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Abstract
By measuring electrophysiological data from a rat’s brain we are able to study the relations between
cells, and thereby study the brain itself. In this thesis we present different statistical modelling
techniques for treating neuroscience data, detecting tuning of cells, detecting connectivity between
cells and thereby investigating the flow of communication in the brain. We identify head direction
and spatially tuning of cells with different neuroscience modelling techniques. Most importantly
we develop the new method, jittered generalised linear models (JGLM). JGLM combines the best
parts of the jittered cross-correlation method and the generalised linear model into one framework,
and utilises permutation test on the jittered likelihood-values to test for connectivity between cells.
JGLM is useful in detecting connectivity between cells and studying information in network of
neurons. Additionally we develop the tool of basis-tuning-curve, which we use for classifying the
type of connection between neurons. We have discovered that interval jittering is a good jittering
procedure, while basic jittering is the wrong jittering choice, for jittering both in the JGLM and
the JCC framework for analysing neuronal activity.

The data analysed from the Oliva-16 data set contains electrophysiological data from cells
recorded from movement related brain areas, as well as movement data for the rat. In the end we
study the neuroscience findings from investigating the data set with JGLM. Furthermore we discuss
the potential of JGLM and key elements in future research on JGLM, where ground-truth-testing
of JGLM is essential. Our results shows that JGLM is well suited for analysing neuronal activities.
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1 Introduction
We will begin this chapter with a problem description. We will explain why this work is interesting
both from a neuroscience and statistical point of view. We then present background material from
neuroscience, before ending with a thesis outline.

1.1 Problem description
We are nothing without connections, therefore to identify connections correctly should be of extreme
interest to us. The connectivity in the cells, does not only decide which cells talks with each other,
but also constitutes the essence of our memory and decisions. The connectivity determines the
selectivity of the cells, and without it our brains would be useless.

From a neuroscience point of view modelling neuronal activity is of interest because we look at
connections, relations and explanatory factors for cells. First we will investigate the potential to
model different covariate factors such as history effect, connectivity effect, speed, position and head
direction (HD). Additionally we will look at the relation between spatially tuned cells and head
direction tuned cells.

Furthermore, our work is of statistical interest, developing, investigating and using different
statistical methods and analysing their general and specific usefulness. We will use the GLM
framework and investigate the connectivity between cells using basis functions. Most importantly
we will develop a new method, jittered generalised linear model (JGLM), which utilises jittering in
a GLM framework to produce permutation test on log-likelihood-values for performing a hypothesis
test. Thus, we develop a new method to detect connectivity between neurons.

1.2 The nervous system
The nervous system is the grand controller in the human body. It processes information and decides
what to do with it. The peripheral nervous system is the part of the nervous system that consists
of nerves and ganglia outside of the brain and the spinal cord, while the central nervous system is
the brain and spinal cord. The essential role for the peripheral nervous system is to connect the
central nervous system to the limbs and organs in the body.

In other terms we can consider the peripheral nervous systems primary task to relay information
that have been detected in our sensory organs to the central nervous system. Its secondary but
equally important task, is to relay the information from the central nervous system on what actions
to take, to the limbs and organs throughout the body.

Thus, from understanding the peripheral nervous systems tasks, the central nervous system can
be considered as a magic black box, where information from sensory organs and from the rest of
the body is the input, and action decisions based on this information is the output. Sometimes the
decision process is a fast acting process such as regulating body heat, and other times it can be a
really long decision process almost getting stuck in the brain, such as thinking about philosophical
questions.

As is often the case in modern days, when we talk about neuroscience we talk about the the
science of the brain. The brain is considered the centre of the nervous systems in most animals,
and is the most complex organ in any vertebrate’s body. As such, it should be no surprise that
the intricate details and behaviour of the brain is still unknown. However, some of the coarser
information of the relationships and the way the brain works is known.
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Figure 1: The human nervous system. Source: https://www.khanacademy.org/science/
biology/human-biology/neuron-nervous-system/a/the-synapse

Another analogy for the brain is to view it as the rest of the body’s external decision-centre.
Small quick decision can often be decided locally throughout the body, such as removing your hand
from a hot plate. However, other more complicated decision-process based on more information is
being ”outsourced” to the brain to think about and thereafter being solved.

1.2.1 Brain areas

Rodent and human brains The analysed data as well as the following text focuses on brain
areas related to movement. Rodents are genetically similar to humans, and both mice and rats are
frequently looked at in order to study the brain. Rodents have a short lifespan which have made
them a preferred choice when studying behaviours over generations. Furthermore rats are bigger
than most mice, thus their brains are bigger as well, and therefore easier to handle.

Compared to the human brain the rat brain is shaped differently, due to the differing shape
of our heads. Furthermore the surface of the human brain (the cortex) are wrinkled while the rat
brain is not. The wrinkled surface as well as the bigger size of the human brain makes humans able
to have more neurons than rats, humans are therefore capable of functioning at a higher cognitive
level than rats. Some brain areas like the olfactory parts are relatively bigger for the rat, as smelling
is a really important tool for the rats. Humans however, have relatively bigger brain area related
to language than rats. However, the functional structure of the rat brain is quite similar to that of
a human. Thus, by studying the rat brain, a lot can be learned about the human brain, as well as
the interactions between neurons.
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Figure 2: Artistic representation of the neuronal connections in the human brain. Source: http:
//www.gregadunn.com/self-reflected/self-reflected-gallery/

Brain structure The brain can be divided in many different ways. Firstly it’s common to divide
it into three, the forebrain (telencephalon and diencephalon), midbrain (mesencephalon) and hind-
brain (rhombencephalon). Evolutionary the hindbrain developed first thereafter the midbrain and
at last the forebrain. Thus, roughly speaking the hindbrain is responsible for the most fundamental
tasks related to our survival such as breathing, and blood flow. The hindbrain can be said to control
necessary bodily functions that are outside conscious control. Thereafter the midbrain is tasked
with the mid-level important tasks for survival such as senses and temperature regulation, which
is in between conscious and sub-conscious control. At last the forebrain is tasked with more com-
plicated tasks such as awareness of position and coordinating movement decisions. The forebrain,
or the more specific sub-region of the forebrain called the cortex is in humans responsible for the
majority of the processing in the brain.

Another important part of the forebrain is the hippocampus. The hippocampus and a specific
part of the cortex called the motor cortex, are the main brain areas that are connected to movement
related activity.

Analysing movement data is essential to better understand the brain, as movement tasks are
relatively simplistic and intuitive. Additionally movement tasks are an important part of a rats
decision making, and also relatively easy to measure and control. The control variables for our data
set are further explained in the ”Interface of the move Data” paragraph in Section 2.1.2.

The data set analysed in this paper measured data from the Cornu Ammonis areas CA1, CA2
and CA3, the dentate gyrus (DG) and the entorhinal cortex (EC) which all are believed to be
related to movement tasks. The CA areas resides in the hippocampus and are related to temporary
memory. The DG are thought to be related to new episodic memories and exploration of new
environments, and receives most excitatory input from the cortex. Entorhinal cortex is believed to
be related to the processing of the short term memory into longer memory.
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Figure 3: Human brain. Source: https://archive.cnx.org/contents/
016a7e55-4c3d-49d4-bc4e-750e8f5de8cc@1/3-4-the-brain-and-spinal-cord-sw

Figure 4: The human motor cortex overview. Source: https://en.wikipedia.org/wiki/Motor_
cortex
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1.2.2 Neurons

The main functional units of the nervous system are the neurons (nerve cells/cells). Neurons are
electrically excitable cells that receives and transmits electrical and chemical signals. It is believed
that neurons are the essence of communication in the brain. It has been estimated that the human
brain has roughly 1011 neurons, each neuron may be connected up to another 10 000 other neurons.
The structure of the neuron consist of the soma (the cell body) which contains the nucleus, DNA,
mitochondria, ribosomes and cytoplasm as any other cell. Furthermore neurons have dendrites
that projects out of the soma, the cell body, that are listeners that pick up messages (electrical or
chemical signals such as electrons) from other cells, and convey their information to the cell body.
Additionally neurons have axons that can either be very short or reach up to 1 meter, that are
the talkers, which are the way of the cell to send messages to other cells (often other neurons).
There exists a few different axon types, but most axons transmit electrons away from the cell body
to other cells. Signals between neurons occur via synapses. A synapse is typically where an axon
meets a dendrite. A synapse can be divided into the presynaptic cell, the sender/talker, and the
postsynaptic cell, the receiver. It is possible but not likely, for two neurons to directly send and
receive electrons from each other, as axons most of the time only naturally allow for electrons
emitted one way.

Neurons emit electrical signals (firings). As explained in Section 1.2.3, a firing can be either
excitatory or inhibitory, otherwise one such firing doesn’t differ much from the other. However,
the the temporal sequence of many such firings and the frequency that they are emitted can vary
a lot. It’s by studying such relations we will investigate the information flow in the brain in this
thesis. Neurons are long lived cells that are highly specialised coming in all shapes and sizes, thus
we expect the activity in different neurons to be related to different tasks as well as being related
to other neurons in many different ways.

1.2.3 Action potential and neural communication

Action potential Most brain areas are constructed such that there usually is a negative electrical
charge intracellularly (inside the cells/neurons), while there is a positive electrical charge extracel-
lularly (outside of the cell). This difference in electrical charge is called the membrane potential.
The membrane potential value is defined by the difference between inner and outer electrical charge.
For a typical neuron the membrane potential is -70mV, called the resting potential or resting state.
However, if a cell is exposed to a stimulus which increases the membrane potential value to above
the threshold potential value (roughly -55mV), the membrane potential value will continue to in-
crease and we will have an action potential. However, if the stimulus doesn’t change the membrane
potential to above the threshold potential we will have a failed initiation and no action potential.

A visual representation of the action potential cycle can be seen in Figure 6.
Thus, an action potential occurs when the negative charge inside of the cell rises compared to

the outside of the cell. Thereafter it returns to the resting state. The two phases of the action
potential cycle are called the depolarisation phase, and the repolarisation phase. The repolarisation
phase is also called the refractory period. It’s important to note that a cell is less likely to fire again
during the refractory period, even though it receives a stimulus.

In the first phase, called the depolarisation phase, the membrane potential value, increases.
However, the membrane potential, which is the difference in electrical charge, decreases. This
reduction in the absolute value of the membrane potential is associated with a release of energy.
This energy is in turn used to send (fire) a signal along the axons toward another cell.
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Figure 5: Two different visualisations of the anatomy of a neuron. Source: https://en.wikipedia.
org/wiki/Neuron
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Figure 6: Action Potential Illustration. Source: https://en.wikipedia.org/wiki/Action_
potential#/media/File:Action_potential.svg License: CC BY-SA 3.0

The second phase of the action potential is the repolarisation phase. During the refractory
period the inside of the neuron is quickly charged with negative electrical charge, often making the
membrane potential value a bit lower than the resting state, before it stabilises at the resting state
again. As mentioned, during the refractory period a stimulus will generally not lead to another
action potential. This is an important property of neural communication to note, when we try to
model neural activity.

Action potential in neurons are also known as nerve impulses, spikes or firings. And the temporal
sequence of action potentials generated by a neuron is often called ”spike train”. The intricacies
of the action potential cycle are useful to better understand model choices and expected neuron
behaviour as well as analysing our results. However, when we talk about firings, it is easier just to
imagine neurons talking to each other by electrical signals ”fired” towards each-other. Thus, in this
thesis we will mostly just use the word ”firings”.

As we have seen a stimulus for a neuron is typically a change in the membrane potential. A
stimulus can be either excitatory or inhibitory. Whether a stimulus is excitatory or inhibitory
depends on which synapses sends the stimulus. A synapse can be either an excitatory synapse or
an inhibitory synapse. An excitatory synapse will send an electrical signal which will increase the
electrical charge in the receiving neuron, thus making it likely or at least more likely to fire. While
an inhibitory synapse will send an electrical signal which will further decrease the electrical charge
in the receiving neuron, making it less likely to fire.

Neural connections Action potential signals can travel throughout the brain in many different
ways. A signal from neuron A may take many different paths toward a neuron B. We can say
something about how it’s likely that this path is, and thus the relation between neuron A and B, by
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the temporal timing between the signals emitted from neuron A and B. The time between a firing
in neuron A that causes neuron B to fire, is called the time lag. We the classify the most common
underlying physical pathways, i.e. connections, by the time lag.

Common connection We can attribute the connection to a common connection when it’s in the
[0ms, 5ms] interval. That is, the near simultaneous firing of neuron A and B may be explained
by the firing of a third neuron C, which affects them both to fire at the (almost) same time.

Direct connection The connections found in the [5ms, 20ms] interval can be assumed to be
directed connections. A lag in this area may originate from neuron A and B being connected
in the classical physical sense to neuron B.

Indirect connection Connections found in the [20ms, 100ms] interval can be assumed to be
indirect connections. This type of connection is much like directed connection, just that the
signal travels through many other neurons before it reaches neuron B.

An example of identifying connection type can be seen in Figure 24, where the black curve is
outside the green interval, we are likely to have a connection. Additionally we are able to identify
the type of connection by identifying the situation in the figure, at this time. The same can be
done with JCC plots as seen in Figure 21.

Neuron types There are also many different types of neurons, two examples are interneurons and
principle neurons. Interneurons are a broad class of neurons. They create neural circuits enabling
communication between sensory or motor neurons and the central nervous system. Interneurons
are mainly inhibitory neurons. Principal neurons are often long-axoned neurons which transmit
information over long regions, often from one brain region to another. Principal neurons provide
the pathways of communication within the nervous system. Principal neurons are mainly excitatory
neurons. Studying the different types of neurons is an important tool to reveal how the information
flows in the neurological network.

Neural communication There is a long ongoing discussion about the general information flow
in the brain, some believe that the specific temporal timing of the firing is most important while
others believe that the frequency rate is most important. Most likely the truth is somewhere in
between, that both the temporal timing and the frequency can be of importance, and in varying
degree for different cells.

For cortical related cells however, frequencies are presumed to be the most important factor,
as decoding the fine temporal firing of the cells are complicated and haven’t yielded any useful
information yet. However, for song neurons in certain birds; changing the fine temporal firing rate
causes the birds to sing different songs. Noteworthy is that changing the temporal tuning causes
them to do the roughly same task, but at another frequency. Thus, the finer information may be
tuned to temporal coding while the overall task may be tuned to the frequency.

Tuning of cells Neuronal tuning or just tuning of a cell refers to the property of the brain cell
by which they selectively represent a particular type of sensory, association, motor, or cognitive
information. The response of some neurons are optimally tuned to specific patterns learned through
experience as stated in Sakai and Miyashita (1994). At other times however, some cells appear to
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have been ”hard wired” to their tuning, as it is no apparent pattern for how they have learned
their tuning. Neuronal tuning can be strong and sharp, or weak and broad. Some neurons may
even be tuned to several different things, such as head direction and speed. Neurons that are tuned
to different signals often integrate information from different sources. Finding out more about the
functionality of this integration of information is essential in better understanding the brain. Some
examples of neuronal tuning are head direction tuning, movement direction tuning, grid cell tuning
and spatially tuning.

• Head direction tuned cells are cells that are tuned to the direction of the head. We expect
a HD tuned cell to be very active when looking in one specific direction, and then the cell
activity gradually decrease as the HD deviates from this direction. Thus, if you plot the
probability for firing of HD tuned cell for each angle (called a HD tuning curve), as explained
in Section 2.3, we expect to see a Gaussian distributed like curve. An example Figure of the
tuned activity of a HD cell can be seen in Figure 13.

• Move direction tuned cells are much like head direction tuned cells, but instead of being tuned
to the head direction it’s tuned to the movement direction.

• Spatially tuned cells are a class of tuned cells, that are tasked with keeping track of where in
space the rat/person currently is.

• Grid cells are a sub-class of the spatially tuned cells.

Spike trains As already stated, a temporal sequence of action potentials generated by a neuron
is often called a ”spike train”. Particularly in this thesis when we refer to a spike train from now
on, we will think of it as a digital sequence of information; 1 for a spike and 0 for no spike. Thus
an encoded spike train structure could look like, 001001000001000101001. In this thesis we will
let spike trains be represented by a discretized m-length Bernoulli process. That is a discrete time
zero-one process with outcomes in {0, 1}m.

