
Doctoral theses at NTNU, 2009:90

Anita Gupta
The Profile of Software Changes in
Reused vs. Non-Reused Industrial
Software Systems

ISBN 978-82-471-1558-9 (printed ver.)
ISBN 978-82-471-1560-2 (electronic ver.)

ISSN 1503-8181

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f

Sc
ie

nc
e

an
d

Te
ch

no
lo

gy
Th

es
is

 fo
r

th
e

de
gr

ee
 o

f
ph

ilo
so

ph
ia

e
do

ct
or

Fa
cu

lt
y

of
 In

fo
rm

at
io

n
Te

ch
no

lo
gy

, M
at

he
m

at
ic

s
an

d
El

ec
tr

ic
al

 E
ng

in
ee

ri
ng

D
ep

ar
tm

en
t o

f C
om

pu
te

r
an

d
In

fo
rm

at
io

n
Sc

ie
nc

eD
octoral theses at N

TN
U

, 2009:90
A

nita G
upta

Anita Gupta

The Profile of Software Changes in
Reused vs. Non-Reused Industrial
Software Systems

Thesis for the degree of philosophiae doctor

Trondheim, May 2009

Norwegian University of
Science and Technology
Faculty of Information Technology, Mathematics and Electrical
Engineering
Department of Computer and Information Science

NTNU
Norwegian University of Science and Technology

Thesis for the degree of philosophiae doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

©Anita Gupta

ISBN 978-82-471-1558-9 (printed ver.)
ISBN 978-82-471-1560-2 (electronic ver.)
ISSN 1503-8181

Doctoral Theses at NTNU, 2009:90

Printed by Tapir Uttrykk

 i

Abstract

High-quality software, delivered on time and budget, constitutes a critical part of most
products and services in modern society. Our ability to develop and maintain such
software is still inadequate. However, software reuse and Component-Based Software
Engineering (CBSE) seem to be the potential technologies to reduce time-to-market,
and achieve better software quality.

Development for reuse refers to the deliberate development of software components that
can be reused. Development with reuse refers to the inclusion of these reusable
components in new software. Since the 1970s work has been ongoing to study the issues
related to software reuse, maintenance and evolution. The focus has been on how to
develop for/with reuse, technical/managerial/organizational aspects, assessing the effect
of reuse in terms of defect density and change density, and reporting the success and
failure of reuse practices.

The research in this thesis is based on several empirical studies performed in a large
Norwegian oil and gas company (StatoilHydro ASA in Stavanger/Trondheim, Norway),
and in the context of the SEVO (Software Evolution in Component-Based-Software
Engineering) project, financed in part by the Research Council of Norway. Data have
been collected for all releases of a reused class framework, called Java Enterprise
Framework (JEF), as well as from two applications reusing the framework “as-is”,
namely Digital Cargo Files (DCF) and Shipment and Allocation (S&A). The main focus
has been to investigate the relation between software changes and software reuse, and
propose reuse guidelines based on these insights. The research has followed a combined
quantitative and qualitative design approach. Quantitative data were collected from the
company’s data repositories for three releases of a reused class framework, and for the
two applications. The qualitative data were collected by interviewing senior developers,
and reading numerous documents, web pages and other studies.

The following research questions have been identified in this thesis:
RQ1: What is the relation between software changes and software reuse, by

comparing the reused framework vs. software reusing it?

RQ2: How do the reused framework and software reusing it evolve over time?

RQ3: What improvements can be made towards the actual reuse practice at

StatoilHydro ASA?

The main contributions are:
C1: Identification of differences/similarities of the change profile for the reused

framework vs. software reusing it.

C2: Identification of differences/similarities of the defect profile for the reused

framework vs. software reusing it.

C3: Description of the software change lifecycle for the reused framework vs.

software reusing it.

C4: Identification of possible software reuse improvements.

 ii

 iii

Preface

This thesis is submitted to the Norwegian University of Science and Technology
(NTNU) as partial fulfilment of the requirements for the degree of Philosophiae Doctor.

This doctoral work has been performed at the Department of Computer and Information
Science, NTNU, Trondheim, under the supervision of Professor Reidar Conradi.
Professor Tor Stålhane and Professor Eric Monteiro have been the co-advisors.

This work was conducted as a part of the SEVO (Software Evolution in Component-
Based Software Engineering) research project, supported by the Research Council of
Norway through contract number 159916/V30. StatoilHydro ASA cooperated with the
SEVO project. StatoilHydro ASA is a merger of Statoil ASA and Hydro, effective from
fall 2007. We used Statoil ASA before the merger and StatoilHydro ASA after the
merger.

In this thesis I have generally used “we” to present the work, describing both my own
reflections on the work in Chapter 1-7 and the collaborative studies described in the
papers P1 to P6 in Appendix A. Research is a collaborative process and I have received
valuable feedback from many colleagues, especially from my supervisor.

Except for minor formatting adjustments, all of the papers from P1 to P6 in Appendix A
have been presented in their original version.

75% of the PhD scholarship was funded through the SEVO project, and the remaining
25% was funded by one year of compulsory teaching assistant duties at the Department
of Computer and Information Science, NTNU. The scholarship lasted from 2004-2008.

 iv

 v

Acknowledgements

This thesis is part of the SEVO project (Software Evolution in Component-Based
Software Engineering) at the Norwegian University of Science and Technology
(NTNU). The doctoral work was financed by SEVO through the Research Council of
Norway for three years, and I gratefully acknowledge this support. I also wish to thank
NTNU for helping to fund the work through my duties as a research assistant, which
lasted for one year. The fieldwork was done at StatoilHydro ASA in
Trondheim/Stavanger, Norway.

First of all I would like to thank my supervisor Professor Reidar Conradi for his
continuous support and advice during my PhD study, and his comments on the papers
and drafts of this thesis. I also thank other members of the SEVO project and the
software engineering group at the Department of Computer and Information Science at
NTNU for their support and comments on various papers, especially Dr. Jingyue Li and
Professor Tor Stålhane.

I would also like to thank StatoilHydro ASA, especially Harald Rønneberg and Einar
Landre, for involving me in their projects, and giving me the opportunity to perform
empirical studies and share the results. I am deeply grateful for this opportunity and
want to thank everyone at StatoilHydro ASA who helped me.

Finally, I would like to thank my family, for their love and support.

 NTNU, December 11, 2008
 Anita Gupta

 vi

 vii

Contents

Abstract .. i

Preface..iii

Acknowledgements .. v

Contents... vii

List of Figures .. ix

List of Tables .. ix

Abbreviations..xi

1 Introduction.. 1

1.1 Problem Outline 1
1.2 Research Context 2
1.3 Research Questions 4
1.4 Research Design 5
1.5 Papers 6
1.6 Contributions 9
1.7 Thesis Structure 11

2 State of the Art.. 13

2.1 Software Engineering: Definition and Challenges 13
2.2 Software Quality 15
2.3 Software Reuse 19
2.4 Component-Based Software Engineering 26
2.5 Software Evolution and Software Maintenance 28
2.6 Summary and the Challenges of this Thesis 36

3 Research Methods and Metrics .. 39

3.1 Research Strategies in Empirical Software Engineering 39
3.2 Measurement and Metrics 43
3.3 Summary and the Challenges of this Thesis 45

4 Research Context and Design... 47

4.1 Research Focus 47
4.2 The StatoilHydro ASA Context 49
4.3 Research Approach and Design 56
4.4 An Overview of the Studies 60
4.5 Summary 61

 viii

5 Results .. 63

5.1 Study 1: Survey of Developers’ Views on Software Reuse (Paper P1) 63
5.2 Study 2: Analysing Change Requests (Papers P2, P3) 64
5.3 Study 3: Analysing Trouble Reports (Papers P3, P5) 65
5.4 Study 4: Analysing Change Data Related to the Source Code (Papers P4,

P6) 68
5.5 Overview of Contributions (C1- C4) 69
5.6 Overall Summary 70

6 Evaluation and Discussion of results ... 73

6.1 Research Questions Revisited: RQ1-RQ3 73
6.2 Overall Discussion of the Observed Results 76
6.3 Discussion in Relation to the State of the Art 78
6.4 Recommendations in general and specific to StatoilHydro ASA 79
6.5 Relations to the SEVO Goals 80
6.6 Brief Evaluation of Validity Threats 80
6.7 Reflections on the Research Context 81

7 Conclusions and Directions for Future Work .. 83

7.1 Research Goal Revisited 83
7.2 Possible Recommendations for Researchers on Software Reuse 84
7.3 Possible Recommendations to the IT industry on Software Reuse 84
7.4 Future Work 86

8 Glossary.. 89

9 References .. 93

Appendix A: Selected papers ... 103

Appendix B: Secondary papers.. 199

 ix

List of Figures
Figure 1: Software change definition... 3
Figure 2: The studies with their related papers and contributions................................... 5
Figure 3: The structure of this thesis ... 11
Figure 4: The whole code base .. 17
Figure 5: Current research proposals regarding the overall cause-effect relationship
between software reuse and the lower defect/error density of reused software............. 24
Figure 6: The relation between JEF, DCF and S&A .. 51
Figure 7: The JEF components.. 52
Figure 8: Software change process .. 54
Figure 9: Improved overall cause-effect model between software reuse and the defect
densities of reused software…………………………………………………………….67

List of Tables
Table 1: Overview of the studies ... 6
Table 2: Research questions vs. contributions and papers.. 10
Table 3: Quality characteristics ... 16
Table 4: Studies related to defect density and reuse... 22
Table 5: Studies comparing changes of reused components vs. those in non-reused
ones .. 25
Table 6: Studies related to distributions of different changes....................................... 32
Table 7: Overview of empirical research approaches... 40
Table 8: Size and release date of the three systems.. 50
Table 9: Relation between main and sub-research questions…………………………..60
Table 10: Types of studies and their relations to phases, RQ, papers and
contributions……………………………………………………………………………61
Table 11: The studies and their relations to RQ, papers, contributions, research methods
and validity comment…………………………………………………………………..71
Table 12: Overview of CR density, change density and defect density………………..76

 x

 xi

Abbreviations

AOP Aspect-Oriented Programming
CASE Computer-Aided Software Engineering
CBD Component-Based Development
CBSE Component-Based Software Engineering
CCB Change Control Board
COM+ Component Object Model
CORBA Common Object Request Broker Architecture
CR Change Request
COTS Commercial-Off-The-Shelf
DCF Digital Cargo File
EJB Enterprise JavaBeans
GQM Goal Question Metric
GUI Graphical User Interface
IEEE Institute of Electrical and Electronics Engineers
ISO International Organization for Standardization
IT Information Technology
JEF Java Enterprise Framework
J2EE Java 2nd Enterprise Edition
KNSLOC Kilo Non-commented Source Line of Code
MDA Model Driven Architecture
.NET NETwork
NSLOC Non-commented Source Line of Code
NTNU Norwegian University of Science and Technology
O&S Oil Sales, Trading & Supply
ODC Orthogonal Defect Classification
OSS Open Source Software
PDM Physical Deal Maintenance
QA Quality Assurance
RC Research Challenge
RCA Root Cause Analysis
RQ Research Question
S&A Shipment & Allocation
SCM Software Configuration Management
SEI Software Engineering Institute
SEVO Software EVOlution
SLOC Source Line of Code
SPORT StatoilHydro’s Planning and Operational System for Offshore, Refinery

and Terminals
TR Trouble Report

 xii

 Introduction

 1

1 Introduction

This chapter describes the background (Section 1.1) and the context for the research
(Section 1.2). In addition, this chapter also presents research questions (Section 1.3),
research design (Section 1.4), the list of papers (Section 1.5), the contributions (Section
1.6) and finally the thesis structure (Section 1.7).

1.1 Problem Outline

High-quality software, delivered on time and budget, constitutes a critical part of most
products and services in modern society. Our ability to develop and use components
(see Section 2.4 for definition) as building blocks has significantly enhanced system
development. Components are more coarse-grained than objects, which might be
beneficial in retrieving and assembly, and since they conform to a component model
(see Section 2.4 for definition) they also facilitate composition. This is why the
commercial sector and academia have both shown interest in component-based software
development, and much effort has been devoted to define and describe the terms and
concepts involved.

Even though component-based system development offers potential benefits, such as
improved quality and productivity, reduced time-to-market, reduced cost and a
commodity-oriented perspective of software, our ability to develop and maintain such
software is still inadequate. This is partly due to the massive and unexpected software
evolution (accumulated changes) during the development and maintenance of software,
both regarding products and related processes.

Prior studies [Lientz78] [Pigoski97] [Bennett00] [Mohagheghi04a] have investigated
several aspects of maintenance. Examples include the variations in the amount of
maintenance activities, in which part of the development process these activities are
located, and what the consequences of these activities are. Due to the dynamic nature of
software, we need to revisit these questions and answers to ensure that the findings
remain valid. This may also make it possible to discover new or additional results.
Some of the main challenges are to investigate how software evolution affects the
changes to a software system, and how to manage this evolution. In order to handle
these issues, developers’ knowledge and experience need to be taken into account, and
combined with the empirical findings from the software code itself.

Introduction

 2

Records of software changes are an important source of information for studying
software reuse, evolution and maintenance. Such changes are frequent in most software
systems, and are responsible for a large part of the software costs. Empirical studies of
industrial software systems may help us to understand the volume and nature of
software evolution, and they may answer questions about how organizations can
manage their processes and resources.

This thesis will investigate the software change profile in terms of defect profile and
change profile. The former will consider defect types, the severities of defects and the
impact of defects1. The latter will consider the classification of changes in maintenance
activities. It will investigate change trends related to issues such as priority levels and
component size in the reused framework and software reusing it, in a large Norwegian
oil and gas company, StatoilHydro ASA.

1.2 Research Context

The research in this thesis relies on quantitative and qualitative empirical studies of all
releases of a reused class framework, as well as from two applications reusing the
framework “as-is”, developed by StatoilHydro ASA in Trondheim/Stavanger, Norway.

The company initiated its reuse strategy in 2003 with pre-studies. A central IT strategy
of the O&S (Oil Sales, Trading and Supply) business area has been to explore the
potential benefits of reusing software systematically. This strategy was started as a
response to the changing business and market trends, in order to provide a consistent
and resilient technical platform for development and integration. The company has
invested in development for reuse (i.e., the deliberate development of software
components that can be reused), and also in development with reuse (i.e., the inclusion
of these reusable components into new software) [Sindre95]. The Java framework for
developing Enterprise Applications is called the JEF framework or JEF in this thesis.
Components in the framework are hereafter termed reused components (reused in two
distinct applications). Components in the application are specific to each application
and are termed non-reused components. This means that the components in the
applications were not initially designed and implemented for future reuse, like JEF. To
decide what components to include in JEF was based on a simple rule from the
management in the company: If a developed application produces a functionality that

can be useful for other applications, this functionality will be made generic and

included in the JEF framework. The project leader of JEF is the one who decides what
functionalities should be made generic and included as a component in JEF. There are
several documentations and tools related to the reuse practice in StatoilHydro ASA.
Examples include several JEF documents and one wiki, documentations about Rational
ClearCase and ClearQuest, etc., and all these documents have been read by the
developers working with reuse projects. JEF consists of seven separate components or
classes, which can be reused separately or together, and they are built and reused in-
house. JEF is reused “as-is” in two applications, namely Digital Cargo Files (DCF,

1
 Impact refers to what the user has or would have noticed if the defect persists after application

deployment at the user’s site.

Introduction

 3

which is the abbreviation used throughout this thesis) and Shipment and Allocation
(S&A, which is the abbreviation used throughout this thesis). This means that all the
code of the reused components was included in each application and was thus reused
“as-is”. DCF is mainly a document storage application to manage cargo files. A “cargo
file” is a container for working documents that are related to a contract or cargo that is
used by all parties in the company. S&A is an application for doing efficient and
controllable business processes through common business principles within lift and
cargo planning.

Figure 1 gives an overview of software change data collected in the company, and how
software changes are defined in this context.

Figure 1. Software change definition

According to Figure 1, software changes can be classified as defect or non-defect
changes. Defects can be analysed through Trouble Reports (TRs) and non-defect
changes through Change Requests (CRs), but both TRs and CRs can be rejected,
redefined or postponed, and both can lead to changes in project reports and documents.
In addition to analysing TRs and CRs, the present work has also collected data of
changes made to the source code, and the analysed data is reported in papers P4 and P6.

StatoilHydro ASA has supported this work in collecting data and performing studies.
The thesis work is done in the context of the SEVO (Software Evolution in Component-
Based Software Engineering) project, which is a Norwegian research project (contract
number 159916/V30) from 2004-2008. SEVO defines the following four main project
goals:

G1) Better understanding of software evolution, focusing on CBSE technology.
G2) Better methods to predict the risks, costs, and profile of software evolution in
 CBSE.
G3) Contributing to national competence based around these themes.

Introduction

 4

G4) Dissemination and exchange of the knowledge gained.

1.3 Research Questions

The overall research goal (RG) for all studies carried out as part of this thesis was:

� Investigate the advantages/disadvantages of systematic software reuse and the

reasons behind it, by analysing software change data (including both defect and

non-defect changes). Then, based on these insights, propose specific reuse

guidelines (as an example of improvements) to StatoilHydro ASA, as well as

general recommendations to software practitioners.

In order to go from our overall goal to specific studies and research questions, we have
formulated the following questions:

What are we studying?

� We performed several empirical studies (i.e., survey and case studies) in a large
Norwegian oil and gas company. The objective for this research was to
investigate the relation between software changes and software reuse and
propose reuse guidelines based on these insights. Software changes refer here to
all kinds of changes done on software systems, i.e., defect changes and non-
defect changes (see Figure 1).

Why are we interested in it?

� Studying defect changes increases our understanding of the relationship between
systematic reuse and the defect density of the reused software, and reveals
several decision-making factors that pertain to that relationship.

� Studying non-defect changes increases our understanding as to whether reused
software and its applications follow similar or different change profiles over
time.

Why would this be of any interest to anyone else?

� This benefits both the research community and practitioners. The former gains
deeper insight into benefits and challenges of software reuse with respect to
evolution and maintenance. The latter gain insight into how to implement more
systematic reuse policies to help reduce the defect density and change density of
the software change data of the software developed for reuse.

The thesis presents six studies, and we have formulated three research questions that
explore our overall goal. We present the research questions briefly in this section, and
give a rationale for why these questions are seen as important in Chapter 4.

RQ1: What is the relation between software changes and software reuse, by comparing

the reused framework vs. software reusing it?
RQ2: How do the reused framework and software reusing it evolve over time?
RQ3: What improvements can be made towards the actual reuse practice at

StatoilHydro ASA?

Introduction

 5

1.4 Research Design

Empirical studies can be qualitative, quantitative, or a combination of both. The choice
of approach affects the data collection, data analysis and discussions of validity. The
studies performed in this thesis have been a combination of qualitative and quantitative
approaches. The first phase in Figure 2 consists of a combined quantitative and
qualitative study, where a survey of industrial software reuse has been done. The second
phase consists of mainly quantitative studies on CRs and TRs. The third phase consists
also mainly of quantitative studies of software change data related to the source code. A
combination of quantitative and qualitative research methods in this thesis has several
purposes [Mohagheghi04b]:

� Performing studies that are both exploratory and confirmatory.
� Expanding our understanding and confirming results of one study by other

studies.
� Exploiting all available data collected; both quantitative data such as software

change data (i.e., CRs, TRs and change data related to the source code), and
qualitative data such as interviews with developers, project reports and process
descriptions.

Figure 2 shows the type of studies performed, the year and sequence, as well as the
relation to papers and contributions. The papers numbered from P1 to P6 are listed in
Section 1.5, and the contributions numbered from C1 to C4 are described in Section
1.6.

Figure 2. The studies with their related papers and contributions

Figure 2 outlines four main studies, and Table 1 provides an overview of the studies,
their focus and research methods. The context has been StatoilHydro ASA in all four
studies, hence “context” is not included in the table.

Introduction

 6

Table 1. Overview of the studies

Study Year Focus Research method
Study 1 2004-2005 Study of developers’ views on

software reuse
Survey followed by semi-
structured interviews

Study 2 2006 Analysing Trouble Reports (TRs) Case study

Study 3 2007 Analysing Change Requests (CRs) Case study

Study 4 2008 Analysing change data related to the
source code

Case study

The research methods for each research question are:

� RQ1 and RQ2: will be investigated by data mining, quantitative analysis and in
some cases a qualitative Root Cause Analysis (RCA). The investigations will be

on CRs, TRs and software change data related to the source code stored in two
different configuration management tools, the company’s internal measures and
documents, as well as qualitative interviews with senior developers.

� RQ3: will be answered by combining results from RQ1 and RQ2. This will be
done in two ways. Firstly, by proposing improvements in the overall cause-
effect relationship model between systematic software reuse and the possible
lower defect density of the reused software. Secondly, by gaining insight into
how the software lifecycle for the reused framework and software reusing it
evolves over time. Additionally, RQ3 will also be answered by conducting a
survey followed by semi-structured interviews and both qualitative and
quantitative knowledge will be gained on possible software reuse improvements.

1.5 Papers

This section gives a short summary of the 6 papers numbered P1 to P6 included in this
thesis. Together they constitute the four main studies the results are based on. We
briefly describe their relevance to this thesis and my contribution. I have stated the
amount of my contribution in percentages, and with a small description of what my
main work has been. The full papers are included in Appendix A. In addition, we have
included abstracts of two other papers produced during the work on this thesis in
Appendix B. The papers included in this thesis are marked P#, while the one secondary
paper which is not included is marked SP#.

P1. Odd Petter N. Slyngstad, Anita Gupta, Reidar Conradi, Parastoo Mohagheghi,

Harald Rønneberg, and Einar Landre: “An Empirical Study of Developers’
Views on Software Reuse in Statoil ASA”, In Jose Carlos Maldonado and Claes
Wohlin (Eds.): Proc. 5th International Symposium on Empirical Software
Engineering (ISESE’06), 21-22 September 2006, Rio de Janeiro, Brazil. IEEE
CS Press, ISBN 1-59593-218-6, pp. 242-251.

 Relevance to this thesis: This paper presents the results from a survey followed
by semi-structured interviews, investigating opinions of developers on software
reuse, and the results can help StatoilHydro ASA to improve their reuse practice.

 My contribution: I was one of the leading authors in addition to Odd Petter
Slyngstad and contributed 50% of the work, including research design,
collecting and analysing change requests, and paper writing. The whole paper
writing process started with Odd Petter Slyngstad and I dividing the work

Introduction

 7

among us. We then worked on the tasks separately, and when we were done we
read through each other’s contributions to make major or minor comments. We
both made the questions in the questionnaire presented in the paper. However,
after the questionnaire was filled out we performed separate follow-up
interviews with the participants. In the end we wrote the discussion and
conclusion part.

P2. Anita Gupta, Odd Petter N. Slyngstad, Reidar Conradi, Parastoo Mohagheghi,

Harald Rønneberg, and Einar Landre: “An Empirical Study of Software Changes
in Statoil ASA - Origin, Priority Level and Relation to Component Size”, In
Proc. International Conference on Software Engineering Advances (ICSEA’06),
29 October - 3 November 2006, Tahiti, French Polynesia. IEEE CS Press, ISBN
0-7695-2703-5, pp. 12- 19.

 Relevance to this thesis: This paper describes the results of analysing change
requests from four releases of a set of components developed for reuse. The
results characterize and explain the changes to the components.

 My contribution: I was one of the leading authors in addition to Odd Petter
Slyngstad and contributed 50% of the work, including research design,
collecting and analysing change requests, and paper writing. The whole paper
writing process started with Odd Petter Slyngstad and I dividing the work
among us. We then worked on the tasks separately, and when we were done we
read through each other’s contributions to make major or minor comments. We
then classified all the change requests separately and cross-validated the results.
In the end we wrote the discussion and conclusion part.

P3. Anita Gupta, Odd Petter N. Slyngstad, Reidar Conradi, Parastoo Mohagheghi,

Harald Rønneberg, and Einar Landre: “A Case Study of Defect-Density and
Change-Density and their Progress over Time”, In René L. Krikhaar, Chris
Verhoef, and Giuseppe A. Di Lucca (Eds.): Proc. 11th European Conference on
Software Maintenance and Reengineering, Software Evolution in Complex
Software Intensive Systems (CSMR’07), 21-23 March 2007, Amsterdam, The
Netherlands. IEEE Computer Society, ISBN 0-7695-2802-3, pp. 7-16.

 Relevance to this thesis: This paper explored the defect density and change
request density and their progress over time for a reused framework, compared
with one application that is reusing it. The results contribute towards
understanding the maintenance and evolution of the reused framework and the
software reusing it.

 My contribution: I was one of the leading authors in addition to Odd Petter
Slyngstad and contributed 50% of the work, including research design,
collecting and analysing change requests and trouble reports, and paper writing.
The whole paper writing process started with Odd Petter Slyngstad and I
dividing the work among us. We then worked on the tasks separately, and when
we were done we read through each other’s contributions to make major or
minor comments. We then analysed all the trouble reports and change requests
separately and then cross-validated the results. In the end we wrote the
discussion and conclusion part.

Introduction

 8

P4. Anita Gupta, Forrest Shull, Daniela Cruzes, Chris Ackermann, Reidar Conradi,
Harald Rønneberg and Einar Landre: “Experience Report on the Effect of
Software Development Characteristics on Change Distribution”, In Andreas
Jedlitschka and Outi Salo (Eds.): Proc. 9th International Conf. on Product
Focused Software Development and Process Improvement (PROFES’08), 23-25
June 2008, Rome, Italy. Springer Verlag, ISBN 978-3-540-69564-6, pp. 158-
173. The paper received the Best Paper Award at the conference (out of 31
papers), and was invited and later accepted for a special issue of Software
Process Improvement and Practice (SPIP) journal.

 Relevance to this thesis: This paper classified and compared software changes
(related to the non-commented source code) for the reused class framework and
one application reusing it. The results deepened our insight into the impact
software changes have on different development characteristics (e.g. impact of
reuse and impact of refactoring).

 My contribution: I was the leading author and contributed 80% of the work,
including research design, data collection, data analysis and paper writing. The
whole paper writing process started with me dividing the work among the co-
authors. I did most of the paper writing, data collection and analysis. The co-
authors helped out with the data analysis, gave me their major or minor
feedback, and did a proofreading of the final paper.

P5. Anita Gupta, Jingyue Li, Reidar Conradi, Harald Rønneberg and Einar Landre:

“A Case Study Comparing Defect Profiles of a Reused Framework and of
Applications Reusing it”, accepted with minor revisions (2 May 2008) to the
Journal of Empirical Software Engineering.

 Relevance to this thesis: This paper has analysed trouble reports for a reused
framework and two applications that are reusing it. The results of this study
increases our understanding of the overall cause-effect relationship between
systematic reuse and the possible lower defect density of the reused software,
and reveals several decision-making factors that pertain to that relationship.

 My contribution: I was the leading author and contributed 80% of the work,
including research design, collecting and analysing trouble reports, and paper
writing. The whole paper writing process was divided mostly between Dr.
Jingyue Li and myself. I divided the work among us, and did most of the paper
writing, data collection and analysis. However, Dr. Jingyue Li helped out with
the data analysis (i.e., classified all the defects separately and then cross-
validated the results) and paper writing (e.g. related work and discussion).

P6. Anita Gupta, Jingyue Li, Reidar Conradi, Harald Rønneberg and Einar Landre:

“Change Profiles of a Reused Class Framework vs. two of its Applications”, is
submitted to Journal of Information and Software Technology (01.07.2008).

 Relevance to this thesis: This paper has analysed change data related to the
non-commented source code for a reused framework and two applications that
are reusing it. The results of this study advance our understanding of factors that
affect the change density and change profile for the reused framework vs.
software reusing it.

Introduction

 9

 My contribution: I was the leading author and contributed 80% of the work,
including research design, data collection, data analysis, and paper writing. The
whole paper writing process was divided mostly between Dr. Jingyue Li and
myself. I divided the work among us, and did most of the paper writing, data
collection and analysis. However, Dr. Jingyue Li helped out with the data
analysis (i.e., he helped to classify those changes I was uncertain about) and
paper writing (e.g. related work and discussion). The remaining co-authors gave
me their feedback on the paper.

The paper designated as SP1 is considered to be outside the scope of this thesis. The
paper designated as SP2 is related to the topic of this thesis, but overlaps with paper P5,
already used in this thesis. Hence, paper SP2 is not included in Appendix A. We will
not discuss the relevance of SP1 or SP2 to this thesis, or my contribution. The abstracts
of these papers can be found in Appendix B.

SP1. Anita Gupta, Marianne H. Asperheim, Odd Petter N. Slyngstad, and Harald

Rønneberg: “An Empirical Study of Distributed Technologies Used in
Collaborative Tasks at Statoil ASA”, In Enrico Blanzieri and Tao Zhang (Eds.):
Proc. 2nd International Conference on Collaborative Computing
(CollaborateCom’06), 17-20 November 2006, Atlanta, Georgia. IEEE CS Press,
ISBN 1-4244-0429-0, pp. 1-5.

SP2. Jingyue Li, Anita Gupta, Jon Arvid Børretzen, and Reidar Conradi: “The

Empirical Studies on Quality Benefits of Reusing Software Components”, In
Xiaodong Liu et al. (Eds.): Proc. 1st International Workshop on Quality Oriented
Reuse of Software (QUORS’07), 23-27 July 2007, Beijing, China. IEEE CS
Press, ISBN 978-0-7695-2870-0, pp. 399-402.

1.6 Contributions

This thesis has four main contributions:

C1 Identification of differences/similarities of the change profile for the reused

framework vs. software reusing it.
� Using a quantitative analysis of Change Requests (CRs) for the reused

framework (JEF), insight has been gained into the distribution of CRs, the data
trend for how customers and developers assign priority to CRs, and issues
regarding maintainability of large components in JEF.

� Using a quantitative analysis with a qualitative RCA of software changes related

to the non-commented SLOC for the reused framework (JEF) and software
reusing it (DCF), insight has been gained into the distribution of software
changes for JEF vs. DCF. It was found that designing for reuse does have an
effect on the change types (e.g. amount of changes and localization of changes),
and a positive effect was seen for the refactoring that occurred in DCF.

Introduction

 10

� Using a quantitative analysis of software change data related to non-commented
SLOC together with a qualitative RCA, the differences/similarities in the
maintenance activities were explained for the reused framework vs. software
reusing it by classifying changes into perfective, corrective, preventive and
adaptive changes.

C2 Identification of differences/similarities of the defect profile for the reused

framework vs. software reusing it.
� Using a quantitative analysis of Trouble Reports (TRs) together with a

qualitative RCA for the reused framework vs. software reusing it, deeper insight
was gained into the overall cause-effect relationship between systematic reuse
and the possible lower defect density of the reused software, and several
decision-making factors that pertain to that relationship were revealed.

C3 Description of the software change lifecycle for the reused framework vs.

software reusing it.

� Using a quantitative analysis of Trouble Reports (TRs) and Change Requests
(CRs) for the reused framework and software reusing it, it was found how defect
density and change request density progress over time.

� Using a quantitative analysis of software change data related to non-commented

SLOC together with a qualitative RCA, it was found how the reused framework
vs. software reusing it evolves over time, according to the Bennett and Rajlich
stage model for describing the lifecycle of a software system.

C4 Identification of possible software reuse improvements.

� Using a quantitative and qualitative analysis of a survey that was conducted, and
by combining the results from RQ1 and RQ2, possible improvements were
made towards the software reuse practice by exploring the benefits/factors
contributing to better software reuse. This made an improved overall cause-
effect relationship model between systematic software reuse and the possible
lower defect density of the reused software. In addition, it identified possible
factors that affect the change density and change profile of reused software.

Table 2 shows the relation between research questions, papers and contributions.

Table 2. Research questions vs. contributions and papers

Research Question Contribution Papers Focus
RQ1 C1,C2 P2, P4,

P5, P6
Software changes in the context of
software reuse.

RQ2 C3 P3, P6 Software evolution and maintenance
over time in the context of software
reuse.

RQ3 C4 P1, P5,
P6

Software reuse improvements.

Introduction

 11

1.7 Thesis Structure

Figure 3 illustrates the structure of this thesis.

Figure 3. The structure of this thesis

Chapter 2: Briefly presents the field of software engineering and its state of the art,
including software quality, software reuse, CBSE, and software evolution and
maintenance. It also gives an overview of common research methods and metrics in
software engineering, and a more detailed description of the research methods used in
this thesis. Finally, the challenges faced in the context of comparing the profile of
software changes for a reused framework and software reusing it are presented.

Chapter 3: Presents an overview of research methods and metrics, and challenges in
selecting research methods.

Chapter 4: Introduces the research focus and the research context, describing the
StatoilHydro ASA as a company, and the research design in this thesis.

Chapter 5: Presents the main results of the work. All the contributions from papers P1
to P6 are presented here.

Chapter 6: The research questions are further discussed in this chapter. A discussion
and evaluation of the contributions and the results are made. The relations between
research questions, papers, contributions and SEVO goals are presented. Finally, some
reflections on the research context are discussed.

Chapter 7: Sums up the main findings from the discussion, and proposes future work.

Appendix A: Includes the six papers that have been submitted or published which form
the basis for this thesis.

Appendix B: Presents the abstract of the two papers that were excluded from the final
thesis.

Introduction

 12

State of the Art

 13

2 State of the Art

This chapter present the rationale, definition, concepts and challenges of software
engineering (Section 2.1), software quality (Section 2.2) and software reuse (Section
2.3). Next, Component-Based Software Engineering, CBSE (Section 2.4) and software
evolution and maintenance (Section 2.5) are presented. Finally, in Section 2.6, the
research challenges related to state of the art are presented.

2.1 Software Engineering: Definition and Challenges

Finkelstein and Kramer [Finkelstein00] define software engineering as:

… the branch of systems engineering concerned with the development of large and

complex software intensive systems.

Additionally, it is also concerned with the technology (i.e., processes, methods,
techniques and tools) for the development of software intensive systems within the
budget and on schedule. Throughout this thesis, technology will be used as a common
term to incorporate processes, methods, techniques, tools and related concepts,
formalisms and languages. Software engineering activities or phases include managing,
estimation, planning, modelling, analysing, specifying, designing, implementing, testing
and maintaining [Fenton97].

Kruchten [Kruchten01] discusses why software engineering differs from structural,
mechanical, and electrical engineering, due to the soft but unkind nature of software. He
suggests four key differentiating characteristics:

� The absence of fundamental theories, or at least practically applicable theories,
makes it difficult to reason about software without building it.

� The ease of change encourages changes in software, but it is hard to predict their
impact.

� The rapid evolution of technology does not allow proper assessment, and makes it
difficult to maintain and evolve legacy systems.

� The very low manufacturing costs combined with ease of change have led the
software industry into a fairly complex mess.

An early definition of the term “software engineering” was proposed in 1968 at the first
NATO conference on software engineering [Naur68]. Early experience in building

State of the Art

 14

software systems, even before the conference, showed that software development was
regarded as problematic. This was due to the fact that projects were running late, the
cost of software was much higher than predicted, and the software was unreliable and
difficult to maintain. The software industry has always been looking for new and
effective strategies to develop quicker, cheaper and better software, delivered on time
and as budgeted. However, our ability to develop and maintain such software is still
inadequate. This is known as the “software crisis”, a term that was first used in the end
of the 1970s to describe “ever increasing burden and frustration that software

development and maintenance have placed on otherwise happy and productive

organizations” [Griss93, p.549]. Several techniques and methods have been proposed,
such as object-oriented technology, Computer-Aided Software Engineering (CASE)
tools, formal methods, automatic testing, Model Driven Architecture (MDA) and
Aspect-Oriented Programming (AOP) [Mohagheghi04b]. After all these years with
software development, the software industry has realized that there is no single “ideal”
approach to solve this problem. This is due to the unexpected software evolution
(accumulated changes) during development and maintenance of software, both
regarding products and related processes. That is, user expectations, technologies,
personnel, companies etc. are in a state of constant change. Additionally, Sommerville
[Sommerville04] lists three key challenges in software engineering:

� Heterogeneity: integrating new software with older legacy systems written in
different programming languages, and providing techniques for building
dependable software that is flexible enough to handle this heterogeneity.

� Delivery: reducing time-to-market for large and complex systems without
compromising system quality.

� Trust: developing techniques that demonstrate that software can be trusted by its
users.

In order to address these challenges, as well as tackle the dynamic nature of software
development, we need new technologies and innovative ways of combining and using
existing technologies. Hence, one of the new proposed strategies is to assemble, acquire
and integrate reusable components, i.e., Component-Based Software Engineering
(CBSE).

Since software reuse has been discussed for decades, this raises two questions:

� What is new in CBSE?
� Why will it work now?

The answer to the first question is the focus on software architecture as a guideline to
put pieces together [Bass00] [Bachman00], viewing components as independent units
(e.g. easy to replace or modify a component without affecting other components) of
development and deployment, and assembling applications from sets of those
components. The answer to the second question is that the underlying technologies have
matured, the business and organizational context where these applications are
developed, deployed and maintained has changed, and there is now extensive use of the
Internet for sharing and gaining knowledge and experience [Brown98] [Ayala07].

CBSE has helped organizations to develop flexible and maintainable software systems,
by offering high-level abstractions, separation of concerns, and encapsulating and

State of the Art

 15

hiding complexity in components. This thesis considers how CBSE works in industrial
software systems.

2.2 Software Quality

IEEE 610.12-1990 [IEEE90] defines software quality as:

“the degree to which a system, component, or process meets customer or user needs or

expectations...”

The first elaborate studies on software quality appeared in the late 1970s [McCall77]
[Boehm78]. These studies investigated a number of aspects in software systems, which
somehow were perceived to be related to software quality. Since then, different
taxonomies on software quality attributes have been presented. The various factors that
relate to software quality are hard to measure. Various people will have different
perspectives on the quality of a software system, which makes quality even harder to
measure quantitatively [Vliet01]. McCall’s taxonomy from 1977 is among the first
[McCall77], and presents two levels of quality attributes: (1) those that can be measured
directly and (2) those that are external attributes and can only be measured indirectly.
Even though we can measure reliability, for example by the number of defects
encountered so far, the main challenge relies on whether we can claim that lower defect
density improves reliability or not.

ISO 9126 [Vliet01] defines a set of quality characteristics and sub-characteristics. Both
ISO 9126 and IEEE 610.12-1990 standards are used in this thesis, since they constitute
different purposes. The former is a standard of glossary for software engineering
terminology, while the latter is a standard for the evaluation of software quality. Table 3
gives a brief overview of all the quality characteristics and sub-characteristics, but only
two of these quality characteristics, reliability and maintainability, have been
elaborated. Only these two have been investigated indirectly in our studies by defect
density and change density respectively. However, we cannot conclude anything about
what impact defect density has on reliability, since measuring actual reliability (e.g.
mean-time-to-failure) has not been the main focus of this thesis (see Section 1.3).
Defect density and change density are related to the sub-characteristics fault tolerance
and stability (marked in italics in Table 3). The remaining quality characteristics and
sub-characteristics are not studied in this thesis.

Table 3 presents the ISO 9126 quality characteristics and sub-characteristics, but only
the description and indirect measure for reliability and maintainability are commented
on here.

State of the Art

 16

Table 3. Quality characteristics [Vliet01]

Characteristic Sub-characteristics Description Indirect

measure
Reliability Maturity

Fault tolerance
Recoverability

Fault tolerance: The capability of
the software to maintain a
specified level of performance in
case of software faults or of
infringement of its specified
interface.

Defect density

Maintainability Analysability
Changeability

Stability
Testability

Stability: The capability of the
software to minimize unexpected
effects from modifications of the
software.

Change density

Functionality Suitability
Accuracy
Interoperability
Security

Usability Understandability
Learnability
Operability
Attractiveness

Efficiency Time behaviour
Resource utilization

Portability Adaptability
Installability
Co-existence
Replaceability

A quality attribute that is not defined in the ISO 9126 standard is dependability (degree

of trust), a term proposed by Laprie and later by [Avizienis04] to cover the aggregated
quality attributes such as availability, reliability, safety, integrity and maintainability.
Furthermore, [Sommerville98, p.3] claims that a “repeatable process that is oriented

toward defect avoidance, is likely to develop a dependable system”.

A fault is a dormant static inconsistency (i.e. incorrect with respect to the stated
functional requirements) in a software system. Error is used to denote the dynamic
execution of a passive fault, and may lead to incorrect internal behaviour and system
state [IEEE90]. Error is also used for any fault or failure resulting from human activity
[Endres04]. The dynamic execution of a fault may however lead to an observable,
operational failure [IEEE90]. Failures observed by test groups or users are reported
back to the developers through failure reports. Sometimes, defect is used in place of
fault, without distinguishing the human/machine origin or whether it is active or
passive. This term will be used throughout this thesis to denote failure (after fault
executions) or “similar” misbehaviour that technically is not a failure (such as an
operational misunderstanding). Other changes to the software can be thought of as non-

defect changes (as opposed to localizing and fixing defects to maintain status quo). The
term non-defect changes will also be used throughout this thesis (see Figure 1 for the
software change definition in this thesis, and Figure 8 for the software change process in
StatoilHydro ASA).

State of the Art

 17

The quality foci in this thesis have been defect density, defined as the number of trouble
reports divided by lines of non-commented source code (NSLOC), and stability

measured as change density, defined in P3 and P6 as:
� Number of change requests (perfective, preventive and adaptive changes)

divided by total lines of non-commented source code (NSLOC), collected from
Rational ClearQuest. Even though we called it change density in P3 it is actually
change request density, and we will use the term change request (CR) density
when talking about paper P3 throughout this thesis.

� Number of changes (corrective, perfective, preventive and adaptive) divided by
total non-commented source code (NSLOC), collected from Rational ClearCase.
We called it change density in P6, and we will continue using this term when
talking about change density related to P6.

See Figure 4 for all the files that make up our code base in this thesis. All of the three
Java files A, B and C (which have been changed), and the Java file D (which has not
been changed) belong to the same software system, called “JEF” in Figure 4. The total
NSLOC for JEF (including Java files A to D) is calculated based on the last changes
made to the whole software system2.

Figure 4. The whole code base

We have chosen to measure defect density, CR density and change density as these
attributes are part of the stated quality focus for the reuse program in StatoilHydro
ASA. Regarding the discussion about how defect density, CR density and change

2
 The way we have calculated CR density and change density is not ideal. It would have been more

precise to “divide” it by the NSLOC when the respective CR and source code change happened, i.e. not
by the final NSLOC. However, this was not possible, since we only had the final NSLOC. The resulting
consequence is that all these densities have too low numerical values, assuming code growth.

State of the Art

 18

density impact quality (for instance reliability, usability, performance, etc.) we focus on
the following factors:

The profile of defects under testing: To discuss testing we can ask ourselves “if we

want to reduce the number of induced failures in software systems, how much testing

would be expected, and vice versa?” One of the important characteristics of software is
its reliability, i.e. “the probability that software will not cause a failure of a system for a

specified time under specified conditions” [IEEE90]. The software system may have
defects that do not lead to incorrect behaviour, since they may never be executed, given
the actual time interval and usage profile. Many such defects will remain in the software
system unknown to the developers and users. That is, a software system with few
discovered defects is not necessarily the same as a system with few defects
[Bertolino07]. High defect density before delivery may be an indicator of extensive
testing rather than poor quality of the software system [Fenton00a], since most relevant
defects might have been eliminated. Hence, it may be impossible to discover the “last”
defect in testing, but by using the operational profile to drive testing we might be able to
eliminate those defects which would appear more frequently [Bertolino07]. Thus, it is
of equal importance to investigate the effectiveness of testing (unit testing, system
testing, etc.). For future challenges in reliability testing we refer to Lyu’s roadmap
[Lyu96].

Value-added defect handling: One of the first software reliability models was
introduced by Jelinski-Moranda [Jelinski72]. The model implies that each defect
removal has the same lowering effect on the failure rate of the software. Moreover, the
failure rate remains unchanged between two successive failures. Thus, when a failure
has occurred and the corresponding defect has been removed without introducing new
defects into the software, the failure rate decreases by a fixed amount (i.e., the failure
rate decreases exponentially). According to Adams [Adams84], the benefit of removing
a given defect depends on how many problems it would otherwise cause. He also claims
that, after a software system has matured over time, it is not cost-effective to eliminate
the majority of the remaining defects as they are mostly irreproducible or of minor
nuisance. Boehm [Boehm06] presents an example of test cost savings (on project level
as well as on global scale) by focusing testing on the most valuable tests, in relation to
the operative profile. The example illustrates that with a cost-benefit focus on testing,
thorough testing of the system requires a constantly increasing effort per defect
removal. Also, a “cut-off” point will be reached, where further testing is counter
productive. Basili and Selby [Basili87] have compared the effectiveness of three state-
of-the-practice defect detection techniques; code-reading, functional testing and
structural testing. The study compares three aspects of these techniques: defect detection
effectiveness, defect detective cost, and classes of defects detected. The authors discuss
the outcome that spending more time on detecting defects had no relationship to the
amount of defects detected. Therefore, the amount of testing to be conducted should be
discussed by profile of the software system (users, the operative environment, etc.) and
the context of the company.

Impact of defect density and change request density on reliability: The study by Li
and Smidts [Li03] shows that several factors, such as high defect density and high

State of the Art

 19

change request density, are considered to have a negative impact on the reliability of
software [Li03]. These factors are, however, based on expert opinions rather than
measurements, and none of the experts were from the application domain studied in this
thesis. The authors mention some limitations to their study (i.e. they were not able to
assess the bias in the experts’ inputs, and it would have been more comforting to have a
larger set of experts). In spite of its limitations, this paper seems to be the only one that
tries to show the connection that high defect density and high change request density
have a negative impact on reliability. Even though the results in [Li03] show that defect
density and change requests correlate significantly with reliability, this does not indicate
whether or not this is causality. Therefore, defect density, as well as CR density and
change density, cannot be used as standard measures of quality, but remaining defects
after testing may impact reliability.

