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Abstract

The study presented in this report look into the design of a Ride Control System reducing
wave-induced motions in heave, roll and pitch on a fully submerged hydrofoil craft sailing
at 17 m/s. A frequency weighted, multiple-input multiple-output H2-optimized feedback
controller is used.

The craft is modelled in 6 Degrees of Freedom with nonlinear models for rigid-body dy-
namics and foil forces. Four identical and symmetrically located foils are carrying the
weight of the craft, and four identical and symmetrically located rudders are controlling
motions in yaw. The only external forces and moments acting on the craft-body are grav-
ity, lift and drag forces from the foils and rudders, and a thrust force in surge keeping the
speed constant. No air or other water resistance is modelled. The wave disturbances are
implemented by letting the orbital motions of water particles change the magnitude and
direction of the relative inflow velocity on the foils. These orbital motions are calculated
from a linear model of one or more regular wave components. The craft model has four
generalized control inputs, where three of them are controlling heave, roll and pitch by
adjusting the angles of the lifting foils differently, and the fourth is controlling yaw by
adjusting the rudder angles.

The simulation model of the craft is then linearized with respect to motions in heave, roll
and pitch. The linearization is done about a trim condition with zero angles in roll and
pitch, a constant position in heave, and zero velocity in all degrees of freedom, except for
the constant speed in surge. Only control inputs for heave, roll and pitch are included.
The linearized model is expressed as a nine-dimensional state-space model, where first
three states are generalized actuator dynamics, and the last six are position and velocity in
heave, roll and pitch.

The linearized model is then augmented with first-order frequency-weighting functions,
in order to generate performance signals with frequency-dependent sensitivity to state er-
rors and control inputs. The higher value of the performance signal, the higher penalty
on the corresponding state error or control input. The state errors are given penalty at
low frequencies, and the control inputs are given penalty at high frequencies. Additional
frequency-weighting functions are used in order to transform white-noise signals into ex-
pected, colored wave disturbances. These white noise-signals, together with white sensor
noise and reference state values, constitute the external inputs in the augmented model.

The H2-optimized controller is minimizing the 2-norm of the closed-loop transfer ma-
trix from external inputs to the performance signals. It is computed from the augmented
model by using the h2syn() function in the Robust Control Toolbox in MATLAB. The
yaw rate and surge speed of the craft is controlled by separate, external proportional-
integral-derivative controllers, and the speed in sway is controlled to zero with an external
proportional-integral controller updating the reference for the roll angle.
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Simulink is used to simulate the system of the controlled craft in three different sea con-
ditions: Regular long-crested waves, irregular long-crested waves, and irregular short-
crested waves. For each sea condition, straight-line motion in both following and head
sea is simulated. A coordinated turn is also simulated in irregular, short-crested waves. In
total seven different cases are simulated. Sensor noise is added to the signals entering the
H2 controller, but not the external controllers.

Simulation results shows that the Ride Control System in all of the cases is able to control
the attitude of the craft, as well as reducing the wave-induced disturbances. Performance
is better in regular than in irregular waves, better in short-crested than in long-crested ir-
regular waves, and better in following sea than in head sea. The last is due to the choice
of frequency-weighting functions for the error performance signals, since they are giving
less penalty on errors caused by higher encounter frequencies. The results do also show
large pitch accelerations in the case of head sea with long-crested, irregular waves. The
choice of weighting functions is a trade-off between good performance, and minimization
of sensor noise penetrating the controller and causing high-frequency vibrations in the ac-
tuators. Higher order weighting functions or a more accurate linearized model can reduce
the problem.
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Sammendrag

Arbeidet som er presentert i denne rapporten tar for seg design av et kontrollsystem for
reduksjon av bølgeinduserte bevegelser i hiv, rull og stamp på en hydrofoilbåt med fult
neddykkede foiler. Båten antas å ha en konstant fart på 17 m/s. Kontrollsystemet vil
primært være basert på en frekvensvektet H2-optimalisert feedback-kontroller.