Any such sequence can be written as x := (x1, ..., xm) ∈ {0, 1}m, where xj indicates a 1 or a 0
for the sequential position j. Furthermore each bin, xj , will represent the event occurring during a
temporal interval of the length of 1 ms.

1.2.4 Recording neuronal activity

In general the electrophysiological measurements are done by multi-electrode arrays (MEAs). MEAs
are devices which contain multiple channels with many electrodes in each from which electrical
activity are measured. As explained in Section 1.2.3, when a neuron fires, the extracellular (outside
the cell) voltage changes. The MEAs detect this change in voltage and together with the tools of
triangulation and neural oscillation identification explained in Section 2.1.1, we are able to detect
individual neurons firing moments.

We can partition all MAEs into two classes, implantable and non-implantable. Using im-
plantable MEAs we are able to conduct in-vivo experiments. Show example of an appropriate
MAE.

In our Data set the electrophysilogical activity in the rats were measured using implanted
MAEs which were high-density silicon probes. The silicon probes implanted had eight shanks with
32 recording sites on each shank.
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1.3 Outline
Part 1 gives an overview of neuroscience before introducing advanced statistical tools. In chapter 1
we give an introduction to how the brain works and important concepts to understand before mod-
elling brain activity from spike trains. In chapter 2. we describe the data and perform neuroscience
analysis of the data set. We detect tuning of cells as best as we can and format the data set for
later analysis.

Part 2. presents the statistical theory, with some neuroscience aspects as the method of JGLM
has specifically been constructed to find connectivity between cell pairs. In chapter 3. the theory
that are just related to the GLM is presented. In chapter 4. we describe the theory that are related
to the jittering and JGLM. Additionally some discussion for the choices made in developing JGLM
are presented.

Part 3 gives an overview of the statistical analysis of the data set, were the information from
Part 1 and Part 2 is used together. Chapter 5. gives a statistical representation of the regression
model. In chapter 6. the results from using our method is presented. In the final chapter, chapter
7, we present the discussion for our results and methods and the summary of our thesis.
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2 Data description and neuroscience analyses
In this section we present the data set. Additionally we present the processing of the data into
an easy to analyse format for our later analysis. Most importantly we present the method used to
identify head direction and spatially tuned cells. Most noteworthy of these methods is the Skaggs
McNaughton equation for spatial information and the Pearson correlation measure for stability.

2.1 Oliva-16 data set from the Buszaki lab
The data set used was provided by Antonio Fernández-Ruiz at the Buszaki lab and is a part of the
data set used in Oliva et al. (2016). The data set contains electrophysiological information measured
with two-dimensional silicon probe arrays, and recording of movement from the rat which was free
to roam around a small box of roughly 46x53 cm in dimensions.

In Oliva et al. (2016) the oscillatory part of the data set was analysed. We will in this work
analyse the neuron activity of identified cells.

This data set is of particular interest since neurons from brain parts where head direction tuned
cells (are assumed to) reside as well as the area where grid cells and spatially tuned cells resides are
recorded. This makes it possible to look at the connectivity and relation between head direction
and spatially tuned neurons. The individual cells and their firing times where added to the data
set at Kavli Institute in Trondheim.

2.1.1 Spike and movement data

The data contains electrophysiological information from cells from hippocampus from a rat, col-
lected with two-dimensional silicon probe arrays. The probe measured with a frequency of 20kHz.
The data were recorded from the areas CA1 (Cornu Ammonis Field 1), CA2, CA3, DG (Dentate
Gyrus) and LM (Latromedial cortex) which are sub-regions of the hippocampus.

The silicon probes implanted into the rats brain act as microphones in a huge football stadium.
That is, they detect the electrophysiological activity in a area of the brain from many cells. One
microphone may only detect noise from one area of the stadium, but by placing many microphones
close together in a so called cluster, we may detect individual voices. Therefore the microphones
are grouped together in four, which is either called cluster or tetrode. Each person (neuron) in
the football stadium (brain) has a specific position, and thus a specific distance from each of the
microphones (electrophysiological measuring devices), but only the microphones from the nearby
cluster are close enough to detect the volume of a person’s voice in the crowd. We can utilise this
concept mathematically by what we call triangulation to identify certain (loud speaking) individuals
in the crowd by their distance from the microphones. However, identifying specific neurons/persons
from triangulation alone is potentially faulty as we may erroneously identify a person. Reasons for
erroneous identification may be from symmetry properties, such that two persons are at the same
distance from every microphone in the cluster, yet at different positions. This may lead to several
persons being identified as one, or that one person is identified as several persons. The voice
volume of a person may vary, so we may misinterpret the distance from the microphone to the
person. Thus, we would like to identify individual persons not only by their distance from the
microphones, but also from their individual voices. The tone of voice analogy for a neuron is
called neural oscillation. Neural oscillation is that each neuron has an oscillatory activity pattern
for their electrical activity, and by using information about the neural oscillatory properties of
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electrophysiological measurements together with triangulation we can better identify individual
neurons. This part of the processing of the data, where activities of individual single cells were
identified by triangulation and neural oscillation patterns, were performed at Kavli Institute in
Trondheim, and is together with the movement data the basis for this thesis.

Identification of firing times of individual cells is not perfect. Erroneous identification can still
occur with both triangulation and neural oscillations as identification tools. Thus, we will in this
thesis, when we compare cell pairs, only compare pairs from different tetrodes. Different tetrodes
will have sufficient distance from each other, so we are certain that the cells compared are from
different neurons.

The data set also consists of movement data. The movement data was recorded by placing a rod
on perpendicular on the rats head, and on each end on the rod there was a LED coloured ball. The
position of these two balls were identified by a camera on a frequency of fMove = 1250

32 Hz ≈ 39Hz.
To summarise the data set consists of:

• Spikes from individual cells from many tetrodes.

• Movement for a rat with many identified cells.

2.1.2 File formats

The data set consists of two sessions. We have chosen the session called AYA9day16, as the quality
of the movement data in this session was far superior to the other session called AYA9day20.
Movement data quality is of importance as we would like to analyse the connectivity between
spatially tuned cells and HD tuned cells, see Section 1.2.2 for explanation of tuning. In all other
aspects the size and properties of the two sessions are similar.

The file formats of the firing data For the AYA9day16 data the most interesting files are the
single whl file which contains the movement data measured, and the many res and clu files which
contain the firing moments of the different cells that have been identified. ”Res” is abbreviation of
resolution and these files contain information about the firing times of neurons in a cluster. ”Clu”
is abbreviation of cluster and contains the cell number for the cells that fired in the cluster for the
corresponding time in the res file.

Thus, the res and clu files goes together to describe the cell activity. For the session AYA9day16,
there are 10 res files and 10 clu files. The set of res3 and clu3 describe the data from tetrode
3, the same holds for tetrode 4-12. The res file contains a single vector with length equal to the
total number of the firings detected by the tetrode, thus the first element is the first time-point of
the firing detected by this tetrode. As each tetrode is likely to detect many different cells, the cell
number for a given firing time is given in the corresponding clu file. The clu file contains a vector
with length one longer than the res file, the first element is the number of active cells detected
by the tetrode. The other elements in the file are the cell numbers of the firing cells. The second
element in the clu file corresponds to the first element in the res file. It is important to note that
the time given in the res file is not in seconds or ms but in measurements from the silicon probe
with the frequency of 20k Hz, thus a value in res3 equal to 20k means that it was a firing for a cell
1 second after we started measuring the cell activity.
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The file formats of the move data The whl file contains data stored in a 4x612351 matrix
we refer to as XOLD (Original-LED-Data). The 4 columns correspond to the x-coordinate & y-
coordinate (xL, yL) for the left most LED ball on the rod and the x-coordinate & y-coordinate
(xR, yR) for the right most ball on the rod. The row-dimensions is the time-dimension. Thus,
measured with a frequency of fMove we have that the total time measured with the movement
camera were 612351

fMove∗60 ≈ 4.35 hours.
From the original four columns of the LED data we can construct the position, speed and head

direction of the rat.

• The position of the rat’s head given as the mean of the two LED balls positions. We estimate
the rats head position as (xHead = xL+xR

2 , yHead = yL+yR
2 ).

• The speed data is calculated from the position data, by the one-step central difference method.

vi =
√

(xi+1 − xi−1)2 + (yi+1 − yi−1)2 (1)

Where i = 1, ..., n where i is the i’th measurement of time according to the whl file and n is
the number of time measurements.
There are other possible solutions that may yield a better estimate for the actual speed at
the given time such as using more steps or a smoothing mechanism to makes the speed vector
look more similar to the way we expect a rat to move. Smoothing may yield more precise data
but it also include another layer of subjectivity into the data analysis, with a rather small
potential gain. Thus, we leave the data as it is. For the multi-step difference method it may
yield a better result. However, as the movement data vectors already contains many invalid
position measurements (recorded as NaN) we would like the speed measurement to depend
on as few as possible neighbours.

• The head direction (HD) data, gives the direction the rat’s head is facing. This can differ
from the move direction (MD) in which the rat is moving, and from the attention direction
(the direction the rat is looking). From the original LED data we can calculate the HD and
MD but not the attention direction. However, the tuning of cells to HD from MD has already
been tested Raudies Florian et al. (2014), and it’s shown that we expect cells to be better
tuned to HD.
In order to calculate the HD we first calculated the difference between the yL and yR and get
a yDiff, and we do the same for the x. By the sign of the y-diff and x-diff variable we are able
to tell which Cartesian coordinate quadrant the head is looking, and given that we know this
we can now use the tangent rule to find the exact angle that the rat is facing. We can do
this for every time-point to get the angle at every time-point. The formula for head direction
angle in radians is,

θHead = π/2 + I(x ≥ 0)π + arctan
(
yDiff

xDiff

)
(2)

where I(x ≥ 0) is the indicator function which are 1 if x ≥ 0 and 0 otherwise.

Useful to note is that the data amount in time and cells are both a lot by neuroscientific stan-
dards.
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2.2 Preprocessing by binning
The reason why the binning is necessary is further explain in Section 5.1, while the binning process
itself is explained below.

Binning We will in this thesis choose 1 ms bins were we only allow for either 0 or 1 firing in each
bin. Thus, our binned vectors will be Bernoulli processes. Furthermore, for binning of 1 ms we
have sufficient precision for the refractory period, explained in Section 1.2.3, to be estimated into
our model, this is more thoroughly explained in Section 5.1.

To bin the firing data we first construct an empty binned firing vector for each cell with all
values equal to 0. Each bin in this vector should correspond to the firing activity for the cell for
the millisecond in the session that match its index. If the value is 0, there is no activity during this
millisecond for this cell. If the value is 1 it was firing activity during this millisecond for this cell.

In order to do this we first isolate the firing for an individual cell from the firing times for all
the cells in the cluster. Thus we firstly locate the index for a certain cell in a cluster, then we use
this index to find the firing times for this specific cell. Since, the first element in the clu file is an
overview element of the data, we need to take minus 1 from the index found by identifying clu and
use it to find the time in the res file. The time is given in the frequency scale it was measured in,
thus we have to divide it by 20 and round it up to the nearest whole millisecond. This number,
is the closest millisecond for the specific cell firing, thus the new binned firing vector element with
index equal to this number should have the value of 1, while the other elements in the corresponding
binned firing vector should have the value zero.

We do this for all the cells, and place the vector for each cell as rows into a firing matrix. The
cell number, tetrode number, and frequency for the cells are stored in separate individual vectors
(cellCounter, tetCounter and freqCounter) with matching index to the index of the column in
the firing matrix to keep a quick overview over the firing data available.

The move data is actually already binned, but with 39.1 ms bins, thus it needs a rebinning at
a higher frequency than the original data. The rebinning is done by simply keeping the original
position measurements, this can be done as the movement change within the 39.1 time interval is
very small. Thus, the newly binned position data value for a time-point is the value of the closest
original position data point in time.

As the rebinned position matrix is the basis for the construction for the HD, speed and position
vectors, we do not need to do any more binning for these.

Exploring the firing data We display the information in the res and clu files by raster plots,
see Figure 7 and Figure 8.

Different cells have quite different firing rates. Also the cell identification process is not without
uncertainty, so it is still useful to remember that one cell may be identified as several and vice versa.
Thus, if we identify raster plots that have a complete stop in firing for a period when another cell
has an abrupt start, it may be the same cell.

Exploring the move data We would also like to evaluate the quality of the movement infor-
mation given in the whl file. Firstly, for roughly 14.5% of the measurements the tracking camera
was not properly able to detect the position of the LEDs, at these time points the data position is
registered with a NaN-value (Not a Number).
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Figure 7: Raster plots for 10 first minutes, for tetrode 3-7. Part 1, up to the first 15 neurons for a
tetrode, Part 2 the 16-30th neuron for a tetrode and Part 3 31-45th neuron for a tetrode.
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Figure 8: Raster plots for 10 first minutes, for tetrode 8-12. Part 1, up to the first 15 neurons for
a tetrode, Part 2 the 16-30th neuron for a tetrode and Part 3 31-45th neuron for a tetrode.
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In our case good quality of the movement data would mean that the rat is for the most parts
moving with a speed of at least 5 cm/s. Also, we would like the movement to be somewhat evenly
distributed throughout the box, and the movement patterns to be somewhat resembling a random
walk. Such behaviour would describe a rat moving about and discovering the box, without seemingly
being influenced by outside factors.

To check if our data somewhat resembles our ”perfect” movement data we first plot several
position/movement plots of the rat in the box, see Figure 11. From these plots we get a basic idea
that the rat seems to be moving around most parts of the box, however it also seems to be spending
much more time in certain areas than others. It may seem that the rat at times moves in some
weird pattern-like triangles. To further investigate the movement data properly we constructed a
movement video for all of the session time. Two of the videos have been uploaded to

https://giphy.com/gifs/movement-rat-kristian-l0HUlk3ygM3ZVQcA8 and

https://giphy.com/gifs/master-rat-kristian-3o752mjHMvTBg1mdzO.

The first link gives the movement of the centred head position for the 0-10 and 90-120 min
interval. The speed is scaled up 20 times from real life time. The second link represents the rats
movement slightly faster than real life data, the red/green line represents the centred head position,
while the grey line represents the right ball on the rats head. The colour of the centre-line is green
when it moves above the speed threshold and red while it moves below.

Some parts of the movement data were not good according to our quality criteria. The most
unsatisfactory issues with the movement data are as follow:

• The box the rat moved around in was rather small, namely 53x46cm in dimensions. Normally
box environments for grid cell detection are much larger as the distance between the peaks of
the grid cells are often detected to be roughly 30cm apart.

• The periods the rat is actually moving around the box is just a small part of the original
data set time of over 4 hours. There are a few short periods with actual movement. Only
two good longer periods of time were found. Namely the 0-10 min interval, and the 90-120
min interval. The smaller well behaved movement pockets outside these two intervals were
often just lasting a few seconds. The basis functions used for connectivity and history effects,
see Section 3.4, demand some element of continuity. Thus the potential benefit from adding
these small pockets of well behaved movement time were deemed small.

• Even for the time in accordance with our quality criteria the rat was not moving in a very
random walk like fashion, as we would like. Instead, the rat moved in repetitive movement
patterns, where it did not cover the full area of the box very well.