Operational profile testing: Software reliability models were designed to quantify the
likelihood of software failure [Jelinski72] [Ramamoorthy82] [Musa87] [Lyu96]. It is
also advocated in the Cleanroom development process, which applies the Cleanroom
software-engineering method (i.e. statistical test approaches of profile driven testing) in
environments that require extensive code reuse [Poore93]. Further, making a good

reliability estimate depends on testing the product as if it were in the field [Musa96,
p.167]. Hence, usage profile is central to determine a system’s reliability [Musa96]. As
observed in paper P6, the change profile is affected by the user profile. Since two new
users applied the system and did a lot of acceptance tests, several non-defect changes
(e.g. missing functionalities) were implemented, but how these changes impact
reliability we cannot say since we have not measured it.

Discussion: Most of the software reliability models are based on software failure
observations made during test or operation, and they assume that the operational profile
and remaining defects in the software impact reliability. In those cases where the

companies decide to measure attributes (e.g. complexity, defect density) then software

reliability may have to be indirectly [bold added by us] assessed from available sets of

software engineering measures [Li03, p.811]. However, measuring actual reliability,
e.g. mean-time-to-failure, has not been the main focus of this thesis (see Section 1.3),
due to the available data set. Based on our discussion here we assume that defect
density, CR density and change density may be indirect indicators of reliability, but we
do not have any measured data in this thesis or have found any relevant studies to
confirm this. Therefore, in this thesis we do not give more attention to the factors that
might impact reliability, but it is a part of the future work (see Section 7.4.1).

2.3 Software Reuse

Reuse-based software engineering is a strategy where the key concept is to reuse
existing software. Doug McIlroy was the first to introduce the idea of systematic reuse
(the planned development and widespread use of software components) at the above-
mentioned NATO software engineering conference in 1968 [McIlroy69]. Morisio et al.
[Morisio02] define software reuse as:

State of the Art

 20

… the systematic practice of developing software from a stock of building blocks, so

that similarities in requirements and/or architecture between applications can be

exploited to achieve substantial benefits in productivity, quality and business

performance.

This definition is the one used in the thesis, since this work focuses on the investigation
of a reused framework vs. software reusing it.

Several software organizations around the world have reported on successful reuse
strategies and programmes, such as IBM, Hewlett Packard, AT&T, Toshiba and many
others [Griss93]. These reports show that reuse actually “works” and the achieved
benefits are substantial in form of improved quality and productivity, reduced time-to-
market, a standardized architecture, and/or reduced cost. Reuse is possible at different
levels, encompassing several approaches and situations [Karlsson95]. According to
[Mohagheghi04b] the reusable assets or components can be subroutines or classes in
library, free-standing COTS (Commercial-Off-The-Shelf) or OSS (Open Source
Systems) components, modules in a domain-specific framework (e.g. Smalltalk MVC
classes), or entire software architecture and their components, forming a product line or
a product family. One of the most effective reuse approaches in the industry is to use a
product line or application families. A product line is a set of applications with a
common application-specific architecture [Sommerville04]. The key idea is to define a
common architecture and a set of core components/assets that can be reused. Thus, each
time a new application is developed, the common core of the application family is
reused almost “as-is”.
Reusability has been defined as a combination of two characteristics [Karlsson95]
[Mili02]:

� Usefulness (generality): to what extent the functionality of a component is
needed.

� Usability (understandability): to what extent a component is packed for reuse.

So, when designing a component for reuse, there is a trade-off between generality and
understandability. Johnson and Foote [Johnson88] claim that software reuse does not
happen by accident. The system designers must plan to reuse old assets and look for
new reusable assets. According to the authors, reusable classes are discovered, not
designed. Many factors may influence the success or failure of software reuse, and
developing for reuse has its price. It is therefore necessary to investigate which factors
contribute positively to implement a reuse programme, so that organizations can
increase their chances to succeed. Morisio et al. [Morisio02] did a survey using
structured interviews, where they analysed 24 EU projects on software reuse in large
and small companies in Europe in the years 1994-1997. The projects vary in size,
development approach, type, etc., and few of them have defined their own reuse metric.
The results revealed that successful software reuse was achieved when the development
organization had a potential for reuse because of:

� commonality among applications,
� top management committed to introducing reuse processes,
� modifying non-reuse processes, and
� addressing human factors (e.g. reuse education).

State of the Art

 21

However, size, experience, development approach (object-oriented or not), actual
implementation language, reward policy, asset repository and reuse measurement were
not found to be decisive factors for successful software. In the end, the above authors
concluded that reuse approaches vary and should be adjusted to the context of the
company.

Frakes and Fox [Frakes95] conducted a reuse survey in 1991-1992, where they posed
16 commonly asked questions about reuse. A total of 113 people from 28 US
organizations and one European organization, with a median size of 25,000 employees,
participated in this survey. The results revealed that education influences reuse, that
developers actually prefer to reuse instead of build components from scratch, that reuse
is more common in telecommunications compared to aerospace, and that having a reuse
repository is not critical for software reuse. Additionally, they found that a common
defined software process may be advantageous.

According to prior research [Griss95] [Morisio02], systematic reuse does not just
happen, but must be planned and introduced through an organization-wide reuse
programme. Griss and Wosser [Griss95] claim that non-technical issues (process,
management, organization etc.) are more important than technical ones (standards,
architecture, framework etc.). They also mention the three most critical elements that
reuse needs, namely:

� Management support: ongoing involvement and support from managers are
important because reuse now involves several projects.

� Common wisdom: object-technology and libraries are not essential parts of
reuse. It is more important to have an explicit reuse agenda. Hence, domain
stability and experience are often more important for successful reuse than
general process maturity.

� Incremental adoption: as you focus on reuse and learn more about your process,
the levels of reuse will increase.

Sommerville [Sommerville04] lists the following challenges within software reuse:

� Increased maintenance cost: if the source code of the reusable assets is not
available, it may become incompatible with the system change.

� Lack of tool support.
� Not-invented-here syndrome: not trusting other people’s software.
� Creating and maintaining a component library.
� Finding, understanding and adapting reusable components.

2.3.1 Studies on Software Changes and Software Reuse

The related work presented in this section has been cited verbatim from our own
research papers P5 and P6 in Appendix A (see the specific references in text where they
apply).

Our paper P5 (see Appendix A) summarizes studies that have compared the defect
densities of reused components with non-reused components, as shown in Table 4 (the
table is found in paper P5 in Appendix A, p.144). These studies were a result of a
systematic survey done by Mohagheghi et al. [Mohagheghi07]. Results from these

State of the Art

 22

studies show that continued reuse with slight modification to components results in
significantly lower defect/problem density and significantly less effort expended on
development and/or correction.

Table 4. Studies related to defect density and reuse (P5 in Appendix A, p.144)

Quality focus Quality measures Conclusion

Reusable vs. non-
reusable components
[Lim94]

No definition of what a
defect is. Defect density is
given as defects/1000 non-
comment source statements
(KNCSS).

Reuse can provide improved
quality, increased productivity,
shortened time-to-market, and
enhanced economics.

Reusable vs. newly
developed components
[Thomas97]

Error/defect densities
(errors/defects per 1000
source statements).
However, no definition of
error/defect.

Reuse provides an
improvement in error density
(more than a 90% reduction)
compared to new development.

Reusable vs. non-
reusable components
[Frakes01]

Error density (number of
errors per non-commented
line of code) from the pre-
delivery stage of the
system.

More reuse results in lower
error density.

Code reuse [Succi01] -Client complaint density
(i.e., the ratio of client
complaints to lines of
code)
-Defect density after the
system is delivered to the
client

Reuse is correlated
significantly and positively
with client satisfaction.

Reusable vs. non-
reusable components
[Mohagheghi04c]

Defect density (number of
defects/lines of non-
commented code)

-Reused components had lower
defect density than those that
were not reused.
-Reused components had a
higher number of defects of the
highest severity before
delivery, but fewer defects
post-delivery.

Reused, modified and
newly developed
modules [Selby05]

Module fault rate (number
of faults in a module per
non-commented source
lines of code). Since an
error correction may affect
more than one module,
each module affected by an
error is counted as having a
fault.

-Software modules reused
without revision had the fewest
faults, fewest faults per non-
commented source line of
code, and lowest fault
correction effort.
-Software modules reused with
major revisions had the highest
fault correction effort and
highest fault isolation effort.

State of the Art

 23

Some studies have proposed explanations for the lower defect density of
reused components. For example, Lim [Lim94] proposed the following: 1) as
work products are used multiple times, the defect fixes for each reuse accumulate,
and gradually result in higher quality, and 2) more importantly, reuse provides
incentives to prevent and remove defects earlier in the life cycle because the cost
of prevention and debugging can be amortized over a greater number of uses.
Succi et al. [Succi01] proposed that implementing a systematic reuse policy, such
as the adoption of a domain-specific library, improves client satisfaction. Selby
[Selby05], Frakes et al. [Frakes01], and Thomas et al. [Thomas97] attributed the
lower defect density of reused components to the smaller number, and fewer
amounts, of changes performed on them. In addition, Thomas et al. [Thomas97]
proposed the following: 1) if there is an expectation that components will be
reused, it is more likely that they will be well-specified, particularly with respect
to their reuse functionality; 2) the nature of the programming languages, i.e.
FORTRAN and Ada in their cases, may affect the benefits of reuse, and 3) the
experience with reuse in an organization and the approach taken towards reuse are
likely to influence the nature of defects. A close examination of these studies
illustrates that (paper P5 in Appendix A, p.144):

� Most studies compared only the number of defects between reused and
non-reused components without going into further detail. The one
exception is Thomas et al. [Thomas97], who divided the defects into
defect types and compared the number of defects of each type. However,
no studies have so far investigated differences in defect densities in reused
components with respect to the type of defect (paper P5 in Appendix A,
p.144).

� Many factors may influence the success or failure of software reuse
[Morisio02] [Rothenberger03], such as management commitment, the
process by which reuse is introduced, and human factors. It is therefore
necessary to investigate which factors contribute positively to the lower
defect density of reused software, and which contribute negatively. In
addition, it is important to understand which factors need to be excluded
before analysing the relationship between software reuse and lower defect
densities of reused software. Some studies [Lim94] [Thomas97]
[Frakes01] [Succi01] [Selby05] have attempted to attribute the lower
defect densities of reused vs. non-reused software to the practices of reuse.
However, few of them have done convincing cause-effect analyses (paper
P5 in Appendix A, p.145). Most of them simply proposed possible
explanations without providing confirmation, as shown in Figure 5 (the
figure is from paper P5 in Appendix A, p.145).

State of the Art

 24

Figure 5. Current research proposals regarding the overall cause-effect

relationship between software reuse and the lower defect/error density of reused

software (P5 in Appendix A, p.145)

Another study by Ostrand et al. [Ostrand05] has studied defect distributions among two
industrial systems. Even though the authors do not mention explicitly reuse impact as
their central focus, they do study number of defects across subsequent releases. A
negative binomial regression model using information from previous releases has been
developed and used to predict the numbers of defects for two large industrial systems
[Ostrand05]. The predictions were quite accurate for each release of the two systems,
correctly selecting files that contained between 71% and 92% of the defects that were
actually detected, with the overall average being 83%. The information about the
systems also shows that the defect density (defects per KLOC) tends to decrease as the
system matures.

Our paper P6 (see Appendix A) has summarized studies [Frakes01] [Algestam02]
[Mohagheghi04c] [Selby05] that have examined the possible influence of software
reuse on the changes of a system, as shown in Table 5 (the table is found in paper P6 in
Appendix A, p. 170).

State of the Art

 25

Table 5. Studies comparing changes of reused components vs. those in non-reused

ones (P6 in Appendix A, p.170)

Quality focus Quality measures Conclusion

Number of change requests
per source code line.

Reused components are more
stable in terms of volume of
code modified between releases
[Mohagheghi04c].

Change density

Percentage of code-line
changes (enhancement or
repair).

The modules reused with major
revision (>=25% revision) had
the most code changes per
SLOC [Selby05].

Number of
changes

The number of changes
(enhancement or repair) to a
module.

More reuse results in fewer
changes [Frakes01].

Amount of
modified code

Size of modified or
new/deleted code/total size
of code per component
between releases.

Non-reused components are
modified more than reused ones
[Mohagheghi04c].

Number of
change
scenarios

Number of changes to which
a software system is exposed
(e.g. adding communication
protocols, porting to new
platforms, issues related to
the database manager)

Reusing components and a
framework resulted in increased
maintainability in terms of cost
of implementing change
scenarios [Algestam02].

Although most studies [Frakes01] [Algestam02] [Mohagheghi04c] in Table 4
and 5 conclude that software reuse is significantly correlated to fewer changes or

lower defect density, one study observed that a reused module that undergoes
major revision has the most changes per source line [Selby05]. A close
investigation of the studies in Table 4 and 5 further illustrates that (paper P6 in
Appendix A, p.170):

� None of the studies performed detailed analyses (as is the case with
studies listed in Table 6 in Section 2.5.1, from P6 in Appendix A).
“Detailed analysis” here refers to dividing the changes into different types
and comparing the distribution of the changes according to type. Several
factors (e.g. complexity, functionality, development practice, age, and
size) may determine the profile of software maintenance [Kemerer97].
Thus, comparing only the number or density of the defects is not sufficient

to warrant the conclusion that software reuse is significantly correlated to

fewer changes (paper P6 in Appendix A, p.170).

Thus, further study is needed to investigate the relation between software reuse and
software changes of different types for reused and non-reused software, which is done
in this thesis.

State of the Art

 26

2.4 Component-Based Software Engineering

Over the past few decades, several attempts have been made to improve software
development practice. Some of the approaches have been improved design techniques,
developing more expressive notations for capturing an intended functionality of a
system, as well as encouraging reuse of pre-developed component pieces rather than
developing from scratch [Brown98]. Already in 1972, Davis Parnas wrote about the
advantages of decomposing a system into modules [Parnas72]:

� shorter time-to-market (development time) because modules can be developed in
parallel by separate groups,

� increased product flexibility,
� ease of change, and
� increased comprehensibility as modules can be studied separately.

A new paradigm for software development that emerged in the 1990s was CBSE, which
represents development with reuse in contrast to development for reuse [Karlsson95].
The latter refers to systematic generalization of software components for later reuse,
while the former deals with how existing components can be reused in existing or new
software systems. Regarding the reuse of “in-house” components, these two
development processes are tightly related.

The creation of CBSE emerged from designers’ frustrations that object-oriented
principles did not lead to extensive amount of reuse, as originally suggested
[Sommerville04]. The reason was that individual object classes: (1) were too detailed
and specific, (2) were often bound to an application at compile-time, (3) required
detailed knowledge of the classes, which implied access to the source code, and (4)
were dependent on several other super classes. All this made it difficult to reuse
individual object classes. CBSE, however, assumes more high-level units for assembly,
and makes systematic reuse possible by demanding that components should adhere to a
component model. CBSE is the process of defining, implementing, composing and
integrating loosely coupled independent components into systems.

Both CBSE and Component-Based Development (CBD) are approaches to the old
problem of handling system complexity by decomposition, and these two approaches
are often used indistinguishably. Although, much effort has been devoted to define and
describe the terms and concepts involved, there is literature [Bass00] that distinguishes
between these two concepts. According to Bass et al. [Bass00], CBD involves the
technical steps for designing and implementing software components, assembling
systems from pre-built software components, and deploying assembled systems into
their target environment. CBSE then involves the practices necessary to perform CBD
in a repeatable way to build systems that have predictable properties [Bass00].

CBSE has become an important software development approach, and has gained much
attention in the software industry, as a way to handle software complexity and evolution
in a cost-effective and quality-ensuring way. The following are some of the benefits of
using CBSE [Bachmann00] [Bass00]:

State of the Art

 27

� Independent extension: components are units of extension, and a component
model describes exactly how extensions are made.

� Component markets: deployment of components into a common environment.
� Components improve programmer productivity, which also reduces time-to-

market: the availability of components reduces the time it takes to design and
develop systems. Even if component families are not available in an application
domain, the uniform component abstractions will reduce development and
maintenance costs overall.

� Separation of skills: complexity is packaged into the component framework, and
provides distinct services for developers, assemblers, deployers and
administrators.

� Components provide a base for reuse: components have direct usability - they
can be applied directly to build a system in contrast to design patterns or other
more abstract forms of packaged reuse, which require adaptation before
providing usability.

In the literature, components are defined and classified in several ways. Definitions vary
according to the following factors [Mohagheghi04b]:

� life cycle phase for component identification, e.g. high level abstractions vs.
implementation units,

� origin; in-house, bought (COTS) or free software (OSS), or
� roles a component can play in a system, such as process components and data

components.
One of these component definitions is presented below. Szyperski [Szyperski02] defines
a component as:

A software component is an executable unit of independent production, acquisition,

and deployment that can be composed into a functioning system. To enable

composition, a software component adheres to a particular component model, and

targets a particular component platform.

The terms component model and component framework are also used when talking
about CBSE, but are often intermixed. Bachmann et al. [Bachmann00] define a
component model as a “set of component types, their interfaces, and a specification of

the allowable patterns of interaction among component types”. They also define a
component framework as a “framework that provides a variety of runtime services to

support and enforce the component model and component interaction”. Component
frameworks are like special-purpose operating systems, but operating at much higher
levels of abstraction. Hence, developing a component framework is demanding. Some
examples of commercial component frameworks (also called component technologies)
are EJB, .NET, COM+, and CORBA.

CBSE is therefore about developing components based on a component model and
composing components into application systems. Important aspects are reuse,

autonomy of components, and composition [Mohagheghi04b]. According to
Sommerville [Sommerville04], there is a trade-off between reusability and usability of a
component. To make a component reusable involves providing a comprehensive set of

State of the Art

 28

generic interfaces and operations that can cater to all the ways in which the component
could be used [Sommerville04]. So, adding generality to a component increases its
reusability, but decreases the usability. The more operations a component has, the more
“complex” it gets, and this makes it more difficult to understand and use. It is therefore
important to find a compromise between generality and understandability, when
designing a component for reuse.

Although CBSE is rapidly being adopted as a mainstream approach to software
development, some challenges still remain. Bass et al. [Bass00] mention the following
challenges or inhibitors in CBSE, in decreasing order of importance: lack of available
components, lack of stable standards for component technology, lack of certified
components, and lack of an engineering method to consistently produce quality systems
from components. Crnkovic [Crnkovic02] lists the main concerns of CBSE related to
components as: component specification, its implementation, and its deployment. He
also talks about the three challenges CBSE faces when dealing with extra-functional
properties (referring to quality attributes and non-functional requirements): (1)
inaccurate definition of these properties, (2) difficulty of relating the overall system
properties to component properties, and finally (3) current component-based technology
has no satisfactory support for specifying these properties. Another researcher [Voas01]
mentions the difficulty of combining quality attributes (e.g. non-functional
requirements) related to component use since users do not know all the quality attributes
a component may need and how the system will tolerate these attributes.

Sommerville [Sommerville04] claims that the long-term vision of CBSE is that there
will be specialized component suppliers whose business is based on the development
and sale of reusable components. However, it is unlikely that this vision will be realized
before these aforementioned challenges have been satisfactorily solved.

2.5 Software Evolution and Software Maintenance

Observations and rules relevant to software system evolution planning and management
were first identified during studies of evolution of OS/360-70 and other systems
between 1968 and 1985. The majority of work in this area was conducted by Lehman
and Belady, in the 1970s and 1980s [Lehman85]. It was, however, Meir M. Lehman
who was the first to become aware of this phenomenon and who did the first systematic
studies of software evolution, while he was working for IBM in the late 1960s. He
realized that the real problem was not in the architecture of a specific system, but rather
in the methods and methodology of the architecture.

In the 1990s Lehman and other researchers investigated the significance of feedback in
evolution processes [Lehman96] [Lehman98a] [Lehman01a]. The results from these
studies were the Lehman Laws for system change. Lehman and Belady have extensively
studied the growth and evolution of a number of large software systems. Based on those
quantitative studies they first proposed five laws: (I) Continuing Change, (II) Increasing
Complexity, (III) The Fundamental Law of Program Evolution, (IV) Conservation of
Organizational Stability, and (V) Conservation of Familiarity [Belady76]. These laws

State of the Art

 29

were further developed and revised through the FEAST/1 [Lehman98b] and FEAST/2
[Lehman01b] research projects.

Lehman Laws serve as a guide to the evolutionary software development process and
the construction of software tools. Lehman and Ramil [Lehman01c] distinguish between
two types of systems, E-type and S-type systems. The former is defined as: “software

used for problem-solving or application-addressing in a real-world domain”. This type
of software is accepted based on aspects such as user satisfaction, functionality, and
performance, and cannot be proven correct [Lehman01c]. The S-type system focuses on
the problems that are formally defined and specified. According to Lehman
[Lehman05], a program derived from such specifications will be required to be correct,
with respect to a fixed and consistent specification. However, the laws apply primarily
to the E-type systems, and Lehman discovered that all such systems undergo evolution
that will affect all aspects of the system. In essence, this means that evolution is
continuous and pervasive, and gradually changes the scope and architecture of a
software system (often called a legacy system), until such a system is no longer
economically maintainable in terms of available resources (effort, time etc.)
[Lehman02].

The first formulated laws of software evolution were not widely accepted as relevant to
software engineering practice. This was due to the absence of precise definitions of the
laws, lack of significant support for some of the laws when applying statistical tests, and
finally about using the term “law” to characterize human-social phenomena activities
[Lehman01c]. However, over the years they have been recognized, as they provide
useful inputs to understand the software processes. The increased awareness of software
evolution is, according to Lehman and Ramil [Lehman01c], due to several factors, such
as the pervasiveness of computers, their growing deployment in industry, commerce,
government etc., and the increased use of the Internet.

The term software evolution is used in different ways by various researchers, and there
is no overall agreement on a definition. Some researchers use the term to encompass
both the initial development of the system and its subsequent maintenance
[Sommerville01], others use it exclusively to refer to the events after initial
implementation [Kemerer99]. Bennett and Rajlich [Bennett00] see evolution as a
separate stage in the lifecycle of the software. One common definition of software
evolution, proposed by Belady and Lehman [Belady76] is:

Software Evolution: “….the dynamic behaviour of programming systems as they are

maintained and enhanced over their life times….”

Today’s software systems in organizations are becoming more long-lived and hence
evolution is becoming of particular importance. However, studying software evolution
seems to be challenging due to the longitudinal nature of the phenomenon, difficulties
in collecting empirical data, and the lack of theory and models [Kemerer99]. How can

empirical software researchers address the evolution phenomenon? Several authors
such as [Kemerer99] [Godfrey00] [Lehman01c] believe that one way of handling this
phenomenon is to provide researchers with more understanding of the what and why of

State of the Art

 30

evolution. The focus is on the properties of the phenomenon, its causes and
identification of its drivers, and its maintenance activity. An alternative view adopted
by [IWPSE01], for example, is primarily concerned with the how of evolution,
referring to the technology used to allow a more systematic, controlled and efficient
software change in system characteristics (e.g. functionality) and growth. Bennett and
Rajlich [Bennett00] claim that software evolution needs to be evaluated as a business
issue as well as a technology issue, and therefore is fundamentally interdisciplinary. The
“grand challenge” within software engineering seems to be the ability to change and
evolve software with sufficient ease and quality. However, many systems, especially
older legacy systems, are difficult to understand and change. A way of changing such a
legacy system is to improve their structure and understandability through re-

engineering, which is one of the processes in software evolution [Sommerville04]. This
means that the functionality of the system, and most of the time the architecture of the
system, remains unchanged.

In the literature we can see that software evolution is strongly related to software

maintenance, which in IEEE Standard 1219 [IEEE93] is defined as:
Software Maintenance: “….the process of modifying a component after delivery to

correct faults, to improve performance or other attributes, or to adapt to a changed

environment”.

While maintenance refers to activities that take place at any time after the new
development project is implemented, software evolution is defined as examining the
dynamic behaviour of systems, and how they change over time. However, the definition
of software evolution by Belady and Lehman [Belady76] presented earlier, shows that
software evolution can be seen as a much broader term than software maintenance.

During their lifetime, software systems usually need to be altered and the original
requirements may change to reflect changing business, user and customer needs
[Postema01]. Therefore, software evolution is incorporated into corrective, adaptive,

perfective and preventive software maintenance [Bennett00] [Postema01]. The
definitions and classifications for the different types of maintenance activities vary
amongst practitioners in the field. However, we present those defined by Kitchenham
and Sommerville [Kitchenham99] [Sommerville01], which are also used throughout
this thesis. These are:

� Adaptive changes are those related to adapting to new platforms, environments
or other applications.

� Corrective changes are those related to fixing bugs.
� Perfective changes are those that encompass new or changed requirements as

well as optimizations.
� Preventive changes are those having to do with restructuring and reengineering.

The definitions of maintenance activities used throughout this thesis are also similar
with the ones in [Bennet80] [Fenton96]. In fact, the adaptive and perfective parts of
software maintenance can be thought of as part of software evolution [SEVO04]. That
means, it can encompass environmental adaptations as well as both aspects of modified
and added scope. Platform changes, on the other hand, are sometimes referred to as

State of the Art

 31

porting, rather than software evolution [Frakes95]. Still, there is the opposing view that
software maintenance starts prior to delivery of the software.

Sommerville [Sommerville01] defines maintenance as the single most expensive
activity in software engineering, requiring 65% to 75% of total effort. Therefore the
costs of these maintenance operations are additionally higher than that of developing the
original software. There are several contributing factors for this, but one of the most
important seems to be that maintenance staff is inexperienced or unfamiliar with the
domain [Postema01]. A pioneer study conducted by Lientz et al. [Lientz78] showed that
around 75% of the maintenance effort was on adaptive and perfective activities, and
error correction consumed about 21%. This study shows that the incorporation of new

user requirements is the core problem for software evolution and maintenance.
Therefore, progress in software architecture is crucial, so that practitioners may extend
and adapt functional and non-functional user requirements without destroying the
integrity of the architecture. Krogstie et al. [Krogstie06] conducted a survey to
investigate the development and maintenance of business software in Norway. The
same survey was performed in 1993 and 1998. The results show that the overall time
used for maintenance is around 40%.

Two basic factors are given by Bennett and Rajlich [Bennett00] about why software
maintenance is important:

� it consumes a large part of the overall lifecycle costs, and
� the inability to change software quickly and reliably means that business

opportunities are lost.

According to Bennett and Rajlich [Bennett00], these factors are enduring problems,
hence the profile of maintenance research is likely to increase over the next ten years.

2.5.1 Studies on the Distributions of Different Types of Software Changes

The related work presented in this section has been cited verbatim from our own
research paper P6 in Appendix A (see the specific references in text where it applies).

Our paper P6 (see Appendix A) summarizes studies that examine the static aspect of
software changes, i.e. the distribution of different kinds of change, or the distribution of
effort spent on performing different kinds of change. Table 6 (the table is found in
paper P6 in Appendix A, p.166) summarizes the nature and conclusions of these
studies.

State of the Art

 32

Table 6. Studies related to distributions of different changes (P6 in Appendix A,

p.166)

Study description Distribution and definition of

different types of change

Other observations of

the study

A questionnaire-based
survey that collected
data from 69 systems,
which were developed
using different
programming
languages, e.g. Cobol,
Assembler, Fortran
[Lientz78].

- 60% perfective
(enhancements and speed
performance)

- 18% adaptive (changes to
data inputs and files)

- 17% corrective (emergency
fixes and debugging)

- 4% other (no description
given)

User demands for
enhancements and
extensions constitute
the most important
problem area with
respect to management.

A case study that
investigated change
requests collected for
two years in a
Canadian financial
institute [Abran91].
Used the same
definitions as
[Lientz78] for
corrective, adaptive,
and perfective changes.
Analysed 2152 change
requests.

- 60% adaptive

- 21% corrective

- 3% perfective

- 15% user support (handle
user requests of application
rules and behaviour, requests
for work estimates, requests
for preliminary analysis)

Maintenance team in
1989 spent 64% of
their time doing
maintenance work (e.g.
optimization and
adding new
functionality) other
than correcting defects
and errors.

A survey conducted in
the MIS (Management
Information System)
department in nine
different application
domains in Hong
Kong.
1000 questionnaires
were sent out and about
50 responses were
received [Yip94].

- perfective (40%
enhancements, 7% tuning,
and 6% reengineering)

- 16% corrective (correct
faults)

- 10% adaptive (adaptation to
new environment)

- other (13% answering
questions and 9%
documentation)

In Hong Kong, 66% of
the total software life
cycle effort was spent
on software
maintenance.
The most cited
maintenance problems
were staff turnover,
poor documentation,
and changing user
requirements.

A structured interview
with managers and
maintainers in a
computer department
of a large Norwegian
telecom organisation in
1990-1991 (study1)

Results of interviews with

managers:

- 44% perfective (changes in
user requirements)

- 29% adaptive (make
software usable in a changed
environment)

If the amount of
corrective work is
calculated on the basis
of interviews solely
with managers, it will
be twice as much as the
actual work reported in

State of the Art

 33

Study description Distribution and definition of

different types of change

Other observations of

the study

and 1992-1993
(study2) [Jørgensen95].
Systems were
developed using either
Cobol or Fourth
Generation languages.

- 19% corrective (correct
faults)

- 8% preventive (preventing
problems before they occur)

Results of interviews with

maintainers:

- 45% perfective

- 40% adaptive

- 9% corrective

- 6% preventive

logs (i.e. the amount of
corrective work may be
exaggerated in
interviews).

Studied 10 projects
conducted in the Flight
Dynamic Division
(FDD) in NASA’s
Goddard Space Flight
Center. The FDD
maintains over 100
software systems
totalling about 4.5
million lines of code.
85% of the systems are
written in FORTRAN,
10% in Ada, and 5% in
other languages
[Basili96a].

- 61% perfective (improve
system attributes and add
new functionality)

- 20% other (e.g.
management, meeting)

- 14% corrective (correct
faults)

- 5% adaptive (adapt system
to new environment)

Error corrections are
small isolated changes,
while enhancements
are larger changes to
the functionality of the
system. More effort is
spent on isolation
activities in correcting
code than when
enhancing it.

A case study
investigated the change
of maintenance
requests during the
lifecycle of a large
software application
(written in SQL)
[Burch97].
Analysed 654 change
and maintenance
requests.

- 49% repair (fixing bugs)

- 26% enhancement (add or
modify functionalities)

- 25% user support
(consulting and answering
user requests)

User support reaches its
peak in the 4th month
(first stage). Repair
reaches its peak in the
13th and 14th months
(second stage), while
enhancement is the
dominant factor in the
third stage (25th
month).

A survey carried out in
financial organizations
in Portugal.
Data was collected
from 20 project
managers [Sousa98].

- 49% adaptive (changes in
platform)

- 36% corrective (error
modifications)

- 14% perfective (expand

3% of the respondents
considered the software
maintenance process to
be very efficient, while
70% considered the
efficiency to be very

State of the Art

 34

Study description Distribution and definition of

different types of change

Other observations of

the study

system requirements and
optimization)

- 2% preventive (future
maintenance action)

low.

An Ada system of the
NASA Goddard Space
Flight Center
[Evanco99].
Analysed 453 non-
defect changes.

- 31% planned enhancements
(anticipated at the start of
development)

- 30% other (code debugging,
enhancements and
maintainability)

- 29% requirements

modifications

(implementation of
requirement changes)

- 10% optimization (optimize
software performance)

Changes related to
optimizations require
the most effort to
isolate, while planned
enhancements require
the most effort to
implement.

A subsystem that
contains 2 million lines
of source code
[Mockus00].
Analysed 33171
modification requests.

- 46% corrective (fixing
faults)

- 45% adaptive (adding new
features)

- 5% inspection (code
checking to figure errors)

- 4% perfective (code
restructuring)

Corrective changes
tend to be the most
difficult, while adaptive
changes are difficult
only if they are large.
Inspection changes are
perceived as the
easiest.

A case study on re-
engineering a people-
tracking subsystem of
an automated
surveillance system,
which was written in
C++ and had 41 KLOC
[Satpathy02].
Analysed the
distribution of
maintenance effort
during the whole
maintenance phase.

- 38% perfective
(optimization, restructuring
and adding new
functionalities)

- 31% adaptive (adapting to
changed environments)

- 23% preventive (preventing
malfunctions and improving
maintainability)

- 8% corrective (correcting
problems)

The effort required to
adapt the system was
high, because the
software needed to be
ported to a different
platform.

Examined three
software products:

− A real-time product

The analysis and collection of
data were performed at two
levels, using the same definition
as [Lientz78]: (1) change log

All three maintenance
categories were
statistically very highly
significantly different

State of the Art

 35

Study description Distribution and definition of

different types of change

Other observations of

the study

written in a
combination of
assembly language
and C. Data of 138
modified versions
were collected.

− The Linux kernel.
Data from 60
modified versions
were collected.

− GCC (GNU
Compiler
Collection). Data
from 15 versions
were collected.
[Schach03].

level, i.e. each entry in the
change log was regarded as one
unit of change. (2) module level,
i.e. all the changes made to a
module were regarded as a
single unit of maintenance.

Change log level:

- 57% corrective

- 39% perfective

- 2.4% other

- 2.2% adaptive

Code module level:

- 53% corrective

- 36% perfective

- 4% adaptive

- 0% other

from the results of
[Litentz78].
Corrective maintenance
was more than three
times the level of the
results of [Litentz78].

Four releases of a
telecommunication
system written in
Erlang, C, Java, and
Perl. [Mohagheghi04a].
Analysed 187 change
requests.

- 61% perfective (new or
changed requirements as
well as optimization)

- 19% adaptive (adapting to
new platforms or
environments)

- 16% preventive
(restructuring and
reengineering)

- 4% other (saving
money/effort)

Corrective changes are reported
elsewhere.

There is no significant
difference between
reused and non-reused
components in the
number of change
requests per KSLOC.

Web-based Java
application, consisting
of 239 classes and 127
JSP files [Lee05].
Based on Swanson’s
definition [Swanson76]
and Kitchenham’s
ontology
[Kitchenham99].
Analysed 93 fault
reports.

Based on Swanson’s

definitions:

- 62% perfective

- 32% corrective

- 6% adaptive
Based on Kitchenham’s

ontology:

- 68% enhanced maintenance

- 32% corrective

Maintenance effort of
Java application is
similar to the
distribution in previous
non object-oriented and
non web-based
applications.

State of the Art

 36

A close investigation of studies in Table 6 reveals that:
� Different studies classify changes differently, noticed by [Chapin01].

o Four studies classified changes into four categories: adaptive,
corrective, perfective, and preventive [Jørgensen95] [Sousa98]
[Satpathy02] [Mohagheghi04b] [Lee05] (paper P6 in Appendix A,
p.168).

o Several studies did not include preventive changes and classified
the changes into adaptive, corrective, and perfective, with a fourth
category of user support in [Abran91], inspection in [Mockus00],
and “other” in [Lientz78] [Yip94] [Basili96a] [Schach03] (paper
P6 in Appendix A, p.168).

o One study classified changes into planned enhancement,
requirement modifications, optimization, and “other” [Evanco99]
(paper P6 in Appendix A, p.169).

o One study classified changes into user support, repair, and
enhancement [Burch97] (paper P6 in Appendix A, p.169).

� Definitions of different types of change are slightly different. For example,
perfective change is defined as user enhancements, improved
documentation, and recoding for computational efficiency in [Lientz78],
and as restructuring the code to accommodate future changes in
[Mockus00]. Perfective change is also defined as encompassing new or
changed requirements (expanded system requirements) as well as
optimization in [Sousa98] [Mohagheghi04b], and is defined as
enhancements, tuning, and reengineering in [Yip94] (paper P6 in
Appendix A, p.169).

� The distributions of different types of change are not the same for different

systems. 62% of studies, including [Lientz78] [Yip94] [Basili96a], found
that perfective changes (the median value of perfective changes of those
studies presented in Table 6 is 57%) were the most frequent. However,
perfective changes in the system in [Mockus00] were the least frequent.
23% of the studies, reported by [Burch97] [Mockus00], found that
corrective changes were the most frequent. 15% of the studies, including
[Abran91] [Sousa98], found that adaptive changes were the most frequent
(paper P6 in Appendix A, p.169).

2.6 Summary and the Challenges of this Thesis

Software quality, software reuse, CBSE, and software evolution and maintenance were
presented in the previous sections. This section presents those challenges that are
relevant for this thesis in the context of reused and non-reused industrial software
systems. Some important Research Challenges (RC) can be defined as:

RC1. Indicators of software quality: In the literature, defect density, CR density and
change density have been used as a measure for software quality [Mohagheghi04c], but
these cannot be used as standard measures. However, we would assume that lower
defect density, CR density and change density over successive releases would gradually

State of the Art

 37

indicate more stable software. This research challenge is investigated by research
question RQ1 in this thesis.

RC2. Software reuse and its relation to software changes: There are empirical
studies that have proposed explanations as to why we observe fewer changes or lower
defect density in reused components. However, few of them have done convincing
cause-effect analyses. Thus, most of these studies have just proposed possible
explanations without further confirmation. This work aims to contribute towards
explaining the relation between software reuse and the defect densities for different
software change types of the reused software. This research challenge is formulated into
research question RQ1 in this thesis.

RC3. Potential advantages and/or disadvantages of software reuse: “Software reuse

is the systematic practice of developing software from a stock of building blocks”
[Morisio02]. The company will build some components developed for reuse in the
beginning. In the case of successful reuse, more and more code will be encapsulated
into these components. The components can either be an in-house built component, a
bought component (COTS), or free software (OSS). Different types of components have
different advantages and challenges. Moreover, the challenges facing reuse and CBSE
are also organizational, managerial, and technical (e.g. architectural). Focusing only on
the technological issues usually does not bring the whole benefit of reuse and CBSE.
This research challenge is studied in research question RQ3 in this thesis.

RC4. Software evolution and maintenance: There is previous work done on both
software evolution and maintenance (see Table 6 in Section 2.5.1), but there is a lack in
the literature of empirical studies on evolution and maintenance, comparing the change
profile for a reused framework and software reusing it. Software organizations need to
understand how their software systems evolve, and have the appropriate processes and
resources to manage them, such as requirements handling and SCM. This work aims to
empirically study the change profile for a reused framework and software reusing it, and
to determine the possible similarities and differences between their change profiles. This
research challenge is formulated into research question RQ2 in this thesis.

State of the Art

 38

Research Methods and Metrics

 39

3 Research Methods and Metrics

This chapter provides a brief introduction to research approaches and strategies (Section
3.1). It also gives a brief and general description of survey approach and case study
approach, the two research methods used in this thesis (Section 3.1). Section 3.2
presents the goal and criteria for defining metrics and types of metrics, as well as the
validity threats for all types of studies, and in particular how to overcome these for case
studies. Finally, the challenges are discussed, facing empirical studies in general and in
this thesis in particular, in selecting research methods (Section 3.3).

3.1 Research Strategies in Empirical Software Engineering

Empirical research is based on the scientific paradigm of observation, reflection and
experimentation as a vehicle for the advancement of knowledge [Endres03]. Empirical
studies may have different purposes; being descriptive (finding the distribution of
specific characteristics or attributes), explanatory (explaining why certain techniques
are chosen), or exploratory (investigating parameters or doing a pre-study to decide
whether all parameters of a study are foreseen). Software engineering is a cross-
disciplinary subject area and is developing fast. In order to perform valid and reliable
scientific research in software engineering, we have to understand the research methods,
their purpose, limitations and when and how they can be applied [Wohlin00].

According to the literature on this subject [Creswell94] [Seaman99] [Wohlin00]
[Creswell03], there are three types of research paradigms that have different approaches
to empirical studies:

� Qualitative research is concerned with studying objects in their natural setting.
Data used herein are usually words and pictures, not numbers. A qualitative
researcher attempts to interpret a phenomenon based on explanations that people
bring to it.

� Quantitative research is primarily concerned with quantifying a relationship or
comparing two or more groups. The aim is to investigate a possible cause-effect
relationship. A quantitative research is often performed through setting up
controlled experiments or collecting data through surveys or case studies.

� The mixed-method approach is developed to compensate for limitations and
biases in the aforementioned strategies, seeking convergence across other
methods. Collecting data from multiple sources to address the same fact or
phenomenon is also called triangulation. According to Seaman [Seaman99], a

Research Methods and Metrics

 40

combination of both qualitative and quantitative techniques is often more
beneficial than either in isolation. Additionally, they should also be regarded as
complementary rather than competitive. Earlier research [Basili96b] [Seaman99]
describes how to combine qualitative and quantitative research methods.

An overview of empirical research approaches and examples of strategies for each is
shown in Table 7, which relies on [Creswell03] [Mohagheghi04b].

Table 7. Overview of empirical research approaches [Creswell03]

[Mohagheghi04b]
Approaches

Quantitative Qualitative Mixed methods

Strategies

� Experimental
design

� Surveys
� Case studies

� Ethnographies
� Grounded theory
� Case studies
� Surveys

� Sequential
� Concurrent
� Transformative

Methods � Predetermined
� Instrument based

questions
� Numeric data
� Statistical analysis

� Emerging methods
� Open-ended

questions
� Interview data
� Observation data
� Document data
� Text and image

analysis

� Both predetermined
and emerging
methods

� Multiple forms of
data drawing on all
possibilities

� Statistical and text
analysis

Knowledge
claims

Postpositivism:
� Theory test or

verification
� Empirical

observation and
measurement

Constructivism:
� Theory generation
� Understanding
� Interpretations of

data

Pragmatism:
� Consequences of

action
� Problem-centred
� Pluralistic

Table 7 shows how empirical research methods can be classified into different
categories. The boundaries between the different research methods are not sharp. For
example, case studies can combine both quantitative and qualitative studies.

In the paper by Zelkowitz and Wallace [Zelkowitz98] the authors have summarized 12
software engineering validation models. Furthermore, they have developed a taxonomy
that describes these models according to the data collection methods: observational,
historical, and controlled. However, we have only used research methods from one of
the three major categorizations proposed by Zelkowitz and Wallace [Zelkowitz98],
namely observational. In the observational category, we conducted different case studies
in one company. Robson [Robson93] also presents three different types of
investigations (strategy) that can be carried out. His categorization also includes case
study and experiment as in [Zelkowitz98], but he also considers survey. The majority of
our studies are based on a case study, but one is based on a survey. In the following two
Sections, 3.1.1 and 3.1.2, a brief and general description is given of the two research
methods used in this thesis. However, see Sections 4.3.1-4.3.4 for a more thorough
description of how they were applied in our studies.

Research Methods and Metrics

 41

3.1.1 Survey Approach

Surveys are conducted when some piece of technology already has taken place
[Pfleeger94], or when we want to explore past phenomena. They can also be used for
opinion polls and market research, and the collected information can either be analysed
quantitatively or qualitatively. Surveys can be seen as a snapshot of the current
situation. The book by [Fowler88] writes about how to perform a valid and reliable
survey, such as questionnaire design, sampling, and how to contact respondents. The
key idea of sampling is to select some of the elements (e.g. a person) in a population

(the total collection of elements which we want to make some decisions about)
[Cooper03]. A valid sample is a representative subset of the study population
[Conradi05], and the different types of sample design can be studied more thoroughly in
[Cooper03] [Conradi05]. Even though surveys are most useful for studying numerous
elements using a large sample size and extensive statistical analysis, we should always
try to obtain the greatest amount of understanding from the fewest number of elements.

Surveys are used when the control of the independent and dependent variables is not
possible, when the phenomenon of interest must be studied in its natural setting, and
when this phenomenon occurs in the present or the past. Surveys are especially suited
for answering questions about what, how much, and how many, as well as questions
about how and why [Pinsonneault93]. Surveys are an empirical study often used in
disciplines such as marketing, medicine, psychology and sociology. There is also a long
tradition for using surveys to study organizational changes [Baumgartel59] [Neff66]
[Kraut96].

In [Trochim08], several factors are considered when designing a survey. However, in
the software engineering field, when conducting surveys the most troublesome parts are
selecting the sample frame and follow-up of the prospective respondents. Selecting the
sample frame can be difficult and time consuming. For example, if the survey is
performed in the industry we first need to decide which companies go into our survey,
and then we decide the projects. The result of this may be that the chosen sampling
frame leaves out projects that are interesting and includes those that are not. Following-
up on the respondents is also time and resource consuming, since we need to collect
answers from the respondents.

The two most common data collection methods for surveys are through questionnaires
and interviews [Wohlin00]. Questionnaires with mostly closed answer alternatives
could be provided as either paper forms or in some electronic format, such as through
email or web pages. One of the methods for data collection could be to let skilled
interviewers fill in the questionnaires (by telephone or face-to-face meetings) instead of
the respondents themselves. Wohlin et al. [Wohlin00] list some advantages with
interview-driven surveys:

� Interview surveys achieve a higher response rate, compared to mail surveys.
� An interviewer decreases the number of inaccurate “do not know” answers,

since the interviewer is available to answer questions about the questionnaire.
� The interviewer has the possibility to observe and ask questions.

Research Methods and Metrics

 42

However, the interviewer may introduce a bias for qualitative questions. The claimed
disadvantages with surveys is time and cost, which depend on the size of the sample and
the intentions of the investigation [Wohlin00].

Together with experimental research, survey research is a traditional approach that is
supported by a rich social-science literature, describing how to design and administer it
[Dybå01]. General introductions and guidelines for surveys are found in books like
[Selnes99] [Wohlin00] [Cooper03].

3.1.2 Case Study Approach

A case study is conducted to investigate a phenomenon within a specific context and
time interval. It is suitable for industrial evaluation of software engineering methods and
tools because it can avoid typical scale-up problems (when you try to increase the scale
from the laboratory to a real project) observed in small experiments [Kitchenham95].
Whereas formal experiments record the variables that are being manipulated, case
studies collect information from the variables representing the typical situation. Case
studies emphasize what is happening on a typical project: “research-in-the-typical”.
Since, formal experiments must be carefully controlled they are often small scaled:
“research-in-the-small”. Additionally, they also require appropriate levels of replication,
as well as random assignment of subjects and objects. On the other hand, surveys try to
capture what is happening in the population of respondents: “research-in-the-large”.
Generally, the most important aim of a case study is to explain the factors in a real-life
context that are too complex for the survey or experimental approaches.

Yin [Yin03] defines a case study as:

An empirical inquiry that investigates a contemporary phenomenon within its real

life context, especially when the boundaries between phenomenon and context are not

clearly evident.

