of the broader movement of professionalization of modern work in the latter half of the

20th century. Other examples of professionalization can be found throughout modern

working life, for instance in other fields of engineering, law, as well as in medicine and

nursing. In his study of professional work, Schön (1991, p. 22) observes that "a

profession involves the application of general principles to specific problems". Such

general principles are based on a systematic, scientific knowledge formalized in theories

29

and models. Professional work, the application of such models and theories to particular

problems, is therefore a form of applied science.

Yet, the application of such formalized knowledge requires unambiguous problems.

This, Schön (ibid., p.42) argues, is the premise of the dilemma of rigour or relevance:

In the varied topography of professional practice, there is a high, hard ground

where practitioners can make effective use of research-based theory and

technique, and there is a swampy lowland where situations are confusing

"messes" incapable of technical solution.

Using the field of formal modelling as a formative example, Schön observes that the

rigorous application of scientific knowledge is usefully employed to solve problems in

undemanding areas, while failing to yield any results in more demanding and complex

areas of the swampy lowlands. The problem, however, is that the high, hard ground is

often of limited relevance to everyday practice. The messes of the swampy lowlands, on

the other hand, are. The systematic development of a rigorous scientific knowledge base

to turn a vocation into a profession can therefore be of limited relevance to practitioners

of the profession. As such, a widening gap between research and practice may develop

over time.

A similar division of labour between researchers developing formalized knowledge to

be applied by practitioners may be observed within software engineering (Subsection

2.2.1 above). While the empirical agenda may have increased the validity of research

results, there are few indications that this has improved research's impact on software

engineering practice. For instance, Glass' (2007) appeal to software engineering

practitioners to keep abreast with the findings published by experimental software

engineering researchers suggests that the gap between software engineering research

and practice remains.

The empirical agenda addresses the issue of credibility through rigour. However, as

shown in Subsection 2.2.2 above, lack of credibility is only one of two causes of the

research-practice crisis. The other cause is the gap between research interests and

software engineering practice. Yet, considering software engineering in the context of

professionalizing work, increased scientific rigour appears as a stock response to the

problem of relevance. As argued above, increased scientific rigour is not synonymous

with 'relevant to practice'. Furthermore, increased scientific rigour also tends towards

small-scale problems that fail to address the complexities of software engineering

practice.

This observation needs to be tempered by recent research showing that it may take

between 15 and 20 years from the initial publication of an idea until it is widely used in

products (Osterweil et al. 2008). As such, it may be too early to evaluate the effect of

rigorous research. Still, with basis in Schön's (1991) work, it is reasonable to assume

that more rigorous research may also be of less relevance to practice. Similar concerns

have already been raised within the software engineering discipline. In surveying the

computing literature Glass et al. (2002) finds that software engineering research is

limited in its scope to software technical matters related to building software, improving

30

the way software is built, and analyzing or implement promising new concepts.

However, they ask, maybe it is time for software engineering research to broaden its

scope and to seek methods that may yield richer findings?

This question is left hanging for now. It will be picked up again in 9.4.5, which relates

the issue of research relevance to the reported research.

31

3. Software maintenance, legacy systems,

and integration

Software maintenance constitutes a significant part of the software life-cycle cost.

Calzorella et al. (1998) report that estimates range from 50 to 80 percent of the total

life-cycle costs are spent on maintenance. Research suggests that the maintenance

burden is increasing. Pigoski (1997), for instance, shows that maintenance costs have

risen from 40% of the total life cycle cost in the 1970s, through 55% in the 1980s, to

90% in the early 1990s. While the latter figure may be somewhat exaggerated, many

researchers report that organizations now spend more time maintaining existing

software than they do developing new ones (Swanson and Dans 2000). As software

maintenance is often defined as modifications of software after its initial delivery

(Basili 1993), increase in maintenance costs may also be attributed the increased

longevity of contemporary software (Swanson and Beath 1989). Research is therefore

mainly concerned with identifying factors driving maintenance costs, as well as

developing methods for managing and reducing these costs.

So far, however, software maintenance research has mainly focused upon application

software maintenance (Mockerjee 2005). Over the past decade, however, software

integration has received increased attention. This can be attributed to three

developments within the software industry. With increased availability of off-the-shelf

products, component-based development has become a viable alternative to traditional

programming (Boehm and Abts 1999). Furthermore, individual and collaborating

organizations integrate previously separate and isolated systems to give them greater

market leverage (Lam and Shankararaman 2004). Software integration is also proposed

as a solution to avoid replacing or modifying the growing number of business-critical

legacy systems (Hasselbring 2000).

To this end, this chapter is organized as follows. Section 3.1 discusses software

maintenance in general, with a particular emphasis on corrective maintenance and

debugging as these are central topics for the reported research. Section 3.2 discusses the

product of long-term software maintenance, legacy systems. How legacy systems

increase the maintenance burden and different strategies for coping with them are

32

discussed. Section 3.3 concludes the chapter with a discussion of maintaining integrated

systems.

3.1. Software maintenance

Software maintenance refers to the activities of modifying software after its initial

delivery and implementation. Software maintenance therefore focuses upon the

correction of defects and the modification of the software to perform new tasks or

perform old tasks under new conditions (Dvorak 1994). This section provides an

overview of software maintenance, the processes and activities of the processes.

Particular emphasis is paid corrective maintenance and debugging, as this is important

for the research reported in this thesis.

To this end, the section is organized as follows. First, the scope of software

maintenance is outlined (3.1.1). Organizational level maintenance process (3.1.2) and

the individual process of implementing changes (3.1.3) are then presented. The section

is concluded with a more in-depth presentation of corrective maintenance (3.1.4) and

debugging (3.1.5).

����� �
�����������������
����
�����
����
����������

Initially conceived as the correction of errors (Canning 1972), the scope of software

maintenance has come to include corrections as well as enhancements. Swanson (1976)

offers a typology of software maintenance activities. This typology is based on the

cause for or purpose of the maintenance to be done. The typology consists of three

categories:

• Perfective maintenance: Performed to perfect the software in terms of its

performance, processing efficiency or maintainability

• Adaptive maintenance: Performed to adapt the software to changes in its data

environment or processing environment

• Corrective maintenance: Performed to correct processing, performance, or

implementation failures in the software

Highly influential within software maintenance research, and has been adopted by many

researchers (Chapin et al. 2001). Kitchenham et al. (1999) proposes a fourth

maintenance category, preventive maintenance. This expands the scope of the

maintenance activities to include modification of both the software and its requirements,

as both perfective and adaptive maintenance requires modification of system

requirements. Adaptive maintenance entails new requirements to be added, while

perfective maintenance only entails the modification of existing requirements.

Preventive maintenance, on the other hand, only requires modification of the software.

The maintenance categories have been used to develop profiles of the maintenance

effort. These profiles have been developed to identify factors driving maintenance costs.

In a much cited study, Lientz et al. (1978) finds that 17.4% of the maintenance effort

was spent on corrective maintenance, 18.2% on adaptive, while 60.3% as perfective.

33

The remaining 4.1% was categorized as others. Yet, in a more recent study, Scach et al.

(2003) finds that the distribution of corrective maintenance is more than three times that

of Lientz et al.'s study. In comparison, Scach et al. find that 4.4% of the effort is spent

on adaptive maintenance, while 36.4% is spent on perfective maintenance. The figures

therefore indicate that corrective maintenance drives maintenance costs. Reducing the

effort of corrective maintenance activities may therefore have a significant impact on

overall the maintenance costs.

����
 �������
���
����
���������
�����
����	�������

While the software maintenance activities are the same, the maintenance process may

differ between organizations (Swanson and Beath 1990). Kitchenham et al. (1999)

differentiates between the organizational level process of administrating change

requests, and the individual maintenance engineers' process of implementing specific

change requests. These two processes will be presented in turn.

An organization with co-located software maintenance team or department is likely to

have direct interaction between maintenance engineers and users or user representatives.

Companies developing off-the-shelf software, on the other hand, often interact with

users through a customer support department (Pentland 1992). Still, in all organizations

software maintenance focuses upon the correction of defects and the modification of the

software to perform new tasks or perform old tasks under new conditions (Dvorak

1994). It is therefore common to refer to an idealized model of the maintenance process

(Figure 3-1 below).

Figure 3-1 Model of the maintenance process

The change request is the point of departure for the maintenance process. In

organizations with co-located maintenance team, users submit change requests. Users

may range from end-user to user representatives (Swanson and Beath 1990).

Commercial software companies receive change requests from customers. Change

requests include both requests for adaptive, perfective, as well as corrective changes.

Requests for corrections are sometimes called defect or problem reports. Preventive

maintenance requests usually originate within the maintenance organization itself.

While older literature reports on paper-based databases for administrating change

requests (Basili and Perricone 1984), it is today common to administrate change

34

requests with issue tracking software (Serrano and Ciordia 2005). It is often

recommended that a change control board (CCB) is responsible for managing change

requests (van Vliet 2000). The CCB prioritizes incoming change requests as well as

assigning change requests to maintenance engineers. The administration of change

requests is closely tied with strategic decisions on release planning and long-term

development trajectory of the software (Ruhe and Saliu 2005).

Individual maintenance engineers, or teams of engineers, are then set to the task of

implementing the requested changes.

����� ������!
��	������������	������������
�����

All forms of categories of software maintenance activities – adaptive, perfective,

preventive, and corrective maintenance – require that the maintenance engineer

comprehend the program to be changed, understands how the program works, and how

to make the desired changes without introducing new defects or breaking existing

functionality (Vans et al. 1999). To reduce maintenance costs, researchers have studied

factors influencing the effort of individual maintenance engineers. In particular,

researchers have focused on studying how characteristics of the software product itself

influence the effort required to modify the software, as well as how maintenance

engineers come to understand the software to be modified.

Studies of how the software product influences maintenance effort have focused on the

relationship between maintainability and maintenance effort. Factors studied range from

low-level syntactic structures such as code complexity (Gibson and Senn 1989; Banker

et al. 1993), to high-level program structure such as design patterns (Voká et al. 2004).

Based on the observation that maintenance engineers spend half their time studying

source code and documentation (Oman and Cook 1990), researchers have studied how

maintenance engineers understand source code. A number of models have been

proposed to describe the cognitive processes used to acquire program comprehension

(von Mayrhauser and Vans 1995). The models show how engineers use existing

knowledge of the software to build new mental models of the software being

maintained. The strategies employed for building mental models vary between the

models (Shneiderman and Mayer 1979; Brooks 1983; Letovsky 1986; Pennington 1987;

von Mayrhauser and Vans 1995). These models have been used to compare the effect of

programming languages and paradigms on maintenance effort (Corritore and

Wiedenbeck 1999; Corritore and Wiedenbeck 2001). Similarly, Shaft and Vans (2006)

study how the fit between individual maintenance engineers' mental models of the

software on the one hand and the modification tasks on the other impacts on the

maintenance effort.

����� ������������
�����
����

Corrective maintenance has been defined as the activities performed to correct defects

in hardware and software (IEEE 1990). The point of departure for corrective

maintenance is failing software. The core activity is therefore to correct underlying

software defects. Early software maintenance research makes no distinction between

35

errors in code and errors in program behaviour, using the term error for both (Basili and

Perricone 1984). While the terminology has been refined, there is still a lot of confusion

in both the terms used and their interpretation among software maintenance researchers

(Fenton and Neil 1999). However, underneath the differences in terminology and

interpretations of terms, it is possible to identify a common causal model of software

errors. Before progressing with a description of this model, however, it is necessary to

clarify the terminology used, summarized in Table 3-1 below.

Term Description

Mistake Human error that is manifested in the source code as a defect

Defect An incorrect statement of sequence of statements in the source code that may lead to

an infection upon execution

Infection An error in the program state that may lead to a failure

Failure Externally visible deviation from correct program behaviour compared to

requirements and specifications

Infection chain A causal chain from defect to failure

Table 3-1 Key terms in the causal model of software errors

The terms mistake, defect, infection, and failure are used to distinguish between

different types of errors (Zeller 2006). The mistake is a human error. The mistake is

manifested in the program code as a defect. The defect is an error in the code. Upon

execution, the defect produces an error in the program state, an infection. The infection

may, or may not, lead to a failure.

A failure is an externally observable error in program behaviour. The infection relates to

the defect as a product of an executed defect. The causal chain from human mistake to

failure is called the infection chain.

The defect is also sometimes called a latent error. It is latent because the defect may not

be executed during operation of the software, or the code may only produce an infection

in very special cases. The relationship between the two is therefore contingent,

depending upon the execution paths through the software. The term error trigger,

defined as "the events that cause latent errors in programs to surface" (Sullivan and

Chillarege 1991, p. 2), is also used to explain the relationship between defect and

infection.

The infection is itself latent, as an incorrect program state need not produce externally

observable incorrect program behaviour. There is no 1-to-1 relation between mistake

and failure (van Vliet 2000). For instance, an incorrect program state that is never used

during execution will not lead to a failure. Conversely, a failure may be caused by more

than one defect. A single defect may also cause several failures. Furthermore, defects

may be hidden so deep in the software that it is impossible to locate and the defect is

identified by the correction made (Endres 1975).

While it is widely acknowledged that it is often difficult to determine what the defect

really is, the corrective maintenance literature find the causal model of software errors

useful. Figure 3-2 summarizes the model.

36

Figure 3-2 Causal model of software errors

For the maintenance organization, two concerns need to be balanced when handling

submitted problem reports. On the one hand, the need to correct failures that users

experience. On the other hand, the need to prioritize failures with the most impact on

the largest population of users. Some failures are more critical than others. Failures

where the software crashes or it corrupts critical data are typically more critical than

minor flaws in the user interface, for instance. It is therefore more important to address

critical failures. However, as failures are magnitudes more expensive to correct during

maintenance compared to testing, the criticality of the failure needs to be traded off

against the population it affects. While critical to those affected, it may not always be

cost-effective to correct failures that affect only a single user or a miniscule population

of users (Adams 1984). Similarly, minor failures may be prioritized if they affect a large

population of users.

����" #�$!������

Debugging encompasses the activities of analyzing and correcting reported failures.

Analyzing the reported failure, is the activity of tracing along the infection chain from

failure to defect (Cleve and Zeller 2005). The basic challenge facing any maintenance

engineer is to determine the cause of reported failures (Endres 1975). As the

maintenance engineer responsible for correcting failures rarely have direct access to the

failing system, replicating the operating environment where the failure occurs is the first

step towards analyzing the reported failure. From the maintenance engineer's point of

view, the problem report therefore needs to contain sufficient information for the

maintenance engineer to be able to replicate the operating environment as well as

reproduce the failure (Zeller 2006).

Once reproduced, the cause of the software failure has to be located; the defect leading

to the infection and consequently the failure. A common observation among researchers

is that maintenance engineers spend a lot of time chasing red herrings because there is

little understanding of how to systematically debug software (Martin and McClure

1983; Araki et al. 1991; Zeller 2006). To this end, software maintenance researchers

have offered a number of techniques for locating faults like program slicing (Xu et al.

2005), delta debugging (Misherghi and Su 2006), and hypothesis-driven debugging

(Araki et al. 1991). With basis in the source code and additional data like

documentation and stack traces, these techniques offer ways of analyzing failure by

either from chunking statements in the source code to higher-level abstractions or

mapping knowledge of the problem domain to the source code (von Mayrhauser and

Vans 1995).

37

Once the defect is located, the maintenance engineer corrects the failure and verifies

that the failure no longer occurs when trying to reproduce it. Tracing backwards along

the infection chain, debugging can be modelled as a linear process going from well-

defined failures, through locating the defect, to correcting it as suggested by the grey

line in Figure 3-3 below. As such, it builds upon the causal model of software errors.

Figure 3-3 Debugging activities

3.2. Legacy systems

Software systems survive over time because they are adapted to the changes in the

operating environment (Bennet 1995). If no remedial action is taken, however, the

structural integrity of software systems will deteriorate (Eick et al. 2001). A legacy

system is the product of software evolution (Lehman 1980). It is a software system that

has survived over time, and is becoming increasingly difficult to modify (Bisbal et al.

1999). Yet, it is critical to the host organization and cannot be disposed of easily.

This chapter discusses the product of long-term software maintenance: legacy systems.

To this end, it is organized as follows. First, a brief introduction to software evolution is

given (3.2.1). Legacy systems (3.2.2) and the increasing maintenance costs incurred by

them (3.2.3) is then discussed. The dilemma of keeping or replacing legacy systems is

presented (3.2.4), before the chapter is concluded with coping strategies for legacy

systems (3.2.5).

��
�� %����
�������!�����

With some recent additions (Eick et al. 2001), software evolution research builds

predominantly on the research reported by Belady and Lehman during the mid-1970s

and early 1980s (Belady and Lehman 1976; Belady and Lehman 1978; Lehman 1979;

Lehman 1980). Software evolution research takes the result of the software maintenance

process as its object of study, software that has evolved over time due to maintenance.

The research builds upon and seeks to explain the observation that large-scale software

over time becomes increasingly difficult to modify.

Software evolution research shows that software systems that survive over time do so

because they are able to adapt to an evolving operating environment (Bennet 1995).

With basis in change data from IBM, Belady and Lehman propose that the direct cause

of the increasing maintenance burden is that over time the software's structure

38

deteriorates. Software evolution research also shows that as software systems change

over time, they become increasingly difficult to maintain. This phenomenon has been

called systems entropy (Belady and Lehman 1976) or more recently code decay (Eick et

al. 2001). As the code decays, the maintainability of the legacy system decreases and it

becomes increasingly costly to modify the system.

While the direct cause of the increased maintenance burden is code decay, two

dynamics leading to code decay have been identified.

First, software evolves over time (Belady and Lehman 1976). It does so in order to

respond to the changing functional requirements of the host organization. Unless the

software adapts to the host organization's changing environment, it will be rendered

obsolete (Parnas 1994). As such, there is a direct relation between the longevity of the

software and the amount of changes it has undergone.

Second, through adaptive maintenance, new functionality is added to the software.

However, the nature of the changes and the process by which they are made may impact

on the software structure. In some instances, the original program structure may not

have been conceived with the new functionality in mind. As such, new program

structure violating the original design principles has to be superimposed on the existing

design to make the required changes (Lehman 1979). Developers unfamiliar with the

design or with too little time to assess how best to implement modifications in

accordance with the design may also violate the original design (Eick et al. 2001). Over

time, software therefore often acquires layers of superimposed program structure.

Unless remedial work is undertaken to amend the program structure, the code will

therefore decay (Belady and Lehman 1976). Rephrased in software engineering

terminology: unless preventive maintenance is undertaken to deliberately amend the

program structure, the maintainability of the software will decrease. As such, the

implications for software maintenance are clear. Maintainability is not something to be

established once and for all through ensuring that quality attribute requirements are met

during development (Boehm 1978; Cavano and McCall 1978). Nor is it merely

established through choice of appropriate architectural techniques during design (Bass

et al. 2003). Rather, continuous restructuring (Mens and Tourwe 2004) of the software

is required to unify the design to avoid a layering of design.

��
�
 &��
�'��'�������(�
�����

Computerization has increased over the past 40 years. Many organizations find their

portfolio of software systems growing, and many of these portfolios contain software

systems that have been long-lived, but are still in operation (Swanson and Dans 2000).

Aging systems often resists modification significantly. They therefore constitute a

significant part of the host organization's maintenance burden. These systems are often

called legacy systems (Brodie and Stonebraker 1995).

While expensive to maintain, legacy systems are often difficult to decommission. The

systems and the data they contain are vital assets for the host organization. They are

typically the backbone of the host organization's information flow and the main vehicle

39

for consolidating information (Bisbal et al. 1999; Bianchi et al. 2003). Although

constituting a significant maintenance burden, legacy systems are still operational

because they have remained business-critical over an extended period of time. In its

exclusive form, the term 'business-critical' is used about software whose failure may

result in the failure of the business using the system (Sommerville 2001, p. 357).

However, in a more inclusive form the term may be used about any software that is

critical to the organization. Such an inclusive view of business-critical software also

encompasses software providers whose survival relies on providing the software.

Legacy systems are therefore typically distinguished by two defining characteristics:

Characteristic Description

Business-critical The software system provides data and functions that are critical to the

organization

Aging The software system has continued to be business-critical by evolving in

response to the host organization's changing needs over time

Table 3-2 Characteristics of legacy systems

��
�� ����
������
�����
���������

The challenge facing host organizations is the increasing cost of adapting the legacy

system to its changing environment. It has been of particular interest to identify the

factors contributing to the increasing maintenance cost. Many factors have been

suggested. One way of summarizing the factors contributing to the increased

maintenance cost of legacy systems is to split them into internal and external factors.

Internal factors are related to the legacy system's resistance to modification. External

factors are related to the host organization and its environment.

3.2.3.1 Internal factors

Internal factors to increasing maintenance cost are summarized in Table 3-3 below.

Factor Description

Deteriorating systems structure Poor system structure (code decays) increases the maintenance

effort and makes the introduction of new faults during

maintenance more likely

System largeness System largeness make program understanding a major, time-

consuming maintenance activity

Table 3-3 Internal factors to increasing maintenance cost

Deteriorating system structure has two causes: code decay and outdated programming

techniques. Legacy systems remain relevant and thereby business-critical over an

extended period of time by adapting to the host organization's changing environment

(Lehman 1979). However, through continued adaptive maintenance over time its system

structure deteriorates unless work is done to maintain or reduce system complexity

(Lehman 1980, p. 216); the code decays. As the code decays the effort required to

modify the source code increases (Eick et al. 2001). Outdated programming techniques

such as variable aliasing and the use of single, large global data structures to save

memory, for instance, may also have a negative impact (Bennet 1995). Such techniques

may encourage types of maintenance that quickly degrade the systems structure.

40

Research suggests that larger systems tend to be longer-lived than smaller ones, as they

are not perceived as "not so much a burden of maintenance as they are assets expected

to provide corresponding returns to maintenance over a longer time period" (Swanson

and Dans 2000, p. 294). Besides, small programs are usually not difficult to maintain

(Bennet 1994). While system size is an indicator of system largeness, a system is large

when it lies beyond the grasp of a single individual and must be maintained by a group

of people (Belady and Lehman 1978). As such, system largeness also requires the

coordination of people within teams, coordination among teams within an organization,

and even coordination between organizations to perform. This increases the need for

communication and coordination, and may also drive the maintenance costs up.

Both deteriorating systems structure and systems largeness cause increasing

maintenance cost, summarized in Figure 3-4 below.

Figure 3-4 Relation between characteristics of legacy systems and internal factors

3.2.3.2 External factors

External factors for increased maintenance costs are related to the host organization and

its environment. The factors are summarized in Table 3-4 below.

Factor Description

Obsolete hardware platform Hardware is expensive to maintain

Obsolete software platform Legacy system lack clean interfaces and/or host organization's

other software systems lack software for integrating with the

legacy system

Lack of skills The skills needed to maintain legacy systems are in short supply

Table 3-4 External factors to increasing maintenance cost

Both obsolete hardware and software platforms may be attributed system age. Obsolete

hardware is less in supply, and therefore more expensive to acquire. As the functions

and data provided by legacy systems are critical to the organization, there is a need for

newer software systems to integrated with the legacy system. Obsolete software may

make it more difficult to integrate the legacy system with new software systems in the

host organization's portfolio. As such, the obsolete software platform is also

attributable to the business-criticality of legacy systems.

Lack of skills can also be attributed system age. Over time knowledge of the legacy

system details may be lost as the people who originally developed and maintained

system leaves the host organization (Bisbal et al. 1999). Many legacy systems are also

41

poorly documented. Maintenance cost increases as new maintenance engineers need to

learn system details. However, that engineers knowledgeable in the obsolete hardware

and/or software platforms may be in short supply also may also drive the maintenance

cost up.

Figure 3-5 below summarizes the relation between increasing maintenance cost and

external factors.

Figure 3-5 Relation between characteristics of legacy systems and external factors

��
�� �������
�'��'������������
�

Legacy systems often pose a dilemma to host organizations. On the one hand, they

constitute a significant and potentially increasing maintenance burden. On the other

hand, they are business-critical and cannot be decommissioned. Herein lies the

dilemma: continued maintenance as well as systems decommission and replacement

constitute a significant investment and risk for the organization.

There are three dimensions to the dilemma summarized in Table 3-5 below: cost, risk,

and adaptability.

Dimension Continued maintenance Systems replacement

Cost Continued maintenance becomes

increasingly expensive

Systems replacement a major

organizational investment

Risk Comprehensive testing difficult, and

new faults may be introduced

New faults may be introduced during re-

implementation

Adaptability Responsivity to adaptation can no

longer be appropriately sustained

Redevelopment is time-consuming,

requiring the legacy system to be stable and

irresponsive to adaption during the period

of reimplementation

Table 3-5 The legacy systems dilemma

Both maintaining and replacing legacy system constitutes a significant organizational

investment. The increased cost of continued maintenance may be related back to all of

the external and internal factors (see Table 3-3 and Table 3-4 above). Because legacy

42

systems are business-critical, their failure can potentially have serious impact on

business (Bennet 1995). The risk of continued maintenance is related to deteriorating

system structure. The chances of introducing new faults during maintenance increases

as the code decays (Eick et al. 2001). Adaptability of a legacy system may be related

back to both deteriorating system structure and obsolete software. Deteriorating system

structure may make adaption impossible (Bisbal et al. 1999), and obsolete software may

make it hard or even impossible to integrate with new systems.

��
�" ��	���������
�����	�
��������
�'��'������

Because of the legacy system dilemma legacy systems can be understood as large

software systems that host organizations don't know how to cope with but that are vital

to the organization (Bennet 1995). As such, research on legacy systems has typically

focused on:

• Methods for coping with the problems of legacy systems

• Models for determining when it makes more economical sense to replace a legacy

system rather than keep on maintaining it

Models for the timing of systems replacement (Taizan et al. 1996) is outside the scope

of this thesis, and will not be discussed further. However, methods for coping with the

problems of legacy systems have been placed along the range of system evolution to

system revolution (see figure ?? below).

Figure 3-6 Methods for coping with legacy systems (adapted from Bisbal et al. 1999)

3.2.5.1 Coping strategies

At the far right of the scale is re-engineering. Re-engineering constitutes a

redevelopment of the legacy system in a different programming language and/or in a

different operating environment. It also often encompasses the restructuring of data. As

such, software re-engineering is altering the implementation of an existing system while

the basic functionality remains the same (Sneed 1995). This is time-consuming and

requires a large organizational investment. Furthermore, legacy systems replacement

faces the cut-over problem (presented below). Data salvage is a variant of re-

engineering, which does not fit properly into the figure above. In this approach, the

software itself is replaced by other systems. The data, however, remains the same.

At the other end of the scale is wrapping. This coping strategy seeks to encapsulate the

legacy system. As such, it is a form of system integration (Hasselbring 2000). Rather

43

than modifying existing legacy systems, new systems interfacing with the legacy

systems are introduced. By leaving the legacy system intact, wrapping seeks to bypass

the problems related to continued maintenance as well as systems replacement.

However, legacy systems wrapping may be expensive and difficult because of

architectural mismatch between the legacy system and the systems seeking to interface

with it (Sneed 2005). It is even argued that some forms of wrapping, like screen

scraping, may compound the organization's maintenance problem as such wrappers do

not address the serious problems legacy systems face (Bisbal et al. 1999).

Restructuring holds the middle ground between re-engineering and wrapping. It is a

form of perfective maintenance that seeks to decrease the cost and risk of continued

maintenance by improving the system's maintainability (Mens and Tourwe 2004). It is

not an activity exclusive to coping with the legacy systems dilemma, but addresses

maintenance in general. However, as restructuring seeks to mend deficiencies with the

existing system, it seeks to ammend problems related to code decay without as well as

bypassing problems related to systems replacement. While a viable strategy with newer

systems, some of the maintenance cost of legacy systems stems from obsolete

platforms. As such, restructuring only resolves the internal factors to increased

maintenance cost.

3.2.5.2 The cut-over problem

Coping strategies that seek to replace existing legacy systems with new software face

the cut-over problem. The cut-over problem is related to time it takes to develop the

replacement system. There are two dimensions to this problem:

• Continued evolution of legacy system

• Volatility of data

Business-critical systems continued to evolve in response to the changing conditions of

the host organization. However, in order to succeed with a 1-to-1 replacement of the

legacy system, it needs to be functionally stable from the moment the re-engineering

effort is planned until the system is replaced (Sneed 1995). The longer it takes to

develop the replacement system, the harder it is for the host organization to avoid

continued evolution of the system to be replaced.

Incremental re-engineering, sometimes also called systems migration, seeks to address

the problem of continued evolution. By gradually re-engineering a few procedures at a

time, each re-engineering operation takes so short time that it is possible to freeze

modification of the procedures in question (Bianchi et al. 2003). While addressing the

problem of continued evolution, incremental re-engineering is still susceptible to the

cutover problem.

That the information contained in legacy systems may be vital assets for the host

organization is a compounding factor to software re-engineering. As long as legacy

systems are in use, new data will be added and existing data modified. This leads to the

cutover problem. An un-concerted transition may cause data to be store in non-

synchronized databases: some in the legacy system and some in the replacement system.

As it is practically impossible to freeze the data in a legacy system while re-engineering

44

it, the data needs to be transferred to the replacement system. This may be time-

consuming, and business-critical system cannot be out of operation for very long.

Software integration has been proposed as a solution to the cut-over problem

(Hasselbring 2000). By integrating new information systems with the legacy system, the

problems of continued evolution and as well as volatility of data are bypassed.

3.3. Maintaining integrated systems

Current software maintenance research focuses upon the maintenance of application

software maintenance. Banker et al. (1993) define application software as a set of

software modules performing a coherent set of tasks in support of a given organizational

unit and maintained by a single team. Despite increased interest in systems integration

through component-based software development (Boehm and Abts 1999), Web services

(Vogels 2003), and information and enterprise integration (Lam and Shankararaman

2004), limited attention has so far been paid the implications of systems integration on

software maintenance (Mockerjee 2005).

The purpose of this section is therefore to discuss software integration in relation with

software maintenance. To this end, the section is organized as follows. First, software

integration discussed (3.3.1). Then characteristics of integrated systems are presented

(3.3.2), before the section is concluded with a discussion of challenges related to

maintaining integrated systems (3.3.3).

����� %����
���������
�����

Software integration is the activity of building integrated systems. This thesis assumes

an inclusive view of software integration, encompassing activities from component-

based development (Boehm and Abts 1999), through middleware integration (Vogels

2003), to information and enterprise systems integration (Hasselbring 2000). While

there are differences in scope and purpose between the different forms of software

integration, software integration is characterized by its stakeholders.

To understand the uniqueness of software integration, it is useful to compare it with

application software development. There are two stakeholders – the developer and the

user – in the most simplistic form of application software development. While some

software systems may have multiple user groups, the basic scenario remains: someone

uses the software, someone else maintains it. Similarly, teams or collections of teams

within the organization often develop large systems. This modifies the most basic

model of application software development somewhat. However, the organization as an

entity is still in charge of the product, though (Banker et al. 1993).

The basic premise of software integration is that software is composed of software

provided by third-party organizations. Rather than developing an application, the

software developer composes software by integrating third-party software. The

developer is therefore called a software integrator. Whereas constellation of integrator-

user remains in software integration, a third stakeholder is introduced: the third-party

45

organization providing software, i.e. the provider. While providers may target software

to specific organizations, they typically offer software with generic functionality within

a specific domain. There is a one-to-many relationship between providers and software

integrators. The provider's product is offered to many integrators. However, while some

systems do indeed only integrate a single product, large-scale integration involves the

integration of multiple products. As such, seen from the software integrator's point of

view, the provider-integrator relationship is also one-to-many. The software integrator

is typically in a relationship with many providers.

����
 �����
�����'�����

Application software is developed and maintained by a single team or organization that

has full access to and is in complete control of the source code. Integrated systems, on

the other hand, are composed of software products developed and maintained by third-

party organizations. Coming with more or less well-defined interfaces, the software

products being integrated are usually treated as black boxes. Building upon the inclusive

view of software integration, integrated systems may be composed of software

components to enterprise information systems. In contrast to application software, no

single stakeholder is in complete control of an integrated system.

Hasselbring (2000) identifies three distinguishing characteristics of integrated systems.

These are presented in Table 3-6 below. This table is expanded somewhat to

differentiate between technical and organizational aspects of the three characteristics.

Characteristic Technical Organizational

Heterogeneity Difference in hardware

platforms, operating systems,

and programming languages.

Conceptually, different

programming and data models.

Software maintained by

multiple organizations

organizing the maintenance

process differently (see 3.1.2)

Autonomy Software may be autonomous in

execution, running on different

computers within different

organizations. Third-party

software develops independent

of the integrator's product.

Providers are in control of the

development trajectory of their

own products, with limited or no

coordination among providers.

Distribution Integrated systems may be

comprised of software executing

on different computers. This is

not always the case for COTS-

based systems, for instance.

The maintenance effort is

distributed among multiple

organizations, both integrators

and providers.

Table 3-6 Characteristics of integrated systems

����� ��
�������������
���
������������
�����'������

While systems integrators have access to the source code of the overall product they

develop and maintain, they have limited, if any, access to the source code of the

software they integrate. Furthermore, studies show that even when third-party software

comes with source code, systems integrators tend not to spend time and effort to read

and understand the product (Li et al. 2007). Consequently, one of Belady and Lehman’s

(1978) well-known characteristic of systems largeness – that the system is outside the

46

intellectual grasp of a single individual – is accentuated when maintaining integrated

systems. During maintenance of integrated systems, the system is even outside the grasp

of a single group of individuals, too, as not even systems integrators fully grasp the

products they integrate. Whereas the software maintenance research in general, and the

corrective maintenance research in particular, builds on the assumption of source code

as the key for systems knowledge, this is increasingly problematic with regards to

maintaining integrated systems.

Whereas a single team or organization is in control of the source code of application

software (Banker et al. 1993), systems integrators have at best limited influence on the

development trajectory of the third-party software they integrate. The direction, extent,

and timing of changes to third-party software – in short the software's development

trajectory –is under the provider's control (Hybertson et al. 1997). A variant of this is

the situation where the provider goes out of business (Voas 1999). As such, maintaining

integrated systems need to cater for the evolution of the third-party software. Several

suggestions have been proposed (Hybertson et al. 1997; Edwards et al. 1999; Carney et

al. 2000).

Again, systems integration accentuates a characteristics of systems largeness: that the

system reflects within itself a variation of human interests and activities (Belady and

Lehman 1978). In the case of systems integration this relates to the multi-organizational

relationship between vendors and integrators. Although well known to software

maintenance research for decades, the characteristics of largeness are only reflected to a

limited degree within the maintenance literature. For instance, with a few notable

exceptions (Vans et al. 1999), studies of program software maintenance activities are

based upon small-scale activities within the intellectual grasp of a single developer.

Similarly, whenever variety of interests is addressed by the legacy systems literature,

which is rarely, it is only superficially. Sneed (1995), for instance, delegates variety of

interests to an issue of establishing the cost of maintaining the existing portfolio, and

then justifying the systems replacement by demonstrating that re-engineering will

provide a long-term return of investment.

The differences between application software and integrated systems maintenance are

summarized in Table 3-7 below.

Characteristic Application software maintenance Integrated systems maintenance

Source code Maintenance team full access to

source code

Systems integrators limited if any

access to source code

Ownership of products Maintenance team in complete

control of source code

Software being integrated is

developed and maintained by

numerous third-party

organizations

Control over products Host organization which the

development team is member of is in

complete control of the development

trajectory of the application software

Third-party organizations

developing and maintaining

software being integrated controls

the trajectory of the product

Program comprehension Small-scale maintenance activities

graspable by single individual

Large systems outside the

intellectual grasp of a single

individual

Table 3-7 Comparison application software and integrated systems maintenance

47

4. Open source software and software

engineering

The reported research has studied maintenance of an integrated system in practice. This

has been done in the context of a distributed community of volunteer software

integrators who develop and maintain an OSS product. Developing and maintaining

OSS in such distributed communities is often called OSS development. Yet, OSSD is

not merely the research setting of the reported study. In this chapter it serves as a

concrete example of how increased scientific rigour may contribute to further

exacerbating research's lack of relevance to practice. This is based on the observation

that after over a decade of research, OSSD remains largely irrelevant to the broader

field of software engineering. While there is a significant stream of OSS research within

software engineering, this research predominantly focuses upon how to use OSS to

develop new products. Software engineering research on OSSD, however, remains

limited.

The argument pursued in this chapter is as follows. Driven by the unquestioned

assumption that OSSD is completely different from software engineering, software

engineering researchers have applied scientific rigorous methods to determine in what

ways OSSD is different from software engineering (Østerlie and Jaccheri 2007a). Yet, if

the goal of software engineering research is to be relevant to practice, situating OSSD in

such an otherness relation removes its practical relevance. Based on the assumption that

OSSD is completely different, software engineering research on OSSD therefore

remains largely irrelevant as it fails to inform software engineering practice.

The above argument is pursued in three steps. Section 4.1 traces the origins of the

mythologized view of OSS as radically different to software engineering. Section 4.2

provides an overview of the two major OSS research agendas pursued within software

engineering studies of OSSD, and studies of developing software with OSS. Returning

to the problem of relevance, Section 4.3 concludes the argument by showing how

studies of OSSD may contribute to software engineering by focusing on showing how

OSSD differs from software engineering. The result of continually situating OSSD in an

otherness relation to software engineering is that OSSD remains a piece of curiosa that

is largely irrelevant to software engineering.

48

4.1. Open source software in context

Many have tried to grasp what OSS really is (Gacek and Arief 2004). Yet, the

prevailing view of OSS is still software of superior quality developed through a

revolutionary new software development approach by collectives of supremely talented

volunteer software developers (Fitzgerald 2006). This view of OSS is based upon the

mythology presented and circulated by OSS proponents since the mid-1990s. To

understand this mythologized view of OSS, we need to go back to the specific point in

time from which the term and its mythology arose: the state of the computing industry

in the mid-1990s.

Before progressing with this, however, a brief outline of how the mythologized view

has been constructed by drawing historical lines of descent and the purpose such

mythologizing has served is presented.

����� �����'�������������������)%%�

Many have sought to understand OSS by tracing its historical origins (DiBona et al.

1999; Feller and Fitzgerald 2002). Some trace these origins back to the community of

hackers at MIT's Artificial Intelligence (AI) Lab during the 1960s and 70s (Levy 1984).

Others trace the origins back to the Unix-based ARPANET community of the 1970s

and 80s (Moody 2001). Yet, others trace the origins of OSS to the convergence between

the two communities in the Free Software Foundation (FSF) of the 1980s (Hannemyr

1999).

Regardless of which historical line is traced, attempts at tracing the origins of OSS all

share the narrative of the hacker. The narrative of the hacker emphasises individual

technical prowess and technological innovation (Himanen 2001). In this narrative, the

hacker is the mythological maverick, the lone outsider who succeeds against superior

odds. Fitzgerald (2006) argues that almost every aspect of this myth can be questioned.

It is therefore useful to understand where such a view of OSS emerged. To do so we

have to go back to the state of the computing industry in the mid-1990s and the rise of

the New Economy.

����
 &��!(*�)%%*�
�������+���������'�

The OSS term has a definite origin in time and space. It was coined in 1997 at a meeting

between Linux proponents and the fledgling Linux industry (Perens 1999). The meeting

takes place at a time when Microsoft dominates desktop computing. A latecomer in the

Internet-market, Microsoft is by now also amassing market shares by distributing its

Web browser together with its operating systems. Once actors in an open marketplace,

Microsoft's competitors are rapidly loosing ground as the latecomer tightens its grip on

the browser market.

Similarly, since the late 1980s the Unix industry has been loosing ground to the more

popular operating systems provided by Microsoft. However, by 1997 Linux is gaining

increased popularity. Linux is a Unix-like operating system kernel developed by a

49

young Finish student and a ragtag band of volunteers. Without any financial backing its

popularity is unlikely. At the same time, the Apache Web server dominates the Web

server market. Like Linux, Apache has until then been developed by a loosely organized

gang of volunteers with practically no financial backing (Østerlie 2003).

By 1997, the promises of an Internet-based New Economy are gaining foothold.

Investors are looking for new, and revolutionary business models (Behlendorf 1999). In

this environment with Microsoft's market dominance on the one hand, and venture

capital looking for alternative investments on the other hand, Linux proponents and

representatives of the Linux industry see an opportunity and cease the moment.

Together they form the Open Source Initiative (OSI). The term 'open source' is

proposed to overcome resistance among investors to the politicized freedom discourse

of Free Software (Perens 1999). Instead, the OSI seeks to further OSS as a fruitful

venue for investment.

It is in this context that we can understand the role genealogical lines of descent play in

giving meaning to the term OSS. Mobilizing history in this particular way OSS

proponents sought to establish OSS as both technically superior and innovative, as well

as building an identity of the outsider who succeeds against superior odds. It is the story

of how the David of the Linux industry will prevail against the Goliath of its time:

Microsoft.

�����)	���%�!����%����
��*�,����%����
��*�,���-)	���%�!����%����
��.�

There is an ongoing controversy between the terms "free" and "open source" software.

The Free Software Foundation, the organization administrating the GNU public licences

does not agree that Free Software is a subset of OSS (Williams 2002). OSI, on the other

hand, continues to regard Free Software as a subset of OSS. Free Software is licensed

under the GNU public licenses. These licenses seek to ensure that software remains

free. In this context, 'free' means freely and publicly available. Broadly speaking, the

two GNU licences seek to ensure that nobody can derive commercial products based on

GNU licensed software without providing the source code of derivative works.

Similarly, OSI formulated a set of guidelines, the open source definition, to ensure that

the source code remained publicly and freely available. Open source software is

therefore software released under an OSI compliant license (Gacek and Arief 2004).

However, unlike the GNU licenses, OSI opens the possibility of creating licenses that

allows building commercial derivative products based on OSS. As such, the GNU

licenses are a restrictive form of OSI compliant licenses. Free Software therefore also

falls under the umbrella of OSS.

To bypass or overcome this controversy, some researchers have opted for the term

FOSS, Free Open Source Software (Scacchi 2007). The standard convention within the

software engineering community, however, is OSS. The term OSS is therefore used in

this thesis, too.

50

4.2. OSS research in software engineering

Software engineering research on OSS has typically pursued one of two separate

agendas. The first agenda sees OSS as a source of applications and reusable

components. The other agenda studies OSS development, emphasizing the unique

characteristics and attributes of developing software in distributed communities of

volunteers. Each of these agendas will be presented in turn. Before progressing, it is

worth noting that there is also a stream of software engineering research that uses OSS

as data source to test and validate non-OSS related theories. This agenda is unrelated to

OSS. It will therefore not be discussed.

��
�� #�����	���������)%%�

While some researchers have focused on the use of OSS development tools (e.g.

Serrano and Ciordia 2005), developing software with OSS components has been the

predominant stream of OSS research in software engineering. While research on

developing with OSS components plays a limited role in the reported research, it is still

outlined in this subsection. This is done to provide context later in the chapter for

making the argument that while research on OSSD remains largely irrelevant to the

software engineering field, research on OSS has been highly successful.

Research on developing with OSS components follows a long line of software

engineering research on software reuse. The reuse literature revolves around the two

issues of developing for reuse, and developing with reuse. Component-based software

development is a form of developing with reuse that has gained increasing attention the

past decade (Boehm and Abts 1999). Assuming the integrator's point of view, much

research on commercial off-the-shelf software (COTS) has focused upon evaluation and

selection of COTS. The core assumption of this research is that choosing the right

software is considered critical to project success (Wang and Wang 2001).

OSS offers new possibilities for component-based development (Madanmohan and

Rahul 2004). The main reasons cited are availability (Wang and Wang 2001), decreased

development costs (Fitzgerald and Kenny 2004), as well as shorter time-to-market, less

development effort, and better system quality (Li et al. 2006). In addition, OSS code

and publicly available project information opens new possibilities for software

integrators to evaluate OSS components in terms of product characteristics (Li et al.

2005) as well as project characteristics (Woods and Guliani 2005; Cruz et al. 2006). As

such, following the line of research on evaluating COTS, research on developing with

OSS has focused on ways of evaluating such components.

It has also been argued that developing with OSS components is less risky as the source

code is available (Ruffin and Ebert 2004). Yet, in a survey of off-the-shelf component

adoption in the Norwegian software industry, Li et al. (2007) finds that software

developers practically always treat OSS as a black box even though the source code is

available. Similarly, even though the source code of abandoned OSS is available,

software integrators seek to avoid the responsibility of maintaining the software they

integrate.

51

��
�
)	�����!���������
���������	�����

The advantages and limitations of OSSD is a topic of much debate within the software

engineering literature. On the one hand, objections have been raised about the lack of

formal development processes (Wilson 1999), the effects of having little or no explicit

design (Perkins 1999), as well as the limitation of the user-developer convergence

(Messerschmidt 2004). On the other hand, repeated claims have been raised about the

advantages of OSSD over software engineering methods. These claims include

increases in development speed of development, reduction of effort, and higher quality

of the end product (Dinh-Trong and Bieman 2005).

However, Østerlie and Jaccheri (2007a) shows that such a research focus is based on the

unquestioned assumption that OSSD is completely different from software engineering.

This subsection goes more into detail on how OSSD has been studied as completely

different from software engineering. It does so with basis in the view of OSSD as a

particular software development approach characterised by close interaction between

users and developers as well as being Internet-based. First, the key software

development key practices are presented. Then, drawing upon OSSD as an Internet-

based approach to software development, issues related to the organization of the

development effort. Finally, the subsection is concluded with a discussion of how

existing empirical studies seek to understand in what ways OSSD is different from

software engineering.

4.2.2.1 OSSD as software development approach

The software engineering literature often relates OSS to a particular software

development approach. The two distinguishing characteristics OSSD are that it is

Internet-based and based upon close interaction between users and developers. The

software produced through OSSD is OSS. However, not all OSS is developed through

OSSD. This is an important distinction. In addition to close interaction between users

and developers, a defining characteristic of OSSD is that those contributing with code

are also users of the software (Gacek and Arief 2004). OSSD is therefore sometimes

characterized as use-driven software development (Messerschmidt 2004).

The central role of use is reflected in both OSSD's basic quality assurance practices of

field testing and parallel debugging, as well as in the practice of developing

requirements through use. Supporting the above practices is a process of rapid releases.

Each of the four will be discussed in turn.

Field testing and parallel debugging constitute the basic quality assurance mechanism of

OSSD (Huntley 2003). Instead of testing the software thoroughly to pre-empt failures,

software is released 'as is'. The software is tested through use in the field. This is done

with the expressed intention that users notify the developers about software failures. It

is the developers' task to correct reported failures. As such, there is a clear separation of

work: "[s]omebody finds the problem, somebody else understands it" (Raymond 1998).

This way of working is often referred to as parallel debugging (Feller and Fitzgerald

2002). The parallelism of the debugging effort unfolds along two axes: discovery and

correction. Subjecting the software to their use profile, users test the software in parallel

52

to discover failures. Failures are considered a collective responsibility of the developers,

who work in parallel to correct the failures.

As there is a convergence between users and developers in OSSD, developers may also

report software failures they discover through use. However, the convergence between

users and developers are particularly important when it comes to product evolution.

Rather than engaging in requirements analysis, new functionality is discovered through

use. Østerlie (2003) shows how innovation in the Web server technology arise in the

early stages of the Apache Web server project. The Apache developers were also Web

masters using the Web server to offer services to clients. By using the Web server in

different contexts, the Apache developers uncovered uses that lead to innovations that

today is considered part of the Web server technology. Similarly, Scacchi (2002; 2004)

illustrate how new functionality is discovered in OSSD through use-related practices.

OSS is released in a rapid release cycle. Rapid release cycle is often found to be the

third defining practice in addition to parallel debugging and discovering new

functionality through use. Rapid release cycles are particularly important for enhancing

the efficiency of field testing. Frequently releases of corrections play two roles. First, it

is a way of avoiding double work related to duplicate failure reports. Second, through

successive releases the software becomes increasingly reliable. The use of rapid release

cycles has lead some researchers to consider (somewhat misguided) OSSD as a form of

agile software development (Cockburn 2002).

There is sometimes made a distinction between unstable and stable releases (Erenkrantz

2003). When the software is released for field testing, the release is considered unstable.

A release is considered stable when it has been subjected to subsequent rounds of field

testing. Samoladas et al. (2004) interpret the frequent releases of updated software as a

perpetual cycle of corrective and adaptive maintenance. As such, OSSD may be

considered a form of prototyping.

4.2.2.2 Organization of software development

There has been some interest in OSS as organization of software development in

distributed communities of volunteers. However, this line of research has been studied

more closely within disciplines on the than software engineering. These studies have

focused on issues such as the structure of volunteer communities (Crowston and

Howison 2005) and the culture of such communities (Ljungberg 2000; Bergqvist and

Ljungberg 2001) within information systems research, as well as developer motivation

within economics (Bonaccorsi and Rossi 2003). Within software engineering, though,

research on OSS as a form of organizing software development, has predominantly

focused on distribution and coordination of effort.

Interest in the distribution of effort revolves around two concerns. First, is the issue of

shared understanding of the software. Within software engineering an explicit system

design is used to build a shared understanding of the software among those working on

it. Without a design, then, the question is how such a shared understanding of the

system attained? Second, is the issue of coordination. Given that OSSD is based on

volunteer work, it is hard to assign tasks. Rather, volunteers undertake tasks. Who, then,

53

will do the boring tasks? Without a formal organization to distribute work, how is work

coordinated within large communities of volunteers?

Mockus et al. (2002) finds that in the Apache community a group of 15 developers

contribute with over 80% of the code. Yet, in the Mozilla community they find that

groups of 22 to 35 developers contribute with the same amount of code to different

parts of the software. The Apache community has an informal organization, where work

is undertaken rather than assigned. However, the Mozilla community exercises a form

of code ownership. With basis in these observations, it is proposed that for groups of

more than 15 developers, explicit mechanisms of coordination are required. However,

in groups of 15 or less, informal coordination mechanisms may work. The former

proposal is corroborated by Dinh-Trong and Bieman (2005).

Summarizing research on OSS organization of software development, Crowston and

Howison (2005) propose an onion layered model. This model illustrates the observation

that a small group of developers contribute with most of the functionality. In a layer

outside, are co-developers who contribute with corrections and some functionality.

Active developers contribute with problem reports, and exist in a layer outside the co-

developers. As such, although informally organized, communities of volunteers exhibit

a clear distribution of work.

4.2.2.3 Empirical studies of OSSD products

Most of the empirical studies of OSSD within software engineering has focused on

studying if and in what ways OSSD is different from software engineering. In

particular, the claim that OSSD produces more reliable software than commercially

developed software, or closed source software (CSS) has received much attention.

Paulson et al. (2004) investigates the claim of higher reliability by comparing two OSS

with two CSS products. Their study shows that the two OSS products have fewer

defects than their CSS counterparts. While having no comparative data on the response

time of problem reports, Paulson et al. (ibid.) attribute the difference in defect density to

OSSD's rapid cycle of releases.

Such a claim, however, may be supported by Mockus et al.'s (2002) comparative study

of the Apache and Mozilla OSS products. Like Paulson et al. (2004), they find that the

two OSS products exhibit a low defect rate. This may seem to corroborate Paulson et

al.'s (ibid.) assertion that defect density is caused by rapid response to user problems.

However, Mockus et al. (2002) find that development of the Apache Web server and

Mozilla browser exhibits different response times. Apache responds rapidly to problem

reports, while Mozilla responds much slower. The difference in response time is

attributed the fact that Apache is a volunteer project (it was later to be backed by IBM),

while Mozilla is company-backed. Mockus et al.'s (ibid.) conclusion is therefore that

commercial software development inhibits rapid response time. As such, in contrast to

Paulson et al. (2004), they attribute low defect density to the use of field testing .

Replicating Mockus et al.'s (2002) study on the FreeBSD kernel, Dinh-Trong and

Bieman (2005) corroborates that field testing leads to lower defect density.

However, if field testing leads to lower defect rate, then OSSD should exihbit a greater

degree of corrective maintenance compared to commercial software development.

54

Scach et al. (2002) compares the distribution of maintenance categories in two large

OSS products with a CSS product. On the one hand, they find that the distribution of

corrective maintenance in the OSS products is twice that usually reported within

software engineering. On the other hand, they find the same distribution of maintenance

activities in the CSS product. Using the distribution of maintenance categories as an

indication of field testing, the evidence to support field testing as superior to pre-release

testing is at best inconclusive. Consequently, claims that specific characteristics of

OSSD should produce more reliable software products therefore remains

unsubstantiated.

Similarly, it has been claimed that OSSD produces more maintainable software.

However, evidence to support such a claim is also inconclusive. On the one hand, Capra

et al. (2007) find that OSS products show lower levels of entropy than CSS. This

corroborates the assertion that OSS is more maintainable than CSS. However, these

findings are contradicted by Samoladas et al. (2004). Studying the maintainability of

five OSS products, Samoladas et al. (ibid.) find that these products suffer from the same

deterioration of maintainability as previously reported with CSS. Yu et al. (2004) find

similar deterioration of maintainability in a study of 400 successive releases of the

Linux kernel. However, in a later comparison of Linux with FreeBSD, NetBSD, and

OpenBSD Yu et al. (2006) find that only the Linux kernel suffer from maintainability

deterioration.

The conclusion to be drawn from existing empirical research is that the evidence to

support claims of that OSSD or the product it produces are uniquely different from

software engineering. Yet, researchers keep claiming that OSSD is uniquely different

from software engineering (Scacchi 2007). The problems this causes for the relevance

of OSSD to software engineering is discussed in the next section.

4.3. Rigour and irrelevance in software

engineering research on OSSD

Early predictions that OSSD will revolutionize the way software is developed have

failed to come through. Similarly, after a decade of research, the relevance of OSSD to

the broader field of software engineering remains limited. Only a handful of studies of

OSSD have yet to be published in software engineering outlets. The predominant focus

of software engineering research is issues related to developing with OSS. It is therefore

safe to say that OSSD research remains largely irrelevant to the broader field of

software engineering.

Fitzgerald and Kenny (2004) makes a similar observation. They argue that OSSD

research lacks relevance to practitioners because researchers have mainly focused

inwards on the phenomenon by identifying characteristics of OSS projects and products.

Reviewing research on OSSD, Feller at al. (2006, p. 274) concludes that research on

OSSD "requires greater discipline and rigor – deeper research, more quantitative data,

and more robust cross case-analysis". Retaining the view that current dominance of

55

proprietary, closed source software will come to an end, Fitzgerald (2006) argues that it

is OSS, not OSSD, that will revolutionize the software industry.

This section elaborates Fitzgerald and Kenny's (2004) argument. It does so by relating

the problem of relevance to the empirical agenda in software engineering. Chapter 2

showed that the main motivation of the empirical agenda is to make research more

relevant to practice through increased credibility. Credibility, in turn, is to come as a

product of applying scientific rigorous research methods. With basis in on our review of

software engineering literature on OSSD (Østerlie and Jaccheri 2007a), this section

pursues the argument that scientific rigour may in fact have made OSSD less relevant

for the broader field of software engineering. As such, the argument offered here

questions Feller et al.'s (2006) call for increased scientific rigour and more quantitative

data as a solution to the problem of relevance.

����� ����������!��������	������������
����

Despite recent studies showing greater diversity among OSSD projects (Michlmayr et

al. 2005), our analysis of the software engineering literature showed that the literature

continues to describe OSSD as a homogenous phenomenon (Østerlie and Jaccheri

2007a). While such lack of precision is to be expected in early phases of exploring a

novel phenomenon, we would have expected a more nuanced view after a decade of

research. In our analysis, we therefore asked: under what conditions such an unbalanced

view of OSSD could be maintained over time?

Through our discourse analysis of the literature, we found that such a lack of nuances

stem from three sources: strategies for describing OSSD as a homogenous phenomenon,

the use of predominantly quantitative research methods, and a lack of diversity in the

cases studied. Contextualizing these three issues in the software engineering discipline

itself, our analysis showed that they had basis in two commonly held assumptions about

the software engineering discipline:

• Assumptions about the identity of software engineering

• Assumptions about how to do software engineering research

As discussed in Chapter 2, the software engineering discipline's identity is closely

intertwined with the software crisis. Professionalizing software development is the

software engineering discipline's response to the crisis. Software development by

volunteers could be regarded as a threat to this very identity. As such, framing OSSD as

completely different from software engineering reduces the applicability of OSSD

outside the specific context where there is a convergence between users and developers.

In so doing, we argue, the challenge posed by OSSD to the software engineering

identity is neutralized. However, in the process, we find OSSD homogenized to

software development by users for users.

In terms of Schein's three-component model of professional knowledge (Table 2-1S),

the purpose of software engineering research is to develop prescriptive models for

managing the software development process. Compared to such prescriptive models,

OSSD practice comes across as completely different to software engineering. On the

56

other hand, what exists of research on software engineering practice also shows that

these prescriptive models of software development do not reflect software engineering

practice very well (Robinson et al. 2007). However, rather than questioning the

assumption that OSSD is completely different from software engineering, Sub-section

4.2.2 shows how scientific rigorous methods for quantifying OSS products and process

have been applied to quantify such differences. As such, through its application of

scientific rigorous research, existing studies simply fail to address the unquestioned

assumption of OSSD as completely different from OSSD.

Our conclusion was that existing studies of OSSD keep situating the phenomenon in an

otherness relation to software engineering. This, it will be argued in the next subsection,

makes OSSD largely irrelevant to the software engineering field.

����
)���������
����������
����

While existing software engineering research on OSSD tends to focus on the unique

characteristics of software development in geographically distributed communities of

volunteers, it has been observed that OSSD "is not software engineering done poorly …

[it] is different" (Scacchi 2007, p. 459). This is not entirely unproblematic.

Messerschmidt (2004), for instance, argues that since OSSD is completely different to

software engineering, OSSD research only applies to the context of volunteer software

development. The contribution of OSSD research to software engineering is therefore

somewhat unclear.

Golden-Biddle and Locke (1993) reflect upon the construction of convincing

contributions in reported research. They identify three factors that make a contribution

convincing. One of these factors is plausibility. Plausibility balances two concerns. A

research contribution has to be distinctly different from existing research, on the one

hand. On the other hand, the contribution needs to establish a connection with common

concerns within the discipline. Failing to establish such a connection to common

concerns, the contribution will come to be regarded as irrelevant.

What is the connection between the concerns of the software engineering discipline if

OSSD is completely different? While it interesting as a piece of curiosa, without such a

connection OSSD studies will remain largely irrelevant to the software engineering

practitioners. There is therefore no plausible contribution of OSSD.

����� /�'���������������������
�����

The title of the research project reported in this thesis is 'Empirical software engineering

and open source software development'. The problem of relevance to the broader field

of software engineering has therefore been central to the research reported in this thesis.

The last subsection in this part of the thesis dedicated related work will draw some

implications of the problem of relevance to the role OSSD plays in this research. As

such, these reflections serve as a bridge to the next part of the thesis that will report on

the research.

57

The reported research started out on the assumption that OSSD is completely different

from software engineering. For me, this was motivated by an anti-bureaucratic agenda.

Over time, I had come to see software engineering as a movement towards

bureaucratizing software development, and thereby stifling human potential (Mumford

2006). From such a view, I found the collaboration between users and developers as a

way of realizing human potential in software development. While I still retain such

humanistic ideals, this chapter shows that I have come to question my initial

assumptions about OSSD.

Over time, however, I have become increasingly concerned with the lack of relevance

of OSSD research in software engineering. Like Samoladas et al. (2004) I have

therefore come to regard OSSD as a form of software maintenance based on a perpetual

cycle of corrective and adaptive maintenance. Rather than emphasising possible

differences between OSSD and software engineering, I have sought to bridge the gap

between OSSD and the software engineering literature by treating software integration

in a distributed community of volunteers merely as the research setting for exploring the

practice of maintaining an integrated system. In the reported research, OSSD is

therefore studied as an instance of software maintenance.

58

59

PART II: THE RESEARCH

60

61

5. The interpretive research approach

This thesis builds upon and supplements the small, but growing body of research on

software engineering practice. Various aspects of software engineering practice have

been studied. These range from software design (Button & Sharock 1996; Walz et al.

1993; Curtis et al. 1988), configuration management (Grinter 1999), rapid application

development with prototyping (Beynon-Davies et al. 1999), software maintenance (Sim

& Holt 1999; Sim & Holt 1998), to broader studies of work practices of software

engineers (Singer et al. 1997; Low et al. 1996) along with the culture and community of

software engineering (Sharp & Robinson 2004; Sharp and Robinson 2002; Sharp et al.

2000; Sharp et al. 1999).

To promote awareness of practice studies, researchers have focused upon clarifying

methods for collecting and analysing data of software engineering practice (Lethbridge

et al. 2005). While the mechanics of method is important, exclusive emphasis on

method obscures a more fundamental shift of focus in practice studies. Rather than

focusing on software engineering methods, tools and techniques independent of their

context of use, these studies seeks to understand how methods, tools, and techniques are

used in the broader social context of the development organization (Robinson et al.

2007). Studying practice therefore requires a research approach to address its inherent

social nature. To this end, the reported research draws upon interpretive research. There

is currently little interpretive research within software engineering. This chapter

therefore draws upon literature from information systems (IS) research in its

presentation of the interpretive research approach.

Interpretive research builds upon a set of assumptions about reality and knowledge that

"emphasizes the importance of subjective meanings and social-political as well as

symbolic action in the processes through which humans construct and reconstruct their

reality" (Orlikowski and Baroudi 1991, p. 13). Section 5.1 discusses the assumptions.