As we have a lot of data, yet limited good movement data, we will for the main part in this
thesis use the data from the time periods when the rat’s movement is good. That is, from studying
the movement video we choose to only look at and analyse the data from the time period of 0-10
min, and 90-120 min. This applies both to the movement data, and the firing data. This is an
important step in order to improve the quality of the all movement related analysis, especially that
of identifying grid cells. Identifying grid cells proved difficult and is further explained in Section
2.3.1. Only for some parts of the exploratory analysis will the whole session time be used.
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Figure 9: A point plot of the positions the rat was at. The colour changes with the time the rat
was at the given position, red represents the first hour, black the second, blue the third and green
the fourth hour. One point for each time measurement. We can see that the rat have been around
most of the box, but spent less time close to the edges of the box.
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Figure 10: A plot of the rats movement. The path of the rat analysed for time span of whole
session. Time is given in hours. We can see that the rat have been around most of the box, but
spent less time close to the edges of the box. Furthermore it has spent its time in the box quite
uniformly, expect for two repeating triangle movement patterns in the upper left corner and in the
middle to the right of the box. These two confusing areas are most likely due to tracking errors,
such as reflections from the wall off the LED lights placed on the rats head.
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Figure 11: First plot is a heat map of where the rat spent its time in the box. The path of the rat
analysed for time span of whole session. The colour/zval gives the probability for the rat spending
time in a bin. The probability scale is given as the average number of times it was measured to be
in a bin per second. Bins that are grey/colourless are places that rat haven’t been at all.
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2.3 Identification of cells
This data set has potentially measurements of neuronal activity from both HD tuned cells and
spatially tuned cells. We would like to use this opportunity to further look at the connections and
relations between these two types of cells. First we investigate if we are able to detect if we have
any of the two cell types among our measured neurons.

To aid us in identifying HD cells we will plot HD tuning curves in Section 2.3.2, and for spatially
tuned cells we will plot rate maps in Section 2.3.1. Additionally we will also plot the more analytic
plots of spatial information and stability for HD cells and spatially tuned cells, see Section 2.3.3

Spatially tuned cells are cells that in some way are tuned to the spatial position of the rat.
One specific type of spatially tuned cell are the grid cell. We would like to identify grid cells from
our data, however the movement data is not good enough to detect if there are any grid cells or
not. Yet the movement data is good enough to detect if the cells are spatially tuned, so we detect
spatially tuned cells instead.

2.3.1 Spatially tuned cells

To help us identify spatially tuned cells we plot rate maps. Rate maps or heat maps are maps of
the box where we bin the area and plot the activity in this area with a colour according to the
activity level in the bin. In our case the activity level we are looking at could be position, overall
firings, and probability for firing given the position.

A The heat map for position shows how much of the time the rat spends in the given bin/area.
This have already been plotted in Figure 11.

B The heat map for overall firing activity shows how many times the particular cell fires when
the rat is at the given area.

C The heat map for ”probability for firing” shows the frequency for a specific cell to fire in a
bin, given that the rat’s position is in this bin. This case could be understood as the heat
map of case A divided on the heat map of case B. That is, case C is the number of firings in
the binned-area but adjusted for the time spent in the area, so it becomes an estimate of the
probability for the cell to fire in the binned area given that it is already there.

At first rate maps were made for all of the session time, however in order to improve our
prediction we later used only the shorter time periods where the movement data was known to be
good, as explained in paragraph ”Exploring the move data” in Section 2.1.2. Thus, the uncertainty
in the position measurements of the rat were as low as possible, for the data used, and our predictive
value as high as possible.

Rate map C was constructed by binning the area of the box into 18 x 18 bins, thus each bin
covering an area of roughly 2,5 x 2,5 cm. Then the period the rat spent in each bin was registered.
Thereafter the number of firings each cell fired in each bin were counted. Then for each cell the
number of firings in a bin were divided by the time spent in the bin, in order to get the frequency
for firing in a bin given the rat is there. However, this was only done for 0-10 min and 90-120 min
interval, were the movement data is good, as mentioned already. Furthermore the speed of the rat
needed to be above 5 cm/s to be considered good and the occupancy time spent in a bin to be
above 0.5 s in order for us to look at that bin at all.
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The speed criterion is included as we expect the cells that are HD and spatially tuned to only
show this type of tuned behaviour when the rat is moving with a speed above a certain threshold.

We set a occupancy limit for each bin, if the time spent in a bin overall is less than 0.5 s, we do
not include this bin in the rate map or other part of the analysis. This limit is included since the
variance of the probability of the firing rate in a bin is too high when the occupancy is low. If the
rat is only in a binned area for 0.1 ms, yet it fires once at this time, it will have an estimated firing
rate of 10k Hz, while if it doesn’t fire at this time the estimated firing rate would be 0 Hz.

We will mainly look at rate maps of type C, from here on this is referred to as rate or heat
maps. Rate maps are essential in our analysis to identify spatially tuned cells.

Preferably we would like to identify if the spatially tuned cells were grid cells or not. One way
to identify grid cells is by subjectively looking at the rate maps. If the rate maps have two or more
distinct activity peaks for a spatial location, we can identify it as a grid cell. However, from Figure
12 (example rate map), it’s difficult to clearly identify activity peaks/areas for a cell for our data.
This figure may or may not show a grid cell, as the activity represented by the rate map is not
uniformly distributed nor does it have several clearly distinct activity peaks. Thus, it is difficult
to identify with certainty a grid cell. However, the movement data is still good enough to tell
whether the cells were spatially selective or not. It’s rather clear from Figure 12 that cell T3C1 is
spatially tuned as the colour at different position is far from constant. However, to identify if cells
are spatially tuned or not by just looking at rate maps are highly subjective. Thus, we will try to
make our identification in a more rigorous analytic fashion, as we will further explain in Section
2.3.3.

2.3.2 HD tuned cells

To help us identify HD-cells we will plots a HD tuning curve (TC) for each cell. A HD TC is similar
to a rate map, but now only for the angle of the head variable, instead of the 2-dimensional space
variable.

For each cell we bin the angle measurements into 18 bins covering the area of 0-360 degrees.
Thus, the first bin covers the area of 0-20 degrees, the next 20-40 degrees and so on. As for rate
maps we can divide the construction of the HD TC into a case A, case B, and case C. In this setting
the new cases can be explained briefly as follows.

A We can make an occupancy TC. This keeps track of how much time the rat looked in the
direction of each HD-bin. These plots are independent of cell activity and is the same for all
cells.

B We can make a firing number TC. This keeps track of how many times a single cell has fired
in a HD bin.

C Finally we can make the proper HD TC, which both counts the number for case A, and case
B for each bin. Then we divide the B value on the A value to get the frequency for firing in
a bin for a cell given that the rat is already facing in that direction.

If the HD TC is clearly peaked, we identify it as a HD cell. However, as for rate maps this is a
somewhat subjective way to identify HD cells we would also like to do so using spatial information
and a stability measurement further explained in Section 2.3.3.

An example of a HD TC case C, can be seen in Figure 13.
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Figure 12: Heat map case C, see Section 2.3.1, for T3C5 for all the time of the session. Example
for how they would all look. Tetrode 3 cell 5 is randomly chosen. The colour-coded value-scale on
the left side represents the frequency in Hz for a given bin.
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Figure 13: HD TC case C, see Section 2.3.2, for Tetrode 3 Cell 2. The x-axis gives the HD in
degrees and the y-axis gives the estimated firing rate in Hz for bins of 10 degrees interval size. This
cell is well tuned to HD, but got an overall low firing rate.
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2.3.3 Spatial information and stability

With the aim to classify neurons as HD and spatially tuned cells, we analyse their stability by mea-
suring the difference in tuning at different times and spatial information by Skaggs and McNaughton
equation.

Stability The stability is analysed by splitting the part of the data with good movement data,
namely the 0-10 min and 90-120 min, into two sub-intervals. The first sub-interval is the data from
0-10 min and 90-100 min and the second part is the data for 100-120 min. Thereafter we construct
individual rate maps or HD TC respectively for ST and HD tuning, as explained in Section 2.3.1
2.3.2, for each of these two sub-intervals. After we have constructed these plots we compare the
rate maps for ST to each other and the HD TC to each other, point-wise, by taking their matrix (or
vector for HD) representation and finding the Pearson correlation coefficient between the matrix
elements. Important to note is that the occupancy is different for the two rate map images for ST.
In order for the stability analysis to be fair we only treat bins that have sufficient occupancy for
both of the subsets to be analysed. We have set our sufficient occupancy to be 0.5 second spent in
a bin.

The formula for the Pearson correlation coefficient is

ρX,Y =
∑

(Xi − X̄)(Yi − Ȳ )√∑
i(Xi − X̄)2∑(Yi − Ȳ )2

(3)

Where X and Y are two vectors whose i’th element are written as Xi and Yi. The mean value
of X are X̄ which is defined as X̄ = 1

n

∑n
i=1Xi, and correspondingly so for Ȳ .

The Pearson correlation coefficient measures the correlation between the two vectors X and
Y. If these two vectors each represents an image, rate map or a curve. The Pearson correlation
coefficient is high when there is a similar trend between the two images, and if the Pearson corre-
lation coefficient is close to zero they appear to have no relation with each other, while if Pearson
correlation coefficient is negative the two images, are opposites. What we expect and would like
to see for a cell that is either tuned to space or HD is that it has a high PCC, indicating that the
behaviour for the cell is similar at different times.

In our case X will represent either the rate map for ST, XST , or the HD TC, XHD, for the
first sub-interval period, while Y correspondingly represents the same for the second sub-interval
period.

Thus from the general equation for stability measure by PCC (3) we get two specific equations
for our case, one for ST and one for HD.

ρjXST ,YST
=

∑
i(X

j
i,ST − X̄

j
ST )(Y ji,ST − Ȳ

j
ST )√∑

i(X
j
i,ST − X̄

j
ST )2∑

i(Y
j
i,ST − Ȳ

j
ST )2

(4)

ρjXHD,YHD
=

∑
i(X

j
i,HD − X̄

j
HD)(Y ji,HD − Ȳ

j
HD)√∑

i(X
j
i,HD − X̄

j
HD)2∑

i(Y
j
i,HD − Ȳ

j
HD)2

(5)

Here the j-notation represents that the this is done for the j’th cell. Thus, ρjXST ,YST
is the

Pearson correlation coefficient measure for the stability between the two sub-interval rate maps
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Xj
ST and Y jST for cell j. And likewise we have the same for HD tuned cells and HD TC PCC

ρjXHD,YHD
.

Thus, for each cell we get two PCC-values, one for the stability of the HD tuning and one for
the stability of the spatially tuning of the cell. Thus, we get two vectors of size 1x250 (250 equals
number of cells), ρHD =

(
ρ1
HD, ρ

2
HD, ..., ρ

250
HD

)
and ρST =

(
ρ1
ST , ρ

2
ST , ..., ρ

250
ST

)
that is the stability

measurement for HD and spatially tuned (ST) cells.

Spatial Information Information theory treats the cell as a communication channel where the
input is the measured variable, which in our case is the rate map for position or the HD TC for
a cell, and who’s output is the cell’s spike train. The Skaggs and McNaughton equation here
presented, and derived in Skaggs et al. (1993), is an information theory approach to find systematic
differences in the information content of spatial cells. Therefore, what we measure by Skaggs and
McNaughton equation can often be referred to as spatial information or mutual information (the
mutual information between spatial tuning and spike train). Here we will refer to it as spatial
information.

In our case the equation for spatial information (SI) can be rewritten as.

IjSM =
∑
r∈bins

λj(Xi) · p(Xi) · log2( λj∑
r∈bins λ

j(Xi) · p(Xi)
) (6)

Where IjSM indicates the spatial information by Skaggs McNaughton equation for cell number
j. λj(Xi) indicates the firing frequency rate for cell j given that the rat is at position (or angular
direction) Xi. p(Xi) indicates the probability for the rat being at position (or facing angular
direction) Xi. λj indicates the firing rate for cell j over all bins.

Construction of Plots When we have a stability number of the rate maps and the SI number
for the mutual information between the spatial tuning of a cell and its firing we can plot stability
and SI overview plot, as seen in Figure 14.

What we now have done for spatially tuned cells and rate maps can be done for HD TC and
HD tuned cells. The results can also be seen in Figure 14.

The information from the plots When we look at Figure 14 we see that we identify more
or less the same cells with the stability-SI-plot from HD and spatially tuned cells. A part of the
reason why this is the case is likely to be because of the low quality of the move data. In order to
be able to analyse the connections between the HD and spatially tuned cells, it would be preferred
if the two subsets of cells with highest stability-SI-value for HD and ST cells are as different as
possible. However, the data can still yield interesting results as well as help in develop interesting
methodology for statistical analysis.

Using the information from Figure 14, we can choose the highest value of SI and stability for
HD to identify the (most) HD tuned cells. Furthermore we can do the same for the spatially tuned
cells. Thus, we get a subset of the original cells that we will further analyse. These being the HD
tuned cells and the spatially tuned cells. A list of number of the identified cells can be found in
Table 1.
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Figure 14: Here we see point plots where the spatial information is plotted again the stability
value. For each cell we have calculated two HD related quantities, the stability value ρHD and
the spatial information value IHD, two spatially tuned quantities, the stability value ρST and the
spatial information value IST and the frequency. The two Spatially tuned quantities are represented
in the first plot, and the two HD related quantities are represented in the second. Each point in
each of the plots represents a cell, and its corresponding values. Additionally it has been coloured
coded according to its frequency, high frequency is coded by orange, medium to high is coded by
blue, medium to low is coded by purple and low frequency is coded by green. In both plots we can
see that high spatial information for HD cells are positively correlated with high stability value for
HD and vice versa for spatially tuning. Additionally, cells with higher firing rate have a tendency
to have higher spatial information and stability values.
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Tetrode 3 4 5 6 7 8 9 10 11 12
Total Cells 35 10 31 10 27 42 1 26 35 33
HD Tuned cell 2 1 1 - - 2 - 1 1 1
Spatially Tuned cell 1 1 - 1 - - - - 1 -

Table 1: Overview of the total number of cells, the identified number of HD cells and spatially
tuned cells based on stability and spatial information point plot with cells with higher value than
4 in spatial information for spatially tuned cells and 0.56 for HD tuned cells.

Nr 1 2 3 4 5 6 7 8 9 10 11 12
HD T3C2 T3C30 T4C3 - T5C18 - T8C3 T8C39 T10C2 - T11C28 T12C13
St T3C2 - - T4C4 - T6C2 - - - T11C2 - -

Table 2: Overview of the exact cells that were identified as HD and ST tuned. This subset of all
cells, will later be used as a subset for our analysis of connectivity between cells, discussed in Part
III. Additionally the brain regions these cells comes from are described in Table 3.

Brain Area CA1 layer DG layer CA2 Entorhinal cortex
Cell Number 1,2,3,4 5,6 7,8 9,10,11,12

Table 3: Table of the brain areas the cells from Table 2 resides in. The brain areas and structure
are commented in Section 1.2.1.

Figure 15: Density plots of the distribution of spatial information of HD and ST for all cells.

29



Figure 16: Density plots of the distribution of stability measurement of HD and ST for all cells.



II Statistical models and methods
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3 The generalised linear model
In this section we introduce the generalised linear model (GLM), of which logistic regression is a
special cases. We also present the iteratively re-weighted least squares (IWLS) algorithm, which
is a method to find the maximum likelihood estimates (MLEs) of a GLM. We consider hypothesis
tests for the regression parameters with the Wald test. In addition, we mention the Bonferroni
correction, used in multiple hypothesis testing.

3.1 The GLM-framework
In short, the GLM consists of three elements (i) a probability distribution that is an exponential
family (ii) a linear predictor η (iii) and a link function g that connects the mean of the probability
distribution to the linear predictor. In the following we elaborate on each of these elements.

Consider n independent observations y1, ..., yn, where yi is treated as a realisation of a random
variable Yi. Assume that Yi has a probability distribution that is an exponential family, that is

Yi ∼ fYi(yi; θi, φ),

where θi is the (one dimensional) parameter of interest of the family, and φ is called the dispersion
parameter. These parameters are essentially location and scale parameters, respectively. The
probability density function can be expressed as (McCullagh and Nelder, 1989, p. 28)

fYi
(yi; θi, φ) = exp

(θiyi − b(θi)
a(φ) + c(yi, φ)

)
, (7)

where a(φ), b(θi) and c(yi, φ) are known functions. If φ is known, θi is called the canonical param-
eter. Furthermore, θi is related to the mean and the variance of the distribution through

µi = E(Yi) = b′(θi) (8)
Var(Yi) = b′′(θi)a(φ). (9)

The linear predictor can be written as

η = Xβ, (10)

where η = (η1, ..., ηn)T , X is a n × p design matrix and β is a p × 1 vector of the unknown
parameters. These unknown parameters can be estimated by maximising the likelihood function,
as will be discussed in Section 3.2. For models with an intercept term, the first column of the design
matrix X is a column of ones.

