
User Interfaces for
Accessing Information in

Digital Repositories

Jon Olav Hauglid

Department of Computer and Information Science
Norwegian University of Science and Technology

Trondheim, 2004

i

Abstract

Technological advances have made more information available to a
larger part of the population than ever before. At the same time, the abil-
ity to locate and retrieve relevant information has become much more
central. Combined, these trends form the motivation for the work pre-
sented in this thesis.

My research focus has been to study how user interfaces for accessing in-
formation in large repositories can be designed to provide assistance to
users without impairing usability. To this end, existing solutions have
been examined and key design challenges identified. Most important
among these were supporting a wider variety of users and handling com-
plex data models and large repositories. In order to study these chal-
lenges, a methodology of repeated design-implementation-evaluation
was used. To focus the research, the implemented solutions have all been
based on four fundamental design ideas as to how a simple, usable inter-
face for large information repositories can be made.

The first presented system, SESAM, was designed for textual metadata
databases. It was later extended to handle images. The second system,
Savanta, targeted temporal video annotation databases. Both systems in-
tegrated various user interface techniques to create a rich and powerful
environment for search, retrieval, browsing, exploration and analysis,
while not sacrificing ease of use.

Several usability evaluations highlighted two main contributions. They
demonstrated the power of an iterative interaction model which inte-
grates several methods for accessing information. It was also showed that
using dynamic analysis to derive high-level information about properties
of a collection of information objects, is a powerful technique that makes
it much easier to get an overview of and navigate in such collections.

ii Abstract

iii

Preface

This thesis is submitted to the Norwegian University of Science and
Technology in partial fulfilment of the requirements for the degree Dok-
tor Ingeniør. The work has been carried out at the Database Systems
Group which is a part of the Department of Computer and Information
Science (IDI). The doctoral study was funded by Telenor.

Acknowledgements
First, I would like to thank my advisor Associate Professor Roger Midt-
straum for his continuous guidance and for many helpful discussions
throughout my work.

For most of the time I worked on this thesis, I shared office with Jon Heg-
gland. I would like to thank him for valuable feedback and for good coop-
eration on the Savanta project. I would also like to thank the remainder
of the Database Systems group in general, and Associate Professor Kjetil
Nørvåg and Olav Sandstå in particular.

The Primus database used as a test case throughout much of this thesis
was kindly provided by the Norwegian Folk Museum. Without this data-
base, my work would have been much more difficult. I would especially
like to thank Trond Bjorli, Lene Walle, Steinar Bjørneset, Stein Langør-
gen and Hege Holmen for their assistance.

I would like to thank Professor Mads Nygård for many valuable com-
ments on the thesis. I also thank graduated students Jan Obrestad, Rune
Rystad, Magnus Grøtan and Anders Langmyr for their contributions.

Finally, I thank my friends and family for constant understanding and en-
couragement. In particular, I would like to thank my father for proof-
reading the thesis.

iv Preface

v

Contents

Chapter 1: Introduction 1
1.1 Motivation .. 1
1.2 Research question .. 5

1.2.1 Fundamental design ideas ... 6
1.2.2 Approach ... 8

1.3 Research methodology .. 9
1.4 Thesis organization .. 10

Chapter 2: An introduction to user interfaces 13
2.1 The role of user interfaces .. 13
2.2 Characteristics of user interfaces .. 15
2.3 A general classification of user interfaces 23

2.3.1 Command entry ... 24
2.3.2 Menus and navigation .. 25
2.3.3 Form-fills and spreadsheets ... 26
2.3.4 Natural language dialogue ... 28
2.3.5 Direct manipulation ... 29
2.3.6 Concluding remarks ... 31

Chapter 3: Evaluating user interfaces 33
3.1 Why evaluate? .. 33
3.2 Gathering information ... 35

3.2.1 Quantitative data .. 35
3.2.2 Qualitative data .. 36

3.3 Selecting test subjects ... 37
3.4 Methods of evaluation ... 40

3.4.1 Performance measurement .. 41
3.4.2 Questionnaires .. 42
3.4.3 Logging .. 43

vi Contents

3.4.4 Inspection ...44
3.4.5 Interviews ..45
3.4.6 Observation ..46
3.4.7 Concluding remarks ..47

3.5 Potential pitfalls ...48
3.5.1 Reliability ..48
3.5.2 Validity ...49

3.6 Summary ...50

Chapter 4: Accessing information 51
4.1 Different strategies for information access51
4.2 Overview of existing interfaces ...54

4.2.1 Textual query languages ..54
4.2.2 Query-by-Example ...56
4.2.3 Forms ..57
4.2.4 Content-based multimedia queries ...59
4.2.5 Information Retrieval ...62
4.2.6 Dynamic queries and query preview65
4.2.7 Natural language queries ...68
4.2.8 Category browsing ..71

4.3 Key challenges ..74
4.3.1 Large information repositories ..74
4.3.2 New classes of users ..75
4.3.3 Complex data models ..76
4.3.4 Different information access strategies77
4.3.5 Multimedia data types ..78

4.4 Summary ...79

Chapter 5: Four fundamental design ideas 81
5.1 Revised interaction model ..82
5.2 Intra-result analysis ...86
5.3 Active user interfaces ..88
5.4 Dynamic user interfaces ..90
5.5 The road ahead ...92

Chapter 6: Searching supported by analysis of metadata
95

6.1 Primus ..96
6.2 Applying design ideas to textual metadata databases100

6.2.1 Intra-result analysis ..100
6.2.2 Revised interaction model ...101
6.2.3 Active user interface ..102
6.2.4 Dynamic user interface ..102

6.3 The SESAM approach ..103

Contents vii

6.3.1 Applying SESAM to a database .. 103
6.3.2 Properties of useful questions ... 104
6.3.3 Comparing the quality of questions 105

6.4 Related approaches ... 112
6.5 Summary ... 115

Chapter 7: The first SESAM prototype 117
7.1 The prototype ... 118

7.1.1 Interaction model ... 118
7.1.2 Overview of a sample search ... 119
7.1.3 User interface ... 121

7.2 Usability evaluation .. 122
7.2.1 An interface based on dynamic query 123
7.2.2 A forms-based interface ... 124
7.2.3 Evaluation methods .. 126
7.2.4 Evaluation tasks .. 128

7.3 Usability evaluation results .. 129
7.3.1 User performance measurements ... 129
7.3.2 Results from observation ... 130
7.3.3 Results from questionnaire ... 132
7.3.4 Discussion .. 135

7.4 System performance evaluation ... 137
7.5 Summary ... 139

Chapter 8: The second SESAM prototype 141
8.1 Design .. 142

8.1.1 Different strategies for information access 143
8.1.2 Finding suitable filters ... 144

8.2 Implementation .. 147
8.2.1 The initial query ... 147
8.2.2 Presenting results ... 148
8.2.3 From questions to filters .. 151
8.2.4 Improved looks .. 154

8.3 Usability evaluation .. 155
8.3.1 Setting .. 156
8.3.2 Results ... 161
8.3.3 Discussion of evaluation results .. 168

8.4 Discussion ... 170

Chapter 9: Extending SESAM to image databases 173
9.1 Extracting image features ... 174

9.1.1 Segmentation .. 174
9.1.2 Shape ... 176
9.1.3 Colour ... 180

viii Contents

9.1.4 Texture ...181
9.2 Extending SESAM ..182
9.3 Experiences ...183

9.3.1 Feature extraction ..184
9.3.2 User interface ..185
9.3.3 The four design ideas ..186

Chapter 10: Savanta 189
10.1 Introduction ..189

10.1.1 Related work ...190
10.1.2 Applying the design ideas to temporal multimedia annotation

databases ...192
10.2 Design and implementation ..195

10.2.1 Stored metadata ..195
10.2.2 Derived metadata ..198
10.2.3 Visualization ..202
10.2.4 Navigation ..204
10.2.5 Filtering ...206
10.2.6 Searching ...207

10.3 Usability evaluation ...208
10.3.1 Setting ..208
10.3.2 Results of usability evaluation ..216
10.3.3 Discussion of evaluation results ..220

10.4 Discussion ..221

Chapter 11: Discussion 225
11.1 Research background ..225
11.2 A discussion of the four design ideas ...226

11.2.1 Revised interaction model ...226
11.2.2 Intra-result analysis ..227
11.2.3 Active user interfaces ...227
11.2.4 Dynamic user interfaces ...228
11.2.5 Design ideas related to type of repository228

11.3 Post-project reflections ..229

Chapter 12: Contributions and future work 231
12.1 Contributions ..231
12.2 Future work ..232

Appendix A: Detailed evaluation results 235
A.1 Evaluation of first SESAM prototype ..235
A.2 Evaluation of second SESAM prototype239
A.3 Evaluation of Savanta ...242

Contents ix

Appendix B: About Savanta 245

Appendix C: Evaluation handouts 247
C.1 Evaluation of first SESAM prototype ... 247
C.2 Evaluation of second SESAM prototype 249
C.3 Evaluation of Savanta ... 252

References 255

x Contents

xi

List of Figures

2.1 The Interaction Cycle (Abowd and Beale, 1991). 14
2.2 Command entry using Microsoft Windows XP CMD.EXE. 25
2.3 Drop down menus from Adobe FrameMaker. 26
2.4 Registration form for Oracle’s Technology Network. 27
2.5 Natural language interface from www.askjeeves.com. 28
2.6 Equipping a character in Divine Divinity using

direct manipulation. .. 30

3.1 Three dimensional classification of users (Nielsen, 1993). 38
3.2 Example of a closed evaluation question from QUIS. 43

4.1 Oracle's SQL*Plus. .. 55
4.2 Query-by-example from Microsoft Access. 56
4.3 Forms-based query interface from www.bibsys.no. 58
4.4 QBIC Layout search – from The State Hermitage Museum. 60
4.5 QBIC Colour search. .. 61
4.6 Google. .. 63
4.7 Google – Advanced search. ... 63
4.8 Google – Result presentation. .. 64
4.9 Dynamic HomeFinder. .. 66
4.10 An example of Query Preview. .. 68
4.11 The START Natural Language System. .. 69
4.12 Example of a result from a START query. 70
4.13 Yahoo! Directory. .. 72

5.1 Standard model of interaction
(Baeza-Yates and Ribeiro-Neto, 1999). .. 82

5.2 Revised model of interaction. .. 84
5.3 The Interaction Cycle (Abowd and Beale, 1991). 90

6.1 Subset of the Primus data model. .. 97
6.2 PrimusWeb. .. 98
6.3 Primus query interface. .. 99

xii List of Figures

6.4 Colour-distribution of cars. ...101
6.5 Database-specific decisions. ..104
6.6 Utility function for yes/no-questions for categorical data.107
6.7 Different frequency distributions. ...108
6.8 Sample distributions for categorical data.110
6.9 The Eureka interface. ..113
6.10 The OBIWAN system. Items suggest after a query for

“wireless data systems”. ..114

7.1 SESAM’s interaction model. ...118
7.2 Phases in a typical search. ..120
7.3 The interface of the first prototype. ..121
7.4 Dynamic query interface. ..123
7.5 Forms based interface. ..125
7.6 Results from questionnaires. ..134
7.7 Time spent on initial search and analysis as a function of load.138

8.1 Initial query interface. ..148
8.2 Result display from first prototype. ...148
8.3 Result display from second prototype. ..149
8.4 Detailed information from second prototype.150
8.5 Display of questions from first prototype.151
8.6 Constructing filters for categorical data.152
8.7 Constructing filters for numeric data. ...152
8.8 Display of “my filters”. ..153
8.9 The user interface of the second SESAM prototype.155
8.10 Updated version of dynamic query interface.156
8.11 Updated version of the forms based interface.158
8.12 Results from questionnaires - Computer professionals.165
8.13 Results from questionnaires - Museum conservators.167

9.1 Sample image from the Primus database.175
9.2 Two examples of image segmentation. ..176
9.3 Stages in the process of extracting shape information.177
9.4 Standardized shapes used for classification.179
9.5 Partitioning of the CIELab colour space.181
9.6 Shape filter interface. ..182
9.7 Colour filter interface. ...183
9.8 Examples of problematic images to segment.184
9.9 Rotating a 3D object alters shape of 2D projection.186

10.1 Conceptual model of temporal annotation databases.193
10.2 Interaction model for proposed system.194
10.3 The OntoLog data model. ..196
10.4 Simplified annotation model. ...197
10.5 Stored metadata in Savanta. ...197
10.6 The War in Iraq described by The Middle East; related to

List of Figures xiii

George W. Bush; differs from Afghanistan. 200
10.7 Terms, timeline and intervals. ... 202
10.8 Collapsed term and aggregated intervals. 203
10.9 Savanta. .. 203
10.10 Media navigation controls. ... 205
10.11 Hypertext navigation panel. ... 205
10.12 Filters. ... 207
10.13 Savantoogle. ... 210
10.14 Savantapplet, Savantoogle's interface for presenting a single

media “document”. ... 211
10.15 Forms interface. ... 213
10.16 Results from questionnaires. .. 219

xiv List of Figures

1

Chapter 1

Introduction

The topic of this thesis is user interfaces for accessing information in
digital repositories. The focus is on usability combined with special
support for handling large repositories.

In this chapter, I present the motivation for this topic and the research
methodology I have used. I also describe the organization of the thesis.

1.1 Motivation
Throughout history, collecting and managing information have always
been important tasks for the human race. These tasks were relatively
easy in the beginning, as information carriers such as cave paintings and
oral communication limited the amount of information that could be
transferred and archived. This all changed with the emergence of written
and printed media. These new media made it possible to have informa-
tion repositories that were simply too large to be managed in an unstruc-
tured manner. Organizing content by topic, title and author, therefore
became a necessity – just imagine finding a specific book in a library
where the books are not organized in a recognizable manner.

As we have entered the information age, the characteristics of informa-
tion repositories have changed dramatically. Not only is physical size all
but removed as a limiting factor, but modern communication technology
has made more information accessible to a larger part of the world's pop-
ulation than ever before. While having access to enough information
available used to be the problem, today we usually have so much infor-
mation available that the problem is rather to separate what is relevant
from what is not. Typically, organization alone is no longer enough to

2 Chapter 1 Introduction

make today's huge repositories usable in practice. This means that there
is great need for ways of providing support to the process of accessing in-
formation.

The main topic of this thesis is to study computerized tools for informa-
tion access in digital information repositories with focus on the role of
user interfaces. In order to gain insight into this field, the work includes
an overview of existing tools for information access, an identification of
possible avenues for improvements; as well as design, implementation
and evaluation of my own solutions.

The motivation behind this topic comes from the significant technologi-
cal advances that have been made in information and communication
technology during the last decades. Three distinct areas come to mind,
namely advances in digital communication, processing power and storage
technologies. Combined, they have not only been instrumental with
regards to advances in software technology in general, but also funda-
mentally changed the environment where computerized information
access tools can play a role.

As each of these areas has far-reaching consequences for the topic of this
thesis, they are described below along with a brief discussion of how they
pose new challenges for the development of tools for information access.

Advances in communication technology
Digital communication technology allows us to transfer huge amounts of
information, blazingly fast over large distances. With the increased im-
plementation of the required infrastructure, information is now more ac-
cessible than ever before. In my view, the single most important
development in this respect, is the rise of the Internet as the global com-
munication network. By tying together computers all around the world,
huge information resources are now available from computers every-
where.

In comparison, traditional information systems have above all been char-
acterised by a small and homogeneous user group. Before the Internet
emerged, there was really no easy way for the mass public to directly
access an information repository electronically. Thus, most systems were
only used within an organization. As a consequence, the number of
potential users was fairly low and it was feasible to design user interfaces
that required user training. Also, one could be fairly certain that the
users had reasonably comparable requirements, background knowledge
and experience. All this made it reasonable to design user interfaces

1.1 Motivation 3

tailor-made to a very uniform group of users. The fact that this could
make them almost inaccessible to other groups of users, was of little or
no concern.

However, with the increased communication capabilities, it became
possible to reach a much wider audience. This poses an important
challenge as different classes of users often have conflicting require-
ments and qualifications. What might be an optimal solution for an expe-
rienced user, might be completely incomprehensible to a novice.
Designing one general interface to “rule them all” might be possible, but
it certainly will not be easy.

Advances in processing power
The world’s first electronic digital computer, ENIAC, was developed in
the latter half of World War II by the U.S. military for calculating
ballistic firing tables. The 167 square meter monstrosity was able to
perform 5000 additions per second (Bellis, 2000). By comparison, a
modern workstation processor can do in excess of 500 million additions
per second.

This tremendous increase in processing power has naturally had its
effects on information repositories. For one, is has allowed ever larger re-
positories to be handled without prohibitive consequences for response
times. Also, more processing power allows more time-consuming algo-
rithms and techniques to be used to offer new functionality.

An example of such new functionality, is the handling of other data types
than text and numbers. More complex media types such as images, audio
and video can now be processed, displayed and stored. This has changed
the computer from being an electronic word processor or calculator to a
multimedia workstation. A natural consequence of this development is
the emergence of digital multimedia repositories. As data types used in
such repositories are fundamentally different from text and numbers
(Subrahmanian, 1998), it is often necessary to develop new techniques
for information access. For example, the meaning of textual data is
inherent in the data itself. Stored video, on the other hand, is just a
sequence of bitmap images – coloured dots placed in a grid. The meaning
of such data is highly dependent on the viewer and is the result of a high-
level cognitive process difficult to recreate in a computer and thus
difficult to support in information access tools. It is therefore difficult to
have a dialogue between user and system in a language that is natural to
both. Further, designing a user interface for multimedia navigation is

4 Chapter 1 Introduction

difficult due to the spatial and/or temporal nature of images, audio and
video. While text can be summarized and rapidly browsed, this is much
harder to do for temporal media. Assisting the user in gaining an
overview of a collection of multimedia objects, is therefore a important
challenge for multimedia access tools.

Advances in storage technology
In 1965, Gordon Moore of Intel Corporation predicted that the number of
transistors on a single chip would quadruple every third year (Stallings,
2003). This prediction, later dubbed Moore’s law, has proven to be more
than reasonably accurate. Together with advances in magnetic and
optical storage media, it has given us tremendous increases in storage
capacity. As an example, the most powerful version of the original IBM
Personal Computer from 1980 had 256 KB primary storage and 320 KB
secondary storage. Today (2004), we can easily find 1 GB memory
modules and 250 GB hard disk drives.

This development has certainly been a necessary prerequisite for the
emergence of multimedia repositories (as described above), but it also
has had a clear impact on text repositories. With increased storage
capacity and larger repositories, users are often forced to search huge
amounts of data to find the information they are looking for. This might
be no problem if it is easy for the user to separate relevant information
from irrelevant data. Unfortunately, this is often not the case. Fre-
quently the average relevance of retrieved objects, for example items in
a query result, can be quite low.

This problem can be greatly reduced if the user interface is able to
provide meaningful assistance in separating relevant and irrelevant in-
formation. As ever more fine grained control is required to do this suc-
cessfully, the design and capabilities of the interface become more
important. Unfortunately, the expressivity needed is often difficult to
achieve without negatively affecting interface simplicity and usability.
This can easily lead to a choice between complex interfaces or unman-
ageable amounts of data.

♦

Ever since the dawn of man, collecting and managing information have
been one of our most important challenges. As information repositories
have grown larger, simply organizing the content in a logical way is no
longer enough. Computerized repositories need to offer ways to help us-
ers in locating what they are looking for. Much work has already been

1.2 Research question 5

done in this field – especially with regards to the handling of textual
data. However, technological advances in several key areas have made
several new possibilities and challenges apparent. These form the moti-
vation for the work I will present in this thesis.

1.2 Research question
Based on the discussion of current developments and challenges in the
previous section, the main research question of this thesis is:

How can user interfaces for accessing information in large repositories
be designed to provide assistance to users without impairing usability?

This is a quite broad research question. In order to narrow the scope, I
have decided to focus my research on five important challenges related
to the research question. These five key challenges are presented in
detail in Section 4.3, but an overview is given below:

♦ Large information repositories
As repositories grow larger, which consequences will this have to
their usefulness and the associated interfaces’ usability?

♦ New classes of users
Users accessing a program via the Internet, cannot be expected to
read manuals and receive training. How can interface design take
this into account?

♦ Complex data models
In order to make use of data stored in a database, it is important to
understand how the data is structured (the data model). As model
complexity grows, this task becomes more difficult – especially for
users with limited training and background knowledge. Can the
interface be used to mask this complexity?

♦ Different information access strategies
Writing an exact query is only one way in which a repository can
be accessed. Does it make sense to support different strategies
and can this be done without sacrificing usability?

♦ Multimedia data types
With increased storage and processing capability comes the possi-
bility of handling complex data types such as images, sound and
video. How can large multimedia repositories be accessed in a usa-
ble and efficient manner?

6 Chapter 1 Introduction

Even if these five challenges are more focused than the overall research
question, they are still too broad and encompassing for the in-depth
study a thesis is meant to be. For this reason, I will use four fundamental
design ideas to address the key challenges. These represent my sugges-
tions as to how simple, usable interfaces for large information repositor-
ies could be designed. By designing, implementing and evaluating
several interfaces based on these four ideas, I expect to gain insight into
the research question and the key challenges.

1.2.1 Fundamental design ideas
The four ideas are presented in detail in Chapter 5, but a brief introduc-
tion is given in this section in order to better explain my research
approach.

1: Revised interaction model
Traditionally, interfaces for information access have users issue a textual
query, forward this to a query processing system, and present the
resulting answer to the user (Baeza-Yates and Ribeiro-Neto, 1999). If the
answer does not satisfy the information need of the user, the process is
repeated.

I find this interaction model lacking in two respects. For one, a result is
final – if it is not satisfactory, one has no choice but to restart the whole
process. Secondly, queries are only one of several possible methods for
accessing information repositories. By providing more options to users,
they get more ways to reach their goal and are less likely to get stuck. I
am therefore interested in studying the performance of a revised
iterative model where results can form the basis for further interaction
and where several, integrated access methods are available.

2: Intra-result analysis
Typically, systems for accessing information are client-server-based with
the client more or less just presenting information retrieved from the
server. Thus, processing capabilities on the client are largely left unused.
In my opinion, these resources could be utilized to enhance the capabili-
ties of the system as a whole.

The avenue I am interested in exploring, is if metadata, perhaps
otherwise left on the server and thus unavailable to the user, could be
analysed in order to derive new information. For example, automatic cat-
egorization, summarization etc. can provide high-level information that

1.2 Research question 7

otherwise might be unavailable to the user and might be helpful in
gaining an overview of the presented information.

3: Active user interfaces
In order to construct usable interfaces, one must take the capabilities of
human beings into account. One of the most important areas in this
respect is the human memory system (Miller, 1956). Two central memory
concepts are recognition (e.g. recognizing a person you have met before)
and recall (e.g. recalling from memory how someone looks). Not surpris-
ingly, recognition has been found to be much easier than recall (Mc-
Cracken and Wolfe, 2004).

One way to apply this finding to the world of user interfaces, is to have
users as often as possible respond to information provided by the system.
In this way, users can recognize options that might be helpful to them
rather than to be forced to recall which actions the user interface
supports and what their effects are. In this way, the interface becomes
more active by often (where applicable) initiating interaction rather than
simply waiting to be used.

4: Dynamic user interfaces
Interaction between a human and a computer can be seen as a cycle
where the user expresses actions using input devices, is presented with
results using output devices and uses these as a basis for new actions
(Abowd and Beale, 1991). Presenting system output and interaction
controls are the domain of the user interface. Usually, the user interface
design for a given system is constant – only the content changes.

If the presentation format and controls are constant, they will not neces-
sarily always be optimum for a given content. A better solution might be
to have a dynamic user interface where the presentation design and the
controls depended on previous interaction and the content to be dis-
played. This would amount to a context sensitive interface.

♦

These four design ideas do not necessarily represent something brand
new when it comes to interface design. Even when restricted to inter-
faces for information access, previous work exists in various degrees. My
contribution will rather be in clarifying the concepts, integrating them,
in the specific solutions I come up with and in evaluating any positive
synergy effects that might arise when all four are combined.

8 Chapter 1 Introduction

1.2.2 Approach
The way in which I intend to approach the research question is to make
designs and implementations based on the four design ideas above.
These implementations will then be subjected to evaluations – mostly
concerning usability. The results from these evaluations are expected to
provide insight into the applicability of the design ideas with respect to
the research question.

In order to provide a wider platform for evaluation, I have singled out
three different types of information repositories. By implementing infor-
mation access tools for each of these types of repositories, a broader un-
derstanding of the relevance of the design ideas can be gained. It will
also allow me to study the characteristics of different types of repositor-
ies.

The three types of information repositories to be studied are:

1: Textual metadata databases
Text is the most fundamental information carrier, and techniques
applied to other media often originate from the textual domain. This
makes it natural to start by studying information access in textual reposi-
tories and to have this part be the main part of the thesis.

Rather than examining all kinds of textual repositories, I have chosen to
focus on textual metadata databases. This is in part due to my previous
experience with databases and the availability of a large real-world
textual metadata database, but mostly due to the unique possibilities
offered by database schemas. A database schema (or data model) is a col-
lection of concepts used to describe the static structure of a database
(Garcia-Molina et al., 2002). According to the schema, every object will
have a number of properties, which typically includes both attributes
and relationships to other objects. One of the main ideas presented in
this thesis, is that the metadata represented by attributes and relations
could be used to improve information access.

As this is the first setting in which the design ideas will be evaluated, a
two-phased approach will be used. Based on the results of a usability
evaluation of an initial prototype, a second prototype is implemented
and evaluated. This not only makes it possible to improve the reliability
and validity of my findings, but also serves as an evaluation of the
usability evaluation procedure in itself.

1.3 Research methodology 9

2: Image databases
Complex media, such as images, audio and video, are perceived in funda-
mentally different ways by humans and computers. While we use object
recognition, spatial placement and previous knowledge to make sense of
an image, it is difficult to make a computer see more than just pixels. As
a common language is a fundamental requirement for successful commu-
nication, this semantic gap between humans and computer “vocabulary”
makes information access challenging and an interesting topic for study.

I aim to design and implement a solution based on my four design ideas
to investigate if they can help to close the semantic gap. This will also
serve to study the characteristics of image databases with respect to the
research question.

3: Temporal multimedia annotation databases
Temporal data is data that varies with time – for example information
about which characters are on screen in a movie or the salaries for
persons in a company. As including time adds an extra dimension, it
increases the complexity of the repository and makes it more difficult to
manually locate information as well as to identify patterns and trends.

In this thesis, I use temporal multimedia annotations as an example of
temporal data. Temporal annotations are time-dependant descriptions –
in this case of video clips. For example, annotations could be used to
describe which actors are present in which parts of the clip.

The example data comes from the OntoLog project for Ontology-based
annotation of video and audio and was carried out by Jon Heggland, a
colleague of mine, simultaneously with the work presented in this thesis.
By designing and implementing a tool for accessing temporal multimedia
annotations based on the four design ideas presented in Section 1.2.1, I
will investigate if patterns in the data can be made more accessible to the
user and therefore help increase the usefulness of such a database.

1.3 Research methodology
In (Denning et al., 1989) three different paradigms for the discipline of
computing (encompassing both computer science and computer engi-
neering) are described:

♦ Theory
Establishing a theorem describing the objects of study; proving
the theorem; interpreting the results.

10 Chapter 1 Introduction

♦ Abstraction
Forming a hypothesis; collecting data from an experiment; analyse
the results.

♦ Design
Stating the requirements; designing and implementing a system;
testing the system.

As this thesis is focused on user interface design, the latter paradigm is a
natural choice – in essence designing and implementing several systems
to investigate the research question. The three different areas to be
studied were presented in the previous section.

The testing phase is of fundamental importance to the outcome of my
research. As the research question is directed towards usability, it is
natural that most of the testing will be usability evaluations. Chapter 3 is
therefore in its entirety geared towards how to perform usability evalua-
tions. In order to understand the requirements for information access ap-
plications, a study of the state of art in this field is presented in
Chapter 4.

1.4 Thesis organization
This thesis is divided into three parts:

Part 1: Introduction and background
The first part contains a general introduction to user interfaces and
usability evaluation as well as an overview of current interfaces for
accessing information. It concludes with a detailed presentation of the
four design ideas already mentioned in Section 1.2.2.

♦ Chapter 1 contains this introduction.

♦ Chapter 2 is a brief and general introduction to user interfaces.

♦ Chapter 3 is a general introduction to user interface evaluation.

♦ Chapter 4 presents interfaces for information access, an overview
of existing interfaces as well as a description of what I find are
some of the most interesting challenges specific to such interfaces.

♦ Chapter 5 outlines the four design ideas that form the basis for
later work.

1.4 Thesis organization 11

Part 2: Design, implementation and evaluation
This part of the thesis presents design, implementation and evaluation of
tools for accessing information for each of the three different types of in-
formation repositories mentioned in Section 1.2.2. Textual metadata
databases are studied in greatest detail and covered by Chapters 6, 7 and
8. Image databases are discussed in Chapter 9, while temporal metadata
databases are the topic of Chapter 10.

♦ Chapter 6 introduces SESAM – an approach for searching textual
metadata databases based on the four design ideas from Chapter
5.

♦ Chapter 7 presents the implementation of the first SESAM proto-
type. It also contains a description of a usability evaluation and a
summary of the lessons learned in this study.

♦ Chapter 8 presents the second prototype of SESAM redesigned
with basis in chapter 7. This chapter also includes a new usability
evaluation.

♦ Chapter 9 is a short chapter presenting a modified version of
SESAM extended to support an image database. The aim is to
examine if the SESAM approach can be applied to content-based
image access.

♦ Chapter 10 contains a description of the design, implementation
and evaluation of, Savanta, a tool for accessing data in temporal
annotation databases which integrates several different methods
for information access.

Part 3: Assessment
♦ Chapter 11 discusses the results from chapters 5 to 10.

♦ Chapter 12 contains overall conclusions and the contributions of
this thesis.

12 Chapter 1 Introduction

13

Chapter 2

An introduction to user
interfaces

In this chapter, I present a brief and general introduction to user inter-
faces. As this thesis’ focus is on usable interfaces for accessing informa-
tion, this chapter serves as a background for later chapters.

The first part of this chapter contains a general definition of user inter-
faces, while the second part examines general guidelines for good
interface design. The third and final part presents a broad classification
of existing interfaces.

2.1 The role of user interfaces
The interaction between a user and a computer system can be seen as a
cycle where the user performs actions using input devices, the system
process these inputs and displays its output on output devices, which in
turn is perceived by the user and used to formulate new plans of action.

This model was presented in (Abowd and Beale, 1991) as “The interac-
tion cycle” and is illustrated in Figure 2.1. It highlights the role of the
user interface as the intermediary between the user and the system.

14 Chapter 2 An introduction to user interfaces

According to this model, the interface has two duties – presenting system
output and allowing user interaction. Presenting system output is done
using output devices. Several visual or audible devices exist – see (Preece
et al., 1994) and (Dix et al., 1998) for a thorough discussion.

Input devices are the interface components used to communicate a user's
wishes to a system. In today's systems, the normal input devices are
computer mice and keyboards, but several other more specialized devices
exist. See (Preece et al., 1994) and (Shneiderman, 1997) for a discussion
of the different alternatives and how they influence the interaction as a
whole.

By observing the state of the system by the means of the output devices,
users formulate a plan of action and execute it by the means of the input
devices. Both observation and planning involve some sort of interpreta-
tion. Exactly how this interpretation is done is important to understand
in order to design understandable interfaces. But because of the
enormous human diversity with regards to, among other things, cognitive
ability, physical ability and previous experiences, this task is far from
easy. In the classic book “The Design of Everyday Things”, Donald A.
Norman notes:

“[...] designers are not typical users. They become so expert in using the
object they have designed that they cannot believe that anyone else
might have problems; only interaction and testing with actual users
throughout the design process can forestall that.” (page 151)

Input Devices

Output Devices

User System

Presentation

Interaction

ProcessingTask Formulation

Human Interface System

Perception

Action Input

Output

Figure 2.1 The Interaction Cycle (Abowd and Beale, 1991).

2.2 Characteristics of user interfaces 15

Due to the important role of usability testing, Chapter 3 is in its entirety
devoted to this topic.

♦

The user interface thus consists of both input and output devices. This
corresponds well with Moran’s (Moran, 1981) definition of user interface
as

“those aspects of the system that the user comes in contact with.”

This obviously indicates that the user interface is of great importance – it
is in fact the only part of a system that users ever see. As a logical conse-
quence of this definition, the responsibility of user interfaces should be
to make functionality in a program accessible to its users.

Further examples of the importance of the user interface exist. One
previous study (Myers and Rosson, 1992) measured that the user
interface constitutes 48 % of a program's code and a similar amount of
the total time spent during design and implementation. Due to their im-
portance, one would expect that designing usable interfaces should be a
solved problem. Unfortunately, this is far from being true. One study
(Nielsen, 2001) reports that 44 % of 496 attempts at performing tasks on
e-commerce web sites failed. Another e-commerce study (Hurst and
Terry, 2000) measured that as much as 43 % of those that try to purchase
something on-line, fail because of usability problems. Clearly, there are
still room for improvements.

2.2 Characteristics of user interfaces
The purpose of a user interface is described in (Catarci, 2000) as:

“It is responsible for informing the user about the possibilities, limits
and functionalities of the system”.

The degree in which this purpose is fulfilled, is often expressed as an in-
terface's usability (Preece et al., 1994). Thus, an interface with high
usability makes it easy for users to access most or all of the functionality
provided.

Designing user interfaces is far from an exact science. Different
programs can have very different objectives, target audiences and plat-
forms, making it difficult to develop a single recipe for success. Never-
theless, general characteristics of successful interfaces have been and
still are a topic of some interest. In the absence of any narrow and exact

16 Chapter 2 An introduction to user interfaces

rules for interface design, several sets of broad guidelines aimed at
making it easier to design usable interfaces have been developed. One of
these is Jakob Nielsen’s list of ten usability principles (Nielsen, 1993)
presented below.

1: Simple and natural dialogue
The interaction between man and machine forms a dialogue. As for all
other forms of communication, it is important that the dialogue is
relevant to both parties. This suggests that it is desirable to keep user in-
terfaces as simple and clean as possible – retaining only those interface
components that are required as each additional component increases
the cognitive burden. Not only must each additional component be inter-
preted, they also increase the number of possibilities to consider when
users are trying to make a plan for further interaction.

As an example, it would make sense to move advanced or rarely used
options from the main interface area to drop-down menus where they are
more out of sight. Novice users, while probably not missing the advanced
features, would then have to scan fewer components to find what they
want.

But removing superfluous components will not help much if the
remaining components make no sense to the user. When output is
presented to the user, he or she perceives this output and interprets the
way in which the computer concepts have been presented to map theses
concepts to their own mental model. A similar mapping must then be
performed to express indented user actions using available interface
controls. A natural dialogue between system and user can greatly
simplify these mappings – for example by presenting information in a
sequence that matches the way in which the user intends to work.

2: Speak the users' language
In a human dialogue, one normally has the opportunity to ask for an ex-
planation if an spoken term is not understood. In contrast, a man-
machine interaction is far more static as the machine seldom is designed
to dynamically adjust its dialogue according to the needs of the user.
This makes it all the more important to design an interface which uses
terms familiar to its users in the first place. For user interfaces, this
means that they should strive to use terms that the user find natural and
avoid technical dialogue. This minimizes the amount of interpretation
needed to understand the presentation given by the system. For
example, when combining several different query terms, it is usual to

2.2 Characteristics of user interfaces 17

allow the use of operators such as AND and OR. But as they require an
understanding of boolean algebra, many systems have replaced them
with the more intuitive “all of these terms” and “any of these terms” re-
spectively.

A potential pitfall in this regard is the fact that most interfaces are
designed by people with very different backgrounds compared to the
backgrounds of their target users. Unintentional use of jargon and
system-oriented terms can make interaction needlessly difficult.

An example of using system-oriented terms could be to ask a user if she
wants to save a file to drive “A: or C:” These abstract labels carry no
inherent meaning and would therefore not be of any use to new users. It
would therefore be better to use the terms “floppy disk” and “hard
drive” (preferably illustrated with icons).

B. Shneiderman (Shneiderman, 1997) argues that user interfaces should
contain user-centered phrasing. This is achieved by making users initia-
tors instead of responders by using forms such as “ready for data” rather
than “enter data here”. The point is that the first phrase identifies the
user as the one in command – the interface is simply waiting to be used.
The latter phrase on the other hand, contains a commanding tone. The
user is here being told what to do – the interface is clearly in command.
As having the feeling of being in command, is a more pleasant experi-
ence than being told what to do, the first option is argued as superior.

3: Minimize the users' memory load
One of the most prominent advantages a computer has compared to a
human brain is its faultless memory storage. Therefore, it is bad practice
to design a user interface which requires its users to remember informa-
tion given earlier in the dialogue. This task should instead be handled by
the interface by making relevant information easily accessible. Accessi-
ble information should also include the choices made by the user earlier
in the program execution. However, the “less is more” rule still holds. By
making too much information accessible, users become less likely to be
able to take advantage of this aid at all.

This design principle is strongly tied to the principle concerning “Help
and documentation” (described later) – especially regarding the use of
online documentation. The use of pop-up “balloon help” windows con-
taining short descriptions of the interface component currently under the
mouse pointer is a good example of how to make relevant information ac-
cessible without cluttering up the interface. However, this must be used

18 Chapter 2 An introduction to user interfaces

with care as there are no visual clues to their existence before they pop-
up. Users unfamiliar to “balloon help” windows can therefore easily miss
them altogether.

4: Consistency
In a consistent interface, any given user action will always have the same
effect and any given symbol always has the same meaning. This makes it
easier for users to construct a mental model of how a program works. A
user which has experienced that blue, underlined words represents
clickable hyperlinks, will become very confused if clicking other under-
lined words produces no results.

An application should not only be internally consistent, consistency with
other applications is also very helpful. If a user can draw upon previous
experiences when adopting a new application, training time can be
reduced (Nielsen, 1999). This has promoted the use of interface
standards and guidelines such as (Sun Microsystems, 2002), (Microsoft
Corporation, 2002) and (Apple Computer Inc., 1992).

5: Feedback
When mechanical machines are used, they typically offer visual, audible
or tactile clues as to what they are doing. This is a great aid for their op-
erators. Imagine trying to use a camera without any clues as to when the
photo actually has been taken. As (non-digital) cameras automatically
produce audible clues due to shutter movement, photographers have
grown accustomed to listening for this sound as confirmation.

Computer programs, on the other hand, will not automatically offer such
clues. A user has no means to monitor a time-consuming operation if this
is not specially provided by the interface. It is therefore important that
designers construct interfaces which permit users to observe the progress
and result of an internal operation. This will prevent the user from
wondering whether the program has crashed, expects further input or
simply is behaving normally.

6: Clearly marked exits
As it is human to err, interfaces must be designed to handle a wealth of
different user errors. One of the more common types of errors is starting
the wrong program or invoking the wrong option. These errors become
only a minor annoyance if they are easily escaped by the means of a
“undo” or “cancel”-button or similar. If the user is instead “trapped” and

2.2 Characteristics of user interfaces 19

forced to endure an extended dialogue in order to exit, the user will
become more insecure and unlikely to explore the interface.

This point can be illuminated by an example from my own experience.
An early, text mode based editor I once used, contained an extensive
online help system. In order to leave this help system, you had to press a
seemingly random key combination. Not knowing this combination, I was
unable to return to the editor and became forced to terminate the whole
program. Needless to say, the help system went largely unused for my
part.

7: Shortcuts
Some of the previous usability principles have described the need to
craft interfaces that are suited to the needs of the users. This is in itself
not an easy task. A further complicating factor is that the needs of a
given user change as she becomes more experienced. A detailed step-by-
step guide to completing a task might be just what a novice user needs,
but will likely be of hindrance to more advanced users.

Advanced users have understood so much of the inner workings of a
system, that they focus more on the task than the tool. To let these users
work efficiently, it is important that an application offers shortcuts to
commonly used operations. This allows them to stop spending time navi-
gating the user interface and have shorter time between perception and
action. Shortcuts can for instance be implemented in the form of
keyboard shortcuts as an alternative to menu options.

8: Good error messages
Some sort of error situation is likely to appear during the execution of an
application. Whether the cause is the user, the software or the hardware,
error messages should inform the user of the event. An ideal message not
only describes the error and what caused it, but also suggests construc-
tive measures to be taken.

Error messages should also obey the principles regarding simple, natural
and understandable dialogue. Internal error codes, debug messages and
similar are of very limited use to the average user – in fact, they are more
likely to do harm than good. In addition to user-centered phrasing, error
messages should also avoid using a negative and accusing tone and
instead try to be polite. No good could possibly be the result of blaming
the user.

20 Chapter 2 An introduction to user interfaces

9: Prevent errors
Even if good error messages are important, it would be better if errors
could be avoided in the first place. Careful interface design can minimize
user error by clearly indicating if an operation is legal or not. This can for
instance be implemented by disabling buttons and menu options when
invoking them would be an illegal operation, or by asking a user to select
a name from a list of allowed choices instead of typing it in.

Another way of preventing errors is requiring confirmations for espe-
cially destructive operations. As a user can initiate the deletion of a file
or the formatting of a hard disk by mistake, it makes sense to not
perform them without confirmation.

10: Help and documentation
Ideally, a program should be so easy to use that documentation in any
form is unnecessary. This can however be difficult to accomplish – at
least if the task to be solved is somewhat complicated. Thus, the quality
of both online and offline help and documentation, becomes a factor in
the overall usability of an application.

Online documentation can be designed to be easily accessible, eliminat-
ing the need to locate and manually search printed manuals. As a user
typically needs help to execute a particular task, it makes sense to
organise the online help by task. Studies have shown (Magers, 1983) that
if the steps that need to be carried out are clearly listed (i.e. task-ori-
ented), utility of the online help is improved.

♦

These ten user interface guidelines are all general enough to be applica-
ble to almost any user interface – both textual and graphical. That makes
them useful for any user interface designer regardless of application
type. I also find them helpful in that they offer a structured way of (infor-
mally) evaluating a given interface by examining how well each guide-
line is implemented.

Other attempts at providing general guidelines for interface design have
also been published. Among these are Ben Shneiderman's “Eight Golden
Rules of Interface Design” (Shneiderman, 1997). These rules agree with
Nielsen's usability principles to a very high degree and therefore serve to
confirm their validity. Minor dissimilarities include Shneiderman's
emphasis on easy reversal of actions in order to reduce anxiety and the

2.2 Characteristics of user interfaces 21

weighting of user-centered phrasing. For a discussion of Sheiderman's
rules, see (Baeza-Yates and Ribeiro-Neto, 1999).

A different perspective as to what constitutes good user interfaces is
offered by B. Reeves and C. Nass in their book “The Media Equation”
(Reeves and Nass, 1998). They claim that media equal real life – i.e. that
people interact with media as they interact with real people. As a result,
lessons learned in the social sciences can be applied to user interface
design. An interesting example used by Reeves and Nass is H. Paul
Grice's four maxims for social conversations (Grice, 1975): Quality,
quantity, relevance and clarity.

♦ Quality

“Speakers should say things that are true.”

Thus, if a user feels mislead by a program's user interface, the
user will be less likely to interact with the program in the future.

♦ Quantity

“Each speaker in an interaction should contribute only what the con-
versation demands, not too much or too little.”

It is considered impolite both to be confusingly brief and to be
boringly lengthy. This rule is made more difficult to adhere to
because what one user considers suitable might be too lengthy to
another. Also, the appropriate amount of text might change as the
user grows more experienced. This conforms with interpersonal
interaction where more and more information becomes implied
rather than expressed as the participants grow accustomed to each
other.

♦ Relevance

“What people (and media) say should clearly relate to the purpose of
the conversation.”

This rule can be violated by for instance displaying buttons that
can not be pressed and menu options that can not be selected.
These violations will be perceived as deceptions – promising some-
thing that can not be done. This is clearly impolite in a social con-

22 Chapter 2 An introduction to user interfaces

text and will also be perceived as such in man-machine
interaction.

♦ Clarity

“Contributions to an interaction should not obscure.”

It might seem obvious that user interfaces should not contain texts
that are incomprehensible to its users. Nevertheless, this rule is
often violated – particularly in the interest of keeping the texts
short. This is somewhat of a paradox as comprehensibility clearly
is more important than brevity.

One important property not explicitly covered by either of the presented
set of guidelines, is that of responsiveness – that is the delay between user
input and system output. It is common (Miller, 1968) to talk about four
different categories of response time. If the delay is shorter than 0,1
second, the user will perceive the response as instantaneous. Between 0,1
and 1,0 second, the user will probably manage to stay focused – i.e. not
lose the train of thought. Response times larger than 1,0 second will
require the user interface to notify the user that the system is processing
data in order to have the users not losing interest. Finally, with response
times longer than 10 seconds the system will be perceived as boring and
the user will want to perform other tasks in the meantime. These limits,
while clearly not absolute, are helpful to keep in mind when deciding on
the amount feedback a system should provide.

The user interface guidelines presented in this chapter have all in
common that I find them both intuitive and self-evident. Yet, many inter-
faces, both designed by myself and others, fail to adhere to them. From
this simple observation I draw three conclusions:

♦ Great truths are often characterized by being obvious only once
they have been explained. To a degree, I believe this to be the case
here.

♦ General user interface guidelines should form the foundation for
interface design choices.

♦ User interface design is far from easy. Even if designers know how
good interfaces should behave, making an interface that conforms
to all guidelines is not straightforward.

2.3 A general classification of user interfaces 23

Having discussed the characteristics of successful user interfaces, I now
turn to how interfaces can be classified.

2.3 A general classification of user
interfaces

One of the most important concepts for human understanding of a
complex world is the notion of classification. Grouping a set of items
according to some common attributes allows us to treat them as one –
thereby simplifying understanding and interaction. It also makes it far
easier to get an overview of the features of a large population.

It is therefore not surprising that several attempts at classifying inter-
faces have been made. One of the most used is to group interfaces with
similar interaction styles. Interaction styles refer to how the communica-
tion between the user and the application takes place – how actions are
expressed, concepts are displayed and which metaphors are used to
display system state.

The choice of which interaction style to adopt, is thus one of the most
fundamental choices in interface design. Each different interaction style
has its unique advantages and disadvantages. The optimal interaction
style will therefore vary from application to application. I therefore find
it useful to use the remainder of this chapter to examine the different al-
ternatives. In the following discussion, I adopt the classification used by
Jenny Preece et. al. (Preece et al., 1994) which divides interfaces into the
following categories:

♦ Command entry

♦ Menus and navigation

♦ Form-fills and spreadsheets

♦ Natural language dialogue

♦ Direct manipulation

This classification closely matches the classifications used in (Shneider-
man, 1997) and (Dix et al., 1998), although the latter includes more
exotic styles such as three-dimensional interfaces.