Hydrofoilfartøyet er modellert i 6 frihetsgrader, med ulineære modeller for både stivt-
legeme-dynamikk og hydrodynamiske krefter som virker på foilene. Fartøyet bæres av
fire identiske foiler som er symmetrisk plassert i både lengde- og bredderetning, mens fire
identiske og symmetrisk plasserte ror styrer fartøyet i gir. De eneste eksterne kreftene som
virker på fartøyet er tyngdekraft, løft- og drag-krefter fra foiler og ror, og en fremover-
rettet skyvkraft som holder farten konstant. Luftmotstand og hydrodynamiske krefter fra
andre deler enn foiler og ror er neglisjert. Bølgeinduserte forstyrrelser er implementert
ved å la vannpartiklenes lokale orbitale hastighet inngå i beregningen av relativ hastighet
mellom foil/ror og vann. Slik medfører bølgene endringer i fart og retning på vannet
som strømmer in mot foilen/roret, og derav også endring i størrelse og retning på de
relaterte hydrodynamiske kreftene. Vannpartiklenes hastighet beregnes ut fra en lineær
bølgemodell bestående av en eller flere regulære komponenter av sinusformede bølger.
Modellen kontrolleres med fire generaliserte, inngående signaler, derav tre kontrollerer
krefter i hiv, rull og stamp ved å allokere ulike vinkelendringer på foilene, og den siste
kontrollerer gir ved å justere vinkelen på rorene.

Simuleringsmodellen er deretter linearisert med hensyn på frihetsgradene hiv, rull og
stamp. Lineariseringen gjøres omkring et likevektspunkt med null vinkel i rull og stamp,
en konstant posisjon i hiv, og null hastighet i alle frihetsgradene unntatt i jag, der farten
er konstant. Den lineariserte modellen kan kun kontrolleres i hiv, rull og stamp. Den lin-
eariserte modellen uttrykkes som en nidimensjonal tilstandsrommodell, der generalisert
aktuator dynamikk utgjør de tre første tilstandene, mens de resterende seks er posisjon og
hastighet i hiv, rull og stamp.

Den lineariserte modellen utvides med førsteordens frekvensvektingsfunksjoner, med det
formål å generere et sett av ytelses-signaler som har frekvensavhengig sensitivitet til til-
standsfeil (avvik fra referanseverdi i hiv, rull og stamp, eller deriverte av disse) og kon-
trollpådrag. Desto høyere verdien på ytelse-signalet er, desto mer ønsker vi at det lukkede
systemet vi designer klarer å minimere den tilsvarende tilstandsfeilen eller kontrollpådraget.
Tilstandsfeil ønskes minimert ved lave frekvenser, mens kontrollpådrag ønskes minimert
ved høye frekvenser. I tillegg innføres frekvensvekting på de fysiske prosessforstyrrelsene
som påvirker systemet. Dette med den hensikt å modellere at forstyrrelsene forventes å
dominere i det frekvensområdet bølgeinduserte forstyrrelser opptrer. Denne frekvensvek-
tingen transformerer signaler med ”hvit støy” til signaler med ”farget støy” i ønsket frekven-
sområde. Ellers antas hvit målestøy fra sensorer. Hvit støy fra prosessforstyrrelser og
målestøy utgjør sammen med referanseverdier de eksterne input-signalene i det utvidede
systemet.
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Den H2-optimaliserte kontrolleren minimerer 2-normen av transfermatrisen for det lukkede
systemet fra eksterne input-signaler til ytelsesverdier. Den beregnes basert på den utvid-
ede og frekvensvektede modellen ved bruk av funksjonen h2syn() i ”Robust Control
Toolbox” i MATLAB. Fart og retning på fartøymodellen kontrolleres av separate PID-
kontrollere, og sideveis hastighet kontrolleres til null av en PI-kontroller som oppdaterer
referansen for vinkel i rull.

Simulink benyttes for å simulere systemet i følgende tre ulike sjøforhold: regulære lang-
kammede bølger, irregulære langkammede bølger og irregulære kortkammede bølger. I
hvert tilfelle simuleres rettlinjet bevegelse i både medsjø og motsjø. For irregulære ko-
rtkammede bølger simuleres også at fartøyet utfører en koordinert sving. Målestøy er kun
lagt til i signalene som går til H2-kontrolleren.