These assumptions have implications for the research methods considered appropriate

when doing interpretive research. This is discussed in Section 5.2. Analysis interpretive

research data is discussed in Section 5.3. Section 5.4 discusses the kinds of

contributions interpretive research may offer, before Section 5.5 rounds off the chapter

with by discussing how to evaluate interpretive research.

62

5.1. Assumptions about social reality and

knowledge

It is common within IS research to distinguish between three broad groups of research

approaches: positivism, interpretivism, and critical research (Orlikowski and Baroudi

1991). Table 5-1 briefly outlines and contrasts the three approaches' assumptions about

social reality and knowledge.

Approach Assumptions of social reality Assumptions about knowledge

Positivism An objective physical and social world

exist independent of humans

Knowledge consists of facts that need to

be verified or falsified

Interpretivism Social reality is produced and reinforced

by humans through their action and

interaction

Knowledge of reality is gained through

language and action

Critical

research

Social reality is historically constituted Knowledge is grounded in social and

historical practices

Table 5-1 Comparison of research approaches

Positivism emerges from the natural sciences. Interpretivism and critical research

emerges from the humanities. Positivist research is concerned with simplicity,

testability, and hypotheses. Seeking towards the natural sciences for its general

principles (component 1 in Table 2-1), software engineering research is practically

exclusively positivist. Sjøberg et al.'s (2008) guidelines for evaluating software

engineering theories is a good example. They emphasise the importance of testing

theories empirically, and evaluating them in terms of simplicity. Simplicity is both

related to parsimony (i.e. simplicity in the number of concepts used), as well as

generality and explanatory power (i.e. how much simple constructs can explain).

Interpretive research, on the other hand, draws upon phenomenology (Boland 1985) and

hermeneutics (Lee 1994) for its underlying principles. Unlike positivism, interpretivism

seeks to address the complexities of social reality, emphasising nuances over simplicity.

It does so through human interpretations and meaning, seeking to understand how

language and action brings particular social realities into being. From this follows the

assumption that our knowledge of reality is also gained through language,

consciousness, shared meanings, documents and other artefacts (Klein and Myers

1999). Interpretive research therefore seeks to understand phenomena through the

meanings that people assign to them in order to explain why they do what they do.

Rather than seeking to grasp an external reality, then, the interpretive researcher seeks

to "understand intersubjective meanings embedded in social life" (Gibons 1987, quoted

in Orlikowski and Baroudi 1991, p. 13, my emphasis).

Reality is therefore not a fixed object to be grasped independent of the social actors.

Rather, social actors construct reality as they go about making sense of an ongoing flow

of experience (Schütz 1967). This includes the researcher, who is seen as yet another

social actor. The interpretive researcher does not seek to uncover de-contextualized

facts or laws. Rather, human interpretation and meaning is seen as a product of the

broader context from which they emerge (Walsham 1995). Yet, there is a continuous

codetermination between people and the broader context they are part of. People

63

actively shape the context they are part of, but are in turn shaped by the context (Weick

1995).

5.2. Interpretive fieldwork

As people actively construct social reality as they go about making sense of the ongoing

flow of experience, the interpretive researcher seeks the insider's view of the

phenomenon under study; seeking to uncover how the research subjects themselves

bring the phenomenon into being through their actions and interactions. As such, the

researcher approaches the field open minded and with a non-judgmental attitude

towards the research subjects' activities (Robinson et al. 2007).

Seeking ways to study phenomena as they unfold, interpretive research regards the

research process as emergent. It is also emergent as it seeks to take into account the

researcher's deepening understanding of the phenomena. Focusing on the intersubjective

meanings embedded in social life, interpretive research therefore aims at developing a

rich understanding of the research subjects' world-building activities (Walsham 1995).

This requires the interpretive researcher to seek out and get close to the everyday

activities of the people under study, placing himself in the midst of other people's lives

and to observe them.

A common argument pursued in the software engineering literature is that fieldwork

should only be undertaken when it is impossible to control the variables (Tichy 1998).

In contrast, fieldwork is the interpretive researcher's preferred method. Whereas natural

scientific research seeks an objective distance to the object of study, the quality of

interpretive research seeks immersion with the research subjects. It is by engaging with

people that the researcher understands how they make sense of and give meaning to

their experiences. Fieldwork enables just this form of immersion in the lives of other

people.

Figure 5-1 Implications of data collection methods on researcher's engagement with the field

(Nandhakumar and Jones 1997)

64

Immersion has practical implications for the data collection methods considered

appropriate during interpretive fieldwork. Nandhakumar and Jones (1997) provide an

overview of the degree of immersion provided by different data collection methods. At

the remote end of immersion is analysis of published data, while consultancy is the

extreme variant of immersion. The more the researcher is engaged with the field the

more flexible the fieldwork is to the researcher's unfolding understanding of the

phenomenon under study (Lethbridge et al. 2005).

Seeking immersion, interpretive research often takes the form of in-depth case study or

ethnography (Walsham 1995). There is a sliding boundary between the in-depth case

study and the ethnography. Both are predominantly based upon data collection methods

ranging from interview to action research. Ethnographic research relies more upon

participant observation, and the in-depth case study is more interview-based.

The materials collected during interpretive fieldwork may include interviews,

observations, and documents. The latter may include both documents internal to the

organization, as well as press, media, and other publications (Walsham 2006). The kind

of data collected is typically process data (Langley 1999). Process data deal with events,

activities, and the sequence of these. Despite this primary focus on events, process data

tend to be eclectic and may include both qualitative and quantitative data. This means

that while interpretive research is predominantly qualitative, interpretive research is not

necessarily restricted to qualitative data.

5.3. Analysis

Analysis is an ongoing process from the moment the interpretive researcher enters the

field until the complete research report is written. It is an ongoing process of making

sense of the fieldwork experience and the collected data. It is based on the view that

"we come to understand a complex whole from preconceptions about the meanings of

its parts and their interrelationship" (Klein and Myers 1999, p. 71).The analysis

therefore emerges out of the broader context the researcher is part of, and both shapes

and is shaped by this context. It is therefore common to talk of three dimensions of

codetermination during analysis:

• As an interaction between particular observations and their appropriate historical or

political context

• As an interaction between observations and theory

• As an interaction between the researcher and the research subjects

Since analysis is continuous throughout the research process, it useful to differentiate

between informal and formal analysis. During fieldwork, the researcher engages in

informal analysis to understand the world-building activities of the research subjects.

This provides the researcher a better sense of the fieldwork experience. During periods

of participant observation, for instance, informal analysis may take the form of writing

out the notes that have been quickly and briefly jotted down in the notepad during the

day's observation, and organizing them into more coherent field notes (Emerson et al.

1995). By relating the day's observations to previous field notes, the researcher looks

65

for patterns in his observations for building informal theories. These informal theories,

in turn, inform how the researcher continues to perform the fieldwork. This way, the

researcher can adjust the fieldwork with basis in an increased understanding of the

research setting.

Formal analysis, on the other hand, usually commences upon withdrawing from the

field. Whereas informal analysis is directly related to the fieldwork experience, formal

analysis is related to the textual data collected during field. Seaman (1999), for instance,

offers a method for formal data analysis based on coding. More generally, though,

formal data analysis is a process of systematically going through the collected data,

looking for recurring patterns, and incrementally generalizing from a multitude of

singular observations to increasingly more generalized descriptions of activities

(Fetterman 1998). Throughout this process, non-recurring details of the singular

observations are omitted and recurring issues included. However, determining which

details to omit in the final analysis and which to include is an iterative process of

working on generalizing the descriptions while continuously returning to the more

detailed analyses looking for recurring patterns that may shed light on the generalized

description.

The collected data is interpreted through theory. Theory acts as a lens to bring out

particular aspects of the data. Particular observations are related to generalized

theoretical concepts. Lee and Baskerville (2003) calls this theoretical generalization. As

there is an interaction between data and theory this theoretical lens is likely to change

during the research process (Klein and Myers 1999). The theoretical framework used

for planning the research is therefore likely to be different than the theory used when

reporting at the end of the research process.

5.4. Research contributions from interpretive

research

Interpretive research contributes with in-depth understanding of phenomena. This is

commonly reported in the form of thick descriptions. The thick description embraces

the assumption that social reality is a "multiplicity of complex conceptual structures,

many of them superimposed upon or knotted into one another" (Walsham 1995, p. 71).It

is anti-reductionistic, seeking to strike the balance between conveying the complexity of

human actions on the one hand, and appropriate simplification to render the complexity

intelligible to the reader on the other hand.

Interpretive research may offer five types of contributions, summarized in Table 5-2

below. These types of contributions differ somewhat from contributions often

associated with software engineering research – improved tools, techniques and

methods (Basili 1993) – aimed at contributing towards the applied knowledge

component of professional knowledge (Table 2-1). The first four types of contributions

in the table below contribute towards theory. Such contributions are not directly aimed

at informing practice, although Robinson et al. (2007) points out that rich descriptions

may indeed help inform practice. However, specific implications for particular domains

66

of action may be drawn from interpretive research. Such implications are less of

prescriptive than methods and techniques, emphasising tendencies rather than prediction

(Walsham 1995).

Type of contribution Example

Development of concepts Ciborra and Lanzara (1994) develops the concept 'formative context'

to explain the dynamics of innovation in organizations.

Generation of theory Orlikowski (1996) develops a theory for a situated change perspective

on organizational change.

Challenge perceived views Bansler and Bødker (1993) reveal that there is a gap between the

procedures prescribed by structured analysis and the way in which it

is carried out.

Contributions of rich insight Through an ethnographic study of eXtreme Programming (XP)

practice, Sharp and Robinson (2004) offers rich insight into how an

organization implements XP for software development.

Implications for particular

domains of action

With basis in a study of IS development in the finance sector,

Walsham and Waema (1994) draw a number of implications for the

relationship between design and business strategy.

Table 5-2 Types of contributions offered by interpretive research

Theory can therefore be both the input to (see 5.3 above) and output of the interpretive

research process. Theory developed through interpretive research can be a refinement of

that used for planning the research, or it may be a newly formulated theory grounded in

the empirical data. The theory developed through interpretive research is what Langley

(1999) labels process theory. Process theory seeks to conceptualize events, activities,

and choices ordered over time and to detect patterns among them. The purpose is to

explain the outcome and mechanics of these activities and events. Process theory

therefore encompasses single concepts describing the mechanics of processes. This is in

contrast to variance theory that provides explanations of phenomena in terms of

dependent and independent variables. It is in this latter meaning of the term software

engineering researchers talk about theory (Sjøberg et al. 2008).

5.5. Evaluation of interpretive research

The credibility of reported research results are grounded in a broader understanding of

knowledge and social reality (Pozzebon 2004). Research approaches therefore address

research evaluation differently. Emphasising how well the reported research represents

an objective reality, positivist research is evaluated with the theoretical constructs of

validity and reliability. Interpretive research, on the other hand, does not see reality as

an object independent of the social actors who try to understand it. Rather, reality is

constructed as social actors try to make sense of it. The researcher has no privileged

access to reality, and is therefore considered one of these social actors. The credibility

of interpretive research is therefore grounded in the researcher's research practice.

Interpretive researchers have approached research evaluation in different ways. Some

researchers provide no explicit research evaluation in their reported research, as no

universally valid judgements about the credibility of their results can be made. Garrat

and Hodkinson (1998), however, argue that even though no pre-specified criteria can

ensure universally valid judgements about any kind of research, reflecting upon how the

67

research may be evaluated can help refine and develop our collective understanding of

how interpretive research is to be evaluated. Most interpretive researchers have

therefore chosen to employ predefined schemas for evaluating their research results.

A number of IS researchers have employed Golden-Biddle and Locke's (1993) schema

for evaluating ethnographic fieldwork. The criteria in this schema ground the credibility

of the reported research in the research report itself:

• Authenticity: Was the researcher there?

• Plausibility: Does the story make sense?

• Criticality: Does the research offer something new to the research field?

The most commonly used evaluation schema within interpretive IS research, however,

is Klein and Myers' (1999) seven principles for evaluating interpretive field studies.

Acknowledging the emergent nature of interpretive research, the principles are not

intended as a predetermined set of criteria to be mechanistically applied to the research.

Rather, they form a set of guidelines to be applied appropriately with judgement and

discretion both in planning and conducting interpretive research, as well as in evaluating

the resulting interpretations.

Principle Description

1. The fundamental principle

of the hermeneutic circle

This principle suggests that all human understanding is achieved by

iterating between considering the interdependent meaning of parts

and the whole that they form.

2. The principle of

contextualization

This principle requires critical reflection of the social and historical

background of the research setting

3. The principle of interaction

between researcher and

subjects

Requires critical reflection on how the research materials were

socially constructed through the interactions between the

researchers and participants.

4. The principle of abstraction

and generalization

Intrinsic to interpretive research is the attempt to relate the

particulars described in the unique instances observed to abstract

categories and concepts that apply to multiple situations.

5. The principle of dialogical

reasoning

Requires sensitivity to possible contradictions between the

theoretical preconceptions guiding the research and the actual

findings.

6. The principle of multiple

interpretations

This principle requires the researcher to be sensitive to difference in

interpretations among the studied subjects.

7. The principle of suspicion Requires sensitivities to possible biases and systematic distortions

in the narratives collected from the participants.

Table 5-3 Klein and Myers' (1999) seven principles of interpretive fieldwork

Where Klein and Myers' (ibid.) seven principles focuses on evaluating the reported

research in terms of the research process, Golden-Biddle and Locke's (1993) offer

criteria for evaluating the research in terms of the final reports. Yet, neither of the two is

directly concerned with the research results themselves. This is particularly problematic

when it comes to how well research results translate outside the particular study. While

I will use Klein and Myers' schema for evaluating the reported research, I will

supplement this with transferability (Patton 2002) to evaluate the research results.

Rather than statistical generalization of quantitative methods or the theoretical

generalization of Klein and Myers' principle of abstraction and generalization,

transferability builds on the logic of similarity between two contexts.

68

69

6. Theoretical framework: Knowledge-

intensive work

The reported research studies software maintenance as knowledge-intensive work. It

draws upon research that sees work and knowledge as interrelated (Brown and Duguid

1991). This research focuses upon work as it unfolds over time and looks to those

working while many of the options and dilemmas remain unresolved. It emphasises

how everyday work consists of unexpected twists and turns, and the ‘muddling through’

of practical decision-making and knowing (Orlikowski 2002). As work unfolds within a

broader social and organizational context, it is structured by the rich texture of the

context's constantly changing conditions. Rather than something to be taken as given,

work is a collective achievement that needs to be continuously enacted (Weick 1988).

The purpose of this chapter is to present the theoretical framework used in developing

the results reported in this thesis. It combines two theories to study software

maintenance as knowledge-intensive work. However, before progressing with a

presentation of the two theories, the term 'work' and its use in the reported research

needs to be explained.

6.1. Work

Broadly speaking, the term 'work' has four different meanings (Orr 1996):

• Work as profession

• Work as employment

• Work as job description

• Work as action

In the first meaning, work is associated with an individual's profession as in 'software

engineer'. In the second meaning, work is associated with the socio-economic

relationship between the employer and the employee. In this meaning of the term, work

is a transaction between the employer paying the employee's effort to a predefined end.

The problem of the above meanings of the term is that they assume work as the activity

of production without including the activities essential to production.

70

The third meaning of the word, work as a job description, overcomes this problem. Here

work is a set of activities to be performed by the individual employee. This is often

described in manuals, training courses, as well as in formal job descriptions. Here, work

is seen as a set of clearly delineated activities. Brown and Duguid (1991, p. 40) calls

this view of work 'canonical practice'. They criticise such descriptions for being abstract

and detached, and consequently distort or obscure the intricacies of the actual work. In

contrast, they propose the term non-canonical practice. Non-canonical practice is the

fourth meaning of the term work. Non-canonical practice views work as it unfolds over

time, and looks to someone at work on it, while many of the options and dilemmas

remain unresolved. Furthermore, it sees work as a performed achievement of a

collective of people and technological artefacts (Orr 1996).

It is in the latter meaning of the term 'work' that is used in this thesis.

The distinction between process and practice in software engineering is problematic.

Software process is often defined as the sequence of steps performed for developing

software (IEEE 1990). As such, software processes deal with prescription and formality

(Highsmith 2002), and are described as software process models. Like canonical work,

software processes are abstractions detached from the actual flow of work as it unfolds.

Like non-canonical work, research on software engineering practice seeks to study the

process of doing tasks and how they are actually structured by the conditions of work

and the world. However, the term practice is used with three different meanings within

software engineering. The three meanings are summarized in Table 6-1.

Meaning Description

Software engineering research and

practice

In this context, 'practice' means software engineers developing

software in contrast to software engineering researchers.

Practice as oppose to process models "Process deals with prescription and formality, whereas

practice deals with all the variations and disorderliness of

getting work done." (Highsmith 2002, pp. 121-122)

Best practice In this context, 'practice' is used to describe the best technique

or method for achieving a goal. Software patterns, for instance,

is a set of best practices for solving typical design problems

object-oriented programming.

Table 6-1 Meanings of 'practice' in software engineering

To avoid confusion, this thesis uses the term 'software engineering practice' in the first

meaning in the above table. Focus of the reported research, however, is on practice as

opposed to process, the second meaning in the table. This is called 'software

engineering work' to avoid confusion. Similarly, the term 'software process' is used in

the meaning of an abstraction description of software development practice. The term

process is used in a more general term about events, activities, and the sequence of these

(Langley 1999).

6.2. Knowledge-intensive work

Much research focuses on the nature of knowledge, seeking distinctions such as tacit

and explicit or codified and non-codified knowledge. Such discussions are bracketed in

71

this thesis. Instead, focus is upon how people express knowledge by acting

knowledgeably in practice (Orlikowski 2002). To study software maintenance as

knowledge-intensive work, this thesis draws upon a combination of sensemaking theory

(Weick 1995) and actor-network theory (Latour 1987). Rather than providing a rigid

framework to be applied to the collected data, they have informed the analysis. As such,

the two theories have been used as a form of scaffolding to be removed once they are no

longer needed to make sense of the collected data (Walsham 1993).

0�
�� %�����
1����

Sensemaking theory addresses how people make sense of situations that initially makes

little sense through action (Weick 1988). The central question driving sensemaking is

therefore 'what is going on?' rather than 'what to do next?' (Weick et al. 2005). Action is

therefore point of departure for sensemaking.

Action is driven by previous experience and presumptions; it is retrospective. To make

sense of situations people act upon the ongoing flow of experience. Drawing upon

sociological phenomenology (Schütz 1967), the distinction between singular and plural

form of experience is important to sensemaking theory. Experience, in the singular

form, is the ongoing stream of pure experience of the present moment. To make sense

of the ongoing flow of experience we need to act upon it to chunk and classify it into

experiences. Experiences, in the plural form, are therefore the product of retrospectively

chunking and classifying moments from the ongoing flow of experience. Sensemaking

is therefore retrospective action upon past experience (Weick 1995).

While individual action is the point of departure for analyses of sensemaking,

sensemaking is still inherently social. The term social is understood as the behaviour of

two or more actors, and action as the behaviour to which subjective meaning is attached

(Schütz 1967, p. xxii). Through our actions, we therefore take part in constructing the

materials to make comprehensible situations. However, people are an intrinsic part of

this environment. As such, through action sensemaking is social.

This brings us back to the centrality of action as unit of analysis for sensemaking.

Action always resides in the past, present, and the future. Action unfolds here and now.

But we always act upon past experience. In the process however, we enact sensible

environments. In so doing, we enable and constrain future actions (Weick 1995).

While sensemaking theory emphasises the codetermination between human action and

the context of human action, it lacks the theoretical apparatus for unpacking and

analysing how artefacts in this environment influence human action. Because the

centrality of artefacts in the maintenance process, it is important to supplement

sensemaking with theoretical concepts for analysing how people go about producing the

materials from which to make comprehensible situations. To this end, sensemaking is

supplemented by actor-network theory.

72

0�
�
 2�����������1������'�

Originally conceived as a theory for mapping scientific controversies (Latour 1987;

Callon 1999), actor-network theory (ANT) has been broadened to the study of

technological development including information systems development (Monteiro

2000). The reported research draws on ANT as it offers theoretical concepts for

bringing artefacts into the analysis of knowledge creation. It needs to be noted that ANT

is not a stable body of theory. Rather, it is continuously revised and extended. The

version of ANT used in this research has been labelled the sociology of translation.

The sociology of translation is particularly concerned with the development of scientific

knowledge. Emerging from the sociology of knowledge (Bloor 1976), ANT refutes that

scientific knowledge is the product of a privileged scientific method. Instead, knowledge

is the product of a patterned network of materially heterogeneous actors (Law 1992).

This is a rather convoluted explanation of knowledge creation. The purpose of this

subsection is therefore to progressively clarify this explanation by presenting the key

terms of the sociology of translation.

The actor is the basic concept of ANT. Actors may be human. The human actor is

similar to what we call a stakeholder in software engineering. For ease of terminology,

the term stakeholder is therefore used about human actors in this thesis. However, ANT

does not limit the term actor to humans. Instead, the term is used about all physical

entities involved in the knowledge-creation process. For instance, Callon (1999) treats

scallops as actors in analysing how scientific knowledge of scallop farming is

developed. Similarly, Latour and Woolgar (1979) brings laboratory scientists and

technicians, laboratory equipment such as test tubes, reagents, and microscopes, as well

as the scientific papers, patents, and conferences reporting scientific knowledge as

actors in the analysis of how knowledge is created in laboratory sciences.

Rather than privileging humans, ANT therefore treat all actors involved as equally

important in the analysis of knowledge creation. The term 'materially heterogeneous

actors' derives from this inclusive view of the actor. This inclusive view of actors is

labelled the generalized principle of symmetry (Latour 1987). Like sensemaking, ANT

sees knowledge as essentially social. With the generalized principle of symmetry,

however, the scope of the social is expanded to include all actors: humans as well as

non-humans. As many see social as exclusive to humans, it is useful to use the term

'collective' instead.

Returning to the definition of work as a collective achievement ,we see that it is the

achievement of human as well as non-human actors. The analysis of software

maintenance work therefore needs to include both stakeholders like users and software

developers, in addition to product artefacts like source code and executing software,

process artefacts like problem reports, as well as the tools used in developing and

maintaining the software. They are all brought into the analysis of software maintenance

work as actors.

ANT was conceived to analyse scientific controversies and the mechanisms of resolving

such controversies. To this end, ANT offers the term translation. Translation is the

73

mechanism through which different actors with different interests come to reach an

agreement. This is often referred to as translation of interests. For anyone wanting to

establish a fact, the basic constituent of knowledge, the first moment in the translation

of interests is to define actors, endowing them with interests and problems to overcome

(Callon 1999). The purpose of defining and endowing actors with such interests is to

establish the fact as a solution to problems faced by the actors. By accepting the fact as

true, the actors will meet their interests. As such, the defined actors' interests are

translated or aligned with the translating actors' interest. Put another way: actors are

patterned. Facts and knowledge come about as the product of such patterned networks

of actors.

Sensemaking is clear on how action folds the past, present, and future in one. The same

happens when translating interests, too. ANT, however, is not particularly clear on this.

Yet, defining actors, endowing them with interests and problems to overcome is both

retrospective and enactive. On the one hand the particular pattern of actors do not exist

a priori. Rather, they are retrospectively constructed in the moment the moment of

translation. However, bringing a set of actors into being, a particular form of reality is

constructed. As such, translation is also enactive. While sensemaking emphasises the

collective aspect of knowledge and understanding, it is weak on theorizing conflict.

This is where the vocabulary of ANT comes to the rescue.

It is worth noting that the interests endowed to actors do not exist a priori (Callon and

Law 1982). Rather, the translating actor endows other actors with interests. However,

these actors are not necessarily docile bodies in the hands of the translating actor. On

the contrary, translation is a multilateral process of negotiation. The translation is in the

hands of the other, the actors being translated (Latour 1987). As such, "[t]o describe

enrolment is thus to describe the group of multilateral negotiations, trials of strength and

tricks that accompany the interessement and enable them to succeed" (Callon 1999, p.

74).

Through mobilization, the actor-network is kept stable by making "a configuration of a

maximal number of allies act as a single whole in place" (Latour 1987, p. 172). This

renders the individual actors in the network invisible making them appear as a single

unity, a process called black boxing. This way we see how actors are hybrids,

collectives that take the form of "companies, associations between humans and

associations between non-humans" (Callon 1991, p. 140). This also points to the

analytical flexibility of ANT, entailing "that the 'actor' of an analysis is of the 'size' that

the researcher chooses as most convenient relative to the direction of the analysis"

(Monteiro 2000, p. 82).

Translation is therefore the process of enrolling a sufficient body of actors by aligning

these actors' interests so that they are willing to participate in particular ways of acting.

It implies definition, and this definition is inscribed in material intermediaries. These

intermediaries are actors in their own right. They are delegates who stand in for and

speak for particular interests; they are the medium in which interests are inscribed. The

operation or translation is therefore triangular: it involves a translating actor, actors that

are translated, and a medium in which the translation is inscribed.

74

75

7. Research setting: Gentoo

The setting for the reported research is the Gentoo community. This is a geographically

distributed community of volunteer software integrators. They operate and maintain a

system for distributing and integrating third-party OSS on different Unix operating

systems. The purpose of this section is to provide an overview of the Gentoo

community, its technology, and their work activities. To this end, the chapter is

organized in three sections First, a brief overview of the Gentoo community is provided

in Section 7.1. An overview of the Gentoo technology is provided in 7.2. The chapter is

concluded with an overview of the formal organization of work within the Gentoo

community in Section 7.3.

7.1. The Gentoo community

Gentoo started as a one-man effort to create a highly configurable GNU/Linux

distribution, Gentoo Linux, in 2000. Over time the community and its technology has

evolved. By 2006, the effort has grown into a community of geographically distributed

volunteers across the world. By now, the software distribution system originally at the

heart of Gentoo Linux has become the core product of the community. The software

distribution system supports five different Unix operating systems in addition to

GNU/Linux.

Of over 100 commercial and non-commercial GNU/Linux distributions, DistroWatch

(http://www.distrowatch.com) lists Gentoo Linux among the top 10 most widely used.

Debian GNU/Linux , another volunteer-based GNU/Linux distribution, is Gentoo

Linux' strongest competitor. Emphasising stability of use, Debian has had problems

keeping up to date with the latest updates of the software they offer. Gentoo Linux, on

the other hand, has had problems moving from an expert/developer's distribution, to a

more easily managed distribution.

As of March 30 2006
1
, the Gentoo community consists of 320 developers. Being a

Gentoo developer is a formal title within the Gentoo community, indicating that the

1
 This is the date I formally concluded the fieldwork. No new data have been collected since.

76

person has been formally adopted with development privileges to the community. The

developers are geographically distributed across 38 countries. The distribution of

Gentoo developers is summarized in Table 7-1 below.

Continent Country Developers by country Developers by continent

Africa 1

 South Africa 1

Asia 18

 China 1

 Israel 2

 Japan 8

 New Zealand 3

 Singapore 2

 Taiwan 1

 Vietnam 1

Australia 3

Europe 132

 Austria 7

 Belgium 9

 Cyprus 1

 Denmark 5

 Finland 1

 France 6

 Germany 32

 Hungary 1

 Iceland 1

 Ireland 1

 Italy 11

 Norway 1

 Poland 5

 Portugal 2

 Romania 3

 Russia 1

 Slovakia 1

 Spain 3

 Sweden 3

 Switzerland 5

 The Netherlands 6

 United Kingdoms 26

North America 138

 Canada 8

 USA 130

South America 10

 Argentina 1

 Brazil 4

 Chile 1

 Colombia 1

 Venezuela 3

Unregistered 18

Total 38 countries 320 developers

Table 7-1 Distribution of Gentoo developers

A majority of the developers are located in Europe and North America with respectively

138 and 132 developers, for a total of 84% of the Gentoo developers. 130 of these

developers are located in the USA alone, giving the country the highest population of

77

Gentoo developers. Second and third largest populations are found in Germany and the

United Kingdoms with 32 and 26 developers respectively. 34 countries are represented

by 10 developers or less. Only Germany, Italy, United Kingdoms, and USA are

represented by more than 10 developers. To the best of my knowledge, no two Gentoo

developers are geographically co-located.

The geographic distribution of the Gentoo developers means that they are spread across

17 time zones, from Pacific Standard Time in Western USA (UTC -8) to New Zealand

Mean Time (UTC +12). Two ranges of time zones are not represented: the three pacific

time zones between Western USA and New Zealand, and the four central Asian time

zones between Moscow Time (UTC +3) and Western Standard Time (UTC +8). The

majority of developers are found in two time zone ranges. 43% of the developers live in

the four North American time zones from Pacific Standard Time (UTC -8) in the West

to Eastern Standard Time (UTC -5) on the East coast. 41% of the developers live in the

three European time zones from Greenwich Mean Time (UTC ±0) in the West to

Moscow Time (UTC +3) in the East. The largest time zone difference is 12 time zones.

This is the distance between the Russian developer the developers on the West coast of

the USA.

To overcome the geographical and temporal distance, the Gentoo community has a

number of Internet Relay Chat (IRC) channels, mailing lists, and Web-based forums for

communication. IRC is the primary mode of communication, with the mailing lists

providing a supportive role. The number of participants on the IRC channels and

mailing lists far exceeds the number of Gentoo developers. In addition to the Gentoo

developers, a lot of volunteers contribute to Gentoo with source code as well as problem

reports. It is difficult to ascertain the number of such volunteers, as they come and go.

However, it is important to note that such volunteer contributions of source code and

problem reports are important to the Gentoo community.

7.2. The Gentoo technology

The Gentoo community develops and maintains a software distribution system for

distributing and integrating third-party OSS with Unix-like operating systems. This

system is released as OSS. A Unix-like operating system is an operating system that

behaves in a manner similar to a Unix system, but does not necessarily conform to

POSIX. Gentoo supports the following operating systems: GNU/Linux, FreeBSD,

OpenBSD, NetBSD, Mac OS X, and Dragonfly. Gentoo's software distribution system

is made up of two parts: an Internet-based infrastructure for distributing third-party

OSS, as well as the Portage package manager for integrating third-party OSS on

individual computers. The Gentoo community provides its own GNU/Linux

distribution, Gentoo Linux, based upon the technology above. A GNU/Linux

distribution is a collection of software applications and libraries bundled together with

the Linux operating system kernel. It is called a GNU/Linux distribution as much of the

core software is developed by the GNU project.

Before progressing with a more in-depth presentation of the Gentoo technology, it is

useful with an overview of the Unix system architecture.

78

3�
�� ����4��(��'�����
��������!���

Unix is a time-sharing operating system developed by AT&T's Bell Laboratories during

the late 1960s and early 1970s (Ritchie 1984). It became a popular operating system at

universities during the 1970s. By the early 1980s the Advanced Research Projects

Agency by the US Defence Department had chosen Unix as the standard operating

system for its Internet node. It is common to present the architecture of an executing

Unix system as a four layered model (Tanenbaum 1992), as shown in the figure below.

Table 7-2 The Unix system architecture

At the bottom of the figure is Layer 1, the hardware layer. On top of the hardware layer

is the operating system kernel, or simply the kernel. The kernel manages the system

resources, and communicates between the software and the hardware. Linux is an

example of an Unix-like kernel. The different BSD kernels are another example. System

calls provide an interface for software to request services from the kernel. The system

calls are part of the kernel. Most Unix-like operating systems provide slightly different

system calls.

Layer 3 contains runtime libraries. The runtime libraries offer an abstraction layer

between the application software in layer 4 and the operating system. These are usually

an implementation of the C library, such as the glibc implementation used by most

GNU/Linux distributions. Runtime libraries handle the low-level details of passing

information between the kernel and the application software layer. They are therefore

operating system dependent.

79

At the topmost layer is the application software. This consists of application libraries as

well as applications. Application libraries offer a collection of subroutines that multiple

applications use. Unix-like operating systems have a great number of application

libraries such as Qt a library offering functions for graphical user interfaces. The part of

Unix-like operating systems that users typically relate to, are the applications. These

follow to the definition of applications presented earlier in this thesis.

3�
�
 ��������
���	
�1
����
�
����

Portage is the Gentoo package manager. A package manager is an application that

integrates software with a local computer's file system. There are many different

package managers. RedHat Linux, for instance, uses a package manager called rpm.

The BSD operating systems, on the other hand, use a package manager called ports. A

Gentoo system is a computer using Portage to integrated third-party OSS with its local

file system. An overview of Portage's architecture is provided in Figure 7-1 below.

Figure 7-1 Overview of Portage's architecture

Portage is a software application executing on a local computer. It integrates software

packages with the computer's file system. In the GNU/Linux terminology, a software

package, or simply package, is third-party software that can be integrated with the local

computer's file system. While many package managers integrate pre-compiled

packages, Portage compiles the software locally before integrating it with the file

system.

Portage uses an installation script, an ebuild, to integrate packages. There is one ebuild

for every package supported by Gentoo. Gentoo often offers multiple versions of a

package. For instance, both versions 1.5.7 and 1.6.0 of the Mozilla Web browser is

supported. Multiple versions are often supported because the most recent version is

considered experimental and unstable, or there may be compatibility issues with other

80

packages. Each version has a separate ebuild. There are ebuilds for software at layers 2

to 4 of the Unix system architecture.

All available ebuilds are stored in a local database. This database is called portdir. This

is the variable name of the database used in the Portage source code. portdir organizes

packages in categories. The categories are organized according to functionality. An

example of such a category is app-text, which contain text-processing software

packages like the Emacs text editor. Another example is net-www, which contain web

browsers like Mozilla and Firefox. The portdir database is implemented as a simple

directory hierarchy. Each category is a directory, and the ebuilds for a single package is

organized in a sub-directory of its category. In addition to containing ebuilds, the

package directories contain addition files like configuration files, auxiliary scripts, for

instance.

As of March 2006, Gentoo supported 8486 packages, for a total of 23911 ebuilds. The

total SLOC of ebuilds in the repository is 671971. The installation scripts make up

approximately 90% of the source code in the repository. The rest of the source code in

the central repository is patches and configuration scripts to be used when integrated the

software package on a local computer.

The process of integrating a package with Portage follows the following process:

1. Calculating dependencies to other packages. If the package to be integrated

depends on other packages, this process is repeated for each package until all

required packages have been integrated with the local system

2. Download source code of the package

3. Unpack the source code in a protected sandbox

4. Configure source code

5. Compile source code

6. Integrate binaries and documentation with local file system

7. Update the Portage database to store information about the newly integrated

package

Information about the software that Portage has integrated with the local file system is

stored in another database, labelled by its file system path: /var/db/. /var/db/ is

implemented as a simple directory hierarchy, with an identical structure to portdir.

However, some addition information about the location of the package's files on the

local file system is stored in this database.

3�
�� ����5�����������
���������$!���������
���!��!���

The Gentoo software distribution system is based around a central repository of ebuilds.

The portdir database stored locally on individual Gentoo systems is merely a replication

of the central repository. Upon request, Portage synchronizes its local portdir over the

Internet from the central repository, downloading new ebuilds and deleting ebuilds no

longer supported by Gentoo.

81

The Gentoo developers are responsible for developing and maintaining the ebuilds in

the central repository. To keep track of changes made to each ebuild, the repository and

the ebuilds contained within it is under revision control using the CVS configuration

management system. This leads to a two-layered versioning scheme, where individual

ebuilds have revision numbers from CVS. These, though, are independent of the

package's version number. The package's version number is part of the ebuild's file

name (see Figure 7-1 above). Changes made to individual ebuilds are checked into the

CVS repository. Once every hour, the central repository is updated with the latest

updates from CVS.

The schematic outline of the distribution system's infrastructure is outlined in Figure 7-2

below.

3�
�� 6
��
$����'�
���5������

As shown in Figure 7-2, there is no single Gentoo system. Rather, numerous instances

run on computers distributed across the Internet. Distribution is a defining characteristic

of integrated sytems (Hasselbring 2000). Distribution is the core factor for the

potentially for immense variability among Gentoo systems. The individual state of

Gentoo systems vary greatly. The dimensions of this variability will be discussed here.

Heterogeneity is another defining characteristic of integrated systems (Hasselbring

2000). The heterogeneity among the operating systems supported by Gentoo contributes

to the variability among individual Gentoo systems. This variability can partly be

explained with basis in the Unix systems architecture. Gentoo supports five different

operating systems. Each has its own kernel, with slightly different system calls, and

different runtime libraries. GNU/Linux, for instance, supports threading in the

libthread runtime library. The BSD operating systems, however, support threading

in the libc_r runtime library. Furthermore, the kernels run on different hardware

platforms. MacOS X runs on the Apple PowerPC computer architecture. The Linux

kernel is also supported for five different processor architectures.

Autonomy is another source of variability among Gentoo systems. Some operating

systems are more autonomous of Portage than others. Portage controls all software at

layers 2 to 4 for Gentoo Linux. Apples's own package management software, on the

other hand, controls much of the software on MacOS X. Here Portage co-exists with

Apple's package management software. Apple's package manager is in complete control

of the software in Levels 2 and 3. It is also in control of many application libraries in

Layer 4. Portage has to take this into account when calculating dependencies.

Individual Gentoo systems can be autonomously configured using optional features and

virtual packages. Portage may be configured to support optional features, simply called

optionals, across individual ebuilds. The IMAP mail protocol is an example of such a

crosscutting feature. If IMAP is registered as an optional in the Portage configuration

file, every ebuild having supporting IMAP will be compiled with IMAP support.

82

Figure 7-2 Distribution system's infrastructure

83

Similarly, functionality that may be provided by different packages are called virtual

packages. For instance, Java applications only rely upon having a Java virtual machine

installed on the local computer. It does not matter whether this is Sun's or IBM's Java

machine. Similarly, many GUI applications rely functionality provided by either the

GTK1 or GTK2 widget library.

7.3. Organization of the maintenance process

3���� ����!���'����
���
�����

Having experienced an exponential growth from a one-man project in 2000, the Gentoo

community adopted a formal management structure in July 2003. The stated intent of

the management structure was to resolve the chronic management, communication, and

coordination issues the community was suffering under. The community was to be

headed by a management team. The management team initially consisted of the Chief

Architect along with the managers of the Gentoo projects. A project is a group of

Gentoo developers formed for handling a particular general area. The Portage project,

for instance, is devoted to maintaining and updating Portages core functionality and

utilities. There are 32 such projects as of March 30 2006.

A herd is a team of Gentoo developers responsible for a collection of packages. As of

March 30 2006, there were 124 such herds. Each herd vary in size from a single

developer, to over 20 developers. The purpose of the herds is to ensure that there is

always somebody responsible for resolving incoming problem reports. Sometimes herds

and projects overlap. For example the Portage project has an associated Portage herd.

3���
 �����
�����
����	�������

Respective projects or herds handle maintenance modification decisions informally. The

Portage project is somewhat unique, as it is responsible for maintaining and application

and not ebuilds. This project therefore has a more formal decision process, where the

project manager makes the decisions about modifications to the software.

The corrective maintenance process, however, is organized more formally. Upon

experiencing software failures, the user submits a problem report to the Gentoo defect

tracking system. The Gentoo community uses Bugzilla, an open source defect tracking

system (Barnson 2007). The problem report in Bugzilla consists of a set of predefined

fields for classifying software failures. It also provides a text field called 'Additional

comments' for attaching comments as well as textual data like stack traces to the

problem report.

Upon receiving a new problem report, the Bugwranglers, the Gentoo community's

equivalent of a change control board for corrective maintenance, assigns the problem

report to the responsible herd. The Bugwranglers assign the problem report with basis in

the classification of the problem, without analysing the reported failure themselves. The

84

responsible herd assigns the problem report to a developer. The assigned developer then

resolves the problem report. Figure 7-3 summarizes the process.

Figure 7-3 Overview of the corrective maintenance process

The corrective maintenance process reaches closure in one of five ways, summarized in

Table 7-3 below. Reaching a closure with one of the five resolutions to the problem

report requires and understanding of the system causing the software failure. It is the

process of reaching such an understanding that has been the focus of the reported

research on corrective maintenance work.

Resolution status Description

Correction of problem The developer corrects the reported failure

Mark with NEEDINFO flag Further work on the problem report is pending further information

Reject as user failure The failure is found to be caused by problems with the user's

Gentoo system

Mark as duplicated The failure has previously been reported

Forward upstream The failure is not connected with the way Gentoo integrates

software. It is caused by a defect in the third-party software.

Table 7-3 Closure of the corrective maintenance process

85

8. The research process

Interpretive research is a result of the researcher's embodied, situated experience

(Walsham 2006). It is a process marked by a plethora of more or less conscious

decisions, evolving theoretical concepts, beliefs, and practical problems (Avgerou

2005). The challenge when reporting the research is therefore to provide sufficient

information to make an intelligible account of the big lines of the research project

without overloading the reader with too much information. This chapter section seeks to

strike a balance between reporting the different research activities performed and

provide an outline of the most important decisions made during the study.

To this end, the research process is split into three distinct periods: fieldwork, study of

corrective maintenance, and testing of preliminary results. The overall goal of the

project, to explore software maintenance practice as knowledge-intensive work, has

been constant from beginning to end. However, each of the three periods reported in

this chapter have their distinct focus and place in the overall research process. Figure

8-1 below provides a timeline for the data collection activities undertaken as part of the

research process.

Figure 8-1 Timeline of data collection activities

The purpose of this chapter is therefore to present the research process. It is therefore

organized as follows. Sections 8.1 and 8.2 present the fieldwork and the study of

86

corrective maintenance respectively. Section 8.3 presents the activities performed to

evaluate preliminary research findings, while Section 8.4 concludes this chapter with

reflections on the evaluation of the reported research.

8.1. Fieldwork

In the period from January to December 2004 I performed empirical fieldwork. During

this period, the research underwent a transformation from archival reconstruction of

mailing list archives, to participant-observation. While participant-observation was the

primary form of data collection during this period, it is supplemented with documents,

problem reports, and data from mailing list archives.

The initial focus of the reported research was to study how change requirements are

developed in an OSS community. With basis in the observation that there are no formal

processes for developing change requirements in OSSD (Scacchi 2002), the intent was

to study this as a process of learning the requirements through use and development.

Thinking in terms of knowledge-intensive work, developing change requirements was

conceived as a form of working-as-learning (Brown and Duguid 1991).

The scheduled empirical research coincided with the Gentoo community's efforts to

replace Portage, the Gentoo package manager, beginning in November 2003. The code

had become too difficult to comprehend, making Portage difficult to maintain. The

effort to develop a new package manager was given the working title of PortageNG –

next generation Portage. The PortageNG effort dwindled out during January-February

2004. In its wake a series of failed attempts at replacing Portage were undertaken

throughout 2004. The continued efforts at replacing Portage during 2004 therefore

formed the focus of the empirical fieldwork reported here.

7���� 2�����
����������!������89
�!
�'�,�$�!
�'�
::�;�

The original plan for the research project was to use a method for reconstructing

mailing list archives developed in a previous study (Østerlie 2003). During the period

from January to late February 2004 I worked with reconstructing the Gentoo developers'

mailing list archives to study the development of change requirements. This study

focused upon the PortageNG effort, both the activities leading up to PortageNG as well

as the development of it.

Archival reconstruction is a meticulous and time-consuming activity of systematically

working through the mailing list archives. It involves a good deal of detective work to

locate relevant e-mails and connect them, as well as relating these to documentary

sources outside the mailing list. It is therefore a process of relating fragmented pieces of

information gleaned from different documentary sources with each other.

By February, though, I found progress to be lacking. There was a distinct lack of

activity related to developing change requirements on the Gentoo developers' mailing

list. Having gotten in touch with a Gentoo developer in connection with following a

lead, I inquired about the lack of such discussions on the mailing lists. I learned that the

87

Gentoo developers used a number of Internet Relay Chat (IRC) channels for discussing

change requirements. I also learned that the PortageNG effort had dwindled out and

been abandoned in late January 2004.

7���
 �
�������$����
�����8<
����2	����
::�;�

With this new information, I adopted a different empirical strategy. The shift of

empirical strategy coincided with a shift in theoretical focus. Whereas I had originally

conceived the process of developing change requirements as a form of working-as-

learning (Brown and Duguid 1991), I was turning towards conceiving it as process of

constructing facts (Latour 1987). I came to see change requirements as the product of

constructing specific problems related to Portage and then proposing solutions for these

problems. This shift of focus gained momentum when I used ANT when reporting from

the fieldwork so far in late March (Østerlie 2004).

In March I started observing the Gentoo developers on IRC. While there was much

activity on the IRC channels, I found only parts of it of interest to my study. As such, I

also started a retrospective analysis of PortageNG's demise. Identifying key

stakeholders in the PortageNG effort, I sought to investigate their explanations of why

PortageNG had been abandoned. These stakeholders were approached on IRC and on e-

mail. From these inquiries, I learned of a new effort, GentoolkitAPI. GentoolkitAPI was

considered a less ambitious extension of PortageNG. The purpose of the GentoolkitAPI

was to provide a stable API for third-party applications accessing the Portage databases.

Observing on IRC channels is an indirect form of observation, in that I had no direct

access to the Gentoo developers and users. Rather, I observed their activities through

the traces they left on IRC, but also in the tools they used for collaborating. It is a form

of observation through artefacts. This is a challenge that I reflect upon in 8.4.1. My

access to the field was the same as those I studied, as no two Gentoo developers are

geographically co-located. The field, however, differs from direct observations of co-

located software development.

7���� �
�����	
����$����
�����82	����9!�'�
::�;�

Some time during April, I went from observation to participant-observation. Although

having been a Gentoo Linux user since 2001, I often found it hard to relate to issues that

were discussed in relation to replacing Portage. I therefore decided to participate in

hopes of getting more of an understanding. From previous experience as an active

Gentoo Linux user, I knew that submitting new ebuilds, reporting problem reports, and

resolving incoming problem reports are key activities in Gentoo. I began participation

by submitting a series of ebuilds that I had written for applications I was using at the

time, but were not yet supported by Gentoo. I then started contributing towards

resolving bug reports when these were discussed on IRC. I also submitted some

problem reports of my own.

Late April PortageAPI, an experimental API for Portage, was announced on the Portage

IRC channel. Having followed the GentoolkitAPI for a while, I was curious to learn

why two efforts aimed at the same target were launched. PortageAPI was an extension

88

of an effort to modularize Portage. Two Gentoo developers had tried and failed at this

during March 2004. This modularization effort, labelled portage_mod, had failed. One

of the two developers working on portage_mod was now trying a less ambitious plan

for replacing Portage: writing an API to 'insulate the internals' of Portage, then rewrite

the tools to access the internals through the interface, before re-engineering Portage in

the end. I volunteered to developing unit tests for PortageAPI.

Throughout May and June I worked full time developing unit tests, learning firsthand

how hard the Portage code was to comprehend. In the beginning of July I went on

summer vacation, only to learn the PortageAPI had been abandoned upon returning

some weeks later.

7���� 5�
�!
��������
�
�����������������82!�!���#����$���
::�;�

Inquiring about the PortageAPI's demise, I was told that it was based upon the wrong

assumption of Portage as a single-user application. Two developers were now rewriting

Portage as a multiuser application. The multiuser application was to be based on a Unix

deamon architecture. The effort was labelled the ebuild-daemon. Having invested a lot

of effort in comprehending the Portage source code and writing tests for the

PortageAPI, I decided that participating in the ebuild-daemon effort would be too time-

consuming. While continuing to participate in resolving failure reports for a while, I

gradually reduced participation throughout August and September.

By the end of September I was back to mostly observing, only asking questions to learn

more about the activities of rewriting Portage. While the ebuild-daemon effort persisted,

so did continued corrective and adaptive maintenance of the original Portage code, too.

All in all, I found that the effort to maintain and adapt Portage had remained largely

untouched by the many efforts to replace it throughout 2004. By early November 2004,

yet another attempt at rewriting Portage appeared: omicron. This, however, was a

complete reimplementation of the package manager. History seemed to repeat itself.

One year after PortageNG had been announced as a complete reimplementation of the

package manager system, yet another complete rewrite was attempted.

At the time of writing up this thesis, Gentoo is still using the original Portage code.

7���" <
����
�������������

Throughout the period of fieldwork a number of materials were collected. These are

summarized in Table 8-1 below.

89

Data source Description

Fieldnotes Each day's fieldnotes stored in a single file identified by its date for ease of

reference. All files stored in a single folder.

IRC logs Logs saved as one file per channel per day, for a total of 1027 files. For

ease of reference, each file stored on the format <channel name>-<date>

(e.g. gentoo-portage-2004.25.05). All logs saved in a single folder.

Documentary database 70 documents related to 1) the efforts to replace Portage, or 2) background

information on the Gentoo community, stored in the documentary database.

For ease of reference, each document identified by its date and a serial

number (e.g. 2004.01.27-#3), and stored in a separate folder.

Mailing list archives Archives of 31 Gentoo-related mailing lists provided by the gmane project

(http://www.gmane.org). Archives date back to April 7 2001. Accessible

with mail client through a NNTP interface. Mail client provides full text

search of the entire archive.

Table 8-1 Summary of materials collected

I made fieldnotes in the period from April through December 2004. These were jotted

down in a note pad by the side of the keyboard. Particularly interesting passages from

the IRC channels were copied into a separate file. At the end of the day, the day's

fieldnotes were transcribed on my computer. Daily fieldnotes were made in the early

stage of observation. As participation intensified, the extent of the fieldnote-taking

decreased, to the point where I barely made any notes during the period of most

extensive participation during May-June. As I started to gradually withdraw from

participation from the end of August, the extent of these fieldnotes became more

sporadic. The fieldwork was becoming familiar, and I did not find it necessary to make

notes of the familiar. Issues that I judged to be of interest dried up as I gradually

withdrew from the field. By December 2004 I barely made any fieldnotes at all.

The Gentoo community has set up over 40 IRC channels dedicated the issues ranging

from user support to Gentoo developer communication. During the period from April

through December 2004 I had an IRC client connected to the following five channels:

• Development of the Portage package manager

• User support channel

• General developer discussions

• Java-related issues

• MacOS X support for Gentoo.

As there are no archives of the Gentoo IRC channels, my IRC client logged the activity

on these six channels to disk, 24 hours a day, seven days a week. The period of June 20

to 29 the logs are less comprehensive due to network problems. There are no logs in the

period from June 30 to July 12 2004, as I was off on summer vacation during this

period.

Although I quit the archival reconstruction effort, the mailing list archives of the Gentoo

developers' mailing list continued to be a source of information. While the Gentoo

community does not archive its mailing lists, two independent mailing list archives are

available: the Mailing list ARChive (http://www.marc.info) and Gmane

(http://www.gmane.org). MARC provides archives for 31 of the Gentoo mailing lists,

while Gmane archives 64 of the mailing lists. MARC provides complete archives of the

90

mailing lists from January 1 2001. GMane provides archives of the mailing lists from

April 7 2002. While the MARC archives provide a more extensive history, I used the

GMane archives because they are available with mail client through a NNTP interface.

The mail client provides full text search of the entire archive. The MARC archives are

only available through a Web interface with limited search capabilities.

8.2. Study of corrective maintenance work

By the end of 2004 I had completely withdrawn from the field. During the last months

of fieldwork I had started working systematically through the materials collected so far.

I continued this work until March 2006, interrupted during the period from June to

September 2005. Drawing upon the materials collected during the fieldwork, I

developed an overarching 40 pages case narrative (Patton 2002) of the many failed

attempts at replacing Portage. Upon returning to the research in September 2005, I

decided to supplement the study of replacing Portage with an in-depth analysis of

corrective maintenance work.

This section will present this study of maintenance work. The study is presented as a

sequence of activities: sampling, constructing case narratives, identification of themes

and patterns. While I performed all of these activities, the study unfolded more

iteratively. However, I choose this sequential form for the purpose of presentation.

7�
�� %
�	�����	��$������	�����

For better control of the data, the Gentoo community's defect tracking system's database

was replicated on my computer with a simple script. Over 20.000 problem reports were

downloaded. The first task was therefore to reduce the volume of data to identify

information-rich problem reports for further analysis. Looking for information-rich

problem builds on intensity sampling, which is a sampling strategy where cases that

manifest the phenomenon intensely are studied (Patton 2002).

Figure 8-2 The sampling process

First the volume of data was reduced through periodization. From the fieldwork I knew

that the Gentoo developers often discuss problem reports on the Gentoo IRC channels

91

and the dedicated developers mailing list. Combining several data sources was a way of

identifying information-rich samples for further analysis. Supplementing the problem

report with data from the collected IRC logs and the mailing list archives would also

enable triangulation during analysis (Fetterman 1998). Only problem reports submitted

in the period of my fieldwork were therefore included with the sample.

The volume of problem reports was still too large for in-depth analysis. The reduced

sample from the previous step was therefore prioritized to identify the most

information-rich problem reports. Again, drawing upon experience from my fieldwork I

knew that the Gentoo developers and users used a text field at the bottom of the

problem reports to communicating back and forth during the corrective maintenance

process. An operational indicator for information-rich problem reports at this stage in

the sampling process was therefore reports with an extensive back and forth dialogue in

this text field. I developed a small script to count the number of comments attached to

this text field along with the problem report's unique identification number. The list was

sorted with the problem reports with the most extensive back and forth dialogue at the

top.

This list was then used to identify information-rich problem reports. I knew from the

fieldwork experience that the Gentoo developers practically always use the problem

report's unique identification number when discussing reported problems. Going from

the top of the list, I searched for the identification number in the IRC logs. Reports that

had not been discussed on any of the IRC channels were discarded as not sufficiently

information-rich. I also used a news client for searching for the problem report's unique

identification number in the gmane.org mailing list archives. From the fieldwork,

however, I knew that the most significant discussions about reported problems found

place on the IRC channels. Problem reports with no e-mail discussions were therefore

not necessarily excluded.

7�
�
 2����$������
����
��
���������������������
�����
����

The second step of the study was to assemble case narratives. At this stage, each

problem report was treated as a single case. Focus for the case narrative was corrective

maintenance practice: the process of reporting defects and resolving problem reports.

Contrary to the focus upon classifying defects and analysing their causes that dominates

the research literature on corrective maintenance (Fenton and Neil 1999), the object of

study is the activity itself. Assembling case narratives consisted of three activities. The

process is outlined in Figure 8-3 below.

92

Figure 8-3 The process of assembling case narratives

First, all data from the problem report was integrated with data from the IRC logs and

mailing list archives. These were collected in a single Word document. This document

was then used throughout the process of assembling case narratives. Next, the data in

the word document was organized by laying it out sequentially in time. While the data

usually started with the initial problem report, there were instances where the sequence

of data started with a discussion on an IRC channel or mailing list. Laying out the data

sequentially also meant splitting up the problem report, providing the IRC channel and

mailing list discussions in between comments attached to the problem report.

The final step was to write up the events of resolving the problem report as a narrative.

This was a time-consuming process. Similar to Orr's (1996, p. 125) experience from

analysing diagnosis work, that "[t]elling stories in diagnosis contexts makes some them

extremely elliptical and barely recognizable to outsiders", I often found it hard to grasp

the content of the raw data. While organizing the data sequentially provided a clear

sequence of events for a problem report, I found particularly IRC discussions circular,

convoluted, and full of implicit references to the problem report, documents, and stories

circulating in the Gentoo community.

Writing up case narratives was therefore a dialectic process of shifting between writing

the narrative and working with the raw data. In writing out the narrative, I came across

statements and issues that were unclear. I found implicit references that I had to figure

out by looking through the different data sources. Once uncovered, the data of these

implicit references were copied into the timeline. Particularly references to installation

scripts and the data provided with these were uncovered in this dialectical process.

7�
�� ������'�����������
���	
�������

While writing the case narrative involves a degree of content analysis, cross case

comparison is a more detailed content analysis that involves "identifying coherent and

important examples, themes, and patterns in the data … quotations or observations that

go together that are examples of the same underlying idea, issue, or concept" (Patton

1987, p.149 quoted in Cope 2005, p.179). The process of finding themes and patterns

was a form of cross-case comparison, where I studied compared the assembled case

narratives.

At this stage in the process I employed a technique called bracketing:

93

In bracketing, the researcher holds the phenomenon up for serious inspection. It

is taken out of the world where it occurs. It is taken apart and dissected. (…) It

is treated as a text or a document; that is, as an instance of the phenomenon

being studied. (Denzin 1989, p.55-56 quoted in Patton 2002, p.486).

Rather than focusing on the software failure and the nature of its corresponding defect, I

bracketed these concepts analysing corrective maintenance practice as the process of

submitting and resolving problem reports. The practice of corrective maintenance was

reduced to the case study narrative.

A number of patterns were identified during this process, which in turn where

thematized. I will now use a concrete example to give an impression of this part of the

process. Østerlie (2006) is an illustration of the relation between what would form the

pivotal patterns and theme reported in this thesis. I had identified a pattern that I

labelled interpreting. It was based on the following observed pattern:

To make sense of failures reported in bug reports, the [Gentoo] developers

discuss a number of possible sources for the failure. Of these possible

explanations, I find that none are dismissed on conclusive evidence. (ibid., p.

336).

Furthermore, focusing upon the roles of different actors in the process, I identified a

pattern I labelled producing debug texts, wherein the role of the user is to provide the

Gentoo developer with more information about the software failure occurring on the

user's local system. These two patterns were then thematized to the practice of

producing and interpreting debug texts:

(…) I find that none are dismissed on conclusive evidence. Instead, alternative

explanations for reported failures are made more or less plausible by producing

new debug texts, trying to reproduce the bug, and drawing on external texts like

installation scripts, source code, documentation, and change logs. (ibid.)

This is also an illustration of the use of an emic perspective during analysis. Emic

analysis is sensitive to the vocabulary and practices indigenous to the studied subjects

(Patton 2002). The term comes from anthropology, and is used in opposition to the etic

perspective where categories created by the researcher are used to structure and drive

the analysis. Assuming an emic perspective together with the technique of bracketing,

are the two primary techniques used to study the practice of corrective maintenance

from the insider's point of view.

Constructing case narratives and identifying patterns and themes was an iterative

process. Analysing all of the problem reports identified as information-rich would have

been too time-consuming. Instead, I started by constructing case narratives for three

problem reports. Then, while identifying patterns and themes, I would go back to

construct case narratives for a new problem report to see if any new patterns or themes

could be identified. I iterated between these two steps several times, until the number of

new themes occurring in the case narratives dwindled away. Also, as the process

progressed, I opted more and more for simply organizing the raw data of a case

94

chronologically and writing a small executive summary rather than writing a long case

narrative. With experience in studying problem reports along with the emerging picture

of patterns, I was able to identify patterns more easily.

8.3. Testing preliminary research results

Since 2003, I had grown increasingly uneasy about the espoused view of OSSD as

completely different from software engineering (see Section 4.3). However, after

writing up Østerlie and Wang (2006), I was growing increasingly concerned about the

relevance of my research in relation to software engineering. The proof of the pudding,

I decided, was to test the transferability of the preliminary research results outside the

context of volunteer software development.

Transferability is an approach for establishing the applicability of research results

outside the research setting (Patton 2002). It is an indirect approach to generalization, as

it is a speculation on the likely applicability of findings to other situations under similar,

but not identical, conditions. This kind of generalization is case derived and problem

oriented rather than statistical. To evaluate the transferability of preliminary the

research results, I decided to organize group sessions with industrial software

integrators. In the period from March to September 2006 I organized three such group

sessions (summarized in Table 8-2).

Date Description

Session #1: March

2006

An international network of software researchers and senior software engineering

practitioners with experience from the European software industry

Session #2: May

2006

A group of senior software consultants working with systems integration in different

large-scale software integration projects throughout the Norwegian software

industry

Session #3:

September 2006

A group of systems developers working with systems integration at the research and

development department of an international telecom company based in Norway

Table 8-2 Summary of group sessions

While the groups work with software integration in the software industry, the particular

selection of group selection was based on opportunity and convenience. Session #1

came about in the wake of a department-wide call for presentations for a workshop

being held locally for a network of international researchers and software engineering

practitioners. Session #2 was held for a group of practitioners from a former employer

of mine, an IT consultancy. Session #3 came about as a former colleague from the

department invited me to present my research at a monthly colloquium at his current

work place.

7����)��
���
���������������!	����������

Each evaluation session was planned to last an hour: 30 minutes for presenting the

research results, followed by 30 minutes of group discussion afterward. Before starting

on the presentation of the research results, the participants were told that the purpose of

the session was to learn more about similarities and differences between software

maintenance in Gentoo and their experiences from an industrial setting.

95

To provide the audience with an understanding of the specifics of the Gentoo context,

the presentation started with an overview of the research setting. This was then followed

by an in-depth example of corrective maintenance work. The example emphasised on

the indeterminate nature of reported defects, and the iterative process of producing data

about the defect and interpreting the data. As such, the key finding presented was the

process of negotiation over what the defect "really is", and consequently the social and

technical nature of software defects. With basis in the negotiated nature of software

defects, the last part of the presentation was devoted to the issue of maintenance

problems. Focusing on the process of negotiation over what the problem "really is", I

illustrated the similarities between problem setting in corrective and adaptive

maintenance in Gentoo.

The latter half of the session was left open to discussion and feedback from the

practitioners. Apart from session #1 that was held as part of a workshop with a strict

time schedule, the group discussion after the presentation lasted over 1 hour. The

practitioners related the presentation to particular individual experiences. In session #2

the practitioners even started discussing among themselves. Also, in all three instances,

attendants approached me after the session to discuss the issues further.

