
A Groovy Virtual Drummer:
Learning by Imitation Using a
Self-Organizing Connectionist
Architecture

Thesis for the degree of Philosophiae Doctor

Trondheim, August 2009

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and
Electrical Engineering
Department of Computer and Information Science

Axel Tidemann

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

© Axel Tidemann

ISBN 978-82-471-1734-7 (printed ver.)
ISBN 978-82-471-1735-4 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2009:171

Printed by NTNU-trykk

TO ROCK’N’ROLL, GIRLS AND COMPUTER MUSIC.

iv

ABSTRACT

The research in this thesis aims to enable robots to imitate humans. Learn-
ing by imitation is a fundamental part of human behaviour, since it allows
humans to acquire motor skills simply by demonstration; seen from a robotic
viewpoint you can easily “program” your fellow humans by showing them
what to do. Would it not be great if the same mechanism could be used to
program robots? A robot is programmed by specifying the torque of its mo-
tors. The torque can be regarded as the force or strength that is the result
of muscles contracting or relaxing. Typical approaches to determine motor
torques that will lead to a desired behaviour include setting them manually,
i.e. on a trial-and-error basis, or specifying them by mathematical equations.
Neither of these are intuitive to most humans, so most robot behaviours are
programmed by engineers. However, if an engineer was to design a pre-
programmed housekeeping robot, it would be very hard to program all the
possible behaviours the robot could be expected to perform, even in such a
limited domain. It is much more cost-efficient to make the robot learn what
to do. This would allow the robot to adapt to its human owner, and not the
other way around. Since humans easily learn new behaviours by imitating
others, it would be ideal if humans could use the same technique to transfer
motor knowledge to robots. I believe research in this area could be of great
help to bridge the human-robot interaction gap that currently exists, so that
you could have truly intelligent robots that could assist people in everyday
life.

To understand imitation learning, knowledge of psychology and neuroscience
is required. The research in this thesis has taken an interdisciplinary ap-
proach, studying the desired mechanism on both a behavioural and neurosci-
entific level. I have focused on imitation in a musical setting. The system can
both see and hear, and seeks to imitate the perceived behaviour. The appli-
cation has been to create an intelligent virtual drummer, that imitates both
the physical playing style (i.e. the movement of the arms) as well as the mu-
sical playing style (i.e. the groove) of the teacher. The virtual drummer will
then both look and sound like a human drummer. The research in this the-
sis presents a multi-modal architecture for imitation of human movements.
I have been working on simulated robots due to limits of time and money,

v

Abstract

however the principles of my research have been developed in a platform-
independent way, so it should be applicable to real robots as well.

vi

PREFACE

This thesis is submitted to the Norwegian University of Science and Technol-
ogy (NTNU) in partial fulfillment of the requirements for the degree philosophiæ
doctor, and is organized as a collection of papers. The papers are in Part II,
in their original publication format. The research has been conducted at the
Department of Information and Computer Science, NTNU under the supervi-
sion of Associate Professor Pinar Öztürk. I have also been a guest researcher
at the Department of Electrical and Electronic Engineering, Imperial College
of Science, Technology and Medicine, University of London, enjoying a pro-
ductive collaboration with Senior Lecturer Yiannis Demiris.

vii

Preface

viii

ACKNOWLEDGEMENTS

First I would like to thank my supervisor Pinar Öztürk. Her constant drive
and motivation has kept me working hard over the years, a key factor for the
completion of this thesis. Her supervision has felt more like a collaboration;
exploring ideas and research paths together. When doing research, I have
greatly appreciated the freedom she has given me.

I would also like to thank Yiannis Demiris at Imperial College, London,
where I spent a productive year as a guest researcher. He also believed
strongly that I should follow my own research ideas, and let me do so under
his guidance. I am very grateful for our fruitful and rewarding collaboration.

My co-supervisors Keith Downing and Ruud van der Weel have also helped
my research through discussions and insights, bringing forward my work. A
special thanks goes to Ruud, who has let me use his motion tracking equip-
ment several times.

My colleagues and friends at IDI and Imperial have also been a source for
inspiration, help and guidance to my research. These are Rune Sætre, Lester
Solbakken, Rikke Amilde Løvlid, Boye Annfelt Høverstad, Martin Thorsen
Ranang, Diego Federici, Richard Blake, Jörg Cassens (my LATEX-guru), Mag-
nus Lie Hetland, Anthony Dearden, Tom Carlson, Juan Camilo Moreno, Paschalis
Veskos, Simon Butler and Matthew Johnson.

However, this thesis would never have been finished if I was not surrounded
by so many wonderful people with whom I share a passion for music, both
creatively, performance-wise and artistically. These people are Tor-Morten
“Roy Albert” Kvam, Dagfinn “Big D/Randy Royce” Ritland, Luis Della Mea
Delucchi, Julie Rokseth (and the rest of the Rokseth clan), Frode “The Pack-
age” Thomassen, Ola Nordal, Sven-Arne Skarvik, Magnus “The Magulator”
Ritland, Margaret Berger, Jørgen Assar Mortensen, Carl-Gustaf “Sege” Lund-
holm, Tony Håndstad, Tony André Søndbø, Erik Støre, Eiliv Brenner, Annette
Hoff, Rebecca Ludvigsen, Øistein Refseth, Henrik “Mönrik” Sahlin-Pettersen,
Anne Guro Hukkelaas Gaustad, Ole Petter “Bobby Overtone” Berg, Kari Røss-
land, Ian “B-Dawg” Butcher, Tore “T-Bone” Meberg, Rupert Taylor, Marte-
Helene Bjørk, my Krambugata crew and my Nonnegata crew. Furthermore,
I am very grateful for having such a wonderful family: my mother Miriam
and father Svein who put me on this earth and have been showering me

ix

Acknowledgements

with their love ever since, my sister Kine Louise “Kinelus” Tidemann Mårvik
who is probably the person I look up to the most on this planet, my inspiring
brother-in-law Marius Tidemann Mårvik, my lovely little brothers Trym and
Magnus, their mother Hildegunn Gran Tidemann, her sister Ingvild “Evil I”
Kari Gran, her husband Øystein “Brølstein” Vold and the rest of my extended
family. I am also very happy to have had such wonderful grandparents as
Lill-Margrete and Walter Johan Tidemann, with whom I spent a significant
part of my childhood, giving my parents some well-deserved time off.

And last, but not least (but still très petite et mignonne): my wonderful girl-
friend Pernille Monstad Aga.

x

CONTENTS

Abstract v

Preface vii

Acknowledgements ix

I Research Overview 1

1. Introduction 3
1.1. Motivation . 3
1.2. Overview . 4
1.3. Research Context . 6
1.4. Research Goals . 6

1.4.1. Research Goals Related to the Motor System 7
1.4.2. Research Goals Related to the Sound System 7

1.5. Related Work on Imitation Learning 8
1.5.1. Imitation of Motor Actions 8
1.5.2. Imitation of Sound . 11
1.5.3. Robot Drummers . 12

2. Research Description 15
2.1. Research Approach . 15
2.2. AI tools . 16

2.2.1. Neural Networks . 16
2.2.2. Hidden Markov Models . 18
2.2.3. String matching . 18
2.2.4. Why these Techniques Were Chosen 18

2.3. Concepts from Control Theory . 19
2.4. Imitation of Human Movement: Dancing 20

2.4.1. The Multiple Paired Models Architecture (MPMA) 21
2.4.2. Simplifications . 25
2.4.3. Experimental setup . 25

xi

Contents

2.4.4. Results . 26
2.4.5. Summary, experiment 1 28

2.5. Imitation of Recurring Patterns: Drumming 28
2.5.1. Software for Hierarchical Extraction of Drum Patterns

in a Learning Agent (SHEILA) 28
2.5.2. Simplifications . 31
2.5.3. Experimental Setup . 31
2.5.4. Results . 32
2.5.5. Summary, experiment 2 32

2.6. SHEILA: An Animated Drummer 34
2.6.1. Combining Motor and Sound Systems 35
2.6.2. The Predictive Error Controller 35
2.6.3. Simplifications . 37
2.6.4. Experimental Setup . 37
2.6.5. Results . 38
2.6.6. Summary, experiment 3 38

2.7. Discussion . 40

3. Conclusions and Future Work 47

II Publications 49

A. Self-organizing Multiple Models for Imitation: Teaching a Robot
to Dance the YMCA 53

B. A Self-Organizing Multiple Model Architecture for Motor Imi-
tation 67

C. A Drum Machine that Learns to Groove 89

D. Groovy Neural Networks 99

E. A Groovy Artificial Drummer 107

F. Using Multiple Models to Imitate Drumming 123

G. Additional Publications 157
G.1. Imitating the Groove: Making Drum Machines More Human . . 158
G.2. Using Multiple Models to Imitate the YMCA 159
G.3. Learning Dance Movements by Imitation: A Multiple Model Ap-

proach . 160

III Postscript 161

xii

Contents

Citation Index 163

Bibliography 167

xiii

Contents

xiv

PART I

RESEARCH OVERVIEW

1INTRODUCTION

1.1 MOTIVATION

The work presented in this thesis seeks to diminish the human-robot inter-
action gap. Whereas some Hollywood film-makers tend to draw a dystopian
future where robots pose a threat to mankind, I think they can help and aug-
ment our way of life. Dangerous tasks could be performed by machines that
you could repair if an accident occurred, without loss of life or health. Robots
could aid people in their daily life, performing chores so that more free time
could be spent doing fun and meaningful things. Hospitals and nursing homes
could have robots that would ensure better treatment for the patients. These
are but a few aspects where robots could be of great benefit to society.

There are two challenges that must be met before robots can fulfill their po-
tential in human society. Firstly, the way robots are built must be improved.
Robots today are brittle, break easily and nowhere near the dexterity of even
simple animals. They must become cheaper to build and easier to fix. Prefer-
ably, robot technology would employ some biological principles, such as the
ability to grow and heal by itself. These obstacles are indeed significant, but
focuses mainly on technique and mechanics. The second challenge is (in my
opinion) harder and with a potentially higher reward: Robots must be easier
to program. By programming them, I mean make them do what you want.
Robots will not permeate human society as long as you need an engineering
degree in order to achieve a desired behaviour. You should be able to teach
robots motor skills as easily as you do with other human beings. The robot
should be able to imitate your actions. This is what I have chosen to focus on
in my PhD: programming imitative behaviour in robots. In this thesis, the fo-
cus has been to implement a virtual drummer, that imitates the playing style
of human drummers.

Imitative behaviour can be observed on (at least) two levels. At the low
level, you imitate a desired trajectory. This consists of imitating a move-
ment, following the same trajectory through space as that of the demonstra-
tor. Learning to dance is an example; you observe the moves made by the
teacher, and do the same. On a higher level you have goal-directed imitation.

3

1. Introduction

Goal-directed imitation manifests itself when the observer is able to imitate
the intention of the observed action, even if the goal is not achieved. For in-
stance, if a teacher fails to stack an object on top of another, the observer
understands what the intention was, and imitates accordingly by placing the
object on top of the other object. Another example would be achieving a goal
regardless of the differences in physical appearance. Imagine a robot with one
arm that is able to imitate a human movement with two arms. When the hu-
man lifts a cup with both arms and puts it on the table, the robot would then
be able to imitate the same goal using only one arm, even if the trajectories of
the two actions are different.

The research presented in this thesis incorporates both trajectory-based
and goal-directed imitation, which will be explained in the next section.

1.2 OVERVIEW

The research focus of this thesis is to create a virtual drummer, that is able to
imitate the playing style of human drummers. This task requires the use of
both visual and audial information, i.e. when seeking to imitate the playing
style the imitator must both see and hear the teacher. The fusion of modalities
is crucial to the system, it requires an active understanding of how one modal-
ity relates to the other to achieve the imitative behaviour. To achieve this goal
I have implemented a system that models human musical expressiveness, see
figure 1.1.

The system has two external sensory input channels: audio and vision. Like
a human, it can both see and hear the motor actions needed to produce the
desired sound. The system has two output channels: sound and motor com-
mands. A simplification is revealed: the system will produce both the sound
itself as well as the motor commands required to produce the sound. This is
done so that the physical environment need not be simulated. A simulation
of the drums requires physical models of the drums, i.e. properties relating
to the tension of the skin, dimension of the drum, which material is used to
make the shell, and so on. Instead of focusing on modeling drums, the system
produces sound in itself. For instance, when hitting a drum, the system will
imitate the arm movement and the resulting sound of hitting the drum itself.
This requires a way to represent musical signals, but alleviates the need to
simulate the physical properties of the drum. In order to create an intelligent
virtual drummer that can both be seen and heard, two subsystems will be
developed: a sound system that is able to imitate the drum patterns, and a
motor system that is able to imitate the corresponding arm movements.

This simplification makes the architecture capable of imitation of both tra-
jectories and goals. The imitation of trajectories is based on visual input; the
architecture imitates the movements that it sees. However, the imitation of
movements is intrinsically linked to what the system hears since the move-

4

1.2. Overview

ment results in sound. In other words, the architecture performs goal-directed
imitation as well: the goal is the sound that is the result of the movement.
How will these goals differ? Recall that the artificial drummer is designed
to be a groovy drummer. This implies that the dynamics and timing of hit-
ting a drum will vary over time, since these two factors determine the groove.
The architecture must therefore issue motor commands that will yield the
trajectory corresponding to the goal of the movement (for instance a certain
accentuation of hitting the drum).

In the virtual domain, the simplification of having separate motor and sound
systems make sense: instead of employing computationally expensive physi-
cal simulators (as would be in the case of generating sound), the usage of a
dedicated sound system is a lot more efficient. The movements are still the
same, and in a virtual world the end user will most likely not be able to tell
the difference between a physically simulated drum and a dedicated sound
system, when the drumming sounds the same and the drummer moves in the
same way.

This can be taken further: in computer games, perceived realism is more
important than implementing a simulator that is 100% true to the real world.
However, it is still important to have systems that are capable of human be-
haviour. The approach in this thesis is to use models of human behaviour, but
to make simplifications to facilitate the implementation of the system.

The independence of the motor and sound systems allows these to be devel-
oped and tested on their own, i.e. the motor system can be tested on imitating
movements (without any corresponding sound to be made) and the sound sys-
tem can be tested on imitating sound (without any corresponding movement),
before combining the two. Since the systems are developed independently,
the system depicted in figure 1.1 does not explicitly deal with cases where the
simulated robot should only imitate one of the modalities. For instance, if the
robot is to imitate only arm movements, it will use only the motor system, and
vice versa; this will be known a priori to the experiment by the designer, and
is not something that will be determined by the system from one experiment
to the next.

Musical ImitationSensory
Input

System
Output

Audio

Vision

Sound

Motor
Commands

{ }
Figure 1.1: Approach to model and imitate human musical expressiveness.

5

1. Introduction

1.3 RESEARCH CONTEXT

This thesis is focused on imitating human movements in which music is a
crucial element, i.e. through dance and drumming. However, the work is not
limited to this particular application. The main point is the fusion of two
modalities in the system. The two sensory input signals used in the system
(audio and vision) could be replaced with other sensory signals - the crucial
point being that the two sensory signals are in different reference frames. The
difference in the signal streams presents both a challenge and an advantage:
the challenge is to fuse the two modalities so that the combined sensory input
provides more information than the sum of its parts (i.e. a Gestalt view on the
sensory fusion). The advantage is the increased robustness when using two
modalities - should there be noise or missing signals in one modality, there is
still another signal that you can use to guide your movements. For instance,
if one of the loudspeakers should suddenly fail when you are dancing, you can
continue dancing (at least for a short period of time) simply by watching the
others dance. In the case of dancing, the sound has a crucial role to provide
the context for the dancer, i.e. making it aware which part of the movement
is supposed to be executed next. Choreographed dances are made up of se-
quences of body movements that are performed synchronized to music. The
music then serves as a time keeper for the dancer, and an indicator of which
part of the choreographed movement is up next.

I have chosen to work with vision and sound signals since these modal-
ities are easy to implement on a robot (i.e. by the use of a camera and a
microphone) and are crucial sensory streams for a robot that mimics human
behaviour. A robot designed to mimic a bat, for instance, would most likely
employ the audial and olfactory senses, since these are the two most predom-
inant external sensory inputs to the bat.

In a wider AI research context, this work progresses the field of control
systems for situated agents. Situated agents (i.e. autonomous agents that
operate in an environment) require a control mechanism that can deal with
the challenges of operating in an unpredictable environment. An agent is
built to perform one or more tasks. These tasks themselves might be easy to
specify, however a control system should be able to deal with sudden changes
in the state of both the agent and its surroundings, and do so intelligently, in
order to avoid damage to the agent. Review of related work is in section 1.5,
the next section describes the research goals in this thesis.

1.4 RESEARCH GOALS

The research goals represent milestones. The research hypotheses indicate
what was predicted to be a result of achieving the research goals.

Research goal 1 Design and develop an architecture for musical imitation

6

1.4. Research Goals

that is able to model and imitate human expressiveness (i.e. the groove) when
playing the drums.

The overall research goal is to create an artificial intelligent groovy virtual
drummer, as explained in the previous sections. To achieve this goal, two
subsystems will be developed; one for imitation of arm movements (i.e. a
motor system) and one for imitation of drum patterns (i.e. a sound system).

1.4.1 Research Goals Related to the Motor System

Research goal 2 Design and develop an architecture for motor control and
learning that can be used to imitate human movements.

A crucial aspect of the architecture is how it fuses two modalities: vision and
audio. The command fusion happens in the motor subsystem, the sound sys-
tem operates on its own. Not only is the fusion of vision and audio required
for the system to work, it is also hypothesized that this is an advantage to the
system.

Research hypothesis 1 Fusing high-level audio signals with visual signals
improves the performance of the motor system.
Test: Remove the audio signal, and examine the performance of the system.

In addition to learning sequences of movements, the system should be able
to use the acquired motor knowledge in novel situations. In other words, if
the system learns a sequence of movements ABC it should be able to form
novel sequences that contain these movements but in a different order, e.g.
CAB. The motor system should be able to extract the segments of movements
and make use of these segments, regardless of the order of segments that was
present in the original sequence.

Research hypothesis 2 The motor system will internalize motor knowledge
regardless of the sequence of movements that was used to train the system.
Test: Test the motor system with random permutations of the sequence of
movements that was used to train the system, and compare the performance
of the system when testing with the original training sequence.

1.4.2 Research Goals Related to the Sound System

Research goal 3 Design and develop an architecture for imitation of human
drum patterns that capture the human expressiveness of playing.

The sound system is designed to model and imitate the human quality of
groove. Such a quality must therefore be evaluated by humans, to verify
whether the system is capable of producing human-like drum tracks.

7

1. Introduction

Research hypothesis 3 The musical output of the system should produce
imitations that will be perceived similar to the originals.
Test: Use human listeners to compare the original audio with the imitated
audio and classify which served as training signal to the imitated audio.

1.5 RELATED WORK ON IMITATION LEARNING

This section describes related work to imitation learning. Since the approach
in this thesis is to develop two subsystems (one motor system and one sound
system), the related work will be discussed in separate sections.

1.5.1 Imitation of Motor Actions

Developing architectures for motor action starts with an understanding of
imitation learning as it happens in nature; imitation learning has been stud-
ied extensively before the AI community started implementing the imitative
capability. This section is therefore divided in two: the first section gives a
brief background on imitation learning in developmental psychology and neu-
roscience, which has inspired many of the control architectures described in
the second section.

Imitation in Developmental Psychology and Neuroscience

Previously, imitation was regarded as a simple mechanism, i.e. “monkey see,
monkey do”. Over the last decades, imitation has gained more attention as an
important form of human cognition. Piaget [1962] was a pioneer on research
on imitation in infants. He regards imitation as an ongoing process of adjust-
ing sensory-motor schemas (comprising both motor and perception stimuli)
to the external world, stored through repetition. These schemas are then
maintained through production and recognition of the same behaviour. Pi-
aget claims these mechanisms (adjusting and maintaining schemas) are what
makes an individual intelligent. He defines several stages of development of
the imitative capability, and that it is in the late stages that the infant can
imitate movements invisible to itself. However, Meltzoff and Moore [1977] dis-
covered that neonates can imitate facial gestures, suggesting that there is an
innate mechanism that allows visual and proprioceptional information to be
transformed into a matching representation of the child’s motor system. Melt-
zoff and Moore [1997] explains this process called active intermodal mapping
(AIM), which they believe unifies perception and action. The process is able to
detect discrepancies between the observed and produced behaviour, and cor-
rect the produced behaviour accordingly. The infant learns to control its body
through motor babbling; in robotics this would be similar to sending random
motor commands and observing the result. This process begins in utero, and
equips the infant with the necessary motor knowledge to be able to correct

8

1.5. Related Work on Imitation Learning

itself when it observes action that it wants to imitate. Imitation has also been
considered an important aspect of human society, since it allows people to feel
that other people are “like me” [Meltzoff, 1999].

Rizzolatti et al. [1996b] discovered neurons in monkeys that would fire both
when observing and performing the same action, and called them mirror neu-
rons. The same neural activity was found in humans [Rizzolatti et al., 1996a;
Grafton et al., 1996] and is by some researchers regarded as possible a neural
implementation of the imitative mechanism. This activity is partially found
within Broca’s area, which sends motor commands to produce speech. Ar-
bib [2002] suggests the mirror neurons enable language in humans, since the
ability to imitate each other allows for the development of language through
word-games. The use of language must have been a great advantage, since
our narrow throats required to produce sounds increase the risk of choking
on food. Kohler et al. [2002] brought further evidence to this claim when they
discovered mirror neurons to be active also when hearing the sound associ-
ated with the action. The mirror neurons respond to both audio and visual
cues, but interestingly not when an action is seen and not heard. If the mon-
key saw a peanut cracked open, but did not hear it crack, the mirror neurons
would not fire, since it would be a sign that the action had not been successful.

One of the interesting reasons to examine mirror neurons in monkeys is
the possibility that there is an equivalent system in humans. However, recent
fMRI studies have shown that there is not a direct mapping of activity when
observing and performing the same action in humans [Dinstein et al., 2007,
2008a; Lingnau et al., 2009]. The results suggest that even though mirror
neurons might exist, they are not the only neurons active during observation
and execution of movement, calling for a more nuanced view of a potential
mirror neuron system.

However, understanding a possible mirror neuron capability is important,
since it is believed that a dysfunctional mirror neuron system is the cause for
autism spectral disorders [Williams et al., 2001]. Gallese and Goldman [1998]
believe mirror neurons enable mind-reading in humans, i.e. attributing be-
liefs, hopes, desires etc. to other humans, based on how you would react if
you were in the same situation. Since the mirror neurons allow for an inner
simulation of the actions you observe (i.e. the same firing pattern as when
observing an action), they can also provide an inner simulation of another
person. Later studies seemed to confirm the hypothesis that a dysfunctional
mirror neuron system caused autism spectral disorder [Oberman et al., 2005;
Dapretto et al., 2005], however this has also been met with skepticism due
to lack of evidence [Dinstein et al., 2008b]. It is safe to say that the current
concept of a mirror neuron system analogous to that found in the monkey is
controversial in the neuroscientific community.

However, modeling the imitative capability is clearly of great interest to
computational neuroscientists. Wolpert et al. [2003] describe a model-based
approach for explaining imitative behaviour in humans, using inverse models

9

1. Introduction

(i.e. controllers or behaviours) to produce the desired action, and forward
models (i.e. predictors or estimators) to predict their outcome, an ordering
that has been suggested to exist in the brain based on fMRI studies [Imamizu
et al., 2004]. This will be further discussed in the next section.

Imitation Architectures in AI

Imitation learning has gained considerable interest from the artificial intel-
ligence community over the last years. The work on imitation learning is
closely related to that of building a control architecture for an embodied agent.
In fact, they can be seen as the exact same thing - it is the approach to learn
that separates the two (albeit very closely connected) fields. Architectures for
imitation learning explicitly state that the agent learns by observing others,
producing the same motor actions. Imitation learning can thus be seen as
a more specialized branch of research on architectures for motor control and
learning. This section will describe both fields.

Brooks [1986] describes the subsumption architecture; a hierarchical mod-
ular approach where the modules are designated with different tasks. The
low-level modules are responsible for short-term critical tasks, such as ob-
stacle avoidance, whereas the high-level modules implement goal-directed
behaviour. The low-level modules can override the high-level behaviours,
since they represent behaviours that keep the robot safe from harm. The
designer of the system determines how the modules are able to override each
other, as well as the capabilities of each module. Maes [1990] distributes be-
haviours using competence modules. These competence module are connected
and spread activation throughout the network, based on fulfilling certain pre-
and postconditions that are defined by the designer of the network. Some
modules only activate other modules, whereas some issue motor commands.
Gaussier et al. [1998] describe a modular approach where both the structure
and functionality of each module is predefined. The modules represent the
different sensorimotor processing stages, such as perception, recognition and
action selection. Similar to this architecture is the work of Matarić [2002],
which proposes an architecture for learning by imitation that explicitly deals
with visual processing and motor behaviour in separate modules.

Jordan and Rumelhart [1992] tackle another important aspect of learning
actions: namely those where only the outcome of the actions are available
to the learner, not the actions themselves. Jordan and Rumelhart use the
following example: a basketball player that learns to shoot can only use the
visual information of the ball flying through the air to correct its own muscle
commands. Supervised learning is dependent on a teacher signal, and Jordan
and Rumelhart showed how a supervised approach could be used when there
is no explicit teacher signal, only consequences of the actions. By using an
internal model of the consequences of the actions (i.e. a forward model), the
forward model can be used to transform the error signals in sensory space

10

1.5. Related Work on Imitation Learning

to error signals of the motor space. This allows for particular solutions to be
found in the action space, as opposed to direct inverse modeling (i.e. not using
a forward model, only an inverse model) where the input/output relationship
of the environment is reversed to train the inverse model - this is not neces-
sarily a correct inverse model, since there are many ways to achieve a desired
goal. This work forms the basis for Wolpert’s model (see Haruno et al. [2001]
for an implementation). Similarly, Demiris and Hayes [2002] employ an ar-
chitecture with paired inverse and forward models. What separates these
architectures from Jordan and Rumelhart is that they use multiple paired in-
verse and forward models to imitate motor actions. The inverse models learn
behaviours, and the forward models predict the outcome of these behaviours.
Based on these predictions, the best suited inverse model for the task is cho-
sen. The approach of using multiple paired inverse/forward models differ from
the approaches of Brooks and Maes since the latter uses inhibition as a con-
trol mechanism among modules, whereas a multiple paired inverse/forward
approach coordinates which inverse model is best suited to control the robot
based on the performance of the forward models. Another important feature
of using forward models is the focus on prediction, which is not present to the
same extent in the architectures of Brooks and Maes.

The mixture of experts (MOE) architecture [Jacobs et al., 1991] is related
to the inverse/forward model approach. It divides responsibility between com-
peting neural networks using a gating network to distribute the responsibility
between the competing networks.

This section has so far described modular approaches for motor control and
learning. Some researchers focus solely on neural network architectures. Tani
et al. [2004] implement mirror neuron activity in a recurrent neural network.
Special neurons (dubbed “parametric bias”) self-organize to specific activa-
tions both when producing and observing an action. It is also possible to
manually activate the parametric bias neurons, and the network will then
generate the corresponding activity. Cangelosi and Riga [2006] uses a neu-
ral network to ground symbols from actions; the student learns actions and
corresponding symbols by observing the teacher. The robots play language
games, using imitation to ground the symbols of the actions, an area of re-
search which is also heavily influenced by Steels [2003]. Billard and Hayes
[1999] has a similar approach, where a single recurrent associative network
(with no hidden units) learns to label symbols to sensory perception. A stu-
dent robot imitates a teacher robot, acquiring sensory data and symbols at the
same time, storing the information in the network using Hebbian learning.

1.5.2 Imitation of Sound

This section will discuss approaches to modeling user-specific variations of
musicians. This is an active field of study within the AI community, and par-
ticularly on the playing style of pianists. Saunders et al. [2008] model the

11

1. Introduction

playing style by looking at changes in tempo and loudness, using string ker-
nels to form the representations. Tobudic and Widmer [2005] use first-order
logic to represent tempo and dynamics, and then a clustering algorithm to
group similar phrases. This representation describes how a pianist would
play a classical piece of music. Pachet [2002] uses Hidden Markov Models to
create an instrument called “The Continuator” that plays with musicians in
real time. The human pianist plays a phrase, and the Continuator plays a
second phrase that is a continuation of the first phrase. The Markov Mod-
els represent the probability that a note will follow the other, focusing on
melodic signature instead of tempo and dynamics. de Mantaras and Arcos
[2002] use case-based reasoning to imitate the expressive qualities of how the
music should feel, i.e. joyful or sad, and to change the tempo of the song but
still maintain the musical expressiveness [Grachten et al., 2006]. Raphael
[2003] has a system called “Music Plus One” that models user-specific varia-
tions in tempo when playing a piece of classical music. Classical musicians
interpret the score and vary the intensity and tempo of the notes. This is
why MIDI1 playback of classical pieces sound very machine-like. This system
allows soloists to practice along with the computer, and the system is then
able to follow the score of the soloist during changes in tempo and dynamics.
Hoover et al. [2008] use an evolutionary approach to generate drum tracks
based on melodic input. The user of the system selects which rhythm figures
should be allowed to evolve, and new rhythm figures are created in an evo-
lutionary manner. The evolved networks vary dynamics as well as beats, but
not timing, which is an important part of human expressiveness. Hoover et al.
does not model human expressiveness, the system only tries to mimic a nat-
ural feel by introducing variations. The user directs the randomized search
(which lies at the core of all evolutionary algorithms) towards a desired result.

1.5.3 Robot Drummers

This thesis has a focus of modeling human expressiveness and using these
models to imitate human behaviour. Implementing a virtual drummer is the
field of application for the research. This section will review other robot drum-
mers that have been built for research purposes.

Hajian et al. [1997] built a robotic hand that was able to play drum by mod-
ulating the grasp force in the hand to overcome bandwidth limitations of the
control system. This was done as a way to demonstrate how human drum-
mers are able to play faster than the delays of the neuromuscular system,
showing how impedance modulation can be used to overcome limitations of
slow actuators. The control system was set up as a lumped-element second
order model, using springs and dampers to represent the fingers, drum stick
and head. The focus was not on building an intelligent model of the drumming

1Musical Instrument Digital Interface, a protocol for electronic music equipment to communi-
cate in real-time.

12

1.5. Related Work on Imitation Learning

behaviour, but to mimic how humans effectively vary the stiffness of the drum
stick by modulating grasp force, increasing the frequency of the drumming.

Schaal [2003] has developed a theoretical framework for specifying move-
ment trajectories for robots, based on the idea that movement is built up of
dynamic primitives. These primitives can then be combined to create rhyth-
mic and discrete movements. To demonstrate rhythmic movements, a robot
was set to perform a drumming task. The primitives are made up of nonlinear
differential equations, and provide a mathematical approach to generating
motor control. Related to this work is the research by Degallier et al. [2006],
who use switching and superposition between discrete and rhythmic move-
ments. By using oscillators, movement trajectories are generated on-line for
a humanoid robot. The humanoid robot plays the drums according to a score
given to the system, and the corresponding arm trajectories are produced from
the score using the oscillators. This allows the system to be robust towards
perturbations of the trajectories.

The Haile drummer created by Weinberg and Driscoll [2006] plays the Na-
tive American Pow-wow drum. It has both a database of learned patterns,
as well as the ability to imitate and modify patterns when interacting with
human drummers. The control mechanism consists of using an environment
called Max/MSP, which makes it easy to implement beat detection, frequency
analysis and other operations necessary for musical interaction and perfor-
mance. The Haile robot was later extended to play the xylophone, using a
genetic algorithm to generate novel melodies while playing [Weinberg et al.,
2008].

Crick et al. [2006] focus on the social interaction aspect of drumming. Their
robot, Nico, synchronizes to a conductor and another drummer. It fuses au-
ditory and visual perception to keep time with the conductor and the human
drummer. The conductor and drummer can then change the tempo of their
drumming, and the robot will change accordingly. The patterns played by the
drummer are very simple; one beat for each gesture made by the conductor.
However, the generation of complex drum patterns is not the focus of research,
it is instead studying how robots can synchronize in social tasks. This work is
an extension of the research by Williamson [1999], which employs oscillators
in a drumming task to exploit the natural dynamics of the robot system when
performing rhythmic movement. This adaptation was made possible since the
oscillators could make use of feedback sensor signals (i.e. hearing the sound
produced by the drum).

Konno et al. [2007] focus on how impulse forces can be used to overcome
torque limitations of the actuators. A humanoid robot was used to play a
Japanese drum that requires large impulse forces. Their goal is to formulate
an impact dynamics that can deal with the various issues that occur when
large impulse forces are used (as opposed to static forces), which are crucial for
stability and security of robot systems. Trajectories for the arm movements
were calculated using cubic splines, and the robot was able to play along to a

13

1. Introduction

musical score.
How do these robots compare to the research presented in this thesis? All

these robot drummers have two things in common: 1) their expressiveness is
limited since they are implemented using physical robots. It is obviously not
fair to compare physical robots to simulated ones in terms of dexterity, but it
is one of the advantages of using a simulated robot. 2) These robot drummers
are not concerned with the cognitive aspect of imitation, i.e. seeking to im-
plement a biologically inspired learning mechanism, as is the case with the
research presented in this thesis. The robot drummers mentioned here have
more practical solutions to generating trajectories. The research presented
in this thesis is concerned with the biological motivation for implementing
artificial intelligence, and therefore more emphasis is put on the underlying
principles, instead of choosing a more practical approach.

14

2RESEARCH DESCRIPTION

This chapter elaborates upon the research done throughout the PhD period.
This work is supported by the publications in part II, and based on the re-
search goals and hypotheses in section 1.4. This chapter will present a deeper
description of the research; the finer details are left in the supporting papers.

Figure 1.1 shows the overall approach to implementing an imitative archi-
tecture. It receives audial and visual sensory inputs, and produces sound and
motor commands to imitate the perceived stimuli. In order to build such a
system, it is decomposed into a motor system (section 2.4) and a sound sys-
tem (section 2.5). These systems were developed to function on their own, so
that their particulars could be studied on a low level. After the development
of these separate subsystems, they were combined to achieve the overall goal
of creating an imitative agent in a musical setting. This final step is described
in section 2.6.

2.1 RESEARCH APPROACH

The first AI systems were based on symbol manipulation and logic. Even
though such systems have had some success in implementing artificial intel-
ligence, there is now a strong tendency amongst AI researchers to investigate
and be inspired by how nature implements intelligence [Clark, 2001; Beer
et al., 1997; Izhikevich, 2006]. Debating what is intelligence is beyond the
scope of this thesis, but to implement a biological phenomenon (i.e. intelli-
gence) it makes sense to use techniques that are based on the same princi-
ples. Artificial neural networks inspired by the neural networks present in
our brains, have been used extensively to implement artificial intelligence in
this PhD (in addition to other techniques, as described in section 2.2). Com-
mon to all these techniques is that they learn from low-level stream of data,
i.e. they are machine learning approaches. These techniques have been cho-
sen because of their robustness to noise, their strong history in similar appli-
cations, and the appealing idea that the world can be its own model. Instead
of manually specifying the sensor space in which the system operates, this
can be discovered by the system itself, and it is able to extract salient features

15

2. Research Description

that might even be hidden to the designer of the system.
Another important biological principle is also used: namely that of self-

organization. Both the motor and sound systems are developed so that the
system should self-organize the way it works. The designer lays out the over-
all architecture, but the system is also designed to self-organize when solv-
ing a problem. This design choice is made to relieve the designer of possible
problems that might not be obvious before the system is deployed. For in-
stance, certain parameters such as size (i.e. neural resources) might not be
evident before the system is tested. Instead of hard-coding such constraints,
the system is allowed to sort out such parameters on its own. The system
will incorporate several modules with the same functional areas (i.e. senso-
rimotor perception and action), and self-organize how these modules control
the robot. Another advantage with a modular approach is its ability for re-
dundancy, which is crucial for robust intelligent systems [Pfeifer and Scheier,
2001]. The machine learning techniques (section 2.2) are similar but not iden-
tical; they are able to model the perceived sensory stream without being told
how to do it, but they do not change their own organization. The principle of
self-organization is thus at a higher level; i.e. how clusters of these low-level
modules are organized to solve a problem.

2.2 AI TOOLS

The desire to create intelligent machines has probably existed since humans
started using tools to make their lives easier. It was in 1956 that John Mc-
Carthy coined the term “artificial intelligence”1. The field had tremendous
success in its first years, and predictions were made of how AI would surpass
human intelligence within years. However, these predictions failed to materi-
alize. Most AI research at the time worked in a purely symbolic fashion, where
the use of logic and rules were the framework for implementing AI. It became
clear that these approaches, albeit efficient and suitable in certain situations,
had its computational limitations when the size of the problems grew. Focus
shifted more towards using systems inspired by biology, since humans easily
solve many of the tasks effortlessly that were computationally intractable for
computers. This divide is roughly what separates “Good Old Fashion AI” from
“nouvelle AI”, occurring at the late 70s/early 80s. The techniques used in my
research stem from the latter category. I mention only the techniques I have
used - this is by no means an exhaustive list of machine learning algorithms.

2.2.1 Neural Networks

Neural networks are inspired from how the brain is organized into many
small and simple processing units, that together make up a powerful process-

1http://news.cnet.com/Getting-machines-to-think-like-us/2008-11394_3-6090207.html, re-
trieved 11th of March, 2009.

16

2.2. AI tools

ing element. Each unit receives input signals, and uses a transfer function to
compute its output. The transfer function determines how the units respond
to its input signals; there are many variations, but most commonly used are
non-linear transfer functions such as the sigmoid function. Rosenblatt [1958]
developed the perceptron, which had some success but was limited due to
having only an input layer and an output layer; this simple organization of
neurons can only solve problems that are linearly separable. Werbos [1974]
developed the backpropagation algorithm for perceptrons with multiple lay-
ers, increasing the popularity of neural networks, since they now could be
trained easily. (Note: there exists a plethora of neural network architectures.
I will present the ones I have used in my research.) I have used neural net-
works to implement the different models in my work on motor and sound
imitation.

Recurrent Networks

Recurrent neural networks (RNNs) are similar to multi-layer perceptrons, but
they also have recurrent connections at the hidden layer, also known as Elman
networks [Elman, 1990]. This introduces sequential memory to the network,
since it has an internal state that influences the output of the hidden layer.
Multi-layer perceptrons (also known as feed-forward networks) do not have
an internal state, and therefore cannot model sequences in the same way as
RNNs. However, since the RNNs are trained using the backpropagation al-
gorithm, they tend to be less stable during training compared to feed-forward
networks.