Resultatene viser at kontrollsystemet i alle tilfellene klarer å kontrollere fartøyet stabilt i
oppreist posisjon, samt redusere de bølgeinduserte bevegelsene. I noen av tilfellene mer
effektivt enn andre. Kontrollsystemet yter bedre i tilfellene med regulære bølger enn i
tilfellene med irregulære bølger, og for irregulære bølger er ytelsen bedre for kortkammede
enn for langkammede bølger. Ytelsen er også bedre for medsjø enn motsjø. Årsaken til
dette er at bølger i motsjø genererer forstyrrelser med høyere frekvens enn bølger i medsjø,
og frekvensvektingsfunksjonene gir lavere vekting av tilstandsfeil ved høyere frekvenser.
Resultatene viser også at det oppsto store akselerasjoner i stamp i tilfellet fartøyet beveget
seg i motsjø med irregulære langkammede bølger.

Valget av frekvensvektingsfunksjoner er et kompromiss mellom bra reduksjon av bølge-
induserte bevegelser og minimering av målestøy som trenger gjennom kontrolleren og
skaper høy-frekvente vibrasjoner i aktuatorene. Høyere ordens frekvensvektingsfunksjoner
eller en mer nøyaktig linearisert modell kan redusere problemet.
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Chapter 1
Introduction

1.1 Background:

NTNU Technology Transfer AS (TTO) is currently developing a new concept of a hydrofoil
craft, currently called Flying Foil, where the idea is to use oscillating motions of the foils
to obtain a thrust force at the same time as the foils are used to carry the weight of the craft.
The goal is to achieve a significant higher propulsion efficiency compared to conventional
hydrofoil crafts, leading to reduced fuel costs and emission of greenhouse gasses. TTO
also expects the energy consumption to be further reduced by building the craft in new
lightweight materials. The currently most potential market is for high-speed passenger
boats operating along the Norwegian Coast. Here the political goal is to electrify both
public car ferries and passenger boats in order to reduce the CO2 emissions. The reduced
energy demand of Flying Foil opens for using electrical propulsion systems powered by
chargeable on-board batteries. By using modern lithium batteries with a much higher
energy/weight ratio compared to old lead batteries, in combination with new technology
for fast charging, Flying Foil has a good chance to be competitive in the tender process for
high-speed passenger boats going in shuttle traffic with short stay in the dock.

In the concept of Flying Foil, two vertically arranged foils are oscillating with opposite
phase in vertical direction, while the angle of each foil continuously is changing such that
the sum of horizontal forces acting on the foils is giving thrust, while the sum of vertical
forces is giving a constant lift force carrying the craft. It is not decided whether this con-
cept shall be implemented both in the front and the aft of the craft, or just in one place.
Figure 1.1 illustrates a concept where the concept is implemented both in the front and the
aft. Anyway, it will be necessary to have lifting foils in at least two longitudinal positions
of the craft in order to maintain balance in pitch. The load distribution between the front
and the aft foils is not decided yet. Many configurations are possible, and one currently
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Figure 1.1: Illustration of the Flying Foil hydrofoil craft

being studied has a large foil lifting the craft close behind the center of gravity, and two
T-foils in the aft which are pulling the craft down as well as controlling the pitch. Indepen-
dent of which configuration being selected, the foils used in the concept will be completely
submerged, so a stabilizing control system is essential. Further will environmental distur-
bances, especially from waves and wind, cause oscillating motions giving bad passenger
comfort and in the worst case make the craft unstable, so the control system also has to
minimize these motions. In order to perform such control on this craft, the idea is to adjust
the angles of the foils themselves or equip the foils with controlling flaps.

In the end, the craft shall be equipped with a control system keeping it stable in cruise
conditions, and at the same time compensate environmental disturbances from waves, cur-
rent and wind, such that the comfort of passengers and crew is satisfied. It also has to
be equipped with an observer providing necessary state estimates based on available sen-
sor measurements and a mathematical model of the dynamics of the craft. A longitudinal
guidance system handling the take-off (craft rising up on the foils) and landing (hulls go-
ing back into the water) procedures has to be developed as well. Depending on potential
customers’ preferences, there may also be necessary to implement an autopilot and a more
sophisticated guidance system.

In the first phase in developing this control and guidance system, Piene (2017) made a sim-
plified simulation model of the craft and applied several Proportional-Integral-Derivative
(PID) controllers to control heave, roll, pitch and yaw in independent closed loops. Suc-
cessive loop closure where used to control the speed in sway to zero by updating the refer-
ence for the closed loop in roll, and the speed in surge was constantly fixed to 17 m/s as a
part of the simulation model. The controllers where tuned according to methods provided
by Beard and McLain (2011). Simulations where performed assuming calm water, but a
constant wind load was applied and compared with similar simulations without the wind
load. The simulation results showed good performance for no wind, both when sailing in
straight line and when performing a turn. In the presence of wind the results where less
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good, but still satisfactory.