7���
 <
����
�������������

I made brief notes during each session. Immediately after the sessions I made more

extensive notes based on the feedback and my own reflections.

8.4. Research evaluation

In interpretive research, the credibility of the results is grounded in the research practice

the results are a product of. The evaluation of the reported results is therefore to be

grounded in the way data is collected, how they are analysed, as well as in the

presentation's rigour of argumentation (Walsham 1995). Rather than delegating the task

of evaluation to abstractions like validity and reliability (Kirk and Miller 1986),

interpretive research accounts give the reader a more active role in evaluating the

reported results.

The purpose of this section is therefore to bring attention to parts of the research

practice I consider important for evaluating the credibility of the reported research.

Table 8-3 below provides an overview of how the seven principles for evaluating

interpretive fieldwork have been addressed in this thesis. The remainder of this section

reflects upon issues I consider important for evaluating the reported research, but not

yet been previously addressed.

96

Principle Description Evaluation

1. The principle of

hermeneutic circle

This principle suggests that all

human understanding is achieved

by iterating between considering

the interdependent meaning of

parts and the whole that they form.

• Considering observations from

Gentoo in relation to issues in

the broader Internet-based OSS

community (Section 8.1)

2. The principle of

contextualization

The principle requires critical

reflection of the social and

historical background of the

research setting.

• Situating software engineering

in the context of

professionalizing modern work

(Section 2.2)

• Considering OSS as a product

of the software industry during

the 1990s (Section 4.1)

3. The principle of

interaction between the

researcher and subjects

Requires critical reflection on how

the research materials were

socially constructed through the

interactions between the

researchers and participants.

• The use of observation for

getting to grips with the field

(Subsection 8.4.1)

• The form of interaction with the

Gentoo developers (Subsection

8.4.4)

4. The principle of

abstraction and

generalization

Intrinsic to interpretive research is

the attempt to relate the particulars

described in the unique instances

observed to abstract categories and

concepts that apply to multiple

situations.

• Theoretical framework (Section

6.2)

• Use of theory in framing

research contributions (Chapter

9 and 10)

5. The principle of

dialogical reasoning

Requires sensitivity to possible

contradictions between the

theoretical preconceptions guiding

the research and the actual

findings.

• Describing how the theoretical

framework changed throughout

the research process (Subsection

8.4.3)

6. The principle of

multiple interpretations

This principle requires the

researcher to be sensitive to

differences in interpretations

among the studied subjects.

• The form of interaction with the

Gentoo developers (Subsection

8.4.4)

• Emphasis on multiple

stakeholders with different

interests in the research

contributions (Chapters 9 and

10)

7. The principle of

suspicion

Requires sensitivities to possible

biases and systematic distortions in

the narratives collected from

participants.

• The form of interaction with the

Gentoo developers (Subsection

8.4.4)

Table 8-3 Summary of research evaluation

7���� 5�������������	�����������������

Section 5.2 discusses how the quality of interpretive research depends on researcher's

level of immersion in the natural environment of the research subjects. This is not

always possible, in which case the researcher needs to make plausible that there has

been enough interaction with the research subjects and archival material to compensate

for the lack of direct immersion (Pozzebon 2004). Doing Internet-based fieldwork, I had

the field available at my desk. However, because I accessed the field through my

computer, my engagement has been through textual media. The textual media include

both real-time interaction in the case of IRC and – and to a certain extent e-mail – as

97

well as non-interaction in the case of archival data like mailing list archives, problem

reports, and Web pages.

Nandhakumar and Jones (1997) find textual analysis to offer the farthest distance to the

research setting (Figure 5-1). Compared to immersion, it has the maximum distance

between the researcher and the research subjects. The purpose of this subsection is

therefore to shed light on the methodical decisions made in order to compensate for the

limitations inherent in doing Internet-based fieldwork.

8.4.1.1 The problem of gaining entry to the field

Rosen (1991) writes that "to understand social processes one must get inside the world

of those generating it". While gaining access to the Gentoo community is a matter of

subscribing to a set of mailing lists and connected to the IRC channels, getting inside

the world of those generating the social processes was more of a problem.

Acknowledging the limitations of working with only textual data, I sought ways of

narrowing the distance between myself – the researcher – and the Gentoo developers –

the research subjects. I initially turned to personal e-mail for inquiring about the Gentoo

developers' interpretations of unfolding activities. However, the answers I received –

when I did get any reply at all – were short, lacking in detail, and schematic.

At the time, I attributed this to the e-mail medium. I therefore saw the possibility of

real-time interaction offered by IRC as a way of increasing my engagement with the

Gentoo developers. Yet, after having presenting the objectives of my research to the

Gentoo developers I approached on IRC, I still found them uninterested in responding

to my inquiries. Although having access to the research site, I found myself in a

position where I was excluded from practically any form of meaningful interaction with

people who could provide me with an insiders' view of the Gentoo developer

community.

Having no go-between within the community to function as an icebreaker (Fetterman

1998), I opted for a two-pronged approach for gaining entry to the field. One, to make

myself less of an outsider, I decided to adopt common conventions when interacting

with the Gentoo developers. Two, in an effort to justify my inquiries, I decided to

actively participate in the Gentoo community's software development activities.

Having observed that it was common to sign e-mails with a GNU Privacy Guard

(http://www.gnupg.org) signature, I started doing the same. In addition, I started paying

close attention to the form of the Gentoo developers' IRC communication. I adopted

conventions such as appending words I was unsure of their spelling with a '(sp?)'. This

means, did I spell that correctly, invoking an IRC bot that would correct the word if

misspelled. I also adopted the practice of correcting typographic errors with sed-like

syntax. For instance, if I had written 'We need to calrify this', I would correct myself by

writing 's/calr/clar'. I also learned the implicit rules of which questions to ask in public

and when to use private IRC sessions.

It is difficult to tell the effect adopting common conventions of interaction within the

Gentoo community had on gaining entry. At least it made me stand less out as a sore

thumb. Turning to participation, on the other hand, had a provably significant effect on

98

gaining entry to the field. However, unlike my presupposition that participation would

justify my inquiries, it turned out that taking part in shared activities was the key to

gaining entry. I will reflect upon this in what follows.

8.4.1.2 The importance of participation

Looking back at IRC log transcripts from the period prior to participation, I find my

inquiries and questions to be abstract or general. It is even hard for myself to understand

what I was asking about now, years after the fact. In comparison, I find the questions

asked while being an active participant myself to be significantly more concrete and

most of the time connected to particular issues of our shared activity. Concrete

questions are commonly responded to with concrete answers. Through concrete

questions about our shared activity, I was able probe deeper into the inner life of the

Gentoo developer community. As such, participation was the key for gaining entry into

the community's inner life.

By engaging in shared activities, I could ask the Gentoo developers for practical advice

on how to solve common problems. As such, I was to a certain extent able to indirectly

observe the Gentoo developers through following their practical advice. I also found

that practical problems I was facing were often the same problems the Gentoo

developers themselves were facing. Practical advice to my questions therefore often

turned out to be conventions of working shared within the Gentoo developer

community. As such, while I was prevented from direct immersion with the Gentoo

developers in their daily work, one participant was available for direction observation:

myself.

Obviously, there are limits to the usefulness of observing my own activities instead of

direct observation of the Gentoo developers' activities. Experience is an important issue

here. While having been a Gentoo Linux user for several years prior to commencing the

fieldwork, I was also what the Gentoo developers would call a newbie. Active

participation over a period of ten months is not sufficient for becoming a seasoned

Gentoo developer.

Still, for developing interpretations, these shortcomings are less of a problem. My

access to the social reality of the Gentoo community through texts is exactly the same as

the Gentoo developers' access. They relate to each other through the same textual media

that I did. However, the limitation is that I have no data on the Gentoo developers'

actual activities in going about their daily work. On the other hand, I have much data on

their interaction while pursuing these individual activities.

7���
 ����
������	
����!�
���
���������

That human understanding emerges from the iterating between particular observations

and the whole they form, is a fundamental principle in interpretive research (Klein and

Myers 1999). I will use scarcity of resources to exemplify such interaction in the

reported research. Scarcity of resources is reported as a characteristic maintaining an

integrated system in a community of volunteers in Contribution C3 (Section 9.3).

99

A first particular observation from the fieldwork is that the Gentoo developers avoid

reproducing reported failures as long as possible. Rather, they use the 'Additional

comments' field of problem reports to engage in a dialogue with the reporting user. A

second particular observation was related to reproducing reported failures without

disrupting one's own Gentoo system. To avoid this, the Gentoo developers try to

reproduce failures in a virtual Gentoo system. They therefore maintain a 'barebones'

virtual system that they copy when trying to reproduce reported failures. This copy of

the virtual system is then updated with the required packages to reproduce the reported

failure.

To understand the social and historic setting of Gentoo (see Guided Klein and Myers'

(1999) principle of contextualization), I actively followed key forums for the larger

Internet-based OSS community. Developer burnout and lack of project progress because

of too high workload was a recurring issue. The burnout of Linus Torvalds, leader of

the Linux kernel project, in 2002 is one of the most high-profiled such incidents (Weber

2004). In April 2004, Daniel Robins, the initiator and leader of the community, left

Gentoo because of burnout.

During the study of corrective maintenance work, I developed some descriptive

statistics. These showed that the number of unresolved problem reports was

continuously growing (see Exhibit 9-2). Individually, the two observations on use of the

'Additional comments' field and virtual systems were seemingly unrelated. In the same

way, the observations related to burnout had little relation to the previous two relations.

However, considered these particular observations as a whole together with the growing

number of unresolved problem reports, I realized that the reluctance for reproducing

reported failures was related to scarcity of resources.

As all the software has to be compiled from source code, building a virtual system from

scratch is time-consuming. It may take as much as a day depending on the computer's

hardware. That is why the Gentoo developers maintain a 'barebones' setup. Yet,

compiling the required software to reproduce the problem may take hours. Instead, to

avoid spending their limited resources, they use the 'Additional comments' field to

engage in a dialogue with the reporting user instead. By considering the particular

observations as a whole, I therefore came to interpret corrective maintenance work as a

continuous process of balancing the effort spent on resolving individual problem reports

towards the total workload.

7���� ����
�������
�
�
��������'�

I worked actively with theory throughout the research process. Theory use as well as

theories used has changed throughout the research process. I initially used communities

of practice theory (Brown and Duguid 1991; Lave and Wenger 1991; Orr 1996) as a

guide for planning the research. During the fieldwork theory functioned as a form of

scaffolding (Walsham 1995) for making sense of the fieldwork experience and the data

collected. However, rather than seeking to apply a particular theory to the fieldwork, I

used theory actively for exploring software maintenance as knowledge-intensive work.

100

The scaffolding was later taken down once it has served its purpose. Theory use

therefore gradually underwent a shift towards the role of abstracting and generalizing

from particular observations (Klein and Myers' (1999) principle of abstraction and

generalization) for developing research results during analysis.

Through an interaction with the collected data, the theories used also changed. Figure

8-4 indicates significant moments in this process. The entire research process was an

iterative process of interpreting collected data, reflecting upon the appropriateness of

theory in relation with research findings, and revising theory (Klein and Myers' (1999)

principle of dialogical reasoning).

Figure 8-4 Interaction data and theory

7���� ����
���������������
�����!$=�����

I spent a lot of time talking with Gentoo developers throughout the period of conducting

fieldwork. I did so to bringing forth different interpretations about the process of

replacing Portage. This is similar to Klein and Myers (1999) principle of multiple

interpretations, stressing that multiple stakeholders will express different interpretations

of events and sequences of events. I would also use such conversations as occasions of

testing other Gentoo developers' interpretations. Always making sure not to embarrass

anyone but revealing their private interpretations, I would for instance ask: "I have

heard that Portage-NG failed because people could not agree on programming language.

Was it really so?". Posing questions this way often provoked the respondent into giving

his own interpretation of facts. In the case above, for instance, the respondent answered:

The big problem wasn't the 'what' but the 'how'. waiting for the community to

provide requirements without anyone leading the project doesn't work. and the

'requirements' that were provided were mostly crap. that and the AI vision killed

it.

While sometimes using the above technique to test my own preliminary interpretations,

I also used key informants for giving feedback on preliminary versions of papers. This

101

in order to test my own interpretations. The result of such discussions varied. In

commenting on an early draft of Østerlie (2004), the informant stated that while finding

no factual errors he was unfamiliar with the topic and style of reporting.

In working on Østerlie and Wang (2007), another informant challenged our

interpretation. The draft paper included in-depth empirical material on controversies

over the cause of reported failures. The informant diligently analysed each of the

controversies in an effort to determine whose diagnosis of the reported failure was

correct. He argued that corrective maintenance activities could not be understood unless

we also understood the real nature of the reported failure. While not being directly

useful to the paper, the informant's focus on understanding whose diagnosis was correct

or not made me revisit our emphasis in analysing corrective maintenance.

7���" ����	�����
��=�!���'�

This research project has been a personal journey for me in several ways. My

understanding of the OSSD phenomenon has evolved since I started the research

reported here. My initial view of OSSD was that of something completely different

from software engineering. The project follows up my research on OSSD that I did for

my master thesis (Østerlie 2003). My interest in operating systems during lower level

university studies led me to Linux in the mid-1990s. While this was initially a technical

interest, it also exposed me to the Internet-based hacking culture. Hacking and OSSD

were synonymous in my eyes. Inspired by the work of Hannemyr (1999) and Levy

(1984) on the one hand, and Braverman-like analyses of formalization, automation, and

down-skilling on the other hand (Orr 1996), I had come to consider hacking as a way of

embracing the craftsmanship and know-how involved in developing software. In

contrast, I considered software engineering with its emphasis on formalization of

software development methods and processes as a way of down-skilling software

developers. Influenced by the discourse on technology as a means to counter oppressive

working place conditions (Bjerknes and Bratteteig 1995), I therefore saw the

emancipatory potential in hacking's emphasis on craftsmanship practical know-how.

Looking back, I have to admit that my initial view of OSSD as completely different

from software engineering seems almost embarrassingly naive. I no longer think that

OSSD is completely different from software engineering, and I am not entirely sure that

formalization of software development processes and techniques will down-skill

software developers. Yet, my deep appreciation of what software developers do in

practice has remained throughout the duration of the study. Some of this is obviously

connected to my own background within home computing. I received my first computer

aged 11. It was a low-cost ZX Spectrum clone, but no official Spectrum data tapes

worked with it. I therefore had to write my own software. Since then, I have always had

an enduring fascination with the practice of developing software.

I hope that my understanding of the complex disciplinary field I am moving within has

evolved over the years. Yet, in many ways the same concern I brought into the research

project remains: the relationship between research and practice. This relationship was

initially conceived as the adversary relationship between the art and craft of hacking on

the one hand, and the down-skilling intention of software engineering on the other.

102

Throughout the process of doing this PhD I have to come appreciate the dialectical

relationship between research and practice. The importance of researchers to both try to

inform practice and in turn be informed by practice.

103

PART III: RESULTS

104

105

9. Empirical findings

The main empirical contribution offered by this thesis is insight into the social and

technical processes of maintaining an integrated system in a distributed community of

volunteer software integrators. In particular, this chapter presents three empirical

contributions that offer a view of software maintenance where multiple stakeholders

with different interests continuously negotiate over problems and their solutions.

Focusing upon scarcity of resources and contradictory interests brings out the inherently

political aspects of software maintenance. So far, software engineering research has

focused upon developing methods, tools, and techniques independent of their context of

use. The politics of software development has therefore been of limited concern. Yet,

with practice studies' emphasis on the social context of software engineering, the

politics of software development becomes an important issue.

While the politics of software development is well-established within the related field of

information systems research (Howcroft and Wilson 2003), emphasising that

importance on multiple stakeholders with different interests in software maintenance

practice is novel within software engineering. This thesis therefore contributes to the

body of software engineering practice research with a first step towards explicitly

addressing politics in such studies. This thesis also contributes to software maintenance

research with a critical evaluation of the basic assumption that software maintenance is

essentially a cognitive problem solving activity. This is based on the premise that

maintenance engineers are faced with more or less clearly defined problems. Yet,

Contributions C1 and C2 show that the essential activity when maintaining integrated

systems is problem setting: the collective process in which situations that are unclear,

problematic, and puzzling are progressively clarified. This chapter therefore concludes

that the basic assumption no longer holds true when maintaining integrated systems.

This chapter is therefore organized as follows. Sections 9.1 and 9.2 present

contributions C1 and C2 respectively. These contributions summarize and draw together

results previously reported in the empirical papers included with this thesis (see Figure

1-1). With basis in these two contributions, Section 9.2 presents contribution C3. This

contribution aggregates the findings reported in C1 and C2 to form an original

contribution reported in this thesis. Section 9.5 discusses the contributions.

106

9.1. Debugging as collective activity (C1)

This section presents contribution C1, by summarizing the research reported in Østerlie

and Wang (2006; 2007). It is based upon participant-observation of corrective

maintenance, as well as document analysis of problem reports (see Section 8.2). An

overview of Gentoo's corrective maintenance process is provided in 7.3.2. The

contribution is summarized as follows:

Knowledge of software failures is developed through a process of negotiating

over possible interpretations of available data, a process that is contingent upon

situational issues such as workload, priorities, and responsibilities

The contribution is offered in response to RQ1:

How is knowledge of software failures developed during geographically

distributed software maintenance?

An often used definition of debug is to detect, locate, and correct defects in a computer

program (IEEE 1990). Debugging is therefore seen as a linear process where the

maintenance engineering locate defects by tracing along the infection chain from more

or less well understood problem, the failure (Zeller 2006). The solution to the problem

is to correct the defect. Building upon scientific principles, it has been proposed that

debugging should be hypothesis-driven, based on accurate, factual data (Araki et al.

1991).

The description of debugging offered here differs from the linear view presented above.

Here debugging is found to be a cyclic process where the reported problem is not

always clearly understood before there is a solution to it. This activity focuses upon

understanding the reported failure, rather than locating and correcting the defect causing

it. Debugging is therefore understood here as the process of finding out what the

reported problem really is. This is a collective process shaped by social as well as

technical factors. It is a process of trial and error, where the relevance and validity of

available data is contestable. Debugging is therefore driven by plausibility rather than

accuracy.

The implication of this contribution is that the software failure is not an unproblematic

phenomenon during software maintenance. It is subject to interpretation and

negotiation. Integrators' understanding of what constitutes a software failure is

contingent upon situational issue such as workload, priorities, responsibilities, as well as

available technical data. Failures are therefore not necessarily stable phenomena to be

grasped with scientific principles.

To this end, this section is organized as follows. First, in the Gentoo community

knowledge of software failures is predominantly based on indirect data (9.1.1). Then the

cyclic nature of debugging is presented (9.1.2). Finally, the section is concluded with a

presentation of the negotiated and contingent nature of debugging in the Gentoo

community (9.1.3).

107

>���� ���������
�
�

Understanding a reported failure is not an individual activity. Rather, it is a collective

process where Gentoo users and developers together make sense of the failure. They

engage in a collective sensemaking process where knowledge of the failure is primarily

attained through indirect data. This data is produced by running diagnostic tools on the

failing system. In Østerlie and Wang (2006) we label such textual data, along with other

textual information provided in problem reports, debug texts. There are two reasons

why knowledge of reported failures is based on indirect data:

• Reproducing reported failures is often difficult

• Software being integrated is treated as a black box

First, reproducing failures is often difficult. To reproduce a reported failure, the Gentoo

developers often have to reproduce the configuration of the failing system. Yet, because

of the potentially large and non-deterministic variability of Gentoo systems (see 7.2.4),

reproducing a failing system's configuration may be difficult in practice. Reporting from

a longitudinal study of large-scale software maintenance, Adams (1984, p. 13) makes a

similar observation: that the typical failure "requires unusual circumstances to manifest

itself, possibly in many cases the coincidence of very unusual circumstance".

Reproducing reported failures is also difficult, or at least inconvenient, as it may be

time-consuming to reproduce the configuration of a failing system (see 8.4.2).

Second, while the Gentoo developers have access to the third-party software being

integrated, they usually treat it as a black box. This is related to the Gentoo developers'

role as software integrators. The software being integrated is mostly developed and

maintained by third-party OSS communities. Only some Gentoo developers may be

familiar with the source code of the software. Reproduction, essential for locating

defects in source code, is therefore less relevant when debugging black boxes.

Standard Unix development software as well as Gentoo-specific diagnostic tools are

used to generate data about the failing system and the reported failure. Debug texts

therefore play two roles in debugging reported failures. They stand in for the source

code, as the Gentoo developers treat the software they integrate as black boxes. The

debug texts are also delegated the task of communicating information about a remote

failing system, instead of reproducing the failure.

>���
 �'�����

The Gentoo users and developers use the 'Additional comments' field to exchange

debug texts when resolving problem reports. Debug texts only provide a limited

glimpse of the failing system. The data is not exhaustive, but rather open to

interpretations. It is therefore not necessarily obvious what the software failure really is.

Rather, users and developers are often confronted with problem situations. A problem

situation is a situation where it is clear that something is not right, but it is rather unclear

what the problem is (Schön 1991). As such, software failures often have to be

constructed from the materials of situations that are problematic, uncertain, and

puzzling. Exhibit 9-1 below is an example of such a problem situation.

108

Developer A: This particular Web page crashes both the Mozilla and Galeon Web browsers.

Developer B: That doesn't happen on my computer.

Developer A: I've built the applications for the Athlon T-Bird processor architecture, and both have

been compiled with the GTK2 widget library. I generally assume it's my using GTK2 that messes it up.

Developer B: It might be GTK2. I've compiled both Web browsers with the GTK1 widget library on

my system.

Developer D: Well, that page works on my Epiphany Web browser compiled with the GTK2 library.

Developer C: And it works with my installation of Mozilla compiled with GTK2.

Developer D: This other Web page crashes my Phoenix Web browser, but not Mozilla or Galeon.

Developer A: The Web page crashes on my Epiphany installation, as well. It seems it's my Mozilla

build that's flakey.

Developer C: But boingboing.net crashes my Epiphany installation. I've compiled it for the PentiumII

processor architecture, though.

Developer A: boingboing.net crashes Galeon on my system, too.

Developer B: boingboing.net working for Mozilla on my system.

Developer C: Hmm… It seems the problem is related to Mozilla compiled with the GTK2 widget

library and the Xft font library. Weird thing is that boingboing works on my Galeon installation…

Developer A: Now here's a very good reason to only build for one processor architecture, stable source

tree and only do point releases. Variation kills reproducibility.

Exhibit 9-1 Excerpt from Gentoo developers' IRC channel (gentoo-dev-2004.04.16)

Two factors are of particular note here. One, that it is not obvious to the user reporting

the failure what information is relevant. Two, the Gentoo developers do not have direct

access to the failing system. They therefore have to interact with the user to establish an

understanding of the failure. However, without first having an understanding of the

failure, it is difficult for the Gentoo developers too to determine what constitutes

sufficient and relevant information for analysing the failure.

The Gentoo developers therefore interact with the reporting user in order to make sense

of the reported failure. This interaction therefore takes the form of a cyclic process of

producing and interpreting debug texts using the problem report's 'Additional

comments' field for communication between the stakeholders. Table 9-1 below

illustrates the frequency of this interaction between users and developers.

Number of additional comments 2002 2003 2004

1 2948 4900 9620

2 2882 4584 7913

3 1967 3451 5472

4 1311 2665 3767

5+ 3652 8315 12567

Average 4.225862069 4.797742003 4.787183202

Table 9-1 Frequency of interaction in 'Additional comments' field

The table shows that most problem reports have between 1 and 4 additional comments

attached to them. Drawing upon information rich samples (see 8.2), the reports analyzed

during the study of corrective maintenance belong to the category of problem reports

with 5 or more additional comments. While a significant amount of problem reports

have 5 or more additional comments attached, they are not statistically representative

for the entire population of problem reports. This, however, implies that the reason for

the interaction between users and developers are contingent upon the nature of

particularly problematic failures. This is not the logic pursued in the reported research.

109

Yet, the argument pursued here is that the interaction between users and developers

come as a result of the problems of reproducing failures. This is contingent upon the

autonomous and heterogeneous characteristics of integrated systems. These

characteristics make it difficult for the Gentoo developers to reproduce reported

failures. Instead of reproducing reported failures, the Gentoo users and developers

therefore have to debug with indirect data. As such, the form of generalization pursued

here is that of extreme cases (Patton 2002). It is upon studying the mechanisms of the

information-rich samples that we learn about mechanisms that are to a smaller or larger

degree shared by all instances of debugging in Gentoo, and possibly even when

debugging integrated systems in general.

>���� +�����
����
��������������

It is not always possible to determine what the reported failure "really is". It is not

always obvious. Nor are the debug texts conclusive. Rather, the debug texts are open to

interpretation. During the cyclic exchange between developers and user, a number of

possible interpretations are discussed. Alternative interpretations of what the reported

failure really is are constructed from combining elements from different debug texts,

trying to reproduce the failure, drawing on external texts like installation scripts and

change logs.

Problem solving reaches its closure when the problem is solved. In the context of

debugging, the problem is solved when the defect causing the failure has been

corrected. Negotiations, on the other hand, have no such clearly defined closure

mechanisms. As such, interpreting debugging as a process of negotiation shifts

analytical emphasis towards the closure mechanisms. The research reported here

identifies two formal forms of closure: resolution or rejection of the problem report.

However, these are the forms of closure, not the mechanisms leading to closure.

The question we therefore seek to address in both Østerlie and Wang (2006; 2007) is

how problem reports reach their closure. In addition to being based upon the evidence

put forward by the debug texts, we find that closure is contingent upon situational issues

such as workload, priorities, and responsibilities. Closure mechanisms are discussed

further in 9.3.2.

Østerlie and Wang (2006) illustrates this as a process where users provide debug texts

and the developers interpret them. Over time the number of interpretations of the

reported failure varies, until the problem report reaches its closure. This is illustrated in

Figure 9-1 below.

110

Figure 9-1 Producing and interpreting debug texts

9.2. Rewrite evolves in response to an unfolding

environment (C2)

This section presents Contribution C2, by summarizing the research reported in Østerlie

(2004) and Østerlie and Jaccheri (2007b). It is based upon the fieldwork conducted

during 2004 as well as the materials collected during the fieldwork (see Section 8.1).

The contribution is summarized as follows:

A collective understanding of the scope, stakeholders, and sequence of activities

for rewriting software evolves in response to new problems emerging from the

rewrite efforts themselves as well as environmental changes

This contribution is offered in response to RQ2:

How do software developers build knowledge of how to replace a business-

critical software system?

Both Østerlie (2004) and Østerlie and Jaccheri (2007) reports from the activities of

rewriting and replacing Gentoo's package manager, Portage. While Østerlie (2004)

offers in-depth analysis of a single event in the process of rewriting and replacing,

Østerlie and Jaccheri (2007) offers a longer case narrative, exploring the tension

between the need for functional stability to rewrite Portage on the one hand, and the

various social interests of the Gentoo community on the other hand.

This section builds upon these two papers, offering an interpretation of the efforts to

replace Portage as a continuous process where rewriting evolves in response to an

unfolding environment.

>�
�� ����	��$�������!
�����

Portage provides functions and data that are critical to Gentoo. It is therefore business-

critical (see Table 3-2) to the Gentoo community. Over time, however, it has become

increasingly difficult to modify. By November 2003, only four Gentoo developers know

problem reported time closure of
problem report

number of
multiple
inter-
pretations

7
6
5
4
3
2
1

111

the source code well enough to maintain the package manager. This puts a lot of strain

on these four developers.

While initially designed to integrate third-party software on Gentoo Linux, Portage has

been adapted to work on several Unix-like operating systems (see 7.2.2). Similarly,

Portage has been adapted to work with Web applications as well as regular software

(Østerlie and Jaccheri 2007b). With little attention on reducing the complexity of the

source code, Portage's system structure has deteriorated (Eick et al. 2001). As one

developer put it, the source code is 'very fragile' as it has 'evolved rather than being

designed'. Complex interdependencies between functions and modules make it difficult

to comprehend parts of the source code without a complete understanding of the whole.

It is therefore difficult to modify the source code without breaking existing

functionality.

Portage also has complex interdependencies with third-party software that integrates

with Portage. A number of third-party applications call functions in the Portage source

code or access Portage's databases directly. As described in Østerlie (2004), such

interdependencies often lead to problems with the third-party software when Portage

database schemas are changed or when the source code is modified.

While four Gentoo developers have sufficient understanding of Portage's source code to

modify it without breaking existing functionality, they have little control of the effects

this may have on third-party software. Belady (1978, p. 118) defines system largeness

as a "program that is too large to fall fully within the intellectual grasp of a single

individual". While Portage's source code is not outside the intellectual grasp of a single

individual, Portage's interdependencies with third-party software makes it outside the

grasp of a single individual. As such, it exhibits a form of system largeness.

Portage has been maintained for no more than four years at the time of the study. Still, it

exhibits characteristics similar to legacy systems (see Table 3-3 and Table 3-4). It

suffers from:

• Deteriorating system structure

• System largeness

• Lack of skills for maintaining the software

The Gentoo community is therefore facing its own legacy systems dilemma (see 3.2.4).

Portage is the core of the Gentoo software distribution system and cannot be

decommissioned. Yet, only four developers able to modify the source code. If these four

leave, the community stands the risk that no one is able to maintain Portage any longer.

>�
�
 2���!��������������
����
��
�����

To address this situation, the Gentoo developers want to rewrite and replace Portage.

We describe three efforts to rewrite and replace the package manager in Østerlie and

Jaccheri (2007b):

112

• Next generation Portage (November-December 2003): A complete rewrite of the

package manager with a modularized plug-in architecture.

• Modularized Portage (February-March 2004): A modularization of the existing

code base.

• Portage API (May-June 2004): Preparation for a modularizing Portage by

encapsulating the package manager's source code and databases from Portage-

specific third-party applications.

>�
�� �����������!��������������������?!���������

The process of rewriting and replacing Portage does not follow a clear sequence of

activities from analysis of current situation, to planning the strategy for rewriting and

replacing the software, to the implementation of the plan. Rather, the process is marked

by a series of efforts with the shared intent of replacing Portage. Judged in terms of the

assumption that software replacement can only succeed if properly planned (Sneed

1995), the efforts to rewrite and replace Portage appear as a series of false starts that fail

because of poorly planning. Obviously, seen from the point of view of iterative re-

engineering (Bianchi et al. 2003), the efforts may be interpreted as activities in an

iterative process. Yet, research on iterative re-engineering presupposes an overall plan

of action. This is not present for replacing Portage.

We therefore proposed that the process of replacing Portage may be understood as an

unfolding negotiation over the scope of the rewrite, the sequence of activities, and the

stakeholders to be involved in the process (Østerlie and Jaccheri 2007b). These, then,

are the constituents of rewriting requirements:

• Scope

• Sequence of activities

• Stakeholders

For instance, in Østerlie and Jaccheri (2007b) we explore the tension between the need

for functional stability for replacing Portage on the one hand, and the various social

interests of the Gentoo community on the other hand. The key insight developed in the

paper is how the efforts to rewrite Portage unfold within and are part of the

continuously emerging context of development and use. Bringing this context of

development and use into the analysis brings out the complex and interdependent

relations Portage finds itself. These, in turn, shape the requirements for rewriting

Portage.

>�
�� @����(����'��������!���������������������

Instead of judging the failure to replace Portage in terms of what the Gentoo developers

could or should have done, we therefore sought to understand the dynamics of the

efforts to rewrite and replace Portage. Focusing upon the activities, we find that all

efforts share a common goal: that of encapsulating the Portage application to reduce its

coupling with third-party software. With this goal in mind, the attempts at rewriting

Portage take on less of the appearance of false starts and rather appear a process where

113

the Gentoo developers are actively trying to get to grips with the problems associated

with rewritign and replacing Portage.

Rather than false starts, the knowledge gained through the attempts at rewriting

Portgage is not lost. Instead, it feess back into the new attempts at rewriting so that an

understanding of the problem is built incrementally by trying to rewrite.

The scope, the stakeholders involved, and sequence of activities for replacing Portage

differs between the three efforts to rewrite Portage. Yet, the challenge faced by each

effort is the same, to strike a balance between the need for keeping the parts to be

rewritten stable, and the need for continued adaption. This balance point, however, is

continuously negotiated and renegotiated and the strategies for rewriting and replacing

Portage have to respond to this.

Through their attempts to rewrite and replace Portage, the Gentoo developers both

partake in creating the environment that rewriting Portage is part of, as well as reacting

to this environment. There is a codetermination that rewriting and replacing Portage

needs to take into consideraton.

This is exemplified in Østerlie and Jaccheri (2007b) when a Gentoo developer explains

why next generation Porrage failed: " A rewrite is a MAJOR waste of extremely limited

resources … The amount of time it'd take would really drag out on the developers that

want new features and simplifications". The Gentoo developers learn from previous

attempts, and these attempts enable and restrict further attempts. After next generation

Portage, a complete rewrite was no longer possible as the Gentoo developers had

learned that this scope would require too much resources.

What we see, is that the process of rewriting Portage is driven by the question "what is

going on?" rather than "how to proceed from here?" (Weick 1995). It is a sensemaking

process where an understanding of how to proceed with rewriting and replacing Portage

emerges in response to an unfolding environment.

9.3. Three defining characteristics of maintaining

an integrated system (C3)

This section presents contribution C3. Contribution C3 aggregates the findings reported

in C1 and C2 to form an original contribution of this thesis. It does so by identifying

three defining characteristics of maintaining an integrated system. As such, it reports on

the totality of the research. The contribution is summarized as:

Maintaining an integrated system in a community of volunteers is characterized

by a scarcity of resources, an emphasis on coalition building, and volatility of

stakeholders

The contribution is offered in response to RQ3:

114

What are the characteristics of maintaining an integrated system in a distributed

community of volunteers?

Each of the three characteristics will now be now discussed in turn.

>���� %�
����'��������!�����

Scarcity of resources is a key theme recurring in three of the four empirical papers

included with this thesis In the context of Gentoo, scarcity of resources is related to two

issues:

• Scarcity of manpower

• Scarcity of information

Scarcity of manpower is part of the analysis in all three of the papers. Particularly, in

Østerlie and Wang (2007) we illustrate this with the growing gap between reported and

resolved problem reports in the defect tracking system database (see Exhibit 9-2 below).

Scarcity of manpower for rewriting Portage from scratch is also a recurring explanation

for the repeated failures in replacing Portage (Østerlie and Jaccheri 2007b).

Date

New problem

reports

submitted

Problem reports

closed

Open problem

reports

Number of

Gentoo

developers

January 6 2003 269 Not available 1893 102

January 5 2004 837 428 4479 259

January 3 2005 700 390 7877 Not available

January 16 2006 799 447 9083 320

Exhibit 9-2 Weekly debugging workload (Østerlie and Wang 2007)

There is also scarcity of information. While we address this in Østerlie and Wang

(Østerlie and Wang 2007), scarcity of information is particularly developed through our

use of the term 'ambiguity' in Østerlie and Wang (2006). Ambiguity is to be understood

as scarcity of information resources.

As such there are limits to the resources available for performing the many maintenance

activities of the Gentoo community. Prioritizing which resources to bear on what

problems is therefore important for the Gentoo developers. Determining what problems

to spend the limited resources on is open to negotiation. While such negotiations over

resources are essentially non-technical, all four empirical papers included with this

thesis shows how such negotiations typically unfold in guise of technical issues. Some

examples are in place to illustrate this.

Østerlie (2004) reports from the negotiations over introducing a programmable interface

for third-party applications to access Portage's package database. Presented as a

technical problem of preventing third-party applications from breaking whenever the

database schema is modified, the reported incident can also be interpreted as a

negotiation over boundaries. The base question being, where is the boundary between

third-party applications and Portage to be drawn? Who is responsible for maintaining

the third-party applications? The Portage developers, or the third-party application

115

developers? Being a process of negotiating over the technical boundaries, it is at the

same time a negotiation over responsibilities. Summarized: negotiation over boundaries

is a negotiation over whose resources are to be spent on resolving which problems.

Similarly, both Østerlie and Wang (2006; 2007) address the issue of negotiating over

boundaries. In these papers the technical surface discussion is one of software failures

and their causes. At the surface, it is therefore a negotiation over problems and possible

solutions. However, negotiations over reported failures are at the same time a process of

negotiating over boundaries.

There are two dimensions to the negotiation over boundaries during corrective

maintenance. One, the boundary of the failure. The essential technical discussion is

whether or not the reported failure really is a failure. Is the failure only located to the

reporting user's computer? If the failure is bounded to the user's system, it is labelled

user error. This leads us to the second dimension: boundary of responsibilities. User

errors are the responsibility of the user. However, if the problem is not merely bounded

to the user's system, commonly corroborated through reproducing the problem, it may

be the Gentoo developers' responsibility to resolve the problem. Yet, this is conditional

on whether the failure is caused by the way the software is integrated. If it is a defect in

the software itself, the third-party provider of the software is responsible for resolving

it. Again, it is a process of negotiating over which resources to spend on what problems.

>���
 ��	�
���������
�������$!�������

Emphasis on negotiation shifts the analytical focus towards closure mechanisms. The

software maintenance literature, focusing upon problem solving, sees identification of

the cause of the problem as closure mechanism. When analysing software maintenance

in terms of negotiation, however, the closure mechanisms are rather different. While the

conclusion may be technical, the closure mechanism is the building of coalitions.

The importance of building coalitions is discussed most in-depth in Østerlie and

Jaccheri (2007b). A central point of that paper is to show how the repeated failures to

replace Portage stem from the problem of building sustainable coalitions. We discuss

this in terms of balancing between technical and community interests. Building

coalitions is a process of translating interests and aligning them with one's own.

We illustrate this process by drawing translation diagrams. Table 9-2 below is an

example of such a diagram, illustrating a moment in the process of rewriting Portage

where a group of developers, collectively labelled the Portage-ng developers, seek to

translate the interests of various actors to their own interest of rewriting Portage as a

modular system. They do so by framing problems that the other actors encounter in

meeting with their interests, and how they will overcome these problems through the

solution proposed by themselves.

116

Table 9-2 Translating interests (Østerlie and Jaccheri 2007)

This emphasises the importance of mobilizing both technical and non-technical actors in

building coalitions. This is best illustrated in Østerlie (2004). This paper shows that in

both technical and non-technical actors are mobilized in building a coalition for

developing a programmable interface for third-party applications to access Portage's

database. The non-technical actors include the third-party developers and the Portage

developers. The technical actors include a set of problem reports, corrupted Portage

databases, as well as semi-functioning applications.

Engaging collectively with users in making sense of reported failures is reported as part

of contribution C1. This collective engagement can be interpreted as a form of coalition

building. Users and developers form temporary coalitions to achieve the joint goal of

resolving problem reports. However, these coalitions are precarious. As discussed in

Østerlie and Wang (2007) the user needs to present the failure as a likely problem

related with the way Gentoo integrates software. This is an effort to establish the

problem as an obligatory passing point for reaching the interests of both the Gentoo

developers (fault free software) and the user (a non-failing system). The users do so by

mobilizing debug texts to strengthen their claim that the reported failure is related with

the way Gentoo integrates software. The Gentoo developers, on the other hand, seek to

curb the workload of incoming problem reports. They do so by mobilizing data to

counter the coalition of technical and non-technical data presented by the user.

On the other hand, the Gentoo developers cannot be too dismissive of incoming

problem reports. That users report failures is a key quality assurance mechanism in the

117

Gentoo community. Users who loose confidence in the Gentoo developers'

responsiveness to reported failures are likely to move on to another GNU/Linux

distribution. The Gentoo developers therefore need to establish the corrective

maintenance process as an obligatory passing point for reaching the users' interest, too.

Corrective maintenance can therefore be interpreted as a dual process of building

coalitions to resolve particular problem reports, and sustaining coalitions for users to

continue reporting failures in the future.

>���� 6��
�����'����	
�����	
����

Maintenance work in the Gentoo community is characterized by a volatility of

participants. This characteristic amplifies the need for coalition building. Volatility of

participants in the maintenance activities is most clearly visible in corrective

maintenance. This is exemplified in Table 9-3 below.

Range of problem

reports submitted

Number of

submitters

Number of user

submitters

Number of Gentoo

developer submitters

1-2 2574 2480 94

3-5 687 629 58

6-10 321 273 48

11-20 145 108 37

21-100 75 39 32

101+ 1 1 0

Total 3803 3530 269

Table 9-3 Participants in corrective maintenance in 2002

The table shows that almost 68% of participants in corrective maintenance work report

one or two problem reports. 18% submit three to five problem reports, while 14%

submitted more than five problem reports during 2002. In practice, this means that there

is little sustainability in the process. Rather, coalitions formed to correct reported

failures are temporary.

Similarly, the process of rewriting and replacing Portage is marked by volatility of

actors. The inability of sustaining coalitions over an extended period of time is a

contributing factor to the repeated failures in replacing Portage. The same are the

overlapping initiatives for replacing Portage. While overlapping initiatives for replacing

Portage may be an expression of a lack of coordination within the community, it is

striking that relatively fresh community members undertake many of these initiatives.

Coalition building becomes important in these instances in two ways. It shows existing

initiatives inability to enrol new stakeholders with their initiative. However, it also

shows how new stakeholders need to enrol others with their initiatives to gain entry into

the community.

We see two different examples of how this is treated. Portage-C is a one-man effort to

rewrite Portage in C with a modular architecture. A young graduate student undertakes

it. While addressing both the issue of modularity and performance that are central to the

Portage-NG effort, the Portage-C initiative is met with complete silence. It is simply

ignored by the Gentoo community. While the Portage-C developer makes an effort to

enrol the Gentoo developers with his effort to replace Portage, he fails.

118

On the other hand the Portage API is met with another form of reaction. This is also an

initiative undertaken by a newcomer to the Gentoo community, and is an attempt to

establish a programmable interface for third-party software to interface the existing

Portage code. While clearly overlapping with the GentoolkitAPI, the Gentoolkit

developers abandon their efforts and enrol with the Portage API initiative. While the

Portage API developers succeed with enrolling the Gentoolkit developers, they fail to

sustain this coalition in the face of yet another newcomer's efforts at rewriting Portage

as a multiuser application. Still, unlike the Portage-C developer who fades out of the

Gentoo community, the Portage API developer will over time become one of the central

Gentoo developers.

9.4. Discussion

This section discusses the contributions presented above. While Section 8.4 evaluates

the research in terms of the reflections on the research process, Subsections 9.5.1 and

9.5.2 will evaluate aspects of the reported findings. Subsection 9.5.3 draw two

implications of the research for software maintenance research, while 9.5.4 concludes

this discussion by revisiting the issue of rigour and relevance.

>���� ���$�����������A�
���������
��
������'���������
����
�����
����

Having more or less well-defined problems is the basic premise of application software

maintenance research. As such, software maintenance has been understood as individual

problem solving activities and the management of these activities. In some areas of the

research literature, this premise is explicit. In the case of empirical studies of

maintenance tasks (Voká et al. 2004) and program comprehension (Vans et al. 1999),

for instance, research subjects are provided with clearly defined problems to resolve.

Similarly, the research on corrective maintenance procedures take the failure as its point

of departure (Zeller 2006). The failure is the equivalent of a more or less well-defined

problem. In other areas of the research literature, however, the premise is implied. Much

research focuses upon managerial issues such as controlling the change process and

planning how to cope with legacy systems (Sneed 1995). However to control change

and plan how to cope, there needs to be a problem to be addressed. As such, it is

implied that the premise is more or less well-defined problems.

Yet, the empirical findings reported in this chapter show that this premise is

problematic. The point of departure of maintenance activities is not well-defined

problems. Rather, the essential activity of maintaining an integrated system is a

collective process in which situations that are unclear, problematic and puzzling are

progressively clarified. In the case of debugging, contribution C1 shows that the Gentoo

users and developers engage in a cyclic process of making sense of reported failures. In

the case of systems replacement, contribution C2 shows that the problem to be resolved

in rewriting Portage is continuously under question and negotiation.

Problem setting is the collective activity of making sense of situations that are unclear,

problematic, and puzzling – problem situations. The term embodies a duality: 'setting' is

both a noun and verb. The noun is synonymous with 'environment'. 'Problem setting'

119

can therefore be understood as the environment of the problem. The verb, on the other

hand, is defined as 'put, lay, or stand (something) in a specified place or position'. As a

verb, 'setting' is the activity of creation. 'Problem setting' is therefore to be understood

as the activity making sense of problem situations by constructing the environment of

the problem.

Rather than viewing software maintenance as the activities related to discovering causes

of problems in the world, problem setting therefore emphasises the activities of

constructing problems. Constructing the environment of the problem is an act of

intervention. Intervening to making sense of problem situations, the situation also

changes. The problems to be addressed are not only out there in the world to be

discovered, but also immanent in the human activity of constructing them. The process

of problem setting is therefore inseparable from the product emerging from the process:

the problem. This is an ontological shift from an objectified world-view, towards an in-

process view of objects (problems in this situation) as immanent in human activity.

This use of the term 'problem setting', is slightly differently than originally formulated

by Schön (1991). This thesis therefore contributes to theory by elaborating on Schón's

original meaning of the 'problem setting'. Schön differentiates between the process and

the product of problem setting, stating that "[p]roblem setting is a process in which,

interactively, we name the things which we will attend and frame the context in which

we will attend to them". This explanation of problem setting uses the term 'frame' the

same way as it is used in Østerlie (2004), as the construction of problems. However,

drawing upon the duality of meaning of the term 'setting', 'problem setting' is interpreted

as both the process of constructing problems as well as the product of the process; i.e.

the environment of the problem.

>���
 ��
�����
$����'������	����
�����������

Mockus et al. (2002) raises the question of how software engineering can learn from

OSSD? The premise of the question is the idea that OSSD is something different than

software engineering as Scacchi (2007) puts it. This premise is problematic. Chapter 4

discusses the historic background of OSS, and how different actors have used the term

to position themselves in an otherness relation to dominant market positions within the

computing industry. In Østerlie and Jaccheri (2007a) we argue that the software

engineering community sees OSSD as a direct threat to its identity: that of a movement

of industry and academic actors to professionalize software development. We therefore

seek to illustrate how this community uses OSS' otherness position to argue that OSSD

is less relevant to software engineering because it is something completely different.

Returning to the original question, I would say that the question is, regardless of

whether I have studied software maintenance in a geographically distributed community

of volunteers or not: how do the findings transfer outside this research setting? This is a

valid question, whether we speak of transferability of the findings to similar

communities or to in-house software development departments. Another valid question

is: are the findings are limited to system integration?

120

These two issues related to transferability of the findings reported in this chapter will be

discussed below.

9.4.2.1 Transferability outside the research setting

The empirical findings above are based on a study of a single community of volunteers.

I sought to investigate the transferability of the research findings by presenting

preliminary results from the reported research to groups of professional system

integrators (see Section 8.3).

Presenting for professional system integrators was a deliberate attempt to see whether

the results were recognizable outside the context of volunteer software development. At

this moment in the research process (March-September 2006), I was still caught up with

the idea of OSSD as completely different from software engineering. The choice of

professional software developers therefore builds on the logic of opposition: if the

results transfer to professional system integration, which I regarded as the complete

opposite of OSSD, the transferability of the results were good.

The general feedback at all three sessions was that practitioners recognized my

description of corrective software maintenance work from their industrial experience. In

particular, the following technical issues of familiarity were emphasised by the

practitioners:

• The lack of clearly definable problems, and that the primary work when doing all

forms of software maintenance during systems integration, not only corrective

maintenance, is to understand what the problem really is

• The lack of traceable defects and the issue of interaction defects is something the

practitioners say they are often facing

• The issue of interaction defects were the problem is in the interface between two

components or systems

• The practitioners also identified with the situation where it is unclear which

information is relevant to understand the problem situation at hand

The feedback substantiates that the findings presented as contribution C1 is to a certain

degree transferable outside the research setting.

Participants in the third session pointed out that problem situations were often an

occasion for what they called 'organizational politics'. Working in a large corporation,

they used the term organizational politics about a form of blame game. The blame game

was an effort to limit the work of the department. The departments' limited resources

motivated this. In these situations, integrators reluctantly found themselves finding

technical data that could be used to place the blame of the problem outside of their own

department.

Participants in the other two sessions touched upon similar issues in the passing only.

However, scarcity of, or at least limited, resources is well known within the

maintenance literature. Indeed, it is one of the central concerns of the literature. Much

software maintenance research is motivated by the need to reduce the maintenance

burden. With unlimited resources, there would be little need for organizations to reduce

121

the maintenance burden. Access to and control over scarce resources is therefore

important for continued survival in organizations (Morgan 1997). It is therefore likely

that most organizations have to deal with the different interests of multiple stakeholders

during software maintenance. The answer to the first of the above challenges is

therefore that the reported findings are likely to apply in industrial software

maintenance, as well.

9.4.2.2 Transferability beyond maintenance of integrated systems

This research finds the problem situation to be an occasion for struggles over limited

resources within the organization. So far the problem situation has been identified as a

key concern when maintaining integrated systems. Yet, a senior practitioner in the first

group session argued that problem setting was the key activity in application software

maintenance as well. There is no software maintenance research to corroborate this,

however. Yet, some research may seem to indicate that this is the case. Martin and

McClure (1983) for instance, observes that maintenance engineers often waste a great

deal of effort looking for defects in wrong places. It is likely that some maintenance

engineers do waste time looking for defects in the wrong places during debugging. Yet,

this observation may also be grounded in the value-based view that debugging should

progress from well-defined failures to their resolution. Such an interpretation is likely

when considering software engineering as a movement away from trial and error-based

approach of the trades towards the professionalization of software engineering through

the application of scientific principles (Section 2.2).

The problem situation, however, has been emphasized in related realms of action. Schön

(1991) observes that engineers face only a limited number well-defined problems in the

daily work. Orr (1996) studies the use of technical manuals in diagnosing faulty of

copying machines. He finds that technical manuals can only address problems that

present themselves as givens. Yet, users can typically resolve such problems

themselves. Maintenance engineers therefore face problem situations, which technical

manuals fail to capture. Similarly, Gasser (1986) observes that users device

workarounds to errors in information systems. It is therefore likely that problems

reported during software maintenance are those users are unable to resolve themselves

through workarounds. With basis in Schön and Orr's observations, it is therefore likely

to assume that maintenance engineers are faced with problem situations during

application software maintenance, too.

The conclusion of the above discussion is therefore that the political view of software

maintenance as a continuous struggle over limited resources is therefore likely to be a

fruitful view of software maintenance in general.

>���� ��!�������������������������

How much trust can we put in the findings reported in this chapter?

Research findings never come about in a complete isolation. Rather, as Golden-Biddle

and Locke (1993) argues, it resides in the tension between familiarity and uniqueness.

On the one hand, reported research findings need to establish a sense of familiarity and

relevance to the reader. The text seeks to establish a connection with the disciplinary

122

background of the readers. This is not sufficient, however, for research findings to be

plausible contributions. They also need to provide a sense of distinction and innovation.

As such, in establishing the plausibility research findings, the research account needs to

provide readers with the means to bridge the gap between the familiar and the

distinctive new of the subject matter.

While there is a small, yet growing body of qualitative research on software engineering

practice, the research methods and subject matter is still esoteric within the software

engineering community. Offering distinctive different results compared to mainstream

software engineering research has not been a challenge in this research. Making the

research sufficient familiar to the software engineering community, on the other hand,

has been a significant challenge. To make the research more familiar to the reader, I

deliberately adopted a style of reporting that is common within this research

community. In this style of reporting the researcher's personal voice is anonymously

present in the text. When directly present the voice is impersonal, indicating personal

distance and objectivity. While still I believe the choice of reporting style was a

necessity to address this particular community, I also see that it is not entirely

unproblematic in terms of the trustworthiness of the research findings. Understanding

the researcher's partiality and subjective interpretations are important in evaluating

interpretive research.

This problem is further compounded by our limited use of raw qualitative data in the

papers. Again, this is a function of my goal to address the software engineering

community. The standard document format of software engineering conferences papers

leaves little room for qualitative data. Developed for reporting quantitative research, the

paper length is usually limited to 8 or 10 pages. I have therefore chosen to limit the use

of empirical material in the papers. I could of course have compensated for this by a

more liberal use of raw empirical material in this thesis. Yet, this is a paper collection,

not a monograph. The purpose of the thesis is to summarize previously reported

research, not further elaborate or substantiate it.

To compensate, I have therefore opted to make the presentation of the research process

as transparent as possible (Chapter 8). I do so in two ways. First, Sections 8.1 and 8.2

describe in the procedural aspects of the research process in detail. Second, I reflect

upon the how the research results have emerged in the triangular interaction with data,

theory, and the research subjects (Subsections 8.4.2, 8.4.3, and 8.4.4). In both instances,

I have faced the challenge of striking the balance between providing sufficient amount

of information to make the process of developing the results transparent without

overloading the reader with copious amounts of details.

Using more empirical illustrations may have increased the authenticity of the text. Yet,

empirical illustrations alone are not sufficient to determine the trustworthiness of the

findings. Methodical transparency and use of empirical data are complimentary. Still, I

believe I have struck a sufficiently good balance. As the papers have been accepted in

peer reviewed conferences, it seems that the software engineering community agrees

that the reported research is trustworthy. Obviously, in the end it is up to the reader to

evaluate how well I have succeeded establishing the trustworthiness of the reported

research.

123

>���� �	���
���������������
����
�����
��������
����

Two implications for software maintenance research may be drawn from the reported

research. First, software maintenance research on maintaining integrated systems need

to shift focus away from studying maintenance only as the individual activity of solving

well-defined problems towards the collective activity of constructing problems out of

materials of situations that are puzzling, troubling, and uncertain. As such, it suggests a

shift from individual 'problem solving' toward the collective process of 'problem

setting'.

Problem setting emphasises the collective nature of software maintenance work. With

this view, software maintenance work is the achieved performance of multiple

stakeholders with different interests. Focusing upon the contradictory interests brings

out the inherently political aspects of software maintenance work. Such aspects are

rarely touched upon in application maintenance research. This research usually assumes

that stakeholders shared interests. Whenever the issue of multiple interests is addressed,

the task of resolving such conflicts is delegated to, or translated into, an organizational

structure with clearly defined roles and responsibilities.

Yet, Østerlie (2004) shows how organizational structures is but one actor to be drawn

upon as a closure mechanism. As such, it is argued that the empirical contributions

offered by this research contributes towards establishing the need for software

maintenance researchers to focus on issues of conflict and differing interests when

studying software maintenance. While most maintenance research acknowledges that

software is maintained within organizations and that the quality of the software is a

function of the quality of the social relations of the organization, few researchers have

drawn the consequence of this. The reported research therefore offers a first foray into

this area, by identifying some of the social dynamics of maintaining integrated software.

A second implication of the reported research is therefore that existing experimental

studies of individual maintenance engineers performing limited maintenance activities

with basis in more or less clearly defined problems need to be supplemented with

studies that emphasise the contingent, negotiated nature of software maintenance.

>���" @���������������
����

Have focused on quantitatively determine whether and in what ways OSSD is different

from software engineering, researchers have failed to establish the relevance of OSSD

to software engineering in general (Chapter 4). The research reported in this thesis

brackets the question of how OSSD differs from software engineering, as this is based

on the false premise that OSSD is a homogenous phenomenon (Østerlie and Jaccheri

2007a). The above discussion on generalization indicates that the findings translate

outside OSSD. This thesis is therefore offered as an example of how OSSD can be

made more relevant to software engineering by studying it as a special case of software

maintenance.

The results reported in this chapter also suggest that studies of software engineering

practice may supplement scientific rigorous studies to make research more relevant to

124

practice. Practice studies have so far met limited understanding within software

engineering (Robinson et al. 2007). Some of this may be caused by these studies

tenuous relationship with the overall goal of software engineering: the

professionalization of software development through the application of scientific

principles. Practice studies' relationship to this goal is tenuous in two ways.

• Their relevance to practice is unclear, as they do not contribute to the applied

science component of software engineering knowledge with improved methods,

tools and techniques to improve parts of the software process.

• They rely upon a different underlying theory of the discipline.

There is a trend towards scientism within software engineering. Scientism is a form of

methodical monism where only natural scientific methods are considered appropriate

for developing valid knowledge. This is probably, as Shaw (2001) observes, a result of

a discipline coming of age where we have yet to recognize what our research strategies

are and how to establish their results. It is therefore worth noting that such methodical

monism reifies the view of OSSD as completely different from software engineering

(Østerlie and Jaccheri 2007a). The research reported in this thesis illustrates the

importance of capturing the complexity of the social context to better understand what

practitioners really do when maintaining integrated systems. This is in contrast with the

experimental research on program comprehension that reifies the view of software

maintenance as individual, cognitive problem solving (von Mayrhauser and Vans 1995).

The danger of methodical monism is therefore that the natural sciences seek to generate

facts that are independent of the social context. However, for practitioners it is exactly

this context that is of importance. As such, studies of software engineering practice may

supplement existing focus on scientific rigour to capture the complexities of real-life

software engineering. By better reflecting upon these complexities, research may

become more relevant to practice.

Software engineering has developed a strong theoretical core consisting of more or less

standardized terminology and well-established models. It has often-cited references

with clearly defined terminology like the IEEE Standard Glossary of Software

Engineering Terminology (IEEE 1990). Glass et al. (2004) also observe that software

engineering research rarely draw upon reference disciplines. Both are indicators of a

strong, coherent theoretical core. As such, software engineering researchers tend to

approach the research with a priori concepts that are applied to the object of study.

Different research approaches, however, have different views on where and how

concepts arise (Alvesson and Deetz 2000). Rather than approaching the fieldwork with

concepts to be applied, the reported research exemplifies how familiar concepts may be

revisited and supplemented with meaning that emerges from the local research setting.

This research revisits and give additional meaning to maintainability (Østerlie and

Wang 2006) as well as debugging (Østerlie and Wang 2007) which supplements a

priori definitions in the research literature.

The danger of theory is that research becomes narrow, caught up in surface phenomena

and conventional meanings (Alvesson and Deetz 2000). Such a narrow focus, in turn,

125

may make research less relevant to practice. Yet, by grounding our understanding of

terminology in local meanings, researchers may hope to address concerns that are more

relevant to practitioners. Practice studies are well suited for this kind of exploration of

the local meaning of familiar concepts. Offering an example of how studies of software

engineering practice may explore familiar concepts, the reported research may be

considered a response to Osterweil' (2007) question of whether software engineering

researchers should explore more.

126

127

10. Implications to software maintenance

practice

With basis in the empirical findings presented in the previous chapter, this chapter

draws implications to software maintenance practice. In particular, it offers a set of

recommendations for corrective maintenance and systems replacement. These are

offered as contributions C4 and C5. This chapter is therefore organized as follows. First,

Section 10.1 offers a set of recommendations for a lenient approach to coping with

variability during corrective maintenance. Here it is suggested that rather than pre-

empting problems related to variation, it may be more beneficial to address problems as

they arise. Section 10.2, offers a set of recommendations for an opportunity-driven

approach to systems replacement. Here, it is argued that rather than careful planning

requiring stable coalitions over time, it may be more beneficial to emphasise the process

of planning. The shift of focus towards planning emphasises a contingent and

opportunistic approach to systems replacement.

10.1. Recommendations for a lenient approach

to coping with variability during corrective

maintenance (C4)

The configuration among individual installations of an integrated system may vary

greatly. Variability is therefore a significant concern during maintenance of integrated

systems. Existing research recommends technical solutions to control and reduce such

variability (Crnkovic and Larsson 2002). This section draws implications of the

empirical findings reported earlier for coping with such variability in practice. It offers a

set of recommendations for a more lenient approach. With basis in Contribution C3,

these recommendations seek to strike a balance between investing scarce resources in

pre-empting future problems through increased control of variability, with the effort

required to handle such problems as they arise. Hybertson et al.'s (1997) makes a similar

argument, offering a set of simple heuristics for modest tracking of third-party software

in integrated systems. Building on C1, this section supplements these heuristics with a

set of recommendations for organizing the corrective maintenance process to better

handle problems of variability when they occur.

128

�:���� �!�$�!	����������������������������������	����������
��
$����'�

An expressed goal of the Gentoo community is that individual systems should be

continuously updated rather than reinstalled. This, combined with frequent updates of

the third-party packages supported by Gentoo would suggest the potential for immense

variability among Gentoo systems. However, Gentoo's response to the issue of variety is

diametrically opposite of that recommended by the research literature. While Portage

supports dependency handling among packages, controlling variability is not much of a

concern to the Gentoo developers. The mechanism for enforcing dependencies between

software packages is only used when software depends on a specific version of another

package.

With basis in the reported research, however, the following is recommended:

Recommendation 1:When manpower is scarce, cope with problems related to

variability as they arise rather than invest in controlling and limiting variability

among installations of an integrated system.

Increased control is a strategy that seeks to pre-empt anticipated problems. This requires

an up-front investment of effort. However, instead of spending a lot of effort to pre-

empt potential problems, resources are spent on addressing actual problems. The

recommendation for a lenient approach to coping with variability resembles the

implications Adams (1984) draws for software reliability. Reporting from a study of

nine software products over a 10 years period, Adams (1984) observes that most

reported problems in large-scale software only occur once. Commenting upon Adams'

study, Littlewood (1986) observes that the reason for this observation is related to

variation of configuration of individual computers running the software. With basis in

the observation that only a fraction of the defects will impact on a large population of

users, Adams recommends not spending effort eliminating all defects during testing but

rather to address the high-impact failures reported during use. The resemblance between

the two strategies is to spend effort when required, rather than to pre-empt potential

problems.