Furthermore, Yin [Yin03] has identified situations when case studies are more
appropriate; “when a how and when question is being asked about a contemporary

phenomenon, over which the investigator has little or no control”. Case studies can also
be used to evaluate the difference between two design methods. This means to
determine “which is best” of the two methods [Yin94]. During the performance of a
case study, a variety of different data collection procedures may be applied
[Creswell94].

In software engineering, industrial case studies are rare due to several factors
[Kitchenham95] [Wohlin00] [Mohagheghi04b]:

� Confidentiality: Many companies do not allow outsiders to access critical
information, or publish the results. Some of the reasons could be confidentiality
of results or the risk of intervening with the on-going project.

� Longitudinal: Performing a case study may need observation and collection of
data over months or even years.

Research Methods and Metrics

 43

� Planning and generalization: Earlier literature [Kitchenham95] [Wohlin00]
notes that case studies are easy to plan, but the results are difficult to generalize
and even harder to interpret. There are issues that make the planning difficult,
such as it takes time to get the necessary permissions, overcome the
communications barrier, and understand the context. Hence, the results are more
difficult to interpret and generalize due to the impact of the context.

� Organizational changes: A case study may take another turn than anticipated;
projects may be stopped, or changes in the personnel or environment may
happen that affect the data collection.

Performing a good case study involves the following steps [Kitchenham95]:

� Specify the research questions under test.
� Use state variables for project selection and data analysis.
� Establish a basis for comparisons.
� Plan case studies properly.
� Use appropriate presentation and analysis techniques to assess the results.

3.2 Measurement and Metrics

Software measurement is crucial to be able to control projects, products and processes.
Hence, it is central in any empirical study, especially for benchmarking (collecting and
analysing data for comparison), and for evaluating the effectiveness of specific software
engineering technologies [Fenton00b].

Measurement and measure are defined as [Fenton96] [Wohlin00]:

Measurement is a mapping from the empirical world to the formal, relational

world. Consequently, the term measure is the number or symbol assigned to an entity

by this mapping in order to characterize an attribute.

The term software metrics is either used to denote the activities in the field of
measurement, or concretely in this thesis to denote a characterizing attribute which is
measured according to a specified scale and by specified data collection and validation
methods. For instance, the attribute software size is measured in source line of code,
SLOC (the scale). Although the first book on software metrics was not published until
1976 [Gilb76], the history of software metrics dates back to the mid-1960s when the
metric, Lines of Code, was used as the basis for measuring programming productivity
and effort [Fenton00b].

While some attributes can be directly measured (e.g. number of defects found in a test),
others are instead derived through other measures (that are directly measurable), and are
called indirect measures (e.g. defect density in number of defects per SLOC).
Measurement of an attribute can also be divided into objective and subjective measures;
an objective measure is a measure where there is no judgment in the measurement value
(e.g. delivery date). A subjective measure depends on both the object and the viewpoint,
such as usability [Wohlin00].

Research Methods and Metrics

 44

Wohlin et al. [Wohlin00] have divided entities of interest that we wish to measure in
software engineering into three classes:

� Process: describes which activities are needed to produce some software.
� Product: are the deliverables or documents which result from some activities.
� Resources: entities needed for a process activity, such as personnel, hardware or

software.

Metrics are classified in five scale types: nominal, ordinal, interval, ratio and absolute
scales. General definitions and statistical tests for each type are described in [Wohlin00]
[Cooper03], for example.

Defining metrics and collecting related measures in an organization is a non-trivial task,
considering the need for resources, time-consumption and cost. One approach that has
been helpful for defining goals and collecting metrics in organizations is use of the
GQM (Goal/Question/Metric) approach. GQM is developed by Victor Basili et al. and
the Software Engineering Laboratory at the NASA Goddard Space Flight Center. More
thorough information about GQM can be found in [Basili84] [Basili92] [Basili93].

3.2.1 Validity Threats

A fundamental discussion concerning results of a study is how valid they are. Empirical
research usually uses definitions of validity threats that originate from statistics and not
all the threats are relevant for all types of studies. Four categories of validity threats
have been defined by Wohlin et al. [Wohlin00], assumed applicable outside formal
experiments:

� Conclusion validity – “right analysis”: is concerned with the relationship
between the treatment (refers to one particular value of one or more independent

variables3) and the outcome. It is important to make sure that there is a statistical
relationship (usually indicated by a low p-value4) of significance. Threats are
related to issues such as statistical tests, and the reliability of measures.

� Internal validity – “right data”: a causal relationship between treatment and
outcome, we must make sure that it is not due to factors we cannot control or
measure. Threats are related to factors such as history, testing, and selection.

� Construct validity – “right metrics”: is concerned with the design of the study.
We must ensure that the treatment reflects the cause and the outcome reflects the
effect. Threats are related to issues such as interactions of different treatment,
and hypothesis guessing.

� External validity – “right respondents”: is concerned with the generalization of
results outside the scope of a study. Three common risk factors are: respondents
(the subjects) are not representative for the population, environment (the
context) is not representative, and time (the experiment is conducted at an
inappropriate time).

3
 Independent variables are the development method, the experience of the personnel, tool support and

the environment [Wohlin00].
4
 When a statistical test is conducted it is possible to calculate the lowest possible significance (often

denoted p-value) [Wohlin00]. This p-value gives us the chance to reject the null hypothesis.

Research Methods and Metrics

 45

Different validity threats exhibit different priorities based on research method. Thus, for a
case study, Yin [Yin03] identifies three tactics to improve validity:

� Use multiple sources in data collection and have key informants review the
report in composition to improve construct validity.

� Perform pattern matching (comparing an empirically based pattern with a
predicted one, especially for explanatory studies), and address rival explanations
in data analysis to improve internal validity.

� Use theory in research design in single case studies to improve external validity.

Performing case studies in industry is valuable, since they allow us to evaluate methods
in “real-life” contexts, to gather useful data for researchers, and to evaluate technology
for researchers and practitioners.

3.3 Summary and the Challenges of this Thesis

Research methods and metrics were discussed in this chapter, and made us aware of the
challenges faced when we plan a thesis like this. This section presents those research
challenges facing empirical studies in general and in this thesis, especially in selecting
research methods. The numeration of Research Challenges (RC) is continued from
Section 2.6:

RC5. Defining research questions: What are the relevant research questions and how
well are they defined? Sometimes the research question is well defined, making it easier to
decide the research method. However, in most cases, the research question is emerging and

so is the research method. In this thesis RQ1 and RQ2 were derived after a bottom-up
analysis from the collected data, while RQ3 was derived from a top-down analysis after
reading existing literature on software reuse practice.

RC6. Choosing the most suitable research method: What research method should be
“chosen” (e.g. in some cases the research method is given in advance due to the
circumstances) to answer the research question(s)? The quantitative, qualitative or a
combination of both (e.g. mixed-method research approaches) are briefly discussed.
Case studies are valuable in answering how development approaches are implemented,
what the results are, and why the results are as they are. A mixed-method research
approach allows emerging research design, and collecting different types of data.
Therefore, in this thesis a mixed-method design is chosen that combines the results of a
quantitative survey followed by a qualitative semi-structured interview, with
quantitative analysis of industrial databases followed by a qualitative RCA on software
change data. Sections 4.3.1 through 4.3.4 explain the research design for each of the
individual studies that make up this thesis.

RC7. Collecting and analysing data: How should data be collected and analysed? The
selected metrics and statistical tests are described in the papers P1-P6 in Appendix A.

RC8. Validity: How valuable and valid are the discovered results? The relevant validity
threats for each conducted study are presented and discussed in the papers (see
Appendix A). In Section 6.6 the validity threats for all the studies are discussed.

Research Methods and Metrics

 46

Research Context and Design

 47

4 Research Context and Design

This chapter presents the research focus (Section 4.1) and the company context in more
detail (Section 4.2). Section 4.3 presents the overall research design and how it
combines quantitative and qualitative studies. Additionally, a more detailed description
of each study is also given. An overview of the study design is given (Section 4.4).
Finally, the chapter summarizes how the research designs have impacted each other
(Section 4.5).

The work of this thesis is divided into four main studies (see Table 1, Section 1.4). The
details of the research design for each of these studies are discussed more thoroughly in
Chapter 4, while the results of these studies are presented in Chapter 5.

4.1 Research Focus

This thesis is part of the SEVO project [SEVO04], and its four project goals are
presented in Section 1.2. StatoilHydro ASA has cooperated with the SEVO project and
has given us access to data for analysis and feedback. The company initiated its reuse
strategy in 2003, and this strategy is now being propagated to other divisions in the
company. Our main RG for this thesis from Section 1.3 was:

� Investigate the advantages/disadvantages of systematic software reuse and the

reasons behind it, by analysing software change data. Then, based on these

insights, propose specific reuse guidelines (as an example of improvements) to

StatoilHydro ASA, as well as general recommendations to software

practitioners.

The overall RG has been the guiding theme for the research in this thesis. Having an
overall theme allowed us to adapt our research to the company preferences without
deviating too far from our original directions. Given the results from our four main
studies, we have broken the overall RG down into three explicit research questions
which allow us to classify our findings. Thus, the following research questions were
formulated together, with the reason why they are considered important:

� RQ1: What is the relation between software changes and software reuse, by

comparing the reused framework vs. software reusing it?
o Software changes are important because they account for a major part of

the costs of the software. By characterizing and explaining the software

Research Context and Design

 48

changes to the reused framework vs. software reusing it, possible
management strategies to StatoilHydro ASA can be suggested,
depending on which type(s) of changes are more prevalent.

� RQ2: How do the reused framework and software reusing it evolve over

time?

o Software reuse is expected to improve software productivity and quality,
reduce cost and time-to market, standardization, dissemination of best-
practice etc. Although many empirical studies have investigated the
snapshot aspects of changes5, few have explored them from the
longitudinal aspect (i.e. how the changes vary over time). By comparing
the software change profile for the reused framework and software
reusing it, we can show whether or not defect density, CR density and
change density of the reused framework and software reusing it improve
over time. This is important for the company for assigning development
resources. However, if the reused framework vs. software reusing it has
several users and/or rather intense testing, it can lead to high defect
density, CR density and change density. Thus, it does not necessarily
mean that the reused framework vs. software reusing it have a poorer
“quality” (see Section 2.2). Hence, defect density, CR density and
change density cannot be used as a standard measure for quality.

� RQ3: What improvements can be made towards the actual reuse practice at

StatoilHydro ASA?
o Developing for reuse is risky, like any other investment for an uncertain

future. Therefore, we need to investigate the (critical) success factors of
past and ongoing reuse programs. This research question emerged from
two factors, namely combining results from RQ1 and RQ2, and after
exploring some of the results from P1.

In the beginning it was decided to study attributes like productivity (person
hours/NSLOC), time-to-market (visualize planned and real progress and cost at a
defined point in time) and test maturity (number of passed test cases vs. number of
planned test cases). However, when we started to collect data from the three industrial
software systems, these attributes had to be eliminated. This was due to lack of
complete information in the data material. Hence, the research questions and metrics
had to be redefined. See Section 4.2.5 for the main metrics we identified for studying
trouble reports, change requests and software change data related to the NSLOC.

Table 1 (Section 1.4) contains a short description related to focus and research method
of the studies we have performed, and each study is elaborated in Section 4.3.

5 i.e. distribution of different kinds of changes, or the distribution of effort spent on performing

different kinds of changes.

Research Context and Design

 49

4.2 The StatoilHydro ASA Context

4.2.1 The Investigated Company

StatoilHydro ASA has a total of about 31,000 employees, with its headquarters in
Norway and branches in 40 countries. The IT department of the company is responsible
for developing and delivering domain-specific software, to give key business areas
better flexibility and efficiency in their regular operations. It is also responsible for the
operation and support of mass IT systems. This department consists of approximately
100 developers, located mainly in Norway. In addition, StatoilHydro ASA subcontracts
a great deal of software development, maintenance and operations to consulting
(software) companies, and over 1000 consultants are regularly engaged in such
activities.

4.2.2 The Investigated Software Systems

Three systems have been investigated in this thesis. One is a reused framework called
JEF. The remaining two, which reuse JEF, are applications called DCF and S&A.

The company initiated their reuse strategy in 2003 with pre-studies. However, DCF and
S&A were not initially designed and implemented for future reuse, while JEF was
developed for reuse and is based on J2EE (Java 2 Enterprise Edition). It is a Java
technical framework for developing Enterprise Applications. Thus, the framework is
called the “JEF framework” and consists of seven separate components or classes (see
Section 4.2.3 for a more thorough description of these components). The decision of
which components to include in the framework was based on a performed technical
analysis related to the business needs in the company, which resulted in the need of the
following sub-components: (1) GUI components, (2) business logic components, and
(3) security components. Hence, these components were included in the first release of
the framework. JEF has been generalized for reuse by an earlier application, namely
PDM (Physical Deal Maintenance, see Figure 6). After the framework was reused by
DCF and S&A, other components were included. The components in this framework
are built from a combination of COTS (Commercial-Off-the-Shelf) components, OSS
(Open Source System) components, and some in-house built code. The latest release of
JEF components contained a total of 20348 Non-commented Source Lines of Code
(NSLOC), and can either be applied separately or together when developing
applications. Table 8 shows the size and release date of the three JEF releases
(excluding third-party components).

DCF is meant to replace the current handling of cargo files, which are physical folders
that contain printouts of documents that pertain to a particular cargo or contract. A
“cargo file” is a container for working documents that are related to a cargo or contract
that is used by all parties in the oil sales, trading, and supply strategy plan of the
company. There are three releases of the DCF application. Table 8 gives an overview of
the size and release date of the three DCF releases (excluding the code of JEF and other
third-party components).

Research Context and Design

 50

S&A is an application for providing more efficient and controllable business processes
for lift and cargo planning. Lift planning is based on a “lifting program” to generate an
overview of the cargoes that are scheduled to be lifted in the future. The cargo

planning and shipment covers activities to accomplish such lifting. The current trading
system (“SPORT”) is not able to handle complex agreements (i.e. mixing of oil qualities
within the same shipment), or automating the transfer and entry of related data
(currently often manual). The main goal of the S&A application is to replace some of
the current processes/systems, as well as to offer some new functionality. The S&A
application also has three releases. Table 8 gives an overview of the size and release
date of these releases (excluding the third party components).

Table 8. Size and release date of the three systems
Release 1 Release 2 Release 3 Systems

Date Size
(NSLOC)

Date Size
(NSLOC)

Date Size
(NSLOC)

JEF 14 June 2005 16875 9 Sept. 2005 18599 8 Nov. 2005 20348

DCF 1 Aug. 2005 20702 14 Nov.2005 21459 8 May 2006 25079

S&A 2 May 2006 29957 6 Feb.2007 50879 12 Dec.2007 64319

From Table 8 we can see that the framework and the applications are growing. JEF
consists of seven components (see Section 4.2.3). These are being used in PDM and
reused in DCF and S&A (see Figure 6). However, DCF and S&A are not being used in
any other applications. JEF is a framework that is reused in DCF and S&A and in other
projects “as-is”. This is how we can say that JEF is developed for reuse, and DCF and
S&A are developed with reuse. JEF, DCF, and S&A will grow in size because when the
clients use the applications they will make some changes to them, which will also
require changes to the framework. For instance, adding new functionality to the reused
framework and software reusing it will result in growth for JEF, DCF, and S&A.
Another explanation of the growth of the framework and the applications is that when a
defect is found in Release 1 the fixes will be included in Release 2, etc. Thus, the
framework and the application will grow.

JEF Release 1 was finished around June 2005, and PDM in the summer 2005 was the
first application to use the JEF framework (Release 1). In this period, some weaknesses
in the framework were discovered. These changes were then incorporated into JEF,
ending early September 2005. Then, Release 2 of the JEF framework was delivered.
The DCF application reused Release 2 of the JEF framework during late summer and
autumn 2005. After DCF reused the JEF framework, some more minor changes were
made to the framework, which were finished by early November 2005. Then, Release 3
of the JEF framework was deployed. The second application, S&A, reused Release 3 of
the JEF framework, and was developed during early 2006. The relation between JEF
and applications using/reusing it are shown in Figure 6.

The company uses the same test team and has the same test coverage for both the reused
framework and software reusing it. For instance, for unit testing, 85% of the code lines
were executed by unit tests to ensure that the code worked as expected. However,
detailed investigation of software testing will be the topic of Future Work (see Chapter
7). We have not included defects in the PDM application other than those in JEF in our

Research Context and Design

 51

study, because PDM was the first application to use JEF, not reuse it (like DCF and
S&A).

Figure 6. The relation between JEF, DCF and S&A

4.2.3 The Reused Framework: JEF

Figure 7 depicts the JEF components, and the components coloured in green are the
ones reused “as-is” in DCF and S&A and other business applications. The one
component coloured in grey, namely JEFSessionManagement, is just used internally in
the framework.

Research Context and Design

 52

Figure 7. The JEF components

The following is a brief description of the seven components in JEF from Figure 7:

� JEFClient (8885 NSLOC): a large class library providing functionality (e.g.
binding between data objects and the content in GUI), so that other applications
using this component do not need to include low level client code.

� JEFWorkbench (4748 NSLOC): provides features like authentication,
authorization, navigation, preferences, plug-ins, and much more. This
component enables login for users and presents the activities authorized for each
user.

� JEFSecurity (2374 NSLOC): provides both authentication and authorization
services for running code on the client and on the server.

� JEFUtil (1647 NSLOC): provides different utilities such as service locators
(provides communication between client and server), and xml utils (converts
xml definitions into data objects and vice versa).

� JEFSessionManagement (1468 NSLOC): provides communication between the
client and the server. The component can support any protocol supported by
JAVA (e.g. HTTP/HTTPS). This component, however, is used internally in the
framework.

� JEFIntegration (958 NSLOC): provides communication between application
components, information systems and other systems/applications in the overall
architecture.

Research Context and Design

 53

� JEFDataAccess (268 NSLOC): provides data access to the developers, so they
can use a common pattern when creating Java Data Objects (information objects
we wish to persist).

JEF is designed on the basis of a technical architecture for all J2EE systems in the
company. This architecture has four logical layers, and the following presentation is
from top to bottom:

(1) Presentation: responsible for displaying information to the end-user and to
interpret end-user input. JEF components on this layer are JEFWorkbench, JEFSecurity
and JEFClient.

(2) Process: provides support for the intended tasks of the software, and configures
the domain objects. JEF components on this layer are JEFSessionManagement and
JEFIntergration.

(3) Domain: responsible for representing the concepts of the business, and
information about the business and business rules. This layer is the heart of the system.
JEF component on this layer is JEFDataAccess.

(4) Infrastructure: provides generic technical services, such as transactions,
messaging, and persistence. JEF component on this layer is JEFUtil.

4.2.4 Development Environment and Tools

The development technology to implement the three software systems is J2EE (Java 2
Enterprise Edition), and SPRING class framework (OSS). The programming language
is Java. The Rational ClearQuest and Rational ClearCase tools are used for SCM.

To handle changes in requirements or implemented artefacts, Change Requests (CRs)
are written (by test manager or developers) and stored in the Rational ClearQuest tool.
Examples of change requests are: add, modify or delete functionalities; solve a problem
with major design impact; or adapt to changes from e.g. JEF component interfaces.
Failures detected during integration/system testing and all field use are handled by the
trouble reporting process and stored in the Rational ClearQuest tool (as defects).

The project leader or test managers distribute the change requests and trouble reports
(from Rational ClearQuest) among the developers. The developers then access the
source files in the version control system, i.e. Rational ClearCase, to make the necessary
changes. When implementing the changes the developers adhere to the following steps:

� They check-out the files corresponding to the specific change request or trouble
report.

� They implement changes on the checked-out files, with possible locking of the
branch they are working on.

� They give the file a change description, a more thorough description, which is an
elaboration of what changes they have made and a time and date (timestamp).

� In the end, they check-in the files back into Rational ClearCase.

Figure 8, an adaptation after [Mohagheghi04a], shows the phases and states in CR and
TR handling processes. CCB stands for the Change Control Board (usually found in

Research Context and Design

 54

SCM systems), who is responsible for approval or rejection of a CR or TR. The project
leader in StatoilHydro ASA constitutes the CCB in this context.

Figure 8. Software change process [Mohagheghi04a]

4.2.5 Data Collection and Metrics

After we were given access to the company data, we started to plan and collect the
necessary data for conducting our empirical studies. The employed data collection
methods were: survey with semi-structured interviews, and case studies where we (in
some cases) performed a qualitative RCA. However, due to the nature of the industrial
data, some of our research was based on a bottom-up data collection. That is, we
explored the data material prior to formulating our research questions (see Section 4.3
for a thorough description). Prior research [Basili94] claims that the data collection
approach should proceed in a top-down rather than a bottom-up fashion, for instance by
employing GQM to define relevant metrics. However, Mohagheghi and Conradi
[Mohagheghi04d] have given some reasons why bottom-up studies are useful:

� There exists a “gap between the state of the art (best theories) and the state-of-

the-practice (current practices)” [Mohagheghi04d, p.64]. Therefore, most data
gathered in company repositories are not collected according to the GQM
paradigm.

� Several projects have been going on for a while without specifying improvement
programs in the beginning, and may later want to start one. The companies want
to “assess and analyse the usefulness of the data that have already been

collected and relate the data to the goals (reverse GQM)” [Mohagheghi04d, p.
64].

� Even though a company has a measurement program with defined goals and
metrics, “these programs need to be improved from bottom-up studies”
[Mohagheghi04d, p.65].

Studying industrial data repositories can either be an exploratory study (identifying
relations and trends in data material) or a follow-up study (confirmatory) to validate

Research Context and Design

 55

other or newer theories than those originally underlying the collected data
[Mohagheghi04b].

This work has collected and analysed TRs, CRs, and changes to the code for the reused
framework and software reusing it:

� CRs and TRs stored in Rational ClearQuest were analysed consequently in P2
and P5.

o The metrics that were used directly from the data in the change requests
and trouble reports were the reported description, classification, severity

and priority.
o The relation between TRs and CRs was analysed in P3.

� Software changes to the source code were extracted from Rational ClearCase,
and these data were analysed in P4 and in P6.

o TRs and CRs can be rejected, redefined or postponed, and both can lead
to changes in different project reports and documents. It is important to
investigate the actual changes made to the software system by exploring
the source code.

o The metrics that were used directly from the change data were the
reported filename (with all of its version numbers and dates), change

description, code size (NSLOC), release number, and location of the

change (i.e. JEF, DCF and S&A).
� The number of detected software changes of the overall JEF, DCF and S&A is a

direct metric attained simply by counting the number of software changes of a
certain type or for a certain system part etc.

� Size (NSLOC) of the overall JEF, DCF and S&A (a direct metric).
o The size and number of defects were used to calculate the indirect

metric defect density in P3 and in P5.
o The size and number of change requests were used to calculate the

indirect metric change request density in P3.
o The size and number of changes to source code were used to calculate

the indirect metric change density in P6.

The collected TRs and CRs have missing or incomplete data regarding more fine-
grained component information for DCF, i.e. we could not tell which concrete
components in DCF have been affected by code changes. It is only for JEF and S&A
that we have complete data on the component level. In paper P6, we investigated the
change density related to the source code for JEF, DCF and S&A. However, we could
not use component level data, since we were not able to trace back to the actual
components affected by a change. This was due to the interface between Rational
ClearQuest and Rational ClearCase. Each change performed on the source code in
Rational ClearCase could be traced back to the CR submitted in the Rational
ClearQuest. However, on several occasions we had problems tracing back the changes
to the corresponding CR, and the actual components that were affected. For instance,
the field “component” in Rational ClearQuest was incomplete for DCF, and in other
cases we got an error message saying that the CR could not be identified. The
configuration manager in StatoilHydro ASA did not know the reason for such error
messages. Hence, we had to investigate CRs, TRs and changes to the source code for all

Research Context and Design

 56

three software systems, in the cases where we had to compare them. Our main
motivation for P3 and P6 was to discover whether JEF, DCF and S&A become more
stable over time (by investigating how the change request density in P3 and the change
density in P6 evolved over successive releases). For both P3 and P6, we could not
conclude whether the observations were statistically significant or not, since we have no
fine-grained data for the inside parts of these three software systems.

4.3 Research Approach and Design

The research in this thesis has combined qualitative studies of practice and processes,
with quantitative studies of data collected from the company’s repositories. We have
further combined the results to propose software reuse improvements. The rationale for
combining these different types of studies has been:

� Investigating industrial projects gives us the possibility to collect and analyse
data, such as CRs, TRs, software changes to the source code, etc. Therefore, it is
useful to take advantage of all available data.

� The results of our studies mostly confirmed other studies; i.e. triangulation of
data, mainly by using qualitative methods.

Selecting research questions and research methods for this thesis has been both a top-
down and bottom-up approach:

���� The questionnaire in P1 is based on previous work in the field [Li04].
���� Most of our research questions stem from a mixture of literature studies in a top-

down fashion, and exploratory work on available data sets and company

practices, in a bottom-up fashion.

There have been three phases of this work, as shown in Figure 2 and Table 1 (see
Section 1.4):

� Phase 1 (Study 1): Consisted mainly of a quantitative survey followed by
qualitative semi-structured interviews of developers’ views on software reuse.
This phase has followed a top-down approach.

� Phase 2 (Study 2 and 3): Identified mainly by quantitative studies on change
requests and trouble reports, but in P5 a qualitative RCA was performed. This
phase started with a top-down confirmatory approach and continued with more
bottom-up explorative studies.

� Phase 3 (Study 4): The results were mainly obtained from quantitative studies,
but we also performed a qualitative RCA on change data related to the source
code. This phase, just like phase 2, combined a top-down and a bottom-up
approach.

Sections 4.3.1 through 4.3.4 explain the research design for each of the individual
studies that make up this thesis. As mentioned in Section 4.1 we have broken the overall
RG into three main research questions (see Section 1.3), and the individual studies are
discussed according to these research questions. The contributions for each of these
studies are presented in Table 10, and elaborated on in Chapter 5.

Research Context and Design

 57

4.3.1 Study 1: Survey on Developers’ Views on Software Reuse (Paper
P1)

The goal for Study 1 was to investigate the opinions of developers on software reuse,
related to five main areas: benefits of reuse, factors contributing towards reuse, possible
relations between reuse and increased rework, component understanding, and quality
attribute specification. In order to achieve this goal and to answer RQ3, we chose to
perform a survey followed by qualitative semi-structured interviews (see Section 3.1.1
for a more through description of the survey). We chose this research method since it
was clear that the information we sought could only be obtained directly from
respondents rather than from the accumulated technical data. The questionnaire used in
this study was based on previous literature (top-down process).

The developers that participated in the survey currently work with the DCF and S&A
projects, reusing the JEF components developed by the JEF Team. Also, some of these
developers are part of the JEF Team; that is, they both develop and reuse the JEF
components. In total, there are 16 developers working with the DCF project, the S&A
project and the JEF Team at Statoil ASA in Stavanger, Trondheim and Oslo. We asked
all these developers to participate in the survey, and received 16 out of 16 completed
questionnaires.

The developers answered the questionnaires separately, and they were filled out by
hand. After the developers had completed the questionnaire we performed short semi-
structured, one-on-one interviews with each of the developers for 10-15 minutes. This
was done to provide support for possible misunderstandings in answering the
questionnaire, as well as obtaining more thorough, qualitative information around the
issues presented in the questionnaire.

The following are the research questions for Study 1, derived from P1:
� RQ.S1.a: What are the key benefits of reuse?

� RQ.S1.b: Which factors contribute to facilitate reuse?

� RQ.S1.c: Does reuse increase rework?

� RQ.S1.d: Do developers have sufficient information to understand the relevant

components? If the answer is no, how can they solve this problem?

� RQ.S1.e: Do developers trust the relevant quality specification of the

components? If the answer is no, how can they solve this problem?

Validity comment. Most of the questions in the questionnaire used in the survey have
their origin from the research literature. Further, through pre-testing among local
colleagues, most of the questions were refined additionally. Also, terms that may be
unfamiliar to the respondents were defined in the questionnaire handout.

4.3.2 Study 2: Analysing Change Requests (Papers P2, P3)

In order to explore the profile of CRs (to answer RQ1), as well as to see how change
density for the reused framework vs. software reusing it evolves over several releases
(to answer RQ2), we chose to perform a case study, i.e. data mining (see Section 3.1.2
for a more thorough description of case study). We chose this research method

Research Context and Design

 58

(including study 3 and study 4) for these data since they were given to us by the
company and are of a longitudinal nature.

This study investigates change requests (CRs) for JEF in P2, and JEF vs. DCF in P3.
CRs related to origin (i.e. distribution of CRs over perfective, adaptive and preventive
changes), priority level, and relation to component size for JEF were studied in the
former paper. How change request density (number of CRs/KNSLOC) evolves over
time for JEF vs. DCF were studied in the latter paper.

The goal was to improve the knowledge about CRs. Studying the change requests’
distribution and change request density is important to discover where the majority of
the effort related to CRs is being spent in StatoilHydro ASA, as well as to discover if
JEF and/or DCF becomes more stable over time (see discussion in Section 4.2.5). Even
though P3 also investigated defect density, a more thorough description of the research
questions related to defect density is presented in Section 4.3.3, and only research
questions related to change request density are presented here.

Study 2 is a quantitative study based on data mining, and the change requests were
collected from Rational ClearQuest for JEF and DCF. This investigation has been both
a top-down and a bottom-up process. We have used related work (described in paper P2
and P3, see Appendix A) and the CRs collected from the company to formulate our
research questions.

The following are the research questions for Study 2, derived from P2 and P3:

� RQ.S2.a: How is the distribution of CRs over perfective, adaptive and

preventive changes?

� RQ.S2.b: What is the relation between the customer priority and the

developers’ priority on CRs?

� RQ.S2.c: What is the relation between component size and the number of CRs?

� RQ.S2.d: What is the distribution of CRs over priority levels given by the

developers?

� RQ.S2.e: How does the change density for JEF vs. DCF evolve over several

releases?

Validity comment. The change categories we have used to classify CRs in P2 and the
metric change request density in P3 are thoroughly described and used in literature. All
of the change requests in P2 have been classified manually by us. To enhance the
internal validity of the data we have classified all the CRs separately, and then cross-
validated the results.

4.3.3 Study 3: Analysing Trouble Reports (Papers P3, P5)

This study investigates trouble reports (TRs) for JEF vs. DCF in P3, and has in P5
included an extra application reusing JEF, namely S&A.

The goal for this study has been two-fold. The first goal was to get a deeper insight into
how defect density (number of defects/KNSLOC) evolves over time, and the relation

Research Context and Design

 59

between defect density and change request density for JEF vs. DCF (change request
density described in Section 4.3.2), to answer RQ2. The second goal was to compare
the defect profile (in terms of defect density, density of specific defect types, and the
severities/impacts of defects) for the reused framework (JEF) vs. software reusing it
(DCF and S&A), to answer RQ1. By viewing both goals together, it made it possible
for us to characterize and verify possible reuse benefits (to answer RQ3). In order to
achieve our two goals and to answer our overall research questions, we chose to
perform a case study, i.e. data mining.

Study 3 is mainly a quantitative study based on data mining, but in P5 a qualitative
RCA was also performed. The trouble reports were collected from Rational ClearQuest
for JEF, DCF and S&A. As in study 2, this investigation has also been a combined top-
down and a bottom-up approach. Related work (described in papers P3 and P5, see
Appendix A) and the collected TRs from the company have been used to formulate our
research questions.

The following are the research questions for Study 3. These are derived from P3 and
P5:

� RQ.S3.a: How does the defect density for JEF vs. DCF evolve over time?

� RQ.S3.b: What is the relation between change density and defect density for

JEF vs. DCF?

� RQ.S3.c: What is the overall defect density of JEF vs. DCF and S&A?

� RQ.S3.d: What is the density of specific types of defects in JEF vs. DCF and

S&A?

� RQ.S3.e: What are the severities and the most severe defects in JEF vs. DCF

and S&A?

� RQ.S3.f: What impacts on the client do defects in JEF vs. DCF and S&A have?

Validity comment. The metric defect density in both P3 and P5 is thoroughly
described and used in the literature. Additionally, all of the trouble reports used in P5
were classified manually by us, using ODC. Thus, to enhance the internal validity of the
data we classified all the defects separately, and then cross-validated the results.

4.3.4 Study 4: Analysing Change Data Related to the Source Code
(Papers P4, P6)

This study investigates software change data related to the source code for JEF vs. DCF
in P4, and in P6 has included an extra application reusing JEF, namely S&A. Since both
TRs and CRs can be rejected, redefined or postponed, and both can lead to changes in
different project reports and documents, we decided to study the actual changes made to
the source code.

The goal has been to study the change profile (e.g. frequency, change type and change
profile over time) for the reused framework vs. software reusing it (to answer RQ1 and
RQ2), and to investigate the maintenance benefits and challenges of software reuse (to
answer RQ3). In order to achieve our goal and to answer our overall research questions,
we chose to perform a case study, i.e. data mining.

Research Context and Design

 60

Study 4 is similar to study 3, when it comes to research design (i.e. quantitative),
research approach (i.e. top-down and bottom-up), and formulation of research questions
(see P4 and P6 in Appendix A). The exceptions are that a qualitative RCA was used in
both P4 and P6, and that the change data were collected from Rational ClearCase for
JEF, DCF and S&A.

The following are the research questions for Study 4, derived from P4 and P6:

� RQ.S4.a: Does the distribution of change types vary for different development

characteristics (i.e. designing for reuse and before/after refactoring)?

� RQ.S4.b: What change types are the longest for different development

characteristics?

� RQ.S4.c: How localized are the effects of different types of changes for different

development characteristics?

� RQ.S4.d: Whether the reused framework experienced fewer or more changes

than applications reusing it, and the reasons for the differences or similarities?

� RQ.S4.e: Whether the reused framework experienced the same profile of

changes over time with the applications reusing it, and the reasons for the

differences or similarities?

Validity comment. The change density metric in P6 is thoroughly described and used
in the literature. All of the software changes to the source code (see Figure 4 for
definition) investigated in both P4 and P6 have been classified manually by us. We
have classified all the source code changes separately, and then cross-validated the
results. This was to enhance the internal validity of the data.

4.4 An Overview of the Studies

Table 9 gives an overview of how the sub-research questions for each individual study
relates to the main research questions in this thesis.

Table 9. Relation between main and sub-research questions

Research questions Sub-research questions

RQ1 RQ.S2.a-RQ.S2.d,

RQ.S3.c-RQ.S3.f,

RQS4.a-RQ.S4.d

RQ2 RQ.S2.e,

RQ.S3.a-RQ.S3.b,

RQ.S4.e

RQ3 RQ.S1.a-RQ.S1.e, and combining
results from RQ1 and RQ2.

Table 10 gives an overview of the Research Questions (RQ) and their relations to the
studies, together with the phases, type of studies and contributions.

Research Context and Design

 61

Table 10. Types of studies and their relations to phases, RQ, papers and

contributions

Phase Studies Study

description

Research design R

Q

1

R

Q

2

R

Q

3

Paper Contribution

1 Study 1 Study on
developers’
views on
software reuse

Quantitative, with
qualitative semi-
structured
interviews.

�

P1 C4

Study 2 Study of CRs Quantitative and
exploratory study
of data repository.

� � P2, P3 C1, C3

2 Study 3 Study of TRs Quantitative/

qualitative RCA
in P5 and
exploratory study
of data repository.

� � � P3, P5 C2, C3, C4

3 Study 4 Study of
change data
related to the
source code

Quantitative/
qualitative RCA
and exploratory
study of data
repository.

�

�

�

P4, P6 C1, C3, C4

4.5 Summary

The research context was presented in Sections 4.1-4.2, while the research approach and
design of the individual four studies that makes up this thesis was presented in Sections
4.3.1-4.3.4. Further, an overview of the studies was given in Section 4.4. This thesis
has combined qualitative studies of practice and processes, with quantitative studies of
data collected from the company’s software repositories. We first conducted a survey
which was followed by semi-structured interviews. This gave us insight into the
developers’ views on software reuse. This made the basis for our further work, which
was based on case studies (i.e. data mining of the company repositories). The reason for
choosing case studies was the available data, i.e. CRs, TRs and change data related to
the source code stored in Rational ClearQuest and Rational ClearCase. After the
quantitative data analysis of the collected data, we performed a qualitative Root Cause
Analysis (RCA) for P4, P5 and P6, by interviewing a senior developer who was
familiar with development of all JEF, DCF and S&A. We first showed him the results
of our data analysis (to avoid a possible threat to validities of our results, we did not
inform him of our research questions), and then we asked him to interpret the results.
Hence, the combined research methods have helped us answering our three main
research questions. The next chapter presents the main results of papers P1-P6 in light
of the four main studies.

Research Context and Design

 62

Results

 63

5 Results

This chapter summarizes the results of the research for each of the four studies (Sections
5.1-5.4). The results are reported in more detail in the papers in Appendix A. Further,
the contributions made by this thesis are presented (Section 5.5). Finally, the chapter
sums up the main findings described in Chapter 4 and Chapter 5 (Section 5.6).

Sections 5.1-5.4 are furthermore divided into three: first we give a brief introduction of
the abstract of the papers related to each of the four studies in this thesis, then we
present the results for the papers, and in the end an overview is given of the
contributions resulting from each of the four studies.

5.1 Study 1: Survey of Developers’ Views on Software Reuse
(Paper P1)

Study 1 was carried out by doing a quantitative survey with qualitative, semi-structured
interviews on developers’ views on software reuse. The results have been presented in
one paper, namely P1. Our work in this study answers the research question:

� RQ3: What improvements can be made towards the actual reuse practice at

StatoilHydro ASA?

P1. An Empirical study of Developers’ Views on Software Reuse in Statoil ASA
Abstract for P1. In this article, we describe the results from our survey in the IT-
department of a large Oil and Gas company in Norway (StatoilHydro ASA), in order to
characterize developers’ views on software reuse. We have used a survey followed by
semi-structured interviews, investigating software reuse in relation to requirements
(re)negotiation, value of component information repository, component understanding,
and quality attribute specifications. All 16 developers participated in the survey and
filled in the questionnaire based on their experience and views on software reuse. Our
study focused on components built and reused in-house.

Results for P1. Our main results from this study show that the main reuse benefits from
the developers’ viewpoints include lower costs, shorter development time, higher
quality of the components developed for reuse, and a standardized architecture. Factors
facilitating reuse were: formal processes for general software development (implicit
positive effect), dynamic and interactive JEF documents, and a shared information and
experience repository for JEF components (e.g. for storing information regarding JEF

Results

 64

components, rather than the components themselves). The qualitative reasons given
include easier information sharing, easier learning, improved quality of documentation,
and a better overview of the documentation and functionality, as well as of existing
problems and troubleshooting. Finally, our results revealed that component
understanding was generally sufficient, but documentation could be improved.

Contributions of Study 1:
The contribution of this study was to show the benefits of reuse and factors contributing
to successful software reuse in the company. This study supports the main contribution
C4: Identification of possible software reuse improvements.

5.2 Study 2: Analysing Change Requests (Papers P2, P3)

Study 2 was conducted quantitatively by data mining. The results have been published
in papers P2 and P3. Even though the latter paper also investigated defect density, those
results are presented in Section 5.3. Only the results related to change request density
are presented here. Our work in this study answers the research questions:

� RQ1 (by P2): What is the relation between software changes
6
 and software

reuse, by comparing the reused framework vs. software reusing it?
� RQ2 (by P3): How do the reused framework and software reusing it evolve

over time?

P2. An Empirical Study of Software Changes in Statoil ASA – Origin, Priority

Level and Relation to Component Size
Abstract for P2. This paper describes the results of analysing change requests from 4
releases of a set of components developed for reuse by StatoilHydro ASA. These
components total 20348 SLOC (Source Lines of Code)7, and have been programmed in
Java. Change requests in our study covered any change in the requirements. We have
investigated the distribution of change requests over the categories perfective, adaptive
and preventive changes that characterize aspects of software maintenance and evolution.
In total there were 208 combined perfective, adaptive and preventive changes. The
corrective changes (223 in total) were excluded in this paper since they will be analysed
in future work. We have also investigated the relation between customers’ and
developers’ priorities on change requests, distribution of change requests over priority
levels given by developers, and the relation between component size and number of
change requests.

Results for P2. Developers’ efforts for the reused framework were related to perfective
(59%), adaptive (27%) and preventive (14%). On customers’ vs. developers’ priorities
on change requests we found no significant differences between their priorities of
change requests. However, the data show that there was a difference for critical change
requests, though this was not statistically significant. The data trend was that the
customer assigned more change requests on the critical level than the developers, while

6 As mentioned in Section 1.2, software changes here refers to all changes done on software systems,

i.e. defect changes and non-defect changes (see Figure 1).
7
 Even though we in P2 have written SLOC it is actually NSLOC.

Results

 65

developers assigned more on the high level than customers. This is due to the
developers having downgraded critical ones to high priority. Furthermore, larger
components had more change requests than expected. This may not be a surprising
result, but verifying this was important to StatoilHydro ASA in order to show where the
majority of change requests actually occured. Finally, we found that the larger
components had more serious (critical and high) change requests than the smaller ones,
and that the smaller components did not have critical change requests at all.

P3. A Case Study of Defect Density and Change Density and their Progress over

Time
Abstract for P3. We have performed an empirical case study, investigating defect
density and change request density of a reused framework compared with one
application reusing it over time at StatoilHydro ASA. The framework, called JEF,
consists of seven components grouped together, and the application, called DCF, reuses
the framework, without modifications to the framework. We analysed all trouble reports
and change requests from three releases of both. Change requests in our study covered
any changes (not correcting defects) in the requirements, while trouble reports covered
any reported defects. Additionally, we have investigated the relation between defect
density and change request density both for the reused JEF framework and the
application.

Results for P3. The main findings showed us that the JEF framework had higher

change request density in the first release, but lower change request density than the
DCF application over the successive releases. For the DCF application, on the other
hand, a slow increase in change request density appeared.

Contributions of Study 2:
In paper P2 the contribution was to characterize and explain the changes to components,
which is an indication as to which kind of components require more effort and resources
in being managed in StatoilHydro ASA. This was related to the main contribution C1:

Identification of differences/similarities of the change profile for the reused framework

vs. software reusing it. In paper P3 the contribution was to gain more insight about
software evolution by exploring how change request density evolved over time for JEF
and DCF. This was related to the main contribution C3: Description of the software

change lifecycle for the reused framework vs. software reusing it.

5.3 Study 3: Analysing Trouble Reports (Papers P3, P5)

Study 3 was, like Study 2, conducted in a quantitative way based on data mining, but in
P5 a qualitative RCA was also performed. The findings have been presented in papers
P3 and P5. Our work in this study answers the research questions:

� RQ1 (by P5): What is the relation between software changes and software

reuse, by comparing the reused framework vs. software reusing it?

� RQ2 (by P3): How do the reused framework and software reusing it evolve

over time?

� RQ3 (by P5): What improvements can be made towards the actual reuse

practice at StatoilHydro ASA?

Results

 66

P3. A Case Study of Defect Density and Change Density and their Progress over

Time
Abstract for P3. See Section 5.2.

Results for P3. The results showed that the defect density of the reused framework was
lower than the application. For the JEF framework, we found a decreasing defect
density and a decreasing change request density. The DCF application showed a
decreasing defect density, and an increasing change request density.

P5. A Case Study Comparing Defect Profile of a Reused Framework and of

Applications Reusing the same Framework
Abstract for P5. The benefits of software reuse have been studied for many years.
Several previous studies have observed that reused software has a lower defect density
than newly built software. However, few studies have investigated empirically the
reasons for this phenomenon. To date, we have only the common sense observation that
as software is reused over time, the fixed defects will accumulate and will result in high-
quality software. This paper reports on an industrial case study in StatoilHydro ASA,
involving a reused Java class framework and two applications that use that framework.
We analysed all trouble reports from the use of the framework and the applications,
according to the Orthogonal Defect Classification (ODC), followed by a qualitative
Root Cause Analysis (RCA).

Results for P5. Our results reveal that: 1) The framework has a much lower defect
density in total than DCF and a slightly higher defect density than S&A. 2) The higher

defect density of function-type defects of DCF and S&A is partially due to higher time-
to-market pressure, more unstable requirements, and less quality control. 3) The most

severe defects for JEF are interface-type and assignment-type defects. Since other
applications such as DCF and S&A need to use the functions of the reused framework
through its interface, interface-type defects of JEF may cause failure for several of the
applications that reuse JEF. 4) Finally, our results showed us that impacts of defects on
capability and usability are the most common in all three systems

Using the results of the study as a basis, we revised the explanatory model of the overall
cause-effect relationship between software reuse and the lower defect density of reused
software that was presented in Figure 5 into the model shown in Figure 9. Here, we
have presented an improved overall cause-effect model between systematic reuse and
lower defect density that will facilitate further studies and implementations of software
reuse (see Figure 9). However, Figure 9 has been modified slightly in this thesis,
compared to the original figure found in paper P5.

Results

 67

Figure 9. Improved overall cause-effect model between software reuse and the

defect densities of reused software

Contributions of Study 3: The contribution of P3 was to gain more knowledge about
software evolution by investigating defect density, as well as how it evolves over time
in relation to change request density for JEF and DCF. In paper P5 the contribution was
to increase our understanding of software reuse based on exploring defect profiles (i.e.
defect density, density of specific defect types, and the severities/impacts of defects).
This was related to the main contributions:

� C2: Identification of differences/similarities of the defect profile for the reused

framework vs. software reusing it,

� C3: Description of the software change lifecycle for the reused framework vs.

software reusing it, and
� C4: Identification of possible software reuse improvements.

Results

 68

5.4 Study 4: Analysing Change Data Related to the Source
Code (Papers P4, P6)

Study 4 is similar to Study 3 when it comes to research design, but the qualitative RCA
was performed for both P4 and P6, where our observations have been presented. Our
work in this study answers the research questions:

� RQ1 (by P4 and P6): What is the relation between software changes and

software reuse, by comparing the reused framework vs. software reusing it?

� RQ2 (by P6): How do the reused framework and software reusing it evolve

over time?

� RQ3 (by P6): What improvements can be made towards the actual reuse

practice at StatoilHydro ASA?

P4. Experience Report on the Effect of Software Development Characteristics on

Change Distribution
Abstract for P4. This paper reports on an industrial case study in StatoilHydro ASA
involving a Java-class framework developed for reuse and an application that uses that
framework. We analysed software changes from three releases of the framework and the
application.