The study presented in this report go one step ahead. There will be designed a more
advanced Ride Control System (RCS) keeping the simulated craft stable in heave, roll and
pitch as well as rejecting the wave disturbances in the same Degrees of Freedom (DOF)
as good and optimal as possible. This is done in order to increase the passenger comfort
when the craft is sailing in 17 m/s. The RCS will be based on a frequency weighted H2-
optimized Multiple-input multiple-output (MIMO) feedback controller, which also has
the built-in observer property and can handle noise-contaminated sensor signals directly.
Two independent PID controllers and one Proportional-Integral (PI) controller will also be
applied in order to handle the DOF not covered by the RCS.

The RCS will be applied on the simplified simulation model made by Piene (2017). In this
model, the propulsion concept with vertical oscillating foils is not modelled, so instead
only single foils being translationally fixed to the craft will be considered. These will be
four identical lifting foils, where the angle of each foil can be adjusted in order to maneuver
the craft. The craft model will also be equipped with four rudders giving control in yaw.
This simulation model is further extended with a wave model, implemented in order to
simulate the impact the waves have on the foils due to the orbital motion of the water
particles.

The performance of the RCS will be tested for different sea conditions with simulations
in Simulink. This includes regular long-crested waves, irregular long-crested waves and
irregular short-crested waves. The irregular waves will be generated according to a Pierson
Moskowitz frequency spectrum for a wind speed of 10 m/s. However, since this study focus
on rejecting the wave loads, there will be assumed zero wind load on the craft. The current
in the water is also assumed to be zero. The main objective of the study will be emphasized
in the following section.

1.2 Objective:
The main objective of this study is:

Designing a frequency weighted H2-optimized feedback controller rejecting the wave dis-
turbances in heave, roll and pitch for a high speed hydrofoil craft sailing in irregular sea,
both for straight-line motion and when performing a coordinated turn.

The process of reaching this goal includes the following sub problems:

• Design of a 6 DOF nonlinear simulation model of a hydrofoil craft with a simplified
shape and symmetric placement of four lifting foils and four vertical foils acting as
rudders.

• Implementation of a wave model simulating the disturbances acting on each of the
foils in different sea conditions.

• Linearization of the nonlinear simulation model about a trim condition equal the
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expected cruise conditions for the craft. The linearized model has only the 3 DOF
heave, roll and pitch.

• Using the linearized model in order to design the frequency weighted H2-optimized
feedback controller. This includes the design of transfer functions weighting the
penalty on a defined performance error differently for different frequencies, as well
as design of transfer functions representing the expected frequency distribution of
disturbance forces and sensor noise.

• Design and implementation of additional, external feedback controllers supplement-
ing the 3 DOF RCS in controlling the behaviour of the craft in all 6 DOF. This
includes a simple PID controller which controls the yaw rate, and a simple PI con-
troller updating the reference value for roll in order to minimize the speed in sway.

• Design of a simple guidance system making the craft performing a coordinated turn
with a desired turning radius.

1.3 Scope of Work
The project will be done during the Fall 2017 and the first two months of 2018. The scope
of work is as follows:

• Review of literature on hydrofoil control systems rejecting waves, H2 optimized
control theory, and frequency weighted control. (August/September)

• Extend and improve the Simulink simulation model developed by Piene (2017).
Include a wave model and implement wave forces on the foils. (September)

• Linearize the the simulation model with respect to heave, roll and pitch. (October)

• Augment the linearized model with frequency weighting and design the H2-optimized
controller. (October/November)

• Implement the controller in Simulink. Also include the external controllers. (Novem-
ber)

• Extensive simulations and tuning of controllers/weighting functions. (November/De-
cember)

• Report writing. (January/February)

• Deadline: February 25, 2018

The H2-optimized controller designed in this study will be limited to only have guaranteed
stability for a nominal plant equal the linearized model. No robustness design methods are
implemented. All the controllers are designed for a constant surge speed of 17 m/s, and
simulations are only performed for a limited number of wave conditions.
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1.4 Literature Review

The literature review will be divided into three parts. The first part will consider histori-
cal research on rejection of wave disturbances on hydrofoil crafts in general, the second
part will look into H2-optimal control theory, and the third part will look into frequency
weighted control. The theory presented in the two last parts of this section will be essential
for the methods used in the design of the RCS in Chapter 4, and includes the basic theory
behind the functions going to be used from the Robust Control Toolbox in MATLAB. The
notations used in this section are introduced in order to present the theory, and does not
necessarily refer to the same as notations using the same letter or symbol in later sections.
Neither will vectors and matrices in this section be denoted by bold letters or symbols.