Used in: An earlier implementation of the motor system, see figure 2.1 and
paper A.

Echo State Networks

Echo State Networks (ESNs) utilize the same basic principles as those of
multi-layer perceptrons, with one defining difference: the input layer weights
are generated at random, and remain fixed throughout the training of the
neural network [Jaeger and Haas, 2004]. The training of the output layer is
then reduced to a simple regression problem, which is quickly solved (most
easily by calculating the pseudo-inverse matrix of the hidden layer states and
the desired output states throughout a sequence). The randomly generated
input layer transforms the input sequence into a higher dimension, where
it becomes easier to separate the different data points. To achieve this, the
hidden layer is typically bigger than what is used for RNNs. In applications
where you would use 30-50 neurons in the hidden layer of an RNN (the num-
ber is determined by intuition, experience and how long you are willing to
wait for the training process to end), you would start out with hundreds or

17

2. Research Description

thousands of neurons in the hidden layer of the ESNs. This would be pro-
hibitive with RNNs, since the training time would simply be too long. With
ESNs, the training time is greatly reduced, so the cost of adding more nodes
to the hidden layer is negligible. In fact, this is one of the reasons ESNs work
so well - adding more neurons leads to a higher dimensionality in which the
problem can be decomposed. The increased computational power and reduced
training times greatly facilitates the development and testing phase.

Used in: The motor system, see figure 2.1 and paper B. ESNs replaced the
RNNs used in earlier versions of the motor system. ESNs were also used in
the sound system, see figure 2.7 and paper D. Subsequently, ESNs were used
in the combination of the motor and sound systems, see figure 2.11 and papers
E and F.

2.2.2 Hidden Markov Models

Hidden Markov Models (HMMs) are used to model sequences of actions, when
you do not know their underlying probabilities [Baum, Leonard E. et al.,
1970]. It is these probabilities that are hidden. Once these probabilities have
been calculated, the model can be used to generate new output sequences that
will be similar (but not necessarily identical) to the observed sequences.

Used in: The sound system, in figure 2.7 it would be in place of the “Sequence
ESN”. See paper C.

2.2.3 String matching

Searching for supermaximal repeats is a string matching algorithm used in
computational biology to find sequences of genes [Gusfield, 1997]. A super-
maximal repeat is a recurring substring that is not a substring of any other
pattern. For instance, in the string (2.1) abcq is a supermaximal repeat,
whereas abc is not since it is a substring of abcq.

S = egabcqxwabcziabcqlm (2.1)

Used in: The sound system to search for recurring drum patterns. In figure
2.7, it is part of the “SHEILA analysis”. This was used in the papers on the
sound system alone (papers C and D) as well as when the motor and sound
systems were combined (papers E and F).

2.2.4 Why these Techniques Were Chosen

As mentioned in section 2.2, choosing approaches to implement intelligence
inspired from how nature implements intelligence (i.e. neural networks) seems

18

2.3. Concepts from Control Theory

like a good idea. However, this was not the sole reason neural networks
were used. Neural networks were chosen also based on their long history
in robot control systems. Being tolerant to noise is a crucial ability when
designing robot controllers, in addition to being able to model sequences by
having memory. However, it should be noted that this approach is not com-
pletely different from the symbolic approaches it sought out to replace. The
synaptic weights can be seen as encoding rules and logic, albeit on a more
distributed level. Neural networks are designed to discover these relation-
ships on its own, instead of having to specify them. This is an apparent
strength, but there are still many variables that need to be set in order for
the neural network to learn, e.g. the size of the hidden layer, the learning
rate, what transfer function to use, how fast the internal memory of the nodes
should dissipate, and so on. Setting these variables requires experience; neu-
ral networks are not a silver bullet for all modeling problems. Indeed, other
approaches would also be well suited to implement imitation learning. Case
Based Reasoning (CBR) is one such technique which has already been used
to generate expressive music performances [Arcos et al., 1999]. CBR is an
AI problem solving approach where previous similar solutions are reused to
solve new problems. The approach includes learning from solved problems,
expanding the knowledge base for each solved problem. Arcos et al. ana-
lyze expressive musical performances which are then stored as cases. The
cases contain high-level musical descriptions of the performance, and these
descriptions are then reused to generate musical performance in a particular
expressive manner. In the research presented in this paper, CBR could have
been applied; a case could have represented information about how to plan
certain movements. However, the cases are not discovered by searching pre-
vious experiences, since they are not defined explicitly, but instead distributed
across several neural networks. The cases are reused and retained though, so
a CBR-approach should be feasible. CBR was not chosen initially because
of an interest in combining neural networks with inverse/forward models (see
section 2.3), and not immediately recognizing the possible link, the CBR route
was not taken.

Using HMMs and string searching algorithms were chosen for more prag-
matic reasons. HMMs are designed to model sequences of discrete events, and
were therefore well suited to be used in the groovy drum machine. The string
searching algorithm was a necessity for the system to be able to extract the
recurring patterns.

2.3 CONCEPTS FROM CONTROL THEORY

The motor system of the architecture employs concepts from control theory.
The most important notions from control literature will now be explained.

State The state is a description of the system at an instance of time. The

19

2. Research Description

current state at time t of the system is written as xt. The desired state
is the goal state of the system. It is one timestep ahead of the current
state, written as x

′

t+1. The tick (′) indicates that it is a desired state.
Predictions of the state (i.e. what will state x be at time t+1) are written
as x̂t+1, where the hat symbol (ˆ) indicates that it is a prediction of the
state.

Motor commands The motor commands are signals sent to the motor actua-
tors (also called plant in control theory) at time t, written as ut.

Inverse model An inverse model is a controller or a behaviour. It achieves
a desired state x

′

t+1 given a current state xt by outputting motor com-
mands ut.

Forward model A forward model is a predictor or an estimator. It predicts the
next state x̂t+1 based on the current state xt and the motor commands
ut applied to the system.

The inverse and forward model are paired, so that the output of the inverse
model is fed into its paired forward model. The forward model is then able to
predict the outcome of the motor commands, before sensory input about the
actual outcome is received. Such an arrangement can compensate for delays
in the sensor system. Also, when there are multiple paired inverse/forward
models, the performance of the forward models can be used to arbitrate be-
tween which inverse models are best suited to control the robot. This will be
further elaborated upon in section 2.4.1.

Used in: The motor system as building blocks of the architecture, see figure
2.1. These concepts were thus used in the papers that focused solely on the
motor system (papers A and B) and when the motor system was combined
with the sound system (papers E and F).

2.4 IMITATION OF HUMAN MOVEMENT: DANCING

The development of an architecture for motor control and learning was done to
achieve research goal 2. The architecture will self-organize the control of the
robot using a modular approach, as mentioned in section 2.1. The system will
see movements and issue motor commands that will yield the same behaviour
in an embodied agent. It is the motor part of the overall approach seen in
figure 1.1. Imitation of human dance movements has been selected as the
area of focus. Imitation learning is evident when students learn to dance from
teachers. Another important aspect is the multimodal nature of the problem:
the student both sees the teacher and hears the accompanying music. The
imitator uses both visual and audial clues in order to generate the intended
behaviour of its motor system. This research is published in papers A and B.

20

2.4. Imitation of Human Movement: Dancing

2.4.1 The Multiple Paired Models Architecture (MPMA)

The motor architecture developed in this thesis is based on the inverse/forward
model pairing by Jordan and Rumelhart [1992], used in multiple instances as
in the research by Wolpert et al. [2003] and Demiris and Hayes [2002]. A
crucial aspect is how the pairs of inverse/forward models self-organize when
controlling the robot. The architecture is called the Multiple Paired Models
Architecture, abbreviated MPMA. The reasons for choosing this approach will
now be explained. There is neuroscientific evidence that such an organization
exists in the brain [Imamizu et al., 2004]. Schaal [1999] regards model-based
approaches as those of Wolpert and Demiris as the most suitable way to im-
plement imitation learning in agents. It is also based on an approach that
is well understood in the control literature [Jordan and Rumelhart, 1992].
Furthermore, it addresses the design choice of building an architecture that
self-organizes the control of the robot, using a modular approach. How does
such an approach compare to the other solutions mentioned in section 1.5.1?
The subsumption architecture of Brooks [1986] has a heavy reliance on the
designer, both to define the capabilities of each module, and how they are able
to override each other. In this regard, it does not offer a self-organizing ap-
proach. The architecture of Maes [1990] uses several modules with specific
competences which can be regarded as similar to a multiple paired approach,
but the modules do not self-organize how they influence each other - the lists
of pre- and postconditions necessary for activation must be specified by the
designer. The architectures of Gaussier et al. [1998] and Matarić [2002] are
“holistic” solutions to learning motor skills, with separate modules for atten-
tion, recognition, learning and motor activation. Such an approach was not
chosen due to the view that sensory perception and action are closely related
[Demiris and Hayes, 2002; Wolpert et al., 2003]. Therefore, sensory percep-
tion and action should not be separated into different modules. The works of
Tani et al. [2004], Cangelosi and Riga [2006] and Billard and Hayes [1999]
employ a central neural network to learn motor skills and label them accord-
ingly. These approaches are not self-organizing on a modular level, since they
use only one neural network (not to be confused with the self-organization
that occurs at the neuronal level). Tani et al. [2004] is an exception since he
adds another network as a linguistic module, and connects it to the motor
module. These can be said to be self-organizing on a modular level, how-
ever the self-organization occurs between two modules of different modalities
(language versus motor control). The architectures of Wolpert et al. [2003],
Demiris and Hayes [2002] and Jacobs et al. [1991] employs self-organization
between modules that work in the same coordinate space. This is an advan-
tage, since more neural resources can be allocated to learning new concepts in
an adaptive manner, and it also allows for redundant coding of motor knowl-
edge. For this reason, approaches such as that of Tani et al. [2004] (and also
Gaussier et al. [1998] and Matarić [2002]) are not chosen.

21

2. Research Description

The details of how the MPMA is formed by using principles from Wolpert
et al. [2003] (named MOSAIC) and Demiris and Hayes [2002] (named HAM-
MER) will now be explained. Both architectures use multiple instances of
inverse/forward pairings, and the performance of the forward model is used
to choose which inverse model should control the robot. However, the predic-
tions of the forward model can only be measured once the predicted state has
happened. MOSAIC introduces a responsibility predictor (RP) as a remedy
to this problem. There is one RP for each inverse/forward pairing (from now
on referred to as a module), which predicts the suitability of the module to
control the robot based on contextual information. The context is a supple-
mentary signal, that is more high-level than the current state of the system.
Wolpert use the example of an empty or full cup as contextual information;
if you know that it is full it will help you select the correct inverse model to
lift the cup, before any action has been taken. In the research presented in
this thesis, the context signal represents high-level musical signals. It can be
thought of as a sequential musical marker; like the melody in a song.

In ambiguous situations, a system relying only on the forward models would
have to try out several solutions before finding the correct inverse model. The
combination of the RP and forward model allows the formation of a confidence
signal λi

t to consist of both a prior prediction and a posterior measurement of
suitability of the inverse model to control the robot. The lack of this mech-
anism in HAMMER is a drawback when it comes to building a predictive
architecture.

Structurally, HAMMER and MOSAIC have two modes of operation. HAM-
MER has the passive mode, in which novel movements are acquired, and
the active mode, where behaviours are tried out in parallel to find the one
best suited to match a desired trajectory. In MOSAIC, the ordering of in-
verse/forward models are different depending on whether it is recognizing an
action (the output of the inverse model is given directly to its paired forward
model) or producing an action (the sum of the outputs of the inverse models
are used as input to each forward model). To me, it is not clear why you would
need an active and a passive mode for an architecture for motor learning by
imitation. Grezes and Decety [2001] point to several fMRI studies reporting
activation of the primal sensorimotor cortex and the dorsal premotor cortex
during mental simulation, as well as action production (albeit the activity
was higher during action production compared to mental simulation). Grezes
and Decety suggest that action observation and action simulation requires
inhibition of motor output, since the motor systems are active during action
observation and simulation. Piaget [1962] suggests a similar mechanism, he
discovered that when children were about 16 months old, they would often
imitate without knowing they were imitating, i.e. when they observed an ac-
tion, they produced motor commands that immediately tried to achieve the
same behaviour.

In view of the architectures of HAMMER and MOSAIC, this argues for a

22

2.4. Imitation of Human Movement: Dancing

unified architecture for both action production and recognition. When ob-
serving an action, the motor system could be regarded as working as when
producing the same action, the only difference being that the motor system is
inhibited. This is why the MPMA, see figure 2.1, has the same organization
both for action production and recognition. In the research presented in this
PhD, the architecture has only been used in active mode, but it is designed
to be used in passive mode as well, with the difference being that the motor
output is inhibited. The details of the MPMA will now be described.

LIKELIHOOD

NORMALIZATION

PLANTFEEDBACK
CONTROLLER

ui
t x̂i

t+1

pi
t

lit

λi
t

λt

ufeedback ut xt+1

xt

x't+1

xt

yt

RESPONSIBILITY PREDICTOR

INVERSE MODEL FORWARD MODEL

x

x

+

-

-

Figure 2.1: The MPMA, inspired from Wolpert et al. [2003] and Demiris and
Khadhouri [2006]. Details described in the text.

The Inverse Model

The inverse model is a controller, or a behaviour in behaviour-based AI ter-
minology [Bryson, 2003]. It has two input signals: the desired state x

′

t+1 and
the current state xt. It learns to output the motor commands ui

t to achieve
the desired state.

The Forward Model

The forward model is a predictor or an estimator. The forward model predicts
the next state of the system x̂i

t+1 based on the current state xt and the output
from its paired inverse model, ui

t.

The Responsibility Predictor

The responsibility predictor (RP) is another predictor. The RP uses context
information yt to predict pi

t how well the module is able to control the robot.

23

2. Research Description

In situations where the current state is ambiguous, the context information
helps the architecture choose the best module without having to try out sev-
eral modules and converge towards the correct one. This would lead to less
performance, since non-optimal modules would influence the control of the
robot.

The Likelihood Model

The likelihood model estimates how well the forward model predicts. The
predictive ability of the forward model is easy to compute; it is simply the
difference between what the forward model predicted and what was the actual
state at the next timestep, i.e. |x̂i

t+1 − xt+1|. The likelihood model expresses
this difference as a scalar, which allows it to be computed with pi

t to form
the final responsibility signal. It assumes the presence of gaussian noise. If
|x̂i

t+1−xt+1| is small, the output of the likelihood model will be high. When this
difference increases, the output will be low (i.e. it is not very likely that a good
prediction was made). The likelihood lit is calculated according to equation
(2.2).

lit =
1√

2πσ2
e−|xt−x̂i

t+1|2/2σ2
(2.2)

Calculation of λ

The calculation of the normalized λ vector is what distributes control between
the modules. The λ signal can be seen as a combination of a prior prediction
of how well the module performs (i.e. the RP signal) and posterior knowledge
of how well the forward model performs (represented by lit). Equation (2.3)
describes how each element (denoted by superindex i, i.e. λi

t) in the λ vector
is calculated. The final λ vector is multiplied with the motor commands from
the inverse models, which is how distribution of control is effectuated. The λ

signal also gates the learning of the models, and serve as a training signal to
the RPs.

λi
t =

pi
tl

i
t∑

j p
j
tl

j
t

(2.3)

The Feedback Error Motor Controller

In order to train the inverse model, good error signals are crucial. The feed-
back error motor command is based on the differences between x

′

t+1 and xt+1,
i.e. the goal state the robot was trying to achieve at time t compared to the
state it actually ended up in at time t+1 [Kawato, 1990]. This pulls the system
towards the correct state when bad motor commands are issued, and is used
as training signals to the inverse model. In other words, differences in state

24

2.4. Imitation of Human Movement: Dancing

is used to issue motor commands. Finding a solution to training an inverse
model is a hard problem [Jordan and Rumelhart, 1992], and this approach
guarantees a solution. The motor error feedback command is added to the
final motor commands. With increasing performance of the inverse models,
the influence of the feedback error controller will decrease.

2.4.2 Simplifications

I have not been working with real robots, relying on simulators as a sufficient
substitute. When using sensory input to guide your own motor system, there
is the inherent problem of transforming the externally perceived signals to
an internal reference frame, called the correspondence problem [Nehaniv and
Dautenhahn, 2002]. This can be seen as an instance of the grounding prob-
lem [Harnad, 1990], describing how symbols only become meaningful when
they are grounded in the sensory capacities a given system. Given that the
drummer is virtual, this simplifies the grounding problem. I have chosen to
simplify the transformation of visual input so that it is directly mapped to the
motor system of the imitator. Schaal [1999] describes how approaches to im-
plement imitative behaviour are divided into two groups: 1) those who work
with the transformation of visual input into a meaningful representation to
the agent, and 2) those who assume this transformation has already been
done, and that the perception stimuli is ready to be given to a perception-
action system. The research presented in this thesis belongs to the latter
category. This is an approach taken by other researchers as well [Demiris
and Hayes, 2002; Cangelosi and Riga, 2006]. Furthermore, Torres and Zipser
[2004] suggest that such a transformation occurs in the brain.

2.4.3 Experimental setup

The experiments were carried out in order to fulfill research goal 2 to test re-
search hypothesis 1. Dance movements were recorded using a motion tracking
system called Pro Reflex2. Fluorescent markers were attached to the body of
the dancer, and five infrared cameras spanned a volume in which 3D coordi-
nates could be recorded. The Pro Reflex system is pictured in figure 2.2.

The robot does not see the stick figure as drawn in figure 2.2, but instead
perceives the joint positions mapped to its own motor system, as mentioned
in the previous section. The recorded signals can then be directly matched
to the imitating robot. The experiment consisted of imitating the dance to
the song YMCA by the Village People, a 70s disco group from New York, as
shown in figure 2.3. A simulated robot was implemented, and the MPMA
served as the intelligence of the simulated robot. Paper A describes the first
implementation of the system, where it was set to imitate the YMCA dance.
In paper B, the importance of the RPs were examined, both during training

2www.qualisys.com

25

2. Research Description

Figure 2.2: The Pro Reflex motion tracking system. The fluorescent markers
are attached to the wrist, elbow, shoulder, torso, hip, knee and foot of the
dancer. These markers are shown as the colored balls, the stick figure is then
drawn based on these balls. The five infrared cameras (4 in front, one hanging
from the roof) are able to record the 3D coordinates of the fluorescent markers.

and testing, by repeating the desired movement of the teacher. This paper
performs the testing of research hypothesis 1, since the removal of the RPs
will make the context signal irrelevant.

The Context Signal

For this experiment, the context signal was a binary coding of the melody
of the song. The binary coding can be seen in figure 2.3. The context sig-
nal codes high-level melodic structure, like the ones dancers use as cues to a
choreographed dance. The context signal was defined to follow the melody of
the song, since the melody also indicated the division of movement segments
(i.e. the letters), which could be regarded as motor primitives of the dance.

2.4.4 Results

The self-organizing capabilities of the MPMA are reported in both paper A
and B. In the latter paper, the desired trajectory was repeated, to see to
what extent the λ activations would repeat themselves. Figure 2.4 shows
how the system would self-organize during repetition of the movement, and
how the modules switch between controlling the robot during the run of the
movement. Notice how the λ values switch in accordance with the context

26

2.4. Imitation of Human Movement: Dancing

0 60 72
000I 00I0

48 144
0I00 I000

Figure 2.3: YMCA: spelling the letters Y M C A using the arms. The numbers
show at which timestep the switch from one letter to another occurred, as
designated by me. This corresponds to the context signal, seen as the binary
vectors below.

Y Y Y YM M M MC C C CA A A A

λ values and RP output, module 1

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

λ
rp

Y Y Y YM M M MC C C CA A A A

λ values and RP output, module 2

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

λ
rp

Y Y Y YM M M MC C C CA A A A

λ values and RP output, module 3

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

λ
rp

Y Y Y YM M M MC C C CA A A A

λ values and RP output, module 4

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

λ
rp

epoch 20

Figure 2.4: The figure shows one of the results of paper B; how the system
self-organizes the decomposition of the movement into specific modules, and
how they compete and collaborate during control of the movement. The back-
ground shows the recurring YMCA context signal, corresponding to figure 2.3.

signal. Furthermore, paper B found the importance of the RPs to be crucial to
the system.

27

2. Research Description

2.4.5 Summary, experiment 1

Research goal Create a motor system that can imitate human movements.
Research goal 2.

Research hypothesis Using two modalities (vision and audio) will improve
the performance of the motor system. Research hypothesis 1.

Results The motor system imitated human dance movements, captured using
motion tracking. By removing the sound input to the architecture, per-
formance was found to be less than when both modalities were present.

2.5 IMITATION OF RECURRING PATTERNS: DRUMMING

The system for learning and imitating sound was developed and designed
in order to meet research goal 3 and to test research hypothesis 3. Drum-
ming is an area where imitation learning also is evident, and a literature
search revealed that modeling user-specific variations and imitating them in
the drumming domain had not been done before. Current drum sample soft-
ware (e.g. Toontrack EZDrummer, FXPansion BFD, Reason Drum Kits, Na-
tive Instruments Battery, DigiDesign Strike) contain sophisticated software
with gigabytes of sound samples. Many of these systems allows for tweaking
of parameters that add noise to the system, i.e. as randomization of beats and
onset time. This is then supposed to be perceived as human-like, but they
have no intelligent way of generating human-like drum tracks. The approach
to model these variations and the ability to generate drum tracks using these
models would then be a cost-effective way to having human-like drum tracks
in the studio. The main publications of this research are in papers C and D.

2.5.1 Software for Hierarchical Extraction of Drum Patterns in a Learning
Agent (SHEILA)

One of the key insights when it comes to modeling drumming patterns, is
that there are only two parameters that represents the groove of a pattern
(keeping in mind that the pattern itself must be represented): velocity and
onset time. Velocity is how hard a drum is struck. Onset time is how much the
drum was struck before or after the metronome. A drum machine will keep
these parameters constant, which results in a machine-like feel. A human
drummer will always vary the velocity and onset time during playing, i.e.
introduce small-scale variations, see figure 2.5.

Additionally, the drummer will vary the pattern itself, such as playing a
break or adding or removing beats. These variations are called large-scale
variations, see figure 2.6. One of the reasons why drumming is well suited
for modeling is due to its repetitive nature. When a drummer plays a certain

28

2.5. Imitation of Recurring Patterns: Drumming

0 0.5 1 1.5

20

40

60

80

100

127

Time

M
ID

I v
el

oc
ity

(a)

0 0.5 1 1.5

20

40

60

80

100

127

Time

M
ID

I v
el

oc
ity

(b)

Figure 2.5: An example of small-scale variations. Compare the four drum
strokes generated by a computer (a) and that of a human drummer (b). Notice
how the drummer (plot b) introduces variations in velocity (seen as vertical
displacements) and timing (seen as horizontal displacements from the grid).
These small-scale variations constitute the groove of the drummer. The data
in plot (b) is from the experiment reported in paper D.

hihat
snare
kick

yeah

œ

œ

œ

¿ ¿ ¿ ¿

œ

œ

¿ ¿ ¿ ¿ ¿ ¿

œ

œ

¿ ¿

œ ∑ ∑ ∑

(a)

hihat
snare
kick

yeah

œ

œ

œ

¿ ¿ ¿ ¿

œ

œ

¿ ¿ ¿ ¿ ¿ ¿

œ

œ

¿ ¿

œ ∑ ∑ ∑

!

!

!

" " " "

!

!

" " " " " "

!

!

" "

! # # #

œ

œ

œ

¿ ¿ ¿ ¿

œ

œ

¿ ¿ ¿ ¿ ¿ ¿

œ

œ

¿ ¿

œ ∑ ∑ ∑

1

(b)

Figure 2.6: An example of a large-scale variation. Plot (b) shows a large-scale
variation of pattern (a); another snare drum hit is added. In papers C and D,
plot (a) is one of the core patterns that the system learns.

29

2. Research Description

pattern repeatedly, it becomes possible to model these changes in velocity and
onset time, in addition to learning the patterns themselves.

SHEILA learns drum patterns recorded from a drum session in a hierar-
chical fashion, see figure 2.7. The system models both small- and large-scale
variations of the groove of the drummer. Once the models of the patterns
are acquired, they can be used to imitate the playing style of the drummers.
An important point is that the imitations are similar but not identical. The
model of the drummer can then be used in the studio on different tracks, and
the user will know the resulting groove. Instead of hiring the drummer it-
self, it could simply buy a software plug-in that had a representation of the
drummer.

SHEILA
analysis

CORE
PATTERN

CORE
PATTERNCore pattern VARIATIONVariation

Core pattern
ESN

VARIATIONVARIATIONVariation
ESN

Song X, played by Drummer A

snare

hihat

kick

cymbal

! !! !! !!!

Sequence ESN

Figure 2.7: The SHEILA architecture. The playing style is extracted form
recorded drum patterns, and modeled and stored in the architecture.

SHEILA Analysis

The melody of the song is used to form segments of the song, i.e. verse/chorus/bridge.
However, the sound system does not know beforehand what constitutes a cer-
tain melodic part (e.g. a verse). This is discovered by searching for supermax-
imal repeats. Recall that a supermaximal repeat is a recurring pattern that
is not a subpattern of any other pattern (see also section 2.2.3). The patterns
that remain after analyzing the melody of the song are then the “building
blocks” of the song, i.e. the distinctly different melodic parts. After the differ-
ent melodic segments are revealed, the same search for supermaximal repeats
is performed on the drumming data in the song. The most commonly played
pattern within each melodic segment is then referred to as the core pattern Cx

of that part. The patterns that differ from the core pattern are the large-scale
variations CxVy of that pattern. SHEILA uses a bottom-up strategy; from a
low-level stream of MIDI data, a high-level segmentation of the song (both
in terms of melody and drumming patterns) is found. After all the recurring
patterns of the MIDI stream have been identified, the similar patterns are
grouped together. These groups can now be used to model small-scale varia-
tions of each beat in the rhythm figure.

30

2.5. Imitation of Recurring Patterns: Drumming

Storing the Groove

After the data analysis, the sequence of patterns are modeled. In an early
version of SHEILA (paper C), the sequence of core patterns and variations
were modeled using HMMs (see section 2.2.2). In later versions (paper D),
this sequence was modeled using ESNs, see figure 2.7. The same figure also
shows how ESNs are used to model core patterns and variations of the core
patterns. After learning, the models can be used to generate drum tracks
that are similar to those of the teacher. There is one entry in the SHEILA
library for each core pattern. The end user specifies for how many bars a
specific core pattern should be played, and the Sequence ESN then “starts” the
corresponding core pattern and variations, generating the final MIDI output.

2.5.2 Simplifications

In order to facilitate analysis, the drumming was recorded using MIDI instead
of audio. A velocity sensitive electronic drum kit will equally well capture
timing and velocity of a drummer’s groove as an acoustic drum kit. Timing
and velocity can be extracted from an acoustic signal, but it would require a
more expensive setup with an acoustic drumkit, microphones, audio recording
software and hardware, as well as data analysis to extract the timing and
velocity of each drum strike.

2.5.3 Experimental Setup

The experiments were carried out to test research hypothesis 3. Using a
Roland TD-3, which is a velocity sensitive electronic drum kit, drum patterns
were recorded using five amateur drummers, see figure 2.8. Amateur drum-
mers were used because of budget restraints; there was no money available
to pay professional session drummers. However, the reader should note that
the term “professional” and “amateur” are somewhat misleading. Some of the
drummers participating in the experience had been drumming for more than
20 years, and are very skilled drummers. What separates them from pro-
fessional drummers is that they do not make a living off playing the drums.
Being a drummer myself, I do not see how the basic movement trajectories
when playing a given pattern would be very different in complexity when
comparing a professional to an amateur drummer. In fact, the trajectories
of a professional drummer could even be easier to model, since the trajecto-
ries could be more stable and well-defined due to the increased hours spent
practicing.

The drumming was recorded in MIDI, to simplify data analysis. The recorded
drum patterns served as input to SHEILA, and using the learned models, the
system was able to generate groovy drum tracks in the style of the original
drummers.

31

2. Research Description

Figure 2.8: One of the drummers playing on the Roland TD-3.

2.5.4 Results

Both papers C and D reports successful results from the system, and the pro-
duced drum tracks were similar to the original ones. Examples (taken from
paper D) can be seen in figures 2.9 and 2.10, and there are MP3 files available3

that demonstrate the imitative capabilities, confirming research hypothesis
3. Table 2.1 shows how the drummers played the song differently in terms of
large-scale variations.

2.5.5 Summary, experiment 2

Research goal Create a groovy drum machine that can imitate the playing
style of human drummers. Research goal 3.

Research hypothesis The output of the sound system should be similar to the
originals, based on human evaluation. Research hypothesis 3.

Results The sound system generated drum tracks that were similar to the
original, but not identical. Both human evaluation (paper C, also per-
formed with different listeners in the auxiliary paper G.1) and statistical
analysis (paper D) showed the similarity between original and imitated
drum tracks.

3http://www.idi.ntnu.no/∼tidemann/sheila

32

2.5. Imitation of Recurring Patterns: Drumming

Table 2.1: How each drummer played the song in terms of core patterns (Cx)
and variations (CxVy), indicating the different playing styles of the drummers
with respect to large-scale variations. CxBy stands for a recurring variation;
this is indicated as a break (hence the letter B). EB is end break, i.e. a small
variation done at the end of the song. This is the recorded drum data used in
papers C - F.

Drummer A Drummer B Drummer C Drummer D Drummer E
C1V2 C1V3 C1V3 C1 C1V1

C1 C1 C1 C1V2 C1
C1 C1 C1 C1 C1
C1 C1 C1V7 C1 C1V5
C1 C1 C1 C1 C1
C1 C1 C1V4 C1 C1
C1 C1 C1 C1 C1

C1B1 C1B1 C1B1 C1B1 C1B1
C1V2 C1V2 C1V3 C1V1 C1V1
C1V1 C1 C1 C1 C1

C1 C1 C1 C1 C1
C1V5 C1 C1V6 C1 C1
C1V4 C1 C1 C1 C1V1

C1 C1 C1 C1 C1
C1 C1 C1 C1 C1V3

C1B1 C1B1 C1B1 C1B1 C1B1
C2V4 C2V2 C2B1 C2 C2V2

C2 C2 C2 C2 C2V1
C2 C2 C2 C2 C2

C2V6 C2 C2V8 C2 C2V11
C2 C2 C2 C2 C2V10

C2V10 C2 C2 C2 C2
C2 C2 C2 C2 C2V1

C2V9 C2 C2V7 C2 C2V9
C1V2 C1V3 C1V3 C1 C1V1
C1V1 C1 C1 C1 C1

C1 C1 C1 C1 C1
C1V3 C1 C1V5 C1 C1V4

C1 C1 C1V3 C1 C1V1
C1V1 C1 C1V4 C1 C1

C1 C1 C1 C1 C1
C1B1 C1B1 C1B1 C1B1 C1B1
C1V2 C1V2 C1V3 C1 C1V1
C1V1 C1 C1 C1 C1V3

C1 C1 C1 C1 C1V3
C1V1 C1V1 C1V2 C1 C1V2

C1 C1 C1 C1 C1V1
C1V1 C1 C1 C1 C1

C1 C1 C1 C1 C1
C1B1 C1B1 C1V1 C1B1 C1B1
C2V8 C2V1 C2B1 C2V1 C2V6
C2V7 C2 C2 C2 C2

C2 C2 C2 C2 C2V4
C2V6 C2 C2V6 C2 C2V8
C2V4 C2V1 C2V1 C2 C2V2

C2 C2 C2 C2 C2
C2 C2 C2 C2 C2

C2V5 C2 C2V5 C2 C2
C3V6 C3V1 C3 C3 C3V5

C3 C3 C3V5 C3 C3V4
C3V5 C3 C3V4 C3 C3
C3V4 C3V2 C3V3 C3 C3V3
C3V3 C3V1 C3 C3 C3V2
C3V2 C3 C3V2 C3 C3

C3 C3 C3 C3 C3
C3V1 C3 C3V1 C3 C3V1
C2V4 C2V1 C2B1 C2 C2V6

C2 C2 C2 C2 C2V1
C2 C2 C2 C2 C2

C2V3 C2 C2V4 C2 C2V7
C2 C2V1 C2 C2 C2V6
C2 C2 C2 C2 C2
C2 C2 C2 C2 C2

C2V2 C2 C2V3 C2 C2V5
C2 C2V1 C2V1 C2 C2V2
C2 C2 C2 C2 C2V4
C2 C2 C2 C2 C2

C2V1 C2 C2V2 C2 C2V3
C2 C2V1 C2V1 C2 C2V2
C2 C2 C2 C2 C2
C2 C2 C2 C2 C2V1
EB C2 EB C2 EB

EB
33

2. Research Description

the graphs for all drummers cannot be shown). Figure 4 shows how
drummer A strongly accentuates (i.e. periodically varies the veloc-
ity of) the hihat beats, whereas drummer E has a more even velocity
profile for the hihat beats.

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, hihat

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, snare drum

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, kick drum
M

ID
Iv

el
oc

ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, hihat

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, snare drum

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, kick drum

Figure 4. To the left is the velocity profile for drummer A, playing the
pattern shown in figure 2. The Y scale is [0− 127], corresponding to the

MIDI resolution. The X scale corresponds to the beats in the measure, which
is a common way to count when playing music. The blue bar stems from the

training data, the red bar from the output of SHEILA, when instructed to
play the same song as that of the training input. The similarity between the

blue and red bars indicate that the ESNvel successfully captures the
small-scale variations of the training data. Notice also how the velocity

profile differs from that of drummer E (to the right). Most easily seen is how
the accentuation (i.e. variation of velocity) on the hihat is not as pronounced

as for drummer A; this is a manifestation of the different grooves of
drummers A and E.

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, hihat

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, snare drum

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, kick drum

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, hihat

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, snare drum

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, kick drum

Figure 5. To the left is the onset time profile for drummer A, playing the
pattern shown in figure 2. The Y scale is onset time in ticks. There are 120

ticks in the range [0− 0.99] between each quarter note. The X scale
corresponds to the beats in the measure, similar to figure 4. As in figure 4,

the blue bar is the statistics from the training data, the red bar is the analysis
performed on the imitation done by SHEILA, showing that the output of the
ESNons resembles that of the training data. The plot shows how drummer A
tends to be ahead of the metronome when playing the pattern in figure 2. To

the right is the onset time plot for drummer E. The onset times tend to be
more centered around the metronome for the hihat beats, distinctively more
than for drummer A, which contributes to the difference of groove between

drummers A and E.

The onset time plays an important role in how aggressive/relaxed
drum patterns are perceived, depending on whether the onset time
is before or after the metronome. Figure 5 reveals that drummer A

tends to be ahead of the metronome (yielding a more aggressive feel),
whereas drummer E tends be more centered around the metronome,
for a more “tight” feel. The authors are aware that these terms are
vague but acoustically distinct; we encourage the reader to listen to
available MP3 files8 that better demonstrate these differences (in-
cluded are imitations performed by SHEILA). Figures 4 and 5 show
the mean and standard deviation for both velocity and onset time,
both for the original data and the imitated output. The similarity be-
tween the plots shows how SHEILA successfully models the small-
scale variations, in addition to demonstrating that drummers A and E
plays the same pattern with a different groove.

To assess both the large- and small-scale differences between orig-
inal and imitated drum tracks, as well as between drummers, a se-
quence similarity metric was implemented as described in [7]. The
cost function was adapted to account for differences in velocity as
well as timing of events, e.g. by adding the normalized difference in
velocity between two events. The similarity metrics can be seen in
table 2. The metrics show that imitations are similar to originals, and
that the drummers have different styles when compared to another.
The difference when comparing originals to imitations and drum-
mers to each other is generally an order of magnitude. However, note
that the metrics only have value as relative comparisons between the
MIDI sequences. They do not represent an absolute difference. Yui-
jan and Bo have recently developed a normalized metric [16], how-
ever it does not account for timed series; this appears to be an open
research issue, and beyond the scope of this paper. Still, the similarity
metrics indicate a strong degree of similarity between original drum
tracks and imitations (which is further backup up by figures 4-5), and
that each drummer has a playing style different from the others.

Table 2. (a) shows the similarity metric described in [7] when comparing
original drum tracks to SHEILA’s imitations, (b) compares drummers to

other drummers. The metrics indicate that the originals and imitated drum
tracks are similar, and that the different drummers have different playing

styles.

Original A B C D E
Imitation 0.46408 0.37102 0.37176 0.60169 0.37995

(a)
A B C D E

A 0 5.185 5.8272 6.1193 6.9911
B 5.185 0 5.4271 1.944 5.4166
C 5.8272 5.4271 0 6.0649 6.4713
D 6.1193 1.944 6.0649 0 6.135
E 6.9911 5.4166 6.4713 6.135 0

(b)

Another important aspect of the onset time is the tempo drift that
occurs over time. A drummer will constantly be before or after the
metronome, which will make the tempo fluctuate over time, as can
be seen in figure 3. Figure 6 shows how the output of SHEILA in-
duced the same drift in tempo over time as that of the original drum
sequence. To examine how the ESN store the grooves as attractors,
plots were made of hidden layer nodes during a run where the ESN
was generating output. Figure 7 shows plots for some hidden nodes
of the ESNvel of the pattern in figure 2 for drummer A. The ESNvel

was run for 240 timesteps (double what it was trained on). The fig-
ures show that the activation patterns have stable attractor shapes,
but with deviations. This is a further testament to how small-scale
variations are introduced when imitating a certain pattern; these de-
viations will make the output slightly different over time. But since

8 www.idi.ntnu.no/∼tidemann/sheila

Figure 2.9: Velocity plots for two of the drummers who participated in the
experiment in paper D. The blue bar indicates the original data, the red bar
indicates the imitated data. Their similarity shows that the system repro-
duces the same velocity profile.

the graphs for all drummers cannot be shown). Figure 4 shows how
drummer A strongly accentuates (i.e. periodically varies the veloc-
ity of) the hihat beats, whereas drummer E has a more even velocity
profile for the hihat beats.

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, hihat

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, snare drum

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, kick drum

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, hihat

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, snare drum

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, kick drum

Figure 4. To the left is the velocity profile for drummer A, playing the
pattern shown in figure 2. The Y scale is [0− 127], corresponding to the

MIDI resolution. The X scale corresponds to the beats in the measure, which
is a common way to count when playing music. The blue bar stems from the

training data, the red bar from the output of SHEILA, when instructed to
play the same song as that of the training input. The similarity between the

blue and red bars indicate that the ESNvel successfully captures the
small-scale variations of the training data. Notice also how the velocity

profile differs from that of drummer E (to the right). Most easily seen is how
the accentuation (i.e. variation of velocity) on the hihat is not as pronounced

as for drummer A; this is a manifestation of the different grooves of
drummers A and E.