The link function g connects the mean of the distribution to the linear predictor by

ηi = g(µi). (11)

Whenever θi is a canonical parameter of (7), the link function g is the function that expresses θi
in terms of µi, that is

θi = g(µi). (12)
In this setting g is referred to as the canonical link function. It is possible to use non-canonical
link functions, but then consideration should be made such that the domain of the link function
matches the range of the mean of the probability distribution.
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3.1.1 Binomial model for binary data

Let the n independent observations y1, ..., yn be the numbers of successes in ni independent Bernoulli
trials. The result of a Bernoulli trial is a random variable Z such that (Dobson and Barnett, 2008,
p. 123)

Z =
{

1, with P (Z = 1) = p

0, with P (Z = 0) = 1− p,

where z = 1 is considered a success. That is, each yi is a realisation of a random variable

Yi =
ni∑
j

Zi,j ,

where P (Zi,j = 1) = pi for all j’s. The distribution of Yi is then given by

Yi ∼ binomial(ni, pi)

fYi
(yi; θi, φ) =

(
ni
yi

)
pyi

i (1− pi)ni−yi

= exp
(

log
(

pi
1− pi

)
yi + ni log(1− pi) + log

(
ni
yi

))
. (13)

Comparing (13) to (7), we see that a(φ) = φ = 1, that is, θi is a canonical parameter. Furthermore,
we have that

θi = log
(

pi
1− pi

)
and

b(θi) = ni(θi + log(1 + exp(−θi))),

where we’ve used
pi = (1 + exp(−θi))−1

in the expression for b(θi). Hence, from (8) and (9) we get

µi = E(Yi) = ni
1 + exp(−θi)

= nipi (14)

Var(Yi) = ni
(1 + exp(−θi))2 = nipi(1− pi).

And according to (12), the canonical link function is

g(µi) = log
(

pi
1− pi

)
= logit(pi) (15)

where the last step is the definition of the logit-function. Hence, combining (10) and (11) gives the
model

logit(pi) = xTi β.
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3.2 Parameter estimation
As mentioned, the unknown parameters β in (10) can be estimated by maximising the likelihood
function. These estimates are called maximum likelihood estimates (MLEs), and are denoted β̂.
Calculation of the MLEs require iterative methods. In our analysis we’ve used the built-in function
glm in R (R Core Team (2016)) to obtain an estimate for β̂. The glm function uses a method called
iteratively re-weighted least squares (IWLS). The following is an overview of the IWLS algorithm.

3.2.1 The log-likelihood function

The log-likelihood function for a single observation yi is given by

logLi(θi, φ; yi) = log fYi
(yi; θi, φ)

= θiyi − b(θi)
a(φ) + c(yi, φ), (16)

where we’ve used (7). And the log-likelihood for the set of independent observations y = (y1, ..., yn)T
is simply

logL(θ, φ; y) =
n∑
i=1

logLi(θi, φ; yi). (17)

Note that θi is related to the mean of the distribution µi in (8), which itself is related to the linear
predictor ηi in (11). And ηi is again related to the unknown parameters β through (10). This is
relevant because it shows that the log-likelihood function in (16), and hence in (17), are functions
of β.

A formal definition of the MLE β̂ is given by (Rodŕıguez, 2007, Appendix A, p. 1)

logL(β̂; y) ≥ logL(β; y) for all β.

3.2.2 Fisher’s score function and the information matrix

The first derivative of the log-likelihood is called Fisher’s score function, and is given by (Rodŕıguez,
2007, Appendix A, p. 3)

u(β) = ∂ logL(β; y)
∂β

, (18)

where u is a p× 1 vector whenever β is a p× 1 vector, as in (10). In general the score function can
be written as a function of both the parameters β and the random vector Y = (Y1, ..., Yn)T , where
observation yi is considered a realisation of the random variable Yi. Hence u(β,Y) is a random
vector. In that case, its mean and variance are given by (Rodŕıguez, 2007, Appendix A, p. 3)

E(u(β,Y)) = 0
Var(u(β,Y)) = E(u(β,Y)u(β,Y)T ) = I(β), (19)

where I is a p× p matrix, called the expected Fisher information matrix.
Since we have canonical link the log-likelihood is a concave function, thus we can find the MLE

by setting the first derivative of the log-likelihood equal to zero (Rodŕıguez, 2007, Appendix A, p.
3). That is, we need to solve the system of equations

u(β̂) = 0. (20)
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Using a first order Taylor series, we can expand the score function evaluated at the MLE β̂ around
an arbitrary value β0

u(β̂) ≈ u(β0) + ∂u(β)
∂β

∣∣∣∣
β=β0

(β̂ − β0),

and using (20), we can solve for β̂, such that

β̂ = β0 −H−1(β0)u(β0), (21)

where H(β) = ∂u(β)/∂β is a p × p matrix called the Hessian. This expression forms the basis of
an iterative technique called the Newton-Raphson method (Rodŕıguez, 2007, Appendix A, p. 5),
where a given trial value is updated using (21) until convergence. An alternative method, known
as Fisher scoring, is given by (Rodŕıguez, 2007, Appendix A, p. 5)

β̂ = β0 + I−1(β0)u(β0), (22)

where the Hessian in (21) is replaced by the information matrix I using (Rodŕıguez, 2007, Appendix
A, p. 4)

I(β) = −E
(∂2 logL(β; y)

∂β∂βT

)
= −E(H(β)).

To find expressions for the score function u(β) and the information matrix I(β), we differentiate
the log-likelihood in (16) using the chain rule (McCullagh and Nelder, 1989, p. 41)

∂ logLi
∂βj

= ∂ logLi
∂θi

dθi
dµi

dµi
dηi

∂ηi
∂βj

.

Using (8) and (9) we derive that dµi/dθi = Var(Yi)/a(φ), and from (10) we get that ∂ηi/∂βj = xij ,
such that

∂ logLi
∂βj

= (yi − µi)
Var(Yi)

dµi
dηi

xij .

This gives that each component of the score function in (18) is given by (Dobson and Barnett, 2008,
p. 65)

uj =
n∑
i=1

(yi − µi)
Var(Yi)

dµi
dηi

xij . (23)

And using (19), we get that the elements of the information matrix I(β) are given by (Dobson and
Barnett, 2008, p. 65)

Ijk = E(ujuk)

= E
( n∑
i=1

(Yi − µi)
Var(Yi)

dµi
dηi

xij

n∑
l=1

(Yl − µl)
Var(Yl)

dµl
dηl

xlk

)
=

n∑
i=1

E(Yi − µi)2xijxik
(Var(Yi))2

(dµi
dηi

)2
,
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since E((Yi − µi)(Yl − µl)) = 0 for i 6= l because the random variables Yi are independent, since
the observations yi are assumed independent (Dobson and Barnett, 2008, p. 65). And by using
E(Yi − µi)2 = Var(Yi) we get that

Ijk =
n∑
i=1

xijxik
Var(Yi)

(dµi
dηi

)2
. (24)

Finally, we can write the information matrix as (Dobson and Barnett, 2008, p. 66)

I(β) = XTWX, (25)

where we define W as an n× n diagonal matrix with elements

wii = 1
Var(Yi)

(dµi
dηi

)2
,

where dµi/dηi is evaluated at β.

3.2.3 The iteratively re-weighted least squares (IWLS) algorithm

Consider now the expression in (22) as an iterative algorithm (Dobson and Barnett, 2008, p.65)
such that

bm = bm−1 + I−1(bm−1)u(bm−1),

where bm is a vector of estimates of the parameters β at the mth iteration. Multiplying both sides
of this expression with the information matrix I, we get

I(bm−1)bm = I(bm−1)bm−1 + u(bm−1), (26)

Using (23) and (24), we see that the right-hand side of this expression is

p∑
k=1

n∑
i=1

xijxik
Var(Yi)

(dµi
dηi

)2
bm−1
k +

n∑
i=1

(yi − µi)
Var(Yi)

dµi
dηi

xij ,

which can be written as
XTWz, (27)

where we’ve defined z with components

zi =
p∑
k=1

xikb
(m−1)
k + (yi − µi)

dηi
dµi

.

Using (25) and (27), we can rewrite (26) as

XTWXbm = XTWz. (28)

Note that for a normal linear model, the so called normal equations have the form (Dobson and
Barnett, 2008, p. 89)

ATAb = ATy, (29)
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where A is the design matrix, b is the estimate of the MLE (called the least square estimator) and
y are the data. Comparing (28) and (29), we see that they have the same form, except for the
weights W in (28). Furthermore, the equations in (28) need to be solved iteratively, contrary to
(29), since both z and W are dependent on b(m−1). Hence, the iterative method of (28) is called
the iteratively re-weighted least squares (IWLS) algorithm. This algorithm is said to converge
whenever the difference between b(m) and b(m−1) becomes small, relative to a tolerance. Then,
b(m) is taken to be an estimate of the MLE β̂ (Dobson and Barnett, 2008, p. 66).

3.3 Hypothesis testing
In this section we describe the Wald test and the likelihood ratio test, which are competitors to
the permutation test. Furthermore, since we conduct a series of hypotheses tests, we mention the
Bonferroni correction.

3.3.1 Wald test

Consider hypotheses of the form
H0 : β = β0, (30)

where β is a p× 1 vector of parameters and β0 a p× 1 vector of fixed values. Such hypothesis can
be tested using the Wald test, where the test statistic is (Rodŕıguez, 2007, Appendix A, p. 6)

W = (β̂ − β0)TCov(β̂)−1(β̂ − β0),

where Cov(β̂) denotes the p×p variance-covariance matrix of the estimated parameters. The Wald
test statistic has approximately in large samples a chi-squared distribution (Dobson and Barnett,
2008, p.85)

W ∼ χ2(p) (approx.), (31)
where p is the degrees of freedom. This follows from the fact that in large samples (that is, for
large values of n, the total number of observations), the MLE follows approximately a multivariate
normal distribution (Rodŕıguez, 2007, Appendix A, p. 6)

β̂ ∼ Np(β,Cov(β̂)),

where E(β̂) = β denotes the true parameter values. The variance-covariance matrix of the MLE
can be replaced by any consistent estimator, without altering the asymptotic distribution of W in
(31). Particularly, the variance-covariance matrix can be estimated by

Ĉov(β̂) = I−1(β̂) = (XTWX)−1, (32)

where we’ve used the expression for the information matrix in GLMs in (25). The elements of
W are the weights obtained in the last iteration of the IWLS-algorithm in (28). Hence the Wald
statistic for an MLE β̂ in a GLM-framework can be written

W = (β̂ − β0)TXTWX(β̂ − β0).

Such Wald tests may be used to test the significance of each estimated parameter β̂j , where the
test hypothesis is

H0 : βj = 0.
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In such cases where the MLE β̂j is a scalar, it is common to take the square root of the Wald
statistic (Dobson and Barnett, 2008, p. 78)

z = β̂j√
Var(β̂j)

, (33)

where the z-statistic has a standard normal distribution in large samples.

3.3.2 Bonferroni correction

In our analysis, we test multiple hypotheses simultaneously. This increases the overall risk of making
a type I error, which is the event of rejecting H0 when H0 is true. For example, if we conduct a
series of tests using significance level 5%, we would expect one in twenty to be significant by chance
alone (Rodŕıguez, 2007, p. 53). A possible solution is to control the family-wise error rate (FWER),
which is defined as

FWER = P (V > 0),

where V is the number of false positives among k tests. Given a significance level α, the Bonferroni
correction is

αBon = α/k. (34)

That is, we use αBon as the cutoff for each of the individual k tests. The Bonferroni correction
guarantees that FWER ≤ α (Kass et al., 2014, p. 304).

3.4 Basis function expansion
Cosine bases As in Fawad (2017) our choice for basis functions are the raised cosine bumps,
given by Pillow et al. (2008) as

bd(l) =
{

1
2 cos(a log(l + c)− φd) + 1

2 , if a log(l + c) ∈ [φd − π, φd + π],
0, otherwise.

(35)

where l represents the time lag, the φd’s are comparable to the placements or peaks of the cosines
which are separated by π/2, and a and c are constants. According to Pillow et al. (2008), these
constants are best chosen by evaluating the auto- and cross-correlation functions of the activity of
the neurons. We have chosen to use the choices of Pillow et al. (2008).

We have used d = 1, 2, 3, 4 to represent connectivity effects. The resulting basis functions (35)
are shown in Figure 17 along with its orthonormal equivalent in Figure 18. In our analyses, we
use the orthonormal cosine bases. The figures show that the orthonormal cosine basis allows for a
finer temporal representation at short lags, and a coarser representation at long lags. Thus with
the orthonormal bases we can more precisely measure the effects near the time of a spike, which is
desirable, since more emphasis is placed on this time interval in neuroscience literature, as it can
display effects such as refractory periods Kass et al. (2014).

Understanding basis functions as separate covariates Using a predefined basis functions
such as the cosine basis bd(l) we can construct new model covariates zd from old model covariates,
such as the neighbour neuron’s spike train x. In our case the equation to construct our new model
covariates is given as,
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Figure 17: Illustration of the (regular) Pillow basis weights for d = 1, 2, 3, 4 (correspondingly red,
blue, green and purple).

zd(t) =
160∑
l=1

bd(l)x(t− l) (36)

where zd(t) is the t’th element of the model covariate constructed by the d’th basis function bd.
bd(l) is the cosine basis element as described in Equation (35), and x(t− l) is the (t− l)’th element
of the original spike train of the neighbouring neuron. Thus, in our case for d = 1, 2, 3, 4, we get
for new model covariates z1(t), z2(t), z3(t), z4(t).

The new model covariates that are constructed with non-orthonormal Pillow basis are fairly in-
tuitive to understand, as they are the weighted positive spike ratio in a local area. The orthonormal
Pillow basis are less intuitive, as it is both negative and positive weights in a bigger and overlapping
area for each model covariate. However, the orthonormal bases increase the prediction precision,
and are thus preferred.
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Figure 18: Illustration of the orthonormal Pillow basis weights for d = 1, 2, 3, 4 (correspondingly
red, blue, green and purple).
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4 Jitter related methods
In this section we introduce a new analytic framework we call for the jittered generalised linear
model (JGLM). The JGLM is developed to analyse the connectivity between different neurons
based on spike trains. Spike trains are explained in Section 1.2.3, and connectivity is explained
in Section 1.2.3. In the following sections we present the permutation test, the jittering process,
jittered cross-correlation, hypothesis testing related with JGLM and how to use the JGLM.

4.1 Permutation test
A permutation test is a type of non-parametric randomisation test in which the null distribution of
a test statistic is estimated by permutation.

Let T be a test statistic so that large values are in favour of the alternative hypothesis. Let tobs
be the observed test statistic in a given experiment. We generate i.i.d. model covariate spike trains
under the null hypothesis H0, and calculate test observator Tsim. In principle the ideal p-value is,

p∞ = P (Tsim ≥ tobs)

but this is unknown. To compute p∞ exactly we would need to generate an infinite number of
simulated data sets (permutations). However, from Phipson and Smyth (2010), we have that p∞
can be approximated by pu where

pu = P (Tsim ≥ tobs) = b+ 1
B + 1 (37)

where b is the number of times out of B that Tsim ≥ tobs. This will give a valid p-value, that is
P (pu ≤ α) ≤ α for all α ∈ [0, 1].

We will use the log-likelihood as our test statistic T . The GLM model fit is created from spike
train data from neuron pairs. We will next discuss how random permutation of spike train data
can be generated with the aid of spike jittering.

4.2 The jittering process
The basic idea of a jittering process is to disrupt the order in a sequence to investigate the importance
of the order in the original sequence. We can then compare the order of the jittered sequences with
the original sequence with a hypothesis test. There are many hypothesis test alternatives for testing
the significance of the order of a sequence by jittering process, some of them will be explained in
Section 4.2 as well as in Section 4.4.