1.4.1 Rejection of Wave Disturbances on a Hydrofoil Craft

Motion control of fully submerged hydrofoil crafts has been studied for several decades.
The present study will mainly call attention to more recent studies from the 90’s and later,
since a lot of results from computational and experimental studies using modern control
theory were developed during this period. The studies highlighted in the rest of this sub-
section are looking into control in irregular waves and the significance of modelling the
wave disturbance when designing the control system.

Lee and Rhee (2002) studied the design of a robust RCS enhancing the seakeeping per-
formance in heave and pitch for a foil catamaran in head sea with irregular waves. They
designed a controller which was stable and enhanced the performance with respect to dis-
turbances from all regular wave components, and made the assumption that this controller
also will be stable and enhance the performance with respect to disturbances from irregular
waves composed of regular wave components, i.e. validity of the superposition principle.
A constant feedback controller was designed using the Linear Quadratic Regulator (LQR)
methodology, and it was used in combination with a low-pass filter reducing the sensor
noise. They found that the assumption of superposition was valid, and the designed con-
troller gave good performance, as well as robustness both in regular and irregular head
waves. The ship motions were drastically reduced compared to when the RCS not was
activated. However, the sensor noise included in the model had a significant and undesired
impact on the control output, which got small but rapid vibrations.

Kim and Yamato (2004) did both theoretically and experimental studies on how to increase
the seakeeping performance in heave and roll for a fully submerged hydrofoil craft sailing
in following sea with regular waves. It was already well-known that a hydrofoil craft
sailing in following seas usually has poor seakeeping performance, and the purpose of their
study was to prove by experiment that this was due to the orbital motions of the waves.
First they studied the variation of a foil’s lift force and angle of attack in regular waves. In
the case of head waves, there is an increase in the lift force when the foil is approaching
the crest, and a decrease when leaving the crest. This helps the foil keeping a distance
to the water surface, as well as contouring the waves. In the case of following waves,
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the lift force is acting in the opposite directions. Figure 1.2 shows a good illustration
of the problem. The figure is borrowed from Kim and Yamato (2004). From a linear,

Figure 1.2: Variation of foil’s lift by wave orbital motion (Kim and Yamato, 2004)

longitudinal state-space model of the model craft going to be used in the experiment, Kim
and Yamato designed a linear feedback control system consisting of an LQR controller
and a Kalman Filter for estimating the states. The wave-induced disturbances were only
modelled as an ordinary disturbance input which was not limited to any frequency range.
The experimental part of the study was a towing tank test of a model craft where the control
system was implemented. The results from the experiments showed that the performance
was not good in following waves, even when using large flap angles. The feedback control
system did not manage to reduce the effect of the foil’s lift variation due to orbital motions
in the waves. However, in calm water the feedback control of motions was very effective.
From these observations, they concluded that when designing a control system in order to
improve the seakeeping performance in following waves, it is necessary to do this based
on a mathematical model where the wave orbital motions are taken into account.

Kim and Yamato (2005) went further in studying how frequency shaping of the disturbance
signals could improve the performance. This time by using simulations. The state-space
model used for design of controller and Kalman Filter in the experimental study was aug-
mented with a state-space model representing the disturbance forces, which were limited
to a specific and expected range. The augmented model was used in design of new con-
troller and Kalman Filter. The Kalman Filter also included the wave elevation for the
corresponding modelled disturbance forces. The simulation model had included a sensor
measuring the distance to the water in the front of the craft, such that the wave elevation
could be calculated, and the Kalman Filter’s estimated wave elevation and disturbances
could be corrected towards more true values. The results showed that the wave elevations
and disturbances acting on the foils were predicted with low errors.