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, hihat

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, snare drum

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, kick drum

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, hihat

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, snare drum

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, kick drum

Figure 5. To the left is the onset time profile for drummer A, playing the
pattern shown in figure 2. The Y scale is onset time in ticks. There are 120

ticks in the range [0− 0.99] between each quarter note. The X scale
corresponds to the beats in the measure, similar to figure 4. As in figure 4,

the blue bar is the statistics from the training data, the red bar is the analysis
performed on the imitation done by SHEILA, showing that the output of the
ESNons resembles that of the training data. The plot shows how drummer A
tends to be ahead of the metronome when playing the pattern in figure 2. To

the right is the onset time plot for drummer E. The onset times tend to be
more centered around the metronome for the hihat beats, distinctively more
than for drummer A, which contributes to the difference of groove between

drummers A and E.

The onset time plays an important role in how aggressive/relaxed
drum patterns are perceived, depending on whether the onset time
is before or after the metronome. Figure 5 reveals that drummer A

tends to be ahead of the metronome (yielding a more aggressive feel),
whereas drummer E tends be more centered around the metronome,
for a more “tight” feel. The authors are aware that these terms are
vague but acoustically distinct; we encourage the reader to listen to
available MP3 files8 that better demonstrate these differences (in-
cluded are imitations performed by SHEILA). Figures 4 and 5 show
the mean and standard deviation for both velocity and onset time,
both for the original data and the imitated output. The similarity be-
tween the plots shows how SHEILA successfully models the small-
scale variations, in addition to demonstrating that drummers A and E
plays the same pattern with a different groove.

To assess both the large- and small-scale differences between orig-
inal and imitated drum tracks, as well as between drummers, a se-
quence similarity metric was implemented as described in [7]. The
cost function was adapted to account for differences in velocity as
well as timing of events, e.g. by adding the normalized difference in
velocity between two events. The similarity metrics can be seen in
table 2. The metrics show that imitations are similar to originals, and
that the drummers have different styles when compared to another.
The difference when comparing originals to imitations and drum-
mers to each other is generally an order of magnitude. However, note
that the metrics only have value as relative comparisons between the
MIDI sequences. They do not represent an absolute difference. Yui-
jan and Bo have recently developed a normalized metric [16], how-
ever it does not account for timed series; this appears to be an open
research issue, and beyond the scope of this paper. Still, the similarity
metrics indicate a strong degree of similarity between original drum
tracks and imitations (which is further backup up by figures 4-5), and
that each drummer has a playing style different from the others.

Table 2. (a) shows the similarity metric described in [7] when comparing
original drum tracks to SHEILA’s imitations, (b) compares drummers to

other drummers. The metrics indicate that the originals and imitated drum
tracks are similar, and that the different drummers have different playing

styles.

Original A B C D E
Imitation 0.46408 0.37102 0.37176 0.60169 0.37995

(a)
A B C D E

A 0 5.185 5.8272 6.1193 6.9911
B 5.185 0 5.4271 1.944 5.4166
C 5.8272 5.4271 0 6.0649 6.4713
D 6.1193 1.944 6.0649 0 6.135
E 6.9911 5.4166 6.4713 6.135 0

(b)

Another important aspect of the onset time is the tempo drift that
occurs over time. A drummer will constantly be before or after the
metronome, which will make the tempo fluctuate over time, as can
be seen in figure 3. Figure 6 shows how the output of SHEILA in-
duced the same drift in tempo over time as that of the original drum
sequence. To examine how the ESN store the grooves as attractors,
plots were made of hidden layer nodes during a run where the ESN
was generating output. Figure 7 shows plots for some hidden nodes
of the ESNvel of the pattern in figure 2 for drummer A. The ESNvel

was run for 240 timesteps (double what it was trained on). The fig-
ures show that the activation patterns have stable attractor shapes,
but with deviations. This is a further testament to how small-scale
variations are introduced when imitating a certain pattern; these de-
viations will make the output slightly different over time. But since

8 www.idi.ntnu.no/∼tidemann/sheila

Figure 2.10: Onset time plots, same as in figure 2.9. The similarity shows
that the temporal profiles of the drummers have been learned.

2.6 SHEILA: AN ANIMATED DRUMMER

The final stage of research in this PhD was to combine the work with the
motor system with the groovy drum machine (both based on learning by imi-

34

2.6. SHEILA: An Animated Drummer

tation) to create a groovy animated drummer. The groovy drum machine will
be augmented by being visualized, meaning it can be both seen and heard.
The research was done to meet research goal 1. The work on a groovy drum
machine focused solely on the sound part; the motor imitation work focused
on the arm movements. A drummer also moves its legs, but movement of
the arms is what is clearly visible from behind a drum kit. The idea is that
SHEILA can be used in a live setting, visualized using a laptop and a pro-
jector. Since the drum machine incorporates the motor system previously de-
veloped, the combination of the two systems retained the name (SHEILA) of
the groovy drum machine. The research is presented in paper E and in pa-
per F. The latter paper is submitted, its status is not known at the time of
publication.

2.6.1 Combining Motor and Sound Systems

The combination of the motor and sound systems can be seen in figure 2.11.
When combining the groovy drum machine with the motor imitation architec-
ture, the drum machine was designed to be the neural center that defines the
groove the agent is to play. The output of the neural groove center was thus
the desired state of the motor system. In the previous research on the motor
system (see section 2.4.1), the desired state had been in the same coordinate
frame as the robot itself, so the inverse models had to learn the motor com-
mands to move the arms from xt to x

′

t+1. Now, the desired state represents
the actual sound that the movement is supposed to produce, denoted x

′

sound.
It is still a perfectly viable desired state, only on a higher level compared to
a desired state expressed in terms of intrinsic body coordinates, as was previ-
ously the case. The desired state would now be (in human language) “hit the
drum so hard that this particular sound is produced” instead of “move your
arm from this position to that position”.

2.6.2 The Predictive Error Controller

When changing the representation of the desired state from body coordinates
to desired sound outcome, there was still a need to issue corrective motor
commands and train the inverse models. The motor error feedback controller
was essential, but it relied on a match between the desired state x

′

t+1 and
the actual state xt+1. Now, the desired sound state x

′

sound could not be used
for this purpose. The desired arm state could be used to guide the error con-
troller. This could be thought of as a memory of how to move the arm in order
to achieve the desired sound output. This desired arm state is referred to as
x

′

t+1, since it is the same state used in previous experiments. The difference is
that it is not given to the inverse models. Inspired by the cerebellum, the error
controller could be a predictive error controller instead of being reactive. The
cerebellum receives high-level signals of the intentions of the motor actions,

35

2. Research Description

S"#I%A
A(A%)SIS

CO,#
-A..#,(Core pattern VA,IA.IO(Variation

CO,# -A..#,(VA,IA.IO(VA,IA.IO(VA,IA.IO(

SO(8 9: -%A)#; <) ;,=MM#,)

snare

@i@at

AicA

cymEal

! !! !! !!!

S#G=#(C#

%IH#%I"OO;

(O,MA%IIA.IO(

-%A(.
-,#;IC.IV#

#,,O,
CO(.,O%%#,

ui
t

K! itLM

pi
t

lit

"i
t

"t

uerror ut KtLM

KNsound
Kt

Kt

yt
,#S-O(SI<I%I.)

-,#;IC.O,

I(V#,S#
MO;#%

PO,QA,;
MO;#%

K

K

L

R

KNtLM

Kt

yt

KNsound

Figure 2.11: SHEILA: The animated groovy drummer. The sound part on the
top drives the motor part on the bottom.

and evaluates discrepancies between the intended movement and the current
movement and makes last-minute corrections of the motor signals before they
are sent further down the spinal cord [Kandel et al., 2000]. By making the
error controller predictive, better training and corrective signals were gener-
ated. In addition to the current state xt, the desired arm movement x

′

t+1, it
also receives the motor commands from the models ut, that are supposed to
achieve x

′

t+1. The predictive error controller (PEC) thus predicts the outcome
of the motor commands ut on the current state xt, compares it to the desired
state x

′

t+1 and issues corrective motor commands uerror if necessary.

36

2.6. SHEILA: An Animated Drummer

2.6.3 Simplifications

The x
′

sound signal was not an acoustic representation of the sound it should
produce; it was the output of the neural network modeling the rhythm pat-
tern. These neural signals are converted to MIDI, which subsequently pro-
duces the actual sound. It is referred to as x

′

sound since it codes for the actual
sound, only on a higher level.

2.6.4 Experimental Setup

During the MIDI recordings for the groovy drum machine, the movements
of the arms of the drummers were recorded using the Pro Reflex tracking
system mentioned earlier. This provides the desired arm state x

′ necessary
for the PEC to operate. To use the output of the groovy neural center, the
target sound state x

′

sound is linked to the time line of the desired arm state
x

′ . Since the output of the groovy drum machine is simply the beats and
how to play them, the desired sound is linked to the time it takes to execute
them. Furthermore, the desired state precedes the arm movement with 1/4
note, this is to emulate the behaviour that a drummer thinks about hitting
the snare drum in a particular fashion before moving the arm to do so. Since
the drumming was recorded at 120 beats per minute (BPM), the sampling
frequency of Pro Reflex was 20Hz, the length (in samples) of a quarter note
l1/4 (i.e. one beat) is thus

l1/4 =
60seconds/minute

120beat/minute
20samples/second = 10samples/beat (2.4)

The signal for hitting the snare drum will thus be repeated 10 times when
linked to the “body timing” time frame. The x

′

sound signal can be seen in fig-
ure 2.12. The system was now started with 10 modules, and modules that
were not active were pruned during the experiment. In the research pub-
lished in papers A and B, the designer had decided (somewhat arbitrarily)
how many modules should be present in the architecture, the new approach
had the intention that only the necessary number of modules would be left
after training.

To examine if the order of the target state was important for the system to
be able to learn the desired state (research hypothesis 2), the trained multi-
ple models presented in paper E were run (without learning) on a target state
that was different from what it was trained on. This was done the following
way: a context signal lasts one bar. The sequence of the bars were then per-
mutated randomly to form a new sequence. Ten permutations were performed
for each of the trained multiple models. Afterwards, a statistical analysis was
run to see if the λ values were recurring to the same extent as was present in
paper E. The results of this experiment are in paper F.

37

2. Research Description

The Context Signal

In this experiment, the gating signals of the Sequential ESNs were used as
context y (see figure 2.11). This represents which core pattern and variation
of core pattern should be played at any time, i.e. a high-level musical descrip-
tion of what movement pattern (i.e. drum pattern) should be played. This is
similar to the context signal used in the YMCA experiment (see section 2.4),
where the context signal coded for the melody of the song. However, the con-
text signal is now derived from the low-level MIDI data, i.e. it is data driven,
instead of being specified by the designer of the experiment. Furthermore,
the sequence to be imitated is longer than the YMCA experiment (consist-
ing of 144 timesteps, the imitation of drumming lasted for 1960 timesteps).
This leads to a more complicated context signal; compare figure 2.13 which
shows the context signal for the current experiment, to the context signal of
the YMCA experiment (figure 2.3).

2.6.5 Results

The combination of the motor architecture and the groovy drum machine ful-
filled research goal 1, the results are in paper E. The imitative qualities of
the sound produced by the groovy neural center was published in paper D;
paper E focuses more on the combination of the two architectures and learn-
ing a long and complex sequence of movements. Figure 2.14 shows how the
RPs repeatedly activate with repeating context signals. How well the system
performed in terms of motor actions can be seen in figures 2.15 and 2.16. The
introduction of the PEC ensured much more accurate training and corrective
signals, increasing the performance compared to previous work (see papers A
and B).

Paper E describes how recurrent λ values are calculated. The algorithm
considers only strict recurrences of λ activation values, and is therefore a good
measure of how well the λ values is repeated in accordance with the context
signal. Paper F demonstrated that the activations of the modules would be the
same when the target states were randomly permutated, i.e. the modules do
specialize on specific parts of the movement. This fulfilled research hypothesis
2.

2.6.6 Summary, experiment 3

Research goal To combine the motor and sound systems to create an artificial
groovy drummer. Research goal 1.

Research hypothesis The system learns sequences of motor knowledge re-
gardless of the original training signal. Research hypothesis 2.

Results The motor and sound systems were succesfully combined, and an ar-
tificial groovy drum agent was created. The groovy drum agent was both

38

2.6. SHEILA: An Animated Drummer

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5
1

Figure 2.12: The target music state, x
′

sound, linked to the time frame of the
arms. The output of the neural groove center are in spikes, but each signal
is replicated 10 times (as shown in equation (2.4)) to make it coincide with
the desired arm movement. The upper 9 signals represent velocities of the
different drums to hit, starting with the kick drum, snare drum, hihat, ride,
toms and cymbals. The lower 9 signals correspond to the onset times for each
beat, i.e. how much the beat should be before or after the metronome.

visualized and had sound output. By creating random permutations of
the target sequence, the system showed that it had specialized on cer-
tain parts of the movement.

39

2. Research Description

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0
0.5

1

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5
1

Figure 2.13: The context signal, y. This is the output of the Sequential ESN,
as seen in figure 2.11. The first row correspond to the count-in. The three
subsequent rows correspond to the core patterns present in the library for
this drummer, and the rows below are the variations of that pattern.

2.7 DISCUSSION

What has been the contribution to the field of AI in this thesis? First of all, an
architecture for motor control and learning has been developed and tested on
imitating human movements. Secondly, a novel way of modeling human drum
patterns has been developed and designed, and shown to produce results that
are similar to the original drum tracks that were used to train the system. Fi-
nally, these two systems have been combined to form a groovy artificial drum-
mer. The introduction of the predictive error controller makes it possible to
use desired state signals that are in different reference frames than that of
the robot itself. The neural drum machine can therefore be replaced with any
other module generating high-level signals of how a goal should be achieved.
The research demonstrates how goal-directed imitative behaviour can be real-
ized using biologically inspired techniques. However, there is no requirement
that neural networks must be used to implement the different models of the
architecture; this has been a design choice due to an interest of solving AI

40

2.7. Discussion

problems by biological inspiration. In other words, the research presented in
this PhD is a contribution to the literature of control approaches for embodied
robots. The approach is influenced by research in developmental psychology,
neuroscience and previous work on approaches to imitation learning.

The research on implementing a groovy drum machine has contributed to
the field of modeling human expressiveness in music. Through a novel ap-
proach, human drum patterns have been successfully modeled and imitated.
Furthermore, this research solves a problem not solved by the music software
industry. However, for it to be a more cost-effective way of modeling drum
tracks, the system should be able to learn from audio recordings, instead of
using MIDI files. By “de-mixing” the audio recordings (i.e. extracting the
melody and drum patterns from the composite sound file), the system could
easily learn the drum signatures of famous drummers. Extracting these data
from audio recording is no trivial task (some solutions are outlined in Dixon
[2004]), but possible. This could make it possible to buy a software plug-in
that plays like John Bonham of Led Zeppelin, or Ringo Starr of the Beatles.

The use of musical imitation has also been on the rise in the computer game
industry lately, with popular games such as Guitar Hero4 and Rock Band5.
These games let users play MIDI-equipped controllers corresponding to the
guitar, bass and drum tracks of popular rock songs. The users themselves are
imitating the playing of the famous musicians; more importantly from a com-
puter science perspective is how the avatars (i.e. the animated musicians that
appear on the screen as you play along) are set to imitate the behaviours of
the real-world musicians. Lars Ulrich of Metallica used motion capture tech-
nology (similar to the research in this thesis) when recording his drumming
movements6. However, these avatars do not respond to user input, i.e. if the
user makes an error, this is not reflected at the graphical representation of the
player. The avatars are there to enhance the feel of the game. The research
presented in this paper could be used to enhance the graphic visualization of
these games; the avatars could imitate the playing style of the corresponding
musicians, but move according to how the user plays. This is basically how
the system works in papers E and F, the neural drum centre sends drum sig-
nals and the motor system must issue the motor commands that will create
the corresponding sound. It should be noted that this has not been tested to
the extent suggested here. The output of the neural drum centre varies very
little from the drum tracks it was trained on - this is why the PEC uses the
“memory” of the actual arm movements to correct the motor system in case of
errors. Why was this not tested as part of the PhD? The problem lies at the
motor system’s reliance on the PEC to make corrections. If the motor system
would be able to completely learn the relationship between x

′

sound and the re-
4www.guitarhero.com
5www.rockband.com
6www.blender.com/LarsUlrichRevealstheSecretsBehindGuitarHeroMetallica/Blender-

Blog/blogs/1168/63718.aspx, retrieved 2009-04-02

41

2. Research Description

quired motor commands, the PEC could be disengaged, and the system could
be used in a fashion suitable for Guitar Hero: the motor system would receive
drum signals (with errors) and estimate how the drummer would move its
arms in order to achieve the desired sound, even if it is a way of playing it was
not trained on. On the other hand, having such a last-minute error correc-
tor as the PEC (and the cerebellum) is of great benefit to the system (and to
us humans), in terms of robustness. Another approach would be to keep the
PEC, and estimate what the arm movement would look like given x

′

sound (not
to be confused with how to achieve such a movement, which is precisely what
the inverse models do), and use this estimation as input to the PEC. Due to
time limits, this last problem was not solved, and is left for future work.

42

2.7. Discussion

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 1

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 2

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 3

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 4

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 5

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 6

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

epoch 10

Figure 2.14: An experiment showing λ and RP output, and how they overlap.
The gray letters and corresponding color in the background shows the context
signal, see also figure 2.13. The overlap between λ and RP indicate stability.
The figure shows how the system self-organizes the control of the robot, and
how the modules both compete and collaborate when controlling the robot.

43

2. Research Description

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right elbow X

200 400 600 800 1000 1200 1400 1600 1800
!1

0

1
Target state
Actual state

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right elbow Y
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right elbow Z
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right wrist X
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right wrist Y
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right wrist Z
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Figure 2.15: Typical performance of the system after training. The close
match between target and actual state shows that the system successfully
learns and executes the desired arm movements. This is the right arm of the
drummer.

44

2.7. Discussion

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Left elbow X

200 400 600 800 1000 1200 1400 1600 1800
!1

0

1
Target state
Actual state

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Left elbow Y
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Left elbow Z
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Left wrist X
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Left wrist Y
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Left wrist Z
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Figure 2.16: Same experiment as in figure 2.15, this shows the left arm of the
drummer.

45

2. Research Description

46

3CONCLUSIONS AND FUTURE WORK

This PhD has focused on implementing imitative behaviour on simulated
robots. The overall goal has been to create a groovy virtual drumming agent.
To achieve this, both motor and sound systems have been created and tested
independently. Throughout the thesis, the focus has been on using machine
learning techniques, so that the models themselves are learned and not speci-
fied beforehand by the designer. The research goals and hypotheses in section
1.4 were shown to be satisfied through the published (and submitted) articles
that make up this PhD. The architecture has been developed and tested on
human behaviour, with good results. Although progress has been made, I see
three areas in need of further research for the architecture to be fully com-
plete. 1) Solving the correspondence problem. Currently, the transformation
from an extrinsic coordinate system to an intrinsic one is done by the designer
of the system. In a real-life situation, the robot would need to take raw multi-
modal sensory input and transform it into a meaningful representation for the
robot. This would not affect the architecture itself, however. This will consti-
tute a pre-processing stage of signals that are fed into the architecture. Thus,
research from other fields (such as computer vision) should in theory be easy
to integrate; the computer vision system would then do the pre-processing of
visual input into intrinsic coordinates. This is a complex task in itself, which
is why this has not been the focus of this thesis. 2) To better understand the
relationship between the PEC and the neural models. Currently, the PEC
controls a significant amount of the total motor signals sent to the robot, as
outlined in the discussion. Although this can be regarded as a weakness of
the architecture, it is also one of its strengths: it is more robust to noise and
perturbations. Studying what parts of the motor control space the PEC influ-
ences could reveal more about its relation to the motor system. I speculate
that general knowledge is contained in the modules, and that the PEC issues
corrective error commands for the details, based on the generalizing capacity
inherent in neural networks. The problem is how to analyze the motor sig-
nals sent from the motor system, in order to assess this speculation. Future
work would require deeper understanding of the separation between the mo-
tor system and the PEC in the motor space. 3) Employ the architecture on

47

3. Conclusions and Future Work

a real robot. Although the simulations are added noise, it is only when run
on a real robot platform that the architecture can be fully tested. If given the
opportunity, this would be my main priority before any further development.
The noise and brittleness would put an extra stress test on the system, and
would hopefully highlight the roles of the various models. This would allow
the artificial drummer to be a part of a live setting in an interactive manner.

48

PART II

PUBLICATIONS

ORDERING OF THE PAPERS

The papers are ordered logically, instead of chronologically. For instance, both
papers on the groovy drum machine were published before paper B, but the
idea is that the reader will appreciate the progression of similar topics, before
the convergence of the two fields of research at the end of this part.

51

52

ASELF-ORGANIZING MULTIPLE MODELS FOR IMITATION:
TEACHING A ROBOT TO DANCE THE YMCA

Authors:
Axel Tidemann and Pinar Öztürk

Abstract:
The traditional approach to implement motor behaviour in a robot required a
programmer to carefully decide the joint velocities at each timestep. By using
the principle of learning by imitation, the robot can instead be taught simply
by showing it what to do. This paper investigates the self-organization of a
connectionist modular architecture for motor learning and control that is used
to imitate human dancing. We have observed that the internal representation
of a motion behaviour tends to be captured by more than one module. This
supports the hypothesis that a modular architecture for motor learning is
capable of self-organizing the decomposition of a movement.

Main Result:
This was the first implementation of the self-organizing connectionist archi-
tecture for motor learning and imitation that has been developed throughout
the PhD studies. The architecture was inspired by Demiris’ HAMMER and
Wolpert’s MOSAIC architectures. The experiment consisted of imitation hu-
man dance movements, using a robot simulator. The results showed that
switching of the modules controlling the robot occurred during a breaking
point in symmetry of the movement to be imitated, indicating that the break-
ing of symmetry is hard to learn, and thus requires more modules.

Published in:
IEA/AIE 2007, volume 4570 of Lecture Notes in Computer Science, Springer
(2007) 291-302

Copyright:
© 2007 Springer-Verlag Berlin Heidelberg

53

A. Self-organizing Multiple Models for Imitation: Teaching a Robot to Dance the YMCA

My main contributions to the paper:
• Recording human dance movements using motion tracking

• Programming the system and running the experiments

• Writing the paper

The co-author contributed to the following areas:
• How to combine HAMMER and MOSAIC

• Discussion of how the system self-organizes in relation to motor primi-
tives

54

Self-organizing Multiple Models for Imitation:
Teaching a Robot to Dance the YMCA

Axel Tidemann and Pinar Öztürk

IDI, Norwegian University of Science and Technology
tidemann@idi.ntnu.no

Abstract. The traditional approach to implement motor behaviour in
a robot required a programmer to carefully decide the joint velocities at
each timestep. By using the principle of learning by imitation, the robot
can instead be taught simply by showing it what to do. This paper in-
vestigates the self-organization of a connectionist modular architecture
for motor learning and control that is used to imitate human dancing.
We have observed that the internal representation of a motion behaviour
tends to be captured by more than one module. This supports the hy-
pothesis that a modular architecture for motor learning is capable of
self-organizing the decomposition of a movement.

Keywords: Human Robot Interaction, Machine Learning, Neural Net-
works.

1 Introduction

Learning by imitation is an important part of human cognitive behaviour, and
this approach has gained considerable interest in the artificial intelligence com-
munity [1]. Dancing is an area where imitation learning is easily observable.
When learning to dance, students imitate the movement of the teacher with
only visual input to guide their own motor system.

This paper presents a humanoid robot simulation thatmimics this phenomenon.
Our model is based on an on-line imitation learning algorithm for acquisition of
dance movements. As our research agenda includes the study of the mechanisms
for composing complex movements from simpler motor primitives we have a spe-
cial focus on how motor primitives are acquired. Towards this end we implemented
a modular architecture where a module learns and represents such a primitive. A
module may be envisioned as an expert that specializes on one or several such prim-
itives. We investigate whether an architecture with several such expert modules
can self-organize learning and execution of motor primitives. The underlying ar-
chitecture uses multiple paired inverse/forward models, implemented using recur-
rent neural networks. The research question of this paper reads: How and to what
extent will multiple paired inverse and forward models self-organize when used as
controllers for a humanoid robot?

H.G. Okuno and M. Ali (Eds.): IEA/AIE 2007, LNAI 4570, pp. 291–302, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

292 A. Tidemann and P. Öztürk

2 Imitation in Psychology, Neuroscience and AI

Developmental psychologists have long focused on how infants learn by imitating
their parents and the people in their surroundings. Piaget [2] describes imitation
as the continuation of accommodation (i.e. adjustment or adaptation) of sensory-
motor schemas (i.e. motor and perception stimuli) to the external world, an
important part of intelligent human behaviour. Meltzoff and Moore suggest that
imitation in newborns is due to a process they call active intermodal mapping
(AIM) [3]. The intermodal mapping relies on a representational system capable
of uniting perception and production of human acts, which can be used to correct
the child’s behaviour so that it will match that of the demonstrator.

The discovery of mirror neurons [4] has caught the interest of researchers in
several disciplines. Mirror neurons, which are observed to activate both when
observing and performing a certain action, are suggested to play an important
role in imitation [1], language [5] and mind reading [6].

Research in the field of imitation learning in computer science is coarsely
divided in two groups: those focusing on transforming visual information to a
meaningful representation for the agent (also called the correspondence prob-
lem) or the motor part (all perceptual information is already present, ready to
be input to a perception-action system) [1]. Schaal believes that the most in-
teresting approach to imitation learning is model-based learning (note that this
brief review focuses on multiple model approaches to imitation learning), where
an inverse model will output a motor command to achieve a desired state, given
the current state and the desired state. The output of the inverse model is given
as input to a forward model that will predict the outcome of the motor com-
mands acting on the environment. It is because of the predictive aspect that he
favors this approach. Schaal also thinks the modular approach fits nicely with
the simulation theory of mind-reading, as well as a possible way to implement
the AIM framework of Meltzoff and Moore.

Demiris [7,8] and Wolpert [9] have worked on multiple inverse/forward models
for imitation learning (note that this is in principle similar to Jacobs’ mixtures of
experts, [10]). Wolpert argues that the cerebellum has several forward and inverse
models [11], and that they correspond to different motor primitives. Wolpert
believes the inverse/forward models should be implemented as neural networks,
whereas Demiris uses different techniques such as PID controllers and Bayesian
belief networks to represent the models.

Matarić has a holistic modular approach to imitation; her architecture also
addresses the visual processing of imitation [12] (it is one of the modules, along
with attention, motor primitives and learning modules). She uses different tech-
niques for implementation of the modules, and has tested the architecture on
several robots testbeds.

3 A Multiple Paired Model for Dance Imitation

We have implemented a multiple paired models architecture (abbreviated
MPMA) inspired from Demiris’ HAMMER [8] and Wolpert’s MOSAIC [9,13]

Self-organizing Multiple Models for Imitation 293

architectures. Both MOSAIC and HAMMER use multiple paired inverse and
forward models. Why use multiple paired models as a control architecture? The
modularity of the brain serves as a good inspiration for modeling artificial in-
telligence. Even though multiple paired inverse/forward models may not be the
actual organization of the brain, it is a computational approach that is well un-
derstood in the control literature [14]. In addition, multiple models can be seen
as a solution to the problem of trying to compress too much information into
one network and when learning of new concepts destroys what has previously
been learnt, i.e. catastrophic forgetting [15]. Furthermore, modular architectures
can implement redundancy which is an important feature of intelligent systems
[16], and hence ensure robustness. Modular architectures can also expand their
capabilities by adding new modules (although this is not done in our implemen-
tation). Such a modular system enables the exploration of whether and how a
movement is decomposed into smaller submovements and how and why these
can be represented by different modules.

The MPMA can also exploit the advantages of both a localist and distributed
representation, a localist representation (i.e. a module1) makes it easy to tell
where a certain concept is stored, whereas a distributed representation (i.e. the
neural networks in the models) is noise-tolerant and can still function even if
some of the nodes of the network become destroyed.

Figure 1 illustrates the architecture. The forward model and responsibility
predictor are predictors of the next state and the suitability of the module,
respectively. The inverse model can be thought of as a controller or behaviour.
The different models will now be explained in more detail.

3.1 The Models

The forward model learns to predict the next state x̂i
t+1 based on the motor

command ui
t applied to the current state xt. The error signal (i.e. dashed arrow)

used for training2 the forward model is the difference between the predicted and
the actual next state.

The inverse model learns how to produce the motor commands ui
t to achieve

the target state x
′

t given the current state xt. The error signal of the inverse
model is the feedback motor error command, ufeedback. The feedback controller
[17] computes the difference between the target state at time t with the actual
state at time t + 1. The difference is multiplied with a constant K, and used
as motor commands to pull the system in the right direction, i.e. the error in
joint angles is used to compute joint angle velocities. Training an inverse model
is a hard problem, since there are many ways to achieve a certain desired state
[14]. The feedback error motor signal represents a simple way to find a trajectory
since it will coarsely pull the system in the right direction when the system issues
bad motor commands, with decreasing influence as the system performs better.
1 The term module is used in this paper to group three components together: an inverse

and forward model, and a responsibility predictor, which will be explained shortly.
2 All the recurrent neural networks are trained using the backpropagation through

time algorithm.

294 A. Tidemann and P. Öztürk

LIKELIHOOD

NORMALIZATION

PLANT
FEEDBACK

CONTROLLER

ui
t

-xi
t+1

x

x

+-

pi
t

lit

i
t

t

ufeedback ut
xt+1

xt

x't

xt

yt

RESPONSIBILITY PREDICTOR

INVERSE MODEL FORWARD MODEL

Fig. 1. The multiple paired models architecture. See the text for explanation of the
different variables. Inspired from [13] and [8].

The responsibility predictor learns to predict the suitability pi
t of a module

prior to movement, based on the context signal yt. Its error signal is λi
t. The

λi
t value is calculated based on two factors: 1) the likelihood lit calculates how

well the forward model predicts the next state, based on the difference between
the predicted next state and the actual next state, assuming it is influenced by
gaussian noise with a standard deviation σ, and 2) the predicted responsibility
pi

t. The λi
t values are normalized across the modules, resulting in the final λt

vector. The λt vector corresponds to which of the modules is most suitable to
control the motor commands sent to the plant (i.e. robot). The output of the
inverse models ui

t is multiplied with the normalized λt vector. Modules with a
high λ value will then achieve more influence over the total motor command ut

sent to the plant than modules with a low λ value. This is how switching between
modules is realized. In addition, the λ value is used to gate the learning of the
inverse and forward models, by multiplication with the error signal. If a module
makes bad predictions and receives a low λ value, it will not influence the final
motor command, nor will it receive much of its error signal. Modules that make
good predictions will gain more control over the total motor command, and also
receive more of its error signal to further fine-tune its predictions.

The difference between λi
t and pi

t was used as a performance measure during
training. When the difference was below a certain threshold the training would
stop, since the system then correctly predicts which module is more suitable to
control different parts of the movement.

3.2 Input/Output of the MPMA

The input to the MPMA was the joint angles of the demonstrator. This was
done to overcome the correspondence problem, i.e. the transformation from an

Self-organizing Multiple Models for Imitation 295

extrinsic to an intrinsic frame of reference [18]. Demiris and Hayes [7] take the
same approach. It is questionable whether this is a biologically plausible ap-
proach, however studies in neuroscience anticipate the existence of a geometric
stage where sensory input is transformed to postural trajectories which in turn
can be used by the motor system, as argued by Torres and Zipser [19]. Fur-
thermore, experiments done by Desmurget and Prablanc [20] show that humans
actually use estimation of joint angles when imitating.

The other input to the system is the context signal. As an example of a context
signal, Wolpert uses whether a cup is empty or full [9] in order to select between
two inverse models that both will generate motor commands to lift the cup. We
let the context signal correspond to the music playing while dancing, i.e. it can
be thought of as a representation of the melody the imitator hears while it is
dancing.

The output of the system are motor commands to be applied on the plant. In
this case, the robot is the plant, and the motor commands are the joint angle
velocities of the robot. Joint angle velocities are not directly equal to motor
commands, since motor commands are expressed in forces of the actuators. We
define that the inverse models output joint angle velocities because the simulator
(see section 4) takes joint angle velocities as input, not forces. The simulator will
calculate the forces that will yield the desired joint angle velocity. This approach
is similar to [21], which calculates desired trajectories and relies on an inverse
dynamics controller for the motor commands. Still, issuing joint angle velocities
is closer to motor commands than a desired trajectory, and it is a simpler problem
to solve for the inverse dynamics controller. To resume the argument above by
Torres and Zipser; there is some indication that this is how the brain plans. After
application of the motor commands, the plant returns the actual next state.

3.3 Details of the MPMA

In MOSAIC [9] there is a difference between action production and observation;
when producing an action, each forward model is fed the sum of all the inverse
motor commands. When observing an action for imitation, the output of each in-
verse model is fed into the paired forward model, this is similar to the HAMMER
architecture. The MPMA does not have two modus operandi, the architecture
design is the same as MOSAIC in action observation mode, since we consider
this best models the action/prediction-relationship of having multiple paired in-
verse/forward models. This design choice is also related to the fact that there is
no “observation phase” with inhibition of the motor commands as the imitator
is watching the teacher, with a subsequent selection of appropriate modules that
will imitate the action (as is the case in both MOSAIC and HAMMER). The
imitator tries to imitate the perceived movement as it is being demonstrated.
Children often imitate what they are observing without being aware that they
are imitating (Piaget defines this as the sixth level of imitation [2]). The MPMA
uses a divide-and-conquer technique to learn a movement. A movement is divided

296 A. Tidemann and P. Öztürk

into meaningful pieces (which may also be called motor primitives), each of which
is learned by a module. The modules can split movements amongst themselves
as they see fit.

Our implementation seeks to combine the best of both HAMMER and MO-
SAIC, i.e. the inverse/forward pairing of the former (note that MOSAIC also
has inverse/forward pairing, but this was only in action observation mode), and
the responsibility predictor and the focus on self-organization from the latter.

4 Experimental Setup

The breve simulator3 (an open-source graphical simulator, using the Open Dy-
namics Engine4) was used to implement the humanoid robot. The MPMA was
implemented in MatLab, and the communication between MatLab and breve
was done via sockets. MatLab sent the motor commands to the breve simulator,
and breve returned the state of the simulator after the application of the motor
commands for 13 timesteps. This required the forward models to predict the
state of the robot for 13 timesteps into the future.

Fig. 2. The YMCA movement. The letters Y M C A are spelled out using arm move-
ments. The numbers directly below the figure show how many timesteps are spent
forming each letter. The context signal is shown below the time scale.

Two conditions were examined for the experiment: 1) the system was allowed
to completely self-organize, and 2) the responsibility predictors were trained on
the context signals before the training of the system as a whole, i.e. biasing the
system to learn specific parts of the movement in each of the modules. This was
done to see whether the system would self-organize differently, and how it would
affect the performance of the system. Note that the responsibility predictors
would still be trained during the training of the entire system in the second
condition, retaining its self-organizing capabilities. It is the perspective of the
designer that one module should be allocated to each of the context signals, since
they represent different parts of the melody and also different movements.
3 http://www.spiderland.org/breve/
4 http://ode.org/

Self-organizing Multiple Models for Imitation 297

The experiment consisted of imitating the dance from a song called YMCA
by the Village People, a 70s disco group from New York, see figure 2. Training
data was collected by using the Pro Reflex tracking system at the Developmental
Neuropsychology lab at the Institute of Psychology, NTNU. The system is able
to track the position of fluorescent balls within a certain volume by using five
infrared cameras. The tracking of the balls yields Cartesian coordinates of the
balls, which can be used to calculate the joint angles of the demonstrator, which
were scaled to the range [0, 1]. No averaging or smoothing of the data was done.
The noisy data was added small amounts of Gaussian noise with mean 0 and
standard deviation 0.01 at each training epoch, to render it slightly different for
each training epoch. Only the arm movements are imitated, so the robot has
four degrees of freedom (one at each shoulder and elbow joints). The learning
rate of the inverse, forward and responsibility predictor networks were δinv =
δforw = 0.1, δrp = 0.3 (the learning rate of the responsibility predictor is higher
than the other networks to make it adapt quickly to λt

i), σ = 0.25 (of the
likelihood function), the feedback error motor constant was K = 3, and the
error proportion ep = 1.1 was used to bias the learning of the winning module
(as is done in [22]). The biasing was done as follows: after normalization of the
λt vector, the highest λ value is multiplied with ep, and then the λt vector is
normalized again. The stopping criterion was the following: the mean difference
between pt

i and λt
i throughout an epoch had to be lower than 0.0045 for all

modules.

5 Results

Each of the conditions was run 20 times. The results are presented in table 1.
The robot imitating the human dancer can be seen in figure 3. Figure 4 shows
how the MPMA switches between different modules for both the conditions
after training by plotting λi

t. pi
t is also plotted in the same figure. Note that

they overlap. This is an indication of stability in the system, and was used
as a stopping criterion, as discussed above. Figure 5 shows the performance
of the system regarding the target trajectory versus the actual trajectory. The
background color correspond to λi

t, making it easy to see which module controls
which part of the movement.

Fig. 3. Imitation of the YMCA, demonstrator on the left, imitator on the right

298 A. Tidemann and P. Öztürk

Table 1. Results of the experiments. Transitions mean the changing between modules
for controlling the robot. If there are 0 transitions, only one module controlled the robot
through the entire last epoch. If there is one transition, two modules controlled the
robot, and so on. However, multiple transitions does not ensure different modules were
in control for each transition, therefore the number of unique modules that controlled
the robot are also listed. ufeedback/ut says how strong the feedback error motor signal
was relative to the total motor command at the last epoch. The performance error
pe is the accumulated difference between the desired state and the actual state of the
system at the last epoch.

min/max/avg min/max/avg min/max/avg Transitions Unique modules
epochs pe ufeedback/ut 0 1 2 3 1 2 3 4

Cond. 1 667/1864/1121 10.4/19.0/12.6 0.05/0.11/0.07 7 12 0 1 7 13 0 0
Cond. 2 491/1857/1013 9.8/21.6/14.7 0.05/0.12/0.08 1 5 7 7 1 12 1 6

20 40 60 80 100 120 140
0

0.5

1

λ values and RP output, module 1

λ
rp

20 40 60 80 100 120 140
0

0.5

1

λ values and RP output, module 2

λ
rp

20 40 60 80 100 120 140
0

0.5

1

λ values and RP output, module 3

λ
rp

20 40 60 80 100 120 140
0

0.5

1

λ values and RP output, module 4

λ
rp

20 40 60 80 100 120 140
0

0.5

1

λ values and RP output, module 1

λ
rp

20 40 60 80 100 120 140
0

0.5

1

λ values and RP output, module 2

λ
rp

20 40 60 80 100 120 140
0

0.5

1

λ values and RP output, module 3

λ
rp

20 40 60 80 100 120 140
0

0.5

1

λ values and RP output, module 4

λ
rp

Fig. 4. The switching of control between the modules. The graph on the left shows one
run in the first condition, with two different modules (1 and 4) in control. The graph
on the right shows one run in the second condition, with all four modules in control at
different timesteps through the imitation.