Here we use jittering on a discretized m-length Bernoulli process. Any such sequence can be
written as x := (x1, ..., xm) ∈ {0, 1}m, where xj indicates a 1 or a 0 for the sequential position j.
For neuroscience modelling x could represent a spike train where the value of xj would represent a
firing or no firing in time bin j.

Let X := (X1, ..., Xm) be a random sequence of the same form as x. In the neuroscience context
X is a random spike train drawn from an Bernoulli distribution with pj that varies for each bin j,
determined by the experimental setup.

We want to make X into a jittered (randomised) version X(i) = (X(i)
1 , X

(i)
2 , ..., X

(i)
m ). Since

the jittering process is random, many possible realisations of X(i) exist. Each different version of
X(i) would reveal different information of the original X, therefore to make the jittered vectors
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interpretative we jitter the X many times. Let each X(i) for i = 1, 2, ..., J be a jittered version of
the original vector X. A common choice is to jitter J = 1000 times. Thereafter the results from all
the jittered X(i) can be compared to the results from the original X.

It is assumed that the sequence x that we seek to jitter stems from a Bernoulli process with
probability value pj < 0.5 and preferably pj << 0.5 for every j. Since we assume our sequences x
to have fewer 1-values than 0-values, it will be more efficient to ”jitter” or change the position of
the 1-values than vice versa.

As explained in Amarasingham et al. (2011), there are many different jittering methods, two of
them are presented below and are called uniform basic jittering and uniform interval jittering.

4.2.1 Uniform interval jittering

In interval jitter we partition a sequence of the form x into k equally-sized windows consisting of ∆
number of bins each. Γi := {(i− 1)∆ + 1, ..., i∆} denotes the set of bins of the i’th window. Each
xj for a bin j with value 1, is uniformly jittered in its original window. Thus, interval jittering
provide local jittering that is non-centred around the spikes original position. Amarasingham et al.
(2011) explain that a sequence of spike counts N(x) = (N1(x), N2(x), ..., Nl(x)) is defined as the
interval-counts of spikes:

Ni(x) =
∑
j∈Γi

xj

Let T (x), the test statistic, be a fixed function that assigns a real number to a spike train.
Let X := (X1, ..., Xm) be a random spike train drawn from an unknown probability distribution,

determined by the experimental setup. A surrogate data set X(i) := (X(i)
1 , X

(i)
2 , ..., X

(i)
m ) is produced

by sampling from the (conditional) distribution:

P (X(i) = x|N(X) = n) = I{N(x) = n}∑
y∈{0,1}m I{N(y) = n}

(38)

(where I{} represents the indicator function. That is, X(i) is drawn independently and uniformly
from the subset of spike train outcomes (i.e., of {0, 1}m) that satisfy N(X(i)) = N(X). Iterating this
procedure J times, we obtain J (conditionally) independent samples X(1),X(2), ...X(J), drawn from
the distribution given in (38). The computational procedure for sampling from (38) is straightfor-
ward: proceeding independently window-by-window, assign Ni(X) spikes to window i by sampling
from the uniform distribution on the

( ∆
Ni(X)

)
possible assignments, where ∆ is number of bins in

a window. In other words, conditional on the number of spikes in a window we randomly assign
spikes to bins.

For illustration of interval jittering procedure see Figure 19.

4.2.2 Uniform basic jittering

As explained in Amarasingham et al. (2011) basic jittering is a heuristic procedure that jitters spikes
around the original spike position. In uniform basic jittering any xj for a bin j that has the value
1, is jittered such that the new position for the 1-value is placed in xj∗ where j∗ ∼ U [k = 1;−a, a]
for any a = 0, 1, 2, ..., where U(k = 1;−a, a) represents the discrete uniform distribution for any
integers in the interval [−a, a].

42



Figure 19: Illustration for the interval jittering procedure in window Γi for a spike train X. Γi
contains Ni = 2 firings, colour coded with blue and red in the illustration. For each jittered spike
train X(i), the red and blue firings have a randomised position within its windows Γi.

Alternatively we can imagine basic jittering as an interval jittering procedure were the jitter
windows are centred around the spikes in the original data set. That is, instead of having non-
overlapping windows as interval jittering does, we now have a jittering windows centred in every
spike.

It is important to note that any basic jittering procedure provides jittering where the 1-values
or so called spikes for a spike train is centred around its original position. As is further explained
in Section 4.2.3, using a centred jittering procedure is not recommended.

For illustration of basic jittering procedure see Figure 20.

4.2.3 Discussion

As explained in Platkiewicz et al. (2017) interval jitter gives valid p-values, guaranteeing valid
conclusions. However, such a guarantee is not available for spike-centred jitter, such as basic jitter.
For the proof see the cited article, nonetheless in this section we seek to deliver a more intuitive
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Figure 20: Illustration for the basic jittering procedure in an sub-area for a spike train X. In this
area there are two firings, which are colour coded blue and red. The ”blue” firing are in each jittered
version X(i) randomly placed in the jittered-centred window ΓBlue, and likewise for the ”red” firing
in the window ΓRed.

and logical interpretation for why interval jitter is the better choice.
The idea of jittering is that we want to test for connectivity between cell pairs by their spike

ordering in their spike trains (ST). We can imagine that the order in the spike trains, which
makes us able to detect connectivity, are twofold: local temporal placement of spike (LTPS) and
local frequency (LF). In this thesis we focus on testing connectivity due to local temporal spike
placement/distribution. We do not want to test for the connectivity between cells due to the local
frequency (frequency in windows) of spike trains. Thus, we want the jittering procedure to not
change the local frequency in the spike trains, yet to jitter the local temporal spike placement
as much as possible (completely random). In other words, we want the frequency in a window,
as explained in Section 4.2.1, to be unchanged, yet the order in the window to be as random as
possible. Following this logic, interval jitter would be an intuitive choice, and far better than basic
jitter.

The reason why we consider interval better than basic jittering are twofold, and can be put into
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words as the following.

• Interval jitter properly analyses connectivity due to LTPS, and not due to LF, while basic
jitter is a mix of both.

• Not only does basic jitter isolate the effects from LTPS badly, it also hallucinates (exaggerates)
connectivity due to LTPS, since the jitter spike placement are directly dependent on (centred
around) the original spike placement.

If we did not want to restrict ourselves to only detect connectivity due to temporal spike place-
ment, but also due to the frequency changes, the best jittering procedure could be to completely
randomise the order of the spike train. However, by completely randomising the spike placement
for all of the ST, the connectivity effects we investigate by the jittering effects are no longer local.
Such a complete randomising effect can be understood as an interval jittering procedure with only
one window, which covers the whole area of the spike train. However, such a procedure eliminates
the effectiveness of detecting which type of connections we have between cells. As there is nothing
left of the original temporal spike placement in the jittered version of the spike train, we are not
able to estimate the offset in firing time between the cells in the cell pair.

At first, an apparent way to try to measure the effectiveness between the basic and interval
jittering procedure may seem to be to measure in what way their results differ from the original
spike train. That is, if the results from interval jittering are more different from the original spike
train than the basic jittering are from the original spike train, for the same window size, we can
assume that it’s due to interval jittering being a better jittering procedure, as it highlights the
connections between the original cell pair better. However, when we try to measure this effect we
have to be very careful as the measured difference between the basic jitter and interval jitter could
be different due to two different causes, which are as following.

• Two different jittering procedures may consistently produce different results due to the amount
they randomise the original spike train. For instance imagine the two jittering procedure both
being basic jitter, but with different window size. We expect the basic jitter with the biggest
window size to have the more extreme values compared to the original spike train.

• The other reason for consistently different results between jittering methods are the way
we jitter itself. That is, for two methods with the same window size such as basic jitter and
interval jitter we may see different results due to basic jitter being spike-centred while interval
jitter is not spike-centred.

Although we compare the results for interval and basic jitter with the same window size it may
seem that the the second point is the only point influencing the consistent different results. Interval
jitter with the same window size is in fact more randomised than basic jitter. This can be explained
as follows; interval jittering is ”changed” twice, while basic jitter is only ”changed” once. That is,
for interval jitter the original spike is first placed into a non-centred window, before it’s jittered in
this window. However, for basic jittering, the original spike is simply jittered around its original
position. As a results for a window of size ∆ = 11 the basic jitter can move the original spike up
to 5 bins (in each direction) from its original position. However, for interval jitter for a window of
size ∆ = 11, the original spike can be moved up to 10 bins from it’s original position, (if its original
position is either in the first or the last bin in its corresponding window).
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Thus, the isolated consistent effect for the difference between basic and interval due to the
jittering procedure itself being different is difficult to measure. Thus, what at first may appear
as a simple sub-problem, choosing jittering procedure, is revealed to be a very complex problem.
Furthermore, the choice of jittering procedure is important for how we later can interpret our
results.

4.3 Jittered cross correlation
Jittered cross-correlation (JCC) is used in neuroscience in order to investigate the connectivity
between spike trains, as explained in Salt (2017). Jittered cross-correlation seeks to investigate the
significance in the local temporal relationship between two discrete vectors, for example two spike
trains.

For two discrete functions, that we denote by Y and X, we can measure the similarity between
them by discrete cross-correlation. For a real valued discrete vectors Y and X, both of length L,
the cross-correlation is defined as:

(Y ?X)[n] =
L−nI(n>0)∑

m=1−nI(n<0)

Y [m] X[m+ n] (39)

where n is the displacement, also known as lag. Thus, we get a different measurement for
similarity between the two discrete functions for different lags.

Given that Y and X represent two spike trains, and X have a tendency to fire 10 ms before
Y fires, this is a indication of connection between them. Jittered cross-correlation tries to system-
atically measure this effect in order to detect connectivity between a cell pair. What is meant by
connectivity in a neuroscientific context is further explained in Section 1.2.3.

As already stated in Section 4.2, there are many ways to jitter, but it is preferred to choose a
non-spike-centred jittering method such as interval jittering. To test for connectivity between spike
trains with JCC one of the spike trains, lets say X is jittered η = 1000 times. Each jittered version
of X can be written as X(i), where i = 1, 2, ..., J . Thereafter we compute the cross-correlation, see
(39), for Y and X(i) for every i. We compute the cross-correlation Equation 39, we choose lag from
n ∈ [−50, 50], in order to be able to detect common, direct and indirect connections as explained
in Section 1.2.3.

Additionally the cross-correlation between Y and the original spike train X is computed. Thus,
for the original cross-correlation, that is the cross-correlation between Y and X we have 101 cross-
correlation values, each for one of the n-values, as n ∈ [−50, 50]. Thus we can write these values as
a 101 element long vector Z, where

Z =
(

(Y ?X)[n− 50], (Y ?X)[n− 49], ..., (Y ?X)[n+ 50]
)
,

where Y and X are the two original discrete functions we want to compare, and n is the lag
between their comparison. Furthermore this can be done for every comparison between Y and all
the jittered versions X(i) of X. As such we can write the jittered cross-correlation results as

Z(i) =
(

(Y ?X(i))[n− 50], (Y ?X(i))[n− 49], ..., (Y ?X(i))[n+ 50]
)

Now that we both have cross-correlation results from non-jittered spikes trains Z, and cross-
correlation results from jittered spike trains Z(i), we can compare these to see how the jittering
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changes the similarity between the signals. If the difference between Z and one of its jittered versions
Z(i) for any i is great, we can assume that the local temporal spike relationship is of importance
between the communication between the cell pair, and thus that the cell pair is connected. However,
the difference in value between Z and any of its jittered versions Z(i) may vary greatly between
every j, thus we want to compute the mean Z̄(i), as well as the variance s2

Z(i) across all of the
η = 1000 of the jittered versions Z(i).

Instead of comparing Z to the individual jittered results of Z(i) we compare Z directly to all
of the jittered results by comparing it to Z̄(i) and s2

Z(i) . If the difference in value at a timepoint
τ between Z(τ) and Z̄(i) is greater than that off c · sZ(i)(τ), for a constant c that determines the
quantile size, we can conclude that there is a connection between the pair due to the local temporal
spike relationship. A visual representation of this can be seen in Figure 21. This procedure of using
both cross-correlation and jittering to investigate connectivity between discrete functions is called
jittered cross-correlation. Important to note is that the conclusion from Section 4.2 that interval
jittering is a better choice than basic jittering is also valid for the JCC method.
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Figure 21: Visual representation of jittered cross-correlation results computed by the author, from
the data set Peyrache (2015). Time lags along the x-axis, and the cross-correlation value along the
y-axis.
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4.4 Jittered hypothesis testing
The JGLM method requires the use of hypothesis testing in order for us to detect significant results.
For any jittering procedure there are many different choices for hypothesis testing, depending on
what type of data we have, what kind of jittering procedure is chosen and what kind of results we
are interested in.

The hypothesis test particularly developed for JCC, explained in Section 4.3, resembles the
suggested Basis TC test for JGLM in Section 4.4.2. The other choice for test of JGLM is the use
of likelihood-value further explained in Section 4.4.1.

4.4.1 Test by likelihood

By jittering the model covariates and fitting a GLM to X we have i = 1, ..., J different likelihood
values L(i). We let L(1), L(2), ... be the a sequence of i.i.d. random variables from an unknown
distribution. We would like to test if our original likelihood-value LORG comes from the same
distribution as any of the jittered likelihood-values L(i).

H0 : LORG and L(i) are identically distributed
H1 : LORG comes from another distribution than L(i) comes from

As we for this jittered likelihood test have made the same assumptions that we have for a
permutation test, we can use the same test as is presented in Section 4.1. Thus (37) can in our case
be rewritten as,

p =
∑J
i=1 I(L(i) ≥ LORG) + 1

J + 1 (40)

where I() is the indicator such that I(L(i) ≥ LORG) = 1 if L(i) ≥ LORG is true, and 0 otherwise.
An illustration of this test can be seen in Figure 23.

4.4.2 Basis-tuning-curve

By using basis-tuning-curve (basis-TC) we look at the difference between estimated probability for
firing in the response cell based on a firing in the model covariate cell between the fitted and the
jittered models. For this test we first construct the basis tuning curve which uses the fitted β-values
for the Pillow basis model covariates together with the Pillow basis weights,

Ck = eηk

1 + eηk
= eβ0+

∑4
d=1

βdbd(k)

1 + eβ0+
∑4

d=1
βdbd(k)

(41)

where bd(k) is the Pillow basis weight for the d’th basis function corresponding to the k’th
element, as described in Section 3.4. So ηk = β0 +

∑4
d=1 βdbd(k) is the constructed linear predictor

element and Ck is the resulting estimated probability for firing in the response cell Y k ms after a
firing in the paired cell X, where X only fired once in the last 160 ms (the chosen pillow basis only
spans 160 ms). (The linear predictor in the regular sense is defined as η(t) = β0 +

∑4
d=1 βdzd(t).)

Thus, we can construct a discretized curve, that we call the basis tuning curve, C = C1, C2, ..., C160.
Furthermore we can construct another such curve for each of the jittered versions, thus we get,
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C
(i)
k = eη

(i)
k

1 + eη
(i)
k

= eβ
(i)
0 +
∑4

d=1
β

(i)
d
bd(k)

1 + eβ
(i)
0 +
∑4

d=1
β

(i)
d
bd(k)

where β(i)
j is the results corresponding to βj in Equation (41) for the results from the fitted

GLM from model covariates X(i). Thus, each jittered versions has it’s own linear predictor η(i)
k and

tuning curve C(i)
k . Furthermore, we can estimate the average in each time lag k for each such curve

to be,

C̄k = eη̄k

1 + eη̄k
= eβ̄0

(i)+
∑4

d=1
β̄d

(i)
db(k)

1 + eβ̄0
(i)+
∑4

d=1
β̄d

(i)
bd(k)

where β̄j
(i) is the mean of βj(i) for all i’s. Additionally, we can estimate the variance, S2

k , of all
of the linear predictors η(i)

k .