This is obviously not an argument against testing software before releasing it. Nor is it

an argument not to impose certain degree of control on the variability. Rather, it is an

argument against what may be an overzealous attempt to control problems that may not

be that difficult to keep in check during maintenance. The Gentoo community

complements the lenient approach for coping with variability with a closer integration

of users in the corrective maintenance process. This leads to the next recommendation.

�:���
 %!		�����������������$!������

The research literature emphasises the need to reproduce software failures on the

maintenance engineer's system (Zeller 2006). Detailed and often complex schemas for

describing software failures have been proposed to support the reproduction of failures.

Configuration management systems are used to limit the variability of application

software. Each release of an application is numbered, and the release number

corresponds with a set of revisions of the source files in the configuration management

129

system. Failures therefore relate to a particular release, and the release may therefore be

used for tracing the differences in source files since the last failure free release.

Similarly, Carney et al. (2000) stress the importance of having the entire integrated

system under configuration management for controlling variability. The result is to

release the integrated system as a monolith as it is common for application software.

Yet, this approach presumes that the integrator is in complete control of the software

being integrated. While this may be possible when developing an integrated system

from off-the-shelf components, this is not the case when integrating information

systems across organizational boundaries (Hasselbring 2000). Yet, without such control,

the integrated system may be difficult, if not even impossible, to debug (Voas 1999).

With the above assumption in mind, the Gentoo community's lenient approach to

variability should therefore be problematic in a process where software quality relies

more on field-testing and peer review than rigorous testing prior to release (Huntley

2003). The Gentoo developers, however, handle the situation by engaging in a

collective process with the users. With basis in the reported research, the following is

therefore recommended:

Recommendation 2: When variability among installations is great, supplement

the problem report with alternative communication channels to support remote

debugging rather than developing complex classification schemas to support

reproduction of failures.

The problem report seeks to decouple the user experiencing the failure from the

maintenance engineer responsible for correcting the reported failure both geographically

and temporally. The Gentoo developers seek to interface the failing system both more

directly and more indirectly. More directly by engaging with the user. More indirectly

by not engaging with the software failure on their own system, but through debug data

produced by the user. This is in contrast to the completely decoupled corrective

maintenance process espoused by the OSS literature, where someone finds and reports

the failure while somebody else corrects it (Huntley 2003).

However, based upon the reported research, simply adding an additional clear text field

like Bugzilla's 'Additional comments' may not suffice. The empirical data shows the

need for developers and users to communicate more directly. In the case of Gentoo this

is handled through IRC channels. Any form of chat-like communication would probably

suffice. However, the empirical data show three important features of IRC which are

important when debugging:

• Real-time communication facilitates tighter interaction between stakeholders

• The IRC client provides a brief history of previous statements so that people may

catch up on threads of discussion

• The possibility of paging particular individuals so they can join the conversation

 As software users are seldom co-located with the software developers within the same

organization, providing a more direct means of communication between users and

130

developers is not necessarily limited to geographically distributed software development

teams.

�:���� %!		��������$������
		����

An implicit assumption of existing schemas for classifying software failures is that the

reporting user has already understood what the failure is. In the documentation for the

Bugzilla defect tracking system (Barnson 2007), for instance, each of the fields for

describing software failures are thoroughly presented. However, the part of the problem

report that is most used by the Gentoo community, the Additional comments field, is

described by a single sentence: "Here you may add additional comments". Yet, it is

exactly this field that is of most help during problem situations.

To encourage users to use defect tracking systems, it may be useful to substitute

comprehensive classification schemas that seek to describe failures exhaustively with a

schema where only a minimum of information about the problem situation is required

of the user. Instead, the problem report could facilitate communication between users

and developers akin to the way the 'Addition comments' field is used by the Gentoo

community.

Recommendation 3: Provide users with simplified schemas for reporting

failures in order to bootstrap the corrective maintenance process.

The reported research may therefore suggest that a focus on schemas for reporting

software failures may be counter constructive when maintaining integrated systems.

Because users and developers have to deal with problem situations, it is difficult to

determine the value of the predefined fields of the problem report (discussed in 9.1

above). A similar issue arose during one of the practitioner presentations (see 8.3). The

practitioners' experience with defect tracking systems was that non-technical users did

not use them for reporting software failures. Rather, the users were overwhelmed by the

problem reporting schemas, and instead chose to report the problem by phone or e-mail

instead.

As such, the research may suggest that the function of the problem report may be

limited to bootstrapping the corrective maintenance process.

10.2. Recommendations for an opportunity-

driven approach to systems replacement (C5)

The research literature emphasises the need for thorough planning when replacing

legacy systems. Sneed (1995, p. 24), for instance, stresses that the success of systems

replacement "depends to a great degree on proper planning". Acknowledging the need

for an operational system during reengineering, more recent literature proposes

incremental approaches to systems replacement (Bianchi et al. 2003). Yet, a well-

planned process is still emphasised as a key to success even here (Sneed 2005). This

section draws implications for systems replacement practice. With basis in Contribution

C2, a set of recommendations for an opportunity-driven approach to systems

131

replacement is offered. Rather than emphasising the importance of a plan, these

recommendations suggest that software developers should focus on the activity of

continuous planning throughout the process of replacing the system. These

recommendations are offered as Contribution C5 from the reported research.

�:�
�� &�����������
��*������������	�
���

Thinking in terms of coalition building, the long-term plan requires a coalition that is

stable over time. Yet, the volatility of participants in the process of rewriting Portage

made such stable coalitions difficult (see 9.3.3). In contrast to the literature, then, the

view of systems replacement offered by contribution C2 emphasises that systems

replacement is contingent and depends upon building coalitions. With basis in this view

of systems replacement, the following recommendation is offered:

Recommendation 1: During systems replacement, formulate long-term goals

and focus on plans that require temporal rather than long-term coalitions.

This recommendation is based upon two observations of the systems replacement

process:

• Emergent understanding

• Translation of plans into action

First, the issue of emergent understanding. This is an issue developed in Østerlie and

Jaccheri (2007b) as well as in both Østerlie and Wang (2006 and 2007). Rather than

seeing knowledge as discoverable, these papers argue that understanding a situation

requires intervention. Through intervention the situation changes (Weick 1995). As

such, knowledge about systems replacement and the process of replacing a system is not

something that can be completely grasped beforehand. Rather, understanding is

emergent and contingent. As such, it is important to adapt to the changing environment.

Second, the issue of translating plans into actions. The problem with plan-based

approaches to systems replacement is that it considers translating the plan into practical

action trivial. Acting according to plan requires stable coalitions. The plan will only be

translated into practical action when it is in the actors' interest to do so. However, by

understanding that systems replacement unfolds as part of a continuously emerging

context of development and use, we see the problem with keeping coalitions stable over

time. Actors' interests change, and new problematic situations will arise.

�:�
�
)		���!���'��������

Rather than focusing on the plan and its execution, a practical implication of the

reported research is to emphasise planning. 'Planning' is proposed here as an activity

immanent in the process of replacing systems. Regarding planning as a continuous

activity throughout the process of replacing a system seeks to address that

understanding is emergent and that plans are negotiated entities. An important aspect of

the carefully laid plan is to retain control of the systems replacement effort. Panning, on

the other hand, deemphasises the need for controlling the entire replacement process.

132

Yet, if control of the process is regarded as important in order to succeed, how to

succeed without control? This leads to the next recommendation:

Recommendation 2: Seek smaller, temporary coalitions rather than overall

control.

The practical implication for systems replacement is therefore to seek smaller,

temporary coalitions. While replacing the entire software system in one go has clear

attractions, the likelihood of succeeding can be quite small. Emphasising the contingent

character of systems replacement, planning seeks a shift of focus towards building and

sustaining coalitions. Coalitions need to be built and sustained in order to meet the

stated goals of systems replacement. This, in turn, emphasises the need for seizing upon

opportunities for building new coalitions as they arise within the organization.

The problem that legacy systems' need to adapt even in periods of rewriting, can be

related to the sustainability of the effort. Incremental reengineering therefore seeks to

make the rewriting steps so small that it is possible for the legacy system to adapt

during maintenance.

While a technical problem, the problem of sustainability can also be understood within

the context of coalitions. The continued problem with replacing Portage is closely

related to the problems of sustaining coalitions. Interpreted in terms of coalition

building, complete systems replacement requires a stable coalition over time.

Sustainability of coalitions is closely related to stability of actors, but also a stability of

actors' interests. In organizations with many actors with different interests, the initial

problem will be to enrol a sufficient number of actors in a coalition. Then, sustaining

the coalition is an even further problem.

As such, regardless of the technical challenges related to systems replacement, the

practical implications of a pluralist perspective on software maintenance organizations

is that it can be more realistic to seek temporary coalitions with a few actors that only

need to be sustained over a shorter period of time.

133

11. Conclusions and future work

This thesis concludes the research project titled 'Empirical software engineering and

open source software development'. The project has been conducted as part of the Ph.D.

programme attended by the Norwegian University of Science and Technology. The

thesis has summarized the empirical study undertaken as part of the project. This has

been done in three parts. In part one of the thesis, the reported study was situated within

the software engineering discipline. The ongoing discussion of relevance and software

engineering research is presented in here. Part two of the thesis presented the empirical

study performed. In addition to reporting on the research process, the interpretive

research approach as well as the research setting is introduced in this part. The final part

is dedicated the results of the reported research. Two kinds of results were reported.

First, the empirical contributions offered by the research were reported. With basis in

the empirical contributions, implications for software maintenance practice are drawn.

The purpose of this chapter is to briefly outline the conclusions of the reported research,

discuss limitations of the research, as well as indicate potential avenues for future work.

11.1. Conclusions

The goal of the reported research has been to inform software engineering research.

This is a response to the research community's worries over lack of relevance to practice

(see Chapter 2). The reported research is based on the view that we do not fail to inform

practice because our research lacks credibility. Rather, we as a research community fail

to inform practice because we know too little about practice to study issues relevant to

practitioners. To meet our collective goal of informing practice, the software

engineering research community first needs to be informed by practice. To this end, I

have conducted a study of software maintenance practice. The study was conducted in

the context of a community of volunteer software integrators. Three research questions

were posed (Section 1.3).

Research questions 1 and 2 dealt with software maintenance as knowledge-intensive

work. They were concerned with how system integrators in a geographically distributed

community of volunteers build knowledge for two kinds of software maintenance

134

activities: corrective maintenance and software replacement. Whereas most software

maintenance research is based on the premise that maintenance activities follow from

more or less clearly defined problems, I found problem setting to be an essential activity

of maintaining an integrated system. Problem setting is the collective process in which

situations that are unclear, problematic, and puzzling are progressively clarified.

The shift from problem solving to problem setting broadens the scope of software

maintenance activities. Problem solving is concerned with software maintenance as an

individual cognitive activity. Existing maintenance research has therefore focused upon

understanding the cognitive mechanics of problem solving and developing tools for

supporting individual developers. Yet, problem setting broadens the scope to include

both the social and technical processes involved when maintaining an integrated system.

Building upon this observation, I answered research question 3. This research question

was concerned with the characteristics of large-scale software maintenance work in a

geographically distributed community of volunteers. With basis in the social and

technical processes identified in response to research questions 1 and 2, I found problem

setting to be a process where multiple stakeholders with different interests continuously

negotiate over problems and their solutions. I call this multilateral software

maintenance. Maintaining an integrated system in a community of volunteers is

therefore characterized by a scarcity of resources, an emphasis on coalition building,

and volatility of stakeholders. Focusing upon scarcity of resources and contradictory

interests brings out the inherently political aspects of multilateral software maintenance.

The following conclusions can therefore be drawn with basis in the reported research.

A conclusion for software maintenance is that researchers need to acknowledge the

multilateral character of systems integration. This means that the basic premise of

application software maintenance – that a single team or organization is in control of the

development trajectory of software (Banker et al. 1993) – is no longer tenable. Rather,

multilateral software maintenance means that no single stakeholder is in control of the

entire integrated system. Instead, multiple stakeholders with different, sometimes

conflicting interests are in control of the development trajectory of different parts of the

integrated system.

As far as existing research acknowledges that multiple and conflicting interests may

exist during software maintenance, the methods proposed invariably leaves it to a single

stakeholder to resolve such conflicts. Yet, it is the very lack of such central authority

that characterizes multilateral software maintenance. Instead of relying upon

maintenance methods that assumes that there is some form of central control,

multilateral software maintenance calls for pragmatic strategies based on building

coalitions. This is exemplified in contributions C4 and C5.

A conclusion for software engineering is that we as a community have mostly missed

out on the opportunity for learning from the experiences of OSSD so far. This thesis

proposes that software engineering is a community of industry and academic actors with

the shared goal of professionalizing software development. Learning from experience to

build a body of professional knowledge is an important part of professionalization. Yet,

135

as we show in Østerlie and Jaccheri (2007a) software engineering researchers continue

to treat OSSD as different. In so doing, we as a community are missing out on an

important opportunity for learning that may offer significant contributions to the

professional body of knowledge we are collectively building. By continuing to quantify

artefacts of OSSD, we fail to move beyond the dichotomy between OSSD and software

engineering. Moving beyond this dichotomy is important for us to start learning from

OSSD. To do so, software engineering researchers also need to study how OSSD is

developed and maintained in practice.

The need to study practice is not limited to software engineering research on OSSD, but

applies to software engineering research in general. This research shows that the

concept of problem solving only partially addresses the activities of maintaining an

integrated system. Yet, software maintenance as mainly an individual problem solving

activity remains the basic premise of much research. The reported research empirically

demonstrates that the individual problem solving is only part of the collective activities

of problem setting. As such, while existing experimental research on software

maintenance is scientifically rigorous, it is in the case of software integration based on

the mistaken premise of more or less well-defined problems. To develop research that is

relevant for practice, the theory applied in scientifically rigorous experiments needs to

be calibrated with research on actual software development practice.

11.2. Limitations

This thesis reports from a study of software maintenance work in a single

geographically distributed community of volunteers. While this research strategy has

the potential of developing in-depth data, it also faces two potential limitations:

• The results may be inapplicable outside the context of the particular case

• With basis in a community of volunteers, the results may have little relevance to

commercial software development which is the main concern of software

engineering

While I have made efforts to test the transferability of the reported research to industrial

system integration (see 8.3 and 9.4.2), the results could have been made more credible

by doing a comparative study of system integration in a commercial organization and a

geographically distributed community of volunteers. Although predominantly

descriptive, this study proposes 'problem setting' as a way of conceptualizing the

maintenance of integrated systems (see 9.4.1). A comparative study would support

better development of this concept. However, time and resources did not permit that

such a comparative study to be undertaken.

Practically unlimited access to data is an advantage of studying geographically

distributed communities of volunteers. This gives immense amounts of data. Yet, for

me there was also a significant limitation to doing such research: I had no immediate

access to those I studied. Although being available through e-mail and IRC, I found in-

depth communication with the research participants limited. While I did discuss drafts

of some papers to selected community members (see 8.4.4), I think the results would

136

have benefited from arranging group sessions with selected Gentoo developers similar

to those held for professional system integrators (see 8.3). With the possibility of

commenting both upon concrete events and situations as well as my interpretations of

these, I believe such group sessions could have provided important feedback to improve

the results of this study.

11.3. Future work

The motivation of the reported research is that there is very little research on

maintenance on integrated systems. While there is a clear shift of focus towards

software integration, the software maintenance research community does not seem to

have fully grasped the implications of such a shift for their object of study. As such,

studying the maintenance of integrated systems appears a fruitful avenue for further

research.

Offering a view of software maintenance work where multiple stakeholders with

different interests continuously negotiate over problems and their solutions, this thesis

offers an outline of a political perspective on software maintenance. Following a turn

towards studying maintenance of integrated systems, further development of such a

political perspective should be particularly relevant to software maintenance research.

Existing research is based on an implicit understanding of the social as harmonic. This

may not be an altogether misleading assumption when studying application software

maintenance where a single team or organization is in complete control of the software.

However, in the context of integrated systems where no one organization or actor is in

complete control, a political perspective's emphasis on multiple stakeholders with

different interests seems particularly fruitful.

Furthermore, while the reported research does study maintenance in the context of

development and use, the implications of this relationship remains unresolved by the

reported research. Yet, it is implied that there is a reciprocal relationship between the

two. In the future, it would be particularly interesting to study this relationship even

further. In developing a political perspective on software maintenance the interaction

between use and development is particularly important, as individual and groups of

users are important stakeholders in the maintenance process.

The context of the reported study is a distributed community of volunteers. In the

future, it would be interesting to explore a political perspective on software maintenance

in the context of a large commercial organization. Whereas the Gentoo community's

organizational structures are not particularly strong, the theoretical perspective offered

by Østerlie (2004) to draw hierarchies into the analysis of the process of problem setting

as merely yet another actor would be particularly interesting in the context of formal

hierarchies.

Some practitioners participating in the group sessions (see Section 8.3) indicated that

making sense of problem situations is also a central activity in application software

maintenance. It may therefore be interesting to test whether the premise of more ore less

clearly defined problems is valid in application software maintenance, too.

137

12. Glossary

Application library A collection of subroutines that multiple applications use.

Application software A set of software modules performing a coherent set of tasks in support of

a given organizational unit and maintained by a single team.

Business-critical Software whose failure may result in the failure of the business using the

system.

Component A unit of code that integrators can combine with other components and

integrate into a system in a predictable way

Debugging The activity of diagnosing problematic situations related to failing

software.

ebuild Installation script used by Portage to integrate software packages with

Gentoo systems.

Gentoo system A computer using Portage to integrated third-party OSS with its local file

system.

GNU GNU is a recursive synonym for 'GNU is not Unix', and is used as the

brand for the Free Software Foundation's Unix-like operating system.

GNU/Linux distribution A collection of software applications and libraries bundled together with

the Linux operating system kernel. It is called a GNU/Linux distribution

as much of the core software is developed by the GNU project.

Integrated system A software system composed of black-boxed software. The black-boxed

software may range from software components to enterprise information

systems.

Kernel Short for operating system kernel.

Legacy system Software system that is expensive to maintain, but still operational

because it is business-critical.

Open source software Software released under a license compliant with the Open Source

Definition.

Operating system kernel The kernel manages system resources, and communicated between the

software and the hardware.

Optional Short for optional feature.

Optional feature A global configuration option in Portage that enables optional features

across individual ebuilds. IMAP support is an example of such an

optional feature.

138

Package Short for software package.

Package manager A software application that integrates software with a local computer's

file system.

portdir Portage's package database.

Portage Gentoo's package manager.

Problem report A standardized schema for reporting software failures

Problem setting The collective process where problematic situations are progressively

clarified.

Problematic situation A situation that is puzzling, troubling, and uncertain. It is a situation

where it is unclear what the problem really is.

Process data Data of events, activities, and the sequence of these.

Process theory Theory that seeks to conceptualize events, activities, and choices ordered

over time and to detect patterns among them. The purpose is to explain

the outcome and mechanics of these activities and events.

Runtime libraries Libraries that handle the low-level details of passing information between

the kernel and the application software layer.

Software integration The process of developing integrated systems.

Software package Third-party software that can be integrated with a computer's file system.

System calls Part of the operating system kernel that provides services for to request

services from the kernel.

Unix-like An operating system that behaves in a similar manner to a Unix system,

but does not necessarily comply with POSIX.

/var/db The database Portage stores information about the packages that have

been integrated with the computer's file system.

virtual package Functionality that may be provided by different packages. The

functionality of the Java virtual machine, for instance, may be provided

by Sun's Java VM as well as IBM's Java VM.

139

References

Adams, E.N. "Optimizing Preventive Service of Software Products," IBM Journal of

Research and Developmen (28:1), January 1984, pp. 2-14.

Alvesson, M., and Deetz, S.A. Doing Critical Management Research, SAGE

Publications, London, UK, 2000, p. 232.

Araki, K., Furukawa, Z., and Cheng, J. "A General Framework for Debugging," IEEE

Software (8:3), May 1991, pp. 14-20.

Avgerou, C. "Doing Critical Research in Information Systems: Some Further

Thoughts," Information Systems Journal (15:2), April 2005, pp. 103-109.

Banker, R.D., Datar, S.M., Kemerer, C.F., and Zweig, D. "Software Complexity and

Maintenance Costs," Communications of the ACM (36:11), November 1993, pp.

81-94.

Bansler, J., and Bødker, K. "A Reappraisal of Structured Analysis: Design in an

Organizational Context," ACM Transactions on Information Systems (11:2),

April 1993, pp. 165-193.

Barnson, M.P. "The Bugzilla Guide - 3.1 Development Release,"

http://www.bugzilla.org/docs/tip/html/, 2007. Last accessed: 21 March 2007.

Basili, V. "The Experimental Paradigm in Software Engineering," in: Experimental

Software Engineering Issues: Critical Assessment and Future Directions, B.A.

Kitchenham, N. Fenton, H.D. Rombach, W.W. Agresti and A. von Mayrhauser

(Eds.), Springer Verlag, Heidelberg, 1993, pp. 1-12.

Basili, V.R., and Harrison, W. "Editorial," Empirical Software Engineering (1:1),

January 1996, pp. 5-10.

Basili, V.R., and Perricone, B.T. "Software Errors and Complexity: An Empirical

Investigation," Communications of the ACM (27:1), January 1984, pp. 42-52.

Basili, V.R., Selby, R.W., and Hutchens, D.H. "Experimentation in Software

Engineering," IEEE Transactions on Software Engineering (12:7), July 1986,

pp. 733-743.

Bass, L., Clements, P., and Kazman, R. Software Architecture in Practice, Addison

Wesley, Boston, Mass., 2003, p. 560.

140

Behlendorf, B. "Open Source as a Business Strategy," in: Open Sources: Voices from

the Open Source Revolution, C. DiBona, S. Ockman and M. Stone (Eds.),

O'Reilly & Associates, Sebastapol, Calif., 1999, pp. 149-170.

Belady, L.A., and Lehman, M.M. "A Model of Large Program Development," IBM

Systems Journal (15:3), 1976, pp. 225-252.

Belady, L.A., and Lehman, M.M. "The Characteristics of Large Systems," in: Research

Directions in Software Technology, P. Wegner (Ed.), The MIT Press,

Cambridge, Mass., 1978, pp. 108-138.

Bennet, K. "Legacy Systems: Coping with Success," IEEE Software (12:1), January

1995, pp. 19-23.

Bergqvist, M., and Ljungberg, J. "The Power of Gifts: Organizing Social Relationships

in Open Source Communities," Information Systems Journal (11:4), October

2001, pp. 305-320.

Berntsen, K., Munkvold, G., and Østerlie, T. "Community of Practice Versus Practice

of the Community: Knowing in Collaborative Work," The ICFAI Journal of

Knowledge Management (II:4), December 2004, pp. 7-20.

Bianchi, A., Caivano, D., Marengo, V., and Visaggio, G. "Iterative Reengineering of

Legacy Systems," IEEE Transactions on Software Engineering (29:3), March

2003, pp. 225-241.

Bisbal, J., Lawless, D., Wu, B., and Grimson, J. "Legacy Information Systems: Issues

and Directions," IEEE Software (16:5), September 1999, pp. 103-111.

Bjerknes, G., and Bratteteig, T. "User Participation and Democracy: A Discussion of

Scandinavian Research on Systems Development," Scandinavian Journal of

Information Systems (7:1), 1995, pp. 73-98.

Bloor, D. Knowledge and Social Imagery, University of New South Wales, Chicago,

Ill., 1976, p. 156.

Boehm, B.W. Characteristics of Software Quality, Elsevier, Amsterdam, North-

Holland, 1978.

Boehm, B.W. "A View of 20th and 21st Century Software Engineering", in

Proceedings of the 28th International Conference on Software Engineering,

Shanghai, China, May 20-28, 2006a, pp. 12-29.

Boehm, B.W. "Some Future Trends and Implications for Systems and Software

Engineering Processes," Systems Engineering (9:1), January 2006b, pp. 1-19.

Boehm, B.W., and Abts, C. "Cots Integration: Plug and Pray?," IEEE Computer (32:1),

January 1999, pp. 135-138.

Boland, R.J. "Phenomenology: A Preferred Approach to Research in Information

Systems," in: Research Methods in Information Systesm: Ifip Wp 8.2

Colloquium Proceedings, E. Mumford, R. Hirschheim, G. Fitzgerald and A.T.

Wood-Harper (Eds.), North-Holland Publishing Co., Amsterdam, Netherlands,

1985, pp. 193-201.

Bonaccorsi, A., and Rossi, C. "Why Open Source Software Can Succeed," Research

Policy (32:7), July 2003, pp. 1243-1258.

Brodie, M.L., and Stonebraker, M. Migrating Legacy Systems: Gateways, Interfaces &

the Incremental Approach, Morgan Kaufmann Publishers, San Francisco, Calif.,

1995, p. 210.

Brooks, R. "Towards a Theory of the Comprehension of Computer Programs,"

International Journal of Man-Machine Studies (18:6), June 1983, pp. 543-554.

141

Brown, J.S., and Duguid, P. "Organizational Learning and Communities-of-Practice:

Towards a Unified View of Work, Learning, and Innovation," Organization

Science (2:1), February 1991, pp. 40-57.

Callon, M. "Techno-Economic Networks and Irreversibility," in: A Sociology of

Monsters: Essays of Power, Technology, and Domination, J. Law (Ed.),

Routledge, London, UK, 1991, pp. 132-164.

Callon, M. "Some Elements of a Sociology of Translation: Domestication of the

Scallops and the Fishermen of St. Brieuc Bay," in: The Science Studies Reader,

M. Biaglio (Ed.), Routledge, New York, NY, 1999, pp. 67-83.

Callon, M., and Law, J. "On Interests and Their Transformation: Enrolment and

Counter-Enrolment," Social Studies of Science (4:12), November 1982, pp. 615-

625.

Calzolari, F., Tonella, P., and Antoniol, G. "Dynamic Model for Maintenance and

Testing Effort", in Proceedings of the International Conference on Software

Maintenance (ICSM'98), Bethesda, Maryland, November 16-20, 1998, pp. 104-

112.

Canning, R.G. "That Maintenance 'Iceberg'," EDP Analyzer (10:10), October 1972, pp.

1-14.

Capra, E., Francalanci, C., and Merlo, F. "The Economics of Open Source Software: An

Empirical Analysis of Maintenance Costs", in Proceedings of the 23rd IEEE

International Conference on Software Maintenance (ICSM'07), Paris, France,

October 2-5, 2007, pp. 395-404.

Carney, D., Hissam, S.A., and Plakosh, D. "Complex Cots-Based Software Systems:

Practical Steps for Their Maintenance," Journal of Software Maintenance:

Research and Practice (12:6), November-December 2000, pp. 357-376.

Cavano, J.P., and McCall, J.A. "A Framework for the Measurement of Software

Quality", in Proceedings of the Software Quality Assurance Workshop on

Functional and Performance Issues, 1978, pp. 133-139.

Chapin, N., Hale, J.E., Khan, K.M., Ramil, J.F., and Tan, W.-G. "Types of Software

Evolution and Software Maintenance," Journal of Software Maintenance:

Research and Practice (13:1), January-February 2001, pp. 3-30.

Ciborra, C.U., and Lanzara, G.F. "Formative Contexts and Information Technology:

Understanding the Dynamics of Innovation in Organizations," Accounting,

Management and Information Technologies (4:2), April-June 1994, pp. 61-86.

Cleve, H., and Zeller, A. "Locating Causes of Program Failures", in Proceedings of the

27th International Conference on Software Engineering (ICSE'05), St. Louis,

MO, May 15-21, 2005, pp. 342-351.

Cockburn, A. Agile Software Development, Pearson Education Limited, Boston, MA,

2002, p. 278.

Conradi, R., and Wang, A.I. "Introduction," in: Empirical Methods and Studies in

Software Engineering, R. Conradi and A.I. Wang (Eds.), Springer Verlag,

Berlin, 2003, pp. 1-6.

Corritore, C.L., and Wiedenbeck, S. "Mental Representations of Expert Procedural and

Object-Oriented Programmers in a Software Maintenance Task," International

Journal of Human-Computer Studies (50:1), January 1999, pp. 61-83.

142

Corritore, C.L., and Wiedenbeck, S. "An Exploratory Study of Program Comprehension

Strategies of Procedural and Object-Oriented Programmers," International

Journal of Human-Computer Studies (53:1), January 2001, pp. 1-23.

Crnkovic, I., and Larsson, M. "Challenges of Component-Based Development," Journal

of Systems and Software (61:3), April 2002, pp. 201-212.

Crowston, K., and Howison, J. "The Social Structure of Free and Open Source Software

Development," First Monday (10:2), February 2005.

Cruz, D., Wieland, T., and Ziegler, A. "Evaluation Criteria for Free/Open Source

Software Products Based on Project Analysis," Software Process: Improvement

and Practice (11:2), March-April 2006, pp. 107-122.

DiBona, C., Ockman, S., and Stone, M. (Eds.) Open Sources: Voices from the Open

Source Revolution. O'Reilly, Sebastapol, Calif., 1999, p. 272.

Dinh-Trong, T.T., and Bieman, J.M. "The Freebsd Project: A Replication Case Study of

Open Source Development," IEEE Transactions on Software Engineering

(31:6), June 2005, pp. 481-494.

Dvorak, J. "Conceptual Entropy and Its Effect on Class Hierarchies," IEEE Computer

(27:6), June 1994, pp. 59-63.

Dybå, T., Kampenes, V.B., and Sjøberg, D.I.K. "A Systematic Review of Statistical

Power in Software Engineering Experiments," Information and Software

Technology (48:8), August 2006, pp. 745-755.

Edwards, H.M., Mallalieu, G.M., and Thompson, J.B. "Some Insights into the

Maintenance of Legacy Systems within Small Manufacturing and Distribution

Organization in the Uk", in Proceedings of the 23rd International Computer

Software and Applications Conference (COMPSAC'99), Phoenix, Ariz., October

27-29, 1999, pp. 13-20.

Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S., and Mockus, A. "Does Code Decay?

Assessing the Evidence from Change Management Data," IEEE Transactions on

Software Engineering (27:1), January 2001, pp. 1-12.

Emerson, R.M., Fretz, R.I., and Shaw, L.L. Writing Ethnographic Fieldnotes, The

University of Chicago Press, Chicago, Ill., 1995, p. 254.

Endres, A. "An Analysis of Errors and Their Causes in System Programs," ACM

SIGPLAN Notices (10:6), June 1975, pp. 327-336.

Erenkrantz, J.R. "Release Management within Open Source Projects", in Proceedings of

the 3rd Workshop on Open Source Software Engineering, co-located with the

25th International Conference on Software Engineering, Portland, Ore., May 3,

2003, pp. 51-55.

Feller, J., Finnegan, P., Kelly, D., and MacNamara, M. "Developing Open Source

Software: A Community-Based Analysis of Research," in: Social Inclusion:

Societal and Organizational Implications for Information Systems, E.M. Trauth,

D. Howcroft, T. Buttler, B. Fitzgerald and J.I. DeGross (Eds.), Springer, Boston,

Mass., 2006, pp. 261-278.

Feller, J., and Fitzgerald, B. Understanding Open Source Software Development,

Addison-Wesley, London, UK, 2002, p. 211.

Fenton, N. "How Effective Are Software Engineering Methods?," Journal of Systems

and Software (22:2), November 1993, pp. 141-146.

Fenton, N. "Software Measurement: A Necessary Scientific Basis," IEEE Transactions

on Software Engineering (20:3), March 1994, pp. 199-206.

143

Fenton, N.E., and Neil, M. "A Critique of Software Defect Prediction Models," IEEE

Transactions on Software Engineering (25:5), May 1999, pp. 675-689.

Fenton, N.E., and Pfleeger, S.L. Software Metrics: A Rigiorous & Practical Approach,

PWS Publishing Company, Boston, Mass., 1997, p. 638.

Fetterman, D.M. Ethnography: Step by Step, (Second ed.), SAGE Publications,

Thousand Oaks, Calif., 1998, p. 166.

Finkelstein, A., and Kramer, J. "Software Engineering: A Roadmap", in Proceedings of

the 22nd International Conference on Software Engineering (ICSE'00),

Limerick, Ireland, June 4-11, 2000, pp. 5-22.

Fitzgerald, B. "The Transformation of Open Source Software," MIS Quarterly (30:3),

September 2006, pp. 587-598.

Fitzgerald, B., and Kenny, T. "Developing an Information Systems Infrastructure with

Open Source Software," IEEE Software (21:1), January-February 2004, pp. 50-

55.

Friedman, A.L., and Cornford, D.S. Computer Systems Development: History,

Organization and Implementation, John Wiley & Sons, Inc., London, UK, 1989,

p. 438.

Gacek, C., and Arief, B. "The Many Meanings of Open Source," IEEE Software (21:1),

January 2004, pp. 34-40.

Gasser, L. "The Integration of Computing and Routine Work," ACM Transactions on

Office Information Systems (4:3), July 1986, pp. 205-225.

Gibson, V.R., and Senn, J.A. "System Structure and Software Maintenance

Performance," Communications of the ACM (32:3), March 1989, pp. 347-358.

Glass, R.L. "The Software-Research Crisis," IEEE Software (11:6), November 1994,

pp. 42-47.

Glass, R.L., Ramesh, V., and Vessey, I. "An Analysis of Research in Computing

Disciplines," Communications of the ACM (47:6), June 2004, pp. 89-94.

Glass, R.L., Vessey, I., and Ramesh, V. "Research in Software Engineering: An

Analysis of the Literature," Information and Software Technology (44:8), June

2002, pp. 491-506.

Golden-Biddle, K., and Locke, K. "Appealing Work: An Investigation of How

Ethnographic Texts Convince," Organization Science (4:4), November 1993, pp.

595-616.

Hannemyr, G. "Technology and Pleasure: Considering Hacking Constructive," First

Monday (4:2), April 1999.

Hasselbring, W. "Information Systems Integration," Communications of the ACM

(46:6), June 2000, pp. 33-38.

Highsmith, J. Agile Software Development Ecosystems, Addison Wesley, Boston,

Mass., 2002, p. 404.

Himanen, P. The Hacker Ethic: And the Spirit of the Information Age, Random House,

New York, NY, 2001, p. 232.

Howcroft, D., and Wilson, M. "Paradoxes of Participatory Practices: The Janus Role of

the Systems Developer," Information and Organization (13:1), January 2003,

pp. 1-24.

Huntley, C.L. "Organizational Learning in Open-Source Software Projects: An Analysis

of Debugging Data," IEEE Transactions on Engineering Management (50:4),

November 2003, pp. 485-493.

144

Hybertson, D.W., Ta, D., and Thomas, W.M. "Maintenance of Cots-Intensive Software

Systems," Journal of Software Maintenance: Research and Practice (9:4),

December 1997, pp. 203-216.

IEEE "Ieee Standard Glossary of Software Engineering Terminology," 610.12-1990,

IEEE.

Jaccheri, L., and Østerlie, T. "Empirical Software Engineering Education", in

Proceedings of the 11th Norwegian Conference on Information Systems

(NokobIT'04), Stavanger, Norway, November 29-December 1, 2004, pp. 242-

249.

Jaccheri, L., and Østerlie, T. "Can We Teach Empirical Software Engineering?", in

Proceedings of the 11th IEEE International Symposium on Software Metrics

(Metrics 2005), Como, Italy, September 19-22, 2005, pp. CD-ROM.

Jaccheri, L., and Østerlie, T. "Open Source Software: A Source of Possibilities for

Software Engineering Education and Empirical Software Engineering", in

Proceedings of the First International Workshop on Emerging Trends in FLOSS

Research and Development, co-located with the 29th International Conference

on Software Engineering (ICSE'07), Minneapolis, Minnesota, May 20-26, 2007,

pp. 1-5.

Kirk, J., and Miller, M.L. Reliability and Validity in Qualitative Research, SAGE

Publications, Thousand Oaks, CA, 1986.

Kitchenham, B.A., Dybå, T., and Jørgensen, M. "Evidence-Based Software

Engineering," In Software Engineering, 2004. ICSE 2004. Proceedings. 26th

International Conference on, 2004, pp. 273-281.

Kitchenham, B.A., Travassos, G.H., von Mayrhauser, A., Niessink, F., Scheiderwind,

N.F., Singer, J., Takada, S., Vehvilainen, R., and Yang, H. "Towards and

Ontology of Software Maintenance," Journal of Software Maintenance:

Research and Practice (11:6), November-December 1999, pp. 365-389.

Klein, H.K., and Myers, M.D. "A Set of Principles for Conducting and Evaluating

Interpretive Field Studies in Information Systems," MIS Quarterly (23:1), March

1999, pp. 67-93.

Knight, J.C., and Leveson, N.G. "Should Software Engineers Be Licensed?,"

Communications of the ACM (45:11), November 2002, pp. 87-90.

Lam, W., and Shankararaman, V. "An Enterprise Integration Methodology," IT

Professional (6:2), March-April 2004, pp. 40-48.

Langley, A. "Strategies for Theorizing from Process Data," The Academy of

Management Review (24:4), October 1999, pp. 691-710.

Latour, B. Science in Action, Harvard University Press, Cambridge, Mass., 1987, p.

274.

Latour, B., and Woolgar, S. Laboratory Life: The Construction of Scientific Facts,

SAGE Publications, New York, NY, 1979, p. 294.

Lave, J., and Wenger, E. Situated Learning: Legitimate Peripheral Participation,

Cambridge University Press, New York, NY, 1991, p. 138.

Law, J. "Notes on the Theory of the Actor-Network: Ordering, Strategy, and

Heterogeneity," Systemic Practice and Action Research (5:4), August 1992, pp.

379-393.

145

Lee, A.S. "Electronic Mail as a Medium for Rich Communication: An Empirical

Investigation Using Hermeneutic Interpretation," MIS Quarterly (18:2), June

1994, pp. 143-157.

Lee, A.S., and Baskerville, R.L. "Generalizing Generalizability in Information Systems

Research," Information Systems Research (14:3), September 2003, pp. 221-243.

Lehman, M.M. "On Understanding Laws, Evolution, and Conservation in the Large-

Program Life Cycle," Journal of Systems and Software (1), 1979, pp. 213-221.

Lehman, M.M. "Programs, Life Cycles, and Laws of Software Evolution," Proceedings

of IEEE (68:9), September 1980, pp. 1060-1076.

Lethbridge, T.C., Sim, S.E., and Singer, J. "Studying Software Engineers: Data

Collection Techniques for Software Field Studies," Empirical Software

Engineering (10:3), July 2005, pp. 311-341.

Letovsky, S. "Cognitive Processes in Program Comprehension", in Proceedings of the

First Workshop on Empirical Studies of Programmers, Washington, DC, June 5-

6, 1986, pp. 59-79.

Levy, S. Hackers: Heroes of the Computer Revolution, Penguin Books, London, UK,

1984, p. 455.

Li, J., Conradi, R., Slyngstad, O.P.N., Bunse, C., Torchiano, M., and Morisio, M. "An

Empirical Study on Decision Making in Off-the-Shelf Component-Based

Development", in Proceedings of the 28th International Conference on Software

Engineering (ICSE'06), Shanghai, China, May 20-28, 2006, pp. 897-900.

Li, J., Conradi, R., Slyngstad, O.P.N., Torchiano, M., Morisio, M., and Bunse, C. "A

State-of-the-Practice Survey of Risk Management in Development of Off-the-

Shelf Software Components," in: IEEE Transactions on Software Engineering,

2007, p. 35.

Li, P., Herbsleb, J.D., and Shaw, M. "Finding Predictors of Field Defects for Open

Source Software Systems in Commonly Available Data Sources: A Case Study

of Openbsd", in Proceedings of the The 11th IEEE International Software

Metrics Symposium (Metrics'05), Como, Italy, September 19-22, 2005.

Lientz, B.P., Swanson, E.B., and Tompkins, G.E. "Characteristics of Application

Software Maintenance," Communications of the ACM (21:6), June 1978, pp.

466-471.

Littlewood, B. "Why Did Ed Adams See So Many Small Bugs?," Software Reliability

and Metrics Newsletter (1:4), 1986, pp. 31-34.

Ljungberg, J. "Open Source Movements as a Model for Organizing," European Journal

of Information Systems (9), 2000, pp. 208-216.

Ludewig, J. "Software Engineering - Why It Did Not Work", in Proceedings of the

Dagstuhl Seminar on History of Software Engineering, Schloss Dagstuhl, 1996,

pp. 25-27.

Madanmohan, T.R., and Rahul, D. "Open Source Reuse in Commercial Firms," IEEE

Software (21:6), November/December 2004, pp. 62-69.

Martin, J., and McClure, C. Software Maintenance: The Problem and Its Solutions,

Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1983, p. 472.

Mens, T., and Tourwe, T. "A Survey of Software Refactoring," IEEE Transactions on

Software Engineering (30:2), February 2004, pp. 126-139.

Messerschmidt, D.G. "Back to the User [Open Source]," IEEE Software (21:1), January

2004, pp. 89-91.

146

Michlmayr, M., Hunt, F., and Probert, D. "Quality Practices and Problems in Free

Software Projects," In First International Conference on Open Source Systesm,

Genova, Italy, 2005, pp. 24-28.

Misherghi, G., and Su, Z. "Hdd: Hierarchical Delta Debugging", in Proceedings of the

28th International Conference on Software Engineering, Shanghai, China, May

20-28, 2006, pp. 142-151.

Mockerjee, R. "Maintaining Enterprise Software Applications," Communications of the

ACM (48:11), November 2005, pp. 75-79.

Mockus, A., Fielding, R.T., and Herbsleb, J.D. "Two Case Studies of Open Source

Software Development: Apache and Mozilla," ACM Transactions on Software

Engineering and Methodology (11:3), Jul. 2002, pp. 309-346.

Monteiro, E. "Actor-Network Theory and Information Infrastructure," in: From Control

to Drift: The Dynamics of Corporate Information Infrastructures, C.U. Ciborra

and O. Hanseth (Eds.), Oxford University Press, Oxford, UK, 2000, pp. 71-83.

Moody, G. Rebel Code: Inside Linux and the Open Source Revolution, Perseus

Publishing, Cambridge, MA, 2001, p. 342.

Morgan, G. Images of Organization, SAGE Publications, Thousand Oaks, CA, 1997, p.

485.

Mumford, E. "The Story of Socio-Technical Design: Reflections on Its Success,

Failures and Potential," Information Systems Journal (16:4), October 2006, pp.

317-342.

Nandhakumar, J., and Jones, M. "Too Close for Comfort? Distance and Engagement in

Interpretive Information Systems Research," Information Systems Journal (7:2),

April 1997, pp. 109-131.

Noble, D.F. America by Design: Science, Technology and the Rise of Corporate

Capitalism, Alfred A. Knopf, New York, NY, 1977, p. 384.

Oman, P.W., and Cook, C.R. "Typographic Style Is More Than Cosmetics,"

Communications of the ACM (33:5), May 1990, pp. 506-520.

Orlikowski, W.J. "Improvising Organizational Transformation over Time: A Situated

Change Perspective," Information Systems Research (7:1), March 1996, pp. 63-

92.

Orlikowski, W.J. "Knowing in Practice: Enacting a Collective Capacity in Distributed

Organizing," Organization Science (13:3), May-June 2002, pp. 249-273.

Orlikowski, W.J., and Baroudi, J.J. "Studying Information Technology in

Organizations: Research Approaches and Assumptions," Information Systems

Research (2:1), 1991, pp. 1-29.

Orr, J.E. Talking About Machines: An Ethnography of a Modern Job, Cornell

University Press, Ithaca, NY, 1996.

Østerlie, T. "The User-Developer Convergence: Innovation and Software Systems

Development in the Apache Project," in: Department of Computer and

Information Science, Norwegian University of Science and Technology,

Trondheim, 2003, p. 123.

Østerlie, T. "In the Network: Distributed Control in Gentoo/Linux", in Proceedings of

the 4th Workshop on Open Source Software Engineering, co-located with the

26th International Conference on Software Engineering (ICSE'04), Edinburgh,

Scotland, May 25, 2004, pp. 76-81.

147

Østerlie, T. "Producing and Interpreting Debug Texts", in Proceedings of the Second

International Conference on Open Source Systems (OSS'06), Como, Italy, June

8-10, 2006, pp. 335-336.

Østerlie, T., and Jaccheri, L. "A Critical Review of Software Engineering Research on

Open Source Software Development", in Proceedings of the The Second AIS

SIGSAND European Symposium on Systems Analysis and Design, Gdansk,

Poland, June 5, 2007a, pp. 12-20.

Østerlie, T., and Jaccheri, L. "Balancing Technological and Community Interest: The

Case of Changing a Large Open Source Software System", in Proceedings of the

30th Information Systems Research Seminar in Scandinavia (IRIS 30), Tampere,

Finland, August 11-14, 2007b, pp. 66-80.

Østerlie, T., and Munkvold, G. "Ordering Actors, Organizing Work", in Proceedings of

the 28th Information Systems Research Seminar in Scandinavia (IRIS),

Kristiansand, Norway, August 6-9, 2005.

Østerlie, T., and Rolland, K.H.R. "Unveiling Distributed Organizing in Open Source

Software Development: The Practices of Using, Aligning, and Wedging", in

Proceedings of the Workshop on Open Source Software Movement and

Communities, co-located with the First International Conference on

Communities and Technologies (C&T'03), Amsterdam, Netherlands, September

18, 2003, pp. 1-7.

Østerlie, T., and Wang, A.I. "Establishing Maintainability in Systems Integration:

Ambiguity, Negotiation, and Infrastructure", in Proceedings of the 22nd IEEE

International Conference on Software Maintenance (ICSM'06), Philladelphia,

PA, September 24-27, 2006, pp. 186-196.

Østerlie, T., and Wang, A.I. "Debugging Integrated Systems: An Ethnographic Study of

Debugging Practice", in Proceedings of the 23rd International Conference on

Software Maintenance (ICSM'07), Paris, France, October 2-5, 2007, pp. 305-

315.

Osterweil, L.J. "A Future for Software Engineering?", in Proceedings of the 2007

Future of Software Engineering, Mineapolis, Minesota, May 20-26, 2007, pp. 1-

11.

Osterweil, L.J., Ghezzi, C., Kramer, J., and Wolf, A.L. "Determining the Impact of

Software Engineering Research on Practice," IEEE Computer (41:3), March

2008, pp. 39-49.

Parnas, D.L. "Software Aging", in Proceedings of the IEEE International Conference

on Software Engineering (ICSE'94), Sorento, Italy, May 15-21, 1994, pp. 279-

287.

Patton, M.Q. Qualitative Research & Evaluation Methods, (3rd ed.), SAGE

Publications, Thousand Oaks, CA, 2002, p. 598.

Paulson, J.W., Succi, G., and Eberlein, A. "An Empirical Study of Open-Source and

Closed-Source Software Products," IEEE Transactions on Software Engineering

(30:5), April 2004, pp. 246-256.

Pennington, N. "Stimulus Structures and Mental Representations in Expert

Comprehension of Computer Programs," Cognitive Psychology (19:3), July

1987, pp. 295-341.

Pentland, B.T. "Organizing Moves in Software Suport Hot Lines," Administrative

Science Quarterly (37:4), December 1992, pp. 527-248.

148

Perens, B. "The Open Source Definition," in: Open Sources: Voices from the Open

Source Revolution, C. DiBona, S. Ockman and M. Stone (Eds.), O'Reilly &

Associates, Sebastapol, CA, 1999, pp. 171-180.

Perkins, G. "Culture Clash and the Road to World Domination," IEEE Software (16:1),

January/February 1999, pp. 80-84.

Pigoski, T.M. Practical Software Maintenance: Best Practices for Managing Your

Software Investments, Wiley Computer Publishing, 1997.

Potts, C. "Software-Engineering Research Revisited," IEEE Software (10:5), January

1993, pp. 19-28.

Pozzebon, M. "Conducting and Evaluating Critical Interpretive Research: Examining

Criteria as a Key Component in Building a Research Tradition," in: Information

Systems Research: Relevant Theory & Informed Practice, B. Kaplan, D.P. Truex

III, D. Wastell, A.T. Wood-Harper and J.I. DeGross (Eds.), Kluwer Academic

Publishers, Amsterdam, 2004, pp. 275-292.

Raymond, E.S. "The Cathedral and the Bazaar," First Monday (3:3), 1998.

Ritchie, D. "The Evolution of the Unix Time-Sharing System," AT&Bell Laboratories

Technical Journal (63:6), 1984, pp. 1577-1593.

Robinson, H., Segal, J., and Sharp, H. "Ethnographically-Informed Empirical Studies of

Software Practice," Information and Software Technology (49:6), 2007, pp. 540-

551.

Rosen, M. "Coming to Terms with the Field: Understanding and Doing Organizational

Ethnography," Journal of Management Studies (28:1), January 1991, pp. 1-24.

Ruffin, M., and Ebert, C. "Using Open Source Software in Product Development: A

Primer," IEEE Software (21:1), January/February 2004, pp. 82-86.

Ruhe, G., and Saliu, M.O. "The Art and Science of Software Release Planning," IEEE

Software (22:6), November-December 2005, pp. 47-53.

Samoladas, I., Stamelos, I., Angelis, L., and Oikonomou, A. "Open Source Software

Development Should Strive for Even Greater Code Maintainability,"

Communications of the ACM (47:10), Oct. 2004, pp. 83-87.

Scacchi, W. "Understanding the Requirements for Developing Open Source Software

Systems," Software, IEE Proceedings - (149:1), February 2002, pp. 24-39.

Scacchi, W. "Free and Open Source Software Practices in the Gaming Industry," IEEE

Software (21:1), 2004, pp. 68-72.

Scacchi, W. "Free/Open Source Software Development: Recent Research Results and

Emerging Opportunities", in Proceedings of the The 6th joint meeting of the

European software engineering conference and the ACM SIGSOFT symposium

on The foundations of software engineering (ESEC-FSE '07), Dubrovnik,

Croatia, 2007.

Scach, S.R., Jin, B., Yu, L., Heller, G.Z., and Offut, J. "Determining the Distribution of

Maintenance Categories: Survey Versus Measurement," Empirical Software

Engineering (8:4), December 2003, pp. 351-365.

Schein, E. Professional Education, Some New Directions, McGraw-Hill, New York,

NY, 1972.

Schön, D.A. The Reflexive Practitioner: How Professionals Think in Action, Ashgate

Publishing Limited, Aldershot, UK, 1991, p. 374.

Schütz, A. The Phenomenology of the Social World, Northwestern University Press,

New York, 1967, p. 255.

149

Seaman, C.B. "Qualitative Methods in Empirical Studies of Software Engineering,"

IEEE Transactions on Software Engineering (25:4), July/August 1999, pp. 557-

572.

Segal, J., Grinyer, A., and Sharp, H. "The Type of Evidence Produced by Empirical

Software Engineers", in Proceedings of the Proceedings of the 2005 workshop

on Realising evidence-based software engineering, St. Louis, Missouri, 2005.

Serrano, N., and Ciordia, I. "Bugzilla, Itrackers, and Other Bug Trackers," IEEE

Software (22:2), March-April 2005, pp. 11-13.

Shaft, T.M., and Vessey, I. "The Role of Cognitive Fit in the Relationship between

Software Comprehension and Modification," MIS Quarterly (30:1), March

2006, pp. 29-55.

Sharp, H., and Robinson, H. "An Ethnographic Study of Xp Practice," Empirical

Software Engineering (9:4), 2004, pp. 353-375.

Shaw, M. "The Coming-of-Age of Software Architecture Research", in Proceedings of

the The 23rd International Conference on Software Engineering, Toronto,

Ontario, Canada, May 12-19, 2001, pp. 656-664.

Shneiderman, B., and Mayer, R. "Syntactic/Semantic Interactions in Programmer

Behavior: A Model and Experimental Results," International Journal of

Computer & Information Sciences (8:3), June 1979, pp. 219-238.

Shull, F., Singer, J., and Sjøberg, D.I.K. (Eds.) Guide to Advanced Empirical Software

Engineering. Springer Verlag, London, UK, 2007, p. 388.

Sjøberg, D.I.K., Dybå, T., Anda, B.C.D., and Hannay, J.E. "Building Theories in

Software Engineering," in: Guide to Advanced Empirical Software Engineering,

F. Shull, J. Singer and D.I.K. Sjøberg (Eds.), Springer London, London, UK,

2008, pp. 312-336.

Sneed, H.M. "Planning the Reeingeering of Legacy Systems," IEEE Software (12:1),

January 1995, pp. 24-34.

Sneed, H.M. "An Incremental Approach to Systems Replacement and Integration", in

Proceedings of the Ninth European Conference on Software Maintenance and

Reengineering (CSMR'05), Manchester, UK, March 21-23, 2005, pp. 196-206.

Sommerville, I. Software Engineering, (6th ed.), Pearson Education Limited, Harlow,

UK, 2001, p. 693.

Sullivan, M., and Chillarege, R. "Software Defects and Their Impact on System

Availability: A Study of Field Failures in Operating Systems", in Proceedings of

the 21st International Symposium on Fault-Tolerant Computing (FTCS-21),

Montreal, Canada, June 25-27, 1991, pp. 2-9.

Swanson, E.B. "The Dimensions of Maintenance", in Proceedings of the 2nd

International Conference on Software Engineering, San Francisco, CA, October

13-15, 1976, pp. 492-497.

Swanson, E.B., and Beath, C.M. Maintaining Information Systems in Organizations,

John Wiley & Sons, Inc., New York, NY, 1989, p. 255.

Swanson, E.B., and Beath, C.M. "Departmentalization in Software Development and

Maintenance," Communications of the ACM (33:6), June 1990, pp. 658-667.

Swanson, E.B., and Dans, E. "System Life Expectancy and the Maintenance Effort:

Exploring Their Equilibrium," MIS Quarterly (24:2), June 2000, pp. 277-297.

150

Taizan, C., Siu Leung, C., and Teck Hua, H. "An Economic Model to Estimate

Software Rewriting and Replacement Times," IEEE Transactions on Software

Engineering (22:8), August 1996, pp. 580-598.

Tanenbaum, A.S. Modern Operating Systems, Prentice-Hall, Inc., Englewood Cliffs,

NJ, 1992, p. 728.

Tichy, W.F. "Should Computer Scientists Experiment More?," IEEE Computer (31:5),

May 1998, pp. 32-40.

Tichy, W.F., Habermann, N., and Prechelt, L. "Summary of the Dagstuhl Workshop on

Future Directions in Software Engineering: February 17–21, 1992, Schloß

Dagstuhl," ACM SIGSOFT Software Engineering Notes (18:1), January 1993,

pp. 35-48.

Tichy, W.F., Lukowicz, P., Prechelt, L., and Heinz, E.A. "Experimental Evaluation of

Computer Science: A Quantitative Study," Journal of Systems and Software

(28:1), 1995, pp. 9-18.

van Vliet, H. Software Engineering: Principles and Practice, John Wiley & Sons, Inc.,

New York, NY, 2000, p. 726.

Vans, A.M., Mayrhauser, A., and Somlo, G. "Program Understanding Behavior During

Corrective Maintenance of Large-Scale Software," International Journal of

Human-Computer Studies (51:1), 1999, pp. 31-70.

Voas, J.M. "Disposable Information Systems: The Future of Software Maintenance,"

Journal of Software Maintenance: Research and Practice (11:2), March/April

1999, pp. 143-150.

Vogels, W. "Web Services Are Not Distributed Objects," IEEE Internet Computing

(7:6), December 2003, pp. 59-66.

Voká, M., Tichy, W.F., Sjøberg, D.I.K., Arisholm, E., and Aldrin, M. "A Controlled

Experiment Comparing the Maintainability of Programs Designed with and

without Design Patterns: A Replication in a Real Programming Environment,"

Empirical Software Engineering (9:3), September 2004, pp. 149-195.

von Mayrhauser, A., and Vans, A.M. "Program Comprehension During Software

Maintenance and Evolution," IEEE Computer (28:8), August 1995, pp. 44-55.

Walsham, G. Interpreting Information Systems in Organizations, John Wiley and Sons,

Chichester, 1993, p. 286.

Walsham, G. "Interpretive Case Studies in Is Research: Nature and Method," European

Journal of Information Systems (4:2), June 1995, pp. 74-81.

Walsham, G. "Doing Interpretive Research," European Journal of Information Systems

(15:3), June 2006, pp. 320-330.

Walsham, G., and Waema, T.M. "Information Systems Strategy and Implementation: A

Case Study of a Building Society," ACM Transactions on Information Systems

(12:2), April 1994, pp. 150-173.

Wang, H., and Wang, C. "Open Source Software Adoption: A Status Report," IEEE

Software (18:2), March/April 2001, pp. 90-95.

Weber, S. The Success of Open Source, Harvard University Press, Cambridge, MA,

2004, p. 312.

Weick, K.E. "Enacted Sensemaking in Crisis Situations," Journal of Management

Studies (25:4), July 1988, pp. 305-317.

Weick, K.E. Sensemaking in Organizations, SAGE Publications, Thousand Oaks, CA,

1995, p. 231.

151

Weick, K.E., Sutcliffe, K.M., and Obstfeld, D. "Organizing and the Process of

Sensemaking," Organization Science (16:4), July-August 2005, pp. 409-421.

Williams, S. Free as in Freedom: Richard Stallman's Crusade for Free Software

O'Reilly, Sebastapol, CA, 2002, p. 225.

Wilson, G. "Is the Open-Source Community Setting a Bad Example," IEEE Software

(16:1), January/February 1999, pp. 23-25.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., and Wesslén, A.

Experimentation in Software Engineering: An Introduction, Kluwer Academic

Publishers, Boston, Mass., 2000, p. 204.

Woods, D., and Guliani, G. Open Source for the Enterprise: Managing Risks, Reaping

Rewards, O'Reilly, Sebastapol, CA, 2005, p. 217.

Xu, B., Qian, J., Zhang, X., Wu, Z., and Chen, L. "A Brief Survey of Program Slicing,"

ACM SIGSOFT Software Engineering Notes (30:2), March 2005, pp. 1-36.

Ye, Y. "Supporting Software Development as Knowledge-Intensive and Collaborative

Activity", in Proceedings of the 2006 International Workshop on

Interdisciplinary Software Engineering Resarch, Shanghai, China, 2006, pp. 15-

22.

Yu, L., Schach, S.R., Chen, K., Heller, G.Z., and Offut, J. "Maintainability of the

Kernels of Open-Source Operating Systems: A Comparison of Linux with

Freebsd, Netbsd, and Openbsd," Journal of Systems and Software (79:6), June

2006, pp. 807-815.

Yu, L., Schach, S.R., Chen, K., and Offut, J. "Categorization of Common Coupling and

Its Application to the Maintainability of the Linux Kernel," IEEE Transactions

on Software Engineering (30:10), October 2004, p. 694.

Zelkowitz, M.V., and Wallace, D.R. "Experimental Models for Validating Technology,"

IEEE Computer (31:5), May 1998, pp. 23-31.

Zeller, A. Why Programs Fail: A Guide to Systematic Debugging, Morgan Kaufman

Publishers, San Francisco, CA, 2006, p. 448.

152

Appendix: Papers P1-P8

Paper 1

Østerlie, T. "In the network: Distributed control in Gentoo/Linux", in Proceedings of

the 4th Workshop on Open Source Software Engineering, co-located with the 26th

International Conference on Software Engineering (ICSE'04), Edinburgh, Scotland,

May 25, 2004, pp. 76-81.

In the network: Distributed control in Gentoo Linux

Thomas Østerlie

Department of computer and information science

Norwegian University of Science and Technology

thomas.osterlie@idi.ntnu.no

Abstract

This position paper reports on the findings of an
empirical pilot study of Gentoo Linux. Gentoo Linux is
an open source Linux distribution developed by a
geographically distributed community of volunteers. The
reported findings are based on the analysis of a specific
episode using actor network theory. With basis in the
analysis, it is argued that control in this specific episode
can be interpreted as both distributed and local at the
same time. Control here being the power to define a
problem and make the decision about the appropriate
solution to the problem defined. Control, it is argued, is
distributed in that it is the function of reciprocal
influence among several human and non-human actors.
Furthermore, it is argued that control can be interpreted
as not inherent in organizational structures or
hierarchies, but locally embedded among actors in the
decision making process.

1. Introduction

Geographical distribution is one of the distinct
characteristics of open source software development. Open
source software development has been connected with
teams of geographically distributed developers ever since
Raymond’s first description of the bazaar [1]. Despite the
geographical distribution of developers, Raymond
describes control in the bazaar as centralized, headed by
the ’benign dictator’. Using open source software
development as an example of computer-supported
distributed work, Moon and Sproull [2] argue that an
enabling condition for the success of the Linux kernel are
the "capabilities a single leader brings to a project". They
argue that the "clear locus of decision-making, singular
vision, and consistent voice" are important in controlling
this kind of collaborative effort. This supports
Raymond’s notion of the ’benign dictator’. Control in
these two works is therefore understood as centralized.

Mockus and Herbsleb [3] describe the Apache open
source web server community in two contradictory ways.
On the one hand there is a formal organizational structure
for making decisions about code integration. On the other

hand, they report that work is not assigned but that
individual developers choose what to do themselves. "The
choices are constrained, however, by various motivations
that are not fully understood." Understanding control as
the power to define problems and their appropriate
solutions, and thereby making decisions about what tasks
to prioritize, Mockus and Herbsleb’s description points to
a tension between centralized and distributed control.