Results for P4. On the basis of our analysis of the data, we found that perfective and
corrective changes account for the majority of changes in both the reused framework
and the software reusing it, but it was only for JEF that adaptive changes followed
closely. We have seen that DCF had a poor structure (i.e. complex and less
maintainable code) in the beginning, and had to deal with frequent preventive changes
before refactoring than after. Designing for reuse had an effect on the change types.
Files related to adaptive changes stayed longer “open” before they were “closed”, and
were more frequently modified in JEF compared to DCF. Additionally, preventive

changes were more common in DCF, due to the refactoring that took place (information
gained from a qualitative RCA with the senior developer). Thus the amount of changes,
as well as the effect on the localization of changes, was not similar to the systems that
were not necessarily designed for reuse.

P6. Change Profiles of a Reused Class Framework vs. two of its Applications
Abstract for P6. Software reuse is expected to improve software productivity and
quality. Although many empirical studies have investigated the benefits and challenges
of software reuse from development viewpoints, few studies have explored reuse from
the perspective of maintenance. This paper reports on a case study that compares
software changes during the maintenance and evolution phases of a reused Java class
framework with two applications that are reusing the framework.

Results for P6. The results reveal the following. 1) The reused framework was more
stable, in terms of change density, than one application that was reusing it, and more
unstable than the other. 2) The reused framework had profiles for change types that
were similar to those of the applications, where perfective changes dominate. 3) The
lifecycle of both the reused framework and its applications was the same: initial
development, followed by a stage with extending capabilities and functionality to meet

Results

 69

user needs, followed by a stage in which only minor defect repairs were made, and
finally, phase-out. However, the reused framework went faster from the stage of
extending capabilities to the stage in which only minor defect repairs were made than its
applications. 4) The factors that affected the change densities and change profiles of
both framework and applications were: functionalities, development practice,

complexity, size, and age. Thus, all these factors must be considered to predict change
profiles in the maintenance and evolution phase of software.

Contributions of Study 4: In paper P4 the contribution was to study the impact that
software changes had on different development characteristics (e.g. impact of reuse and
impact of refactoring). This was related to the main contribution C1: Identification of

differences/similarities of the change profile for the reused framework vs. software

reusing it. In paper P6 the contribution was to increase our understanding of
maintenance benefits, and challenges of software reuse, based on exploring change
profiles of the reused framework vs. software reusing it over time. This was related to
the main contributions:

� C1: Identification of differences/similarities of the change profile for the reused

framework vs. software reusing it,

� C3: Description of the software change lifecycle for the reused framework vs.

software reusing it, and
� C4: Identification of possible software reuse improvements.

5.5 Overview of Contributions (C1- C4)

The identified contributions, as described in Section 1.6, relate closely to the studies we
carried out in this thesis. We will briefly describe each contribution here, before moving
on to the discussion part (Chapter 6) and relate the contribution with the overall research
questions and state of the art.

C1: Identification of differences/similarities of the change profile for the reused

framework vs. software reusing it (Papers P2, P4, P6)

 We have identified the distributions of CRs, the data trend for how customers

and developers assign priority to CRs, and maintainability of large components
for the reused software. In addition, we also identified the impact that software
changes had on different development characteristics (e.g. impact of reuse and
impact of refactoring) for the reused framework (JEF) vs. software reusing it
(DCF). Finally, we saw the differences/similarities in the maintenance activities
for the reused framework (JEF) vs. software reusing it (DCF and S&A), by
classifying the changes according to the definitions presented in Section 2.5, and
we found that software reuse does not necessarily result in more stable software.

C2: Identification of differences/similarities of the defect profile for the reused

framework vs. software reusing it (Paper P5)

We have identified differences/similarities in the defect profiles (in terms of
defect density, density of specific defect types, and the severities/impacts of

Results

 70

defects) for the reused framework (JEF) vs. software reusing it (DCF and S&A).
Additionally, reused software may not have a lower defect density than non-
reused software. Furthermore, software reuse will probably not reduce the
density of the most severe defects either. The aspects of systematic software
reuse that have helped to reduce the defect density of reused software were
clearly defined requirements, solid design and testing, and cautions to changes.

C3: Description of the software change lifecycle for the reused framework vs.

software reusing it (Papers P3, P6)

We have described how defect density and change request density and this
relation progresses over time (i.e. over successive releases) for the reused
framework (JEF) vs. software reusing it (DCF). We have also presented how the
change profile for the reused framework (JEF) vs. software reusing it (DCF and
S&A) evolves over time, according to the Bennett and Rajlich stage model for
describing the lifecycle of a software system. Finally, our observation showed
that both the reused framework and applications followed the so-called “80/20”
rules.

C4: Identification of possible software reuse improvements (Papers P1, P5, P6)

Our findings resulted in identifying reuse benefits and factors that foster reuse in
StatoilHydro ASA. We also presented an improved overall cause-effect model
between systematic reuse and lower defect density that will facilitate further
studies and implementations of software reuse. Finally, our observations
explored factors of software that will affect the maintenance activities for the
reused framework and software reusing it.

5.6 Overall Summary

Table 11 summarizes the main findings from Chapter 4 and Chapter 5, presented in
relation to the four main studies.

Results

 71

Table 11. The studies and their relations to RQ, papers, contributions, research

methods and validity comment
 Study 1 Study 2 Study 3 Study 4

Research

Questions

RQ3 RQ1, RQ2 RQ1, RQ2, RQ3 RQ1, RQ2, RQ3

Papers P1 P2, P3 P3, P5 P4, P6

C1: Presented the
profile (i.e.
distribution and
maintainability) of
CRs for the reused
framework.

C2: Identified:
1) Reused software
does not necessarily
have lower defect
density than software
reusing it.
2) Software reuse
will probably not
reduce the density of
the most severe
defects.

C1: Identified:
1) Software reuse
does not
necessarily lead to
stable software.
2) Perfective
changes are the
dominant change
type for all three
systems.
3) Designing for
reuse has an effect
on change types.

C3: Observed:
JEF: decreasing

defect density and
CR density.
DCF: decreasing

defect density, but an

increasing CR
density.

C3: Observed that
JEF and DCF
follow the same
lifecycle, while
S&A differs.

Contributions C4: Identified
the reuse
benefits and
factors
facilitating
reuse.

C3: Observed that
the CR density for
JEF vs. DCF
decreased after the
first release.

C4: Presented a
cause-effect model
(Figure 9) between
systematic reuse and
lower defect density.

C4: Showed that
development
practices and
functionality affect
the maintenance
activity the most.

Research

Methods

Survey followed
by semi-
structured
interviews.

Case study. Case study. Case study.

Validity

Comment

Questions in the
questionnaire
have their origin
from the
research
literature.

Categories to
classify CRs and
CR density are
used in literature.

Defect density is
described and used in
literature.

Change density
metric is described
and used in
literature.

Results

 72

Evaluation and Discussion of results

 73

6 Evaluation and Discussion of results

The chapter answers and discusses the three research questions RQ1-RQ3 based on the
results and the relations of contributions to the research questions and papers (Section
6.1). An overall discussion of the observed results is presented (Section 6.2). Further,
the relations between the contributions to the state of the art (Section 6.3), the
contributions to StatoilHydro generally (Section 6.4), and the contributions related to
the SEVO goals (Section 6.5) are discussed. There is also a discussion of validity
threats (Section 6.6) and the reflections on the research context (Section 6.7).

6.1 Research Questions Revisited: RQ1-RQ3

The answers and evaluation of the three research questions presented here are rather
brief. For a more thorough discussion and evaluation, see the papers P1-P6 in Appendix
A.

RQ1: What is the relation between software changes and
software reuse, by comparing the reused framework vs.
software reusing it? (Contributions C1, C2)

Answering RQ1 resulted in two major contributions, C1 and C2, dealing with
identifying the differences/similarities of the change profile (C1) and the defect profile
(C2) of the reused framework vs. software reusing it.

� The overall defect density of JEF (reused framework): We analysed the TRs and
performed a follow-up fish-bone Root Causal Analysis (RCA) by interviewing a
senior developer who was familiar with development of both the JEF framework
and the applications.

o The results revealed the aspects of systematic software reuse that have
helped to reduce the defect density of reused software in the company
were: well-designed functionalities, solid design and testing, as well as
cautions to changes (see also Section 6.2 for a more thorough
explanation).

 Evaluation and Discussion of results

 74

o The relatively simple functionality and business logic of the reused
software have also helped to reduce the defect density of the reused
software.

o The reused software had a large amount of GUIs that were not well
implemented. These GUI-type defects partly lead to a higher defect

density in total of the reused software than one of the applications
reusing it, namely S&A.

� Most frequent defect types for the reused framework and software reusing it:

o Interface-type defects
8 of JEF may cause failure for several of the

applications that reuse JEF. This is because several other applications,
e.g. DCF and S&A, need to use the functions of the reused framework
through its interface.

o The higher defect densities of function-type defects
9 in the DCF and

S&A are due partially to higher time-to-market pressure, more unstable
requirements, and less quality control.

� The overall change density of JEF (reused framework):

o According to the fish-bone Root Causal Analysis (RCA) by interviewing
the senior developer, the RCA showed us that developers in StatoilHydro
ASA were cautious of involving changes into the reused framework,
since changes could affect existing applications. This concern may
therefore reduce the change density of the reused framework. Other
possible explanations for the decreasing change density and CR density
can be found in Section 6.2.

o On the other hand, it is impossible to predict all future requirements of a
framework developed for reuse. Unforeseen requirements of new
applications may demand that many minor or major (such as refactoring)
changes be made to the reused framework. This could explain the higher

change density of the JEF compared to S&A.

� The dominant change type for the reused framework and software reusing it:

We have seen that perfective changes were the dominant change type for both
the reused framework and software reusing it, due to unclear and unstable
requirements.

RQ2: How do the reused framework and software reusing it
evolve over time? (Contribution C3)

Answering RQ2 resulted in one major contribution, C3, dealing with describing the
software change lifecycle for the reused framework vs. software reusing it.

8 Communication problems between modules, components, device drivers, objects, functions via

macros, call statements, control blocks and parameter lists [Chillarege92].
9 The error should require a formal design change, because it affects significant capability, end-user

interfaces, product interfaces, etc. The error occurred when implementing the state and capabilities of a
real or an abstract entity [Chillarege92].

 Evaluation and Discussion of results

 75

� Evolution and maintenance of software developed for reuse: Our observations
revealed that factors that helped to reduce the number of changes that need to be
made to the reused framework were good initial design and stable dependence
on the part of software reusing it. The prime factor that may increase the number
of changes that are made to the reused software is unpredictable contexts of
usage.

� Factors affecting maintenance: Regarding change densities and change profiles

of both framework and applications, the main factors from [Kemerer97] that
affected the maintenance activity most in our case were functionality and
development practices, followed closely by complexity. The factors that affected
it least in our case were age and size.

� The stage model:

o The change profiles of JEF and DCF were in line with the stage model
(to describe the lifecycle of a software system) proposed by [Bennett00]:
starting with initial development, followed by a stage with extending
capabilities and functionality to meet user needs, followed by a stage in
which only minor defect repairs are made, and finally, phase-out.
However, the change profile of S&A was different. Our observations
show that after the deployment of release 3 of S&A, two new users used
the system and did acceptance tests. The results of the new acceptance
tests led to many changes of all types. Hence, we see that the change
profile was affected by the user profile. This indicates that for all
software (developed for reuse and developed with reuse), developers
need to prepare for all kind of changes when prospective new reusers
come and evaluate the software.

o We have observed that the reused framework went faster from the stage
of extending capabilities to the stage in which only minor defect repairs
were made than DCF. One explanation is that the JEF is a framework
developed for reuse. After it has been used and reused by several
applications, the company is cautious about making more changes to it.

RQ3: What improvements can be made towards the actual
reuse practice at StatoilHydro ASA? (Contribution C4)

Answering RQ3 resulted in one major contribution, C4, dealing with identifying
possible software reuse improvements.

� Ignorance of internal reuse training programmes: Some of the developers in
StatoilHydro ASA did not know about the existence of a reuse training
programme (one of the results from our survey paper P1). The reason for this is
that there was a training course for all developers who were involved in the
reuse projects in the beginning, but some consultants joined the project after the
course was held. Hence, these consultants did not get any training and were not
aware of such programmes (this has also been discussed as a threat to the
internal validity in Section 6.6). The study by Frakes and Fox [Frakes95] shows

 Evaluation and Discussion of results

 76

that corporate reuse training is rare. Even though the company has a reuse
training programme, it still needs improvements. So, StatoilHydro ASA must

become better at promoting such training programmes, even after new

consultants join the project.

� Need for experience sharing: Developers revealed that a shared information and

experience repository would be beneficial for software reuse (one of the findings
from our survey paper P1). Thus, such a repository should be made available
and ensured that it has relevant content and that it is used correctly. For instance,
a wiki could be made for sharing information and experience.

� Analysis of CRs/TRs for software process improvement: StatoilHydro ASA

should be more proactive to improve the current reuse process by analysing CRs
and TRs. Our experience is that the recorded data is of poor quality, which
makes any analysis hard, and also diminishes the usefulness of the CRs and TRs.
Only through feedback from collected defect and change data can an
organization “learn from its mistakes”.

� Need for improved, but still lightweight reporting schemes: StatoilHydro ASA

also needs to introduce an updated software change reporting scheme, so that
more correct and more complete information is reported. In addition to the data
in Rational ClearQuest (e.g. priority, severity, submission date of the change,
testing type used) the company should report data such as:

o defect type (e.g. based on a modified ODC),
o change type (e.g. perfective, corrective, preventive and adaptive),
o more precise effort data, e.g. according to an ordinal scale, such as:

- small (minutes)
- medium (hours)
- large (days)

o more fine-grained location information of software changes on the
component level for applications reusing JEF, and

o more fine-grained information on the actual development phase (e.g.
requirements analysis, design, system test) when a software change is
discovered.

6.2 Overall Discussion of the Observed Results

Based on our results from the three research questions, can we indicate that software
developed for reuse is likely to be more stable vs. software developed with reuse,
measured by a lower value of the three attributes defect density, CR density and change
density? Table 12 gives an overview of how CR density, change density and defect
density for JEF is compared to DCF and S&A from our studies.

 Table 12. Overview of CR density, change density and defect density

CR density Change density Defect density

JEF < DCF DCF >JEF > S&A DCF >JEF > S&A

 Evaluation and Discussion of results

 77

According to Table 12, JEF has lower CR density, change density and defect density
compared to DCF, but higher compared to S&A. Therefore, we cannot indicate here if
the reused framework is more stable than the software reusing it.

The following factors are derived from Figure 9, and can explain the lower defect
density, CR density and change density for JEF over its three releases:

� Software maturity curve: Stable domain abstractions and proper packaging of
functionalities are not discovered right away, but achieved through gradual re-
design and possible re-engineering towards framework that may serve different
applications. In our case JEF was used by PDM, but reused by DCF and S&A.
Thus, the accumulated defect fixes will result in higher quality software [Lim94]
over time. This also means that when JEF (or any other software) matures over
time, there will be almost no changes in the user profiles and functionalities (i.e.
software maturity). This will also result in decreasing defect density, CR density
and change density for JEF.

� Software reuse policy: The lower defect density, CR density and change density
of the reused framework is also partially due to the systematic reuse policy
applied:

o The reused framework had well-defined requirements, better design (e.g.
product line or application families), and looser coupling with other
software and lower complexities.

o Reuse-oriented software will be thoroughly tested before it is approved
for reuse [Baldassarre05]. Our results indicated that the reused
framework went through several inspections to remove defects earlier in
the life cycle.

o Developers were cautious of involving changes into the reused
framework, because the changes may affect existing applications. On the
other side, it is difficult to predict all possible future requirements of a
framework developed for reuse. That is, new requirements from software
reusing the framework, which may ask for many minor or major (such as
refactoring) changes of the reused framework.

� The inherent properties (e.g. complexity, algorithm, size) of the reused software:
The inherent properties of the reused software may decrease or increase
densities of all types of defects. For instance, our results indicated that the
reused framework vs. software reusing it had lower defect densities for most of
the defects because DCF and S&A are primarily business applications, with
more rules and complex business logic. JEF had higher defect density of, e.g.
GUI-type defects, simply because JEF has many more GUIs than the DCF and
S&A, and so there are more requests to alter the layout of some of the JEF
GUIs, especially concerning data displays, buttons, and checklists.

In addition to these aforementioned factors that are derived from Figure 9, we assume
that the following factor can also affect the lower defect density, CR density and change
density for JEF over its three releases:

� Hierarchical system layers: Reused software often lies between the operating
system and other “utilities”, and the application reusing it. The further down in
the hierarchy the software lies, the fewer changes it will be exposed to (more

 Evaluation and Discussion of results

 78

stable software). For instance, the operating system and other software in the
bottom will undergo minimal changes, as the software is well tested and kept
stable. According to this reasoning, the software developed for reuse should
undergo fewer changes compared to the applications, but more compared to the
lower layers. We have not investigated this phenomenon by our data, but would
assume that the number of changes and defects will be stabilized downwards in
the hierarchy.

6.3 Discussion in Relation to the State of the Art

Our research on the relation between software changes of the reused framework vs.
software reusing it has shown to be comparable with some previous literature, while
contradicting others.

The results from our survey conducted in P1 on the benefits of successful software
reuse gave support to [Lim94] and [Frakes95]. An early observation on the distribution
of CRs in P2, and even the defect density and CR density in P3, confirmed previous
results such as [Mohagheghi04a] and [Mohagheghi04c]. Systematic software reuse has
helped to reduce the defect density of reused software observed in P5 through: well-
designed functionalities, solid design and testing, as well as cautions to changes. This
supports previous findings [Thomas97] [Frakes01] [Selby05]. Our data showed that the
reused framework may not necessarily have a lower defect density than applications
reusing the framework, and that the reused framework and applications reusing it have a
similar density of the most severe defects, contradicting [Lim94] [Mohagheghi04c].
However, we observed in P3 that the reused framework has decreasing defect density
over its three releases, supporting [Ostrand05]. Even though Ostrand et al. [Ostrand05]
do not explicitly mention the reuse impact as their central focus, they do show that
defect density tends to decrease as the system matures.

Our findings in P4 and P6 reveal that perfective changes are the most common for both
the reused framework and applications reusing the framework. Although slightly
different definitions of change types have been used here, our results seem to support
the observations of [Lientz78] [Jørgensen95] [Evanco99] [Satpathy02]
[Mohagheghi04a] [Lee05]. However, other studies [Burch97] [Mockus00] [Schach03]
gave different conclusions and showed that either the corrective or adaptive changes
occur frequently.

We also observe that the reused framework has a higher change density than one
application and a lower change density than the other in P6, which does not favour
conclusions from any previous studies [Frakes01] [Algestam02] [Mohagheghi04a]
[Selby05]. The change profile of JEF and DCF gave support to the simple/versioned
stage model proposed by [Bennett00]. Both the reused framework and software reusing
it support conclusions from [Schaefer85] [Kemerer97], i.e. about 80% of all work is
caused by only 20% of all components.

 Evaluation and Discussion of results

 79

6.4 Recommendations in general and specific to StatoilHydro
ASA

In addition to the improvements towards the actual reuse practice mentioned in Section
6.1 for RQ3, the following recommendations should be considered by the company.
Furthermore, the first two recommendations should be considered by the software
practitioners in general:

� Upgrade the defect and change reporting: All software developing
organizations have a basic software defect and change reporting system, but its
use differs substantially. If the collected data are not being used by the
organizations, or the data analyses are not done properly, as well as not given
substantial feedback, this will lead to poor data quality for the analysis. This will
be the case especially in those instances where the project members use a lot of
time to report data correctly, and the data is never used in measurement
programs. In our case, Rational ClearQuest and Rational ClearCase are only
used to report and merge TR and CR. However, more systematic and extended
use of the available data can easily be arranged for more thorough analysis (e.g.
effort data).

� Improved configuration management: The way Rational ClearQuest and

Rational ClearCase are configured should be improved. Our experience reveals
that these two configuration management systems do not work perfectly together
(Section 4.2.5). For instance, software changes reported in Rational ClearCase
should be traced back (without any error messages) to the respective change
request or trouble report submitted in Rational ClearQuest.

� Improved O&S Masterplan (specific to StatoilHydro ASA):

o The O&S Masterplan is a project management template in StatoilHydro
ASA, and the studied projects JEF, DCF and S&A have been developed
according to this template. This document has been read by the managers
in the company. Some of the main project’s delivery parameters in this
template are quality, time and cost. These parameters have not been
clearly defined.

� Improvement: To be able to say whether quality has improved,

and time and cost have reduced or not, the company should
define these parameters more precisely and how they are
measured.

o The main focus of the template does not come clearly. There is also a
lack of motivation to drive the processes in the Masterplan forward.

� Improvement: The Masterplan should be more precise on this
point. The users should be more thoroughly informed about the
content and motivation of such a template, e.g. through
workshops and meetings..

o The Masterplan has some incentives related specifically to development
for reuse, but since it is a template for the managers’ detailed guidelines
they are not incorporated in the documentation.

 Evaluation and Discussion of results

 80

� Improvement: More specific recommendations towards reuse
should be specified in the Masterplan.

o The organizational regulations are strict, which again impacts the way
business improvements are done.

� Improvement: The organizational regulations should be less strict
and more visible for the users in the company.

6.5 Relations to the SEVO Goals

The relations between the results and the SEVO goals, as defined in Section 1.2, are
now considered:

G1. Better understanding of software evolution, focusing on CBSE technology.
It is claimed that the work reported in this thesis advances the state of the art of software
engineering as defined by its contributions. Better understanding of software
maintenance and software reuse benefits (see Figure 9), as well as challenges of
software reuse is achieved, as reflected in the contributions C1, C2 and C3.

G2. Better methods to predict the risks, costs and profile of software evolution

in CBSE. Although the goal G2 has not been an explicit focus of this thesis, we have
combined our results from RQ1 and RQ2 and the survey presented in P1 to come up
with improvements, e.g. in C4 towards software reuse. Some feedback is also given to
StatoilHydro ASA.

G3. Contributing to a national competence based around these themes, and G4.
Disseminating and exchanging the knowledge gained. Most results are published, or
planned on being published, and presented at international and national conferences and
workshops. During this thesis work, several masters’ students have directly or indirectly
been involved in project work or masters’ theses concerning software reuse and
software evolution and maintenance in the SEVO project. Furthermore, the knowledge
gained from our studies based on the data from StatoilHydro ASA has been
disseminated back to them through written reports. This relates to all contributions C1-
C4.

6.6 Brief Evaluation of Validity Threats

Some overall issues need to be discussed for the validity of the work in this thesis. Four
groups of validity threats in empirical research are considered in Section 3.2.1 and
validity comments for each of the four studies are discussed in Sections 4.3.1-4.3.4, as
well as in each of the individual papers (see Appendix A). The collected data are
gathered from the company’s data repositories, and some threats to validity of our
studies in this thesis and how these are handled are as follows:

Conclusion validity: Analysis in P1 is based on an initial collection of data. Though it
is too small to be statistically significant, it still yields interesting and valuable insights
for us and for StatoilHydro ASA. The data set of change requests in P2 should be
sufficient to draw relevant and valid conclusions, but it is small. As new JEF releases
are released, they should be included in our dataset to see if they support the same trend
as discovered here.

 Evaluation and Discussion of results

 81

Internal validity: Ambiguity could exist as to whether developers classify an incident as
a Trouble Report or a Change Request, hence this remains a threat. In P5 the interaction
between JEF, DCF and S&A may lead to defects being attributed to the applications
instead of to the framework, and hence defect reporting becomes a threat. Another
threat to the internal validity is the number of files we have selected randomly from
Rational ClearCase in P4 and P6. The random sampling might have caused systematic
bias. The randomness could have given us the files with the fewest changes, while the
files with the most changes were left behind. Another possible threat to the internal
validity is the ignorance of internal reuse training programmes (see Section 6.1 under
RQ3). There were 16 developers at the time study 1 (paper P1) was conducted, and
about 4 developers (out of these 16) did not get the necessary training. Even though the
amount of developers who did not receive the reuse training is small, and all the
documentation from the training course was made available, this still remains a threat to
our findings in this thesis, since the effect of this is unknown.

Construct validity: One possible threat to construct validity in P5 and P6 is that we
performed our causal analysis on a summary of all defects and changes. Given that we
did not perform a detailed analysis of each defect and change, we may have missed
important details. Another possible threat to this validity is that we asked only one
senior developer during the RCA in P4, P5 and P6, since we could not find more people
who knew the details about all the three investigated systems.

External validity: The entire data set was taken from one company. The object of our
studies for this thesis was a class framework, with only two applications. More similar
studies need to be performed in different contexts and organizations in order to
generalize our results. Our survey in P1 is done completely by convenience sampling,
and has a limited sample size. Thus, we cannot generalize outside of context.

6.7 Reflections on the Research Context

The SEVO research project is based on informal cooperation with the industrial partner,
StatoilHydro ASA. When the SEVO project started it had no formal connections to any
industrial partners, but we knew one of the project managers in the company. The
project manager also has a position as an adjunct and associate professor at NTNU, and
working with him previously had been a positive benefit. Therefore, we contacted him,
and the feedback was positive. Hence, less effort was made in the beginning in order to
initiate contact and agreement with organizations to collect research data, which many
researchers struggle with.

All of our studies involved industrial data. Hence, our results were interesting not only
to us, but also to the company that was involved. We were able to present our results to
developers working in the company and received explanations on our observed data
trends and results. In general, the company was involved in the paper writing process by
providing feedback before submissions. A common issue through our industrial
cooperation was that since we were external researchers who were just collecting and
analysing existing data, we were not prioritized when times were busy. For instance, on
one occasion we had to wait for 1.5 months to renew our access to the company, which

 Evaluation and Discussion of results

 82

usually takes a couple of days. However, researchers often experience case studies
taking another turn than anticipated, e.g. projects may be stopped or interrupted
[Mohagheghi04b]. We have had a good collaboration with the company for four whole
years in exploring data from the projects we were involved in, without the projects
being stopped or interrupted. It has helped that StatoilHydro ASA is a very large and
stable company. Therefore, we have had stable access throughout our research
collaboration.
Our main research questions RQ1-RQ3 (see Section 1.3) have been formulated based
on collecting and combining existing data, mined from the company’s repository. We
have first collected the data and then formulated the research questions based on the
collected data, a bottom-up approach. However, some of the fields in the recorded
change requests and trouble reports (e.g. defect severity, effort estimation,
subcomponent) were incomplete or missing. This indicates that the change requests and
trouble reports have not been analysed properly or at all by the responsible people and
that little feedback has previously been given on the collected change requests and
trouble reports. If feedback were provided, the precision of data collection could be
improved in the short run, and promising changes to the process could be suggested in
the long run.

The problem with missing, incomplete and faulty data is not specific to this company,
and the literature, e.g. [Mohagheghi06], reveals that most companies face similar
challenges. That is, either no systematic metrics are defined or the metrics are not
connected to quality goals, or there is a lack of resources and time to perform feedback
or analyses. The overall feedback from conferences and workshops has been positive,
and we have to admire StatoilHydro ASA’s willingness to allow empirical studies of
on-going projects.

 Conclusions and Directions for Future Work

 83

7 Conclusions and Directions for Future

Work

This thesis has presented the results of several empirical studies performed at
StatoilHydro ASA, which is the largest oil and gas company in Norway. The studies
have combined literature study, quantitative data from data repositories, and qualitative
data from internal reports, semi-structured interviews, and qualitative RCA. The top-
down confirmatory approach (with open-ended, research-defined metrics) was
combined with the bottom-up explorative and descriptive approaches (with fixed and
project defined metrics) [Mohagheghi03]. This work mainly analysed data that the
company itself had not analysed at all, or not to the extent presented in this thesis.

The research carried out throughout this thesis has provided valuable insights into three
main research questions, and resulted in four major contributions. Below we sum up our
main conclusions (Sections 7.1-7.3), and outline possible future work (Section 7.4)
based on our results.

7.1 Research Goal Revisited

Returning, finally, to our overall RG for this thesis:
� Investigate the advantages/disadvantages of systematic software reuse and the

reasons behind it, by analysing software change data. Then, based on these

insights, propose specific reuse guidelines (as an example of improvements) to

StatoilHydro ASA, as well as general recommendations to software

practitioners.

We found that applications reusing the framework usually face more unstable
requirements, higher time-to-market pressure, and less quality control than the reused
framework. Therefore, it is not surprising that they are more change-prone. However,
reused software may not have a lower defect density and change density than non-
reused software. Furthermore, software reuse will probably not reduce the density of the
most severe defects either. So, developing a component for reuse will not automatically
lead to better code quality. Our results revealed that, in order to lower the amount of
software changes of the reused framework, it is important to define and implement a
systematic reuse policy; clearly defined requirements, solid design and testing

 Conclusions and Directions for Future Work

 84

[Succi01], and cautions to changes [Selby05]. Based on our results we have also
proposed specific reuse guidelines (as an example of improvements) to StatoilHydro
ASA (see Sections 6.1, 6.4 and 7.3.1), as well as general recommendations to software
practitioners (see Sections 6.4, 7.2 and 7.3.2).

7.2 Possible Recommendations for Researchers on Software
Reuse

We have presented an improved overall cause-effect model (see Figure 9) between
systematic reuse and lower defect density that will facilitate further studies and
implementations of software reuse.

� Figure 9 indicates that a set of diverse factors have to be considered when

discussing the relationship between software reuse and lower defect density

(paper P5 in Appendix A, p.159).

Kemerer [Kemerer97] concludes that five main factors (i.e. software functionality,
software complexity, development practices, software size, and software age) will affect
maintenance activities (see paper P6 in Appendix A). Regarding the change densities
and change profiles of both the framework and the applications, those of Kemerer’s
factors [Kemerer97] that affect the maintenance activity most in our case are
functionality and development practices, followed closely by complexity (see RQ2
under section 6.1).

� Researchers need to consider functionalities and development practices of the

software, since they primarily influence the future change density and the type of

change (perfective, corrective, adaptive, and preventive) (paper P6 in Appendix
A, p.165).

7.2.1 From Internal Attributes to External Quality Properties

In the literature, defect density, CR density and change density have been used as
measures for software quality [Mohagheghi04c], but these cannot be used as standard
measures. We have chosen defect density, CR density and change density (internal

attributes) as indicators of stability (external quality property) for the reused framework
and software reusing it.

� Although Li and Smidts [Li03] conclude that defect density and change request

density correlate significantly with reliability (based on expert opinions), this

still does not represent causality.

7.3 Possible Recommendations to the IT industry on Software
Reuse

7.3.1 StatoilHydro ASA Practitioners

Our findings show that there is much to gain by utilizing specific information about
TRs, CRs and changes to the source code to support software reuse improvement.
During our studies of TRs, CRs and changes to source code, we have collected,

 Conclusions and Directions for Future Work

 85

analysed and presented direct metrics (e.g. severity, priority) and indirect metrics
(defect density, CR density and change density). We have also classified all the defects
according to the modified ODC template (we have not used the whole template) and
similarly for change requests and changes to the source code according to the four
change types: perfective, corrective, preventive and adaptive (Section 2.5 for
definition). However, we have seen that the recorded data is of mediocre quality, which
makes it hard to have strong conclusions, and also diminishes the usefulness of the CRs
and TRs.

� Thus, it is important for the company to collect and monitor new data and

associated measurements early (i.e. for the project at hand), so that they can

improve their way of reporting software changes. We have in Section 6.1 (under

RQ3) suggested improvements towards the reuse practice in the company, as

well as how more advanced use of the available data can easily be arranged for

more thorough analysis (e.g. more precise effort data).

Further, our findings in RQ1 (section 6.1) revealed that the interface-type defects in the
JEF may cause several of the applications that reuse the JEF framework to fail.

� This indicates that more solid quality control or testing should be performed on

reused software to reduce the possible interface defects (paper P5 in Appendix
A, p.157).

It is important to estimate the change profile of a software system in order to arrange
staff expertise, tools, and business strategies properly [Bennett00]. The results of our
studies presented in RQ2 (section 6.1) showed for the long-term evolution and
maintenance of JEF:

� Staff who understand the reused software well must be retained in the

organization for a while after initial development
10

. Such action is necessary

because the reused software may experience a stage in which its capabilities

and functionality are extended to meet user needs, which will require making

many major changes, after the initial deployment (paper P6 in Appendix A,
p.183).

7.3.2 Software Practitioners in general

Our results in RQ1 (section 6.1) showed that the lower defect density of JEF is partially
due to the systematic implementation of the reuse policy, such as clearly defined
functionality, solid design and testing [Succi01], and better management of changes (i.e.
cautions to changes) [Selby05].

� Thus, it is important for industrial practitioners to define and implement a

systematic reuse policy to improve the defect density of reused software (paper
P5 in Appendix A, p.157).

10 We are aware that keeping the staff for a while in StatoilHydro ASA can be challenging, since most

of the consultants are external. However, we believe that making the consultants stay will be beneficial
for the company.

 Conclusions and Directions for Future Work

 86

We have also uncovered incomplete fields in the recorded TRs and CRs. This indicates
that the TRs and CRs have not been analysed properly by the responsible people and
that little feedback has been given on the collected trouble reports and change requests.

� If GQM feedback (e.g. to monitor and adjust new metrics and associated

measurements) was provided from the start, the precision of the data collection

could be improved in the short run and promising changes to the process could

be suggested in the long run.

Many software organizations are in possession of data resources concerning their own
products and processes that they do not exploit fully. From the study conducted by
[Morisio02] they report that very few companies have a reuse measurement program in
place.

� Through better recording of available information and simple analysis, many

organizations could be able to focus on software reuse improvement initiatives

better.

7.4 Future Work

Software reuse and CBSE have advantages, but require a systematic approach in
introducing each and in combining these. Possible directions for future work are:

7.4.1 Future Work Related to the State of the Art

� Estimate software reliability by using defect density and change density: To
answer whether lower defect density and change density indicate more reliable
and stable software over time, we should investigate whether defect-
prone/change-prone components stay defect-prone/change-prone after
deployment over several releases. Additionally, factors of software quality
should also be measured over time (e.g. efficiency, maintainability,
performance, usability). Further studies need to explore and estimate the above
factors and others over time, for the reused framework vs. software reusing it
from the same or other companies.

� Longitudinal study of software evolution and maintenance: Further studies

should be performed, where software change data are collected from other
applications reusing JEF. This could be used to validate our conclusions
presented in this thesis.

� Investigate the test processes for reused software vs. non-reused software:
One interesting question raised by our study is how to use different Quality
Assurance (QA) methods to obtain a lower defect density of the reused software
and the software that reuses it. Given that reused software has different defect
types of the most frequent and severe defects from the software that reuses it,
reused software may need to be tested in different ways than those used to test
the applications that reuse it. This should be investigated further.

 Conclusions and Directions for Future Work

 87

� Study of effort distributions related to removing the causes of the most
costly defects: Further empirical studies of effort distributions related to those
defects that are most costly to correct for reused vs. non-reused software should
be performed. This could be used by the company to assign resources (e.g.
number of persons, budget) in a more cost effective manner.

� Investigate the amount of COTS or OSS used in software projects: Separate

studies indicate that 70% of the software companies use either COTS or OSS
[Sommerseth06]. Further studies should be performed to explore how much of
the projects in the studied company and other software companies use COTS or
OSS.

7.4.2 Future Work Related to StatoilHydro ASA

� Study of StatoilHydro ASA’s reuse practice: Further studies should be carried
out to investigate how our recommendations are implemented in the company,
and whether the recommendations have had the intended effect.

� Investigate those aspects of software components that make them more or
less fit for reuse: Further studies should be performed to investigate the
structure, configuration, interface, documentation and other aspects of
components that make them more or less fit for reuse.

� Measure the amount of changed source code: Further studies should be

performed to develop or adapt a scripting tool that can extract the amount of
modified/deleted/added source code in Rational ClearCase for JEF, DCF, S&A
and other applications reusing JEF. This was tried, but it did not lead to a
permanent tool or method, since it had to be done manually.

� Study of agile development methods vs. waterfall lifecycle models:
StatoilHydro ASA wants to explore whether the amount of source code
decreases, by using agile methods instead of waterfall models in their projects.

� Study of adopting COTS software: StatoilHydro ASA is increasingly buying

COTS software products, as are most companies. However, the COTS products
that the company buys, have not always been 100% fitted to their needs. This
has lead to tailoring of COTS products. Thus, like many other companies, when
StatoilHydro ASA wants to upgrade the COTS software to the next release
(typically 1-2 times per year), it faces a major merge/integration effort to
incorporate the accumulated local software changes with the latest imported
release. The company wants to identify how much effort and what amount of
tailoring have been done to the COTS products, and what kind of “partnership”
with the COTS producers might be needed.

 Conclusions and Directions for Future Work

 88

Glossary

 89

8 Glossary

To address the relevant issues, we need reasonably precise definitions of the terms used.
The following is a list of short definitions of some terms. Where relevant, they are re-
iterated and elaborated in the thesis. These terms are mostly taken from [IEEE90].

Change Control Board (CCB): A group of people responsible for evaluating and
approving or disapproving proposed changes to configuration items, and for ensuring
implementation of approved changes [IEEE90].

Component: One of the parts that make up a software [emphasis added] system. A

component may be hardware or software and may be subdivided into other components.
Note: The terms “module,” “component,” and “unit” are often used interchangeably or
defined to be sub-elements of one another in different ways, depending upon the
context. The relationship of these terms is not yet standardized [IEEE90].

Component-Based Software Engineering (CBSE): The development of software by
composing independent, deployable components [Sommerville04].

Configuration Management (CM): A discipline applying technical and administrative
direction and surveillance to: identify and document the functional and physical
characteristics of a configuration item, control changes to those characteristics, record
and report change processing and implementation status, and verify compliance with
specified requirements [IEEE90].

Error:

� That at least one (or more) internal state of the system deviates from the correct
service state. The adjudged or hypothesized cause of an error is called a fault. In
most cases, a fault first causes an error in the service state of a component that is
a part of the internal state of the system, and the external state is not
immediately affected. Many errors do not reach the system’s external state and
therefore cause failure [Avizienis04].

� The difference between a computed, observed, or measured value or condition
and the true, specified, or theoretically correct value or condition. For example, a
difference of 30 meters between a computed result and the correct result
[IEEE90].

Glossary

 90

Failure (active, dynamic, external “error”):
� The non-performance or inability of the system or component to perform its

intended function for a specified time under specified environmental conditions.
A failure may be caused by design flaws – the intended, designed and
constructed behaviour does not satisfy the system goal [Leveson95].

� The inability of a system or component to perform its required function within
specified performance requirements [IEEE90].

� Since a service is a sequence of the system’s external states, a service failure
means that at least one (or more) external states of the system deviate from the
correct service state [Avizienis04].

Fault (passive, static, internal “error”): An incorrect step, process, or data definition
in a computer program. It is often called a bug or defect [IEEE90].

Java: An object-oriented programming language that was designed by Sun with the aim
of platform independence [Sommerville04].

Maintainability: (1) The ease with which a software system or component can be
modified to correct faults, improve performance or other attributes, or adapt to a
changed environment. (2) The ease with which a hardware system or component can be
retained in, or restored to, a state in which it can perform its required functions
[IEEE90].

Metric: A quantitative measure of the degree to which a system, component, or process
possesses a given attribute [IEEE90].

Quality:

� The degree to which a system, component or process meets customer or user
needs or expectations [IEEE90].

� Ability of a set of inherent characteristics of a product, system or process to
fulfil requirements of customers and other interested parties [ISO94].

Quality Assurance (QA): (1) A planned and systematic pattern of all actions necessary
to provide adequate confidence that an item or product conforms to established
technical requirements. (2) A set of activities designed to evaluate the process by which
products are developed or manufactured [IEEE90].

Release: A version of a system or component to its customer or intended user
[IEEE90].

Reliability:
� The characteristic of an item expressed by the probability that it will perform its

required function in the specified manner over a given time period and under
specified or assumed conditions. Reliability is not a guarantee of safety
[Leveson95].

� Continuity for correct service [Avizienis04].

Glossary

 91

� The ability of a system or component to perform its required functions under
stated conditions for a specified period of time [IEEE 90].

� A set of attributes that bear on the capability of software to maintain its level of
performance under stated conditions for a stated period of time [ISO91].

SEVO: Software Evolution in Component-Based Software Engineering – a basic R&D
project at NTNU in 2004-2008 under the ICT-2010 program at the Research Council of
Norway, lead by Reidar Conradi. See http://www.idi.ntnu.no/grupper/su/sevo.html

Software: Computer programs, procedures and possibly associated documentation and
data pertaining to the operation of a computer system [IEEE90].

Software engineering: (1) The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is, the
application of engineering to software. (2) The study of approaches as in (1) [IEEE90].

Software evolution: The study of the ways an evolving software system changes
[Sommerville04].

Software maintenance: (1) The process of modifying a software system or component
after delivery to correct faults, improve performance or other attributes, or adapt to a
changed environment (adaptive maintenance; corrective maintenance; perfective

maintenance). (2) The process of retaining a hardware system or component in, or
restoring it to, a state in which it can perform its required functions (preventive

maintenance) [IEEE90].

Software Process Improvement (SPI):

� The process of making changes to a software [emphasis added] process with the
aim of making the process more predictable or to improve the quality of its
outputs. For example, if your aim is to reduce the number of defects in the
delivered software, you might improve the process by adding new validation
activities [Sommerville04].

� Software process improvement is a deliberate, planned methodology, following
standardized documentation practices to capture on paper (and in practice) the
activities, methods, practices, and transformations that people use to develop and
maintain software and the associated products. As each activity, method,
practice and transformation is documented, each is analysed against the standard
of value added to the organization [Szymanski08].

Software reuse:
� The systematic [emphasis added] use of existing software, or software

knowledge, to build new software [Wiki08].
� The systematic practice of developing software from a stock of building blocks,

so that similarities in requirements and/or architecture between applications can
be exploited to achieve substantial benefits in productivity, quality and business
performance [Morisio02].

Glossary

 92

System: An entity that interacts with other entities, i.e., other systems, including
hardware, software, humans, and the physical world with its natural phenomena. These
other systems are the environment of the given system. The system boundary is the
common frontier between the system and its environment [IEEE90].

 References

 93

9 References

[Abran91] Abran, A., Nguyenkim, H., Analysis of Maintenance Work Categories Through
Measurement. In: Proceedings of the IEEE Conference on Software Maintenance. IEEE
Computer Society Press, Sorrento, Italy, 1991, pp. 104-113.

[Adams84] Adams, E., Optimizing Preventive Service of Software Products. IBM Journal of

Research and Development, 28(1): 2-14, 1984.

[Algestam02] Algestam, H., Offesson, M., Lundberg, L., Using components to increase

maintainability in a large telecommunication system. In: Proceedings of the 9th Asia-
Pacific Software Engineering Conference. IEEE Computer Society Press, Gold Coast,
Australia, 2002, pp. 65-73.

[Avizienis04] Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C., Basic Concepts and

Taxonomy of Dependable and Secure Computing. IEEE Transactions on Dependable and
Secure Computing, 1(1): 11-33, 2004.

[Ayala07] Ayala, C., Sørensen, C.F., Conradi, R., Franch, X., Li, J., Open Source

Collaboration for Fostering Off-The-Shelf Components Selection. In: Joe Feller and
Alberto Sillitti (Eds.): Proceedings of the 3rd International Conference on Open Source
Systems (OSS’07). Springer Verlag, Limerick, Ireland, 2007, pp. 17-30.

[Bachmann00] Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J.,

Seacord, R., Wallnau, K., Volume II: Technical Concepts of Component-Based Software
Engineering. SEI Technical Report number CMU/SEI-2000-TR-008. Accessed 2008,
http://www.sei.cmu.edu/

[Baldassarre05] Baldassarre, M.T., Bianchi, A., Caivano, D., Visaggio, G., An industrial case

study on reuse oriented development. In: Proceedings of the 21st International Conference
on Software Maintenance (ICSM’05). IEEE Computer Society Press, Budapest, Hungary,
2005, pp. 283-292.

[Basili84] Basili, V.R., Weiss, D., A Methodology for Collecting Valid Software Engineering

Data. IEEE Transactions on Software Engineering, 10(11): 758-773, 1984.

[Basili87] Basili, V.R., Selby, R.W., Comparing the Effectiveness of Software Testing

Strategies. IEEE Transactions of Software engineering, 13 (12): 1278-1296, 1987.

 References

 94

[Basili92] Basili, V., Caldiera, G., Rombach, H.D, Software Modeling and Measurement: The
Goal Question Metric Paradigm. Computer Science Technical Report Series, CS-TR-2956
(UMIACS-TR-92-96), University of Maryland, College Park, MD, 1992, pp. 1-24.

[Basili93] Basili, V., Applying the Goal/Question/Metric Paradigm in the Experience Factory.

In: Proceedings of the Tenth Annual CSR (Centre for Software Reliability) Workshop,
Application of Software Metrics and Quality Assurance in Industry. Amsterdam,
Holland, 1993, pp. 1-23.

[Basili94] Basili, V.R., Calidiera, G., Rombach, H.D., Goal Question Metric Paradigm. In:

Marciniak, J.J. (Ed.): Encyclopaedia of Software Engineering. New York Wiley, 1994, pp.
528-532.

[Basili96a] Basili, V., Briand, L., Condon, S., Kim, Y.M., Melo, W.L., Valett, J.,

Understanding and Predicting the Process of Software Maintenance Releases. In:
Proceedings of the 18th International Conference on Software Engineering. IEEE
Computer Society Press, Berlin, Germany, 1996, pp. 464-474.

[Basili96b] Basili, V.R., The role of experimentation in software engineering: past, current,

and future. In: Proceedings of the 18th International Conference on Software Engineering
(ICSE’96). IEEE Computer Society Press, Berlin, Germany, 1996, pp. 442-449.

[Bass00] Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord, R.,

Wallnau, K., Volume I: Market assessment of Component-based Software Engineering.
SEI Technical Report number CMU/SEI-2001-TN-007. Accessed, 2008,
http://www.sei.cmu.edu/

[Baumgartel59] Baumgartel, H., Using Employee Questionnaire Results for Improving

Organizations: The Survey “Feedback” Experiment. In: Kansas Business Review, 1959,
Vol. 12, pp.2-6.