S2
k = 1

J

J∑
i=1

(η(i)
k − η̄k)2

We may construct a confidence interval, for the probability of Y spiking at time t as the function
of the spikes in X for the last 160 ms before time-point t. This results in the confidence interval
[L,U ] where the lower and upper boundary L and U are defined as,

L = eη̄k−cSk

1 + eη̄k−cSk
,

U = eη̄k+cSk

1 + eη̄k+cSk
,

furthermore c is constant determining the size of the interval. As this is a form of multiple
testing, one test for each time lag k, we can argue that the constant c should be determined by
Bonferroni. However, such a choice is very conservative as the different test are not independent.
Thus, one of the challenges using this test is determining the interval size, which is dependent on
the the correlation between neighbouring time lags k for the basis tuning curves C(i)

k .
Furthermore, it is difficult to give an exact intuitive interpretation of the test results from this

test. Thus, in this thesis the test presented in Section 4.4.1, is the preferred test for the JGLM
framework.

However, the basis TC is a very useful aid into interpreting the relation between spike train
pairs. An illustration of the basis TC can be seen in Figure 24.

4.4.3 Test choice

The preferred test for JGLM in this thesis is the test by likelihood, due to the various challenges
with Basis TC hypothesis test. However, if we identify a cell pair to be significantly connected
according to our model, we would like to investigate what type of connection we have. This can be
investigated by using the Basis TC plots and check for what lag that the Ck deviates most from
C̄k (furthest outside the test interval [L,U ]).

50



4.5 Jittered GLM
JGLM is developed as an additional tool to classic asymptotic (non-jittered) GLM and JCC in
order to detect connections between cells represented as spike trains. The idea of the JGLM is to
combine the strengths of both JCC and GLM into a new more precise and reliable framework in
order to detect neuronal connections.

In this setting the strengths of the JCC framework is that it effectively utilises the information
in the temporal sequences of spike trains by jittering. The main challenges with this is the exact
choice and interpretation of the jittering on the temporal sequences.

GLM is a well developed statistical framework. However, as GLM does not require the response
to be sequences of any form, the GLM does not utilise the additional temporal sequence information
in spike trains. Thus the JGLM framework can be used as an alternative or an additional tool when
the response are a sequence of any kind, such as a temporal sequence.

4.5.1 GLM and its limitations

GLM can be used as a tool to detect connectivity between cells when the response Y is the spike
train from a cell and the spike train from another cell X is included as model covariate(s). This
procedure have been investigated in Aga and Fawad (2017). At first we can imagine the covariate
simply being X a n× 1 vector representing the spike train for a single neighbouring cell, such that
the linear predictor (for the GLM) can be written as

η(t) = β0 + X(t)β1 (42)

where η(t) is the linear predictor for Y (t), where Y (t) is the t’th entry of the response spike
train Y, and β1 a model parameter.

However, using the original spike train X as the only model covariate, as in (42), is not a very
good model for detecting connectivity between spike train, since we are testing for a connection
between the spike trains due to what happens at the exact same time only.

As explained in Section 1.2.3, we expect there to be a time lag between related events in paired
spike trains. Thus, we want to transform the original spike train X into many model covariates
zd(t), using basis function expansion as explained in Section 3.4, in such a way that we are able to
better detect connectivity between cell pairs. The results is that we get more model covariates that
represents the activity of X, such that the corresponding linear predictor can be written as,

η(t) = β0 +
4∑
d=1

βdzd(t) (43)

where zd(t) for d = 1, 2, 3, 4 is the basis function expansion model covariates, explained in
Section 3.4, that we get from expanding the original spike train X. With the linear predictor
η(t) from (43) we can explain the connectivity for the cell pair (with the precision given by the
number of basis function expansion model covariates). However, we are still able to improve the
precision that we are able to detect connectivity between cell pairs with this model by including
more model covariates. These new model covariates filters out ”noise” from the model. By noise
in this setting, we mean anything that is unrelated to the connectivity effect between the cell pair
under investigation. Thus, these new covariates explains away the ”connectivity” effects that are
not of interest.
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Adding extra model covariates The new linear predictor that we get using such a method can
be written as

η(t) = β0 +
4∑
d=1

βdzd(t) +
r∑
d=5

β∗dz
∗
d(t) (44)

where the first part of the equation is the same as in (43), while the last part
∑r
d=5 βdz

∗
d(t),

represents any additional effect added by model covariates z∗d(t).
From Kass et al. (2014) we have that a natural division of the model covariates is; history effect,

connectivity effect, external effect. Additionally we are aware that there are remaining effects that
may be important that doesn’t fit in either of these categories. Thus we can write our linear
predictor for such a model as

η = history effect + connectivity effect + external effect + other effects (45)

History and connectivity effects In Equation (43) we already model for connectivity effect,
but only for one single neighbouring neuron, thus to model history and connectivity effect we need
to extend the linear predictor as in (44). Thus, the most natural new linear predictor in our case
would be,

η(t) = β0 + ηconnect(t) + ηhist(t) = β0 +
R∑
r=1

4∑
d=1

βneighd,r zneigh
d,r (t) +

dself∗∑
d=1

βself
d zself

d (t) (46)

where we model connectivity effects for R neighbouring cells, where each cell has four basis
function generated model covariates as in (43). Thus, zneigh

d,r is the d’th basis function for the r’th
neighbouring cell and βneigh

d,r its corresponding parameter. Furthermore we have added an undefined
dself∗ number of model covariates for history effect which is treated exactly the same as connectivity
effect, except that the basis for the model covariates that basis function expansion is used upon
is the response spike train Y itself. zself

d represents the d’th history model covariate and βself
d its

corresponding parameter. Here the history effect got the same number of model covariates as any of
the neighbouring cells, we may want the number of model covariates for history effect to be higher
since we expect the cells own history to have a higher prediction value for the cell’s own behaviour
than an arbitrary neighbouring cell.

External effect In Fawad (2017) and Aga and Fawad (2017) a different type external (stimulus)
effect was used than in this thesis. In these papers the stimulus varies as the trial progresses through
its three stages, sample epoch, delay epoch and response epoch. A simple approach to incorporate
the effects of these periods is to include the trial time as a covariate. Such trial time may have
non-linear effects on the firing rate of a neuron. Thus such stimulus can have both a linear and a
non-linear effect, leading Fawad (2017) to suggest the linear predictor

ηj(ti) = α0j +
D∑
d=1

γdjt
d
i , (47)
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were the polynomial is represented with a set of orthogonal bases {P1(ti), ..., PD(ti)} called Leg-
endre polynomials. Each Pk(ti) is a polynomial of degree k, and can be expressed using Rodriguez
formula Rodŕıguez (2007).

Pk(t) = 1
2kk!

dk

dtk
(t2 − 1)k (48)

Thus, resulting in

ηj(ti) = α0j +
D∑
d=1

γdjPd(ti). (49)

However, as our data set, and thus our stimulus/external effects are different, we would need
different model covariates for external effects. The external effects in Aga and Fawad (2017) have
very few natural choices for model covariates as it is a sequential order of three discrete levels.
However, in this thesis we have many continuous 1-D external effects, such as speed and HD, and
we have a continuous 2-D external effects, position, which gives us many additional reasonable
model covariates to include into this GLM model.

The 1-D effects can be modelled by dividing them into time bins such as the response spike
train, here the t’th element in the speed model covariate XSpeed(t) can simply be the speed of the
rat at the given millisecond. Such a modelling allows for detecting a linear trend between the speed
of the rat and the firing rate in the response neuron. Potentially we can model the external effect
of the speed with more than one model covariate to allow for detecting non-linear effects between
the speed and the response.

Furthermore, to model HD we would recommend to divide HD into angle bins as done in Section
2.3.2. Thus, we get a model covariate for each angle bin i, thus XHD(i)(t) represents the model
covariate for the t’th element in time for the i’th angle bin. Here a natural choice is to represent
XHD(i)(t) with a 1 if the rat had its head in the direction of the i’th angel bin in the time represented
by the t’th element, and 0 otherwise.

Additionally we got even more model covariates for the position as it’s a 2-D effect. There are
two apparent natural ways to model this external effect

• The non-overlapping discrete case. Divide the box into non-overlapping squares where each
one of them are represented by a model covariate. If the rat is in the given position at a
given time, the elements value is 1, otherwise 0. This suggestions is the 2-D analogy to the
suggestion for HD modelling.

• The overlapping weighted case. In an effort to reduce the number of model covariates without
reducing the modelling precision we introduce the overlapping weighted case. In this case we
suggest to introduce a number of equidistant focal points that span the box, each which
measures the distance of the rat from the given point at each time period.

Additionally we may want to add some basis function expansion, in the same way as we do for
connectivity effect, to also evaluate the effects with a delay in time.

Summary This model is considered good for detecting connectivity between spike train. In order
for this method to be even better we need to add more model covariates. Although the methodology
and idea of this is simple, we run into computational and practical challenges doing so. Thus, in
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practice we have to set a limit for how many model covariates the model can include, and thus how
precise it can be.

With JGLM we seek to bypass this problem with more directly utilising the temporal information
in the spike train sequences, which we consider the essential part in being able to detect connectivity
between cells.

4.5.2 JGLM framework

In short the JGLM framework can be summarised as.

1) We want to fit a GLM to a pair of spike trains to see whether they are connected. This can
be done as explained in Section 4.5.1. Once the model is fitted, we can evaluate the likelihood
to see whether the chosen model covariates make for a good fit between the cells.

2) We deem the previous point, not a good enough test for connectivity, as detecting a good
fit in this way, i.e. connectivity may easily be confounded with other external factors.

3) We consider a variation of permutation test for the fitted GLM results, particularly devel-
oped for pairs of spike trains, to be a good enough test for detecting connectivity between
cells. The permutation process is explained in Section 4.2.1, and the testing is explained in
Section 4.4.1.

4) We want to test many cell pairs, thus we may want to adjust for multiple testing. In our
case we leave the p-value at p = 0.05 but one can adjust the p-values with the Bonferroni
correction. The p-value adjusted with Bonferroni is p ≤ αLOC = 0.05

m , where m is the number
of cell pairs we are comparing.

5) If we detect connectivity between two neurons, we classify the connection type by using
the basis tuning curve, as explained in Section 4.4.2.

A more philosophical discussion of the JGLM framework can be seen in Section 7.
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III Statistical analyses
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5 Regression model
In this chapter define the response variables and the model covariates used in the JGLM model in
Sections 5.1 and 5.2, respectively.

5.1 Spike train as response variable
The activity of a cell is recorded as a spike train. Simply put, a cell can be in either of two states,
a resting state or an active state. The point in time when a cell transitions from a resting state to
an active state is called a firing. When analysing neural data, the rate at which a cell fires, and
the proportion of time it fires, is of interest. An important concept in neurophysiology is that cells
respond to a stimulus or contribute to an action by increasing their firing rate (Kass et al., 2014,
p. 563). Formally the firing rate at time t is defined as

FR(t|xt) = lim
∆t→0

E(number of spikes in (t, t+ ∆t)|xt)
∆t , (50)

where xt can incorporate any experimental conditions, any history effects of previous spikes or even
activity of neighbouring cells. The numerator in (50) is the expected number of spikes in a time
interval of length ∆t.

Consider an observed spike train s1, s2, ..., sm over a time interval (0, T ], where the si’s are the
times at which a spike occurs. Such a spike train is modelled as a point processes S1, S2, ... on
(0,∞) (Kass et al., 2014, p. 564). To analyse a point process within the framework of the GLM,
we need to discretise the spike times (Kass et al., 2014, p. 568). A way towards discretisation
is the counting process representation of the point process, N(t). The function N(t) counts the
total number of spikes that have occurred up until and including time t. Next, we divide the finite
observed time interval (0, T ] into n bins of equal length ∆t = T/n. The number of spikes in bin
i can now be counted as ∆Ni = N(ti) − N(ti−1), where ti = i · ∆t. The set {∆Ni; i = 1, ..., n}
is called the discrete increments, and it is displayed in Figure 22 along with the spike times and
the counting process. Note that both the point process S1, S2, ... and the counting process N(t)
are stochastic processes in continuous time, while the discrete increments {∆Ni; i = 1, ..., n} are a
sequence of random variables in discrete time.

Let Yi = ∆Ni. If we choose a small enough bin size ∆t, it is unlikely that there will be more
than one spike occurrence in a single bin (Kass et al., 2014, p. 568). That is, P (Yi > 1) ≈ 0. Hence
we have that

Yi ∼ Bernoulli(pi), (51)

where pi = P (Yi = 1). This is the case illustrated in Figure 22. Furthermore, since E(Yi) = pi we
can rewrite the firing rate defined in (50) as

FR(t|xt) = lim
∆t→0

P (spike in (t, t+ ∆t)|xt)
∆t .
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Figure 22: The spike times S1, S2, ... are random variables, each representing the point in time when
a spike occurs. N(t) is a cumulative count of spikes that have occurred up until and including time
t. The discrete increments ∆Ni count the number of spikes in bin i. This figure is taken from Kass
et al., 2014, p. 567, with permission from Springer.

5.1.1 Joint PDF approximations

The joint pdf of a sequence S1, ..., SM from an inhomogeneous Poisson process, with intensity
function λ(t), over an interval (0, T ] is given by (Kass et al., 2014, p. 574)

fS1,...,SM
(s1, ..., sm) = exp

(
−
∫ T

0
λ(t)dt

) m∏
i=1

λ(si). (52)

The reason for assuming non-stationarity is because the pi’s in (51) are assumed to vary between
bins.

Next, consider a binary sequence Y1, ..., Ym constructed in the same manner as in Section 5.1,
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over the same time interval (0, T ]. The joint pdf of this binary sequence can be derived as

fY1,...,Ym
(y1, ..., ym) =

m∏
i=1

fYi
(yi)

=
m∏
i=1

pyi

i (1− pi)1−yi ,

where we’ve assumed that the Yi’s are independent, and used (51) in the last step. Now according
to (Kass et al., 2014, p. 575), as ∆t→ 0 we have that

1
(∆t)m

m∏
i=1

pyi

i (1− pi)1−yi → exp
(
−
∫ T

0
λ(t)dt

) m∏
i=1

λ(si), (53)

where we’ve defined
pi = λi∆t, (54)

where λi = λ(ti), and ti is the midpoint of bin i. Note that we’ve scaled each fYi
(yi) in (53) by

1/∆t, to avoid that pi → 0 when ∆t→ 0, where pi is defined in (54).

5.2 Connectivity as model covariates
In this work the model covariates are the pairwise history effect from the subset of cells chosen in
Section 2.3.3 presented in Table 1. Each spike train of these cells have been modelled by cosine
bumps basis functions as explained in Section 3.4, into four new covariates, weighted as represented
in Figure 18.

5.2.1 Other model covariates

Additional covariates, as discussed in Section 4.5.1 may be history effect and external effect. History
effect which can be modelled in the same fashion as connectivity effect, just that the in this case
the cell is paired with itself. We have in this work only modelled connectivity effects between cell
pairs, that is one response cell Y is modelled by one neighbouring cell X and its basis function
expansion model covariates.

In this work there are two main challenges with using external effects as model covariates.

• Number of covariates. Challenges with many covariates as mentioned in Section 4.5.1

• Quality of movement data. Explained in Section 2.2
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6 Data analyses
In this chapter we present the part of our analyses were tools from Part II are used. All analyses
was done on the time period 1 (0-10 first minutes), see Section 2 for further description, with a
p-value off 5%, see Section 4.5.2 for discussion, on the subset of cells described in Section 2.3.3. Our
main goal is to estimate connectivity between cells. In Section 6.1 and 6.2 we will in detail look at
three specific cell pairs. In Section 6.3 we will look at the connectivity’s for all the cell pairs in the
subset in order to investigate the information in the network.

We have decided to treat the data in the programming language R Core Team (2016), packages
that was used which is due credit are ’ggplot2’ Wickham (2009) used for graphics and ’corrplot’
Wei and Simko (2017) used for plotting Figure 25. Additionally ’STAR’ Pouzat (2012) was used for
spike train representation and ’smoother’ Hamilton (2015) used for constructing movement video.

6.1 Finding connections
First we use the model following the description in Section 5 to find connections between cell pair
from the subset of HD and spatially tuned cells analysed in Section 2.3.3, overview of which cell tag
number belongs to exactly which cell can be seen in Table 2. The connections between these cells
have been found by the permutation test on the likelihood values generated by JGLM with interval
jittering as discussed in Section 4.1 and Section 4.5.2. In the analysis done the number of jittering
was set to 1000. In this and the next section we look further into the one way communication for
three cell pairs

A, information flow from cell 10 to 12 (from T11C2 to T12C13), see Table 2, was identified as
significant with both interval and basic jittering.