Even though most user interfaces contain a combination of at least a
couple of these interaction styles, I will in the following sections discuss

24 Chapter 2 An introduction to user interfaces

the properties of pure implementations of each of them in order to
promote clarity.

An alternative way of classifying interfaces is to group them by genera-
tion (Nielsen, 1993). User interface generations could include batch
systems, line-oriented interfaces and graphical user interfaces. However,
as all but the latest generations have long been abandoned, I find this
classification scheme less interesting with respect to understanding how
modern interfaces work.

2.3.1 Command entry
Command entry interfaces are interfaces where users indicate their
intent by entering textual commands, for example by typing “exit” and
pressing “enter”. Command languages typically have a strictly defined
syntax and thus requires both training and memorization. However, once
a user has mastered the language, such interfaces allow complicated
actions to be expressed swiftly and precisely.

As all input is textual, compound operations may be defined simply by
including the individual commands in a text file (batch file). Textual
commands also frequently offer great flexibility in that they typically
offer numerous possibilities for fine-tuned control by the means of
arguments – that is additional text specified in connection with the
command. For example, the plain “dir” command in the Windows
command shell simply lists the files in a directory. Using arguments, this
list can be customized in a number of ways – “dir /o:s” for instances sorts
the list by file size. These properties make command entry a popular

2.3 A general classification of user interfaces 25

choice for expert users who welcome the power and flexibility and do not
mind having to memorize the commands.

Unfortunately, the amount of training necessary to master such inter-
faces, severely limits their use. High error rates are common, both
because the strictly defined syntax leaves little room for error and
because of the often non-intuitively named commands. In the classic
paper “The truth about Unix: The user interface is horrid” (Norman,
1981), Donald Norman discusses the usability of command line interfaces
in early versions of the UNIX operating system. Among other problems,
he critiques the lack of command name consistency and the often missing
relationship between command name and functionality. He also notes:

“A common theme runs through the commands: don’t be nice to the cas-
ual user -- write the system for the dedicated expert.”

It is also frequently difficult to provide good error messages as so many
different error conditions are possible due to a high number of
commands and possible arguments. This is the flip-side to great flexibil-
ity – many things can be accomplished, but many things can go wrong.

2.3.2 Menus and navigation
A menu has been defined (Paap and Roske-Hofstrand, 1988) as:

“[…] a set of options displayed on the screen where the selection and ex-
ecution of one (or more) of the options result in a change in the state of
the interface.”

Figure 2.2 Command entry using Microsoft Windows XP CMD.EXE.

26 Chapter 2 An introduction to user interfaces

By the fact that the available choices are displayed on the screen, this in-
teraction style lessens the need for memorization compared with
command entry interfaces and thus makes them easier to learn. As all
available choices are presented (and temporarily unavailable choices can
be disabled), menus also make it comparatively easy to avoid many user
errors. Misspelling a command name is for example not a factor.

A negative effect of displaying every alternative on screen is that menus
frequently use a large part of the available display area. This problem
has been greatly reduced by the introduction of pull-down and pop-up
menus that hide the menu choices until they are activated by the user.
Such menus have become an integral part of graphical operating systems
such as the Windows and Mac OS families.

To make menus appealing to more than just novice users, the most used
menu entries often have separate keyboard shortcuts. This addition, con-
forming to Jakob Nielsen's “Shortcuts” usability principle, makes it
possible for experienced users to perform actions without leaving the
current work area to activate a pull-down menu option.

2.3.3 Form-fills and spreadsheets
As menus only are suited for the selection of one or more predefined
options, an alternative interaction style is needed for data entry.
Command entry can be used, but has proved difficult to learn and use for
novices and casual users.

Figure 2.3 Drop down menus from Adobe FrameMaker.

2.3 A general classification of user interfaces 27

Form-fills and spreadsheet interfaces resemble paper forms and thus
represent a type of dialogue that probably already is familiar to users. A
form typically contains several labelled fields where users are asked to
input data. This can make form-fills rather space-consuming, as illus-
trated by the form-fill shown in Figure 2.41.

These types of interfaces are most suited when the data to be entered
consists of a multitude of individual entries. This could for instance be
the registration of name and address as shown in the figure above. The
clear labelling of the individual fields and the ability to restrict the input
to the permissible length and classes of characters make it possible to
avoid many user errors. In addition, the ability to position the individual
fields so that related fields are located near each other, makes it easier to
read and locate information.

1. Oracle Technology Network, http://otn.oracle.com/index.html

Figure 2.4 Registration form for Oracle’s Technology Network.

28 Chapter 2 An introduction to user interfaces

2.3.4 Natural language dialogue
A natural language dialogue interface is an interface where user's intent
is communicated to the application by the means of complete sentences
in a human language (such as English or German). This is a very natural
concept – after all this is the way in which humans communicate with
each other. Ideally, natural language interfaces could remove the need to
learn a complex syntax and thus require little training compared to
command entry. In practice however, this approach has proved difficult
to implement as noted in (Shneiderman, 1997):

“[…] high-quality reliable translations of complete documents without
human intervention seem difficult to attain”. (page 293)

One of the reasons for these difficulties, is that natural language often is
ambiguous and therefore difficult for a machine to interpret. The
nonverbal communication vital to human-to-human communication, is
usually unavailable in human-computer interaction. Even if research
effort is being spent on for example hand gesture recognition (Sato et al.,
2001), such technologies is still far from mainstream. Nevertheless,
natural language interfaces have enjoyed some success in applications
where the scope is limited.

The characteristics of these interfaces clearly make them better suited
for novices rather than experienced users. The sheer amount of text that
needs to be entered even to express only moderately complex actions can
make alternative interaction styles far faster to use. For example,
imagine replacing the registration form shown in Figure 2.4 with a
natural language interface.

Back in Section 2.2 the claim that media equal real life was briefly dis-
cussed. The implications of this statement are that people interact with

Figure 2.5 Natural language interface from www.askjeeves.com.

2.3 A general classification of user interfaces 29

media as they would with real people and that rules that govern social in-
teraction also can be applied to human-computer interaction.

One should expect that this “media equation” holds especially strong for
natural language interfaces as these interfaces are designed to mimic
human dialogue. But this need not be a positive effect. In my opinion, it
in fact makes it easier for natural language interfaces than for other
types of interfaces to appear impolite to users.

Due to the difficulties of implementing a perfect system for natural
language interpretation, mistakes are bound to happen. Results of such
mistakes could easily be interpreted as impolite responses if users (con-
sciously or unconsciously) are applying the same reasoning here as in
human-to-human conversations. This can in turn confuse the user and
could damage their view of the interface in addition to breaking H. Paul
Grice's relevance maxim (as discussed in Section 2.2).

2.3.5 Direct manipulation
Direct manipulation is a term coined by Ben Shneiderman and is based
on the following four principles (Shneiderman, 1983):

♦ Continuous representation of the object of interest.

♦ Physical actions or labelled button presses instead of complex syn-
tax.

♦ Rapid, incremental, reversible operations whose impact on the
object of interest is immediately visible.

♦ Layered or spiral approach to learning that permits usage with
minimal knowledge.

In other words, direct manipulation advocates a visual representation of
the world where the user manipulates “real objects”. For example, the
command entry method for moving a window would be for the user to
type in a command. Using a direct manipulation interface, on the other
hand, the user would “grab” the window using a mouse or a similar
pointing device and physically move the mouse the corresponding
distance.

For this approach to work, responsitivity is a key factor – if the window
movement lags behind the mouse movement with several seconds, con-
tinuous representation is no longer achieved and the illusion of direct
manipulation is destroyed. It is therefore reasonable to expect delays

30 Chapter 2 An introduction to user interfaces

shorter than 0,1 seconds (referring to the previous discussion in
Section 2.2).

Direct manipulation has proved (Ziegler and Fahnrich, 1988) to be a very
natural method for interaction – both easy to learn and with significantly
lower error rates than other interaction styles. In fact, it is a key element
of almost all graphical interfaces. The advent of touch screen devices
such as Personal Data Assistants (PDAs) has brought direct manipulation
to the next level by allowing direct interaction with interface compo-
nents (by touching the on-screen representation directly) instead of using
a mouse as an intermediate.

The accessibility of direct manipulation has made it a natural choice for
computer games. As continuous representation of objects is a vital
component of direct manipulation, it is difficult to capture the concept
with a still image. Figure 2.61 is an attempt at an illustration – here the

Figure 2.6 Equipping a character in Divine Divinity using direct manipulation.

2.3 A general classification of user interfaces 31

user is in the process of equipping a shield on a representation of the
user’s in-game avatar.

The problems with direct manipulation mostly relate to implementing it
properly. First of all it can be difficult to find a suitable graphical repre-
sentation of the concepts contained in the system in question. Abstract
terms and concepts prove especially difficult. Even when a proper repre-
sentation has been found, these graphical interfaces often prove difficult
to implement mostly due to their graphical nature and the demand for re-
sponsitivity.

2.3.6 Concluding remarks
As the above discussion indicates, the interaction styles have different
advantages and varying applicability. These characteristics are therefore
important to keep the differences in mind when designing user inter-
faces. Fortunately, it is possible to combine several types of interaction
styles in a single program – this is in fact more the norm than the excep-
tion.

1. Divine Divinity © Larian Studios, 2002.

32 Chapter 2 An introduction to user interfaces

33

Chapter 3

Evaluating user interfaces

“Evaluation is concerned with gathering data about the usability of a
design or product by a specified group of users for a particular activity
within a specified environment or work context.” (Preece et al., 1994,
page 602)

In this chapter, I discuss why usability evaluation is a vital component in
successful interface design and present various methods for how
usability evaluations can be carried out. This serves as a methodical
foundation for my own evaluations presented in later chapters.

The discussion in this chapter concerns interfaces in general, but I will il-
lustrate the different methods with examples from evaluations of inter-
faces for information access.

3.1 Why evaluate?
A user interface is the communication link between a computer system
and its user – allowing interaction and presenting output. As for every
other type of communication, a message is best understood if it is made
to suit its target. This is easier said than done as the user seldom is a
constant and because human characteristics can vary widely. Marti A.
Hearst has described the human differences in (Baeza-Yates and Ribeiro-
Neto, 1999):

“Important differences for information access interfaces include relative
spatial ability and memory, reasoning abilities, verbal aptitude, and
(potentially) personality differences [...]. Age and cultural differences

34 Chapter 3 Evaluating user interfaces

can contribute to acceptance or rejection of interface techniques [...].”
(page 261)

These differences can explain why users often will perceive or respond to
an interface in ways never imagined by the designer. As a result, it is
very difficult to design an interface without input from the intended
target audience. By having a representable group of users evaluating the
interface in question, such information can be gathered. This can in turn
be used to gain insight into what needs to be changed in order to improve
the usability. An interesting account on the importance of involving
users in the development of interfaces to information systems, is
presented in (Catarci, 2000).

Improving the usability of an interface is however not the only purpose
of evaluations. (Preece et al., 1994) lists the following other reasons for
performing evaluations:

♦ Comparing designs
When it is difficult to choose between two or more alternative
designs, evaluation can provide both a direct answer and a
detailed report on the highs and lows of each alternative. Because
it is much easier to compare alternatives than just evaluating a
single item, it might be useful to implement a second, different,
design just to make comparison possible.

♦ Understanding the real world
Evaluation can also be of use before the actual implementation
has begun. Understanding the user environment in which a pro-
gram is meant to be used, makes it much easier to achieve success.
This can for example include evaluating any existing programs
that are meant to be replaced, discussing with future users, etc.
This can also be extended to include evaluations of early proto-
types to further help with the requirements gathering.

♦ Engineering towards a target
Every, at least moderately complex, program presents almost
unlimited possibilities for improvement. Needless to say, absolute
perfection is often an unattainable goal. Evaluation can play an
important role here by defining metrics usable for deciding on an
explicit target quality. This might for example be the total time
that an average user uses to complete a certain task, or the per-
centage of users that prefers an application over its competitors.

3.2 Gathering information 35

♦ Checking conformance to a standard
Computer users typically use more than one program. By having
new interfaces consistent with interfaces users are already accus-
tomed to, the learning process becomes easier. To assure that this
is the case, evaluation can be used to check if new interfaces con-
form with existing standards and guidelines.

Having discussed the usefulness of user interface evaluation, the next
sections address how evaluations can be performed.

3.2 Gathering information
Usability evaluation is all about gathering data about the usability of a
design or a product. The results of an evaluation can be interpreted to
gain information which in turn can aid the designer in improving her
product or in comparing it with existing designs. In order for the evalua-
tion to serve its purpose, it is important to decide exactly what kind of
data is to be gathered.

In the social sciences, it has been customary to differentiate between
quantitative and qualitative data. Much has been written about the
different research practices that stem from the differences between
these two – see for example (Creswell, 1994) and (Neuman, 2002). Rather
than reiterating these discussions, I focus on how these two types of data
relates to interface usability evaluation. For my purpose, quantitative
data contains quantified data (typically numbers) typically used for sta-
tistical analysis describing how well an interface performs on average for
a medium to large group of users. Qualitative data (typically text) is
more focused on detailed descriptions of individual samples and uses
these to describe how and why something works.

3.2.1 Quantitative data
Quantitative data are typically (more or less) objective measurements of
some kind. Examples include number of errors made, time spent on a
given task and number of interactions required. Alternatively, they can
be subjective thoughts towards a specific feature or product quantified
into (for example) numbers. Asking a person to rate a feature from 1 (ter-
rible) to 5 (excellent) is a good example.

The advantage of using quantitative data in a usability study is first and
foremost that processing large amounts of results is feasible. Averages
and standard deviations can provide at-a-glance information regardless

36 Chapter 3 Evaluating user interfaces

of the size of the collected evaluation data. Another advantage is the ob-
jectivity of measured data – although this is not as clear-cut as it initially
might seem. For example, simply by selecting tasks to be measured, bias
is introduced. This problem is discussed in more depth in Section 3.5.

By quantifying a test subject’s sentiments or performance into a few
numbers, one is bound to lose quite a bit of detail. After all, knowing that
a test group on average gives a specific program three marks out of five,
provides no clues as to what works and what does not. Only using
averages also hides details about the individual numbers. Therefore,
quantitative data is not very suited for understanding how something
performs and why.

3.2.2 Qualitative data
Collecting qualitative data is, in my mind, all about understanding how
and why. Understanding what the user thinks, understanding why some
interfaces are incomprehensible and understanding the interaction
between human and computer. This understanding can be gained either
by allowing test subjects to express themselves directly or by observing
the actual use of a product.

Either way, gathering qualitative data is far more labour intensive than
gathering quantitative data as it typically includes observing or inter-
viewing users. As a result, much fewer test subjects are typically
involved. Luckily, this does not render qualitative evaluation unusable.
Studies (Nielsen, 1992) have in fact shown that as few as five users can be
enough to discover a majority of usability problems. Increasing the
number of testers beyond five was shown to generate ever more marginal
improvements.

As qualitative evaluations concentrate on how and why an interface
works (or not), they can be of great help during software development.
Even before the first prototype has been implemented, a qualitative
evaluation of design plans can save many hours of work. At such an early
stage, evaluation of similar interface can also provide invaluable insight
into which features to include and which features to avoid. Later on in
the development process, qualitative evaluation can make it easier to
spot potential usability problems before they become too costly to
correct. As it is very easy for designers to become “blind” to other ways
of thinking about their interfaces, outside designers or users might be
necessary to spot even pretty obvious mistakes.

3.3 Selecting test subjects 37

It is important to note that the choice between qualitative and quantita-
tive data gathering is not necessarily either-or. In fact, must actual
interface studies contain elements of both. However, as quantitative
methods generate more reliable results with large test groups and every-
thing larger than small groups can be quite labour intensive for qualita-
tive methods, using both methods at once can be somewhat problematic
and might make compromises necessary.

3.3 Selecting test subjects
Social scientists have long been aware that the answer to any given
question depends very much on the person being asked (Weisberg et al.,
1996). This also holds true for user interface evaluation (Dumas and
Redish, 1999). Selecting the right test subjects is therefore of great im-
portance in order to get a valid result. It makes for example little sense
to ask novices to evaluate a program intended for computer professionals
– they are simply not a group representable for the intended audience.
An exception to this rule is evaluation methods where experts use their
expertise to predict usability problems regardless of target audience –
more on such inspection methods later.

Test subjects can be categorized in a multitude of different ways. Jakob
Nielsen (Nielsen, 1993) suggests classifying users according to three
different axes: Previous computer experience, knowledge about the
domain in question and experience with the tested interface. This is illus-
trated in Figure 3.1. Establishing where a given test subject is located in
this three-dimensional space is usually done by means of background
knowledge questionnaires.

38 Chapter 3 Evaluating user interfaces

P. Reisner (Reisner, 1981) takes a different approach by classifying tests
rather than test subjects, according to the amount of exposure they have
had to the system in question. Some examples include:

♦ Immediate comprehension tests
Which kinds of mistakes are first time users likely to make? Are
the features present, possible to comprehend and use without spe-
cific training?

♦ Productivity tests
This is used to measure the productivity of users who have been
using a given system for some time – i.e. when the training phase
is well over.

♦ Retention tests
Subjects are first trained in the use of a program. Their compre-
hension is then tested after a period away from the system. This

Extensive Computer Experience

Kn
ow

le
dg

ea
bl

e
ab

ou
t D

om
ai

n

Ig
no

ra
nt

 a
bo

ut
 D

om
ai

n

Minimal Computer Experience

Exp
ert

 U
se

r o
f S

ys
tem

Nov
ice

 U
se

r o
f S

ys
tem

Figure 3.1 Three dimensional classification of users (Nielsen, 1993).

3.3 Selecting test subjects 39

measures how easy an interface is to remember and how fast refa-
miliarization occurs.

For other ways of categorizing test subjects, see (Cuff, 1980), (Catarci
et al., 1997) and (Fisher, 1991). These include looking at factors such as
age, gender and cultural background and how these might impact users’
performance.

For my own use, I’ve decided to classify test subjects into only three
different classes. This allows me to keep the discussion fairly straightfor-
ward without losing too much detail. These classes can of course also be
used to describe the intended target audience of a program. The three
classes are:

♦ Expert users
Expert users are users with an in-depth general computer knowl-
edge – typically formal computer science education. Having used
a multitude of different interfaces, they can often spot potential
usability problems quickly. What they might lack in domain knowl-
edge, they can make up for by drawing upon previous experience.

♦ Casual users
Compared with expert users, casual users are above all character-
ized by a lesser degree of general computer experience. This class
represents users that are not computer professionals, but might
still use the application on a day- or weekly basis. Test subjects
should be given training in a new interface to properly simulate
this class of users.

♦ Novice users
This class of users represents users that use a given program for
the first time. Background knowledge may be limited, although
some motivation to use the program should exist. Given the way
computers have infused almost all levels of society, it is reasonable
to assume basic computer experience. For information searching
interfaces, a good example of a novice user could be a first-time
visitor to a web-based system.

Having discussed both which kinds of information that can be gathered
as well as the issue of choosing test subjects, I now turn to the actual
methods by which evaluation can be carried out.

40 Chapter 3 Evaluating user interfaces

3.4 Methods of evaluation
This section presents a brief overview of six different evaluation
methods serving as a methodical foundation for usability evaluations
presented in later chapters. These six methods were selected on the basis
of a review of existing methods, in particular as presented in (Preece
et al., 1994), (Nielsen, 1993), (Shneiderman, 1997), (Dix et al., 1998) and
(Preece et al., 2002).

The six evaluation methods described in this section:

♦ Performance measurement
Having test subjects perform tasks using the given interface while
collecting data on one or more metrics.

♦ Questionnaires
Recording user responses to a set of predetermined questions.

♦ Logging
Automatically record actions taken by the user.

♦ Inspection
Experts examine design or implementation and predict usability
problems.

♦ Interviews
Recording user responses to questions asked by an interviewer.

♦ Observation
Test subjects are observed (or recorded on video and/or audio)
while performing tasks using the given interface.

Other evaluation methods, including interpretive evaluation (Preece
et al., 1994), acceptance tests (Shneiderman, 1997) and focus groups
(Nielsen, 1993), were either closely related to the methods I have
covered or not too relevant given my purpose and constraints (available
resources, domain, etc.).

For evaluation methods which requires test subjects, an important choice
is deciding whether to use between-subject or within-subject design
(Mitchell and Jolley, 2001). With between-subjects, any given user only
tests a single interface. In effect, this means that the test subjects are
partitioned into groups with one group per interface. This can be prob-

3.4 Methods of evaluation 41

lematic if two or more groups are very different, for example one consist-
ing of mainly negative individuals while another has mainly positive.
Obviously, this might skew the results.

This problem is solved with within-subjects as each interface is tested by
all test subjects. However, one must take care to avoid being subject to
order effects – performance results dependent on the order in which the
interfaces are tested. For example, if time to complete a specific
operation is measured for several interfaces, one would expect the
results to improve as the test goes on simply due to training – regardless
of the actual usability of the tested interfaces. Such and similar order
effects can be reduced by taking care when deciding the ordering.

One alternative is randomized within-subjects design where the order is
randomized for each participant. This also removes any ordering bias on
part of the test giver. Unfortunately, it is still possible to get ordering
effects if one particular order is drawn more often. Counterbalanced
within-subjects design (Mitchell and Jolley, 2001), on the other hand,
makes sure to cancel order effects completely by assigning all subjects
(randomly) to equal-sized groups. Members of each group test the inter-
faces in a particular order such that on the whole, each interface is tested
first, second, etc. an equal number of times.

With this in mind, I now turn to a presentation of different evaluation
methods, including references to actual evaluations of systems for
accessing information where they have been used.

3.4.1 Performance measurement
In this method, test subjects are instructed to perform specific tasks for
which one or more metrics are measured. A large number of such metrics
can be imagined – some applicable for interfaces in general and some
specific for information searching systems. Examples of the former
include time used, errors made and number of interactions, while
average precision1 and average recall2 are examples of the latter. To use
this method, it is common first to define a hypothesis that one wishes to
examine and then select test subjects and tasks to match.

1. Precision: “[...] fraction of the relevant documents [...] which has been
retrieved.” (Baeza-Yates and Ribeiro-Neto, 1999)

2. Recall: “[...] fraction of the retrieved documents [...] which is relevant.” (Baeza-
Yates and Ribeiro-Neto, 1999)

42 Chapter 3 Evaluating user interfaces

The quantitative nature of the results of this method means that it is well
suited for comparison purposes. This has made it a popular choice for
research publications. However, as some metrics can be ill-suited for
automatic measurement, the method can be quite labour-intensive.

While performance measurement can be performed with test subjects of
all categories, it is in my option not too well suited for novices. A com-
pletely untrained user will after a short time reach a certain level of fa-
miliarity with the subject. This makes it difficult to compare the results
from the first part of the session with the last part – especially a problem
with evaluations which compare several interfaces. A brief training
session will therefore improve the reliability of the results.

A good example of the use of performance measurement was presented
in (Yen and Scamell, 1993). This study presented an experimental com-
parison of SQL1 and QBE2. In total, 65 test subjects were used – all of
them students taking a database course. Each of the subjects were given
training over a period of four weeks. As is discussed later in
Section 3.5.1, this comparatively high number of subject and the long
training period, both improve the reliability of the results. The actual
test consisted of having the subjects construct queries both on paper and
on-line. Both the correctness of the queries and the time used to code and
debug them was measured. This allowed for a detailed statistical analysis
of a number of different tasks. On this basis, they concluded that QBE
was in general easier and faster to use than SQL.

3.4.2 Questionnaires
Questionnaires are most often used to measure the subjective reactions
of test subjects after exposure to the system in question. In addition,
questionnaires also include questions aimed at establishing the back-
ground knowledge of the test subjects. An example of a much-used ques-
tionnaire for interface evaluation, is QUIS: The Questionnaire for User
Interaction Satisfaction (Chin et al., 1988).

Typically, the individual questions are closed – i.e. ask the user to select
from a set of predefined responses. An example of a closed evaluation
question is shown in Figure 3.2. Alternatively, questions can be open –
that is allowing the user to compose a free-form response. This will result
in qualitative rather than quantitative response and make the question-
naire unsuited for large test populations due to the manual work needed

1. Structured Query Language – See Section 4.2.1.
2. Query By Example – See Section 4.2.2.

3.4 Methods of evaluation 43

to summarize the results. In practice, most questionnaires I have found
have used closed questions.

At least for closed questions, questionnaires make it possible to measure
the reactions of comparatively large groups. With smaller groups, other
methods might give the designer more detailed feedback. On typical
example is when experts are used as test subjects. Still, questionnaires
are a reasonably universal method – generally suitable for all types of
test subjects.

(Hibino and Rundensteiner, 1997) is an example of an evaluation of in-
terfaces for accessing information where questionnaires are used. The
test was a comparative analysis of two interfaces using 20 test subjects. A
questionnaire (a subset of QUIS) was used to record subjective reactions
after each test subject had completed a number of tasks. The questions
were organized in five groups and the paper present average ratings for
each of these groups (overall reaction, learning, screen, terminology and
system capabilities) as well as a total average. Further, a post-hoc
Scheffé analysis (Scheffé, 1959) was used to detect if the differences in
user satisfaction can be seen as significant.

3.4.3 Logging
In this method, the software being tested automatically records (logs)
actions taken by the user. These recorded actions can then later be
analysed by the interface designers to get an indication as to how the ap-
plication was used – i.e. which options were used or left unused, the
timing between actions etc. (Helms et al., 2000).

One way of using logging, is to record only a few aspects of the interac-
tion – for example the frequency and types of error messages displayed.
This could help the designer to identify potential usability problems by
pointing out the dominant error situations. Alternatively, one can record
complete logs, recording everything the user does – every keystroke and
every mouse action. This way it becomes possible to completely recreate
a session. Unfortunately, the amount of information gathered using
complete logging prohibits large scale testing as log analysis becomes
very time consuming.

3.1 Overall reactions to the system: terrible wonderful
 1 2 3 4 5 6 7 8 9 NA

Figure 3.2 Example of a closed evaluation question from QUIS.

44 Chapter 3 Evaluating user interfaces

The fact that this method is highly automated means that it can be
applied to a large number of users effortlessly. However, it raises some
difficult issues regarding privacy – especially if data is gathered without
the consent of the users. Also, knowing interaction is being logged will
probably affect the performance of the test subjects. This problem is on
the other hand shared with most other methods of evaluation.

By its virtue as a quantitative method suited for automation, logging can
be used for larger groups. As for questionnaires, more qualitative
methods might work better for smaller groups. Also, logging is not really
suited for experts. The whole idea is that logging allows you to study
large groups without having individuals expressing their feelings and
thoughts toward a system. With experts, feelings and thoughts are
exactly what you want and what experts are (at least usually) good at ex-
pressing.

3.4.4 Inspection
User interface experts can be of great help in the development of new in-
terfaces. Inspections or expert reviews are the most common evaluation
methods used to utilize this source of knowledge. By inspecting a proto-
type, an experienced professional can predict usability problems that
will affect all classes of users. Heuristic evaluation (Nielsen and Molich,
1990) is a common inspection technique in which the evaluator checks
how the given interface agrees with established user interface heuristics.
Many such heuristics and guidelines have been presented earlier in
Section 2.2.

Other methods for expert evaluation include walk-throughs and conform-
ance checks. Using walk-throughs, the evaluator performs typical tasks
and records any usability problems on the way. Conformance checks, on
the other hand, is used to verify if an interface conforms to a given
standard or to check for internal inconsistencies.

As experts are a limited resource, inspection methods are typically
performed with few test subjects, often colleagues. They therefore
require few resources and are fast to use. These characteristics make
them especially useful during development as they can be performed at
the same time as fundamental choices are made. Inspection methods are
also useful to verify other evaluation procedures before they are imple-
mented. Such pilot studies can help detect potential methodical
problems and thus improve the validity and reliability of the main evalu-
ation.

3.4 Methods of evaluation 45

Even though experts are experts for a reason, it may be dangerous to rely
on them solely for evaluation. As discussed earlier, the characteristics of
user groups can vary greatly and it can be difficult even for an expert to
predict how a given group is likely to react. Another negative factor is
that professional pride might make interface designers less likely to
listen to advice given by their peers. Some persons tend to take negative
feedback personally and easily turn defensive. This may not only limit
the number of advices taken, but also the number of advices given. In my
opinion, inspections should therefore be used as a supplement to other
methods.

(Plaisant et al., 1999) describes a user evaluation in which inspection
played a important role. In this study, expert user review was used to get
feedback as to the usability of a prototype before a larger evaluation was
conducted. The prototype in question was a query preview (see
Section 4.2.6) interface to search in data from NASA’s Earth Observing
Systems – Data Information Systems project (EOSDIS). For the expert
review, 12 NASA earth scientists was asked to use the prototype. Each
review consisted of a group of two or three evaluators and one observer
and lasted for about 1,5 hours. No training was given. As is typical for in-
spections, the evaluators did not only give feedback as to their own
feelings toward the interface, they were also able to use their experience
to predict how other users would react (“Others remarked that some
users would ...”). As a result of this evaluation, (Plaisant et al., 1999)
states that at least one important change was made to the prototype.

3.4.5 Interviews
Interviews are fairly similar to questionnaires in that both are most often
used to gather the opinions of test subjects after they have used the
program. The difference is, of course, that interviews are direct conversa-
tions between subject and interviewer rather than communication using
textual questionnaires as an intermediator.

This makes interviews a highly dynamic form of information gathering as
the interviewer can change the course of the interview as he or she sees
fit. By adjusting the questions dynamically, the interviewer can remove
any ambiguities and follow up on especially interesting answers. This is
impossible with questionnaires where the questions are predetermined.

The flip side is that interviews are far more time consuming than ques-
tionnaires. While answering questions on paper can be done by the test
subjects on their own, interviews require the interviewer to spend time

46 Chapter 3 Evaluating user interfaces

with each subject. As the results are qualitative rather than quantitative,
manual analysis is also required. Also, interviews is vulnerable to bias.
The interviewer can (unintentionally) influence the subject, either
directly with wording of questions and comments or indirectly using face
expressions, general posture, etc.

As for suitable test subjects, interviews are a reasonable universal
method. Novices might however have problems expressing themselves in
a manner that is easily understood as they lack the reference frame more
experienced users have. Thus, observation might be more ideal here.
Also, as far as experts are concerned, the difference between interview
and inspection can often be vague.

3.4.6 Observation
The aim of this method is to gain insight into how users interact with an
existing product or prototype by examining its actual use. Usually this is
done by so-called direct observation where the test subject is watched by
an observer or a camera. This can either take place in a controlled labo-
ratory environment or more informally in the users’ own setting.

Pure observation can be improved upon by asking the test subject to
describe what she is thinking while the test is being performed. This
method, called think aloud (Nielsen, 1993), (Preece et al., 1994), allows
the observer not only to see what the user is doing, but also to under-
stand the motivation. Interestingly enough, this method also has its use
when the user stops describing her thoughts. This typically indicates that
the user is using her whole mental capacity to cope with the interface –
nothing remains to keep the dialogue going. Thus, a mental breakdown –
a passage requiring too much mental processing has been found. This is
typically a good indication of an aspect of the user interface that needs to
be improved.

As human interpretation is required when this method is used, it is quite
labour intensive and thus not suited for large groups. Another weakness
is that the results are very much dependent on the subjective judge-
ments done by the observer – and therefore open for bias. Observation is
however great for gaining an understanding of how a user interface is
perceived and used.

I find this method to be applicable to users of all categories, but espe-
cially suited for novice users. For many applications, the initial response
of users is of great importance for its success – this is particularly true for

3.4 Methods of evaluation 47

web-based applications where it is so easy to reach competitors.
Observing the initial actions of a new user on a new system can therefore
support the development of more successful interfaces.

Observation is a very popular method for usability evaluation, probably
due to the value of qualitative feedback early in a development process
and the ease in which this method can be combined with other evaluation
methods.

A typical example of the use of observation is described in (Hearst and
Pedersen, 1996). The presented evaluation was of a single interface
based on the Scatter/Gather paradigm. The actual study consisted of four
graduate students executing 13 queries in an otherwise empty room
while being recorded by video camera. After a 10 minute demonstration
and a 10 minute warm-up phase, the subject was instructed to find as
many documents as possible in 30 minutes that matched the given query.
The resulting video recordings appear to largely have been used to
clarify results gained from the concurrent performance evaluation.

3.4.7 Concluding remarks
While several of the six evaluation methods described above can be
employed for a variety of uses, I find it helpful to conclude this presenta-
tion by looking at how they relate to each other. One way of doing this it
to classify them according to their most suited type of test subjects (see
Section 3.3) and the type of data given (see Section 3.2). My classification
is shown in Table 3.1.

It should be emphasized that this classification is by all means not clear-
cut – it only represents what I find to best fit each method.

Quantitative data Qualitative data
Expert users Performance

measurement /
Questionnaires

Inspection
Casual users Interviews

Novice users Logging /
Questionnaires

Observation

Table 3.1 Methods of evaluation classified according to available test subjects
and type of data gathered.

48 Chapter 3 Evaluating user interfaces

3.5 Potential pitfalls
As with all other experiments or observations, user evaluations have
several potential pitfalls that might invalidate results. To improve the
quality of evaluations, it is therefore useful to have an understanding of
these pitfalls in advance. Typically, the causes for inaccurate or invalid
results are spilt into two groups, reliability concerns and validity concerns
(Nielsen, 1993).

3.5.1 Reliability
Reliability describes the level of certainty in a set of results. If the result
of an evaluation is reliable, it is very likely that repeating the evaluation
would give very similar results.

One of the major sources for unreliability, is the use of humans as test
subjects. As no two humans are alike, having a small group representing
the population as a whole is bound to introduce an element of inaccu-
racy. The selected test subjects might for example be faster, brighter or
more positive than the average user and thus paint an erroneous picture
of the application evaluated.

There are several ways to reduce the extent of this problem. Increasing
the number of subjects is a simple solution, but the increased cost might
be prohibitive. Alternatively, one can screen prospective test subjects
using a background survey to improve the chances of having a represent-
ative test group. Choosing evaluation methods such as comparative eval-
uation of similar products, also helps as these methods are not that
influenced by the overall attitude of the test subjects.

For quantitative evaluations, statistic computations can assist in
asserting the level of reliability of the results. Typical quantities used are
standard deviation and confidence intervals. Both are of course impossi-
ble to use for qualitative data. Reliability is therefore typically of even
greater concern for methods such as observation where it is difficult to
get even an indication as to the degree in which the data is reliable.

An added factor for observations, is the role of the observator. As the ob-
servator is human, observations are subjective descriptions. Thus,
several observators might have different observations of the same event.
Thus, the use of several observators can make intersubject comparisons
difficult.

3.5 Potential pitfalls 49

The reliability problems stemming from using humans as evaluators and
test subjects, are typically the introduction of random error (Mitchell
and Jolley, 2001). But, reliability problems can also be caused by more
systematic distortions of the results. This might for example be an obser-
vator being predisposed to finding what he or she expects to find.
Another source for trouble is the Hawthorne effect (Mayo, 1933). The
Hawthorne effect states that simply showing concern for users' situation
improves their performance. Thus the fact that users know that they are
being observed could in itself limit the reliability of the findings.

3.5.2 Validity
While reliability addresses the degree in which a test result can be
trusted, validity is looking at if what was tested was relevant. For
example, a performance measurements results of the use of a query
system might be perfectly reliable and reproducible. However, this will
not help much if the group consisted of expert users and the target
audience for the query system was novices. Designing an evaluation
suitable for the intended user environment is therefore necessary. This
includes both selection of methods and test subjects.

Most evaluation methods include a part where users perform given tasks
using the interfaces to be evaluated. Because these tasks have to be
selected by someone, it is quite possible to introduce bias. For example,
long tasks that might be representable for natural use of a product, are
usually excluded because of time constraints. Other biases include only
selecting tasks that the evaluator deems “interesting” or selecting tasks
based on limited domain knowledge. Such biases can hurt the validity of
the evaluation by introducing a mismatch between the objective for the
evaluation and what is actually evaluated.

In (Cordes, 2001) R. E. Cordes argues that perhaps the most important
bias is only selecting tasks that the product supports. It is of great
concern to end-users if a given operation is supported by a product or
not, and this aspect is usually missing from evaluations. By only assigning
tasks that can be performed, the degree of feature-completeness is not
evaluated at all. Cordes suggests that the usual product-supported tasks
should be supplemented with user-defined tasks in order to better take
into account the users’ requirements and expectations.

50 Chapter 3 Evaluating user interfaces

3.6 Summary
The purpose of user interface design is to improve the interaction
between human and computer. As no two humans are identical, no
universal and objective measurements of interface quality exist.
Usability evaluation therefore serves an important role in making it
feasible to discuss the characteristics of user interfaces. The different
methods presented in this chapter thus represent necessary background
knowledge when I now turn to interfaces for information searching.

51

Chapter 4

Accessing information

The previous two chapters have presented an introduction to user inter-
faces and to usability evaluation. Both these chapters have focused on
user interfaces in general. In this chapter, I turn to interfaces for
accessing information and present a general state-of-the-art overview of
such interfaces.

I start in Section 4.1 by discussing different strategies for information
access. This serves as an introduction to the main section, Section 4.2,
where I present an overview of existing user interfaces for accessing in-
formation in order to examine different existing approaches and get a
better understanding of the domain. On the basis of the descriptions of
the various interfaces, I in Section 4.3 identify what I find to be the key
challenges for designing such interfaces. Finally, Section 4.4 gives a short
summary of chapters 1-4, which together form the background for the
work presented in the following chapters.

4.1 Different strategies for information
access

Imagine the following two information needs:

♦ Who was British prime minister in 1936?

♦ What are the interesting sport news today?

It is evident that they represent two quite different ways of seeking in-
formation. The first concerns a single, specific and objective fact, while
the second is both more vague (what is sports?) and subjective (interest-

52 Chapter 4 Accessing information

ing to whom?). Not surprisingly, different strategies might be required in
order to fulfil these and other information needs. The first will probably
be best satisfied by entering precise query terms while the second could
perhaps better be served by browsing different information sources.

The issue of different strategies for information access is important to
consider when designing an interface as each strategy may have
different requirements. For example, locating an object using known
property values requires an interface that lets the user express these
values, while this will not be of much use to users with more vague infor-
mation needs. Therefore, the designer needs to decide if a given strategy
should be supported and if so, to what extent.

Different strategies should also be considered when designing usability
evaluations. As not every interface is equally suited for all types of
searching, several strategies should be tested in order to give a more
valid and complete picture of the characteristics and performance of
each tested interface. This has been addressed earlier in Section 3.5.2.

Several different ways of classifying strategies have been published. In
(Baeza-Yates and Ribeiro-Neto, 1999) Marti A. Hearst describes the
methods that a user interface for accessing information repositories
should support:

♦ Browsing
Casual, undirected exploration of one or more information struc-
tures. Example: Reading a web-based newspaper and using hyper-
links to read news stories that appear interesting on the spur of
the moment.

♦ Querying
Producing new, ad-hoc collections of information objects. Exam-
ple: Querying an information collection for objects related to a
specific term.

♦ Navigating
Following links towards a clear goal using a sequence of scan and
select operations. Example: Using a hyperlinked news archive to
locate a specific story.

♦ Scanning
Systematic examination of a single information structure. Exam-
ple: Reading link titles on a map of a web site.

4.1 Different strategies for information access 53

This classification has a lot in common with the one published by Bates
(Bates, 2002). She refers to navigation as linking and to querying as
directed searching, but the terms are otherwise comparable.

Shneiderman (Shneiderman, 1997), on the other hand, has a classifica-
tion which focuses more on what type of information a user is looking for,
rather than the strategy used to find it. He identifies two types of fact
finding tasks. The first, specific fact finding is looking for a single, narrow
piece of information that is known to exist – such as the author of the
Harry Potter books. The second, extended fact finding concerns items that
are not known to exist but where the outcome is replicable. An example
could be find movie directors that have received more than two Oscar
awards.

Beyond fact-finding, he defines the task of identifying the possible
existence of an information item as exploration of availability. An
example could be to try to determine if any earthquakes in Africa have
been reported last year. The fourth and final task identified by Shneider-
man, is called open-ended browsing and is similar to what is denoted as un-
structured exploration in Hearst’s classification.

A different classification is given by O’Day and Jeffries (O’Day and
Jeffries, 1993). They interviewed 15 clients of professional intermediar-
ies in order to discover how they gathered information. Based on analysis
of these interviews, they were able to identify three different “search
modes” (or strategies):

♦ Monitoring a topic or a set of variables over time.

♦ Following an information-gathering plan based on the task at
hand.

♦ Exploring a topic in an undirected fashion.

Which ever way one chooses to classify strategies for information access,
simply supporting one strategy might be too limiting. Supporting a
multitude of strategies, if at all possible, will provide the user with more
ways to reach his or her goal and therefore make the capabilities of the
interface less of a limiting factor.

54 Chapter 4 Accessing information

4.2 Overview of existing interfaces
In the remainder of this chapter I seek to gain a deeper understanding of
interfaces for accessing information by locating and discussing key
design issues. As the first step towards this goal, this section contains an
overview of existing interfaces. Rather to present several similar inter-
faces, I have chosen to focus on different approaches and have therefore
organised this section on capabilities rather than concrete implementa-
tions.

For each of these categories, I present a brief general introduction
before I examine a concrete implementation is some detail. Based on this
description, I discuss the capabilities of the implementation and the key
issues highlighted. In Section 4.3, these key issues are collated and
expanded upon.

The following categories are examined:

♦ Textual query languages

♦ Query-by-example

♦ Forms

♦ Content-based multimedia queries

♦ Information retrieval

♦ Dynamic query & query preview

♦ Natural language queries

♦ Category browsing

4.2.1 Textual query languages
Textual query languages are the natural extension of command entry in-
terfaces into the domain of information access. Thus, these interfaces
share the characteristics, advantages and disadvantages of command
entry interfaces as presented in Section 2.3.1.

Perhaps the best example of a textual query language is Structured
Query Language (SQL) (ISO/IEC, 1992). It has become a de-facto
standard for both querying and updating relational databases. Supported

4.2 Overview of existing interfaces 55

by almost every database vendor, SQL is both an ANSI and an ISO
standard. For an in-depth description of the latest SQL-standard, see
(Melton and Simon, 2002).

Many different ways of accessing a database using SQL exist, however in
this discussion I use Oracle SQL*Plus1 as an example of a SQL front end.
Figure 4.1 illustrates the SQL*Plus user interface which consists of a text
window where SQL commands can be entered interactively. The result of
each command is displayed in the same window.

In order to use SQL*Plus successfully, the user is required to learn and
recall the strict SQL syntax and input textual commands. This makes it
apparent that SQL*Plus, as most command entry interfaces, is more
suited for expert users rather than a novices. Users have the power to
express a query of any complexity on any available attribute, but this
power is only available to those willing spend the time required to
master the query language.

1. Oracle Corporation, http://www.oracle.com/database/

Figure 4.1 Oracle's SQL*Plus.

56 Chapter 4 Accessing information

Even learning the query language is not enough. As SQL*Plus provides
direct access to all details in the database, learning the data model is
pretty much also required in order to use SQL efficiently. The difficulty
of this task will of course be highly dependent on the complexity of the
data model.

Further, as SQL is based on using boolean expressions, it is pretty much
impossible to use SQL for anything beyond exact queries. Browsing, ex-
pressing uncertainty, etc. is very difficult to perform.

4.2.2 Query-by-Example
Query-by-example (QBE) is a relational database language originally
published by Moshé M. Zloof (Zloof, 1977). QBE has been implemented
in several database systems – Figure 4.2 shows an example from
Microsoft Access1. Similar to SQL, QBE is not only a query language, but
can also be used to enter data into the database.

As the name suggests, QBE is designed to have database interaction be
done by having the user provide examples of the solution. Actual queries
are specified by filling out a two-dimensional skeleton table. Figure 4.2
shows a query for the name of all employees in the toy department which

1. Microsoft Corporation, http://office.microsoft.com/home/default.aspx

Figure 4.2 Query-by-example from Microsoft Access.

4.2 Overview of existing interfaces 57

has a salary of more than 10000. This was done by selecting all relevant
attributes and specifying restrictions (>10000 and “TOY”) for Salary and
Dept attribute.

Although newer implementations of QBE use some direct manipulation
features, form-fill is still the major interaction style (see Section 2.3.3 for
general form-fill characteristics). This helps QBE to mimic manual table
manipulation, but makes complex queries difficult due to the amount of
screen space required.

In contrast to SQL, QBE makes it possible to construct queries without
first learning a query language. This makes it easier for non-program-
mers to use QBE (Yen and Scamell, 1993). Thomas and Gould (Thomas
and Gould, 1975) reported that less than three hours of instruction is
needed for casual users to acquire the skill necessary to make “fairly
complicated queries”. Three hours is however still far too long to make
QBE suitable for environments where providing training is difficult (web
based interfaces being the token example).

As QBE is a database language and the actual implementations can vary
greatly, it is difficult to present general characteristics. However, its
reliance on boolean expressions in the construction of search constraints
makes anything but exact queries difficult. It also seems reasonable to
expect the usability of QBE to not scale too well with the complexity of
the data model. As the end users always operate directly on the data
model, the complexity of the data model will be visible to the users. If the
end users instead operated on some abstraction of the data model, the
complexity could be masked by the interface designer.

4.2.3 Forms
Forms is a very direct application of the form-fills interaction style
described in Section 2.3.3. Figure 4.3 shows an example from BIBSYS – a
Norwegian bibliographic database for university and college libraries.

58 Chapter 4 Accessing information

A query form consists of several structured fields with each field
typically having a closely defined domain (for example publication title,
year, subject etc.). The user fills in one or more of these fields with query
expressions and clicks “Search” (or similar) to execute the query.
Typically the result will be items that satisfy all the query expressions,
but some forms allow the user to choose between “all of these” and “any
of these”.

If the form fields are well chosen and understandable to the user, query
forms make it possible to construct precise queries in an user-friendly
manner without having to learn complex query languages or know the
details of the data model queried. But if the meaning of the fields are not
evident, or if the number of fields is very large, users are easily forced to
use hit-or-miss strategies in order to find the correct field.

Compared with SQL and QBE, forms does not expose the users to the
data model. This complexity of this model can therefore be hidden from
the end user simply by restricting the number of fields presented or by
mapping more than one property in the data model to a single query
field.

Figure 4.3 Forms-based query interface from www.bibsys.no.

4.2 Overview of existing interfaces 59

4.2.4 Content-based multimedia queries
The meaning of multimedia data types, such as images, audio and video,
is highly dependent on the viewer and is the result of a high-level
cognitive process difficult to recreate in a computer. This makes multi-
media repositories difficult to support for information access tools.
Therefore, it is common to describe complex data types by manually
attaching textual annotations which in turn can be used for accessing the
data (for example by textual queries).