[Belady76] Belady, L.A., Lehman, M.M., A model of a large program development. IBM

Systems Journal, 15(1): 225-252, 1976.

[Bennet80] Bennet, P.L, Software Maintenance Management: A Study of the Maintenance of

Computer Application Software in 487 Data Processing Organizations, Addison-Wesley,
UK, 1980.

[Bennett00] Bennett, K.H., Rajlich, V.T., A Staged Model for the Software Life Cycle. IEEE

Computer, 33(7): 66-71, 2000.

[Bertolino07] Bertolini, A., Software Testing Research: Achievements, Challenges, Dreams.

In: Future of Software Engineering collocated with International Conference on Software
Engineering (ICSE’07). IEEE Computer Society Press, Minneapolis, U.S., 2007, pp. 85-
103.

[Boehm78] Boehm, B.W., Brown, J.R., Lipow, M., MacLeod, G.J., Merrit, M.J.,

Characteristics of Software Quality. Number 1 in TRW Series of Software Technology.
Elsevier, North-Holland, 1978.

 References

 95

[Boehm06] Boehm, B., Value-Based Software Engineering: Overview and Agenda. In: S.
Biffl (Eds.): Value-Based Software Engineering, Springer Verlag, Berlin, 2006, pp. 3-11.

[Brown98] Brown, A., Wallnau, W., Kurt. C. The Current State of CBSE. IEEE Software,

15(5): 37-46, 1998.

[Burch97] Burch, E., Kung, H.J., Modeling Software Maintenance Requests: A Case Study.

In: Proceedings of the 13th International Conference on Software Maintenance (ICSM’97).
IEEE Computer Society Press, Bari, Italy, 1997, pp. 40-47.

[Chapin01] Chapin, N., Hale, J.E., Khan, K., Ramil, J.F., Tan, W.G., Types of Software

Evolution and Software Maintenance. Journal of Software Maintenance and Evolution:
Research and Practice, 13 (1): 3-30, 2001.

[Chillarege92] Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray,

B.K., Wong, M.Y., Orthogonal Defect Classification - a Concept for in-Process
Measurements. IEEE Transactions on Software Engineering, 18(1): 943-956, 1992.

[Conradi05] Conradi, R., Li, J., Slyngstad, O., Kampenes, V., Bunse, C., Morisio, M.,

Torchiano, M., Reflections on conducting an international survey of Software
Engineering. In: Proceedings of the International Symposium on Empirical Software
Engineering (ISESE’05). IEEE Computer Society Press, Noosa Heads (Brisbane),
Australia, 2005, pp. 214-223.

[Cooper03] Cooper, D., Schindler, P., Business research methods, 8th edition, McGraw-Hill,

2003.

[Creswell94] Creswell, J.W., Research Design, Qualitative and Quantitative Approaches,

Sage Publications, Beverly Hills, California, 1994.

[Creswell03] Creswell, J.W., Research Design, Qualitative, Quantitative, and Mixed Methods

Approaches, Sage Publications, Beverly Hills, California, 2002.

[Crnkovic02] Crnkovic, I., Hnich, B., Jonsson, T., Kiziltan, Z., Specification, implementation,

and deployment of components. Communications of the ACM, 45(10): 35-40, 2002.

[Dybå01] Dybå, T., Enabling Software Process Improvement: An Investigation of the

Importance of Organizational Issues. PhD Thesis, NTNU 2001.

[Endres03] Endres, A., Rombach, D., A Handbook of Software and Systems Engineering,

Empirical Observations, Laws, and Theories, Addison-Wesley, UK, 2003.

[Endres04] Endres, A., Rombach, D., A Handbook of Software and Systems Engineering;

Empirical Observations, Laws and Theories, Addison-Wesley, UK, 2004.

[Evanco99] Evanco, W.M., Analyzing change effort in software during development. In:

Proceedings of the 6th International Software Metrics Symposium (METRICS’99). IEEE
Computer Society Press, Boca Raton (Florida), U.S., 1999, pp. 179-188.

 References

 96

[Fenton96] Fenton, N., Pfleeger, S.L., Software Metrics: A Rigorous & Practical Approach,
2nd edition, International Thomson Computer Press, 1996.

[Fenton97] Fenton, N., Pfleeger, S.L., Software metrics: A Rigorous and Practical Approach,

2nd edition, International Thomson Computer Press, 1997.

[Fenton00a] Fenton, N.E., Ohlsson, N.: Quantitative Analysis of Faults and Failures in a

Complex Software System. IEEE Transaction on Software Engineering, 26(8): 797-814,
2000.

[Fenton00b] Fenton, N.E., Neil, M., Software Metrics: Roadmap. In: Anthony Finkelstein

(Ed.): The Conference on the Future of Software Engineering. ACM Press, Limerick,
Ireland, 2000, pp. 357-370.

[Finkelstein00] Finkelstein, A., Kramer, J., Software Engineering: a Road Map. In:

Proceedings of the 22nd International Conference on Software Engineering (ICSE’00).
IEEE Computer Society Press, Limeric, Ireland, 2000, pp. 3-22.

[Fowler] Fowler, F.J., Survey Research Methods – Applied Social Research Series, Volume

1, Sage Publications, Beverly Hills, California, 1988.

[Frakes95] Frakes, W.B., Fox, C.J., Sixteen Questions about Software Reuse.

Communications of the ACM, 38(6): 75-87, 1995.

[Frakes01] Frakes, W.B., Succi, G., An industrial study of reuse, quality, and productivity.

Journal of Systems and Software, 57(2): 99-106, 2001.

[Godfrey00] Godfrey, M.W. and Qu, T., Evolution in Open Source Software: A Case Study.

In: Proceedings of International Conference on Software Maintenance (ICSM’00). IEEE
Computer Society Press, San Jose (California), U.S., 2000, pp. 131-142.

[Gilb76] Gilb, T., Software Metrics, Chartwell-Bratt, 1976.

[Griss93] Griss, M.L., Software Reuse: From Library to Factory. IBM Systems Journal,

32(4): 548-566, 1993.

[Griss95] Griss, M.L., Wosser, M.,Making Reuse Work in Hewlett-Packard. IEEE Software,

12(1): 105-107, 1995.

[IEEE90] IEEE Standard 610.12: Standard for Glossary of Software Engineering

Terminology. IEEE Computer Society Press, 1990.

[IEEE93] IEEE Standard 1219: Standard for Software Maintenance. IEEE Computer Society

Press, 1993.

[ISO91] ISO/IEC 9126-1: Standard for Information technology – Software product evaluation

– Quality characteristics and guide-lines for their use, 1991.

[ISO94] ISO 9000-1: Quality management and quality assurance standards, Part 1: Guidelines

for selection and use, 1994.

 References

 97

[IWPSE01] Tamai, T., Aoyama, M., Bennett, K., Proceedings of the 4th International
Workshop on Principles of Software Evolution (IWPSE’01), collocated with ESEC/FSE
2001. ACM Sigsoft, Vienna, Austria, 2001, p. 182.

[Jelinski72] Jelinski, Z, Moranda, P.B., Software Reliability Research. In: W. Freiberger

(Ed.), Statistical Computer Performance Evaluation, Academic, New York, 1972, pp. 465-
484.

[Johnson88] Johnson, R.E., Foote, B., Designing Reusable Classes. Journal of Object-

Oriented Programming, 1(3): 26-49, 1988.

[Jørgensen95] Jørgensen, M., The quality of questionnaire based software maintenance

studies. ACM SIGSOFT – Software Engineering Notes, 20 (1) 71-73.

[Karlsson95] Karlsson, E.A., Software Reuse A Holistic Approach, John Wiley & Sons, New

York, 1995.

[Kemerer97] Kemerer, C.F, Slaughter S.A, Determinants of Software Maintenance Profiles:

An Empirical Investigation. Journal of Software Maintenance, 9(4): 235-251, 1997.

[Kemerer99] Kemerer, C.F, Slaughter S.A, An Empirical Approach to Studying Software

Evolution. IEEE Transactions on Software Engineering, 25(4): 493-509, 1999.

[Kitchenham95] Kitchenham, B.A., Pickard, L., Pfleeger, S.L., Case studies for Method and

Tool Evaluation. IEEE Software 12(4): 52-62, 1995.

[Kitchenham99] Kitchenham, B.A., Travassos, G., Mayrhauser, A., Niessink, F.,
Schneidewind, N., Singer, J., Takada, S., Vehvilainen, R., Yang, H., Towards an Ontology
of Software Maintenance. Journal of Software Maintenance: Research and Practice, 11(6):
365-389, 1999.

[Kraut96] Kraut, A.I., Organizational Surveys: Tools for Assessment and Change, Jossey-

Bass, San Francisco, 1996.

[Krogstie06] Krogstie, J., Jahr, A., Sjøberg, D.I.K., A longitudinal study of development and

maintenance in Norway: Report from the 2003 investigation. Information and Software
Technology, 48(11): 993-1005, 2006.

[Kruchten01] Kruchten, P., The Nature of Software: What’s so Special about Software

Engineering?. The Rational Edge, 2001. Accessed 2008, http://www.therationaledge.com/

[Lee05] Lee, M.G., Jefferson, T.L., An Empirical Study of Software Maintenance of a Web-

based Java Application. In: Proceedings of the 21st International Conference on Software
Maintenance (ICSM’05). IEEE Computer Society Press, Budapest, Hungary, 2005, pp.
571-576.

[Lehman85] Lehman, M.M., Belady, L., Program Evolution: Processes of Software Change.

Academic Press, London, 1985.

 References

 98

[Lehman96] Lehman, M.M., Laws of software evolution revisited. In: Proceedings of the
European Workshop on Software Process Technology (EWSPT’96). Springer Verlag,
Nancy, France, 1996, pp. 1-11.

[Lehman98a] Lehman, M.M., Perry, D.E., Ramil, J., On evidence supporting the FEAST

hypothesis and the laws of software evolution. In: Proceedings of the 5th International
Symposium on Software Metrics (METRICS’98). IEEE Computer Society Press,
Bethesda, MD, 1998, p.84.

[Lehman98b] Lehman, M.M., Ramil, J.F., Feedback, Evolution And Software Technology –

Some Results from the FEAST/1 Project. In: 11th International Conference on Software
Engineering & its Applications, Preprints, Vol.1, Paris, France, 1998, pp.1-12.

[Lehman01a] Lehman, M.M., Ramil, J., Sandler, U., An approach to modelling long-term

growth trends in software systems. In: Proceedings of the International Conference on
Software Maintenance (ICSM’01). IEEE Computer Society Press, Florence, Italy, 2001,
pp. 219-228.

[Lehman01b] Lehman, M.M., Feedback, Evolution And Software Technology – FEAST/2.

Accessed 2008, http://www.doc.ic.ac.uk/~mml/feast2/

[Lehman01c] Lehman, M.M., Ramil, J., Rules and Tools for Software Evolution Planning and

Management. Annals of Software Engineering, 11(1): 15-44, 2001.

[Lehman02] Lehman, M.M, Ramil, J.R., Software Evolution and Software Evolution

Processes. Annals of Software Engineering, Vol. 14, pp. 275-309, 2002.

[Lehman05] Lehman, M.M., The role and Impact of Assumptions in Software Development,

Maintenance and Evolution. In: 1st International Workshop on Software Evolvability
collocated with International Conference on Software Maintenance (ICSM’05). IEEE CS
Press, Budapest, Hungary, 2005, pp. 3-14.

[Leveson95] Leveson, N., Safeware: System safety and computers. Addison-Wesley, UK,

1995.

[Li03] Li, M., Smidts, C.S., A Ranking of Software Engineering Measures Based on Expert

Opinion. IEEE Transactions on Software Engineering, 29(9): 811-824, 2003.

[Li04] Li, J., Conradi, R., Mohagheghi, P., Sæhle, O. A., Wang, Ø, Naalsund, E., Walseth, O.

A., A Study of Developer Attitude to Component Reuse inside IT industries. In: F.
Bomarius and H. Iida (Eds.): Proceedings of the 5th International Conference on Product
Focused Software Process Improvement (PROFES’04). Springer Verlag, Kansai Science
City, Japan, 2004, pp. 538-552.

[Lientz78] Lientz, B.P., Swanson, E.B., Tompkins, G.E., Characteristics of Application

Software Maintenance. Communications of the ACM, 21(6): 466-471, 1978.

[Lim94] Lim,W., Effect of Reuse on Quality, Productivity and Economics. IEEE Software, 11

(5): 23-30, 1994.

 References

 99

[Lyu96] Lyu, M. (Ed.), Handbook of Software Reliability Engineering, McGraw-Hill, New
York, and IEEE Computer Society Press, Los Alamitos, 1996.

[McCall77] McCall, J.A., Richards, P.K., Walters, G.F., Factors in Software Quality.

Technical Report RADC-TR-77-369, US Department of Commerce, 1977.

[McIlroy69] McIlroy, D., Mass-produced Software Components. In: Buxton, J.M., Naur, P.,

Randell, B. (Eds.): Proceedings of the Software Engineering Concepts and Techniques.
1968 NATO Conference on Software Engineering, 1969, pp. 138-155.

[Mili02] Mili, H., Mili, A., Yacoub, S., Addy, E., Reuse-based Software Engineering.

Techniques, Organizations, and Controls, John Wiley & Sons, New York, 2002.

[Mockus00] Mockus, A., Votta, L.G., Identifying Reasons for Software Changes Using

Historical Databases. In: Proceedings of the International Conference on Software
Maintenance (ICSM’00). IEEE Computer Society Press, San Jose (California), U.S.,
2000, pp. 120-130.

[Mohagheghi03] Mohagheghi, P., Conradi, C., Using Empirical studies to Assess Software

Development Approaches and Measurement Programs. In: Proceedings of the 2nd
workshop in Workshop Series on Empirical Software Engineering (WSESE’03), Rome,
Italy, 2003, pp. 65-76. Issued by IESE in Kaiserslautern.

[Mohagheghi04a] Mohagheghi, P., Conradi, R., An Empirical Study of Software Change:

Origin, Impact, and Functional vs. Non-Functional Requirements. In: Proceedings of the
International Symposium on Empirical Software Engineering (ISESE’04). IEEE
Computer Society Press, Redondo Beach (Los Angeles), U.S., 2004, pp. 7-16.

[Mohagheghi04b] Mohagheghi, P., The Impact of Software Reuse and Incremental

Development on the Quality of Large Systems. PhD Thesis, NTNU 2004.

[Mohagheghi04c] Mohagheghi, P., Conradi, R., Killi, O.M., Schwarz, H., An Empirical Study

of Software Reuse vs. Defect Density and Stability. In: Proceedings of the 26th
International Conference on Software Engineering (ICSE’04). IEEE Computer Society,
Edinburgh, Scotland, 2004, pp. 282-292.

[Mohagheghi04d] Mohagheghi, P., Conradi, R., Exploring Industrial Data Repositories. In:

Coral Calero, Fernando Brito e Abreu, Geert Poels and Houari A. Sahraoui (Eds.):
Proceedings of the 8th ECOOP Workshop on Quantitative Approaches in Object-Oriented
Software Engineering (QAOOSE’04). Springer Verlag, Oslo, Norway, 2004, pp. 61-77.

[Mohagheghi06] Mohagheghi, P., Conradi, C., Børretzen, J.A., Revisiting the Problem of

Using Problem Reports for Quality Assessment. In: Kenneth Anderson (Ed.): Proceedings
of the 4th Workshop on Software Quality collocated with International Conference on
Software Engineering (ICSE’06). ACM Press, Shanghai, China, 2006, pp. 45-50.

[Mohagheghi07], Mohagheghi, P and Conradi, R., Quality, Productivity and Economic

Benefits of Software Reuse: A Review of Industrial Studies. Journal of Empirical
Software Engineering, 12(5): 471-516, 2007.

 References

 100

[Morisio02] Morisio, M., Ezran, M., Tully, C., Success and Failures in Software Reuse. IEEE
Transactions on Software Engineering, 28(4): 340-357, 2002.

[Musa87] Musa, J.D., Iannino, A., Okumoto, K., Software Reliability: Measurement,

Prediction, Applications, McGraw-Hill, New York, 1987.

[Musa96] Musa, J., Fuoco, G., Irving, N., Kropfl, D., Juhlin, B., The Operational Profile. In:

M. Lyu (Ed.): Handbook of Software Reliability Engineering, McGraw-Hill, New York
and IEEE Computer Society Press, Los Alamitos, 1996, pp. 167-216.

[Naur68] Naur, P., Randell, B., Software Engineering, Report on a Conference. NATO

Scientific Affairs Division, Garmich, 1968.

[Neff66] Neff, F.W., Survey Research: A Tool for Problem Diagnosis and Improvement in

Organizations. In: A.W. Gouldner and S.M. Miller (Eds.), Applied Sociology. New York:
Free Press, pp. 23-38, 1966.

[Ostrand05] Ostrand, T.J., Weyuker, E.J., Bell, R.M., Predicting the Location and Number of

Faults in Large Software Systems. IEEE Transactions on Software Engineering, 31(4):
340-355, 2005.

[Parnas72] Parnas, D.L., On the Criteria to be Used in Decomposing Systems into Modules.

Communications of the ACM, 15(12): 1053-1058, 1972.

[Pfleeger94] Pfleeger, S., Experimental Design and Analysis in Software Engineering Part 1-

5. ACM Sigsoft, Software Engineering Notes, 19(4): 16-20, 1994.

[Pigoski97] Pigoski, T.M., Practical Software Maintenance, John Wiley & Sons, New York,

1997.

[Pinsonneault93] Pinsonneault, A., Kraemer, K.L., Survey Research Methodology in

Management Information Systems: An Assessment. Journal of Management Information
Systems, 10(2): 75-105, 1993.

[Poore93] Poore, J., Mills, H., Mutchler, D., Planning and certifying software system

reliability. IEEE Software, 10 (1): 88-99, 1993.

[Postema01] Postema, M., Miller, J., Dick, M., Including Practical Software Evolution in

Software Engineering Education. In: Proceeding of the 14th Conference on Software
Engineering. IEEE Computer Society, Press, Charlotte (North Carolina), U.S., 2001, pp.
127-135.

[Ramamoorthy82] Ramamoorthy, C.V., Bastani, F.B., Software Reliability: Status and

Perspectives. IEEE Transactions on Software Engineering, 8(4): 354-371, 1982.

[Robson93] Robson, C., Real World Research: A Resource for Social Scientists and

Practitioners-Researchers, Blackwell, Oxford, 1993.

 References

 101

[Rothenberger03] Rothenberger, M.A., Dooley, K.J., Kulkarni, U.R., Nada, N., Strategies for
Software Reuse: A Principal Component Analysis of Reuse Practices. IEEE Transactions
on Software Engineering, 29(9): 825-837, 2003.

[Satpathy02] Satpathy, M., Siebel, N.T., Rodríguez, D., Maintenance of Object Oriented

Systems through Re-engineering: A Case Study. In: Proceedings of the 10th International
Conference on Software Maintenance (ICSM’02). IEEE Computer Society Press,
Montreal, Canada, 2002, pp. 540-549.

[Schach03] Schach, S.R., Jin, B., Yu, L., Heller, G.Z., Offutt, J., Determining the Distribution

of Maintenance Categories: Survey versus Management. Journal of Empirical Software
Engineering, 8 (4): 351-366, 2003.

[Schaefer85] Schaefer, H., Metrics for optimal maintenance management. In: Proceedings

Conference on Software Maintenance. IEEE Computer Society Press, Los Alamitos, CA,
1985, pp. 114-119.

[Seaman99] Seaman, C.B., Qualitative Methods in Empirical Studies of Software

Engineering. IEEE Transactions on Software Engineering, 25(4): 557-572, 1999.

[Selby05] Selby, W., Enabling Reuse-Based Software Development of Large-Scale Systems.

IEEE Transactions on Software Engineering, 31(6): 495-510, 2005.

[Selnes99] Selnes, F., Markedsundersøkelser, 4 utgave, Tano Aschehoug, 1999.

[SEVO04] The Software EVOlution (SEVO) Project, 2004-2008. Accessed 2008,

http://www.idi.ntnu.no/grupper/su/sevo/

[Sindre95] Sindre, G., Conradi, R., Karlsson, E., The REBOOT Approach to Software Reuse.

Journal of System Software, 30 (3): 201–212, 1995.

[Sommerseth06] Sommerseth, M., Component based system development in the Norwegian

software industry. NTNU master thesis. Accessed 2008,
http://www.idi.ntnu.no/grupper/su/su-diploma-2006/sommerseth-dipl06.pdf

[Sommerville98] Sommerville, I., Dependability, 1998. Accessed 2008,

http://www.comp.lancs.ac.uk/computing/resources/IanS/Ian/Courses/CritSys-2004/PDF-
notes/Dependability-notes.pdf

[Sommerville01] Sommerville, I., Software Engineering, 6th edition, Addison-Wesley, UK,

2001.

[Sommerville04] Sommerville, I., Software Engineering, 7th edition, Addison-Wesley, UK,

2004.

[Sousa98] Sousa, M., Moreira, H., A Survey on the Software Maintenance Process. In:

Proceedings of the 14th IEEE International Conference on Software Maintenance. IEEE
Computer Society Press, Bethesda (Maryland), U.S., 1998, pp. 268-274.

 References

 102

[Succi01] Succi, G., Benedicenti, L., Vernazza, T., Analysis of the Effects of Software Reuse
on Customer Satisfaction in an RPG Environment. IEEE Transactions on Software
Engineering, 27(5): 473-479, 2001.

[Swanson76] Swanson, E.B., The Dimensions of Maintenance. In: Proceedings of the 2nd

IEEE International Conference on Software Engineering. IEEE Computer Society Press,
San Francisco (California), U.S., 1976, pp. 492-497.

[Szymanski08] Szymanski, D.J., Neff, T.D., Defining Software Process Improvement.

Accessed 2008, http://www.stsc.hill.af.mil/crosstalk/1996/02/defining.asp

[Szyperski02] Szyperski, C., Gruntz, D., Murer, S., Component Software, Beyond Object-

Oriented Programming, 2nd edition, Addison-Wesley, UK, 2002.

[Thomas97] Thomas, W.M., Delis, A., Basili, V.R., An analysis of errors in a reuse-oriented

development environment. Journal of Systems and Software, 38(3): 211-224, 1997.

[Trochim08] Trochim, W.M.K, “Research Methods Knowledge Base”. Accessed 2008,

http://www.socialresearchmethods.net/kb/sampterm.htm

[Vliet01] Vliet, H., Software Engineering: Principles and Practice, 2nd edition, John Wiley &

Sons, New York, 2001.

[Voas01] Voas, J., Composing Software Component “itilities”. IEEE Software, 18(4): 16-17,

2001.

[Wiki08] Wikipedia on Software Reuse. Accessed 2008,

http://en.wikipedia.org/wiki/Software_reuse

[Wohlin00] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,

Experimentation in Software Engineering – An Introduction, Kluwer Academic
Publishers, 2000.

[Yin94] Yin, R.K., Case Study Research Design and Methods, Sage Publications, Beverly

Hills, California, 1994.

[Yin03] Yin, R.K., Case Study Research, Design and Methods. Sage Publications, Beverly

Hills, California, 2003.

[Yip94] Yip, S., Lam, T., A Software Maintenance Survey. In: Proceedings of the 1st IEEE

Asia-Pacific Software Engineering Conference. IEEE Computer Society Press, Tokyo,
Japan, 1994, pp. 70-79.

[Zelkowitz98] Zelkowitz, M.V., Wallace, D.R., Experimental Models for Validating

Technology. IEEE Computer, 31(5): 23-31, 1998.

 Appendix A

 103

Appendix A: Selected papers

In this Appendix we have included the six papers that have contributed towards the
work presented in this thesis. We present them here in chronological order. The papers
are:

� P1: An Empirical Study of Developers’ Views on Software Reuse in Statoil ASA
� P2: An Empirical Study of Software Changes in Statoil ASA – Origin, Priority

Level and Relation to Component Size
� P3: A Case Study of Defect-Density and Change-Density and their Progress

over Time
� P4: Experience Report on the Effect of Software Development Characteristics

on Change Distribution
� P5: A Case Study Comparing Defect Profiles of a Reused Framework and of

Applications Reusing it
� P6: Change Profiles of a Reused Class Framework vs. two of its Applications

Except for minor formatting adjustments, the papers are presented in their original
version in this thesis.

 Appendix A

 104

Papers I,II and III

Are not included due to copyright

 135

P4: Experience Report on the Effect of Software

Development Characteristics on Change Distribution

Published: In Andreas Jedlitschka and Outi Salo (Eds.): Proc. 9th International Conf.
on Product Focused Software Development and Process Improvement (PROFES’08),
23-25 June 2008, Rome, Italy. Springer Verlag, ISBN 978-3-540-69564-6, pp. 158-
173. The paper received the Best Paper Award at the conference, and was invited and
later accepted for a special issue of Software Process Improvement and Practice
(SPIP) journal.

Anita Gupta1, Reidar Conradi1, Forrest Shull2, Daniela Cruzes2, Christopher
Ackermann2, Harald Rønneberg3 and Einar Landre3

1

 Dep. of Computer and Information Science (IDI), Norwegian University of Science and
Technology (NTNU), Trondheim, Norway

{anitaash, conradi}@idi.ntnu.no
2

 Fraunhofer Center Maryland, College Park, USA
{fshull, dcruzes, cackermann}@fc-md.umd.edu

3 StatoilHydro ASA KTJ/IT, Forus, Stavanger
{haro, einla}@statoilhydro.com

Abstract. This paper reports on an industrial case study in a large Norwegian
Oil and Gas company (StatoilHydro ASA) involving a reusable Java-class
framework and an application that uses that framework. We analyzed software
changes from three releases of the framework and the application. On the basis
of our analysis of the data, we found that perfective and corrective changes
account for the majority of changes in both the reusable framework and the
non-reusable application. Although adaptive changes are more frequent and has
longer active time in the reusable framework, it went through less refactoring
compared to the non-reusable application. For the non-reusable application we
saw preventive changes as more frequent and with longer active time. We also
found that designing for reuse seems to lead to fewer changes, as well as we
saw a positive effect on doing refactoring.

Keywords: Software reuse, Software quality, Software changes, Case Study

1 Introduction

Understanding the issues within software evolution and maintenance has been a focus
since the 70’s. The aim has been to identify the origin of a change, as well as the
frequency and cost in terms of effort. Software changes are important because they
account for a major part of the costs of the software. At the same time, they are
necessary; the ability to alter software quickly and reliably means that new business

Appendix A

 136

opportunities can be taken advantage of, and that businesses thereby can remain
competitive [1].

Several previous studies have concluded that reusable software components are
more stable (less change density) than non-reusable components [20-22]. However,
few of these studies have investigated and compared the characteristics of software
changes (such as distribution, how long the changes tend to stay in the system, and
number of files modified for each change type) for reusable and non-reusable
components. In the study described here we investigate whether aspects of software
changes, such as their frequency, type, or difficulty, can be better understood based
on:

• Characteristics of the process being applied (e.g. whether different change
characteristics are seen when designing for reuse vs. designing for a specific
context), and

• Characteristics of the product being built (e.g. whether different change
characteristics are seen for systems before and after refactoring).

By “change characteristics” here we refer to attributes of the set of software
changes made to a system over time, such as the relative frequency of different types
of changes, the files of the system affected by the changes, and how the changes were
implemented.

The case study described here is on the reuse process in the IT-department of a
large Norwegian Oil & Gas company, StatoilHydro ASA1. We have collected data
from software changes for three releases of a reusable class framework called Java
Enterprise Framework (JEF), as well as three releases of one application called
Digital Cargo Files (DCF) that uses this framework “as-is”, without modification. All
data in our study are software changes from the evolution (e.g. development) and
maintenance phases for the three releases each of two systems.

The purpose of this study is to compare change characteristics across systems, with
respect to the impact of reuse on change types, frequency, active time and localization
of the effects of changes on the systems.

We were particularly interested in gaining insight into properties of systems being
designed to be reusable, since that was a major focus for the reuse program at
StatoilHydro ASA. The results are important in that they characterize and explain the
changes to the reusable framework and the non-reusable application.

The paper is structured as follows. Section 2 presents the related work. Section 3
introduces the context in StatoilHydro ASA. Section 4 presents the motivation for the
research and the research questions. Furthermore, Section 5 describes the research
methodology. Section 6 presents the results and possible explanations of our analysis
of software changes extracted from Rational ClearCase. Section 7 looks into the
validity threats for our study. Section 8 states our conclusions.

1 ASA stands for “allmennaksjeselskap”, meaning Incorporated.

 137

2 Related work

Lehman [2] carried out the first empirical work on software changes, finding that
systems that operate in the real world have to be adapted continuously, otherwise,
their changeability decreases rapidly. During the lifetime of software systems, they
usually need to be changed as the original requirements may change to reflect
changing business, user and customer needs [3]. Other changes occurring in a
software system’s environment may emerge from undiscovered errors during system
validation that require repair, from the introduction of new hardware.

Changes to software may be categorized into four classes based on the intent of
making the change, namely corrective, adaptive, perfective and preventive. In general,
corrective refers to fixing bugs, adaptive are related to new environments or
platforms, while implementing altered or new requirements, as well as improving
performance, can be classified as perfective. Finally, changes made to improve future
maintainability can be thought of as preventive [4]. Such taxonomy is useful because
it captures the kind of situations that developers face over time. However, differences
may exist in the definition of these change classes, which can make the comparison of
studies difficult. We have in our study decided to use the definition given by [5]:

• Adaptive changes are those related to adapting to new platforms, environments or
other applications.

• Corrective changes are those related to fixing bugs.

• Perfective changes are that that encompass new or changed requirements as well
as optimizations.

• Preventive changes are those having to do with restructuring and reengineering.
Several studies have investigated the distributions of different changes (e.g.

corrective, adaptive, perfective, and preventive) based on change logs of different
systems. These studies show that:

- The classifications of changes are different among different studies. For example,
some studies [6-11] have classified the changes into adaptive, corrective, and
perfective; some of them have still a fourth category [9-11]. Other studies have
classified changes into adaptive, preventive, and perfective [12-17] and four of
these studies have classified changes into a fourth category: corrective [14-17].
One study has classified changes into planned enhancement, requirement
modifications, optimization and “other” [18]. Yet another study has classified
changes into user support, repair and enhancement [19].

- Definitions of change types are different among different studies. For example,
perfective change has been defined to include user enhancements, improved
documentation, and recoding for computational efficiency [6][7]. It is also
defined as encompassing new or changed requirements (expanded system
requirements) as well as optimization [12][13][15]. While, [10] has defined the
same type as including enhancements, tuning and reengineering.

- The distributions of changes are different for different systems. For example, the
most frequent changes of the studied system in [6][10][11] are perfective
changes. However, perfective changes in the system in [7] are the least frequent
ones. In the study conducted by [9][15] the most frequent changes are adaptive
changes. While, in [18] the most frequent changes are in the category “other”.

Appendix A

 138

Table 1 shows different studies and the most frequent changes found in the results.
We also distinguish systems that were designed to be reused as part of another
system. We can see that 64% of the studies have perfective changes as the most
frequent ones, 21% have corrective changes, followed closely by 14% that have
adaptive changes as the most frequent ones.

Other studies [20-25] have investigated whether the amount of changes varies
according to development characteristics without classifying changes into different
categories. We are aware of no previous studies that have compared change
distributions between reusable software components and non-reusable ones, which we
are looking at in this study.

Table 1. Related work

Reusable

system?

Studied systems Most

frequent

change

types
No System which has been operational for at least 1 year, represents a significant

investment of time and effort, and is of fundamental importance to the
organization [6].

Perfective
changes

No A case study investigating 2152 change requests collected for 2 years in a
Canadian financial institute [9].

Adaptive
changes

No A survey conducted in the MIS department in 9 different business types in
Hong Kong [10].

Perfective
changes

No Survey carried out in a computer department of a large Norwegian
organisation in 1990-1991 (study1) and 1992-1993 (study2). The computer
department studied maintains of more than 70 software applications and
include 110 maintainers, distributed on 11 maintenance groups [14].

Perfective
changes

No Study of 10 projects conducted in Flight Dynamic Division (FDD) in NASA’s
Goddard Space Flight Center. FDD maintains over 100 software systems
totaling about 4.5 millions lines of code [11].

Perfective
changes

No Analyzed 654 change and maintenance requests from a large software
application (written in SQL) [19]

Corrective
changes

No A survey carried out in financial organizations in Portugal. Data was collected
from 20 project managers [15].

Adaptive
changes

No 453 non-defect changes from an Ada system developed at the Software
Engineering Laboratory (SEL) of the NASA Space Flight Center [18].

Perfective
changes

No Version control and maintenance records from a multi-million line real-time
software system [7].

Corrective
changes

No An integrated system for automated surveillance, a reengineering project
(Written in C++; version 3 is 41 KLOC) [16].

Perfective
changes

No Three software products, a subset of Linux consisting of 17 kernel modules
and 6506 versions, and GCC consisting of 850 KLOC [8].

Corrective
changes

Yes Analyzed 169 change requests (covers any change in the requirements or
assets from the time of requirement baseline) for 4 releases of a large telecom
system. This system reuses components [12].

Perfective
changes

No Web-based java application, consisting of 239 classes and 127 JSP files.
Analysis of fault reports [17].

Perfective
changes

Yes Analyzed 208 change requests (covers any change in the requirements) for
three releases of a reusable framework [13].

Perfective
changes

 139

3 The StatoilHydro ASA setting

StatoilHydro ASA is a Norwegian company, and is part of the Oil & Gas industry. It
is represented in 40 countries, has a total of about 31,000 employees, and is
headquartered in Europe.

The central IT-department of the company is responsible for developing and
delivering software meant to give key business areas better flexibility in their
operation. It is also responsible for the operation and support of IT-systems. This
department consists of approximately 100 developers, located mainly in Norway.
Since 2003, a central IT strategy of the O&S (Oil Sales, Trading and Supply) business
area has been to explore the potential benefits of reusing software systematically.
StatoilHydro ASA has developed a custom framework of reusable components based
on J2EE - JEF (Java Enterprise Framework). The actual JEF framework consists of
seven separate components, which can be applied separately or together when
developing applications. Table 2 shows the size and release date of the three JEF
releases. This JEF framework is currently being reused in two applications at
StatoilHydro ASA. In this study we investigated one of these applications, namely
DCF (Digital Cargo Files), due to the available data set. DCF is mainly a document
storage application: A “cargo file” is a container for working documents related to a
deal or cargo, used by all parties in the O&S strategy plan at StatoilHydro ASA. DCF
is meant to replace the current means of handling cargo files, which are physical
folders containing printouts of documents pertaining to a particular cargo or deal. The
DCF application also consists of seven components. Table 3 gives an overview of the
size and release date of the three DCF releases.

Although they have different aims, JEF and DCF have certain similarities. These
systems operate in the same business domain, were conducted by a fairly stable set of
developer from the same IT-department, were built over nearly the same time period,
and are of similar size. The maturity level is the same for JEF and DCF. Thus they
provide us with a fairly controlled environment for looking at whether process and
product considerations impact the change characterization of systems.

Table 2. The size and release date of the three JEF releases
Release 1: 14. June 2005 Release 2: 9. Sept. 2005 Release 3: 8. Nov. 2005

17 KSLOC 19 KSLOC 20 KSLOC

Table 3. The size and release date of the three DCF releases
Release 1: 1. Aug. 2005 Release 2: 14. Nov. 2005 Release 3: 8. May 2006

20 KSLOC 21 KSLOC 25 KSLOC

3.1 Software change data in StatoilHydro ASA

When a software change is detected during integration/system testing, a change
request or trouble report is written (by test manager, developers etc.) and tracked in
the Rational ClearQuest tool. Examples of software changes are:

• add, modify or delete functionalities

Appendix A

 140

• address a possible future problem by improving the design

• adapt to changes from component interfaces

• bug fixing
The project leader or test managers assign the change requests and trouble reports

to developers. The developers then access the source files in the version control
system (Rational ClearCase) to make modifications. When implementing the changes
the developers adhere to the following steps:

(1) Check out the file(s) corresponding to the specific change request.
(2) Implement the specific software change.
(3) Check the file back in to Rational ClearCase.
(4) While checking in the file, they input a change description, a thorough

description of what changes were made and a time and date.
Rational ClearCase captures various information about source code changes and the

ClearQuest also stores information about changes to requirements and other
documents. We extracted the data for JEF and DCF from Rational ClearCase as
described in Table 4, with a corresponding example.

Table 4. The data collected from Rational ClearCase
Data Example

File id 8

System JEF

Filename DataAccessException

Number of versions 2

Dates2 Version 1: 19.04.2005, Version 2: 04.01.2007

Physical size (kilobytes) 1800

Size of a files first version Non-commented SLOC (source lines of code): 34
Commented SLOC: 58

Size of a files last version Non-commented SLOC: 34
Commented SLOC: 51

Descriptions of what changes occurred
in each file version

Version 1: Component support for accessing data.
Version 2: Remove obsolete java source file header entries.

Component to which the file belongs One of the seven JEF or DCF components

4 Research questions

The existence of comparable systems in the StatoilHydro ASA environment gave us
the ability to examine our major research goal: The impact of reuse:

• The reusable framework (JEF) had changes related to all kinds of potential
downstream reuse.

• The non-reusable application: DCF had only software changes related to the
specific goals of that application (explained in section 3). The DCF
application has different development characteristics for release 1 and
release 2 and 3:

2 The date here refers to when the file was checked in after undergoing a change by the developer.

 141

o DCF1.0 is relatively unstructured, since it was unclear what the
developers were supposed to implement, and how it should be
organized. In the beginning the developers did not have a detailed
design, and a lot of changes were made regarding functionality and
design during the implementation and testing period.

o DCF 2.0 and 3.0 were based on refactoring. Prior to DCF2.0, when
the design and the goals became clearer the developers realized that
the code they had developed was complex and hard to maintain.
Therefore, they decided to do refactoring to improve the structure
and ease the code maintenance.

The research questions we addressed for our goal are:

RQ1: Does the distribution of change types vary for different development

characteristics? We hypothesize that the development process being employed would
have a measurable impact on the type and number of changes required to a system.
Making a software reusable may help to reduce certain kinds of changes, but may
increase the frequency of other kinds of changes. For example, components that need
to be reusable may have more adaptive changes, over a longer period of time, as more
environments are found that could exploit such components. Since DCF went through
a refactoring we also expect the preventive changes to decrease for release 2 and 3,
compared to release 1. We have the following related questions:

o RQ1.1: Does JEF have higher adaptive changes than DCF?
o RQ1.2: Is there a decrease in the preventive changes before and after

refactoring for DCF?

o RQ.1.3 Do perfective and corrective changes account for the majority of the

changes, with adaptive following closely?

RQ2: What change types are the longest active for different development

characteristics? Our purpose is to investigate what change types (perfective,
preventive, corrective and adaptive) are longest active for different systems, which
may provide some insight into which types of changes are more difficult or
problematic to make. It is important to clarify that the changes that are longest active
do not necessarily require more effort; a change may not have been constantly under
work the entire time it was open. However, if characteristic patterns are found, this
can be useful as the starting point for a conversation with the developers to explore
differences. The following are the related research questions for RQ2:

o RQ2.1: Are adaptive changes longer active in JEF than DCF?

o RQ2.2: Are preventive changes longer active before refactoring than after

for DCF?

RQ3: How localized are the effects of different types of changes, for different

development characteristics? We hypothesize that a change that needs to modify
many files is not well-supported by the architecture, and hence more expensive to fix.
Our purpose is to investigate whether development changes can be successful in
reducing this metric for a system, and allowing future changes to be more localized.
We would like to investigate the following research questions for RQ3:

o RQ3.1: Is the average number of files modified for adaptive changes higher

in JEF than DCF?

Appendix A

 142

o RQ3.2: Is the average number of files modified for preventive changes

higher before refactoring than after for DCF?

5 Research methodology

We analyzed a representative sample of the software changes for both the JEF
framework and the DCF application to answer the research questions RQ1-RQ3.

Our analysis began from the files checked into Rational ClearCase. In total over all
releases, there were 481 files for JEF framework and 1365 for the DCF application,
distributed across the seven components in each system. Due to the manual nature of
the analysis it was infeasible to analyse all changes to all 1846 files. Therefore we
adopted a strategy of analysing a representative subset of the files in each component.
In our data collection we decided to have a threshold value of 10 files. This means
that if a component had more than 10 files we would not include all of the files in our
dataset, but pick a random subset that was representative of the properties of the
largest. A sampling calculator [26] was used to calculate a sufficient sample size. For
example component JEFClient had 195 files. Based on the calculated sample size
(165), we randomly (using a mathematic function in excel) selected 165 files from the
JEFClient to include in the dataset.

In total we used 442 files for the JEF framework and 932 files for the DCF
application. Table 5 gives an overview of the actual number of files in Rational
ClearCase vs. the number of files we analyzed, and the size (in SLOC, including the
non-commented source lines of code) for the collected files.3 In total we analyzed
1105 changes for the JEF framework and 4650 changes for the DCF application. We
can see that the number of changes for DCF is higher than for JEF. This can be
explained by that DCF development was going on for about 10 months (Table 3),
while JEF development was going on for about 6 months (Table 2). Due to longer
development period, DCF faced more changes.

Table 5. Description of data set collected from ClearCase

 Actual

number

of files

Number

of files

collected

Number of

changes

collected

Size in

SLOC for

files collected

DCF: Release 1 (before refactoring) 426 282 2111 15K

DCF: Release 2 and 3 (after refactoring) 939 650 2539 55K

JEF framework 481 442 1105 38K

Total 1846 1374 5755 108K

During the classification and comparison, we noticed that some of the changes
descriptions were labelled as “no changes” (meaning no changes were made to the
code), and “initial review” (meaning changes resulting from formal code review of

3 However, the SLOC is just for the last version of the collected files. For example, if a file has 6 versions,

the SLOC is presented for version 6 only and not for the remaining files. Thus these values should be
taken as only an approximate overview of file sizes.

 143

the code). The changes in category “code review” are changes we cannot classify,
since no description of the change was provided. We grouped “no changes” into the
category “other” and “initial review” into the category “code review”. The changes in
the category “other” and “code review” are excluded from the analysis for RQ1 –
RQ3. Quantitative differences among the change profiles of the systems were used to
formulate questions for the development team. These questions were addressed via
interviews which elicited possible explanations for these differences.

6 Results

Before investigating our specific research questions, we examined the distribution of
data across the change history. The test for normality of our datasets failed, meaning
that the data is not normally distributed. Additionally, we investigated the variances
for each change type for JEF and DCF and they turned out to be quite large (e.g. 3555
for DCF and 11937 for JEF for perfective changes) respectively. Hence, we decided
not to use T-tests to statistically test our hypotheses, and present the results with
histograms. The following is a summary and possible explanation of the results from
our analysis of software changes for JEF and DCF.

RQ1: Does the distribution of change types vary for different development

characteristics? We plotted our data in a histogram, shown in Fig. 1. From Fig. 1-a)
we observed the following for JEF:

1) Decreasing perfective, corrective, preventive and adaptive changes over the three
releases. The sudden drop in number of perfective changes for JEF between
release 1 and release 2 and 3, yields that release 2 and 3 did not have much
requirement changes and was based more on third party components. We can
also see that there is not a big difference in the number of changes between
release 2 and 3.

2) The preventive and adaptive changes decrease towards 0 between release 2 and
release 3.

3) For the 3rd release the dominating changes are perfective and corrective, but the
perfective changes are the most frequent ones.

For DCF (Fig. 1-b) we observed that:
1) Although the number of changes goes down for DCF between release 1 and 2

(before and after refactoring) for all change types, there is not a tendency that
shows that any of these change types are decreasing.

2) It seems that corrective changes remain in the 25% of the changes.

Appendix A

 144

0

200

400

600

800

1000

1200

1400

JEF 1.0

JEF 2.0

JEF 3.0 0

200

400

600

800

1000

1200

1400

DCF 1.0

DCF 2.0

DCF 3.0

Fig. 1. Number of Changes: a) JEF, b) DCF.

Fig. 1 shows that perfective and corrective changes account for the majority of
changes, for both the reusable JEF framework and the non-reusable DCF application.
Our results confirm some of the findings from earlier studies (see Table 1), which
shows that perfective and corrective changes are the most frequent ones independent
of which kind of development characteristics the applications have. However, for JEF
compared to DCF the adaptive changes follow closely. Regarding the perfective
changes a contributing factor on DCF was an incomplete and poorly documented
design, which required a high number of improvements over time. Important factor
for JEF was to develop a common framework to support GUI (Graphical User
Interface) development “up front” (developing without knowing all the functionalities
a framework may need). The least frequent changes for the non-reusable application
are the adaptive changes, and for the reusable framework the least frequent changes
are the preventive changes. Contributing factors for the preventive and adaptive
changes for DCF were:

• Preventive changes: Time pressure and incomplete and poorly documented
design lead to some refactoring, since everything was not implemented
optimally the first time. However, we can see a decrease in the preventive
changes before (release 1) and after (release 2) refactoring.

• Adaptive changes: Minor changes were made to the environment/platform,
which explains the small amount of adaptive changes.

Contributing factors for the preventive and adaptive changes for JEF were:

• Preventive changes: JEF did not go through the same time pressure as DCF
during development. That resulted in a higher code quality for JEF, and less
need for refactoring.

• Adaptive changes: StatoilHydro ASA changed their version control system
from PVCS to Rational ClearCase in the middle of the project. All the files
in the PVCS had a java comment, but when StatoilHydro ASA switched to
Rational ClearCase the java comments in all the files were removed. The
reason for why these changes are seen as adaptive changes is due to that
these files had to be adapted to a different version control system (see section
2 for definition of adaptive changes). The higher frequency (compared to
DCF) of adaptive changes can also be explained by the fact that JEF is built
over various third party components, and changes in these components will
cause changes in the framework.