6 Discussion

From the results, the system more often than not makes use of more than one
module indicating that a movement is divided into smaller submovements. In
cases where the responsibility predictor is not trained beforehand, usually two
modules are involved in the representation of the movement. In the second con-
dition, the system uses more than two modules for capturing the movement.

Self-organizing Multiple Models for Imitation 299

20 40 60 80 100 120 140
0

0.5

1

Right shoulder X joint angle vs. Time

20 40 60 80 100 120 140
0

0.5

1

Right elbow angle vs. Time

20 40 60 80 100 120 140
0

0.5

1

Left shoulder X joint angle vs. Time

20 40 60 80 100 120 140
0

0.5

1

Left elbow angle vs. Time

20 40 60 80 100 120 140
0

0.5

1

Right shoulder X joint angle vs. Time

20 40 60 80 100 120 140
0

0.5

1

Right elbow angle vs. Time

20 40 60 80 100 120 140
0

0.5

1

Left shoulder X joint angle vs. Time

20 40 60 80 100 120 140
0

0.5

1

Left elbow angle vs. Time

Fig. 5. How well the trajectory of the system (white line) matched the target trajectory
(black line). The background color shows which module was in control, condition 1 on
the left and condition 2 to the right. The graphs are from the same experiment as in
figure 5.

These results indicate that the system promotes self-organized decomposition of
movement when learning motion behaviours.

Representation of small and reusable motions, under different names such
as ‘motion segments’, ‘motor primitives’ or ‘symbols’, has attracted researchers
interest across different disciplines. Some of these researchers predefine the motor
primitives and make the robot learn these [12]. Others, similar to us, adopts
the idea of self-decomposition and aims at determining the global, invariant
structures and criteria underlying motor primitives. For example, [23] illustrates
that a humanoid robot can successfully learn such global structures through
self-exploration. The learned structures are represented as attractors in a neural
network. In our case we have several neural networks each representing different
primitives. It is in our future work agenda to investigate how the modules of the
MPMA may possibly be capturing attractors.

One interesting question is what qualifies as a motor primitive. Matarić also
points out this is hard to define [12]. From figure 5, it seems like the modules learn
some motor primitives, but instead of learning the motor primitives according
to the context signal (which is how the designer of the system would define
a motor primitive), the modules find distinctions in the sensory flow to define
them separately. The hypothetical (i.e. designer’s) switch points in the YMCA
movement at timesteps 48, 60 and 72 are not always obeyed. The system’s own
motor primitives are usually bigger than what the designer had thought as a
meaningful motor primitive. In fact, the system has a lower average performance
error when the responsibility predictors are not trained beforehand, indicating
that only a few modules are necessary to control the movement to be imitated.

300 A. Tidemann and P. Öztürk

On the other hand, the differences in pe and the number of epochs spent to train
the system are quite small, so performance-wise a clear preference cannot be
made.

The main point of the MPMA is the decomposition of a movement into seg-
ments and simultaneously learning these segments in different modules. Our goal
is to explore the possible criteria the system might be using for the decomposi-
tion. For this purpose, the coordinate system of the movement is first transformed
into an internal referential frame. The idea of such a conversion is adopted by
researchers in both neuroscience and robotics [19,21], where planning of a move-
ment is done in form of postural trajectories, independent of motor commands.
Our research has not been focused on how this geometrical transformation is
done, but these ideas and solutions can be integrated into the MPMA.

One drawback of the YMCA movement is the symmetry of the Y, M and
A movements, only the C movement breaks this symmetry. Closer examina-
tion reveals that for all the experiments (for both conditions) that have one or
more transition, a switch between modules occurs at around the 60th timestep,
which is exactly when the C movement begins, see figure 2. This may imply that
not having symmetrical movements would help the separation of the modules,
probably because it is more difficult to imitate and therefore needs to be stored
in a separate module. Research in neuroscience supports this claim maintain-
ing that nonsymmetric action in bimanual movements leads to interference and
takes longer time compared to symmetrical ones [24]. It is interesting to see that
the system agrees on the switch point around the 60th timestep in both condi-
tions. This suggests that the human guesses of what makes up a motor primitive
somehow aligns with what the system decides to be a motor primitive as well.
The architecture and the experiments presented in this paper are the early and
promising results of our work on motor imitation learning.

7 Future Work

We are currently examining how differences in speed and direction might affect
the self-organization of the system. Research related to human motor learning
suggests the changes in direction and velocity as determining factors in learn-
ing motion behaviour. It has also been suggested that specific muscle synergies
are shared across different motor behaviours [25] and by various animals. We
are also investigating how repetition of the target movement will affect the self-
organization. Preliminary results indicate that repetition affects the way the
modules will self-organize, in the way that more modules are being used. In ad-
dition, we are looking at making the movements to be imitated more complex,
both in term of having longer patterns to imitate and more degrees of freedom.
This will hopefully reveal if we can find a level of complexity where the system
will be saturated, i.e. all the neural resources are used and new modules must be
added in order to achieve the desired imitative behaviour. As mentioned above,
we are also interested in how the MPMA captures attractors, for example it will

Self-organizing Multiple Models for Imitation 301

be interesting to see how the attractor landscape would be for a module that
seems to represent several primitives.

References

1. Schaal, S.: Is imitation learning the route to humanoid robots? Trends in Cognitive
Sciences 3(6), 233–242 (1999)

2. Piaget, J.: Play, dreams and imitation in childhood. W. W. Norton, New York
(1962)

3. Meltzoff, A.N., Moore, M.K.: Explaining facial imitation: A theoretical model.
Early Development and Parenting 6, 179–192 (1997)

4. Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, L.: Premotor cortex and the recog-
nition of motor actions. Cognitive Brain Research 3, 131–141 (1996)

5. Arbib, M.: The Mirror System, Imitation, and the Evolution of Language. In:
Imitation in animals and artifacts, pp. 229–280. MIT Press, Cambridge (2002)

6. Gallese, V., Goldman, A.: Mirror neurons and the simulation theory of mind-
reading. Trends in Cognitive Sciences 2(12) (1998)

7. Demiris, Y., Hayes, G.: Imitation as a dual-route process featuring predictive and
learning components: a biologically-plausible computational model. In: Imitation
in animals and artifacts, pp. 327–361. MIT Press, Cambridge (2002)

8. Demiris, Y., Khadhouri, B.: Hierarchical attentive multiple models for execution
and recognition of actions. Robotics and Autonomous Systems 54, 361–369 (2006)

9. Wolpert, D.M., Doya, K., Kawato, M.: A unifying computational framework for
motor control and social interaction. Philosophical Transactions: Biological Sci-
ences 358(1431), 593–602 (2003)

10. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local
experts. Neural Computation 3, 79–87 (1991)

11. Wolpert, D.M., Miall, R.C., Kawato, M.: Internal models in the cerebellum. Trends
in Cognitive Sciences 2(9) (1998)

12. Matarić, M.J.: Sensory-Motor Primitives as a Basis for Learning by Imitation:
Linking Perception to Action and Biology to Robotics. In: Imitation in animals
and artifacts, pp. 392–422. MIT Press, Cambridge (2002)

13. Wolpert, D.M., Kawato, M.: Multiple paired forward and inverse models for motor
control. Neural Networks 11, 1317–1329 (1998)

14. Jordan, M.I., Rumelhart, D.E.: Forward models: Supervised learning with a distal
teacher. Cognitive Science 16, 307–354 (1992)

15. Ans, B., Rousset, S., French, R.M., Musca, S.: Self-refreshing memory in artifi-
cial neural networks: learning temporal structures without catastrophic forgetting.
Connection Science 16(2), 71–99 (2004)

16. Pfeifer, R., Scheier, C.: Understanding Intelligence (Illustrator-Isabelle Follath).
MIT Press, Cambridge (2001)

17. Kawato, M.: Feedback-error-learning neural network for supervised motor learning.
In: Eckmiller, R. (ed.) Advanced neural computers, pp. 365–372 (1990)

18. Nehaniv, C.L., Dautenhahn, K.: The Correspondence Problem. In: Imitation in
Animals and Artifacts, pp. 41–63. MIT Press, Cambridge (2002)

19. Torres, E.B., Zipser, D.: Simultaneous control of hand displacements and rotations
in orientation-matching experiments. J Appl Physiol 96(5), 1978–1987 (2004)

20. Desmurget, M., Prablanc, C.: Postural Control of Three-Dimensional Prehension
Movements. J Neurophysiol 77(1), 452–464 (1997)

302 A. Tidemann and P. Öztürk

21. Ijspeert, A., Nakanishi, J., Schaal, S.: Trajectory formation for imitation with non-
linear dynamical systems. In: Proceedings of the IEEE/RSJ Int. Conference on
Intelligent Robots and Systems (IROS2001), pp. 752–757 (2001)

22. Haruno, M., Wolpert, D.M., Kawato, M.: MOSAIC model for sensorimotor learning
and control. Neural Comp. 13(10), 2201–2220 (2001)

23. Kuniyoshi, Y., Yorozu, Y., Ohmura, Y., Terada, K., Otani, T., Nagakubo, A.,
Yamamoto, T.: From humanoid embodiment to theory of mind. In: Pierre, S.,
Barbeau, M., Kranakis, E. (eds.) ADHOC-NOW 2003. LNCS, vol. 2865, pp. 202–
218. Springer, Heidelberg (2003)

24. Diedrichsen, J., Hazeltine, E., Kennerley, S., Ivry, R.B.: Moving to directly cued
locations abolishes spatial interference during bimanual actions. Psychological Sci-
ence 12(6), 493–498 (2001)

25. d’Avella, A., Bizzi, E.: Shared and specific muscle synergies in natural motor be-
haviors. PNAS 102(8), 3076–3081 (2005)

BA SELF-ORGANIZING MULTIPLE MODEL ARCHITECTURE FOR
MOTOR IMITATION

Authors:
Axel Tidemann and Pinar Öztürk

Abstract:
Learning by imitation allows humans to easily transfer motor knowledge be-
tween individuals. Our research is aimed towards equipping robots with im-
itative capabilities, so humans can simply show a robot what to do. This
will greatly simplify how humans program robots. To achieve imitative be-
haviour, we have implemented a self-organizing connectionist modular archi-
tecture on a simulated robot. Motion tracking was used to gather data of
human dance movements. When imitating the dance movements, the archi-
tecture self-organizes the decomposition of movements into submovements,
which are controlled by different modules. The modules both collaborate and
compete for control during the movement. The trajectory recorded during mo-
tion tracking was repeated, revealing recurrent neural activation patterns of
the inverse models (i.e. controllers), indicating that the modules specialize on
specific parts of the trajectory.

Main Result:
The target state is repeated, and the recurring activation values of the mod-
ules show how they specialize on certain parts of the movement. The impor-
tance of the responsibility predictors is also examined. The performance of
the system was a lot worse when training and testing without the RPs. The
performance was better when training with RPs and disabling them during
testing, but still inferior to training and testing with the RPs. The results
show that the RPs are crucial for the modules to specialize in specific parts of
the trajectory.

To appear in:
International Journal of Intelligent Information and Database Systems, Vol-
ume 4, No. 1, 2009

67

B. A Self-Organizing Multiple Model Architecture for Motor Imitation

Copyright:
© 2009 InderScience Enterprises Ltd

My main contributions to the paper:
• Programming the system and running the experiments

• Statistical analysis

• The idea of testing the importance of the RPs, and how to do it

• Writing the paper

The co-author contributed to the following areas:
• The idea of using repetition as a way to demonstrate if the modules be-

came specialists on certain parts of the movement

• Writing the discussion and conclusion

68

Is not included due to copyright

CA DRUM MACHINE THAT LEARNS TO GROOVE

Authors:
Axel Tidemann and Yiannis Demiris

Abstract:
Music production relies increasingly on advanced hardware and software tools
that makes the creative process more flexible and versatile. The advancement
of these tools helps reduce both the time and money required to create mu-
sic. This paper presents research towards enhancing the functionality of a
key tool, the drum machine. We add the ability to learn how to groove from
human drummers, an important human quality when it comes to drumming.
We show how the learning drum machine overcomes limitations of traditional
drum machines.

Main Result:
A drum machine that models both small- and large-scale variations of drum
patterns recorded using amateur drummers. The large-scale models are rep-
resented as Hidden Markov Models, whereas the small-scale variations are
represented using a normal distribution. MIDI was used as both input and
output to the system, enabling the creation of a low-cost groovy drum ma-
chine. The imitated drum patterns were found to be similar to the original
ones by human evaluation.

Published in:
31st Annual German Conference on AI, Volume 5243 of Lecture Notes in Com-
puter Science, Springer (2008) 144-151

Copyright:
© 2008 Springer-Verlag Berlin Heidelberg

89

C. A Drum Machine that Learns to Groove

My main contributions to the paper:
• Coming up with the idea of creating a groovy drum machine that learns

user-specific variations

• Gathering drumming data using an electronic drum kit and five ama-
teur drummers (one of them being the first author)

• Programming the system and running the experiments

• Analysis of both the recorded and generated data patterns

• Writing the paper

The co-author contributed to the following areas:
• Suggesting that several drummers should participate in the experiment

to better evaluate the results

• Pointing out relevant references

• Writing the discussion

90

A Drum Machine that Learns to Groove

Axel Tidemann1 and Yiannis Demiris2

1 IDI, Norwegian University of Science and Technology
tidemann@idi.ntnu.no

2 BioArt, ISN, EEE, Imperial College London
y.demiris@imperial.ac.uk

Abstract. Music production relies increasingly on advanced hardware
and software tools that makes the creative process more flexible and
versatile. The advancement of these tools helps reduce both the time and
money required to create music. This paper presents research towards
enhancing the functionality of a key tool, the drum machine. We add
the ability to learn how to groove from human drummers, an important
human quality when it comes to drumming. We show how the learning
drum machine overcomes limitations of traditional drum machines.
Keywords: Imitation Learning, Machine Learning, Music

1 Introduction

Digital audio workstations allow users to quickly program drums, but the draw-
back is the machine-like sound of the programmed drums. Our research goal is
to make a drum machine that has the groove of a human drummer, by modeling
the user-specific variations of human drummers. The groove of a drummer is
made up of its large-scale variations (i.e. playing a break) and the small-scale
variations (i.e. varying tempo and how hard a beat is played). The approach of
drumming software so far has been to add random noise to the produced drum
patterns, to make them sound more human. Our approach is to learn drum
patterns from human drummers and model the variations that make a drummer
groovy to make an intelligent drum machine that sounds like a human drummer.

2 Background

Saunders et al. [1] and Tobudic and Widmer [2] focus on variations of tempo
and dynamics when modeling the style of pianists, albeit with different tech-
niques (string kernels and clustering of similar phrases, respectively). Pachet
uses Markov models in his Continuator system [3] to model the probability that
one note will follow the other. The Continuator learns the tonal signature of the
pianist, and has been implemented in a real-time system. Mantaras and Arcos
focus on imitating expressiveness, such as joyful or sad, by using case-based rea-
soning [4]. Raphael [5] focuses on the problem that arises when soloists do not
have the opportunity to play with a real orchestra, but must do with a static

recording. His system dubbed “Music Plus One” lets soloists practice along with
an orchestra played by a computer, and the system then learns to follow the
variations in tempo introduced by the soloist.

Current drumming software (e.g. FXpansion BFD, Toontrack EZdrummer,
DigiDesign Strike, Reason Drum Kits, Native Instruments Battery) consist of
huge sample libraries (typically in the gigabytes range), where meticulous pre-
cision has gone into sampling the different dynamics when playing drums (i.e.
from soft to hard). Still, the user must program the drum tracks. The user can
typically select which pattern to play and adjust some parameters to add ran-
dom noise to both onset time and velocity, to make the patterns sound more
human. The lack of intelligent ways to generate human-like drum patterns in
these applications forms the motivation for our research.

3 Architecture

Our architecture is called “Software for Hierarchical Extraction and Imitation
of drum patterns in a Learning Agent” (SHEILA), see figure 1. SHEILA learns
drum patterns and playing style from human drummers. The drum patterns and
the models of how they are played are stored in a library. The repetitive nature
of playing drum patterns makes it suitable for machine learning techniques to
extract user-specific variations. After the learning process, SHEILA can be used
as an intelligent and groovy drum machine that has the ability to imitate the
style of the drummers that served as teachers.

SHEILA
analysis

CORE
PATTERN

CORE
PATTERNCore pattern VARIATIONVariation

Core pattern VARIATIONVARIATIONVariation

Song X, played by Drummer A

snare

hihat

kick

cymbal

! !! !! !!!

Hidden Markov Model

Fig. 1. The SHEILA architecture. Drum patterns are learned, accompanied with
melody. In addition to learning drum patterns, SHEILA models the style of each
drummer that served as a teacher. After learning, SHEILA uses the acquired mod-
els to imitate a drum pattern in the style of a given drummer.

3.1 Modeling the Groove

There are two inputs to SHEILA: drum patterns and melody, presented in the
MIDI3 format. SHEILA models both small- and large-scale variations of drum
3 Musical Instrument Digital Interface, a protocol for electronic music equipment to

communicate in real time.

patterns. The large-scale variations are discovered the following way: the most
frequently played patterns are defined as core patterns. To find the core patterns,
the MIDI drum pattern sequence is transformed into a string, and examined
for supermaximal repeats, a technique used in computational biology to find
sequences of genes [6]. A supermaximal repeat is a recurring pattern that is not a
substring of any other pattern. The same approach is taken on the melody MIDI
sequence; the supermaximal repeats are used to divide the song into different
parts (e.g. the verse/chorus/bridge of the song), thus the melodic input serves as
musical context. For each of these parts, the most commonly played pattern is
then considered to be the core pattern of that part, yielding several core patterns
for a song. Patterns that differ from the core pattern within the part are defined
as the large-scale variations of the core pattern. The sequence of core patterns
and variations within similar parts is modeled using a Hidden Markov Model
(HMM). The small-scale variations are defined as the variations in timing and
velocity for each beat that occurs when a drummer plays a pattern. We model
the small-scale variations by calculating the mean (µ) and standard deviation
(σ) of both the onset time (i.e. how much the beat differs from the metronome)
and velocity (i.e. how hard a note is played) of each beat across similar patterns.
Our pilot study [7] showed that the Gaussian distribution was an appropriate
model. One of the leading software samplers on the market, FXpansion BFD,
use the same approach to model human variations in its “Humanize panels”,
however the user must specify the µ and σ using a graphical interface4. Each
entry in the SHEILA library consists of a core pattern and variations of the core
pattern and the HMM modeling their sequence. Each beat in all the patterns is
assigned the normal distribution parameters µ and σ of both velocity and onset
time.

3.2 Imitating the Groove

The user of SHEILA presents the desired pattern in the MIDI format to SHEILA.
SHEILA presents a list of drummers who have played the desired pattern, along
with the name of the song this pattern was played on (indicating what the imi-
tation will sound like, presuming the user knows the song). The user then selects
which drummer SHEILA should imitate when playing the desired pattern, and
for how many bars. The HMM for each core pattern is used to generate output
sequences (i.e. core patterns and variations). This is how large-scale variations
are introduced. To create the actual beats, random numbers determining the ve-
locity and onset time are drawn from the normal distribution assigned for each
beat, introducing small-scale variations to the imitated pattern.

The generated onset times are averaged locally based on a 10 beat window
(five beats before and five beats after the current beat). A human drummer will
vary the onset time of the beats, but this variation will not occur randomly
within a close timeframe. The local averaging makes beats played at the same

4 See page 118 of the user manual (accessed 2008-04-08),
www.fxpansion1.com/resourceUploads/BFD Manual English.pdf

time sound more coherent, whereas the onset time is still allowed to drift over
time. Averaging over ten beats was found to be the value that sounded most
natural; less than 10 yielded too random-sounding onset times, whereas more
than 10 made the onset times sound too rigid.

The combination of large- and small-scale variations in the imitated drum
patterns will result in a pattern that is different from the original, but still in the
style of drummer X. The output is in the MIDI format, ready to be imported
into music production software with high quality drum samples.

4 Experimental Setup

SHEILA was implemented in MatLab. vmatch5 was used to find the supermaxi-
mal repeats. Propellerheads Reason 3.06 loaded with Reason Drum Kits was used
for recording MIDI signals and for generating sound from MIDI files. Record-
ing MIDI was done with a Roland TD-37 velocity sensitive electronic drum kit.
Five male amateur drummers recorded drum tracks to a melody written by the
authors, and were told to play specific patterns for the verse (shown in figure
2), chorus and bridge, and a specific break at each 8th bar of the verse. The
drummers were free to introduce large-scale variations according to what felt
natural to them. The overall structure of the song was
verse/chorus/verse/chorus/bridge/chorus/chorus. The tempo was 120 beats per
minute, the length of the song was 2:30 minutes.

hihat
snare
kick

yeah

œ

œ

œ

¿ ¿ ¿ ¿

œ

œ

¿ ¿ ¿ ¿ ¿ ¿

œ

œ

¿ ¿

œ ∑ ∑ ∑

Fig. 2. One of the three core patterns played in the experiment.

5 Results

Figures 3 and 4 show how SHEILA models drummers A and E playing the
pattern shown in figure 2. [7] provides more examples. The figures show the
mean and standard deviation for both velocity and onset time, and how SHEILA
models the unique style of each drummer. Most easily observable is the difference
in accentuation of the hihat between drummers A and E. Accents are defined
as periodic variations in velocity. This is demonstrated by the strong regular
variations in velocity that can be seen in the hihat bar plots of drummer A,
whereas for drummer E these variations are not so prominent.
5 www.vmatch.de
6 www.propellerheads.se
7 www.roland.com

1 and 2 and 3 and 4 and
0

32

64

96

127

M
ID

I v
el

oc
ity

Time in beats, hihat

1 and 2 and 3 and 4 and
0

32

64

96

127

M
ID

I v
el

oc
ity

Time in beats, snare drum

1 and 2 and 3 and 4 and
0

32

64

96

127

M
ID

I v
el

oc
ity

Time in beats, kick drum

1 and 2 and 3 and 4 and
0

32

64

96

127

M
ID

I v
el

oc
ity

Time in beats, hihat

1 and 2 and 3 and 4 and
0

32

64

96

127

M
ID

I v
el

oc
ity

Time in beats, snare drum

1 and 2 and 3 and 4 and
0

32

64

96

127

M
ID

I v
el

oc
ity

Time in beats, kick drum

Fig. 3. The plots show the velocity profiles of drummer A (left) and drummer E (right)
playing the pattern in figure 2. The MIDI resolution [0−127] is on the Y axis. The X axis
represent the beats in a bar. The bar plots show how the velocity varies periodically over
time (standard deviation shown as the error bar). This is what makes up the drummer’s
groove in terms of small-scale variations, including the onset times (shown below). The
accentuation (i.e. variation of velocity) on the hihat is more pronounced for drummer
A compared to drummer E, providing a visual confirmation that the drummers have a
different groove when playing the same pattern. The acquired models makes SHEILA
capable of imitating the playing style of the drummers.

1 and 2 and 3 and 4 and
−0.07

0

0.04

O
ns

et
 ti

m
e

in
 ti

ck
s

Time in beats, hihat

1 and 2 and 3 and 4 and
−0.07

0

0.04

O
ns

et
 ti

m
e

in
 ti

ck
s

Time in beats, snare drum

1 and 2 and 3 and 4 and
−0.07

0

0.04

O
ns

et
 ti

m
e

in
 ti

ck
s

Time in beats, kick drum

1 and 2 and 3 and 4 and
−0.07

0

0.04

O
ns

et
 ti

m
e

in
 ti

ck
s

Time in beats, hihat

1 and 2 and 3 and 4 and
−0.07

0

0.04

O
ns

et
 ti

m
e

in
 ti

ck
s

Time in beats, snare drum

1 and 2 and 3 and 4 and
−0.07

0

0.04

O
ns

et
 ti

m
e

in
 ti

ck
s

Time in beats, kick drum

Fig. 4. The plots show the onset time profiles for drummer A (left) and E (right)
playing the pattern in figure 2. The Y axis shows the onset time, there are 120 ticks
in range [0.− 0.99] between each quarter note. The X scale is the same as in figure 3.
The differences in the onset time profiles is further evidence that the drummers have
different grooves when playing the same pattern.

The onset time reveals the temporal qualities of the drummers, i.e. how
aggressive (ahead of the metronome) or relaxed (behind the metronome) he is.
Figure 4 shows how the onset time profiles are different for drummers A and E.
The plots show how the playing style of drummer A is slightly more aggressive
than that of drummer E. The reader can listen to available MP38 files to get a
better sense of these terms.

After the learning process, SHEILA was set to imitate the same song used
in the training phase to evaluate the quality of the imitation. Since both the
large-scale and small-scale variations are introduced randomly using the acquired
models (HMMs and normal distributions, respectively), the output will have the
human quality that it is different each time a drum track is generated. Figure
5 shows how the local averaging of onset times allows the tempo to drift over
time, making the output sound more human.

100 200 300 400 500 600 700
−0.15

−0.1

−0.05

0

0.05

0.1

Note sequence

O
ns

et
 ti

m
e

Actual onset time
Imitated onset time
Averaged imitated onset time

Fig. 5. The circle plots show the tempo drift of drummer A throughout the song. The
cross plots show the generated onset times; they are locally averaged since they are
drawn from a normal distribution. The local averaging will make beats that are close
temporally sound more coherent, whereas the tempo can still drift over time, as shown
by the thick line, adding realism to the generated patterns.

Each of the drummers participating in the experiment was presented both
the original drum tracks and the imitations in random order and asked to classify
which drummer SHEILA imitated (each song lasting 2:30 minutes, the available
MP3 files include both originals and imitations). All the tracks used the same set
of samples and were mixed the same way, i.e. the sonic qualities of the drumming
were the same from track to track. Only the playing style of generated tracks were
different. It should be noted that normally other qualities will help identify a
drummer (e.g. the sound of the drums, the genre of music, the band the drummer
is playing in, etc.). We have removed all these factors, making the recognition
task harder than what first might be expected. Table 1 shows that the imitated
drum tracks were often perceived as being similar to the teacher (average of 76%
correct classification).

8 http://www.idi.ntnu.no/∼tidemann/sheila/ki08/

Table 1. How often the imitated SHEILA output was correctly classified as being
imitated from the corresponding human drummer. Each drummer that participated in
the experiment evaluated the imitation, and tried to match which drummer served as
a teacher.

Drummer A B C D E

Classification 80% 60% 80% 80% 80%

6 Discussion and Conclusion

This paper presents a more sophisticated version of SHEILA than the pilot
study in [7], which does not model large-scale variations, does not employ the
local averaging of onset time for added realism, and was trained on fewer and
simpler datasets. The were two reasons for using amateur drummers playing on
a MIDI drumkit: 1) budget (i.e. professional drummers were too expensive) and
2) simplicity of data gathering. We have bypassed the data acquisition stage of
human drummers, that consist of seeing and hearing drums being played. We
believe these simplifications allow focus on the core problem, which is learning
drum patterns.

Our software drummer learns how a human plays drums by modeling small-
and large-scale variations. The intelligent drum machine is capable of mimicking
its human teacher, not only by playing the learned patterns, but also by always
varying how patterns are played. The imitative qualities of SHEILA was shown
to be good by evaluation from the different drummers that served as teachers.
Our drum machine is an example of how a tool can be augmented by applying
AI techniques in an area where incorporating human behaviour is of essence.
Creating music is an area where human qualities such as “feel” and “groove” are
important, but hard to define rigorously. By enhancing our software drummer
with the ability to learn and subsequently imitate such human qualities, the
drum machine evolves from being a static rhythm producer to become closer to
a groovy human drummer. The added advantage is the ease and cost-effective
way of creating human-like drum tracks.

7 Future Work

A more biologically plausible approach of learning drum patterns would be to
make SHEILA listen to music (i.e. using audio files as input) and extract melody
lines and drum patterns from low-level audio data. For reasons of simplicity, this
was not done in the current implementation, but possible solutions are described
in [8].

We also aim to visualize SHEILA, by providing imitative capabilities of
upper-body movements. SHEILA could then be used in a live setting, playing
with other musicians. Our previous work on dance imitation using motion track-
ing and imitating arm movements [9] forms the basis for this area of research.
This approach uses multiple forward and inverse models for imitation [10].

8 Acknowledgements

The authors would like to thank the drummers who participated in the experi-
ment (Inge Hanshus, Tony André Søndbø, Daniel Erland, Sven-Arne Skarvik).

References

1. Saunders, C., Hardoon, D.R., Shawe-Taylor, J., Widmer, G.: Using string kernels to
identify famous performers from their playing style. In Boulicaut, J.F., Esposito,
F., Giannotti, F., Pedreschi, D., eds.: ECML. Volume 3201 of Lecture Notes in
Computer Science., Springer (2004) 384–395

2. Tobudic, A., Widmer, G.: Learning to play like the great pianists. In Kaelbling,
L.P., Saffiotti, A., eds.: IJCAI, Professional Book Center (2005) 871–876

3. Pachet, F. In: Enhancing Individual Creativity with Interactive Musical Reflective
Systems. Psychology Press (2006)

4. de Mantaras, R.L., Arcos, J.L.: AI and music from composition to expressive
performance. AI Mag. 23(3) (2002) 43–57

5. Raphael, C.: Orchestra in a box: A system for real-time musical accompaniment.
In: IJCAI workshop program APP-5. (2003) 5–10

6. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, New York, NY, USA (1997)

7. Tidemann, A., Demiris, Y.: Imitating the groove: Making drum machines more
human. In Olivier, P., Kay, C., eds.: Proceedings of the AISB symposium on
imitation in animals and artifacts, Newcastle, UK (2007) 232–240

8. Poliner, G.E., Ellis, D.P.W., Ehmann, A.F., Gomez, E., Streich, S., Ong, B.:
Melody transcription from music audio: Approaches and evaluation. IEEE Trans-
actions on Audio, Speech and Language Processing 15(4) (2007) 1247–1256

9. Tidemann, A., Öztürk, P.: Self-organizing multiple models for imitation: Teaching
a robot to dance the YMCA. In: IEA/AIE 2007. Volume 4570 of Lecture Notes in
Computer Science., Springer Verlag (2007) 291–302

10. Demiris, Y., Khadhouri, B.: Hierarchical attentive multiple models for execution
and recognition of actions. Robotics and Autonomous Systems 54 (2006) 361–369

DGROOVY NEURAL NETWORKS

Authors:
Axel Tidemann and Yiannis Demiris

Abstract:
The drum machine has been an important tool in music production for decades.
However, its flawless way of playing drum patterns is often perceived as me-
chanical and rigid, far from the groove provided by a human drummer. This
paper presents research towards enhancing the drum machine with learn-
ing capabilities. The drum machine learns user-specific variations (i.e. the
groove) from human drummers, and stores the groove as attractors in Echo
State Networks (ESNs). The ESNs are purely generative (i.e. not driven by
an input signal) and the output is used by the drum machine to imitate the
playing style of human drummers, making it a cost-effective way of achieving
life-like drums.

Main Result:
This is a neural network-based implementation of the groovy drum machine
presented in paper C, with a deeper statistical analysis of the performance of
the system.

Published in:
18th European Conference on Artificial Intelligence, Volume 178, IOS Press
(2008) 271-275

Copyright:
© 2008 Axel Tidemann, Yiannis Demiris and IOS Press

99

D. Groovy Neural Networks

My main contributions to the paper:
• Coming up with the idea of using attractors in generative ESNs to store

the groove of the drummers

• Programming the system and running the experiments

• Statistical analysis

• Writing the paper

The co-author contributed to the following areas:
• Highlighting the need for a deeper statistical analysis

• Evaluation of the results

• Helping to formulate key ideas of the research

100

Groovy Neural Networks
Axel Tidemann1 and Yiannis Demiris2

Abstract. The drum machine has been an important tool in mu-
sic production for decades. However, its flawless way of playing
drum patterns is often perceived as mechanical and rigid, far from the
groove provided by a human drummer. This paper presents research
towards enhancing the drum machine with learning capabilities. The
drum machine learns user-specific variations (i.e. the groove) from
human drummers, and stores the groove as attractors in Echo State
Networks (ESNs). The ESNs are purely generative (i.e. not driven by
an input signal) and the output is used by the drum machine to imi-
tate the playing style of human drummers, making it a cost-effective
way of achieving life-like drums.

1 INTRODUCTION
The research in this paper is aimed to enhance the cost-effective and
easy way of creating drum tracks that is possible with current music
production software (e.g. Logic, Pro Tools, Cubase) with the groove
of a human drummer. The drum machine is a much cheaper alter-
native to recording live drums. However, the drum machine plays
patterns without flaws, which makes it sound rigid and machine-
like. Human drummers vary the way patterns are played, both on a
small-scale level (varying dynamics and tempo) and on a large-scale
level (changing the pattern to be played altogether, such as playing a
break). These variations constitute the groove of the drummer. Cur-
rent music production software have parameters that can be tweaked
to achieve a human-like effect, however these variations add random
noise with the intention that these variations will be perceived as
human - the software has no understanding of what makes a drum
pattern groovy. The research presented in this paper models these
user-specific variations with recurrent neural networks, and demon-
strates that the networks are able to represent both the small and
large-scale variations that make a drummer groovy. These networks
are then used to imitate the playing style of the drummers that served
as teachers. The result is a groovy drum machine.

2 BACKGROUND
Modeling user-specific variations in playing style has been a field
of study for years within the AI community. Saunders et al. [12]
use string kernels to identify the playing style of pianists, by look-
ing at changes in beat-level tempo and beat-level loudness. However,
imitating the style of the pianists was not attempted. Tobudic and
Widmer [15] also consider variations in tempo and dynamics as the
two most important parameters of expressiveness. To learn the play-
ing style of a pianist, they use first-order logic to describe how the
pianist would play a certain classical piece, and then a clustering al-
gorithm to group similar melody lines (i.e. phrases) together. They

1 IDI, NTNU, Norway, email: tidemann@idi.ntnu.no
2 ISN, Imperial College London, UK, email: y.demiris@imperial.ac.uk

use the models to play back music in the style of given pianists. Pa-
chet’s Continuator uses Markov models to create a system that al-
lows real-time interactions with musicians [8], however his focus is
more on replicating the tonal signature of a musician; the Markov
model represents the probabilities that a certain note will follow an-
other. A musician plays a phrase and the Continuator will then play
another phrase which is a continuation of that phrase. Mantaras and
Arcos use case-based reasoning to generate expressive music perfor-
mance by imitating certain expressive styles, such as joyful or sad
[2]. Raphael [10] has implemented a real-time system for accom-
panying soloists, “Music Plus One”. The system allows soloists to
play along with an orchestra played by a computer, after the soloist
has “practiced” along with the system. The idea is to model how a
soloist tends to vary the tempo when playing a classical piece of mu-
sic, making the orchestra (i.e. the computer) follow the soloist.

Current sophisticated drum sample software (e.g. FXpansion
BFD, Toontrack EZdrummer, DigiDesign Strike, Reason Drum Kits,
Native Instruments Battery) contains gigabytes of samples that
closely match the acoustic response to playing dynamics. However,
the drum libraries still need to be programmed, since they provide
no intelligent way to generate human-like drum patterns. This must
be done by the user, either by programming the pattern himself or
choosing a rhythm template. The drum software contains parameters
that can be tweaked to enhance the realism of the produced tracks
(typically a “groove engine” where it is possible to increase ran-
domization of beats and/or adjust timing and velocity), in addition
to manually changing programmed patterns. Still, the user needs to
know how to achieve the desired result, since the software has no
understanding of how to generate human-like drum patterns. If the
user could buy a “drummer in a box” that had a model of how a real
drummer plays a certain pattern, it would greatly reduce the cost of
having life-like drums. We believe this could be an important tool for
musicians, since the programming of the drums would be easier and
the user could select the drummer of his preference to perform on his
tracks.

3 ARCHITECTURE

The architecture for learning and imitation of drum patterns is called
“Software for Hierarchical Extraction and Imitation of drum patterns
in a Learning Agent” (SHEILA), see figure 1. SHEILA learns drum
patterns and the playing style of human drummers, and stores them
in a library. After training, SHEILA can be used as a groovy artifi-
cial drummer, capable of imitating the playing style of the drummers
that provided the drum patterns used as training data. The drumming
domain is suited for time-dependent sequential modeling due to its
repetitive nature, since the groove of a drummer manifests over time.

SHEILA
analysis

CORE
PATTERN

CORE
PATTERNCore pattern VARIATIONVariation

Core pattern
ESN

VARIATIONVARIATIONVariation
ESN

Song X, played by Drummer A

snare

hihat

kick

cymbal

! !! !! !!!

Sequence ESN

Figure 1. The SHEILA architecture. Playing style is learned in a
hierarchical fashion by learning large-scale variations (i.e. variations of a

pattern), as well as small-scale variations (variations of dynamics and
tempo). All the models are represented by Echo State Networks (ESNs). The

melody is used to group similar drum patterns together. After the training
phase, SHEILA can imitate the playing style of the drummers that served as

teachers.

3.1 Modeling the groove using neural networks
The inputs to SHEILA are drum patterns and the accompanying
melody, both represented in the MIDI3 format. SHEILA models both
small- and large-scale variations of drum patterns using Echo State
Networks (ESNs). An ESN is a recurrent neural network character-
ized by a large sparsely connected hidden layer, where only the out-
put layer weights are modified during learning [6]. The input layer
weights are generated at random, and left unchanged during training.
By only modifying the output layer weights, training the network
is reduced to a linear regression problem, which is a lot cheaper
computationally compared to the backpropagation through time al-
gorithm. In SHEILA, the input layer is not used. The ESNs learn the
sequences by teacher forcing, i.e. by writing the desired sequence
of output states into the output nodes during the training phase. The
only inputs to the hidden layer comes from the output nodes. After
training, the teacher forcing stops, and the network runs on its own.
The ESN continues to generate the desired output sequence due to
the reverberations of the hidden layer dynamics. In other words, the
desired sequence of output states is stored as an attractor in the ESN.
How this is used in SHEILA will be explained in the following sec-
tions. Why use ESNs to represent the groove sequence? Apart from
the obvious advantage of using a dynamical system with memory
capabilities, it also draws on biological inspiration; neuroscientific
findings suggest specific areas of the brain process temporal musical
information [11]. To model a human quality such as groove, using a
technique that is modeled on how the brain works seems like a step
in the right direction.