An alternative approach is to investigate which kinds of information that
can be automatically extracted from multimedia, and subsequently
design matching query systems. For images, this could for example
include average colour, major shapes, etc. This method is dubbed
content-based queries.

One of the most prominent content-based image and video retrieval
systems, is Query by Image and Video Content (QBIC) (Flickner et al.,
1995). QBIC is currently a part of IBM's DB2 Universal Database1 and is
in use on several web sites like the one shown in Figure 4.4.2

1. IBM Corporation, http://www-306.ibm.com/software/data/db2/
2. The State Hermitage Museum, http://www.hermitagemuseum.org/

60 Chapter 4 Accessing information

The QBIC system allows the user to generate queries based on example
images, user-constructed sketches and drawings, or selected colour and
texture patterns. Queries made using either of these methods are sent to
an image database system. The images in this database must already
have been preprocessed to extract information about features such as
colour, texture and shape as such extractions are too computally
expensive to be done in real time. Similar computations are made in real-
time on the user-supplied query before these two sets of feature descrip-
tors are compared to produce the query result.

Figure 4.4 QBIC Layout search – from The State Hermitage Museum.

4.2 Overview of existing interfaces 61

In addition to images, QBIC also handles video data. This is done by first
partitioning a video into shots and then extracting representative frames
for each shot. These frames are handled in the same way as regular
images, with the exception that object movement can be tracked in time
and thus allows movement to be used in queries.

QBIC's query interface is based mostly on the direct manipulation inter-
action style (see Section 2.3.5). The “layout search” consists of a drawing
area, a colour chooser and a drawing toolbox. Here users can draw
sketches to be used for querying much in the same way as one uses
drawing programs. This approach is illustrated in Figure 4.4.

An alternative interface used to specify colour queries is shown in
Figure 4.5. After the colours of interest have been selected and added to
the right side bar, the area of each colour band can be adjusted (by direct
manipulation dragging) to indicate their respective weight.

The two interfaces described above are clearly more suited for querying
than browsing. However, QBIC also offers the possibility of using a given
image (for example from the previous result) as input to a new query.
This feature makes browsing through an image collection easier than it
otherwise might be, and makes QBIC support browsing at least to some
degree. Still, this interface is focused on recall rather than recognition –
if you can not describe (or in this case draw) the image you are looking
for, it is difficult to be successful.

Figure 4.5 QBIC Colour search.

62 Chapter 4 Accessing information

Problems associated with large results are reduced by QBIC’s ability to
rank query results. This is made possible by evaluating the degree in
which each image matches with the query expression and sorting them
accordingly.

4.2.5 Information Retrieval
With respect to retrieval systems, it is customary to separate data
retrieval from information retrieval (Baeza-Yates and Ribeiro-Neto, 1999).
While these two terms are not exactly defined, the former usually refers
to retrieving data which satisfy a clearly defined condition – examples
include both SQL, QBE and Forms. The latter is most often used to
describe systems where information is retrieved from (unstructured) doc-
uments. As these documents typically contain natural language and thus
semantically ambiguous text, it is impossible for the retrieval system to
be completely accurate. It therefore has to support interpreting of
documents and ranking them according to their relevance with respect to
the user query. This of course has consequences with regards to the user
interface – both for query specification and presentation of results.

The tremendous growth of the World Wide Web the last decade has
spawned renewed interest in information retrieval. With the number of
available documents on Web increasing at an alarmingly rate, on-line
tools for searching the web have become more and more necessary.
Google1 (Brin and Page, 1998) is one of the most popular of these. Other
web searching tools include AltaVista2, AllTheWeb3 and Excite4. As all
these tools function in a fairly similar manner and provide good example
of user interfaces for information retrieval systems, Google is used as an
example in this text.

Google’s main interface is shown in Figure 4.6. This simple interface
consists of a text entry field for the query expression, a “Google Search”-
button for starting the search and an “I’m Feeling Lucky”-button that
brings the user directly to the first web page in the search result. The
query expression can consist of one or several words – Google will auto-
matically use the boolean AND operator between the individual words
listed. It is also possible to perform a phrase search by putting the query
expression in quotation marks.

1. Google, http://www.google.com
2. Overture Services Inc., http://www.altavista.com
3. Overture Services Inc., http://www.alltheweb.com
4. The Excite Network, http://www.excite.com

4.2 Overview of existing interfaces 63

To also cater to the needs of more advanced users, Google provides an al-
ternative “Advanced search” interface shown in Figure 4.7. This form-fill
(see Section 2.3.3) interface both includes possibilities for fine tuning of
a query and alternative functionality like similarity based search.

Figure 4.6 Google.

Figure 4.7 Google – Advanced search.

64 Chapter 4 Accessing information

Figure 4.8 shows how results are presented in Google. For each hit the
passage containing the query expression is extracted and shown with
query words highlighted. A click on the heading will take the user to the
listed web page while “Similar pages” can be used to start a similarity
based query.

In order to fit the web user environment, Google has clearly been
designed for users with little prior knowledge of searching and thus
offers a simple and intuitive interface. Google also functions very
similarly to its competitors, making it possible to draw upon experience
gained using other alternatives. Advanced options are available, but
these are only available upon request so that they do not clutter the main
interface.

Google conforms to the standard model of information access interac-
tions described in (Baeza-Yates and Ribeiro-Neto, 1999). According to
this model, users start by issuing a query to the system. The system then
performs the search and sends the result back for evaluation. If the
result does not contain the sought objects, the user can reformulate the
initial query and start the query-process all over again. In latter imple-
mentations of Google, this process has been extended to include the pos-
sibility to search within results.

Although this model is familiar to most users, it has some shortcomings.
For example, large result sets can pose problems as the relevant parts
can be hidden among heaps of irrelevant data with little or no means to
separate them. Intelligent ranking algorithms have therefore been a hot
topic lately and this effort has arguably somewhat reduced the problem.

Figure 4.8 Google – Result presentation.

4.2 Overview of existing interfaces 65

As Google relies on exact match search, relevant information can easily
be missed due to misspellings or the use of synonyms. Google also does
not include a word stemmer. On the other hand, the lack of features for
relaxation of search constraints is understandable as they are difficult to
implement when the query expression is not restricted to a single
language. A related problem is the lack of expressive power. As the
documents you can search using Google are unstructured, it is impossible
to construct queries such as “find all documents concerning cancer
written by N.N.”. This kind of information is simply not available to the
query engine.

4.2.6 Dynamic queries and query preview
The motivation behind the design of dynamic queries was to apply the
highly successful direct manipulation paradigm (see Section 2.3.5) to
database querying (Shneiderman, 1994). Before dynamic queries, most
querying interfaces had been based on the command line entry method –
a method which had proved error prone and difficult to learn. In
contrast, dynamic queries allow users to construct queries by using
graphical widgets such as sliders and buttons and see the result dynami-
cally updated accordingly (hence the name dynamic queries).

Figure 4.9 shows the “Dynamic HomeFinder” (Williamson and Shneider-
man, 1992) one of the earliest dynamic query applications. It was
designed to help users locate homes based on cost, features and distance
to user-specified locations. As the user adjusts these attributes using the
right-hand controls, the matching available homes is highlighted on the
map.

66 Chapter 4 Accessing information

Designed as a direct manipulation interface, dynamic queries exhibit
features such as continuous visual representation of objects, rapid and
reversible operations and immediate feedback. Studies (Ahlberg et al.,
1992) have shown significant improvements in user performance
compared to form-fill interfaces.

One of the strong points of the dynamic query interface, is that it handles
complex data models well. This is due to the fact that the interface
presents an simplified abstraction of the data model rather than the
gritty details of the model itself. As this makes it unnecessary for users to
learn the data model, the challenge is rather for the interface designer to
make the proper abstraction. This feature is ideal for casual users,
making dynamic queries fitting for web-based applications.

Figure 4.9 Dynamic HomeFinder.

4.2 Overview of existing interfaces 67

The downside of working on an abstraction provided by the designer, is
that not all imaginable possibilities for operating on the result will be
available. Specifying other restrictions than what there are provided
interface controls for in Figure 4.9, is not possible. Thus, some expressive
power is typically lost to gain increased usability.

Dynamic queries are also reasonably well suited for handling large result
sets. At interface level, the ability continuously to monitor the result
while the query specification is adjusted, makes it possible to evaluate if
the size of the result is low enough to make manual browsing and
scanning feasible. It is however not given that any query always can be
adjusted so that the result set becomes small enough – especially since
the attributes used for restrictions are predetermined and not subject to
a dynamic analysis. Thus, users might at some level be forced to resort to
manual browsing before they really want.

In order for the users to experience the updating of result as truly
dynamic, it is important that a certain level of interface responsiveness
can be achieved. In broad terms, a response time of less than 100 ms is
desirable (see Section 2.2 for a discussion of responsiveness).

The first implementations of dynamic queries proved to have difficulties
with handling of large result sets simply because such short response
times could not be achieved. This problem was alleviated to some extent
by the development of specialized data structures and algorithms (Tanin
et al., 1997), but performance still remained an issue. This lead to the de-
velopment of query previews.

The concept of query previews was originally introduced in (Doan et al.,
1996) and extended in (Plaisant et al., 1999). Query preview is the first
phase in a refined two-phase approach to dynamic queries. This first
phase allows users to formulate an initial query by selecting desired
property values while simultaneously being shown the volume of
matching data. This is made possible by pregenerating a volume preview
table that indicates the number of data sets for each property value and
intersections. Thus, the first phase is really not that dynamic as the
display is based on pregenerated data. This phase is illustrated in
Figure 4.101. In the second phase, query refinement, actual metadata is
collected from the database to be used in a dynamic query interface (as
described above). Using this two-phase approach, the performance of
dynamic queries was greatly improved.

1. http://www.cs.umd.edu/hcil/eosdis/

68 Chapter 4 Accessing information

Being an extension of the original dynamic query concept, query
previews naturally also use the direct manipulation interaction style. In
fact, the whole point with the increased performance offered by query
previews was better to conform to the rapid feedback criteria. The use of
static pregenerated data, while going a long way towards solving per-
formance problems, is less suited for very dynamic data repositories.

4.2.7 Natural language queries
The START Natural Language System (Katz, 1997) serves as an example
of a query system based on natural language. It is a World Wide Web-
based answering system designed at the MIT AI Laboratory and was first
published in December 1993. As noted in Section 2.3.4, natural language
dialogue is very difficult to do in the general domain. In its current
version START is therefore limited to answering questions regarding the
MIT AI Labs, geography, arts and entertainment, science and nature,
history and culture, and reference information.

Figure 4.10 An example of Query Preview.

4.2 Overview of existing interfaces 69

START's interface for entering queries is shown in Figure 4.111 while an
example of the result of a query is shown in Figure 4.12. As the latter
figure illustrates, START uses external sources to complement its
knowledge base. This technique, coined virtual collaboration, involves
analyzing the content of external web sites that are deemed relevant and
incorporating the central knowledge base with links to this new informa-
tion. In (Katz, 1997) START's author proposes that web publishers should
annotate their own material (including multimedia data types) so that
natural language systems such as START can index them. In this way it
could be possible to have a system that acts as “a smart reference
librarian for the World Wide Web”.

1. http://www.ai.mit.edu/projects/infolab/

Figure 4.11 The START Natural Language System.

70 Chapter 4 Accessing information

The prime reason for the development of natural language interfaces is
that these interfaces should feel more natural to users and thus easier to
operate. As discussed earlier in Section 2.3.4, this does not always work
as intended. Ambiguity can be a problem in human-to-human conversa-
tion and even more so in human-computer interaction, in part due to the
lack of any means for non-verbal communication. Another problem is the
reliance on recall rather than recognition – users must find the appropri-
ate way of wording themselves in order to use the system. It is impossible
to find something that you can not accurately express.

An integral component of natural language systems is of course the inter-
pretation of the entered query. As this phase includes relaxation features
such as word stemming and examination of synonyms, they can avoid
many of the problems associated with exact-matching boolean queries.
Further, as START incorporates links to external databases of knowl-
edge, it can be used as a hub for web browsing – not only as a straight
question-answer application.

Figure 4.12 Example of a result from a START query.

4.2 Overview of existing interfaces 71

4.2.8 Category browsing
Yahoo! is perhaps the most popular web site directory with over 1.62
billion page views per day (numbers from March 2002) (Yahoo! Inc.,
2004). Originally started by two Ph. D. students in 1994 as a way to keep
track of their personal interests on the Internet, Yahoo! now contains
thousands of web site links in any number of categories, as well as a large
number of other services.

Of special interest in this discussion is the Yahoo! Directory section. It
contains thousands of web site links divided into a number of inter-
linked, hierarchical categories. An example of a category,“Alternative
Fuel Vehicles”, is shown in Figure 4.13. Each category contains a number
of links sorted alphabetically (not shown in the figure) as well as a brief
“Most Popular” list on top. In cooperation with the category searching
feature (top right), this lessens the need for manual intra-category
searching. The interface also contains links to more general categories
(“Automotive” and “Recreation”) and more specific categories (“Biodie-
sel”, “Organizations” etc.) to make inter-category navigation easy.

72 Chapter 4 Accessing information

The interaction style used in Yahoo! is mostly menus and navigation (see
Section 2.3.2). The use of hypertext to link categories and web sites
comes natural as this is what is expected on the World Wide Web.

Yahoo! allows for several different information access strategies. As
Section 4.13 illustrates, both browsing and query components are present
on any given page and therefore highly intertwined. This makes it
possible to change the information searching strategy dynamically.

Yahoo's site directory is clearly designed with casual users in mind.
Browsing categories and subcategories are often easier than using a
search engine as you must not come up with a suitable search expression
yourself. This is, in my opinion, one of the primary reasons for the
success of Yahoo!.

Figure 4.13 Yahoo! Directory.

4.2 Overview of existing interfaces 73

However, the use of predetermined categories also has its drawbacks.
For example, Yahoo! is very much dependent on users finding Yahoo’s
way of categorizing web sites natural and intuitive. Even though an
advanced user can customize their view of the content of Yahoo! to some
extent, this is beyond the reach of casual users. They must accept and
adapt to Yahoo!’s classification to get the most out of the category
browsing.

Another problem of categorization is that only a limited amount of
content can be handled. In Yahoo!'s case, only a minority of existing web
sites is included – a much smaller fraction than what is indexed by web
search engines. Yahoo!’s category browser has therefore been supple-
mented with a standard query interface similar to what was presented in
Section 4.2.5.

♦

While the approaches and user interfaces presented above all are made
for accessing information, they vary widely in capabilities, functionality
and design. To conclude this section, I therefore present a classification
based on four of the five1 key challenges described in Section 1.2:

♦ Large information repositories
As support for such repositories is central to the overall research
question, it is helpful to identify any features the interfaces might
include in this direction.

♦ New classes of users
What I find to be the most suited target audience. The user catego-
ries are those presented in Section 3.3.

♦ Complex data models
One of the differences between the various presented interfaces I
find most evident, is whether the data model is exposed or hidden
from the user. As discussed above, this has usability consequences
if the model is complex.

♦ Different information access strategies
As discussed in Section 4.1, support for more than one strategy
might be required to fulfil different information needs.

1. The fifth key challenge, multimedia data types, is mostly relevant for the “Con-
tent-based Multimedia queries” category only, and is therefore omitted.

74 Chapter 4 Accessing information

My classification is presented in Table 4.1. Please note that as many
different implementations of the different approaches exist, I only
present what I find to be the most typical characteristics.

4.3 Key challenges
In this section, I discuss each of the five key challenges from Section 1.2
in light of the existing interfaces presented in Section 4.2. This serves
both as a conclusion to this chapter and an introduction to my own
designs and implementations presented in later chapters.

4.3.1 Large information repositories
The research question presented in Section 1.2 explicitly states that
examining the design of interfaces for information access in large reposi-
tories is the key issue in this thesis.

The size of an information repository impacts how it can be accessed in a
number of ways. Based on the presented interfaces in Section 4.2, I find
the following three facets to be most apparent:

♦ Power vs. usability
As an information repository grows, the size of the haystack
increases while the needle often tends to remain a constant. One
way of making certain that this needle can still be found, is to give

Support large
repositories

Typical target
audience

View of data
model

Different
strategies

Textual query
languages

No special
support

Expert Exposed Query

Query-by-
example

No special
support

Casual-Expert Exposed Query

Forms No special
support

Novice-Casual Hidden Query

Content-based
MM queries

Ranking Novice-Casual No model /
Hidden

Query
(browsing)

Information
retrieval

Ranking Novice-Casual No model Query
(navigation)

Dynamic query Continuous
representation

All Hidden Query
(browsing)

Natural lan-
guage queries

No special
support

Novice No model /
Hidden

Query

Category
browsing

Static category
hierarchy

Novice-Casual Exposed Browsing, navi-
gation (query)

Table 4.1 Classification of different approaches for accessing information.

4.3 Key challenges 75

the user more power to express what he or she is looking for. Inter-
faces such as SQL(Melton and Simon, 2002) and QBE(Zloof, 1977)
are well suited for this approach as they allow fine-grained control.
However, these kinds of interfaces tend to be difficult to use –
requiring much training and relying extensively on recall rather
than recognition. Dynamic query interface have taken a different
approach, sacrificing some expressive power to make the interface
usable to novices with minimal training.

♦ Handling large results
Regardless of the amount of expressive power available, query
results will sometimes be too large to make sense of with irrele-
vant items obscuring the relevant items. This issue can be handled
in several different ways. One of them is to improve the presenta-
tion of the result. Intelligent ranking algorithms is one example,
typically used in web-based information retrieval interfaces (see
Section 4.2.5). Manual controls for sorting is another example.
Another possibility is to view a result as only an intermediate
stage in the process of accessing information. The basic idea is to
use a result as a starting point for further interaction – for exam-
ple by allowing new queries within a previous result rather than of
the whole data repository. Another example is to use filters to
remove irrelevant objects from the query result.

♦ Performance
Although not a focal point of this thesis in itself, performance is an
important factor for usability – for example by limiting the
amount of processing that can be done to enhance the usefulness
of a result. For example, dynamic query interfaces has proved to
have performance problems with very large results (see
Section 4.2.6). A different example is web-based information
retrieval engines (such as Google) where it is very important that
the searchable information repository is as large as possible. This
limits number the techniques that can be used without compro-
mising performance.

4.3.2 New classes of users
Traditional user environments, such as inside a company, made it
possible to design interfaces that required an (modest) amount of
training. By knowing what kinds of users that would be using an inter-

76 Chapter 4 Accessing information

face, one could be fairly certain of their requirements, background
knowledge and experience. All this made it reasonable to design user in-
terfaces tailor made to a pretty uniform group of users.

Increased communication capabilities and the emergence of the Internet,
provide a new kind of user environment where anything that is published
potentially has a very broad user base. A casual Internet user can not be
expected to know the underlying data model (if any) or to have received
training in the use of an interface. In addition, such users will most
probably only be willing to spend a minor effort and tolerate only a few
problems before moving on. They are in other words notoriously unfaith-
ful (Nielsen, 1997).

This still comparatively new environment poses challenges to the
interface designer. Ideally, new users must be able to operate a web ap-
plication without any prior knowledge (besides some general interface
knowledge). A key example is web-based information retrieval interfaces
(see Section 4.2.5) where the interface has been made as simple as
possible (typically only a text field and a button).

Making an interface so simple that it can be used by everyone, typically
comes at an expense. For example, the expressive power tend to be quite
lower than more complex interfaces such as query languages. This could
potentially hurt an interface’s chances with expert users. Therefore some
interfaces include an advanced mode which offers greater control over
the query.

4.3.3 Complex data models
When the information repository is a database, there is by definition a
data model involved. A data model (or database schema) is a collection of
concepts used to describe the static structure of a database. According to
such a model, every object will have a number of properties, which
typically includes both attributes and relations to other objects. Complex
data models will typically have a great number of such properties.

When a database is to be searched, the values of the properties of objects
must be compared to the search criteria. Naturally, it is very important
that the correct properties are used in this process. It makes little sense
to examine an attribute which contains names of countries when the user
is searching for a person. As it is often impossible for a program automat-

4.3 Key challenges 77

ically to select those properties that are to be used in a specific query,
this task is usually delegated to the user or the user interface designer.
This poses two separate challenges:

For one thing, a data model might be seen as ambiguous or even incom-
prehensible to those that wish to access its contents. This can be a result
of imperfect database modelling, but often domain to be modelled just
does not allow a solution that is intuitive to everyone. Masking such defi-
ciencies by good interface design is not an easy task – the solution has
thus often been to train users in the understanding of the underlying
data model.

Secondly, complex data models often result in complex interfaces.
Making a streamlined and “less is more” interface which allows the indi-
vidual selection of hundreds of properties is indeed a challenge in itself.
Thus the choice is often between easy interfaces with little room for
detailed query specifications and complex interfaces where every
possible query can be made. Dynamic query is a good example of the
former, while SQL and QBE are examples of the latter.

4.3.4 Different information access strategies
As discussed in Section 4.1, several different strategies for accessing in-
formation can be imagined. In my opinion, designing an interface to
support just a single strategy, limits its usefulness. While some users can
have an almost exact idea of what they are looking for, others can just be
interested in browsing an information collection.

In addition, the user’s information need can change during a session.
Most information searching systems are designed for an interaction
model where the user first issues a query, receives the results and then
either stops the query process or restarts the process (Baeza-Yates and
Ribeiro-Neto, 1999). This might, however, not be the model that closest
corresponds to the real behaviour of information seekers.

In (Bates, 1989) Marcie J. Bates suggest an alternative, “Berry-picking”
model of information seeking. She argues that the information needs of a
user constantly change as the information searching process progresses
and that information therefore is gathered in bits and pieces rather than
in one single set. Systems for information access should therefore be able
to handle a variety of search techniques and information sources.

78 Chapter 4 Accessing information

The challenge for the interface designer is to design an interface which
seamlessly integrates several strategies – from planned querying to more
casual browsing. Browsing capabilities are of special interest to new
users as they probably lack an understanding of the contents of the infor-
mation source they are accessing. Similarly, query capabilities are of
more interest to those that know exactly what they are looking for and
master the vocabulary in which to express this information need. Some
category browsing interfaces such as Yahoo!, includes a query compo-
nent, but this often seem to have been added in afterthought and
therefore not fully integrated.

4.3.5 Multimedia data types
Searching complex data types such as images, video and audio presents a
host of unique interface challenges. A typically characteristic of complex
data types is their richness as captured in the saying “a picture is worth a
thousand words”. The problem is that these “thousand words” can be
very difficult for a computer to extract, and very time consuming for a
human to register manually (Aigrain et al., 1996). Therefore, one
typically resort to two different alternatives: Query only what can be au-
tomatically extracted or query manually registered metadata.

For the latter alternative, querying multimedia data is somewhat similar
to querying textual data. The most important difference is that several
multimedia types have a spatial and/or temporal dimension. This differ-
ence should be accounted for by for instance allowing users to specify
how the objects of interest are related in time.

Querying automatically extracted metadata offers greater challenges.
The main problem is that the extracted information, typically colour,
shape or texture, seldom have intrinsic value. Most users are more inter-
ested in more high-level features, such as the name of the persons shown
in a picture or the location where video was shot, as these are the terms
by which humans remembers such objects. The interface designer
becomes (at least partially) responsible for limiting the size of the gap
between what is available and what is useful (Rui et al., 1999, Enser and
Sandom, 2003). QBIC (Flickner et al., 1995) is an example of an interface
where the user can query automatically extracted metadata.

In addition to challenges in query specification, it can also be difficult to
visualize a search result consisting of multimedia data. Data with a
spatial dimension is naturally screen space intensive to present and
therefore difficult to gain an overview of (Aigrain et al., 1996). Even

4.4 Summary 79

more difficult to handle are temporal data types. For example, audio only
carries meaning when it is being played back – with video you at least get
a still image when you pause the playback, paused audio clips give you
nothing at all. This makes it very time-consuming to gain an overview of a
large collection of audio clips without listing to all of them in full.

4.4 Summary
In this chapter, I have focused on user interfaces for accessing informa-
tion repositories. I first examined how users might go about locating in-
formation (Section 4.1). To further gain an understanding of the field, I
then presented an overview of existing interface paradigms (Section 4.2),
before I on this basis presented some of the key issues I have identified
(Section 4.3).

80 Chapter 4 Accessing information

81

Chapter 5

Four fundamental design
ideas

Back in Section 1.2, the overall research question to be investigated in
this thesis was stated as:

How can user interfaces for accessing information in large repositories
be designed to provide assistance to users without impairing usability?

In the previous chapters, I have presented an introduction to user inter-
faces in general and to user interfaces for information searching in par-
ticular. With this and the design challenges discussed in Section 4.3 in
mind, this chapter presents four fundamental design ideas designed to
address the research question. As previous work exist for each of the
ideas to a varying degree, I also briefly mention related approaches.
More is presented in connection with my actual implementations in later
chapters.

These four ideas are:

♦ Revised interaction model

♦ Intra-result analysis

♦ Active user interfaces

♦ Dynamic user interfaces

82 Chapter 5 Four fundamental design ideas

Together, they form the basis for designs and implementations presented
in later chapters. These implementations are then used as a platform for
evaluating the merits of the design ideas – separately, as well as in com-
bination with each other.

5.1 Revised interaction model
As observed by Hearst (Baeza-Yates and Ribeiro-Neto, 1999), most of the
interfaces used for information access (including several of the most
popular WWW search engines) use the standard model of interaction
(Salton, 1989). This model is illustrated in Figure 5.1.

According to this model, users start by issuing a query to the system. The
system then performs the search and sends the result back for evalua-
tion. If the result does not satisfy the information need, the user can re-
formulate the initial query and start the query-process all over again.

In my view, this model is not without its shortcomings. Important with
respect to my research question, is the fact that the user is offered no
help after the result has been presented. If a result is not satisfactory, the

Figure 5.1 Standard model of interaction (Baeza-Yates and Ribeiro-Neto, 1999).

Information Need

Query

Send to System

Receive Results

Evaluate Results

Done?

Stop

Reformulate

Yes

No

5.1 Revised interaction model 83

only options are to reformulate the query or abandon it altogether. Un-
fortunately, reformulation is often difficult, no clues are given as to
which reformulation of the initial query will produce the best result.

If a result does not contain the desired objects, nothing is lost by restart-
ing the query process. On the other hand, if the relevant objects are
buried beneath heaps of irrelevant objects, it is wasteful to throw them
away. As databases and search results grow larger, this is a more and
more likely situation. Few users have the time and motivation to
manually browse several thousand objects just to find a handful. Conse-
quently, such results are almost always useless.

It is my view that handling of large results1 can be improved by using a
revised interaction model with two important differences compared to
the standard model given above. For one, the interaction should be an
iterative cycle rather than a strictly start-to-finish process. Using an in-
teractive model, a user is free to modify a result – it does not have to be
final. If the result is not satisfactory to the user, he or she has the choice
between restarting the process or continuing to work with the result in
order to produce a satisfactory result.

Secondly, the interaction model should integrate more than one method
for accessing information. With more than one method available, the
user can dynamically select the method most suitable for his or her
needs. It also makes it less likely that users will get stuck without the
right means to continue.

In addition to methods which always generates new results (such as
query), it is possible to allow an existing result to be modified. One way to
achieve this is to use filters. Filters are constructed on the basis of
presented results, removing objects that do not satisfy a particular re-
striction. For example, a query in a housing database might give a result
of unmanageable size. Based on this feedback, the user decides that
housing in a particular area is not of interest and constructs a filter to
remove them from the result. Thus, the average relevance (or precision)
of the remaining housing alternatives, improves.

A different way to allow result manipulation, is to have several different
available visualisations (or presentations) of the result. Possible
examples include an overview of as many objects as possible, categoriza-

1. This does not have to be a query result, it can be any set of objects (for example
the whole database). But to keep the terminology similar to the one used in the
standard model of interaction, “result” is used throughout the discussion.

84 Chapter 5 Four fundamental design ideas

tion based on user-specified restrictions, detail view of a single object,
lists of objects ranked according to a specific criteria etc. Each of these
examples serves specific purposes and therefore complement each other.
Consequently, having several different presentation alternatives available
should be an advantage when accessing information archives. With
several presentations available, some way of switching (or navigating)
between them, must be present.

A revised interaction model integrating result generation, result modifi-
cation and presentation alternatives in an iterative manner is illustrated
in Figure 5.2.

Similar to the model illustrated in Figure 5.1, a user can generate a new
result (for example by issuing a query). The user can then navigate
between different presentations and modify the existing result –
hopefully thereby making it easier to get relevant data out of the infor-
mation repository.

Figure 5.2 Revised model of interaction.

Information Need

Modify Existing
Results

Present Results

Evaluate Results

Done?

Stop

Generate New Results

Yes

No

Change Presentation
Format

Choose Strategy

5.1 Revised interaction model 85

A priori advantages and disadvantages with this design idea:

♦ No result is final
Instead of constantly starting over, the user has alternatives that
use the currently result as a starting point. This should improve
the interface’s ability to handle large results as they can be pre-
dictably reduced.

♦ Several ways to reach a goal
More methods for information access mean more tools available to
the user. If one of these are unusable (e.g. the user can not find a
good reformulation of the query), other means are available to
bring the process forward.

♦ Positive synergies
By integrating several methods for accessing information it should
be possible to construct an interface that is greater than the sum
of its parts by taking advantage of synergy effects. For example,
by having filters constructed on basis of the current presentation,
the filters could become more context-sensitive – i.e. adapted to
the current presentation.

♦ Handling of shifting information needs
By the virtue of its interactive nature, this model should be able
better to cope with shifting information needs.

♦ Increased user interface complexity
More options available to the user tend to result in increased
interface complexity. It remains to be seen whether this offsets
the possible gains of the revised interaction method.

♦ Difficult to design good interfaces
The interface designer is tasked with presenting more information
and providing more controls while still keeping the interface as
intuitive and user friendly as possible. Clearly, the quality of the
implementation will have a great impact on applicability of this
revised model.

The idea of using an iterative interaction model to improve information
access, is not new. A typical approach that have been used, is to allow the
user to rate the relevance of different query terms related to earlier
queries and use this feedback to assist the user in reformulating the
query. Examples of this and related approaches include relevance
feedback (Salton, 1989), iterative query refinement (Rao et al., 1995) and

86 Chapter 5 Four fundamental design ideas

scatter/gather (Cutting et al., 1992). While such approaches originally
were used for text repositories, they have also been applied to, for
example, image databases (Wood et al., 1998). These approaches all have
that in common that they are not focused on supporting shifting informa-
tion needs – the assistance the user receives is geared towards the infor-
mation need evident from earlier queries.

The importance of supporting different strategies for accessing informa-
tion, have already been discussed in Section 4.1 and Section 4.3.4 along
with an overview of to which degree existing classes of interfaces support
multiple strategies in Table 4.1.

5.2 Intra-result analysis
Perhaps the most important challenge for information access tools
mentioned in Section 4.3, is the handling of large results. A key point in
this regard is Shneiderman’s mantra for information visualization (Shnei-
derman, 1997):

“Overview, zoom & filter, details on-demand.” (page 523)

Gaining an overview of a large result can be very difficult if no support is
given by the interface. Manual scanning of thousands of individual
results is something few, if any, users are likely to do. One possible way
to assist the user is to look at the techniques that have proved successful
for much larger data collections (such as data warehouses) and apply
similar techniques to query results.

A key concept in this regard, is data mining. Data mining can be defined
as (Han and Kamber, 2000):

“[...] extracting or “mining” knowledge from large amounts of data.”
(page 5)

Techniques such as association, classification and clustering have long
been used in a wide variety of disciplines – typically to analyse and un-
derstand amounts of data too large to be handled manually. Data mining
is about exploring data interrelations to, for example, find typical buyer
patterns, common characteristics in a population or predicting risky
loans.

While query results are by nature much more transient than data ware-
houses, they are also typically several magnitudes smaller. In my
opinion, it should therefore still be possible to apply the same principles

5.2 Intra-result analysis 87

used for data mining to dynamically analyse the properties of a query
result. This could very well provide information that would greatly aid
the user in gaining an overview of a large result. For a result containing
pieces of music, information as simple as most common artist, composer,
genre, etc. would go a long way towards providing at-a-glance informa-
tion about the general properties of the result – perhaps enough for the
user to decide if the contents warrant closer examination.

Further, information derived from an analysis could very well be useful
beyond providing an overview of a result. It might also be very well
suited for filtering operations – i.e. remove music by most common
composer. This would make the process of constructing filters more
reliant on recognition than recall and thus ties nicely with the active user
interface idea to be explained in Section 5.3.

A priori advantages and disadvantages with this design idea:

♦ Easier overview
As described above, the derived information gained from an analy-
sis of the properties of a collection of objects, should make it eas-
ier to understand the nature of said objects.

♦ Useful for filtering
If you wish to reduce the size of a query result, there are few bet-
ter ways than removing the more common objects. Such operations
would be simplified if these objects were automatically identified.

♦ Novelty factor
Potentially, analysis techniques could be perceived as something
approaching artificial intelligence. This could have a positive
effect on at least the subjective performance of the interface.

♦ Computationally expensive
By its very nature, results are temporary constructs. Thus intra-
result analysis can be expected, at least to certain degree, to be
on-the-fly computations. As the response time of information
access systems are of concern, computation requirements might
be a limiting factor for this idea’s applicability.

♦ Derived information trivial?
Once any novelty factors have worn off, the quality of the derived
information will be the deciding factor. If only irrelevant or trivial
information can be extracted, no ground has really been gained.

88 Chapter 5 Four fundamental design ideas

While used in a quite different setting, data mining is clearly an related
approach. Extraction of implicit information to make it easier to cope
with large amounts of data, is exactly what I am interested in doing –
only this time for query results. For an overview and classification of
data mining techniques, see (Chen et al., 1996).

An often used approach to make it possible to handle large query results,
is to rank them according to some measure of relevance. While this
method does not explicitly provide the user with derived information,
the ranking is typically based on such information. For example, the
PageRank method (Page et al., 1998) used by the Google WWW search
engine (see Section 4.2.5) uses link structure to establish the importance
of a given page by looking at the importance of the pages that link to this
page.

Rather than computationally extracting high-level information, such in-
formation can be supplied by other users. Collaborative filtering is one
example where opinions of other users that have agreed with the current
user in the past, is used to filter or rank information objects. For
instance, (Resnick et al., 1994) presented GroupLens, a system for collab-
orative filtering of bulletin board news posts.

5.3 Active user interfaces
In order to construct usable interfaces, one must consider the human ca-
pabilities. As described in Section 1.2.1, one of the most important areas
in this respect is the human memory system and the concepts recognition
and recall. Recognition has been proved to be much easier to perform
than recall (McCracken and Wolfe, 2004). For example, recognizing a
cow is easy – recalling the visual image needed to draw a cow, however, is
another issue altogether.

It therefore makes sense to take this into account when designing user in-
terfaces by allowing users to apply recognition whenever possible. A
good example is the different interaction styles discussed in Section 2.3.
The advantages of recognition compared with recall goes a long way to
explain why menus and direct manipulation interfaces have gained
prominence at the expense of command entry. While the first two have
users selecting (recognizing) something, the latter requires the user to
type (recall) commands.

5.3 Active user interfaces 89

The way in which I intend to make recognition more prominent, is to
make the user interface more active. Rather than simply waiting for users
to initiate interaction, user interfaces should in my opinion be more
active by having the users respond to relevant choices presented to them.
These could for example be a limited number of suggestions as to how to
proceed with the interaction, thereby hiding the more advanced options
from non-expert users.

A priori advantages and disadvantages with this design idea:

♦ Easier to learn
As it is based on recognition rather than recall, active user inter-
faces should be easier to learn as memorization can be kept at a
minimum.

♦ Fewer user errors
One of the key differences between menus and command entry, is
that the designer can make sure that menus include all available
operations and nothing more while the user of command entry
interfaces can input anything he or she might think of. By only
selecting from allowed choices, menus thus have much fewer possi-
bilities for user errors.

♦ Faster to use
Recognizing the relevant action to select from series of allowed
choices is typically faster than recalling commands from memory –
especially for novice users. However, if many choices are available,
simply gaining an overview of them might take longer than it
would take to remember and enter a command. The speed of use
of an interface based on recognition is therefore difficult to pre-
dict as it will depend on implementation, application and user.

♦ Low relevance?
Again, when many choices are possible, active user interfaces
might not perform at its best. Who has not experienced searching
through several long menus to find the one option one is looking
for? Such frustrating experiences could very well be the bane of
such interfaces.

♦ Limited applicability?
Not every kind of user action can be expressed by an interface
solely reliant on recognition. For example, a text field for entering
query expressions (recall) is difficult to get around.

90 Chapter 5 Four fundamental design ideas

The term “Active user interface” has been used before. It was for
example used in (Santos Jr. et al., 2001) to describe Kavanah, a informa-
tion retrieval user interface. This interface contains an interface agent
which tries to determine the user’s goal by maintaining a model of the
user’s interaction. This information is then used to construct queries on
the user’s behalf. In difference with my design idea, this interface is
active by automatically taking action for the user, rather than being
active by initiating interaction or dialogue.

A different approach which also is related to my “Active user interface”
design idea, is online help systems using wizards and cue cards (Phelps,
1997),(Tidwell and Fuccella, 1997). Here the idea is that the documenta-
tion is active – that is that information is presented in response to the
user’s actions. Wizards, for example, ask the users only the questions it
needs to do a given task thereby relieving the users of having to navigate
the user interface looking for the relevant options themselves.

5.4 Dynamic user interfaces
In Section 2.1, I presented the interaction cycle model by (Abowd and
Beale, 1991), repeated here in Figure 5.3.

As shown in this figure, the user interface is responsible for presenting
output from system processing to the user as well as making interaction
controls available which the user then can use to express his or her
actions. Typically, the presentation format, as well as the available inter-
action controls, remains constant regardless of the output.

It is my belief that having static presentation format and interaction
controls has a few disadvantages. In Section 2.2, I presented the view
that human-computer interaction has much in common with human-

Input Devices

Output Devices

User System

Presentation

Interaction

ProcessingTask Formulation

Human Interface System

Perception

Action Input

Output

Figure 5.3 The Interaction Cycle (Abowd and Beale, 1991).

5.4 Dynamic user interfaces 91

human interaction and that much of the same principles can be applied.
Of particular interest in this discussion, is Griece’s maxim of relevance
(Grice, 1975):

“What people (and media) say should clearly relate to the purpose of the
conversation”.

A static interface, can easily have interaction controls that bear no
relevance to, or at least are sub-optimal with respect to, the presented
data. According to the relevance maxim, it would have better if such
controls were omitted so that every presented control was clearly
relevant.

I intend to investigate if it is feasible to have dynamic user interfaces
where the system output determines the way in which data is presented,
as well as the interaction controls made available to the user. If realised,
this would give a context-sensitive user interface with what-you-see-is-
what-you-need – that is a dynamic adjustment of the interface depending
on presentation content.

A priori advantages and disadvantages with this design idea:

♦ Increased relevance
By minimizing the use of irrelevant controls and maximizing the
use of relevant controls, users will not have to struggle to under-
stand something that is of no use anyway.

♦ More suitable presentation format
For a given output, many different presentation formats are imagi-
nable – not all of the equally suited in all cases. For example, over-
view rather than detail might be more useful for large results with
the opposite being true for small results.

♦ Dynamic user interface might be confusing, limiting recognition
Depending on the degree in which the interface is dynamic, siza-
ble parts of a system’s interface might change on a regular basis.
This resulting confusion might reduce the usability of the inter-
face and thus make this idea less helpful.

♦ Achievable in practice?
If a system is to decide what is relevant in a given situation, it is
critical that these decisions are agreed upon by the users. After all
it is what users find relevant that counts, not the designer’s opin-
ion.

92 Chapter 5 Four fundamental design ideas

Online help systems, mentioned in Section 5.3, also have clear relations
to this design idea. For many such systems, see for example (Taboada
et al., 1996), the idea is to provide context-sensitive assistance to the
user. I intend, however, is to apply this concept to the interface as a
whole, rather than to the help system only.

An approach perhaps closer related to the idea presented above, is
adaptive user interfaces (Langley, 1999). This class of user interfaces
adapts the interface content (and to a lesser degree its presentation) to
the current user according to what the system has learned from previous
interactions. Thus it tries to improve interaction by personalizing the in-
terface. In comparison, my approach is to adapt the interface to the
content rather than adapt the content to the user.

5.5 The road ahead
In the following chapters of this thesis, I present designs, implementa-
tions and evaluations that aim to show the merits of these four design
ideas with respect to the overall research question.

Chapters 6, 7 and 8 present a study of a specific interface for information
access in textual metadata databases. As text represents the fundamen-
tal and most used data type, it was natural to start there. In order to gain
an understanding of the usefulness of usability evaluations, I have
performed two cycles of design – implementation – evaluation so that the
improvements made from the lessons learned in the first evaluation can
be investigated.

Chapter 9 describes an effort to extend the textual design to image
databases and content based queries. Images are a quite different data
type compared with text, and it is therefore interesting to study how the
design ideas work for images. In particular to see if they can be used to
bridge the semantic gap between what can be automatically extracted
from an image and the high-level concepts natural to humans.

In Chapter 10 I turn to temporal data – or to be exact temporal annota-
tions of video. This domain is interesting as the temporality not only com-
plicates interaction and presentation, but also adds another dimension to
the data thereby making manual identification of patterns and trends
more difficult. I wish to apply the design ideas of intra-result analysis
and integration of several information access methods to investigate if
tools can be constructed that make accessing such repositories easier.

5.5 The road ahead 93

In Chapter 11 the results from the previous chapters are discussed and
used to examine the viability of the four design ideas. Chapter 12
concludes the thesis with a presentation of main contributions.

94 Chapter 5 Four fundamental design ideas

95

Chapter 6

Searching supported by
analysis of metadata

In this chapter, I present an approach for accessing information in
textual metadata databases based on the four design ideas presented in
the previous chapter. Design, implementation and evaluation of two
interface prototypes based on this approach is presented in Chapters 7
and 8.

The choice of metadata databases as test case, was in part made because
one such database suitable for my purposes became available to me at an
opportune moment in the work on this thesis. The database in question,
Primus, is a large real-world relational database used by the Norwegian
Folk Museum to store information about old artifacts and pictures.
Section 6.1 presents details about this database, its data model and
current user interfaces.

Traditionally, searching in databases has either been done using forms-
based interfaces or by issuing queries using a query language (for
instance SQL – see Section 4.2 for details). Both these alternatives are
characterized by a tight coupling with the underlying data model. As a
result, some understanding of this model is almost a prerequisite for
accessing the data. This works well as long as the user-base is restricted
to persons who use the database regularly and have been given training
in how to use it. However, for novice users with minimal background
knowledge and training, such interfaces have proved very difficult to use

96 Chapter 6 Searching supported by analysis of metadata

(see Section 4.2). With this in mind, I presented four design ideas in
Chapter 5 which all are aimed at giving user-friendly interfaces that can
cope with large information repositories and complex data models.

In Section 6.2, I discuss how each of these four design ideas can be used
in a user interface for accessing Primus. Section 6.3 presents key compo-
nents of my proposed approach, while Section 6.4 presents some related
approaches. Section 6.5 concludes the chapter.

The contents of this and the following chapter is an expanded version of
(Hauglid and Midtstraum, 2002).

6.1 Primus
The Primus project was initiated in 1996 in order to make a unified,
digital information system for registration, administration and presenta-
tion of Norwegian museum collections (Museenes Datatjeneste, 2003).
The resulting Primus system consists of a data model, a database configu-
ration and application programs to access this database. Primus is now
being used by more than 30 Norwegian institutions.

In the start-up-phase of my thesis, I got access to the version of the
Primus database used at the Norwegian Folk Museum. This relational
database contains information (metadata) about more than 150.000
artifacts and 260.000 photos. The metadata consists of textual descrip-
tions stored in more than 150 different relational tables as well as
236.000 images. Typical stored information include:

♦ Place of origin (hierarchical – county, district, etc.)

♦ Date artifact was made, photo taken

♦ Techniques used to construct artifact

♦ Motif on photos

♦ Material

♦ How the artifact or photo was put into the collection

♦ Previous owners

♦ Classification (using a custom-made ontology)

6.1 Primus 97

Figure 6.1 shows a subset of the Primus data model indicating the com-
plexity and detail of the metadata. As described below, this complexity
made it well suited for my purposes.

Currently, two different user interfaces for querying Primus databases
exist – one public web-based interface and one for internal use by
museum conservators. The first of these, PrimusWeb1, is shown in
Figure 6.2.

1. Norwegian Folk Museum, http://www.norskfolke.museum.no/primusweb/

Figure 6.1 Subset of the Primus data model.

98 Chapter 6 Searching supported by analysis of metadata

This interface is forms-based, with five searchable attributes (object
name, museumnr, date, person and place of origin). If more than one of
the form fields are used, the result will contain only objects that satisfy
all of the entered query terms. The three radio buttons at the bottom is
used to select if both artifacts and photos, only artifacts or only photos
are to be searched.

So few searchable attributes results in an easy-to-use interface with few
controls to understand and reduced chance to use the wrong field by
mistake. On the other hand, it limits the expressive power as complex
queries is impossible to construct. Still, with novice users as target
audience, this is an acceptable trade-off.

The second user interface of these is shown in Figure 6.3. This interface
allows (trained) users to construct precise queries by entering restric-
tions (left image) for a large number of attributes. Results are presented
as a list with item number and name (right image). More details can then
be found by accessing each item individually.

Figure 6.2 PrimusWeb.

6.1 Primus 99

Even if these two interfaces both have room for improvements, it was not
this that attracted me to the idea of using Primus as a case study for
testing the four design ideas presented in Chapter 5. Rather, the data
model and the way in which objects are described, have several useful
properties:

♦ Complexity and richness of data model
One of my early ideas was that a rich description model could be
used to improve the handling of large results (see Section 6.2.1).
As indicated above, the data model for Primus is so complex that it
was well suited for testing this idea.

♦ Size of database
As the focus of this thesis is to investigate interfaces for accessing
large information repositories, it was important to find a database
that was large enough. With more than 400.000 described objects,
Primus was found to be almost ideal in this regard.

♦ Real-world database
By making a custom, artificial database to test a set of ideas, it is
possible to introduce bias that might hurt the validity of later eval-
uation results. With a database that has been made for and used in

Figure 6.3 Primus query interface.

100 Chapter 6 Searching supported by analysis of metadata

the real-world, this is less of an issue. However, the act of selecting
Primus as a test case, is still a possible source of bias.

6.2 Applying design ideas to textual
metadata databases

The overall objective of my work, as stated in the research question, is to
investigate if it is possible to construct user interfaces for information
access which combines usability with support for handling large informa-
tion repositories.

The four design ideas presented in Chapter 5 are the cornerstones of this
investigation as they form the foundation for the user interfaces I have
designed, implemented and evaluated. The first of these targets textual
metadata databases such as Primus. Below, I examine how each of these
four ideas can used to improve information access in such databases.