 145

We can see from Fig. 1 that JEF has a higher amount of adaptive changes than
DCF. For JEF we see that adaptive changes accounted for more than usual compared
to DCF, but still a fairly low number. This might be some surprising given that we
expected JEF to need to be reused in a number of different environments/applications.
However, this can partially be explained by the fact that the data we collected from
Rational ClearCase includes just one application reusing the JEF framework. There
are other application reusing JEF but they are for the time being under development
and no data is available.

Answering our research questions:
o RQ1.1: Does JEF have higher adaptive changes than DCF? Yes, JEF (total

number of changes 94) has higher adaptive changes than DCF (total number
of changes 58).

o RQ1.2: Is there a decrease in the preventive changes before and after
refactoring for DCF? Yes, there is a decrease in the preventive changes
before (total number of changes 306) and after (203 for release 2 and 240 for
release 3) refactoring for DCF. We can see there is a slightly increase
between release 2 and 3 (18%), but still the number of changes are less for
release 3 compared to before refactoring.

o RQ.1.3: Do perfective and corrective changes account for the majority of the
changes, with adaptive following closely? Yes, perfective and corrective
changes account for the majority of changes for JEF and DCF, but it is only
for JEF that adaptive changes follow closely.

RQ2: What change types are the longest active for different development

characteristics? From Fig. 1-a) we saw there was not a big difference in the number
of changes between release 2 and 3. Therefore, we decided not to divide the JEF
framework into three releases for our analysis of RQ2, since it will not affect the
average. This means that for RQ2 we will here compare DCF release 1, 2 and 3
against the whole JEF framework.

By comparing the change types that are longest active for JEF and DCF, we found
from Fig. 2-a) that adaptive (average of 50,2days) changes are longest active for JEF.
This is because StatoilHydro ASA changed their version control system from PVCS
to Rational ClearCase in the middle of the project. All the files in the PVCS had a
java comment related to this version control system, but when StatoilHydro ASA
switched to Rational ClearCase the java comments in all the files were removed. The
JEF framework is built over various third party components, and changes in these
components will cause changes in the framework. However, we can speculate that
adaptive changes were longest active for JEF, because they affected many files.
Another reason could be that adaptive changes were given low priority to fix. Thus,
these files may have been checked out while developers might have been busy with
other tasks with higher priority.

From Fig. 2-b) we can see that preventive changes (average of 17,0 days) are
longest active for DCF, and the number of days for preventive changes drops (84% in
average) between the two first releases of DCF. This is because before refactoring the
code was difficult and hard to maintain (release 1), but after the refactoring the code
became easier to maintain (release 2).

Appendix A

 146

0

10

20

30

40

50

60

JEF

0

10

20

30

40

50

60

DCF 1.0

DCF 2.0

DCF 3.0

Fig. 2. Average #of days the changes are active: a) JEF, b) DCF.

It is important to clarify that the changes that are longest active do not mean that
they require more effort, since we do not have the effort data. However, by looking
into what change types are active longest we might to some extant be able to say if
these changes stays longer in the applications and require more time to fix.

Answering our research questions:
o RQ2.1: Are adaptive changes longer active in JEF than DCF? Yes, adaptive

changes are longer active for JEF (average of 50,2 days) than DCF (average
of 2,5 days).

o RQ2.2: Are preventive changes longer active before refactoring than after
for DCF? Yes, preventive changes are longer active before refactoring;
release 1 has an average of 23, 5 days. While after refactoring; release 2 has
an average of 3,8 days, and release 3 has an average of 19, 3 days. We can
see there is an increase between release 2 and 3 (80% in average), but still
the average number of days are less for release 3 compared to before
refactoring.

RQ3: How localized are the effects of different types of changes, for different

development characteristics? For RQ3 we will also compare DCF release 1, 2 and 3
against the whole JEF framework. By comparing the average number of files changed
for each change type (Fig. 3), we found that DCF has higher average amount of files
modified for the preventive changes (14,5). From Fig. 3-a) we can see that JEF has
higher amount of files changed for the adaptive changes (5,5).

0

5

10

15

20

25

30

JEF

0

5

10

15

20

25

30

DCF 1.0

DCF 2.0

DCF 3.0

Fig. 3. Average amount of files modified: a) JEF, b) DCF.

 147

From Fig. 3-b) we can also see the affect of the refactoring that happened between
all the three releases, since the average number of files modified decreases. This
decrease in the files for the preventive changes is related to adapting to an open
source system framework to improve and ease the code related to handling GUI
events. Before refactoring most of the code was developed by the developers and just
some parts of the open source system framework were used. This made the code more
complex, and difficult to maintain. Due to the high time-pressure the code was
developed quickly and was defect-prone. However, during the refactoring the
developers adapted more of the open source system framework and the code became
much more structured.

Answering our research questions:
o RQ3.1: Is the average number of files modified for adaptive changes higher

in JEF than DCF? Yes, the average number of files modified for adaptive
changes is higher for JEF (5,5 files modified) than DCF (2,4 files modified).

o RQ3.2: Is the average number of files modified for preventive changes
higher before refactoring than after for DCF? Yes, DCF (before refactoring)
has in average 25,5 modified files. While DCF (after refactoring) has in
average 18,5 modified files (release 2), and 8,4 modified files (release 3).

RQ2 combined with RQ3, we see the following results for DCF:
o Even though the average number of days the changes are active are high for

perfective and preventive changes, the number of files modified (within
these two change types) are getting less over the three releases.

7 Threats to validity

We here discuss possible threats to validity in our case study and the steps we took to
guard against them, using the definitions provided by [27]:

Construct Validity: All our data is from the pre- and post-delivery software changes
(covering any reported changes) for the three releases of the reusable framework, and
for the three releases of the DCF application.

External Validity: The object of study is a framework consisting of only seven
components, and only one application. The whole data set of software changes in
StatoilHydro ASA has been collected for three releases of the reusable framework, as
well as for three releases of the application. So, our results should be relevant and
valid for other releases of the framework and other future releases of the application.
The entire data set is taken from one company. Application of these results to other
environments needs to be considered on a case by case basis, considering factors such
as:

• The nature of the software development: The DCF application and the JEF
framework in our study are based on the object-oriented programming
language, namely Java. Additionally, DCF is based on a waterfall process
while JEF is based on a combined incremental/waterfall process.

• The profile of the company and projects: The profile of the company is an oil
and gas company, and hence the projects are related to oil and gas field.

Appendix A

 148

• The way that software changes are defined and classified: Our definition of
software changes and other definitions used (see section 2), vary among the
different studies.

• The way that software changes are collected and measured: We have
collected software changes related only to the non-commented source lines
of code for a reusable framework and a non-reusable application.

Internal Validity: All of the software changes for JEF and DCF were classified
manually. Two researchers classified independently all the changes, and then cross-
validated the results. This is to enhance the validity of the data collection process. A
threat to the internal validity is the number of files we have selected from Rational
ClearCase. However, we have 422 files for the JEF framework and 932 files for the
DCF application, which should be enough files to draw a valid conclusion. We did a
semi-random sampling to ensure the normal distribution between components.

Conclusion Validity: We verified the reasons for differences of software change
profiles between the JEF and DCF by interviewing one senior developer (see section
5). Just asking one developer might cause systematic bias. However, we do not
consider this possibility to be a threat for our investigation, because the senior
developer has worked with both the JEF framework and the DCF application. His
insights further supported our results for RQ1-RQ3.

8 Conclusion and Future work

Few published empirical studies characterize and compare the software changes for
a reusable framework with those of a non-reusable application. We have presented the
results from a case study for a reusable class framework and one application reusing it
in StatoilHydro ASA. We studied the impact that software changes had on different
development characteristics (e.g. impact of reuse and impact of refactoring). Our
results support previous findings to the effect that perfective and corrective changes
accounts for the majority of changes in both reusable and non-reusable software, but
it is only for the reusable framework that adaptive changes follow closely. We also
observed that DCF faced higher time-to-market pressure, more unstable requirements,
and less quality control than the reusable framework.

When it comes to designing for reuse it does have an effect on the aspect of the
change types. Our results indicate that adaptive changes have longer active time and
files related to adaptive changes are more modified in JEF compared to DCF. The
increase in adaptive change might be a result of successfully shielding the end user
(i.e. DCF developer) from changes from the vendors. Additionally, preventive
changes are more common in DCF (due to the refactoring that took place). So, the
amount of changes, as well as the effect on the localization of changes will not be
similar to the systems not necessarily designed for reuse.

Non-reusable applications usually face more unstable requirements, higher time-to-
market pressure, and less quality control than the reusable framework. Therefore,
their poorer quality is not surprising. So, making a component reusable will not
automatically lead to better code quality. In order to lower the amount of software

 149

changes of the reusable component, it is important to define and implement a
systematic reuse policy; such as better design [28] and better change management
[21].

In addition, we have seen a positive affect for the refactoring. A system with poor
structure initially has to deal with more frequent preventive changes before
refactoring than after. However, our results indicated that there was an increase in
preventive changes between release 2 and 3 (after refactoring), but the increase in
release 3 was still less than before refactoring.

The lesson learned here is that developing a framework “up front” (developing
without knowing all the functionalities a framework may need) is always difficult and
challenging, since you do not know all of the requirements that will appear when a
reusable framework is being used.

One interesting question raised by StatoilHydro ASA is whether the results of our
study could be used as input to improve future reuse initiatives. In addition, we intend
(i) to expand our dataset to include future releases of the JEF framework, future
releases of the DCF application, and new applications (further reuse of the JEF
framework), and (ii) to refine our research questions on the basis of the initial findings
presented herein.

Acknowledgement

This work was financed by the Norwegian Research Council for the SEVO project
[29] with contract number 159916/V30. We thank StatoilHydro ASA for involving us
in their reuse projects. This work is also partially sponsored by NSF grant
CCF0438933, "Flexible High Quality Design for Software."

References

1. Bennett, K.H et al.; Software Maintenance and Evolution: A Roadmap. In 22nd Intl. Conf. on Software
Engineering, pp. 73-78. IEEE Press, Limerick (2000).

2. Lehman, M.M et al.; Programs, Life Cycles and Laws of Software Evolution. In. Proc. Special Issue
Software Eng., IEEE CS Press, 68(9):1060-1076, 1980.

3. Postema, M. et al.; Including Practical Software Evolution in Software Engineering Education, IEEE
Press, 2001.

4. Sommerville, I; Software Engineering, Sixth Edition, Addison-Wesley, 2001.
5. Bennet, P.L; Software Maintenance Management: A Study of the Maintenance of Computer

Application Software in 487 Data Processing Organizations, Addison-Wesley Pub, 1980.
6. Lientz, B.P et al.; Characteristics of Application Software Maintenance. Communications of the ACM,

21(6): 466-471, 1978.
7. Mockus, A et al.; Identifying Reasons for Software Changes Using Historical Database. In Proc. IEEE

Intl. Conf. on Software Maintenance, pp.120-130. IEEE CS Press, San Jose (2000).
8. Schach, S.R, et al.; Determining the Distribution of Maintenance Categories: Survey versus

Management. In Empirical Software Engineering 8, pp. 351-366, December 2003.
9. Abran, A. et al.; Analysis of Maintenance Work Categories Through Measurement. In Proc. Conf on

Software Maintetance, pp. 104-113. IEEE CS Press, Sorrento (1991).
10. Yip, S. et al.; A Software Maintenance Survey. In Proc. 1st Int. Asia- Pacific Software Engineering

Conference, pp.70-79, Tokyo (1994).
11. Basili, V. et al.; Understanding and Predicting the Process of Software Maintenance Releases. In 18th

Intl. Conf. on Software Engineering, pp. 464-474. IEEE CS Press, Berlin (1996).

Appendix A

 150

12. Mohagheghi, P. et al.; An Empirical Study of Software Change: Origin, Impact, and Functional vs.
Non-Functional Requirements. In Proc. at Intl. Symposium on Empirical Software Engineering, pp. 7-
16. IEEE CS Press, Los Angeles (2004).

13. Gupta, A et al.; An Empirical Study of Software Changes in Statoil ASA – Origin, Piority Level and
Relation to Component Size. In Intl. Conf. on Software Engineering Advances, pp.10. IEEE CS Press,
Tahiti (2006).

14. Jørgensen, M.; The Quality of Questionnaire Based Software Maintenance Studies. ACM SIGSOFT –
Software Engineering Notes, 1995, 20(1): 71-73.

15. Sousa, M. et al.; A Survey on the Software Maintenance Process. Intl. Conf. on Software Maintenance,
pp. 265-274. IEEE CS Press, Bethesda (1998).

16. Satpathy, M et al.; Maintenance of Object Oriented Systems through Re-engineering: A Case Study. In
Proceedings of the 10th Intl. Conf. on Software Maintenance, pp. 540-549. IEEE CS Press, Montreal
(2002).

17. Lee, M.G et al.; An Empirical Study of Software Maintenance of a Web-based Java Application. In
Proceedings of the IEEE Intl. Conf. on Software Maintenance, pp. 571-576. IEEE CS Press, Budapest
(2005).

18. Evanco, M.; Analyzing Change Effort in Software During Development. In Proc. 6th Intl. Symposium
on Software Metric, pp. 179-188, Boca Raton (1999).

19. Burch, E. et al.; Modeling Software Maintenance Requests: A Case Study. In Proceedings of the Intl.
Conf. on Software Maintenance, pp. 40-47. IEEE CS Press, Bari (1997).

20. Mohagheghi, P. et al.; An Empirical Study of Software Reuse vs. Defect Density and Stability. In Proc.
26th Intl. Conf. on Software Engineering, pp. 282-292. IEEE-CS press, Edinburgh (2004).

21. Selby, W (2005). Enabling Reuse-Based Software Development of Large-Scale Systems. IEEE
Transactions on Software Engineering. 31(6): 495-510.

22. Gupta, A. et al.; A Case Study of Defect-Density and Change-Density and their Progress over Time. In:
11th European Conf. on Software Maintenance and Reengineering, pp. 7-16. IEEE Computer Society,
Amsterdam (2007). .

23. Zhang, W et al.; Reuse without compromising performance: industrial experience from RPG software
product line for mobile devices. In Proc. 9th Intl. Software Product Line Conference, pp. 57-69.
Springer, Rennes (2005).

24. Frakes, W.B. et al.; An industrial study of reuse, quality, and productivity. In Journal of System and
Software, 2001, 57(2):99-106.

25. Algestam, H. et al.; Using Components to Increase Maintainability in a Large Telecommunication
System. Proc 9th Int. Asia- Pacific Software Engineering Conference, pp.65-73, (2002).

26. Sampling calculator (http://www.macorr.com/ss_calculator.htm)
27. Wohlin, C, et al.; Experimentation in Software Engineering – An Introduction. Kluwer Academic

Publishers, 2002.
28. Succi, G. et al.; Analysis of the Effects of Software Reuse on Customer Satisfaction in an RPG

Environment. IEEE Transactions on Software Engineering, 2001, 27(5): 473-479.
29. Sevo project (http://www.idi.ntnu.no/grupper/su/sevo/)

Appendix A

 151

P5: A Case Study Comparing Defect Profiles
of a Reused Framework and of Applications
Reusing it

Accepted with minor revisions (2 May 2008) to Journal of Empirical Software Engineering.

Anita Gupta1, Jingyue Li1, Reidar Conradi1, Harald Rønneberg2 and Einar Landre2

1
 Dep. of Computer and Information Science (IDI), Norwegian University of Science and Technology

(NTNU), Trondheim, Norway
{anitaash, jingyue, conradi}@idi.ntnu.no

2 StatoilHydro ASA KTJ/IT, Forus, Stavanger

{haro, einla}@statoilhydro.com

Abstract The benefits of software reuse have been studied for many years. Several previous
studies have observed that reused software has a lower defect density than newly built software.
However, few studies have investigated empirically the reasons for this phenomenon. To date, we
have only the common sense observation that as software is reused over time, the fixed defects
will accumulate and will result in high-quality software. This paper reports on an industrial case
study in a large Norwegian Oil and Gas company, involving a reused Java class framework and
two applications that use that framework. We analyzed all trouble reports from the use of the
framework and the applications according to the Orthogonal Defect Classification (ODC),
followed by a qualitative Root Cause Analysis (RCA). The results reveal that the framework has a
much lower defect density in total than one application and a slightly higher defect density than
the other. In addition, the defect densities of the most severe defects of the reused framework are
similar to those of the applications that are reusing it. The results of the ODC and RCA analyses
reveal that systematic reuse (i.e. clearly defined and stable requirements, better design, hesitance to
change, and solid testing) lead to lower defect densities of the functional-type defects in the reused
framework than in applications that are reusing it. However, the different “nature” of the
framework and the applications (e.g. interaction with other software, number and complexity of
business logic, and functionality of the software) may confound the causal relationship between
systematic reuse and the lower defect density of the reused software. Using the results of the study
as a basis, we present an improved overall cause-effect model between systematic reuse and lower
defect density that will facilitate further studies and implementations of software reuse.

Keywords Software reuse, Software defect, Empirical study

1 Introduction

Software reuse is a management strategy, where development for reuse refers to the deliberate
development of software components that can be reused, and development with reuse refers to the
inclusion of these reusable components in new and future software (Sindre et al. 1995). Since the
1970s, there has been a focus on how to develop software for/with reuse,
technical/managerial/organizational aspects, measuring reuse in terms of quality and productivity,
and reporting the success and failure of reuse practices. Several industrial empirical studies (Lim
1994; Mohagheghi 2004; Thomas 1997; Succi 2001; Selby 2005; Frakes 2001; Baldassarre 2005;
Zhang 2005; Morad 2005) have concluded that reuse reduces the defect density and therefore
helps to improve the quality of the system. A number of explanations for the lower defect density
of the reused software have been proposed. For example, (i) reused software has been used by
several different clients who have had defects fixed and the accumulated defect fixes will result in
software of higher quality (Lim 1994); (ii) reused software will have better quality because few
functions have been added to it (Thomas 1997; Frakes 2001; Selby 2005); and (iii) reuse-oriented
software will be tested thoroughly before it is selected for reuse (Baldassarre 2005). However, few

Appendix A

 152

systematic explanatory studies have been performed to examine the decisive factors of the overall
cause-effect relationship between systematic or ad hoc reuse and the lower defect density of reused
software.

The purpose of this study is to compare the defect profile of a piece of software that is being
reused and the software that is reusing it, and to find explanations for the possible similarities and
differences between their defect profiles. We analyzed all defects introduced by developers (later
detected either by testers or users) from trouble reports for all releases of a reused class
framework, called Java Enterprise Framework (JEF), in the IT-department of a large Norwegian
Oil & Gas company, as well as from two applications that were reusing the framework “as-is”,
namely Digital Cargo Files (DCF) and Shipment and Allocation (S&A).

We first compared the overall defect density (number of defects/non-commented source lines
of code) for the reusable framework and the applications. Then we conducted an Orthogonal
Defect Classification (ODC) analysis to compare the defect densities and severities of different
defect types for the framework and the applications. After that, we studied the possible impacts
that those defects would have on the user. Finally, we performed a Root Causal Analysis (RCA) to
interpret our findings.

Our study supersedes previous studies (see Table 1) because we not only compared the overall
defect density of a reused framework and the applications that are reusing it, but also classified the
defects using ODC and compared the defect densities and severities of each defect type. In
addition, the follow-up RCA attempted to explain why the reused framework has lower or higher
defect densities of certain defect types, compared with those of the applications reusing it.

The results show that software reuse is helpful for reducing the number of defects, not only
because it has been reused many times, but also because of the systematic reuse policy applied in
the company, such as:

� well-defined requirements for the reusable framework,
� “characteristic” of the framework, such as looser coupling with other software that may

be less complex, and
� cautious to incorporate changes to the reusable framework.

The first two factors will help to prevent defects. The third factor will help to prevent further
defects from being introduced. This study therefore increases our understanding of the overall
cause-effect relationship between systematic reuse and the possible lower defect density of the
reused software, and reveals several decision-making factors that pertain to that relationship.

The paper is structured as follows. Section 2 presents related work, Section 3 presents the
motivation for the research and the research questions. Section 4 describes the research design.
Section 5 presents the results. Section 6 discusses the results. Section 7 concludes.

2 Related work

A systematic survey by Mohagheghi et al. (2007) summarized studies that have compared the
defect densities of reused components with non-reused components, as shown in Table 1.
Results from these studies show that continued reuse with slight modification results in
significantly lower defect/problem density and significantly less effort expended on development
and/or correction.

Appendix A

 153

Table 1 Studies related to defect density and reuse

Some studies have proposed explanations for the lower defect density of reused components.

For example, Lim (1994) proposed the following: 1) as work products are used multiple times, the
defect fixes for each reuse accumulate, and gradually result in higher quality; and 2) more
importantly, reuse provides incentives to prevent and remove defects earlier in the life cycle
because the cost of prevention and debugging can be amortized over a greater number of uses.
Succi et al. (2001) proposed that implementing a systematic reuse policy, such as the adoption of a
domain-specific library, improves client satisfaction. Selby et al. (2005), Frakes et al. (2001),
and Thomas et al. (1997) attributed the lower defect density of reused components to the smaller
number, and lesser extent, of changes performed on them. In addition, Thomas et al. (1997)
proposed the following: 1) if there is an expectation that components will be reused, it is more
likely that they will be well-specified, particularly with respect to their reuse functionality; 2) the
nature of the programming languages, i.e. FORTRAN and Ada in their cases, may affect the
benefits of reuse; and 3) the experience with reuse in an organization and the approach taken
towards reuse are likely to influence the nature of defects. A close examination of these studies
illustrates that:

− Most studies compared only the number of defects between reused and non-reused
components without going into further detail. The one exception is Thomas et al. (1997),
who divided the defects into defect types and compared the number of defects of each type.
However, no studies have so far investigated differences in defect densities in reused
components with respect to the type of defect.

− Many factors may influence the success or failure of software reuse (Morisio et al. 2002,
Rothenberger 2003), such as management commitment, the process by which reuse is

Quality focus Quality measures Conclusion

Reusable vs. non-
reusable components
(Lim 1994)

No definition of what a defect is.
Defect density is given as
defects/1000 non-comment source
statements (KNCSS).

Reuse can provide improved
quality, increased productivity,
shortened time-to-market, and
enhanced economics.

Reusable vs. non-
reusable components
(Mohagheghi et al.
2004)

Defect density (number of
defects/lines of non-commented
code)

-Reused components had lower
defect density than those that
were not reused.
-Reused components had a higher
number of defects of the highest
severity before delivery, but
fewer defects post-delivery.

Reusable vs. non-
reusable components
(Frakes et al. 2001)

Error density (number of errors
per non-commented line of code)
from the pre-delivery stage of the
system.

More reuse results in lower error
density.

Reusable vs. newly
developed components
(Thomas et al. 1997)

Error/defect densities
(errors/defects per 1000 source
statements).
However, no definition of
error/defect.

Reuse provides an improvement
in error density (more than a 90%
reduction) compared to new
development.

Code reuse (Succi et
al. 2001)

-Client complaint density (i.e. the
ratio of client complaints to lines
of code)
-Defect density after the system is
delivered to the client

Reuse is correlated significantly
and positively with client
satisfaction.

Reused, modified and
newly developed
modules (Selby
2005)

Module fault rate (number of
faults in a module per non-
commented source lines of code).
Since an error correction may
affect more than one module,
each module affected by an error
is counted as having a fault.

-Software modules reused without
revision had the fewest faults,
fewest faults per non-commented
source line of code, and lowest
fault correction effort.
-Software modules reused with
major revisions had the highest
fault correction effort and highest
fault isolation effort.

Appendix A

 154

introduced, and human factors. It is therefore necessary to investigate which factors
contribute positively to the lower defect density of reused software and which contribute
negatively. In addition, it is important to understand which factors need to be excluded
before analyzing the relationship between software reuse and lower defect densities of
reused software. Some studies (Lim 1994; Succi et al. 2001; Selby et al. 2005; Frakes et al.
2001; Thomas et al. 1997) have attempted to attribute the lower defect densities of reused
vs. non-reused software to the practices of reuse. However, few of them have done
convincing cause-effect analyses. Most of them simply proposed possible explanations
without providing confirmation, as shown in Fig.1.

Fig.1 Current research proposals regarding the overall cause-effect relationship between software
reuse and the lower defect/error density of reused software

3 Research motivation and research questions

Knowledge of the factors that govern the relationship between software reuse and lower defect
density will help industrial practitioners to implement more cost-effective software reuse practices.
The acquisition of such knowledge will require a greater number of detailed empirical studies of
industrial practices. The primary motivation of this study was to compare the density and severity
of the defects in the reused software with those of the software that reuses it. A secondary
motivation was to try to explain the possible similarities and differences of the defect densities in
reusable software and software that reuses it. Thus, the research questions we addressed are:

RQ1: What is the overall defect density of reusable software vs. that of software that reuses it?

Studies shown in Table 1 indicate that reused software has a lower defect density than that of
non-reusable software. RQ1 is designed to study whether the same trend will be discovered in our
study.

RQ2: What is the density of specific types of defect in reusable software vs. that of software

that reuses it?

Appendix A

 155

Most studies shown in Table 1, except Thomas et al. (1997), did not investigate whether the
defect densities of specific types of defect in reusable software are lower than those of non-reused
software. The purpose of RQ2 is to investigate the issue raised by RQ1 more deeply, by
classifying the defects into different types and comparing the defect density for each of them.

RQ3: What are the relative severities and most severe defects in reusable software vs. those in

software that reuses it?

Lim (1994) found that the defects in reused software were more serious in pre-delivery than
those in non-reused software. RQ3 investigates the relative severity of defects in reusable vs. non-
reusable software. In addition, we will examine what types of defect are most severe for the
reusable software vs. those of the software that reuses it.

RQ4: What impacts on the client do defects in reusable software have vs. those in software that

reuses it?

The impact of a defect on the client refers to what the user notices or would notice, if the defect
persists or would persist after the deployment of the application at the user’s site.

4 Research design

We investigated three software systems from StatoilHydro ASA, which is a large Norwegian
oil and gas company. In this section, we first introduce the company, the three systems, and
trouble reports for these systems. We then illustrate how the trouble reports were analyzed and
how the follow-up Root Causal Analyses were performed.

4.1 Data collection

4.1.1 The company

StatoilHydro ASA has.a total of about 31,000 employees, with its headquarters in Norway and
branches in 40 countries. The IT department of the company is responsible for developing and
delivering domain-specific software, to give key business areas better flexibility and efficiency in
their regular operations. It is also responsible for the operation and support of mass IT systems.
This department consists of approximately 100 developers, located mainly in Norway. In addition,
StatoilHydro ASA subcontracts a great deal of software development and operations to consulting
(software) companies.

4.1.2 The investigated systems

We investigated three systems. One is a reusable framework called JEF. The remaining two,
which reuse JEF, are applications called DCF and S&A.

The company initiated their reuse strategy in 2003 with pre-studies. At that time, a reusable
software framework was under development. This framework is based on J2EE (Java 2 Enterprise
Edition), and is a Java technical framework for developing Enterprise Applications. Thus, the
framework is called the “JEF framework” and consists of seven separate components. The latest
release of JEF components contained a total of 20348 Non-commented Source Lines of Code
(NSLOC), and can either be applied separately or together when developing applications. Table 2
shows the size and release date of the three JEF releases (excluding third-party components). JEF
is designed on the basis of a technical architecture for all J2EE systems in the company. This
architecture has four logical layers, as follows (from top to bottom):

(1) Presentation: responsible for displaying information to the end-user and to interpret end-
user input.

(2) Process: provides support for the intended tasks of the software, and configures the
domain objects.

(3) Domain: responsible for representing the concepts of the business, and information about
the business and business rules. This layer is the heart of the system.

 (4) Infrastructure: provides generic technical services, such as transactions, messaging, and
persistence.

DCF is used mainly for document storage. It imposes a certain structure on the documents
stored in the application. It assumes that the core part of the documents is based on cargo (load)

Appendix A

 156

and deal (contract agreement) data, as well as auxiliary documents pertaining to this information.
DCF is meant to replace the current handling of cargo files, which are physical folders that contain
printouts of documents that pertain to a particular cargo or deal. A “cargo file” is a container for
working documents that are related to a deal or cargo that are used by all parties in the oil sales,
trading, and supply strategy plan of the company. There are three releases of the DCF application.
Table 3 gives an overview of the size and release date of the three releases (excluding the code of
JEF and other third-party components).

S&A is an application that employs common business principles to enable efficiency and
control in business processes that pertain to lift and cargo planning. Lift planning is based on a
lifting program that generates an overview of the cargoes that are scheduled to be lifted. The
lifting program operates on a long-term basis (e.g. 1 - 12 months), and generates tentative cargoes
based mainly on closing stock and predicted levels of production. The lifting program is
distributed to the partners (other oil and gas companies, such as Shell and Gaz de France), so that
they can plan the lifting of their stock. The planning of shipment and cargo covers activities to
accomplish such lifting. Input to the process is the lifting program. Users use the lifting program to
enter detailed information about a cargo, based on documented instructions from partners, and
perform short-term planning based on the pier capacity and storage capacity. After loading, sailing
telex and cargo documents are issued. Then the cargo is closed and verified. The S&A application
allows the operators to carry out “what-if” analysis on shipments that are to be loaded at terminals
and offshore. The current trading system (“SPORT”) is not able to handle complex agreements
(i.e. the mixing of oil of different qualities within the same shipment), or automating the transfer
and entry of related data (which is currently often done manually). The main goal of the S&A
application is to replace some of the current processes/systems, as well as to offer some new
functionality. The S&A application has also three releases. Table 4 gives an overview of the size
and release date of these releases (excluding the code of JEF and other third-party components).

Table 2 Size and release date of the three JEF releases

Release 1: 14. June 2005 Release 2: 9. Sept. 2005 Release 3: 8. Nov. 2005

16 875 NSLOC 18 599 NSLOC 20 348 NSLOC

Table 3 Size and release date of the three DCF releases

Release 1: 1. Aug. 2005 Release 2: 14. Nov. 2005 Release 3: 8. May 2006

20 702 NSLOC 21 459 NSLOC 25 079 NSLOC

Table 4 Size and release date of the three S&A releases

Release 1: 2. May 2006 Release 2: 6. Feb. 2007 Release 3: 12. Dec. 2007

29957 NSLOC 50879 NSLOC 64319 NSLOC

From Tables 2, 3, and 4 we can see that the framework and the applications are growing. JEF

consist of seven components. These are being used in PDM (Physical Deal Maintenance) and
reused in DCF and S&A. However, DCF and S&A are not being used in any other applications.
JEF is a framework that is reused in DCF and S&A and in other projects “as-is”. This is how we
can say that JEF is reusable, and DCF and S&A are non-reusable. JEF, DCF, and S&A will grow
in size because when the clients use the applications they will make some changes to it, which will
also require changes to the framework. For instance, adding new functionality to the reusable and
non-reusable software will result in growth for JEF, DCF, and S&A. Another explanation of the
growth of the framework and the applications is that when a defect is found in Release 1 the fixes
will be included in Release 2, etc. Thus, the framework and the application will grow.

JEF Release 1 was finished around June 2005, and PDM in the summer 2005 was the first
application to use the JEF framework (Release 1). In this period, some weaknesses in the
framework were discovered. These changes were then incorporated into JEF, ending early
September 2005. Then, Release 2 of the JEF framework was delivered. The DCF application
reused Release 2 of the JEF framework during late summer and autumn 2005. After DCF reused
the JEF framework, some more minor changes were made to the framework, which were finished
by early November 2005. Then, Release 3 of the JEF framework was deployed. The second
application, S&A, reused Release 3 of the JEF framework, and was developed during early 2006.
The relation between the JEF and applications using/reusing it are shown in Fig. 2. The company
uses the same test team and has the same test coverage for both the reusable and non-reusable

Appendix A

 157

software. For instance, for unit testing, 85% of the code lines were executed by unit tests to ensure
that the code worked as expected. However, detailed investigation of software testing lies beyond
the scope of this paper and will be the topic of future work (see section 7). We have not included
defects in the PDM application other than those in JEF in our study, because PDM was the first
application to use JEF, not reuse it (like DCF and S&A).

Fig.2 The relation between JEF, DCF, and S&A

4.1.3 The investigated trouble reports

When a defect is detected during integration/system testing and all field use, a trouble report is
written and stored in the Rational ClearQuest tool. Therefore, the trouble reports include all
defects introduced by developers and detected in pre-delivery or post-delivery releases of the
systems. All registered trouble reports can be exported as Microsoft Excel files. Each trouble
report contains the following items:

� ID.
� Headline description.
� Priority (which indicates how urgent fixing a problem is) assigned by developers or

testers:
o Critical - means that the system does not fulfill critical business functionality or

will disrupt other systems.
o High - loss of a part of the required functionality or quality.
o Medium - part of the required functionality or quality is lost, but that there are

ways to work around the problem.
o Low - defect has no important effect on the functionality or quality).

� Severity (which indicates how serious the problem is) as assessed by developers:
o Critical, High, Medium or Low.

� Classification:
o Error,
o Error in other system,
o Duplicate,
o Rejected,
o Postponed, and so on.

� Estimated effort to fix.
� Remaining time to fix.
� Subsystem location (e.g. one specific component of a system).
� System location (e.g. JEF, DCF, or S&A).
� Updated action and timestamp record for each new state that the defect enters in the

workflow.

Appendix A

 158

4.2 Data analysis

The data was analyzed in two stages. In the first stage, we analyzed the trouble reports of JEF,
DCF, and S&A to answer the research questions RQ1 to RQ4 as follows:

− For RQ1, we divided the NSLOC of each system by the number of defects to calculate
the defect density. The NSLOC was counted using the Eclipse tool, because that is the
development tool used in the company.

− For RQ2, we first classified the defects of each system using defect types from a
slightly modified Orthogonal Defect Classification (ODC) scheme from IBM
(Chillarege et al. 1992). The attribute “defect type” captures the correction to resolve
the defect. For example, defects of type “function” are those that require a formal
design change. Detailed explanations of ODC and the definitions of defect types used
in this study may be found in Appendix A. After the defects were classified, we
divided the number of defects of each defect type by the total NSLOC of the
corresponding system to get the corresponding defect density of each defect type.

− For RQ3, we first counted the number of defects of different severities in each system.
We then divided the number of defects of different severities by the NSLOC.
However, 25% of the severity data for DCF and JEF in ClearQuest was missing or
incomplete for some of the defects. By contrast, the priority data for the defects were
complete. We did a Spearman correlation test with SPSS 14.0 and found that the
priority data correlates well with the severity data. For both DCF and JEF, the
severities and priorities (i.e. for the 75% of defects for which complete priority and
severity data was available) are significantly correlated (with p-value is less than .001)
with a correlation coefficient more than .80. For S&A, the correlation coefficient
between priority and severity is .90 (with p-value is less than .001). Therefore, we
decided to use the priority data for the severity analysis in JEF, DCF, and S&A.

− For RQ4, we first classified the impact of each defect using the impact attribute of
ODC (Chillarege et al. 1992). The definitions of different “impact” attributes used in
this study are shown in Appendix B. Then, we divided the number of different
impacts of defects by the NSLOC.

In the second stage of the data analysis, we performed a fish-bone Root Causal Analysis (Card
1998) by interviewing a senior developer who was familiar with development of both the JEF
framework and the applications. We first showed him the results of our data analysis (to avoid a
possible threat to validities of our results, we did not inform him of our research questions). We
then asked him to interpret the causes of defects with respect to tools and environment, input and
requirements, method, and people (Card 1998).

5 Results of the research questions and
interpretations of the results

5.1 Collected trouble reports

Over all releases, there were 232 trouble reports for JEF, 592 for DCF, and 723 for S&A.
Given that the defect type captures the attempt that was made to resolve the defect, we can only
use those defects where the handling of the defect was complete and closed. Therefore, we
included only complete and closed defects.

Table 5 gives an overview of the defects that were excluded. After excluding all the defects
that were not complete and closed, 223 trouble reports remained for JEF, 438 for DCF, and 649 for
S&A. We then classified these defects manually. The first and the second author of the paper
classified all the defects separately and then compared the results jointly. During the classification
and comparison, we noticed that some of the defects were classified as “not fault”. We excluded
these from our analysis: one from JEF, 13 from DCF, and two from S&A. So, in our data analysis,
we used 222 defects for the three JEF releases, 425 defects for DCF, and 647 defects for S&A.

Appendix A

 159

Table 5 Number of defects excluded in the analysis

 Defect states #Defects

excluded

from JEF

#Defects

excluded

from DCF

#Defects

excluded from

S&A

Rejected Rejected (developers not sure
whether the defect is a defect)

1 67 26

Postponed (defect postponed
to later releases)

0 22 5

Submitted (a defect is
submitted, but without
correction handling)

0 13 23

Analysed (a defect is being
analyzed)

0 4 4

Assigned (a defect has been
assigned to a tester)

3 11 5

Not solved

In progress (analysis of a
defect is in progress)

3 2 8

Duplicate Duplicate (duplicate of
another defect)

2 35 3

Not fault Not fault 1 13 2

 In total: 10 excluded
(4%)

167 excluded
(28%)

76 excluded
(11%)

 Total defects analysed: 223 438 649

5.2 Answers to research questions

RQ1: What is the overall defect density of reusable software vs. that of software that reuses it?

The defect density of the JEF framework was 222/20 Kilo NSLOC=11.1 per Kilo NSLOC. The
defect density of DCF was 425/25 Kilo NSLOC=17 per Kilo NSLOC. The defect density of S&A
was 647/64 Kilo NSLOC = 10.1 per Kilo NSLOC. The results show that the JEF has a lower
defect density than the DCF, but a slightly higher defect density than S&A.

RQ2: What is the density of specific types of defect in reusable software vs. that of software

that reuses it?

By comparing the defects per Kilo NSLOC of the different defect types, as shown in Fig. 3, we
found that the DCF application has a much higher defect density than the JEF with respect to four
types of defect: relationship, function, data, and checking. The root cause analysis yielded by
discussion with the senior developer showed that:

1) The DCF has a higher relationship-type defect density than the JEF because it is tightly
coupled with several other applications in the company. By contrast, the coupling between the JEF
and the other applications is looser.

2) There are three reasons why DCF has a higher function-type defect density than the JEF:
(i) The goals and requirements for the JEF were clearer and more stable than for the

DCF. Although the DCF was based on the waterfall process, major changes to
the requirements and new decisions were incorporated in late phases of the
project. The development of the DCF suffered from more time pressure than the
JEF.

(ii) In the DCF, the design specification was incomplete and missing. The
developers did not have a detailed design at the beginning, and a lot of changes
were made regarding functionality and design during the implementation period.
The JEF had good documentation and therefore did not suffer from these
problems.

(iii) The JEF did not experience major changes in the project phase. By contrast,
work on the DCF was stopped for a while during the implementation phase to
discuss and incorporate major changes.

3) The DCF has a higher checking-type defect density because it is primarily a business
application, and has more rules and business logic. The same also is true for the data-type defect
density.

Appendix A

 160

5.32

2.12

1.68

0.56

0.96

2.36

1.96

1.76

0.08
0.2

2.35

1.85

2.2

0.35
0.2

3.6

0.2
0.35

0 0

0

1

2

3

4

5

6

F

u

n

c

t
io

n

A

s
s

i
g

n

m

e

n

t

I
n

t
e

r
f
a

c
e

A

l
g

o

r
i
t
h

m

D

a

t
a

G

U

I

R

e

l
a

t
i
o

n

s
h

ip

C

h

e

c
k

i
n

g

D

o

c
u

m

e

n

t
a

t
i
o

n

T

i
m

i
n

g

/
S

e

r
i
a

l
i
z
a

t
i
o

n

Defect type

D
e
fe

c
t
p
e
r

K
L
O

C

DCF

JEF

Fig. 3 Defect density for the different types of defect in the JEF vs. the DCF

By comparing the defects per Kilo NSLOC of the different types of defect, as shown in Fig. 4,

we found that the S&A application has a much higher defect density than the JEF with respect to
four types of defect: function, data, checking, and algorithm. The root cause analysis revealed that:

1) The S&A has a higher function-type defect density than the JEF because S&A consists of
many user interfaces, and the users were rarely involved during the design and implementation of
these interfaces. In addition, few developers with sufficient knowledge of the usability of the
application were involved in the project. When the users had the chance to see the application, it
became apparent that a lot of changes regarding functionality and design of the user interface
needed to be made to satisfy the users’ requirements.

2) The S&A has a higher algorithm-type defect density because of its complex business logic.
One of the major parts of the S&A application is to do lift and cargo planning. This function is
designed and implemented on the basis of a total analysis of the cargoes that are scheduled to be
lifted (e.g. calculating which partners will lift the cargo and when), as well as the activities to
accomplish the required lifting. Such lift and cargo planning requires a great deal of calculation.
Hence, S&A, compared to the JEF, has implemented heavier algorithms to perform these
calculations efficiently and properly.

3) The S&A has a higher checking-type defect density because it is primarily a business
application (just as the DCF is), and therefore has more rules and business logic. The same goes
for the data-type defect density.

3.00

0.67

0.94

2.30

0.95

0.56

0.38

1.09

0.05

0.16

2.35

1.85

2.2

0.35

0.2

3.6

0.2

0.35

0 0

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

F

u
n
c

t
io

n

A

s
s
i
g
n

m

e
n

t

I
n
t
e
r
f
a

c
e

A

lg

o
r
i
t
h

m

D

a

ta

G

U

I

R

e

la

ti
o

n
s
h

ip

C

h

e
c
k
i
n
g

D

o

c
u
m

e

n

t
a

ti
o
n

T

i
m

i
n
g
/
S

e

r
i
a
l
i
z
a

ti
o
n

Defect types

D
e
fe

c
t

p
e
r

K
L

O
C

S&A

JEF

Fig.4 Defect density for the different types of defect in the JEF vs. the S&A

Appendix A

 161

Results shown in Fig. 3 and Fig. 4 illustrate that the JEF has a higher density of interface-type

defects than both the DCF and S&A. The root cause analysis reveals that the JEF has been
used/reused by three applications, with the result that the component interfaces of JEF gradually
needed to be corrected or improved to make the reuse easier and more efficient. In addition, the
results presented in Fig. 3 and Fig. 4 show that the JEF has a higher defect density of GUI-type
defects, simply because JEF has many more GUIs than the DCF and S&A and so there are more
requests to alter the layout of some of the JEF GUIs, especially concerning data displays, buttons,
and checklists.

RQ3: What are the relative severities and most severe defects in reusable software vs. those in

software that reuses it?

The defect densities of defects with different severities are shown in Fig. 5. The results reveal
that the JEF framework and the applications have almost similar defect densities for defects of
Critical and High severity. To investigate whether these systems have similar profiles for the most
severe defects, we analyzed the defect-type distributions of defects with different severities. The
results for the JEF, DCF, and S&A are shown in Fig. 6, Fig. 7, and Fig. 8, respectively.

Fig. 6 shows that for the JEF framework, the types of defect that are of Critical and High
severity are interface and assignment. The developers explained that the JEF is designed as a
framework and its interface-type defects will affect many applications. Thus, the interface-type
defects are usually given a high priority. The assignment-type defects usually have serious
consequences, which may result in the JEF not being able to run properly.

Fig. 7 shows that for the DCF application, the types of defect that are of Critical and High
severity are relationship and function. The DCF application has a close coupling with several other
applications in the company. Therefore, these two types of defect are given high priority, because
they indicate that the whole system will not perform as expected.

Fig. 8 shows that for the S&A application, the types of defect that are of Critical and High
severity are algorithm and function. The S&A application has several algorithm-type defects due
to all the calculations for lift and cargo planning. Thus, algorithm-type defects were regarded as
severe. The function-type defect can be explained by missing functionality in the GUIs for the
application. These two types of defect are given high priority because they indicate that the whole
system will not perform as expected.

0.56

5.16

7.56

3.72

0

0.7

4.9

4.05

1.35

0.1

0.91

4.95

3.19

1.06

0.00

0

1

2

3

4

5

6

7

8

Critical High Medium Low Very low

Priority of Defects

D
e
fe

c
t

p
e
r

K
L

O
C DCF

JEF

S&A

Fig.5 Defect density for defects with different severities (JEF vs. DCF vs. S&A)

Appendix A

 162

JEF

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

critical high medium low very low

Priority

P
e

rc
e

n
ta

g
e

Timing

Documentation

Relationship

GUI

Interface

Function

Data

Checking

Assignment

Algorithm

Fig.6 Distributions of different defects with different severities for JEF

DCF

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

critical high medium low very low

Priority

P
e

rc
e

n
ta

g
e

s

Timing

Documentation

Relationship

GUI

Interface

Function

Data

Checking

Assignment

Algorithm

Fig.7 Distributions of different defects with different severities for DCF

Appendix A

 163

S&A

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

critical high medium low very low

Priority

P
e

rc
e

n
ta

g
e

s

Timing

Documentation

Relationship

GUI

Interface

Function

Data

Checking

Assignment

Algorithm

Fig.8 Distributions of different defects with different severities for S&A

RQ4: What impacts on the client do defects in reusable software have vs. those in software that

reuses it?

The impact of defects in the JEF framework and the two applications are shown in Fig. 9. The
results illustrate that impacts on capability and usability are the most common in all three systems.
However, defects in the JEF have much less impact on capability than the two applications that
reuse it. The developer explained that the DCF application had missing/incomplete functionality
and unclear requirements from the beginning, which will mainly affect the capability. The users
were not much involved in the implementation of the S&A application. When the users had the
chance to see the application, many changes had to be made to satisfy the users’ revised
requirements. By contrast, the requirements for the JEF were much better defined at the beginning
than for the DCF and S&A, which helped to diminish the defects’ impact on the capability of the
system. Given that the JEF, DCF and S&A all have a large amount of GUIs, it is not surprising
that many defects will affect the usability of the system.

8.72

0.04 0.04

0.8

0.04
0.12

0.64

1.4

0.04

0.4

4.76

4.55

0 0

0.95

0

0.1

0.65

0.75

0.45

0

3.65

7.44

0.05
0.08

0.25

0.11
0.14

0.06

0.20
0.30

0.06

1.42

0

1

2

3

4

5

6

7

8

9

10

C

a

p

a

b

i
l
i
t
y

D

o

c

u

m

e

n

t
a

t
i
o

n

I
n

s
t
a

l
l
a

b

i
l
i
t
y

I
n

t
e

g

r
i
t
y

/
S

e

c

u

r
i
t
y

M

a

i
n

t
e

n

a

n

c
e

M

i
g

r
a

t
i
o

n

P

e

r
f
o

r
m

a

n

c
e

R

e

l
i
a

b

i
l
i
t
y

S

e

r
v
i
c

e

a

b

i
l
i
t
y

S

t
a

n

d

a

r
d

s

U

s
a

b

i
l
i
t
y

Impact

D
e
fe

c
t
p
e
r
K

L
O

C

DCF

JEF

S&A

Fig.9 Impacts of defects for JEF, DCF, and S&A

Table 6 presents a summary of our results, along with the corresponding research questions.