The name of the drummer and the song is also stored in the
SHEILA library. Different drummers play the same pattern, but in
their own style. The name of the drummer and the song will then
help the user of SHEILA to decide which style he wants on the imi-
tated drum track when SHEILA is used to imitate a drummer.

3.1.1 Large-scale variations

Large-scale variations are defined as changes in the actual pattern
played, such as playing a break instead of a certain pattern. The most
commonly played drum patterns are denoted core patterns. Core pat-
terns are found by a recursive process: first the different parts of
the melody are found (what in common music terms would be re-
ferred to as the verse/chorus/bridge of the song). This is achieved by
transforming the melody into a string, and searching for supermaxi-
mal repeats, an approach used in computational biology to discover

3 Musical Instrument Digital Interface, a protocol for electronic music equip-
ment to communicate in real time.

sequences of genes [4]. A supermaximal repeat is defined as a re-
curring pattern that is not a substring of any other pattern. Similar
parts are grouped together, and the core patterns are the most com-
monly played drum pattern within the similar parts. To find the most
commonly played drum patterns, the same search for supermaximal
repeats is performed. Patterns correspond to one bar of the MIDI
note sequence (i.e. 4 quarter notes). Patterns that differ from the core
pattern within a melodic segment is considered to be a large-scale
variation of the core pattern. For each song, there will be several
core patterns, corresponding to the melodic segments. Core patterns
are written as Cx, whereas variations are written as CxVy . From
the low-level MIDI data a high-level representation of the song is
found, namely the sequence of drum patterns. The sequence of pat-
terns within a melodic segment is represented by an ESN (from now
on referred to as ESNseq). The string sequence is transformed into a
binary matrix where one row corresponds to one bar, and the loca-
tion of the high bit indicates which pattern (core or variation) to play.
This sequence is then teacher forced to the ESNseq, which produces
the same output sequence after the training phase. The design choice
to have one ESNseq for similar melodic segments was made because
it is the intention that SHEILA will later be used in a different set-
ting, where only specific core patterns (and their variations) are to be
played. If the ESNseq learned the large-scale sequence of the entire
song, it would only be suited to play back that particular song.

3.1.2 Small-scale variations

Small-scale variations are defined as variations in timing (i.e. how
much the drummer is before or after the metronome) and dynamics
(i.e. how hard a beat it played, also referred to as velocity) that oc-
cur when a drummer is playing a pattern. After defining the core
patterns and variations, the similar drum patterns are grouped to-
gether, and the MIDI data is transformed into a target matrix where
one row represents one timestep of the MIDI data. Quantizing the
raw MIDI data allows for calculation of how much a note was be-
fore/after the metronome. The placements of the velocity and on-
set time data also code for which note was played (for instance, hi-
hat, snare drum or kick drum). The velocity and onset times were
scaled to the range [0,1]. One ESN represent the sequence of veloci-
ties (denoted ESNvel), one ESN represent the sequence of onset times
(ESNons). Early experiments tried to combine both onset time and ve-
locity in one ESN, but finding a stable solution was difficult. Closer
examination of the data revealed that the onset times had a variation
that was on a slower timescale than that of the velocities. The on-
set times varies over several bars, whereas the velocity varies greatly
from one note to the next (this will be elaborated in section 4). The
spectral radius of the ESN describes the speed of the internal dynam-
ics of the ESN, and is the most important parameter to tune [5]. It was
therefore crucial that the velocity and onset times were represented
on different networks, since this parameter needed to be different for
each network. After the division was made, finding stable solutions
became a lot easier.

The grouped patterns are then used to train ESNs that represent
their variations in velocity and timing, resulting in specific ESNs for
the core pattern and for each of the variations of the core pattern.

3.2 Imitating the groove
When the training is completed, the user of SHEILA presents a de-
sired pattern in the MIDI format. Upon recognition, the user can
choose which drummer should play the desired pattern. The name

of the drummer and which song the pattern was played on will aid
the user to decide. The user then specifies how many bars the de-
sired pattern should be played. SHEILA then runs the ESNseq of the
desired pattern for the desired number of bars, outputting the se-
quence of core patterns and variations. The corresponding ESNvel

and ESNons are then run for the desired number of bars; the output
results in MIDI data. The ESNseq introduces large-scale variations,
and the ESNvel and ESNons introduce small-scale variations. Recall
that the ESNs are all purely generative, they are not driven by input
at all. However, they need to be given a starting state, which is the last
state of the hidden and output layer of the network during training.

4 EXPERIMENTAL SETUP
The SHEILA system was implemented in MatLab. To find the su-
permaximal repeats, vmatch4 was used, which is implemented using
the algorithms described in [1]. Propellerheads Reason 3.05 loaded
with Reason Drum Kits was used for recording MIDI signals and for
generating sound from MIDI files. Recording MIDI was done with a
Roland TD-36 velocity sensitive electronic drum kit. Five male ama-
teur drummers (average age 27.8) recorded drum tracks to a melody
written by the authors, and were told to play specific patterns for the
verse (shown in figure 2), chorus and bridge. At each 8th bar of the
verse, there was a break that they had to play the same way. Apart
from these directions, the drummers were free to introduce large-
scale variations as they saw fit. The overall structure of the song was
verse/chorus/verse/chorus/bridge/chorus/chorus. The tempo was 120
beats per minute (BPM), yielding the length of the song 2:30 min-
utes. The ESNseq had 50 hidden nodes, and a spectral radius α = .99.
The spectral radius describes the speed of the internal dynamics of
the ESN; α = .99 specifies slow dynamics. This was chosen because
the timescale of the ESNseq were often long and highly irregular. The
ESNvel and ESNons on the other hand, represent faster dynamics since
their role is to capture a short cycle in a long stream of data. By exam-
ining the training data, the timescale of which variations occur was
discovered to be different on velocity and timing data. This can be
seen in figure 3, which shows the velocity and timing data for the hi-
hat sequence that correspond to the pattern in figure 2. Observe how
the velocity data vary greatly from one note to the next, whereas the
onset time varies more slowly.

To account for these observations, α = .1 for the fast ESNvel,
α = .4 for the slower ESNons. These values are found by experimen-
tation, as recommended by Jaeger [5]. The networks started out with
10 nodes in the hidden layer. Finding a stable solution in a purely
generative ESN was not guaranteed in every trained ESN. The train-
ing error would be low for every network, but once left to run on
its own, some networks tended to oscillate in an unstable manner.
To overcome this problem, each ESN was run for the same length
as the training data, and if the resulting output pattern differed more
than 10% from the training pattern, it was discarded and another ESN
was created, trained and tested. If five consecutive ESNs had an error
greater than 10%, the number of nodes in the hidden layer was in-
creased by 1. In practice, this simple heuristic would guarantee that
a solution would be found rather quickly, with less than 25 nodes
in the hidden layer. Recall that the training of the ESN is a simple
linear regression task; training and testing an ESN on some of the
longer sequences (e.g. a 144 x 3 matrix) takes less than a second on
an 1.8GHz iMac G5 running MatLab 7.

4 www.vmatch.de
5 www.propellerheads.se
6 www.roland.com

hihat
snare
kick

yeah

œ

œ

œ

¿ ¿ ¿ ¿

œ

œ

¿ ¿ ¿ ¿ ¿ ¿

œ

œ

¿ ¿

œ ∑ ∑ ∑

Figure 2. One of the three core patterns the drummers were required to
play in the experiment.

0 10 20 30 40 50 60 70 80 90
0

32

64

96

127

M
ID

I v
el

oc
ity

Time in beats, hihat

0 10 20 30 40 50 60 70 80 90
0

32

64

96

127

M
ID

I v
el

oc
ity

Time in beats, snare drum

0 10 20 30 40 50 60 70 80 90
0

32

64

96

127
M

ID
I v

el
oc

ity

Time in beats, kick drum

0 10 20 30 40 50 60 70 80 90

−0.05

0

0.05

O
ns

et
 ti

m
e,

 ti
ck

s
Time in beats, hihat

0 10 20 30 40 50 60 70 80 90

−0.05

0

0.05

O
ns

et
 ti

m
e,

 ti
ck

s

Time in beats, snare drum

0 10 20 30 40 50 60 70 80 90

−0.05

0

0.05

O
ns

et
 ti

m
e,

 ti
ck

s

Time in beats, kick drum

Figure 3. The plots show the training sequence of hihat velocity and onset
time when drummer B played the pattern in figure 2. The difference from
one velocity to the next is much larger than the difference from one onset

time to the next, which fluctuates on a much slower timescale.

5 RESULTS
To evaluate the imitation performance of the SHEILA architecture,
it was set to play back the same song structure used during training.
Table 1 shows how many large-scale variations a drummer would
introduce when playing a core pattern in addition to how often vari-
ations were played instead of the core pattern, calculated from the
original training data. The table shows how some drummers tends to
introduce many variations and play them often, whereas other drum-
mers tend to play just the pattern they were told to play. This indi-
cates the complexity of the sequence the ESNseq had to learn, and the
complexity of the imitated sequence.

Table 1. The tuples represent how many unique variations the drummers
introduced when playing a core pattern, and how often variations in total
were played instead of a core pattern (keeping in mind that a particular
variation can be repeated throughout the sequence). This indicates the
complexity of the sequence of large-scale variations and core patterns.

Drummer A B C D E
C1 5, 54% 3, 18% 7, 43% 2, 7% 5, 46%
C2 10, 41% 2, 22% 8, 41% 1, 3% 11, 63%
C3 6, 75% 2, 38% 5, 63% 0, 0% 5, 63%

The small-scale variations of both velocity and onset time can be
modeled using a Gaussian distribution, as described in [13]. One of
the leading software samplers on the market, FXpansion BFD, use
the same approach to model human variations in its “Humanize pan-
els”7. This allows for a simple way to show the small-scale varia-
tions present in both the original and imitated data. Figures 4 and 5
show how SHEILA models the small-scale variations of drummers
A and E playing the pattern shown in figure 2 (due to space limits,

7 See page 118 of the user manual (accessed 2008-05-26),
www.fxpansion1.com/resourceUploads/BFD Manual English.pdf

the graphs for all drummers cannot be shown). Figure 4 shows how
drummer A strongly accentuates (i.e. periodically varies the veloc-
ity of) the hihat beats, whereas drummer E has a more even velocity
profile for the hihat beats.

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, hihat

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, snare drum

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, kick drum

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, hihat

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, snare drum

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, kick drum

Figure 4. To the left is the velocity profile for drummer A, playing the
pattern shown in figure 2. The Y scale is [0− 127], corresponding to the

MIDI resolution. The X scale corresponds to the beats in the measure, which
is a common way to count when playing music. The blue bar stems from the

training data, the red bar from the output of SHEILA, when instructed to
play the same song as that of the training input. The similarity between the

blue and red bars indicate that the ESNvel successfully captures the
small-scale variations of the training data. Notice also how the velocity

profile differs from that of drummer E (to the right). Most easily seen is how
the accentuation (i.e. variation of velocity) on the hihat is not as pronounced

as for drummer A; this is a manifestation of the different grooves of
drummers A and E.

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, hihat

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, snare drum

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, kick drum

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, hihat

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, snare drum

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, kick drum

Figure 5. To the left is the onset time profile for drummer A, playing the
pattern shown in figure 2. The Y scale is onset time in ticks. There are 120

ticks in the range [0− 0.99] between each quarter note. The X scale
corresponds to the beats in the measure, similar to figure 4. As in figure 4,

the blue bar is the statistics from the training data, the red bar is the analysis
performed on the imitation done by SHEILA, showing that the output of the
ESNons resembles that of the training data. The plot shows how drummer A
tends to be ahead of the metronome when playing the pattern in figure 2. To

the right is the onset time plot for drummer E. The onset times tend to be
more centered around the metronome for the hihat beats, distinctively more
than for drummer A, which contributes to the difference of groove between

drummers A and E.

The onset time plays an important role in how aggressive/relaxed
drum patterns are perceived, depending on whether the onset time
is before or after the metronome. Figure 5 reveals that drummer A

tends to be ahead of the metronome (yielding a more aggressive feel),
whereas drummer E tends be more centered around the metronome,
for a more “tight” feel. The authors are aware that these terms are
vague but acoustically distinct; we encourage the reader to listen to
available MP3 files8 that better demonstrate these differences (in-
cluded are imitations performed by SHEILA). Figures 4 and 5 show
the mean and standard deviation for both velocity and onset time,
both for the original data and the imitated output. The similarity be-
tween the plots shows how SHEILA successfully models the small-
scale variations, in addition to demonstrating that drummers A and E
plays the same pattern with a different groove.

To assess both the large- and small-scale differences between orig-
inal and imitated drum tracks, as well as between drummers, a se-
quence similarity metric was implemented as described in [7]. The
cost function was adapted to account for differences in velocity as
well as timing of events, e.g. by adding the normalized difference in
velocity between two events. The similarity metrics can be seen in
table 2. The metrics show that imitations are similar to originals, and
that the drummers have different styles when compared to another.
The difference when comparing originals to imitations and drum-
mers to each other is generally an order of magnitude. However, note
that the metrics only have value as relative comparisons between the
MIDI sequences. They do not represent an absolute difference. Yui-
jan and Bo have recently developed a normalized metric [16], how-
ever it does not account for timed series; this appears to be an open
research issue, and beyond the scope of this paper. Still, the similarity
metrics indicate a strong degree of similarity between original drum
tracks and imitations (which is further backup up by figures 4-5), and
that each drummer has a playing style different from the others.

Table 2. (a) shows the similarity metric described in [7] when comparing
original drum tracks to SHEILA’s imitations, (b) compares drummers to

other drummers. The metrics indicate that the originals and imitated drum
tracks are similar, and that the different drummers have different playing

styles.

Original A B C D E
Imitation 0.46408 0.37102 0.37176 0.60169 0.37995

(a)
A B C D E

A 0 5.185 5.8272 6.1193 6.9911
B 5.185 0 5.4271 1.944 5.4166
C 5.8272 5.4271 0 6.0649 6.4713
D 6.1193 1.944 6.0649 0 6.135
E 6.9911 5.4166 6.4713 6.135 0

(b)

Another important aspect of the onset time is the tempo drift that
occurs over time. A drummer will constantly be before or after the
metronome, which will make the tempo fluctuate over time, as can
be seen in figure 3. Figure 6 shows how the output of SHEILA in-
duced the same drift in tempo over time as that of the original drum
sequence. To examine how the ESN store the grooves as attractors,
plots were made of hidden layer nodes during a run where the ESN
was generating output. Figure 7 shows plots for some hidden nodes
of the ESNvel of the pattern in figure 2 for drummer A. The ESNvel

was run for 240 timesteps (double what it was trained on). The fig-
ures show that the activation patterns have stable attractor shapes,
but with deviations. This is a further testament to how small-scale
variations are introduced when imitating a certain pattern; these de-
viations will make the output slightly different over time. But since

8 www.idi.ntnu.no/∼tidemann/sheila

100 200 300 400 500 600 700
−0.15

−0.1

−0.05

0

0.05

0.1

Note sequence

O
ns

et
 ti

m
e

Actual onset time

Imitated onset time

Figure 6. Tempo drift throughout the song, drummer A. The circle plots
show the tempo drift present in the recorded drum patterns. The cross plots
show the onset times during imitation. Observe how both the original and

imitated note sequence drift over time in a similar fashion.

the attractors are modeled from the patterns from a human drummer,
the fluctuations will be similar to that of the human drummer.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

Node 3

N
od

e
4

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

Node 7

N
od

e
8

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Node 20

N
od

e
21

Figure 7. Attractor plots, for some randomly selected hidden layer nodes
of the ESNvel of the pattern in figure 2, drummer A. The ESNvel was run for

240 timesteps (twice the training length). The plots are stable, but with
deviations implying that the output will be slightly different over time.

6 DISCUSSION AND CONCLUSION
The choice of using MIDI was based on simplicity regarding the
gathering and analysis of data. Another advantage with MIDI is that
it will disregard the sound of the drums, which often will help to
identify a drummer. The MIDI data allows focusing on the playing
style of the drummer, which is the aim for our research.

By using ESNs, SHEILA is able to model the human quality that
is groove by using a biologically inspired computational model. The
model encompasses the quality of varying the output like that of a hu-
man drummer, making the output different from the original but still
recognizable. The research presented in this paper enables the drum
machine to become closer to a groovy human drummer. Effectively,
the results will make it cheaper and easier to create human-like drum
tracks when making music.

7 FUTURE WORK
SHEILA depends on MIDI information gathered using a MIDI drum
kit. Acquiring the data is expensive; extracting the drum patterns
and melody line directly from sound files would give access to vast
amounts of training data; possible approaches are described in [9].
Apart from ease of computation, the reason for recording live drum-
mers was an interest in making SHEILA learn the physical playing
style of human drummers, i.e. the movement of the arms, upper torso
and head. This would be used to visualize SHEILA. During the ex-
periments conducted for this paper, motion tracking was also done.
The goal is to be able to use SHEILA in a live setting as an ac-
companying musician, interacting with humans playing other instru-
ments. This work will continue research done with motion tracking

and subsequent imitation of arm movements as described in [14],
using multiple forward and inverse models as building blocks for a
motor control architecture [3].

ACKNOWLEDGEMENTS
The authors would like to thank the referees who helped improve the
paper, and the drummers who participated in the experiment (Daniel
Erland, Inge Hanshus, Sven-Arne Skarvik, Tony André Søndbø).

REFERENCES
[1] M.I. Abouelhoda, S. Kurtz, and E. Ohlebusch, ‘Replacing Suffix Trees

with Enhanced Suffix Arrays’, Journal of Discrete Algorithms, 2, 53–
86, (2004).

[2] Ramon Lopez de Mantaras and Josep Lluis Arcos, ‘AI and music
from composition to expressive performance’, AI Mag., 23(3), 43–57,
(2002).

[3] Yiannis Demiris and Bassam Khadhouri, ‘Hierarchical attentive mul-
tiple models for execution and recognition of actions’, Robotics and
Autonomous Systems, 54, 361–369, (2006).

[4] Dan Gusfield, Algorithms on strings, trees, and sequences: computer
science and computational biology, Cambridge University Press, New
York, NY, USA, 1997.

[5] Herbert Jaeger, ‘Tutorial on training recurrent neural networks, cover-
ing BPPT, RTRL, EKF and the ”echo state network”’, Technical re-
port, German National Research Institute for Information Technology,
(2005).

[6] Herbert Jaeger and Harald Haas, ‘Harnessing Nonlinearity: Predicting
Chaotic Systems and Saving Energy in Wireless Communication’, Sci-
ence, 304(5667), 78–80, (2004).

[7] H. Mannila and P. Ronkainen, ‘Similarity of event sequences’, TIME,
136–139, (1997).

[8] Francois Pachet, Enhancing Individual Creativity with Interactive Mu-
sical Reflective Systems, Psychology Press, 2006.

[9] G. E. Poliner, D. P. W. Ellis, A. F. Ehmann, E. Gomez, S. Streich, and
B. Ong, ‘Melody transcription from music audio: Approaches and eval-
uation’, IEEE Transactions on Audio, Speech and Language Process-
ing, 15(4), 1247–1256, (May 2007).

[10] Christopher Raphael, ‘Orchestra in a box: A system for real-time mu-
sical accompaniment’, in IJCAI workshop program APP-5, pp. 5–10,
(2003).

[11] Séverine Samson and Nathalie Ehrlé, The cognitive neuroscience of mu-
sic, chapter Cerebral substrates for musical temporal processes, Oxford
University Press, 2004.

[12] Craig Saunders, David R. Hardoon, John Shawe-Taylor, and Gerhard
Widmer, ‘Using string kernels to identify famous performers from their
playing style.’, in ECML, eds., Jean-François Boulicaut, Floriana Es-
posito, Fosca Giannotti, and Dino Pedreschi, volume 3201 of Lecture
Notes in Computer Science, pp. 384–395. Springer, (2004).

[13] Axel Tidemann and Yiannis Demiris, ‘Imitating the groove: Making
drum machines more human’, in Proceedings of the AISB symposium
on imitation in animals and artifacts, eds., Patrick Olivier and Chris
Kay, pp. 232–240, Newcastle, UK, (April 2007).

[14] Axel Tidemann and Pinar Öztürk, ‘Self-organizing multiple models for
imitation: Teaching a robot to dance the YMCA’, in IEA/AIE 2007, vol-
ume 4570 of Lecture Notes in Computer Science, pp. 291–302. Springer
Verlag, (June 2007).

[15] Asmir Tobudic and Gerhard Widmer, ‘Learning to play like the great pi-
anists.’, in IJCAI, eds., Leslie Pack Kaelbling and Alessandro Saffiotti,
pp. 871–876. Professional Book Center, (2005).

[16] Li Yujian and Liu Bo, ‘A normalized levenshtein distance metric’, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(6),
1091–1095, (2007).

D. Groovy Neural Networks

106

EA GROOVY ARTIFICIAL DRUMMER

Authors:
Axel Tidemann, Pinar Öztürk and Yiannis Demiris

Abstract:
This paper presents an architecture for an intelligent virtual agent that imi-
tates human drumming behaviour. Through imitation, the agent models the
user-specific variations that constitute the “groove” of the drummer. The ar-
chitecture comprises a motor system that imitates arm movements of a hu-
man drummer, and a sound system that produces the sound of the human
playing style. The presence of a sound system alleviates the need to use phys-
ical models that will create sound when a drum is struck, instead focusing on
creating an imitative agent that booth looks and sounds similar to its teacher.
Such a virtual agent can be used in a musical setting, where its visualiza-
tion and sound system would allow it to be regarded as an artificial musician.
The architecture is implemented using Echo State Networks, and relies on
self-organization and a bottom-up approach when learning human drum pat-
terns.

Main Result:
Combining my previous work on imitation of dance movements with the groovy
drum machine. The neural network-based drum machine now drives the mo-
tor system of a groovy artificial drummer. The introduction of the Predictive
Error Controller is an incremental improvement to the architecture.

To appear in:
9th International Conference on Intelligent Virtual Agents, IVA2009, 14-16
September 2009

Copyright:
© 2009 Springer-Verlag Berlin Heidelberg

107

E. A Groovy Artificial Drummer

My main contributions to the paper:
• Programming the system and running the experiments

• Coming up with the idea of the Predictive Error Controller, inspired
from how the cerebellum works. This drastically improves performance
of the system

• Data gathering and analysis

• Writing the paper

The co-authors contributed to the following areas:
• Writing the abstract, introduction and discussion

108

A Groovy Virtual Drumming Agent

Axel Tidemann1, Pinar Öztürk1, and Yiannis Demiris2

1 IDI, NTNU, Sem Sælands vei 7-9, 7491 Trondheim, Norway
axel.tidemann@idi.ntnu.no

2 BioART, EEE, Imperial College, Exhibition Road, SW7 2BT London, UK

Abstract. This paper presents an architecture for an intelligent virtual
agent that imitates human drumming behaviour. Through imitation, the
agent models the user-specific variations that constitute the “groove” of
the drummer. The architecture comprises a motor system that imitates
arm movements of a human drummer, and a sound system that produces
the sound of the human playing style. The presence of a sound system
alleviates the need to use physical models that will create sound when
a drum is struck, instead focusing on creating an imitative agent that
booth looks and sounds similar to its teacher. Such a virtual agent can
be used in a musical setting, where its visualization and sound system
would allow it to be regarded as an artificial musician. The architecture is
implemented using Echo State Networks, and relies on self-organization
and a bottom-up approach when learning human drum patterns.
Keywords: Embodied cognitive modeling, Architectures for virtual agents,
Artistic application

1 Introduction

The research focus of this paper is to create a virtual drumming agent that
plays drum patterns in an intelligent way. The intelligence lies within its ability
to model and imitate drum patterns from human drummers. The agent learns
drum patterns from human drummers, and is able to create new drum pat-
terns that are similar but not identical. The sound system can be regarded as
an intelligent drum machine in itself. Drum machines play patterns perfectly,
however this flawless way of playing is also what makes it sound rigid and me-
chanical. Human drummers will always introduce small variations in both tempo
and dynamics when they play; this is what makes the drummer sound groovy.
The sound system models these variations to create a groovy drum machine; it
can be used in a live setting on itself, however a visualization of the drumming
agent would increase its appeal as an artificial drummer. For this reason, the
system incorporates a motor system in addition to the sound system that is able
to imitate arm movements of human drummers. The imitative drumming agent
both sees and hears the teacher, and the architecture fuses these two modalities.
The sound system is based on previous work on groovy drum machines [1], and
the motor system is based on previous work on imitation of arm movements
[2]. The research goal in this paper is to combine these two areas of research,

to create an intelligent virtual drumming agent. The agent relies on the human
cognitive function of imitation, and its implementation draws on biological in-
spiration, with self-organizing neural networks being an important feature. Both
the sound system and the motor system are discussed in the paper, but due
to space limitations the self-organization of the motor system is investigated
in slightly more detail. Two important distinctions need to be clear: the sound
system models user-specific variations, and is able to imitate them to create
new groovy drum tracks. The motor system tries to accurately produce the arm
movements that will yield the desired groovy drum track, i.e. it “remembers”
the arm movement that produced the desired sound. Therefore, it is evaluated
by how similar the produced arm movement is to the original trajectory.

2 Background

Learning motor skills by imitation has long been regarded as an important cog-
nitive function, and has been studied extensively in developmental psychology
[3, 4]. The discovery of neurons firing both when performing and observing the
same action (dubbed mirror neurons [5]) has been suggested as a neural im-
plementation of the imitative capability [6], language [7] and mind reading [8].
In computer science, model-based learning is regarded as the most suitable ap-
proach to implement imitation of motor actions [6], an approach well-known in
the control literature [9]. This approach pairs an inverse model (i.e. controller)
with a forward model (i.e. a predictor), and has been used in architectures for
imitation learning [10, 11]. It has been argued that the cerebellum contains in-
verse/forward model pairings, and it is therefore a suitable approach for an
architecture for motor control and learning in an imitative setting [12].

Modeling user-specific variations (i.e. “modeling virtuosity”) in the cross-
section of AI and music has been the focus of several studies (predominantly on
piano music), where various techniques ranging from string kernels [13], first-
order logic and clustering [14], Markov models [15] and case-based reasoning
[16] have been used to model and subsequently generate music that sound like
they were made by humans. The most sophisticated drum machines today (e.g.
FXpansion BFD, Toontrack EZdrummer, DigiDesign Strike, Reason Drum Kits,
Native Instruments Battery) are made in software, since they allow large sample
libraries (some are in the gigabyte range) and fine-tuned control over various
parameters to tweak the sound of the drums. However, there is no intelligent
way to generate human-like drum tracks, apart from adding random noise with
the intention that the noise can be perceived as “human”. The approach in this
paper is to model how human drummers play, and use these models to imitate the
style of human drummers. With an ability to imitate arm movements, the groovy
drum machine would become closer to a groovy artificial drummer, suitable to
be part of a band in a live setting. The Haile robotic percussionist [17] has some
similarities, but it is limited to playing with one arm (albeit in real-life, not only
as a simulation). It replays and modifies drum patterns during interaction with
other players, but it does not learn the patterns.

3 Architecture

The architecture presented in this paper is called “Software for Hierarchical
Extraction and Imitation of drum patterns in a Learning Agent” (SHEILA), see
figure 1. It combines techniques from imitation of drum patterns [1] as well as
imitation of body movements [11, 2, 18]. The two subsystems that make up the
architecture will now be described.

S"#I%A
A(A%)SIS

CO,#
-A..#,(Core pattern VA,IA.IO(Variation

CO,# -A..#,(VA,IA.IO(VA,IA.IO(VA,IA.IO(

SO(8 9: -%A)#; <) ;,=MM#,)

snare

@i@at

AicA

cymEal

! !! !! !!!

S#G=#(C#

%IH#%I"OO;

(O,MA%IIA.IO(

-%A(.
-,#;IC.IV#

#,,O,
CO(.,O%%#,

ui
t

K! itLM

pi
t

lit

"i
t

"t

uerror ut KtLM

KNsound
Kt

Kt

yt
,#S-O(SI<I%I.)

-,#;IC.O,

I(V#,S#
MO;#%

PO,QA,;
MO;#%

K

K

L

R

KNtLM

Kt

yt

KNsound

Fig. 1: The SHEILA architecture. On the top is the sound generative part, driving the
motor part at the bottom.

3.1 Sound System

The sound generative part is on the top of figure 1. It consists of several Echo
State Networks (ESNs) [19] that learn user-specific variations from human drum-

mers. MIDI3 recordings facilitate the analysis of drum patterns. The resulting
drum patterns are analyzed in a hierarchical manner: first, the MIDI drum se-
quence is transformed into a string. Similar patterns are then found by looking
for supermaximal repeats, a technique used to find sequences of genes [20]. The
melody of the song is used to divide the song into different parts (in common
music terms, these would constitute the verse/chorus/bridge of the song). The
most commonly played pattern within a part is then regarded as a core pattern
Cx, where a pattern has the length of one bar (i.e. 4 quarter notes). Patterns
that differ are regarded as large-scale variations of the core pattern, i.e. CxVy.
Similar patterns are grouped together. From the similar patterns, the small-scale
variations are extracted. These consist of variations in tempo and dynamics that
the drummer introduces when playing a certain pattern. These are found in the
MIDI data by looking at two parameters: 1) the onset time, which says how
much a beat was offset relative to the metronome, and 2) the velocity, which
describes how hard a note was played.

Both the small- and large-scale variations are stored in ESNs, to exploit the
memory capacity and fast training algorithm. The sequence of core patterns and
variations are transformed into a bit matrix, where each row encodes a core
pattern and its variation (if any), and stored in an ESN called ESNseq, one for
each melodic segment. The onset time and velocity are scaled to [0, 1] and the
resulting matrix is used to train ESNs that model the small-scale variations of a
pattern. The ESNseq thus gates the corresponding ESNs modeling the small-scale
variations of a pattern, and the output is scaled back to the MIDI format. All
these ESNs are self-generating networks, there is no input signal to drive them;
the ESNs use the feedback connections from the output layer to reverberate
around the desired state. To use the sound system as a groovy drum machine
alone, the user must decide which core pattern should be played, and for how
long. The system then lets the specified ESNseq run for the desired length of time.
The output of the ESNseq then gates the output of the corresponding ESNs that
represent the actual core pattern and the variations of the core pattern. The
output of these ESNs are what creates the actual sound, the ESNseq merely
governs when large-scale variations are to be introduced.

3.2 Motor System

An important aspect of this research is the idea that in order to achieve a life-
like visualization, it is crucial to have an underlying motor architecture based
on biological inspiration. For this reason, the research in this paper focuses more
on the underlying principles that will yield a control architecture capable of
generating arm movements similar to that of the teacher; the implementation
of the visualization is simple compared to the effort that went into the control
architecture. The research is performed more from an AI perspective than an
approach with a focus on the animation of the agent. The latter approach could

3 Musical Instrument Digital Interface: a protocol for real-time communication be-
tween electronic instruments and computers.

simply use the recorded motion tracking data to create the desired trajectories.
The approach in this paper is to learn the arm movements that will generate
the same trajectories; this is intrinsically linked to the research goal of creating
an intelligent drumming agent. The motor part of SHEILA can be seen at the
bottom of figure 1. The motor architecture consists of a number of paired in-
verse and forward models, and a responsibility predictor (explained below). It is
inspired by Demiris’ HAMMER [10] and Wolpert’s MOSAIC [11] architectures,
combining the best of both: the consistent inverse/forward ordering of HAM-
MER and the responsibility predictor of MOSAIC. The core of the architecture
is the pairs of inverse and forward models. An inverse model is a controller that
issues motor commands ui

t based on the current state xt and a desired state x
′

t
4.

A forward model is a predictor, that predicts the next state x̂i
t+1 based on the

current state xt and the motor commands ui
t from its paired inverse model. The

inverse and forward model, along with the responsibility predictor are grouped
together in a module. Each module learns and represents a different motor skill
(or a set of skills). The motor control problem then comes down to the selection
of the module(s) that best produces the desired movement. The responsibility
predictor (RP) predicts pi

t, signifying how suitable a module is to control the
robot prior to movement, based on contextual information yt. In [11] the follow-
ing example is given: if the robot is to lift a cup, contextual information would
be whether it is empty or full, so the proper inverse model can be chosen. The
likelihood (lit) is a model that expresses how well the forward model predicts
the next state (see [18] for details), which is multiplied with pi

t. The result is
λi

t, representing how well the module is performing and a prediction of how
suited the module is to control the robot. All the λi

t from the different modules
are normalized into the final λt vector. The motor output ui

t from each module
is multiplied with its corresponding λi

t value, and all the motor commands are
summed to form the final motor command ut, see equation (1).

ut =
∑

i

λi
tu

i
t (1)

λt thus enables switching of control between different modules. This also
gates the learning of the models; modules that perform well will receive more
of their error signal than modules with bad performance. This way, the motor
system self-organizes the control of the robot. Figure 4 (which will be explained
in the Results section) illustrates how the λ value of each module changes when
playing different sound patterns; the motor system self-organizes what motor
knowledge each module will capture.

The inverse models need good error signals in order to converge. This is
supplied by the predictive error controller (PEC), which is inspired by the human

4 In this paper, the following notation is used: a desired state is indicated by a prime
symbol, e.g. x

′
. An estimated state is noted by the hat symbol, e.g. x̂. A superscripted

i indicates that the signal comes from one of the modules, e.g. ui, otherwise it
is system-wide, for instance the desired state x

′
is the same for all modules. A

subscripted t indicates time, so the current state at time t is xt.

cerebellum. Like the cerebellum, it is able to predict how well motor commands
will achieve the goal of the movement, and make adjustments before the final
motor commands are sent to the motor system. The inputs are thus the current
state xt, the desired state x

′

t+1 and the motor commands ut sent from the motor
system. It then uses a model to predict the outcome of the motor commands on
the system, and if there are any discrepancies between the goal and the predicted
outcome, it issues motor commands uerror that will correct the situation, which
are added to ut before sent to the robot. This approach was initially inspired
by the universal feedback controller [21]; however it is only reactive because it
issues corrective motor commands based on the performance of the system at
the previous timestep. The PEC is predictive, and thus more able to issue good
corrections to the final motor command. uerror is used to train the inverse models
of the motor system. The forward models are trained on the actual next state
xt+1, whereas the RPs are trained on the final λt vector.

3.3 Combining Sound and Motor Systems

The sound generative part was previously used solely as a neural network-based
drum machine [1], now it is the neural centre that drives the motor part of
SHEILA; it provides both the context input to the motor system, as well as
the desired state input. The sequence of core patterns and variations serve as
context input yt to the motor part. In previous work [2, 18] yt was defined by
the designers of the experiment, now it is extracted from the low-level data
recorded from the drummer, i.e. the context signal is data driven. The actual
sound output is used as the desired state x

′

sound to the motor system. In previous
work, the desired state was the same as the desired state of the robot at the next
timestep. Now, the inverse models receive the current state xt of the robot and
the desired sound x

′

sound which is what the effect of moving the arm should
sound like; i.e. a target state that is in a different coordinate system than that of
the robot. This makes it harder for the inverse models to issue the correct motor
commands ui

t, since it must model the different coordinate systems used for the
two input signals. The desired state of the robot x

′
is used as input to the PEC,

which then is able to correct erroneous motor commands sent from the motor
part of SHEILA. This can be thought of as a memory of what the resulting arm
movement should look like.

It should be noted that a more realistic simulation of a drummer would
include a physical simulation of the drums that the robot is hitting. In the current
implementation, the imitation of sound is done regardless of the movement of
the arms. The current simplification, however, made it possible to have special
focus on the actual imitation of movement and sound, which allowed the creation
of a virtual agent that will look and sound similar to the original drummer.

4 Experiment

The five drummers that participated in the experiment played drum patterns to
a melody written by the first author. The drummers had to play specific drum

patterns (see figure 2a), but were free to introduce variations that felt natural
to them. The task of the imitative architecture was then to imitate both the
sound and arm movements of the drummer. To achieve this, two experiments
were conducted: 1) the training of the sound system and 2) the training of the
motor system. These experiments will now be explained.

hihat
snare
kick

yeah

œ

œ

œ

¿ ¿ ¿ ¿

œ

œ

¿ ¿ ¿ ¿ ¿ ¿

œ

œ

¿ ¿

œ ∑ ∑ ∑

(a) (b)

Fig. 2: (a) One of the patterns the drummers were told to play. (b) A drummer playing
on the Roland TD-3 velocity sensitive drum kit, which was also captured using motion
tracking.

4.1 Experiment 1: Training the Sound System

MIDI was recorded using a Roland TD-3 velocity sensitive electronic drum kit,
see figure 2b. The software for recording MIDI was Propellerhead Reason 3.0.
After analyzing the melodic structure and finding the corresponding core pat-
terns and the variation of core patterns, the ESNs of the sound system was
trained. The size of the ESNs depended on the complexity of the recorded drum
patterns. The high-level ESNseq learned the sequence of core patterns and the
variations, and the low-level ESNs learned to model the sequences of velocities
and onset times. All the ESNs in the sound system were self-generative, i.e. they
were not driven by an input signal. The ESNs were teacher-forced [19], using
the reverberations of the hidden layer dynamics to generate the correct output.
Since the complexity and size of the target matrices differed from each drummer,
the size of the ESNs were not determined beforehand, but searched for by the
system itself (described in detail in [1]). After training the sound system, it was
set to imitate the same sequence that had been used for training. The output of
the trained sound system served as input to the motor system.

4.2 Experiment 2: Training the Motor System

Movement data was gathered using a Pro Reflex 3D motion tracking system,
which uses five infrared cameras to track fluorescent markers. The markers
were put on the shoulders, arms and wrists of the drummer in the experiment.
The song consisted of two alternating patterns with corresponding melody, i.e.

verse/chorus/verse/chorus, lasting 98 seconds. The Pro Reflex sampling rate of
20Hz made the models predict 0.5 seconds into the future. The noisy motion
data was the desired state x

′
used by the PEC. The elbow coordinates were

normalized to the range [−1, 1] for all three dimensions, with the shoulder as
origin. The wrist coordinates were normalized to the same range with the elbow
as origin. The robot was defined in the same way, to overcome the correspon-
dence problem [22]. Neuroscientific data suggest that such a transformation of
visual input from an external to an intrinsic coordinate frame occurs in the brain
[23]. To simulate a robot with human-like arms, a four degree of freedom (DOF)
model of a human arm was implemented [24]. The model has a three-dimensional
spherical shoulder joint, and a one-dimensional revolute elbow joint. The entire
simulated robot was described by 8DOF.