6.2.1 Intra-result analysis
The objective of this design idea is to aid the user in handling large
results by using a run-time analysis of the properties of objects in a result
to derive high-level information. I intend to implement this idea by
taking advantage of the structured way in which database objects are de-
scribed.

A data model (database schema) is a collection of concepts used to
describe the static structure of a database. According to such a model,
every object will have a number of properties, which typically includes
both attributes and relations to other objects. Each of these properties
provides a means, or a dimension, to classify the objects. This observa-
tion holds for both relational and object-oriented databases.

For each of the available dimensions, the objects in a result take on a
number of different values. By counting the occurrences of each of these
values, the properties of a collection of objects can be summarized in a
set of frequency-tables. Suppose a database containing information
about cars is searched for all cars whose name includes the word “Fer-
rari”. For the objects returned, the describing dimensions might include
year of production, colour and model. An example of a possible distribu-
tion of cars with regard to colour is illustrated in Figure 6.4.

6.2 Applying design ideas to textual metadata databases 101

This analysis of object properties can be done at run-time and thus be
used to give the user key characteristics of a result by summarizing what
can be extracted from frequency tables for different dimensions. This
can be seen as data characterisation (Han and Kamber, 2000).

Further, is should possible to use such information to construct filters to
modify a result. The resulting frequency-tables provide means to
partition the objects in a result. Each of the partitions contains objects
with a specific value in a given property. If we presume that the user is
able to select one or several partitions, objects not included in any of
them can be filtered away. Thus, the interesting objects are exposed, not
only increasing the average relevance (precision) of the objects in the
result, but also reducing the result size.

6.2.2 Revised interaction model
The idea of a revised interaction model have two different components.
First, interaction should be an iterative cycle where it is possible to
modify a query result if it was not 100 % satisfactory, instead of forcing
the user to restart the query. Second, more than one way of accessing in-
formation should be provided. In this way, the user will be less likely to
get stuck with no suitable avenues for further interaction.

Traditional textual query interfaces (such as web-based information
retrieval – Section 4.2.5) have proved easy to use and are familiar to a
great fraction of the computer-using population. It therefore makes sense
to include support for such queries as one way of accessing information.

0

10

20

30

40

50

Blue Red Black Yellow

Colour

Nu
m

be
r o

f c
ar

s

Figure 6.4 Colour-distribution of cars.

102 Chapter 6 Searching supported by analysis of metadata

In addition, a way of modifying existing results should be present. As
described in Section 6.2.1 this is done by filters based on the result of an
intra-result analysis. Because this analysis is dynamic, it makes sense to
support an iterative use of filters. As one filter is made, the properties of
the result will change, leading to updated information from the analysis
process. By providing the user with a means to make filters on the basis
of this updated information, the result can be further modified. In this
way, the user can approach a satisfying result step by step.

6.2.3 Active user interface
The active user interface design idea aims at promoting recognition on
the expense of recall. In other words, the user should as often as possible
be presented with alternatives provided by the system, rather than being
forced to recall how to best further the interaction.

The way in which I intend to apply this design idea to the interface for
accessing textual metadata databases, is to make it possible to construct
filters by answering questions. To make interaction as simple as possible,
the system presents questions that suggest alternative ways of partition-
ing the objects in the result. These questions will, if answered by the
user, select both dimension and partition. For instance, if a user answers
“yes” to a question like “Are you interested in red cars?”, the partition
containing red cars is selected and cars of other colours can be removed.
Conversely, a negative answer implies a selection of all but the red cars.

This leads to a modified model of interaction, where answering questions
is an alternative to rewriting the query. Users will more seldom need to
be imaginative in finding a useful query reformulation – they instead
simply have to recognize the question. As a first step, I intend to make
fairly simple questions. For example, the users could be asked if they
would like to remove red cars from a result. The property value (in this
case red) will be determined by the system and not by the user as this
would make the interface slightly more complicated.

6.2.4 Dynamic user interface
In order to follow this design idea, the user interface should be dynamic
(or context-sensitive) with respect to the current situation. This can be
implemented by making sure that the available interaction controls are
appropriate with respect to the current result. To build on what has been
described above, it makes sense to accomplish this by making sure that

6.3 The SESAM approach 103

only those questions that are deemed most relevant are presented to the
user. This way, the number of interface components can be kept low even
when the number of available dimensions is large.

In order to achieve this, the must be some way to evaluate the (per-
ceived) usefulness of any given question. This process will naturally be
very important. If every question goes unanswered, the application of
this design idea has failed. It is therefore necessary to develop a method
to estimate the utility of a question on the basis of a given search result.
This argument is further strengthened by the fact that there is typically a
large set of possible questions. Not only can each object have a great
number of properties, it is also possible to imagine many different
questions based on a single property. For instance, one could ask about
red cars, blue cars etc.

6.3 The SESAM approach
As stated in the main research question, my overall objective is to
research how user interfaces for accessing information in large informa-
tion repositories can be made as user-friendly as possible. To this end,
Chapter 5 described four design ideas that I intend to evaluate.

The first domain in which these ideas are put into practice, is textual
metadata databases such as the Primus database. In Section 6.2, I
discussed how each of the design ideas can be applied to this domain. My
approach combines and builds upon these discussions. As the central
concept is metadata analysis, I have dubbed the approach “SEarching
Supported by Analysis of Metadata” or SESAM.

In the remainder of this chapter, I examine two key issues with SESAM.
The first is how SESAM can be applied to a database, the second how the
utility of questions (filter suggestions) can be estimated and compared.
Two prototype interfaces based on the SESAM approach are presented in
Chapter 7 and Chapter 8.

6.3.1 Applying SESAM to a database
Before SESAM can be applied to a database, it has to be configured to
support the data model. The database-specific actions that have to be
performed before SESAM can be used, can be divided into the following
three steps:

1. Identify relevant classes of objects in the database – what kinds of
objects should be searchable?

104 Chapter 6 Searching supported by analysis of metadata

2. Determine searchable properties. Which object properties should
be used when generating processing textual queries?

3. Identify dimensions to be used to reduce the size of the result –
what object properties are to be used in questions?

These steps are illustrated in Figure 6.5.

6.3.2 Properties of useful questions
As mentioned in Section 6.2.4, a method to compare the utility of
questions is very important. Naturally, it is impossible for the program to
ensure that every question is relevant for any given user as it is impossi-
ble for a program to predict with 100 % certainty what the user wants.

One possible way to approach this problem could be to store information
about what questions each user has answered in the past and use this in-
formation to predict the relevance of future questions. But as I find it
unlikely that any user would use the system enough for detailed history
information to be available and as user preferences probably will change
depending on subject, I instead intend to use heuristics to estimate the
relevance of a given question.

In most cases, it should be safe to assume that as a given value becomes
more frequent, the likelihood that the user knows about this value
increases (everyone knows of red Ferraris). It can also be assumed that

Property 1
Property 2

Database

Existing classes

Class 1 Class 3

Class 2 Class 4

1. Select
searchable

classes

Class 2

Property 1
Property 2
Property 3

2. Select
searchable
properties

Class 2

Property 1
Property 2
Property 3

Class 3

3. Select
properties for

questions

Figure 6.5 Database-specific decisions.

6.3 The SESAM approach 105

users are more likely to have opinions regarding a known value. They are
therefore more likely to answer a question based on a familiar value. As
a result, asking questions about values with high relative frequency,
should be a useful heuristic.

To improve the handling of large results, the system should help the user
to reduce the size of the result as much as possible. To reach this goal, an
ideal question should split the result in roughly equal halves – similar to
the approach used in binary search algorithms. By having two halves, the
size of the result is drastically reduced no matter what the user answers.

One could argue that a 1 % vs. 99 % distribution is ideal as long as the
user selects the small partition. Unfortunately, in the general case, it
cannot be predicted if one value is more likely to be selected than the
others. Therefore, I must assume that 99 % of the users would select the
large partition – making questions based on this distribution almost
useless.

So far, I have only discussed questions where the answer is either yes or
no. This type of question works best if an attribute has a given value for
roughly 50 % of the objects. If we have several values with similar fre-
quency, the risk of selecting a value that is irrelevant to the user, in-
creases. To alleviate this problem, questions where the user is asked to
choose from a list of the most frequent values should be used instead.

6.3.3 Comparing the quality of questions
Yes/no and list-based questions should be applicable to all possible
textual dimensions. They also have at least one variable – the value (in
case of yes/no) or values (list) that are to be presented. As a result, we
have a large number of possible questions to choose from. To be able to
select the most suited, we naturally need a way to compare them.

The way in which this is done is by the means of a set of utility functions.
These functions return a number between 0 (bad) and 1 (good), indicat-
ing the expected usefulness of a question. Developing an utility function
for all possible combinations of question type and dimension is not
possible. The available dimensions are therefore classified into two cate-
gories: Dimensions with numeric data and dimensions with categorical
data (Han and Kamber, 2000). Categorical data are discrete with no
ordering among the values, while a set of numeric data can be ordered1

106 Chapter 6 Searching supported by analysis of metadata

and the partial ordering relation is semantically meaningful. For instance,
year is a numeric data dimension, while colour is not. This gives four
possible combinations:

♦ Yes/no questions for categorical data

♦ Yes/no questions for numeric data

♦ List-based questions for categorical data

♦ List-based questions for numeric data

For each of these combinations, a single utility function is applied. These
four utility functions are described below.

Every object in a result should ideally be described in every dimension.
However, in most real-world databases, this is not the case. Frequently,
either the complete set of properties of every object is not known, or it
makes no sense to describe a given object in a particular dimension. Di-
mensions where many objects have a null-value are not well suited to be
used in questions as we really do not know if the known values represent
the result accurately. This is taken into account by multiplying the result
of the utility functions by the percentage of non-null values.

Yes/no – categorical data
Example question: Are you interested in red cars?

As explained above, the ideal yes/no-question removes 50 % of the result
regardless of what the user answers. Therefore, a 50/50-distribution is
given 1 in utility. Further, 0/100 distributions are useless – either the
result becomes empty or it remains the same. Thus, they should have 0 in
utility. To allocate a utility to the rest of the possible distributions, I have
chosen to use the triangular function shown in Figure 6.6. This function is
applied to all values in the chosen dimension in order to find the
question with the highest utility.

1. “A set S is called ordered if it is partially ordered and every pair of elements x
and y from the set S can be compared with each other via the partial ordering
relation.”, from http://www.shu.edu/html/teaching/math/reals/infinity/defs/
ordering.html

6.3 The SESAM approach 107

Several alternative functions can be imagined. For instance, one could
consider distributions close to 0/100 as useless and distributions close to
50/50 as identical to the ideal case. This approach would result in a more
bell-shaped function.

One could also argue that an asymmetrical function is more suitable.
Users may find it easier to relate to the value present in the question,
rather than considering other values. This argument is similar to the
recall vs. recognition issues discussed in Section 5.3. If we follow this line
of reasoning, the functions should for instance rate a relative frequency
of 75 % as better than a relative frequency of 25 %. However, in the
initial SESAM design, the simple function shown in Figure 6.6 is used.

In order to explain the utility functions, assume that each property P has
a set of property values VP = (v1, v2, v3, ... vn). Each of the objects in the
result will have one of these property values associated with it1. Assume
further that cvi is the number of result objects having property value vi.
The utility of a value vi of a given property P is then computed using the
following function:

1. For many-to-many relationships, more than one associated value is possible.
This makes it possible for the sum of all c to be larger than the total number of
result objects, but this does not have any real consequences.

0

0,25

0,5

0,75

1

0 % 25 % 50 % 75 % 100 %

Relative frequency

U
til

ity

Figure 6.6 Utility function for yes/no-questions for categorical data.

108 Chapter 6 Searching supported by analysis of metadata

Yes/No – numeric data
Example question: Are you interested in cars produced after 1995?

As indicated by this example, this class of questions is different from cat-
egorical data category. Instead of answering yes or no to a single value,
the user is asked to choose a range of interest (before or after 1995). This
has consequences regarding the utility function. While we still seek as
close as possible to 50 % yes and 50 % no, we also need to take the shape
of the distribution into account. Figure 6.7 illustrates why this is neces-
sary, showing two possible distributions for year of production for an
imagined car database.

The graph shows two possible distributions. Both are symmetrical and
would have a 50/50-distribution if the midpoint (95) was selected. While
distribution 1 has most of the cars in close proximity to the midpoint, dis-
tribution 2 has a larger spread. This difference is important if we assume
that users have a margin of uncertainty. If this margin is 10 %, more of
the cars would be inside this margin in distribution 1 compared to distri-

utility P vi,() 1
2 cvi⋅

cvj
vj VP∈
∑

--------------------- 1––=

92 93 94 95 96 97 98

Year of production

Fr
eq

ue
nc

y

Distribution 1 Distribution 2

Figure 6.7 Different frequency distributions.

6.3 The SESAM approach 109

bution 2. The latter should therefore be preferred as fewer users would
be likely to be interested in cars produced inside the margin of uncer-
tainty, and thus more likely to be able to answer the question.

Assuming vmax is the largest value and vmin is the smallest, the utility for
a value vi of a given property P is:

The first term is similar to the utility function for categorical data and
thus promotes 50/50-distributions. The second term is used to differenti-
ate distributions like those shown in Figure 6.7. It is a measurement of
the degree in which the current distribution (numerator) differs is from
the most skewed distribution possible (denominator). The numerator is
the sum of the distances between vi and the actual property values of the
result objects. Thus if no objects have a different property value than the
one to be evaluated (cvj = 0 if vj ≠ vi), the numerator will be zero.

List – categorical data
Example question: Choose the colours you are interested in: {Red, Blue,
Yellow, Black}

Lists should be used when yes/no-questions are not suited, i.e. when no
value dominates. A list contains a small number of items – from which
the user can select one or several.

The lists could conceivably contain every occurring value, but this would
in most cases make them far too long. In addition, many of the values
would almost certainly have very low frequencies. I have used a utility
function that promotes list items with similar frequencies. The graphs in
Figure 6.8 illustrate why this choice was made.

utility P vi,() 1
2 cvj

vj VP vj vi>,∈
∑⋅

cvj
vj V∈
∑

-- 1––

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞ vi vj– cvj⋅

vj VP∈
∑

max vmax vi– vi vmin–,() cvj
vj VP∈
∑⋅

--⋅=

110 Chapter 6 Searching supported by analysis of metadata

The graphs differ in that the first graph shows four values with similar
frequencies, whereas the other graph has one value with much lower fre-
quency. While the inclusion of this last value in a question would help
those interested in it, the complexity of the question also increases. In
my opinion, the latter consequence outweighs the former. A utility
function should therefore select a question with four list items in the
former example, and three items in the latter.

The utility for a set of values DP of a given property P considered to be
displayed to the user is computed as:

0,0 %

10,0 %

20,0 %

30,0 %

40,0 %

Red Blue Yellow Black

R
el

. f
re

qu
en

cy

Values Average

0,0 %

10,0 %

20,0 %

30,0 %

40,0 %

Red Blue Yellow Black

R
el

. f
re

qu
en

cy

Values Average

Figure 6.8 Sample distributions for categorical data.

6.3 The SESAM approach 111

The utility function implements the policy of promoting property values
with equal frequencies by first computing the sum of the differences
between the frequency of each of the values and the average frequency.
This sum is then normalized and inverted in order to gain increasing
utility with increased similarity. To find the optimal size of the list, the
utility is computed for sizes from two to seven property values. These
values will always be those with the highest frequencies in order to have
the displayed property values encompassing as many result objects as
possible. The number seven was selected based on psychological studies
(Miller, 1956) that indicate that our short-term memory is limited to
storing information about ca. seven items.

List – numeric data
Example question: Choose the years of production you are interested in:
{1950-1969, 1970-1989, 1990-2000}

This class of questions is the hardest to handle since there are so many
degrees of freedom. Each item in the list is a range and each range can
be of a different size. Further, the number of ranges displayed to the user
can also be varied.

My approach is first to find suitable ranges. When these ranges have
been found, the same approach as for categorical data is used. To
identify these ranges, it is assumed that a range's start and end points
should be where few values are located nearby, as this will limit the
impact of a margin of uncertainty (as described for yes/no-questions for
numeric data). Basically, a point is well suited if the neighbouring values
have low frequencies and are located far away.

Using the n+1 most suited border values, it is possible to construct a par-
titioning with n parts. This partitioning is put through the same formula
as for categorical data. To find the most suited number of items, utility

utility P DP,() 1
cvi

cvj
vj DP∈
∑
DP

---------------------–
vi DP∈
∑

2 2
DP
----------–⎝ ⎠

⎛ ⎞ cvi
vi DP∈
∑⋅

---–=

112 Chapter 6 Searching supported by analysis of metadata

values are computed for n=2 to n=7. As this approach is a combination of
the approaches for the two preceding categories, the resulting utility
function was omitted.

6.4 Related approaches
Using the data model to allow the user to narrow down the result has
been the topic of some previous studies. (Ahlberg et al., 1992) proposed a
method for direct manipulation of databases called dynamic queries –
earlier discussed in Section 4.2.6. Using this method, users can specify
queries using graphical widgets such as sliders while the result is con-
stantly updated with regard to the values selected by the user. Unfortu-
nately, this approach cannot be applied to large databases without
compromising the performance.

In later papers (Doan et al., 1996, Plaisant et al., 1999), a two-phase
approach to dynamic queries was proposed. The first phase, query
preview, allows users to formulate an initial query by selecting desired
property values while simultaneously being shown the volume of
matching data. This is made possible by pre-generating a volume preview
table that indicates the number of datasets for each property value and
intersections. In the query refinement phase actual metadata is collected
from the database to be used in a dynamic query interface (as described
above). Using this two-phase approach, the performance problem
regarding larger databases was reduced.

There are two key differences between my approach and the dynamic
query approach. The first is that while all values for a given property are
available to be used in filtering in dynamic query, my approach is to find
a most suitable subset of values to present. This is done to reduce com-
plexity and improve relevance. The second key difference concerns
which properties are presented to the user. In dynamic query, these are
static and determined by the interface designer. I intend to use a
dynamic subset of properties, depending on the characteristics of the
current result.

A similar approach to dynamic query, called continuous querying, has
been described by Shafer and Agrawal (Shafer and Agrawal, 2000). They
presented Eureka, a WWW-based database exploration engine. After
Eureka has performed an initial search, users can specify predicates on
different attributes and immediately have the result updated. It is also
possible to search using example records. The Eureka interface is shown
in Figure 6.9.

6.4 Related approaches 113

Query refinement has also been implemented on text document collec-
tions that lack any predefined structure. Cooper and Byrd (Cooper and
Byrd, 1998) describe a method where a system responds to an initial
query by suggesting additional items that could focus the query. These
items are found by selecting words and phrases that occur in the
documents which are present in the result and that have a high degree of
distinctiveness. This selection of items requires pre-constructed indexes
on the searchable documents. A screenshot of their example application,
OBIWAN, is shown in Figure 6.10.

Figure 6.9 The Eureka interface.

114 Chapter 6 Searching supported by analysis of metadata

Egnor and Lord (Egnor and Lord, 2000) have reported on a system called
XYZFind for searching in XML-based databases containing semi-struc-
tured data. In their proposed system, a user first issues an unstructured
full-text query. The documents that match the user's query are then
analysed to find the number of distinct XML-schemas present. After the
user has selected the schema of interest, a search form specific to this
schema is presented. This allows the user to choose relevant values for
each of the attributes in this form. Finally, a fully structured query based
on the chosen values is executed and the result is returned to the user.

In order to reduce the size of a result using property value restrictions,
the user must be able to interact with the system to select the relevant
properties and the preferred values. The systems mentioned above solve
this by presenting all available options to the users – giving them total

Figure 6.10 The OBIWAN system. Items suggest after a query for “wireless data
systems”.

6.5 Summary 115

freedom. This is implemented by the means of lists, sliders, buttons and
other graphical widgets that allow individual adjustment of each
property value.

This approach is straightforward and well suited as long as the number of
dimensions is fairly small. However, as every new dimension requires ad-
ditional interface components, this approach does in my opinion not
scale well. In fact, a high number of dimensions easily results in a
complex and confusing interface. Such interfaces might give experienced
users no problems, but novice users are likely to suffer.

A somewhat related problem is that these user interfaces tend to require
handcrafting by the designer. This makes modifications and adaptations
to new databases more unwieldy. Also, as the type and number of dimen-
sions are static, the interface does not take into account the unique prop-
erties of a given query result. If every object in a result is red, it is not
useful to make it possible for the user to specify colour.

6.5 Summary
In this chapter, I have explained my approach. Basically, I try to combat
large, unwieldy search results by offering the users a set of questions. If
answered, these questions are used to construct filters that remove irrel-
evant parts of the result.

It is important to note that the questions are constructed using a dynamic
analysis of the properties of the objects contained in the result-set. This
will ensure that the questions are as relevant as possible as they are
based on a run-time analysis of the result rather than being statically de-
termined beforehand.

Traditionally, the effectiveness of retrieval approaches has been
measured using precision and recall (Salton, 1989). As my approach only
removes irrelevant objects from a result, recall remains constant. On the
other hand, precision improves as the relevant objects become more
dominant. The precision will therefore improve each time the user
answers a question.

The following two chapters present the design, implementation and eval-
uation of two prototype interfaces based on the approach introduced in
this chapter.

116 Chapter 6 Searching supported by analysis of metadata

117

Chapter 7

The first SESAM prototype

The previous chapter presented the SESAM approach. In this approach,
the four design ideas from Chapter 5 have been applied to the domain of
textual metadata databases. The purpose is to use SESAM as a vehicle to
evaluate these design ideas. In addition, SESAM has two key issues that I
am interested in investigating:

♦ Filter suggestions and their impact on usability
The quality of the suggested filters (questions) is a prime concern.
If every question goes unanswered, the approach has failed. The
proposed questions must not only make sense to the user, but also
lead to an increase of the average precision of the result.

♦ System performance
The analysis required in order to construct the questions will
increase the response time of the query system. If this overhead is
too large, users can not be expected to wait and thus the filters
will be left unused.

To evaluate the design ideas and investigate these two issues, I have
designed and implemented a SESAM prototype interface. This prototype
is presented in Section 7.1. In the following sections, I present a usability
and a system performance evaluation of this prototype and the results of
these evaluations. Finally, in Section 7.5, a discussion of the merits of the
prototype and the SESAM approach.

118 Chapter 7 The first SESAM prototype

7.1 The prototype
In this section, I describe the interaction between the user and the
prototype interface (Section 7.1.1), give an overview of a sample session
(Section 7.1.2) and finally present a screenshot of the user interface
(Section 7.1.3).

7.1.1 Interaction model
The interaction model used in SESAM differs from the abstract interac-
tion model presented in Section 5.1 in a few respects. The actual model
used by SESAM is shown in Figure 7.1.

Figure 7.1 SESAM’s interaction model.

Information Need

Query

Present Results

Analyse Results

Sufficient
Recall?

Stop

Apply Filter

Yes

Sufficient
Precision?

Reformulate

No

Select Filter

No

Suggest Filters

Evaluate Results

Yes

7.1 The prototype 119

The main difference is that an initial query is required before the result
is analysed and filter suggestions presented. This was done mainly for
performance reasons. An analysis of the whole Primus database is simply
too time consuming to be done dynamically at run-time. The analysis
could have been precomputed, but Primus contains too diverse informa-
tion for filter suggestions to be useful for all information needs. Because
when the current result is the whole database, the assumption that the
most frequent property values are most relevant, is less likely to hold.
Even if the analysis had been precomputed, it is likely that the result-set
after the first user-made filter had been applied, still would have been
too large for run-time property value analysis.

Filters can only be used to remove objects from the initial result, not add
new objects. Therefore only precision improves – recall remains constant
at best. Also note that if the user does not find any of the presented filter
suggestions to be suitable, he or she will have no choice but to reformu-
late the initial query or stop the process altogether (not shown in the in-
teraction model). In this case, the SESAM prototype will work similar to
the interfaces based on the standard interaction model (see Section 5.1).

7.1.2 Overview of a sample search
Figure 7.2 illustrates the three main phases of a typical search using the
SESAM prototype. In the first phase, the initial query is processed at the
database server. The result received by the client is then presented to
the user.

The second phase concerns the generation of questions (filters). This
requires the prototype to contact the database server in order to retrieve
the metadata used to build frequency-tables for each of the chosen di-
mensions. The prototype then processes these tables to generate the
questions. During this phase, the user is free to browse the result of the
initial search.

The third and final phase starts when the user has answered one or more
of the questions. As previously described, each of the questions corre-
sponds to a particular dimension. Thus, each answer is a selection of one
(or several) of the partitions in a dimension. The program can therefore
make a filter that removes the objects contained in the unwanted parti-
tions. The updated result is in turn used to generate new questions –
thereby repeating the last two phases. However, the database does not

120 Chapter 7 The first SESAM prototype

need to be contacted as the previously made frequency-tables can be
updated at the client. This makes further generation of questions almost
instantaneous.

It is important to note that this approach is very non-intrusive with
regard to the database. The only modifications made to the Primus
database were to generate a few extra indexes, in order to facilitate text
search and to improve response time. However, changing the data model
might be necessary to further improve performance. As object properties
need to be gathered for every selected dimension (as described in

Figure 7.2 Phases in a typical search.

User Client application DMBS

Input of initial query

Generation of
SQL-queries

Query processing

Presentation of result

Browsing of result

Initialization of
dimensions, generation of

SQL-queries

Query processing

Computation of
frequency-tables

Generation of questions

Answering questions

Filtering of result

Browsing of revised result Recomputation of
frequency-tables

Generation of new
questions

Phase 1

Phase 2

Phase 3

7.1 The prototype 121

Section 6.2.1), it is important that this can be done quickly. In essence,
this limits the number of relational joins that are acceptable when col-
lecting the properties of objects in the result.

7.1.3 User interface
The user interface of the SESAM prototype is shown in Figure 7.3. The
prototype was written in Java and uses JDBC to send SQL queries to an
Oracle 8i DBMS1.

The top part contains an input-box for the query and a “Search”-button
used to start the query processing. When the query is completed, the
result is shown to the user in the left-hand list. The middle part of the
interface is used to present details of the object that the user has
selected.

While the result is shown, a new set of queries is sent to the database to
construct the frequency-tables needed to make the questions. When this
process is completed, the generated questions appear in the right-hand
part of the interface.

1. Oracle Corp., http://www.oracle.com/

Figure 7.3 The interface of the first prototype.

122 Chapter 7 The first SESAM prototype

After the user has answered some or all of the questions, pressing the
“Update result”-button will filter the result based upon the answers
given. The question-making process is then repeated in order to generate
a new set of questions. This is almost instantaneous as no database com-
munication is necessary. New questions are generated until either the
user is satisfied with the result, the prototype is unable to find suitable
questions, or the last set of presented questions are left unanswered.

7.2 Usability evaluation
The design of applications, and user interfaces in particular, is not an
exact science where quality can be objectively defined. The subjective
evaluation by a group of prospective users is therefore one of the best
ways to evaluate the usability of an interface. This section presents the
result of a usability evaluation carried out on the SESAM prototype in-
terface. An overview of usability evaluation in general was presented in
Chapter 3.

The purpose of this usability evaluation is twofold. First, I want to find
the strengths and weaknesses of the SESAM approach compared to other
interfaces for accessing information. The evaluation is also performed in
order to gain an understanding of how users perceive SESAM. Informa-
tion about usability problems, program bugs, missing features etc. is
important in order to locate possible areas for improvement.

As the purpose of the evaluation is to find the strengths and weaknesses
of the SESAM approach, a comparative evaluation with other interfaces
for information search was a natural choice. By comparing the SESAM
prototype interface with other interfaces, one can gain a clearer view of
the merits and the weaknesses of the design. Such evaluations also help
to improve the reliability of the study by limiting the impact of the
Hawthorne effect which states that simply showing concern for users'
situation improves their performance (see Section 3.5.1).

Two other interfaces were selected for use in the evaluation – one based
on dynamic query and one using forms. These two interfaces are
presented in the following sections. Dynamic query was selected because
it, similar to SESAM, focuses on using attribute restrictions to remove
objects from a result. The widespread use of forms makes it useful to
include as a reference.

7.2 Usability evaluation 123

Rather than to rely on existing implementations, I decided to make my
own implementations of both dynamic query and forms. This was done in
order to use the Primus database (see Section 6.1) in the whole evalua-
tion. By using the same database for all tested interfaces, is should be
easier to focus on interface differences.

7.2.1 An interface based on dynamic query
Dynamic query, as a concept for information searching interfaces, has
been described previously in Section 4.2.6. Dynamic query is an attempt
to apply the concept of direct manipulation to query interfaces. This is
done by making it possible for users to specify attribute restrictions
using graphical widgets and have the result continuously updated.
Several evaluations have shown that dynamic query is a very powerful
technique (see for example (Ahlberg et al., 1992)). This, combined with
the similarities between the dynamic query approach and SESAM (see
Section 6.4), made dynamic query a natural choice for usability compari-
sons.

A screenshot of the dynamic query implementation used in this evalua-
tion is shown in Figure 7.4.

Figure 7.4 Dynamic query interface.

124 Chapter 7 The first SESAM prototype

As the Primus database contains more than 400.000 objects, using
dynamic query directly on the database contents would have been very
difficult without seriously reducing the update frequency. The imple-
mentation therefore uses a standard textual query to get the initial result
which then can be filtered by direct manipulation of attribute restric-
tions. This textual query part was copied directly from the SESAM imple-
mentation.

After the initial result is presented, the user can modify this result by
applying property value restrictions to six separate properties. These six
properties are the same as those used by the SESAM prototype. Five of
them are textual properties such as county of origin and material. In
order to place restrictions, the user first selects the corresponding tab
(shown in the right part of Figure 7.4). Textual property values are
displayed in a list where the user can toggle each value on or off by
clicking it. Only the values present in the result are displayed. Each time
the user alters the selection, the result is updated accordingly.

The sixth property is year of origin. As this property is numeric, two sets
of sliders are used for restrictions. This is shown in Figure 7.4. Combined,
these two sliders let the user select starting and ending year of interest.
Unfortunately, a lot of null values exists in the database. Therefore, a
separate check box lets the user decide if objects with null values for
year of origin should be included in the result or not. Again, the result is
updated constantly as the user drags the slider bars.

In addition, the interface contains a component for presentation of the
result and a component for displaying details about the selected object.
Both these are exactly the same interface components as used in the
SESAM prototype interface.

The key difference between SESAM and dynamic query, is that the prop-
erties used in the dynamic query interface are constant and that all
property values are always displayed. SESAM, on the other hand, tries to
select the most suitable subset of both properties and property values.

7.2.2 A forms-based interface
Forms is one of the most popular types of interfaces for queries (see
Section 2.3.3 and Section 4.2.5). Typically, such interfaces consist of one
or more textual fields where the user can enter query terms. The result is
the set of objects that conform to these restrictions.

7.2 Usability evaluation 125

As for dynamic query, a specific forms implementation for the Primus
database was made. A screenshot is shown in Figure 7.5.

The top part of the interface contains the text fields constituting the
form. Each text field corresponds to a property attribute in the database
and the properties used are the same as in the two other prototypes. In
order to perform a query, the user enters query terms into one or more of
the text fields and presses “Search”. The result is then displayed in the
lower part of the interface.

Figure 7.5 Forms based interface.

126 Chapter 7 The first SESAM prototype

This interface shares the interface components used to display the result
as a whole and information about the selected object, with SESAM and
dynamic query. This was done as these components are irrelevant with
regards to what I want to evaluate.

7.2.3 Evaluation methods
As various evaluation methods have different strong points, it is
necessary first to define the purpose of the evaluation. As briefly
mentioned above, the purpose of this evaluation is twofold:

1. Examine how the SESAM prototype interface performs compared
to the two other implemented interfaces.

2. Gain an understanding of how users operate the interface and use
this information as a basis for determining possible areas for
improvement of the SESAM approach.

With these objectives and the description of evaluation methods from
Section 3.4 as a basis, I decided to use the following evaluation methods:

♦ Pilot study: Inspection

♦ Main study: Performance measurement

♦ Main study: Observation

♦ Main study: Questionnaire

Each of these are described below.

Pilot study: Inspection
As none of the three implementations had seen much use, it was natural
to expect that several interface quirks remained. In order not to have the
evaluation of the interface designs tainted by poor implementations, a
pilot study was carried out before the main study. This study consisted of
having three fellow researchers use inspection methods to comment on
the usability of each of the interfaces. Several iterations of implementa-
tion and evaluation were done before the interfaces had reached a level
of consistency and quality considered suitable for the main study.

The main change made to the SESAM interface was to make an interface
consisting of a single window as shown in Figure 7.3. Before the pilot
study, the presentation of the result and the generated question were in

7.2 Usability evaluation 127

two different windows. This required the users to switch back and forth
between them and was soon identified as a source for confusion as well as
being cumbersome and slow to use.

Main study: Performance measurement
Quantitative data is often used to compare interfaces for information
search (see Section 3.4.1). As evidenced by this method’s widespread use,
finding suitable metrics is often not too difficult. In this study, the time
taken by each test subject to carry out individual tasks in each interface
was recorded.

The evaluation subjects were ten master degree students in computer
science. Everyone therefore had extensive background knowledge of
computers in general, but no one had any previous experience with the
test database.

A randomized within-subject design was used – each test subject tested
every interface in random order. To make it possible to observe their
initial response and to make a more realistic scenario for web based in-
terfaces, the test subjects were given no initial training.

Unfortunately, not training the participants prior to measuring their per-
formance makes the collected data less reliable. This is due to the
practice effect – subjects typically will perform better as the test goes on.
But as I was more interested in observing the immediate reaction to and
comprehension of the interface, training was not included in the study.

Main study: Observation
As established in Section 3.2.2, analysing qualitative data is an important
way of gaining an understanding of how an interface is perceived. Due to
the relatively small size of the test group, direct observation of interac-
tion was a feasible method to gain qualitative data. Each of the subjects
was observed by myself during the execution of the tasks described
below, and observational data was recorded on paper. These notes were
supplemented by a short informal interview afterwards to clarify some of
the observations made.

Main study: Questionnaire
Questionnaires was used to complement observational data and to make
a quantitative comparison possible. The questions used were taken from
the QUIS – Questionnaire for User Interaction Satisfaction (Chin et al.,
1988). Because only some questions were deemed relevant, and to limit

128 Chapter 7 The first SESAM prototype

the amount of effort required by the test subjects, only a subset of this
comprehensive questionnaire was used. In order to make comparison
possible, the users answered the same questions for all three user inter-
faces.

7.2.4 Evaluation tasks
As noted in Chapter 4, user interfaces for accessing information should
handle more than just exact queries – uncertainties and shifting informa-
tion needs should be taken into account. In order for the study to capture
the different access modes, the evaluation tasks were split into three
different categories.

♦ Exact queries which give manageable results
By manageable results I refer to results that are so small that they
can be browsed without any assistance from the program (i.e. by
manually accessing each result object). In this study, results with
less than 100 objects were deemed manageable. Each test subject
was given three tasks of this type to perform with each of the
interfaces.

♦ Exact queries which give unwieldy large results
Means of reducing the size of a result to improve precision are
focal points of both SESAM and dynamic query. It is therefore nat-
ural to test these facilities by using queries that give results of sev-
eral hundreds or even thousands of objects. The test subjects
where asked to use the interfaces to reduce the size of the result to
a size which they deemed manageable. Three tasks for each inter-
face were given.

♦ Browsing and navigation
The freeform nature of browsing makes it difficult to find suitable
tasks for evaluation purposes. The test subjects were therefore
given a general description of the content of the database and
instructed to spend a few moments exploring the database using
each of the interfaces. As this task had no clearly defined goal, it
was impossible to use it for performance measurements.

The full details of the evaluation tasks are presented in Appendix A.1,
while the handout given to the test subjects in advance is presented in
Appendix C.1.

7.3 Usability evaluation results 129

7.3 Usability evaluation results
The purpose of this usability evaluation was to identify strengths and
weaknesses of the SESAM approach compared with two other ap-
proaches and to gain an understanding of how the SESAM prototype
interface was perceived by the test subjects.

To address these issues, I first present the results of the performance
measurements (Section 7.3.1), the observations (Section 7.3.2) and the
questionnaires (Section 7.3.3). These results are then used as a basis for a
broader discussion in Section 7.3.4.

7.3.1 User performance measurements
The results of the performance measurement are summarized in
Table 7.1 below. For full details, see Appendix A.1.

As the test subjects were not given any training before the evaluation
started, it is reasonable to expect practice effects – i.e. that subjects on
average will perform better testing the third interface than testing the
first. To highlight the effect of practice, the table lists separate scores for
those that tested a given interface first, second or third. For example,
test subjects that tested dynamic query as the second interface in their
testing, spent on average 26,1 seconds on each task.

The performance measurement part of the study was plagued by several
reliability and validity problems which limited the usefulness of the
recorded data. The practice effect has already been mentioned. Further,
many of the test subjects spent longer time to complete the tasks than
strictly necessary. Especially with dynamic query and SESAM, exploring
intermediate results or the interface in general was fairly common. As
these detours provided interesting observational data, subjects were not
instructed to “stay on course”. Finally, for the series of tasks that
required the users to handle unwieldy large results, it was difficult to
determine exactly when the task was completed. Combined, this makes
the reliability of the recorded data questionable.

Forms Dynamic
Query

SESAM Overall

Tested first 48,2 53,5 53,0 51,2
Tested second 35,1 26,1 33,9 31,9
Tested third 43,6 22,0 33,4 31,9
Overall 42,9 32,7 39,5 38,4

Table 7.1 Results of performance measurements (in seconds).

130 Chapter 7 The first SESAM prototype

However, some observations can still be made with a high degree of cer-
tainty. The effect of practice is perhaps the most evident – overall the
times were almost cut in half from the first interface tested to the last
two. It is also apparent that this effect was least profound with forms.
This can be attributed to the fact that this interface was the least
complex and also familiar to the test subjects due to its widespread use.

7.3.2 Results from observation
Most of the information gathered by observing the ten users was fairly
low level – placement of buttons, clarity of screen prompts etc. By
collating these observations, I have extracted four high level observa-
tions.

1: High complexity limits usability
Even if it is obvious that complex interfaces are less usable than simple
interfaces, it is sometimes difficult for designers to spot complexity in
self-designed interfaces. Perhaps the most interesting observation is
therefore to find where and why users stumble and get confused.

It came as a bit of a surprise that the amount of text used to display the
questions generated by the SESAM prototype was a problem. Several
users complained that it took too long to read each question and that it
made the interface too complex. The idea of using text to offer a natural
dialogue therefore proved less effective than hoped.

Another complaint raised by several of the test subjects was that the
different questions in SESAM should have been displayed in the same
order each time. As it was, the questions were ranked by utility (see
Section 7.1) and displayed with the highest ranking question on top. It
was therefore possible to have a question about classification on top for
one result and on bottom the next time. This made it almost necessary to
always read every question and thus made the SESAM prototype slower
to use.

The dynamic query interface also received some complaints with regards
to complexity. In order to offer the users every possible option for
making restrictions, long lists and several tab panels were required.
Some users commented that they were forced to spend time searching
the interface for the option they wanted. Others clearly felt bewildered
by the sheer number of available options.

7.3 Usability evaluation results 131

2: Actions should be easily reversible
This observation should not come as a big surprise as it matches one of
Shneiderman’s eight golden rules of interface design (see Section 2.2). As
could be expected, the dynamic query interface proved to be the best
interface in this respect. Users enjoyed trying different options as they
quickly realised that actions easily could be reversed. This was evident
both from the initial reaction to the interface and from observing the
browsing evaluation tasks. The forms-based interface was on the other
end of the spectrum in this regard. Each result presented by the
interface is final – it is impossible to make any modifications. The test
subjects were therefore forced to change the query expression rather
than modify the result directly. As the consequences of a query rewrite
are notoriously difficult to predict, the users typically issued many inef-
fective queries (for example queries giving empty results).

Even though SESAM had an “undo”-button, it was not used nearly as
much as similar functionality in the dynamic query interface. Observa-
tions indicate that the placement of this button (bottom right) was very
awkward. SESAM’s undo functionality was also much slower and limited
in the number of undo levels. Interestingly, one user commented that he
looked for a “back”-button (similar to web browser).

3: Number and appropriateness of controls
The interface that offered most possibilities for control, dynamic query,
was generally agreed to be the most powerful interface. As soon as users
had figured the interface out, they became pretty apt at using it to get
what they wanted. Similarly, forms offered few options and users were
frequently bewildered as to how they could achieve what they wanted.
Most users clearly felt hindered by this interface.

SESAM took up some sort of middle ground. It presented only a few ways
to reduce the size of a result and improve precision. When the “right”
questions were presented, the interface worked great and no one com-
plained. However, users often did not find a suitable question. This soon
became annoying – offering a series of irrelevant choices made users lose
faith in the SESAM prototype interface in general.

By observing the evaluation tasks related to browsing, it was noticeable
that an intermediate number of controls better afforded exploration of
both the interface and the underlying database. Too few controls give
few possibilities for interaction, while too many controls results in a
complex interface.

132 Chapter 7 The first SESAM prototype

4: Type of task affects preference
By observing the test subjects during the execution of the different eval-
uation tasks, it was evident that each interface was not equally suited for
all types of tasks. As could be expected, forms was nice for exact queries
– at least as long as the result was of manageable size. Precise queries
could be constructed if the user knew which restrictions to enter. On the
other hand, several users had problems locating the correct field for a
given restriction. By having no support for handling large results beyond
manual browsing, forms was ill suited for freeform navigation. More
often than for the other interfaces, users became stuck when they where
asked to explore the database on their own.

Almost the exact opposite was true for SESAM. When users knew exactly
which restriction on which attribute they were interested in (for example
items from the year 1850), SESAM was ill suited. Several commented
that they would have liked to be able to edit the questions they were
asked by the interface. On the other hand, this was not a problem when
their goal was not specific. In these cases, the ease by which the result
could be modified afforded exploration. For some users, the novelty of
the questions made them answer a question just to see which questions
would appear next.

Dynamic query offered a little of both. Specific restrictions could be
easily expressed, even more so than for forms. It was also possible to use
the interface for exploration even if the number of available options
sometimes was a bit bewildering.

7.3.3 Results from questionnaire
The questionnaire consisted of 15 questions drawn from QUIS (Chin
et al., 1988) for each of the interfaces, 45 in total. For each question, the
users could select their response on a 9-point scale (1-9).

The first three questions were assessments of the interface’s ability with
respect to each of the three evaluation tasks presented in Section 7.2.4.
The fourth was an overall assessment, while the latter 11 questions have
been collated into the two following categories to simplify the presenta-
tion of the results:

7.3 Usability evaluation results 133

Visuals:

♦ Screen layouts were helpful (1:never – 9:always)

♦ Amount of information that can be displayed on screen (1:inade-
quate – 9:adequate)

♦ Arrangement of information on screen (1:illogical – 9:logical)

♦ Messages which appear on screen (1:confusing – 9:clear)

♦ Computer keeps you informed about what it is doing (1:never –
9:always)

Ease of use:

♦ Learning to operate the system (1:difficult – 9:easy)

♦ Getting started (1:difficult – 9:easy)

♦ Time to learn to use the system (1:slow – 9:fast)

♦ Exploration of features by trial and error (1:discouraging –
9:encouraging)

♦ Exploration of features (1:risky – 9:safe)

♦ System speed (1:too slow – 9:fast enough)

An overview of the results is presented in Figure 7.6 while the complete
results can be found in Appendix A.1.

134 Chapter 7 The first SESAM prototype

Interpreting these results, I consider the following three findings to be
the most notable:

♦ Overall ranking
The overall picture is pretty clear – in general, the test subjects
favoured dynamic query and found forms lacking. With one excep-
tion (SESAM’s visuals as discussed below), this holds for every cat-
egory.

♦ SESAM impeded by poor visuals
With regard to visuals, SESAM comes out quite inferior to the
other two interfaces. This indicates that the quality of the imple-
mentation might be the limiting factor in the test subject’s overall
feelings towards SESAM. This also corresponds with the observa-
tional data.

♦ Validity problems with evaluation of browsing capabilities
Perhaps the single most surprising result is that all three inter-
faces were deemed almost equally suited for browsing. As forms

Figure 7.6 Results from questionnaires.

Small results Large results Browsing Overall Visuals Ease of use

Forms Dynamic query Sesam

1

9

5

7.3 Usability evaluation results 135

offer no real support for browsing, I attribute this result to validity
problems with the evaluation rather than as a statement of ease of
using forms for browsing. This assumption was supported by the
observational data. Validity problems with the study are further
described below.

7.3.4 Discussion
Forms as a query interface have been around for a long time. Unsurpris-
ingly, it therefore proved easy to learn and use. However, the lack of any
support for modifying results and for browsing was clearly apparent – at
least as far as observational data was concerned. The results from the
questionnaires in fact indicate that forms’ browsing support was compa-
rable to the other two interfaces. But this anomaly was most probably
due to problems with the evaluation design.

Dynamic query performed best in almost every respect. Even if I had to
take some liberties with my implementation (most importantly by intro-
ducing an initial query), the main ideas carried through and were appre-
ciated by the testers. Easy handling of large results, reversible actions
and using direct manipulation to apply property value restrictions
proved a successful combination. However, some concerns with the com-
plexity of the interface were raised. By presenting the user with every
possible option for restricting the size of the interface, some users com-
plained (directly or indirectly) about a cognitive overload. It may be that
this approach, as expected, is not too scalable with regards to number of
properties for restriction and the number of values for each property.
Unfortunately, the number of properties used in SESAM and dynamic
query was a bit too low to really highlight the differences between them.

SESAM differs from dynamic query in that it presents the users with only
a subset of possible property value restrictions for reducing the result
size and improving its precision. Unfortunately, shortcomings in the im-
plementation limited the chances for a real assessment of this concept.
Almost every test subject complained about too much text on screen,
interface components switching places etc. Evaluation results indicate
that SESAM is better suited for navigation and browsing than for
handling exact queries. This is understandable as the process of program-
matically deciding the most promising subset of options will not give a
subset that matches everyone’s needs.

136 Chapter 7 The first SESAM prototype

Reliability and validity
The usability evaluation presented in this chapter was my first real-world
evaluation. It is therefore only reasonable to expect room for improve-
ments. In this section I present some concerns regarding reliability and
validity that appeared before, during and after the evaluation had taken
place. A general introduction to such issues was given in Section 3.5.

Before the evaluation started, I decided to let the users start without
having a separate training session first. This in contrast to most compara-
ble evaluations such as (Ahlberg et al., 1992), (Hearst and Pedersen,
1996), (Hibino and Rundensteiner, 1997) and (Tanin et al., 2000). While
this reduced the reliability and validity of the performance measure-
ments, I wanted to observe the initial reaction to each of the interfaces.
In this manner, the observation and performance measurements had con-
flicting requirements. I could have extended the study to have a separate
session first where the subject could familiarize themselves with the in-
terfaces while being observed, but the test already took about an hour so
this idea was abandoned.