B, information flow from cell 7 to 2 (from T8C3 to T3C30), was identified as significant with
basic but not with interval jittering.

C, information flow from cell 3 to 12 (from T4C3 to T12C13), was identified as significant with
interval but not with basic jittering.

From Figure 26 and 27 we have that JGLM with basic jittering produces many more significant
connections than interval jittering. Case C is in fact the only connection identified where interval
is significant but basic is not, but both the situation in case A and B, where either just Basic or
both basic and interval is significant is quite common.

The distribution of log-likelihood values from JGLM procedure with interval jittering and the
original log-likelihood value are illustrated for all the three cases in Figure 23. Thus from Figure 23,
the p-value that indicate whether there is a connection or not between the cell pair is illustrated.
For case A and C we have that the original log-likelihood is in the rightmost 5 percent quantile of
the jittered log-likelihood density, but this is not the case for cell pair B.

6.2 In depth analysis of specific connections
To study the three cell pair cases in more depth we analyse them with non-jittered GLM and
Basis-TC as well.
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Figure 23: From the p-values we identify one of the significant connections. This significance is
illustrated in the plot, were the black curve represents the density plot for all the 1000 jittered
log-likelihood-values, while the red line represents the original log-likelihood-value.

Analysis with non-jittered-GLM. For analysis with non-jittered-GLM we get results presented
in Table 4. If we were to only test for connection between cell pairs with non-jittered-GLM with
the given model covariates, the reasonable choice seems to classify any cell pair with at least one
significant model covariate as significantly connected. However, we expect most cell pairs to have
at least one significant model covariate, even though they are not connected, as we consider the
non-jittered-GLM test to test for more than just the connectivity between cells. An overview over
connections based on this type of classification can be seen in Figure 28, and we see that in fact
close to all cells are classified as connected with this type of test.

Furthermore we want to look at the specific results for the three cases in Table 4. For case A
we have that all four model covariates are significant, for case B that three of four model covariates
are significant, while we have zero significant model covariates for case C.

It is as expected that case A is well connected according to non-jittered-GLM as it is both
connected according to JGLM with basic and interval jittering. Furthermore it is natural that case
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ModelCov 10-12 (T11C2-T12C13) 7-2 (T8C3-T3C30) 3-12 (T4C3-T12C13)
1 p < 10−16 * 5.28 10−6 * 0.8839
2 p < 10−16 * 6.08 10−5 * 0.9444
3 p < 10−16 * 0.47402 0.3789
4 0.0104 * 0.00923 * 0.0554

Table 4: P -values for the fitted model covariates for connection from 12 to 3 and from 8 to 2, for
non-jittered GLM. We can see that both of them have at least one significant model covariate, i.e.
using non-jittered GLM as this, we would classify both connections as significant. 10-12 significant
for I1 B1. 7-2 significant for B1 but no I1. 3-12 only that is significant for I1 but not for B1.

B is also well connected due to non-jittered-GLM, but not quite as much as case A, as it is connected
according to JGLM with basic but not with interval jittering. However, more surprisingly is it that
case C has no significant model covariates. Case C is in some sense an odd case, since both basic
and non-jittered GLM are expected to exaggerate connections, yet they do not indicate connection
for case C, but interval does indicate connection, which we do not expect to exaggerate connections.
It is thus tempting to think of case C as an false positive by the interval JGLM test, however there
is no way to know for sure with this data set. However if it in fact were a false positive there are
three reasonable ways to deal with this

• Leave it as it is, as there will always be false positives.

• Change the p-value cut-off to take into account multiple testing.

• Lastly, as in case C, the connection passed the interval JGLM test, but not the non-jittered-
GLM, we may consider double testing, both with interval JGLM and non-jittered-GLM. This is
not standard procedure to double test, but the argument for would be that interval JGLM and
non-jitt-GLM test tests for different features for the connection, and that it may be reasonable to
demand for the cell pair to have a certain threshold for both features to be classified as significant.

However, the fact that the results from case C is somewhat surprising doesn’t mean that anything
is classified incorrectly, thus before changing anything this hypothesis should be tested on bigger
scale with a ”ground-truth” data set, where the truth of the connections are known.

The idea of ground-truth testing is additionally of interest for testing the whole JGLM frame-
work, more thoroughly discussed in Section 7.

Analysis with basis TC Once we have found connections as described in Section 6.1, we are
interested in analysing the particular connection in further detail. One important tool in doing so is
the use of the Basis TC described in Section 4.4.2. For the three specific cases illustrated in Figure
23 we get the following Basis TC plots shown in Figure 24. There are many potential ways to use
the basis-TC plots to identify connections, here we have chosen to let the first time the original
basis-TC curve are outside the 2 standard deviation confidence interval of the mean curve decide
the connection type.

From these plots we can see the following.

A - Indicates a clear excitatory common connection.
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Figure 24: We want to investigate the type of connection by basis-tuning-curve. The black line
represents the original basis tuning curve, the red line the mean of all the basis tuning curves from
the jittered results and the green line 2 (dotted) and 3 standard deviations from the red line. The
upper left picture is case A, see Section 6.1, the upper right is case B and the bottom picture is case
C. Both case A and C indicates a common excitatory connection between the cells, as the black
line is outside the 2 standard deviation interval at the 0-5 ms lag. Case B indicates no connection
as we would expect, as it is not significant for interval JGLM test.

B - No clear indication off connection.

C - Indicates a excitatory common connection (but not as strongly as in case A).

As expected case A got the most clear indication for type of connection from the Basis TC
plot. However, B shows no connection, and C shows the same type off connection as A but with
weaker significance. Although, we could argue that case B is more significantly connected than
case C, the results make sense as the basis-TC plots plotted are based on interval jittering. Thus,
if the interval JGLM p-value is significant, we would expect basis-TC based on interval jittering to
indicate a connection and vice versa. Thus, it is superfluous to use basis-TC to classify if we have a
connection when we have test by likelihood explained in Section 4.4.1, however basis-TC plots are
very useful to gain insight into the type of connection and whether the connections is excitatory or
inhibitory, see Section 1.2.3.
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Alternative basis-TC use As mentioned there are many alternative choices for identifying
connection types with basis-TC. In the given framework, when we use basis-TC when we have
already classified if there are a connection or not. Thus, it could be argued that we do not really
need a confidence interval, as every connection has a connection type.

Given the framework we are using, when we are using basis-TC we have already classified the
connection, but not which type. The connection however will always have a type, yet we will always
have a degree of uncertainty in classifying the type. Thus, choosing the size of the confidence interval
or classification method could be done in many ways. One alternative choice is instead of looking
at the first time the original curve is significantly different than the mean curve, we could identify
the position where the original curve is the most different from the mean curve. These two criteria
often coincides, especially with the basis functions chosen (where the weighted value of the basis
function decreases with temporal lag).

Of additional interest is that the basis-TC oscillates in time between indicating an excitatory
and inhibitory effect. This is quite common as the temporal timing of the spikes are of importance
in the spike train. For case A, this means that for a single spike in T11C2 at lag 0 increases the
chance for a spike in T12C13, while a spike at lag 20 in T11C2 actually decreases the chance of a
spike in T12C3 slightly.

Basis-TC as a generalisation Furthermore it should be noted that the basis-TC plots only
show the variation of the probability for firing according to our model for a single spike in the
sender-cell in the 0-160ms interval. Thus it does not show what happens when the cell spikes more
than once in the 0-160ms interval. For two spikes in the plotted interval there would be no single
basis-TC curve, but rather an ensemble of 159 different curves, one for each of the different temporal
combinations of spikes in the interval. Thus, the basis-TC is a generalisation of the representation
of the influence spikes in cells have on other cells. Yet, it is assumed, from our understanding of
cells from Section 1, that the singular spike version of basis-TC presents a good picture for how
the multiple spike versions of the basis-TC look like. That is to say that two spikes at temporal
timings that individually increases the firing rate in the pair cell, would additionally increase the
firing rate probability for the neighbour cell when fired in the same interval, (and not change the
behaviour completely i.e. inhibit firing rate).

6.3 Network of neurons
We have in Section 6.1 and 6.2 looked in depth at the connection between three directed cell pairs.
We now want to look at the connections between all the cells (from the subset given in Table 2)
simultaneously. The connections are still identified with p-value at 5 percent. Figure 26 illustrates
these connections for interval JGLM, Figure 27 for basic JGLM, and Figure 28 for non-jittered-
GLM test. In addition to these plots which represents significant connections between cells, we
have Figure 25 with p-values for connections, identified by the test by likelihood see Section 4.4.1
for both basic and interval jittering.

Different type of network identified From these figures we can see that basic JGLM indicates
more connections than interval JGLM. This coincides well with what was reasoned in Platkiewicz
et al. (2017), that basic jittering can exaggerate the number of connections one gets. Thus, from
what was presented earlier in Section 4.2, interval JGLM (or any JGLM with non-centred jittering)
should be preferred over basic JGLM (or any JGLM with centred jittering).
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Figure 25: Correlation plot between connections from the test by likelihood, here element (1,2)
represents a connection from cell 2 to cell 1. The value in the y-column represents the negative
10-logarithm value of the p-value from the test by likelihood defined in Section 4.4.1. The leftmost
plot represents the value for this procedure by interval jittering, while the rightmost is for basic
jittering. Thus, we can see that overall basic jittering indicates more connections than interval
jittering.

Furthermore non-jittered-GLM indicates that nearly all cell pairs have a significant connection,
even more than basic JGLM. As discussed in Section 6.2 we did expect our version of non-jittered-
GLM to exaggerate the number of connections. Yet it remains an open question whether this
version of non-jittered-GLM test is useful for a sort of double test as discussed in Section 6.2.

Neuroscience analysis on tuned cells From Table 2, we have that neuron 1, is both identified
as HD tuned and ST, neurons 4,6 and 10 as ST and the rest are identified as HD. From Figure 26
we see that the ST tuned neurons receive more information from the other cells in the subset than
they relay. Furthermore we can think of ST tuned cells as having a more complicated task than
HD cells, as there are more ways to map the 2-D space, than there are different head directions.
Thus, it is natural that HD cells communicate more with ST cells than vice versa.

Neuroscience analysis on cells from different brain areas The cells in the chosen subset
resides in the brain areas described in Table 3. The subset of cells is too small to precisely say
anything about the flow of information between different brain areas. But if we were to say anything
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Figure 26: Significant connection representation of the network of neurons for JGLM with interval
jittering.

from Figure 26, we would say that cells in the CA1 region have few significant connections compared
to our other cells, and are only connected with EC-cells, mostly sending information towards them.
The two cells from DG only receives information from the EC cells, which corresponds well with
what is known about DG see Section 1.2.1, and communicate some with the two cells from CA2.
Furthermore the EC cells got a high connection rate between other cells in the EC, in addition to
communicating quite a bit with other cells.

It appears that the CA region is tasked to relay and receive information from EC. While the
EC-cells in addition to relay and receive towards CA-cells regions, are heavily tasked with internal
communication with other EC-cells.
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Figure 27: Significant connection representation of the network of neurons for JGLM with basic
jittering.



Figure 28: Connections from regular GLM by Wald test as explained in Section 6.2. Nearly all cells
have significant connections for one or more of the 4 model covariates. Thus, testing for connectivity
between neural networks with a GLM with few model covariates gives bad results. It is apparent
that using JGLM with few model covariates gives much better results than using GLM with few
model covariates.



7 Discussion and conclusion
In discussion and conclusion we will in Section 7.1 present a summary of the most important
parts of our thesis. Thereafter for a particular summary of the challenges in the data analysis,
see Section 7.2, for discussion about further development of JGLM see Section 7.3 and lastly to
see the conclusion of this thesis see Section 7.4. As we have developed a new method, a lot of the
motivation and discussion is written throughout the thesis. Therefore, it is recommended to consult
the references in this section for a complete discussion and understanding of the choices made.

7.1 Summary
The original idea of the thesis was to analyse the information flow between HD and spatially tuned
cells, however as discussed in Section 2.3, there were some challenges to identify tuning of cells in
this data set, particularly for identifying cells of spatially tuning due to the quality of the movement
data.

Thus, the natural focus in this thesis shifted towards analysing the neuronal network (and the
tuning of the cells we were able to detect) as best as possible. The use of GLM have already been
extensively used and described in Aga and Fawad (2017) and Fawad (2017). Thus, it was then
wanted to compare the use of JCC and GLM for detecting connections between cell pairs. Yet,
from this idea it arose a natural question of what the best part of JCC is and what the best part
of the GLM was, and why either one of them would be better than the other. The pros and cons
of each method have been discussed in Section 4.

The idea of the author was that, the most important part of the JCC was the jittering, while
the most important part of the GLM framework was the rigid proper statistical idea and framework
behind it. Thus, the next idea was to combine the best part of the GLM and the JCC into one,
which resulted into the JGLM framework. From the results in Section 6 we see that JGLM appears
to be a good model for detecting connectivity between cell pairs, but that further testing and
maybe modification of the JGLM as noted in Section 7.3 is needed. In Section 4.2 we discuss
why interval jittering fits the JGLM and JCC framework very well, while basic jittering does not.
Additionally the development of the basis-tuning-curve, which is very useful for classifying the
type of a connection between neurons, is explained in Section 4.4.2. Furthermore, as commented
in Section 6.3, from our limited test sample it appears that HD tuned neurons talk more to ST
neurons than vice versa.

7.2 Challenges in the data analysis
As described in Section 2 one of the main challenges in this work was the data science analysis of
the cell identification. Unfortunately the movement part of the data was not sufficient for precisely
classifying tuning of cells (particularly that of spatially tuning and grid cell tuning). Thus, as
mentioned in Section 7.1, the focus in the thesis shifted towards developing the JGLM framework.

Thus the next main challenge in the thesis was to develop the JGLM framework and managing
all the choices that came with it. The jittering method was discussed in Section 4.2. It was chosen
to jitter the covariates together instead of jittering the response. Additionally we chose to jitter
before constructing the basis function covariates. These choices are subject to further study and
also commented in Section 7.3.
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In Section 6 the results from the analysis are presented, and gives us an indication of the the
effectiveness of the JGLM framework. Yet in neuroscience it is though to know whether a method
for detecting connections between cell pair is any good at all as we do not truly know how the brain
works, see Section 1. By toady’s measuring devices it is seemingly impossible to classify this with
absolutely certainty, yet using the method on a ground-truth data set holds very good promise, see
Section 7.3.

7.3 Future work
The data set In this work we have analysed a subset of all cells for a subset of the total session
time with JGLM. Thus, there are still a lot of information about the connectivity and flow of
information in the neuronal network. For future work it is recommended to analyse all cells, for all
times. It is also of interest to analyse only the times where the movement is good separately from
when the movement is not so good, and cells with significant tuning with other cells with significant
tuning and so on. Thus, there are also many interesting combinations of subsets of the data to be
analysed. Additionally it is of interest to test the methodology on other data sets.

JGLM model choices There are many choices for developing JGLM further, some of the im-
portant choices to consider is the following.

• We have the choice of which type of jittering procedure to use. As stated in Section 6 we now
know that interval jittering is preferred over basic jittering procedure. We have chosen interval
jitter, as it is an intuitive easy-to-use jittering procedure that is commonly used.

• We have the choice of whether to jitter the covariates together or separately. We have here
chosen to jitter the model covariates together, as their common temporal effect then are allowed
to remain, but yet we remove the exact temporal timing of the model covariates. This is an
intuitive viable way to set up the JGLM as we consider it important to let the common timing
remain. We believe that to jitter the covariates separately unnecessarily removes too much of
the original signal, and creates an entirely new relation between the spike trains, even for non-
connected cell pairs. Thus, we believe our choice to be the best choice, however, as we do not
perfectly know how cells communicate, changing this feature may allow us to test for a different
communication pattern.

Although we believe to have chosen the most intuitive and best jittering procedure, the men-
tioned model choices are still worthy of further investigation and testing.