Appendix A

 164

Table 6 Summary of the results

Answers to research questions Research questions
JEF

(reused software)
DCF

(reusing JEF)
S&A

(reusing JEF)

RQ1: Defect density 11.1 per
Kilo NSLOC

17 per
Kilo NSLOC

10.1 per
Kilo NSLOC

RQ2: Defect types
with the highest density

Interface-type and
GUI-type
(JEF vs. DCF vs. S&A)

Function-type,
relationship-type,
checking-type, and data-
type (JEF vs. DCF)

Function-type, data-
type, checking-
type, and
algorithm-type
(JEF vs. S&A)

RQ3: Most severe
defect types

Interface-type and
assignment-type

Relationship-type and
function-type

Algorithm-type and
function-type

RQ4: Most common
impact of defects

Capability and
usability

Capability and usability Capability and
usability

6 Discussion

6.1 Comparison with related work

Our results support some of the observations of the studies shown in Table 1 and Fig. 1, and
contradict others. We have summarized the comparison of our results with previous studies in
Table 7. Although we cannot deny the observations that reused software is reused many times and
that the defect fixes for each reuse accumulate (Lim 1994; Baldassarre 2005), our data show that
reused software may not have a lower defect density than non-reused software. Furthermore,
software reuse will probably not reduce the density of the most severe defects either. The aspects
of systematic software reuse that have helped to reduce the defect density of reused software are:
well-designed functionality, solid design and testing, as well as cautions to changes. It is possible
that the differences in content/focus (domain, functionality, and complexity) between reused
software and non-reused software may confound the cause-effect relationship between reuse and
lower defect density of the reused software. Using the results of this study as a basis, we revised
the explanatory model of the overall cause-effect relationship between software reuse and the
lower defect density of reused software that was presented in Fig. 1 into the model shown in Fig.
10.

Appendix A

 165

Table 7 Comparison of results of previous studies with results of this study

Observations/conclusio

ns from previous

studies

References Evidence from

this study

Conclusion of

this study

Support/Against

previous

conclusions

Reuse reduces the defect
density and therefore
helps to improve the
quality of the system.

Mohagheghi
et al. 2004;
Selby 2005;
Thomas et
al. 1997;
Succi et al.
2001.

Results for RQ1
show that JEF has
a lower defect
density than DCF
However, JEF has
a slightly higher
defect density
than S&A.

Reuse will not
necessary
reduce the
defect density.

Partly against.

Defects in reused
components are more
serious in pre-delivery
than components that are
not reused.

Lim 1994. Results for RQ3

show that JEF has
a density of most
severe defects
similar to those of
DCF and S&A.

Reused
software has a
density of the
most severe
defects similar
to non-reused
software.

Against.

Implementing a
systematic reuse policy,
such as adopting a
domain specific library,
improves client
satisfaction.

Succi et al.
2001.

Results for RQ2

show that JEF has
been better
designed and
tested than DCF
and S&A.

Systematic
reuse policy
helped to
reduce the
defect density
of software to
be reused.

Partly support
(However, we
did not measure
client
satisfaction; only
the defect
density).

Software modules
without revision had the
fewest defects.

Thomas
1997;
Frakes
2001;
Selby 2005.

Results for RQ2
show that the
company was
more cautious
when changing
JEF than DCF and
S&A.

Fewer
changes
helped to
reduce the
defect density.

In favour.

Reuse functionality is
more likely to be well
defined.

Thomas
1997.

Results for RQ2
show that JEF has
much lower defect
density of
functional-type
defects than DCF
and S&A.
Results for RQ4
show that defects
of JEF have much
lower impacts on
capability than
those of DCF and
S&A.

Well-defined
functionality
of the reused
software
helped to
reduce the
defect density
of the function
defects.

In favour.

The nature of the
programming language
helped to reduce the
defect density.

Thomas
1997.

Results for RQ2
show that DCF
and S&A have
much higher
defect densities of
algorithm-type,
data-type, and
checking-type
defects than JEF.

The domain
and
complexity
differences
between
reused
software and
non-reused
software will
confound the
differences in
defect density.

In favour.

Appendix A

 166

Fig.10 Improved overall cause-effect model between software reuse and the defect densities of
reused software

6.2 Recommendations to the IT industry on software reuse

By investigating the defect density of different defect types via ODC, the results for RQ2 show
that the JEF and the two applications that are reusing it have different defect densities for different
types of defect. The root cause analysis reveals that the lower defect density of the JEF is due
partially to the systematic implementation of the reuse policy, such as clearly defined
functionality, better design and testing (Succi et al. 2001), and better management of changes
(Selby 2005). The higher defect densities of function-type defects in the DCF and S&A are due
partially to higher time-to-market pressure, more unstable requirements, and less quality control.
Thus, it is important for industrial practitioners to define and implement a systematic reuse policy

to improve the defect density of reusable software.
The results for RQ3 show that the most severe defects for the JEF are assignment-type and

interface-type. This is because several other applications, e.g. DCF and S&A, need to use the
functions of the reusable framework through its interface. Therefore, interface-type defects in the
JEF may cause several of the applications that reuse the JEF framework to fail. This indicates that

more solid quality control or testing should be performed on reusable software to reduce the

possible interface defects.
Finally, some of the fields in the recorded defect data (e.g. defect severity) are incomplete. This

indicates that the trouble reports have not been analyzed properly by the persons responsible and
that little feedback has been given on the collected trouble reports. If feedback were provided, the

precision of data collection could be improved in the short run and promising changes to the

process could be suggested in the long run.

Appendix A

 167

6.3 Threats to validity

We now discuss possible threats to validity in our case study, using the definitions provided by
(Wohlin et al. 2002):

Construct Validity: Root Cause Analysis (RCA) is often performed on each defect (Leszak et
al. 2000). One possible threat to construct validity is that we performed our RCA on a summary of
all defects. Given that we did not perform a detailed analysis of each defect, we may have missed
important causes of the defects. However, in StatoilHydro ASA several of the developers who
were involved in the project are external consultants and when their work on the project was
completed, they left. This made it difficult for us to trace defects back to each developer.
Therefore, we did not have the resources to perform a root cause analysis of each defect. However,
we selected 5% of defects at random for the JEF, DCF, and S&A, and performed a root cause
analysis on each of these defects. The results support our conclusion for all research questions. In
addition, we verified the reasons for differences in function-type defects (see section 6) between
the JEF, DCF, and S&A by interviewing another senior developer. His insights are in line with the
first senior developer with whom we discussed these reasons.

Internal Validity: All of the trouble reports for the JEF, DCF, and S&A were classified
manually by us. The first and the second author of the paper classified all the defects separately
and then cross-validated the results.

A threat to the internal validity is how the defects are reported at StatoilHydro ASA.
Ambiguity could exist as to whether developers classify an incident as a trouble report or not. Due
to the interaction between the JEF, DCF, and S&A, defects might have been attributed to the
applications (DCF or S&A) that rightly should have been assigned to the framework (JEF); hence,
the way in which defects are reported remains a threat.

Another threat to the internal validity is the incomplete and missing data on the severity of the
defects reported for the JEF and DCF. We decided to use the priority data for the severity analysis
in the JEF and DCF, which may constitute a threat to internal validity. However, we performed a
Spearman correlation test and found that the severity data and priority data are correlated
significantly.

The ideal thing would be to look at defects on the component level rather than the system level.
However, the software systems investigated are large and complex, so one defect may affect
several components. This complexity makes it difficult to classify which specific component a
defect belongs to. Hence, we evaluated the whole system. If we had compared defects at the
component level, there may have been more errors of misclassification, which would have
constituted a more serious threat to internal validity.

External Validity: The entire data set was taken from one company. The object of study was
a class framework, and only two applications. Generalization to similar contexts in other
organizations should be discussed case by case.

Conclusion Validity: We performed our analysis on the basis of an initial collection of data. A
possible threat to validity is that the differences among types of defect with respect to density were
caused by the developers having different experience and degrees of skill. However, we do not
consider this possibility to be relevant for our investigation, because the JEF framework and both
the DCF and S&A applications were developed within the same development unit. Around one
third of the developers worked on all three of the projects. The remaining developers and testers
involved in the projects have comparable skills (a Bachelor’s or Master’s degree in computer
science) with respect to education and programming experience.

7 Conclusion and future work

Several empirical studies have compared the defect density of reused software and the software
that reused them, and have observed that the reused software has lower defect densities. However,
few solid studies have tried to examine the reasons for this phenomenon. We studied the defect
profiles of three large industrial software systems in one company. One software system is reused
by the two others as a framework. We examined all defects of these software systems (232 for
the reused framework, and 592 and 793 for the other two) over all their releases. We classified the
defects using ODC; compared the densities, severities, and impacts of different types of defect;
and performed a follow-up qualitative RCA to find explanations for all our observations. Results
of our study show that:

Appendix A

 168

− The reused software has a lower defect density in total than one application that are
reusing it, and has a slightly higher defect density than the other. The systematic reuse
policy of the investigated company, e.g. to define and design the reused software well,
keep the reused software stable, and test the reused software thoroughly, has helped to
reduce the defect densities of the reused software. The relatively simple functionality
and business logic of the reused software have also helped to reduce the defect density
of the reused software. However, the reused software has a large amount of GUIs that
are not well implemented. These GUI-type defects partly lead to a higher defect
density in total of the reused software than one of the applications that are reusing it,
namely S&A.

− With respect to the most severe defects, the reused software has similar defect
densities to the two applications that are reusing it. However, the defect types with the
highest critical defect densities of the reused software are different from those of the
applications that are reusing it.

Our results deepen our understanding of the overall cause-effect relationship between software
reuse and the lower defect density of the reused software. The results should induce industrial
practitioners to implement more systematic reuse policies to improve the defect density of the
reusable software. For researchers, the results indicate that a set of diverse decision factors have to
be considered when discussing the relationship between software reuse and lower defect density.

High defect density in a pre-delivery release may be a good indicator of extensive testing,
rather than of poor quality (Fenton et al. 2000). Hence, defect density cannot be used as a standard
measure of quality, but defects that remain after testing will affect reliability.

Due to the internal use of the reusable and non-reusable software, our main focus was on the
defects introduced by the developers (later detected either by testers or users). So, our main
contribution concerns the profiles of the defects and the reasons, and not the overall quality (e.g.
reliability, performance, time-to-market etc.) of the reusable and non-reusable software. A further
study will be done to measure these aforementioned and other quality attributes over time for the
reusable framework and applications that reuse it.

One interesting question raised by our study is how to use different Quality Assurance (QA)
methodologies to improve the lower defect density of the reused software and software that reuses
it. Given that reused software has different profiles of the most popular and severe defects from the
software that reuses it, reused software may need to be tested in ways different from those that are
used to test the applications that reuse it. A further study will investigate how to adapt the QA
process of the investigated company according to the characteristics and defect profiles of the
reusable software and software that reuses it.

Acknowledgements

This work was financed in part by the Norwegian Research Council for the SEVO (Software
EVOlution in Component-Based Software Engineering) project (SEVO 2004) with contract
number 159916/V30. We thank StatoilHydro ASA for involving us in their reuse projects and Dr.
Parastoo Mohagheghi and Thor André Aresvik for valuable comments.

References

Baldassarre, MT et al. (2005) An industrial case study on reuse oriented development. In: Proceedings of the

International Conference on Software Maintenance. IEEE Computer Society Press, Budapest, Hungary,
pp. 283-292

Briand, Lionel C et al. (1998) Quality Assurance Technologies for the EURO Convention-Industrial
Experience at Allianz Life Assurance. In: Proceedings of International Software Quality Week Europe.
Communications of the ACM, Brussels, Belgium, pp. 1-23

Card, DN (1998) Learning from Our Mistakes with Defect Causal Analysis. IEEE Software 15(1): 56-63
Chillarege, R et al. (1992) Orthogonal Defect Classification - a Concept for in-Process Measurements. IEEE

Transactions on Software Engineering. 18(1): 943-956
Emam, KE and Wieczorek, I (1998) The Repeatability of Code Defect Classifications. In: Proceedings of

International Symposium on Software Reliability Engineering. IEEE Computer Society Press, Paderborn,
Germany, pp. 322-333

Fenton, NE et al. (2000) Quantitative Analysis of Faults and Failures in a Complex Software System. IEEE
Transactions on Software Engineering 26(8): 797-814

Frakes, WB et al (2001) An industrial study of reuse, quality, and productivity. Journal of Systems and
Software 57(2): 99-106

Freimut (2001) Developing and Using Defect Classification Schemes. IESE-Report No. 0720.01/E. 2001

Appendix A

 169

Grady, R.B (1992) Practical Software Metrics for Project Management and Process Improvement, Prentice
Hall

Huber, JT (2000) A Comparison of IBM’s Orthogonal Defect Classification to Hewlett Packard’s Defect
 Origins, Types and Modes. In: Proceedings of International Conference on Applications of Software

Measurement. San Jose, Ca, pp.1-17.
http://www.stickyminds.com/stickyfile.asp?i=1764291&j=52901&ext=.pdf. Accessed May 2008.

IBM (2008) ODC classification. Available via IBM’s website.
http://www.research.ibm.com/softeng/ODC/ODC.HTM. Accessed June 2006 and January 2008.

IEEE (1994) IEEE Standard 1044-1993. IEEE Standard Classification for Software Anomalies. IEEE
Leszak. M et al. (2000) A Case Study in Root Cause Defect Analysis. In: Proceedings of the International

Conference on Software Engineering. IEEE Computer Society Press, Limerick Ireland, pp. 428 – 437
Lim, WC (1994) Effect of Reuse on Quality, Productivity and Economics. IEEE Software 11(5): 23-30
Mohagheghi, P et al. (2004) An Empirical Study of Software Reuse vs. Defect Density and Stability. In:

Proceedings of the International Conference on Software Engineering. IEEE Computer Society Press,
Edinburgh, Scotland, pp. 282-291

Mohagheghi, P et al. (2007) Quality, Productivity and Economic Benefits of Software Reuse: A Review of
Industrial Studies. Journal of Empirical Software Engineering 12(5): 471-516

Morad, S et al. (2005) Conventional and open source software reuse at Orbotech- an industrial experience. In:
Proceedings of the International Conference on Software- Science, Technology & Engineering. IEEE
Computer Society Press, Herzliyah, Israel, pp. 110-117

Morisio, M et al. (2002) Success and Failures in Software Reuse. IEEE Transactions on Software
Engineering 28(4): 340-357

Rothenberger, MA. et al. (2003) Strategies for Software Reuse: A Principal Component Analysis of Reuse
Practices. IEEE Transactions on Software Engineering 29(9): 825-837

Selby, W (2005) Enabling Reuse-Based Software Development of Large-Scale Systems. IEEE Transactions
on Software Engineering 31(6): 495-510

SEVO (2004) Software Evolution in Component-Based Software Engineering.
http://www.idi.ntnu.no/grupper/su/sevo/. Accessed June 2006.

Sindre, G et al. (1995) The REBOOT Approach to Software Reuse. Journal of Systems and Software 30(3):
201–212

Succi, G et al. (2001) Analysis of the Effects of Software Reuse on Customer Satisfaction in an RPG
Environment. IEEE Transactions on Software Engineering 27(5): 473-479

Thomas, WM et al. (1997) An analysis of errors in a reuse-oriented development environment. Journal of
Systems and Software 38(3): 211-224

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in Software
Engineering—an Introduction. Kluwer Academic Publishers

Zhang, W et al. (2005) Reuse without compromising performance: industrial experience from RPG software
product line for mobile devices. In: Proceedings of the International Software Product Line Conference.
IEEE Computer Society Press, Rennes, France, pp. 57-69

Zheng, J et al. (2006) On the Value of Static Analysis for Fault Detection in Software. IEEE Transactions on
Software Engineering 32 (4): 240-253

Appendix A: Defect classification schemes and
definitions of defect types

A defect classification scheme is used to characterize the nature of defects. There are three
major schemes for classifying defects: the IEEE 1044 standard (IEEE 1994), the Hewlett-Packard
(HP) Scheme (Grady 1992), and IBM’s Orthogonal Defect Classification (ODC) scheme
(Chillarege et al. 1992). The IEEE scheme provides too many attributes and classifications (more
than 140), and in too much detail, to be used effectively in practice. The HP scheme includes
attributes for defining the origin, type, and mode. The goal of the HP scheme is to initiate the
improvement of processes and the early detection of defects. However, it lacks an attribute to
define what the user will experience, if the defect persists after the application has been deployed
at the user’s site. The goal of IBM’s ODC scheme is to associate each defect type with a specific
stage of development. It is more suitable to use the ODC scheme than the HP scheme when the
primary objective is to examine closely trends regarding defects throughout the lifecycle of the
project (Huber 2000). While all ODC attributes capture the semantics of a defect (Chillarege et al.
1992), the attributes “defect type, trigger, and impact” play a crucial role in the scheme. Detailed
explanations of each attribute value may be found at (IBM 2008; Emam and Wieczorek 1998).
ODC has been employed to obtain a first overview of the defects. For example, Briand et al.
(1998) classified the defects found in newly introduced inspections according to the impact
attribute of ODC in order to characterize the defects found in terms of their visibility to the user.
ODC can also be used to evaluate and improve technology. For example, in order to investigate

Appendix A

 170

the value of automatic static analysis, the defects found by the static analysis and those not found
by this technique can be classified (Zheng et al. 2006).

Emam and Wieczorek (1998) indicate that the use of ODC is, in general, repeatable in many
areas of software engineering, although there is no alignment between the Target (which
represents the identity of the work product where the fix was implemented) and the type of defect
(Huber 2000).

A few studies indicate that ODC can be adapted in minor ways according to project contexts
(Emam and Wieczorek 1998; Freimut 2001). In our study, we ran a trial classification on the
defects using ODC and found that some defects cannot be classified by classical ODC (Emam and
Wieczorek 1998). Thus, we added two defect types, namely GUI-type and data-type. The
definitions of the types of defect used in our study are shown in Table A.1.

Table A.1 Definition of different defect types
Defect type

Definition
Examples

Assignment
/Initialization

Value(s) assigned incorrectly or
not assigned at all; but note that a
fix involving multiple assignment
corrections may be of the type
Algorithm.

1) Internal variable or variable within a
control block did not have the correct value,
or did not have any value at all.
2) Initialization of parameters
3) Resetting a variable’s value.
4) The instance variable that captures a
characteristic of an object (e.g., the colour
of a car) is omitted.
5) The instance variables that capture the
state of an object are not correctly
initialized.

Checking Errors caused by missing or
incorrect validation of parameters
or data in conditional statements.
It might be expected that a
consequence of checking for a
value would require additional
code, such as a “do while” loop or
branch. If the missing or incorrect
check is the critical error,
checking would still be the type
chosen.

1) Value greater than 100 is not valid, but
the check to make sure that the value was
less than 100 was missing.
2) The conditional loop should have
stopped on the ninth iteration, but it kept
looping while the counter was <= 10.

Algorithm/Method
Efficiency or correctness
problems that affect the task and
can be fixed by (re)implementing
an algorithm or local data
structure without the need to
request a design change. Problem
in the procedure, template, or
overloaded function
that describes a service offered by
an object.

1) The low-level design called for the use
of an algorithm that improves throughput
over the link by delaying transmission of
some messages, but the implementation
transmitted all messages as soon as they
arrived. The algorithm that delayed
transmission was missing.
2) The algorithm for searching a chain of
control blocks was corrected to use a linear-
linked list instead of a circular-linked list.
3) The number and/or types of parameters
of a method or an operation are specified
incorrectly.
4) A method or an operation is not made
public in the specification of a class.

Function/Class/Object The error should require a formal
design change, because it affects
significant capability, end-user
interfaces, product interfaces,
interface with hardware
architecture, or global data
structure(s); The error occurred
when implementing the state and
capabilities of a real or an abstract
entity.

1) A database did not include a field for
street address, although the requirements
specified it.
2) A database included a field for the post
code, but it was too small to contain
international post codes as specified in the
requirements.
3) A C++ or SmallTalk class was omitted
during system design.

Timing/Serialization Necessary serialization of shared
resource was missing, the wrong
resource was serialized, or the

1) Serialization is missing when making
updates to a shared control block.
2) A hierarchical locking scheme is in use,

Appendix A

 171

wrong serialization technique was
employed.

but the defective code failed to acquire the
locks in the prescribed sequence.

Interface/O-O Messages
Communication problems
between:
1) modules
2) components
3) device drivers
4) objects
5) functions via

1)macros
2)call statements
3)control blocks
4)parameter lists

1) A database implements both insertion
and deletion functions, but the deletion
interface could not be called.
2) The interfaces specifies a pointer to a
number, but the implementation is
expecting a pointer to a character.
3) The OO-message incorrectly specifies
the name of a service.
4) The number and/or types of parameters
of the OO-message do not conform to the
signature of the requested service.

Relationship
Problems related to associations
among procedures, data
structures, and objects. Such
associations may be conditional.

1) The structure of code/data in one place
assumes a certain structure of code/data in
another. Without appropriate consideration
of their relationship, the program will not
execute or it executes incorrectly.
2) The inheritance relationship between two
classes is missing or incorrectly specified.
3) The limit on the number of objects that
may be instantiated from a given class is
incorrect and causes the performance of the
system to degrade.

GUI Problem related to the layout of
the GUI

1) Wrong size of button
2) Meaningless information in the GUI
3) Wrong text colour

Data Structure, content, declaration Are files opened with the right
permissions?
Are the correct data files accessed?
Are there any missing variables for the
object definition?
Are variable definitions the right size to
hold the data?

Appendix B: Definitions of impacts

In this study, we used the definition of impacts of the classical ODC (Emam and Wieczorek
1998), as shown in Table B.1.

Table B.1 Definition of different types of defect

Name Definition Examples

Installability The ability of the client to prepare and
place the software in position for use.
(Does not include Usability).

1) During automated installation,
received an error message saying
installation failed because a file was
missing.

Integrity/Security The protection of systems, programs,
and data from inadvertent or malicious
destruction, alteration, or disclosure.

1) Logged in as Read Only, Profiles
enabled. Was able to save changes from
the System Component Assignment
Panel. Was also able to delete a
component.

Performance

The speed of the software as perceived
by the client and the client’s end users,
in terms of their ability to perform their
tasks.

1) Module ISGGRP00 should not hold
the GRS local lock for so long that it
causes the rest of the complex to hang.
After processing a certain number of
requests it should release and then re-
obtain the lock in order to give other units
of work a chance to execute.

Appendix A

 172

Maintenance The ease of applying preventive or
corrective fixes to the software. An
example would be that the fixes can not
be applied due to a bad medium.
Another example might be that the
application of maintenance requires a
great deal of manual effort, or is calling
many pre- or co-requisite maintenance.

1) Fixes can not be applied due to a bad
medium.
2) Maintenance requires a great deal of
manual effort.

Serviceability The ability to diagnose failures easily
and quickly, with minimal impact on
the client

1) The diagnostics software numbers
error messages, rather than indicating
where the problem actually occurred.

Migration The ease of upgrading to a current
release, particularly in terms of the
impact on existing client data and
operations. This would include
planning for migration, where a lack of
adequate documentation makes this task
difficult. It would also apply in those
situations where a new release of an
existing product introduces changes that
affect the external interfaces between
the product and the client’s
applications.

1) Co-requisite information with regard to
other products is not made available to
clients.
2) When migrating to a new level, the
client’s applications fail because the
external interface has been changed to no
longer accept blanks. This ?lack of?
backward compatibility forces the client
to rewrite 36 applications.

Documentation The degree to which the publication
aids provided for understanding the
structure and intended uses of the
software are correct and complete.

1) MSGISG015I RCAAE78 is not
documented in the system messages
manual.

Usability The degree to which the software and
publication aids enable the product to
be understood easily and used
conveniently by its end user.

1) In some situations, the date field is not
filled in.
2) When running several jobs in a system
test, the system was flooded with
messages. They scrolled by so quickly
that they could not be read.
3) In order to perform a specific
migration task, the client must enter many
commands, some with parameters that
contain information that it is difficult to
find and understand.

Standards The degree to which the software
complies with established pertinent
standards.

1) Command menu occurs on the bottom
of the screen, instead of at top (which is
the industry standard.)
2) Protocol specifications for
participating in an exchange across
heterogeneous systems are not being
followed.

Reliability The ability of the software to perform
its intended function consistently
without unplanned interruption. Severe
interruptions, such as ABEND and
WAIT would always be considered
reliability.

1) While invoking modem software, the
system crashed and had to be rebooted.

Capability

The ability of the software to perform
its intended functions, and satisfy
KNOWN requirements, where the
client is not affected in any of the
previous categories.

1) On an unconditional Latch Obtain request
for an SRB, the code in ISGLRTR does not
check the return code from SUSPEND
SPTOKEN. If there is a user or system error,
this could result in the requester thinking that
the latch had been obtained when in fact, it has
not. 2) When SAVE was clicked on, nothing
happened.

Appendix A

 173

P6: Change Profiles of a Reused Class
Framework vs. two of its Applications

Submitted to Journal of Information and Software Technology, 01.07.2008.

Anita Gupta1, Jingyue Li1, Reidar Conradi1, Harald Rønneberg2 and Einar Landre2

1
 Dep. of Computer and Information Science (IDI), Norwegian University of Science and Technology

(NTNU), Trondheim, Norway
{anitaash, jingyue, conradi}@idi.ntnu.no

2 StatoilHydro ASA KTJ/IT, Forus, Stavanger

{haro, einla}@statoilhydro.com

Abstract Software reuse is expected to improve software productivity and quality. Although many
empirical studies have investigated the benefits and challenges of software reuse from
development viewpoints, few studies have explored reuse from the perspective of maintenance.
This paper reports on a case study that compares software changes during the maintenance and
evolution phases of a reused Java class framework with two applications that are reusing the
framework. The results reveal the following. 1) The reused framework is more stable, in terms of
change density, than one application that is reusing it and more unstable than the other. 2) The
reused framework has profiles for change types that are similar to those of the applications, where
perfective changes dominate. 3) The lifecycle of both the reused framework and its applications is
the same: initial development, followed by a stage with extending capabilities and functionality to
meet user needs, followed by a stage in which only minor defect repairs are made, and finally,
phase-out. However, the reused framework goes faster from the stage of extending capabilities to
the stage in which only minor defect repairs are made than its applications. 4) The factors that
affect the change densities and change profiles of both framework and applications are
functionalities, development practice, complexity, size, and age. Thus, all these factors must be
considered to predict change profiles in the maintenance and evolution phase of software.

Keywords: Software reuse, Software change, Case study, Class framework

1. Introduction

After a software system is delivered to the client for use, it will evolve and be maintained
continuously until it is replaced or discarded [Bennett00]. Pigoski [Pigoski97] found that the
percentage of the IT industry’s expenditure on maintenance was 40% in the early 1970s, 55% in
the early 1980s, and 90% in the early 1990s. Krogstie et al. [Krogstie06] conducted a survey that
investigated the development and maintenance of business software in Norway. The same survey
was performed in 1993 and 1998. The results show that overall, about 40% of available time is
spent on maintenance. Software reuse is expected to utilize past accomplishments, to facilitate
software development productivity, and to improve the quality of the developed software system
[Lim94]. Several studies have investigated whether software reuse and component-based
development have the potential to facilitate the maintenance and evolution of a system. They
concluded that reused components are more stable than non-reusable ones
[Frakes01][Algestam02][Mohagheghi04a][Selby05][Zhang05]. However, one study concludes the
opposite, stating that reused components with major revisions later will need more changes per
source line than newly developed components [Selby05].

To investigate the benefits and challenges of software reuse with respect to maintenance, we
performed an industrial case study to compare the actual changes performed on a reusable
framework called the Java Enterprise Framework (JEF). This framework is developed by the IT-
department of a large Norwegian Oil & Gas company. It is reused “as-is” by two applications,
Digital Cargo Files (DCF) and Shipment and Allocation (S&A) in the same company. We
formulated two research questions:

Appendix A

 174

RQ1: Whether the reused software experiences fewer or more changes than its

applications, and the likely reasons for the differences or similarities.

RQ2: Whether the reused software experiences the same profile of changes over time

with the software reusing it, and the reasons for the differences and similarities.

We selected files from the three systems at random, classified all changes on these files, and
compared the distribution of different types of changes (perfective, corrective, adaptive and,
preventive) in general and over time. In addition, we performed a root cause analysis (RCA) to
interpret the results. The novelties of the study are:

− It compared the maintenance activities of reused software vs. non-reused software by

classifying changes into perfective, corrective, adaptive, and preventive types of

change.

− It compared the change profile of reused and non-reused software over time.

− It used root cause analysis to investigate the reasons for software evolution and

maintenance activities.

This study contributes to the understanding of software reuse and software changes, and concludes
that:

− Software reuse does not necessarily lead to stable software. In our case, the reused

framework has a lower change density than one application reusing it and a higher

change density than the other application.

− Perfective changes (i.e. caused by new or changed requirements, as well as

optimizations) constitute the highest percentage of changes in both the reused

framework and in the applications reusing it, followed by corrective changes.

− Both the reused framework and the applications experienced the following lifecycle:

initial development, then extending the capabilities and functionalities of the system to

meet user needs, followed by repairing minor defects. However, the reused framework

experienced only one such lifecycle, while the applications experienced several.

− Kemerer [Kemerer97] concludes that five main factors (i.e. software functionality,

software complexity, development practices, software size, and software age) will

affect possible maintenance activities. Regarding the change densities and change

profiles of both the framework and the applications, those of Kemerer’s factors

[Kemerer97] that affect the maintenance activity most in our case are functionality

and development practices, followed closely by complexity. The factors that affect it

least in our case are age and size. The functionalities and development practices of the

software usually influence the future change density and the type of change (perfective,

corrective, adaptive, and preventive).

The remainder of the paper is structured as follows. Section 2 presents related work. Section 3
presents the motivation for the research and research questions. Section 4 describes the research
design. Section 5 presents the results. Section 6 discusses these results Section 7 concludes.

2. Related work

Understanding the issues related to changes involved in the evolution and maintenance of software
has been a focus of software engineering study since the 1970s. The goal has been to identify the
origin of changes, as well as their type, relative frequency of occurrence, and effort required to
make them. Software changes are important because they account for a major part of software
costs. At the same time, they are necessary; the ability to alter software quickly and reliably means
that businesses can take advantage of new opportunities and can remain competitive [Bennett00].
Lehman [Lehman80] carried out the first empirical studies of software changes, finding that
systems that operate in the real world have to be adapted continuously; otherwise, their usability
and relevance decreases rapidly. Software systems usually need to be changed during their lifetime
because the original requirements may change to reflect changing business, user, and client needs
[Postema01].

2.1. Studies on the distributions of different types of software changes

One kind of study that has been performed on software changes examines the static aspect of
changes, i.e. the distribution of different kinds of change, or the distribution of effort spent on

Appendix A

 175

performing different kinds of change. Table 1 summarizes the nature and conclusions of these
studies.

Table 1. Studies related to distributions of different changes

Study description Distribution and definition of different

types of change

Other observations

of the study

A questionnaire-based
survey that collected data
from 69 systems, which
were developed using
different programming
languages, e.g. Cobol,
Assembler, Fortran etc.
[Lientz78].

- 60% perfective (enhancements and
speed performance)

- 18% adaptive (changes to data inputs
and files)

- 17% corrective (emergency fixes and
debugging)

- 4% other (no description given)

User demands for
enhancements and
extensions constitute
the most important
problem area with
respect to
management.

A case study that
investigated change
requests collected for two
years in a Canadian
financial institute
[Abran91].

Used the same definitions
as [Lientz78] for
corrective, adaptive, and
perfective changes.

Analyzed 2152 change
requests.

- 60% adaptive

- 21% corrective

- 3% perfective

- 15% user support (handle user
requests of application rules and
behaviour, requests for work
estimates, requests for preliminary
analysis)

Maintenance team in
1989 spent 64% of
their time doing
maintenance work
(e.g. optimization and
adding new
functionality) other
than correcting
defects and errors.

A survey conducted in
the MIS (Management
Information System)
department in nine
different application
domains in Hong Kong.

1000 questionnaires were
sent out and about 50
responses were received
[Yip94].

- perfective (40% enhancements, 7%
tuning, and 6% reengineering)

- 16% corrective (correct faults)

- 10% adaptive (adaptation to new
environment)

- other (13% answering questions and
9% documentation)

In Hong Kong, 66%
of the total software
life cycle effort was
spent on software
maintenance.

The most cited
maintenance
problems were staff
turnover, poor
documentation, and
changing user
requirements.

A structured interview
with managers and
maintainers in a computer
department of a large
Norwegian telecom
organisation in 1990-
1991 (study1) and 1992-
1993 (study2)
[Jørgensen95].

Systems were developed
using either Cobol or
Fourth Generation
languages.

Results of interviews with managers:

- 44% perfective (changes in user
requirements)

- 29% adaptive (make software usable
in a changed environment)

- 19% corrective (correct faults)

- 8% preventive (preventing problems
before they occur)

Results of interviews with maintainers:

- 45% perfective

- 40% adaptive

- 9% corrective

- 6% preventive

If the amount of
corrective work is
calculated on the
basis of interviews
solely with managers,
it will be as twice as
much as the actual
work reported in logs
(i.e. the amount of
corrective work may
be exaggerated in
interviews).

Appendix A

 176

Studied 10 projects
conducted in the Flight
Dynamic Division (FDD)
in NASA’s Goddard
Space Flight Center. The
FDD maintains over 100
software systems totalling
about 4.5 million lines of
code. 85% of the systems
are written in
FORTRAN, 10% in Ada,
and 5% in other
languages [Basili96].

- 61% perfective (improve system
attributes and add new functionality)

- 20% other (e.g. management,
meeting etc.)

- 14% corrective (correct faults)

- 5% adaptive (adapt system to new
environment)

-

Error corrections are
small isolated
changes, while
enhancements are
larger changes to the
functionality of the
system.

More effort is spent
on isolation activities
in correcting code
than when enhancing
it.

A case study investigated
the change of
maintenance requests
during the lifecycle of a
large software application
(written in SQL)
[Burch97].

Analyzed 654 change and
maintenance requests.

- 49% repair (fixing bugs)

- 26% enhancement (add or modify
functionalities)

- 25% user support (consulting and
answering user requests)

User support reaches
its peak in the 4th
month (first stage).
Repair reaches its
peak in the 13th and
14th months (second
stage), while
enhancement is the
dominant factor in
the third stage (25th
month).

A survey carried out in
financial organizations in
Portugal.

Data was collected from
20 project managers
[Sousa98].

- 49% adaptive (changes in platform)

- 36% corrective (error modifications)

- 14% perfective (expand system
requirements and optimization)

- 2% preventive (future maintenance
action)

3% of the
respondents
considered the
software maintenance
process to be very
efficient, while 70%
considered that
efficiency is very
low.

An Ada system of the
NASA Goddard Space
Flight Center
[Evanco99].

Analyzed 453 non-defect
changes.

- 31% planned enhancements
(anticipated at the start of
development)

- 30% other (code debugging,
enhancements and maintainability)

- 29% requirements modifications

(implementation of requirement
changes)

- 10% optimization (optimize software
performance)

Changes related to
optimizations require
the most effort to
isolate, while planned
enhancements require
the most effort to
implement.

A subsystem that
contains 2 million lines of
source code [Mockus00].

Analyzed 33171
modification requests.

- 46% corrective (fixing faults)

- 45% adaptive (adding new features)

- 5% inspection (code checking to
figure errors)

- 4% perfective (code restructuring)

Corrective changes
tend to be the most
difficult, while
adaptive changes are
difficult only if they
are large. Inspection
changes are
perceived as the
easiest.

A case study on re-
engineering a people-
tracking subsystem of an
automated surveillance

- 38% perfective (optimization,
restructuring and adding new
functionalities)

The effort required to
adapt the system was
high, because the
software needed to be

Appendix A

 177

system, which was
written in C++ and had
41 KLOC [Satpathy02].

Analyzed the distribution
of maintenance effort
during the whole
maintenance phase.

- 31% adaptive (adapting to changed
environments)

- 23% preventive (preventing
malfunctions and improving
maintainability)

- 8% corrective (correcting problems)

ported to a different
platform.

Examined three software
products:

− A real-time product
written in a
combination of
assembly language
and C. Data of 138
modified versions
were collected.

− The Linux kernel.
Data from 60
modified versions
were collected.

− GCC (GNU
Compiler
Collection). Data
from 15 versions
were collected.
[Schach03].

The analysis and collection of data were
performed at two levels, using the same
definition as [Lientz78]: (1) change log

level, i.e. each entry in the change log was
regarded as one unit of change. (2)
module level, i.e. all the changes made to
a module were regarded as a single unit of
maintenance. Change log level:

- 57% corrective

- 39% perfective

- 2.4% other

- 2.2% adaptive

Code module level:

- 53% corrective

- 36% perfective

- 4% adaptive

- 0% other

All three
maintenance
categories were
statistically very
highly significantly
different from the
results of [Litentz78].

Corrective
maintenance was
more than three times
the level of the
results of
[Litentz78].

Four releases of a
telecommunication
system written in Erlang,
C, Java, and Perl.
[Mohagheghi04b].

Analyzed 187 change
requests.

- 61% perfective (new or changed
requirements as well as optimization)

- 19% adaptive (adapting to new
platforms or environments)

- 16% preventive (restructuring and
reengineering)

- 4% other (saving money/effort)

Corrective changes are reported
elsewhere.

There is no
significant difference
between reused and
non-reused
components in the
number of change
requests per KSLOC.

Web-based Java
application, consisting of
239 classes and 127 JSP
files [Lee05].

Based on Swanson’s
definition [Swanson76]
and Kitchenham’s
ontology
[Kitchenham99].

Analyzed 93 fault reports

Based on Swanson’s definitions:

- 62% perfective

- 32% corrective

- 6% adaptive

Based on Kitchenham’s ontology:

- 68% enhanced maintenance

- 32% corrective

Maintenance effort of
Java application is
similar to the
distribution in
previous non object-
oriented and non
web-based
applications.

A close investigation of studies in Table 1 reveals that:

- Different studies classify changes differently, noticed by [Chapin01].
o Four studies classified changes into four categories: adaptive, corrective,

perfective, and preventive
[Jørgensen95][Sousa98][Satpathy02][Mohagheghi04b][Lee05].

Appendix A

 178

o Several studies did not include preventive changes and classified the changes
into adaptive, corrective, and perfective, with a fourth category of user support
in [Abran91], inspection in [Mockus00], and “other” in
[Lientz78][Yip94][Basili96][Schach03].

o One study classified changes into planned enhancement, requirement
modifications, optimization, and “other” [Evanco99].

o One study classified changes into user support, repair, and enhancement
[Burch97].

- Definitions of different types of change are slightly different. For example, perfective
change is defined as user enhancements, improved documentation, and recoding for
computational efficiency in [Lientz78], and as restructuring the code to accommodate
future changes in [Mockus00]. It is also defined as encompassing new or changed
requirements (expanded system requirements) as well as optimization in
[Sousa98][Mohagheghi04b], and is defined as enhancements, tuning, and reengineering
in [Yip94].

- The distributions of different types of change are not the same for different systems. 62%
of studies, including [Lientz78][Yip94][Basili96], found that perfective changes (the
median value of perfective changes of those studies presented in Table 1 is 57%) were the
most frequent. However, perfective changes in the system in [Mockus00] were the least
frequent. Twenty-three percent of the studies, reported by [Burch97][Mockus00], found
that corrective changes were the most frequent. Fifteen percent of the studies, including
[Abran91][Sousa98], found that adaptive changes were the most frequent.

2.2. Studies on software changes over time

Another kind of study on software changes investigated how the changes vary over time (the
longitudinal aspect.) Gefen and Schneberger [Gefen96] examined an information system for 29
months and reported that in the first stage, the software was stabilized within the framework of its
original specifications and changes were centered on corrective modifications. In the second
period, the software was improved and new functions were added to the original framework. In the
third period, the system was expanded beyond its original specifications by adding many new
applications. Burch and Kung [Burch97] studied a large application for 67 months and reported
that user support reaches its peak in the first stage. Repair is prevalent in the second stage and
enhancement is the dominant factor in the third stage. Rajlich and Bennett [Bennett00] proposed
a stage model to describe the lifecycle of a software system, as shown in Figure 1. According to
that model, the software life cycle consists of five distinct stages:

- Initial development. Engineers develop the system’s first functioning version.
- Evolution. Engineers extend the capabilities and functionality of the system to meet user

needs, possibly in major ways.

- Servicing. Engineers repair minor defects and make simple functional changes.
- Phase-out. The company decides not to undertake any more servicing, seeking to

generate revenues from the existing system for as long as possible.
- Close-down. The company withdraws the system.

A variation of the stage model is the versioned staged model [Bennett00], also shown in Fig. 1.
The backbone of the versioned staged model is the evolution stage. At certain intervals, a company
completes a version of its software and releases it to clients. Evolution continues, with the
company eventually releasing another version and only servicing the previous version.

Appendix A

 179

Fig. 1. Simple staged model vs. Versioned staged model [Bennett00].

2.3 Studies on software changes and software reuse

A few studies [Frakes01][Algestam02][Mohagheghi04a][Selby05] have examined the possible
influence of software reuse on the changes of a system, as shown in Table 2.

Table 2. Studies comparing changes of reusable components vs. those in non-reusable ones

Quality

focus

Quality measures Conclusion

Number of change requests per
source code line.

Reused components are more stable in
terms of volume of code modified
between releases [Mohagheghi04a].

Change
density

Percentage of code-line changes
(enhancement or repair).

The modules reused with major revision
(>=25% revision) had the most code
changes per SLOC [Selby05].

Number of
changes

The number of changes
(enhancement or repair) to a module

More reuse results in fewer changes
[Frakes01].

Amount of
modified
code

Size of modified or new/deleted
code/total size of code per
component between releases.

Non-reused components are modified
more than reused ones [Mohagheghi04a].

Number of
change
scenarios

Number of changes to which a
software system is exposed (e.g.
adding communication protocols,
porting to new platforms, issues
related to the database manager, etc.)

Reusing components and a framework
resulted in increased maintainability in
terms of cost of implementing change
scenarios [Algestam02].

Although most studies [Frakes01][Algestam02][Mohagheghi04a] in Table 2 conclude that
software reuse is significantly correlated to fewer changes or lower defect density, one study
observed that a reused module that undergoes major revision has the most changes per source line
[Selby05]. A close investigation of the studies in Table 2 further illustrates that:

- None of the studies performed detailed analyses (as was the case with studies listed in
Table 1). “Detailed analysis” here refers to dividing the changes into different types and
comparing the distribution of the changes according to type. Several factors, e.g.
complexity, functionality, development practice, age, and size may determine the profile
of software maintenance [Kemerer97]. Thus, comparing only the number or density of the

defects is not sufficient to warrant the conclusion that software reuse is significantly

Appendix A

 180

correlated to fewer changes. Thus, further study is needed to investigate the relation
between software reuse and software changes of different types.

3. Research motivation and research questions

No study listed in Table 2 performed analysis similar to that in [Gefen96][Burch97], i.e. compared
the changes of reused software and the software reusing it over time. Thus, it remains an open
question whether reused software and its applications follow similar or different change profiles or
software lifecycle [Bennett00] over time. Answers to this question would make it easier for
software maintainers to plan maintenance effort according to possible change profiles of reused
software and software reusing it.

To determine whether software reuse actually leads to fewer software changes, we decided to
compare the software changes that are made to reusable vs. non-reusable software. We
investigated two research questions (see Section 3.1) to address the limitations of the studies in
Table 2.

3.1. Research questions

Research question RQ1 is: Whether the reused software experiences fewer or more changes

than its applications, and the likely reasons for the differences or similarities. To examine this
research question in detail, we designed three subquestions as follows:

RQ1.1. What are the total change densities of reused software and of non-reused software?
RQ1.2. What are the densities of the individual change types of reused software and of non-
reused software?
RQ1.3. What are the reasons for the answers to research questions RQ1.1 and RQ1.2?

The research questions RQ2 is formulated as: Whether the reused software experiences the same

profile of changes over time with the software reusing it, and the reasons for the differences and
similarities. To examine this research question in detail, we designed two subquestions RQ2.1 and
RQ2.2:

RQ2.1. What are possible differences of change profile of software being reused and software
reusing it?
RQ2.2. What are the reasons for the answers to RQ2.1?

4. Research design

To answer our research questions, we investigated three software systems from the largest
Norwegian oil and gas company, StatoilHydro ASA. In this section, we first introduce the
company, the three systems, and software change data of these systems. After that, we describe
how the change data were analyzed and how the follow-up RCAs [Card98] were performed.

4.2. Data collection

4.2.1 The investigated company

StatoilHydro ASA has its headquarters in Norway and has branches in 40 countries. It has
31,000 employees in total. The IT department of the company is responsible for developing and
delivering domain-specific software to the host organization, so that key business areas can
become more flexible and efficient in their standard operations. It is also responsible for the
operation and support of IT systems. This department consists of approximately 100 developers,
who are located mainly in Norway. In addition, the company subcontracts many software
development and operations to consulting (software) companies. These subcontracting operations
may involve over 1000 ICT specialists.

Appendix A

 181

4.2.2 The software systems investigated

The company initiated its reuse strategy in 2003 with pre-studies. Then, a reusable software
framework was developed. This framework (Java class library) is based on J2EE (Java 2
Enterprise Edition), and is a Java class framework for developing Enterprise Applications. Thus,
the framework is called the “JEF framework” (hereafter, JEF). The JEF consists of seven separate
components or modules (i.e. each component or modules consist of various library classes) that
can be reused separately or together.