Picking up on Mockus and Herbsleb’s observation,
this paper raises the question whether control always is
centralized in open source software development? How
can we understand the tension between distributed and
centralized control?

The paper is organized as follows. Section 2 presents
the empirical findings. The section contains a short
presentation of the Gentoo Linux case, details of the
method employed, and a detailed presentation of the
reported episode itself. Section 3 discuses how control
can be interpreted in the reported episode. The conclusion
draws implications of the discussion, and formulates
directions for future work.

2. The case

This section presents the empirical findings. For
context, an overview Gentoo Linux is presented first.
Then the methods of data collection and analysis that
form the basis for this position paper are described. The
reported episode is described afterwards, after which the
episode is analysed in terms of the mechanics of framing
the problem to be solved and what actors take active part
in framing the problem.

Gentoo Linux is an open source Linux distribution
developed by a geographically distributed community of
volunteers. Aiming for advanced users, the distribution is
a mix between Linux from scratch and a regular Linux
distribution. Gentoo Linux provides the minimum of
support for installing a bare bones Linux system. In this
way the user can build an installation from the bottom
up, tuning it to his exact needs; be it a workstation
installation, a secure server, or a gaming system. That is
why Gentoo Linux is also called a meta distribution.

Portage, Gentoo Linux’ software distribution system,
is the technology that makes this possible. Portage keeps

track of the third party software, also called packages,
available for Gentoo Linux at any one time. At the time
of writing there are over 6000 packages available. Portage
also keeps track of which packages have been installed on
the local system. Information about installed packages is
stored in a database. For each installed package this
database contains information such as the absolute path
for every files installed by the package, the compiler flags
the package was built with, and the package’s license.

When installing new packages, Portage compiles the
software on the local system. The user can therefore fine-
tune such things as compilation flags and additional
software support. This information is stored in a set of
configuration files.

2.1. Method

The episode reported in this position paper is part of
the empirical evidence collected during a pilot study of
Gentoo Linux. Data for this pilot study was collected
with a number of methods. Archival data was collected
from the Gentoo web site at

http://www.gentoo.org, and from the Gentoo
mailing list archives accessed through the

news.gmane.org service. The IRC logs that form the
basis of the analysis which this position paper is based
on, were downloaded from Gentoo’s home pages. In
addition, the pilot investigation involved participatory
observations with a software consultant using Gentoo
Linux as development platform, and a semi-structured
interview with one of the Gentoo Linux developers. The
interview was performed according to the guidelines laid
down in [4]. Ethnographic field notes [5] were taken in
connection during the participatory observation and later
written out as a full field report

The episode reported in this position paper is
primarily based on the IRC log of the Gentoo managers’
meeting from December 15 2003. Using actor network
theory, an analysis was performed on basis of the log
supplemented by the interview. Actor network theory is a
method borrowed from the field of science and technology
studies. It is a method for analysing the relationship
between the technological and the social [6,7]. Unlike
traditional software engineering methods that teaches us
to categorizes entities into classes such as roles, instances,
technical artefacts, organizational artefacts, just to
mention a few, actor network theory attributes symmetry
to all entities in the network by promoting them to
actors. This reflects the basic assumption that all entities
in the network are capable of acting upon each other.

Central to actor network analysis is identifying the
actors and associations between them. Thinking of actors
as nodes and associations as connections between the
nodes, the network appears. The network is composed of
heterogeneous nodes—technical and non-technical, human
and non-human, etc.—that are associated for a period of
time. However, the actor network is reducible neither to
an actor alone, nor to a network. In addition, the network

is seen as constantly shifting, and not as a representation
of the original or final state.

In actor network theory the network is an analytical
structure constructed by the analyst. Instead of thinking of
the actor network as a representation of things out there, it
is a conceptual frame, a perspective to interpret social and
technological processes. The episode reported in sections
2.2, 2.3, and 2.4 is related as interpreted through the
perspective of actor network theory.

2.2. The episode

The Gentoo managers’ meeting is a biweekly meeting
for Gentoo developers to coordinate activities. The
managers’ meeting is arranged over the Internet, using
IRC. During the Gentoo manager’s meeting December 15
2003 [8], the issue of third party utilities operating on
Portage’s database and configuration files is discussed.
Some of these utilities mangle the configuration files,
while other utilities no longer work because the Portage
database format has changed. One of these utilities,

qpkg, a utility for querying Portage’s database, has
accumulated over 20 unresolved bug reports in Gentoo
Linux’ bug tracking system. The source of all these
problems is identified to be code that is out of
synchronization with the rest of the system. This kind of
problem has been resolved before by introducing the
maintainer role. The maintainer is responsible for keeping
specific parts of code in synchronization with the rest of
the system. The conclusion is that the code in question is
outdated because it has not been assigned a maintainer.

An additional response to the problem is to introduce
an abstraction layer, an API, on top of Portage’s database
and configuration files. All utilities accessing the
configuration files and database must do so through this
API. Two Gentoo developers are assigned to develop and
maintain this API.

There is dissent among the participants at the meeting
about priorities. Gentoo Linux’ chief architect proposes to
base the API on Portage’s own code. The two developers
in charge of the API, while agreeing that this would be a
good idea, argue that there are other factors that are more
important to take into account when resolving the
problem. Especially the issue of missing maintainers for
utilities accessing the Portage database and configuration

files. The qpkg utility is used as an example of these
difficulties. The utility was included in the distribution

by a developer who later left the project. qpkg
implements its own code for accessing Portage’s database.
Responsibility for the utility was handed over to someone
else when the original developer left Gentoo Linux. This

second developer went on leave, and qpkg was left un-
maintained. The problem, while technical in symptoms,
is something more and something else. It is also
symptomatic for the problems to be addressed by the API

developers, in that qpkg, like the other utilities,
implement its own code for accessing Portage’s database
and configuration files directly. Without any guarantee for

how long the developers for these utilities will stick
around Gentoo Linux, the situation that the API is to
address is to keep the way utilities access Portage’s
database and configuration files synchronized even after
the original developers leave.

2.3. Framing the problem

The decision to introduce an API on top of Portage’s
database and configuration files is an answer to a problem
the Gentoo developers want to solve. Thinking in terms
of actor networks, the problem can in fact be
conceptualized as an actor. However, it is not an actor that
exists before the meeting starts. It is actually a
constructed actor. The problem is "a list of ... trials ...
hooked to a name of a thing and to a substance" [7,
p.122]. The way the problem is given substance, its
framing, is the topic of this section.

In the transcript from the Gentoo manager meeting
December 15 2003, one of the developers participating in
the meeting states that there are a "slew of util[itie]s lying
about". He associates these with mangled Portage
configuration files, in that the utilities "hack, slash and
mutilate the ... config[uration] files". Then he associates
the Portage database with the "util[itie]s lying about", as
"these util[itie]s misreads /var/db [the Portage database,
author’s comment], so as not to be consistent with
[P]ortage". Another problem with the "util[itie]s lying
about" is that they have overlapping functionality, and
none do their tasks particularly well:

"we don’t need five half-working use flag editors. we
need one really good one"

The problem is framed by the developer associating
different actors, framing a problem in such a way that the
other developers understand it as their problem, too.
Figure 1 illustrates how the different actors are associated
in framing the problem.

Having framed the problem as a shared problem, its
cause is established. The cause of the problem is that the
utilities lying about have not been properly updated, as "a
few of the existing tools [the same as the utilities lying
about, author’s comment] don’t work with portage 2-0.50
due to API changes [in Portage, author’s comment]". That

is also why the qpkg utility does not work any longer,

since there are "20+ bugs [reports] about qpkg" that
remain unresolved in the bug tracking system. The
technical cause of the problem is outdated code, but this
is more a representation of the larger problem:

"now I have 20+ bugs about qpkg assigned to me, it’s
a mess, and nobody wants to touch it. Who is
responsible to maintain it now?"

Figure 1 The problem framed

The symptom is that the utilities lying about have not
been updated, but this is caused by the fact that there are
no one maintaining the "slew of util[itie]s lying about".
In this way, the maintainer replaces the problem in the
actor network, providing a solution to the situation.

Control is exercised in deciding what activities are to
be undertaken, how and when. There are hundreds of
unresolved bug reports in Gentoo Linux’ bug tracking
system. In making the decision about which of these bug
reports are to be resolved, decisions about what activities
to prioritize are made. Framing the problem can therefore
be understood as the power to determine the activities to
be undertaken. From this follows that the task of
identifying who is in power in the episode above, is the
task of identifying who has the power to frame problems.

2.4. Who frames the problem?

At first glance, the problem facing the developers
seems to be framed by one of the developers participating
in Gentoo manager meeting. As a response to the problem
the maintainer role is introduced. The maintainer role, as
an actor decoupled from a person, was once constructed to
resolve similar situations. In framing the problem at hand
in this particular way, the answer to introduce a
maintainer becomes a given. Following this line of
thinking, one can go as far as saying that the maintainer
role participates in shaping the problem. If you have a
hammer, all you see are nails. The knowledge among
discussion participants that this role exists can be
considered constitutive to the problem framing. Looking
at the episode this way, the maintainer role is turned from
passive to active in framing the problem.

It is highly unlikely that every bug experienced by
Gentoo Linux users is reported in the bug tracking
system. However, the bugs that are used to frame the
problem are those reported in the bug tracking system.
Bugs are given priority, severity, status, and assigned to a
given person or group of persons for resolution. A bug is
resolved when it is fixed or labelled invalid. As long as a
bug remains unresolved but assigned to a developer, the

bug is a reminder to the assignee. In this sense, bug
reports are also active in framing the problem.

Framing the problem is not a function of a single
developer or a closed group of developers. Instead, it can
be interpreted as the function of a number of actors, both
human and non-human. Neither is the power to frame the
problem one-sided in that one actor forces other actors to
do something they do not want to. Instead, framing is a
reciprocal relationship between the Gentoo developers, the
maintainer role, and the bug reports.

3. Discussion

This discusses how control can be interpreted in the
above episode above. Three aspects of control are
discussed. First the implication of the episode in terms of
control and organizational hierarchies is discussed. Then
we discuss how control can be interpreted as distributed
among human and non-human actors. Finally, it is argued
that actor network theory makes the interpretation of
control as reciprocal among actors likely.

3.1. Relation of control and organizational hierarchy

Gentoo Linux is split into projects and sub-projects.
Herds consisting of maintainers are responsible for
keeping a set of packages up to date. This is how the
Gentoo developers describe their organization in terms of
hierarchies and distribution of roles. However, by
conceptualizing the way the Gentoo developers talk about
the organization during the Gentoo Managers’ meeting as
an actor network, another view appears. In framing the
problem that the API resolves, the maintainer is
introduced as an actor in the network. In contrast Gentoo
Linux’ chief architect does not get through his idea to
base the API directly off Portage.

Looking at the organizational hierarchy, the architect is
placed farther up than the developer. If control and
organizational hierarchies were related, the chief architect
would have the power to make his view the prevailing. In
the episode above, this does not happen, though. Why
not?

Control can be understood as local in the way actors
enrol other actors and are enrolled themselves in the
immediate actor network. If control was inherent in the
hierarchy, the chief-architect should have gotten his view
through. That he does not get his view through can be
explained by him never enrolling the chief architect role,
considered an actor in an actor network analysis, in the
immediate actor network.

The implication of the above interpretation is that
there need not be an inseparable relation between
organizational hierarchy and control. Control can be
locally embedded among actors in the immediate
network. The actors brought together by the hierarchy
have no essential relation to each other, but can instead be
understood as dispersed actors temporarily brought
together through the hierarchical ordering. By viewing of

actors as inherently dispersed, thinking of the
organization as an actor network shows that the
hierarchical description of organization is just that: a
hierarchical description of organization, an abstraction. As
such organizational hierarchy need not be inherently
connected with control.

3.2. Control is distributed and heterogeneous

In saying that a corrupted configuration file is the
same as a missing maintainer, technical (the corrupted
configuration file) and organizational (the maintainer)
actors are treated as equals. By treating all actors
symmetrically this way at the same level of analysis,
control can be interpreted as the mutual relationship
between heterogeneous actors. Control is not the
relationship between action and structures of signification,
legitimization and domination [9], but in the direct
relationship between actors in the network. A possible
implication of this interpretation is that control is no
longer purely social, but a function of human and non-
human actors, of technological and non-technological
actors, of organizational and non-organizational actors.
Control becomes orthogonal. It is a function between all
actors in the network, regardless of classification schemes.
Actors are no longer higher or lower in the organizational
hierarchy, technical or non-technical, human or non-
human; they are all and the same: actors in the network.

3.3. Control as reciprocal

In saying that control can be understood as local to the
immediate network of actors, control becomes both the
actors’ ability to frame problems, and the ability to limit
other actors’ framing activities. Control can therefore be
understood as more than the traditional control relation
within a set of actors

A_B
C_D
D_B
A_E
but as a relationship where actors reciprocally control

each other, understood as the relation of
(A, B, C, D, E)
 In the latter relationship lies the argument that control

is distributed. Control can’t be reduced to an actor A’s
ability to overcome actor B’s and thereby exert control
over B, as implied in the relationship A_B. It is not one-
sided, but distributed. A must not only overcome B’s
resistance, but the resistance of the other actors in the
immediate network. In this sense, in exerting control over
B, A exposes itself to the controlling power from the
other actors.

4. Conclusion

This paper has argued that traditional notions of
control may be inadequate in describing distributed

control in Gentoo Linux. Control, it is claimed, need not
be limited to the people who seem to be making
decisions. Rather, control can be interpreted as distributed
among both human and non-human actors. In reported
episode, control is distributed among a number of Gentoo
developers, the maintainer role, and bug reports. In this
sense, control is not distributed in terms of geographical
distribution, but distributed as in shared among a handful
of human and non-human actors.

While Gentoo Linux is geographically distributed, the
interpretation of distributed control is not connected with
the geographical distribution. It is, rather, connected with
the distribution of elements within an actor network. The
key points of distributed control are:
a) that control need not be inherent in the organizational

hierarchy, but can be interpreted as embedded in the
immediate actor network

b) that control need not be inherent in structures, but
can be distributed among actors,

c) that control can’t always be reduced to a function of
human agency, but may at times be understood as the
function of all actors in the network such as tools and
organizational roles

d) that control can be a reciprocal relationship between a
set of actors

Thinking of distribution this way, similar analysis of
distributed control could therefore be equally applicable in
geographically co-located software development efforts,
too. Distribution is not geographically, but instead
understood as distributed among actors.

In arguing that control is distributed in Gentoo Linux,
this position paper addresses only the mechanics of
control through following the construction of networks
through enrolling. The rules of this construction are left
untouched. How is it that some actors in the network
inscribe stronger behaviour than others? What are the rules
for enrolling actors, and what are the rules for excluding
actors as valid to be enrolled? These issues need to be
addressed in future studies.

The decision to do an API on top of the Portage
database and configuration files were only a month and a
half old when this pre-study was done. At the time of
writing, the API has still to be integrated in a large scale.
It is available in Gentoo Linux, but very few utilities
actually use the API. A point of future study is to follow
up how the implementation of the API and its integration
with utilities goes. How is access through the API
enforced? How are bugs connected with not using the API
handled? What are the effects of introducing the API?
Does it lead to lesser problems for utilities integrating
with Portage’s database and configuration files?

7. References

[1] E.S Raymond, The Cathedral and the Bazaar:
Musings on Linux and Open Source by an Accidental
Revolutionary, O’Reilly, Sebastapol, 1999.

[2] J.Y. Moon, and L. Sproull, "Essence of Distributed
Work: The Case of the Linux Kernel", First Monday,
5:11, 2000.

[3]A. Mockus, and J.D. Herbsleb, "Why Not Improve
Coordination in Distributed Development by Stealing
Good Ideas from Open Source?", Proceedings of the 2nd
Workshop on Open Source Software Engineering, IEEE,
2002.

[4] S. Kvale, InterViews: An Introduction to Qualitative
Research Interviewing, SAGE Publications, New York,
1996.

[5] R.M. Emerson, R.I. Fretz, L.L. Shaw, Writing
Ethnographic Fieldnotes, University of Chicago Press,
Chicago, 1995.

[6] M. Callon, "Some elements in a sociology of
translation: domestication of the scallops and fishermen
of St. Brieuc Bay". Power, Action and Belief, Routledge,
London, 1986.

[7] B. Latour, "Technology is society made durable", A
Sociology of Monsters. Essays on Power, Technology
and Domination, Routledge, London, 1991.

[8] Gentoo Managers’ Meeting Log,

http://www.gentoo.org/proj/en/devrel/ma
nager-meetings/logs/2003/20031215.txt,
last accessed March 1 2004.

[9] A. Giddens, The Constitution of Society: Outline of
the Theory of Structuration, Polity Press, Cambridge,
1984.

Paper 2

Berntsen, K., Munkvold, G., and Østerlie, T. "Community of practice versus practice

of the community: Knowing in collaborative work," The ICFAI Journal of Knowledge

Management (II:4), December 2004, pp 7-20.

Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie: Community of Practice

versus Practice of the Community: Knowing in collaborative work

© Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie

Community of Practice versus Practice of the
Community: Knowing in collaborative work

Kirsti E. Berntsen Glenn Munkvold Thomas Østerlie

Norwegian University of Science and Technology

 Faculty of Information Technology, Mathematics and Electrical Engineering

Department of Computer and Information Science

NTNU-IDI, Sem Sælands vei 7-9, NO-7491 Trondheim, NORWAY

keb@idi.ntnu.no glm@idi.ntnu.no thomasos@idi.ntnu.no

Abstract: How do software developers, field service technicians, and medieval

cathedral builders accomplish collaborative work? This paper looks at how they learn

from each other by building and sharing knowledge across time and space.

To illustrate this, we first present Community of Practice (CoP) as a way of

understanding collaborative work which puts focus on the community and its social

interaction. CoP, introduced by Lave and Wenger (1991), is based on the fundamental

belief that dividing theory from practice is unsound. Hence CoP contradicted

traditional theories of learning, where learning and working often are conceived as

separate processes. Using Orr’s (1996) rendition of service technician’s work, it is

shown that stories act as repositories of accumulated wisdom in keeping track of

facts, sequences and their context. Representations made by a CoP to aid their work,

are termed Reifications which can be stories, tools, artefacts etc. Practice is seen as a

duality of Participation and Reification which both require and enable each other. We

find however, that CoP based analyses tend to focus on the human actors in that you

start out by looking for the communities and what defines them. We also present

examples of alternative approaches that illuminate the technology and artefacts that

are present in collaboration. Berg(1997) uses Actor-Network Theory (ANT) to

illustrate the responsibility awarded to artefacts in the process of documenting a

hospital-patient’s fluid balance. Hutchins(1995) describes navigation as a joint

accomplishment of artefacts and people. Turnbull(1993) sees a wooden template as a

chief enabler of building gothic cathedrals without use of structural mathematics.

Facets of knowledge/knowing is discussed, their accumulation and transfer by

stressing the value of both the social and the technical approach.

Keywords: collaborative work, communities of practice, actor-network theory, role

of technology, knowledge sharing

Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie: Community of Practice

versus Practice of the Community: Knowing in collaborative work

© Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie

1. Introduction

What is it that software developers do when building software systems? And

what is it that field service technicians do when fixing broken copying

machines? For that matter, what did medieval cathedral builders do when

raising tall stone cathedrals across Europe? What do software developers, field

service technicians, and medieval cathedral builders have in common? In the

context of this paper, the answer is they achieve their goals through

collaborative work: they build and share knowledge and learn across time and

space.

Researchers in different academic fields have made attempts to describe and

explain collaborative work. The IS researcher wants to understand the

collaborative efforts involved in developing software (Naur, 1992). The

ethnographer (Orr, 1996) wants to describe and understand how field service

technicians collaborate on fixing broken copying machines, and the historian

(Turnbull, 1993) wants to know how cathedral builders managed to raise a

multitude of tall stone cathedrals all across Europe in a relatively short period of

time.

Let’s turn the coin and rephrase the questions posed above. How are software

systems built? How are broken copying machines fixed? How is the building of

gothic cathedrals achievable? There is of course no single answer to these

questions, but they raise the issue concerning the constituents of collaboration.

This paper discusses how different research traditions have opened the black

box of collaborative work, trying to explain collaborative work with different

approaches. This is not an exhaustive literature review on the topic, but rather

the beginnings of one.

The paper is structured as follows. First, we present Community of Practice

(CoP) as a way of describing and understanding collaborative work. After

discussing the contribution to understanding collaborative work provided by the

thinking around CoP, we discuss the approach’s shortcomings in addressing the

role of technology in collaborative work. We then present alternative

approaches to describing and discussing collaborative work which are specific

on the role of technology. After discussing these approaches’ contribution to

understanding collaborative work, we conclude by drawing the implications that

such an approach has on the way we think about collaborative work and the

sharing of knowledge and knowing.

2. Programming as theory building

Naur (1992) argues that software development is more than just production of a

program and certain texts. Successful software development is a question of

having the appropriate theory, as in a mental model, of the software system.

With certain kinds of large programs, the continued adoption, modification, and

Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie: Community of Practice

versus Practice of the Community: Knowing in collaborative work

© Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie

correction of errors depends on knowledge possessed by a group of developers

who are closely and continuously in connection with the software system. The

developers’ knowledge transcends that which is recorded in the documentation:

they possess a theory of the software. "[A] person who has or possesses a theory

… knows how to do certain things and in addition can support the actual doing

with explanations, justifications, and answers to queries, about the activity of

concern" (ibid., p. 229). The notion of theory was proposed by Ryle (1949) in an

effort to describe the difference between intellectual and intelligent behaviour.

Ryle claims that intelligent behaviour is the ability to do certain things without

having any concrete knowledge to build this behaviour on.

Naur's perspective on software systems development is that of the individual

developer. While his contribution is significant in that it provides

argumentation for viewing software systems development as a knowledge

intensive activity, it fails to address the dynamics of collaborative work. Even

though he argues that the theory of the software system must be shared by a

group of developers, the theory is still embedded in the individual. By not being

specific on the description of how the theory is shared, Naur only manages to

point out that software development is in fact collaborative work. The context

surrounding the development of software is not included in Naur’s discussion.

The question, then, becomes: how is knowledge shared, across time and space,

and how does context play a role? The related topic of how knowledge is built or

acquired across time and space will be touched upon in our discussion.

3. Communities of practice

The way people work differs from the abstract ways organizations describe that

work in manuals, training programs, organizational charts, and job descriptions

(Brown and Duguid, 1991). Communities of practice (Wenger, 1998) is a

concept used to better understand the activities and processes going on in work,

and what kinds of social engagements provide a better context for learning and

innovation to take place.

CoP was first introduced by Lave and Wenger (1991). It is based on the

fundamental belief that dividing theory from practice is unsound. Hence CoP

contradicted traditional theories of learning, where learning and working often

are conceived as separate processes. Instead, CoP argues that learning should be

contextualized by acknowledging its presence and allowing it to continue to be

an integrated part of work. Based on the fieldwork of Orr (later published as

Orr, 1996) Brown and Duguid (1991) illustrate how formal descriptions of work

and learning often are abstracted from actual practice, and how knowledge is

socially constructed through informal interaction. Orr did his fieldwork by

observing a group of Xerox repair technicians who met regularly in informal,

common areas trading stories and insights around their work (repairing

different types of copying machines). The workers actually made a point out of

Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie: Community of Practice

versus Practice of the Community: Knowing in collaborative work

© Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie

spending more time in each other's company. This slack initially seemed like an

excellent opportunity for productivity improvements. However, Orr's fieldwork

shows that these activities were actually a very important part of becoming,

being and remaining a good technician. It was central to how the technicians

learned, how they improved their skills, how they formed bonds as a community

of practice, and how they transferred and honed their knowledge and expertise

amongst themselves.

The creation and transformation of knowledge in the Xerox case is related to

social interaction among technicians. Taking form as storytelling, the knowledge

transfer made the technicians capable of sharing not only the type of knowledge

that could be read out of books, but also the type of knowledge not explicitly

stated in the company’s instruction manuals. The practice included sharing both

the explicit and the tacit/implicit. What was said and left unsaid thus served as

an intrinsic part of solving the problem. According to Brown and Duguid (1991)

stories act as repositories of accumulated wisdom and it allows people to keep

track of the sequence of behaviour and of their wisdom, in keeping track of the

facts and their context. In a highly situated and improvisational approach, the

technicians were able to construct a shared understanding out of bountiful

conflicting and confusing data.

Communities of practice rely on the informal depiction that each member

generates of it: who is part of the community, which are the different modes of

participation that are accepted, who knows what, what cultural tools are used to

mediate communication and interaction, and so forth. The depictions of the

community are iterative and evolve continuously as community members share

experiences, take action and interact with each other, as well as the outside

world which is reasoned about. A shared understanding is negotiated and

emerges from scattered pieces of knowledge and knowing. The differentiation

between knowledge and knowing is described by Cook and Brown (1999, p.381)

in that “[k]nowledge and knowing is seen as mutually enabling (not competing).

We hold that knowledge is a tool of knowing, that knowing is an aspect of our

interaction with the social and physical world.”

In general, Wenger (1998) defines a CoP along three dimensions:

1. a joint enterprise that is continually renegotiated by the members of the

community

2. mutual engagement, that bind the members together into a social entity

3. a shared repertoire of common resources that the members have

developed over time (routines, vocabulary, artefacts, experiences, stories,

etc.).

The resources developed by the community can somehow be considered the

accumulated knowledge and knowing of the community.

This informal, narrative and contemplative nature or aspect of a CoP, does not

preclude that a community may also make formal representations, checklists,

Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie: Community of Practice

versus Practice of the Community: Knowing in collaborative work

© Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie

tools etc. as well as to define concepts and ideas, to aid them in their endeavours

of work (ibid., pp. 62-71). These representations are termed Reifications.

Practice can be seen as a duality of Participation and Reification in which both

require and enable each other. "Participation is not merely that which is not

reified (ibid., p.66). On the contrary, they take place together. … There is no

reification without participation … [and vice versa]". The reifications/artefacts

play a key role since they are often used as explicit representations of the

informal model that is shared among the members. Reifications may also

function as boundary objects through which different communities can relate to

each other. A boundary object has a common denominator that each community

can identify and relate to, but may play different roles and have extra meanings

within the CoP, in line with the context and joint enterprise of that particular

CoP.

Discussion of shortcomings

In CoPs the relation between the subject and the "world" assume that the

subject adapts to the surroundings by means of participating in communities of

practice. The artefacts and technology which aid their existence remain self-

evident and in the background. Practice - implicitly understood as knowing,

which means doing and learning how to do, is explained, understood and

interpreted by means of the human subject.

In order to see the artefact in the theory of CoP, the artefact must either be the

central joint enterprise, or a boundary object. Brown and Duguid’s example of

the Xerox technician’s CoP has the artefact, its representations and interactions

within the customers organizations as "The central joint enterprise" around

which the CoP evolves. The machine/artefact is also a boundary object that

connects their CoP to their customers' communities of practice.

CoPs allow the artefact a place on the agenda in a more or less informal fashion

as reifications of human action. They play a critical role in cultivating and

coordinating knowledge but are only considered to be frozen reifications that

must be interpreted by the human actors. A similar point has been made by

Prout (1996 in Timmermanns and Berg 2003, p.9) saying that "Work is

constructed as done on and through machines, but not by them".

4. Illuminating the elusive technology

A relevant question is then: Does the theory of CoP adequately cover the

relevant aspects of collaborative work? The poignant catch here is the word

relevant. The relevance of various theories depend on the direction of interest in

the application of theory. Wenger states in his introduction (1998) that his

purpose is "… to propose … what I call a social theory of learning … which

comes close to developing a learning-based theory of the social order. In other

words, learning is so fundamental to the social order we live by that theorizing

Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie: Community of Practice

versus Practice of the Community: Knowing in collaborative work

© Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie

about one is tantamount to theorizing about the other." No wonder, then, that

CoP has become widely used, outside its original scope of learning.

CoP has been widely adopted within both communities studying organizational

knowledge as well as within management theory. Contu and Willmott (2003)

contend that many of these renditions have disregarded or failed to see, some

aspects of Lave and Wenger’s (1991) original work such as: "… embryonic

appreciation of power relations as media of learning" (Contu & Willmott 2003,

p. 283) in that the topic of power relations in a situated learning context often is

not addressed by those who embrace the concept of CoP into their own

discourses. There may be many reasons for this end result, Contu and Willmott

(ibid.) reason about both the present oversight of power relations and for the

subsequently necessary re-inclusion of power relations into the situated

learning discourse.

We intend to show that in a similar fashion, other embryonic appreciations also

tend to disappear when using CoP for theorizing on communities that include

artefacts as reifications. Wenger’s concept of the boundary object that mediates

understanding between communities, albeit sometimes very selective

understandings, is both illuminating and useful. Various artefacts and

technologies may constitute such boundary objects, along with other reifications

such as narratives, rules and norms, etc. The concept is a powerful one for

grasping constituents of communication and collaboration between different

communities in illustrating that it allows them to cooperate without a unilateral

(universal) consensus on activities, purposes and priorities. However, the

deeper aspects of the reifications as resources within the community and across

communities is little expanded in CoP. CoP divulges some aspects of artefacts in

communities, but remains ignorant or uninterested in others.

It is our observation that common concepts concerning the humane inhibit the

inclusion of non-human aspects into our discourses of societies, organizations

and activities. And so we mostly turn a blind eye to the technologies we interact

with. When we do address technology, acknowledging its presence, it tends to

be in an instrumental dichotomous fashion where the humans are either in total

control or at its mercy. We wish to expand our concepts of both the artefacts and

the humane, to stretch the dichotomy into a duality ascribing more than

structure or mediation to the artefacts. Wenger does describe such a duality, but

the focus of Cop is still mainly on the social aspects.

5. Making technologies explicit

Marc Berg uses actor-network theory (ANT) to take a closer look at artefacts

within work practices, both the IT system and other artefacts. Berg’s studies

show that some qualities of technology as artefact may be seen as universal in

holding both knowledge and a transformational power of informal practical

world aspects into formal representations.

Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie: Community of Practice

versus Practice of the Community: Knowing in collaborative work

© Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie

Marc Berg (1997) takes a detailed look at practice in a hospital intensive care

unit. His case describes each minute part of a work process which aims at

documenting a hospital-patient’s fluid balance, which is a sum of what fluid

goes in and what comes out. In observing and recording each minute detail of

the particular process, separate elements are identified. This hybrid consisting

of several people, various artefacts, routines and experiences comprises

everything that is needed for the activity of measuring a patient's fluid balance

to proceed. The formal tools, the artefacts, come to life only as part of real life

activity.

The shape of the bag of diffusion liquid with its quantity scale gives input to the

nurse for the number to be entered into the fluid balance spreadsheet. The

granularity of the scale defines the level of accuracy. The size and shape of the

drinking cup and the urine container also re-represents (as in representing

again) the separate liquid in- and outputs of the patient’s body into formal

representations. These formal representations can again be entered into the

spreadsheet. The person entering the number needs no knowledge of medical

theory, diagnosis, treatment, or purpose for performing this specific task. The

only interpretation necessary by the human is reading the quantity scale in

order to enter it into the spreadsheet. "The task of producing formal

representations is delegated to the mundane artefacts which perform, in

Latour’s terms, ‘the practical task of abstraction’" (Berg 1997, p.144)

Berg focuses on the interrelationships between the artefacts and the human

workers in saying that through these interlockings, new competencies can be

achieved and higher levels of complexity in work tasks can be achieved. People

can be seen as communicating/interlocking via the tools without intimate

knowledge of the other parts of the process chain. The distributed nature of the

activity, shared between the artefacts and human actors effect a distribution of

control and responsibility across the heterogeneous ensemble of humans and

artefacts. The individual actors have no overview of the complete process, and

cannot affect global workarounds based on an overall picture. The humans are

not in control of the overall task. On the other hand, neither are any of the

artefacts. The human actors introduce workarounds in performing their own

particular tasks pertaining to the unexpected contingencies of either their

colleagues or the artefacts. Another shape or functionality, in effect a different

inscription in the involved artefacts, would however shape the human actors

tasks differently.

Another point of Berg is that the ensemble of humans and artefacts–the actor

network–cannot bee seen as stable once the artefacts are in place. In line with

the view of artefacts and humans as equal actors in producing the end result of

an activity or process, then all actors within the network are affected when

changes occur in the forces influencing the network. Most work processes have

aspects of drift in which work is continually redesigned to adapt to the

particular circumstances. This drift also introduces the need to continually

adapt the use and/or functionality of the artefacts. A quaint analogy of this need

Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie: Community of Practice

versus Practice of the Community: Knowing in collaborative work

© Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie

for adapting artefacts can be related to perhaps our most archaic artefact of all–

the hammer. A modern-day hammer comes in various shapes and sizes–

adapted to each craft’s particular need. The cleft in today’s carpenter hammer

arose from the need to pull out misplaced iron nails. This functionality was

inconceivable in the times of wooden pegs.

While Berg places technology as embedded locally, Hutchins (1995) is

concerned with the "circulation" of cognition in collaborative work.

Traditionally human cognition has been placed within the mind of the

individual, as previously exemplified by Naur’s notion of programming as

theory building. A basic idea in distributed cognition is that human activity does

not take place solely in the heads of people, but that the environment–social,

physical, and artefactual–provides a cognitive context from where cognition

actually should be delineated. Looking at the practice of navigating ships,

Hutchins (1995) develops a methodological and analytical framework for

understanding how cognitive achievements can be conceptualised as a joint

accomplishment of artefacts and people. According to Hollan et al. (2000) in

distributed cognition, one expects to find a system that can dynamically

configure itself to bring subsystems into coordination to accomplish various

functions. At the core of Hutchins’ argumentation lies an assumption of equality

between people and artefacts in structuring practice. In this way the centre of

attention in collaborative activities are the interdependencies between people,

and between people and artefacts.

Similarly Turnbull’s (1993) study of medieval cathedral building can be

understood in terms of collaborative work. Medieval cathedrals were built in a

discontinuous process by different groups of masons. Turnbull's challenge is to

explain how masons could build these tall buildings without knowledge of

structural mechanics. During the 13th century 50 cathedrals were raised

throughout Europe. Turnbull envisions the cathedral building site as an

"experimental laboratory" in which the key elements were the template,

geometry, and skill" (p.322). The argument is that the collective work of

cathedral builders was not one of human ingenuity alone, but also manifest in

artefacts. Turnbull shows how wooden templates for building arches circulated

between building sites, acting as accumulations of every design decision that

had to be passed on. Because a template is easy to replicate, it could circulate

among builders at a site, and among building sites across Europe. In this way,

knowledge of gothic cathedral building, as manifested in the template, could

circulate and spread. Also, argues Turnbull, the template has an organizing

effect, having the power to organize large number of workers. Turnbull’s

approach is specific on the role technology plays in transferring knowledge and

indirectly coordinating collective work.

Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie: Community of Practice

versus Practice of the Community: Knowing in collaborative work

© Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie

6. Discussion

We have so far discussed different approaches to describing and understanding

collaborative work. The approaches were presented in two parts. We first

presented CoP as an approach to describe and understand collaborative work,

arguing that this approach conceals or fails to address many of the inscribed

qualities of the technology. We then presented different examples making

technology more visible. We focused on describing these approaches as

dissimilar in terms of the role technology play in their way of describing and

understanding collaborative work. In this section, we attempt to extract

similarities in the topics these approaches handle. We see two topics running

through all the works presented above:

• knowledge accumulation and knowledge transfer

• different facets of knowledge

6.1 Knowledge accumulation and transfer

Knowledge accumulation is a question of where knowledge is stored. While

stored gives mechanistic associations, it is not intended in this way. Rather, it is

used to describe that different knowledge is embedded in different actors. It is a

question of who/what has knowledge. The who/what dimension follows from

the differences between the different approaches presented above. The

communities of practice approach, exemplified by Julian Orr’s (1996)

ethnographic study of field service technicians and copying machines, views

knowledge as embedded in the practices of human actors. It is the field service

technicians and the human users of the copying machine that has knowledge of

the machines. The user knows the specifics of a given machine, while the field

service technicians know the general problems associated with series and

models of machines as well as possibly having knowledge of the history of the

specific machine.

The distinction between knowing and doing is not made explicit. The

epistemological assumption in CoP is that doing or knowing is socially situated.

Knowledge is an intrinsic property of people’s engagement in communities of

practice. Accumulation of knowledge is attributed to the human actors in a

"collective mind of the community". Application of the knowledge is solely

explained by means of human agency.

Conversely, in Marc Berg’s (1997) study of cooperative work in hospitals,

knowledge is explicitly accumulated along a process chain. This process chain

consists of humans as well as technology in a chain of distributed links. The

separate artefact links in the process chain also have knowledge inscribed in

them. The various liquid vessels have the appropriate size, shape and

measurement scales appropriate for their appointed task of collecting liquids

and turning them into a numeral representation. The vessels know, as Mol

Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie: Community of Practice

versus Practice of the Community: Knowing in collaborative work

© Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie

(2003) would put it. This is similar to Turnbull (1993) who argues that

knowledge of building cathedrals is based on the key elements of the template,

geometry, and skill (p.322). The template, however, plays an important role in

accumulating knowledge outside humans. It "encapsulated every design

decision that had to be passed down to the man doing the carving in shop and

quarry" (ibid.). The way the artefact accumulates knowledge, is a primary

explanatory factor in Turnbull’s work, as the building of gothic cathedrals was a

discontinuous process. It is this discontinuity that is missed by solely looking

towards humans as knowledge accumulators.

Narration is an important aspect in the communities of practice approach to

collaborative work. The narrative is a way of transferring knowledge. Knowledge

is transferred through social interaction, through narratives, through talking

about machines. Turnbull, Hutchins, and Berg on the other hand, see

knowledge transfer as the circulation of artefacts among people and among

communities. In this line of thinking knowledge is shared through circulating

artefacts among people. Which is it? Which of these approaches are correct? Is

knowledge accumulated in people and shared through social processes, or is

knowledge accumulated in artefacts are shared through the circulation of

artefacts? Our argument is that both are valid, important and dependant of each

other.

6.2 Facets of knowledge

In line with Nonaka and Takeuchi’s (1995, p. 235-240) assault on what they

term "false" dichotomies we argue that the dichotomy of human versus artefact

is such a false dichotomy. "The dynamic and simultaneous interaction between

two opposing ends of ’false’ dichotomies creates a solution that is new and

different. In other words, A and B create C, which synthesizes the best of A and

B. C is separate and independent of A and B, not something ’in between’ or in

’the middle’ of A and B" (ibid., p. 236). Rather the concepts of knowledge

accumulation and knowledge transfer must be seen in the light of the dynamic

integration of three of the synthesized "false" dichotomies that Nonaka and

Takeuchi put forward (p.237) namely explicit versus tacit knowledge, body

versus mind, and individual versus organization. Nonaka and Takeuchi,

however, do not include the artefacts in their theorizing. This is in line with

Cook and Brown (2003, p.381) who state that: "Organizations are better

understood if explicit, tacit, individual and group knowledge is treated as four

distinct and coequal forms of knowledge (each doing the work the others

cannot), and if knowledge and knowing are seen as mutually enabling (not

competing).

In accepting Berg’s argument that knowledge and knowing is distributed among

actors, and that no single actor has the complete picture of the collaborative

work process, we argue that knowledge can be accumulated in both humans and

artefacts. In this way, knowledge and knowing can be shared through the

Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie: Community of Practice

versus Practice of the Community: Knowing in collaborative work

© Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie

circulation of artefacts and accessed, interpreted and applied by people. CoP

stresses that the interpretation and application is activated through social

interaction. This, for us, is the consequence of applying Berg’s argument to the

topic of knowledge and knowing accumulation and sharing in collaborative

work. What we are saying is that a medieval mason, although skilled at building

brick walls and columns, is unable to raise a gothic cathedral without the

template. Conversely, a person not skilled in masonry is unable to build a

cathedral no matter how many templates he is in possession of. Using CoP alone

to analyze this example fails to appreciate the qualities of the artefacts. Focusing

on the technology renders the social barely visible.

Based on the above discussion, it may be argued that the CoP approach is

mainly concerned with the social aspects regarding establishing and sharing of

knowledge/knowing. As Wenger (1998, p.141) puts it "knowing is defined only

in the context of specific practices, where it arises out of the combination of a

regime of competence and an experience of meaning", while Turnbull and Berg

are more concerned with how knowledge is made durable and transferable

across social contexts.

The body versus mind dichotomy can be seen as an illustration of the skills that

the human has acquired as opposed to the abstract depictions or

representations we have of those skills. Knowledge/knowing as read from text

books can be seen as knowledge transfer in an abstract manner. Know-how may

be analyzed and put into words and numbers in order to externalize its content

and make it explicit. In the process of abstraction and transfer, something is

lost. Nonaka and Takeuchi give the name tacit knowledge to the part of know-

how that cannot be externalized. Wenger (1998) states that "[c]lassifying

knowledge as explicit or tacit runs into difficulties, however because both

aspects are always present to some degree … what counts as explicit depends on

the enterprise we are involved in" (p. 69) . In other words, that which may be

inexpressible and tacit in one CoP may be "easily" expressible in another CoP

whose joint enterprise is different. In order not to confuse Polanyi’s (1983) use

of the term tacit knowledge with that described by Nonaka and Takeuchi, which

we discuss in the following, we use the term implicit knowledge of that which

may be difficult to express.

Only some part of knowledge/knowing is transferable in an abstract and explicit

way. CoPs alleviate the problem by strategies that achieve Learning by doing,

socializing and telling stories, which will indirectly include extra dimensions in

knowledge transfer without needing the same level or type of abstraction. The

narratives include the context of each situation that indirectly may infer these

implicit aspects. The scope of interpretations increases when we abstract. In

doing, socializing and telling stories we can direct, align, combine, and recreate

our understandings to get a clearer picture, in order to narrow or redirect the

scope. Through stories people build up a repertoire for improvisation.

Narratives are reactivated by adding new elements. They naturally integrate the

implicit elements as well as the explicit and are tuned to balance between

Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie: Community of Practice

versus Practice of the Community: Knowing in collaborative work

© Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie

content and context. In seeing texts, mathematics and books as examples of the

embodiment of formal abstractions, we can infer that these abstractions in the

form of artefacts like books, represent knowledge made durable in a way that

allows explicit knowledge accumulation and transfer. The transfer of implicit

knowledge is seen to be more cumbersome. However we believe that the

"simple" artefact as exemplified by the mason’s wooden template is the

embodiment of part of the gothic architects acquired implicit

knowledge/knowing. The use of the technology of a template is an embodiment

of parts of the explicit knowledge that does without the formal mathematical

kind of abstraction. In lack of a CoP with a narrative way of transferring some of

the implicit aspects, the template will perform a similar job. The template

accumulates and transfers knowledge/knowing in a less formal and less abstract

fashion which is durable, scales and transfers differently and perhaps better,

than structural mechanics and mathematics.

We find that Wenger’s theory of CoP with its reifications misses out on this

formative aspect, that technology may hold in that it fails to recognize that

different characteristics of different technologies as exemplified by the book, the

template, and the liquid container.

In leaving the dichotomies of the explicit versus tacit (implicit), body versus

mind, and individual versus organization behind in regards to knowledge

transfer and accumulation, we argue that the dichotomy of humans versus

artefact can be left behind, too.

7. Conclusion

In the introduction the same question were asked in two different ways. By

rephrasing the questions our intention was twofold. First, to illustrate how

different types of questions focus our attentions differently, and thus lead us

towards different approaches in our understanding of collaboration. Second, to

"implicitly" prepare the reader on the content of the rest of the paper, and

hopefully provoke the reader to reflect a bit on the issue. In short the first type

of questions emphasised the community aspect of collaboration–the "what"

questions–while the second type of questions were directed towards the practice

part of collaboration–the "how" questions. Our intention was not to favour any

of the approaches, but to stress the importance of both and illustrate how they

accent different aspects to our understanding of collaboration.

To sum up we demonstrate how a focus on the technology might provide

different insights to the CoP example of Orr’s service technicians and how the

social position of CoP gives additional insights to the examples of Turnbull’s

templates and Berg’s liquid vessels.

Turnbull illustrates that technologies as abstractions, in this case as a wooden

template, can hold and transfer knowledge as design information between

communities with similar community skills/knowing in effect communities that

Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie: Community of Practice

versus Practice of the Community: Knowing in collaborative work

© Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie

have the skill to build with brick and mortar. The template works as a boundary

object that traverses the community boundaries through both time and space,

and comes across with a similar meaning, close enough to enable another

master builder to decide to build a gothic rather than a Romanesque church. If

this story looses sight of the technology, the artefact, then the transferral of

knowledge becomes a mystery. The powerful qualities of this simple artefact are

vital to the whole "plot". It scales better than the numerical mathematics, on

which we rely today, in that it transcends language barriers and non-existent

structural mathematics and it is durable in withstanding wear and tear. It

travels well. So, just any technology will not do. Technologies have different

characteristics which relate differently to different societal factors. Which

technology is best at any point in time and setting will depend of the whole

dizzying network of factors that make up and influence our social world,

including the artefacts and what reifications we may establish in our

communities. In analyzing possible relationships between the social and the

non-human, and focusing at least equally on both, we may identify aspects of

technology that grant us to be better equipped in reaching our goals.

Berg describes a use of technology where the artefacts are links in a production

chain. Loose the liquid-container’s specific qualities and the process is seriously

hampered. The containers design is a product of knowing how best to collect

and transfer the liquid in question into abstractions suitable for their entry into

the liquid chart. Now this particular example is not so advanced as to render it

impossible to establish a workaround if the vessel should disappear, but it

clearly illustrates the distribution of responsibility and control, power and

action into the separate links. The end link of the chain need have no suitable

knowledge of what the whole process is about, let alone the differing links

within the chain. There is no social interaction involved in the production of the

end result in relation to a specific patient. The activities of the communities that

designed the different artefacts may be long gone and the resulting process

chain can scarcely be described as a community. However, if one look at the

human actor as constituent of a particular link in the chain, CoP would see this

actor as a part of a community where probably several people carry out that

same activity for different patients. The liquid vessels would be the boundary

object mediating the interaction with the next human actor in the chain. In

effect the CoP based analyses focuses on the human actors because you start out

by looking for the communities and what defines them.

Orr's service technicians discuss the technology in their community through

sharing stories. Through these narratives of humans and artefacts, the

technicians iterate, rephrase, recombine various bits of knowledge and

experience to build new knowledge, knowing and tactics in coping with the

machines. Their stories are their common stored knowledge, which sit in their

collective memory and make sense in light of different contexts and experiences.

Wenger uses this example to stress the importance of the community’s collective

work of producing the knowledge that enables them to carry out their work.

However, through these stories, the machines gain a life of their own. The fact

Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie: Community of Practice

versus Practice of the Community: Knowing in collaborative work

© Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie

that contexts vary, different machines of the same make behave both similarly

and differently, is constantly contributing to and feeding the activity of the

community. In this case the artefact need not be seen as a boundary object

mediating meaning between communities, but also an actor with its own

agenda, albeit based on their initial design. The qualities of the machines are

highly relevant not only as the focal point of the CoP of service-technicians but

also as part of the community, or as actors in the CoP as ANT would allow.

Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie: Community of Practice

versus Practice of the Community: Knowing in collaborative work

© Kirsti E. Berntsen; Glenn Munkvold; Thomas Østerlie

References

Berg, M. (1997). On Distribution, Drift and the Electronic Medical Record:

Some Tools for a Sociology of the Formal, Proceedings of the Fifth European

Conference on Computer-Supported Cooperative Work, ECSCW'97, Kluwer, pp.

141-156.

Brown, J.S. and Duguid, P (1991), Organizational Learning and Communities of

Practice: A unified View of Working, Learning and Innovation, Organization

Science, Vol. 2, No. 1, pp. 40-56.

Cook, S.D.N and Brown, J.S. (1999), Bridging Epistemologies: The Generative

Dance between Organizational Knowledge and Organizational Knowing,

Organization Science, Vol. 10, No. 4, pp. 381-400.

Contu, A. and Willmott, H (2003), Reembedding situatedness: The importance

of power relations in learning theory, Organization Science Vol. 14, No. 3, pp.

283 – 296.

Hollan, J., Hutchins, E., and Kirsh, D. (2000), Distributed cognition: Toward a

new foundation of human-computer interaction research, ACM Transactions on

Computer-Human Interaction, Vol. 7, No. 2, pp. 174-196.

Hutchins, E. (1995). Cognition in the Wild, Cambridge, MA: MIT Press.

Lave, J, and Wenger, E. (1991), Situated learning: legitimate peripheral

participation. Cambridge: Cambridge University Press.

Mol, A. (2003), The body multiple: Ontology in Medical Practice, Durham, UK:

Duke University Press.

Naur, P. (1992), Programming as theory building, in P. Naur Computing: A

human activity", ACM Press.

Nonaka, I. and Takeuchi, H. (1995), The Knowledge-Creating Company, Oxford,

UK: Oxford University Press.

Orr, J. (1996), Talking about machines: An ethnography of a modern job,

Cornell, CA: Cornell Univ. Press.

Polanyi, M, (1966) The tacit Dimension, Routledge and Kegan Paul, London.

Ryle, G. (1949), The Concept of Mind, London, UK: Penguin.

Timmermans, S. and Berg, M (2003), The practice of medical technology,

Sociology of Illness & Health, Vol. 25, No. 3, pp.97-114.

Turnbull, D. (1993), The ad hoc collective work of building Gothic cathedrals

with templates, string and geometry, Science, Technology and Human Values,

Vol. 18, No. 3, pp. 315-340.

Paper 3

Jaccheri, L., and Østerlie, T. "Can We Teach Empirical Software Engineering?", in

Proceedings of the 11th IEEE International Symposium on Software Metrics (Metrics

2005), Como, Italy, September 19-22, 2005, pp. CD-ROM.

Can we teach Empirical Software Engineering?

Letizia Jaccheri and Thomas Østerlie

Department of Computer and Information Science (IDI)

Norwegian University of Science and Technology (NTNU)

letizia.jaccheri@idi.ntnu.no, thomas.osterlie@idi.ntnu.no

Abstract

We report about an empirical software engineering

course for PhD students. We introduce its syllabus and

two different pedagogical strategies. The first strategy

is based on individual learning and presentations. The

second relies also on social activities to support

learning and knowledge sharing. The syllabus, which

has been used for three iterations of the course, is

available at our web site together with student essays,

evaluation data, and other documentation produced

during course runs.

1. Introduction

Empirical software engineering (ESE) is a sub field

of software engineering which aims at applying

empirical theories and methods for the measuring,

understanding, and improvement of the software

development process in organizations. ESE is by its

nature a multi-disciplinary field as software engineers,

industry actors, statisticians, pedagogues, and

psychologists have traditionally been cooperating.

In this paper, we report on a PhD level course in

empirical software engineering that has been run three

times. The course held during the autumn of 2002 was

based on individual presentation. During the spring of

2003 the course was based on group work held. This

was replicated when the course was held in 2004.

The main objective of empirical software

engineering education is to train software engineers in

empirical evaluation of the tools, techniques, and

technologies used in software engineering. It is in this

context, that we see the importance in discussing the

strategy for teaching empirical software engineering.

We are of the opinion that ESE is relevant for both

practitioners and researchers. For practitioners it is

about evaluating tools and techniques for use in

concrete cases [18]. While it is equally important to

teach ESE to each of these two groups., we report on a

course for teaching ESE to software engineering

researchers in this paper. We believe that our findings

are equally applicable for teaching ESE to

practitioners.

There are some fundamental challenges for an ESE

research project to succeed. First, researchers in

general and PhD students in particular must be well

acquainted with existing methods. Second, ESE

research is a major undertaking and it is a cooperative

activity within a research group. Third, the research

needs to be relevant outside the research community.

The research group must therefore have access,

knowledge of and familiarity with the software

industry in order to study concrete and real situations,

and to generate industry relevant research questions.

Lastly, the research problems must also be relevant

within the academic field of software engineering.

Research problems therefore have to be significant to

both the international research community and the

local industry. This means that research problems and

questions must be shared and understood by the all

members of the research team and by the industrial

actors. These challenges need to be addressed by a

PhD level course in empirical software engineering.

Our course is an attempt to make our PhD students

acquainted with the state of the art within ESE as well

as reflect on investigations done by others and in

which they have possibly participated.

Our course has been run three times and its

syllabus, program, and evaluation is available at [16].

We have evaluated the pedagogical effects of the

course by exploiting Bloom´s taxonomy of learning

(which is well known and used by the software

engineering community) and qualitative methods for

data collection and analysis [29] as applied in the ESE

field.

This paper is structured as follows. Section 2

introduces the aspects of software engineering

education which have been relevant to our work and

some learning issues in research education. Section 3

describes our course, its syllabus, pedagogical goals

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

and the two different strategies. Section 4 is about the

evaluation of the course. Discussion and conclusions

are given in section 5.

2 Background
Software engineering, as a field, has, among others,

two supporting disciplines–software engineering

education and ESE. Software engineering education

focuses on training "software professionals" for the

industry [25], while ESE focuses on evaluating the

tools and techniques used, developed, and intended for

use in the industry through empirical validation. There

is an element of training required in making the

transition from trained software professional, with or

without working experience, to become an ESE

researcher.

2.1 Software Engineering Education

The software engineering education literature

moves along a dual axis; one axis for education

content and one for pedagogy. We use the two axes to

reflect on the current state within software engineering

literature in this section.

The education content axis is delimited by two

extremes: industry driven and principles driven. Meyer

[25] argues that the contents of software engineering

education must be driven by the principles on which

software engineering is based:

"What matters is teaching [the students]

fundamental modes of thought that will accompany

them throughout their careers and help them grow in

this ever-changing field. The ones who blossom are

those who can rise beyond the tools of the moment in

harmony with the progress of the discipline. ([25]

p.29)"

On the other end is the work of Lethbridge [24].

Based on a survey of 168 software engineers, he finds

significant differences between curricula taught at

colleges and universities and the actual knowledge

required in the industry. Lethbridge argues for aligning

existing curricula with skills required by the industry.

Where Meyer [25] is specific on the need to distance

education from the industry’s immediate, short-term

requirement, Lethbridge writes little of the long-term

requirements that Meyer addresses with his principles.

In this sense, their approaches can be classified as

addressing short-term requirement vs. addressing long-

term requirements. Guidelines for Software

Engineering Education [4] adopt a middle ground

approach to education contents. They address the long-

term issues and are based on the body of knowledge

for software engineering [1]. This body of knowledge,

however, is based upon expert opinions within the

industry.

Along the second axis, there are two strategies: the

first strategy is based on lectures and individual

learning. The second strategy is based on learning by

doing, also known as project-based learning. Both

Meyer [25] and [4] favor project-based learning.

Unlike the education content, they argue in favor of

project-based learning to "prepare our students for the

real challenges they will face" ([25] p.33). They also

argue that it is easier to learn from personal mistakes

rather than mistakes related by a lecturer.

2.2 Learning issues in research education

Provided that it is possible to teach somebody how

to become a good researcher, there are three kinds of

courses that can be offered as part of research

education:

1. General courses on research methods at both

undergraduate and post graduate level are usually

offered by social science faculties. These courses

address research issues such as scientific method

and nature of evidence, advocacy versus evidence-

based approaches, writing and reviewing research

proposals, how to use bibliographies and citation

searches, project planning, selecting results and

places to publish, outlining and structuring

research papers, the peer review process,

presenting posters and papers at conferences,

publishing in academic and engineering journals,

etc..[5]

2. Courses on research methods in computer science

address some of the research issues above, such as

scientific method and nature of evidence,

customized to the IT field. At our department, for

example, there is a common introductory course

for all PhD students, which addresses general

research issues in IT like those discussed for

example in [12].

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

Table 1 Bloom’s taxonomy of learning customized to ESE

Level Definition Sample

verbs

Sample behavior Sample behavior ESE

Knowledge Student recalls or

recognizes information,

ideas, and principles

in the approximate

form in which they

were learned.

Write

List

Label

Name

State

Define

The student will

define the 6 levels

of Bloom's

taxonomy of the

cognitive domain.

The students will be able to

define the content of the different

papers.

Comprehension Student translates,

comprehends, or

interprets information

based on prior

learning.

Explain

Summarize

Paraphrase

Describe

Illustrate

The student will

explain the

purpose of

Bloom's

taxonomy of the

cognitive domain.

The students will explain the

purpose of the give methods and

investigations.

Application Student selects, trans-

fers, and uses data

and principles to

complete a problem

or task with a mini-

mum of direction.

Use

Compute

Solve

Demonstrate

Apply

Construct

The student will

write an

instructional

objective for each

level of Bloom's

taxonomy.

The student will be able to use

one method for experimentation.

Analysis Student distinguishes,

classifies, and relates

the assumptions,

hypotheses, evidence,

or structure of a

statement or question.

Analyze

Categorize

Compare

Contrast

Separate

The student will

compare and

contrast the

cognitive and

affective domains.

The students will compare and

contrast different methods and

investigations.

Synthesis Student originates,

integrates, and

combines ideas into a

product, plan or

proposal that is new

to him or her.

Create

Design

Hypothesize

Invent

Develop

The student will

design a

classification

scheme for

writing

educational

objectives that

combines the

cognitive,

affective, and

psychomotor

domains.

The students will design an

investigation by choosing and

perhaps combining different

methods.

Evaluation Student appraises,

assesses, or critiques

on a basis of specific

standards and criteria.

Judge

Recommend

Critique

Justify

The student will

judge the

effectiveness of

writing objectives

using Bloom's

taxonomy.

The students will judge the

effectiveness of using empirical

software engineering methods.

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

3. Courses like the one we describe in this paper,

which address empirical research methods in

software engineering. These courses do not exist

in isolation but in education and research context

that may or may not include general research

courses or courses specific for IT research. As far

as we know, there is at least one paper that reports

on teaching ESE [15] as part of a software

engineering course. Undergraduate students work

in projects, and the teachers play the role of the

customer. In one project the customer is a

hypothetical company wanting the students to

perform empirical studies (mainly experiments) to

evaluate different alternative techniques, e.g.,

different kinds of reviews. Students are not asked

to plan the studies but only to perform them, as

planning and running would take too much of the

course. The syllabus of the empirical software

engineering part is [32].

2.2 Software engineering education and

research education at IDI

The software engineering group at IDI has thirty

years experience with project based software

engineering education. One of the author of this paper,

Jaccheri, has more than ten years experience with

teaching project based software engineering, software

quality and metrics issues to software engineering

students, both in Italy and in Norway, as well as

reflecting and writing about this [17] [18] [19]. IDI has

7 years experience with an introductive course for IT

researchers, which is mandatory for all new PhD

students. Jaccheri has had the main responsibility for

this course for one year. IDI graduates twenty PhD

candidates each year and the software engineering

group has graduated a total of 19 software engineering

PhD students.

3. Empirical software engineering course

The course reported in this paper is offered to PhD

students within software engineering. While the course

has been run three times, we mainly report on the first

two times as the third time we ran the course as a

replication of the second time. The first and the second

times had some common characteristics and some

different characteristic. In the following section we

discuss the common characteristics and afterwards we

introduce the characteristics that were different for the

two.

3.1 Common characteristics

In the following section we discuss the common

characteristics for the course.

3.1.1 Students

The empirical software engineering course counts as

7.5 European Credit Transfer System (ECTS). This is

equivalent to 12 hours work for 15 weeks, 2 hours in

class and 10 hours of other learning activities, for a

total of 180 hours. The course was run once during the

autumn of 2002 at the Norwegian University of

Science and Technology (abbreviated NTNU) for PhD

students by the software engineering group, and once

during the summer of 2003 at Simula Research

Laboratory in Oslo for both University of Oslo and

NTNU PhD students.

Some of the students worked in empirical software

engineering research projects, while others worked in

other kinds of software engineering projects. All

students had a general course about research methods

in IT as part of their curriculum. Some students even

had a course on research methods in general. The

students age, gender, nationality, and scientific

background differed.

3.1.2 Syllabus

The course has had the same syllabus throughout.

Here, we refer to a consolidated bulk of literature,

which is used as syllabus for the course.

The syllabus is divided into three parts: motivation,

method, and actual investigations.

Motivation: In [33] and in [31], motivations for

the existence of the ESE field are given. These

papers provide also a classification of existing

software engineering research papers according to

the kind of empirical method used in the

respective research.

Methods: [32] provides an introduction to the

field, with special emphasis on experiments. [22],

[9], [28], [3], [8], [29], [2], and [14], provide

concrete methods for performing, and analyzing

investigations. [27] and [6] are about Data

Analysis Methods.

Actual studies: [13], [23], [11], and [28] are about

concrete investigations.

The course ended with a final oral exam with the

teacher and an ESE expert outside of the university as

examiner.

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

3.2 Differing characteristics
Here we introduce the characteristics that differed.

3.2.1 Pedagogical goals and teaching strategy for

Autumn 2002

In the autumn 2002 iteration of the course, the goal

was to make the students acquainted with the contents

of the syllabus. The course was held in a classroom

context where students were met two hours a week for

13 weeks (totally 26 hours in class).

At each meeting, one student presented one paper

from the syllabus. The teachers responsible for the

course provided feedback and stimulated discussion

around the paper.

3.2.2 Pedagogical goals and teaching strategy for

Summer 2003

In the summer 2003 version of our course, the

pedagogical goals were:

1. given our syllabus which introduces a possible

overview of empirical software engineering

knowledge, let our students know about the

syllabus at a level with is as high as possible

according to the Bloom´s taxonomy [7].