Observations are always susceptible to bias in the observer. Observing
and interpreting what one wants to observe rather than what really
happens is a well known issue. In this evaluation, I had bias towards the
SESAM prototype interface as it was based on my own approach.
Involving external observers or interpreters might therefore have been a
good idea, but as the objective was for me to learn how the interfaces
operated, this is not a clear-cut case.

During the planning of the evaluation, it became clear that it is difficult
to design tasks that highlight the ability of an interface to handle large
results and support browsing. Some anomalities in the test results
indicate that at least the browsing tasks could have been better designed.
Similarly, the lack of a clear definition of when the subjects had
completed some of the tasks, made it difficult to record reliable perform-
ance data. On the other hand, it is not guaranteed that performance
measurements really give meaningful information in all cases. This is es-
pecially true for browsing and freeform navigation where it is not easy to
tell when the objective has been reached and the information need ful-
filled.

The choice of test subjects is a clear candidate for improvement. It is not
uncommon to use university students due to easy access, but they might
not be representable for the intended audience of the interfaces. It
would certainly have been better, but far more time consuming, to

7.4 System performance evaluation 137

include several types of test subjects in order to evaluate whether inter-
faces are perceived different according to background and interests. It
would also have been better to have used counterbalanced within-
subjects tests rather than randomized. By increasing the number of test
subjects to 12 (or any other multiples of 3), one would have eliminated
any reliability concerns due to order effects. As it is, four persons tested
forms as their first interface while only three tested dynamic query and
SESAM first. This is perhaps the single most obvious mistake with this
usability evaluation.

7.4 System performance evaluation
Not only usability is of interest when the validity of the approach
presented in Chapter 6 is to be examined. As discussed back in
Section 2.2, responsitivity is an important factor – perhaps even more so
for interfaces for accessing information. This section therefore describes
the result of a performance evaluation where the aim was to examine if
the extra processing required to generate the questions, is too time-con-
suming.

To evaluate the performance of the prototype, two museum conservators
helped me to make a list of 180 typical search expressions where each on
average would give a result of about 700 objects. The prototype was
modified to randomly draw words from this list and perform initial
search and generation of questions (analysis), logging the time spent on
each. The database server used had a Pentium Pro 200 MHz processor
and 256 MB RAM.

The individual queries were organized into series with arrival rates of 8
to 34 queries pr. minute. Each series was executed until the average
response-time had stabilized – something that took between 6.000 and
50.000 queries. The exact number depended on an analysis of the size of
the 95 % confidence interval. The results are shown in Figure 7.7 with
error bars indicating the confidence intervals.

138 Chapter 7 The first SESAM prototype

The graph shows that while the total response time increases about 50 %
at light load due to the analysis, this value is 10 to 20 % at higher and
probably more realistic loads. This indicates that the analysis can be
made without compromising the response time. This conclusion is further
supported by the fact that users can browse the initial result while the
analysis is performed. Thereby the actual time users spend idle, waiting
for the questions, is further shortened. Another helpful feature with
regard to the performance, is that the database is only contacted for the
first set of questions in a particular search. Thus, the following sets of
questions can typically be made in less than 500 milliseconds. Other per-
formance tests showed that time spent on analysis, not surprisingly, is
linearly correlated to the size of the initial result.

It is important to note that these tests show how the SESAM prototype
performs with regard to a specific database. As the response-time is
dependent on the complexity of the data model and the size of the
database, other databases might give slightly different results. Still, as
the test database (as described in Section 7.2) is both fairly large and
complex, I find the results to be a clear indication that the extra process-
ing required does not invalidate the approach.

0

2

4

6

8

10

12

14

8 10 12 14 16 18 20 22 24 26 28 30 32 34
Queries issued pr. min.

Av
er

ag
e

tim
e

sp
en

t (
se

c.
)

Initial search
Analysis

Figure 7.7 Time spent on initial search and analysis as a function of load.

7.5 Summary 139

7.5 Summary
Chapter 6 introduced the SESAM approach. In order to test the useful-
ness of this approach, I in this chapter presented a SESAM prototype
interface as well as a usability and a performance evaluation of this pro-
totype. The usability evaluation consisted of a comparative evaluation of
three interfaces: the SESAM prototype, an interface based on dynamic
query and a forms-based interface. The purpose of this evaluation was
twofold:

1. Examine how the SESAM prototype performs compared to the
two other implemented interfaces.

2. Gain an understanding of how users operate the interface and use
this information as a basis for determining possible areas for
improvement.

Overall, results from the usability evaluation indicate that SESAM
performs better than forms but worse than dynamic query. This was espe-
cially evident in the handling of exact queries which give large result-
sets.

SESAM’s poor performance compared with dynamic query can at least in
part be explained by the somewhat lacking implementation. The SESAM
prototype scored low with regards to visuals and several usability
problems were identified. On the other hand, it was found to work well
for browsing and freeform navigation. The results from the performance
evaluation indicate that the extra processing required, does not seriously
affect the response time.

While these results in general were somewhat disappointing, the imple-
mentation shortcomings may very well taint the results so that they give
little real evidence concerning the merits of the approach. The usability
evaluation presented in this chapter also had several reliability and
validity concerns that probably have affected the results. By using the
lessons learned to refine SESAM and enhance the SESAM prototype, a
new and improved evaluation could paint a different and more accurate
picture.

140 Chapter 7 The first SESAM prototype

141

Chapter 8

The second SESAM
prototype

In the previous chapter, I presented the first SESAM prototype. The eval-
uations of this prototype incited me to continue the development of
SESAM in order to make a more reliable evaluation of the design ideas
presented in Chapter 5. Three different areas where the design, imple-
mentation and evaluation of a second prototype could be improved while
keeping the core concept intact, were identified:

First of all, experience with the first prototype made me realize that it
could be helpful to focus more on supporting different strategies for in-
formation search (see Section 4.1). The different tasks assigned to the
test subjects in the first evaluation were also in hindsight not sufficiently
representative for the different strategies the interface was meant to
support.

Second, the first evaluation spawned several ideas for improving
SESAM. Qualitative data gathered by observation identified a number of
usability issues that should be addressed. By continuing to improve the
quality of the implementation, test subjects will be less likely to get hung
up on implementation issues irrelevant to the overall approach. This will
make it easier to evaluate the design ideas on which the SESAM
approach is based.

Third, the first usability evaluation had a number of reliability and
validity concerns that made it difficult to reach clear conclusions. On the
basis of the lessons learned in that evaluation, it should be possible to get
more trustworthy results from a new evaluation.

142 Chapter 8 The second SESAM prototype

Section 8.1 details of the design changes made in the second prototype.
The implementation is presented in Section 8.2, while Section 8.3
describes the new evaluation. Finally, Section 8.4 concludes the part of
the thesis concerning accessing information in textual metadata
databases (Chapters 6, 7 and 8).

8.1 Design
Based on the results of the evaluation of the first prototype, the following
overall objectives for the new prototype were identified:

System related:
♦ Keep the core concepts

The objective of SESAM continues to be improving precision using
intra-result operations based on a dynamic analysis of the proper-
ties of the objects in a result set.

♦ More freedom of choice
The new prototype should make more options for property-value
restrictions available. As it was, users felt too restricted. Improved
support for different strategies is therefore required.

♦ Improve utility functions
The indirect feedback from the evaluation of the first prototype
suggests that the utility functions should be reworked. For exam-
ple, the evaluation of list-based questions for categorical data
should take into account how many of the property values are not
presented to the user. Also, allowing more freedom of choice will
necessitate a modification of the selection process.

User-interface related:
♦ Improved quality of implementation

The old prototype had too much text to read. Also, several large
components in the interface often changed appearance and this
frequently led to bewilderment.

♦ Easier and faster to undo actions
To afford exploration, it is very important that the users feel they
can try out operations without fear of never being able to undo
them if things go wrong.

♦ Make it possible to follow links
When reading the detailed description of a given information

8.1 Design 143

object, it should be possible to use the displayed property values
to modify the result – for example to find objects with similar
property values.

Two of these objectives require closer examination before I turn to im-
plementation issues. As a part of the desire to improve freedom of
choice, the new prototype should focus more on supporting different
strategies for information access. This is addressed in Section 8.1.1. The
process of finding suitable filter suggestions is discussed in Section 8.1.2.
As this process is a key component of the SESAM approach, it is natural
to use the experiences from the first prototype and on this basis recon-
sider the selection process.

8.1.1 Different strategies for information access
In Section 4.1, I described different strategies for accessing information
in information repositories. Based on that discussion, my own experience,
and the observations made in the first evaluation, I have identified the
following five different searching tasks that SESAM should support:

♦ Exact query
Users should be able to enter textual terms used for finding a col-
lection of related objects. The matching should be done against as
many properties as possible without adversely affecting response
time.

♦ Noise removal
A collection generated as the result of a query often contains
many objects with low relevance to the user (“noise”). The inter-
face should assist the user in improving precision and average rel-
evance by facilitating removal of such objects.

♦ Exploration of availability
When browsing a large or unknown collection, the user usually
first wants to get a quick overview over what it contains in order to
establish the relevance of the collection and to plan further
actions to be taken. The interface should therefore make it possi-
ble to identify common characteristics, types of objects, etc. in the
collection.

♦ Navigation
Browsing objects in a collection often triggers new information
needs. Finding an interesting painting made by a renaissance

144 Chapter 8 The second SESAM prototype

painter in an art collection could for instance make user inter-
ested in locating paintings made by the same painter or by others
in the same time period. The interface should make it easy to fol-
low links to related information and thus generate new informa-
tion collections.

♦ Scanning
Even if all irrelevant objects have been removed from a collection
so that only objects of interest remain, it can still contain a large
number of objects. It is therefore important that the interface
makes it easy to scan the result and to view the individual proper-
ties of the objects contained within.

The new prototype should ideally be designed with all these strategies in
mind. In particular, exploration of availability and navigation were not
too well supported in the first prototype. For example, as the generated
questions showed only a few alternatives, this did often not constitute
enough high-level information to provide a good overview of the result.

8.1.2 Finding suitable filters
In the first prototype, six different properties were considered when the
questions for property restrictions were generated (see Section 7.1). Of
these six properties, only five were presented to the user. These five
were selected on the basis of a calculation of estimated utility. By only
excluding a single property, the merits of this selection process were
difficult to determine.

The new prototype was extended to include a total of eight properties
while still displaying only a subset of five. This should make it possible
better to evaluate the selection process as well as the obvious benefit of
making more properties available for restrictions.

After each dimension has been evaluated individually, a way of
comparing them with each other is still needed (categorical and numeric
data alike). With eight available properties and only a maximum of five
to display, the method used for comparisons obviously becomes more im-
portant. As for the previous prototype, this is done by the means of utility
functions. They are designed to estimate the usefulness of a given
property value restriction for the current result by returning a number
from zero (useless) to one (ideal).

8.1 Design 145

In the first prototype, four different utility functions were used. In order
to offer more freedom to the user, the new prototype will no longer will
support yes/no-questions (i.e. filters based on a single property value).
This makes four of the old utility functions obsolete. In addition, I have
decided to allow the user to freely select an interval of interest for
numerical data rather than trying to find suitable intervals programmati-
cally. This is done in the interest of providing more freedom to the user.
As a consequence, the utility function for numerical data can be simpli-
fied.

In fact, in the new prototype only a single utility function is used. This
function is based on the four old utility functions with changes motivated
by the indirect evaluation of the utility functions in the first usability
evaluation and my own experiences with the first prototype. The new
utility function is defined as a multiplum of three different terms (only
two applicable to numerical data). Each of these terms are presented
below.

To analyse the properties of a result, property values for all result
objects are retrieved from the database. Each property P has a set of
property values VP = (v1, v2, v3, ... vn). The downloaded data are used to
construct sets SP for each property P that contains tuples (vi, cvi) where cvi

is the number of result objects that has the property value vi. As null
values often occur, each set also includes a special tuple (null, cnull). The
set of values of a given property P considered to be displayed to the user
is DP.

1: Equal distribution desirable
The reasoning behind wanting property values with equal frequency was
explained in Section 6.3.3. The main term in the revised utility function
is therefore the same utility function presented in Section 6.3.3 for lists
of categorical data. It is a a measure of how close the actual distribution
of the (selected) property values are to an equal distribution.

term1 1
cvi

cvj
vj DP∈
∑

DP
---------------------–

vi DP∈
∑

2 2
DP

----------–⎝ ⎠
⎛ ⎞ cvi

vi DP∈
∑⋅

---–=

146 Chapter 8 The second SESAM prototype

2: Hidden property values undesirable
For categorical data, only a subset of the existing values are displayed.
Often, this means that some values are not displayed and therefore not
selectable. This is clearly undesirable, as such values can not be chosen
by the user, thereby limiting the expressive power of the interface. This
was discovered to be a very real problem in the first usability study (see
Section 7.3). This is captured in the utility function by multiplying it with
the percentage of objects that have their property values displayed.

As this prototype has been changed to display all property values for
numeric data dimensions, this term is ignored for such dimensions.

This term is the amount of objects having property values in D (i.e.
showed to the user), divided by the total number of objects.

3: Null values undesirable
Null values represent incomplete or missing knowledge about the proper-
ties of an object. If the amount of null values is large, one can not be sure
if the known values represent the result accurately. Therefore selecting a
specific property value could in fact reduce recall as objects that in
reality have the same value but are registered as null, would be removed
from the result.

As this is a undesired effect, the final term of the utility function the per-
centage of result objects that have non-null property values.

♦

For categorical data, a list of property values is displayed. To find the ex-
act number of values to display, the utility function is applied to lists of
different sizes. The list with highest utility is selected and used to com-
pete with other properties in order to select the subset of properties that
are to be displayed.

term2

cvi
vi DP∈
∑

cvi
vi VP∈
∑

---------------------=

term3 1

cnull

cvi
vi VP∈
∑

–=

8.2 Implementation 147

8.2 Implementation
The database used is still the Primus database from the Norwegian Folk
Museum (see Section 6.1). However, some changes have been made to
the test setup compared with what was described in Chapter 7. The
DBMS used continues to be Oracle, but the installation has been
upgraded to version 9i. The database server used now has a 1,1 GHz AMD
Athlon processor and 1 GB of RAM with the data is stored on 10.000 rpm
SCSI disks. These improvements to the database server are helpful as
they should make it possible to consider more properties (see
Section 8.1.2) without seriously affecting the response time of the proto-
type.

The interaction model described in Section 7.1.1 is also used in this pro-
totype. The only change is better support for navigation – bringing the
used model more in line with the abstract model presented in Section 5.1.

In the following subsections, the design and implementation of the
different parts of the second prototype are discussed. The emphasis is on
the changes made from the first prototype. For the details of the first
prototype and the Primus database, refer to Chapters 6 and 7.

8.2.1 The initial query
In the first prototype, the initial search consisted of a single text field
where the user could enter a term. This term would only be matched
against the subjects of the photos and the names of the artifacts.

In the first evaluation, it was evident that this was too limiting. For
example, several of the test subjects expressed a desire to be able to
query for all photos and artifacts from their home county. This indicates
that the interface was not too well suited for exact queries.

To remedy this, the new prototype was extended so that the initial query
term now also is matched against:

♦ County of origin

♦ Municipality of origin

♦ Person involved (previous owner, subject on photo, etc.)

Optimizations to the database index structure and a hardware upgrade of
the database server meant that these additions could be made without in-
creasing the response time.

148 Chapter 8 The second SESAM prototype

As Figure 8.1 shows, the interface still has only a single text field for
entry. The query term must therefore be matched against all the proper-
ties listed above in addition to subjects of photos and names of artifacts.
An alternative solution would have been to add separate text fields for
each searchable property. But as this could have spurred confusion as to
which text field to use (as experienced during the evaluation of the forms
based interface), this alternative was deemed less desirable.

8.2.2 Presenting results
Figure 8.2 shows the user interface component from the first prototype
used to display the result.

Figure 8.1 Initial query interface.

Figure 8.2 Result display from first prototype.

8.2 Implementation 149

The following shortcomings with this component were identified:

♦ Pictures proved to be of great interest. In the first prototype, only
a very small picture is displayed and the user is required to click
on it in order to get a larger and more interesting one. This makes
the interface slow to use for users that are primarily interested in
pictures.

♦ Only the name (artifact) or subject (photo) is displayed in the
result list. This makes it difficult to get a good overview of the
result without selecting each object and reading more in the
“about hit” pane.

♦ No ways of sorting the result are available.

♦ Only a few details are displayed about the selected object.

In total, this results in poor interface support for scanning. The user is
required to select each item to get even the barest of details and to click
the corresponding picture to get a picture of a decent size. This makes
manual scanning slow.

The new implementation of this component is shown in Figure 8.3.

Figure 8.3 Result display from second prototype.

150 Chapter 8 The second SESAM prototype

The changes are as follows:

♦ A much larger picture is displayed.

♦ Up to five pictures are available for each object instead of just
one. They are selectable by buttons displayed on the left hand
side.

♦ The result display now also contains county and date (year of ori-
gin).

♦ The result is sortable on name, county and date (year of origin).

In order to get the screen space required for the large picture, the
detailed description of the selected object had to be moved to a different
tab pane (displayed in the same screen space as the picture). This
component is shown in Figure 8.4.

In addition to displaying more information than the last prototype,
several items are displayed as hyperlinks. The user can click on these to
make property restrictions matching the clicked value. For example,
clicking on the county “Telemark” will hide all objects not from “Tele-
mark”.

This makes it easy to locate objects similar to the one displayed. Note
that this is still only intra-result – it will hide objects not having this
property value and not add objects not part of the current result.

In summary, these changes will make it easier to perform scanning and
navigation tasks.

Figure 8.4 Detailed information from second prototype.

8.2 Implementation 151

8.2.3 From questions to filters
The user interface needs to include some way of letting the user specify
restrictions on object properties. In the first prototype, this was done by
asking the user questions as illustrated in Figure 8.5.

The evaluation identified a number of problems with this approach:

♦ Too much text to read.

♦ Yes/no-questions concern only a single property value. This was
felt too restricting. Users often wished they could answer yes or no
to a different property.

In order to solve the first problem, it was decided to turn away from
using questions as the concept for interaction. The use of pseudo-natural
dialogue in the application simply required too much text and slowed
everything down.

Figure 8.5 Display of questions from first prototype.

152 Chapter 8 The second SESAM prototype

The new prototype instead allows the user to construct filters which hide
objects having or lacking a specific property value. These filters are
either constructed by selecting one or more values from a list as shown in
Figure 8.6 or by selecting a range of values as shown in Figure 8.7.

The lists contain between 2 and 13 entries. 13 were selected as it is the
maximum number that can be displayed while keeping all entries visible
(not requiring scroll bars).

Figure 8.6 Constructing filters for categorical data.

Figure 8.7 Constructing filters for numeric data.

8.2 Implementation 153

Filters are constructed when the user clicks either the “Keep these” or
the “Hide these” button. Afterwards, the filter is added to a specific list
called “My filters” as shown in Figure 8.8.

This user interface component provides a number of advantages over the
old implementation:

♦ Provides at-a-glance overview over operations done so far. Thus
minimizing the users’ memory load (see Section 2.2).

♦ Each of the filters can be temporarily toggled on and off using the
check mark or permanently deleted using the “Delete” button.
Using these two features, actions can easily be reversed – match-
ing one of Shneiderman’s golden rules of interface design (Shnei-
derman, 1997).

♦ All filters can easily be removed using the “Clear” button, thereby
reverting to the result of the initial query. This feature provides
clear exits (see Section 2.2).

♦ Undo button makes it possible to unmake a new filter or return a
recently deleted filter. Thus further promoting easy reversal.

Figure 8.8 Display of “my filters”.

154 Chapter 8 The second SESAM prototype

These changes should make SESAM more suited for navigation as opera-
tions can be undone effortlessly. Exploration of both the result and the
interface should therefore feel safer. It also provides a more clear view of
exactly which modifications have been made to the result.

Another change is that filters can be kept from one query to the next.
Each time a new query is submitted, the users are asked if they want to
keep existing filters (if any). This way it is possible to build a set of
preferred property restrictions and have them automatically applied to
any new query result.

8.2.4 Improved looks
As shown in the included screenshots, the new prototype includes a
different “Look & Feel” (Sun Microsystems, 2002). I felt the old version
looked somewhat cold and grey, and therefore wanted to change to
warmer colours. Although this has no impact on the functionality of the
program, it could make it more enjoyable to use the application. It has
been, in my view successfully, argued that looks are an important factor
for perceived performance and satisfaction (Norman, 2004):

“The surprise is that we now have evidence that aesthetically pleasing
objects enable you to work better. [...] products and systems that make
you feel good are easier to deal with and produce more harmonious re-
sults.” (page 10)

The improved looks were largely achieved by using the Alloy look and
feel1.

For similar reasons, the new prototype uses a lot more icons to make the
interface more colourful and visually appealing. Icons also make it
possible to visual relate different components. For example, the hyper-
links used in the display of the detailed information (see Figure 8.4) use
the same magnifier icon as the “Keep these” button when making filters
(see Figure 8.6 and Figure 8.7).

A screenshot of the whole second prototype interface is shown in
Figure 8.9.

1. INCORS GmbH, http://www.incors.com

8.3 Usability evaluation 155

8.3 Usability evaluation
This section presents a comparative user evaluation carried out using
updated versions of the three different user interfaces used in the evalu-
ation presented in Chapter 7. The purpose of the evaluation is threefold.
First, I wish to find the strengths and weaknesses of the revised SESAM
prototype compared with two other interfaces and to see if the compara-
tive results have changed since the first evaluation. The two other inter-
faces are updated versions of the ones used in the original evaluation.
Second, I plan to investigate if the improvements made based on the first
evaluation, had any effect on the performance of the three interfaces.
Finally, I expect to gain some insight in the value of user evaluation in
general by measuring any improvements made.

Figure 8.9 The user interface of the second SESAM prototype.

156 Chapter 8 The second SESAM prototype

The organization of this section closely matches the outline of the evalua-
tion presented in Chapter 7. The section starts with a description of the
evaluation setting – including the evaluated interfaces and the evalua-
tion methods. The second and final part, presents and discusses the
results.

8.3.1 Setting
This evaluation is a comparative evaluation of three interfaces. The first,
SESAM, has already been presented, while the last two are presented
below. In order to make direct comparison with the last evaluation
possible, the setting is kept more or less identical. Any changes that have
been made are all in the interest of improving the reliability and validity
of the evaluation results.

Updates to the dynamic query interface
This interface is an updated version of the interface presented in
Section 7.2.1. Most of the changes made are a result of using the updated
components already presented in Section 8.2. This includes extending
the initial search to more property values and an updated component for
presenting results. The updated interface is shown in Figure 8.10.

Figure 8.10 Updated version of dynamic query interface.

8.3 Usability evaluation 157

Compared with SESAM, the only part that differs is the right hand side
of the interface. Here eight different tab panes are displayed – one for
each of the property that can be used for value restrictions. These eight
are the same used to construct filter suggestions in SESAM. Seven of
these are categorical data dimensions where the user can select one or
more values from a list (as shown in the figure). The last, year of origin
(date) uses an interface similar to what is shown in Figure 8.7 where the
user is shown a column chart of the distribution of property values and
can select a range of interest using a custom slider. Direct manipulation
is still used – any changes made to any of the restriction tab panes, auto-
matically update the result accordingly.

The key differences between this dynamic query implementation and the
new SESAM prototype, remains almost the same as in the last evaluation.
One exception is the handling of numerical data. Here SESAM takes a
step towards dynamic query by making all property values available to
the user (see Figure 8.7). However, numerical properties are subject to
utility evaluation to compare them with the categorical properties to
select which of them to display. As more properties are considered in this
evaluation than in the last, these differences between SESAM and
dynamic query should stand more out in this evaluation than the first.

The updated component for displaying object details described in
Section 8.2.2 is also used here. Descriptions displayed as hyperlinks can
be used to specify property restrictions without using the lists on the
right hand side of the interface. This functionality is similar to what is
used in the SESAM prototype interface.

Updates to the forms based interface
The last interface is an updated version of the forms based interface first
presented in Section 7.2.2. A screenshot is shown in Figure 8.11.

158 Chapter 8 The second SESAM prototype

The right hand side contains the display of the result and the selected
object. Both these components are the exact same components used in
the updated versions of the SESAM and dynamic query prototype inter-
faces.

The left side contains the text fields constituting the query form. In com-
parison with the last version, this updated version contains several addi-
tional text fields. They were added to match the extended number of
properties used for filtering in the two other interfaces in order to make
the comparison as fair as possible.

Evaluation methods
In order to have the evaluation fulfil its objectives, it is important to
select the right evaluation methods. A discussion of available methods
was given in Section 3.4. To get results that can be compared with the
results from the previous evaluation, it makes sense to consider the same
methods.

I decided to use the following evaluation methods:

Figure 8.11 Updated version of the forms based interface.

8.3 Usability evaluation 159

Pilot study
As a single developer, it is very easy to become blind to one’s own
mistakes. This includes both obvious usability problems and program-
ming bugs. As noted by Jakob Nielsen (Nielsen, 2000), most of these can
fortunately be found by testing the program with only a few users.

All the three interfaces therefore went through a pilot study which
involved four expert users using inspection methods. Several iterations
of testing and implementation were performed before the interfaces
were found ready for the main study.

Main study
In the original evaluation, all the test subjects in the main study were
master degree students in computer science. In order to improve validity
of this new evaluation, it was carried out on two different groups of users.
The first group was students similar to the ones used in the last evalua-
tion, thus making it possible to compare their results. They are all experi-
enced computer users, but had no experience with the Primus database
and only basic knowledge of the subject matter. The second group was
conservators from the National Folk Museum. They had average experi-
ence with computers, but all knew the subject matter very well – some
had even been using the Primus database daily for several years.
Together, these two groups represent a wide spectrum both with regards
to general computer experience and more specific experience with
Primus – its data model and data.

This new evaluation also used a counterbalanced within-subjects design
(Mitchell and Jolley, 2001) where each tester tested all the different in-
terfaces in order to make comparison possible. The order in which the in-
terfaces were tested, was arranged such that each interface was tested
first, second and third equally often. This should remove any bias due to
order of testing.

As for the last evaluation, no initial training was given with the exception
of a brief introduction. This makes it possible to observe initial reactions
and is a more realistic scenario for interfaces designed for web use.

Two different methods of evaluation were used in the main study. Each
test subject performed a series of predefined tasks using each interface
(described below) during which they were observed. This allowed me to
gather qualitative data as to how the interfaces were used. In addition,
the test subjects were given a questionnaire similar to the one used in

160 Chapter 8 The second SESAM prototype

the last evaluation. The questionnaire contained a subset of the
questions in the QUIS – Questionnaire for User Interaction Satisfaction
(Chin et al., 1988), repeated for each of the interfaces.

This time, performance measurement was left out of the usability evalua-
tion. As described in Section 7.3.4, there were several reliability and
validity concerns with the measurements last time – most of these
difficult to fix. I have also come to the conclusion that measuring the
time spent to solve tasks might not be so important for these interfaces.
This is because performance measurements make little sense for tasks
with vague or no clear objectives as it is difficult or even impossible to
define when such tasks have been completed. It would still have been
possible to include performance measurements for exact queries, but as
this would have made an already lengthy evaluation even longer and
with questionable rewards, the idea was dropped.

Evaluation tasks
In Section 4.1, I identified several possible information searching strate-
gies that apply to the interfaces used in this evaluation. It makes sense to
design evaluation tasks so that the performance of the interfaces with
regards to each of the different strategies can be tested. I have therefore
selected the following types of evaluation tasks (also see Section 8.1.1):

Exact queries
The test subjects were given two different queries. The first only
consisted of a single term, while the second had a combination of two
terms (e.g. material = “wood” and year = “1850”). These queries also
served as an easy introduction to each interface and to the more chal-
lenging tasks.

Noise removal
In this category, the users were given a single task. It consisted of a query
term that gave an initial result with a high degree of noise. Typically this
would be a term with two different interpretations where the users were
told which interpretation to focus on. The users were then asked to
modify the result so that the amount of noise became bearable (as
defined by the test subject) without too much of the relevant objects
being lost in the process.

Exploration of availability
Here the objective was to examine how well each interface was suited for
gaining an overview of a large result. This was done by asking each test
subject to search for objects originating from their home county. Such

8.3 Usability evaluation 161

queries give results which typically contain 2000 – 4000 objects of a wide
variety. They were then asked to find the most common type of object in
the result as well as objects that were of interest to them.

Navigation
Navigation typically involves following links from one object (or collec-
tion) to another. In this evaluation, navigation was simulated by first
having the user enter an initial query. The user was then asked to locate
an object of interest in the result and use the interface to find similar
objects. For example, given a result of the query “bowl”, the user could
have found an object made of a special type of wood, proceeding to find
bowls made of the same material.

♦

In addition to these four searching strategies, I earlier also defined scan-
ning as a central task. However, as scanning is interwoven with each of
the tasks given above, I found it unnecessary to include tasks especially
designed to evaluate scanning performance.

8.3.2 Results
This section presents the results of the observation and the question-
naires. Overall discussion of the results is left to Section 8.3.3.

Results from observation
The observational data was recorded on paper during each of the evalua-
tions. Similar to the last evaluation, most of the notes concerned minor
interface issues that separately are of little interest. The number of such
issues was notable reduced compared to the first evaluation, even if the
number of test subjects was increased. I see this as a clear indication of
more mature implementations. By collating these minor issues, the
following five high level observations were extracted:

1: Postprocessing of results vital
It soon became clear that forms, while sufficient for exact queries, are far
from usable for tasks such as exploration and noise removal. The
inability to do any kind of modifications to a result often made users give
up completing these types of tasks.

In the exploration tasks, users were asked to use the interface to gain an
overview of the result. Using forms, the only way to do this was manual
scanning of the result. With often more than 1000 result objects, it was

162 Chapter 8 The second SESAM prototype

clearly too much work to examine them all individually. Users therefore
had to resort to reading the one line of description in the result display as
well as reading detailed descriptions on individual objects. This took
quite a while and users soon became too bored to continue.

The noise removal tasks had the users trying to remove irrelevant objects
from a result. The only way to do this with forms, was to find a new and
more restrictive search expression and restart the query. Finding this
new expression proved difficult to many users. They could use descrip-
tions of existing result objects for inspiration, but often it came down to
pure guesswork. Needless to say, this often resulted in empty or
otherwise irrelevant results. This was less of a problem for users with
background knowledge of the database as they could typically make
educated guesses as to useful query reformulations.

2: Background knowledge affects performance
Observation highlighted a number of differences between the computer
professionals and the museum conservators. The former group was on
average able to cope with SESAM’s slightly more complex interface
better than the latter. Experienced computer users generally had little
problems figuring out the “my filters” component, while it remained a
mystery to several of the less computer experienced users.

Similarly, improved background knowledge of the database also changed
how the different interfaces were perceived. Museum conservators
generally had less problems using forms successfully – they used the
correct form fields and often knew which values made sense in each
field. This also made them better at handling the sometimes very long
filter lists displayed by the dynamic query interface. While users new to
the database often had to read every list entry, conservators usually had
an idea of what they were looking for.

3: Negative operators difficult to use
Both SESAM and dynamic query offered negative operators. In SESAM it
was possible to construct a negative filter that would hide all objects
with a specific property value (e.g. show only objects not made of wood).
Similarly, users using the dynamic query prototype could either start
with a complete result and remove unwanted property values, or start
with an empty result (all objects hidden) and add objects with specific
values.

8.3 Usability evaluation 163

The observations show that negative filters in SESAM were almost never
used even if several of the tasks would have benefited a lot from their
use. And for dynamic query, it was a clear preference for starting with an
empty result and adding objects. These trends were especially clear for
the test subjects with the least computer experience.

On the whole, it seemed that negative operators are more difficult to use
and probably should be left out of user interfaces which especially target
novice users.

4: Use of metaphors must be consistent and thorough
The detailed result display in all three tested interfaces contained func-
tionality for expressing property value restrictions simply by clicking on
the displayed values. (See Section 8.2.2 for a more detailed explanation.)
The implementation borrowed the hyperlink metaphor (blue, underlined
text label) used by web browsers to indicate that these values could be
clicked.

From the observations it became apparent that this functionality was not
intuitive to several of the users. It simply did not occur to them that these
text labels could be clicked. But there was a marked difference between
the computer professionals and the museum conservators. While almost
everyone in the first group figured this out, only a few in the latter did.
When I asked a test subject directly why she did not try to click the text
label, she told me that she did not expect the application to work like a
web page. I.e. she did not apply previous knowledge from web browsers
because these applications did not match the environment where this
knowledge was gained.

This indicates that metaphors can only be expected to work if they are
used consistently and throughout the application. One solution would
have been to make the whole application look more like web pages. This
could for example be done by substituting undo buttons with forward/
back-controls, supplying a “home”-button, etc.

5: Clear way back to known state helpful
One of the observations in the last evaluation, was that actions should be
easily reversible (see Section 7.3.2). Presumably due to the improve-
ments made to the applications used in this evaluation, this was not a big
issue this time.

However, a related problem was identified. For both SESAM and the
dynamic query prototype interfaces, it is possible to perform a large
number of operations on a given result. Especially in the initial phase

164 Chapter 8 The second SESAM prototype

when users experiment to figure out the interfaces, they often got “lost”
– i.e. did not know how they could get back to the initial result. While this
was possible to do in both interfaces, it was obvious that this functional-
ity was not made clear enough. Several users stated that they were
looking for a “Reset” button and they often ended up restarting the
query unnecessarily to remove the effects of any post-result operations.

Results from questionnaire
The questionnaire used in the evaluation consisted of 16 different
questions for each of the three interfaces. For each question, the users
could select their response on a 9-point scale (1-9).

The first four questions concerned the performance with respect to the
four evaluation tasks. The fourth was an overall assessment, while the
latter 11 questions have been collated into the two following categories
to simplify the presentation of the results (as was done the first usability
evaluation):

Visuals:

♦ Screen layouts were helpful (1:never – 9:always)

♦ Amount of information that can be displayed on screen (1:inade-
quate – 9:adequate)

♦ Arrangement of information on screen (1:illogical – 9:logical)

♦ Messages which appear on screen (1:confusing – 9:clear)

♦ Computer keeps you informed about what it is doing (1:never –
9:always)

Ease of use:

♦ Learning to operate the system (1:difficult – 9:easy)

♦ Getting started (1:difficult – 9:easy)

♦ Time to learn to use the system (1:slow – 9:fast)

♦ Exploration of features by trial and error (1:discouraging –
9:encouraging)

♦ Exploration of features (1:risky – 9:safe)

♦ System speed (1:too slow – 9:fast enough)

8.3 Usability evaluation 165

An overview of the results from the results gathered from the computer
professional test subjects, is presented in Figure 8.12. A complete
overview of the results can be found in Appendix A.2.

This group of test subjects is comparable to the group used in the
previous evaluation. A meaningful comparison of the results is therefore
possible. Please note, however, that as the users have compared each
interface to the other two rather than to some abstract and universal
standard, any questionnaire result is not directly comparable with the
corresponding result from the first evaluation.

Interpreting these results, I consider the following three findings to be
the most notable:

♦ Overall ranking
A clear trend throughout this evaluation was that the changes
made to SESAM had a positive impact on the results. While the
last evaluation showed that the first implementation was impeded
by poor visuals, the new version rates at least equal to the other
two tested interfaces in all categories.

Figure 8.12 Results from questionnaires - Computer professionals.

Questionnaire results - Computer professionals

1

5

9

Exact query Noise
removal

Exploration Navigation Overall Visuals Ease of use

Forms Dynamic Sesam

166 Chapter 8 The second SESAM prototype

♦ Noise removal performance
Examining the results for the four different types of evaluation
tasks, two notable differences in performance are apparent. The
first is that SESAM was deemed clearly best for noise removal. A
discussion of why this might be, is presented in Section 8.3.3.
Dynamic query was found to perform worse here. This corresponds
well with observational data. Users were often forced to spend
time scanning long several lists looking for a property value that
they were not interested in and which would make noticeable dif-
ference to the result.

♦ Using forms for exploration
The second marked difference in task performance, is that forms
was found poor for exploration of (large) results. This corresponds
well with the observations described above. Note that this is a
marked change compared with the results from the first evalua-
tion. In my view, this indicates that the exploration tasks were bet-
ter designed in this evaluation.

An overview of the results from the questionnaires filled out by the
museum conservators is shown in Figure 8.13.

8.3 Usability evaluation 167

This user group is characterised by lower general computer expertise but
much higher domain knowledge and knowledge of the underlying data
model in the Primus database. It is therefore interesting to compare the
results with the results from the computer professionals group:

♦ Forms and dynamic query better for conservators
Both forms and dynamic query had better results here than for the
computer professionals group. For forms, knowing the database is
an obvious advantage when forced to come up with property
restrictions yourself. Testers in the first group often complained
about the sheer number of options available in the dynamic query
interface (number of restrictions possible). It seems this problem
had lesser impact for conservators – probably because they had a
better idea of what they were looking for. These questionnaire
results also corresponds well with the observational data.

♦ Visuals of SESAM are found poorer
Overall, SESAM was less liked by the museum conservators than

Figure 8.13 Results from questionnaires - Museum conservators.

Questionnaire results - Museum conservators

1

5

9

Exact query Noise
removal

Exploration Navigation Overall Visuals Ease of use

Forms Dynamic Sesam

168 Chapter 8 The second SESAM prototype

by the first group. Judging by the results in the “visuals” category,
the increased complexity of this interface is at least one of the rea-
sons. By examining the individual questions in the “visuals” cate-
gory (see Appendix A), SESAM did receive especially low marks
with regards to the clarity of the on-screen messages.

8.3.3 Discussion of evaluation results
In this section, I first summarize the results for each of the tested inter-
faces. I then discuss several reliability and validity concerns that are
important to keep in mind when assessing the results. Finally, I examine
if the three purposes for this evaluation presented in the start of
Section 8.3 have been fulfilled.

Forms performed about similar to the last evaluation. It proved easy to
learn but difficult to use – at least for users unfamiliar with the Primus
database. The lack of any support for result modification made forms in-
convenient for exploration and handling of large results.

Dynamic query was found best suited for results of small to medium size.
Large results often resulted in simply too many presented possibilities
for imposing property restrictions. This problem was however not so pro-
nounced for users with background knowledge of the database as they
had an easier time navigating the large property value lists.

In comparison with dynamic query, questionnaire results and observa-
tional data indicate that SESAM sacrifices interface simplicity in order
better to handle large results. This interface was generally preferred by
computer professionals, while the interface complexity had greater
impact for less experienced users. There was however an overall
agreement that SESAM was best suited for noise removal.

No system performance evaluation comparable to the one presented in
Section 7.4 was performed on this prototype. Almost all changes to the
new prototype have been user interface changes which do not have any
impact on the system performance. The approach with an initial search
followed by an attribute value analysis remains the same.

Reliability and validity
In Section 7.3.4 I presented a number of reliability and validity concerns
in the first evaluation. Many of these concerned recorded performance
data. In this evaluation, performance measurement was totally left out of
the test procedure. This might seem like opting for the easy way out, but

8.3 Usability evaluation 169

as explained in Section 8.3.1, time-to-completion might not be a very well
suited metric for tasks other than exact query. For these types of tasks it
is typically difficult to objectively define when they have been com-
pleted.

In this evaluation, more time have been spent on considering different
searching strategies and using this knowledge to design suitable evalua-
tion tasks. I am therefore confident that this evaluation paints a more
complete and correct picture of the advantages and disadvantages of
each tested interface.

The selection of test subjects and the use of a randomized design, were
one of the weak points of the first evaluation. The situation was
improved in this evaluation by using two groups of test subjects – from
experienced computer users with no database knowledge to the opposite.
The counterbalanced design also helped to remove any ordering effects.
With more time available, the use of test subjects could have been
further improved by adding more classes of users – for example people
with both little computer background and knowledge of the Primus
database.

Concerns regarding observator bias remained constant compared with
the last evaluation. For a discussion of any possible impact, see
Section 7.3.4.

Summary of evaluation
In the beginning of this section, I declared the purpose of this evaluation
to be threefold:

1. Find the strengths and weaknesses for the revised SESAM prototype
compared with two other interfaces.

Unlike the last evaluation, SESAM was this time found to be the
overall best interface. However, close examination of the results
indicates that preference is highly dependent on background
knowledge and task at hand. For example, SESAM is better at
large results and exploration, while exact queries was done
equally well on all interfaces.

2. Investigate if the improvements made based on the previous evalua-
tion, had any effect on the performance of the interfaces.

170 Chapter 8 The second SESAM prototype

Both informal observations and more formal questionnaire
results indicate that all of the tested interfaces benefited from
improved visuals and ease of use compared to the last evaluation.

3. Gain insight in the value of user evaluation in general.

As almost every change was implemented based on lessons
learned in the evaluation, this is a clear sign of the usefulness of
usability studies.

8.4 Discussion
In this section I discuss my experiences with the four fundamental design
ideas presented in Chapter 5 with respect to SESAM (based on Chapters
7 and 8).

Revised interaction model
SESAM employs an interactive interaction model where filters can be
used to remove objects from a result. Filters can be used not only to
retain what you are interested in, but also to remove objects you are not
interested in. Further, SESAM supports an integration of search,
filtering and intra-result navigation techniques for accessing informa-
tion.

The results of the evaluations show that some means of manipulating a
result is very helpful – especially for large results. The filter solution im-
plemented in SESAM was found particularly useful to remove objects of
low relevance (“noise removal”), more so than for retaining objects of
high relevance. The reason for this discrepancy will be discussed below
in the “Active user interfaces” section.

The downside of the revised interaction model as implemented in
SESAM, was that it made the interface more complex. This lead to some
usability problems, especially in the first prototype, and users also
needed some time to adjust to the interface. However, in the end the test
subjects found that the increased power more than made up for the
increased complexity – at least for all but the most simple searching
tasks.

8.4 Discussion 171

Intra-result analysis
This design idea was implemented in SESAM by the means of dynami-
cally generated filter suggestions. These suggestions were made by
analysing the properties of the objects in a result at run-time. For
example, in a result containing artifacts from all around Norway, filters
for each of the five most common counties of origin for these artifacts
might be suggested.

Evaluations indicated that this technique was very helpful for gaining an
overview of large results. Often test subjects did not have to manually
scan hundreds of objects in order to get an understanding of what they
had got. This information was not surprisingly found to be most useful for
users with little background knowledge of the database as they could not
draw upon previous experiences to interpret the result.

By comparing the experiences from the first and second evaluations,
some difficulties in implementing this design idea can be identified. To
keep the derived information relevant, it was recomputed each time the
user altered the result. This lead to large parts of the interface changing
– components shifting places, text updated etc. The test subjects in the
first evaluation found this to be disconcerting – they did not like to have
to “reparse” the interface on a regular basis. The second prototype was
designed with this in mind and the second evaluation confirmed that the
problem was greatly reduced.

Active user interfaces
Instead of having the user enter query terms to modify an existing result
(recall), SESAM allowed the user to choose a filter from suggestions
made by the program (recognition). As this meant only a limited number
of filters were possible, some expressive power were unfortunately lost.

In the first prototype, filter suggestions were presented as questions (e.g.
“Are you interested in artifacts from before 1800 (yes/no)?”). This inter-
action method, although natural, was not found to be suitable. It simply
required users to read too much text and thus slowed the process need-
lessly down. Questions as an interaction method was therefore
abandoned in the second prototype with improved results.

The second evaluation showed that this design idea has its merits – espe-
cially for non-experts and for more vague information needs where the
lost expressive power has less impact and the issue of recognition vs.
recall is more important. As mentioned above, the choice of displaying

172 Chapter 8 The second SESAM prototype

filter suggestions rather than make it possible for users to construct their
own filters, results in a loss of expressive power as only a limited number
of filters are possible.

Interestingly, this loss of power is more apparent when users are focused
on retaining what is relevant rather than removing what is not. When
(typically experienced) users focused on removing objects with irrele-
vant object property values, they almost always found a suitable filter
suggestion as it was easy to at least find something that is clearly irrele-
vant.

The opposite was true for users which focused retaining what is interest-
ing. They were looking for filter suggestions mentioning something they
was interested in. Typically, they knew what they were looking for and
were annoyed when no matching filter suggestions were found. This hints
at that the users’ performance might increase when they learn that the
former alternative is easier to get to work.

Dynamic user interfaces
The SESAM user interface can be said to be dynamic as the displayed
filter suggestions are constantly updated to reflect changes in the result.
The user interface for making filters also depends on the type of
property the filter is to be a restriction of (categorical or numeric data).

As this idea in SESAM goes hand in hand with intra-result analysis, the
same implementation difficulties were evident here. The first prototype
had too large parts of the interface constantly changing and this was
found to be disconcerting by most test subjects. This effect can be under-
stood as an issue of poor support for recognition (see Section 5.3). By
changing large parts of the interface, the users could often not recognize
what they were presented with based on previous interaction, and were
thus forced to “reparse” the interface.

As most teething problems were all but eliminated in the second proto-
type, it became clear that this idea was most suited for large results and
for exploration. Large results could easily be reduced to a more manage-
able size (“noise removal”) due to the process of selecting the displayed
subset of possible filters being focused on finding filters that would be
suitable for size reduction. For exploration, the constantly updating
interface made it more easy for users to figure out where they were and
to locate possible avenues for further exploration.

173

Chapter 9

Extending SESAM to image
databases

In chapters 6 to 8 I described SESAM – an approach for accessing infor-
mation in a textual metadata database. Evaluations of two SESAM
prototype interfaces clearly indicated that the approach has its merits.
But as of yet, the approach has only been tested on textual data. To test if
they also can be applied to image databases, this chapter presents a
proof-of-concept extension of the second SESAM prototype to handle
images. This was done by taking advantage of the fact that the Primus
database (see Section 6.1) used for SESAM also includes 230.000 images
as part of the metadata describing the Norwegian Folk Museum’s
artifacts and photos.

As discussed in Section 4.3.5, complex data types such as images, audio
and video present unique challenges which make them an interesting
topic for study. The most relevant with respect to my work is the
semantic gap (Rui et al., 1999, Enser and Sandom, 2003). Techniques for
extracting image features in the general domain are typically limited to
information such as shape, colour and texture (Aigrain et al., 1996).
These kinds of low-level information are clearly different from high-level
concepts like people, objects, events, etc. central to human reasoning.
This semantic gap makes meaningful interaction between users and
system difficult to achieve. I am interested in investigating if the ideas
used in SESAM, in particular the reliance of recognition rather than
recall, can be used to reduce the negative effects of this semantic gap.