JEF release 1 was finished around June 2005. PDM (Physical Deal Maintenance) was the first
application to use it, in the summer of 2005. In this period, some weaknesses in the framework
were discovered. Changes that were made in response to these weaknesses were incorporated into
JEF release 2 in September 2005. The DCF application reused JEF release 2 during late summer
and autumn of 2005. After DCF reused the JEF, further minor changes were made to the
framework. These changes were finished by early November 2005, when JEF 3 was released. The
second application, S&A, was developed during early 2006 and reused JEF release 3.

The relations between the JEF and applications using/reusing it are shown in Fig. 2. The size
(measured in non-commented source lines of code (NSLOC)) and release date of the reusable vs.
non-reusable software systems are shown in Table 3. Detailed information on the JEF, DCF and
S&A are presented in Appendix A. The company has the same test team and the same test
coverage for both reusable and non-reusable software. For instance, for unit testing, 85% of the
code lines are executed by unit tests to make sure the code works as expected. We did not include
defects in the PDM application other than those in the JEF in our study, because PDM was the first
application to use JEF; it did not reuse it (like DCF and S&A). Hence, defects from PDM were not
analyzed.

Fig.2. The relation between the JEF, DCF, and S&A.

Table 3. Size and release date of the three systems

Release1 Release 2 Release 3 System

Date
Size

(NSLOC)
Date

Size
(NSLOC)

Date
Size

(NSLOC)

JEF 14. June 2005 16 875 9. Sept. 2005 18 599 8. Nov. 2005 20 348

DCF 1. Aug. 2005 20 702 14. Nov. 2005 21 459 8. May 2006 25 079

S&A 2. May 2006 29 957 6. Feb. 2007 50 879 12. Dec. 2007 64 319

From Table 3, we can see that the framework and the applications are growing. The JEF consists
of seven components. These were used in PDM and reused in DCF and S&A. However, DCF

Appendix A

 182

and S&A were not used in any other applications. The JEF is reused in DCF and S&A and in other
projects “as-is”. This is how we can say that the JEF is reusable, while DCF and S&A are non-
reusable. The JEF, DCF, and S&A will grow because when clients use the applications they will
make some changes to them, which will also require changes to the JEF. For instance, adding new
functionality to the reusable and non-reusable software will result in growth for the JEF, DCF, and
S&A. Another explanation of the growth of the framework and the applications is that when a
defect is found in one release (e.g. JEF 1.0), the fixes will be included in the next release (e.g. JEF
2.0), and so on.

4.2.3. Collected software change data

To handle changes in requirements or implemented artifacts, Change Requests (CRs) are written
(by test manager or developers) and stored in the Rational ClearQuest tool. Examples of change
requests are to add, modify or delete functionality; solve a problem with major design impact; or
adapt to changes from, for example, JEF component interfaces. CCB stands for the Change

Control Board (usually found in SCM systems). The project leader in StatoilHydro ASA
constitutes the CCB in this context. The CCB is responsible for approving or rejecting a CR, and
distributing the approved change requests (from Rational ClearQuest) among the developers. After
the approved CRs have been distributed, the developers access the source files in the version
control system, i.e. Rational ClearCase, to make the necessary changes. When implementing the
changes, the developers follow the following steps:

− They check-out the files that correspond to the CR that they are working on.

− They implement changes on the checked-out files, possibly locking the branch that they
are working on.

− They give the file a change description, which is a thorough description that elaborates on
what changes they have made, and a time and date (timestamp).

− Finally, they check the changed files back into Rational ClearCase.

Due to the fact that Rational ClearCase captures information about all source code and other
software changes, the first author of the paper extracted the following data for each file (of JEF,
DCF, and S&A) from Rational ClearCase: an ID, a filename with all its version numbers and the
corresponding check-in timestamp (includes only the date), change description (prose description
of the change), size for its base and last version, and location of the changes (i.e. the name of the
components on which the changes were implemented). The information was extracted manually.

Over all releases, there were, in total, 481 files for the JEF, 1365 for DCF, and 405 for S&A. We
selected only a subset of the files because it was too time-consuming to analyse all changes to all
2251 files. We attempted to select for analysis a representative subset of the files in each
component. When we collected the data, we decided to have a threshold value of 10 files. If a
component had less than 10 files, we included all the files. If there were more than 10 files, we
picked a random subset that, we assumed, would be representative of the properties of the entire
component. A sampling calculator [MaCorr08] was used to calculate a sufficient sample size
(confidence level was 95% and confidence interval was 3%). As an example of our procedure, the
component JEFClient had 195 files. Using the calculated sample size from the sampling
calculator, which was 165 files, we randomly (using a mathematical function in MS Excel)
selected 165 files from the JEFClient to include in the dataset. We collected data from 442 files for
the JEF, 932 for DCF, and 343 for S&A.

4.3. Data analysis

To answer RQ1.1, we divided the total number of changes during the maintenance end evolution
phases in the JEF by the total NSLOC of the collected files at the end. The same went for DCF and
S&A. Given that we collected all changes that were made, from the development phase to the later
maintenance phases, we divided the changes according to the date of the first release for the JEF,
DCF, and S&A (see Table 3). All changes made after this date were regarded as maintenance and
evolution changes. The changes made before or on this date were treated as development changes.
We included only changes that were made during the maintenance and evolution phases for
analysis, although the numbers of change made during the development phases are also presented.

To calculate the change density (in the source code) of different changes and to answer RQ1.2, we
first classified the changes into different categories, according to the classification system

Appendix A

 183

proposed by [Kitchenham99] and used by [Lee05]. We then divided the changes in the perfective,
corrective, adaptive, and preventive categories by the total NSLOC of the corresponding system
(the JEF, DCF and S&A). The classification proposed in [Kitchenham99] is based on the actual
maintenance activity performed. Given that each change description in the Rational ClearCase
only describes what activities have been done to complete a software change, the activity-based
classification of changes that is proposed in [Kitchenham99] was more suitable for our analysis
and was therefore used. However, adaptive change is defined in [Kitchenham99] as
“enhancements that add new system requirements”. This definition does not specify whether these
enhancements are related to environment or platform changes. We therefore decided to use the
definition of adaptive change given in [Sommerville04]. The definitions of change categories used
in our study are also similar to those in [Fenton96, pp. 354-355], and are as follows:

- Perfective: encompass new or changed requirements, as well as optimizations.
- Preventive: changes related to restructuring and reengineering.
- Corrective: bug fixing.
- Adaptive: changes related to adapting to new platform or environments.

The first and second authors of the paper classified all the change descriptions separately. They
then compared the results jointly. This resulted in 100% agreement. During the classification and
comparison, we noticed that some of the change descriptions were labelled as “no changes”
(meaning no changes were made to the code). We grouped “no changes” into the category “other”.
Some other changes were labelled as “initial review”. (This means that changes were performed
after a formal review of the code. However, the actual changes that were performed were not
described in detail). We classified “initial review” into the category “inspection”, because changes
in this category could not be classified exactly. After we had classified the changes, we calculated
the change distribution of each type of change to the JEF, DCF and S&A.

To answer RQ1.3, we did a RCA [Card98] by showing all results of the RQ1.1 to RQ1.2 to a
senior developer, who has followed all development and maintenance phases, and asking him to
give explanations. To avoid possible threats to validity, this developer was not informed of our
research questions. We asked him to explain the results of RQ1.1 to RQ1.2 from the perspectives
of functionality, development practice, software complexity, age, and size, Because it has been
claimed that these factors are determining factors of software maintenance [Kemerer97]. Kemerer
and Slaughter chose these five factors on the basis of data from the literature (i.e. [Chapin85]) and
from case studies. Their analysis used a multivariate regression to determine the association
between these five factors and the different maintenance types (e.g. enhancements, repairs etc.),
and they found these factors to be significant for software maintenance. To answer RQ2.1, we
made a bar chart to show the distribution of different types of change over time (precise to the
exact date). To answer RQ2.2, we did the same RCA as for RQ1.3.

5. Results and interpretations of the results

The numbers (and percentage) of different types of change in the investigated systems are shown
in Tables 4, 5, and 6. The follow-up RCA provided explanations for the results for RQ1.1 and
RQ1.2, using the five factors by [Kemerer97], as shown in Table 7.

We first compared the change densities of the three systems in RQ1.1. The results show that the
JEF has a much lower change density (398/20348 = 19.6 per Kilo NSLOC) than DCF (2771/25079
= 110 per KNSLOC), but a much higher change density than S&A (589/64319 = 9.2 per
KNSLOC) for the maintenance and evolution phases. We then compared the change densities of
different change types of the three systems to answer RQ1.2. The results are:

- The perfective changes cover the highest percentage in the JEF, DCF, and S&A.
- Both S&A and DCF have higher percentages of corrective changes than the JEF.
- Both S&A and DCF have a higher percentage of preventive changes than the JEF.
- S&A has a higher percentage of adaptive changes than the JEF and DCF.

Appendix A

 184

Table 4. JEF releases and the number of changes

Maintenance and evolution JEF Development

Before 2nd

release

Before 3rd

release

After 3rd

release

In total

Perfective 489 (69%) 115 (39%) 46 (58%) 18 (67%) 179 (45%)

Corrective 127 (18%) 62 (21%) 8 (10%) 8 (30%) 78 (20%)

Preventive 6 (1%) 1 (0.3%) 24 (30%) 0 (0%) 25 (6%)

Adaptive 41 (6%) 52 (18%) 1 (1%) 1 (4%) 54 (14%)

Inspection 33 (5%) 62 (21%) 0 (0%) 0 (0%) 62 (16%)

Other 11 (2%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Total: 707 292 79 27 398

Table 5. DCF releases and the number of changes

Maintenance and evolution DCF Development

Before 2nd

release

Before 3rd

release

After 3rd

release

In total

Perfective 1161 (62%) 910 (56%) 580 (53%) 25 (46%) 1515 (55%)

Corrective 425 (23%) 421 (26%) 282 (26%) 24 (44%) 727 (26%)

Preventive 258 (14%) 273 (17%) 213 (20%) 1 (2%) 487 (18%)

Adaptive 21 (1%) 24 (2%) 13 (1%) 0 (0%) 37 (0.1%)

Inspection 0 (0%) 0 (0%) 0(0%) 0 (0%) 0 (0%)

Other 12 (0.6%) 0 (0%) 0(0%) 5 (9%) 5 (0%)

Total: 1877 1628 1088 55 2771

Table 6. S&A releases and the number of changes

Maintenance and evolution S&A Development

Before 2nd

release
Before 3rd

release
After 3rd

release
In total

Perfective 42 (43%) 3 (27%) 100 (42%) 120 (35%) 223 (38%)

Corrective 16 (17%) 8 (73%) 74 (31%) 68 (20%) 150 (26 %)

Preventive 17 (18) 0 (0%) 19 (8%) 36 (11%) 55 (9%)

Adaptive 22 (23%) 0 (0%) 41 (17%) 116 (34%) 157 (27%)

Inspection 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Other 0 (0%) 0 (0%) 2 (1%) 2 (1%) 4 (1%)

Total: 97 11 236 342 589

Appendix A

 185

Table 7. Results of root cause analysis for RQ1.1 – RQ1.2

C: Complexity, F: Functionality, D: Development practice, A: Age, S: Size

Proposed factors Observation

C F D A S

Explanations

The JEF has lower
change density in
total than DCF and
higher change
density than S&A

X X X DCF had incomplete and poorly documented
design, and higher time-to-market pressure (which
required a large number of improvements over
time), than JEF.

DCF has tighter coupling and more business logic
than the reusable JEF framework.

S&A had a well-defined requirement and design
document. However, after the JEF’s initial
development, it was reused in unexpected
contexts, which led to many new requirements.
The JEF is developed for reuse. However, it is
difficult to know in advance all the functionality
that a reusable framework may need.

The perfective
changes constitute
the highest
percentage in the
JEF, DCF and
S&A

 X

X When the JEF was used by PDM, it was revealed
that the Graphic User Interface (GUI)
functionality did not satisfy client requirements.
Thus, a lot of perfective changes had to be made.

DCF had time-to-market pressure, unclear
requirements, and incomplete design at the early
phases of implementation. This led too many
perfective changes later.

S&A was first developed without involving the
users. When the users got to see the application,
many changes were made to requirements.

Both DCF and
S&A have higher
percentages of
corrective changes
than the JEF

 X For DCF and S&A, the developers did not have a
detailed design at the beginning and a lot of
corrective changes were made to functionality and
design during the implementation and testing
period.

Both S&A and
DCF have higher
percentages of
preventive changes
than the JEF

 X X JEF did not have high time-to-market pressure
during development. That resulted in a good
design and less need for refactoring.

Time pressure and incomplete design of DCF led
to some refactoring during implementation.

S&A had more rules and business logic than the
JEF and DCF, which led to some refactoring.

S&A has more
adaptive changes
than the JEF and
DCF

 X Compared to DCF and JEF, S&A had
implemented heavier algorithms to do lift and
cargo calculations efficiently and properly. So, the
business logic in S&A must be adjusted to the
different environments within which the
application is going to be used.

To investigate RQ1.1 and RQ1.2 further, we also investigated the individual change profiles of
the JEF, DCF, and S&A, according to Kemerer’s five factors [Kemerer97]. We also identified the
component that covers the highest percentage of changes and the component with the highest
change density. The observations and their interpretations are presented in Tables 8, 9, and 10.

Appendix A

 186

Table 8. The results of root cause analysis for change profiles of the JEF

C: Complexity, F: Functionality, D: Development practice, A: Age, S: Size

Proposed factors Observation

C F D A S

Explanations

The total number of
changes declined
dramatically from
release 1 to release 2
and 3.

 X X X Release 1 took two years to develop.
Releases 2 and 3 took only two months each
to develop.

The JEF is a reusable framework and is used
by several applications. New features are not
incorporated into the framework unless they
will be used by at least by two different
projects. The company is very careful when
introducing changes to this framework,
because changes to the API may affect many
applications.

Thirty percent of the
changes made after
the 2nd release and
before the 3rd release
were preventive.

 X During the implementation of the second
release, a major refactoring was done to
remove a cyclic dependency between security
and session management components.

After the third
release, 30% of the
changes were
corrective, more than
the percentages in
Releases 1 and 2.

 X A lot of the code in Release 2 was removed
and replaced with third party components.
The increase in corrective changes was due to
defects caused by these replacements.

Most changes are in
the JEFClient (29%)
and JEFWorkBench
(23%) components.
Most changes in
these components are
perfective.

 X X JEFClient constitutes the majority of the
code.

JEFClient and JEFWorkBench have GUI-
related code. A lot changes were performed
related to the GUI layout.

The component with
the highest change
density is
JEFIntegration.

X X JEFIntegration possess the most complex
code.

When the JEF framework was reused by
different applications (PDM, DCF etc.), new
requirements for JEFIntegration emerged.
The JEF was developed as a common
framework to support GUI development,
without knowing all the functionality that a
framework may need at the early stage of the
project.

Appendix A

 187

Table 9. The results of root cause analysis for change profiles of DCF

C: Complexity, F: Functionality, D: Development practice, A: Age, S: Size

Proposed factors Observation

C F D A S

Explanations

Most changes are in
DCFClient (63%)
and DCFCommon
(41%) components.
Most changes in
these components
are perfective.

X These two components are the most complex
components in DCF with respect to
functionality.

The component with
the highest change
density is DCFEJB.

 X This component has several configuration files
and contains script and XML. These files need
to be updated often, according to the context of
deployment.

Table 10. The results of root cause analysis for change profiles of S&A

C: Complexity, F: Functionality, D: Development practice, A: Age, S: Size

Proposed factors Observation

C F D A S

Explanations

After the 3rd release,
there are more
adaptive changes
than in Releases 1
and 2.

 X S&A is reusing the 3rd release of the JEF.
Changes in the JEF affected S&A.

Most changes are in
SACommon (51%)
and SAClient (48%)
components. Most
changes are
perfective.

X These two components are the most complex
components in S&A with respect to
functionality.

The component with
the highest change
density is SAClient.

X SAClient is one of the most complex
components in S&A with respect to
functionality.

5.2. Software change profile over time

To investigate RQ2.1, we analyzed the change profile of different types of change of the three
systems over time, as shown in Figs. 3, 4, and 5. The RCAs of the observed change profiles are
presented in Table 11, according to Kemerer’s five factors from [Kemerer97].

Appendix A

 188

Fig. 3. JEF change profile
(1: perfective, 2: preventive, 3: corrective, 4: adaptive, 5: other, 6: inspection)

Fig. 4. DCF change profile
(1: perfective, 2: preventive, 3: corrective, 4: adaptive, 5: other)

Appendix A

 189

Fig. 5. S&A change profile
(1: perfective, 2: preventive, 3: corrective, 4: adaptive, 5: other)

The results from Fig. 3 to Fig. 5 reveal that:
- For the JEF, a few perfective and corrective changes were made after the first release

was deployed (see stage S1 in Figure 3). However, perfective changes dominated during
this stage, with a peak of perfective changes (see P1 in Figure 3) in June 2005. After stage
S1, the number of corrective changes gradually increased, with a peak (see P2 in Figure 3)
one month before the release date of the second release; then it decreased. Specifically,
there were many adaptive changes (in July 2005) between the end of the first release and
the deployment of the second release (see P3 in Figure 3). There was a peak of perfective
changes (see P4 in Figure 3) and a peak of preventive changes (see P5 in Figure 3) in the
middle between the second and third releases. However, few other changes were made
during this period. After the third release, there were very few corrective and perfective
changes.

- For DCF, the maintenance activity started with a few perfective changes after the first
release (see stage S1 in Figure 4). Then, a corrective change peak occurred (see P2 in
Figure 4). For preventative changes, there was a peak (see P1 in Figure 4) between the
deployment of the first release and the second release in September 2005. After the
deployment of the second release, the dominating changes were first perfective changes
(see Stage S2 in Figure 4), followed by corrective changes. After the third release, very
few changes were made. A few perfective and corrective changes were made.

- For S&A, few changes were made after the deployment of the first and second releases.
After the deployment of the third release, several perfective, corrective, and preventative
changes were made simultaneously (see P1 to P4 in Figure 5). Most changes were made
after the deployment of the third release between December 2007 and January 2008.

Appendix A

 190

Table 11. The root cause analysis for RQ2.1

C: Complexity, F: Functionality, D: Development practice, A: Age, S: Size

Factor Observation

C F D A S

Explanations

Many perfective changes
were made to the JEF in
June 2005 (see P1 in
Figure 3).

 X The JEF was first used by PDM, before being
reused by DCF and S&A (see Figure 2).
After PDM had used the JEF, several changes
were made regarding the functionality of the
JEF.

Many corrective changes
were made to the JEF in
August 2005 (see P2 in
Figure 3).

 X The corrective changes were made as a result
of the intensive testing of the JEF before clients
started to use the application.

Many adaptive changes
were made to the JEF in
July 2005 (see P3 in
Figure3).

 X The adaptive changes were due to changes in
the version control system. The company
changed their version control system from
PVCS to Rational ClearCase in the middle of
the project. All the files in the PVCS had a Java
comment, but when the company changed to
Rational ClearCase, the Java comments in all
the files were removed.

Many perfective and
preventive changes were
made to the JEF in
November 2005 (see P4
and P5 in Figure 3).

 X The perfective and preventive changes were
due to the introduction of various third-party
components.

Many preventive and
corrective changes were
made to DCF in Sept. 2005
(see P1 and P2 in Figure
4).

 X DCF was refactored in July 2005. The
developers rewrote the whole DCFClient,
which explains the large amount of preventive
changes. Due to the refactoring, a new
DCFClient was made. DCFClient then went
through testing. That explains the high amount
of corrective changes.

Most changes to S&A were
made in December 2007
and January 2008 (see P1
to P4 in Figure 5).

 X After the deployment of Release 3, two new
users saw the system and did a lot of
acceptance tests. The new and changed
requests from these new users and the results of
new acceptance tests led to many changes of all
types.

6 Discussion

6.1 The overall distribution of different types of change: both reusable and non-
reusable software

Our results reveal that perfective changes are the most common for both the reused framework and
applications reusing the framework. Although slightly different definitions of change types have
been used here, our results seem to support the observations of
[Lientz78][Jørgensen95][Evanco99][Satpathy02][Mohagheghi04][Lee05]. Several other studies
[Burch97][Mockus00][Schach03] yielded different conclusions and showed that the majority of
changes are either corrective or adaptive. However, the dominant type of change varies over time.

Our RCA shows that five factors, (i.e. complexity, functionality, development practice, age, and
size) may determine the profile of software maintenance. From Tables 8-11 (counting the number
of times each factor was chosen by the developer), we can see that the factors that affect

Appendix A

 191

maintenance the most in our case are functionality and development practices, followed closely by
complexity. The factors that affect maintenance the least are age and size. In our case, the JEF
received new requirements after it had been used by several applications, which led to many
perfective changes being made during the maintenance and evolution phase. DCF faced high time-
to-market pressure and had unclear requirements at the early stage of the development. For S&A,
most perfective changes were made after two new users saw the system and introduced new
requirements. Without these evolving requirements, perfective changes might not have dominated
in the systems that we investigated.

The study of Schach et al. [Schach03] investigated three systems and observed that the dominant
changes in their investigated systems are corrective, rather than perfective as in [Lientz78]. They
explained the large amount of corrective changes by appeal to different programming domains,
programming languages, and perspectives on study design. In our study, the dominant type of
change was perfective, rather than corrective as was observed in [Scahc03]. This is despite the fact
that our study had a design similar to [Schach03]. We also investigated systems that were
programmed in object-oriented languages. The only difference in our investigated systems from
those in [Schach03] was the programming domains. The products studied in [Schach03] include
one commercial real-time product, the Linux kernel, and GCC. Our investigated systems and those
systems studied in [Lientz78] are basically business and data processing software, which often
face new or changed requirements from clients due to their changing business needs. This
difference explains the fact that perfective changes dominated in the software studied in [Lientz78]
and our study, and other types of changes dominated in the products examined in [Schach03].
Schach et al. [Schach03] indicated that few textbooks (only one of the three top-selling ones
[Pressman01][Sommerville04][Schach02]) accept that the results of [Lientz78] cannot be
extrapolated to all types of software.

6.2. The distribution of different types of change: comparison between reusable vs.
non-reusable software

With respect to differences in change density between the reused framework and applications
reusing it, our results show that the reused framework has a higher change density than one
application and a lower change density than the other. These results which do not support
conclusions from any previous studies [Frakes01][Algestam02][Mohagheghi04a][Selby05]. The
RCA revealed that developers in the company were cautious about making changes to the JEF
because the changes may affect existing applications. The change density of the reused framework
may have been reduced as a result of this concern. On the other hand, it is impossible to predict all
future requirements of a reusable framework. Unforeseen requirements of new applications may
demand that many minor or major (such as refactoring) changes be made to the reusable
framework. This could explain the higher change density of the JEF compared to S&A. Another
observation of our study is that both the reused framework and applications follow the so-called
“80/20” rules [Schaefer85][Kemerer97], i.e. about 80% of all work is caused by only 20% of all
components. In our case, one or two components in each system covered most of the changes,
such as JEFClient and JEFWorkBench in JEF; DCFClient and DCFCommon in DCF; SACommon
and SAClient in S&A. The components that require the most changes are usually the most
complex, largest, or the ones involving several GUIs.

6.3 Software change profile over time

It is important to estimate the change profile of a software system in order to arrange staff
expertise, tools, and business strategies properly [Bennett00]. Compared with previous studies on
software change profiles [Gefen96][Burch97][Bennett00], the change profiles of the JEF and DCF
lend support to the simple/versioned stage model proposed by [Bennett00]. We did not measure
user-support activities; hence, our study is not comparable with [Burch97].The pattern proposed in
[Gefen96] does not fit our data, because the first stage of the software changes was not centered on
corrective modifications. For DCF and the JEF, more perfective changes than corrective changes
were made at the start of evolution and maintenance. Thus, the change profiles of the JEF and
DCF are in line with the software lifecycle that is proposed in [Bennett00]: an initial development
stage, followed by a stage to extend the software’s capabilities and functionalities to meet user
needs, then a stage in which only minor defect repairs are made, and finally a phase-out stage. In
addition, we noticed that the JEF arrived at the stage in which minor defect repairs are made faster
than DCF. Very few changes occurred after the second release of the JEF, except for a peak of

Appendix A

 192

perfective changes and a peak of adaptive changes. By contrast, DCF still followed a simple stage
model, where many perfective changes were made, followed by corrective changes after the
second release. One explanation is that the JEF is a reusable framework. After it has been used
and reused by several applications, the company is cautious about making more changes to it. The
reason for this is that the changes that are made to the JEF affect several applications reusing it.
Making changes to the JEF is therefore difficult and expensive. In another word, the reused
software goes to “code decay” [Eick01] or “software rot” [Wiki08] more quickly than applications
that reuse it.

The change profile of S&A is different from those of the JEF and DCF. All types of change
occurred intensively right after the involvement of new clients. A possible explanation for this
phenomenon is that the software is still in the stage in which its capabilities and functionality are
being extended to meet user needs. We expect that after this stage is complete, there will be a
repair stage, which will include making many corrective changes to correct defects created in the
previous stage. Although the RCA shows that several of the phenomena of the change profiles of
our investigated systems can be attributed to the development practice, we still presume that the
dynamic profile of software change can be influenced by Kemerer’s five factors [Kemerer97].

6.4 Insights on the improvement of software reuse

Our results show both benefits and challenges of software reuse with respect to software evolution
and maintenance. Reusable software may be more stable and need less maintenance effort, if the
context of reuse can be predicted accurately. In addition, it is important to have a well-designed
architecture to reduce the complexity of reusable software. For the long-term evolution and
maintenance of reusable software, our results indicate that staff who understand reusable software
well must be retained in the organization for a while after initial development. Such action is
necessary because the software may experience a stage in which its capabilities and functionality
are extended to meet user needs, which will require making many major changes, after the initial
deployment. As proposed in [Bennett00], staff expertise is critical both during the initial
development of reusable software and when its capabilities and functionalities are being extended
to meet user needs. Once the reusable software is stable and is at a stage in which only minor
defect repairs are required, little staff expertise is needed because no dramatic change is welcome
after the software has been reused by many applications. The change profile of S&A indicates that,
for all software (whether reusable or non-reusable), developers need to prepare for all kind of
changes when new clients evaluate the software.

6.5 Possible threats to validity

We here discuss possible threats to validity in our case study, using the definitions provided by
[Wohlin00]:

Construct Validity: The definitions of different types of change used in our study are slightly
different from those used in some previous studies, as was discussed in Section 2. Thus, direct
comparisons of our results with previous studies need to be discussed case by case. RCA is often
performed on each change. One possible threat to construct validity is that we performed our RCA
on a subset of all changes. Given that we did not perform a detailed analysis of each change, we
may have missed important details. However, in StatoilHydro ASA several of the developers who
are involved in the project are external consultants and when they have completed their work on
the project, they leave. This made it difficult for us to trace all changes back to each developer.
Therefore, we did not have the resources to perform a RCA of each change. Another possible
threat to construct validity is that we asked only one senior developer about the cause of the
changes during the RCA. RCA with other developers can further verify or falsify explanations
made by this developer. However, as mentioned above, once the external consultants have finished
their work on a project, they leave, so we could not find other people who knew the details of all
the three systems that we investigated.

External Validity: The entire data set was taken from one company. The object of study was
a class framework and only two applications. Further similar studies need to be performed in
different contexts and organizations in order for our results to be generalizable.

 Internal Validity: All of the software changes that we investigated were classified manually
by us. The first and the second author of the paper classified all the changes separately and then
cross-validated the results. This was to enhance the validity of the data. A threat to the internal
validity is the number of files that we selected randomly from Rational ClearCase. The random

Appendix A

 193

sampling might have caused a systematic bias. Our random selection might have yielded files with
few changes, while the files with the most changes were left behind.

Conclusion Validity: This study is an explorative case study without any testing of hypotheses.
Thus, the threat to conclusion validity is low.

7. Conclusion and future work

Few published empirical studies have characterized and compared the software changes made to a
reusable framework with those made to a non-reusable application from a longitudinal perspective.
We have presented the results from a case study of software changes that were performed on a
reusable class framework and two applications reusing it. We studied the change density, the
distributions of different types of change, and their properties over time. Our results contribute to a
deeper understanding of software change over time and the relation between software change and
software reuse. We conclude that:

- Our results only partially support previous findings that reusable software is more stable
than non-reusable software. Factors that help to reduce of the number of changes that
need to be made to reusable software are good initial design and stable dependence on the
part of software reusing it. The prime factor that may increase the number of changes that
are made to reusable software is unpredictable contexts of usage.

- The change profile of the systems that we investigated during the maintenance and
evolution phases usually goes as follows: initial development, followed by a stage in
which the system’s capabilities and functionality are extended to meet user needs, then a
stage in which only minor defect repairs are made, and finally a phase-out stage. Reused
software goes from extending the capabilities and functionality to minor defect repairs
much faster then non-reusable software.

- The factors that affect maintenance the most in our case are software functionality,
development practices, and software complexity. Other factors, such as software age and
software size, also need to be considered when predicting software maintenance effort
and when performing and presenting studies on software maintenance. However, further
studies over a spectrum of application domains are required if their precise role and
impact are to be determined.

The results of our study are relevant to industrial practitioners in that they show that more
systematic reuse policies need to be developed and followed if the change density of reusable
software is to be reduced. For researchers, the results indicate a set of diverse factors to be studied
and considered when discussing the relation between software reuse and software evolution and
maintenance.

This study reports on only three systems in one company over three years and the results are
exploratory. It is our intention to collect data on software change from more companies to validate
our conclusions and to build a model to predict software maintenance and evolution activities and
effort.

Acknowledgement

This work was financed in part by the Norwegian Research Council for the SEVO (Software
EVOlution in Component-Based Software Engineering) project [SEVO04] with contract number
159916/V30. We would like to thank StatoilHydro ASA for the opportunity for involving us in
their reuse projects and senior developer Thor André Aresvik for valuable comments.

References

[Abran91] A. Abran, H. Nguyenkim, Analysis of Maintenance Work Categories Through
Measurement, Proceedings of the IEEE Conference on Software Maintenance, IEEE Computer
Society Press, Sorrento, Italy, 1991, pp. 104-113.

[Algestam02] H. Algestam, M. Offesson, L. Lundberg, Using components to increase
maintainability in a large telecommunication system, Proceedings of the Ninth IEEE Asia-Pacific

Appendix A

 194

Software Engineering Conference, IEEE Computer Society Press, Gold Coast, Australia, 2002, pp.
65-73.

[Basili96] V. Basili et al., Understanding and Predicting the Process of Software Maintenance
Releases, Proceedings of the 18th International Conference on Software Engineering, IEEE
Computer Society Press, Berlin, Germany, 1996, pp. 464-474.

[Bennett00] V.T. Rajlich, K.H. Bennett, A Staged Model for the Software Life Cycle, IEEE
Computer, 33 (2000) 66-71.

[Burch97] E. Burch, H.J. Kung, Modeling Software Maintenance Requests: A Case Study,
Proceedings of the IEEE International Conference on Software Maintenance, IEEE Computer
Society Press, Bari, Italy, 1997, pp. 40-47.

[Card98] D.N. Card. Learning from Our Mistakes with Defect Causal Analysis. IEEE Software.
15 (1998) 56-63.

[Chapin85] N. Chapin, Software maintenance: a different view, In AFIPS Conference
Proceedings, Volume 54 NCC, AFIPS Press, Reston, Virginia, 1985, pp. 328-331.

[Chapin01] N. Chapin, et al., Types of Software Evolution and Software Maintenance, Journal of
Software Maintenance and Evolution: Research and Practice, 13 (2001) 3-30.

[Eick01] S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, A.Mockus, Does Code Decay? Assessing
the Evidence from Change Management Data, IEEE Transactions on Software Engineering,
27(2001) 1-12.

[Evanco99] W.M. Evanco, Analyzing change effort in software during development, Proceedings
of the 6th IEEE International Software Metrics Symposium, IEEE Computer Society Press, Boca
Raton, Florida, 1999, pp. 179-188.

[Fenton96] N. E. Fenton and S. L. Pfleeger, Software Metrics, PWS Publishing Company, 1996.

[Frakes01] W.B, Frakes, An industrial study of reuse, quality, and productivity, Journal of
Systems and Software, 57 (2001) 99-106.

[Gefen96] D. Gefen and S. L. Schneberger, The Non-Homogeneous Maintenance Periods: A Case
Study of Software Modifications, Proceedings of the IEEE International Conference on Software
Maintenance, IEEE Computer Society Press, Monterey, California, 1996, pp 131-141.

[Jørgensen95] M. Jørgensen, The quality of questionnaire based software maintenance studies,
ACM SIGSOFT – Software Engineering Notes, 20 (1995) 71-73.

[Kemerer97] C. F. Kemerer, S.A. Slaughter, Determinants of Software Maintenance Profiles: An
Empirical Investigation, Journal of Software Maintenance, 9 (1997) 235-251.

[Kitchenham99] B. A. Kitchenham et al., Towards an Ontology of Software Maintenance, Journal
of Software Maintenance: Research and Practice, 11 (1999) 365-389.

[Krogstie06] J. Krogstie, A. Jahr, D.K. Sjøberg, A longitudinal study of development and
maintenance in Norway: Report from the 2003 investigation. Information and Software
Technology, 48 (2006) 993-1005.

[Lee05] M.G. Lee, T.L. Jefferson, An Empirical Study of Software Maintenance of a Web-based
Java Application, Proceedings of the 21st IEEE International Conference on Software
Maintenance, IEEE Computer Society Press, Budapest, Hungary, 2005, pp. 571-576.

[Lehman80] M.M. Lehman, Programs, Life Cycles and Laws of Software Evolution, Proc. Special
Issue Software Eng., 68 (1980) 1060-1076.

Appendix A

 195

[Lientz78] B.P. Lientz, E.B. Swanson, G. E. Tompkins, Characteristics of Application Software
Maintenance, Communications of the ACM, 21 (1978) 466-471.

[Lim94] W. Lim, Effect of Reuse on Quality, Productivity and Economics, IEEE Software, 11
(1994) 23-30.

[Macorr08] Marketing Correlation, 2008, http://www.macorr.com/ss_calculator.htm

[Mockus00] A. Mockus, L.G. Votta, Identifying Reasons for Software Changes Using Historical
Databases, Proceedings of the IEEE International Conference on Software Maintenance, IEEE
Computer Society Press, San Jose, California, 2000, pp. 120-130.

[Mohagheghi04a] P. Mohagheghi, R. Conradi, O.M. Killi, H. Schwarz, An Empirical Study of
Software Reuse vs. Defect Density and Stability, Proceedings of the 26th IEEE International
Conference on Software Engineering, IEEE Computer Society, Edinburgh, Scotland, 2004, pp.
282-292.

[Mohagheghi04b] P. Mohagheghi, R. Conradi, An Empirical Study of Software Change: Origin,
Impact, and Functional vs. Non-Functional Requirements, Proceedings of the IEEE International
Symposium on Empirical Software Engineering, IEEE Computer Society Press, Redondo Beach,
Los Angeles, 2004, pp. 7-16.

[Pigoski97] T. M. Pigoski, Practical Software Maintenance, Wiley Computer Publishing, 1997.

[Postema01] M. Postema, J. Miller and M. Dick, Including Practical Software Evolution in
Software Engineering Education, Proceeding of the 14th Conference on Software Engineering
Education and Training, IEEE Computer Society, Press, Charlotte, North Carolina, 2001, pp. 127-
135.

[Pressman01] R.S. Pressman, Software Engineering, A Practitioner’s Approach, McGraw-Hill,
Boston, 2001.

[Satpathy02] M. Satpathy, N.T. Siebel, D. Rodríguez, Maintenance of Object Oriented Systems
through Re-engineering: A Case Study, Proceedings of the 10th IEEE International Conference on
Software Maintenance, IEEE Computer Society Press, Montreal, Canada, 2002, pp. 540-549.

[Schach02] S. R. Schach, Object-Oriented and Classical Software Engineering, McGraw-Hill,
Boston, 2002.

[Schach03] S.R. Schach, B. Jin, L. Yu, G. Z. Heller, J. Offutt, Determining the Distribution of
Maintenance Categories: Survey versus Management, Journal of Empirical Software Engineering
8 (2003) 351-366.

[Schaefer85] H. Schaefer, Metrics for optimal maintenance management, Proceedings Conference
on Software Maintenance, IEEE Computer Society Press, Los Alamitos, CA, 1985, pp. 114-119.

[Selby05] W. Selby, Enabling Reuse-Based Software Development of Large-Scale Systems, IEEE
Transactions on Software Engineering, 31(2005) 495-510.

[SEVO04] The Software EVOlution (SEVO) Project, 2004-2008,
http://www.idi.ntnu.no/grupper/su/sevo/

[Sommerville04] I. Sommerville, Software Engineering, Addison-Wesley, UK, 2004.

[Sousa98] M. Sousa, H. Moreira, A Survey on the Software Maintenance Process, Proceedings of
the 14th IEEE International Conference on Software Maintenance, IEEE Computer Society Press,
Bethesda, Maryland, 1998, pp. 268-274.

[Swanson76] E.B. Swanson, Proceedings of the Second IEEE International Conference on
Software Engineering, IEEE Computer Society Press, San Francisco, California, 1976, pp. 492-
497.

Appendix A

 196

[Wiki08] Wikipedia on Software rot, 2008, http://en.wikipedia.org/wiki/Software_rot

[Wohlin00] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering – An Introduction, Kluwer Academic Publishers, 2002.

[Yip94] S. Yip, T. Lam, A Software Maintenance Survey, Proceedings of the First IEEE Asia-
Pacific Software Engineering Conference, IEEE Computer Society Press, Tokyo, Japan, 1994, pp.
70-79.

[Zhang05] W. Zhang, S. Jarzabek, Reuse without compromising performance: industrial
experience from RPG software product line for mobile devices, Proceedings of the 9th
International Software Product Line Conference, Springer, Rennes, France, 2005, pp. 57-69.

Appendix A: Detailed information of the
investigated systems

The JEF is designed on the basis of a technical architecture for all J2EE systems in the company.
This architecture has four logical layers. The following presentation describes the layers from top
to bottom:

(1) Presentation: Responsible for displaying information to the end user and to interpret end-
user input.

(2) Process: Provides support for the intended tasks of the software and configures the domain
objects.

(3) Domain: Responsible for representing the concepts of the business and information about
the business and business rules. This layer is the heart of the system.

(4) Infrastructure: Provides general technical services such as transactions, messaging, and
persistence.

The components in this framework are built from a combination of COTS (Commercial-Off-the-
Shelf) components, OSS (Open Source System) components, and some code that was developed
in-house. Table A1 gives information about the JEF, using Kitchenham’s ontology of software
maintenance as a basis[Kitchenham99].

Table A1. Background information for the JEF

Ontology Description

Product size − Release 1: 14.June 2005: 16875 NSLOC.

− Release 2: 9.Sept. 2005: 18599 NSLOC.

− Release 3: 8.Nov.2005: 20348 NSLOC.

− One development team.

Application Domain Java technical framework for developing Enterprise
Applications.

Product Age 3.5 years

Product Maturity Adolescence

Product Composition Consists of seven separate components, which can be applied
separately or together when developing applications.

Product and Artefact Quality Well-defined requirement and design document.

Development Technology − J2EE (Java 2 Enterprise Edition).

− SPRING framework

Paradigm − Object-Oriented paradigm (Java).

− Design patterns.

Appendix A

 197

− Partially Open-Source Development.

Maintenance Organization
Process

− Software development plan.

− Software configuration management tool.

DCF is used mainly for storing documents. It imposes a certain structure on the documents stored
in the application and relies on the assumption that the core part of the documents is based on
cargo (load) and deal (contract agreement) data, as well as auxiliary documents that pertain to this
information. DCF is meant to replace the current handling of cargo files, which are physical
folders that contain printouts of documents that pertain to a particular cargo or deal. A cargo file is
a container for working documents that are related to a deal or cargo, within operational processes,
used by all parties in the oil sales, trading, and supply strategy plan of the company. There are also
three releases of the DCF application. Table A2 gives information about DCF.

Table A2. Background information for DCF

Ontology Description

Product size − Release 1: 1. Aug. 2005: 20702 NSLOC.

− Release 2: 14.Nov. 2005: 21459 NSLOC.

− Release 3: 8.May 2006: 25079 NSLOC.

− One development team.

Application Domain A document storage application to manage cargo files. A cargo
file is a container for working documents that are related to a
deal or cargo, within operational processes, used by all parties
in the company

Product Age 3.5 years.

Product Maturity Senility (legacy).

Product Composition Eight components built in-house, Biztalk, MessageManager,
and Meridio.

Product and Artifact Quality Poor requirement and design document in the beginning.

Development Technology − J2EE (Java 2 Enterprise Edition).

− SPRING framework.

Paradigm − Object-oriented paradigm (Java).

− Design patterns.

Maintenance Organization
Process

− Software development plan.

− Software configuration management tool.

S&A is an application for controlling business processes and carrying them out more efficiently
through common business principles within lift and cargo planning. Lift planning is based on a
lifting program, which is the function area for generating an overview of the cargoes that are
scheduled to be lifted. The lifting program operates on a long-term basis (e.g. 1 - 12 months), and
generates tentative cargoes mainly on the basis of closing stock and predictions about production.
The lifting program is distributed to the partners so that they can plan how they will handle the
lifting of their stock. The cargo planning and shipment covers activities to accomplish the lifting.
Input to the process is the lifting program. While carrying out the process, users will enter detailed
information about the cargo on the basis of document instruction from partners and perform short-
term planning on the basis of pier capacity and storage capacity. After loading, sailing telex and
cargo documents are issued. Then the cargo is closed and verified. The S&A application allows
the operators to carry out “what-if” analysis on shipments that are to be loaded at terminals and
offshore. Given that the current system (“SPORT”) is not able to handle complex agreements (i.e.
the mixing of different qualities of oil within the same shipment), it allows the transfer and entry

Appendix A

 198

of related data, which is currently often done manually, to be digitized and automated. The main
goal of the S&A application is to replace some of the current processes/systems, in addition to
providing new functionality. The S&A application has also three releases. Table A3 gives
information about S&A.

Table A3. Background information for S&A

Ontology Description

Product size − Release 1: 2 May 2006: 29957 NSLOC.

− Release 2: 6.Feb. 2007: 50879 NSLOC.

− Release 3: 12.Dec. 2007: 64319 NSLOC.

− One development team.

Application Domain An application for controlling and performing business
processes more efficiently through common business
principles within lift and cargo planning.

Product Age 2.5 years.

Product Maturity Senility (legacy).

Product Composition Seven components built in-house.

Product and Artifact Quality Well-defined requirement and design document.

Development Technology − J2EE (Java 2 Enterprise Edition).

− SPRING framework.

Paradigm − Object-oriented paradigm (Java).

− Design patterns.

Maintenance Organization
Process

− Software development plan.

− Software configuration management tool.

 Appendix B

 199

Appendix B: Secondary papers

In this Appendix we have included two papers. SP1 is considered to be outside the
scope of this thesis, and SP2 is overlapping with the paper P5 in Appendix A. The
papers are:

� SP1: An Empirical Study of Distributed Technologies Used in Collaborative

Tasks at Statoil ASA
� SP2: The Empirical Studies on Quality Benefits of Reusing Software

Components

 Appendix B

 200

 Appendix B

 201

SP1: An Empirical Study of Distributed
Technologies Used in Collaborative Tasks at

Statoil ASA
Anita Gupta, Marianne H. Asperheim and

Odd Petter N. Slyngstad
Department of Computer and Information Science (IDI)

Norwegian University of Science and Technology (NTNU)
Trondheim, Norway

Harald Rønneberg

Statoil KTJ/IT
Stavanger (Forus), Norway

Published: In Enrico Blanzieri and Tao Zhang (Eds.): Proc. 2nd International Conference on
Collaborative Computing (CollaborateCom’06), 17-20 November 2006, Atlanta, Georgia.
IEEE CS Press, ISBN 1-4244-0429-0, pp. 1-5.

Abstract. This paper presents results of a survey, related to the theoretical Task-Technology-
Fitness framework. The survey was conducted in a large Oil and Gas company in Norway,
namely Statoil ASA. The Task-Technology-Fitness framework indicates which groups of
medium or technology are appropriate to choose according to the task to be performed, when
collaborating with others. We have here presented the extended version of the Task-
Technology-Fitness framework, according to how Statoil ASA’s employees use SMS, e-mail,
Instant Messaging and Audio (phone call), in different collaborative tasks. In total, there were
333 out of 747 respondents who participated in the survey. The results reveal that SMS and
Instant Messaging are not seen as efficient or well suited communication channels for
collaborative tasks. E-mail seems to be favorable among the respondents for the collaborative
tasks, while audio (phone call) follows closely. The results are important in that they indicate
when SMS, e-mail, Instant Messaging and Audio (phone call) are appropriate to use. The
purpose of the survey was to discover potential area of improvements for Statoil ASA.

 Appendix B

 202

Appendix B

 203

SP2: Empirical Studies on the Quality Benefits of Reusing Software

Component
(Position paper)

Jingyue Li, Anita Gupta, Jon Arvid, Børretzen, and Reidar Conradi

Department of Computer and Information Science (IDI)

Norwegian University of Science and Technology (NTNU)

{jingyue, anitaash, borretze, conradi}@idi.ntnu.no

Published: In Xiaodong Liu et al. (Eds.): Proc. 1st International Workshop on Quality
Oriented Reuse of Software (QUORS’07), 23-27 July 2007, Beijing, China. IEEE CS Press,
ISBN 978-0-7695-2870-0, pp. 399-402.

Abstract. The benefits of reusing software components have been studied for many years.
Several previous studies have concluded that reusing components have fewer defects in
general than non-reusable components. However, few of these studies have gone a further
step, i.e., investigating which type of defects has been reduced because of reuse. Thus, it is
suspect that making a software component reusable will automatically improve its quality.
This paper presents an on-going industrial empirical study on the quality benefits of reuse. We
are going to compare the defects types, which are classified by ODC (Orthogonal Defect
Classification), of the reusable component vs. the non-reusable components in several large
and medium software systems. The intention is to figure out which defects have been reduced
because of reuse and the reasons of the reduction.

Appendix B

 204