2. establish a Norwegian network of young

researchers within the field of software

engineering.

Bloom’s taxonomy is reported in Table 1. The last

column of the table (Sample behavior ESE) gives our

interpretation of the taxonomy when applied to the

ESE domain.

The second iteration of the course was organized as a

three days event (21 hours). Here we list in

chronological order the main tasks of the course.

a. Students were informed about the syllabus and the

course web page [16]. One month before course

start and were asked to read the entire syllabus

before the course started.

b. Short introduction to the course content by the

teacher.

c. Introduction to the field of empirical software

engineering by discussing examples of interaction

with the Norwegian software industry by two

Norwegian research managers.

d. Group work with the goal of extracting the main

issues from the syllabus. Each group had to find

and list research hypotheses, data, and their

analysis. Moreover each group had to summarize

one method to plan and perform investigations,

and to summarize one investigation.

e. Practical exercises coordinated by a performance

and theater instructor with the goal to introduce

students to performance work and to stimulate

cooperation among students.

f. Production of a five minutes movie advertising the

field of empirical software engineering.

g. Choosing an actual study in the syllabus,

characterize the investigation presented in the

chosen study according to motivations, method,

measurements, and data analysis method. The goal

of this exercise was to simulate the planning and

execution of an empirical investigation.

h. Group work with the goal of obtaining a deep and

critical understanding of the issues presented in

the syllabus, also in light of the experience

acquired during the previous exercises. Each

group had to: choose one research hypothesis and

its motivation (business, education, others); list

and comment investigation planning and risks

(what can go wrong); define (or reuse) guidelines

for designing and running empirical

investigations; choose one actual investigation.

i. Essay writing. Each student had to write an

individual essay. The essay assignment was

“Extract from [22] and from the other papers in

the Methods part of the syllabus, the most

important guidelines for designing and running

empirical investigations. Characterize the

investigation presented in the chosen actual study,

according to these guidelines. This means that you

have to comment about the motivations, the

method, the measurements, and the data analysis

method”. The essay was supposed to be handed in

two weeks after the seminar and one week before

the oral exam. Recalling that students have 180

hours allocated to this course, we expected that

students worked full time writing the essay during

these two weeks.

4. Course evaluation

Based on running the course twice we wanted to

evaluate it in order to plan its third iteration. One goal

of this evaluation was to get general suggestions for

improvement. We wanted to reflect about the two ways

of teaching ESE–individual presentations or group

assignments.

Educational evaluation is a sub field of educational

research for which there is an extensive bibliography

along with national and international standards [26].

To the best of our knowledge our course is one if the

few offered internationally within the field. The

number of new software engineering PhD students in

Norway is of the magnitude of ten. While there is a

need to teach such a course and to reflect over its

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

learning effects and the benefits and risk of different

pedagogical strategies, we are aware that time is not

mature for a formal evaluation of the course involving

professional pedagogues and psychologists of the

education service at our university.

However, we have designed and run an evaluation

of the two first iterations of the course. Our evaluation

attempts to reflect about how much the students had

learnt from attending the course.

We decided to implement our investigation as an e-

mail-based questionnaire [29] that we circulated to all

students attending the courses.

We decided to use Bloom’s taxonomy. The

columns Level, Definition, Sample verbs, and Sample

behavior are taken directly from the Bloom taxonomy

of educational objectives [7]. Column “Sample

behavior ESE” is our contribution.

We decomposed the level of learning reached by

students with respect to the Bloom taxonomy in three

categories, one for each part of the syllabus:

motivation, method, and actual studies (see section

3.1.2 Syllabus). We wanted to know how much each

student has learnt from each part of the syllabus.

The questionnaire had to be formulated in such a

way that we could assess what the students have learnt

and how well they have learnt. To this end we

formulated the two questions:

When did you take the Empirical software

engineering course? (Autumn 2002 or Summer

2003?)

Have you ever participated in an Empirical

software engineering investigation? If yes, prior or

after attending the course?

Our goal was to measure how much of the course

contents the students had learnt from attending the

empirical software engineering course. We formulated

the following question in order to measure how much

of the course contents the students had learnt:

In your own words, what were the primary

objectives of the Empirical software engineering

course?

We did not ask directly what the students had

learnt, but what they thought were the primary

objectives of the course. We did this to make sure the

students answered what they had learnt from the

course contents, not what the teachers were supposed

to teach them. To see how well the course succeeded

in teaching the students the overall goal, to run

empirical evaluations, we asked the following:

On the basis of what you have learned in this

course, would you be able to plan and run an

empirical investigation?

Finally, we formulated the final question:

Do you have further comments on the course?

If we had asked the wrong questions, we hoped the

students would tell us so in answering this question.

We were also interested in feedback on how to better

the course, and thought this question provided an

opportunity for such feedback.

Based on lists of the participants in the ESE course,

we circulated the questionnaire to all participants by e-

mail. We included an introductory letter explaining

that we wanted to use the data for both improving the

course and as material for a paper, that all responses

would be treated confidentially, and a date within

which we would like to receive the responses by. The

responses to our questionnaire were on free form and

are available at [16].

We e-mailed the survey to the seventeen students

attending the two courses. In the end, due to data

discard, we had ten responses to analyze.

The data from the questionnaire and our analysis

can be found at [16].

The “stories” written by students provide a

valuable piece of knowledge for those evaluating

our course. To the question “In your own words,

what were the primary objectives of the Empirical

software engineering course?".

Table 2: Coding conventions.

 Word/phrase in free form question Translated meaning

Coding key 1 Learn

insight

overview

aware

Bloom’s taxonomy: knowledge level

Course topic: all

Coding key 2 Run experiment Bloom’s taxonomy: application level

Course topic: actual studies

Coding key 3 Plan and run experiment Bloom’s taxonomy: synthesis level

Course topic: actual studies

Coding key 4 Tradition Bloom’s taxonomy: depends on other coding keys

Course topic: motivation

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

To the question “On the basis of what you have

learned in this course, would you be able to plan and

run an empirical investigation?” students write answers

like:

• “Yes. But more concrete skills about how to

design questionnaire and how to analyze data should

be learned”.

• “Not without more input, but I would have a

better starting point for the planning phase. A lot of

the work in the planning phase would consist of

deciding how the investigation should be formed, and I

think I have a better understanding about the basic

concepts and where I could find out more about

them.”

To analyze our data, we employed the method of

coding [25] for extracting qualitative data and map

them into Bloom’s taxonomy of learning. Based on the

responses and our interpretation of Bloom’s taxonomy,

we therefore formulated a set of coding keys to ensure

identical coding of free form replies for both the

taxonomy and the course topics (Table 2).

• Coding key 1 enabled us to translate

sentences like “Provide some insight into typical

methods used in the field” into level knowledge for

topic method.

• Coding key 2 enabled us to code sentences

like “Yes - it would give me an important starting

point, but I would always need to confer and discuss

afterwards possible investigations and their plans with

people with experience” into level application for

topic actual studies.

• Coding key 3 says that whenever a student

declares to have knowledge to plan an experiment, the

level for actual studies is synthesis since Create,

Design, Hypothesize, Invent, and Develop are sample

verbs for synthesis level in the Bloom taxonomy.

Example is a sentence like: “Yes, I can design an

empirical study now”.

• Coding key 4 says that whenever a student

acknowledges that the goals of the course encompass

the traditions of the field, we assigned a value to the

motivation field. Example: in response to the question

“In your own words, what were the primary objectives

of the empirical software engineering course?” one

student replied “To given an overview of the main

methods and traditions of empirical software

engineering”.

Along with the coding keys, we made extra rules

for coding that can be found at [16] together with the

data set.

There is a slight difference between the levels

obtained for autumn 2002 and summer 2003.

However, taken in consideration the number of

subjects (10) and the measurement scale (ordinal), it

does not make sense to try statistical generalization.

5. Discussion and Conclusions

The ESE course is now mandatory for all new

software engineering PhD students at NTNU. We had

only 4 new software engineering PhD students in

2004. For this reason, the teacher (Jaccheri) decided to

organize the 4 students as a group with which she

interacted as a performing member for the third

iteration of the course.

The transition from 2003 to 2004 benefited from the

evaluation we report in this paper. The 2004 iteration

is organized in a similar way to 2003 and it is based on

group activities. The most important change with

respect to 2003 is the introduction of a “summary

writing” activity that proceeds the seminar. This is an

individual activity during which each student is

supposed to write a structured summary of the main

characteristics of the content part. Students get the

assignment one month before the seminar. In this way,

the 2004 iteration is more oriented toward individual

learning that the 2003 iteration but still much more

group oriented than the 2002 one. The learning goal of

this summary activity is that students must have

reached a knowledge level of the Bloom´s taxonomy

before seminar starts. The next version (fourth) of the

course will run during autumn 2005.

The main contribution of this work is the

description of a course in the field of empirical

software engineering. First, the presented syllabus [16]

can be used as a basis for a dialog in the ESE

community about which topics are of most importance

when educating the future researchers in the field.

Second, the two presented pedagogical strategies can

be discussed further to find out which one or which

combination of the two is better suited for which

context. Another contribution is our customization of

Bloom´s taxonomy of learning to the ESE field.

Like every other course, there are at least two axes:

one axis for education content and one for pedagogy.

These two axes can be used also to reflect over this

course or similar ones. Which part of the content are

we satisfied with and why? Which pedagogical

strategy work better in which situation? According to

our evaluation, students are generally satisfied with

syllabus and the way it is structured into motivation,

methods, and actual studies. Students appreciate

examples provided by the papers in the investigation

part. Concerning the method part, there is need to

focus more attention on case studies and interpretative

studies. Teachers and examiners are satisfied with the

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

essays and we believe that the guidelines provided in

[22] are a good tool to characterize investigations

Other ESE courses are offered at other universities,

like the one documented in [15]. However, if one asks

colleagues about how they learnt to become

researchers in software engineering, or more specific

empirical software engineering or measurement, the

answer is often vague. Experienced researchers rely on

tacit knowledge which is learnt and shared locally by

research groups and internationally by research

communities. A contribution of this paper is that it can

be an example for those who provide and want to

provide similar courses.

Concerning our evaluation, we are aware that the

evaluation of the two pedagogical strategies has

limitations if one regards it as a piece of educational

research evaluation. First the sample size (10) is too

limited. Second we ask students to evaluate their own

learning perception. Third, though we map the initial

knowledge of each student, we do not take gender,

age, language, and country of origin into

consideration. Students have different age, gender,

nationality, and scientific background. While

heterogeneity enhances learning challenges and

possibilities, it poses serious problems to a formal

evaluation of the learning effects of the course.

However, the evaluation, in addition to content and

pedagogy, are relevant to the ESE community and to

the software engineering community. This because

despite several empirical studies being conducted with

students as subjects [10], there is a lack of frameworks

for evaluating the learning effects of software

engineering courses. Our work is of interest for the

measurement community as it can serve as an example

for those who want to evaluate the pedagogical effects

of courses where such experiments take place.

One of the goals of our course is that of establishing

a Norwegian network of young researcher in the field

of software engineering. From the students’

questionnaire answers and for living and working

together with these students, we evaluate the project

based version of the course to be successful to respect

to this goal.

There remain three open questions. First, that of

comparing our course with other similar courses

offered internationally. Secondly, one question which

is not attacked by our work is: is it possible to teach

PhD students how to cooperate with external actors?

The final issue that we have not discussed is empirical

software engineering education for practitioners and

not only for researchers.

6. Acknowldge

We thank all PhD students who participated to the courses

and who answered our questionnaire. We are in debt to

Reidar Conradi and Monica Divitini who set up the first

version of the syllabus and organized the first version of the

course. We thank Tore Dybå for useful discussions and

suggestions on the syllabus part. Special thanks go to Dag

Sjøberg and the Simula center group for giving us the

possibilities to run the second and third version of our

course.

7. References

[1] A. Abran, J. W. Moore, P. Bourque, R.

Dupuis, and L. L. Tripp, "Guide to the

Software Engineering Body of Knowledge,

Trial Version SWEBOK, A Project of the

Software Engineering Coordinating

Committee," IEEE, May 2001.

[2] E. Arisholm, B. Anda, M. Jørgensen, and D.

I. K. Sjøberg, "Guidelines on Conducting

Software Process Improvement Studies in

Industry," presented at 22nd IRIS

(Information Systems Research Seminar In

Scandinavia) Conference, Keruu, Finland,

1999.

[3] D. E. Avison, F. Lau, M. D. Myers, and P. A.

Nielsen, " Action research," Communications

of the ACM, vol. 42, num. 1, pp. 94-97, 1999.

[4] D. J. Bagert, T. B. Hilburn, G. Hislop, M.

Lutz, M. McCracken, and S. Mengel,

"Guidelines for Software Engineering

Education Version 1.0 (1999)," CMU/SEI

CMU/SEI-99-TR-032, 1999.

[5] J. Bell, Doing your research project.

Buckingham . Philadelphia: Open University

Press, 230 pp., 2000.

[6] A. Birk, T. Dingsøyr, and T. Stålhane,

"Postmortem: Never Leave a Project without

It," IEEE Software, vol. 19, num. 3, pp. 357-

390, 2000.

[7] B. S. Bloom, Taxonomy of educational

objectives: The classification of educational

goals: Handbook I, cognitive domain. New

York, Toronto: Longmans, Green. 1956.

[8] L. Briand, E. Arisholm, S. Counsell, F.

Houdek, and P. Thevenod-Fosse, "Empirical

Studies of Object-Oriented Artifacts, Methods

and Processes: State of the Art and Future

Directions," Empirical Software Engineering,

num. 4, pp. 385-402, 1999.

[9] L. C. Briand, S. Morasca, and V. R. Basili,

"An operational process for goal-driven

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

definition of measures," IEEE Transactions

on Software Engineering, vol. 12, num. 4, pp.

1106- 1125, 2002.

[10] J. Carver, L. Jaccheri, S. Morasca, and F.

Shull, "Issues in Using Students in Empirical

Studies in Software Engineering Education,"

presented at International Software Metrics

Symposium, Sydney, Australia., 2003.

[11] R. Conradi and T. Dybå, "An Empirical Study

on the Utility of Formal Routines to Transfer

Knowledge and Experience," presented at 8th

European software engineering conference

held jointly with 9th ACM SIGSOFT

international symposium on Foundations of

software engineering, Vienna, Austria, 2001.

[12] P. J. Denning, "Computer Science: The

Discipline," Encyclopedia of Computer

Science, 2000.

[13] T. Dybå, "An Instrument for Measuring the

Key Factors of Success in Software Process

Improvement," Empirical Software

Engineering, Kluwer Academic Publishers,

vol. 5, pp. 357-390, 2000.

[14] N. Fenton, "Software Measurement: A

Necessary Scientific Basis," IEEE

Transactions on Software Engineering, vol.

20, num. 3, pp. 199-205, 1994.

[15] M. Höst, "Introducing Empirical Software

Engineering Methods in Education,"

presented at Conference on Software

Engineering Education and Training

CSEE&T, Covington, Northern Kentucky,

USA., 2002.

[16] L. Jaccheri and T. Østerlie, "Empirical

software engineering Course," Trondheim -

Oslo, Norway,

http://www.idi.ntnu.no/emner/empse/, last

accessed February 2004.

[17] L. Jaccheri, A software quality and software

process improvement course based on

interaction with the local software software

industry, in the Tutorial section of Computer

Applications in Engineering Education

Journal, John Wiley and Sons, Inc. page 265-

272, Mar 2002.

[18] L. Jaccheri and P. Lago, Metrics aspects of a

software engineering course project,

September 1997, in Proc. of Inspire II, 2nd

International Conference on Software Process

Improvement - Research into Education &

Training, Sweden.

[19] L. Jaccheri and P. Lago, "Applying Software

Process Modeling and Improvement in

Academic Setting", April 1997, Proc. of the

10th ACM\IEEE-CS Conference on Software

Engineering Education and Training, Virginia

Beach.

[20] J. Kirk and M. L. Miller, Reliability and

Validity in Qualitative Research, vol. 1.

Newbury Park, California: SAGE

Publications Inc., 1986.

[21] B. Kitchenham, "DESMET: A Method for

Evaluating Software Engineering Methods

and Tools," Keele University, Technical

Report TR96-09, August 1996.

[22] B. A. Kitchenham, S. L. Pfleeger, L. M.

Pickard, P. W. Jones, D. C. Hoaglin, K. El

Emam, and J. Rosenberg, " Preliminary

guidelines for empirical research in software

engineering," IEEE Transactions on Software

Engineering, vol. 28, num. 8, pp. 721 -734,

2002.

[23] O. Laitenberger and J.-M. DeBaud,

"Perspective-based Reading of Code

Documents at Robert Bosch GmbH,"

Information and Software Technology, vol.

31, num. 11, pp. 781-791, 1997.

[24] C. T. Lethbridge, "On the Relevance of

software education: A survey and some

Recommendations," Annals of Software

Engineering, vol. 6, pp. 91/110, 1998.

[25] B. Meyer, "Software Engineering in the

Academy," IEEE Computer, vol. 34, num. 5,

pp. 28-35, 2001.

[26] Meredith D. Gall, Walter R. Borg, Joyce P.

Gall, ISBN: 0-321-08189-7, Allyn & Bacon,

2003, 656 pp

[27] J. Miller, J. Daly, M. Wood, M. Roper, and A.

Brooks, "Statistical Power and its

Subcomponents: Missing and Misunderstood

Concepts in Empirical Software Engineering

Research," Information and Software

Technology, vol. 39, num. 4, pp. 285-295,

1995.

[28] M. Morisio, M. Ezran, and C. Tully, "Success

and Failure Factors in Software Reuse," IEEE

Transactions on Software Engineering, vol.

28, num. 4, pp. 340-357, 2002.

[29] C. B. Seaman, "Qualitative Methods in

Empirical Studies of Software Engineering,"

IEEE Transactions on Software Engineering,

vol. 25, num. 4, pp. 557-572, 1999.

[30] D. I. K. Sjøberg, B. Anda, T. Dybå, M.

Jørgensen, A. Karahasanovic, E. F. Koren,

and M. Vokac, "Conducting Realistic

Experiments in Software Engineering,"

presented at First International Symposium on

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

Empirical Software Engineering, Nara, Japan,

2002.

[31] W. F. Tichy, "Should Computer Scientists

Experiment More?," IEEE Computer, vol. 31,

num. 5, pp. 32-40, 1998.

[32] C. Wohlin, P. Runeson, M. Host, M. C.

Ohlsson, B. Regnell, and A. Wesslen,

Experimentation in Software Engineering: An

Introduction: Kluwer Academic Publishers.

2000.

[33] M. V. a. Zelkowitz and D. R. Wallace, "

Experimental Models for Validating

Technology," IEEE Computer, vol. 31, num.

5, pp. 23-31, 1998.

11th IEEE International Software Metrics Symposium (METRICS 2005)
1530-1435/05 $20.00 © 2005 IEEE

Paper 4

Østerlie, T., and Wang, A.I. "Establishing Maintainability in Systems Integration:

Ambiguity, Negotiation, and Infrastructure", in Proceedings of the 22nd IEEE

International Conference on Software Maintenance (ICSM'06), Philladelphia, PA,

September 24-27, 2006, pp. 186-196.

Establishing Maintainability in Systems Integration: Ambiguity, Negotiations,

and Infrastructure

Thomas Østerlie, Alf Inge Wang

Norwegian University of Science and Technology

thomas.osterlie@idi.ntnu.no, alf.inge.wang@idi.ntnu.no

Abstract

This paper investigates how maintainability can be

established in system integration (SI) projects where

maintainers have no direct access to the source code of

the third-party software being integrated. We propose

a model for maintainability in SI focusing on post-

release activities, unlike traditional maintainability

models where focus is on pre-release activities. Our

model describes maintainability as a process

characterized by ambiguity and negotiation that is

supported through an infrastructure of debugging and

coordination tools. Further, we describe how the

process going from a software failure to establishing

the fault causing the failure can be managed in SI. The

results presented in this paper are based on

observations from an ethnographic study of the Gentoo

open source software (OSS) community, a large

distributed volunteer community of over 320

developers developing and maintaining a software

system for distributing and integrating third-party OSS

software packages with different Unix versions.

1. Introduction

It has been repeatedly established over the past 30

years that more than half of the total life-cycle cost of

software systems goes into software maintenance

activities. The figures vary between 50 to 80 percent of

the total life-cycle cost [6]. This research indicates that

the maintenance burden has been increasing over the

decades rather than decreasing. To face this challenge,

maintainability has been proposed as a software

quality measure. This measure is used to assess how

easy it is to maintain a system and what decisions to

make in design of a system to limit the maintenance

costs. Existing research on maintainability builds on

the premise of application software that is maintained

by a single team of developers with full access to and

control over the source code. However, with increasing

attention on systems integration (SI) through

component-based development [5], Web services [22],

and information and enterprise systems integration

[14], this may no longer be a valid premise. A number

of distinguishing characteristics of SI diverge from

application software: systems integrators usually have

limited or no access to the source code of the software

being integrated, and control over the development and

maintenance of the software being integrated is carried

out by numerous third-party organizations [11]. Given

these differences, we ask: how can maintainability be

established in SI?

In this paper, we seek to explore a possible solution

to this problem; a solution that rests upon the premise

of software maintenance as knowledge-intensive work.

By studying the activities involved with reporting

software failures and determining their related faults,

we propose that corrective maintenance in SI unfolds

within an environment of ambiguity [1]. Ambiguity is

an uncertainty where the correct meaning of a

phenomenon cannot be established given sufficient or

appropriate information. Instead, ambiguity involves

uncertainties that cannot be resolved or reconciled due

to the absence of agreement on boundaries, clear

principles, or solutions. Ambiguity means that multiple

meanings or several plausible interpretations of the

observed phenomenon exist, and their meaning can

only be established through negotiation. The process of

establishing certain interpretations of ambiguous

phenomenon as stable scientific facts has been a

primary concern within the field of science studies. In

these accounts, this process is seen as unfolding within

an infrastructure of experimental tools, scientific

artifacts, social interaction, and practices [15]. It is an

infrastructure of scientific facts; the behind-the-scenes,

messy or boring items that form a crucial part of how

facts are made.

Building upon the notions of ambiguity,

negotiation, and infrastructures, we propose that

maintainability can also be understood as a function of

the external environment within which the software is

being maintained. Maintainability is a function of the

infrastructure of tools used during maintenance, the

texts produced by these tools, knowledge about the

system embedded in the tools, and tools for supporting

and coordinating interaction between developers. This

supplements existing models that focus on

maintainability as a function of characteristics of the

application software. The proposed explanation is

based on an empirical study of maintenance work in a

large-scale open source software (OSS) integration

project. OSS is well suited for studying software

maintenance, as OSS development is often understood

as a perpetual cycle of perfective and corrective

maintenance [20].

Limiting our inquiry to the issue of maintainability

in connection with corrective maintenance in SI, we

study the activities involved with reporting software

failures and determining the related fault. Through a

detailed narrative analysis of these activities, we

propose a model for the corrective maintenance

process that supports our suggestion for establishing

maintainability in SI.

The rest of the paper is organized as follows.

Section 2 reviews existing research on maintainability

and approaches to establishing maintainability during

pre-release activities. Section 3 describes the research

methods employed and the materials collected during

our field study. Section 4 describes a detailed narrative

analysis of the activities with reporting software

failures and determining the corresponding faults.

Section 5 concludes the paper by discussing our

findings in relation to establishing maintainability in

SI.

2. Related work

Intended as an indicator of the costs of maintaining

a software system, maintainability can be broadly

defined as the ease with which a software system can

be understood and modified [10]. By making the

software more maintainable, i.e. increasing its

maintainability, organizations should be able to reduce

the maintenance effort and free needed resources for

more new system development. Maintainability can be

viewed from different perspectives. In this section we

presents two of these:

• establishing and assessing maintainability using

software quality models; and

• making a system maintainable by using design

techniques when creating the software

architecture of the application

We then conclude the section by discussing the

issue of maintainability in relation to OSS

development.

2.1. Quality-based approaches

McCall [18] provides an overall description of

approaches to developing software based on software

quality frameworks. At the outset of a software

development effort quality factors are identified based

on the specifics of the software being developed.

Maintainability is one such quality factor. Once the

important factors are identified, they are specified as

requirements of the systems development by providing

their definition, identifying supporting software

attributes, and providing measurements to assess their

attainment. The software development is then

periodically measured in a quantitative fashion to

assess if the software product is capable of meeting its

identified requirements. Based on this assessment of

the software product's quality, decisions are made as to

efforts needed to improve the software product. This

process is repeated until the quality requirements, in

this case the requirements for maintainability, are met

and the product can be released.

Several approaches to assessing the software

product's maintainability have been proposed. McCall

[18], Martin & McClure [17], Boehm et al. [4], and

ISO9126 define maintainability as a quality factor in

their quality models. Wherein McCall limits

maintainability to include only corrective maintenance,

both Boehm et al., Martin & McClure, and ISO9126

provide definitions that encompasses both corrective,

perfective, and adaptive maintenance. Boehm et al.

defines maintainability to include the quality criteria

testability, understandability, and modifiability. Martin

& McClure argues for an expanded view of

maintainability, arguing that its definition needs to be

expanded with a high degree of reliability, portability,

efficiency, and usability in addition to the attributes

provided by Boehm et al. Landing on the middle

ground, ISO9126 defines maintainability as

analyzability, changeability, stability, and testability. In

all of the above models, the quality criteria are broken

into a set of metrics for measuring code characteristics.

2.2. Architecture approach

In the software architecture domain, software

maintainability is a quality of the end-system the

developer can obtain by carefully choosing the correct

structures and making the correct decisions when

designing the system. Different terms are used to

describe maintainability.

In Bass et al. [2], maintainability is described in

terms of the quality attributes modifiability and

testability. Modifiability describes the costs of

changing the system. Typical changes can be both

changes of functionality as well as changes of non-

functional properties of the system like performance,

availability, change of operating system etc.

Testability refers to the ease with which software can

be made to demonstrate its faults through (typically

execution-based) testing. To obtain a high level of

modifiability and testability in a system, the developers

must consider both architectural and non-architectural

aspects. The architectural aspects typically concerns

important design decisions that affect the way the

software is organized, structured and decomposed.

Non-architectural aspects typically concern

implementation details, graphical layout of user-

interfaces etc. Bass et al. use the term architectural

tactics for important design decisions that affects the

software architecture. Several such tactics have been

collected over the years based on experiences from

several software projects. Examples of tactics to obtain

high maintainability involves recommended design

guidelines for object-oriented systems like maintaining

semantic coherence, hide information, restrict

communication paths, use of intermediary, etc. There

are also similar tactics to obtain a high level of

testability in a system.

2.3. OSS and maintainability

The OSS development cycle have three

distinguishing characteristics. First, source code is

made available on the Internet, released early, long

before all functionality is in place and faults have been

eliminated. Second, by releasing the software early,

developers around the world can contribute code,

adding new functionality and improving the present

functionality. This is often called parallel development

[9]. Parallel debugging is the third characteristic of the

development cycle, wherein failure reports and fixes

are submitted to the project. This process has been

characterized as a perpetual cycle of perfective and

corrective maintenance.

Seeing OSS development as software maintenance,

the question can be raised whether the success of OSS

development can be explained by the software's

maintainability? In determining the categories of

maintenance work in two large OSS products, 53.4%

of all changes to the source code of these products

stem from corrective maintenance [21]. Given that the

cost of corrective maintenance are at least an order of

magnitude more expensive to fix than those found

during testing [7], the question concerning OSS

success and maintainability becomes even more

pressing.

In measuring the maintainability index of five OSS

projects, Samoladas et al. [20] finds that OSS code

quality suffers from the very same problems observed

in closed source software (CSS) projects.

Maintainability deterioration over time is a common

phenomenon in CSS, and they project that is

reasonable to expect this as OSS products age, too. In

a comparison of OSS and closed source software

products, Paulson et al. [19] investigates the claim that

OSS succeeds because of code simplicity. Measuring

the overall project complexity, average complexity of

all functions, and average complexity of functions

added, they find that for all three metrics the OSS

projects had higher complexity than the CSS projects.

Similarly, they compare the perfective maintenance of

OSS and CSS by measuring the growth rate of the

projects. They find that OSS and CSS have similar

growth rate. Albeit based on a limited population, the

inference from combining the conclusions of

Samoladas et al. and Paulson et al. is that the

maintainability of OSS and CSS is mostly the same.

Paulson et al. also reports that faults are found and

fixed more rapidly in OSS projects. Holding to the

definition of maintainability as the ease with which a

software system can be understood and modified,

questions may be raised with basis in these findings as

to how to understand maintainability? It seems that

commonly used maintainability metrics do not

correspond to the actual facts of maintainability as

measured in ease of which software systems can be

understood and modified.

3. Methods and materials

This paper reports on one of the authors' study of

software maintenance in a large OSS community. The

study is based on the view that to better understand

software engineering, "it is imperative to study …

software practitioners as they solve real software

engineering problems in real environments" [16]. As

such, the study has been conducted as ethnographic

fieldwork, expanding on a growing body of

ethnographic studies of software engineering practice.

Ethnography is a research method where the researcher

participates with the subjects being studied. Through

longitudinal observations of naturally occurring

activities, the researcher builds an increased

understanding of the object under study. However, if

we want to understand how software is developed in

practice, it is important not to start out assuming what

we want to explain. Therefore the ethnographer does

not give any prior significance to particular features of

practice. Giving primacy to the empirical data,

ethnography is a systematic approach for reaching

empirically validated conclusions.

In Section 3.1 we present the research setting. In

Section 3.2 we present the data collection process. In

Section 3.3 the data analysis process is presented, and

in Section 3.4 we discuss the validity of our findings.

3.1. Research setting

This paper reports on an ethnographic study of the

Gentoo OSS community. As of March 2006 Gentoo is

made up of over 320 developers distributed across 38

countries and 17 time zones. We use the term

community here about those involved with Gentoo, as

users play an important role in OSS development [9].

Enumerating the number of users in the community is

difficult because there are no lists of purchased

licenses or registered users available.

Gentoo is a large systems integration project.

Broadly speaking, the Gentoo community develops

and maintains a software system for distributing and

integrating third-party OSS software packages with

different Unix versions. The software is distributed in

the form of installation scripts, one script for every

supported version of each package distributed. As of

March 30 2006 Gentoo distributes one or more

versions of 8486 software packages, for a total of

23911 installation scripts. As well as integrating

software for 5 different hardware architectures for the

GNU/Linux operating system, the installation scripts

can also integrate software with both the MacOS X,

FreeBSD, and OpenBSD operating systems. Such

heterogeneity is a defining characteristic of integrated

systems [11].

In distributing software developed by other OSS

projects, the development and maintenance of these

packages are outside the control of the Gentoo

community. Such autonomy is also a distinguishing

characteristic of integrated systems [11], but also

manifest a variety of human interests and activities. In

defining largeness of software systems, Belady &

Lehman [3] find variety to be a distinguishing

characteristic. In terms of largeness, the software

distributed is outside the scope of a single individual

and require not only one group of people to develop

and maintain the software, but numerous groups; both

the Gentoo community developing and maintaining the

installation script and the third party OSS communities

who develop and maintain the software distributed.

Furthermore, the installation scripts developed and

maintained by the community is also outside the grasp

of a single individual. Gentoo is organized into 124

teams, each responsible for a discrete set of installation

scripts.

There are complex interactions between parts of

Gentoo, both technologically and socially. Complex

interaction is another characteristic of largeness.

Technologically these interactions manifest themselves

in the specific relations between different packages and

that the same package is supported both on different

hardware platforms and for different operating

systems. This is made further complex by the

introduction of virtual packages, identical functions

that are provided in different packages. Socially, the

complex interactions are not only between members of

the Gentoo community or among the teams, but also in

the interface between the Gentoo community and the

OSS communities developing the software distributed

by Gentoo.

So far, we have used the term Gentoo without any

clear definition. This is done on purpose, as the term

itself is ambiguous. The term has three meanings. First,

it is used for talking about the Gentoo community of

developers and users. Second, it is used about the

Gentoo GNU/Linux distribution. Sometimes the term

Gentoo Linux is used to specify this. Third, Gentoo is a

software system for distributing OSS software

packages for different Unix implementations. The

distributed packages are developed by third-party OSS

projects, and the Gentoo community develops and

maintains installation scripts for these packages. These

scripts are made available through a central repository.

The term Gentoo is ambiguous; it is particularly

problematic to draw a clear boundary between Gentoo

Linux and the Gentoo software distribution system. At

the heart of Gentoo Linux is the Gentoo distribution

system. Historically, however, the distribution system

has grown out of the Gentoo Linux distribution. The

term Gentoo is used interchangeable between the two,

and often used by developers as a means to avoid

drawing the problematic boundary between the two.

Technically speaking, there are both installation scripts

and other files distributed by the Gentoo distribution

system that are particular to Gentoo Linux. However,

most installation scripts distributed are not specific for

the GNU/Linux distribution.

The lack of consensus on boundaries is a trait of

ambiguity. Both variety and complex interactions

produces unclear technological boundaries and

ambiguity in the Gentoo software product.

3.2. Data collection

The first author conducted the ethnographic

fieldwork. We therefore present this section in first-

person view. Participant-observation is the primary

method for data collection in ethnographic fieldwork

[12]. In this study this meant that I observed the

Gentoo developers online through dedicated Gentoo

IRC channels, dedicated mailing lists, the Gentoo Web

site, and Web-based front-ends for Gentoo's defect

tracking system and revision control system. My

participation included submitting and assisting in

resolving bug reports, submitting installation scripts, as

well as participating in a large restructuring effort of

Gentoo's package manager. I used both Gentoo Linux

and MacOS X with a Gentoo installation as operating

systems on my workstations during the period of

fieldwork. I made no formal interviews with

participants in the Gentoo community, but conducted

informal talks with participants on a regular basis to

test my own informal theories.

Throughout the period, I made daily field notes

[12]. In addition, the Gentoo IRC channels were

logged to disk throughout the period of study; one file

each day for each IRC channel totaling 1027 files. 71

documents were collected throughout the period and

organized in a documentary database. I also surveyed

online data sources that provide static data. These

include the Gentoo bug tracking database, the Gentoo

mailing list archives, and the Gentoo revision control

system. As the Gentoo Web site is under revision

control, I did not organize relevant documents from

this Web site in the documentary database. Instead, I

decided to rely on Gentoo's revision control system.

3.3. Data analysis

Ethnographic data analysis is an ongoing process

from the moment the field worker enters the field until

the complete research report is written. During field

work the data analysis is informal. Upon withdrawing

from the field, the data analysis is gradually

formalized. Informal data analysis is a continuous

activity through out the period of fieldwork. Because

this analysis is closely connected with the daily details

of fieldwork, there are no clear links between this

analysis and the topics discussed in this paper. We

have therefore opted for a more general description of

the activities of informal analysis, and instead present

the details of the formal analysis as this is closely

connected with the topic of this paper.

Informal analysis takes the form of writing out the

notes that have been quickly and briefly jotted down in

the notepad during the day's observation, and

organizing them into more coherent field notes. By

relating the day's observations to previous field notes, I

continuously looked for patterns in my observations

for building informal theories. These informal theories,

in turn, inform how I continued performing the

fieldwork. This way, I was able to better fit the way I

performed my fieldwork with basis in an increased

understanding of the research setting.

Upon withdrawing from the field the first author

spent a year working systematically through the

collected data, looking for recurring patterns. Once the

recurring patterns are identified and formulated, formal

data analysis commenced. Formal data analysis is a

process of incrementally generalizing from a multitude

of singular observations to increasingly more

generalized descriptions of activities. Throughout this

process, non-recurring details of the singular

observations are omitted and recurring issues included.

However, determining which details to omit in the

final analysis and which to include is an iterative

process of working on generalizing the descriptions

while continuously returning to the more detailed

analyses looking for recurring patterns that may shed

light on the generalized description.

During formal analysis we identified a set of bug

reports in the Gentoo bug tracking system. The bug

reports were identified to capture the width of bug

reports submitted. The selection criteria were based on

the field notes and experiences from the fieldwork.

Upon identifying a set of relevant bug reports, we went

through each report, reconstructing a time line for the

bug report based on the bug report activity log feature

provided by the defect tracking system. Into this time

line we also placed discussions about the bug from the

Gentoo IRC channel logs collected during the period of

fieldwork, the Gentoo mailing list archives, and the

Gentoo Web forums. In this timeline we simply cut

and pasted from the various data sources. With basis in

this, we wrote an executive summary of the bug

report's life cycle as well as writing out a complete

narrative of the bug report's life cycle with

explanations.

With basis in these narratives, one for every bug

report in the set, we started relating our data to theory.

At this stage we focused on establishing relevance and

context of our observations. We tried a number of

theories for interpreting our data; ranging from social

theories on decision-making, via theories on

distributed cognition from the field of computer

supported cooperative work, to more standard software

engineering theory on software maintenance. From this

analysis the focus on maintainability, which led us to

the last part of the formal analysis, which is to write up

the results and analysis presented in section 4.

3.4. Research validation

Ethnographic research does not follow a step-wise

process. Rather, the data collection requires flexible

responses to the specific circumstances of the moment.

This flexibility also means that the research design

changes in the face of in-field realities that the

researcher could not anticipate at the outset of the

study. It is therefore difficult to ground the study's

validity in the procedural rigor of controlled

experiments. Instead, the validity is established

through a rigor in argumentation by following the

seven principles for conducting fieldwork [13] as

shown in Table 1.

4. Results and analysis

Following the definition of maintainability as the ease

with which a software system can be understood and

modified, we are focusing on the aspect of system

comprehension in this paper. In this section we discuss

systems comprehension in relation to each of the three

concepts raised in the introduction – ambiguity,

negotiation, and infrastructure – relating them to the

empirical data collected and existing literature. The

main point is that systems comprehension is a

collective process of generating a consensus-based

comprehension of the system and how it causes the

observed failures.

4.1. Ambiguity

Some software systems fail. A software failure is an

externally observable error in the program behavior.

Software failures are caused by software faults that are

triggered under specific circumstances during

execution. Upon experiencing a software failure that

cannot be corrected locally, Gentoo users submit a bug

report to the Gentoo defect tracking system

(http://bugs.gentoo.org). The bug report is analyzed by

Gentoo developers and resolved either by rejecting the

reported failure as a real failure, by correcting the fault

causing the failure, or by forwarding the report

upstream. As the Gentoo developers repackage

software developed by external OSS projects,

forwarding bug reports upstream means that the failure

is not caused by Gentoo specific code or interaction of

components distributed by Gentoo, but found to be

caused by faults in the third-party software. This is the

overall description of Gentoo's corrective maintenance

process.

Gentoo uses Bugzilla, a Web-based OSS defect

tracking system. In Bugzilla, failures are reported as

bug reports in a standardized Web form. Bugzilla

provides a standardized schema for describing the

failure and for administration of bug reports. This

schema is mostly used for assigning bug reports and

tracking their status. A recurring pattern in the use of

Bugzilla is that the Gentoo users and developers use

the optional text field at the end of the bug report,

named Additional comments, during corrective

maintenance. Why is that?

Table 1. Research validation
Principle Description Validation

1. The fundamental principle of the

hermeneutic circle

This principle suggests that all human

understanding is achieved by iterating

between considering the interdependent

meaning of parts and the whole that they

form.

Discussion of the iteration between the day's

findings and previous field notes during

informal data analysis, and the process of

working on generalized descriptions while

returning in detailed analysis, Section 3.3.

2. The principle of contextualization This principle requires critical reflection of

the social and historical background of the

research setting

Discussion of the shift from application

software to SI, Section 1. Relating Gentoo to

SI and discussing of the historical relationship

between Gentoo Linux and distribution

system, Section 3.1.

3. The principle of interaction between

researcher and subjects

Requires critical reflection on how the

research materials were socially constructed

through the interactions between the

researchers and participants.

Discussion of interviews during participant

observation, Section 3.2.

4. The principle of abstraction and

generalization

Intrinsic to interpretive research is the attempt

to relate the particulars described in the

unique instances observed to abstract

categories and concepts that apply to multiple

situations.

Presentation of ambiguity, negotiation, and

infrastructure as theoretical constructs,

Section 1. Relating the analysis to these

constructs, Section 4.

5. The principle of dialogical reasoning Requires sensitivity to possible contradictions

between the theoretical preconceptions

guiding the research and the actual findings.

Discussion of establishing relevance and

context of observations, Section 3.3.

6. The principle of multiple interpretations This principle requires the researcher to be

sensitive to difference in interpretations

among the studied subjects.

Central topic throughout analysis and

conclusion, Sections 4 and 5. Multiple

interpretations the process of negotiation is

discussed in Section 4.3.

7. The principle of suspicion Requires sensitivities to possible biases and

systematic distortions in the narratives

collected from the participants.

Discussion of no clear principles for resolving

bug reports, Section 4.2.

 It need not be obvious what the failure "really is".

Reporting failures is a balancing between providing too

little information and too much information, but

sufficient and relevant information [23]. However, it is

difficult for a user to determine what sufficient and

relevant information is when it is not obvious what the

failure really is. Instead, the process of describing the

failure is often a series of exchanges where the

developers ask the user reporting the failure to generate

more information about the failure. These exchanges

may span over days, weeks, or even months before the

bug report is resolved, and this is what the Additional

comments field of the bug report is used for.

Martin & McClure [17] argue that programmers

doing corrective maintenance "do not know where to

look and often waste a great deal of effort looking in

the wrong place". The exchanges back and forth

between Gentoo users and developers may seem like a

process of trial and error like that described by Martin

& McClure. However, the view that corrective

maintenance is a question of following the infection

chain from the observed failure to its fault,

presupposes that the observations of the software

failure are unambiguous. However, as Endres [8]

notes, "[t]here is, of course, the initial question of how

we can determine what the error really was". He

equates the error with the correction made, noting that

this is not always correct but sometimes the bug lies

too deep to be grasped or corrected. In SI the most

significant problem is that failures are caused by

external packages that the Gentoo community cannot

control. Typically, this would lead to rejecting the bug

report [23], but in Gentoo this problem is so prevalent

that the developers have to bypass it.

The software being integrated by Gentoo is

developed and maintained by other OSS projects,

While some Gentoo developers may be quite familiar

and knowledgeable of the source code of the

components they integrate, most treat the software

being integrated as a black box. It is therefore usually

not possible to trace the infection chain of the failure.

Instead the Gentoo developers use standard Unix tools

and diagnostic tools developed specifically for Gentoo

to generate indirect information about the failure.

Along with the textual information provided in the bug

report, we call the output of these tools debug texts. It

is often impossible to establish what the failure "really

is" from these indirect observations. However, during

this exchange between users and developers, the users

iteratively provide developers with additional debug

texts in an attempt to reconcile the data. During this

process multiple interpretations of what the failure

"really is" are constructed from combining elements

from the different debug texts. "Ambiguity means that

a group of informed people are likely to hold multiple

interpretations or that several plausible interpretations

can be made without more data or rigorous analysis

making it possible to assess them" [1]. As such, these

failures can be considered ambiguous because what the

failure "really is" cannot be established given sufficient

information. Instead, this information gives rise to

several plausible interpretations of the failures.

With ambiguity the possibility of clear cause-effect

relationships and exercised qualified judgment

becomes seriously reduced. Cast another way, the

understandability of the software becomes seriously

reduced. Instead, an understanding of the software

failure and its corresponding fault is established

through negotiation.

4.2 Negotiation

Gentoo as a software system lies outside the

intellectual grasp of a single individual, requiring

several organized groups of people to develop and

maintain it (see section 3.1). As no single individual

can have complete systems comprehension,

understanding failures and their corresponding faults

becomes a collective activity where individual Gentoo

developers' partial comprehension is combined. This is

further accentuated by the fact that there is no single

Gentoo installation, but thousands of Gentoo

installations where software failures occur. As such,

the users' knowledge of local system configuration is

an important part of the knowledge required to

generate a comprehension of the software failure. An

understanding of the failure is therefore reached

through an iterative process where the user produces

new debug texts and the developers generate

interpretations of these texts by negotiating over the

meaning of the texts. These negotiations often lead to

new requests for debug texts in an iterative cycle until

a consensus interpretation of the failure is reached. As

such, negotiation is the collective process of sharing

existing system comprehension and generating new

through the production of debug texts. However, this is

also a process of reducing the number of

interpretations to reach a closure of the bug report.

Through consensus interpretations are made invalid.

During negotiation there is often a wide variety in

interpretations of the source of failures. It is often hard

to find the source of failures resulting from

unpredictable interaction of several packages, and as

"deciding upon who is to blame is a political process"

[23]. Complex interactions among the packages

provided by Gentoo produce similar situations in

Gentoo. Such interaction effects can also be observed

in the interface between the software distributed by

Gentoo and the underlying operating system. Varying

standards of system calls among Unix versions can

also increase the complexity of the failure. This is a

sort of interaction effect akin to architectural mismatch

[5]. Finally, failures may also be caused by specific

configurations of the user's system. Common to the

above failures is that it is hard to locate the fault. The

failures are ambiguous in the sense that they lack clear

boundaries.

Negotiation is the approach for overcoming this

problem. As such it is very much like the political

process described by [23]. If it cannot be resolved

technically, the fault is located through consensus.

However, there are no clear principles for doing so. For

instance, one might assume that failing to reproduce a

failure would be an indication that the fault is with the

user's local configuration and be grounds for rejecting

the bug report. Sometimes irreproducibility means the

rejection of a bug report. At other times, irreproducible

failures or even failures found to be caused by user

configuration are resolved. What we see is that the

criteria for resolving or rejecting failures varies from

bug report to bug report. This is but one of many

examples of a pattern of no clear principles to

determine what constitutes a valid failure or for

resolving unclear boundaries in failures.

Such a lack of clear principles is another trait of

ambiguity, and can be seen as the result of several

people with differing priorities and practice doing

corrective maintenance. This is a reasonable

explanation and can in part explain the lack of clear

principles. However, the explanation should not

overshadow the interpretation that some of this lack of

principles is also a product of the ambiguity of

software failures as a result of the complexity and

variability of Gentoo. This can explain the uncertainty,

complexity, instability of principles, and uniqueness in

the way bug reports are handled. The lack of clear

principles raises issues of power, but this is outside the

scope of this paper.

One might be tempted to see the process of

negotiation as a way of reducing or overcoming

ambiguity. Yet, at its very heart lies the need for

ambiguity. It is not uncommon that developers refuse

to assist in helping to resolve bug reports even though

the fault can be identified within their area of

responsibility. When this happens, ambiguity plays a

role in getting the bug report back on track again. If

there were no room for interpretation, there would be

no way of proceeding with resolving the bug report.

However, with multiple interpretations it is possible to

pursue another interpretation in order to resolve the

bug report.

4.3. Infrastructures

In the above analysis we have moved from the

ambiguity generated in the technical domain to the

social processes of interpretation and negotiation to

cope with and handle this ambiguity. In this section we

will once again return to the technical domain, albeit

with a definite connection to the social. From the

above analysis we see that knowledge and systems

comprehension may be understood as a product or an

effect of various materials. It occurs in the form of

debug texts, in the skills for using the debug tools

embodied by the Gentoo users and developers, and in

the knowledge about the system and typical failures

embedded in the debug tools. Not only is systems

understanding the product of these materials along with

the tools and people generating them, but through

knowledge about the system and frequently occurring

failures embedded in the tools the tools themselves

participate in generating the possible interpretations.

As such, corrective maintenance is made possible by

this network, or infrastructure, of tools and people

[15].

We find that the Gentoo infrastructure of debug

tools consists of two groups of tools. Tools in the first

group are standard Unix tools like, for instance,

strace for tracing system calls and signals or ldd

for printing shared library dependencies. These are

debug tools known to most Unix developers. The other

group of tools is the custom tools specifically made for

Gentoo. Among these are tools that are distributed as

part of Gentoo, tools available from private home

pages of developers and super users, and tools

available from an unofficial repository for Gentoo

tools. Debug tools are also proposed and discussed on

the IRC channels, and it is common for people to

submit debug tools they have developed as bug reports

in the Gentoo defect tracking system.

The infrastructure of debug tools is used for

generating debug texts. As such, their role is to

generate data and to support the negotiation over

possible interpretations of these data. We include the

Bugzilla defect tracking system as part of the

infrastructure of debug tools, too, since it both supports

the communication among developers as well as being

used for marking duplicate bug reports. Duplicates

often provide valuable information on invariants of a

software failure.

While the Gentoo developers are not explicit on the

process of developing and maintaining the Gentoo-

specific debug tools nor on the importance of this job,

in practice they are performing a process where

knowledge about typical error situations and typical

diagnostic actions are inscribed in tools. As typical

failures change over time, tools are made obsolete and

new tools are added either in the official distribution or

on the unofficial locations such as home pages and the

tools repository. It is quite common to see references to

Web pages with tools on the developers' IRC channel.

This devising of relevant debug tools and the demise of

irrelevant tools is a continuous process contingent

upon the current reported failures.

4.4. A proposed maintainability model

We see, then, that developing and maintaining

Gentoo involves ambiguity both in product as

described in the research setting and in process as

described in the results and analysis above. This

ambiguity of process and product manifests itself in the

corrective maintenance activities. Tracking down the

source of failures is a process of generating systems

comprehension through the production and

interpretation of debug texts. We see from the above

analysis that tracking down the bug need not be all that

simple in practice. It need not be obvious what the bug

"really is". Rather, it is subject to interpretation and

negotiation. A number of possible interpretations are

discussed, and none are dismissed on conclusive

evidence but rather made less plausible. Alternative

explanations for what the failure "really is" are

constructed from combining elements of the different

debug texts. The explanations are made more or less

plausible both by producing new debug texts, trying to

reproduce the failure, drawing on external texts like

installation scripts and change logs, or simply by

refusing to enter a discussion over possible

interpretations.

What we see then, is that reaching an agreement as

to what the failure really is, is made with both

ambiguous and inconclusive evidence and is more or

less open throughout the process. Finding the source of

the problem is a process where the person reporting the

failure and those trying to understand it work together

to find relevant pieces of information and producing

additional debug texts. Making the software

maintainable can therefore be interpreted as a

collective process including both the person submitting

the bug report, those trying to understand and resolve

the problem, as well as the tools involved in producing

the various debug texts being interpreted. The software

is made maintainable by iteratively producing debug

texts, extracting fragments of information from these

texts and assembling these fragments into meaningful

combinations.

With basis in this, we propose a model to describe

the corrective maintenance process to support our

explanation of maintainability. We present two views

of this model. Figure 1 shows the cyclic process of

producing new debug texts and generating new

interpretations through negotiation. The vertical arrow

in the middle of the cycle illustrates the number of

interpretations.

Figure 1. Cyclic view of the corrective
maintenance process

Through iterations of the process, the number of

interpretations may contract or expand. This is shown

in Figure 2. This figure provides a temporal view of

the process from the bug report is submitted until it is

closed. The number of interpretations is a function of

both the level ambiguity and the degree of consensus

among developers. Reaching the point of closure can

therefore be achieved through the elimination of

ambiguity or simply by reaching a consensus about

how to resolve the bug report by possibly rejecting it

without any technical basis. These are the extremes.

More commonly, though, bug reports reach their

closure through reducing the ambiguity and reaching a

consensus.

Figure 2. Temporal view of the corrective
maintenance process

5. Conclusion

With this basis, we return to our research question:

how is maintainability established in systems

integration? We find that maintainability is established

through the development, operation, and maintenance

of a debug infrastructure. This infrastructure mostly

supports interaction between developers, like the way

Bugzilla, IRC, and mailing lists are used in Gentoo.

The infrastructure must also consist of tools that

generate relevant debug information. This is done by

constantly evaluating the usefulness of existing debug

tools towards the typical failures reported. For Gentoo,

we see that this is a continuous process of developing

new tools, revising existing tools, and the demise of

tools that are no longer useful.

With basis in this we may rephrase our solution to

the problem of establishing maintainability in SI.

Maintainability in SI may be established through an

infrastructure that bridges both the geographical and

knowledge gaps between actors in the corrective

maintenance process.

6. References

[1] Alvesson, M., Knowledge Work and Knowledge-Intensive

Firms, Oxford University Press, Oxford, 2004.

[2] Bass, L., P. Clements and R. Kazman, Software

Architecture in Practice, Addison-Wesley, Boston,

Massachusetts, 2003.

[3] Belady, L.A. and M.M. Lehman, "Characteristics of

Large Systems", Research Directions in Software

Technology, P. Wenger (ed.), pp.108-138, MIT Press,

Cambridge, Massachusetts, 1978.

[4] Boehm, B.W, J.R. Brown and J.R. Kaspar, Characteristis

of Software Quality, TRW Series f Software Technology,

Amsterdam, North Holland, 1978.

[5] Boehm, B. and C. Abts "COTS Integration: Plug and

Pray?" IEEE Computer, pp. 135-138, January 1999.

[6] Calzolari, F., P. Tonella and G. Antonioli, "Dynamic

model for maintenance and testing effort", Proceedings of the

International Conference on Software Maintenance,

ICSM'98, pp. 104-112, 1998.

[7] Dalal, S.R., J.R. Horgan and J.R. Kettering, "Reliable

software and communication: Software quality, reliability,

and safety", Proceedings of the 15th Conference on Software

Engineering, ICSE'93, pp.425-435, 1993.

[8] Endres, A., "An Analysis of Errors and Their Causes in

Systems Programs", Proceedings of the 1975 Conference on

Reliable Software, pp. 327-336, 1975.

[9] Feller, J. and B. Fitzgerald, Understanding Open Source

Software Development, Addison-Wesley, Boston,

Massachusetts, 2002.

[10] Gibson, V.R and J.A. Senn, "Systems Structure and

Software Maintenance Performance", Communications of the

ACM, pp. 347-358, March, 1989.

[11] Hasselbring, W., "Information Systems Integration",

Communications of the ACM, pp. 32-38, June, 2000.

[12] Fetterman, D.M., Ethnography, Newbury Park, CA:

Sage Publications, 1998.

[13] Klein, H.K. and M.D. Myers, "A Set of Principles for

Conducting and Evaluating Interpretive Field Studies in

Information Systems", MIS Quarterly, pp.67-93, January,

1999.

[14] Lam W. and V. Shankararaman, "An Enterprise

Integration Methodology", IT Professional, p. 40-48,

March/April, 2004.

[15] Law, J., "Notes on the Theory of the Actor Network",

1992, http://www.lancs.ac.uk/fss/sociology/papers/law-notes-

on-ant.pdf

[16] Lethbridge, T.C., S.E. Sim and J. Singer, "Studying

Software Engineers: Data Collection Techniques for

Software Field Studies", Empirical Software Engineering,

pp.311-341, July, 2005.

[17] Martin, J. and C. McClure, Software Maintenance: The

Problem and Its Solutions, Prentice-Hall, Englewood Cliffs,

New Jersey, 1983.

[18] McCall, J. A. "Quality Factors. In Marciniak",

Encyclopedia of Software Engineering, Vol. II, John J. (Ed.),

John Wiley & Sons, New York, pp. 958-969, 1994.

[19] Paulson, J.W., G. Succi and A. Eberlein, "An Empirical

Study of Open Source and Closed-Source Software

Products", IEEE Transactions on Software Engineering, pp.

246-256, 2004.

[20] Samoladas, I., I. Stamelos, L. Angelis and A.

Oikonomou, "Open Source Software Development Should

Strive for Even Greater Code Maintainability".

Communications of the ACM, pp. 83-87, 2004.

[21] Scach, S.R., B. Jin, L. Yu, G. Z. Heller and J. Offutt,

"Determining the Distribution of Maintenance Categories:

Survey versus Measurement", Empirical Software

Enginering, pp. 351-365, 2003.

[22] Vogels, W., "Web Services are not distributed objects",

IEEE Internet Computing, pp. 59-66, November/December,

2003.

[23] Zeller, A., Why Programs Fail: A Guide to Systematic

Debugging, Elsevier, Amsterdam, 2006.

Paper 5

Jaccheri, L., and Østerlie, T. "Open Source Software: A Source of Possibilities for

Software Engineering Education and Empirical Software Engineering", in

Proceedings of the First International Workshop on Emerging Trends in FLOSS

Research and Development, co-located with the 29th International Conference on

Software Engineering (ICSE'07), Minneapolis, Minnesota, May 20-26, 2007, pp. 1-5.

Open Source Software: A Source of Possibilities for Software Engineering
Education and Empirical Software Engineering

Letizia Jaccheri, Thomas Østerlie
Norwegian University of Science and Technology
letizia@idi.ntnu.no, thomas.osterlie@idi.ntnu.no

Abstract

Open source projects are an interesting source for soft-
ware engineering education and research. By participat-
ing in open source projects students can improve their pro-
gramming and design capabilities. By reflecting on own
participation by means of an established research method
and plan, master’s students can in addition contribute to
increase knowledge concerning research questions. In this
work we report on a concrete study in the context of the Net-
beans open source project. The research method used is a
modification of action research.

1 Introduction

Open source software (OSS) has shaped software engi-
neering education programs over the past decade [9]. OSS
development poses serious challenges not only to the com-
mercial software industry, but also to academic institutions
that educate software engineers. Motivated by their passion
for programming, some of our students love participating
in OSS projects; some have even been participating in OSS
projects for years.

With increased focus on adoption and use of OSS, the
Norwegian industry and public sector is looking for soft-
ware engineers with OSS skills and knowledge. ”Highly
qualified personnel are the principal product of universities,
and play a major role in developing absorptive capacities
in firms” [3]. We therefore see it as our role to develop
educational programmes to make software engineering stu-
dents acquainted with the theoretical aspects of OSS devel-
opment, as well as with the technical and social skills to
participate in OSS projects. This way, we are feeding back
OSS v.2 engineers [6].

For students OSS is an arena for learning, and the indus-
try needs software engineers acquainted with the theoreti-
cal and practical aspects of OSS development. Our research
question is therefore: How can we make use of OSS com-
munities for formal education purposes? How do we, as

software engineering teachers and researchers, tackle this
challenge so that we provide a sound and motivating envi-
ronment for software engineering education?

We have developed an approach for teaching master level
students by using principles from action research [2] for or-
ganizing OSS education. We design assignments for master
level students, who have to act as both developers and re-
searchers in OSS projects. As developers they have to par-
ticipate in a given OSS project. As researcher, the student
has to define one or several research questions based on the
existing literature on OSS development, to be addressed by
participating in an OSS project.

We have been running these kinds of projects since 2002
and all the reports are available online [4]. In this paper, we
report from one such project. We will present a case that
will provide the choice of the project, the research ques-
tions and the answers we found to them. More important,
we will summarize lessons learned from combining an ed-
ucation and empirical approach to OSS research. We dis-
cuss how the choice of the research questions, the research
methods, the literature, and the choice of the OSS project
are dependent on each other.

Evaluation of education results is always a challenge, es-
pecially when there is no baseline to compare to. It is al-
ways difficult for the student to have a double set of goals
in mind. The first set of goals are related to participation
(understanding the code, understanding the dynamics in the
community, finding a way to contribute). The second set of
goals are related to observation and research. Some students
have never participated in a research project before and
they struggle to understand the connection between their
research questions and the actual learning process. The re-
search results, which are a secondary product of the student
projects, could be of interests to the educational community
if we manage to aggregate them in a consolidate framework.

The structure of this paper is as follows: Section 2 pro-
vides the foundations of this work at the intersection be-
tween software engineering education and empirical soft-
ware engineering. Section 3 presents our case and Section
4 provides discussion and our conclusions.

1

First International Workshop on Emerging Trends in FLOSS Research and Development (FLOSS'07)
0-7695-2961-5/07 $20.00 © 2007

2 Context

2.1 Empirical software engineering educa-
tion

We teach a five year Master of Technology program in
computer science at IDI1, NTNU2. For the past 30 years,
an important part of this graduate program has been to offer
students realistic and industry-relevant software engineer-
ing projects in close collaboration with the Norwegian soft-
ware industry [7].

There is an increased use of OSS in Norwegian software
companies, and some companies even participate in OSS
projects. We therefore see the need for educating students
with the knowledge and skills to participate in such projects.
This way the industry can give back to OSS communities.
To this end we provide project assignment for our master
students to participate in an OSS projec in their fifth, and
final, year. The main constraint and source of feedback, in
addition to teacher supervision, is the interaction with this
OSS project. The students may influence what kind of tech-
nology to work with. The goals of the project include defin-
ing relevant research questions, the study of existing litera-
ture on OSS development, selecting an OSS project based
on characteristics defined by the student, and to participate
actively in this project. Students admitted to these projects
must attend two supporting courses with exams.

2.2 Research-based education

At IDI we have a tradition for combining software en-
gineering research and education in various forms. On the
one hand we have been designing and running experiments
where students act as subjects. On the other hand, our best
master students have been given the chance to work as ju-
nior researchers in our research projects [1].

In the approach for teaching OSS to master level students
we report on in this paper, we combine these two perspec-
tives. Students are subjects of the investigation by partic-
ipating in the OSS project under study. Students are re-
searchers, too, as we formulate project assignments so that
the student together with the supervisor and other senior re-
searchers contribute to the definition of research questions,
data collection and analysis. This can be understood as a
form of action research (AR) [2].

AR is a research method that may be well suited for em-
pirical research in the context of education. It originates
from the social sciences, and is used for learning from ex-
perience by intervening into various systems. One orienta-
tion of AR is Canonical Action Research (CAR), proposed
by Davison et al. [2].