The inverse models had 30 input signals. 12 represented the current state
xt of the robot, corresponding to the 3D coordinates of the elbow and wrist of
both arms. The remaining 18 inputs corresponded to the x

′

sound signal, i.e. the
velocity and onset time of the various elements of the drums, i.e. snare drum, kick
drum, hihat and so on. There were 8 outputs in the range [−1, 1] which made
up the motor commands ui

t to the robot. The forward model had 20 inputs,
12 stemming from xt and 8 from ui

t, and 12 outputs to predict the next state
x̂i

t+1. The RPs had 14 input signals, coding the core pattern and variation to be
played. The output was a prediction of the suitability of the module to control
the robot, pi

t, in the range [0, 1]. The motor system was tested with different sizes
of the hidden layer of the ESNs. All networks of the motor system had spectral
radius α = 0.9 which determine the length of the internal memory (range [0, 1],
with increasing memory as α increases) and noise level v = 0.2 which adds
10% noise to the internal state of the network. The PEC implements the same
model as the simulated robot, which enables it to make accurate predictions
and therefore good error signals uerror for the inverse models, crucial for such
a high-dimensional system to converge. The motor system started out with 10
modules in each experiment. For every second epoch the activity of the modules
was examined: a module had to be at least 20% active (i.e. λ > 0.2) for at
least 10% of the time, otherwise it was pruned. The check was done every other
epoch to allow the system to stabilize before pruning again. There were three
stopping criteria: 1) the performance error pe had to be less than 1%, 2) the
RP/λ error had to be less than 5%. If the output of the RPs correspond to the
final λ value of a module, it correctly predicts how well suited the module is,
indicating stability in the system, 3) the uerror had to be less than 50% of the
total motor command, so that the inverse models control most of the robot.

5 Results

5.1 Experiment 1

In order to test the imitative quality of the sound system, the groovy drum ma-
chine was set to play back the same sequence that it was trained on. Performing
the same statistical analysis on both the original and generated data sets reveals

that the system is able to model and generate the learned drum patterns, see
figure 3. More details about the imitative qualities of the sound system, includ-
ing statistical analysis of the imitative performance of the system, can be found
in [1].

the graphs for all drummers cannot be shown). Figure 4 shows how
drummer A strongly accentuates (i.e. periodically varies the veloc-
ity of) the hihat beats, whereas drummer E has a more even velocity
profile for the hihat beats.

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, hihat

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, snare drum

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, kick drum

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, hihat

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, snare drum
M

ID
Iv

el
oc

ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, kick drum

Figure 4. To the left is the velocity profile for drummer A, playing the
pattern shown in figure 2. The Y scale is [0− 127], corresponding to the

MIDI resolution. The X scale corresponds to the beats in the measure, which
is a common way to count when playing music. The blue bar stems from the

training data, the red bar from the output of SHEILA, when instructed to
play the same song as that of the training input. The similarity between the

blue and red bars indicate that the ESNvel successfully captures the
small-scale variations of the training data. Notice also how the velocity

profile differs from that of drummer E (to the right). Most easily seen is how
the accentuation (i.e. variation of velocity) on the hihat is not as pronounced

as for drummer A; this is a manifestation of the different grooves of
drummers A and E.

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, hihat

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, snare drum

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, kick drum

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, hihat

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, snare drum

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, kick drum

Figure 5. To the left is the onset time profile for drummer A, playing the
pattern shown in figure 2. The Y scale is onset time in ticks. There are 120

ticks in the range [0− 0.99] between each quarter note. The X scale
corresponds to the beats in the measure, similar to figure 4. As in figure 4,

the blue bar is the statistics from the training data, the red bar is the analysis
performed on the imitation done by SHEILA, showing that the output of the
ESNons resembles that of the training data. The plot shows how drummer A
tends to be ahead of the metronome when playing the pattern in figure 2. To

the right is the onset time plot for drummer E. The onset times tend to be
more centered around the metronome for the hihat beats, distinctively more
than for drummer A, which contributes to the difference of groove between

drummers A and E.

The onset time plays an important role in how aggressive/relaxed
drum patterns are perceived, depending on whether the onset time
is before or after the metronome. Figure 5 reveals that drummer A

tends to be ahead of the metronome (yielding a more aggressive feel),
whereas drummer E tends be more centered around the metronome,
for a more “tight” feel. The authors are aware that these terms are
vague but acoustically distinct; we encourage the reader to listen to
available MP3 files8 that better demonstrate these differences (in-
cluded are imitations performed by SHEILA). Figures 4 and 5 show
the mean and standard deviation for both velocity and onset time,
both for the original data and the imitated output. The similarity be-
tween the plots shows how SHEILA successfully models the small-
scale variations, in addition to demonstrating that drummers A and E
plays the same pattern with a different groove.

To assess both the large- and small-scale differences between orig-
inal and imitated drum tracks, as well as between drummers, a se-
quence similarity metric was implemented as described in [7]. The
cost function was adapted to account for differences in velocity as
well as timing of events, e.g. by adding the normalized difference in
velocity between two events. The similarity metrics can be seen in
table 2. The metrics show that imitations are similar to originals, and
that the drummers have different styles when compared to another.
The difference when comparing originals to imitations and drum-
mers to each other is generally an order of magnitude. However, note
that the metrics only have value as relative comparisons between the
MIDI sequences. They do not represent an absolute difference. Yui-
jan and Bo have recently developed a normalized metric [16], how-
ever it does not account for timed series; this appears to be an open
research issue, and beyond the scope of this paper. Still, the similarity
metrics indicate a strong degree of similarity between original drum
tracks and imitations (which is further backup up by figures 4-5), and
that each drummer has a playing style different from the others.

Table 2. (a) shows the similarity metric described in [7] when comparing
original drum tracks to SHEILA’s imitations, (b) compares drummers to

other drummers. The metrics indicate that the originals and imitated drum
tracks are similar, and that the different drummers have different playing

styles.

Original A B C D E
Imitation 0.46408 0.37102 0.37176 0.60169 0.37995

(a)
A B C D E

A 0 5.185 5.8272 6.1193 6.9911
B 5.185 0 5.4271 1.944 5.4166
C 5.8272 5.4271 0 6.0649 6.4713
D 6.1193 1.944 6.0649 0 6.135
E 6.9911 5.4166 6.4713 6.135 0

(b)

Another important aspect of the onset time is the tempo drift that
occurs over time. A drummer will constantly be before or after the
metronome, which will make the tempo fluctuate over time, as can
be seen in figure 3. Figure 6 shows how the output of SHEILA in-
duced the same drift in tempo over time as that of the original drum
sequence. To examine how the ESN store the grooves as attractors,
plots were made of hidden layer nodes during a run where the ESN
was generating output. Figure 7 shows plots for some hidden nodes
of the ESNvel of the pattern in figure 2 for drummer A. The ESNvel

was run for 240 timesteps (double what it was trained on). The fig-
ures show that the activation patterns have stable attractor shapes,
but with deviations. This is a further testament to how small-scale
variations are introduced when imitating a certain pattern; these de-
viations will make the output slightly different over time. But since

8 www.idi.ntnu.no/∼tidemann/sheila

Fig. 3: An example of the imitative quality of the sound system; two different drummers
are shown, one in each plot. The sound system was used to generate a drum sequence
similar to that of the original training data. These similarities are shown in bars, they
are all organized in pairs within each plot. The bar on the left of each pair (blue) shows
the training data, and the bar on the right of each pair (red) shows the generated
sequence. This similar pairs of bars shows how the sound system learned the same
drum pattern as in figure 2a for each of the two drummers.

5.2 Experiment 2

Note that the experiment reported in this paper focuses on one case of motion
tracking, whereas the previous work on the sound system alone [1] featured
several drummers. The motor system was tested with five different sizes of the
hidden layer: 100, 250, 500, 750 and 1000 nodes. Each network configuration
was run 20 times. The results from the experiments can be seen in table 1. The
motor system distributed the movement knowledge across different modules, as
can be seen in figure 4, which also shows the complexity of the context signal.
Figure 5 shows how the system matches the target trajectory when imitating.

6 Discussion

Figure 3 shows how the sound system successfully models and imitates the play-
ing style of different drummers. The sound system learns user-specific variations

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 1

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 2

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 3

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 4

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 5

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 6

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

epoch 10

Fig. 4: An example of λ and RP output, 500 nodes in the hidden layer. The shades of
gray in the background shows the boundaries of the context signal. The letters indicate
which core pattern and corresponding variation the context signal was made up from,
making it easier to see recurring context signals. The black column to the far left
signify the count-in. In accordance with table 1, it allows for a visual inspection of how
the system self-organizes the decomposition the control of the target movement into
different modules, and how they collaborate when controlling the robot.

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right elbow X

200 400 600 800 1000 1200 1400 1600 1800
!1

0

1
Target state
Actual state

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right elbow Y
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right elbow Z
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right wrist X
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right wrist Y
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right wrist Z
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Fig. 5: Performance of the motor system. Note how the two lines depicting the actual
state versus the desired state overlap. In the background the context signal is shown,
as in figure 4 (same experiment). This shows the right arm; due to space limits the left
arm is not shown. The left arm plots show a similar match between desired and actual
state, a pe around 0.03% is typical (see table 1).

Nodes Modules Rec. activation Epochs Perf. error (pe) uerror ratio Conv.
(µ, σ) (µ, σ) (µ, σ) (µ, σ) (µ, σ) exp.

100 4 ; 0 99.58% ; 0.83% 15 ; 0.82 0.0285% ; 0.0036% 49.72% ; 3.3% 20%

250 4.47 ; 0.70 98.57% ; 1.58% 14 ; 2.87 0.0273% ; 0.0037% 48.64% ; 1.05% 95%

500 5.20 ; 0.83 93.74% ; 4.21% 12 ; 1.81 0.0349% ; 0.0103% 47.47% ; 1.88% 100%

750 5.05 ; 0.87 91.39% ; 5.94% 12 ; 1.84 0.0341% ; 0.0104% 45.82% ; 1.88% 100%

1000 5.15 ; 0.81 88.46% ; 6.11% 12 ; 1.63 0.0358% ; 0.0091% 44.91% ; 1.84% 100%

Table 1: Results from the experiments of the motor system. The “Modules” column
shows how many modules the system was using on average after training. “Rec. activ.”
is short for recurrent activation and tells to what extent the λ value of each module
was recurring when the context signal was repeated. The recurring activation value was
calculated as follows: for repeating context signals, the mean and standard deviation
of λ was calculated for all modules. If the standard deviation was more than 5% of
the mean during one part of the recurring context signal, it was counted as not being
recurrent. Within those λ values within the 5% limit, only those that differed less
than 1% from the mean counted towards the recurrent activation percentage. A high
recurrent activation value indicates that modules specialized on certain parts of the
movement, since modules had the same λ value (i.e. influence) over the robot during
recurring context signals. “Perf. error” is short for performance error (pe), representing
how much the imitated trajectory differed from the desired trajectory. The uerror ratio
indicates how much the PEC influenced the final motor command after training. “Conv.
exp” is short for converged experiments, showing how many of the 20 experiments
converged (if the experiment had not converged within 40 epochs, it was terminated).

of drumming patterns, and stores the grooves in the hidden layer dynamics of
the ESNs. The sound system is able to generate drum patterns that are similar
to the training data, but not identical. The sound system then drives the motor
system: the sound system produces a sequence of drum patterns similar to the
original training data, which the motor system receives as a target state rep-
resenting what the end result of the arm movement should be (i.e. the sound).
Since the sound system has been thoroughly discussed in [1], the discussion will
now focus on the motor system. The results show that the motor system pro-
duces the correct arm movements based on the produced sound patterns, see
table 1 (the column for performance error) and figure 5. Since the research fo-
cus of this paper is to create an intelligent agent, there has been an emphasis on
developing a motor architecture based on biological principles. Table 1 and figure
4 reveal that the motor system successfully distributes control of the movement
to be imitated between the different modules. Table 1 indicates that the smaller
networks (100 nodes) are the most efficient networks, when solutions are found
(only 20% of the experiments converged). These networks have the highest recur-
rent activation value, meaning that the modules actively repeat their activation
for repeating context signals. This is less for the biggest networks, which could
indicate an excess in neural resources allows for modules to have overlapping
motor knowledge.

The sound and motor systems are both based on biological principles of
self-organization, implemented with neural networks, and are designed to be
intelligent systems. The sound system drives the motor system, which is where
the fusion of modalities happens - the motor system “hears” what the end result
should be, and issues motor commands that will result in that particular sound.
The motor system is able to transform a desired state in a different reference
frame (i.e. sound) into actions that will lead to that sound; the sound system
operates at a higher level than the motor system since it outputs consequences
of arm movements. The fusion of modalities is therefore not limited to sound:
the sound system could be replaced with any other centre that issues desired
states in different reference frames from that of the motor system.

An agent that understands the link between sound and movement could also
be used in the gaming industry. Current popular games such as Rock Band and
Guitar Hero receive musical input from the player (typically through a guitar-
like interface), but the avatar on the screen does not respond to this input. A
possible use of the SHEILA architecture could be to generate a visualization of
an avatar that would move in accordance with the performance of the player,
for greater visual feedback when playing.

7 Future Work

For all experiments, the uerror ratio is relatively high on average (ranging from
44.91% to 49.72%). The architecture controls most of the motor output, but
the PEC is crucial for the system to function well. However, this resembles
how the brain works: high-level motor commands are sent from the dorsolateral
frontal cortex to the posterior parietal and premotor areas, specifying the spatial
characteristics of the desired movement. Details of the motor signals are defined
in the motor circuits of the spinal cord [25]. Future work will show if the motor
system of SHEILA works in a similar fashion.

SHEILA does not imitate drum tracks that are unknown to the system. How-
ever, it should be fairly trivial to implement this feature in the sound system.
Based on the already learned models of drum patterns, the knowledge of similar
drum patterns could be used to generalize to unknown patterns. Once this mech-
anism is in place for the sound system, the motor system would require some
way of estimating the arm movement required for the novel drum patterns. A
model that learned drum patterns and the corresponding trajectories of the arm
could then be employed to create predictions of what trajectories would be the
result of an unknown drum pattern, required for the PEC to function.

References

1. Tidemann, A., Demiris, Y.: Groovy neural networks. In: 18th European Conference
on Artificial Intelligence. Volume 178., IOS press (July 2008) 271–275

2. Tidemann, A., Öztürk, P.: Self-organizing multiple models for imitation: Teaching
a robot to dance the YMCA. In: IEA/AIE. Volume 4570 of Lecture Notes in
Computer Science., Springer (June 2007) 291–302

3. Piaget, J.: Play, dreams and imitation in childhood. W. W. Norton, New York
(1962)

4. Meltzoff, A.N., Moore, M.K.: Imitation of facial and manual gestures by human
neonates. Science 198 (October 1977) 75–78

5. Rizzolatti, G., Fadiga, L., Gallese, V., Fogassi, L.: Premotor cortex and the recog-
nition of motor actions. Cognitive Brain Research 3 (1996) 131–141

6. Schaal, S.: Is imitation learning the route to humanoid robots? Trends in Cognitive
Sciences 3(6) (1999) 233–242

7. Arbib, M.: The Mirror System, Imitation, and the Evolution of Language. In:
Imitation in animals and artifacts. MIT Press, Cambridge (2002) 229–280

8. Gallese, V., Goldman, A.: Mirror neurons and the simulation theory of mind-
reading. Trends in Cognitive Sciences 2(12) (1998)

9. Jordan, M.I., Rumelhart, D.E.: Forward models: Supervised learning with a distal
teacher. Cognitive Science 16 (1992) 307–354

10. Demiris, Y., Khadhouri, B.: Hierarchical attentive multiple models for execution
and recognition of actions. Robotics and Autonomous Systems 54 (2006) 361–369

11. Wolpert, D.M., Doya, K., Kawato, M.: A unifying computational framework for
motor control and social interaction. Philosophical Transactions: Biological Sci-
ences 358(1431) (2003) 593–602

12. Wolpert, D.M., Miall, R.C., Kawato, M.: Internal models in the cerebellum. Trends
in Cognitive Sciences 2(9) (1998)

13. Saunders, C., Hardoon, D.R., Shawe-Taylor, J., Widmer, G.: Using string kernels to
identify famous performers from their playing style. In Boulicaut, J.F., Esposito,
F., Giannotti, F., Pedreschi, D., eds.: ECML. Volume 3201 of Lecture Notes in
Computer Science., Springer (2004) 384–395

14. Tobudic, A., Widmer, G.: Learning to play like the great pianists. In Kaelbling,
L.P., Saffiotti, A., eds.: IJCAI, Professional Book Center (2005) 871–876

15. Pachet, F. In: Enhancing Individual Creativity with Interactive Musical Reflective
Systems. Psychology Press (2006)

16. de Mantaras, R.L., Arcos, J.L.: AI and music from composition to expressive
performance. AI Mag. 23(3) (2002) 43–57

17. Weinberg, G., Driscoll, S.: Robot-human interaction with an anthropomorphic
percussionist. In: CHI 2006 Proceedings. (April 2006) 1229–1232

18. Haruno, M., Wolpert, D.M., Kawato, M.: MOSAIC model for sensorimotor learning
and control. Neural Comp. 13(10) (2001) 2201–2220

19. Jaeger, H., Haas, H.: Harnessing Nonlinearity: Predicting Chaotic Systems and
Saving Energy in Wireless Communication. Science 304(5667) (2004) 78–80

20. Gusfield, D.: Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, New York, NY, USA (1997)

21. Kawato, M.: Feedback-error-learning neural network for supervised motor learning.
In Eckmiller, R., ed.: Advanced neural computers. (1990) 365–372

22. Nehaniv, C.L., Dautenhahn, K.: The Correspondence Problem. In: Imitation in
Animals and Artifacts. MIT Press, Cambridge (2002) 41–63

23. Torres, E.B., Zipser, D.: Simultaneous control of hand displacements and rotations
in orientation-matching experiments. J Appl Physiol 96(5) (2004) 1978–1987

24. Tolani, D., Badler, N.I.: Real-time inverse kinematics of the human arm. Presence
5(4) (1996) 393–401

25. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of neural science. McGraw-
Hill, New York (2000)

FUSING MULTIPLE MODELS TO IMITATE DRUMMING

Authors:
Axel Tidemann and Pinar Öztürk

Abstract:
The ability to learn motor skills by imitating other individuals is an impor-
tant part of human cognition. The research presented in this paper aims to
implement this cognitive ability in robots. The goal is to facilitate program-
ming of robots in a way that is natural to humans. To achieve this goal,
a multi-modal architecture for learning motor skills by imitation is imple-
mented. The system imitates human drumming behaviour. The goal is to
imitate both the playing style (i.e. the “groove”) as well as the arm move-
ments. The virtual drummer can then be used in a musical setting, as it will
both look and sound human. Echo State Networks are used to implement the
architecture, and it self-organizes the control of the simulated robot. How the
system self-organizes the control of the robot is evaluated.

Main Result:
The sequence of sound and movements were randomly perturbed to show that
the architecture learns different parts of the movement, and it is not the se-
quence alone that determines the performance of the system.

Submitted to:
Journal of Artificial Intelligence Research

Copyright:
© Axel Tidemann and Pinar Öztürk

123

F. Using Multiple Models to Imitate Drumming

My main contributions to the paper:
• Programming the system and running the experiments

• Writing the paper

The co-authors contributed to the following areas:
• Writing the paper, particularly the discussion

124

Using Multiple Models to Imitate Drumming

Axel Tidemann tidemann@idi.ntnu.no

Pinar Öztürk pinar@idi.ntnu.no

IDI, Norwegian University of Science and Technology
Sem Sælands vei 7-9, 7491 Trondheim, Norway

Abstract

The ability to learn motor skills by imitating other individuals is an important part of
human cognition. The research presented in this paper aims to implement this cognitive
ability in robots. The goal is to facilitate programming of robots in a way that is natural
to humans. To achieve this goal, a multi-modal architecture for learning motor skills by
imitation is implemented. The system imitates human drumming behaviour. The goal is
to imitate both the playing style (i.e. the “groove”) as well as the arm movements. The
virtual drummer can then be used in a musical setting, as it will both look and sound
human. Echo State Networks are used to implement the architecture, and it self-organizes
the control of the simulated robot. How the system self-organizes the control of the robot
is evaluated.

1. Introduction

Learning by imitation enables easy transfer of motor skills between individuals. By simply
watching another individual demonstrate a motor skill, you are able to reproduce the same
behaviour. It is not hard to imagine how this has been a tremendous advantage to the
development of human society. Our goal is to enable the imitative capability in robots.
With the increase of elderly in many developed nations, robots can play a very important
part in their daily care, performing tasks for the nurses (Pineau, Montemerlo, Pollack, Roy,
& Thrun, 2003) or as interactive pets (Wada, Shibata, Saito, & Tanie, 2004). This is a field
that is in growth due to the predicted lack of people to care for the aging population. Robots
could also play an important part in the daily life of people without need for assistance,
performing repetitive menial chores. The designer of a robot cannot know in advance all the
behaviours desired by the end user. Besides, different users may want to own a personalized
robot that adapts to the personality and special needs of its owner. Therefore, robots must
be able to learn new behaviours in different environments. Equipping robots with the ability
to learn by imitation would be a convenient way to address the varied and changing needs
of the end user. An adaptive robot should be able to imitate as easily as other humans in
order to become truly useful to its owner. This paper presents an architecture that is able
to imitate human drum movements. The goal is to create an artificial groovy drummer,
that imitates the playing style of human drummers. This requires a multi-modal approach,
since the imitating agent needs to both hear and see what it should imitate.

2. Imitation in Nature

Learning by imitation is a multi-disciplinary field of research. In developmental psychology,
Piaget (1962) describes imitation learning as an ongoing process where the infant adjusts
internal sensory-motor schemas to what it perceives in the outside world. Piaget believed
the child could not imitate actions invisible to itself before it was about one year old.
Meltzoff and Moore (1977) found that newborn infants are able to imitate facial gestures
shortly after birth, suggesting that imitation is an innate mechanism that combines vision
and proprioception in a way that can be used to guide the motor system of the infant.
Meltzoff and Moore (1997) call this process active intermodal mapping.

Imitation was put in a neuroscientific context when Rizzolatti, Fadiga, Gallese, and
Fogassi (1996b) discovered neurons that were active both when observing and performing
the same action; they were named “mirror neurons”. The initial discovery was in monkeys,
Rizzolatti, Fadiga, Matelli, Bettinardi, Paulesu, Perani, and Fazio (1996a) found the same
activity in human brains as well. These neurons were then hypothesized to be a “neural
implementation” of the imitative capability (Schaal, 1999). Because of the placement of the
mirror neurons coincide with the language areas of the brain (Broca’s area, specifically),
Arbib (2002) consider the mirror neurons crucial for our ability to have language. Since
humans can imitate the sounds produced by other individuals, language-games necessary for
the development of language became possible. Kohler, Keysers, Umilta, Fogassi, Gallese,
and Rizzolatti (2002) found that mirror neurons were active also when hearing the sounds
of an action, not only seeing the action being performed, i.e. the sound of cracking open
a peanut elicited the same neural activity as when seeing or opening the peanut by the
monkey itself. However, only seeing the peanut being opened without hearing the sound
itself did not trigger the same activity, showing the importance of hearing the associated
sound when understanding the action performed - if there was no sound of the opening of
the peanut, the action was not successful.

Gallese and Goldman (1998) link the mirror neurons to our ability to empathize with
others; the mirror neurons allow for a transformation of oneself into the situation of an-
other person. It is the lack of this ability that identifies (amongst other symptoms) autism
spectral disorder (ASD), and Williams, Whiten, Suddendorf, and Perrett (2001) hypothe-
sized that people with ASD might suffer from a dysfunctional mirror neuron system. This
was later confirmed by EEG (Oberman, Hubbard, McCleery, Altschuler, Ramachandran, &
Pineda, 2005) and fMRI (Dapretto, Davies, Pfeifer, Scott, Sigman, Bookheimer, & Iacoboni,
2005) studies, however these findings have been met with skepticism (Dinstein, Thomas,
Behrmann, & Heeger, 2008). Neuroscientists have questioned the direct link between the
mirror neuron system in monkeys and humans (Dinstein, Hasson, Rubin, & Heeger, 2007;
Dinstein, Gardner, Jazayeri, & Heeger, 2008; Lingnau, Gesierich, & Caramazza, 2009). If
there is a mirror neuron system in humans, they are not the only neurons active during
observation and execution of the same action. The concept of a mirror neuron system in
humans remains controversial.

3. Imitation in AI

This section discusses imitation approaches in the field of artificial intelligence. Since the
research in this paper has a multi-modal approach (i.e. imitation of both motor actions and
sound), each will be discussed in separate subsections.

3.1 Imitation of Motor Actions

Imitation learning has gained considerable interest in the AI community over the last decade.
Schaal (1999) divides AI research on imitation learning in two groups: 1) trying to solve
the correspondence problem, which consists of transforming external sensor stimuli into an
intrinsic reference frame (Nehaniv & Dautenhahn, 2002) or 2) assuming that sensor input
has already been mapped to the motor system of the observing agent. Schaal considers
model-based approaches as most suitable to implement imitative behaviour in robots, con-
sisting of pairing an inverse model (i.e. behaviour or controller) with a forward model (i.e.
predictor). This is an established approach in the control literature (Jordan & Rumelhart,
1992), which also has been implemented in AI architectures for imitation learning (Demiris
& Khadhouri, 2006; Wolpert, Doya, & Kawato, 2003). Wolpert, Miall, and Kawato (1998)
argue that inverse/forward models are present in the cerebellum, leading to an architecture
based on those principles (Wolpert & Kawato, 1998). fMRI studies suggest that such an
ordering is present in the brain (Imamizu, Kuroda, Yoshioka, & Kawato, 2004).

Gaussier, Moga, Banquet, and Quoy (1998) and Matarić (2002) propose architectures
for motor imitation that have predefined modules for the various stages of sensorimotor
processing, i.e. perception, recognition and action selection.

There are other approaches to imitation learning that focus on neural network archi-
tectures instead of a modular solution. (Tani, Ito, & Sugita, 2004) has developed a novel
neural network architecture that implements the mirror neuron activity. This is achieved
by adding specific neurons (called “parametric bias”) that can be trained to have the same
activation both when performing an observing an action. These neurons can also be ac-
tivated manually, which will elicit the same behaviour. (Cangelosi & Riga, 2006) uses a
neural network to ground symbols; the student learns the association between actions and
words by imitating the actions of the teacher. (Billard & Hayes, 1999) employs a recurrent
associative network to connect symbols to sensory perception. The student learns the asso-
ciation between labels and motor actions by imitating the teacher, using Hebbian learning
to store the knowledge.

3.2 Imitation of Musical Expressiveness

Artificial intelligence is also applied when modeling human qualities of musical perfor-
mances. To most people, the difference between a music played by a human compared to
that of a machine is clear. Humans always introduce small errors when playing, which gives
the performance its natural feel. Machines excel in playing without errors which results in
a perfect performance, but this often is perceived to lack the human quality of “feel” or
“groove”. Many different techniques are used to model the human qualities of a perfor-
mance. Saunders, Hardoon, Shawe-Taylor, and Widmer (2008) use string kernels to classify
pianists based on audio recordings, modeling tempo and dynamics. The kernels are used

to generate a “performance worm”, a 2D representation of the performance of the pianist.
Alphabets are formed from the worms, and the resulting string representation is used to
identify the pianists. Case-based reasoning has also been used to model expressiveness,
such as the mood of a musical piece (de Mantaras & Arcos, 2002) and how the tempo of
a piece of music can be changed and still maintain the expressive qualities perceived at
the original tempo (Grachten, Arcos, & de Mantaras, 2006). The Continuator uses Hidden
Markov Models to predict note sequences, and is a system that can be used in real-time
to interact with musicians (Pachet, 2002). The focus of the Continuator is not to model
the expressiveness in terms of tempo or dynamics, but the creativity that manifests in tone
sequences of the musician. The system has also been used to help children improvise when
learning to play the piano (Benghi, Addessi, & Pachet, 2008). Raphael (2003) has a system
“Music Plus One” that allows soloists to practice with a computer that plays the score
of the accompanying orchestra. The system models the expressiveness of the soloist, and
adjusts the playback of the score accordingly (i.e. changes in tempo is followed by the
system and missed notes does not confuse the score-following of the system). Tobudic and
Widmer (2005) use first-order logic to describe the changes in tempo and dynamics that
occurs when a pianist plays a piece of music. The system learns how the pianists play by
clustering similar phrases together, and the acquired model can identify pianists based on
playing style.

4. The Predictive Nature of Imitation

It is agreed that anticipation is a vital component of human intelligence. Neuroscientists
contend that in order to exhibit skilled motor behavior, the brain needs to learn not only
to control the body but also to predict the consequences of this control (Flanagan, Vetter,
Johansson, & Wolpert, 2003; Kawato, 1999). The role of prediction has probably been best
formulated in the simulation hypothesis (Decety, Jeannerod, & Prablanc, 1989; Jeannerod,
1994; Decety, 1996; Jeannerod, 2001; Hesslow, 2002; Barsalou, Barbey, Simmons, & Santos,
2003; Grush, 2004).

According to simulation hypothesis, the same neural mechanisms are activated when
an action/movement is internally simulated without executing the action, and when the
action is actually executed. For example, imagination of a finger movement and its physical
execution activates the same primary motor area in the frontal lobe (Ehrsson, Geyer, &
Naito, 2003).

Behavioral and neurophysical findings provide convincing evidence in favor of the hy-
pothesis. It was shown that human subjects use equal time when they imagine themselves
walking on a familiar path compared to when they actually walk there (Decety et al., 1989).
The subjects took longer time when they imagined walking through a narrower gate than a
larger gate at the same distance. This has been interpreted as an indication that subjects
build up mental representations of the targets and retrieve these memories during motor
imagery. Similar observations was done when the subjects are required to estimate the fea-
sibility of grasping an object placed in different locations. The response time of the subjects
was a function of the location indicating that the subjects must be mentally simulating the
arm and finger movements (Frak, Paulignan, & Jeannerod, 2001). Neurophysiological find-
ings also support the simulation hypothesis. fMRI studies, for example, demonstrated that

the primary sensorimotor cortex (which is active during motor execution) was activated
during motor imagery and that mental and physical performance of hand movements share
common functional circuits (Stippich, Ochmann, & Sartor, 2002). More specifically, imag-
ination of movements using different parts of the body activates somatotopical sections of
the motor cortices (Ehrsson et al., 2003). These findings lead to the use of motor imagery
in sports training and neurological rehabilitation (Robin, Dominique, Toussaint, Blandin,
Guillot, & Le Her, 2007; Zimmermann-Schlatter, Schuster, Puhan, Siekierka, & Steurer,
2008).

It has been conceived that cognitive tasks involving another person, such as mind read-
ing, may also employ a similar internal simulation. Jeannerod argues that mind reading,
which is the “ability for normal people to understand and predict the behavior of their
conspecifics, ... represents an attempt to replicate and simulate the mental activity of the
other agent” (Jeannerod (2001), p.104). Another such cognitive task is imitation. Evi-
dence indicating that executing a particular action by oneself and observing another person
performing the same action activates the same brain area. This was explained by a direct
matching of the demonstrator’s action onto an internal simulation of that action (Rumiati,
Weiss, Tessari, Assmus, Zilles, Herzog, & Fink, 2005), making imitation a first class instance
of the simulation hypothesis. Taken together, these findings suggest that mental simulation
of a movement (either self-generated or triggered by a demonstrator) and executing it may
be sharing the same neural circuits where there is an inhibitory element in the latter case,
avoiding the overt action.

Importance of imitation for artificial intelligence, therefore, is twofold: 1) imitation in
itself as a cognitive capability is one of the key elements of intelligence and is a requirement
for intelligent agents/robots, 2) main components of imitation such as prediction, the in-
volved models, and mechanisms of the activation of appropriate models are shared across
different cognitive tasks and in different domains. Imitation therefore gains a special role
in research investigating the architectural commonalities underlying the process of doing
something and thinking or observing something.

5. Motor Behavior Underlying Imitation

The key element of the simulation hypothesis is a mapping from motor commands onto
their consequences. The motor system underlying simulation and execution of an action
rests on a coupling of two models (in control theory terminology); an inverse and a forward
model (Flanagan et al., 2003; Wolpert & Kawato, 1998; Kawato, 1999).

A forward model is the component of the motor system that uses the current state of the
motor system and motor commands to predict the next state (Miall, 2003); it implements a
state transformation function that computes an estimation of the next sensory state of the
motor system. The inverse model on the other hand computes the motor command that
brings the body from its current state to the desired state. Hence, inverse model implements
a controller while the forward model is a predictor.

It is envisaged that an efference copy of the output of the inverse model, the motor
command, is sent to the forward model which, in turn, estimates what the next state of the
body would be when the motor executes the command.

Forward models play an important role in prediction in general, which underlies a large
range of cognitive tasks at various levels of intelligence. Existence of such models in the
brain has been discussed for a while in neuroscience and evidence is provided supporting the
existence of such models (Blakemore & Sirigu, 2003). For example, according to Blakemore,
Wolpert, and Frith (2000)), it is the prediction feature/capability that explains why we
cannot tickle ourselves: “During self-generated movement it is postulated that an efference
copy of the descending motor command, in conjunction with an internal model of both the
motor system and environment, enables us to predict the consequences of our own actions”
(Blakemore, Goodbody, and Wolpert (1998), p. 7511). Based on this anticipation the
motor system prepares itself and cancels the consequences of the command, explaining why
we cannot tickle ourselves. Blakemore et al. (2000) provides evidence suggesting that the
cerebellum might be involved in the generation of such predictions. Already in 1970, Ito
and colleagues had suggested that forward models of the limbs may reside in the cerebellum
(Ito, 1970).

Different roles have been attained to the forward models, all relating to some kind
of prediction, such as state estimation, internal feedback to overcome time delays, distal
supervised learning and prediction of the controller that is most appropriate in the current
situation (Miall & Wolpert, 1996; Wolpert & Flanagan, 2001; Miall & King, 2008; Jordan
& Rumelhart, 1992). Agents need the knowledge of current state in order to produce the
next motor commands properly. For example, during a grasping movement, the agent
needs information about the hand location for accuracy of the movement. Sensory input
(e.g., visual feedback) provides the current state information. However, it alone cannot
provide a perfect state information because they are subject to delays induced by the central
nervous system. In addition, the sensor information is affected by noise. Therefore, sensory
information, when used alone as the current state, can lead to instability in the movement.
Nature’s solution is to use another source of information to better estimate the current state:
the prediction of the next state by a forward model. Another consequence of the delay is that
the controller may need to adjust the motor command, a phenomenon called in neuroscience
“feedback control”. In this control strategy, the controller uses the discrepancy between the
sensed state of the motor apparatus and the intended state as a negative feedback for its
corrective operation. Forward states are needed here again, because of the delay in sensory
input, and hence in the sensor feedback. The last example we gave above on the roles of
forward model is the selection of controllers. This approach entertains the idea of multiple
representations, i.e., the brain has different representations for the same type of movements
in different contexts. A simplified example is given in figure 1. It shows two inverse models
each coupled with a forward model. The performance of the forward models aids the system
to select which inverse model should have more influence over the motor system.

Forward models, based on the estimated performance (i.e., appropriateness) of the can-
didate model, takes role in the selection of the best inverse model (i.e., the controller).
Neuroscientists postulate that the brain stores experienced movements in a context-sensitive
manner. More specifically, cerebellum hosts multiple internal models that compete to learn
new objects and tools (Wolpert et al., 1998; Kawato, 1999). That is, reaching and grasping
a full cup or an empty one requires different motor commands and the information about
fullness/emptiness context helps the motor system to behave accordingly. Why would such
an approach be an advantage? Consider the case where the context information is not

Inverse
Model 1

Inverse
Model 2

Forward
Model 1

Forward
Model 2

Plant

Calculation
of best

prediction

u2
t

u1
t

x!2t+1

x!1t+1

xt+1X
X

"

Figure 1: A simplified version of an action selection architecture with two pairs of in-
verse/forward models. An efference copy of the output of each inverse model
is given to its paired forward model, which predicts what the outcome of the
motor command will be. The forward model that correctly predicts the outcome
of the motor commands will give its corresponding inverse model more influence
over the motor system. A forward model that correctly predicts the outcome is
more likely to have a suitable inverse model. This will bias the system towards
the best inverse model, and relaxes the need for the system to try out both inverse
models.

present: all the motor programs for lifting a cup would be considered equally suitable, and
their appropriateness could only be established after trying them out. This would clearly
lead to sub-optimal performance compared to an approach where the most suitable motor
program can be chosen before any movement is initiated. Forward models, together with
the context information, provide the basis for a proper selection.

It is this role of forward models we focus on in this paper. We present an architecture
for imitative learning of groovy drumming that rests on multiple internal models, and a
prediction-based controller selection mechanism.

6. Combining Imitation of Motor and Sound to Create A Groovy
Drummer

Our aim is to create an artificial groovy drummer, which provided an excellent platform
to investigate imitation architectures and the role of prediction in cognition. Building a
robot with the required dexterity would be very expensive. Time and budget limits force
us to use of computer simulation to implement the groovy drummer. The advantage of this
approach is not only in terms of cost, but it allows an important simplification to be made:
the simulated robot does not have to employ a physical simulation of the drums. Instead, it
can imitate the arm movements required to create the sound. The actual sound generation
can be done by another part of the architecture. In other words, the imitation of sound is
separate from the imitation of arm movements. The imitation of sound can be thought of as
an intelligent groovy drum machine. It models user-specific variations and uses the learnt
models to play drum patterns with the same groove as the human drummer. This can be
used as a groovy drum machine in its own right. But to create an artificial groovy drummer ,

!ound
s'ste*

Motor
s'ste*

context
tar0et state

Plant
*otor

co**ands

Figure 2: How sound and motor systems are combined. The output of the sound system
drives the motor system, which uses the input to issue to motor commands to
achieve the target state.

visualization is needed. This is where the motor system comes into play. By adding the
ability to imitate motor actions, the architecture implements both the sound and action
part of the groovy drummer. This simplification also allows each separate subsystem to be
studied in detail.