174 Chapter 9 Extending SESAM to image databases

This chapter describes how SESAM was extended also to handle images
and my experiences with the new prototype. Section 9.1 details how low-
level information were extracted from the images in the Primus
database. As this process was computationally very expensive, it was
performed in advance with the results stored in the database. In
Section 9.2 I examine how the SESAM interface was modified to make it
possible to construct filters based on image features. Section 9.3 presents
a discussion of the experiences of the modified prototype. In essence, ex-
tracting image features proved too unreliable to proper evaluate the
design ideas from Chapter 5 in this setting. However, the reasons for
these problems are interesting in themselves and thus makes the work as
a whole worthwhile. In particular, several problems with making user in-
terfaces suitable for content-based access have been identified.

9.1 Extracting image features
While most of the images in the Primus database show one object with an
uniform background, the images are so diverse that it is difficult to use
specially adapted techniques. Thus feature extractions that work well in
a general domain are most suitable.

A thorough discussion of different image feature extraction methods is
beyond the scope of this text. For a general description of image process-
ing, see for example (Jähne, 2001), (Sonka et al., 1998) and (Gonzalez and
Woods, 1992).

Based on a review of available techniques, I decided to focus on extract-
ing shape, colour and texture information from objects identified in the
images. Object identification was done by segmenting the image into two
regions, foreground (objects) and background. Each of these image ma-
nipulations is discussed below.

9.1.1 Segmentation
Figure 9.1 shows a sample image from the Primus database – an object on
a uniform background (discounting shadows). A fair assumption would
be that the background is of no interest to most users. Therefore we
would like to separate the object from the background so that only the
interesting parts of the image (the object) are used for feature extrac-
tion. This is why image segmentation plays such a vital role in feature ex-
traction and content-based image retrieval. Unfortunately, while
segmentation has long been a topic for study, good image segmentation is
still often impossible to attain (Li et al., 1999).

9.1 Extracting image features 175

As part of my work, several different algorithms were considered. A good
overview of different alternatives for colour image segmentation is
presented in (Skarbek and Koschan, 1994). Among those that were imple-
mented and tested were edge-based methods such as Snakes (Xu and
Prince, 1998) and region-based methods such as Watersheds (Vincent
and Soille, 1991).

The method which ended up giving the best results for the Primus
database was the EDISON system (Edge Detection and Image Segmenta-
tiON) (Comaniciu and Meer, 2002). This system uses a mean-shift-based
image segmentation algorithm enhanced with edge segmentation. Two
examples of images segmented with EDISON are shown in Figure 9.2.

Figure 9.1 Sample image from the Primus database.

176 Chapter 9 Extending SESAM to image databases

The top example is near perfect, the object is separated cleanly from the
background (including darker shadows). In the bottom example, a lot of
the object is lost due to its colours being fairly similar to the background.
This could have been fixed by adjusting segmentation parameters, but as
the image database contained more than 236.000 images, individual opti-
mization was impossible. The selected parameters were found by optimiz-
ing the segmentation results for a subset of more than 100 images
randomly drawn from the database.

9.1.2 Shape
After object and background have been segmented, the object’s shape is
the outline of the segmented shape. Correct shape extraction is therefore
highly reliant on correct segmentation.

A good shape description should have to keep properties (Lu, 1999):

1. The shape representation should be invariant to translation, rota-
tion and scaling.

2. Equal shapes should have equal shape representations.

Figure 9.2 Two examples of image segmentation.

9.1 Extracting image features 177

The process of matching images based on shape features can be divided
into three. First the shape must be identified. Then this shape must be
converted into a representation suitable for fast matching. Finally, the
shape representations can be used to compute distance measurements in-
dicating the similarity of image object shapes.

Different stages of the process of identifying object shapes are shown in
Figure 9.3. The original image is shown top left. This image is segmented
using the process described above. From the segmented image, the
largest object is located using JAI1 and the outline is drawn using the
ImageJ image processing library2. The result is shown top right.

1. JAI - Java Advanced Imaging, http://java.sun.com/products/java-media/jai/
2. ImageJ, http://rsb.info.nih.gov/ij/

Figure 9.3 Stages in the process of extracting shape information.

178 Chapter 9 Extending SESAM to image databases

Two different shape representation formats are used. The first is moment
invariants (Hu, 1962). Using normalized, central moments this represen-
tation is invariant with respect to translation, rotation and scaling.
Moments 1 through 7 are computed and stored in the database for each
image.

The second format used was fourier descriptors. To make the fourier de-
scriptors less sensitive to noise, the object outline was first smoothed by
applying a fourier transformation, removing the higher frequencies and
applying the inverse transformation. An example of a resulting image is
shown bottom left in Figure 9.3. Finally, the outline was simplified (and
points equally spaced), shown bottom right, and fourier descriptors
computed. The process used algorithms borrowed from (Rui et al., 1996)
and (Zhang and Lu, 2001).

The extracted shape information was always meant to be used to allow
users to make filters based on shape. In order to do this, some way of
grouping objects with similar shape must be present. Ideally, this
grouping should be done dynamically at run-time in order to get a catego-
rization optimized for the result at hand.

However, due to performance reasons, a different approach was used.
Rather than to compare image shapes to each other at run-time, a set of
standardized shapes was selected in advance with each image being clas-
sified according to the closest matching standard shape. The standard-
ized shapes used are shown in Figure 9.4.

9.1 Extracting image features 179

These images are based on a set of 260 shapes from (Snodgrass and
Vanderwart, 1980) further modified by (Wagemans et al., 1998). This set
was originally derived in order to study differences and similarities in
the processing of pictures and words and is considered one of the
standard databases of common objects (Weinshall and Kirkpatrick,
2004). From the original set, near-identical and specialized shapes were
removed until the 24 shapes I found most distinct, abstract and simple
remained.

In order to compute which standardized shape a given object was most
similar to, the extracted moment invariants and fourier descriptors were
compared. For fourier descriptors, I used a distance metric described in
(Rui et al., 1996). This metric has been shown to be highly resistant to

Figure 9.4 Standardized shapes used for classification.

180 Chapter 9 Extending SESAM to image databases

image transformations such as translation and rotation. For moment in-
variants, a simple scaled sum of differences between the respective
moments was used (scaled so that lower moments carried more weight).

9.1.3 Colour
Colour is perhaps the most widely used feature in content-based image
retrieval. Colour can be comparatively easily extracted, is independent
of object placement and object transformations. As only object colour is
of interest, segmentation is also necessary here. It is however important
to note that colour extraction is less reliant on a perfect segmentation
compared to shape extraction. As long as a majority of object pixels (and
not too many background pixels) is included, the colour information is
relatively unchanged.

The most usual way of storing colour information, is using histograms
(Gonzalez and Woods, 1992). The method implemented in my work
differs in that it instead uses statistic moments from said histograms.
This idea was suggested in (Stricker and Orengo, 1995). For each colour
channel (of which there are typically three, colour model depending), the
three first moments are stored in the database – average, std. deviation
and skewness.

Before histograms are made, it is necessary to decide which colour
models to use (Lew, 2001). Different alternatives include RGB, HSB and
CIELab. An useful comparison of several models is given in (Gevers and
Smeulders, 1996). Based on previous work and my own evaluations of
several models, I decided to use CIELab. This model is perceptually
uniform so that the distance between two colours in the CIELab colour
space corresponds to how different they appear to humans.

As for shape extraction, the ultimate goal is to be able to classify images
based on the colour of the object depicted. Again, this classification was
statically determined and stored in the database rather than classified
dynamically at run-time. The CIELab colour space was divided into 18
different partitions and all the images in the Primus database were
processed and assigned to a partition. Thus, for each image a single
number was stored that determined partition number. This made the
run-time analysis fast and easy to perform. The colour space partitioning
is shown in Figure 9.5. The area inside the large X was divided into even
smaller pieces (not shown).

9.1 Extracting image features 181

9.1.4 Texture
Texture was the final image feature tested. It describes the structure of a
surface, such as coarseness, contrast, directionality, etc. For a detailed
discussion on the use of texture for content-based retrieval, see (Haralick
et al., 1973) and (Lew, 2001).

My implementation used the method described in (Tamura et al., 1978).
This is the same method used in, among others, the QBIC System
(Flickner et al., 1995). The method is based upon a series of psychological
studies as to how humans see texture. It classifies textures along a
number of axis such as coarseness, line-likeness, regularity and rough-
ness.

Figure 9.5 Partitioning of the CIELab colour space.

182 Chapter 9 Extending SESAM to image databases

Unfortunately, preliminary evaluation of our implementation gave so
poor results that texture was dropped from the final prototype. The
results were for a large part nonsensical – it was difficult to gain an
intuitive understanding as to why two objects were classified as having
very similar texture. While the concepts of similar colour and shape are
instantly understandable, it was difficult for test subjects to grasp what
texture was all about.

9.2 Extending SESAM
After the feature extraction had been performed on all the images in the
Primus database, all the images had been classified according to object
shape and object colour. This made it possible to extend the Sesam
prototype to include two new types of filters. It was discussed to combine
colour and shape into a single filter, but it was decided that it was easiest
to understand and more powerful to use if they were kept separate.

A screen shot of the new shape filter, is shown in Figure 9.6. Here the
objects in the result (in this case drinking bowls) have been classified
according to which standardized shape they most closely resemble. The
resulting classes of images are then put through the same process as
described in Section 8.1.2 in order to select the most promising subset of
classes to display to the user and to compute a utility measure indicating
the assumed usefulness of this filter.

Figure 9.6 Shape filter interface.

9.3 Experiences 183

In the example shown in Figure 9.6, the process ended up with showing
four classes of objects to the user (of a maximum eight). These are shown
as buttons on the left side of the interface. The user is then free to make
a filter by pressing the buttons matching the shape class of interest. It is
also possible to use the question-mark-buttons to browse the images in
each class in order to gain a better understanding of exactly what the
filter would accomplish. Finally, the images in the selected classes can
either be retained (“Keep these”) or removed from the result (“Hide
these”).

The corresponding interface for colour filters is shown in Figure 9.7. The
interface component is similar to the one shown in Figure 9.6 except for
the shape buttons having been replaced by buttons with icons indicating
the corresponding partition of the CIELab colour space.

9.3 Experiences
Preliminary results from informal evaluations during the development as
well as from (Hauglid and Midtstraum, 2001) and several master degree
student projects (Obrestad, 2002), (Langmyr, 2003, Grøtan, 2003), made
it clear that the current implementation is not at a level where a larger,
more formal evaluation could be useful. This section therefore is limited
to discussing the informal experiences.

Figure 9.7 Colour filter interface.

184 Chapter 9 Extending SESAM to image databases

I have chosen to describe the experiences in two separate parts. First I
discuss experiences from working on feature extraction. While this was
not directly related to the topic of this thesis, it was a required sub
component in order to implement a content-based image retrieval inter-
face.

The second part discusses the experiences with the user interface. While
the interface was inhibited by the less-than-perfect feature extraction, it
was still possible to get some clear indications as to what worked and
what did not.

I end this chapter with a discussion of how the different design ideas
performed and which conclusions can be made.

9.3.1 Feature extraction
The overall experience gained from the work on feature extraction, is
that this is a hard problem to solve. A lot of work went into trying out
different techniques and algorithms, both for segmentation, feature ex-
traction, distance measurements, etc.

Even for the images which consisted of a single object displayed against
a uniform background, it was difficult to get a perfect result. If the image
had colours similar to the background or if the shadow was particularly
heavy, the outline was seldom 100 % correct. Primus also contained a lot
of images where it was difficult even manually to find a useful segmenta-
tion or shape extraction. Figure 9.8 shows two examples.

For the image on the left, it is not clear what is the object of interest and
what is uninteresting background. For the image on the right, the object
of interest (the tiny doll), is not the largest object in the image. The
shape extraction is therefore likely to focus on the right-side object.

Figure 9.8 Examples of problematic images to segment.

9.3 Experiences 185

Feature extraction was problematic not only as far as techniques and al-
gorithms go. As it is impossible to use computers to evaluate the
different implemented alternatives (determining the correct solution is
exactly what is the problem), a number of subjective evaluations using
human test subject as evaluators were used. They were presented with
how the different alternatives ranked a number of images according to
similarity with a given image. Even if the test subjects were strongly in-
structed to evaluate the results purely on shape (or colour), not any other
features, this was difficult to achieve in practice. By examining some of
the results, it is clear that the test subjects had problems with not (sub-
consciously) considering other aspects as well. For example, users could
indicate that two depicted dolls had similar shape, even when they were
(objectively) clearly different. Similar, it was not seldom that two
entirely different objects with almost exact similar shape were recorded
as quite different. This, of course, made it more difficult to evaluate the
different implemented extraction methods. It also suggests that image
features such as colour and shape perhaps are not that well suited for
this kind of retrieval.

9.3.2 User interface
It proved difficult to fit an image filtering component into the existing
SESAM prototype. The screen area needed to display even small images,
meant that it was difficult clearly to show which images a filter affected.
This problem was of course further amplified by an imperfect feature ex-
traction.

Interestingly, clear differences between colour filters and shape filters
were observed. Almost always the colour filters were found by test users
to be more intuitive and to work better. In part, this can be attributed to
the quality of the feature extraction, but separate evaluations of the
feature extractors indicate that this could not have been the only cause.
Rather, it seems like colour is intrinsically better suited for this purpose
than shape. Upon closer examination, the most likely cause is the fact
that the photo of a blue object will nearly always contain a majority of
blue pixels. But for shapes, the shape extracted from an image will vary
depending on the angle in which the photo was taken. For example, a bowl
can appear circular from above, almost square from a 45 degree angle,
and as a half circle from the side. This effect is illustrated in Figure 9.9.

186 Chapter 9 Extending SESAM to image databases

Experiences indicate that users (subconsciously) expected the query
system to match objects according to their real-world 3D shape rather
than the 2D shape present in the image.

This points to a more fundamental issue with the use of images in this
context. In the SESAM prototype, images were just means to an end – a
way of locating the objects depicted rather than the images themselves.
This helps explain why test subjects were more interested in the real-
world 3D shape rather than the 2D projection in an 2D image. Thus,
content-based image retrieval would most likely have been more appro-
priate in a system directly focused on image retrieval.

Still, the image handing extension to SESAM proved of value for colour
filtering – both for reasons described above and because it was less
reliant on a perfect segmentation of object and background. Even if a lot
of effort was spent to improve shape classification, it was in general not
reliable enough to be worthwhile beyond a certain novelty factor.

9.3.3 The four design ideas
The overall objective with the work presented in this chapter, was to test
the four design ideas from Chapter 5 in the realm of image databases. Ex-
periences with respect to each of these ideas are discussed below.

Revised interaction model
This design idea was only partly implemented for images. While filters
made it possible iteratively to modify a result, no access methods beyond
filtering were implemented due to time constraints.

Figure 9.9 Rotating a 3D object alters shape of 2D projection.

9.3 Experiences 187

As described above, only colour proved to be of much use for filtering.
Thus, the iterative interaction model was less useful here as only one
type of image filter was available. However, when combined with the
textual filters from the original SESAM prototype, the experiences with
this design idea were comparable to the results presented in Chapter 8.

Intra-result analysis
The intra-result analysis made it possible to see the most prevalent
object colours and shapes in a result. For example, it was easy to see that
most of the drinking bowls in the database had a reddish colour.

As for all the other design ideas, the quality of the extracted information
and thus the value of this idea was heavily affected by the feature extrac-
tion. For example, this meant that the colour information was far more
reliable than the shape information.

Active user interface
The user interface could be said to be active in that users could construct
filters by recognizing the colour or shape they were interested in from a
list of presented alternatives. No option of drawing a shape or selecting a
colour from a complete palette was provided.

This design idea was perhaps the most successful of the four in this
setting – at least discounting the cases where the feature extraction was
particularly unsuccessful. Experiences indicate that the information
needs of users are often not tied to a specific colour. They rather seem to
recognize what they want when they see it. For example, by responding
“are there more objects with this colour?” or “yuck! is there anything
with a warmer colour?”. This sort of result manipulation is exactly what
this design idea was meant to support. Thus, this idea showed promise
with respect to narrowing the semantic gap.

Dynamic user interface
This design idea concerned the process of selecting a suitable subset of
filter suggestions and present those to the user rather than presenting
every available option. The selection process used in this prototype used
in essence the same algorithms as the prototypes presented in Chapters 6
to 8.

188 Chapter 9 Extending SESAM to image databases

Experiences indicate that this selection process performed worse here
than in the text-only case. Again, this can be attributed to the problems
with extracting image features reliably. If images are incorrectly classi-
fied according to colour or shape, reasoning about the most suited classi-
fications for filter suggestions will invariably be negatively affected.

189

Chapter 10

Savanta

This chapter presents a work with Savanta, a user interface for accessing
temporal, semantic video annotations. In Savanta, various methods and
paradigms have been integrated, including visualisation, filtering,
analysis, navigation and search, in order to explore the possible advan-
tages of doing so. A formal usability evaluation comparing Savanta to
systems based on traditional interfaces for accessing video databases is
presented. It concludes that Savanta outperforms them with regard to
both power and usability, especially for complex and open-ended tasks.

The work presented in this chapter was done in cooperation with Jon
Heggland. The purpose was to bring together Heggland's modelling and
visualisation of temporal metadata and my design ideas for user inter-
faces for accessing information (as presented in Chapter 5). See
Appendix B for a more detailed description of our individual contribu-
tions to Savanta.

10.1 Introduction
The use of temporal, rich media such as video and audio in computer
systems is becoming more and more common. However, to benefit fully
from the richness, power and verisimilitude of video, powerful tools for
annotation, analysis and retrieval are needed. Systems for creating and
storing semantic temporal annotations (high-level descriptions related to
video/audio time intervals) are common, but less consideration has been
given to how this information best can be utilised by the end user. In

190 Chapter 10 Savanta

most cases, techniques for accessing information developed for more tra-
ditional database applications, such as query languages and form-filling
interfaces, are used.

In this chapter, we introduce a novel approach for accessing information
in such temporal annotation databases, namely a seamless fusion of visu-
alisation, browsing, filtering, searching and context-aware metadata
analysis. This is based on our position that the properties and require-
ments of temporal annotation databases are significantly different from
traditional databases, and that introducing modern user interface tech-
niques – direct manipulation, graphical visualisation, filtering, iterative
interaction model – will be of great benefit. To evaluate the validity of
this claim, we have implemented an advanced information access appli-
cation, and have performed an evaluation comparing it with user inter-
faces based on traditional methods and paradigms.

The remainder of this section presents related work and how we
intended to improve the situation with regards to information access in
temporal metadata databases. Section 10.2 presents Savanta, a prototype
designed to evaluate our design ideas. Section 10.3 presents a usability
evaluation of Savanta, while Section 10.4 presents conclusions.

10.1.1 Related work
There is a huge difference between the way video data is coded digitally,
and the way it is experienced by a human user. As far as a computer is
concerned, video data is sequences of bitmap images – grids of coloured
dots – along with a time-dependent air pressure function, i.e. the audio
track. The users, however, do not see a bunch of dots constantly changing
colour – they see people, buildings, vehicles, landscapes, places, actions,
events, discussions, stories, ideas, etc. Most likely, the users want to
interact with a digital video library using such high-level concepts, not
using the vocabulary of coloured dots and air pressure. Therefore, it is
common to use high-level, structured metadata to describe the semantic
content of videos. In this way, the knowledge contained in and related to
the material is stored in a machine-readable, compact format, and can be
used for a multitude of purposes – for indices, tables of contents, refer-
ences and links; comments, explanations, summaries, critique and aug-
mentation. This enhances the value of the material considerably, and
reduces the need for handling large media files, which is expensive both
in terms of storage space, viewing time, network bandwidth and process-
ing cycles.

10.1 Introduction 191

Data models and systems for generating and storing such annotations
have been well researched. Systems such as OVID (Oomoto and Tanaka,
1993), AVIS (Adali et al., 1996), VideoSTAR (Hjelsvold and Midtstraum,
1994), the Algebraic Video Model (Weiss et al., 1995), Vane (Carrer
et al., 1997), Smart VideoText (Kokkoras et al., 2002), OntoLog (Hegg-
land, 2002) and BilVideo (Dönderler et al., 2003) present clever, expres-
sive data models suitable for most purposes. Though some find it lacking
in flexibility, usability and expressiveness (Nack and Hardman, 2002),
(Nack and Putz, 2001), the MPEG-7 metadata standard is also gaining ac-
ceptance. However, less thought has been given to how to retrieve,
present, browse and mine this kind of information.

This task is markedly different in temporal annotation databases
compared to other databases, as noted in (Santini and Jain, 1999) and
(Nack and Hardman, 2002). In traditional relational databases storing
text and numbers, the data model is fixed and unambiguous, relations
are explicit, and the access patterns are straightforward and predictable
– you know exactly where to look to find what you want. The meaning of
the data is inherent in the data itself – it is not a matter of interpretation
and context. In contrast, video and audio data are (as mentioned previ-
ously) opaque to the computer when it comes to semantics, so it must rely
on metadata to implement content-based access. However, though the
metadata model may be straightforward, the richness and ambiguity of
temporal media mean that the actual annotations may vary greatly,
depending on the idiosyncrasies of the annotator (whether it is human or
not). Differences in perspective, focus, level of detail, accuracy and thor-
oughness may cause the same video content to be represented quite dif-
ferently, even in the same model. Therefore, precise query languages
may be of lesser use than in “old-fashioned” databases – they assume
that the user knows exactly what he or she is looking for, and that the
queryable metadata comprises a complete and accurate representation
of the semantics of the video. And for the same reasons, browsing and
navigation systems may be more useful and appropriate.

As for the previously mentioned metadata systems, OVID, AVIS and
VideoSTAR offer complex query languages. They are precise and
powerful, but not very easy to use, even with forms interfaces. Smart
VideoText and BilVideo are logic-based, and use logic programming for
querying; this makes them perhaps even more powerful but further out
of reach for non-experts. OVID, Vane and OntoLog use visualisations of
the annotation intervals for overview and navigation, but are limited to
viewing one media resource at a time – inter-media browsing is not

192 Chapter 10 Savanta

provided. Smart VideoText and the Algebraic Video Model suggest a
hyperlink paradigm for navigating along semantic links between
different intervals of different films, but do not actually implement it, or
even specify a concrete user interface. Text-based, tabular overviews of
the video contents are used in VideoSTAR and video analysis tools such
as QMA (Skou, 2003) and Observer (Noldus Information Technology,
2003). These last two also provide a filtering mechanism, where uninter-
esting annotations may be hidden to de-clutter the display. They also
offer statistical analyses on the annotations. Informedia (Christel and
Martin, 1998), SCAN (Whittaker et al., 1999) and VoiceGraph (Oard,
1997) offer information retrieval functionality by searching in video tran-
scriptions, but present the results as ranked lists of videos, with little
support for browsing, navigation and exploration.

As is evident by the above description, a number of different methods for
accessing information in temporal annotation databases can be used.
However, few existing systems implement more than one or two different
methods and the implementations tend to target expert users. In this
chapter we present a system where modern interface techniques are
used to provide an integration of several different access methods. We
argue that such a system will not only offer more expressive power to the
user, but also a more user-friendly for non-experts – a user group which,
in our opinion, has been somewhat neglected by most existing systems.

10.1.2 Applying the design ideas to temporal
multimedia annotation databases

In this section, we examine how the four design ideas from Chapter 5 are
used in the design of our proposed system. As this type of information re-
pository is more complex than for example textual metadata databases
(mostly due to the added temporal dimension), it is to be expected that
this interface will be more complicated than the interfaces presented in
previous chapters. Our aim is therefore to design an interface which
compares favourably with respect to usability and expressive power to
the related interfaces mentioned in the previous section, not to user in-
terfaces for information access in general.

Revised interaction model
Temporal annotation databases can be seen as consisting of one or more
media resources – in our case videos, but could also include e.g. audio
clips. A conceptual model for the description of a media resource is
shown in Figure 10.1.

10.1 Introduction 193

The contents of the media resource can be described by attaching
metadata (annotations) to interval sets (is1–is4 in the figure) containing
one or more intervals.

In order for the user to see this information, some sort of visual presenta-
tion must be available. The process of creating such a presentation is
called information visualisation – more formally defined as (Gershon
et al., 1998):

“[...] the process of transforming data, information, and knowledge into
visual form making use of humans' natural visual capabilities.” (page
9)

Depending on the size and complexity of the database in question, a
large number of different presentations can be imagined – from the
detailed display of a single piece of metadata to an overview of the whole
database. Limiting a system to a single type of presentation would clearly
be too restrictive. Some form of navigation between the different presen-
tations is therefore required.

As the media database grows, it becomes necessary to be able to limit the
presentation to a subset of the stored data. This is both because display-
ing everything would make the presentation too cluttered and because
not every piece of information is equally relevant to a given user in a
given setting. Generating a subset of the database can be done in a
number of ways. The most common method is to use some sort of query
language or forms interface. Based on one or more expressions entered by
the user, a new ad-hoc collection of matching objects (or query result) is
constructed.

Figure 10.1 Conceptual model of temporal annotation databases.

timeMedia Resource

Metadata

is1

is2

is3

is4

194 Chapter 10 Savanta

Filtering is an alternative solution where the user removes uninteresting
objects from the information collection by creating filters that eliminate
objects that do not (or do) match certain criteria.

The integration of visualisation, query, filtering and navigation in a
revised model of interaction (see Section 5.1) as illustrated in
Figure 10.2.

However, the integration of several methods for accessing information
will result in a more comprehensive interface which could become too
complex and therefore difficult to use. In other words, the gain in power
could be overridden by a loss of usability. This is a key point we address
in the usability evaluation presented in Section 10.3.

Intra-result analysis
A system for accessing temporal media databases needs not be limited to
the data that is explicitly stored in the database. It is typically possible to
analyse the complex temporal relationships present in the metadata to
derive new, high-level information that otherwise might be difficult and
time-consuming to extract manually (see Section 5.2). This can include
finding statistics such as the average length of registered intervals or
identifying properties such as the most prevalent metadata in a given
result.

Figure 10.2 Interaction model for proposed system.

Information Need

Visualise Results

Analyse Results

Present Derived
Metadata

Done?

Filter Navigate

Choose Strategy

Stop

Yes

Query Evaluate Results

Update Results

No

10.2 Design and implementation 195

Active user interface
In addition to being valuable information in their own right, results of a
temporal analysis also lend themselves to navigation and filtering
actions, thereby providing a positive synergy and making it possible to
make an interface which relies more on recognition than recall (see
Section 5.3). The rich nature of temporal media could very well make
such derived information more important here than in traditional
database settings.

Dynamic user interface
The temporal analysis can also be made context sensitive with respect to
which presentation the user has navigated to. This will result in a
dynamic user interface (see Section 5.4).

10.2 Design and implementation
To test these ideas in practice, we built a prototype called Savanta
(Search, Analysis, Visualisation And Navigation of Temporal Annota-
tions). This section describes the implemented prototype, organised
according to the aspects discussed in the previous section: stored and
derived metadata, visualisation, navigation, filtering and querying.

10.2.1 Stored metadata
We use the OntoLog model for temporal metadata, first described in (He-
ggland, 2002), because this provides us with a flexible, expressive model
that lends itself well to visualisation and analysis. This RDF-based
model, as shown in Figure 10.3, consists of intervals, with start and end
time, that belong to media resources. The intervals are related to concepts
in ontologies. The concepts are organised in directed acyclic graphs of
classes, subclasses and instances. This constitutes a stratified annotation
scheme (Smith and Pincever, 1991), with the strata (that is, the concepts)
organised in a generalisation/specialisation hierarchy.

196 Chapter 10 Savanta

Projects act as containers for sets of related media resources and the on-
tologies that describe them. Additionally, the ontologies define properties
that are used to describe the elements in the data model.

This is a fairly complex model; the ontologies in particular, with their
classes, instances and properties, are potentially confusing for non-
expert users. It is reasonable to target this kind of system at users who do
not necessarily have a thorough understanding of data modelling – it
ought to be possible to use it as a retrieval interface for a digital video
library without requiring a lot of training on the users' part. Therefore,
we choose to use a simplified view of the OntoLog data model in the
Savanta user interface:

♦ We do not consider the differences between classes and instances
very significant, so we present them as the same thing, and call
them terms. Thus, both the subclass-of relationship and the
instance-of relationship are considered a narrower-term relation-
ship.

from
to

Interval

URL
MediaResource

1 *

hasInterval

«metaclass»
rdfs:Class

rdf:type

* *

* 1..*

relatesTo

*

*

rdfs:SubClassOf

Individual

«interface»
Concept

Project Ontology
1..** usesOntology

hasMediaResource1

*

(rdfs:isDefinedBy)

Figure 10.3 The OntoLog data model.

10.2 Design and implementation 197

♦ Likewise, we consider ontologies top-level terms. That they also
define properties is not mentioned, though we of course still use
the properties for describing things.

♦ We look at one project at a time. The media resources within a
project are most likely closely related and homogeneously anno-
tated – they are described using the same ontologies and terms.
This will both simplify the data model and better the chances of
relevant analyses of the metadata.

This results in the following simplified view of the OntoLog model:

Stored metadata is presented in Savanta as shown in Figure 10.5. Terms
are presented in a tree list, with their associated intervals in a timeline
display to the right. The terms, their “relatives” and their properties are
also shown in a navigable hypertext panel at the right edge of the
window. The user interface is further described in the subsequent
sections.

Media Resource

from
to

Interval Term

Broader *

Narrower

*

1 *

hasInterval

* 1

relatesTo

Figure 10.4 Simplified annotation model.

Figure 10.5 Stored metadata in Savanta.

198 Chapter 10 Savanta

10.2.2 Derived metadata
A temporal annotation database contains much more information than
what is explicitly registered. Consider a film clip where the intervals in
which each actor appears, have been accurately registered. Implicitly,
this database also contains information about the frequency of each actor
and the temporal relationships between each of them. Examples of the
latter might include actors that always appear together, actors that are
always alone, etc. In order to extract such information, some sort of intra-
result or temporal analysis is necessary (see Section 5.2 for a description
of the intra-result analysis design idea).

While intervals are the fundamental units in the data model, semantic in-
formation is nearly always attached to sets of intervals – simply because
annotating each separate interval is too time-consuming. As a result, a
meaningful simplification is to derive information about sets of intervals
rather than individual intervals. Four different, meaningful, types of
interval sets can be imagined in our system. The set of intervals, Tterm,
attached to a specific term, is perhaps the most important. Other sets
include the whole database D, the currently displayed result R and the
set of intervals, S, selected by the user.

First of all, meaningful information can be derived about a single set of
intervals. For the system described here, we have chosen to display the
total length of the intervals in D, R and S, both in seconds and relative to
the total length of intervals in the database. As Tterm is a function of term,
displaying such information about every (non-selected) term would
simply be too overwhelming and confusing.

Temporal analysis gets much more interesting when we start to examine
two sets of intervals and how they relate to each other. If we see an
interval, and thus a set of intervals, as a set of points in time, we can use
standard set operators as temporal set operators (Hjelsvold et al., 1995) to
manipulate the intervals. This includes operators such as union (∪), in-
tersection (∩) and subtraction (–).

Further, we can examine how two intervals, A and B, relate to each other
on a common temporal axis. For example, A might have ended before B
starts, they might be equal, or A might start exactly when B ends. In fact,
13 such temporal relations have been identified (Allen, 1983). While
temporal set operators return one or two intervals, temporal relations
simply say whether a given relation exists or not between two intervals.

10.2 Design and implementation 199

With a multitude of temporal set operators and possible sets of intervals
to look at, a large number of possible computations exists. It is therefore
necessary to focus on what gives results that are meaningful to the user.
Our novel idea is to use temporal analysis to identify interesting terms by
examining Tterm in relation to D, R or S using temporal set operators. The
possibilities offered by this method, can be illustrated by a few examples:

♦ Identify terms that have most in common with the result. This is
terms that have intervals that overlaps as much as possible with
the intervals in the result.

♦ Identify terms that have little or nothing in common with the
result.

♦ Identify terms that have a lot in common with the selected inter-
vals, but little in common with the result.

♦ Identify the media resources that topically are most similar to the
intervals selected by the user.

These terms can represent interesting information in their own right as
well as serve as input for filtering operations (example: remove all
intervals attached to an identified term). For this implementation, we
have chosen to group terms into three semantic categories. These three
categories are:

♦ Described by

♦ Related to

♦ Differs from

An illustration of these three categories used in the following discussion
is shown in Figure 10.6.

200 Chapter 10 Savanta

Please note that all interval sets can contain intervals from different
media resources even if the figure above (for clarity) shows only one. For
example, in a database containing media resources M1, M2,, Mn, R will
equal RM1 ∪ RM2 ∪ ∪ RMn. At any time when an operator is applied to
two sets of intervals, intervals from a given media resource are handled
separately. This means that A ∪ B is a shorthand for {AM1 ∪ BM1; AM2 ∪
BM2; ... ; AMn ∪ BMn}.

Described by
This category includes terms that should give a good description of the
result or the currently selected intervals. To locate such terms, we
identify terms where Tterm overlaps R (or R ∩ S) to as large extent as
possible. In Figure 10.6, “The Middle East” intervals overlap all “The
War in Iraq” intervals and is therefore a good candidate for this
category. The reasoning is that the degree in which two sets of intervals
are equal, closely matches their semantic relation and thus one can be
used to describe the other.

Related to
“Related to” encompasses terms that are somewhat related to the result
or the currently selected intervals. In practice, this means terms which
have intervals that overlaps R (or R ∩ S) as close to 50 % as possible. For
example, the “George W. Bush” intervals in Figure 10.6 overlap close to
50 % of “The War in Iraq” and they are therefore thought to be related.
The main purpose of this category is to serve as source for filtering oper-
ations. For this use, it makes sense to find ways of reducing the result by
50 % – as described in Section 6.3.2 and Section 8.1.2.

timeMedia Resource

The War in Iraq

The Middle East

George W. Bush

Afghanistan

Figure 10.6 The War in Iraq described by The Middle East; related to George
W. Bush; differs from Afghanistan.

10.2 Design and implementation 201

Differs from
To describe an object fully, you not only need to include its properties,
but also the properties it does not exhibit. This is covered by this
category. In our case, it contains terms that have little or nothing in
common with R (or R ∩ S) – that is as little overlap as possible. In the
example shown in Figure 10.6, the “Afghanistan” interval does not
overlap any of the “The War in Iraq” intervals and thus is completely dif-
ferent. This category is also helpful for filtering as described in
Section 10.2.5.

♦

To find how well a given term is suited to each of the three categories
mentioned above, we employ a set of utility functions. They take Tterm as
argument and give a result from 0 (no utility) to 1 (high utility), which
should indicate the usefulness of term with respect to a given category.
The utility functions for each of the categories are given below.

Described by (term):

This is the length of the overlap between Tterm and R totalled for all
media resources, divided by the total length of R.

Related to (term):

This is 4·x·(1-x) where x is the “described by” utility function. This gives
a parabola function where the utility is maximized for 50 % overlap
between Tterm and R and minimized for 0 % and 100 % overlap.

Differs from (term):

TtermM
RM∩

M∀
∑

RM
M∀

∑

4

TtermM
RM∩

M∀
∑

RM
M∀

∑
--- 1

TtermM
RM∩

M∀
∑

RM
M∀

∑
---–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅ ⋅

TtermM
RM–

M∀
∑

M RM–
M∀

∑
--- 1

TtermM
RM∩

M∀
∑

RM
M∀

∑
---–

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎛ ⎞

⋅

202 Chapter 10 Savanta

This function consists of two parts. The first is the total length of the
intervals in Tterm which are not in R, divided by the length of the
intervals not in R. This promotes terms with Tterm containing as much of
what is not in R as possible. The second part is 1 minus the “described
by” utility function. This promotes terms with Tterm containing as little of
R as possible.

10.2.3 Visualization
The Shneiderman mantra (Shneiderman, 1997) of

“overview, zoom and filter, then details on demand.” (page 523)

is a good rule of thumb when designing interaction systems, and the
process of visualisation ties into this in several ways. The system must
construct the overview, produce the details on demand, and provide an
environment in which the processes of zooming and filtering can be
performed efficiently and intuitively.

The main challenge of creating an overview is the amount of data that
must be presented. During the development and testing of this system,
we created a sample database containing ten weeks of lectures in an
entry-level computer science course; this amounts to 20 media resources,
over 150 terms and over 500 intervals. While not much in terms of bytes,
this is much information for a human to assimilate quickly, especially
since much of the useful information is given by (possibly implicit) rela-
tionships – which terms are “active” at the same time as others, and how
they are connected in the broader/narrower term hierarchy.

To create the overview, we used an extension of the technique intro-
duced by OntoLog (Heggland, 2002). The terms are presented in a tree
list – a natural choice, considering their near-hierarchical organisation –
and the intervals related to each concept is visualised as segments on a
timeline, as shown in Figure 10.7.

Figure 10.7 Terms, timeline and intervals.

10.2 Design and implementation 203

When a term is collapsed, the intervals of its “children” (narrower terms)
are aggregated, so that the representation of the parent term’s intervals
includes the intervals of its children, using varying line thickness to
denote overlap between the children’s intervals, as shown in Figure 10.8.

We use the media resources as top level nodes in the tree list, and
present the term tree under each media resource node. Initially, all the
nodes are collapsed, and this creates a representation compact enough to
present our sample database on a single screen, as shown in Figure 10.9
(except that there, a single media resource node is expanded).

Terse as this representation is, it is still possible to extract useful infor-
mation from it. You get a list of the media resources in the database, and
their relative lengths are readily apparent. It is also easy to see which
media resources are heavily annotated and which are not, by noting the
number and thicknesses of the interval lines, and where apparently
nothing interesting happens, judging by the gaps in parts of the timeline.

Figure 10.8 Collapsed term and aggregated intervals.

Figure 10.9 Savanta.

204 Chapter 10 Savanta

“Details on demand” is handled in several ways in this visualisation.
Selecting an item (a media resource or a term) displays information
about it in the hypertext panel to the right. This includes both stored and
derived metadata. The stored metadata consists of the term’s (or media
resource's) properties, comment, and broader and narrower terms (if ap-
plicable). The derived metadata includes the length of the current selec-
tion, as well as the terms, properties and media resources related to the
current result/selection, as discussed in the previous section. The
hypertext panel also provides controls for navigation and filtering; more
on this in the next sections.

Selecting a term also highlights the intervals it is related to in the
interval display. Figure 10.9 also illustrates this, with the term “HTML”
selected. Thus, it is easy for a user at a glance to find out when and how
much a term is used.

Another mechanism for providing details (or “zooming”), is to expand
and “drill down” in the tree list. Due to the semantics of the term
hierarchy and the aggregation of related intervals, the visualisation at
each level of the tree is useful: Even if no intervals are related directly to
a given term, the intervals related to all of its narrower terms are
displayed (see Figure 10.8 and Figure 10.7). If you want more details –
exactly what aspects of JSP (Java Server Pages) are discussed in
different parts of the expanded media resource in Figure 10.9, for
example – you simply expand the node. To avoid unnecessary clutter,
only terms that are actually used in a media resource (or whose narrower
terms are used) are displayed in the tree; but if desired, all the defined
terms can be shown for completeness.

10.2.4 Navigation
Navigation is defined in (Baeza-Yates and Ribeiro-Neto, 1999) as

“[...] following a chain of links, switching from one view to another, to-
ward some goal, in a sequence of scan and select operations.” (page 265)

Savanta’s navigation capabilities are designed to offer the user relevant,
context-sensitive links to related information. The selection, filtering and
analysis mechanisms of Savanta directly affect and interplay with the
navigation system.

For navigation through a media file, Savanta offers the traditional play/
pause button and time slider, illustrated in Figure 10.10. In addition, two
skip buttons are keyed to the currently selected part of the current result

10.2 Design and implementation 205

(S ∩ R or R, depending on whether anything is selected), so that navigat-
ing to an interesting media interval is a one-click operation. As default,
only the current result (R) can be played so that data relevant to the user
is not obscured by what he or she has decided to filter away.

Navigating the collection of terms and media resources can be done by
manipulating the tree list on the left. This is a common and intuitive
method for displaying hierarchical data, familiar from for example
Windows Explorer. This also affects the configuration of the interval
display – expanding nodes shows more detail, while collapsing them
gives a greater overview.

An alternative method is to use the hypertext panel on the right, shown
in Figure 10.11.

Figure 10.10 Media navigation controls.

Figure 10.11 Hypertext navigation panel.

206 Chapter 10 Savanta

This panel displays the selected term or media resource (in this case
“Style Sheets (CSS)”) within its immediate context – narrower and
broader terms. It also shows the terms and media resources related to the
current selection, according to a context-sensitive temporal analysis.
These are grouped into three categories – described by, related to and
differs from – as described in the following section.

All items in the panel are clickable, so the users can easily browse both
the term hierarchy and the items related to the current result, thus
creating dynamic paths through the material relevant to them.

10.2.5 Filtering
As the default presentation in Savanta includes all the registered
intervals in the database, it often contains items of little interest to the
user. In order to make it possible to focus on relevant pieces of informa-
tion, some means of eliminating unwanted items are required. In Savanta
this can be done either by filtering or searching. These techniques differ
in that filters are constructed by direct manipulation using interface
gadgets, similar to the dynamic query approach presented in
Section 4.2.6, while searching requires the user to input a textual query.

A filter, once constructed, is a set of intervals that changes the subset of
the database displayed to the user (i.e. updates the result). In theory, a
filter could contain a set of arbitrary intervals. In practice, we have
limited the filters to contain intervals connected to a term or a media
resource. This makes sense as terms and media resources are the basic
semantic units. In addition, these units are also the output of the
temporal analysis. A positive synergy between analysis and filtering can
therefore be achieved. In this way, a user can construct a filter simply by
selecting a term or media resource.

As both results (R) and filters (F) are sets of intervals, we can also here
use set operators. Traditionally, a filter eliminates items from a result,
that is R ← R – F. This requires the user to select what he or she wishes to
remove. However, previous experiences (see Chapter 7) indicate that
users when given the choice, are more likely to construct filters based on
what they wish to keep rather than what they wish to remove. This
suggests that it also should be possible to make filters that retain only
what is common to both the result and the filter, or R ← R ∩ F. Finally, to
alleviate the problem of filters only improving precision and not recall,

10.2 Design and implementation 207

we have also made it possible to make filters that add the contents of the
filter to the result, or R ← R ∪ F. Note that this breaks with the normal
semantics of filters.

These three filter operations are respectively called remove (–), retain
(=) and add (+) in the user interface. Filters are constructed by selecting
the appropriate button on the right side of the interface as illustrated in
Figure 10.12. For example, clicking the red + button beside “Comments”,
will add everything about comments to the current result.

The filter buttons are disabled if the corresponding filter will not change
the contents of the result. Interestingly, this in itself provides yet another
way of gaining information about the result. For example, if an add-
button for a given term is disabled, this means that the intervals
connected to this term are already present in the result – that is, R ∪
Tterm = R.

Filters are visualised as “greyed-out” areas in the interval display, as il-
lustrated in Figure 10.12. The skip buttons discussed in the Navigation
section are aware of the filters, making it easy to navigate to unfiltered,
selected intervals. By default, playback of the selected media clip auto-
matically skips filtered intervals. Thus, playing the intervals related to a
term (or boolean combination of terms) is a one-click operation.

10.2.6 Searching
The searching part of Savanta allows the user to enter a textual query.
This query is then matched against all textual attributes of terms and
media resources. The intervals connected to these items are collected
and used to modify the result. To retain the standard semantic of queries,
the revised result is constructed as an intersection between the current
result and the set of matched intervals. The interface components
related to searching are visible at the top of Figure 10.9.

Figure 10.12 Filters.

208 Chapter 10 Savanta

10.3 Usability evaluation
This section presents a usability evaluation carried out using Savanta
and two other comparable interfaces. The first part presents the setting –
the overall purposes of the evaluation, the interfaces to be tested and the
evaluation design. The results from the evaluation are presented in the
second part, while the third and final part discusses the results and
draws conclusions about the usability of Savanta and the usefulness of
our approach.

10.3.1 Setting
The purpose of this evaluation is to seek answers to the following ques-
tions:

♦ Is integration of several methods for accessing information a good
idea? Does it provide significant benefits compared to interfaces
that specialise in a single method?

♦ What is the relative importance of simplicity versus power? Can a
powerful but complex system outperform a simpler one with
regard to user satisfaction, without significant amounts of user
training?

♦ How does different information access tasks affect the suitability
and capability of such interfaces? What, if anything, changes
depending on whether the tasks are simple or complex, specific or
open-ended?

As the purpose of the evaluation is to find the strengths and weaknesses
of Savanta, a comparative evaluation with other interfaces for accessing
temporal annotation databases was a natural choice. By comparing
Savanta with other interfaces, one can gain a clearer view of the merits
and the weaknesses of the design. We chose to compare Savanta with ap-
plications based on two common paradigms for database search:

♦ Information retrieval as used by web search engines, where search
terms entered into a single text field produce a ranked list of doc-
uments. This has been used in video databases by e.g. SCAN,
InforMedia and VoiceGraph.

♦ Construction of boolean query expressions using forms, with an
unranked list of matching intervals as the result. This approach is
espoused by e.g. VideoSTAR, Algebraic Video and OVID.

10.3 Usability evaluation 209

We chose to create our own implementations instead of using existing
systems. That way, we would be able to query the same database with all
three interfaces, and they would be quite similar in look, feel and polish.
This would help the test subjects focus solely on the paradigm differ-
ences, not on database differences or implementation details.

Savantoogle
Savantoogle, like its name suggests, is supposed to resemble Google1 and
similar search engines in looks and functionality. These search engines
(Google, AltaVista2 and AllTheWeb3 being the most popular) are
familiar to most Internet users today, and are very easy to use. They
consist of a single text field where the user can enter one or more words
or phrases; executing the query then produces a list of documents,
ranked according to how well each document matched the word(s)
entered by the user. In a multi-word query, words can be prefixed with a
'+', denoting that the word must be present in the resulting documents,
or a '–', meaning that the word must not be found. Figure 10.13 shows Sa-
vantoogle’s user interface.

1. Google Inc., http://www.google.com
2. Overture Services Inc., http://www.altavista.com
3. Overture Services Inc., http://www.alltheweb.com

210 Chapter 10 Savanta

In the web search engines, the documents comprising the result are web
pages, and the search is based on the occurrence of words in each
document. In Savantoogle, this is slightly different, with media resources
taking the place of HTML documents. The query words are matched
against the terms, the terms’ properties and the media resource titles and
comments for each media resource. The ranking is mainly based on how
much time is spent on each matching term – analogous to how web search
engines rank documents according to the number of occurrences of the
search terms. Media resources matching several or all the words in a
multi-word query are ranked higher than those matching only a few.
Matches in media resources, titles or comments also increase the rank;
this corresponds to how web search engines consider matches found in
headings more important.

Figure 10.13 Savantoogle.