1The Department of Computer and Information Science
2The Norwegian University of Science and Technology

CAR is an iterative process consisting of two main com-
ponents: carefully planned and executed cycles of activi-
ties, and a continuous process of problem diagnosis. This
has the dual function of improving practice in an organi-
zation through a change process, while also contributing to
knowledge about the object of the study.

3 The case

In this section we present an example from one student
study. This study was based on an assignment designed ac-
cording to the principles laid out above. The study is avail-
able at [4]. The assignment did not constrain the research
questions asked by the student. The only constraint was that
AR should be used as methodology for the study. In what
follows, we first present the canonical description of each
phase in the research project, followed by a presentation of
how this step was performed in the study we report from.

3.1 Diagnosis

This phase involves the researcher diagnosing the orga-
nizational situation from the information that is available.
The objectives of the CAR project will control what is stud-
ied here, along with experiences from previous CAR iter-
ations. Goals of the diagnosis phase include determining
causes of a problem, and study the environment in order to
allow proper actions to be planned.

The assignment was for the student to participate in and
contribute to OSS development in order to better understand
how firms can benefit from using OSS. The goal was to
determine the effects of using formal techniques in OSS
projects, like explicit planning, ownership, inspection and
testing in OSS projects, as they occur in commercially con-
trolled OSS projects. Through the study, it was intended to
see if the commercial use of OSS leads to a more manage-
able process.

The research goal and hypotheses were created from a
literature survey that was done in the first two months of the
project.

3.1.1 Research questions

Two research questions were formed:
Q1: Are developers who are not directly hired by the

controlling organization able to affect the decision pro-
cesses?
The rationale for this research question was to uncover how
commercially operated OSS projects view volunteer devel-
opers. In case of any confusion of roles, especially with
regard to paid vs. non-paid developers, the use of OSS may
be less suitable.

First International Workshop on Emerging Trends in FLOSS Research and Development (FLOSS'07)
0-7695-2961-5/07 $20.00 © 2007

Q2: How much of the decision process is open to the
whole community, and to what extent are decisions taken
inside the organization that is controlling the open source
project?
For OSS projects where decisions are not multilateral, par-
ticipants may feel there are conflicts in the community, as
described in [8].

3.1.2 Project selection

As the number of potential OSS projects to choose from is
large, project selection was initiated to find a project that
suited the study well. Project selection and research ques-
tions are related, as the studied artifact must be suitable for
the research goal. OSS communities have widely differ-
ent differing characteristics; they vary in size, have different
goals, and may have reached different levels of maturity. As
the project aimed at investigating commercial ties in OSS
development, the selection process aimed to identifying a
project where this connection was clear.

After compiling a list of known OSS projects, each
project was evaluated according to the following criteria:

• Should consist of 10-50 active developers

• Community allows entrance in a supporting role

• Formal techniques (project planning, etc.) are used in
the OSS development

• Implementation is done in either Java or C++, to which
the researcher is acquainted.

• Available public mailing lists, chat, and bug tracking.

• Software has general usefulness for researcher

Based on this evaluation, the student chosen the Net-
beans project.

3.2 Planning

In CAR, the planning phase should generate a course of
action for collecting data. The planned actions should be
generated to manipulate the object in order to better under-
stand it.

A data collection strategy was developed during the ini-
tial planning phase of the student project. With qualitative
data analysis, the goal was to capture as much interaction
with other people as possible, thoughts and opinions during
the project. The following elements were emphasized in the
plan:

1. Identities and roles of people that participate in these
discussions.

2. The process which is used for accepting or discussing
contributions, and how decisions for inclusion of are
made.

3. Communication around changes will be useful for later
analysis, to see how decision-making is done.

4. Information about how a contribution fits into sched-
ules and personnel allocation is interesting.

3.3 Intervention

In CAR, intervening in an organization requires that a
plan for collecting data is present. Proper data collection
techniques should be applied before, during, and after the
intervention.

The study was executed with two iterations of AR. The
researcher started with little knowledge of the decision pro-
cesses in the Netbeans project. A meritocratic leadership
was assumed to exist in addition to the maintainer organiza-
tion’s influence on the product. Actions that were planned
for the first iteration included finding open bugs, making
significant changes in order to fix the issue, and following
through the inclusion of the change into the main version.

Finding issues that were easy to work with was harder
than expected. A total of three bugs were addressed in this
phase, but with regard to the number of code lines the con-
tribution was very small.

From the interactions in this process, Netbeans was
found not to significantly differ from meritocratic hierar-
chies in other OSS communities. However, one surprising
discovery was that most contributors seemed to be employ-
ees of the maintainer organization.

3.4 Evaluation

In CAR, results from the intervention phase should be
analyzed in the context of the current understanding of the
problem and the goals of the research.

Data analysis was performed according to a pre-defined
plan that involved considering the observations in context
of theory. Davison et al. state that theory provides a ba-
sis for delineating the scope of data collection and analysis
[2]. Assessing findings in a broader context also increases
confidence in the results.

Tangible results that were found from the project in-
cluded findings in the Netbeans community that there may
be problems in attracting a large volunteer work force.
However, the Netbeans project does implement the OSS
model well, and values all outside contribution. Further
investigation will be needed to see if these tendencies are
universal to other OSS projects where commercial organi-
zations are maintainers.

First International Workshop on Emerging Trends in FLOSS Research and Development (FLOSS'07)
0-7695-2961-5/07 $20.00 © 2007

The planned time schedule was found to be unproblem-
atic. However, it would be preferable to have more time for
participating in the project. Joining an OSS project, getting
familiarized with the project artifacts, while also contribut-
ing to it, takes considerable effort.

3.5 Reflection

Reflecting is the last phase of CAR, in which the re-
searcher reflects on the results of an iteration can determine
whether additional iterations are necessary, or the lessons
learned can be used to further refine research questions. If
the goals of the project have been accomplished, then it
could be decided to terminate further investigation.

Actions for the second iteration would focus on partici-
pating to one module within Netbeans, and looking closer
at the artifacts surrounding it. The “JavaCVS” module was
selected. Only one bug lead to a successful resolution dur-
ing this iteration, which incidentally was unrelated to the
JavaCVS module. Lessons learned during this supported
the notion that few participants outside of Netbeans were
active.

After this iteration, the action research cycle was ended,
as the time constraints were exhausted, and sufficient infor-
mation to discuss research questions had been collected.

In retrospect, there are many ways in which participation
to OSS for education can be made smoother. First, focus-
ing on OSS as a social discipline can help the researcher to
get access to the project artifacts, and contribute to valuable
knowledge both about culture and product. By applying
action research, the researcher should go to length to col-
laborate with other people during the project execution, for
instance through discussing ideas and technical solutions in
mailing lists or newsgroups.

Second, a good recommendation is to focus research on
one restricted domain, like a particular module or functional
area. While this was not extensively practiced in this case,
it is beneficial to commit to one particular role in order to
get a more likely “open source situation”.

Netbeans is evaluated to be a good choice as it is main-
tained by a larger software company, Sun Microsystems,
that also invests significant resources to sustain it. Netbeans
is a development tool that is used to aid in the development
of Java-based applications.

Experience from the project, however, show that the
project selection criteria may not have been optimal. The
following was noted after the completion of the project:

Maturity: Selecting an OSS project that has a low level
of maturity may have the disadvantage of being signifi-
cantly different from an ideally run OSS project. However,
if an OSS project is mature, well-tested, and close to a re-
lease, much of the remaining tasks will be polish. If the
goal of the project is to contribute to an OSS project, the

researcher should at least be aware of possible difficulties.
In this case with Netbeans, contributing to it was difficult
due to the difficulty of understanding complex bug reports.

Size of project: Larger OSS projects may suffer from
awareness problems. Entering an open source project con-
sisting of thousands of source files requires either excellent
skill, or good documentation.

4 Discussion and conclusions

The final goal of this work is providing guidelines on
how to exploit open source software for education and em-
pirical purposes. At the time of writing we can provide
several examples of projects that exploit open source soft-
ware for education and empirical purposes, all available at
sumaster.

There are four main axes around which to organize an
evaluation of our goal:

1. Research questions: Working on the research ques-
tions is a time-consuming task that required a good
understanding of the domain. Here there is a trade-
off between learning and research issues. While stu-
dents appreciate the freedom of the assignment as a
positive learning experience, it is more effective from
a research perspective to provide students with prede-
fined research questions. These can be taken from re-
lated literature or from previous research projects the
teacher/researcher has been working with. There is a
relationship between research questions and projects.
For example in the case reported in this paper, the re-
search questions are about the interaction between pro-
fessionals and volunteers in the OSS projects and this
makes it necessary to select a project in which com-
mercial actors play a significant role. From the point of
view of the industrial professional who evaluated our
work and also from discussions with other researchers,
it was found that it is better not let students to choose
research questions.

2. Research methods: Action research has worked well to
balance student’s learning, and the output of the study.
A deep understanding of the problem itself is not nec-
essary before intervention in projects.

The effort necessary to contribute to an open source
project should not be underestimated. A common
problem for both projects, was that the students started
with too ambitious goals, and therefore may have run
into some difficulties.

The different iterations used by the researcher to eval-
uate the problem may take considerable time and en-
ergy. The effect of this, is that learning about open

First International Workshop on Emerging Trends in FLOSS Research and Development (FLOSS'07)
0-7695-2961-5/07 $20.00 © 2007

source development in general, will be a continuous
process throughout the entire intervention period.

For the sake of presentation and discussion we have
presented our case according to the five phases in ac-
tion research (diagnosis, planning, intervention, eval-
uation, and reflection). We are still discussing how
the different phases overlap with each other. Take for
example the project selection phase which we regard
as a sub-phase of diagnosis. In other action research
projects, the choice of the projects to work with may
happen before the whole research process is started.
The same is valid for research questions (or goals)
which can be less open to be decided inside the AR
cycle than in our case. Evaluation and reflection are
two related phases that could be merged together.

3. Literature: The open source literature is cross-
disciplinary and this influenced the choice of the re-
search questions which in turn influenced the size and
the nature of the project.

A literature review must be performed to update the
content of the supporting course and provide a theoret-
ical background that reflects the evolution of the OSS
research field. This is an ambitious task as OSS re-
search efforts have been published in the main soft-
ware engineering conferences and journals in the last
few years. There is also an increasing number of books
on this subject that have been published in the last cou-
ple of years. This makes the task of maintaining a map
of open source literature a challenging one.

4. Choice of the open source project: In communicat-
ing with OSS projects, problems in the last project
included entry difficulties and problems handling the
size of the project. The technical competence needed
to contribute was here higher than anticipated. More
participation in mailing lists and newsgroups may have
been helpful to react to this problem.

Guidelines for using OSS in education should stress that
it is a social and complex discipline. Learning both empiri-
cal methods and getting an introduction to the open source
is difficult. As mentioned, we have an ongoing project that
is run according to the same principles in the case reported
here and we plan to propose the same kind of projects, both
500 hour and 1000 hour projects in the next academic year.

Concerning the research method, we are satisfied with
the use of action research and we believe that this paper
is a valuable description of how to use this method. Con-
cerning the research questions, there will always be a phase
in which the student and the supervising researcher select
new ones starting from consolidated questions in the gen-
eral literature or provided by this family of projects. The
choice of the open source project is an interesting topic of

discussion. While it is in the interest of the teacher/research
to decide the project in which the student work, we have
to keep in mind that one of the principles of OSS partici-
pation is motivation and interest. Students choosing such
assignments are do so for the love of participating in OSS
projects. By letting the student participate in this project,
the teacher/researcher could get valuable insights in the spe-
cific project.

The perspectives of the industry here is similar to that
of the researcher in that industrial actors are naturally inter-
ested in letting students work on the OSS projects they sup-
port to increase activities in these projects. By replicating
these kinds of projects we aim to develop a characterization
of both OSS projects and research issues.

References

[1] Jeffrey Carver, Maria Letizia Jaccheri, Sandro Morasca,
and Forrest Shull. Issues in using students in empiri-
cal studies in software engineering education. In IEEE
METRICS, pages 239–, 2003.

[2] Robert M. Davison, Maris G. Martinsons, and N. Kock.
Principles of Canonical Action Research. Information
System Journal, 14(1):65–86, 2004.

[3] Giovanni Dosi, Patrick Llerena, and Labini Mauro Sy-
los. The relationships between science, technologies
and their industrial exploitation: An illustration through
the myths and realities of the so-called ’european para-
dox’. Research Policy, 35(10):1450–1464, Dec. 2006.

[4] Reidar Conradi et. al. Software engineering group
home page. http://www.idi.ntnu.no/grupper/su, January
2007.

[5] Roy T. Fielding. Shared leadership in the apache
project. Communications of the ACM, 42(4):42–43,
April 1999.

[6] Brian Fitzgerald. The transformation of open source
software. MIS Quarterly, 30(3), 2006.

[7] M. Letizia Jaccheri. Software quality and software pro-
cess improvement course based on interaction with the
local software industry. Computer Applications in En-
gineering Education, 9(4):265–272, 2001.

[8] Chris Jensen and Walt Scacchi. Collaboration, lead-
ership, control, and conflict negotiation in the net-
beans.org community. In Proceedings of the 38th An-
nual Hawaii International Conference on System Sci-
ences (HICSS 05), page 196b, 2005.

[9] Mary Shaw. Software engineering education: a
roadmap. In ICSE - Future of SE Track, pages 371–
380, 2000.

First International Workshop on Emerging Trends in FLOSS Research and Development (FLOSS'07)
0-7695-2961-5/07 $20.00 © 2007

Paper 6

Østerlie, T., and Jaccheri, L. "A Critical Review of Software Engineering Research on

Open Source Software Development", in Proceedings of the The Second AIS

SIGSAND European Symposium on Systems Analysis and Design, Gdansk, Poland,

June 5, 2007, pp. 12-20.

Østerlie et al. Critical Review of Software Engineering Research on OSSD

Proceedings of the 2
nd

 AIS SIGSAND European Symposium on Systems Analysis and Design, Gdansk, Poland, June 5, 2007 1

A Critical Review of Software Engineering Research on Open

Source Software Development

Thomas Østerlie

Norwegian University of Science and Technology

thomas.osterlie@idi.ntnu.no

Letizia Jaccheri

Norwegian University of Science and Technology

letizia.jaccheri@idi.ntnu.no

ABSTRACT

This paper asserts that the software engineering (SE)

research literature describes open source software

development (OSSD) as a homogenous phenomenon.

Through a discourse analysis of the SE research literature

on OSSD, it is argued that the view of OSSD as a

homogenous phenomenon is not grounded in empirical

evidence. Rather, it emerges from key assumptions held

within the SE research discipline about its identity and

how to do SE research. As such, it is argued that the view

of OSSD as a homogenous phenomenon may constitute a

systematic bias in the SE research literature. Implications

of this are drawn for future SE research to avoid

reproducing this bias.

Keywords

Software engineering, open source software development,

literature review.

INTRODUCTION

Over much of the past decade, researchers have studied

the open source software (OSS) phenomenon. After two

annual conferences on open source systems (Damiani et

al., 2006, Scotto and Succi, 2005), numerous special

issues within multiple research fields (Adam et al., 2003,

Clarke, 2006, Feller et al., 2002, Scacchi et al., 2006, von

Krogh and von Hippel, 2003), as well as several cross-

disciplinary paper collections on OSS (Feller et al., 2005,

Koch, 2004), it is fair to say that OSS research is

maturing as a multi-disciplinary field defined by its object

of study, the OSS phenomenon. Researchers have

approached the phenomenon from a diversity of angles;

among these motivations of OSS developers (Lakhani and

Wolf, 2005), social organization of OSS communities

(Crowston and Howison, 2005), OSS business models

(Karels, 2003), as well as OSS development (OSSD).

OSSD is the topic of this paper.

Software engineering (SE) publications have been a major

channel for OSSD research. After working with the SE

research literature on OSSD for almost a decade, we have

grown increasingly concerned with what we find to be a

black and white view of OSSD. This paper therefore starts

with the following assertion: the SE research literature

describes OSSD as a homogenous phenomenon. Such a

description of OSSD is problematic. Recent empirical

studies show great diversity in the phenomenon.

Michlmyer et al. (2005), for instance, observe "how

greatly development practices and processes employed

differ across [OSSD] projects". Yet, describing OSSD as

a homogenous phenomenon loses this diversity. While it

is reasonable that early research lacks nuances, a more

nuanced view is expected as research matures. However,

this paper asserts that this is not the case for SE research

on OSSD. The following research question is therefore

asked: under what conditions can the view of OSSD as a

homogenous phenomenon be made and maintained over

time?

This paper seeks an answer to this question through a

critical literature review of published SE research on

OSSD. In particular, it seeks an answer to the question by

examining how underlying assumptions about both the

field of SE as well as about the object of study, OSSD,

enables and constrains how SE researchers can describe

OSSD. As such, the methodology of this paper is

discourse analysis (Phillips and Hardy, 2002). This is

therefore not a study of the OSSD phenomenon itself, but

rather how it is described in the SE research literature.

This paper makes three contributions. First, it contributes

to SE research on OSSD by arguing the case for a

potential systematic bias in existing research: that of

treating OSSD as a homogenous phenomenon. Second, it

motivates the need for diversifying our approach to

studying OSSD. Whereas existing reviews of SE research

focus on increased scientific rigour and validation of

research (Fenton, 1994, Zelkowitz and Wallace, 1998),

there has been little focus on how approaches to SE

research and the assumptions espoused by these

approaches influence the object of study. To the SE

research community at large this paper therefore

contributes with a possible approach for evaluating the

effect research approaches and assumptions have on the

object of study. Third, although limited to a survey of SE

research on OSSD, the paper may hopefully inspire

similar reflections on the implications of research

approaches within other parts of SE research.

The remainder of the paper is structured as follows. First

the methods and materials that this review is based on are

presented. We then ground the assertion that the SE

literature treats OSSD as a homogenous phenomenon in

Østerlie et al. Critical Review of Software Engineering Research on OSSD

Proceedings of the 2
nd

 AIS SIGSAND European Symposium on Systems Analysis and Design, Gdansk, Poland, June 5, 2007 2

an analysis of the SE research literature. The research

question is revisited in the discussion where we show how

the view of OSSD as a homogenous phenomenon

emerges from three different assumptions. The paper is

concluded by drawing implications of the analysis for SE

research on OSSD.

METHODS AND MATERIALS

This literature review is approached with discourse

analysis. Discourse analysis is a method for studying

individual texts for clues to the nature of a discourse. It is

the study of how interrelated texts, the practices of their

production, dissemination, and reception – collectively

labeled the discourse – brings phenomena into being. The

phenomenon studied here is OSSD. Discourse analysis

examines how language constructs phenomena, rather

than how it reflects and reveals them. As such, it

embodies a strong constructivist philosophy, and is not

just a method but also a methodology.

Although discourses are inscribed and enacted in

individual texts, the discourse itself exists beyond these

material manifestations: "discourses are shared and social,

emanating out of interactions between social groups and

complex societaly [sic] structure in which the discourse is

embedded" (Phillips and Hardy, 2002). As such,

discourse analysis seeks to understand the context within

which the discourse is embedded and emerges from.

Discourses are therefore analyzed along three dimensions:

texts, discourse, and context.

Discourses have no clear boundaries. "We can never

study all aspects of a discourse, and inevitably have to

select a subset of texts for manageability" (Phillips and

Hardy, 2002). The remainder of this section describes our

method for selecting this subset of texts to analyze.

Stage 1: Publication Selection

During the first stage, publications outlet for SE research

on OSSD had to be identified. Webster and Watson

(2002) presents two approaches for identifying relevant

literature to review: 1) search through leading journals

within the field, and 2) with basis in known literature go

backwards by reviewing citations and forwards using

research indexes to look for papers citing the known

literature. This review follows the first approach, using

the selection of six leading journals identified by Glass et

al. (2002).

Stage 2: Selection of Texts

Once the journals had been identified, individual

publications on OSSD research were identified. The

selected journals were accessed through digital libraries.

The digital libraries were used to identify individual

papers by searching for publications with the keyword

'open source'. The journals are available through different

digital libraries. Table 1 lists the journals reviewed with

the provider of the digital library. As the digital libraries

are continuously updated with new publications, the date

of the search is also provided in the table. There are slight

variations in the searchable fields supported by the digital

libraries. Although these variations have minor impact on

the papers identified at this stage, a list of the searchable

fields supported by the digital library has been included

for reference in Table 1.

Stage 3: Refining the Paper Selection

Searching for the keyword 'open source' in the above

digital libraries returned a total of 120 papers. At this

stage the subset of papers identified by the digital libraries

were manually refined. As some of the digital libraries do

not support searching for phrases, some of the returned

papers were not on OSSD. Rather, they had been returned

Journal Date of search Digital library Searchable field(s)

Information Software and

Technology

February 21 2007

Journal of Systems and

Software

January 30 2007

Science Direct

(www.sciencedirect.com)

Title, abstract, keywords

Software Practice and

Experience

January 30 2007 Wiley InterScience

(www.interscience.wiley.com)

Full text, abstract, article title,

author, author affiliation,

keywords, references

IEEE Software January 30 2007

IEEE Transactions on Software

Engineering

January 30 2007

IEEE Xplore

(ieeexplore.ieee.org)

Full text, document title, author,

abstract

ACM Transactions on

Software Engineering and

Methodology

January 30 2007 The ACM Digital Library

(portal.acm.org)

Title, abstract, author, full text

(where available)

Table 1 Journals with corresponding digital libraries

Østerlie et al. Critical Review of Software Engineering Research on OSSD

Proceedings of the 2
nd

 AIS SIGSAND European Symposium on Systems Analysis and Design, Gdansk, Poland, June 5, 2007 3

as both the word 'open' and 'source' was found in the

searchable fields. To remove such papers from the subset

of texts to analyze, the papers were searched for the

phrase 'open source'. Papers without this phrase were

removed from the subset of texts to analyze.

A number of the papers identified were either a) reports

on design research where the product has been released as

OSS, b) research where OSS is used as a data set to

validate non-OSSD methods or techniques, or c) opinion

pieces. As these are not studies of OSSD, they were also

removed from the subset of texts to analyze.

52 papers were left after two rounds of refining the subset

of texts. This is summarized in Table 2.

Journal Total papers Not studies

of OSSD

OSSD

papers

analyzed

Information

Software

and

Technology

7 6 1

Journal of

Systems and

Software

13 8 5

Software

Practice and

Experience

15 14 1

IEEE

Software

62 23 39

IEEE

Transactions

on Software

Engineering

8 7 1

ACM

Transactions

on Software

Engineering

15 10 5

Total 120 68 52

Table 2 Papers selected

Writing Up the Discourse Analysis

Two interests had to be balanced in writing up this

review. With the reader and evaluator in mind, it is

important to be as concrete as possible in building a

credible case for the assertion that the SE research

literature describes OSSD as a homogenous phenomenon.

In practice this means making direct references to

individual texts. However, it is counter to the goal of the

analysis to point out problems, faults, or shortcomings of

individual research texts. It is not the goal of the analysis

to single out individual researchers and attack their

research. Furthermore, discourse analysis is concerned

with individual texts only in the way they provide clues to

the nature of the discourse.

To balance these two interests, only texts that are often

cited by other research and can therefore be considered

formative to OSSD research are quoted in the analysis

below. The danger of such an approach is that the analysis

may seem anecdotal and poorly grounded. Yet, the

purpose of discourse analysis is not to bring evidence or

establish truths by bringing forth deep or hidden

structures in a body of texts. Rather, the analysis in this

paper is one of many ways of reading the body of SE

research texts on OSSD. As such, the analysis provides a

particular lens to view the texts with. The best validation

of the analysis is therefore for the reader to approach the

same body of literature with the provided lens to

determine whether or not the discourse analysis provides

a fruitful way of understanding the literature.

ANALYSIS

The purpose of this section is to illustrate in what ways

OSSD is described as a homogenous phenomenon in the

SE research literature. Four ways are identified: 1)

statements about the OSSD model, 2) statements that

OSSD is different from SE, 3) studies critically

addressing early claims that OSSD produces superior

software, and 4) studies of OSS adoption in commercial

software development. Each of these approaches is

discussed in turn.

Statements About the OSSD Model

Raymond's (1998) seminal paper on describes two

different approaches to developing software: the

organized cathedral and the buzzing activity of the self-

organizing bazaar. The bazaar model of software

development has a number of distinguishing

characteristics: openness, self-organizing, creative, rapid

cycle of releases with frequent incremental updates of the

source code (Raymond, 1998). With the advent of the

Open Source Initiative (Perens, 1999), the bazaar model

of software development is renamed the open source

software development model. Espoused in this early

period of advocacy literature is the view of OSSD a

specific approach to developing software.

Statements about such a specific approach to developing

software appears in different forms in the SE literature.

Some authors talk of the OSSD model, others about the

OSSD cycle, while others talk about the OSS paradigm of

software development. While it is sometimes noted that

there is variation in this specific approach to developing

software, the "basic tenets of OSS development are clear

enough, although the details can certainly be difficult to

pin down precisely" (Mockus et al., 2002). It is therefore

possible to talk about a generic OSSD model (Feller and

Fitzgerald, 2002). As such, statements about a specific

OSSD model in the SE research literature reproduce the

advocacy literature's view of OSSD as a homogenous

phenomenon.

A variation of this is to make statements about salient

characteristics of OSS or OSSD. SE research paper

Østerlie et al. Critical Review of Software Engineering Research on OSSD

Proceedings of the 2
nd

 AIS SIGSAND European Symposium on Systems Analysis and Design, Gdansk, Poland, June 5, 2007 4

frequently describe OSSD as geographically distributed

software development, that work is not assigned but

undertaken, that there are no plans, that OSS is developed

by communities of volunteers, or of there being a

particular social organization to OSSD. Statements about

salient characteristics with OSSD are made with general

significance. They apply to all instances of OSSD,

assuming that OSSD is a specific approach to developing

software. Such statements about salient characteristics

with OSSD espouse the view of OSSD as a homogenous

phenomenon.

Making such statements about OSSD as a specific

approach to developing software serves two functions in

the research literature: to generalize bottom-up and top-

down.

By generalizing from the bottom-up, single instance of

OSSD are made to stand in and represent the larger

phenomenon of OSSD. This form of overgeneralization

within the OSS research is also observed by Crowston &

Howison (2005): "most research on FLOSS [Free/Libre,

Open Source Software] has been case studies of particular

projects, [and] has so far allowed the perception that there

is a distinctive FLOSS organizational pattern and set of

practices to go largely unquestioned". To generalize from

a single instance of OSSD to the larger phenomenon

requires homogeneity of the phenomenon, that all

instances of OSSD are comparable.

Top-down generalization is mainly used to motivate

research on OSSD. A typical top-down generalization can

be formulated as "Our interest in studying this particular

instance of OSSD originated in the popularity gained by

the open source model in the last few years through the

delivery of successful products such as Linux, Apache,

and Mozilla". The effect of top-down generalization is to

motivate research on a single instance of OSSD by

grounding it in the larger phenomenon. By mobilizing

well-known successful instances of OSSD, it is assumed

that all instances of OSSD are worth studying. Again, this

form of generalization assumes homogeneity of the

phenomenon; that any instance of OSSD can stand in for

the larger phenomenon.

Although bottom-up generalization is most prevalent in

early research SE literature on OSSD, the most recent

observation is found in a research publication from 2006.

Top-down generalizations, however, are in one form or

another more prevalent throughout the period of the

reviewed literature.

Statements that OSSD is Different From SE

Describing OSSD as different from other forms of

software development has been a common theme since

the early advocacy literature. To begin with it was the

cathedral versus the bazaar (Raymond, 1998), it was

hacking as opposed to the mechanical forms of

commercial software development (Hannemyr, 1999),

and later that OSSD is "different from proprietary, or

traditional, or commercial or whatever other forms of

software development it is that exist besides [it]"

(Crowston and Howison, 2005).

Similar statements about dichotomous relations between

OSSD and other forms of software development are

reproduced in the SE research literature on OSSD. These

statements are made in three ways. The first two ways are

direct ways of stating the dichotomous relationship

between OSSD and SE. First, as direct statements that

OSSD is different from SE. SE is not always referenced

directly, but referenced as " the usual industrial style of

software development" or "usual methods applied in

commercial software development". The implication is

clear, however, that OSSD is different from SE.

The second way of placing OSSD in a dichotomous

relationship with SE is similar to the above approach, but

instead of saying that OSSD is different from SE, authors

say that OSSD is not an engineering method. The implied

comparison is still OSSD versus SE. All such statements

are based in a basic black and white schema: that of

OSSD on the one hand and SE on the other.

The third way of making statements that OSSD is

different from SE, is indirect. It is indirect in that it makes

no reference to SE, "the usual style industrial style of

software development", or variations thereof. Instead, the

comparison is implied by describing OSSD in terms of

work not being assigned, no explicit system-level design,

and no project plan, schedule or list of deliverables.

OSSD is here characterized by reversing salient

characteristics of SE: that in SE work is assigned, there is

explicit system-level design, and there is a project plan,

schedule or list of deliverables. As such, OSSD is placed

in a dichotomous relationship with SE reproducing the

two broad categories of OSSD on one hand and SE on the

other.

By situating OSSD in a dichotomous relationship with SE

implies homogeneity of OSSD; that it is meaningful to

situate the phenomenon at large in contrast to SE.

Myth-Busting Studies

Early OSS advocacy literature makes claims about the

superiority of OSSD compared to commercial software

development. In an effort to develop a deeper and more

refined understanding of the OSSD phenomenon,

researchers have put these myths about OSSD to the test

by comparing OSS with close source software (CSS).

These studies aim at providing a more correct

understanding of the OSSD phenomenon by challenging

empirically unsubstantiated claims. Among these are

claims that OSSD compared to CSS produces more

maintainable software, simpler designs, software with

lower defect density, software with higher quality and

reliability, and that OSSD fosters more creativity.

There are two common denominators of these studies.

One, the research approach is to generate quantitative

measures from products of the software process,

Østerlie et al. Critical Review of Software Engineering Research on OSSD

Proceedings of the 2
nd

 AIS SIGSAND European Symposium on Systems Analysis and Design, Gdansk, Poland, June 5, 2007 5

particularly source code and defect reports. Two, these

studies compare OSS with CSS either explicitly in the

research questions or in discussing the findings.

The earliest of these myth-busting studies date back to

2002, with a predominance of such research published

from 2004 and onwards. While most of the tested myths

are debunked, the studies' significance in the context of

this paper is that they build upon the basic dichotomy of

OSS in contrast to CSS. In the process of refining our

knowledge of OSSD, these studies reproduce a black and

white view of OSSD as a homogenous phenomenon by

performing comparisons with the two generic categories

of OSS and CSS.

OSS Adoption in Commercial Software Development

A number of studies on OSSD adoption in commercial

software development have been published recent years.

These studies focus on the adoption of OSS components

or OSS tools in commercial software development.

Numerous researchers have pointed out the tight

relationship of OSSD and commercial software

companies (Koru and Tian, 2005). However, the

relationship between OSS and commercial actors remains

largely unexplored. The studies on OSS adoption

therefore aim to broaden our understanding of the OSSD

phenomenon by investigating this relationship.

The problem with this literature is two-fold. One, it

assumes that OSS is essentially different from

commercial off-the-shelf software and therefore requires a

unique approach for evaluation. Two, although studying

OSS in a commercial setting, these studies do not

challenge the view of OSSD as completely different from

SE. Instead, they focus on how commercial companies

make use of OSSD products. Little, if any, attention is

paid to the development of OSS in a commercial context.

By omission these studies therefore reproduce the view of

OSSD as completely different from commercial software

development or SE; a view grounded in the assumption of

OSSD as a homogenous phenomenon.

DISCUSSION

The analysis above illustrates the ways in which OSSD is

described as a homogenous phenomenon by the SE

research literature. The purpose of this section is to

address the research question by discussing the conditions

under which the statement that OSSD is a homogenous

phenomenon can be made and sustained in the context of

SE research. As such, this part of the paper broadens the

analysis from the discourse itself to its context: SE

research.

Assumptions About Software Engineering Research

Glass (2003) observes that “[f]or most of SE’s history,

authors have eagerly told practitioners what they ought to

be doing … [b]ut rarely have those ‘ought’ been

predicated on what practitioners actually are doing".

Singer et al. (1997) observe that there is little in the SE

research literature about what it is that the software

engineers do on a day-to-day basis, the kinds of activities

they perform, and the frequency with which these

activities take place. While there exist a strain of

empirical studies of SE in practice, this has had little or no

impact on the mainstream SE research literature. It is

therefore unproblematic to state that OSSD is different

from SE: OSSD practice does differ from prescriptive

models for software development.

SE is a movement of industry and academic actors to

professionalize software development by applying

engineering to software through the "application of

systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software"

(IEEE, 1990). The idea of a software crisis is central to

this movement. Practically every SE textbook discusses

the software crisis, and both SE professionals and

researchers keep discussing the continued software crisis

(Glass, 2003). Professionalizing software development is

the SE movement's answer to the crisis – to a certain

extent even its reason to be. The success of OSSD –

software developed by volunteers – can be seen as a direct

challenge to the very identity of SE, defying the central

claim that professionalizing software development will

resolve the software crisis.

That the SE research literature maintains the claim that

OSSD is different from SE can be interpreted as a way of

meeting this challenge. Refuting the general applicability

of OSSD outside the specific context where there is a

convergence between user and developer can be

interpreted as a direct answer to the challenge

(Messerschmidt, 2004). Another approach is to

characterize OSSD as the inverse of SE as illustrated in

the above analysis. Similarly, in comparing OSSD

practice with predictive software development models,

publishing SE researchers bypassing the problematic issue

that the SE research discipline actually knows little about

the field they are trying to address: SE in practice.

As such, maintaining the claim that OSSD is different

from SE and CSS development serves the purpose of

strengthening the SE research discipline. Yet, the effect of

this is that OSSD is treated as if it was a single,

homogenous phenomenon. And the question remains:

how different is OSSD and SE practice?

Assumptions About How To Do Software Engineering

Research

The predominance of empirical studies of OSSD

reviewed for this paper, are based on either source code

measurements or measures extracted from defect tracking

and revision control systems. Of the empirical studies

reviewed, only three were not based on measurements of

products of OSSD. One of these was an ethnographic

study (Scacchi, 2004), one a questionnaire survey (Ajila

and Wu, 2007), and the third based on undisclosed

observational research (Breuer and Valls, 2006). The

Østerlie et al. Critical Review of Software Engineering Research on OSSD

Proceedings of the 2
nd

 AIS SIGSAND European Symposium on Systems Analysis and Design, Gdansk, Poland, June 5, 2007 6

dominant approach for SE research on OSSD is therefore

to measure the products of the software process.

This approach to studying OSSD grows out of a problem

particular to the situation of SE during the 1990s:

researchers' observation of a widening gap between

software engineering research and practice (Glass, 1994).

The software engineering research community was

becoming increasingly concerned with its lack of impact

on practice. Researchers looked for ways to address this.

Tichy et al. (1993) concluded that instead of informing

practice, SE research was lacking in quality and thereby

becoming less credible for industry. Similarly, in a review

of the SE research literature, Fenton (1993) found "very

little empirical evidence to support the hypothesis that

technological fixes, such as the introduction of specific

methods, tools, and techniques, can radically improve the

way we develop software systems".

The diagnosis of the problem situation is outlined in a

number of surveys of the SE research literature. In a

survey of 612 SE research papers, Zelkowitz and Wallace

(1998) found that 58.7% of the surveyed papers had no

validation of research claims or the validation was based

on assertions. Similarly, in a survey of 400 research

papers within the broader field of computer science,

Tichy et al. (1995) found only 20% of the SE papers

devoted more than one fifth or more of the space to

research validation. Glass (1994) labels research lacking

in validation advocacy research – researchers advocating

a new technology without validating its effectiveness over

existing technologies or its applicability to practitioners.

A call for increased empirical research and scientific

rigour within the software engineering research

community rigour rose in response to the problem

situation. To bridge the gap between theory and practice,

researchers had to move from a research-and-transfer

model to an industry-as-laboratory approach (Potts,

1993). Software engineering research needed to better

validate its scientific claims (Zelkowitz and Wallace,

1998). The low ratio of validated research had to be

rectified for the long-term health of the field (Tichy et al.,

1995). However, validation was only one aspect of this

increased concern with scientific rigour. Scientific rigour

also require better understanding of measurement theory.

Fenton (1994) argues that software engineering

researchers "must adhere to the science of measurement if

it is to gain widespread acceptance and validity".

Quantitative data based on measuring products of the

software development process (i.e. source code and data

extracted from defect tracking and revision control

systems) are well suited for doing comparative research.

The myth busting studies make use of this, by comparing

OSS and closed source software (CSS) to verify claims

made by early OSS advocates that characteristics of OSS

differ from CSS. The myth busting studies can be

understood as an amalgamation of the OSS and SE

discourses in that the scientific approach of empirical SE

is applied on open issues raised by the OSS advocacy

literature. While the advantage with measurement-based

research is the ability to compare, the problem in this case

is that the basis of the comparison is the product of OSSD

on one side and the product of what is called CSS

development on the other. While the studies have been

performed with the highest scientific rigour, the

amalgamation between the OSS and SE discourses

reproduces the very broad distinction of OSS and CSS.

Operating with only two broad categories absolves the

researcher from discussing the comparability of the

categories. The question is how comparable measures

based on products of the software development process

are. How comparable is the defect density of a single-user

application developed by two OSS developers, the mean

number of developers on the SourceForge.org OSS portal,

with that of a large multi-team development effort like the

Linux kernel, for instance? This is a problem that cannot

be met only by "greater discipline and rigour – deeper

research, more quantitative data, and more robust cross

case analysis" (Feller et al., 2006). The problem itself a

product of the research methods employed on OSSD. As

such, it beckons a call for increased multiplicity of

research approaches.

Assumptions About the Object of Study

Table 3 summarizes the instances of OSSD studied

empirically in the analyzed subset of texts. It is striking

how a handful of instances of OSSD keep recurring.

OSSD case Number of studies

Mozilla 4

Linux kernel 4

Other (unspecified) 3

Apache 2

FreeBSD 2

SourceForce.net 1

OpenBSD 1

NetBSD 1

Debian 1

FreshMeat.net 1

KOffice 1

The GNU Compiler

Collection

1

OpenOffice 1

Table 3 Summary of OSS cases studied

Østerlie et al. Critical Review of Software Engineering Research on OSSD

Proceedings of the 2
nd

 AIS SIGSAND European Symposium on Systems Analysis and Design, Gdansk, Poland, June 5, 2007 7

Have early descriptions of OSSD been turned into

prescriptions for choosing instances of OSSD to study? Is

that why there are so few cases? Of the cases studied, all

comply with the description of OSS projects as mainly

volunteer, adhering to the rapid release and fix software

development cycle. There are no empirical studies of

OSSD in an industrial setting. Studies on OSS adoption

are disregarded, as they are not studies of OSSD in an

industrial setting, but rather how OSS is used in a

commercial setting.

Fitzgerald (2006) raises concerns about the possibility of

a broadening gap between the focus of OSSD research

and the OSSD phenomenon itself as OSSD is shifting

from geographically distributed software development in

communities of volunteers towards development by

commercial actors. To meet the concern, Fitzgerald (ibid.)

proposes that "the open source phenomenon has

undergone a significant transformation from its free

software origins to a more mainstream, commercially

viable form – OSS 2.0".

Is this altogether new? Perens (1999) reports that the

Open Source Initiative, and the OSS term itself,

originated in a meeting between advocates and the

fledgling Linux industry in 1997. The goal of the meeting

was to make free software a viable alternative for the

mainstream software industry by de-politicizing it.

Commercial interests were always strong in the Apache

community (Behlendorf, 1999), even prior to IBM

deciding to adopt Apache as its official Web server and

hiring many of the Apache developers in 1998. Cygnus

Solutions is an early commercial actor building upon and

driving development of the GNU Compiler Collection

(Tieman, 1999). Similarly, RedHat Software, Inc. has

developed and maintained OSS for their GNU/Linux

distribution since 1995 (Young and Rohm, 1999). In an

effort to meet the stiff competition from Microsoft,

Netscape released the source code of their web browser as

the Mozilla OSS browser in 1998 to differentiate

themselves from the competition.

While all empirical studies of Mozilla reviewed for this

paper do note the commercial heritage of the source code

and that Netscape hires most of the core developers of the

Mozilla project, none have studied the relationship

between the company and the community. The Mozilla

studies are good examples of how the gap between OSSD

research and the OSSD phenomenon that Fitzgerald

(2006) is concerned about has already developed within

SE research on OSSD. Although recent research suggests

that commercial interest in OSS is increasing (Ghosh,

2007), this can hardly be argued as a shift in the

phenomenon itself. Rather researchers' focus on

community-based OSSD has overshadowed the

commercial ties, which were never been truly explored.

As such, the premise of Fitzgerald's (2006) problem can

be understood as a product of existing research's focus on

OSSD as geographically distributed, community-based

software development.

IMPLICATIONS FOR SE RESEARCH ON OSSD

Through a discourse analysis of the SE research literature,

this paper has argued that the assertion that SE research

describes OSSD as a homogenous phenomenon is not

grounded in empirical research. The research question

'under what conditions can the view of OSSD as a

homogenous phenomenon be made and maintained over

time?' is answered by situating the OSSD discourse in

context of SE research at large. It is argued that the

conditions are to be found in assumptions about the SE

research field, how to do SE research, and about the

phenomenon of OSSD itself. As such, treating OSSD as a

homogenous may be a potential bias running throughout

the SE research literature on OSSD.

However, this is not a black-and-white picture. Some

researchers raise issues about diversity of OSSD

practices. However, the full impact of such observations

has yet to materialize in SE research on OSSD. This

section concludes the paper by drawing implications of

this for SE research on OSSD.

Usefulness of the OSS Term

As shown in the analysis, SE researchers often use the

term OSSD to make generic statements about a particular

approach to software development. However, this is

problematic and does to a certain extent assume that

OSSD is a homogenous phenomenon. Gacek and Arief

(2004) notes that the only common characteristic of

OSSD is that software product is released under an

license compliant with the Open Source Definition. As

such, the usefulness of the term OSSD is limited and

espouses a certain view of the phenomenon.

Researchers may avoid this problem by being specific

about the instances of OSSD studied instead of relying

upon generic descriptions of OSSD. Being specific on the

salient characteristics of the studied instances is a basis

for discussions on the generalization of research findings.

Here are some issues worth focusing on when being more

specific about the studied instance of OSSD.

Sizes. How many developers are involved? What kind of

software is developed, and how what is its size?

Commercial and/or community. Some OSS projects are

completely community driven, other are controlled by

companies, and other in turn are community-based with

strong commercial ties. Issues worth considering are

therefore: Is the case studied community driven or headed

by a company? How many of the community members

are hired to contribute, and how many are volunteers?

What is the distribution of volunteers and hired

developers?

Geographical distribution. One of the issues motivating

OSSD has been that of studying successful examples of

distributed software development. Many cases of OSSD

are geographically distributed. Issues worth discussing

when writing up research are: What is the geographical

Østerlie et al. Critical Review of Software Engineering Research on OSSD

Proceedings of the 2
nd

 AIS SIGSAND European Symposium on Systems Analysis and Design, Gdansk, Poland, June 5, 2007 8

distribution of the developers? Are any groups of

developers geographically co-located? How many groups

of co-located developers exist? Does the geographical co-

location have any impact on the organization of the

project? What is the impact of the geographical

distribution on coordination within the project? What

tools are used for bridging the geographical gap between

developers?

Developer demography. While there exist much research

on the motivation of OSS developers, we know little

about who they are. Apart from Dempsey et al.'s (1999)

study of the distribution of contributors to the UNC

MetaLab's Linux Archives by studying the domain of

their e-mail addresses, there is a distinct lack of research

about who OSS developers are. Future research could

focus on improving our understanding of who the people

developing OSS are.

Implications for Method

We have illustrated how the dominant approach for

studying OSSD within SE reproduces the view of OSSD

as a homogenous phenomenon. Leading OSSD

researchers call for "greater discipline and rigour – deeper

research, more quantitative data, and more robust cross

case analysis" (Feller et al., 2006). However, the problem

is not caused by a lack of methodical discipline or rigour,

but rather with the taken-for-grantedness of the

phenomenon studied. As such, more cross case analysis

may indeed worsen the problem.

Instead, there is a need for diversifying approaches to

studying OSSD. The phenomenon needs to be approached

with methods that can shed further light on the practice of

OSSD, not only on the products of the process. It may be

worth looking towards recent studies of OSSD practice

within the field of computer supported cooperative work

(Ducheneaut, 2005). This research uses ethnographic

methods. While studying the product of OSSD may give

the impression of homogeneity of the phenomenon,

studies of OSSD practice can challenge this by looking at

the specifics of practice may reveal if such is really the

case.

Implications for Case Selection

There is a poverty of OSSD cases studied, both in the

distribution of individual cases but also in that they are all

studies of community-based OSSD. There is no research

on OSSD in an industry setting. Little attention is paid to

the relationship between commercial organizations and

OSS communities. How do commercial actors

participation in OSS communities impacts on their

internal development processes? Future research should

address this by studying such instances of OSSD.

Furthermore, an implication of the problem with using

top-down generalization for case selection is that the

rationale for case selection has to be grounded in salient

characteristics of the selected case. Case selection needs

to address two questions: What are the salient

characteristics of this case that makes it worth

researching? What dimensions of the OSSD phenomenon

can it shed further light on?

REFERENCES

1. Adam, F., Feller, J. and Fitzgerald, B. (2003)

Logicels Libres: Implications pour les Organisations,

Systems d'Information et Management, 8, 1.

2. Ajila, S. A. and Wu, D. (2007) Empirical Study of

the Effects of Open Source Adoption on Software

Development Economics, Journal of Systems and

Software, Forthcoming.

3. Behlendorf, B. (1999) Open Source as a Business

Strategy In Open Sources: Voices from the Open

Source Revolution, (Eds, DiBona, C., Ockman, S.

and Stone, M.) O'Reilly & Associates, Sebastapol,

CA, 149-170.

4. Breuer, P. T. and Valls, M. G. (2006) Raiding the

Noosphere: The Open Development of Networked

RAID Support in the Linux Kernel, Software-

Practice and Experience, 36, 4, 365-395.

5. Clarke, D. (2006) Foreword: Special Issue on Free,

Libre, and Open Source Software, Knowledge,

Technology & Policy, 18, 4, 3-4.

6. Crowston, K. and Howison, J. (2005) The social

structure of free and open source software

development, First Monday, 10, 2.

7. Damiani, E., Fitzgerald, B., Scacchi, W., Scotto, M.

and Succi, G. (2006) In Second International

Conference on Open Source SystemsSpringer, Como,

Italy, pp. 351.

8. Ducheneaut, N. (2005) Socialization in an Open

Source Software Community: A Socio-Technical

Analysis, Computer Supported Cooperative Work

(CSCW), 14, 4, 323-368.

9. Feller, J., Finnegan, P., Hayes, J. and Lundell, B.

(2006) Panel: Business models for open source

software, Towards an understanding of the concept

and its implications to practice,

http://oss2006.dti.unimi.it/slides/businessModelPanel

.pdf, Last accessed: January 4 2006.

10. Feller, J. and Fitzgerald, B. (2002) Understanding

Open Source Software Development, Addison-

Wesley, London.

11. Feller, J., Fitzgerald, B., Hissam, S. A. and Lakhani,

K. R. (Eds.) (2005) Perspectives on Free and Open

Source Software, The MIT Press, Cambridge, Mass.

12. Feller, J., Fitzgerald, B. and van der Hoek, A. (2002)

Editorial: Open Source Software Engineering, IEE

Proceedings - Software, 149, 1, 1-2.

13. Fenton, N. (1993) How Effective Are Software

Engineering Methods?, Journal of Systems and

Software, 22, 2, 141-146.

Østerlie et al. Critical Review of Software Engineering Research on OSSD

Proceedings of the 2
nd

 AIS SIGSAND European Symposium on Systems Analysis and Design, Gdansk, Poland, June 5, 2007 9

14. Fenton, N. (1994) Software Measurement: A

Necessary Scientific Basis, IEEE Transactions on

Software Engineering, 20, 3, 199-206.

15. Fitzgerald, B. (2006) The Transformation of Open

Source Software, MIS Quarterly, 30, 3, 587-598.

16. Gacek, C. and Arief, B. (2004) The Many Meanings

of Open Source, IEEE Software, 21, 1, 34-40.

17. Ghosh, R. A. (2007) Study on the: Economic Impact

of Open Source Software Software on Innovation and

Competiveness of the Information and

Communication Technologies (ICT) Sector in the EU

(Final Report), ENTR/04/112.

18. Glass, R. L. (1994) The Software-Research Crisis,

IEEE Software, 11, 6, 42-47.

19. Glass, R. L. (2003) The State of the Practice of

Software Engineering, IEEE Software, 20, 6, 20-21.

20. Glass, R. L., Vessey, I. and Ramesh, V. (2002)

Research in software engineering: an analysis of the

literature, Information and Software Technology, 44,

8, 491-506.

21. Hannemyr, G. (1999) Technology and Pleasure:

Considering Hacking Constructive, First Monday, 4,

2.

22. IEEE (1990) IEEE standard glossary of software

engineering terminology, 610.12-1990.

23. Karels, M. J. (2003) Commercializing Open Source

Software, Queue, 1, 5, 46-55.

24. Koch, S. (Ed.) (2004) Free/Open Source Software

Development, Idea Group.

25. Koru, A. G. and Tian, J. J. (2005) Comparing High-

Change Modules and Modules with the Highest

Measurement Values in Two Large-Scale Open-

Source Products, IEEE Transactions on Software

Engineering, 31, 8, 625-642.

26. Lakhani, K. R. and Wolf, R. G. (2005) Why Hackers

Do What They Do: Understanding Motivations and

Effort in Free/Open Source Software Projects In

Perspectives on Free and Open Source Software,

(Eds, Feller, J., Fitzgerald, B., Hissam, S. A. and

Lakhani, K. R.) The MIT Press, Cambridge, Mass.,

3-23.

27. Messerschmidt, D. G. (2004) Back to the user [open

source], IEEE Software, 21, 1, 89-91.

28. Michlmyer, M., Hunt, F. and Probert, D. (2005) In

First International Conference on Open Source

SystesmGenova, Italy, pp. 24-28.

29. Mockus, A., Fielding, R. T. and Herbsleb, J. D.

(2002) Two Case Studies of Open Source Software

Development: Apache and Mozilla, ACM

Transactions on Software Engineering and

Methodology, 11, 3, 309-346.

30. Perens, B. (1999) The Open Source Definition In

Open Sources: Voices from the Open Source

Revolution, (Eds, DiBona, C., Ockman, S. and Stone,

M.) O'Reilly & Associates, Sebastapol, CA, 171-180.

31. Phillips, N. and Hardy, C. (2002) Discourse Analysis:

Investigating Processes of Social Construction, Sage,

Thousand Oaks, CA.

32. Potts, C. (1993) Software-Engineering Research

Revisited, IEEE Software, 10, 5, 19-28.

33. Raymond, E. S. (1998) The Cathedral and the

Bazaar, First Monday, 3, 3.

34. Scacchi, W. (2004) Free and open source software

practices in the gaming industry, IEEE Software, 21,

1, 68-72.

35. Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S. A.

and Lakhani, K. R. (2006) Guest Editorial:

Understanding Free/Open Source Software

Development Processes, Software Process:

Improvement and Practice, 11, 2, 95-105.

36. Scotto, M. and Succi, G. (2005) In First International

Conference on Open Source SystemsSpringer,

Genova, Italy.

37. Singer, J., Lethbridge, T. C., Vinson, N. and

Anquetil, N. (1997) An Examination of Software

Engineering Work Practices, Center for Advanced

Studies Conference (CANCON),

38. Tichy, W. F., Habermann, N. and Prechelt, L. (1993)

Summary of the Dagstuhl workshop on future

directions in software engineering: February 17–21,

1992, Schloß Dagstuhl, ACM SIGSOFT Software

Engineering Notes, 18, 1, 35-48.

39. Tichy, W. F., Lukowicz, P., Prechelt, L. and Heinz,

E. A. (1995) Experimental Evaluation of Computer

Science: A Quantitative Study, Journal of Systems

and Software, 28, 1, 9-18.

40. Tieman, M. (1999) Future of Cygnus Solutions: An

Entrepreneur's Account In Open Sources: Voices

from the Open Source Revolution, (Eds, DiBona, C.,

Ockman, S. and Stone, M.) O'Reilly & Associates,

Sebastapol, CA, 71-90.

41. von Krogh, G. and von Hippel, E. (2003) Open

Source Software: Introduction to a Special Issue of

Research Policy, Research Policy, 32, 7, 1149-1157.

42. Webster, J. and Watson, R. T. (2002) Analyzing the

Past to Prepare for the Future: Writing a Literature

Review, MIS Quarterly, 26, 2, xii-xxiii.

43. Young, R. and Rohm, W. G. (1999) Under the

Radar: How Red Hat Changed the Software Business

- and Took Microsoft by Surprise, Corriolis Group,

Scottsdale, AZ.

44. Zelkowitz, M. V. and Wallace, D. R. (1998)

Experimental Models for Validating Technology,

IEEE Computer, 31, 5, 23-31.

Paper 7

Østerlie, T., and Jaccheri, L. "Balancing Technological and Community Interest: The

Case of Changing a Large Open Source Software System", in Proceedings of the 30th

Information Systems Research Seminar in Scandinavia (IRIS 30), Tampere, Finland,

August 11-14, 2007, pp. 66-80.

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 1

Balancing Technological and
Community Interest: The Case of
Changing a Large Open Source Software
System
Thomas Østerlie and Letizia Jaccheri
Norwegian University of Science and Technology

Abstract. This paper studies the process of rewriting and replacing critical parts of a
large open source software (OSS) system. Building upon the notions of installed based
and transition strategies, we analyze how the interaction between the OSS and the
context within which it is developed and used enables and constrains the process of
rewriting and replacement. We show how the transition strategy emerges from and
continuously changes in response to the way the installed base is cultivated. By
demonstrating a mutual relationship between the transition strategy and the installed
base, we show how the transition strategy in this particular case changes along three
axes: the scope of the rewrite, the sequence to replace existing software, and the actors
to be involved in the process. The paper is concluded with some implications for how to
study the process of rewriting and replacing OSS.

Keywords. Open source software development. Rewrite and replacement.
Transition strategy. Installed base.

Introduction

Parallel development, a rapid release schedule, actively involved users, and
prompt feedback are described as key characteristics of open source software
(OSS) development (Feller & Fitzgerald 2002). Empirical studies of OSS

Authors: Østerlie and Jaccheri

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 2

development have therefore primarily focused on the cyclic process of corrective
and adaptive maintenance (German 2005), its organization (Crowston & Howison
2005), and analysis of the products of this process (Paulson et al. 2004,
Samoladas et al. 2004, Mockus et al. 2002). Describing the process of rewriting
the FreeBSD kernel, Jørgensen (2001) shows that unlike the discretely delineated
tasks of adaptive and corrective maintenance, rewriting OSS is a longitudinal
process that does not lend itself well to parallel development, rapid release
schedule, and active user involvement. While we know that large and successful
OSS products are rewritten–for instance the original Apache code was rewritten
and replaced with a modular design in 1995, and several large subsystems of the
Linux kernel, like virtual memory handling, have been rewritten and replaced
throughout the kernel's life cycle–we find that rewriting and replacing is an
underdeveloped topic within OSS research.

Building upon Jørgensen's (2001) work, we study the repeated attempts at
rewriting and replacing a core OSS system. The empirical basis for this paper is a
study of the Gentoo Linux distribution. The background for the study is that the
Gentoo package manager, the core of the Gentoo Linux distribution "is very
fragile [because it has] evolved rather than being designed", as one of the Gentoo
developers puts it. Studying the attempts at rewriting and replacing the package
manager provides an excellent opportunity to study the problems associated with
rewriting and replacing critical parts of a large OSS system. To this end, we ask:
How does the interaction between the OSS and the context within which it is
developed and used enable and constrain the process of rewriting and
replacement? In this paper we analyse this by studying the relationship between
the installed base and transition strategies (Hanseth and Monteiro 1998) in the
process of rewriting and replacing the Gentoo package manager.

The remainder of the paper is structured as follows. The second section
motivates the study of rewriting and replacing OSS through the notions of
transition strategies and installed base. These two terms are elaborated. The third
section outlines the case; presenting the research setting, as well as describing
three attempts at rewriting and replacing the package manager. In the fourth
section we discuss the case along two dimensions that surface in the case: the
issue of resources and transition strategies as a process. The final section contains
concluding remarks, where we describe how we have addressed the research
question and implications of our findings to the study of rewriting and replacing
OSS.

Methodologically, the paper is based on an interpretive case study (Klein &
Myers 1999) of the Gentoo OSS community. The data was primarily collected
during a ten months programme of participant-observation conducted from March
to December 2004. Since the OSS community is geographically distributed,
participant-observation took the form of observing and participating on the
Internet Relay Channels (IRC) that the community use for communication, by

Authors: Østerlie and Jaccheri

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 3

submitting and resolving failure reports, as well as contributing with code.
Throughout the period of fieldwork the IRC channels we participated on were
logged to disk; one file each day for each IRC channel totalling 1027 files. A key
informant also provided us with his IRC logs, stretching back to April 2003. No
formal interviews of participants in the OSS community were undertaken,
although informal talks with participants–both on e-mail and on IRC–were
conducted on a regular basis to test our informal theories about the fieldwork. 71
documents were collected throughout the period and organized in a documentary
database. Online data sources that provide static data were surveyed. These
include the Gentoo bug tracking database, the Gentoo mailing list archives, and
the Gentoo revision control system. As the Gentoo Web site is under revision
control, relevant documents from this Web site were not organized in the
documentary database. Instead, we decided to rely on Gentoo's revision control
system. This archival material provided us with data from 2002 to the end of
2005. A more thorough presentation of the research is provided in (Østerlie and
Wang 2006).

Theory

Jørgesen (2001) describes the process of implementing symmetric multi-
processing, a significant new feature, in the FreeBSD operating system kernel.
Although the paper describes in detail the practical arrangements for making the
significant change and folding it into the main code base, the paper tells little
about the context and rationale for organising the process this way. However, the
paper provides little information about how the OSS developers decide upon the
specifics of this process of going from one version of the software to other. We
expand upon Jørgensen's (ibid.) work, by examining how OSS developers make
such decisions. We do so by analysing the OSS an information infrastructure (II)
(Hanseth and Monteiro 1998), studying the process of rewriting and replacing the
Gentoo package manager in terms of transition strategies and installed base.

Transition strategies

The transition strategy is a plan outlining how to go from one stage of the II to the
other (Monteiro 1998). However, the transition strategy is caught in a dilemma,
"where the pressure for making changes … has to be pragmatically negotiated
against the conservative forces of the economical, technical, and organizational
investments in the … installed base" (ibid., p. 230). Controversies over a
transition strategy are therefore negotiations about how big changes can–or have
to– be made, where to make them, and when and in which sequence to deploy
them.

Authors: Østerlie and Jaccheri

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 4

Whereas Jørgensen (2001) describes the sequencing when rewriting a clearly
delineated part of the software, thinking in terms of transition strategies enables
us to study the larger process of rewriting software encompassing what is to be
rewritten and the scope of the changes, important factors in the process of
rewriting the Gentoo package manager.

Installed base

The installed base can be defined as the interconnected technologies and practices
that are institutionalised in an organization (Hanseth and Monteiro 1998).
Adopting this view, we see that changes cannot be made to software artefacts in
isolation, but must always take into account the other elements of the installed
base that the artefact is connected to.

This points towards two important elements when thinking in terms of
installed base. One, II's must evolve by extending and improving the existing
installed base, or cultivating the installed base as it is called (ibid.). Two, as II's
grow, it becomes increasingly hard to extend and improve it because of the many
elements that have to be changed in the process. This is called the inertia of the
installed base (ibid.).

Actor-network theory

Like II, actor-network theory (ANT) is the underlying ontology for this study as
well. We therefore mobilise a limited ANT vocabulary inscribed in and circulated
by Callon (1986) and Latour (1987) for the case description and analysis of this
paper. Well aware of recent movement toward fluids and fiery objects both within
ANT and IS research, we choose to mobilise this vocabulary as it translates well
our interest in bringing forth the chronic tension of multiple and at times
contradictory interest in cultivating the Gentoo installed base.

A major focus of ANT is to provide a way of tracing and explaining the
process of how networks of actors, actor networks, become more or less stable
through the alignment of interest. Particular to ANT is that the notion of actors
encompasses both human and non-human actors such as software technologies,
documents, and so on.

The process wherein networks of aligned interest are created and maintained,
is called translation. Through the process of translation the translating actor
defines other actors, endowing them with interests and problems to be overcome.
By framing a problem in such a way that it determines a set of actors, the
translating actor defines and aligns the other actors' interests with his own (Callon
1986). The problem is framed in to establish the translating actor as an obligatory
passing point by enrolling and mobilising the other actors to pass through this
point to achieve their interests.

Authors: Østerlie and Jaccheri

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 5

Translation is therefore the process of enrolling a sufficient body of actors by
aligning these actors' interests so that they are willing to participate in particular
ways of acting. It implies definition, and this definition is inscribed in material
intermediaries (Latour 1986). These intermediaries are actors in their own right.
They are delegates who stand in for and speak for particular interests; they are the
medium in which interests are inscribed. The operation or translation is therefore
triangular: it involves a translating actor, actors that are translated, and a medium
in which the translation is inscribed.