However, there is one important distinction between the motor and sound system. The
sound system is independent of the motor system; it produces sound output on its own. The
motor system depends on the output of the sound system to know which arm movements
to produce. The motor system produces the arm movements corresponding to the sound
being created. The output of the sound system provides the context and the target state
to the motor system; an overview of the architecture can be seen in figure 2. The motor
system incorporates the inverse/forward approach outlined in section 4.

7. SHEILA: Software for Hierarchical Extraction and Imitation of Drum
Patterns in a Learning Agent

This section presents the groovy drum architecture and explains how it implements imita-
tive behaviour, with a special focus on the role of context and the forward models. The
architecture (see figure 3) is divided in two parts: 1) a neural groovy drum machine, gen-
erating the drum patterns to be played and 2) a motor system, that produces the arm
movements required to achieve the desired drum patterns. These will now be explained.

7.1 The Sound System: A Neural Drum Centre

The top part of figure 3 shows the neural drum centre of SHEILA. This part was developed as
a groovy drum machine implemented with neural networks; a brief overview of the system
will be presented in this section. Tidemann and Demiris (2008) describes the system in
detail. The groovy drum machine was developed because there existed no intelligent way of
generating human-like drum tracks in modern software, apart from adding random noise.
The groovy drum machine models the expressiveness of human drummers, and can use the
acquired models to generate groovy drum tracks. Five human drummers played to a piece
of music written by the first author on an electronic drum kit, see figure 4. MIDI data was

S"#I%A
A(A%)SIS

CO,#
-A..#,(Core pattern VA,IA.IO(Variation

CO,# -A..#,(VA,IA.IO(VA,IA.IO(VA,IA.IO(

SO(8 9: -%A)#; <) ;,=MM#,)

snare

@i@at

AicA

cymEal

! !! !! !!!

S#G=#(C#

%IH#%I"OO;

(O,MA%IIA.IO(

-%A(.
-,#;IC.IV#

#,,O,
CO(.,O%%#,

ui
t

K! itLM

pi
t

lit

"i
t

"t

uerror ut KtLM

KNsound
Kt

Kt

yt
,#S-O(SI<I%I.)

-,#;IC.O,

I(V#,S#
MO;#%

PO,QA,;
MO;#%

K

K

L

R

KNtLM

Kt

yt

KNsound

Figure 3: The SHEILA architecture. The neural drum centre on the top drives the motor
system on the bottom. The full lines indicate sensory streams, the dashed lines
are training signals. This figure is the detailed version of figure 2. See the text
for details.

recorded from each drummer. From the low-level MIDI data, a high-level representation
of the piece of music was formed. Similar patterns were grouped together, and the system
learns these patterns and their inherent groove, i.e. the variations in tempo and dynamics.
The system discovers the core patterns of the system, i.e. the pattern that was played the
most for each part of the song (e.g. the verse and chorus). The patterns that deviate from
the core pattern are the large-scale variations of that pattern; these are typically called
breaks (i.e. adding or removing beats from the standard rhythm figure). The approach
was to model both the sequence of core patterns and their variations, and the small-scale
variations of the patterns. The learned model could then be used to produce new drum
tracks, in the same playing style as the human drummer that served as training data.

It was conceived to use Echo State Networks (ESNs) to model the groove because of their
strength in learning sequences. ESNs are characterized by a fixed input layer (randomly
generated upon creation of the network) and a large hidden layer (Jaeger & Haas, 2004).
The training of the network is then reduced to a linear regression problem, greatly reducing
the training time. By arranging ESNs in a hierarchical manner, each ESN could operate
on different timescales. A high-level ESN was trained on the sequence of core patterns and
their variations, and low-level ESNs were trained on small-scale variations. The high-level
ESNs would then gate the output of the low-level ESNs accordingly, as can be seen in figure
3. In the groovy drum machine, the ESNs are all self-generative, i.e. there is no input signal
to drive them. Instead, it is the dynamics of the hidden layer that allow them to reverberate
around the desired output sequence (technically, this is achieved by having connections from
the output layer into the hidden layer). To generate drum patterns, the user needs only
to let the sequence ESN run for the desired length, which gates the corresponding ESNs
representing the patterns themselves. These ESNs subsequently generate a low-level stream
of drum patterns that can be transformed into a MIDI sequence and played back using a
software sequencer. The output of the drum centre drives the motor system.

7.2 The Motor System

The motor architecture uses the approach of Jordan and Rumelhart (1992), where an in-
verse model is paired with a forward model. Movement control rests on multiple pairs of
inverse/forward models, and the switching between these pairs. This approach is inspired by
two other architectures; HAMMER (Demiris & Khadhouri, 2006) and MOSAIC (Wolpert
et al., 2003). The motor system will now be explained in more detail.

7.2.1 The Controller

The motor system consists of multiple controllers. A controller is equivalent to an inverse
model, or a behaviour. It receives the current state of the system xt and a desired state
x
′
t+1, and issues the motor commands ui

t to achieve the desired state. In the current imple-
mentation, the desired state is the resulting sound that the arm movements should produce,
denoted x

′
sound to separate it from the desired state of the arm, i.e. x

′
t+1. Previously, the

desired state was expressed in the same coordinate system as that of the current state xt

(Tidemann & Öztürk, 2007). The difference in reference frames between xt and x
′
sound

makes it harder for the inverse models to find the correct solution. The training signal

Figure 4: One of the drummers playing on the Roland TD-3.

comes from the predictive error controller, explained in section 7.2.3. The controller is
implemented using Echo State Networks.

7.2.2 Selection of Controller

The advantages of using multiple controllers are many: it codes for redundancy, which is
crucial for robust systems (Pfeifer & Scheier, 2001). It allows the network to scale with
increasingly more complex tasks to be learned (i.e. the requires more neural resources). By
growing the size of the controllers, problems such as catastrophic forgetting (where new con-
cepts presented to the network destroys previously learned concepts) can be avoided (Ans,
Rousset, French, & Musca, 2002). However, having more controllers requires a switching
mechanism in order to select the controller best suited for the task at hand. The coordina-
tion of controllers is essential for the motor system to function. The action selection (i.e.
selection of controller) is performed on the basis of two predictors, the forward model and
the responsibility predictor (RP).

Note that for the rest of this text, the word module is used to group an inverse model,
forward model and responsibility predictor. Such a modular approach is similar to Jacobs,
Jordan, Nowlan, and Hinton’s (1991) mixture of experts, allowing for redundant coding of
motor skills, an important feature of robust systems (Pfeifer & Scheier, 2001). Farrar and
Zipser (1999) claims a modular approach to motor control can best deal with the complexity
of controlling a robot with the possibility of moving in 3D.

The Forward Model The forward model predicts the next state x̂i
t+1 based on the

current state xt and the motor commands applied from its corresponding inverse model ui
t.

The predicted state is compared to the actual state at the next timestep. This comparison
can only be done after action has been taken, and this is why the system uses RPs to

determine which inverse model should influence the robot prior to movement. The difference
between the predicted and actual next state is used together with the responsibility predictor
(explained in the next section) to determine the appropriateness of the module it is a part
of.

The Responsibility Predictor The responsibility predictor (RP) uses context input yt

to predict pi
t, an indication of how much weight its corresponding inverse model should

have upon the final motor command sent to the robot. The context signal in the current
experiment is the sequence of core patterns and their variations. The sequence ESN in
the drum centre outputs which core pattern and which variation (if any) to be played. If
the system is in a state that is similar for many patterns, the context signal will help to
determine the most suitable inverse model. Even though the forward model and the RP are
both predictors, there is one notable difference: the output of the forward model can only
be assessed at the next timestep, since the prediction of state x̂i

t+1 can only be verified when
the actual state xt+1 is available to the system. The RP facilitates a predictive approach
to selecting the best controller. This mechanism helps the system save resources, since bad
solutions to a problem need not be examined.

Combining the RP and Forward Model Outputs The weight (or influence) of a
controller is quantified in the final λ vector. It is calculated based on both the output of
the RP and the performance of the forward model. The comparison of the predicted state
x̂i

t+1 to the actual next state xt+1 is a vector, since x̂i
t+1 is subtracted from xt+1. In order to

express this vector as a scalar, a likelihood model is used, see Haruno, Wolpert, and Kawato
(2001) for details. It assumes the presence of Gaussian noise, and outputs a scalar lit that
indicates how well the forward model predicted the next state. It is calculated according to
equation (1).

lit =
1√

2πσ2
e
−|xt−x̂i

t|
2

2σ2 (1)

The lit is multiplied with pi
t to form the λi

t. All the λi
t values are then normalized to form

the final λt vector. The elements of λt now specifies how much each module should influence
the control of the robot. This is effectuated by multiplying ui

t with the corresponding value
in the λt vector, and summing all the ui

t into the final motor command ut, similar to
MOSAIC (Haruno et al., 2001). The λt vector gates the error signals of the models as well;
models that perform well receives more of the error signal, enabling them to improve.

7.2.3 Online Correction and Learning: The Predictive Error Controller

A crucial aspect of any self-organizing system is how it is trained. The approach to training
the forward model is straightforward: its output (a prediction of the next state, x̂i

t+1) can
be compared to the actual next state xt+1, and the difference between the predicted and
actual next state can be used as a training signal. Similarly, the RP predicts how much
influence its corresponding controller should have over the robot. If the RP makes a perfect
prediction, there will be no difference between its output pi

t and the corresponding value
in the λ vector. The training signal of the RP will be the difference between the predicted
influence pi

t and the actual influence (i.e. λ).

However, finding the error signal for the controller is more difficult. For example, there
is an infinite amount of ways to move your arm from your hip to your head. To remedy
this problem, we introduce the predictive error controller (PEC). It is inspired by the
feedback error controller (Kawato, 1990). The feedback error controller works in a simple,
but effective way: it uses the difference between the desired state x

′
t+1 and the actual next

state xt+1 to issue corrective motor commands. Since there are infinitely many ways to
achieve a desired state from any position in a redundant system (Jordan & Rumelhart,
1992), this approach guarantees a solution will be found. We used this in previous work
(Tidemann & Öztürk, 2007), but realized that its function could be improved if it was
predictive instead of reactive. The feedback error controller is reactive because it can only
issue corrective error signals after based on the difference between a previous prediction
and an actual state that has just happened, similar to how the performance of the forward
model is measured. The idea of the PEC is to overcome this limitation, and issue motor
correction signals based on a prediction of the outcome of the motor commands from the
motor system.

Since the PEC acts like a last-minute corrective facility before issuing the motor com-
mands to the robot, it resembles the role of the cerebellum in the human brain. The
cerebellum receives motor commands, information about the intention of the motor com-
mands and proprioceptive information. The cerebellum is able to predict the consequences
of intended motor actions, and issue corrective signals accordingly (Kandel, Schwartz, &
Jessell, 2000; Wolpert & Kawato, 1998). This forms the basis for the PEC. Its inputs are
the current state xt, the desired state x

′
t+1 and the total motor command ut. The PEC

then predicts how well the motor commands will achieve the desired state. If necessary,
the PEC issues a motor correction signal uerror, which is added to the motor command ut

before sent to the robot. uerror is also used to train the inverse models.

7.3 Combining the Sound System and the Motor System

As mentioned in section 6, the sound system can be used as a stand-alone neural network
drum machine (Tidemann & Demiris, 2008). In the SHEILA architecture, this is the driving
force behind the motor system. The sound system produces the sound output of the system
as a whole, but it also provides the target state and context to the motor system. The sound
output of the sound system is used as the target state of the motor system, denoted x

′
sound.

In previous work, the current state of the system xt and the desired state x
′
t+1 was in the

same coordinate frame (Tidemann, 2008; Demiris & Hayes, 2002). In SHEILA, the inverse
models receive a target state representing what the effect of moving the arm should sound
like, as well as the current state xt of the system. The inverse models must now model the
different coordinate systems for the two input signals, which is clearly harder than if they
were in the same coordinate system.

The context signal yt to the motor system represents the sequence of core patterns
and variations. Previously (Tidemann & Öztürk, 2007; Haruno et al., 2001), yt was hand-
crafted. In the current experiment, the context signal comes from the low-level MIDI data
recorded during the drum session.

hihat
snare
kick

yeah

œ

œ

œ

¿ ¿ ¿ ¿

œ

œ

¿ ¿ ¿ ¿ ¿ ¿

œ

œ

¿ ¿

œ ∑ ∑ ∑

Figure 5: One of the patterns the drummers were told to play; a common pattern in
pop/rock music.

The desired state x
′
recorded with the Pro Reflex motion tracking is used as input to

the PEC, required for corrective control of the motor commands. This is similar to having
a memory of what the arm movement looks like.

In this paper, the area of focus has been on modeling human drumming behaviour. But
it should be noted that the SHEILA architecture is designed to be more general. In fact,
the neural drum centre could be replaced with another module that sends out high-level
commands to the motor system. This ability makes the system capable of goal-directed
behaviour, since the goal of the action can be expressed in a higher level than the reference
frame of the robot. The independence between the neural drum centre and the motor
system in terms of coordinate frames (i.e. their inputs and outputs) is a testament to
this capability. The output of the sound system is in principle no different than a speech
synthesis module outputting spoken commands of what to do. Another example would be
a high-level centre that issues a target location in form of latitude and longitude, and the
motor system would then have to achieve this desired state (i.e. the given location).

8. Experimental Setup

The task of the system consisted of imitating the drumming patterns of a human drum-
mer. The drummers played to a melody written by the first author, and were told to play
specific patterns for each of the melodic segments; one such pattern can be seen in figure
8. The drummers were free to introduce variations. The neural drum centre imitated the
rhythm patterns, whereas the motor system imitated the arm movements. The experiments
performed were done in three stages; first the neural drum machine was trained. Then, the
motor system was trained with input from the sound system, to see how the system self-
organizes the control of the robot. The third experiment consisted of creating random
permutations of the desired states that were given to the motor system (i.e. x, x

′
sound and

y), to examine if the modules learned the sequences of motor actions independently of the
sequence in which they were trained, or if they were depending on the original sequence of
motor actions.

8.1 Experiment 1: Training the Sound System

Drumming data was recorded using a Roland TD-3 velocity sensitive electronic drum kit,
see figure 4. The use of an electronic drum kit facilitated data analysis, since it became
possible to record MIDI signals which are far easier to analyze than recorded audio. The
MIDI stream was then analyzed to find recurring patterns. The melody was used to segment

the MIDI stream into different parts (i.e. verse/chorus/bridge). The different segments
were found by searching for supermaximal repeats, a technique used to discover sequences
in genes (Gusfield, 1997). A supermaximal repeat is a string that is not a substring of any
other string. Within each melodic segment (for instance, the verses) the same search for
supermaximal repeats was performed on the MIDI stream from the drummer. The pattern
that was most frequently played was labeled the core pattern, Cx. Patterns that differed
from the core pattern were labeled variations of the core pattern, CxVy. Note that the
designer of the experiment determined which pattern the drummer should play for each
melodic segment (i.e. a core pattern), the system did not know what was a core pattern or
a melodic segment beforehand. From the low-level MIDI stream a high-level representation
of the song was then found; namely the sequence of core patterns and variations. For each of
these patterns (either core or variation of a core pattern), the similar patterns are grouped
together. The system then models the small-scale variations that constitute the groove of
the drummer. The small-scale variations consists of changes in velocity (i.e. how hard a
drum is struck) and timing (i.e. how much the beat was before or after the metronome).
Both the sequence of core patterns and variations, as well as these small-scale variations
were modeled using Echo State Networks (ESNs). More details of this system can be are
described by Tidemann and Demiris (2008).

8.2 Experiment 2: Training the Motor System

At the same time as MIDI data was recorded, the movement of the arms of the drummer
was recorded using a Pro Reflex motion tracking system. Five infrared cameras were used
to track the position of the fluorescent markers on the drummer, this can be seen as the grey
balls on the drummer in figure 4. The sampling frequency was f = 20Hz. No smoothing was
performed on the noisy data; it was used as the desired state. This required the forward
models to predict 0.05 seconds into the future. The use of motion tracking also solved
the correspondence problem (Nehaniv & Dautenhahn, 2002): the recorded 3D positions
of the human drummer could now serve directly as the desired state x

′
t+1 required by the

PEC. The desired state consisted of four data points: 3D coordinates for each wrist and
elbow. The wrist coordinates were normalized to the range [−1, 1] with the elbow as the
origin. The elbow coordinates were normalized to [−1, 1] with the shoulder as origin. The
normalization enabled a direct correspondence with the coordinate frame of the simulated
robot. (Torres & Zipser, 2004) suggests that such a transformation occurs in the brain
based on neuroscientific findings. This direct mapping of target and intrinsic coordinate
systems has been done in previous work (Demiris & Hayes, 2002; Tidemann & Öztürk,
2007; Pastor, Hoffmann, Asfour, & Schaal, 2009). Tolani and Badler (1996) describe a four
degree of freedom (DOF) model of a human arm that was implemented and used as a robot
simulator. The motor system was only used to imitate the arm movements of the drummer.
The arm model had a 3DOF spherical shoulder joint and a 1DOF revolute elbow joint.
The entire simulated robot was described by 8DOF. The output of the inverse models are
joint angle velocities, as opposed to forces which are used in real robots. This is because
the simulator uses joint angle velocities instead of forces. However, since the direction and
speed of the motor commands are specified, it should be trivial to replace the simulated
robot with an inverse dynamics controller that would calculate forces for a real-world robot.

The current joint angle velocity is not used as part of the state xt of the robot, even though
this is common in many robot system. This is omitted since the neural networks used to
implement the models are recurrent neural networks (i.e. they have memory), which can
represent the changes in coordinates internally.

Both the inverse model, forward model and responsibility predictor were implemented
using ESNs. The inverse model had 30 input signals; 12 from the current state of the robot
in the range [−1, 1] and 18 from the x

′
sound (trained in the first experiment) in the range

[0, 1] coming from the neural drum centre. The inverse model had 8 output signals in the
range [−1, 1] to control the degrees of freedom for the robot.

The forward model had 12 input signals from the current state xt and 8 signals from
the inverse model output, ui

t. The output of the forward model had 12 inputs to predict
the next state x̂

′
t+1, in the range [−1, 1].

The RP had 14 input signals, stemming from the sequence ESN of the neural drum
centre, all in the range [0, 1]. The RP had one output signal in the range [0, 1].

The system was tested with different sizes of the hidden layer; 100, 250, 500, 750 and
1000 nodes. The spectral radius α determining the length of the internal memory (range
[0, 1]) was held constant at α = 0.9 for all configurations. The internal noise level was
v = 0.2, which effectively adds 10% noise to the internal state of the ESNs. All the network
configurations started out with 10 modules. Every second epoch the λ activations were
examined, and modules that had been less than 20% active (i.e. λi < 0.2) for less than
10% of the time were removed from the architecture. This check was only done on epochs
of even numbers to allow the system to stabilize before pruning it again.

The model used to implement the simulated robot is also used in the PEC, which makes
it able to produce very accurate predictions about the consequences of the planned actions.
This ensures good training signals for the inverse models as well, which is crucial in a system
with such high dimensionality.

The likelihood estimator lit indicates how well the forward model predicted the next
state, and expresses this as a scalar. It assumes the presence of Gaussian noise σ. What
value should σ be? We found through trial and error that σ should be in the range of
10-15% of the maximum error signal. Since lit follows the Gaussian distribution, an error of
σ will be rewarded fairly high: N(σ, σ)/N(0, σ) = 0.6065. It is desirable that a prediction
error of 10-15% receives a high likelihood of being correct, which is why σ should be 10-
15% of the maximum error signal. In the current experiment, the current state xt has 12
signals in the range [−1, 1]. The maximum summed error is 24; a hypothetical situation
could be where the predicted state were all −1, whereas the actual state were all 1. In the
experiments described in this paper, we used σ = 3, which is 12.5% of the maximum error.
It is important to find the proper σ value; if it is too small only near perfect predictions will
receive a high likelihood, yielding the architecture unstable. If it is too large, the likelihood
will be high for all predictions of the forward model, rendering it useless for determining
the performance of the module.

There were three stopping criteria for the system: 1) pi could not differ from the final λ
value with more than 5%, 2) the system have had to finished pruning modules and 3) the
uerror had to be less than 50% of the total motor command, forcing the models to control
most of the robot. If the experiment did not converge to these criteria within 40 epochs, it
was aborted. In order to examine how much the introduction of the PEC aided the learning

of the system, this experiment was also run with the exact same parameters, but using the
feedback error controller (Kawato, 1990) instead.

8.3 Experiment 3: Testing How the Modules Self-Organize

In experiment 2, the system self-organizes the control of the simulated robot. Experiment
3 consists of examining to what extent the motor system self-organizes the control of the
arm movements. The testing was done the following way: after training, the target states
(i.e. x

′
sound, y and x

′
) were split into regions of 40 timesteps each (corresponding to one bar

of musical length). The regions were then randomly permutated ten times. These random
permutations were given as input to the motor system. After running each trained instance
on ten such random permutations, the performance and λ activations can be compared to
experiment 2.

9. Results

The results will be presented in accordance with the different experiments performed.

9.1 Experiment 1

Experiment 1 created a groovy neural network drum machine that learns from human
drummers. The system successfully modeled the playing style of five different drummers
that participated in the experiment. This was revealed by using the drum machine to play
back the same patterns as it had been trained on, comparing the output with the original
training sequence. Performing the same statistical analysis on both the original and imitated
drum patterns, revealed that the neural drum machine produces drum patterns that are
similar but not identical to the teachers. An example is given in figure 6. More details
about this experiment are described by Tidemann and Demiris (2008).

9.2 Experiment 2

The results from the training of the motor system (following the training of the sound
system) can be seen in table 1. The reader should note that five drummers participated
in experiment 1, whereas only one of the trained sound systems was used in experiment
2. This is because experiment 1 dealt with the ability of the sound system to imitate the
playing style of different drummers, whereas experiment 2 investigates the properties of a
self-organizing motor system. Figure 7 gives an example of self-organization of control of
the robot by plotting the RP output as well as the λ vector. The system is stable when the
RPs correctly predict how much the module will influence the robot; this can be seen as the
overlap between RP output and λ activation. The differences in how many modules were
active during the experiment with respect to network configurations can be seen in figure
8. This indicates that the movement C1 is harder to learn, since more modules are used to
collaborate during C1. Figures 9 and 10 show the performance of the simulated robot with
respect to the desired trajectory. Note the close match between actual and desired state.
Table 2 shows the same experiment run with the feedback error controller instead of the
PEC. Note the improved performance when using the PEC (Table 1) to train the inverse
models, compared to the feedback error controller (Table 2).

the graphs for all drummers cannot be shown). Figure 4 shows how
drummer A strongly accentuates (i.e. periodically varies the veloc-
ity of) the hihat beats, whereas drummer E has a more even velocity
profile for the hihat beats.

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, hihat

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, snare drum

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, kick drum

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, hihat

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, snare drum

M
ID

Iv
el

oc
ity

127

64

0
1 and 2 and 3 and 4 and

Time in beats, kick drum

Figure 4. To the left is the velocity profile for drummer A, playing the
pattern shown in figure 2. The Y scale is [0− 127], corresponding to the

MIDI resolution. The X scale corresponds to the beats in the measure, which
is a common way to count when playing music. The blue bar stems from the

training data, the red bar from the output of SHEILA, when instructed to
play the same song as that of the training input. The similarity between the

blue and red bars indicate that the ESNvel successfully captures the
small-scale variations of the training data. Notice also how the velocity

profile differs from that of drummer E (to the right). Most easily seen is how
the accentuation (i.e. variation of velocity) on the hihat is not as pronounced

as for drummer A; this is a manifestation of the different grooves of
drummers A and E.

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, hihat

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, snare drum

O
ns

et
tim

e

0.05

0

-0.06
1 and 2 and 3 and 4 and

Time in beats, kick drum

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, hihat

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, snare drum

O
ns

et
tim

e

0.05

0

-0.05
1 and 2 and 3 and 4 and

Time in beats, kick drum

Figure 5. To the left is the onset time profile for drummer A, playing the
pattern shown in figure 2. The Y scale is onset time in ticks. There are 120

ticks in the range [0− 0.99] between each quarter note. The X scale
corresponds to the beats in the measure, similar to figure 4. As in figure 4,

the blue bar is the statistics from the training data, the red bar is the analysis
performed on the imitation done by SHEILA, showing that the output of the
ESNons resembles that of the training data. The plot shows how drummer A
tends to be ahead of the metronome when playing the pattern in figure 2. To

the right is the onset time plot for drummer E. The onset times tend to be
more centered around the metronome for the hihat beats, distinctively more
than for drummer A, which contributes to the difference of groove between

drummers A and E.

The onset time plays an important role in how aggressive/relaxed
drum patterns are perceived, depending on whether the onset time
is before or after the metronome. Figure 5 reveals that drummer A

tends to be ahead of the metronome (yielding a more aggressive feel),
whereas drummer E tends be more centered around the metronome,
for a more “tight” feel. The authors are aware that these terms are
vague but acoustically distinct; we encourage the reader to listen to
available MP3 files8 that better demonstrate these differences (in-
cluded are imitations performed by SHEILA). Figures 4 and 5 show
the mean and standard deviation for both velocity and onset time,
both for the original data and the imitated output. The similarity be-
tween the plots shows how SHEILA successfully models the small-
scale variations, in addition to demonstrating that drummers A and E
plays the same pattern with a different groove.

To assess both the large- and small-scale differences between orig-
inal and imitated drum tracks, as well as between drummers, a se-
quence similarity metric was implemented as described in [7]. The
cost function was adapted to account for differences in velocity as
well as timing of events, e.g. by adding the normalized difference in
velocity between two events. The similarity metrics can be seen in
table 2. The metrics show that imitations are similar to originals, and
that the drummers have different styles when compared to another.
The difference when comparing originals to imitations and drum-
mers to each other is generally an order of magnitude. However, note
that the metrics only have value as relative comparisons between the
MIDI sequences. They do not represent an absolute difference. Yui-
jan and Bo have recently developed a normalized metric [16], how-
ever it does not account for timed series; this appears to be an open
research issue, and beyond the scope of this paper. Still, the similarity
metrics indicate a strong degree of similarity between original drum
tracks and imitations (which is further backup up by figures 4-5), and
that each drummer has a playing style different from the others.

Table 2. (a) shows the similarity metric described in [7] when comparing
original drum tracks to SHEILA’s imitations, (b) compares drummers to

other drummers. The metrics indicate that the originals and imitated drum
tracks are similar, and that the different drummers have different playing

styles.

Original A B C D E
Imitation 0.46408 0.37102 0.37176 0.60169 0.37995

(a)
A B C D E

A 0 5.185 5.8272 6.1193 6.9911
B 5.185 0 5.4271 1.944 5.4166
C 5.8272 5.4271 0 6.0649 6.4713
D 6.1193 1.944 6.0649 0 6.135
E 6.9911 5.4166 6.4713 6.135 0

(b)

Another important aspect of the onset time is the tempo drift that
occurs over time. A drummer will constantly be before or after the
metronome, which will make the tempo fluctuate over time, as can
be seen in figure 3. Figure 6 shows how the output of SHEILA in-
duced the same drift in tempo over time as that of the original drum
sequence. To examine how the ESN store the grooves as attractors,
plots were made of hidden layer nodes during a run where the ESN
was generating output. Figure 7 shows plots for some hidden nodes
of the ESNvel of the pattern in figure 2 for drummer A. The ESNvel

was run for 240 timesteps (double what it was trained on). The fig-
ures show that the activation patterns have stable attractor shapes,
but with deviations. This is a further testament to how small-scale
variations are introduced when imitating a certain pattern; these de-
viations will make the output slightly different over time. But since

8 www.idi.ntnu.no/∼tidemann/sheila

Figure 6: Two drummers and imitations of their playing style is shown, to the left and right.
The blue bar represents the training data, the red bar the imitated sequence. The
similar bars reveal that the sound system is able to model and imitate the playing
style of the drummers. The plots show the velocity profile when playing the same
drum pattern as in figure 8.

9.3 Experiment 3

The third experiment was to test the trained networks from experiment 2 on random permu-
tations of the target states. This was done to examine to what extent the modules became
experts on certain parts of the trajectory or if it was the sequence of context signals that
determined which module was in control. The result is shown in table 3, indicating that
modules indeed become experts. This is demonstrated in figure 11, which shows the RP
output and λ value of permutation run on a trained instance of the architecture.

10. Discussion

The sound system presented good results regarding its capability to imitate the playing
style of human drummers, with a focus on analyzing the motor part of SHEILA (which will
be the focus for the remainder of this discussion). For more discussion regarding the sound
system, see (Tidemann & Demiris, 2008). The recurrent activation value is the key element
to evaluation of the self-organizing properties of SHEILA. In the second experiment (Table
1), the high recurrent activation value indicated that the modules specialize on certain
parts of the movement. The recurrent activation value was also high when each of the
trained instances were tested on 10 random permutations of the target states. This is
further evidence that the modules become specialized on specific segments of the target
trajectory, and that it is not the sequence of target states that determine which modules
dominate and collaborate upon controlling the robot. Looking closer at when modules are
active throughout the sequence to be imitated (Figure 8) the number of active modules
tend to drop during variations of core patterns. Look for instance at C1V7 following C1

just before the 200th timestep; for all the network configurations there is considerably
less modules active. This is a tendency that can be observed on most of the variations,
indicating that the modules learn the generic motor capabilities of the core patterns, but
further specialize on the variations. The notable exception is the SHEILA instance with 100
nodes in the hidden layer. It is also the instance with the highest number of collaborating
modules. During some of the variations (e.g. C1V4 and C2V1), it has the highest number
of active modules, going against the trend of fewer modules during variations. This could
be due to C1V4 and C2V1 being extra difficult to learn, requiring cooperation between more
modules. Previous work has suggested that increase in complexity requires more neural
resources (Tidemann & Öztürk, 2007), which could also explain why there is in general
fewer modules active during C1 compared to C2. The only difference between C1 and C2

is that the right hand of the drummer moves at twice as fast during C1 compared to C2.
Humans reduce accuracy with increased speed (Kandel et al., 2000), the increase in speed
could then require more neural resources because the architecture struggles to stay accurate.
The instance of SHEILA with 100 nodes in the hidden layer is also the configuration with
the least modules on average (Table 1). It appears than when it manages to find a solution,
it needs less neural resources. ESNs depend on a randomly initiated hidden layer. When
only 100 nodes are being used in the hidden layer, it is clear that not all randomly created
input layers possess the necessary properties to ensure convergence. For larger networks,
convergence is not a problem; networks with 500 or more nodes in the hidden layer even
converge at about the same number of epochs, with minimal changes in performance error
and the number of modules used on average. Two quantities change with increasing network

Nodes Modules Recur. activ. Epochs Perf. err. (pe) uerror ratio Conv.
(µ, σ) (µ, σ) (µ, σ) (µ, σ) (µ, σ) exp.

100 4 ; 0 99.58% ; 0.83% 15 ; 0.82 0.0285% ; 0.0036% 49.72% ; 3.3% 20%
250 4.47 ; 0.70 98.57% ; 1.58% 14 ; 2.87 0.0273% ; 0.0037% 48.64% ; 1.05% 95%
500 5.20 ; 0.83 93.74% ; 4.21% 12 ; 1.81 0.0349% ; 0.0103% 47.47% ; 1.88% 100%
750 5.05 ; 0.87 91.39% ; 5.94% 12 ; 1.84 0.0341% ; 0.0104% 45.82% ; 1.88% 100%
1000 5.15 ; 0.81 88.46% ; 6.11% 12 ; 1.63 0.0358% ; 0.0091% 44.91% ; 1.84% 100%

Table 1: Results from the initial learning phase. The column titled “Modules” displays how
many modules were used after training (recall that all experiments started with 10
modules). “Recur. act.” is short for “Recurrent activation”, which shows to which
degree the modules had the same λ activation during recurrent context signals. It
was calculated in 3 steps: 1) For recurring context signals, the mean and standard
deviation (µ, σ) of λ was calculated for all modules. The mean and standard
deviation was not calculated for the whole sequence of recurring context signals;
it was calculated for each of the segments that had a recurring context signal. 2) If
the standard deviation was larger than 5% during a recurrent context signal, it was
counted as not being recurrent, focusing the result on λ values that were stable
throughout the recurring context signal. 3) Among the remaining segments with
a standard deviations less than 5% of the λ values, the median was calculated.
The remaining segments were examined again, and only those where the mean
differed less than 1% were counted as being recurrent. The filtering in step 2
excludes segments with variations, and in step 3 only those that had very similar
mean λ activations were counted. In other words, the criteria for being counted
as recurrent was very strict. A high recurrent activation value is an indication
that the modules specialize on certain parts of the movement, since the modules
have the same activation levels for similar context signals. “Perf. err.” is an
abbreviation of “Performance error” pe telling how much the imitated trajectory
differed from the target trajectory. A low pe is desirable. The uerror ratio shows to
what extent the PEC influenced the final motor command after training. Ideally,
this ratio would go towards zero as the modules learn more. However, the length
and complexity of the current experiment requires the online correction facility of
the PEC. This leads to robustness of the system as well. The results show that the
modules control most (i.e. more than 50%) of the motor commands sent to the
robot. The column named “Conv. exp.” is short for “Converged experiments”,
showing the percentage of converged experiments (experiments were aborted if
they had not converged within 40 epochs).

Nodes Modules Recur. activ. Epochs Perf. err. (pe) uerror ratio Conv.
(µ, σ) (µ, σ) (µ, σ) (µ, σ) (µ, σ) exp.

100 4.50 ; 1.05 99.77% ; 0.57% 17 ; 9.54 22.81% ; 2.22% 49.81% ; 0.13% 30%
250 4.40 ; 1.52 98.57% ; 2.18% 23 ; 12.16 20.88% ; 3.06% 49.64% ; 0.39% 25%
500 4.67 ; 0.71 97.29% ; 3.20% 20 ; 9.88 20.69% ; 2.81% 49.57% ; 0.31% 45%
750 4.75 ; 0.89 89.36% ; 10.66% 17 ; 8.77 21.54% ; 3.21% 49.61% ; 0.32% 40%
1000 4.67 ; 0.58 86.93% ; 3.33% 14 ; 2.08 22.85% ; 2.40% 49.81% ; 0.19% 15%

Table 2: The same columns as in table 1, this shows how the system performs when using the
feedback error controller instead of the PEC introduced in this paper. Particularly,
the performance error is higher than when using the PEC, and also there are fewer
converged experiments.

Nodes Modules Recur. activ. Perf. err. (pe) uerror ratio
(µ, σ) (µ, σ) (µ, σ) (µ, σ)

100 4 ; 0 99.28% ; 0.92% 0.0308% ; 0.0041% 50.13% ; 3.6%
250 4.47 ; 0.70 95.96% ; 3.33% 0.0293% ; 0.0056% 48.94% ; 1.0%
500 5.20 ; 0.81 89.79% ; 4.64% 0.0366% ; 0.0084% 48.0% ; 1.85%
750 5.05 ; 0.87 87.36% ; 7.95% 0.0348% ; 0.0094% 46.28% ; 1.72%
1000 5.15 ; 0.79 83.57% ; 6.74% 0.0384% ; 0.0154% 45.45% ; 1.80%

Table 3: Results from the random permutations of the target states (i.e. x
′
sound, y and

x
′
). The results show a somewhat worse performance compared to table 1, but

the difference is small. This indicates that the modules do become specialists on
specific parts of the movement.

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 1

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 2

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 3

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 4

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 5

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

! values and RP output, module 6

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

epoch 10

Figure 7: This shows λ and RP output from an experiment with 500 nodes in the hidden
layer. The background shows the context signal in terms of core patterns and
variations. The all-black segment to the far left signifies the count-in (one bar).
The background allows visual inspection of recurrent context signals and the
corresponding λ activations for the modules. The close match between RP output
and λ values indicate stability in the system, since the RPs correctly predicted
how much the module would influence the robot.

Ø C1
V3 C1 C1 C1

V7 C1 C1
V4 C1 C1

V9
C1
V3 C1 C1 C1

V6 C1 C1 C1C1
V9

C2
V9 C2 C2 C2

V8 C2 C2 C2C2
V7

C1
V3 C1 C1 C1

V5
C1
V3

C1
V4 C1 C1

V9
C1
V3 C1 C1 C1

V2 C1 C1C1 C1
V9

C2
V9 C2 C2 C2

V6
C2
V1 C2 C2 C2

V5

Timesteps

200 400 600 800 1000 1200 1400 1600 1800
0

1

2

3

4

100 nodes
250 nodes
500 nodes
750 nodes
1000 nodes

Av
er

ag
e

nu
m

be
r o

f a
ct

iv
e

m
od

ul
es

Figure 8: The plot shows the average number of active modules for each of the motor
experiments with different number of nodes in the ESNs of the motor system.
A module was considered active if λt > 0.1, i.e. its activation was bigger than
10%. Note how the number of active modules during variations of core patterns
tends to go down, indicating that the modules specialize on variations (e.g. see
the transition from C1 to C1V7 just before timestep 200).

sizes; the recurrent activity value decreases as well as the uerror ratio. The decrease in
recurrent activity might indicate that as neural resources increase, the modules do not have
to specialize to the same extent as when neural resources are scarce, i.e. there could be
more redundant coding between the modules. This coincides with the number of modules
used for instances of SHEILA with only 100 nodes in the hidden layer; it uses fewer modules
with lesser nodes. It seems as though the smallest networks may capture more general parts
of the motor control space, since the uerror ratio is larger for the smaller networks than the
bigger ones. It is still not entirely clear what is learned where in the architecture. Figures
7 and 11 show how the modules compete and collaborate when controlling the robot. For
cases where one module dominate the entire output this is not an issue, but for areas with
shared control this is less clear. Since the inverse models output motor commands in a
system with infinite many ways to achieve a desired state, it is not easy to visualize what
each inverse model does. The drawback of using a self-organizing system is that it is not
always easy to understand why it happens the way it is observed. The rules are laid down
by the designers of the system, but exactly how the system searches out its solution in the
sensory-motor space needs further study.

11. Conclusion

This paper has presented an architecture for motor control and imitative learning, applied
to the drumming domain. The experiments in this paper have revealed how the modules
self-organize into specialists for parts of the movement to be imitated. Trained instances
were tested on random permutations of the target states, demonstrating that the self-
organization is consistent even when the sequence of target state changes. This paper has
focused on drumming as an imitative task, but the neural drum centre can be exchanged

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right elbow X

200 400 600 800 1000 1200 1400 1600 1800
!1

0

1
Target state
Actual state

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right elbow Y
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right elbow Z
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right wrist X
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right wrist Y
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Right wrist Z
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Figure 9: The red and blue lines show how well the system performs, blue line being the
desired trajectory and the red dashed line the actual trajectory produced by the
system. Same experiment as in figure 7. This plots the right arm, see figure 10
for the left arm. Note the low error rate, a performance error of around 0.03% is
typical for the experiments, see table 1.