10.3 Usability evaluation 211

Clicking a search result link (which in the web search engines brings you
to the corresponding web page) brings you to an applet visualising the
annotations belonging to the media resource in question, shown in
Figure 10.14. This resembles the term tree and interval display of
Savanta, but has noticeably less functionality. It is meant to correspond
to the plain display of a web page in the web search engines, and to the
relatively simple video browsing functionality of systems like VideoS-
TAR, Vane and Jabber (Kominek and Kazman, 1997). Most notably, the
hierarchical aggregation of interval lines is not employed; instead, the
term tree is initially completely expanded. Another limitation is the fact
that it shows only one media resource at a time. Video playback and
skipping work like in Savanta, but there is no filtering or analysis func-
tionality.

Savantoogle's search engine is implemented as a Java servlet, while the
media resource browser is a Java applet. Both can be run from a web
browser supporting Java 1.4, and both utilise the same basic data struc-
tures as Savanta.

Figure 10.14 Savantapplet, Savantoogle's interface for presenting a single
media “document”.

212 Chapter 10 Savanta

Forms
Forms is built on a quite different search paradigm. Many video database
systems, such as OVID, VideoSTAR, AVIS and Algebraic Video define
query languages for access to their data structures. These are not very
user-friendly, so graphical user interfaces are created that use forms to
construct query expressions. The complexity of these interfaces varies,
according to the complexity of the underlying data model, but the inter-
faces have the same basic interaction model: Select or enter query terms,
use Boolean and/or temporal operators to combine them, and view the
result in an unranked, textual list.

The Forms interface, shown in Figure 10.15, adapts this paradigm for the
OntoLog/Savanta data model. The terms are shown in a tree list in the
upper left of the window. By selecting term, and then pressing the
“Select” button, they are copied across to the “Selected terms” list.
Below this list, two radio buttons are used to switch between temporal
“and” (or intersection) and temporal “or” (union) of the query terms,
when more than one term is selected. When the “Search” button is
pressed, the query is performed, and the result is presented in the two-
level tree list at the bottom of the window. The top-level nodes are the
media resources (sorted lexicographically), and the leaf nodes are
matching intervals within each media resource. No visualisation of the
intervals is provided (other than the textual indications of start time, end
time and length), since this is not common among the existing user inter-
faces based on this paradigm. The interface includes a simple video
player in a separate window, with the same time slider and skip buttons
as Savantoogle.

10.3 Usability evaluation 213

Evaluation methods
Based on the purpose of this evaluation, as defined in the beginning of
this section, this evaluation was divided into two parts: a pilot study and
a main study – each using different evaluation methods.

Pilot study: Before the actual evaluation phase started, a pilot study was
performed. This included presenting the three implemented interfaces to
three fellow researchers and having them comment on any potential
usability problems they could spot. This also included an evaluation of
the main study design. In this way, the pilot study can very well be
viewed as a part of the implementation phase rather than the evaluation
phase.

Figure 10.15 Forms interface.

214 Chapter 10 Savanta

As none of the interfaces had been used by anyone but the designers, the
pilot study was a critical phase in assuring a consistent level of quality
among the implementations. Several iterations of implementation and in-
spection were necessary before the implemented interfaces were ready
for the main study. In particular, several problems regarding consistent
wording of labels and buttons as well as confusing interface layout, were
fixed.

Main study: As is already evident, the main study is a comparative evalu-
ation of three different interfaces for information access in temporal an-
notation databases. For comparative evaluations, one has the choice of
having each test subject evaluating a single interface (between-subjects)
or have all testers evaluate all interfaces (within-subjects) (Mitchell and
Jolley, 2001). For this evaluation, the latter alternative was chosen –
primarily to reduce the number of test subjects needed and to assure
that individual differences are cancelled out (e.g. some test subject being
more positive in general than others).

Further, to remove ordering effects, a counterbalanced design was used
by which the test subjects were randomly divided into three groups. All
members of each group tested the interfaces in the same order, and this
order was altered between groups such that all interfaces were equally
often tested first, second or third. Each of the three test groups consisted
of three test subjects – nine in total. This number was kept fairly low as
the evaluation was primarily qualitative and thus required less testers
and more time per tester. As the database used for all interfaces
contained video and annotations from a computer science class, all test
subjects were students that had recently taken this class. They were thus
familiar with the subject at hand and would be legitimate end-users of
the implemented interfaces.

The main study itself consisted of three steps. First, the test subject was
given a brief introduction and tutorial for one of the interfaces. Second,
the subject carried out several predetermined tasks using the interface
while being observed. These two steps were then repeated for the two
remaining interfaces. The training of the test subjects was done to
equalise the playing field and to lessen the impact of individual differ-
ences with regards to previous experiences with similar interfaces.
Finally, a questionnaire concerning all three interfaces was handed out.
Thus, the main study made use of two evaluation methods: Observation
and questionnaires.

10.3 Usability evaluation 215

The objective of the observation was to gather qualitative data about the
interfaces. This was done by recording observational data on paper while
the evaluation tasks were performed by the test subjects. These notes
were often supplemented by a short informal interview afterwards to
clarify some of the observations made.

The questionnaire was used to get quantitative data concerning the
relative performance of the three interfaces. For this reason, all
questions were repeated for the three interfaces and the test subjects
were instructed to focus on comparative evaluation (i.e. which interface
was best in a given category). All the questions were taken from the com-
prehensive Questionnaire for User Interaction Satisfaction (QUIS) (Chin
et al., 1988).

Evaluation tasks
One of the stated purposes of this evaluation was to study the perform-
ance of the interface with respect to different types of information access
tasks. Three different categories of tasks were defined: Simple retrieval,
complex retrieval and exploration. These are based on and correspond
roughly to the task types defined in (Shneiderman, 1997): Specific fact
finding, extended fact finding, and open-ended browsing & exploration of
availability.

We defined simple retrieval as tasks where the user is looking for a simple
answer – yes or no, or a single interval of video containing something of
interest – and where there is no need to combine search terms or
consider relations between things. Examples include finding the sole
place where a certain term is used, or determining if a given term is
mentioned in a particular set of videos. Tasks of this kind are conceptu-
ally simple, and a good query interface should be able to handle them
simply and efficiently. If an interface is geared towards more complex
queries, it may inhibit the formulation of simple ones – it may be too
powerful for its own good. Therefore, we expect the simplest interfaces –
Savantoogle, and to a lesser extent Forms – to score well for simple re-
trieval.

Complex retrieval is here defined as tasks where the result is more
intricate – a set of video intervals, for instance, or an aggregation of them
(say, total length) – or where the user needs to combine search terms, or
establish how different terms relate to each other. Determining how
much time is spent on a given term, or finding intervals where two partic-
ular terms are active at the same time, are examples of complex re-

216 Chapter 10 Savanta

trieval. This calls for interfaces able to construct composite query
expressions and to perform aggregate functions. We expect Savantoogle
to perform worse than the other two interfaces at this, since it has little
support for aggregation and temporal operations – it considers video
documents the unit of retrieval. It is more difficult to predict how Forms
and Savanta will perform.

Exploration is tasks where neither the goal nor the path towards it is
entirely clear. It may be the user trying to find out what exists in the
database, what trends can be established, what characterises a subset of
the database. Examples include finding out what the most important
term is in a given set of videos, or determining which narrower term of a
particular term is most used. For this kind of fuzzy fact-finding, we
expect the visualisation and multiple access methods of Savanta to give it
the upper hand.

10.3.2 Results of usability evaluation
This section presents the observations made during the evaluation as
well as the questionnaire results. Finally, a discussion of the outcome of
the evaluation and a look at reliability and validity concerns.

Results from observation
By observing the test subjects, listening to their comments and interview-
ing them afterwards, we discovered a few interesting tendencies and
patterns. Many comments were related to details of each interface, such
as button placement and double-click behaviour. This is not in itself very
interesting outside the context of our implementations, but in many
cases, more general guidelines and tendencies may be distilled from
them. Other observations are inherently more general, and thus more
directly useful. In the following discussion, we have tried to abstract the
observations away from implementation details, and to focus on the more
high-level lessons to be learned from them.

Applying conventions makes sense – the users were pleased with finding
elements of software systems they had used before. The Home, Back and
Forward buttons of Savanta, familiar from web browsers, were used ex-
tensively and without any problems. This was expected, but it is nice to
see such expectations confirmed, especially since these controls in this
case were used outside their normal environment, web browsers. Savan-
toogle was praised for its resemblance to Google, which everybody was
familiar with and enjoyed using. Likewise, most of the test subjects

10.3 Usability evaluation 217

expected something useful to happen (video playback, mostly) when they
double-clicked on search results and other things; it was a source of
annoyance and confusion when it didn't.

The model and/or domain have clear affordances – given the organisation
of the information in our database, our test subjects expected the user in-
terfaces to be organised correspondingly. The temporal aspect and the
list of videos were not directly accessible in Forms and Savantoogle, and
this was frowned upon. For instance, to find a particular video in Forms,
the users had to perform a query using a disjunction of all the top-level
terms, and scan the result manually to find the desired video. This was
often referred to as “cheating” and an indirect, unintuitive process,
though it was not particularly difficult or labour-intensive to do. The lack
of a visual, temporal overview of the media resources in Forms was also a
common complaint.

Feedback is important – perhaps not a stunning discovery, but the users
clearly had a strong need to be certain that their queries produced
correct results; to know why the interfaces came up with the results they
did. When using the search field in Savanta, some test subjects spent con-
siderable time expanding the term tree to confirm that it actually was a
matching term that had been found. When querying in Forms, a few test
subjects wanted to see which terms overlapped the search result, for
instance with an interval visualisation like in the other two interfaces. In
Savantoogle, many repeated essentially the same query several times,
varying the use of quote marks and pluses, to be sure that the desired
result had been produced. This could perhaps be improved by presenting
a better summary of the media resource for each match – our implemen-
tation just presented its title and comment, and the list of matching
terms.

Multiple access methods is good – many felt restricted by Forms and Sa-
vantoogle, since those systems had only one method each for finding in-
formation. Several users commented that it was easy to “get stuck”,
whereas in Savanta, the users had multiple angles from which to
approach the problem. While this meant extra complexity – some
commented that it was difficult to remember all the possibilities – it was
clearly preferred, and “felt faster” (even when it was not). This
confirmed our hopes that a richer, more powerful and flexible environ-
ment could still be at least as pleasant to use as a simple, minimalist one,
even for simple tasks.

218 Chapter 10 Savanta

Complex tasks and simple interfaces do not match – when faced with a
complex or exploratory task, many of the test subjects wanted to solve it
in a correspondingly clever manner. They did not like to use a sequence
of simple operations, especially when they had to assemble the result
manually in their heads (or on paper). Even though it might be easy and
obvious, it felt like a chore. In many cases it was, of course – finding the
most used term in a subset of the database is very time-consuming when
the interface only supports elementary functions like searching for a
word. It seems that users expect and require the system to provide
functions at the same level of complexity as the tasks the users want to
perform, even though they have to spend time finding them and learning
to use them.

Results from questionnaire
The questionnaire consisted of 9 questions drawn from QUIS (Chin et al.,
1988) and one custom question (number 6) for each of the interfaces, 30
in total. For all questions, a 9-point scale was used (1-9). The following
questions were used:

1. Reactions to the system with respect to simple retrieval (1:terri-
ble – 9:wonderful).

2. Reactions to the system with respect to complex retrieval (1:terri-
ble – 9:wonderful).

3. Reactions to the system with respect to exploration (1:terrible –
9:wonderful).

4. Overall reactions to the system (1:terrible – 9:wonderful).

5. Learning to operate the system (1:difficult – 9:easy).

6. The expressive power was (1:inadequate – 9:adequate).

7. Amount of information that can be displayed on screen (1:inade-
quate – 9:adequate).

8. Messages which appear on screen (1:confusing – 9:clear).

9. Tasks can be performed in a straight-forward manner (1:never –
9:always).

10.Amount of help given (1:inadequate – 9:adequate).

10.3 Usability evaluation 219

The results of the questionnaires are displayed in Figure 10.16. Detailed
results are presented in Appendix A.3.

Interpreting these results, we consider the following four findings to be
the most notable:

♦ Ranking with respect to task types
Overall the picture is reasonably clear. Savanta was best liked
regardless of type of task. The other two interfaces were found to
perform almost equally.

♦ Savanta best for more complex tasks
The largest differences were evident for complex retrieval and
exploration tasks; while Savanta and Savantoogle performed
almost equally well for simple retrieval. Not surprisingly, there is a
clear correlation between the results from “Complex” and
“Power” questions.

♦ Learn to operate vs. Straight-forward
On first glance, there seem to be an inconsistency between
Savanta’s results for these two categories. How can it both be the
most difficult interface to learn and the most straight-forward to

Figure 10.16 Results from questionnaires.

1 5 9

Simple

Complex

Exploration

Overall

Learn to operate

Power

Amount of info

Messages on screen

Straight-forward

Amount of help

Savantoogle Forms Savanta

220 Chapter 10 Savanta

use? We believe the answer lies in the results from the “Power”-
question. While a simple and less powerful interface might be
easy to learn, it can require a huge number of actions in order to
complete complex tasks. With Savanta, once the user had grasped
the interface, complex tasks could often be completed in just a
few steps.

♦ High power wins over high complexity
As is evident from the results of the “Learn to operate” and “Mes-
sages on screen”-questions, the test subject found Savanta more
complex and difficult to use. The power of the interface and the
straight-forward way even complex tasks could be performed, did
however make Savanta the preferred interface regardless.

10.3.3 Discussion of evaluation results
Integration of several access methods is the cornerstone of the Savanta
design. The results of the usability evaluation strongly suggest that this
was a good idea. Offering multiple ways to reach one's goal made it less
likely for users to “get stuck” using Savanta compared with the other two
interfaces. Further, the results indicate that graphical visualisation of
temporal metadata greatly helps the users in quickly gaining an
overview of complex data.

While these findings were expected, it was interesting to examine the
usability consequences of having multiple methods for accessing data.
Savanta's interface was found to be a bit more complex, but the users
found the increase in expressive power more than made up for this.

Even as Savanta in general was the best liked interface among those
tested, there were variations depending on information access task. For
complex tasks as well as exploration, the multitude of possibilities of
Savanta ensured that it was the clear winner. But for more simple tasks,
more simple interfaces performed equally well.

Reliability and validity
The results of a usability study is not worth much if the evaluation design
is flawed. In general, possible methodology pitfalls can be classified as
either reliability or validity concerns (Nielsen, 1993). An outcome is
reliable if a new evaluation gives the same result, while validity concerns
whether the result actually reflects what one really wants to test. This
has previously been discussed in Section 3.5.

10.4 Discussion 221

The most obvious way to improve the reliability of our evaluation would
have been to use more test subjects. People are different, and the impact
of these differences is reduced when more testers are involved. Still, the
use of a comparative evaluation design reduces the impact of individual
differences.

As for validity, the type of test subjects used is a possible source for
concern. All test subjects were quite experienced with computers and
thus not the best to judge usability with respect to other types of users.
However, with the test data we used, the test subject very much repre-
sented the intended target audience.

Another possible concern with respect to validity is the choice of the
other two interfaces used for comparison. While their design and capabil-
ities were tailored to match existing classes of interfaces for information
access in temporal metadata databases, they were still designed and im-
plemented by us. Thus (unintentional) bias on our part is a clear possibil-
ity. Still, we felt it was critical for comparison purposes that all interfaces
used the same data (and data model) and making our own implementa-
tions was pretty much the only way to achieve this.

10.4 Discussion
In this chapter, we have described the motivation, design and implemen-
tation of Savanta, a novel interface for accessing information in temporal
annotation databases. Savanta integrates various user interface tech-
niques and paradigms in order to create a rich and powerful environment
for video search, retrieval, browsing, exploration and analysis, while not
sacrificing ease of use.

Through a usability study, we have shown that Savanta is perceived as
better than traditional methods for video database query, even though it
is slightly more complex. The flexibility and multiple approach angles of
the Savanta interface made it more straight-forward to use for complex
and exploratory tasks than the simple interfaces.

The remainder of this chapter discusses how the four fundamental design
ideas from Chapter 5 are reflected in Savanta and how well they were
found to contribute to the overall performance of Savanta with respect to
the overall research question.

222 Chapter 10 Savanta

Revised interaction model
Savanta was an integration of filtering, searching and navigation where
all three could be used iteratively. This means that if you get stuck using
searching, you can navigate in the result you have come up with and
perhaps find suitable suggestions for filters that might take you further.

The usability evaluation clearly indicated that the test subjects found
the Savanta interaction model very powerful – at least when they had fa-
miliarised themselves enough with the interface to know which avenues
were open to them. They commented that it was difficult to “get stuck”
and that the interface “felt fast”.

Observation of the evaluation made it clear that even if users seldom got
stuck, they often used a less-than-optimal route to the solution of the
evaluation tasks. This indicates that the interface is somewhat complex
and that further experience might make the use of it even more efficient.

Intra-result analysis
A dynamic, temporal analysis was used for two purposes: To generate on-
the-fly statistics and filter suggestions. As in SESAM, the filter sugges-
tions served a dual purpose, not only for filtering but also as useful infor-
mation in their own right. For example, it was easy at-a-glance to see
which registered terms had the closest (temporal) relationship to the
current result. For each of the filter suggestions, three operations were
available. If, for example, “HTML” was suggested as a filter, the user
could remove anything but HTML from the result, add (or remove) every-
thing related to HTML to (or from) the result. Of these three operations,
only those that would alter the result were available. Interestingly, this
presented yet another way to get information about the result. (If “add
HTML” was disabled, everything related to HTML must already be
present.)

The shear wealth of information available was often difficult for test
subjects to get used to – at least in the beginning. Even expert users
sometimes only realised in retrospect that a given task could have been
solved much easier. This is however also an indication of the power of the
technique as implemented in Savanta.

10.4 Discussion 223

Active user interfaces
As in SESAM, the filter suggestions represented the active user interface
part of Savanta – taking advantage of recognition rather than recall. In
difference, Savanta also allowed users to construct their own filters using
the searching component.

This meant that the two information access methods complemented each
other. Therefore the fact that the set of presented filter suggestions by
necessity is much smaller than set of all possible filters, had less impact
here than for SESAM. Another fact that worked to Savanta’s advantage
was that the complex inter-relationships between information objects in
the Savanta data model, made it difficult both to fault the automatic
selection process and to find better result modifications manually.

Dynamic user interfaces
The dynamic component of Savanta was the hypertext panel shown to
the right in Figure 10.9. It contained current statistics about the result
and the selected term or media resource, as well as information about
broader and narrower terms and the filter suggestions. This information
was updated each time the user made a change to the result or selected a
term.

Again, the experience with the dynamic component in Savanta was com-
parable to the experience with SESAM. Users at first found it a bit
confusing that parts of the interface other than the part they had inter-
acted with, changed. Later on, this became less of a problem and they
more often than not realised how the information presented in the
hypertext panel could be used to their advantage.

224 Chapter 10 Savanta

225

Chapter 11

Discussion

This chapter contains a discussion of the results of the work presented in
this thesis. I start by briefly describing the research background and the
overall research question. I then discuss how my four fundamental
design ideas from Chapter 5 performed based on the results of the evalu-
ations presented in earlier chapters. Finally, I present my own post-
project reflections.

11.1 Research background
The work presented in this thesis is based on a realization of the
increased importance of information repositories and how locating infor-
mation has become an ever more vital task. With this in mind, I aimed at
answering the following main research question:

How can user interfaces for accessing information in large repositories
be designed to provide assistance to users without impairing usability?

To examine this research question, I decided to focus on the following
five key challenges:

♦ Large information repositories

♦ New classes of users

♦ Complex data models

♦ Different information access strategies

♦ Multimedia data types

226 Chapter 11 Discussion

Based on the research question and the five key challenges, I have
presented four fundamental design ideas as to how simple, usable
interface for large information repositories could be made. To evaluate
these design ideas and thus investigate the research question, a method-
ology of repeated design-implementation-evaluation phases was used.
The results of these evaluations are discussed in the following section.

11.2 A discussion of the four design ideas
The four fundamental design ideas as presented in Chapter 5 were as
follows:

♦ Revised interaction model

♦ Intra-result analysis

♦ Active user interfaces

♦ Dynamic user interfaces

Below, I discuss how these four design ideas have performed with respect
to the overall research question.

11.2.1 Revised interaction model
The revised model contains two key components: It is iterative and it in-
tegrates several different methods for accessing information. By being it-
erative, the model supports modifying a result until it fits the user’s
need. The results of the evaluations show that this was found to work
very well – especially for large results which otherwise would have been
almost unmanageable.

The integration of several methods for accessing information led to very
powerful user interfaces where the user’s information need often could
be very accurately described. To take full advantage of these features, it
was evident that some degree of familiarization was necessary in order to
know the different available avenues.

The downside of the revised interaction model was that it made the user
interfaces more complex. In the end, however, the test subjects found
that the increased power more than made up for the increased complex-
ity, at least for all but the most simple tasks.

11.2 A discussion of the four design ideas 227

11.2.2 Intra-result analysis
I have used dynamic intra-result analysis for two purposes: To derive on-
the-fly high-level information and to suggest possible result manipula-
tions (filters). Evaluations indicated that derived information is very
helpful for gaining an overview of large results. It often made it possible
for test subjects to get an understanding of the result without time-
consuming manual scans of hundreds of objects. The suggested filters
was also found to be of great use, even if every suggestion was not
equally suitable. In particular, they were found to be helpful for
removing objects of low relevance (“noise removal”).

Some test subjects found that the sheer wealth of information made
available was difficult to make use of, at least initially. Even expert users
sometimes realised after a task had been completed, that it could in fact
have been solved much easier using a different approach.

As the derived information was dynamically generated, it also required
large parts of the user interface to be updated each time the result was
altered. Early on, this was often found unsettling and care was taken to
minimize its consequences in later implementations.

11.2.3 Active user interfaces
The idea behind active user interfaces was to rely on recognition rather
than recall to as large extent as possible. In the developed user inter-
faces, this was in large part implemented by suggesting possible result
modifications to users, rather than forcing them to take the initiative
themselves.

The results of the usability evaluations suggest that this idea only works
well in some settings. For example, the suggestions worked best for non-
experts and for vague information needs. In these cases, the reduced ex-
pressive power did not matter much and the issue of recognition vs.
recall became more important. Expert users, on the other hand, did not
mind the effort necessary to use interfaces more based on recall as long
as these gave them more expressive power.

The process of selecting result modification suggestions was found to
work better in Savanta than SESAM. This can be explained by the com-
plexity of the temporal relationships between intervals in Savanta. The
complex inter-relationships between information objects in the Savanta
data model, made it more difficult both to fault the automatic selection
process and to find better result modifications manually.

228 Chapter 11 Discussion

11.2.4 Dynamic user interfaces
My aim was to make the user interfaces more context-sensitive – i.e. to
make presented information and interaction controls always relevant
with respect to the current situation. This was implemented by taking
advantage of the intra-result analysis to dynamically update the display
of derived information about the result as well as suitable filter sugges-
tions.

How well this idea worked in practice, varied according to how appropri-
ate the users found the presented information. When the information
was not found useful, the increased user interface complexity was found
confusing. But when the presented information was useful and as the test
subjects got more experienced, this design idea tended to make both
modification and navigation of results easier.

The best results was achieved for handling of large results and for explo-
ration tasks. Large results could often easily be reduced to a manageable
size (“noise removal”) as the suggested filters was focused on size reduc-
tion. For exploration, the dynamically updated user interface made it
easier for users to get an overview of what they had got and to identify
interesting ways to proceed.

11.2.5 Design ideas related to type of repository
The experiences with each of the four design ideas with respect to the im-
plemented interfaces, can be condensed into Table 11.1.

Revised inter-
action model

Intra-result
analysis

Active
interface

Dynamic
interface

Textual
metadata
database

Very helpful.
Iterative result
manipulation
makes large
results more
usable

Very helpful.
Makes gaining
an overview of
a large collec-
tion much eas-
ier.

Helpful for
non-experts,
sometimes hin-
dering for
experts.

Can be confus-
ing, but rela-
tive
performance
improves with
result size.

Image
database

Only partly
implemented.
Comparable
experiences to
textual meta-
data databases.

Very depend-
ent on good
feature extrac-
tion. Good
potential.

Very helpful as
image features
are much eas-
ier to recog-
nise than
recall.

Very depend-
ent on good
feature extrac-
tion. Limited
value.

Temporal
multimedia
annotation
database

Very helpful.
Less likely to
get stuck. Felt
faster to users.

Helpful. How
derived infor-
mation related
to result not
always obvious
to users.

Very helpful as
complex data
model and tem-
poral relation-
ships make
recall difficult.

Confusing at
first, a power-
ful tool with
some training.

Table 11.1 The four design ideas in relation to repository type.

11.3 Post-project reflections 229

11.3 Post-project reflections
This section looks at individual parts of my work and presents my reflec-
tions, focused on areas with potential for improvements.

Research question
Already in the introduction I stated that the research question is too
broad to be studied in full width and depth. I therefore focused on five
key challenges and limited myself to the study of four design ideas, and
how to apply these to different types of information repositories.

In hindsight, one could argue that I should have chosen a tighter and
more focused research question. As the consequences could have been
far-reaching, it is difficult to be certain of the result – even at this stage.
But perhaps my initial slow progression is an indication that a more
clearly defined problem statement might have been a good idea.

Research methodology
For research methodology, I chose design-implementation-evaluation
rather than theorem study or abstraction. This is a decision I stand by –
user interface design is not an exact science as it is impossible fully to
predict users’ response. Therefore, developing actual implementations
and evaluating them in close-to-real-life situations are, in my view, the
most suited approach.

Approach
Given the research question and the research methodology, I came up
with four design ideas that I wanted to study in different settings. In
essence, this thesis is a presentation of the designs, implementations and
evaluations made towards this goal.

Several aspects of this approach can be discussed:

♦ Using a number of design ideas as a basis
This was something that was done in order allow more focused
designs and implementations than the research question afforded
in itself. Therefore much of the same arguments used above also
applies here.

♦ The four design ideas themselves
Given that using a number of fundamental design ideas as a basis
is a useful approach, one could argue that I should have chosen
them differently. But as user response is very hard to predict, it is

230 Chapter 11 Discussion

difficult to be certain of the outcome without the benefit of hind-
sight. I also believe that the evaluation results show that all the
design ideas had their merits.

♦ Using three different types of repositories rather than just one
By looking both at a textual metadata database, an image data-
base and a temporal metadata database, the available time had to
be split between several projects. This made each study less in-
depth that they would have been if I had just focused on one. But
then again, I would have lost the ability to examine how the design
ideas performed in different settings. This has given me a wider
understanding of the problem domain than I otherwise might have
got.

♦ Distribution of time between the different implementations
As should be evident from their relative length in this thesis, I
spent most of my time on the textual metadata database imple-
mentation (SESAM) with less time on image databases and tempo-
ral metadata databases. Could the time spent have been split in a
different way that might have given better results? That might be,
but these decisions were, at least in part, driven by external
events. The textual metadata database became available early on
in my work and it was natural then to take advantage of this large
real-world database right away. Also, the OntoLog database used
in the Savanta-project did not become available until the final
year. And even if I spent less time on the image database project
compared with textual databases, the feature extraction imple-
mentations includes the results of several master degree student
theses.

231

Chapter 12

Contributions and future
work

This chapter presents main contributions (Section 12.1) and possible
avenues for further work (Section 12.2).

12.1 Contributions
The main contributions of this thesis are:

Demonstrated the power of an iterative interaction model
Rather than an interaction model where a query result is final, all
designs and implementations presented in this thesis used an iterative
interaction model which integrates several methods for accessing infor-
mation. With this model users have more than one viable strategy for
locating information and can modify a result until it fulfils their informa-
tion need. Evaluations clearly indicate that this model performed
superior to similar user interfaces based on the standard interaction
model – especially with regards to large query results. This was true for
all but the most simple tasks where the increased expressive power was
not needed and thus could not offset the slightly increased user interface
complexity.

Showed feasibility of intra-result analysis
One of the key ideas presented, is that available processing power on the
client can be used to analyse the properties of a query result. This idea
has been incorporated into the designs and implementations presented in

232 Chapter 12 Contributions and future work

this thesis. In these implementations intra-result analysis have been used
to derive high-level information which have been demonstrated to greatly
assist users in gaining an overview of large results. The analysis have also
been used to suggest possible result modifications. From the evaluations
it is evident that this was a very helpful feature – especially to remove
objects of lower relevance and thus make large results easier to handle.

Presented novel interfaces for accessing information
I have presented SESAM, an application demonstrating a novel approach
for assisting users in handling large results. Using a dynamic and active
user interface applied to a textual metadata database, users can specify
what parts of a result they find relevant. This is done by selecting one or
more result modifications from a set of suggested alternatives.

In the Savanta prototype, the ideas and lessons from SESAM were
applied to a different domain – a temporal metadata database. This
powerful interface was based on an integration of inter-video browsing,
filtering, searching, navigation, temporal analysis and visualisation.
While slightly more complex than traditional user interfaces for
accessing video databases, the increased flexibility and multiple-angled
approach presented a straight-forward user interface for performing
complex information access tasks.

Evaluated viability of design ideas for usable interfaces
To evaluate the implemented prototypes and the ideas on which they
were based, three different usability evaluations were performed. Using
a combination of qualitative and quantitative evaluation methods, these
evaluations not only demonstrated the viability of the designs but also
the value of involving users in the development process. The results of
the evaluations show that an interactive interaction model, several
methods for accessing information and dynamic data analysis, can be
combined in a user interface with high usability and expressive power
without corresponding decreases in usability.

12.2 Future work
This is a list of some of my ideas for further work:

♦ Design ideas applied to other databases
In order to validate the generality of the design ideas, it is impor-
tant to implement and evaluate them in as many settings as possi-
ble. With more time available, it would have been helpful to apply

12.2 Future work 233

the ideas to other databases and then evaluate if their perform-
ance changed.

♦ Design ideas applied to semi-structured data
The text-based work presented in this thesis is limited to a highly
structured, textual metadata database using a relational DBMS.
This setting has fundamental differences compared to semi-struc-
tured data (XML etc.). Combined with the fact that much research
effort currently is spent in this domain, this would have made it an
interesting topic for study.

♦ Extended work on image databases
The work presented in this thesis with regards to image databases
is little more than a proof-of-concept demonstration. With more
time available, a more thorough design, implementation and eval-
uation would have been interesting. The semantic gap between
how computers and humans reason about images makes interfaces
for information access an important and challenging subject.

♦ More thorough testing of implemented prototypes
The cycle of design-implementation-evaluation was completed
twice for the SESAM prototype. The changes made to the second
implementation on the basis of the first prototype, led to very
improved results with the second prototype. This clearly indicates
the value of evaluations – not only in their own right but as input
for further development. I would therefore have liked to be able to
complete more cycles on Savanta to refine my ideas and learn
more about the problem at hand.

♦ Publish prototypes and collect data from real users
As of yet, the prototypes have only been evaluated in a controlled
environment. This makes sense for gaining qualitative data in
order to understand the workings of the human-computer interac-
tion. With the increased maturity of the prototypes, it would have
been possible to publish them on the Web and collect real users’
opinions by the means of questionnaires (or similar).

♦ A closer look at utility functions
The implemented utility functions, both in SESAM and Savanta,
have not been separately evaluated – only as part of the interface.
An interesting project would have been to separate them from the
interface and evaluate them separately. This would have it possi-
ble to implement several different alternatives and perform a

234 Chapter 12 Contributions and future work

comparative evaluation. But as their output must be seen in corre-
spondence with the users’ information need, such an evaluation
would have required human test subjects and thus much time and
resources.

235

Appendix A

Detailed evaluation results

This appendix presents detailed results from the evaluations described
in Chapters 7, 8 and 10. No formal evaluations was made of the prototype
presented in Chapter 9 as preliminary, informal evaluations indicated
that the implementation was not at a level where this was deemed useful.

A.1 Evaluation of first SESAM prototype
This section presents the evaluation tasks and the results from the ques-
tionnaire and the performance measurements.

Evaluation tasks
Three sets of evaluation tasks were made. Each test subject performed
one set of tasks using one interface and all test subjects performed the
three sets in the same order. The only thing that varied was the order of
the interfaces. This was determined randomly.

Each set of evaluation tasks was divided into three parts – each with
three tasks (for a total of nine per set and 27 in total). The parts were: (A)
Exact match – few results, (B) exact match – many results and (C) brows-
ing. The topic for each task is listed in Norwegian.

Set 1:

♦ A1: Find all “skohorn”

♦ A2: Find all “busser”

♦ A3: Find all “ølboller” from “Arendal”

236

♦ B1: Find all “lokk”

♦ B2: Find all “dukker”

♦ B3: Find all “mangletrær”

♦ C1: Find some interesting “sykler”

♦ C2: Find some interesting “tables”

♦ C3: Find something you find interesting

Set 2:

♦ A1: Find all “piano”

♦ A2: Find all “kikkerter”

♦ A3: Find all “dukker” from “Troms”

♦ B1: Find all “tepper”

♦ B2: Find all “kister”

♦ B3: Find all “stoler”

♦ C1: Find some interesting “fløyter”

♦ C2: Find some interesting “senger”

♦ C3: Find something you find interesting

Set 3:

♦ A1: Find all “kabinett”

♦ A2: Find all “radioer”

♦ A3: Find all “luer” made from “lin”

♦ B1: Find all “drakter”

♦ B2: Find all “kjoler”

♦ B3: Find all “bukser”

♦ C1: Find some interesting “sverd”

♦ C2: Find some interesting “ølboller”

A.1 Evaluation of first SESAM prototype 237

♦ C3: Find something you find interesting

Usability evaluation – Questionnaire
The ten test subjects were asked 15 questions about each tested inter-
face. They could answer using a 9-point scale (1-9). Results are shown in
Table A.1, A.2 and A.3. Empty cells indicate that the user did not wish to
answer the question (NA).

1 2 3 4 5 6 7 8 9 10 Average
Small results 7 6 6 6 7 3 8 8 7 7 6,5
Large results 4 4 2 4 3 3 5 5 7 4 4,1
Browsing 7 5 8 3 2 4 6 6 8 7 5,6
Overall 6 5 3 5 3 4 6 6 7 5 5,0
Layout 7 5 5 9 3 5 7 6 9 8 6,4
Amount of info. 9 3 8 7 6 7 3 6 6 8 6,3
Arrangement 7 5 6 9 9 8 6 7 8 8 7,3
Messages 8 6 9 9 7 7 7 7 7 5 7,2
Keep informed 8 3 9 9 9 7 7 7 9 5 7,3
Learning 7 7 8 9 9 7 8 6 9 8 7,8
Getting started 8 7 8 9 9 7 7 7 9 8 7,9
Time to learn 7 7 7 9 9 7 7 7 9 6 7,5
Trial and error 7 5 3 9 3 3 6 6 8 8 5,8

User

Table A.1 Questionnaire results – Forms

238

Performance evaluation
During the evaluation, task completion times was recorded for three
tasks with small results (A1-A3) and three tasks with large results (B1-
B3). The results (in seconds) are displayed in tables B.1, B.2 and B.3. The
order in which the test subjects used the interfaces is as follows:

♦ Forms - Dynamic query - SESAM – users 1 and 3.

♦ Dynamic query - SESAM - Forms – users 2 and 8.

1 2 3 4 5 6 7 8 9 10 Average
Small results 7 6 8 7 7 8 8 8 8 7 7,4
Large results 8 8 8 5 7 8 8 7 9 7 7,5
Browsing 3 8 8 4 5 7 7 8 9 3 6,2
Overall 7 8 9 7 7 8 8 8 9 7 7,8
Layout 8 7 7 9 8 5 8 7 8 7 7,4
Amount of info. 8 7 5 8 3 8 8 7 8 9 7,1
Arrangement 6 7 8 8 3 4 8 7 8 8 6,7
Messages 7 6 7 8 7 5 7 8 9 6 7,0
Keep informed 8 5 9 8 9 8 7 7 9 3 7,3
Learning 7 7 6 9 9 8 7 9 8 7,8
Getting started 8 7 8 9 9 8 7 7 9 8 8,0
Time to learn 6 7 9 9 8 7 6 8 8 7,6
Trial and error 8 7 9 9 7 8 7 6 9 8 7,8
Exploration 9 9 9 9 9 9 7 6 8 8 8,3
Speed 4 7 9 5 9 8 8 8 6 9 7,3

User

Table A.2 Questionnaire results – Dynamic query

1 2 3 4 5 6 7 8 9 10 Average
Small results 7 6 7 7 8 7 7 7 6 7 6,9
Large results 7 2 9 5 7 6 4 7 6 5 5,8
Browsing 7 3 5 6 7 6 5 7 8 3 5,7
Overall 7 3 8 8 8 7 5 7 6 6 6,5
Layout 7 6 8 5 5 6 5 6 6 5 5,9
Amount of info. 8 5 6 4 4 4 4 6 7 7 5,5
Arrangement 7 5 8 7 2 6 3 7 8 7 6,0
Messages 6 5 9 5 3 6 5 6 7 7 5,9
Keep informed 8 6 9 7 9 7 6 7 9 3 7,1
Learning 7 7 6 6 9 5 8 7 7 8 7,0
Getting started 8 7 7 9 9 5 7 7 8 8 7,5
Time to learn 7 3 7 5 9 7 7 7 8 8 6,8
Trial and error 7 4 9 4 9 8 5 6 8 8 6,8
Exploration 9 9 9 5 9 8 6 6 9 8 7,8
Speed 4 5 9 9 9 6 7 7 6 9 7,1

User

Table A.3 Questionnaire results - SESAM

A.2 Evaluation of second SESAM prototype 239

♦ SESAM - Forms - Dynamic query – users 4 and 7.

♦ Forms - SESAM - Dynamic query – users 5 and 9.

♦ Dynamic query - Forms - SESAM – user 6.

♦ SESAM - Dynamic query - Forms – user 10.

A.2 Evaluation of second SESAM prototype
This section presents the evaluation tasks and the results from the ques-
tionnaires for the evaluation of the second SESAM prototype

1 2 3 4 5 6 7 8 9 10 Average
Task A1 6 5 5 8 8 6 57 3 29 2 13
Task A2 10 6 4 6 2 5 25 2 6 7 7
Task A3 12 15 16 14 8 16 13 11 70 15 19
Task B1 35 78 104 31 56 127 69 31 49 15 60
Task B2 154 118 137 13 86 35 13 53 208 58 88
Task B3 50 123 30 15 29 53 125 238 43 5 71

User

Table A.4 Performance measurement results – Forms (in seconds)

1 2 3 4 5 6 7 8 9 10 Average
Task A1 5 15 15 8 6 5 13 3 7 5 8
Task A2 7 5 7 12 4 3 6 3 4 8 6
Task A3 15 26 14 41 42 104 23 27 35 10 34
Task B1 84 159 16 18 37 104 47 233 39 82 82
Task B2 63 43 9 21 10 25 47 37 12 32 30
Task B3 64 55 22 14 51 76 14 40 18 11 37

User

Table A.5 Performance measurement results – Dynamic query (in seconds)

1 2 3 4 5 6 7 8 9 10 Average
Task A1 46 5 3 14 3 5 9 3 9 5 10
Task A2 29 4 5 4 3 3 4 3 7 2 6
Task A3 25 45 129 30 101 114 51 120 136 83
Task B1 60 71 59 47 69 96 70 56 66
Task B2 51 36 48 29 86 80 23 22 47
Task B3 64 51 33 53 39 78 43 30 49

User

Table A.6 Performance measurement results – SESAM (in seconds)

240

Evaluation tasks
Three sets of evaluation tasks were made. Each test subject performed
one set of tasks using one interface and all test subjects performed the
three sets in the same order. The only thing that varied was the order of
the interfaces. This was determined randomly.

Each set of evaluation tasks was divided into four parts. The parts were:
(A) Exact match, (B) noise removal, (C) exploration and (D) navigation.
The topic for each task is listed in Norwegian.

Set 1:

♦ A1: Find all “skohorn”.

♦ A2: Find all “ølbolle” from “Arendal”.

♦ B1: Find all “tang”. Remove anything that is not “tenger (red-
skap)”.

♦ C1: Use the interface to gain an overview of what the Norwegian
Folk Museum has from your home county.

♦ D1: Find all “lokk”. Find one that looks interesting and locate sim-
ilar objects in the result.

Set 2:

♦ A1: Find all “piano”.

♦ A2: Find all “bukse” from “Telemark”.

♦ B1: Find all “duk”. Remove anything that is not “duker”.

♦ C1: Use the interface to gain an overview of what the Norwegian
Folk Museum has from a random county.

♦ D1: Find all “kiste”. Find one that looks interesting and locate
similar objects in the result.

Set 3:

♦ A1: Find all “kabinett”.

♦ A2: Find all “lue” from “Oppland”.

♦ B1: Find all “penn”. Remove anything that is not “penner”.

A.2 Evaluation of second SESAM prototype 241

♦ C1: Use the interface to gain an overview of what the Norwegian
Folk Museum has from a random county.

♦ D1: Find all “teppe”. Find one that looks interesting and locate
similar objects in the result.

Usability evaluation – Questionnaire
The 18 test subjects were asked 16 questions about each tested interface.
They could answer using a 9-point scale (1-9). Results are shown in Table
A.7 – A.9. Empty cells indicate that the user did not wish to answer the
question (NA).

Task 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 Cp Mc Total
Exact match 7 6 9 7 7 8 7 3 4 8 9 7 5 9 5 8 8 8 6,4 7,4 6,9
Noise removal 5 7 4 3 5 7 4 7 7 3 7 4 5 5 5 3 6 6 5,4 4,9 5,2
Exploration 6 3 1 1 6 6 4 1 2 3 6 5 5 7 5 4 4 6 3,3 5,0 4,2
Navigation 3 8 5 4 7 5 4 9 8 6 6 7 5 6 6 4 5 5 5,9 5,6 5,7
Totalt 5 4 5 3 3 5 8 4 5 5 5 6 5 5 5 5 6 5 4,7 5,2 4,9
Layout 8 4 8 5 6 7 8 9 7 7 5 6 6 6 7 5 8 5 6,9 6,1 6,5
Amount of info. 5 5 6 2 7 7 1 7 7 3 6 5 5 5 5 8 5 5,0 5,4 5,2
Arrangement 8 7 6 5 5 7 8 9 4 8 3 6 6 6 7 5 7 5 6,6 5,9 6,2
Messages 7 4 9 6 5 8 4 3 9 7 4 6 5 6 7 6 8 6 6,1 6,1 6,1
Keep informed 7 9 7 5 9 7 9 9 8 3 5 6 3 7 6 6 8 4 7,8 5,3 6,6
Learning 8 7 9 7 6 9 8 9 5 7 7 7 5 7 7 7 7 6 7,6 6,7 7,1
Getting started 9 7 8 7 5 8 8 4 5 7 7 7 5 6 7 8 7 7 6,8 6,8 6,8
Time to learn 9 9 3 7 6 8 8 8 3 5 7 5 6 6 7 7 7 7 6,8 6,3 6,6
Trial and error 7 7 3 3 4 8 4 3 4 5 6 6 4 6 7 7 7 6 4,8 6,0 5,4
Exploration 6 8 9 8 9 9 8 9 5 5 6 6 5 7 7 7 8 5 7,9 6,2 7,1
Speed 8 7 9 5 7 7 8 9 8 7 5 7 4 6 7 7 5 4 7,6 5,8 6,7

AveragesComputer professionals Museum conservators

Table A.7 Questionnaire results – Forms

Task 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 Cp Mc Total
Exact match 6 7 9 6 6 7 7 9 9 8 9 7 5 9 7 8 7 6 7,3 7,3 7,3
Noise removal 3 2 6 3 7 5 6 8 8 9 5 5 7 7 8 2 5 5,0 6,2 5,6
Exploration 5 4 4 6 7 6 9 8 8 9 5 5 7 8 5 7 6 6,1 6,7 6,4
Navigation 5 4 7 7 8 5 5 9 8 9 7 5 8 7 8 7 6 6,3 7,2 6,7
Totalt 5 5 7 5 5 6 5 8 8 8 9 6 5 8 7 6 6 6 6,0 6,8 6,4
Layout 5 4 8 6 6 7 8 9 7 8 9 6 5 9 7 6 7 7 6,7 7,1 6,9
Amount of info. 3 5 7 3 8 8 9 7 8 9 6 5 9 7 6 7 8 6,3 7,2 6,7
Arrangement 4 7 8 8 7 8 9 7 8 9 6 5 8 6 6 6 7 7,3 6,8 7,0
Messages 7 8 9 7 8 8 8 9 9 8 9 6 4 8 7 6 7 7 8,1 6,9 7,5
Keep informed 7 8 9 6 9 8 9 9 9 5 9 6 3 9 6 6 6 6 8,2 6,2 7,2
Learning 7 8 7 6 6 7 7 9 8 7 9 6 5 9 7 8 9 7 7,2 7,4 7,3
Getting started 9 8 4 7 3 7 5 7 7 8 9 6 5 7 7 8 8 7 6,3 7,2 6,8
Time to learn 9 9 6 7 5 7 6 3 7 9 6 6 7 7 7 8 6 6,6 7,0 6,8
Trial and error 7 7 8 7 5 8 5 9 8 9 8 6 4 8 7 7 6 7,1 6,9 7,0
Exploration 6 9 9 7 9 8 8 9 5 9 9 6 5 8 7 8 8 6 7,8 7,3 7,6
Speed 8 6 3 5 7 6 5 9 8 8 9 7 4 9 7 8 8 8 6,3 7,6 6,9

Computer professionals Museum conservators Averages

Table A.8 Questionnaire results – Dynamic query

242

A.3 Evaluation of Savanta
This section presents the evaluation tasks and the results from the ques-
tionnaires.

Evaluation tasks
Three sets of evaluation tasks were made. Each test subject performed
one set of tasks using one interface and all test subjects performed the
three sets in the same order. The only thing that varied was the order of
the interfaces. This was determined randomly.

Each set of evaluation tasks was divided into three parts. The parts were:
(A) Simple retrieval, (B) complex retrieval and (C) exploration. Each
task is listed in Norwegian.

Set 1:

♦ A1: Omtales HTML i uke 41?

♦ A2: Hva sier foreleser om egenrelasjoner?

♦ B1: Finn eksempler som handler om løkker.

♦ B2: Hvor stor andel av forelesningene brukes på praktiske opplys-
ninger?

♦ B3: Hva skjer i det første kvarteret av dobbelttime 1 i uke 36?

♦ C1: Hva er det viktigste hovedtemaet i første tredjedel av semes-
teret?