The Case of Rewriting and Replacing Portage

GNU/Linux distributions, complete operating systems that integrate the Linux
operating system kernel with a collection of software libraries and applications,
are an intrinsic part of the success of Linux. Since the beginning of the Linux
kernel development in the early 1990s, communities of OSS developers have
created GNU/Linux distributions. As GNU/Linux distribution consists of
thousands of different software libraries and applications, distribution developers
primarily repackage third-party OSS, doing whatever adaptations required for the
third-party software to function on their specific GNU/Linux distribution. At the
time of writing, there are over 300 Linux distributions, large and small–some
developed commercially, others developed by volunteers–registered with the
DistroWatch (2006) Web site. In this paper we report from a study of the OSS
community developing the Gentoo Linux distribution, rated by DistroWatch
among the ten most widely used distributions.

Starting out as a one-man volunteer project in 2000, by 2003 the number of
volunteer Gentoo developers had grown to over 200. The number of third-party
software libraries and applications, collectively labelled packages, supported by
the Gentoo Linux distribution had also grown. From being a GNU/Linux
distribution, Gentoo had over time been turned into a generalized software system
for distributing OSS software packages for different Unix operating systems like
BSD and MacOS. By 2003 Gentoo suffered increasingly from growth pains.

Organizationally, they Gentoo developers addressed the growth pains by
introducing a formal management structure in June 2003: "The purpose of the
new management structure is to solve chronic management, coordination and
communication issues in the Gentoo project" (GLEP 4). Technically, by mid-
2003 growth pains were putting a strain on the Gentoo package manager, Portage,
the software that integrates packages on local Gentoo systems. It is from the
repeated attempts at rewriting and replacing the package manager that we report
in this paper. Although all of the Gentoo developers can agree that the package
manager needs to be rewritten and replaced, this turns out to be problematic.
After numerous attempts, the Gentoo developers give up. Why is it that they fail
to rewrite and replace the package manager? We provide an overview of these

Authors: Østerlie and Jaccheri

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 6

attempts in the rest of this section, before we address the above question during
the discussion in section 4.

First attempt

It is mid-November 2003. Four developers make a forceful declaration of intent
during the biweekly Gentoo managers' meeting: "We are aggressively working on
plans for next generation Portage, which is not going to simply be a rewrite or a
new version but beyond people's wildest expectations". The source code of the
current version of Portage "is very fragile [because it has] evolved rather than
being designed". It has become difficult to comprehend and maintain, preventing
the Gentoo developer community at large from participating in developing and
maintaining the package manager. Currently, only a "small group [of Gentoo
developers] really know how to make significant contributions to the code".

To enrol the Gentoo developer community with the rewrite effort, the four
developers provide an architecture diagram (see Figure 1). The diagram
graphically lays out the main parts of the package manager, the interface between
these parts of the system, and which features will be supported as components.

Figure 1 Portage-ng architecture diagram

By rewriting Portage with a core system and "a solid API for components
[where] major parts that are now core Portage are going to be implemented as
components", the four developers explain, "components can be developed by
different teams [of Gentoo developers", turning Portage into "a true community
project". To achieve this end, they continue, Portage "is not just to be 'robust
enough' but incredibly reliable".

The architecture diagram serves to meet the interests of two other actors.
Performance of the package manager has been a point of discontent among the
people administrating Gentoo systems. Furthermore, a number of Portage-specific
applications that are part of the Gentoo software distribution operate directly on

Authors: Østerlie and Jaccheri

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 7

Portage's database and configuration files. A recurring problem with changing the
format of these configuration files and databases, is that some of the Portage-
specific tools cease to function. To meet these interests, the four developers are
developing a prototype of the core system.

The prototype is realized in GNU Prolog, as this programming language can
meet the above interests. Prolog can provide "robust, provably correct code".
GNU Prolog has an API for components to be written "in C for performance
when needed". However, the final choice of realization language is to grow out of
the requirements. "Right now," the four developers explain, "we are at the
blueprint stage … the plan is to get a solid blueprint, then make it a community
project at the earliest possible point". While the four develop the blueprint and the
prototype, they enrol the Gentoo developer community at large to formulate
requirements for the rewrite.

No one in the community questions the rationale for rewriting Portage from
scratch with a modular architecture. However, the choice of Prolog for a
prototype produces resistance. How can Prolog resolve the problem of
performance, when "Prolog could be very slow"? one developer asks. Also, how
can Portage be turned into a true community project when only very few Gentoo
developers are familiar with the predicate-logic programming paradigm of
Prolog? The choice of realization language will produce a high entry-barrier,
some developers argue.

The promised Prolog prototype fails to manifest, and in mid-December 2003 a
competing prototype realized in Ada appears. Throughout November and
December the four developers planning to rewrite Portage keep on trying to enrol
the Gentoo developer community with their plan by pointing out time and again
that the choice of realization language is to emerge from the requirements.
However, instead of formulating requirements, the Gentoo developer community
delve into endless discussions about the best programming language for rewriting
Portage.

By February 2004 all activities on this attempt to rewrite Portage have ceased.

Second attempt

On February 18 2004 a new CVS module called Portage-mod is imported into the
Gentoo CVS repository with the following note attached: "All current work
between me and George moved from remote cvs to Gentoo cvs!". Where Portage-
ng is a complete rewrite of Portage from scratch, Portage-mod is an effort to take
the existing Portage code and modularize it. Niles, a Gentoo developer, is heading
the effort with help from George, a newcomer to Gentoo and not yet an official
Gentoo developer.

While Niles is modularizing the existing Portage source code, George will help
writing unit tests. According to the README file imported with the CVS

Authors: Østerlie and Jaccheri

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 8

module, the plan is that the "[d]evelopment of a package structure should
facilitate the later development of an consistent Portage API, development of this
API is part of this project and development should … begin once Portage
modularization is done and a unit testing framework is done."

Development on Portage_mod is undertaken in parallel with the continued
development and maintenance of Portage. When the code is modularized, the plan
is to rework changes made to Portage during the period of modularization into the
modularized version. However, it turns out that the changes made are too
significant to achieve this, and this second attempt at rewriting and replacing
Portage is laid to rest.

Interlude

"I have a feature request for you", Bob states on the Portage developers' IRC
channel. It is mid-April 2004. Bob is a newcomer to the Gentoo community,
having only recently been adopted by the Gentoo community to introduce web
application support for Gentoo. "The configuration tool for web applications need
to edit the Portage database," he continues, "so that a single web application may
be installed multiple times on different locations in the file system. " The Portage
developers cannot see the purpose of such functionality. A discussion ensues. In
the end Bob argues that if the Portage developers cannot provide this functionality
for him, he cannot provide support for web applications in Gentoo. Reluctantly
the Portage developers agree with Bob about a technical solution to address his
requirements.

Third attempt

In wake of the second attempt at rewriting Portage, the remaining developer from
that effort sets out to write an API on top of the existing implementation of
Portage. There is unanimous support for this effort among the other Gentoo
developers. The effort, while a continuation of parts of the second attempt at
rewriting Portage, also enrols the interests of two other developers who have been
working to establish an API to insulate Portage-specific applications from
Portage's configuration files and databases. This will solve the recurring problem
of these applications breaking when the format of the configuration files and
databases are changed. Furthermore, the API will insulate the core functionality
of Portage, so that after the API is in place modularization of Portage may find
place without disrupting users.

Work on this third attempt at rewriting Portage ceases after a month and a half.
The developer working on the API explains the situation:

The whole API was designed around a single using application [that] would instigate the
reading of the configuration, etc. … that doesn't fit in at all with distributed computing and/or
remote management [which is something] people will ask for and/or want to implement

Authors: Østerlie and Jaccheri

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 9

themselves down the track. [It is therefore] better to preempt it now than find we've shot
ourselves in the foot later.

The new approach for Portage is to completely rewrite it with a core running as
a Unix daemon with user applications calling the daemon remotely.

Upon the first author ending the fieldwork in December 2004, there are two
independent efforts at rewriting Portage. One effort by a young engineering
student who has rewritten the core Portage functionality in C, who fails to attract
the Portage developers' attention. Another effort by one of the Portage developers
to use experience from Portage to write an independent package manager. This,
he specifies, is "not a Portage killer, but rather an independent implementation".
However, in the future, his package manager may come to replace Portage. As of
writing this paper in November 2006, a new version of Portage 2.0.51 is released,
being simply the same code as in 2003 only with bug fixes and feature
enhancements.

Although all of the Gentoo developers can agree that the package manager
needs to be rewritten and replaced, after numerous attempts they give up. Why is
it that they fail to rewrite and replace the package manager?

Discussion

A number of problems are raised in connection with rewriting Portage. Complex
interdependencies between both modules and functions within the software makes
it is difficult to understand parts of the software without a complete understanding
of the whole. Interdependencies also make it difficult to make changes without
breaking existing functionality. Because of this, only four Gentoo developers
know the source code well enough to make changes. Combined with the recurring
problems of third-party applications, many of which operate directly on Portage's
different data bases with their proprietary data structures, ceasing to function after
changes have been made to Portage, the number of developers who can make
meaningful changes to Portage limits its continued development and maintenance
of Portage.

This is the situation that the Gentoo developers time and again present and
draw upon for motivating and explaining the interests and interest groups for
rewriting the Portage code and to justify their suggested solutions. The texture of
the situation remains largely unchanged throughout the period. The problems they
frame and the interests the Gentoo developers construct all emerge from this
context. In this section we will look closer at how this context enables and
constrain the process of rewriting and replacing Portage.

Authors: Østerlie and Jaccheri

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 10

Mobilizing resources, balancing interests

Why do the repeated attempts at rewriting Portage fail? Towards the end of April
2004, the Gentoo developers describe the first attempt at rewriting Portage as "hot
air", "vaporware", and "mostly a buzzword". A predominant explanation for the
repeated failures is exemplified by the following quote:

A rewrite is a MAJOR waste of extremely limited resources. Unless Gentoo gets MANY more
Portage devs OR can manage without a Portage update for 6-12 months, a rewrite won't
happen in any reasonable time … In the mean time, what happens with the existing
implementation? Do you [have people] work on it? Or do you let it sit idle/stagnant. The
amount of time it'd take would really drag out on the developers that want new features and
simplifications … Resources are why the rewrites failed.

The issue of limited resources is the recurring explanation. The demise of both
next generation Portage and Portage modularized are explained in terms of the
strain on developer resources. However, given the number of Gentoo developers,
the programming resources within the community are significant. It is these
resources the next generation Portage developers want to tap in by turning
Portage into "a community project". It is therefore not because resources
themselves are scarce that the rewrite efforts fail. The problem facing those who
want to rewrite Portage can be framed by Glass (1999, p.104)'s befuddlement: "I
don’t know who these crazy people are who want to write, read and even revise
all that code without being paid anything for it at all." Similarly, based on the
observation that the interests, needs, and know-how of OSS community members
varies greatly, Bonaccorsi & Rossi (2003, p.1244) asks: "[h]ow is it possible to
align the incentives of several different individuals"?

It is this selfsame problem the various efforts to rewrite Portage is facing: how to
align the interests of the community at large in order to mobilize the resources for
rewriting? In the first attempt at rewriting Portage, turning the package manager
into "a true community project" goes through the four developers who will
rewrite Portage with a core system and "a solid API for components [where]
major parts that are now core Portage are going to be implemented as
components". By framing a set of problems and actors whose interests are
blocked by these problems, the four developers tries to mobilize resources (Callon
1986) for rewrite and replace Portage. These translations are summarized in
Figure 2 below.

Authors: Østerlie and Jaccheri

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 11

Figure 2 The Portage-ng developers' translations

However, it is not only a question of mobilizing any odd resources. The

problem of the next generation Portage developers is that they want to mobilize
particular resources. By translating interests into modules that clearly delineated
boundaries between actors and their interests, and by inscribing these as boxes in
an architecture diagram, the four developers make the architecture diagram stand
in for their translations, making them more durable. Through the use of boxes,
labels, and clearly separating between boxes, the architecture diagram provides an
overview of dependencies between various parts of the architecture; in other
words: it inscribes a sequence of work.

By saying that the programming language for realizing next generation Portage
is to emerge from the requirements, they are mobilizing resources to do the
requirements work first, while leaving to the small next generation Portage team
to write the core system first. As such, the resources they want to mobilize are for
writing the plugins. However, the effect of proposing Prolog in the design and for
the prototype is that resources are spent in discussing implementation language
details and problems with using Prolog. While the Prolog prototype is intended to
act as a focal point for mobilizing resources for developing plugins, as it fails to
materialize there is no mobilization and resources become scarce.

However, the explanation that resources is the reason why the rewrites failed
has to been seen in as deeply embedded in and emerging from the context. It is

Authors: Østerlie and Jaccheri

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 12

worth noting that although a number of objections over the plan for the first
attempt at rewriting Portage, nobody questioned the feasibility of the effort. Yet,
six months down the line, the Gentoo developers argue that lacking resources is
why the effort failed. What has happened?

Resources are scarce because there is a competition for resources within
Gentoo, as well as the constant need to attract new developer resources. The
whole Gentoo effort relies on the sustained interest of users and developers. As
observed with many large OSS projects, the key process for quality assurance is
users reporting failures to the developers (Feller & Fitzgerald 2002). As Mockus
et al. (2004) observes: the number of people reporting software failures greatly
exceeds the number of developers. The sustained interest of user is therefore
important for the Gentoo community.

The mechanism for sustaining this interest lies in the continued improvement
and enhancement of the software, "improvements and simplifications" as put in
the above quote. What we see throughout the period is therefore that the existing
Portage application continues to change. Attracting new developers is a concern
for the community, as the number of unresolved failure reports is continuously
growing for Gentoo. Adding functionality to Portage is also seen as a way of
recruiting new developers. A concrete example is the way Bob is recruited to the
community by the promise that he can implement web application support for
Gentoo. However, being a member of the community involves responsibilities,
and resolving failure reports is one of these responsibilities. So, recruiting new
developers by adding new features to Portage is not only a way of enhancing the
software, but also a way of mobilizing resources for addressing the growing
number of failure reports.

When the Gentoo developer above questions how the Gentoo community can
manage without a Portage update for 6 to 12 months, he is alluding to constant
need for balancing between the need for technical stability for rewriting Portage
on one hand, and the need for adding new functionality to attract new
development resources and keep existing developers interested in the project.

Transition strategy as a processes

Whereas in Jørgensen's (2001) description of the process of rewriting the
FreeBSD kernel the scope of the changes and the sequence of actions seem
unproblematic, we see that rewriting and replacing Portage is a continuous
process of negotiating over the scope of the changes to be made, their sequence,
and which actors to be involved in the process. It is about formulating a transition
strategy (Monteiro 1998) for the transition from one version of the package
manager to the other.

Formulating this transition strategy is a process of continuously balancing
numerous interests. On the one hand there is the interest in keeping stable the

Authors: Østerlie and Jaccheri

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 13

features of the software to be rewritten. On the other hand, use of the software to
be rewritten continues to evolve and users have interest in the existing software to
evolve accordingly. A balance must be struck between these interests. However,
this balance point is continuously negotiated and renegotiated, and any attempt to
rewrite the software has to remain flexible to these changes.

As much as formulating a transition strategy is about imposing stability of the
entire package manager, it is a negotiation over what parts to keep stable and
what to change. We see this in the focus in the attempts to rewrite Portage: going
from a complete rewrite of the whole artefact, to a modularization of the existing
code, to the introduction of an API on top of the existing code. It is a longitudinal
process of translation spanning months, during which the identity of actors and
the boundaries of what is to remain stable with Portage and what can change are
continuously negotiated. The actors' margins of manoeuvre, their possibilities of
making incontestable statements about the efforts to rewrite and replace, is
delimited through this process of translation.

When one of the Portage developers in hindsight says that rewriting Portage
from scratch "is a MAJOR waste of extremely limited resources", the statement
tells us nothing about why next generation Portage failed. Nor does it tell us
anything general that rewriting software from scratch requires a lot of resources.
Rather, the statement bears testament of how the Gentoo developers' margins of
manoeuvre is limited by the installed base. There is no longer room to state that it
is possible to rewrite Portage from scratch. Again, this does not provide us with
the means to make generalized statements that rewriting software artefacts from
scratch is never feasible because of a continuously changing installed base.

Furthermore, what we see is that to better control the process of rewriting and
replacing, the boundaries of the involved actors are limited. From encompassing
the entire Gentoo developer community with the rewrite of next generation
Portage, the scope of involved actors are seriously reduced in both Portage
modularized and the attempts at writing an API on top of the existing code. When
a Gentoo developer in hindsight explains that "waiting for the community to
provide requirements … doesn't work", the statement tells us nothing about why
next generation Portage failed. Nor does it leave us any margins of manoeuvre to
make generalized statements about the number of actors involved that can be
involved in successfully rewriting and replacing information systems. Rather,
what it does tell us is that how the inertia of the installed base limits the Gentoo
developers' margins of manoeuvre in making statements about the number of
involved actors in the process of rewriting and replacing software.

What we can generalize, however, is this. The formulation of a transition
strategy is constituted through a continuous negotiation with the installed base.
This process of negotiation is a process of balancing the interests of the involved
actors – both technical and non-technical. It is a process initiated by the
construction of problems and actors with interests, but it is also a process from

Authors: Østerlie and Jaccheri

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 14

which new problems emerge. With new problems, existing actors change and new
actors emerge. As interests "are what lie in between actors and their goals, thus
creating the tension that will make actors select only what, in their own eyes,
helps them reach these goals amongst many possibilities" (Latour 1987, pp. 109-
110), new relationships between actors change. As actors and their interests
change, so does that which lies in between them: the interests. As such, rather
than being an end product in itself, the transition strategy is continuously
formulated and reformulated through a process of continuously emergent
problems, actors, and interests enables and constraints the task of rewriting and
replacing Portage.

Concluding remarks

In this paper we show how a transition strategy for rewriting and replacing OSS
emerges from and continuously changes in response to the installed base. There is
a mutual relationship between transition strategies and the context of use and
development. The way transition strategies changes the context feeds back to
change the transition strategy. We show how this mutual influence changes the
transition strategy along three axes: the scope of the rewrite, the sequence to
replace the package manager, and the actors to be involved in the change process.

While the entire Gentoo community can agree upon the need to replace the
existing system, we show how the existing system's ability to continuously meet
the community's interests are greater than the perceived benefits of replacing the
system. Although the introduction of an API on top of Portage redirects existing
connections to Portage, the transition strategies of the Portage developers were
unable to redirect new connections to the existing Portage code, like those made
for web application support. We show that battling the inertia of the installed
base, then, is not only about changing existing connections from the software
being replaced towards its replacement (Hanseth and Monteiro 2002). It is also
about the ability to redirect new connections to the installed base to the
replacement software throughout the process of rewriting and replacement.

In order to understand and analyse processes of rewriting and replacement, it is
therefore important to understand the rationalities and logics in play by different
actors. It is important not only to take the actors' own explanations of the world
for real, but also to understand the logic and rationality of their explanations in
the eyes of the other actors without giving any undue privilege to either view.
Furthermore, statements of the world need to be contextualized, when were they
made and in response to what, in order for the information systems researcher not
to be locked into single actors' views as true and thereby seeing other actors'
views as false. As information systems researchers it is also important not to lock
on to and give priority to some actors' techno-economic rationalities, but rather to

Authors: Østerlie and Jaccheri

Proceedings of the 30th Information Systems Research Seminar in Scandinavia IRIS 2007 15

remain sensitive to our own academic techno-economic bias and challenge this
through careful analysis of the statements made by those we study.

References

Bass, L., Clements, P., and Kazman, R. (2003). Software Architecture in Practice, Addison-
Wesley, Boston, Massachusetts.

Bianchi, A., Caivano, D., Marengo, V., and Visaggio, G. (2003). Iterative reengineering of legacy
systems. IEEE Transactions on Software Engineering, 29(3), 225- 241.

Bonaccorsi, A. and Rossi, C. (2003). Why open source software can succeed. Research Policy,
32(7), 1243-1258.

Callon, M. (1986). Some elements of a sociology of translation: Domestication of the scallops and
fishermen of St. Brieuc Bay. In The Science Study Reader (Biagioli, M. Ed.), Routledge,
New York, New York.

Crowston, K. and Howison, J. (2005). The social structure of free and open source software
development. First Monday 10(2).

DistroWatch (2006). The top ten distributions: A beginners' guide to choosing a (Linux)
distribution, http://distrowatch.com/dwres.php?resource=major. Last visited: November 25
2006.

Feller, J. and Fitzgerald, B. (2002). Understanding Open Source Software Development. Addison-
Wesley, London.

German, D. (2005). Software engineering practices in the GNOME project. In Perspectives on
Free and Open Source Software (Feller, J., Fitzgerald, B., Hissam, S.A., and Lakhani, K.R.
Eds.), p. 211, The MIT Press, Cambridge, Massachusetts.

Glass, R. (1999). Of Open Source, Linux and Hype. IEEE Software, 16(1), 126-128.

Hanseth, O. and Monteiro, E. (1998). Understanding Information Infrastructures. Unpublished
manuscript, available at http://heim.ifi.uio.no/~oleha/Publications/bok.html.

Jørgensen, N. (2001). Putting it all in the trunk: Incremental software development in the
FreeBSD open source project. Information Systems Journal, 11(4), 321-336.

Klein, H.K. and Myers, M.D. (1999). A set of principles for conducting and evaluating
interpretive field studies in information systems. MIS Quarterly, 23(1), 67-93.

Latour, B. (1987). Science in Action. Harvard University Press, Cambridge, Massachusetts.

Mockus, A., Fielding, R.T., and Herbselb, J.D. (2002). Two case studies of open source software
development: Apache and Mozilla. Transaction son Software Engineering and Methodology,
11(3), 309-346.

Monteiro, E. (1998). Scaling information infrastructure: The case of the next generation IP in
Internet. The Information Society . 14(3), 229-245.

Paulson, J.W., Succi, G, and Eberlein, A. (2004). An empirical study of open-source and closed-
source software products. IEEE Transactions on Software Engineering, 30(4), 246-256.

Samoladas, I, Stamelos, I, Angelis, L., and Oikonomou, A. (2004). Open source software
development should strive for event greater code maintainability, Communications of the
ACM, 47(10), 83-87.

Østerlie, T. and Wang, A.I. (2006). Establishing maintainability in systems integration:
Ambuguity, negotiation, and infrastructure. In Proceedings of the 22nd International Conference
on Software Maintenance, 24-26 September 2006, Philadelphia, Pensylvania,

Paper 8

Østerlie, T., and Wang, A.I. "Debugging Integrated Systems: An Ethnographic Study

of Debugging Practice", in Proceedings of the 23rd International Conference on

Software Maintenance (ICSM'07), Paris, France, October 2-5, 2007, pp. 305-315.

Debugging Integrated Systems: An Ethnographic Study of Debugging

Practice

Thomas Østerlie, Alf Inge Wang

Norwegian University of Science and Technology

{thomas.osterlie, alf.inge.wang}@idi.ntnu.no

Abstract

This paper explores how software developers debug

integrated systems, where they have little or no access

to the source code of the third-party software the

system is composed of. We analyze the practice of

debugging integrated systems, identifying five

characteristics that set it apart from existing research

on debugging: it spans a variety of operating

environments, it is collective, social, heterogeneous,

and ongoing. We draw implications of this for software

maintenance research and debugging practice. The

results presented in this paper are based on

observations from an ethnographic study of the Gentoo

OSS community, a geographically distributed

community of over 320 developers developing and

maintaining a software system for distributing and

integrating third-party software packages with

different Unix versions.

1. Introduction

Software maintenance constitutes a significant

factor (between 50 and 80 percent) in the total life-

cycle costs of software systems [1]. Research suggests

that software developers spend much of the

maintenance effort simply trying to understand the

software [2]. Current research is based on the premise

that source code is the primary data source for

understanding the software during debugging. Models

of software errors proposed in the software engineering

literature are based on the premise that software

failures can be traced back to faults in the source code

[3].

However, with increased attention on systems

integration these are problematic premises. In

component-based development [4], Web services and

service-oriented architecture, along with information

and enterprise systems integration [5], systems

integrators have limited, if any, access to the source

code of the integrated software. Even when integrating

with open source software (OSS) components, research

suggests that few systems integrators actually access

the source code [6]. As such, systems integrators face

the situation of having to debug systems without the

source code to build an understanding of the problem

upon. We therefore ask: without the source code, how

do systems integrators make sense of problems when

debugging integrated systems?

Debugging integrated systems is largely unexplored

in the research literature. The debugging process must

be understood before it can be improved upon. This

motivates a shift of focus from improving the

debugging process, towards exploring how software

developers debug integrated systems in practice. To

this end, we have explored the practice of debugging

integrated systems through an ethnographic study of

the Gentoo OSS community. Gentoo is a

geographically distributed community of volunteer

systems integrators maintaining and operating a

software distribution system for distributing and

integrating third-party OSS with various Unix

operating systems. Similar to existing studies of

community-based OSS development [7], debugging is

a core activity in the Gentoo community's software

development process, too. The community is therefore

well suited for studying the practice of debugging

integrated systems.

The shift of focus towards debugging practice

requires that we draw upon research on practice. In this

study we therefore draw upon research on practice and

problems in organization science. This research shows

that in real-world practice problems do not present

themselves to practitioners as given [8]. Rather,

problems have to be constructed from the materials of

problematic situations that are puzzling, troubling, and

uncertain. The process of constructing well-defined

problems out of problem situations is often called

sensemaking [9]. We will use sensemaking as a

theoretical lens for exploring the practice of debugging

integrated systems.

This paper contributes to debugging research by

identifying five characteristics that sets the practice of

debugging integrated systems apart from existing

research on debugging: it spans a variety of operating

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

environments, it is collective, social, heterogeneous,

and ongoing.

The remainder of the paper is organized as follows.

Section 2 presents existing work on debugging,

illustrating the central role of source code as data

source for debugging. The theoretical lens of

sensemaking is also presented here. Section 3 describes

the research methods employed and materials collected

during the ethnographic fieldwork. Section 4 describes

the overall debugging process in the Gentoo

community. Section 5 is an analysis of debugging in

Gentoo applying the theoretical lens of sensemaking.

We conclude the paper by discussing the implications

of our findings for software maintenance research as

well as debugging practice in Section 6.

2. Related work

In this section we will illustrate how debugging can

be understood as a linear process from problem to its

solution. Such a linear model requires that the

debugging developer can trace a causal chain from the

software failure to its corresponding fault. To this end,

we argue, source code is critical. Without the source

code, tracing such causal chains becomes harder. This

motivates our use of sensemaking as theoretical lens

for analyzing how software developers understand

problems when debugging integrated systems.

2.1. Debugging

Debugging is the process of locating and correcting

the cause of an externally visible error in the program

behavior [3]. Araki et al. [10] proposes a model for

systematic debugging where debugging is viewed as a

process of developing hypotheses about the cause of

errors, expected program behavior, and how to modify

the program to correct errors, and to refute or verify

these hypotheses. Zeller [3] proposes a similar model.

These models may be summarized as a stepwise

process from a well-defined problem to its solution (as

illustrated in Figure 1).

Much of the existing research on debugging focuses

on the process of locating the cause of errors. Broadly

speaking, three approaches have been suggested [11].

The bottom-up approach to debugging involves reading

program statements in the source code and chunking

these into higher-level abstractions. In the top-down

approach, software developers reconstruct knowledge

about the problem domain and map this to the source

code. A mixed model approach has also been

suggested.

Figure 1 Linear model of debugging

Several techniques, like delta debugging [3], and

tools, like Eden [10], have been proposed to support

the process of locating the cause of errors in the source

code.

2.2. Sensemaking

The subsection above illustrates how existing

research describes debugging as a linear problem

solving process, progressing from a well-defined

problem to its solution (illustrated by the dashed line in

Figure 1). For systems integrators, however, problems

do not present themselves as given. Rather, problem

situations are ambiguous and open to multiple

interpretations [12].

Research within organization science shows that

interaction among actors increases in ambiguous

situations. In a study of field service technicians

repairing copying machines, Orr [13] shows that to

make sense of a faulty machine the technicians engage

in an ongoing dialogue about the machine with the

customer. Similarly, in a study of modern

professionals, Schön [8] finds that the daily work of

practitioners is not about problem solving, but rather

about problem setting; the kind of work professionals

undertake to make a situation that is initially

ambiguous, puzzling, troubling, and uncertain into

something that makes sense.

Confused by ambiguity people engage in

sensemaking [9]. The basic premise of sensemaking is

that a person or a group's collective experiences of a

problem situation are progressively clarified. Rather

than starting with well-defined problems, sensemaking

is a framework for analyzing how practitioners make

sense of a situation that initially makes little sense. In

contrast to problem solving starting with well-defined

problem, the question driving sensemaking is not

'which of the available means are best suited to solve

the problem?' but rather 'what is going on?'. To make

sense of a problem situation, people act on basis of

previous experience. By actively engaging with the

problem situation, understanding emerges as people

make retrospective sense of what occurs by enlarging

small cues from the available data and forming a

2

structure to provide meaning. Another central premise

of sensemaking is therefore that action precedes

understanding.

3. Methods and materials

This research is based on the first author's

ethnographic study of the Gentoo OSS community.

This section briefly describes the research setting and

the ethnographic fieldwork this study is based upon. A

more detailed description of the research including a

more thorough discussion on research validation can be

found in [12].

3.1. Research setting: Gentoo

Gentoo is an OSS community of volunteers

maintaining and operating a software distribution

system for distributing and integrating third-party OSS

with various Unix operating systems. In addition, the

community provides a GNU/Linux distribution,

Gentoo Linux, on top of the software distribution

system. The community consists of 320 official

developers distributed across 38 countries and 17 time

zones
1
. To the best of our knowledge, none of the

developers are geographically co-located. As with most

OSS communities, users are an important part of the

Gentoo community, contributing with problem reports

as well as source code. However, it is impossible to tell

how many users are active in the community at any

one time.

For the remainder of the paper we will use the term

Gentoo about the Gentoo software distribution system,

Gentoo Linux about the GNU/Linux distribution

provided on top of Gentoo, and the Gentoo community

when talking about the community of volunteer

systems integrators. These volunteers call themselves

Gentoo developers.

Gentoo distributes third-party OSS packages in the

form of installation scripts. The installation scripts are

stored in a central repository. One script exists for

every version of each of the 8486 supported packages,

for a total of 23911 installation scripts. The total SLOC

of installation scripts in the repository is 671971
2
. The

installation scripts make up 90% of the source code in

the repository. The rest are mainly patches and

configuration files. The installation scripts are written

and maintained by the Gentoo community. While some

Gentoo developers may be quite familiar and

knowledgeable of the source code of the components

they integrate, most treat the software being integrated

1
 Unless otherwise stated, all provided figures are of March

30, 2006, the day the fieldwork was concluded
2
 Data generated with SLOCCount [14]

as a black box. Up to six different Unix versions may

be supported by a single installation script:

GNU/Linux, FreeBSD, OpenBSD, NetBSD, MacOS

X, and Dragonfly. For GNU/Linux, five different

processor architectures may also be supported in the

script.

The repository is mirrored on every Gentoo system.

A Gentoo system is a computer system using Gentoo

for integrating third-party OSS on the local system.

The Portage package manager is the application that

integrates third-party packages locally on Gentoo

systems, calculating dependencies to other packages,

downloading the source code, as well as configuring,

compiling and integrating the package with the Gentoo

system's live file system.

3.2. Ethnographic fieldwork

Data was collected during a ten months period of

participant-observation. Participant-observation is the

predominant method for ethnographic fieldwork [15].

In this study, participant-observation meant that the

first author participated in the Gentoo community by

submitting and resolving problem reports, interacting

with the Gentoo users and developers on Internet Relay

Chat (IRC) and e-mail, as well as participating in a

major restructuring effort of the Portage package

manager.

During the ten months period of participant-

observation the first author wrote field notes at the end

of each day of fieldwork [16]. In addition to the field

notes, four of the Gentoo IRC channels were logged to

file, one file per day for each channel, totaling1027

files.

Ethnographic research does not follow a step-wise

process [17]. Rather, ethnographic data analysis is an

ongoing process from the moment the field worker

enters the field until the complete research report is

written. During the field work the data analysis was

informal. Upon withdrawing from the field, the first

author spent a year working systematically through the

collected data, looking for recurring patterns. This

formal data analysis was a process of incrementally

generalizing from a multitude of singular observations

to increasingly more generalized descriptions of

activities. Throughout the process, non-recurring

details of the singular observations were omitted and

recurring issues included, leading to the analysis

presented in this paper.

4. The Gentoo debugging process

As reported in previous studies of community-based

OSS development [7], debugging is a central activity

3

for the Gentoo community, too. New installation

scripts are made available in the repository after

marginal quality assurance. Instead, users are expected

to report problems. As such, debugging plays a central

role as a quality assurance mechanism in Gentoo. The

debugging process (illustrated in Figure 2) is managed

through an installation of the Bugzilla defect tracking

system [18]. While Bugzilla is the name of a product,

unless otherwise noted we will use the term Bugzilla

about Gentoo's installation of this system for the ease

of reference.

Figure 2 Overview of the debugging process

4.1. Roles

The distribution of roles in the Gentoo community's

debugging process is similar to that reported in existing

research on community-based OSS development [7].

Users submit the majority of problem reports in the

Gentoo community. The Bugwranglers is the name of

the change control board responsible for assigning

newly submitted problem reports to the relevant herd.

A herd is a team of Gentoo developers responsible for

a collection of third-party packages. There are 124

such herds, varying in size from a single Gentoo

developer to over 20 developers. The herd is

responsible for resolving problem reports.

4.2. Responsibilities

Gentoo integrates software from hundreds of different

third-party providers. When debugging, the Gentoo

developers are responsible for problems related to the

way the third-party OSS packages are integrated. They

are not responsible for resolving defects in the third-

party software. Similarly, the Gentoo developers are

not responsible for problems related to the

configuration of a particular Gentoo system. In the

latter case, user support is handled on dedicated IRC

channels, mailing lists, and Web forums, not through

Bugzilla.

4.3. Submitting and assigning reports

Users submit problem reports when they have run

out of resources locally to resolve a problem. New

problem reports are submitted through a standardized

Web-based form. The form defines a number of fields

to describe the problem, including a short description

of the failure situation, the operating system and

hardware platform of the failing Gentoo system, the

component where the problem has occurred, the

package's version number, as well a longer description

of the problem situation including steps to reproduce,

which software packages are affected, the

reproducibility of the problem, any error messages

generated when the software fails, as well as a

standardized systems information of the user's system

generated by running a Gentoo-specific tool.

When a new problem report is submitted to

Bugzilla, an e-mail is sent to the Bugwranglers'

mailing list. The Bugwranglers will assign newly

submitted problem reports to the relevant herd.

4.4. Resolving problem reports

Once the Bugwranglers have assigned a problem

report to a herd, an e-mail is sent to the herd's mailing

list. Herds have different ways of distributing work.

Many developers scan incoming problem reports to see

if they immediately can resolve the report. Other herds

formally distribute problem reports among themselves.

Resolving a problem report does not necessarily

mean that the problem itself is resolved. This is one of

the ways defect reports are resolved. The other ways

are to mark the report as a duplicate, to mark it with the

flag NEEDINFO meaning that the user has to provide

additional information about the system or software

failure itself, to reject the problem report as the

problem is a user problem, or to mark the problem

report as upstream. The latter option is used when the

reported problem is caused by a defect in the third-

party software itself.

Reaching the closure with one of the above five

resolutions to problem reports requires an

understanding of the system causing the software

failure. In the next section we will analyze how this

understanding is produced.

5. Results and analysis

With basis in the overview of the Gentoo debugging

process above, we will now revisit the research

question posed in the introduction: how do systems

integrators make sense of problems when debugging

integrated systems? We do so with the theoretical lens

4

of sensemaking. Our focus in this analysis is therefore

on what people do, rather than prescribing what should

have been done to improve the debugging process. We

do so by identifying five characteristics of debugging

an integrated system; (C1) it spans a variety of

operating environments, (C2) it is collective, (C3)

social, (C4) heterogeneous, and (C5) ongoing.

5.1. C1: Variety of operating environments

Zeller [3] states that to fix a problem, the developer

must first be able to reproduce it. Although many

reported problems are reproducible, the Gentoo

developers often face problems they are unable to

reproduce, or at least problems that are not easily

reproduced. This is illustrated in Exhibit 1.

Exhibit 1. Excerpt from Gentoo developers'
IRC channel (gentoo-dev-2004.04.16)

Developer A: This particular Web page crashes both the Mozilla and

Galeon Web browsers.

Developer B: That doesn't happen on my computer.

Developer A: I've built the applications for the Athlon T-Bird processor

architecture, and both have been compiled with the GTK2 widget library. I

generally assume it's my using GTK2 that messes it up.

Developer B: It might be GTK2. I've compiled both Web browsers with the

GTK1 widget library on my system.

Developer D: Well, that page works on my Epiphany Web browser

compiled with the GTK2 library.

Developer C: And it works with my installation of Mozilla compiled with

GTK2.

Developer D: This other Web page crashes my Phoenix Web browser, but

not Mozilla or Galeon.

Developer A: The Web page crashes on my Epiphany installation, as well.

It seems it's my Mozilla build that's flakey.

Developer C: But boingboing.net crashes my Epiphany installation. I've

compiled it for the PentiumII processor architecture, though.

Developer A: boingboing.net crashes Galeon on my system, too.

Developer B: boingboing.net working for Mozilla on my system.

Developer C: Hmm… It seems the problem is related to Mozilla compiled

with the GTK2 widget library and the Xft font library. Weird thing is that

boingboing works on my Galeon installation…

Developer A: Now here's a very good reason to only build for one

processor architecture, stable source tree and only do point releases.

Variation kills reproducibility.

All of the four Web browsers mentioned in the

exhibit are based upon Mozilla's rendering engine. This

rendering engine is integrated on a Gentoo system

along with Mozilla. As such, the installation scripts of

the other three Web browsers have dependencies to

Mozilla.

As developer A observes in Exhibit 1, the variety of

operating environments makes reproducing problems

difficult. This is similar to Littlewood's [19]

explanation of Adams [13] observation that in large-

scale software maintenance most reported problems are

irreproducible: irreproducibility is an effect of the

variety of operating environments in the population of

systems. There are three dimensions of variety of

operating environments among Gentoo systems:

operating system, configuration of individual

packages, and system evolution.

Gentoo distributes software for six different

operating systems. Although most installation scripts

in the Gentoo repository do not support for all of the

operating systems at once, many packages support

multiple operating systems. However, operating

systems work in different ways, as illustrated in

Exhibit 2.

Exhibit 2. Excerpt from Gentoo developers'
IRC channel (gentoo-dev-2004.10.10)

Developer A: [making reference to a stack trace attached to the problem report

being discussed] why is it that the thing [the linker] can't find pthread? is that
because of a missing -pthread [flag being passed to the linker]

Developer B: sounds like glibc was upgraded [glibc is a Unix runtime library]
Developer A: an upgraded glibc still has pthreads alright?

Developer A: without that symlink the system grinds to a halt
Developer B: needs -lpthread I guess.

Developer C: well the cross-platform way is to use gcc's -lpthread, because

not all systems have libpthread. bsd has libc_r for example

In the above exhibit, understanding the problem is

made difficult by the way different operating systems

support, in this particular case, multi-threading. Both

of the above exhibits illustrate that reproducibility is

not only made difficult by the variety in operating

environment among Gentoo systems, but the variety of

operating environments also makes problem

understanding difficult.

Exhibit 1 illustrates how debugging is made further

complicated by the way individual packages are

configured upon integration with a Gentoo system.

Such configuration of individual packages is the

second dimension of variety among Gentoo systems.

There are two dimensions to individual package

configuration: optionals and virtuals.

Packages can have optional functionality that may

be compiled into the package when it is integrated on a

Gentoo system. This local configuration of individual

packages is similar to what Carney et al. [4] describes

as installation-dependent products in COTS

development, a form of modification of a generic

software product that is intended by the provider but

may still vary from system to system. With virtual

configuration different third-party packages may

provide the same functionality. Exhibit 1 illustrates

this, as both GTK1 and GTK2 may provide widget

library support for the four Web browsers in question.

Packages depend on other packages. Although such

package dependencies are inscribed in the installation

scripts, these dependencies are only convenient for

reproducing a freshly setup Gentoo system. However,

many Gentoo systems have been running for a long

time. New versions of packages are continuously being

added to the Gentoo distribution system's repository,

while old and unsupported versions of packages are

5

being removed. Yet, how up-to-date every package on

a Gentoo systems is, varies greatly. This is the fourth

dimension of variety in operating environments among

Gentoo systems: system evolution.

Although the number of combinations of packages

on a single Gentoo system is finite, package

configurations and the effects of system evolution

often makes it practically impossible to replicate the

system configuration required to reproduce the

problem. The situation debugging Gentoo is therefore

similar to Araki et al.'s [10] observation of debugging

concurrent programs. Because the state of concurrent

programs may be non-deterministic, programmers

often say that debugging is almost completed when

they have figured out how to reproduce the problem.

Similarly, the Gentoo developers spend a great deal of

time understanding the reported problem. Similar to

Schön's [8] observation, problems do not present

themselves to the Gentoo developers as given, but have

to be constructed from the materials of problematic,

uncertain, and puzzling situations.

5.2. C2: Collective

When problems do not present themselves as given,

the Gentoo developers need to establish what is going

on. A fundamental aspect of sensemaking is that a

person or a collective’s experiences of a situation are

progressively clarified [9]. By collectively engaging

with the reported problem, comparing configurations

of libraries, processor architectures, and applications,

the Gentoo developers collectively work towards an

understanding of the problem situation as seemingly

"related to Mozilla compiled with the GTK2 widget

library and the Xft font library" (see Exhibit 1). By

extracting cues from the environment, information

about processor architectures, widget libraries, which

Web pages crashes which browser, the developers

collectively makes sense of the problem situation.

In a study of field service technicians diagnosing

and repairing copying machines, Orr [13] describes

how technicians and users collectively make sense of

faulty machines. Although provided with detailed

guidelines for diagnosing and repairing copying

machines, service technicians were often faced with

confounding machine behavior going beyond the

official documentation. To make sense of the faulty

machine behavior, the service technicians interact with

the customer to create a context for the behavior. By

recreating the machine's history, its past quirks and

problems, the customer and service technician engage

in a process of constructing a context where the service

technician can make sense of the faulty machine.

Repairing the machine is not a process of finding the

problem causing the faulty behavior and then repairing

it. Rather, the problem is to understand what the

problem is. By interacting with the customer and the

faulty machine, the service technician creates a setting

where the faulty behavior makes sense and can be

resolved.

As the variety of operating environments often

makes it difficult for the Gentoo developers to

reproduce reported problems, we find the Gentoo

developers and users collectively working together to

make sense of reported problems. They typically use

the problem report for interacting, adding new

comments to the Additional comments field at the

bottom of the problem report as illustrated in Exhibit 3.

Exhibit 3. Excerpt of problem report
illustrating use of Additional comments field

Description: Opened: 2003-01-02 02:41

Basically, I can't even configure the package and it fails complaining 'required

file `../depcomp' not found'. I have re-integrated the autoconf and automake

packages, but I still get the same problem.
[error output provided]

[systems information provided]

Comment #1 From Developer A 2003-01-02 04:32:56

Which version of automake and autoconf do you use?

Comment #2 From User 2003-01-02 04:43:33

[version information about automake and autoconf packages on local system
provided]

Comment #3 From Developer A 2003-01-02 04:52:19

Seems to be the required versions. Could you please try -r16 and/or -r18 of if

the xmms package to see if it works for you?

Comment #4 From User 2003-01-02 04:58:44

Nope, both die in exactly the same way. I did have this installed at first, but

then it tried to update the package a while ago and it just wouldn't install
properly. Is there a package that xmms requires that might be broken?

[new error message provided]

Comment #5 From Developer A 2003-01-02 05:23:06

Could it be you are running out of disk space or memory and swap?

Comment #6 From User 2003-01-02 05:26:27

[information about available diskspace on local system's hard drive partitions

provided]
I doubt that diskspace or memory is a problem, although that tmpfs device is a

tad full!!
[information about local system's memory use provided]

Comment #7 From Developer A 2003-01-02 05:33:02

Version 1.3 of the xmms installation script is latest. which version do you
have? Attach the output of the command 'head /usr/portage/media-

sound/xmms/xmms-1.2.7-r15.ebuild'

Comment #8 From User 2003-01-02 05:35:59

Version 1.3 [output of running head command provided]

Comment #9 From Developer B 2003-01-02 06:05:58

This has to do with the version of automake/autoconf being used by the

emerge process. My feeling is that xmms is using a version that is not
compatible with its config process. I will, therefore, adjust xmms's ebuild to

make sure it calls the correct version. Please stand by for an updated ebuild
that you can test.

I have never seen this kinda thing with the xmms package.

Comment #10 From Developer A 2003-01-18 14:06:31

What about just adding a --add-missing to:
[script provided]

6

Comment #11 From User 2003-01-19 18:04:44

Ok, really strange... I just integrated the KDE-3.1_rc6 package and xmms
installed without any problems.

Comment #22 From Developer A 2003-01-19 19:02:59

Well, I did add the --add-missing to the -r18 of the xmms installation script
anyhow.

Exhibit 3 illustrates how Gentoo developers and

users collectively work together to make sense of

reported problems. 17 days pass from the date the

problem is reported until it is resolved illustrating that

collective debugging can be a longitudinal process.

The exhibit illustrates a typical exchange, where the

developer asks the user to generate new data about the

failing Gentoo system. This often entails the user

running one or more diagnosis tools, producing output

texts that are attached to the failure report. As

illustrated by Exhibit 1, developers often use IRC for

discussing problem reports in detail. There is a mailing

list that is used for this, too. The user is often asked

several times to generate new information, in a cyclic

process between users producing data and developers

interpreting the available data [12].

This observation is somewhat different to existing

reports from community-based OSS development.

Huntley [20], for instance, argues that debugging is a

task that in nature lends itself to distribution, as finding

problems is "a task that can be performed by thousand

or even millions of end-users without any involvement

of the core development team". Since most software

failures are limited in scope, he continues, involving

only a small fraction of the code, a well-controlled

debugging process can be distributed among large

number of programmers. We, on the other hand,

observe that such a distinct separation between

describing and understanding problems is problematic.

Contrary to the clear separation between problem

description and analysis on Figure 1, Exhibit 3

illustrates that the process of making sense of the

problem is not decoupled from the process of

describing the problem. To make sense, the Gentoo

developers and the user must act by engaging with the

problem. This may seem like a process of trial-and-

error, but from a sensemaking perspective action

precedes understanding [9]. By collectively engaging

with the problem, the Gentoo developers and user

create materials from which they may construct the

problem. As such, the debugging process observed in

the Gentoo community is more a process of creating

the problem retrospectively, rather than being driven

by a process of formulating hypotheses and rejecting or

verifying them. It is therefore a process driven by

plausibility rather than accuracy [9]. Failed efforts to

solve problems feed back into the debugging process

with new materials to set the problem anew, or with

requests for new information from the user. The

problem and its causes are constructed in retrospect,

once the solution is in place.

5.3. C3: Social

Debugging plays a key quality assurance

mechanism in Gentoo. Installation scripts are released

with only a minimum of quality assurance; with the

expectation that problems related to way software is

integrated on Gentoo systems will be reported. Exhibit

3 illustrates how debugging can be a longitudinal,

although low-intensity activity. Although a low-

intensity activity, Exhibit 4 shows the sheer number of

problem reports submitted to Bugzilla on a weekly

basis exceeds the number of problem reports the

Gentoo developers are able to close. The exhibit is

based on Bugzilla statistics published by the Gentoo

developers in the Gentoo Weekly Newsletter [21]. The

developer count is generated from the Gentoo

developer list [22].

Exhibit 4. Weekly debugging workload

Date

New

reports

Reports

closed

Open

reports

Number of

developers

January 6 2003 269 Not

avail.

1893 102

January 5 2004 837 428 4479 259

January 3 2005 700 390 7877 Not avail.

January 16

2006

799 447 9083 320

The increasing gap between new and closed

problem reports may be partly explained by the way

the Gentoo community uses Bugzilla; problems

reported on outdated versions of packages are ignored

and never marked as resolved, and the Gentoo

developers use problem reports for tracking issues as

well. Yet, despite a steady increase in the number of

Gentoo developers, the workload of debugging exceeds

the capacity of the Gentoo developers as the increasing

number of open problem reports show. There is

therefore a need for the Gentoo developers to prioritize

among problem reports.

The problem report provides a field for rating a

problem's severity. However, an understanding of

problems often is retrospective (Section 5.2).

Knowing the severity of a problem is therefore also

retrospective, and prioritizing is therefore problematic

without starting to make sense of the reported problem.

In this situation, the Gentoo developers have to

balance between several interests. On the one hand,

they have to prioritize problem reports that may

potentially affect the many Gentoo systems. That

reported problems are reproducible imply that the

problem may affect many systems. Prioritizing

reproducible problem reports comes at the expense of

7

irreproducible problem reports, or reports on problems

that occur only on one or few systems.

Commenting on similar tradeoffs for prioritizing

problem reports reported by Adams [23], Littlewood

observes that with a large population of operating

environments there may always be one or more

problems that are unique to a particular user's operating

environment. However, the user would be extremely

disgruntled if the problem was not resolved, as the

problem would be recurring at appreciable rates in his

environment.

Similarly, because of the variety of operating

environments among Gentoo systems, many reported

problems will not be reproducible and are particular to

a single or a small group of Gentoo systems. For the

debugging process to function properly as a quality

assurance mechanism, the Gentoo developers have to

keep users interested in submitting problem reports in

the future. The developers therefore have to balance

the need for resolving problem reports that will

increase the reliability of Gentoo for the most users,

with debugging problems they are unable to reproduce

or problems that are particular to a single user's system.

To curb the workload, enforcing the boundaries of

one's responsibilities is an important part of debugging

practice. Although the responsibilities are clearly

delineated in theory (section 4.2), establishing

responsibilities is more of an open question. Zeller [3]

views such a lack of clarity as a political process of

deciding who is to blame. Assuming the perspective of

sensemaking, however, determining responsibilities is

an inherent part of the retrospective process of making

sense of problems. Exhibit 5 is a dialogue aggregated

from a problem report and discussions about this

problem report on the Gentoo developers' IRC channel.

Exhibit 5. Enacting responsibilities

Statement Researchers' commentary

Reporting user: I have installed my

system from scratch

The problem is related to the way
Gentoo integrates software, and

therefore the Gentoo developers'
responsibility

Developer A: [making reference to the

systems information provided with the

problem report] Is using an x86 profile

for an amd64 machine troublesome?

The reported problem is related to
the way the user's Gentoo systems

configuration; therefore the user's
responsibility

Developer B: [making reference to the

installation script] Turning off the

optional esound support might solve the

problem.

The problem may be related to
how the package integrates with

the esound package, and the third-
party provider's responsibility.

Developer A: [making reference to the

compiler error provided with the

problem report] Why is it that the thing

can't find pthread? is that because of a

missing -pthread

The problem is related to the use

of the pthreads library, and
therefore the responsibility of

another herd.

Developer B: sounds like the glibc

library was upgraded

Related to the user's system

configuration, and his

responsibility

By extracting cues from the situation ('installed my

system from scratch'), from the systems information

and error messages provided with the problem report,

as well as information from the installation script, the

Gentoo developers and the user bridge the ideal

division of responsibilities (Section 4.2) and the

concrete details of the problem. They produce a reality

of responsibilities by their actions. However, this

construction of reality is in itself constrained by their

understanding of responsibilities. The model of

responsibilities precedes the discussion of the

particular problem, acting as a guide for extracting

cues from the data. As Weick [9] puts it, sensemaking

is enactive of sensible environments.

Although debugging is a technical activity, the

above analysis shows how social issues like keeping

users interested and determining responsibilities are

closely intertwined with the technical activities of

debugging.

5.4. C4: Heterogeneous

Heterogeneity is one of Hasselbring's [5] three

characteristics of systems integration: "heterogeneity

comes from different hardware platforms, operating

systems, database management systems, and

programming languages". This is similar to what the

variety of operating environment among Gentoo

systems (section 5.1). Similarly, Belady & Lehman

[24] presents variety as a root cause of program

largeness. While Hasselbring's notion of heterogeneity

is technical, Belady & Lehman's understanding of

variety includes both the social and the technical.

Similar to Hasselbring, we find heterogeneity to be

a characteristic of the Gentoo debugging process, but

like Belady & Lehman our view of heterogeneity

transcends the technical. While the purpose of the

debugging process is to keep Gentoo running, we find

that keeping Gentoo running is not solely a technical

endeavor. Rather, to keep Gentoo running requires

maintenance of both the technology and the

community. The debugging process is therefore

heterogeneous in the sense that it serves a variety of

interests and activities, where the social and the

technical are closely intertwined (Section 5.3).

Section 2.1 shows that existing research is based on

the premise that source code is the primary data source

for debugging. Debugging Gentoo is heterogeneous in

the respect that instead of relying on source code,

understanding of problems is constructed from a

heterogeneous ensemble of data sources: problem

reports, debug data generated by the failing software

and various diagnosis tools, as well as discussions on

IRC, mailing lists and Web forums (Sections 5.1 and

5.2).

8

5.5. C5: Ongoing

Although debugging is a central activity in the

Gentoo community, it is not the only responsibility the

Gentoo developers have. Within the community, the

developers are responsible for keeping abreast with the

latest developments for the third-party OSS packages

of their herd–writing new installation scripts and

updating existing scripts to incorporate patches made

available outside of the packages' release cycles–as

well as being active on the IRC channels and mailing

lists discussing and assisting other developers. In

addition, the Gentoo developers have outside

responsibilities like daytime jobs, and school.

As such, debugging is one activity in the ongoing

flow of activities making up the day of the Gentoo

developers. While it may be a low-intensity activity

(see Section 5.3), debugging is not an activity the

developers can devote all their attention to as

illustrated by Exhibit 6.

Exhibit 6 Extract from the Gentoo developers'
IRC channel (gentoo-dev-2004.07.17)

Developer A: Have you ever taken a look at bug 33877 ?

Developer B: Yes, but there's a contention for my time. Getting

Java working well has been a higher priority.

The amount of problem reports to be addressed

makes debugging a time-consuming activity. Although

reflecting upon alternative interpretations of the

problem situation (see Exhibits 1,2, and 3), the

resources available for rigorous analysis of the problem

situation are limited. Instead, the Gentoo developers

often act to get a better understanding of the problem.

As such, they engage in sensemaking rather than

problem solving.

To cope with these constraints the Gentoo

developers have to be pragmatic. Problem solving is

the selection of the best-suited means to an established

end. While the debugging literature presupposes that

the end to be met is to correct the reported problem, we

find the debugging process is equally much about

establishing such ends. Schön [8] argues that by

focusing on problem solving, we ignore the problem

setting: "the process by which we define the decisions

to be made, the ends to be achieved, the means that

may be chosen".

As such, solving reported problems is but one of

many outcomes of the debugging process. The process

of problem setting need not conclude that there is a

problem. The overarching goal of the debugging

process is to reach a closure for problem reports.

Resolving a problem report is not synonymous with

solving the reported problem. It may be, but problem

reports are also resolved by providing users with

workarounds for the reported problem, by concluding

that the problem is local to the user's system, or by

concluding that the problem is in the third-party

software.

6. Discussion and concluding remarks

In this paper we have explored how software

developers debug integrated systems. We identify five

characteristics of the debugging process: it spans a

variety of operating environments, it is collective,

social, heterogeneous and ongoing.

This description differs from the debugging process

described in the research literature. It is less of a linear

process going from a well-defined problem to its

solution, and more of a cyclic process where the

problem is not always understood before there is a

solution to it [12]. The debugging process is a

collective sensemaking process [9], influenced by both

social and technical factors, rather than a purely

individual cognitive problem solving activity [2]. In

contrast to researchers' advocating a hypothesis-driven

debugging processes [3, 10], we find the Gentoo

community's debugging process to be driven by

plausibility rather than accuracy.

This suggests, then, that the software failure is not

unproblematic as a phenomenon, but rather subject to

interpretation and negotiation. Software developers'

understanding of what constitutes a software failure is

contingent upon situational issues such as workload,

priorities, responsibilities, as well as technical data.

Furthermore, this research illustrates that software

failures are not necessarily stable.

This has implications for software maintenance

research on integrated systems, as it raises concerns

about the appropriateness of assuming that software

failures are clearly identifiable and stable phenomena.

That there is a clearly identifiable relation between the

errors in the code and the observed failures is too

simple. In system integration the problem is more

complex.

Although apprehensive about generalizing from a

single case study, we contend that our findings may

have implications for debugging practice. An important

problem with debugging integrated systems is to

understand what the problem is. It is therefore difficult

to determine what data is relevant prior to engaging

with the problem. Comprehensive schemas for

classifying problems as proposed by various defect

classification standards, but also found in many defect

tracking systems including Bugzilla, are of limited use.

Instead, defect tracking systems need to support

interaction between the reporting user and the software

developer resolving the reported problem. Users have

9

little understanding of what is relevant for debugging

the system. As such, defect tracking systems need to

provide reporting users with simple guidelines for

describing the problem situation and what information

to be provided for bootstrapping the debugging

process.

References

[1] F. Calzolari, P. Tonella, and G. Antoniol,

"Dynamic model for maintenance and testing

effort," in International Conference on

Software Maintenance, ICSM'98 Bethesda,

Maryland, 1998.

[2] C. L. Corritore and S. Wiedenbeck, "Mental

representations of expert procedural and

object-oriented programmers in a software

maintenance task," International Journal of

Human-Computer Studies, 50(1): 61-83,

1999.

[3] A. Zeller, Why Programs Fail: A Guide to

Systematic Debugging. San Francisco, CA:

Morgan Kaufman Publishers, 2006.

[4] D. Carney, S. A. Hissam, and D. Plakosh,

"Complex COTS-based software systems:

practical steps for their maintenance," Journal

of Software Maintenance: Research and

Practice, 12(6): 357-376, 2000.

[5] W. Hasselbring, "Information Systems

Integration," Communications of the ACM,

46(6): 33-38, June 2000.

[6] J. Li, R. Conradi, O. P. N. Slyngstad, C.

Bunse, M. Khan, M. Torchiano, and M.

Morisio, "Validation of New Theses on Off-

The-Shelf," in 11th IEEE International

Metrics Symposium, 2005, p. 26.

[7] K. Crowston and J. Howison, "The social

structure of free and open source software

development," First Monday, 10(2): 2005.

[8] D. A. Schön, The Reflexive Practitioner: How

Professionals Think in Action. Aldershot, UK:

Ashgate Publishing Limited, 1991.

[9] K. E. Weick, Sensemaking in Organizations.

Thousand Oaks, CA: SAGE Publications,

1995.

[10] K. Araki, Z. Furukawa, and J. Cheng, "A

General Framework for Debugging," IEEE

Software, 8(3): 14-20, May 1991.

[11] A. von Mayrhauser and A. M. Vans,

"Program Comprehension During Software

Maintenance and Evolution," IEEE Computer,

28(8): 44-55, August 1995.

[12] T. Østerlie and A. I. Wang, "Establishing

Maintainability in Systems Integration:

Ambiguity, Negotiation, and Infrastructure,"

in The 22nd IEEE International Conference

on Software Maintenance Philladelphia, PA,

2006.

[13] J. E. Orr, Talking About Machines: An

Ethnography of a Modern Job. Ithaca, NY:

Cornell University Press, 1996.

[14] D. A. Wheeler, "SLOCCount",

http://www.dwheeler.com/sloccount/. Last

accessed April 12 2007.

[15] D. L. Jorgensen, Participant Observation: A

Methodology for Human Studies. Thousand

Oaks, CA: SAGE Publications, 1989.

[16] R. M. Emerson, R. I. Fretz, and L. L. Shaw,

Writing Ethnographic Fieldnotes. Chicago &

London: The University of Chicago Press,

1995.

[17] D. M. Fetterman, Ethnography: Step by Step,

Second ed. Thousand Oaks, CA: SAGE

Publications, 1998.

[18] M. P. Barnson, "The Bugzilla Guide - 3.1

Development Release",

http://www.bugzilla.org/docs/tip/html/. Last

accessed 21 March 2007.

[19] B. Littlewood, "Why did Ed Adams see so

many small bugs?," Software Reliability and

Metrics Newsletter, 4): 31-34, 1986.

[20] C. L. Huntley, "Organizational Learning in

Open-Source Software Projects: An Analysis

of Debugging Data," IEEE Transactions on

Engineering Management, 50(4): 485-493,

November 2003.

[21] "The Gentoo Weekly Newsletter",

http://www.gentoo.org/news/en/gwn/gwn.xml

. Last accessed March 20 2007.

[22] "Gentoo Linux Active Developer List",

http://www.gentoo.org/proj/en/devrel/roll-

call/userinfo.xml. Last accessed April 12

2007.

[23] E. N. Adams, "Optimizing Preventive Service

of Software Products," IBM Journal of

Research and Developmen, 28(1): 2-14,

January 1984.

[24] L. A. Belady and M. M. Lehman, "The

Characteristics of Large Systems," in

Research Directions in Software Technology,

P. Wegner, Ed. Cambridge, Mass.: The MIT

Press, 1978, pp. 108-138.

10