Hatzakis and Sclavounos (2006) studied the use of LQR control for stabilization and dis-
turbance rejection of a fully submerged hydrofoil craft sailing in regular and irregular
waves. The simulated craft was modelled using a seakeeping model, with perturbations
in heave and pitch. Added mass and damping forces were implemented in the model,
and hydrostatic restoring forces were included for some of the simulations. Fluid mem-
ory effects were also accounted for. All states were assumed perfectly measured without
any noise. The LQR controller was designed from a simplified linearized model where
fluid memory effects were neglected, and the disturbance input did not have any frequency
limitations. Simulation of both the craft with and without the hydrostatic restoring forces
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in heave and pitch were performed. The latter is of interest in the present study. Results
from initial simulations showed problems with steady-state errors in both heave and pitch.
The solution to the problem was to augment the state-space model with integral states for
heave and pitch, in order to include an integral feedback gain. Simulations using the con-
troller designed from the augmented model showed good performance in both regular and
irregular waves, and the craft remained stable during all of the simulations.

Bai and Kim (2010) studied motion control of a fast ship equipped with fully submerged
hydrofoils in following waves. This craft was modelled in the two DOF heave and pitch,
with the linear state-space model introduced by Kim and Yamato (2004). Bai and Kim
(2010) applied the three different control algorithms PID, LQR and sliding mode control to
the state-space model, and by simulations they compared the performance and robustness
of the different controllers both in regular and irregular following waves. In the case of
PID control, the flaps on the front and aft foil were controlled with a phase shift in order
to compensate for different local velocity of the water. The performance was overall good
for regular waves, but for irregular waves the sensitivity to wave height was strong, and for
large waves instability occurred. They concluded that this was because of the derivative
controller being sensitive to rapid change of the disturbance. The LQR controller showed
very good performance in both regular and irregular waves. The heave and pitch motions
were effectively reduced with small flap angles, and the system was stable for all the
simulated cases. The sliding mode controller did also give good performance of motion
response in irregular waves, but it had to use much larger control inputs compared to
the other controllers. Jagging of the control signal did also cause the Root Mean Square
(RMS) value of the acceleration to be large. In addition, they simulated the experiment
from Kim and Yamato (2004) with the same LQR controller and a simulation model with
the same properties as the one used in the towing tank experiment. The results showed that
the simulated control session gave significantly better performance than the experimental
one.

1.4.2 H2 Control

The H2 control problem will be presented according to description provided by Doyle
et al. (1989) and Athans (2004).

Definition of the H2 norm:

First, the definition of the H2 norm has to be presented. Consider a stable Linear Time
Invariant (LTI) system, described in the time domain by the following state-space model:

ẋ(t) = Ax(t) + Bw(t)
y(t) = Cx(t) (1.1)
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Let the stable transfer matrix G(s) = C(sI �A)

�1B describe the same LTI system in the
frequency domain. The H2 norm of G(s) is defined as:

||G(s)||2 =

 
1

2⇡

Z 1

�1
tr
h
G(j!)G>

(�j!)
i
d!

!1/2

(1.2)

The H2 norm can also be computed from the state-space model in (1.1). Assume w(t) is
continuous-time, zero-mean, white noise with unit intensity. Let Lc denote the controlla-
bility Gramian of (A,B), then

||G(s)||22 = tr
h
CLcC>

i
. (1.3)

Lc can be found by solving the Lyapunov equation,

ALc + LcA>
+ BB>

= 0. (1.4)

Alternatively, let Lo denote the observability Gramian of (C,A), then

||G(s)||22 = tr
h
B>LoB

i
. (1.5)

Lo can be found by solving the Lyapunov equation,

A>Lo + LoA+ C>C = 0. (1.6)

Definition of the H2-optimal controller:

Next step is to define the H2-optimal controller. Consider the block diagram in Figure 1.3.
The plant P (s) is subject to control by a stabelizing feedback compensator K(s). The
signal w contains all external inputs, including disturbances, sensor noise and commands,
z is an error signal (also referred to as the performance signal), y contains all measured
states available for the controller, and u is the control input. Let Twz(s) denote the transfer

Figure 1.3: Closed-loop system containing a plant P (s) and a feedback compensator K(s). w

includes external inputs, and z is the error (performance) signal

matrix of the stable closed-loop system, from the vector of external inputs, w, to the error
vector z. The H2-optimal controller is defined as the stabilizing feedback compensator
K(s) = K2(s) minimizing ||Twz(s)||2.
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Procedure of calculating the H2-optimal controller K2(s):

Assuming P (s) is an LTI plant, which in the time domain has the state-space representa-
tion

˙x(t) = Ax(t) +B1w(t) +B2u(t) (1.7)
z(t) = C1x(t) +D12u(t) (1.8)
y(t) = C2x(t) +D21w(t) +D22u(t), (1.9)

where (1.7) is the equation of the linear state dynamics, with x as the state vector, (1.8) is
the performance equation, and (1.9) is the measurement equation.