Task 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 Cp Mc Total
Exact match 5 8 9 6 8 7 7 9 8 8 9 7 5 9 7 8 7 6 7,4 7,3 7,4
Noise removal 7 6 9 7 9 5 8 7 9 8 9 4 5 8 7 8 8 7,4 7,1 7,3
Exploration 8 7 9 8 8 7 6 6 7 8 9 5 5 7 7 5 5 6 7,3 6,3 6,8
Navigation 7 8 8 7 9 7 8 5 8 8 9 8 5 7 7 8 8 4 7,4 7,1 7,3
Totalt 7 7 8 7 8 6 7 9 7 7 9 7 5 7 6 7 7 7 7,3 6,9 7,1
Layout 6 9 6 7 8 9 8 9 6 6 9 6 5 7 6 7 7 7 7,6 6,7 7,1
Amount of info. 7 7 8 6 9 9 8 7 7 7 9 6 5 7 6 7 7 8 7,6 6,9 7,2
Arrangement 4 8 6 8 9 8 7 9 4 5 9 6 4 7 6 6 7 7 7,0 6,3 6,7
Messages 7 8 9 8 7 8 8 9 9 3 9 6 3 7 7 7 7 6 8,1 6,1 7,1
Keep informed 7 6 8 5 9 7 9 9 9 4 9 6 4 7 6 5 7 8 7,7 6,2 6,9
Learning 7 7 6 8 8 7 8 9 6 5 9 7 5 7 7 7 8 8 7,3 7,0 7,2
Getting started 9 7 5 8 8 5 8 7 4 7 9 6 5 7 7 8 8 7 6,8 7,1 6,9
Time to learn 9 7 6 8 8 8 8 4 4 9 6 6 7 7 8 8 7 6,9 7,3 7,1
Trial and error 8 7 9 9 8 9 7 9 6 8 9 4 4 8 7 7 8 6 8,0 6,8 7,4
Exploration 8 7 9 8 9 9 8 9 5 8 9 4 5 8 7 8 8 7 8,0 7,1 7,6
Speed 8 6 9 5 7 6 7 7 8 8 9 7 4 8 7 8 6 8 7,0 7,2 7,1

Museum conservators AveragesComputer professionals

Table A.9 Questionnaire results – SESAM

A.3 Evaluation of Savanta 243

♦ C2: Hvilket databasetema brukes det mest tid på?

Set 2:

♦ A1: Omtales JSP i uke 43?

♦ A2: Hva sier foreleser om lokale variabler?

♦ B1: Finn eksempler som handler om objekter.

♦ B2: Hvor stor andel av forelesningene brukes på databaser?

♦ B3: Hva skjer i det første kvarteret av dobbelttime 1 i uke 40?

♦ C1: Hva er det viktigste hovedtemaet i midterste tredjedel av
semesteret?

♦ C2: Hvilket HTML-tema brukes det mest tid på?

Set 3:

♦ A1: Omtales databaser i uke 40?

♦ A2: Hva sier foreleser om evige løkker?

♦ B1: Finn eksempler som handler om merkelapper.

♦ B2: Hvor stor andel av forelesningene brukes på HTML?

♦ B3: Hva skjer i det første kvarteret av dobbelttime 1 i uke 43?

♦ C1: Hva er det viktigste hovedtemaet i siste tredjedel av semes-
teret?

♦ C2: Hvilket JSP-tema brukes det mest tid på?

Usability evaluation – Questionnaire
The nine test subjects were asked ten questions about each tested inter-
face. They could answer using a nine-point scale (1-9). Results are shown
in Table A.10 – A-12. Empty cells indicate that the user did not wish to
answer the question (NA).

244

1 2 3 4 5 6 7 8 9 Average
Simple 8 7 5 9 4 9 7 7 5 6,8
Complex 6 4 2 1 5 3 4 4 4 3,7
Exploration 5 2 2 1 3 3 3 2 3 2,7
Overall 7 6 4 3 4 3 5 3 5 4,4
Learn to operate 8 8 9 7 5 4 7 8 9 7,2
Power 6 6 2 4 5 4 8 3 3 4,6
Amount of info 6 8 7 4 4 4 6 2 3 4,9
Messages on screen 8 7 9 9 7 5 6 8 8 7,4
Straight-forward 5 5 3 3 4 3 5 3 3 3,8
Amount of help 4 5 9 7 3 9 6,2

User

Table A.10 Questionnaire results – Savantoogle

1 2 3 4 5 6 7 8 9 Average
Simple 6 7 7 7 4 6 4 5 3 5,4
Complex 5 6 6 3 5 4 2 5 3 4,3
Exploration 4 3 5 4 4 5 1 5 2 3,7
Overall 6 6 6 5 4 6 4 5 3 5,0
Learn to operate 9 7 7 9 6 8 5 8 8 7,4
Power 5 5 5 2 4 6 2 6 2 4,1
Amount of info 3 7 7 4 3 6 3 7 2 4,7
Messages on screen 8 8 8 9 7 7 9 8 7 7,9
Straight-forward 5 5 4 6 4 5 3 5 3 4,4
Amount of help 3 5 9 8 5 4 5,7

User

Table A.11 Questionnaire results – Forms

1 2 3 4 5 6 7 8 9 Average
Simple 9 7 8 8 7 8 6 8 8 7,7
Complex 8 7 7 8 7 7 7 8 8 7,4
Exploration 8 5 7 7 7 6 6 7 5 6,4
Overall 8 7 8 7 7 8 8 7 7 7,4
Learn to operate 7 7 4 5 6 7 8 6 7 6,3
Power 8 7 8 7 7 8 6 8 7 7,3
Amount of info 8 6 3 4 8 7 7 4 6 5,9
Messages on screen 8 6 5 7 7 6 7 7 5 6,4
Straight-forward 8 6 6 5 7 8 6 8 7 6,8
Amount of help 8 7 9 8 8 6 7,7

User

Table A.12 Questionnaire results – Savanta

245

Appendix B

About Savanta

The research behind Savanta – its conception, design, implementation
and evaluation – is a joint effort between Jon Olav Hauglid and Jon Heg-
gland. The purpose was to bring together our two different but related
fields of research – Heggland's modelling and visualisation of temporal
metadata and Hauglid's iterative, analysis-supported database search –
and see what synergy effects could be achieved in the interface between
them.

The entire process leading up to the results presented in Chapter 10 was
highly iterative. While we assigned one to be overall responsible for each
of the identified parts of the project, the other provided frequent feed-
back. Thus, by the nature of our close cooperation, it is impossible to
completely separate one’s contribution from the other. But Table A.1 in-
dicates roughly who was the primary contributor to the design (D) and
implementation (I) of the various ideas, tools and research described in

246

the Savanta chapter.

The writing was also done jointly; hence, a substantial part of the mate-
rial on Savanta is identical in our two theses. The table above is fairly in-
dicative on who did the writing of the various sections as well.

We both agree that we were equal partners and contributors in all major
phases of the Savanta project.

Trondheim, 7. June 2004.

Jon Olav Hauglid Jon Heggland

Hauglid Heggland
Stored metadata / conceptual model DI
Derived metadata / analysis DI
Visualisation DI
Navigation / web metaphor DI DI
Interaction model /
iterative search refinement DI

Filtering DI
Evaluation D I
Savantoogle DI
Forms I D

Table A.1 Primary contributors to various parts of Savanta

247

Appendix C

Evaluation handouts

This appendix contains the evaluation descriptions handed out to the test
subjects in the three usability evaluations described in this thesis. These
handouts are all written in Norwegian.

C.1 Evaluation of first SESAM prototype

Evaluering av grensesnitt for
informasjonsgjenfinning

Introduksjon
Formålet med denne brukerevalueringen er å sammenligne brukbarheten til tre
forskjellige typer grensesnitt for informasjonsgjenfinning i databaser. Som testdeltaker
skal du utføre en mengde oppgaver i hvert grensesnitt samtidig som det blir registrert
hvor lang tid det tar å utføre oppgaven. I tillegg får du en del evalueringsspørsmål om
hvert grensesnitt.

Om brukergrensesnittene
Følgende grensesnitt er omfattet av evalueringen:

² Forms
² Dynamic Query
² SESAM

Siden alle grensesnittene er laget for bruk på web, gis det med vilje ikke ut mer
informasjon på forhånd. En ting å merke seg er dog at alle søkefelt bruker case-
insensitive substring match og at ordstemming og wildcards ikke er støttet.

248

Om oppgavene
Det kan være stor forskjell på hvordan man ønsker å lete etter informasjon. Noen
ganger vet man nøyaktig hva man er ute etter, mens andre ganger er letingen mer
tilfeldig. I tillegg kan målet endre seg underveis hvis det viser seg at man ved første
forsøk fikk et resultat som var uhåndterlig stort.

For å se hvordan grensesnittene oppfører seg under varierende forhold, er oppgavene
delt opp i tre:

a) Eksakte oppgaver som gir få resultater.
Med ”få resulater” menes så få at man typisk orker å se igjennom alle.

b) Eksakte oppgaver som gir mange resultater.
Dersom man får svært mange resultater fra et søk, ønsker man som regel å gjøre
noe for å redusere størrelsen til et akseptabelt nivå. Hvordan dette kan gjøres, er
avhengig av hvordan grensesnittet er utformet – noe som er en av de faktorene
som ønskes evaluert.
I denne oppgavetypen blir du først spurt om hvor mange resultater du typisk
orker å se igjennom manuelt. Hver av oppgavene gir et stort resultat, og du skal
bruke grensesnittet til å redusere dette til den akseptable størrelsen du oppgav.

c) Vage oppgaver (”browsing”).
Naturlig nok er det vanskelig å spesifisere en vag oppgave. Derfor vil
oppgavene bare gi et utgangspunkt og du blir bedt om å bruke dette til å
utforske databasen.

Tre oppgavetyper og tre grensesnitt gir ni muligheter. For hver av disse får du tre
oppgaver – tilsammen 27. Rekkefølgen grensesnittene evalueres i er tilfeldig, mens
rekkefølgen på oppgavetypene alltid er a), b), c).

Om evalueringen
Evalueringen består av to deler:

1. Måling av tidsbruk.
Måling har bare hensikt i oppgavetypene a) og b) ettersom vage oppgaver ikke
har et klart definert mål. Husk her at det er grensesnittene som evalueres – ikke
du.

2. Evalueringsspørsmål.
Spørsmålene er delt inn i to deler. En del besvares etter hver oppgavetype for
hvert grensesnitt, mens en del besvares for hvert grensesnitt. Alle spørsmålene
er tatt fra ”The Questionnaire for User Interaction Satisfaction” laget av
University of Maryland og er av typen:

C.2 Evaluation of second SESAM prototype 249

C.2 Evaluation of second SESAM prototype

Evaluering av program for
informasjonsgjenfinning

Introduksjon
Formålet med denne brukerevalueringen er å sammenligne brukbarheten til tre
forskjellige program for informasjonsgjenfinning i databaser. Som testdeltaker skal du
utføre en del oppgaver i hvert program slik at du kan danne deg en oppfatning av hva
du liker og ikke liker. Etterpå får du en del evalueringsspørsmål om hvert av
programmene.

Om programmene
Følgende program er omfattet av evalueringen:

² Forms
² Dynamic Query
² SESAM

Om oppgavene
Det kan være stor forskjell på hvordan man ønsker å lete etter informasjon. Noen
ganger vet man nøyaktig hva man er ute etter, mens andre ganger er letingen mer
tilfeldig. I tillegg kan målet med letingen endre seg underveis. For å se hvordan
programmene egner seg til forskjellige måter å søke på, er oppgavene delt opp i fire:

a) Eksakte oppgaver.
Du får oppgitt nøyaktig hva du skal søke etter.

b) Støyfjerning.
Ofte inneholder et resultat mye som man egentlig ikke er interessert i. Søker du
for eksempel etter ”mark” kan det hende at du får både dyr og enger tilbake.
Hvis andelen uinteressant er svært stor (mye støy), ønsker man gjerne å gjøre
noe for å fjerne disse.
I denne oppgavetypen skal du bruke programmet til å fjerne støy fra store
resultat slik at du ender opp med resultat der mesteparten er det en var ute etter.

Overall reactions to the
system:

terrible wonderful

1 2 3 4 5 6 7 8 9

250

c) Utforsking.
Av og til er man bare ute etter å se hva som finnes innenfor et spesielt felt. Man
starter bare med en vag ide om hva man er interessert i og bruker
innfallsmetoden for å navigere seg fremover etter hvert.
For å simulere dette, skal du søke etter ting fra ditt eget hjemfylke. Bruk så
programmene til å danne deg et bilde av hva som finnes derfra.

d) Finn noe som ligner.
Når man ser igjennom et resultat er der ikke uvanlig at man finner noe som er
særlig interessant. Det kan f.eks. være en bolle laget med en uvanlig teknikk
eller et klesplagg av et spesielt materiale. Spørsmålet som da melder seg er om
det finnes andre boller med samme teknikk eller andre klesplagg av samme
materiale.
Oppgavene av denne typen er slik at du får oppgitt et søkeord. I det resultatet
søkeordet gir, skal du finne frem til noe du selv synes er interessant og deretter
prøve å bruke programmet til å finne fram til lignende objekter.

Fire oppgavetyper og tre program gir tolv muligheter. For hver av disse får du 1-2
oppgaver. Rekkefølgen programmene evalueres i er tilfeldig, mens rekkefølgen på
oppgavetypene alltid er a), b), c), d).

Om evalueringen
Evalueringen består av to deler:

1. Utføring av oppgaver.
Alle oppgaver vil bli oppgitt på et eget ark. Husk at det er programmene som
evalueres – ikke du. Denne delen tar ca. 30 minutter.

2. Evalueringsspørsmål.
Spørsmålene er delt inn i to deler. En del besvares for hver oppgavetype for
hvert program, mens en del besvares for hvert program. Alle spørsmålene er tatt
fra ”The Questionnaire for User Interaction Satisfaction” laget ved University
of Maryland.

Her er alle spørsmålene (det vil bli utdelt avkryssingsskjema – dette er bare til
orientering):

1 Bedømmelse – Eksakte oppgaver forferdelig fantastisk
1 2 3 4 5 6 7 8 9 N

A

2 Bedømmelse – Støyfjerning forferdelig fantastisk
1 2 3 4 5 6 7 8 9 N

A

C.2 Evaluation of second SESAM prototype 251

3 Bedømmelse – Utforskning forferdelig fantastisk
1 2 3 4 5 6 7 8 9 N

A

4 Bedømmelse – Finn noe som
ligner forferdelig fantastisk

1 2 3 4 5 6 7 8 9 N
A

5 Totalbedømmelse av programmet forferdelig fantastisk
1 2 3 4 5 6 7 8 9 N

A

6 Organiseringen av skjermbildet er forstyrrende effektiv
1 2 3 4 5 6 7 8 9 N

A

7 Mengden informasjon presentert på
skjermen

utilstrekkeli
g

tilfredsstillende

1 2 3 4 5 6 7 8 9 N
A

8 Måten informasjon på skjermen er
organisert

ulogisk logisk

1 2 3 4 5 6 7 8 9 N
A

9 Tekst som vises på skjermen forvirrende begripelig
1 2 3 4 5 6 7 8 9 N

A

1
0

Datamaskinen holder deg informert
om hva den gjør aldri alltid

1 2 3 4 5 6 7 8 9 N
A

1
1

Lære å bruke programmet vanskelig enkelt

1 2 3 4 5 6 7 8 9 N
A

1
2

Komme i gang vanskelig enkelt

1 2 3 4 5 6 7 8 9 N
A

1
3

Tid det tar å lære seg programmet lang kort

252

C.3 Evaluation of Savanta

Evaluering av verktøy for
informasjonsgjenfinning

Introduksjon
Formålet med denne brukerevalueringen er å sammenligne brukbarheten til tre
forskjellige verktøy for informasjonsgjenfinning i videodatabaser. Som testdeltaker
skal du utføre en del oppgaver i hvert verktøy slik at du kan danne deg en oppfatning av
hva du liker og ikke liker. Etterpå får du en del evalueringsspørsmål om hvert av
verktøyene. Totalt vil dette ta ca. 1 time. Alle testverktøyene lar deg søke i en
videodatabase som inneholder forelesningene til Steinar Line fra faget
Informasjonsteknologi grunnkurs høsten 2003.

Om oppgavene
Noen ganger vet man nøyaktig hva man er ute etter, mens andre ganger er letingen mer
tilfeldig. I tillegg kan målet med letingen endre seg underveis. For å se hvordan
testverktøyene egner seg til forskjellige måter å søke på, er oppgavene delt opp i tre:

a) Enkel informasjonsgjenfinning.
b) Kompleks informasjonsgjenfinning.
c) Utforsking.

Tre oppgavetyper og tre testverktøy gir ni muligheter. For hver av disse får du 2-3
oppgaver. Rekkefølgen verktøyene evalueres i er tilfeldig, mens rekkefølgen på
oppgavetypene alltid er a), b), c).

1 2 3 4 5 6 7 8 9 N
A

1
4

Utforsking ved hjelp av prøv og feil nedslående oppmuntrende

1 2 3 4 5 6 7 8 9 N
A

1
5

Uforsking av programmet risikabelt trygt

1 2 3 4 5 6 7 8 9 N
A

1
6

Hastighet for tregt raskt nok

1 2 3 4 5 6 7 8 9 N
A

C.3 Evaluation of Savanta 253

Om evalueringen
Evalueringen består av to deler:

1. Utføring av oppgaver.
Alle oppgaver vil bli oppgitt på et eget ark. Husk at det er verktøyene som skal
evalueres – ikke du. Denne delen tar ca. 45 minutter.

2. Evalueringsspørsmål.
Spørsmålene er avkryssingsoppgaver der man gir karakterer fra 1 til 9. Alle
spørsmålene er gjengitt under (det vil bli utdelt avkryssingsskjema – dette er
bare til orientering):

1 Bedømmelse – Enkel
informasjonsgjenfinning forferdelig fantastisk

1 2 3 4 5 6 7 8 9 N
A

2 Bedømmelse – Kompleks
informasjonsgjenfinning forferdelig fantastisk

1 2 3 4 5 6 7 8 9 N
A

3 Bedømmelse – Utforskning forferdelig fantastisk
1 2 3 4 5 6 7 8 9 N

A

4 Totalbedømmelse av programmet forferdelig fantastisk
1 2 3 4 5 6 7 8 9 N

A

5 Programmet var? å bruke vanskelig enkelt
1 2 3 4 5 6 7 8 9 N

A

6 Uttrykkskraften var utilstrekkeli
g

akkurat passe

1 2 3 4 5 6 7 8 9 N
A

7 Mengden informasjon presentert på
skjermen

for lite
eller for mye

akkurat passe

1 2 3 4 5 6 7 8 9 N
A

8 Teksten som vises på skjermen forvirrende begripelig
1 2 3 4 5 6 7 8 9 N

A

254

9 Oppgaver kan løses på en rettfram
måte

aldri alltid

1 2 3 4 5 6 7 8 9 N
A

1
0

Tilgjengelig hjelp utilstrekkeli
g

akkurat passe

1 2 3 4 5 6 7 8 9 N
A

255

References

[Abowd and Beale, 1991]Abowd, G. D. and Beale, R. (1991). Users, sys-
tems and interfaces: A unifying framework for interaction. In
Proceedings of the HCI’91 Conference on People and Computers
VI, pages 73–87.

[Adali et al., 1996]Adali, S., Candan, K. S., Chen, S.-S., Erol, K., and Sub-
rahmanian, V. S. (1996). The advanced video information sys-
tem: Data structures and query processing. Multimedia
Systems, 4(4):172–186.

[Ahlberg et al., 1992]Ahlberg, C., Williamson, C., and Shneiderman, B.
(1992). Dynamic queries for information exploration: An
implementation and evaluation. In Proceedings of the ACM
CHI’92 Conference on Human Factors in Computer Systems,
pages 619–626.

[Aigrain et al., 1996]Aigrain, P., Zhang, H., and Petkovic, D. (1996). Con-
tent-based representation and retrieval of visual media: A
state-of-the-art review. Multimedia Tools and Applications,
3(3):179–202.

[Allen, 1983]Allen, J. F. (1983). Maintaining knowledge about temporal
intervals. Communications of the ACM, 26(11):832–843.

[Apple Computer Inc., 1992]Apple Computer Inc. (1992). Macintosh
Human Interface Guidelines. Addison-Wesley Publishing.

[Baeza-Yates and Ribeiro-Neto, 1999]Baeza-Yates, R. A. and Ribeiro-Neto,
B. A. (1999). Modern Information Retrieval. ACM Press / Addi-
son-Wesley.

[Bates, 1989]Bates, M. J. (1989). The design of browsing and berrypicking
techniques for the online search interface. Online Review,
13(5):407–424.

256 References

[Bates, 2002]Bates, M. J. (2002). Speculations on browsing, directed
searching, and linking in relation to the bradford distribu-
tion. In Bruce, H., Fidel, R., Ingwersen, P., and Vakkari, P.,
editors, Emerging Frameworks and Methods: Proceedings of the
Fourth International Conference on Conceptions of Library and
Information Science (CoLIS 4)., pages 137–150. Libraries
Unlimited.

[Bellis, 2000]Bellis, M. (2000). Inventors of the modern computer. http://
inventors.about.com/library/weekly/aa060298.htm.

[Brin and Page, 1998]Brin, S. and Page, L. (1998). The anatomy of a large-
scale hypertextual web search engine. Computer Networks,
30(1-7):107–117.

[Carrer et al., 1997]Carrer, M., Ligresti, L., Ahanger, G., and Little, T. D. C.
(1997). An annotation engine for supporting video database
population. Multimedia Tools and Applications, 5(3):233–258.

[Catarci, 2000]Catarci, T. (2000). What happened when database research-
ers met usability. Information Systems, 25(3):177–212.

[Catarci et al., 1997]Catarci, T., Costabile, M. F., Levialdi, S., and Batini,
C. (1997). Visual query systems for databases: A survey. Jour-
nal of Visual Languages and Computing, 8(2):215–260.

[Chen et al., 1996]Chen, M.-S., Han, J., and Yu, P. S. (1996). Data mining:
An overview from a database perspective. IEEE Transactions
on Knowledge and Data Engineering, 8(6):866–883.

[Chin et al., 1988]Chin, J. P., Diehl, V. A., and Norman, K. L. (1988). Devel-
opment of an instrument measuring user satisfaction of the
human-computer interface. In Proceedings of ACM CHI’88 Con-
ference on Human Factors in Computing Systems, pages 213–
218.

[Christel and Martin, 1998]Christel, M. G. and Martin, D. (1998). Informa-
tion visualization within a digital video library. Journal of
Intelligent Information Systems, 11(3):235–257.

[Comaniciu and Meer, 2002]Comaniciu, D. and Meer, P. (2002). Mean
shift: A robust approach toward feature space analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
24(5):603–619.

[Cooper and Byrd, 1998]Cooper, J. W. and Byrd, R. J. (1998). Obiwan - a
visual interface for prompted query refinement. In Hawaii
International Conference on System Sciences, volume 2, pages
277–285.

References 257

[Cordes, 2001]Cordes, R. E. (2001). Task-selection bias: A case for user-
defined tasks. International Journal of Human-Computer Inter-
action, 13(4):411–419.

[Creswell, 1994]Creswell, J. W. (1994). Research Design: Qualitative, Quan-
titative, and Mixed Methods Approaches. Sage Publications.

[Cuff, 1980] Cuff, R. N. (1980). On casual users. International Journal of
Man-Machine Studies, 12(2):163–187.

[Cutting et al., 1992]Cutting, D. R., Pedersen, J. O., Karger, D. R., and
Tukey, J. W. (1992). Scatter/gather: A cluster-based approach
to browsing large document collections. In Belkin, N. J., Ing-
wersen, P., and Pejtersen, A. M., editors, Proceedings of the
15th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval. Copenhagen, Den-
mark, June 21-24, 1992, pages 318–329. ACM.

[Denning et al., 1989]Denning, P. J., Comer, D., Gries, D., Mulder, M. C.,
Tucker, A. B., Turner, A. J., and Youg, P. R. (1989). Computing
as a discipline. IEEE Computer, 22(2):63–70.

[Dix et al., 1998]Dix, A. J., Finlay, J. E., Abowd, G. D., and Beale, R.
(1998). Human-Computer Interaction. Prentice Hall.

[Doan et al., 1996]Doan, K., Plaisant, C., and Shneiderman, B. (1996).
Query previews in networked information systems. In Pro-
ceedings of the Third Forum on Research and Technology
Advances in Digital Libraries, ADL ’96, pages 120–129.

[Dönderler et al., 2003]Dönderler, M. E., Saykol, E., Ulusoy, Ö., and
Güdükbay, U. (2003). Bilvideo: A video database manage-
ment system. IEEE MultiMedia, 10(1):66–70.

[Dumas and Redish, 1999]Dumas, J. S. and Redish, J. C. (1999). A Practi-
cal Guide to Usability Testing. Intellect.

[Egnor and Lord, 2000]Egnor, D. and Lord, R. (2000). Structured informa-
tion retrieval using xml. In Informal Proceedings of the SIGIR
Workshop on XML and Information Retrieval.

[Enser and Sandom, 2003]Enser, P. and Sandom, C. (2003). Towards a com-
prehensive survey of the semantic gap in visual image
retrieval. In Bakker, E. M., Huang, T. S., Lew, M. S., Sebe, N.,
and Zhou, X. S., editors, Proceedings of the second International
Conference on Image and Video Retrieval Image and Video
Retrieval CIVR 2003, pages 291–299. Springer-Verlag.

[Fisher, 1991]Fisher, J. (1991). Defining the novice user. Behaviour and
Information Technology, 10(5):437–441.

258 References

[Flickner et al., 1995]Flickner, M., Sawhney, H., Niblack, W., Ashley, J.,
Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic,
D., Steele, D., and Yanker, P. (1995). Query by image and
video content: The QBIC system. IEEE Computer, 28(9):23–32.

[Garcia-Molina et al., 2002]Garcia-Molina, H., Ullman, J., and Widom, J.
(2002). Database Systems: The Complete Book. Prentice Hall.

[Gershon et al., 1998]Gershon, N., Eick, S. G., and Card, S. (1998). Design:
Information visualization. Interactions, 5(2):9–15.

[Gevers and Smeulders, 1996]Gevers, T. and Smeulders, A. W. M. (1996). A
comparative study of several color models for color image
invariant retrieval. In Proceedings of the first International
Workshop on Image Databases and Multimedia Search.

[Gonzalez and Woods, 1992]Gonzalez, R. C. and Woods, R. E. (1992). Digi-
tal Image Processing. Addison-Wesley Longman Publishing Co.
Inc.

[Grice, 1975]Grice, H. P. (1975). Logic and conversation. In Cole, P. and
Morgan, J. L., editors, Syntax and Semantics: Vol. 3: Speech
Acts, pages 41–58. Academic Press, San Diego, CA.

[Grøtan, 2003]Grøtan, M. (2003). Image retrieval with focus on content
based image retrieval. Master’s thesis, Norwegian University
of Science and Technology (NTNU).

[Han and Kamber, 2000]Han, J. and Kamber, M. (2000). Data Mining: Con-
cepts and Techniques. Morgan Kaufmann.

[Haralick et al., 1973]Haralick, R. M., Shanmugam, K., and Dinstein, I.
(1973). Textural Features for Image Classification. IEEE
Transactions on Systems, Man and Cybernetics, 3(6):610–621.

[Hauglid and Midtstraum, 2001]Hauglid, J. O. and Midtstraum, R. (2001).
Searching in image databases using the sesam approach. In
Proceedings of Norsk Informatikkonferanse, pages 186–197.

[Hauglid and Midtstraum, 2002]Hauglid, J. O. and Midtstraum, R. (2002).
SESAM: searching supported by analysis of metadata. In Pro-
ceedings of the 2002 ACM Symposium on Applied Computing
(SAC), pages 418–425. ACM Press.

[Hearst and Pedersen, 1996]Hearst, M. A. and Pedersen, J. O. (1996).
Reexamining the cluster hypothesis: Scatter/gather on
retrieval results. In Frei, H.-P., Harman, D., Schuble, P., and
Wilkinson, R., editors, Proceedings of the 19th Annual Interna-
tional ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 76–84. ACM Press.

References 259

[Heggland, 2002]Heggland, J. (2002). Ontolog: Temporal annotation using
ad hoc ontologies and application profiles. In Agosti, M. and
Thanos, C., editors, Proceedings of the 6th European Conference
on Research and Advanced Technology for Digital Libraries
(ECDL), pages 118–128. Springer-Verlag.

[Helms et al., 2000]Helms, J., Neale, D. C., Isenhour, P. L., and Carroll,
J. M. (2000). Data logging: Higher-level capturing and multi-
level abstracting of user activities. In Proceedings of the 44th
annual meeting of the Human Factors and Ergonomics Society,
pages 303–306. Human Factors and Ergonomics Society.

[Hibino and Rundensteiner, 1997]Hibino, S. and Rundensteiner, E. A.
(1997). User interface evaluation of a direct manipulation
temporal visual query language. In Proceedings of the fifth
ACM international conference on Multimedia, pages 99–107.
ACM Press.

[Hjelsvold and Midtstraum, 1994]Hjelsvold, R. and Midtstraum, R.
(1994). Modelling and querying video data. In Bocca, J. B.,
Jarke, M., and Zaniolo, C., editors, VLDB’94, Proceedings of
20th International Conference on Very Large Data Bases, Sep-
tember 12-15, 1994, Santiago de Chile, Chile, pages 686–694.
Morgan Kaufmann.

[Hjelsvold et al., 1995]Hjelsvold, R., Midtstraum, R., and Sandst, O.
(1995). A temporal foundation of video databases. In Clifford,
J. and Tuzhilin, A., editors, Recent Advances in Temporal Data-
bases, Proceedings of the International Workshop on Temporal
Databases, Zrich, Switzerland, 17-18 September 1995, pages
295–314. Springer.

[Hu, 1962] Hu, M.-K. (1962). Visual pattern recognition by moment
invariants. IEEE Transactions on Information Theory, IT-
8(2):179–187.

[Hurst and Terry, 2000]Hurst, M. and Terry, P. (2000). Holiday 2000 e-com-
merce report. http://www.creativegood.com/holiday2000/.

[ISO/IEC, 1992]ISO/IEC (1992). Information technology — Database lan-
guages — SQL. International Organization for Standardiza-
tion.

[Jähne, 2001]Jähne, B. (2001). Digital Image Processing. Springer-Verlag, 5
edition.

[Katz, 1997] Katz, B. (1997). From sentence processing to information
access on the world wide web. In Proceedings of the American
Association for Artifical Intelligence Conference, Spring Sympo-
sium, pages 77–86. Stanford University.

260 References

[Kokkoras et al., 2002]Kokkoras, F. A., Jiang, H., Vlahavas, I. P., Elmagar-
mid, A. K., Houstis, E. N., and Aref, W. G. (2002). Smart video-
text: a video data model based on conceptual graphs.
Multimedia Systems, 8(4):328–338.

[Kominek and Kazman, 1997]Kominek, J. and Kazman, R. (1997). Access-
ing multimedia through concept clustering. In Proceedings of
ACM CHI’97 Conference on Human Factors in Computing Sys-
tems, pages 19–26.

[Langley, 1999]Langley, P. (1999). User modeling in adaptive interfaces. In
Proceedings of the seventh international conference on User mod-
eling, pages 357–370. Springer-Verlag New York, Inc.

[Langmyr, 2003]Langmyr, A. H. G. (2003). Image retrieval with focus on
content based image retrieval. Master’s thesis, Norwegian
University of Science and Technology (NTNU).

[Lew, 2001] Lew, M. S. (2001). Principles of visual information retrieval.
Springer-Verlag.

[Li et al., 1999]Li, Z.-N., Zaiane, O. R., and Tauber, Z. (1999). Illumination
invariance and object model in content–based image and
video retrieval. Journal of Visual Communication and Image
Representation, 10(3):219–244.

[Lu, 1999] Lu, G. (1999). Multimedia Database Management Systems.
Artech House.

[Magers, 1983]Magers, C. S. (1983). An experimental evaluation of on-line
help for non-programmers. In Proceedings of ACM CHI’83 Con-
ference on Human Factors in Computing Systems, pages 277–
281.

[Mayo, 1933]Mayo, E. (1933). The Human Problems of an Industrial Civiliza-
tion. Macmillan.

[McCracken and Wolfe, 2004]McCracken, D. D. and Wolfe, R. J. (2004).
User-Centered Website Development. Prentice Hall.

[Melton and Simon, 2002]Melton, J. and Simon, A. R. (2002). SQL:1999
Understanding Relational Language Components. Morgan
Kaufmann.

[Microsoft Corporation, 2002]Microsoft Corporation (2002). Windows xp
visual guidelines. http://www.microsoft.com/whdc/hwdev/
windowsxp/downloads/default.mspx.

[Miller, 1956]Miller, G. A. (1956). The magical number seven, plus or
minus two: Some limits on our capacity for processing infor-
mation. Psychological Review, 63:81–97.

References 261

[Miller, 1968]Miller, R. B. (1968). Response time in man-computer conver-
sational transactions. In AFIPS Conference Proceedings, 1968
Fall Joint Computer Conference, volume 33, pages 267–277.
AFIPS Press.

[Mitchell and Jolley, 2001]Mitchell, M. and Jolley, J. (2001). Research
Design Explained, Fourth Edition. Thomson Learning.

[Moran, 1981]Moran, T. P. (1981). The command language grammar: A rep-
resentation for the user interface of interactive computer sys-
tems. International Journal of Man-Machine Studies, 15(1):3–
50.

[Museenes Datatjeneste, 2003]Museenes Datatjeneste (2003). Primus.
http://www.mdt.no/primus/.

[Myers and Rosson, 1992]Myers, B. A. and Rosson, M. B. (1992). Survey on
user interface programming. In Proceedings of ACM CHI’92
Conference on Human Factors in Computing Systems, pages
195–202.

[Nack and Hardman, 2002]Nack, F. and Hardman, L. (2002). Towards a
syntax for multimedia semantics. Technical Report INS-
R0204, CWI.

[Nack and Putz, 2001]Nack, F. and Putz, W. (2001). Designing annotation
before it’s needed. In Proceedings of the 9th ACM International
Conference on Multimedia, pages 251–260, Ottawa, Ontario,
Canada.

[Neuman, 2002]Neuman, W. L. (2002). Social Research Methods: Qualitative
and Quantitative Approaches. Pearson Allyn & Bacon.

[Nielsen, 1992]Nielsen, J. (1992). Finding usability problems through heu-
ristic evaluation. In Proceedings of ACM CHI’92 Conference on
Human Factors in Computing Systems, pages 373–380.

[Nielsen, 1993]Nielsen, J. (1993). Usability Engineering. Academic Press.

[Nielsen, 1997]Nielsen, J. (1997). Loyalty on the web. http://
www.useit.com/alertbox/9708a.html.

[Nielsen, 1999]Nielsen, J. (1999). Do interface standards stifle design cre-
ativity? http://www.useit.com/alertbox/990822.html.

[Nielsen, 2000]Nielsen, J. (2000). Why you only need to test with 5 users.
http://www.useit.com/alertbox/20000319.html.

[Nielsen, 2001]Nielsen, J. (2001). Did poor usability kill e-commerce?
http://www.useit.com/alertbox/20010819.html.

262 References

[Nielsen and Molich, 1990]Nielsen, J. and Molich, R. (1990). Heuristic
evaluation of user interfaces. In Proceedings of ACM CHI’90
Conference on Human Factors in Computing Systems, pages
249–256.

[Noldus Information Technology, 2003]Noldus Information Technology
(2003). The observer 5.0. http://www.noldus.com/products/
observer/index.html.

[Norman, 1981]Norman, D. A. (1981). The trouble with UNIX. Datamation,
27(7):139–150.

[Norman, 2004]Norman, D. A. (2004). Emotional Design: Why We Love (or
Hate) Everyday Things. Basic Books.

[Oard, 1997]Oard, D. W. (1997). Speech-based information retrieval for
digital libraries. In Proceedings of AAAI Spring Symposium On
Cross Language Text and Speech.

[Obrestad, 2002]Obrestad, J. (2002). Content based image retrieval. Mas-
ter’s thesis, Norwegian University of Science and Technology
(NTNU).

[O’Day and Jeffries, 1993]O’Day, V. L. and Jeffries, R. (1993). Orienteer-
ing in an information landscape: How information seekers get
from here to there. In Proceedings of ACM INTERCHI’93 Confer-
ence on Human Factors in Computing Systems, pages 438–445.

[Oomoto and Tanaka, 1993]Oomoto, E. and Tanaka, K. (1993). Ovid:
Design and implementation of a video-object database sys-
tem. IEEE Transactions on Knowledge and Data Engineering,
5(4):629–643.

[Paap and Roske-Hofstrand, 1988]Paap, K. R. and Roske-Hofstrand, R. J.
(1988). Design of menus. Handbook of Human-Computer Inter-
action, pages 205–235.

[Page et al., 1998]Page, L., Brin, S., Motwani, R., and Winograd, T. (1998).
The PageRank citation ranking: Bringing order to the web.
Technical report, Stanford University.

[Phelps, 1997]Phelps, L. (1997). Active documentation: wizards as a
medium for meeting user needs. In Proceedings of the 15th
annual international conference on Computer documentation,
pages 207–210. ACM Press.

[Plaisant et al., 1999]Plaisant, C., Shneiderman, B., Doan, K., and Bruns,
T. (1999). Interface and data architecture for query preview
in networked information systems. ACM Transactions on Infor-
mation Systems, 17(3):320–320.

References 263

[Preece et al., 2002]Preece, J., Rogers, Y., and Sharp, H. (2002). Interaction
Design: Beyond Human-Computer Interaction. John Wiley &
Sons.

[Preece et al., 1994]Preece, J., Rogers, Y., Sharp, H., Benyon, D., Holland,
S., and Carey, T. (1994). Human-Computer Interaction. Addi-
son-Wesley Publishing.

[Rao et al., 1995]Rao, R., Pedersen, J. O., Hearst, M. A., Mackinlay, J. D.,
Card, S. K., Masinter, L., Halvorsen, P.-K., and Robertson,
G. C. (1995). Rich interaction in the digital library. Communi-
cations of the ACM, 38(4):29–39.

[Reeves and Nass, 1998]Reeves, B. and Nass, C. (1998). The media equa-
tion: how people treat computers, television, and new media like
real people and places. Cambridge University Press.

[Reisner, 1981]Reisner, P. (1981). Human factors studies of database
query languages: A survey and assessment. ACM Computing
Surveys, 13(1):13–31.

[Resnick et al., 1994]Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P.,
and Riedl, J. (1994). Grouplens: An open architecture for col-
laborative filtering of netnews. In Proceedings of the ACM ’94
Conference on Computer Supported Cooperative Work, pages
175–186.

[Rui et al., 1999]Rui, Y., Huang, T. S., and Chang, S.-F. (1999). Image
retrieval: Current techniques, promising directions, and open
issues. Journal of Visual Communication and Image Representa-
tion, 3(1):39–62.

[Rui et al., 1996]Rui, Y., She, A., and Huang, T. (1996). Modified fourier
descriptors for shape representation – a practical approach.
In Proceedings of First International Workshop on Image Data-
bases and Multimedia search.

[Salton, 1989]Salton, G. (1989). Automatic Text Processing: The Transforma-
tion, Analysis, and Retrieval of Information by Computer. Addi-
son-Wesley Publishing.

[Santini and Jain, 1999]Santini, S. and Jain, R. (1999). Interfaces for
emergent semantics in multimedia databases. In Proceedings
of the IS&T / SPIE Conference on Storage and Retrieval for Image
and Video Databases, pages 167–175.

[Santos Jr. et al., 2001]Santos Jr., E., Nguyen, H., and Brown, S. (2001).
Kavanah: Active user interface for information retrieval
application. In Proceedings of the Second Asia-Pacific Confer-
ence on Intelligent Agent Technology (IAT 2001).

264 References

[Sato et al., 2001]Sato, Y., Saito, M., and Koike, H. (2001). Real-time input
of 3d pose and gestures of a user’s hand and its applications
for hci. In Proceedings of the 2001 Virtual Reality Conference,
pages 79–.

[Scheffé, 1959]Scheffé, H. (1959). The Analysis of Variance. Wiley.

[Shafer and Agrawal, 2000]Shafer, J. C. and Agrawal, R. (2000). Continu-
ous querying in database-centric web applications. Computer
Networks, 33(1-6):519–531.

[Shneiderman, 1983]Shneiderman, B. (1983). Direct manipulation: A step
beyond programming languages. IEEE Computer, 16(8):57–69.

[Shneiderman, 1994]Shneiderman, B. (1994). Dynamic queries for visual
information seeking. IEEE Software, 11(6):70–77.

[Shneiderman, 1997]Shneiderman, B. (1997). Designing the User Interface:
Strategies for Effective Human-Computer Interaction. Addison-
Wesley Publishing.

[Skarbek and Koschan, 1994]Skarbek, W. and Koschan, A. (1994). Colour
image segmentation - a survey. Technical report, Technical
University Berlin.

[Skou, 2003]Skou, C. V. (2003). Qualitative media analyzer. http://
www.cvs.dk/qma.htm.

[Smith and Pincever, 1991]Smith, T. G. A. and Pincever, N. (1991). Parsing
movies in context. In In Proceedings of USENIX (Summer
1991), pages 157–168.

[Snodgrass and Vanderwart, 1980]Snodgrass, J. G. and Vanderwart, M.
(1980). A standardized set of 260 pictures: norms for name
agreement, image agreement, familiarity, and visual com-
plexity. Journal of Experimental Psychology: Human Learning
and Memory, 6(3):174–215.

[Sonka et al., 1998]Sonka, M., Hlavac, V., and Boyle, R. (1998). Image Pro-
cessing: Analysis and Machine Vision. Brooks Cole, 2 edition.

[Stallings, 2003]Stallings, W. (2003). Computer Organization and Architec-
ture: Designing for Performance. Prentice Hall, 6 edition.

[Stricker and Orengo, 1995]Stricker, M. A. and Orengo, M. (1995). Similar-
ity of color images. In Storage and Retrieval for Image and
Video Databases (SPIE), pages 381–392.

[Subrahmanian, 1998]Subrahmanian, V. S. (1998). Principles of Multime-
dia Database Systems. Morgan Kaufmann.

References 265

[Sun Microsystems, 2002]Sun Microsystems (2002). Java Look and Feel
Design Guidelines. Addison-Wesley Publishing.

[Taboada et al., 1996]Taboada, M., Marin, R., and Mira, J. (1996). On-line
automatic help generation systems. Journal of Intelligent
Information Systems, 7:261–285.

[Tamura et al., 1978]Tamura, H., Mori, S., and Yamawaki, T. (1978). Tex-
ture features corresponding to visual perception. IEEE Trans-
actions on Systems, Man, and Cybernetics, SMC-8(6):460–473.

[Tanin et al., 1997]Tanin, E., Beigel, R., and Shneiderman, B. (1997).
Design and evaluation of incremental data structures and
algorithms for dynamic query interfaces. In 1997 IEEE Sym-
posium on Information Visualization (InfoVis ’97), pages 81–86.
IEEE Computer Society.

[Tanin et al., 2000]Tanin, E., Lotem, A., Haddadin, I., Shneiderman, B.,
Plaisant, C., and Slaughter, L. (2000). Facilitating data explo-
ration with query previews: A study of user performance and
preference. Behaviour and Information Technology, 19(6):393–
403.

[Thomas and Gould, 1975]Thomas, J. C. and Gould, J. D. (1975). A psycho-
logical study of query by example. In Proceedings of the
National Computer Conference, pages 439–445. AFIPS Press.

[Tidwell and Fuccella, 1997]Tidwell, D. and Fuccella, J. (1997).
Taskguides: instant wizards on the web. In Proceedings of the
15th annual international conference on Computer documenta-
tion, pages 263–272. ACM Press.

[Vincent and Soille, 1991]Vincent, L. and Soille, P. (1991). Watersheds in
digital spaces: an efficient algorithm based on immersion
simulations. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(6):583–598.

[Wagemans et al., 1998]Wagemans, J., Notebaert, W., and Boucart, M.
(1998). Lorazepam but not diazepam impairs identification of
pictures on the basis of specific contour fragments. Psychop-
harmacology (Berl), 138(3-4):326–333.

[Weinshall and Kirkpatrick, 2004]Weinshall, D. and Kirkpatrick, S.
(2004). Passwords you’ll never forget, but can’t recall. In
Extended abstracts of the 2004 conference on Human factors and
computing systems CHI ’04, pages 1399–1402. ACM Press.

[Weisberg et al., 1996]Weisberg, H., Krosnick, J. A., and Bowen, B. D.
(1996). An Introduction to Survey Research, Polling, and Data
Analysis. Sage Publications.

266 References

[Weiss et al., 1995]Weiss, R., Duda, A., and Gifford, D. K. (1995). Composi-
tion and search with a video algebra. IEEE MultiMedia,
2(1):12–25.

[Whittaker et al., 1999]Whittaker, S., Hirschberg, J., Choi, J., Hindle, D.,
Pereira, F. C. N., and Singhal, A. (1999). Scan: Designing and
evaluating user interfaces to support retrieval from speech
archives. In Proceedings of the 22nd Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, pages 26–33. ACM Press.

[Williamson and Shneiderman, 1992]Williamson, C. and Shneiderman, B.
(1992). The dynamic homefinder: Evaluating dynamic que-
ries in a real-estate information exploration system. In Bel-
kin, N. J., Ingwersen, P., and Pejtersen, A. M., editors,
Proceedings of the 15th Annual International ACM SIGIR Con-
ference on Research and Development in Information Retrieval,
pages 338–346. ACM Press.

[Wood et al., 1998]Wood, M. E. J., Thomas, B. T., and Campbell, N. W.
(1998). Iterative refinement by relevance feedback in con-
tent-based digital image retrieval. In Proceedings of the sixth
ACM international conference on Multimedia, pages 13–20.
ACM Press.

[Xu and Prince, 1998]Xu, C. and Prince, J. L. (1998). Snakes, shapes, and
gradient vector flow. IEEE Transactions on Image Processing,
7(3):359–369.

[Yahoo! Inc., 2004]Yahoo! Inc. (2004). Yahoo! investor relations. http://
docs.yahoo.com/info/pr/investor_metrics.html.

[Yen and Scamell, 1993]Yen, M. Y.-M. and Scamell, R. W. (1993). A human
factors experimental comparison of sql and qbe. IEEE Trans-
actions on Software Engineering, 19(4):390–409.

[Zhang and Lu, 2001]Zhang, D. and Lu, G. (2001). A comparative study on
shape retrieval using fourier descriptors with different shape
signatures. In Proceedings of International Conference on Intel-
ligent Multimedia and Distance Education (ICIMADE01), pages
1–9.

[Ziegler and Fahnrich, 1988]Ziegler, J. E. and Fahnrich, K. P. (1988).
Direct manipulation. Handbook of Human-Computer Interac-
tion, pages 123–133.

[Zloof, 1977]Zloof, M. M. (1977). Query-by-example: A data base language.
IBM Systems Journal, 16(4):324–343.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