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Left elbow X

200 400 600 800 1000 1200 1400 1600 1800
!1

0

1
Target state
Actual state

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Left elbow Y
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Left elbow Z
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Left wrist X
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Left wrist Y
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Ø C1
V3C1C1C1

V7C1C1
V4C1C1

V9
C1
V3C1C1C1

V6C1C1C1C1
V9

C2
V9C2C2C2

V8C2C2C2C2
V7

C1
V3C1C1C1

V5
C1
V3

C1
V4C1C1

V9
C1
V3C1C1C1

V2C1C1C1C1
V9

C2
V9C2C2C2

V6
C2
V1C2C2C2

V5

Left wrist Z
200 400 600 800 1000 1200 1400 1600 1800

!1

0

1

Figure 10: Same as in figure 9, but for the right arm of the simulated robot. The similar
close match between actual and desired state is observed.

C1C2C1
V3C2C1C1C1C1

V4
C2
V7

C1
V9C2C1

V9C2C1
V3C1C1C2

V1
C2
V8C1C2C2C1C1C2

V9Ø C1
V3

C1
V9

C2
V6C1C1C1

V9
C2
V9C1C1

V6C1C1C1C1C1
V3

C1
V2C2C2C1

V3
C1
V5

C1
V4

C1
V7C2C2

V5C1

! values and RP output, module 1

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

C1C2C1
V3C2C1C1C1C1

V4
C2
V7

C1
V9C2C1

V9C2C1
V3C1C1C2

V1
C2
V8C1C2C2C1C1C2

V9Ø C1
V3

C1
V9

C2
V6C1C1C1

V9
C2
V9C1C1

V6C1C1C1C1C1
V3

C1
V2C2C2C1

V3
C1
V5

C1
V4

C1
V7C2C2

V5C1

! values and RP output, module 2

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

C1C2C1
V3C2C1C1C1C1

V4
C2
V7

C1
V9C2C1

V9C2C1
V3C1C1C2

V1
C2
V8C1C2C2C1C1C2

V9Ø C1
V3

C1
V9

C2
V6C1C1C1

V9
C2
V9C1C1

V6C1C1C1C1C1
V3

C1
V2C2C2C1

V3
C1
V5

C1
V4

C1
V7C2C2

V5C1

! values and RP output, module 3

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

C1C2C1
V3C2C1C1C1C1

V4
C2
V7

C1
V9C2C1

V9C2C1
V3C1C1C2

V1
C2
V8C1C2C2C1C1C2

V9Ø C1
V3

C1
V9

C2
V6C1C1C1

V9
C2
V9C1C1

V6C1C1C1C1C1
V3

C1
V2C2C2C1

V3
C1
V5

C1
V4

C1
V7C2C2

V5C1

! values and RP output, module 4

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

C1C2C1
V3C2C1C1C1C1

V4
C2
V7

C1
V9C2C1

V9C2C1
V3C1C1C2

V1
C2
V8C1C2C2C1C1C2

V9Ø C1
V3

C1
V9

C2
V6C1C1C1

V9
C2
V9C1C1

V6C1C1C1C1C1
V3

C1
V2C2C2C1

V3
C1
V5

C1
V4

C1
V7C2C2

V5C1

! values and RP output, module 5

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

C1C2C1
V3C2C1C1C1C1

V4
C2
V7

C1
V9C2C1

V9C2C1
V3C1C1C2

V1
C2
V8C1C2C2C1C1C2

V9Ø C1
V3

C1
V9

C2
V6C1C1C1

V9
C2
V9C1C1

V6C1C1C1C1C1
V3

C1
V2C2C2C1

V3
C1
V5

C1
V4

C1
V7C2C2

V5C1

! values and RP output, module 6

200 400 600 800 1000 1200 1400 1600 1800
0

0.5

1
!
rp

epoch 1

Figure 11: A random permutation of the target states, 1000 nodes in the hidden layer. See
how the λ values are recurring in accordance with the repeating context signals.

with anything else that provides high-level target states for the motor system to perform.
We wish to better understand the self-organizing process, also with respect to properties
of the sensory stream, i.e. to see if there is some correlation with the input/output space
and its inherent complexity. This could be an aid for setting some of the variables of the
architecture in future applications, such as number of modules, network size and α value.

References

Ans, B., Rousset, S., French, R. M., & Musca, S. (2002). Preventing catastrophic interference
in multiple-sequence learning using coupled reverberating networks. In Proceedings of
the 24th Annual Meeting of the Cognitive Science Society, pp. 71–76.

Arbib, M. (2002). Imitation in animals and artifacts, chap. The Mirror System, Imitation,
and the Evolution of Language, pp. 229–280. MIT Press, Cambridge.

Barsalou, L., Barbey, A., Simmons, W., & Santos, A. (2003). Social embodiment. In
Ross, B. H. (Ed.), The psychology of learning and motovation, pp. 43–92, San Diego.
Academic Press.

Benghi, D., Addessi, A.-R., & Pachet, F. (2008). Teaching to improvise with the contin-
uator. In Proceedings of the 28th International Society for Music Education World
Conference, Bologna, Italy.

Billard, A., & Hayes, G. (1999). DRAMA, a connectionist architecture for control and
learning in autonomous robots. Adaptive Behavior, 7 (1), 35–63.

Blakemore, S. J., Wolpert, D., & Frith, C. (2000). Why can’t you tickle yourself?. Neurore-
port, 11 (11).

Blakemore, S. J., Goodbody, S. J., & Wolpert, D. M. (1998). Predicting the consequences of
our own actions: The role of sensorimotor context estimation. Journal of Neuroscience,
18, 7511–7518.

Blakemore, S.-J., & Sirigu, A. (2003). Action prediction in the cerebellum and in the parietal
cortex. Experimental Brain Research, 153 (2), 239–245.

Cangelosi, A., & Riga, T. (2006). An embodied model for sensorimotor grounding and
grounding transfer: Experiments with epigenetic robots. Cognitive Science, 30 (4),
673–689.

Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., &
Iacoboni, M. (2005). Understanding emotions in others: mirror neuron dysfunction in
children with autism spectrum disorders. Nature Neuroscience, 9, 28–30.

de Mantaras, R. L., & Arcos, J. L. (2002). AI and music from composition to expressive
performance. AI Mag., 23 (3), 43–57.

Decety, J. (1996). Do imagined and executed actions share the same neural substrate?.
Cognitive Brain Research, 3, 87–93.

Decety, J., Jeannerod, M., & Prablanc, C. (1989). The timing of mentally represented
actions. Behavioural Brain Research, 34, 35–42.

Demiris, Y., & Hayes, G. (2002). Imitation in animals and artifacts, chap. Imitation as
a dual-route process featuring predictive and learning components: a biologically-
plausible computational model, pp. 327–361. MIT Press, Cambridge.

Demiris, Y., & Khadhouri, B. (2006). Hierarchical attentive multiple models for execution
and recognition of actions. Robotics and Autonomous Systems, 54, 361–369.

Dinstein, I., Gardner, J., Jazayeri, M., & Heeger, D. (2008). Executed and observed move-
ments have different distributed representations in human aIPS. Journal of Neuro-
science, 28 (44), 11231–11239.

Dinstein, I., Hasson, U., Rubin, N., & Heeger, D. (2007). Brain areas selective for both
observed and executed movements. Journal of neurophysiology, 98 (3), 1415–1427.

Dinstein, I., Thomas, C., Behrmann, M., & Heeger, D. (2008). A mirror up to nature.
Current Biology, 18 (1), 13–18.

Ehrsson, H. H., Geyer, S., & Naito, E. (2003). Imagery of voluntary movement of fingers,
toes, and tongue activates corresponding body-part-specific motor representations.
Journal of Neurophysiology, 90 (5), 3304–3316.

Farrar, D., & Zipser, D. (1999). Neural network models of bilateral coordination.. Biol
Cybern, 80 (3), 215–25.

Flanagan, R. J., Vetter, P., Johansson, R. S., & Wolpert, D. M. (2003). Prediction precedes
control in motor learning. Current Biology, 13 (2), 146–150.

Frak, V., Paulignan, Y., & Jeannerod, M. (2001). Orientation of the opposition axis in
mentally simulated grasping. Experimental brain researc, 136 (1), 120–127.

Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-
reading. Trends in Cognitive Sciences, 2 (12).

Gaussier, P., Moga, S., Banquet, J. P., & Quoy, M. (1998). From perception-action loops to
imitation processes: A bottom-up approach of learning by imitation. Applied Artificial
Intelligence, 1 (7), 701–727.

Grachten, M., Arcos, J., & de Mantaras, R. (2006). A case based approach to expressivity-
aware tempo transformation. Machine Learning, 65 (2), 411–437.

Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and
perception. Behavioral and Brain Sciences, 27 (03), 377–396.

Gusfield, D. (1997). Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, New York, NY, USA.

Haruno, M., Wolpert, D. M., & Kawato, M. (2001). MOSAIC model for sensorimotor
learning and control. Neural Comp., 13 (10), 2201–2220.

Hesslow, G. (2002). Thinking as simulation of be-haviour: an associationist view of cognitive
function. http://www.mphy.lu.se/avd/nf/hesslow/philosophy/ShortSimulation.htm.
Retrieved June 2009 from http.

Imamizu, H., Kuroda, T., Yoshioka, T., & Kawato, M. (2004). Functional magnetic reso-
nance imaging examination of two modular architectures for switching multiple inter-
nal models. Journal of Neuroscience, 24 (5), 1173–1181.

Ito, M. (1970). Neurophysiological aspects of the cerebellar motor control system. Int J
Neurol, pp. 162–176.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., & Hinton, G. E. (1991). Adaptive mixtures of
local experts. Neural Computation, 3, 79–87.

Jaeger, H., & Haas, H. (2004). Harnessing Nonlinearity: Predicting Chaotic Systems and
Saving Energy in Wireless Communication. Science, 304 (5667), 78–80.

Jeannerod, M. (1994). The representing brain. neural correlates of motor intention and
imagery. Behavior and Brain Sciences, 17, 187–245.

Jeannerod, M. (2001). Neural simulation of action: A unifying mechanism for motor cogni-
tion. Neuroimage, 14 (1), S103–S109.

Jordan, M. I., & Rumelhart, D. E. (1992). Forward models: Supervised learning with a
distal teacher. Cognitive Science, 16, 307–354.

Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science.
McGraw-Hill, New York.

Kawato, M. (1990). Feedback-error-learning neural network for supervised motor learning.
In Eckmiller, R. (Ed.), Advanced neural computers, pp. 365–372.

Kawato, M. (1999). Internal models for motor control and trajectory planning. Current
Opinion in Neurobiology, 9, 718–727.

Kohler, E., Keysers, C., Umilta, M., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing
sounds, understanding actions: action representation in mirror neurons..

Lingnau, A., Gesierich, B., & Caramazza, A. (2009). Asymmetric fMRI adaptation reveals
no evidence for mirror neurons in humans. Proceedings of the National Academy of
Sciences, 106 (24), 9925–9930.

Matarić, M. J. (2002). Imitation in animals and artifacts, chap. Sensory-Motor Primitives
as a Basis for Learning by Imitation: Linking Perception to Action and Biology to
Robotics, pp. 392–422. MIT Press, Cambridge.

Meltzoff, A. N., & Moore, M. K. (1977). Imitation of facial and manual gestures by human
neonates. Science, 198, 75–78.

Meltzoff, A. N., & Moore, M. K. (1997). Explaining facial imitation: A theoretical model.
Early Development and Parenting, 6, 179–192.

Miall, R. C. (2003). Connecting mirror neurons and forward models.. Neuroreport, 14 (17),
2135–2137.

Miall, R. C., & King, D. (2008). State estimation in the cerebellum.. Cerebellum, 7 (4),
572–576.

Miall, R. C., & Wolpert, D. M. (1996). Forward models for physiological motor control.
Neural Networks, 9 (8), 1265–1279.

Nehaniv, C. L., & Dautenhahn, K. (2002). Imitation in Animals and Artifacts, chap. The
Correspondence Problem, pp. 41–63. MIT Press, Cambridge.

Oberman, L., Hubbard, E., McCleery, J., Altschuler, E., Ramachandran, V., & Pineda, J.
(2005). EEG evidence for mirror neuron dysfunction in autism spectrum disorders.
Cognitive Brain Research, 24 (2), 190–198.

Pachet, F. (2002). Interacting with a musical learning system: The continuator. In IC-
MAI ’02: Proceedings of the Second International Conference on Music and Artificial
Intelligence, pp. 119–132, London, UK. Springer-Verlag.

Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and generalization of
motor skills by learning from demonstration. In International conference on robotics
and automation (icra2009).

Pfeifer, R., & Scheier, C. (2001). Understanding Intelligence. MIT Press, Cambridge, MA,
USA. Illustrator-Isabelle Follath.

Piaget, J. (1962). Play, dreams and imitation in childhood. W. W. Norton, New York.

Pineau, J., Montemerlo, M., Pollack, M., Roy, N., & Thrun, S. (2003). Towards robotic as-
sistants in nursing homes: Challenges and results. Robotics and Autonomous Systems,
42 (3-4), 271–281.

Raphael, C. (2003). Orchestra in a box: A system for real-time musical accompaniment. In
IJCAI workshop program APP-5, pp. 5–10.

Rizzolatti, G., Fadiga, L., Matelli, M., Bettinardi, V., Paulesu, E., Perani, D., & Fazio,
F. (1996a). Localization of grasp representations in humans by PET: 1. observation
versus execution.. Experimental Brain Research, 111 (2), 246–252.

Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996b). Premotor cortex and the
recognition of motor actions. Cognitive Brain Research, 3, 131–141.

Robin, N., Dominique, L., Toussaint, L., Blandin, Y., Guillot, A., & Le Her, M. (2007).
Effects of motor imagery training on returning serve accuracy in tennis: the role of
imagery ability. International Journal of Sport and Exercise Psychology, 2, 177–188.

Rumiati, R. I., Weiss, P. H., Tessari, A., Assmus, A., Zilles, K., Herzog, H., & Fink, G. R.
(2005). Common and differential neural mechanisms supporting imitation of mean-
ingful and meaningless actions. J. Cognitive Neuroscience, 17 (9), 1420–1431.

Saunders, C., Hardoon, D., Shawe-Taylor, J., & Widmer, G. (2008). Using string kernels to
identify famous performers from their playing style. Intelligent Data Analysis, 12 (4),
425–440.

Schaal, S. (1999). Is imitation learning the route to humanoid robots?. Trends in Cognitive
Sciences, 3 (6), 233–242.

Stippich, C., Ochmann, H., & Sartor, K. (2002). Somatotopic mapping of the human
primary sensorimotor cortex during motor imagery and motor execution by functional
magnetic resonance imaging. Neuroscience letters, 331 (1), 50–54.

Tani, J., Ito, M., & Sugita, Y. (2004). Self-organization of distributedly represented multiple
behavior schemata in a mirror system: Reviews of robot experiments using RNNPB.
Neural Networks, 17, 1273–1289.

Tidemann, A. (2008). Using multiple models to imitate the YMCA. In Agent and
Multi-Agent Systems: Technologies and Applications, Vol. 4953 of LNAI, pp. 783–792.
Springer.

Tidemann, A., & Demiris, Y. (2008). Groovy neural networks. In 18th European Conference
on Artificial Intelligence, Vol. 178, pp. 271–275. IOS press.

Tidemann, A., & Öztürk, P. (2007). Self-organizing multiple models for imitation: Teaching
a robot to dance the YMCA. In IEA/AIE, Vol. 4570 of Lecture Notes in Computer
Science, pp. 291–302. Springer.

Tobudic, A., & Widmer, G. (2005). Learning to play like the great pianists.. In Kaelbling,
L. P., & Saffiotti, A. (Eds.), IJCAI, pp. 871–876. Professional Book Center.

Tolani, D., & Badler, N. I. (1996). Real-time inverse kinematics of the human arm. Presence,
5 (4), 393–401.

Torres, E. B., & Zipser, D. (2004). Simultaneous control of hand displacements and rotations
in orientation-matching experiments. J Appl Physiol, 96 (5), 1978–1987.

Wada, K., Shibata, T., Saito, T., & Tanie, K. (2004). Effects of robot-assisted activity for
elderly people and nurses at a day service center. Proceedings of the IEEE, 92 (11),
1780–1788.

Williams, J., Whiten, A., Suddendorf, T., & Perrett, D. (2001). Imitation, mirror neurons
and autism. Neuroscience and Biobehavioral Reviews, 25 (4), 287–295.

Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction.. Current biology, 11 (18).

Wolpert, D. M., Doya, K., & Kawato, M. (2003). A unifying computational framework for
motor control and social interaction. Philosophical Transactions: Biological Sciences,
358 (1431), 593–602.

Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for
motor control. Neural Networks, 11, 1317–1329.

Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum.
Trends in Cognitive Sciences, 2 (9).

Zimmermann-Schlatter, A., Schuster, C., Puhan, M. A., Siekierka, E., & Steurer, J. (2008).
Efficacy of motor imagery in post-stroke rehabilitation: a systematic review. Journal
of NeuroEngineering and Rehabilitation, 5 (8), 8–18.

F. Using Multiple Models to Imitate Drumming

156

GADDITIONAL PUBLICATIONS

This chapter lists additional publications relevant to the thesis, but which are
not included in the main text for two reasons: 1) portions of their content are
available in the main papers, and 2) some of these papers demonstrate pilot
studies that are elaborated upon in the main papers.

157

G. Additional Publications

G.1 IMITATING THE GROOVE: MAKING DRUM MACHINES MORE HUMAN

Authors:
Axel Tidemann and Yiannis Demiris

Abstract:
Current music production software allows rapid programming of drum pat-
terns, but programmed patterns often lack the groove that a human drum-
mer will provide, both in terms of being rhythmically too rigid and having
no variation for longer periods of time. We have implemented an artificial
software drummer that learns drum patterns by extracting user specific vari-
ations played by a human drummer. The artificial drummer then builds up
a library of patterns it can use in different musical contexts. The artificial
drummer models the groove and the variations of the human drummer, en-
hancing the realism of the produced patterns.

Main Result:
This was the pilot study of SHEILA, basically a more primitive version of the
system presented in paper C.

Published in:
AISB symposium on imitation in animals and artifacts, (2007) 232-240

Copyright:
© Axel Tidemann and Yiannis Demiris

My main contributions to the paper:
• Coming up with the idea of the groovy drum machine that models hu-

man drumming

• Programming the system and running the experiments

• Gathering data and analysis

• Writing the paper

The co-author contributed to the following areas:
• Pointing out references

• Writing the paper

• Supervision of the research

158

G.2. Using Multiple Models to Imitate the YMCA

G.2 USING MULTIPLE MODELS TO IMITATE THE YMCA

Author:
Axel Tidemann

Abstract:
Learning by imitation enables people to program robots simply by showing
them what to do, instead of having to specify the motor commands of the
robot. To achieve imitative behaviour in a simulated robot, a modular con-
nectionist architecture for motor learning and control was implemented. The
architecture was used to imitate human dance movements. The architecture
self-organizes the decomposition of the movement to be imitated across differ-
ent modules. The results show that the decomposition of the movement tends
to be both competitive (i.e. one module dominates the others for a part of the
movement) and collaborative (i.e. modules cooperate in controlling the robot).

Main Result:
This was in incremental improvement of the system presented in paper A: in-
stead of joint angles, coordinates was used as input to the robot. This makes
the input/output vectors of the neural networks much bigger. The relation-
ships are not only harder to learn because the increase in size, but also be-
cause the input/output of the inverse models are now in different coordinate
systems; the input is in cartesian coordinates, whereas the output is motor
commands (i.e. joint angle velocities). In paper A the input consisted of joint
angles, and the output was joint angle velocities, which is simply the deriva-
tive. Furthermore, this was the first time Echo State Networks were used to
implement the different models.

Published in:
Agent and Multi-Agent Systems: Technologies and Applications, volume 4953
of Lecture Notes in Computer Science, Springer (2008) 783-792 (Best Student
Paper Award)

Copyright:
© 2008 Springer-Verlag Berlin Heidelberg

159

G. Additional Publications

G.3 LEARNING DANCE MOVEMENTS BY IMITATION: A MULTIPLE MODEL
APPROACH

Authors:
Axel Tidemann and Pinar Öztürk

Abstract:
Imitation learning is an intuitive and easy way of programming robots. In-
stead of specifying motor commands, you simply show the robot what to do.
This paper presents a modular connectionist architecture that enables imita-
tion learning in a simulated robot. The robot imitates human dance move-
ments, and the architecture self-organizes the decomposition of movements
into submovements, which are controlled by different modules. Modules both
dominate and collaborate during control of the robot. Low-level examination
of the inverse models (i.e. motor controllers) reveals a recurring pattern of
neural activity during repetition of movements, indicating that the modules
successfully capture specific parts of the trajectory to be imitated.

Main Result:
This is mostly an earlier version of paper B. This is the first time repetition
of movement is analyzed with respect to the specializing of modules.

Published in:
31st Annual German Conference on AI, Volume 5243 of Lecture Notes in Com-
puter Science, Springer (2008) 380-388

Copyright:
© 2008 Springer-Verlag Berlin Heidelberg

My main contributions to the paper:
• Programming the system and running the experiments

• Data gathering and analysis

• Writing the paper

The co-author contributed to the following areas:
• The idea of repeating the movement to see how it would affect the self-

organization of modules

• Writing the paper, mostly the discussion

160

PART III

POSTSCRIPT

LIST OF FIGURES

1.1. Approach to model and imitate human musical expressiveness. 5

2.1. The MPMA, inspired from Wolpert et al. [2003] and Demiris and
Khadhouri [2006]. Details described in the text. 23

2.2. The setup of the Pro Reflex system 26
2.3. YMCA: spelling the letters Y M C A using the arms. The num-

bers show at which timestep the switch from one letter to an-
other occurred, as designated by me. This corresponds to the
context signal, seen as the binary vectors below. 27

2.4. The figure shows one of the results of paper B; how the system
self-organizes the decomposition of the movement into specific
modules, and how they compete and collaborate during control
of the movement. The background shows the recurring YMCA
context signal, corresponding to figure 2.3. 27

2.5. An example of small-scale variations. Compare the four drum
strokes generated by a computer (a) and that of a human drum-
mer (b). Notice how the drummer (plot b) introduces variations
in velocity (seen as vertical displacements) and timing (seen as
horizontal displacements from the grid). These small-scale vari-
ations constitute the groove of the drummer. The data in plot (b)
is from the experiment reported in paper D. 29

2.6. An example of a large-scale variation. Plot (b) shows a large-
scale variation of pattern (a); another snare drum hit is added.
In papers C and D, plot (a) is one of the core patterns that the
system learns. 29

2.7. The SHEILA architecture. The playing style is extracted form
recorded drum patterns, and modeled and stored in the archi-
tecture. 30

2.8. One of the drummers playing on the Roland TD-3. 32
2.9. Velocity plots for two of the drummers who participated in the

experiment in paper D. The blue bar indicates the original data,
the red bar indicates the imitated data. Their similarity shows
that the system reproduces the same velocity profile. 34

163

List of Figures

2.10.Onset time plots, same as in figure 2.9. The similarity shows
that the temporal profiles of the drummers have been learned. . 34

2.11.SHEILA: The animated groovy drummer. The sound part on
the top drives the motor part on the bottom. 36

2.12.The target music state, x
′

sound, linked to the time frame of the
arms. The output of the neural groove center are in spikes, but
each signal is replicated 10 times (as shown in equation (2.4))
to make it coincide with the desired arm movement. The up-
per 9 signals represent velocities of the different drums to hit,
starting with the kick drum, snare drum, hihat, ride, toms and
cymbals. The lower 9 signals correspond to the onset times for
each beat, i.e. how much the beat should be before or after the
metronome. 39

2.13.The context signal, y. This is the output of the Sequential ESN,
as seen in figure 2.11. The first row correspond to the count-
in. The three subsequent rows correspond to the core patterns
present in the library for this drummer, and the rows below are
the variations of that pattern. 40

2.14.An experiment showing λ and RP output, and how they over-
lap. The gray letters and corresponding color in the background
shows the context signal, see also figure 2.13. The overlap be-
tween λ and RP indicate stability. The figure shows how the
system self-organizes the control of the robot, and how the mod-
ules both compete and collaborate when controlling the robot. . 43

2.15.Typical performance of the system after training. The close
match between target and actual state shows that the system
successfully learns and executes the desired arm movements.
This is the right arm of the drummer. 44

2.16.Same experiment as in figure 2.15, this shows the left arm of
the drummer. 45

164

LIST OF TABLES

2.1. How each drummer played the song in terms of core patterns
(Cx) and variations (CxVy), indicating the different playing
styles of the drummers with respect to large-scale variations.
CxBy stands for a recurring variation; this is indicated as a
break (hence the letter B). EB is end break, i.e. a small vari-
ation done at the end of the song. This is the recorded drum
data used in papers C - F. 33

165

List of Tables

166

BIBLIOGRAPHY

The following bibliography lists references in Part 1 (Research Overview).

BIBLIOGRAPHY

Michael Arbib. Imitation in animals and artifacts, chapter The Mirror Sys-
tem, Imitation, and the Evolution of Language, pages 229–280. MIT Press,
Cambridge, 2002.

J. L. Arcos, D. Canamero, and R. Lopez de Mantaras. Affect-driven cbr to gen-
erate expressive music via imitation of human performances. In ICCBR’99:
3d International Conference on Case-Based Reasoning, pages 1–12, 1999.

Baum, Leonard E., Petrie, Ted, Soules, George, and Weiss, Norman. A maxi-
mization technique occurring in the statistical analysis of probabilistic func-
tions of markov chains. The Annals of Mathematical Statistics, 41(1):164–
171, feb 1970. ISSN 0003-4851.

R.D. Beer, R.D. Quinn, H.J. Chiel, and R.E. Ritzmann. Biologically inspired
approaches to robotics: what can we learn from insects? Communications
of the ACM, 40(3):30–38, 1997.

Aude Billard and Gillian Hayes. DRAMA, a connectionist architecture for
control and learning in autonomous robots. Adaptive Behavior, 7(1):35–63,
1999.

Rodney Brooks. Intelligence without reason. In John Myopoulos and Ray
Reiter, editors, Proceedings of the 12th International Joint Conference on
Artificial Intelligence (IJCAI-91), pages 569–595, Sydney, Australia, 1991.
Morgan Kaufmann publishers Inc.: San Mateo, CA, USA. ISBN 1-55860-
160-0.

Rodney Brooks. A robust layered control system for a mobile robot. IEEE
journal of Robotics and Automation, 2(1):14–23, 1986.

Joanna J. Bryson. The behavior-oriented design of modular agent intelli-
gence. In Agent Technologies, Infrastructures, Tools, and Applications for
e-Services, pages 61–76. Springer, 2003.

167

Bibliography

Angelo Cangelosi and Thomas Riga. An embodied model for sensorimotor
grounding and grounding transfer: Experiments with epigenetic robots.
Cognitive Science, 30(4):673–689, 2006.

Andy Clark. Mindware: an introduction to the philosophy of cognitive sciences.
Oxford University Press, New York, 2001. ISBN 0-19-513856-2 (ib.), 0-19-
513857-0 (h.).

C. Crick, M. Munz, and B. Scassellati. Synchronization in social tasks: Robotic
drumming. In Robot and Human Interactive Communication, 2006. RO-
MAN 2006. The 15th IEEE International Symposium on, pages 97–102,
2006.

Mirella Dapretto, Mari S. Davies, Jennifer H. Pfeifer, Ashley A. Scott, Marian
Sigman, Susan Y. Bookheimer, and Marco Iacoboni. Understanding emo-
tions in others: mirror neuron dysfunction in children with autism spec-
trum disorders. Nature Neuroscience, 9:28–30, 2005.

Ramon Lopez de Mantaras and Josep Lluis Arcos. AI and music from compo-
sition to expressive performance. AI Mag., 23(3):43–57, 2002. ISSN 0738-
4602.

S. Degallier, C. P. Santos, L. Righetti, and A. Ijspeert. Movement genera-
tion using dynamical systems: a humanoid robot performing a drumming
task. In IEEE-RAS International Conference on Humanoid Robots (HU-
MANOIDS06), 2006.

Yiannis Demiris and Gillian Hayes. Imitation in animals and artifacts, chap-
ter Imitation as a dual-route process featuring predictive and learning com-
ponents: a biologically-plausible computational model, pages 327–361. MIT
Press, Cambridge, 2002.

Yiannis Demiris and Bassam Khadhouri. Hierarchical attentive multiple
models for execution and recognition of actions. Robotics and Autonomous
Systems, 54:361–369, 2006.

I. Dinstein, U. Hasson, N. Rubin, and D.J. Heeger. Brain areas selective for
both observed and executed movements. Journal of neurophysiology, 98(3):
1415–1427, 2007.

I. Dinstein, J.L. Gardner, M. Jazayeri, and D.J. Heeger. Executed and ob-
served movements have different distributed representations in human
aIPS. Journal of Neuroscience, 28(44):11231–11239, 2008a.

I. Dinstein, C. Thomas, M. Behrmann, and D.J. Heeger. A mirror up to nature.
Current Biology, 18(1):13–18, 2008b.

168

Bibliography

Simon Dixon. Analysis of musical content in digital audio. Computer Graphics
and Multimedia: Applications, Problems, and Solutions, pages 214–235,
2004.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211,
1990.

Vittorio Gallese and Alvin Goldman. Mirror neurons and the simulation the-
ory of mind-reading. Trends in Cognitive Sciences, 2(12), 1998.

P. Gaussier, S. Moga, J. P. Banquet, and M. Quoy. From perception-action
loops to imitation processes: A bottom-up approach of learning by imitation.
Applied Artificial Intelligence, 1(7):701–727, 1998.

M. Grachten, J.L. Arcos, and R.L. de Mantaras. A case based approach to
expressivity-aware tempo transformation. Machine Learning, 65(2):411–
437, 2006.

S.T. Grafton, M. A. Arbib, L. Fadiga, and G. Rizzolatti. Localization of grasp
representations in humans by positron emission tomography. 2. observation
compared with imagination. Experimental Brain Research, 112(1):103–111,
November 1996.

J. Grezes and J. Decety. Functional anatomy of execution, mental simulation,
observation, and verb generation of actions: A meta-analysis. Human Brain
Mapping, 12(1):1–19, 2001.

Dan Gusfield. Algorithms on strings, trees, and sequences: computer science
and computational biology. Cambridge University Press, New York, NY,
USA, 1997. ISBN 0-521-58519-8.

AZ Hajian, DS Sanchez, and RD Howe. Drum roll: increasing bandwidth
through passive impedance modulation. In 1997 IEEE International Con-
ference on Robotics and Automation, 1997. Proceedings., volume 3, 1997.

Stevan Harnad. The symbol grounding problem. Physica D: Nonlinear Phe-
nomena, 42:335–346, 1990.

Masahiko Haruno, Daniel M. Wolpert, and Mitsuo Kawato. MOSAIC model
for sensorimotor learning and control. Neural Comp., 13(10):2201–2220,
2001.

A.K. Hoover, M.P. Rosario, and K.O. Stanley. Scaffolding for interactively
evolving novel drum tracks for existing songs. Lecture Notes in Computer
Science, 4974:412, 2008.

H. Imamizu, T. Kuroda, T. Yoshioka, and M. Kawato. Functional magnetic
resonance imaging examination of two modular architectures for switching
multiple internal models. Journal of Neuroscience, 24(5):1173–1181, 2004.

169

Bibliography

Eugene M. Izhikevich. Polychronization: Computation with spikes. Neural
Comput., 18(2):245–282, 2006. ISSN 0899-7667.

Robert A. Jacobs, Micheal I. Jordan, Steven J. Nowlan, and Geoffrey E. Hin-
ton. Adaptive mixtures of local experts. Neural Computation, 3:79–87,
1991.

Herbert Jaeger and Harald Haas. Harnessing Nonlinearity: Predicting
Chaotic Systems and Saving Energy in Wireless Communication. Science,
304(5667):78–80, 2004. doi: 10.1126/science.1091277.

Michael I. Jordan and David E. Rumelhart. Forward models: Supervised
learning with a distal teacher. Cognitive Science, 16:307–354, 1992.

Eric R. Kandel, James H. Schwartz, and Thomas M. Jessell. Principles of
neural science. McGraw-Hill, New York, 2000. ISBN 0-8385-7701-6 (ib.),
0-07-112000-9 (ib.).

Mitsuo Kawato. Feedback-error-learning neural network for supervised motor
learning. In R. Eckmiller, editor, Advanced neural computers, pages 365–
372, 1990.

E. Kohler, C. Keysers, M.A. Umilta, L. Fogassi, V. Gallese, and G. Rizzolatti.
Hearing sounds, understanding actions: action representation in mirror
neurons, 2002.

Atsushi Konno, Takaaki Matsumoto, Yu Ishida, Daisuke Sato, and Masaru
Uchiyama. Humanoid Robots: New Developments, chapter Drum Beating
and a Martial Art Bojutsu Performed by a Humanoid Robot. I-Tech Educa-
tion and Publishing, Vienna, Austria, 2007.

A. Lingnau, B. Gesierich, and A. Caramazza. Asymmetric fMRI adaptation
reveals no evidence for mirror neurons in humans. Proceedings of the Na-
tional Academy of Sciences, 106(24):9925–9930, 2009.

Patti Maes. Situated agents can have goals. In Patti Maes, editor, Designing
Autonomous Agents, pages 49–70. MIT Press, 1990.

Maja J. Matarić. Imitation in animals and artifacts, chapter Sensory-Motor
Primitives as a Basis for Learning by Imitation: Linking Perception to Ac-
tion and Biology to Robotics, pages 392–422. MIT Press, Cambridge, 2002.

Kishan Mehrotra, Chilukuri K. Mohan, and Sanjay Ranka. Elements of arti-
ficial neural networks. MIT Press, Cambridge, Mass., 1997. ISBN 0-262-
13328-8 (ib.).

A.N. Meltzoff. Origins of theory of mind, cognition and communication. Jour-
nal of Communication Disorders, 32(4):251–269, 1999.

170

Bibliography

Andrew N. Meltzoff and M. Keith Moore. Imitation of facial and manual ges-
tures by human neonates. Science, 198:75–78, October 1977.

Andrew N. Meltzoff and M. Keith Moore. Explaining facial imitation: A theo-
retical model. Early Development and Parenting, 6:179–192, 1997.

Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

Chrystopher L. Nehaniv and Kerstin Dautenhahn. Imitation in Animals and
Artifacts, chapter The Correspondence Problem, pages 41–63. MIT Press,
Cambridge, 2002.

L.M. Oberman, E.M. Hubbard, J.P. McCleery, E.L. Altschuler, V.S. Ramachan-
dran, and J.A. Pineda. EEG evidence for mirror neuron dysfunction in
autism spectrum disorders. Cognitive Brain Research, 24(2):190–198, 2005.

Francois Pachet. Interacting with a musical learning system: The contin-
uator. In ICMAI ’02: Proceedings of the Second International Conference
on Music and Artificial Intelligence, pages 119–132, London, UK, 2002.
Springer-Verlag. ISBN 3-540-44145-X.

Rolf Pfeifer and Christian Scheier. Understanding Intelligence. MIT Press,
Cambridge, MA, USA, 2001. ISBN 026266125X. Illustrator-Isabelle Fol-
lath.

Jean Piaget. Play, dreams and imitation in childhood. W. W. Norton, New
York, 1962. ISBN 0-393-00171-7.

Christopher Raphael. Orchestra in a box: A system for real-time musical
accompaniment. In IJCAI workshop program APP-5, pages 5–10, 2003.

G. Rizzolatti, L. Fadiga, M. Matelli, V. Bettinardi, E. Paulesu, D. Perani, and
F. Fazio. Localization of grasp representations in humans by PET: 1. ob-
servation versus execution. Experimental Brain Research, 111(2):246–252,
September 1996a.

Giacomo Rizzolatti, Luciano Fadiga, Vittorio Gallese, and Leonardo Fogassi.
Premotor cortex and the recognition of motor actions. Cognitive Brain Re-
search, 3:131–141, 1996b.

F. Rosenblatt. The perceptron, a probabilistic model for information storage
and organization in the brain. Psych. Rev, 65(6):386–408, 1958.

C. Saunders, D.R. Hardoon, J. Shawe-Taylor, and G. Widmer. Using string
kernels to identify famous performers from their playing style. Intelligent
Data Analysis, 12(4):425–440, 2008.

171

Bibliography

S. Schaal. Dynamic movement primitives: A framework for motor control
in humans and humanoid robotics. In 2nd International Symposium on
Adaptive Motion of Animals and Machines (AMAM). Springer, 2003.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in
Cognitive Sciences, 3(6):233–242, 1999.

L. Steels. Evolving grounded communication for robots. Trends in cognitive
sciences, 7(7):308–312, 2003.

Jun Tani, Masato Ito, and Yuuya Sugita. Self-organization of distributedly
represented multiple behavior schemata in a mirror system: Reviews of
robot experiments using RNNPB. Neural Networks, 17:1273–1289, 2004.

Asmir Tobudic and Gerhard Widmer. Learning to play like the great pianists.
In Leslie Pack Kaelbling and Alessandro Saffiotti, editors, IJCAI, pages
871–876. Professional Book Center, 2005. ISBN 0938075934.

Elizabeth B. Torres and David Zipser. Simultaneous control of hand displace-
ments and rotations in orientation-matching experiments. J Appl Physiol,
96(5):1978–1987, 2004. doi: 10.1152/japplphysiol.00872.2003.

G. Weinberg and S. Driscoll. Toward robotic musicianship. Computer Music
Journal, 30(4):28–45, 2006.

G. Weinberg, M. Godfrey, A. Rae, and J. Rhoads. A real-time genetic algorithm
in human-robot musical improvisation. Lecture Notes In Computer Science,
4969:351–359, 2008.

P.J. Werbos. Beyond regression: New tools for prediction and analysis in the
behavioral sciences. Harvard University, 1974.

JHG Williams, A. Whiten, T. Suddendorf, and DI Perrett. Imitation, mirror
neurons and autism. Neuroscience and Biobehavioral Reviews, 25(4):287–
295, 2001.

M.M. Williamson. Robot arm control exploiting natural dynamics. PhD thesis,
Citeseer, 1999.

Daniel M. Wolpert, Kenji Doya, and Mitsuo Kawato. A unifying computa-
tional framework for motor control and social interaction. Philosophical
Transactions: Biological Sciences, 358(1431):593–602, 2003.

172