Ground-truth testing The most important part of the future work is to better test if the JGLM
is a better method for detecting connectivity between cell pairs than JCC or GLM. Unfortunately we
are not able to measure electrophysiological data from many cells and know their true connections
to other cells. However, we can replace the current data set with a ground-truth data set, where
the actual connections between the cell pairs are known. Such a ground truth data set will need to
be constructed from the textbook example of how, we believe, the cell works. Thus, given that the
textbook example of cell communication is to be relied upon, we are able to perfectly test and find
the best method.
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Additional model covariates In Section 4.5.1, the idea of JGLM were summarised as a simpler
way to model connectivity between cell pairs, than the GLM alternative which requires many model
covariates. Additionally we would like to suggest the use of JGLM with many model covariates
to increase the model precision even further. Section 4.5.1 presents how we can add extra model
covariates. When the number of model covariates become many it is of interest to include some
factor into the model that restrict the excessive computing time due to the extra model covariates.
One such tool is the use of lasso regularisation used in Fawad (2017), where the least influencing
model covariates are essentially left out of the model.

Thus the JGLM framework provides two ideas. The simpler way to more effectively detect
connectivity between cell pairs, as we have done. Additionally it provides the possibility for a
framework with better detection possibilities than the regular GLM, where we include as many
covariates as possible. This deviates from the original idea where we want to investigate JGLM as
GLM requires longer computational time, which JGLM bypasses. However, the idea presented that
JGLM utilises the temporal information in the spike train more effective than the GLM framework
is still valid, and what makes JGLM interesting.

Multiple testing We have presented Bonferroni as an example for multiple testing, but not
made use of it. Additionally we have the potential of using the false discovery rate (FDR) method
of Benjamin-Hochberg. Both of these methods could have been utilised in an effort to adjust for
finding too many connections.

Alternative use The JGLM also holds potential for revealing any type of information in a neural
network, and not just only information about connectivity between cell pairs.

7.4 Conclusion
We have implemented a method for identifying tuning of cells which appear to be good. However,
we require higher quality spatial data to be able to better identify tuning of cells.

Furthermore we have developed what we have chosen to call basis-TC plot, which is excellent
for classifying the type of connections between cell pairs, see Section 4.4.2 and 6.2. Additionally
we have discovered that interval jittering is better than basic jittering both in the JGLM and the
JCC framework for analysing neuronal activity.

As discussed in Section 4.5 we have made a method called JGLM which appears to be a great
new tool for detecting connectivity between cell pairs. The most important part of developing it
further is to test whether or in which case this method is better than the previous methods, this
can be done as described in Section 7.3.
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Appendix A R-code
In the following appendix, the code that is essential for our JGLM analysis for identifying connec-
tivity between cell pairs is included.

A.1 Cosine Bases
The following R-code is taken from Fawad (2017) which replicated it from the Matlab-code that ac-
companied Pillow et al. (2008), which can be downloaded at http://pillowlab.princeton.edu/code GLM.html.

1 g e t B a s i s = f u n c t i o n ( nBases , b i n S i z e ) {
2 b=b i n S i z e ∗nBases
3 peaks=c ( b inS ize , b i n S i z e ∗10∗nBases )
4

5 #n o n l i n e a r i t y f o r s t r e t c h i n g x a x i s ( and i t s i n v e r s e )
6 n l i n= f u n c t i o n ( x ) { l og ( x+1e−20)}
7 i n v n l=f u n c t i o n ( x ) {exp ( x )−1e−20}
8

9 #Generate b a s i s o f r a i s e d c o s i n e s
10 yrange= n l i n ( peaks+b)
11 db=d i f f ( yrange ) / ( nBases−1)
12 c e n t e r s=seq ( yrange [ 1 ] , yrange [ 2 ] , db )
13 maxt = i n v n l ( yrange [2 ]+2 ∗db )−b
14 i h t=seq ( b inS ize , maxt , b i n S i z e )
15 nt=length ( i h t )
16

17 r a i s e d C o s i n e B a s i s = f u n c t i o n (x , b , db ) {
18 ( cos (max(−pi , min ( pi , ( x−b) ∗ pi /db/ 2) ) ) +1)/2 # c in t h e s i s i s r ep lace d with b in

s c r i p t ( s i n c e c in R i s taken )
19 }
20

21 i h b a s i s =matrix (NA, nrow=nt , nco l=nBases )
22 f o r ( i in seq (1 , nt ) ) {
23 f o r ( j in seq (1 , l ength ( c e n t e r s ) ) ) {
24 i h b a s i s [ i , j ]= r a i s e d C o s i n e B a s i s ( n l i n ( i h t+b) [ i ] , c e n t e r s [ j ] , db )
25 }
26 }
27

28

29 #orthogona l bases
30 l i b r a r y ( pracma )
31 ihbas=orth ( i h b a s i s )
32

33 r e turn ( l i s t ( bas=i h b a s i s , bas orth=ihbas , tau N=maxt ) )
34 }

A.2 Firing Matrices
The following code is used to construct easy-to-access spike trains for all the 250 cells in the data
set. It is divided into three time periods, the first period representing 0-10 min, the second period
90-100 min and the third period 100-120min. All the time in these periods are for when we have
good movement data for the rat’s movement.

1 ### This d c r i p t c r e a t e s binned f i r i n g matr i ce s f o r the i n t e r e s t i n g t imes .
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2 ### c r e a t e s bigY1All , f i r s t 10 minutes f o r a l l neurons . bigY2All 90−100 mins and
bigY3All 100−120mins .

3 ### c e l l C o u n t e r and tetCounter . f o r equal i n d e c e s as bigYAll i t g i v e s the c e l l and
t e t r o d e Number .

4 ### a l s o hzCounter f o r easy overview o f a c t i v i t y .
5 l i b r a r y ( ggp lot2 )
6

7 moveFreq=1250/32
8 extraBins =1000/moveFreq
9

10 minStart1=0
11 minEnd1=10
12 minInt1=minEnd1−minStart1
13 binsNeeded1=1000∗60∗minInt1
14 posBinStart1=round (1000 ∗60∗minStart1 )+1
15 posBinEnd1=round (1000 ∗60∗minEnd1 )
16

17 minStart2=90
18 minEnd2=100
19 minInt2=minEnd2−minStart2
20 binsNeeded2=1000∗60∗minInt2
21 posBinStart2=round (1000 ∗60∗minStart2 )+1
22 posBinEnd2=round (1000 ∗60∗minEnd2 )
23

24 minStart3=100
25 minEnd3=120
26 minInt3=minEnd3−minStart3
27 binsNeeded3=1000∗60∗minInt3
28 posBinStart3=round (1000 ∗60∗minStart3 )+1
29 posBinEnd3=round (1000 ∗60∗minEnd3 )
30

31 bigY1All=bigY2All=bigY3All=i n t e g e r (0 )
32 hzCounter=c e l l C o u n t e r=tetCounter=i n t e g e r (0 )
33 ###Access every r e s <−> c lu p a i r
34 f o r ( t e t in 3 : 1 2 ) {
35

36 tmpclu=read . t a b l e ( paste ( ”/home/shomed/k/ k r i s t a g /Desktop/AntonioData/AYA9day16/
AYA9day16 . c lu . ” , tet , sep=”” ) )

37 r e s=read . t a b l e ( paste ( ”/home/shomed/k/ k r i s t a g /Desktop/AntonioData/AYA9day16/
AYA9day16 . r e s . ” , tet , sep=”” ) )

38

39 c e l l N=tmpclu$V1 [ 1 ]
40 c lu=data . frame (V1=tmpclu$V1[−1])
41 bigY1=matrix (0 , binsNeeded1 , c e l l N )
42 bigY2=matrix (0 , binsNeeded2 , c e l l N )
43 bigY3=matrix (0 , binsNeeded3 , c e l l N )
44

45

46 ####Forandre t i d her .
47 r e s i n d 1=which ( res >(20∗1000∗60∗minStart1 ) & res <(20∗1000∗60∗minEnd1 ) ) #look at

f i r s t 10 minutes . #look at 90 :120 minutes .
48 r e s 1=r e s $V1 [ r e s i n d 1 ]
49 c lu1=c lu $V1 [ r e s i n d 1 ]
50

51 r e s i n d 2=which ( res >(20∗1000∗60∗minStart2 ) & res <(20∗1000∗60∗minEnd2 ) ) #look at
f i r s t 10 minutes . #look at 90 :120 minutes .

52 r e s 2=r e s $V1 [ r e s i n d 2 ]
53 c lu2=c lu $V1 [ r e s i n d 2 ]
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54

55 r e s i n d 3=which ( res >(20∗1000∗60∗minStart3 ) & res <(20∗1000∗60∗minEnd3 ) ) #look at
f i r s t 10 minutes . #look at 90 :120 minutes .

56 r e s 3=r e s $V1 [ r e s i n d 3 ]
57 c lu3=c lu $V1 [ r e s i n d 3 ]
58

59 ## t h i s res−c lu p a i r g e t s binned and s t o r e d in bigY .
60 f o r ( j in 0 : ( ce l lN −1) ) {
61 bin1=c e i l i n g ( r e s 1 [ which ( c lu1==j ) ] / 20)
62 bin1=bin1−1000∗60∗minStart1
63 bigY1 [ bin1 , ( j +1)]=1
64

65

66 bin2=c e i l i n g ( r e s 2 [ which ( c lu2==j ) ] / 20)
67 bin2=bin2−1000∗60∗minStart2
68 bigY2 [ bin2 , ( j +1)]=1
69

70 bin3=c e i l i n g ( r e s 3 [ which ( c lu3==j ) ] / 20)
71 bin3=bin3−1000∗60∗minStart3
72 bigY3 [ bin3 , ( j +1)]=1
73

74

75 tetCounter=c ( tetCounter , t e t )
76 c e l l C o u n t e r=c ( ce l lCounter , j ) #c o n s i d e r +1 index ing .
77 hzCounter=c ( hzCounter , ( l ength ( bin1 )+length ( bin2 )+length ( bin3 ) ) ∗1000/ (60 ∗1000∗10∗

4) ) #f o r t h i s time s e l e c t i o n only
78

79 }
80 bigY1All=cbind ( bigY1All , bigY1 )
81 bigY2All=cbind ( bigY2All , bigY2 )
82 bigY3All=cbind ( bigY3All , bigY3 )
83 }

A.3 JGLM network identification
The following code is for identifying p-values with permutation test on likelihood-values with JGLM
with interval jittering.

1 ### pConnectValue s c r i p t . to f i n d the p−value f o r connect ion between c e l l s . (
appendix 3)

2

3 setwd ( ”/home/shomed/k/ k r i s t a g /Desktop/MasterOppgave/WriteData ” )
4

5

6 source ( ” g e t B as i s .R” )
7 l i b r a r y ( pracma )
8 l i b r a r y (MASS)
9

10

11

12 j i t t e r N r =1000
13 c e l l N r=c (2 ,30 ,38 , 39 ,63 ,88 ,116 ,152 ,158 ,184 ,210 ,230) #The c e l l s with h i g h e s t S p a t i a l

In format ion detec ted .
14

15 N=length ( c e l l N r )
16

17 ###s e t s t o r e vec to r / matrix to 0 in case i t wasnt a l r eady .
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18 pVal=i n t e g e r (0 )
19 pValMat=matrix (0 ,N,N)
20

21 ### model c o v a r i a t e s parameter to match with g e t Ba s i s ( )
22 nBases c o n n e c t i v i t y=4
23 b i n S i z e =0.001
24 basOrth=PB=g e t Ba s i s ( nBases c o n n e c t i v i t y , b i n S i z e ) $ bas orth
25

26 ntp=dim ( bigY1 ) [ 1 ] #6 or 12
27 ###While loop that get p−value f o r a l l c e l l p a i r s p o s s i b l e from c e l l N r . One−way

connec t ions only . Reverse c e l l N r and redo f o r a complete c e l l−p a i r p−value .
28 I=0
29 J=1
30 whi le ( I <(N−1) ) {
31 I=I+1
32 J=I
33 whi le ( J < N) {
34 J=J+1
35

36 c e l l N r 1=c e l l N r [ I ]
37 c e l l N r 2=c e l l N r [ J ]
38

39 y=bigY1All [ , c e l l N r 1 ]
40 x=bigY1All [ , c e l l N r 2 ]
41

42 ####c o n s t r u c t c o v a r i a t e s f o r the GLM− f i t .
43 b a s i s C o v a r i a t e s=matrix (0 , l ength ( x ) , nBases c o n n e c t i v i t y )
44 f o r ( k in 1 : nBases c o n n e c t i v i t y ) {
45 tmp=convolve ( c (0 , x ) , rev ( basOrth [ 1 : 1 6 0 , k ] ) , type=” open ” ) [ 2 : ( dim ( bigY1All ) [ 1 ]+1) ]
46 b a s i s C o v a r i a t e s [ , k]=tmp
47 }
48

49 f i t=glm ( y[−c ( 1 : 1 6 0 ) ] ˜ b a s i s C o v a r i a t e s [−c ( 1 : 1 6 0 ) , ] , f ami ly=binomial ( l i n k=l o g i t ) )
50

51 orgLL=logL ik ( f i t )
52 orgCoe f f=f i t $ c o e f f i c i e n t s
53

54 #make j i t t e r e d GLM− f i t s . Store the c o e f f f i c i e n t and LL temporary in
i n t e r v a l C o e f f and inte rva lLL

55 #s t o r e the PermTest p−va l from the e v a l u a t i o n o f a l l LL−va lue s f o r a c e l l p a i r in
pValMat , which g e t s updated and r e p e a t e d l y s to r ed on d r i v e f o r each

c e l l p a i r .
56 i n t e r v a l C o e f f=i n t e g e r (0 )
57 i n te rva lLL=i n t e g e r (0 )
58 s e t . seed (123)
59 f o r ( i in 1 : j i t t e r N r ) {
60

61 j i t t e r e d X=matrix (0 , l ength ( x ) ,1 )
62

63 o r i g F i r I n d =(which ( x==1))
64 o r i g F i r I n d=o r i g F i r I n d [ ( o r i gF i r Ind >5) & ( or igF i r Ind <(ntp−5) ) ]
65 o r i g F i r I n d=f l o o r ( o r i g F i r I n d / 11) ∗11 #Add t h i s l i n e to do I n t e r v a l J i t t e r i n g

in stead o f Bas ic J i t t e r i n g .
66

67 j i t t e r e d F a c t o r=sample ( x =0:11 , s i z e=length ( o r i g F i r I n d ) , r e p l a c e = TRUE)
68 j i t t e r e d I n d e x=o r i g F i r I n d+j i t t e r e d F a c t o r
69 j i t t e r e d X [ j i t t e r e d I n d e x ]=1
70
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71 j i t t e r e d b C=matrix (0 , l ength ( j i t t e r e d X ) , nBases c o n n e c t i v i t y )
72 f o r ( k in 1 : nBases c o n n e c t i v i t y ) {
73 tmp=convolve ( c (0 , j i t t e r e d X ) , rev ( basOrth [ 1 : 1 6 0 , k ] ) , type=” open ” ) [ 2 : ( ntp+1) ] #

ntp+1 pga c (0 , x )
74 j i t t e r e d b C [ , k]=tmp
75 }
76

77

78 tmpf i t=glm ( y[−c ( 1 : 1 6 0 ) ] ˜ j i t t e r e d b C [−c ( 1 : 1 6 0 ) , ] , f ami ly=binomial ( l i n k=l o g i t ) )
79 i n te rva lLL=cbind ( interva lLL , logL ik ( tmpf i t ) )
80

81

82 }
83

84 tmp=(sum( interva lLL >orgLL ) +1)/ ( j i t t e r N r +1)
85 pVal=cbind ( pVal , tmp)
86 pValMat [ I , J]=tmp
87 wr i t e . matrix ( x=pValMat , f i l e=” f i r s t M a t r i x ” , sep=” ” )
88 }
89 }
90 pVal1=pVal
91

92

93 #i n t e r v a l C o e f f , interva lLL , orgCoef f , orgLL
94 df=data . frame ( j i t t L L=t ( inte rva lLL ) )
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