The process of solving the H2-optimal control problem can be divided into two main steps.
The first step is the state feedback problem. Assume that all the states in x are available
for the controller, and assume that (A,B2) is stabilizable, i.e. all plant unstable modes
are controllable from the control input u(t), and that (C1, A) is detectable, i.e. all plant
unstable modes are observable in the the performance signal z(t). Minimizing ||Twz(s)||2,
equals minimizing the covariance of z(t):

||Twz(s)||22 = cov[z(t), z(t)] = E
�
z>(t)z(t)

 
= lim

T!1

1

2T

Z T

�T

z>(t)z(t)dt

= lim

T!1

1

2T

Z T

�T

⇥
C1x(t) +D12u(t)

⇤>⇥
C1x(t) +D12u(t)

⇤
dt

= lim

T!1

1

2T

Z T

�T

⇥
x>(t)C>

1 C1x(t) + 2x>(t)C>
1 D12u(t) + u>(t)D>

12D12u(t)
⇤
dt

(1.10)
The feedback controller minimizing this equation is

u(t) = F2x(t), (1.11)

where F2 is the static feedback gain given by

F2 = �(D>
12D12)

�1
(D>

12C1 +B>
2 X2). (1.12)

X2 = X>
2 � 0 is the unique solution of the Control Algebraic Ricatti Equation (CARE):

0 = X2A
>
r +A>

r X2 + C>
1 C1 � C>

1 D12(D
>
12D12)

�1D>
12C1

�X2B2(D
>
12D12)

�1B>
2 X2,

(1.13)

where
Ar := A�B2(D

>
12D12)

�1D>
12C1. (1.14)

In the case the cross-product penalties are zero, which equals C>
1 D12 = 0, then Ar = A,

and the CARE simplifies to

0 = X2A
>
r +A>

r X2 + C>
1 C1 �X2B2(D

>
12D12)

�1B>
2 X2, (1.15)
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and the control gain becomes

F2 = �(D>
12D12)

�1B>
2 X2. (1.16)

This equals an LQR feedback gain F2 = �R�1B>
2 X2 minimizing the Quadratic Cost

Function

J = E

(
lim

T!1

1

2T

Z T

�T

⇥
x>(t)Qx(t) + u>

(t)Ru(t)
⇤
dt

)
, (1.17)

for Q = C>
1 C1 and R = D>

12D12.

The next step is the estimation problem. If, for x 2 Rn and y 2 Rm, m  n and
D21w(t) 6= 0, or the measurements are contaminated with noise, the state vector x(t) has
to be estimated. Let ˆx denote the estimate of x. Assume (A,B1) is stabilizable, i.e. all
plant unstable modes are controllable from the process noise w(t), and assume (C2, A) is
detectable, i.e. all plant unstable modes are observable in the the sensor output y(t). Then,

˙

ˆx = Aˆx +B2u + L2(C2ˆx +D22u � y), (1.18)

where L2 is the filter gain given by

L2 = �(Y2C
>
2 +B1D

>
21)(D21D

>
21)

�1. (1.19)

Y2 = Y >
2 � 0 is the unique solution of the Filter Algebraic Ricatti Equation (FARE):

0 = Y2A
>
e +A>

e Y2 +B1B
>
1 �B1D

>
21(D21D

>
21)

�1D21B
>
1

� Y2C
>
2 (D21D

>
21)

�1C2Y2,
(1.20)

where
Ae = A�B1D

>
21(D21D

>
21)

�1C2. (1.21)

In the case process and sensor noises are uncorrelated, which equals B1D
>
21 = 0, then

Ae = A, and the FARE simplifies to

0 = Y2A
>
+A>Y2 +B1B

>
1 � Y2C

>
2 (D21D

>
21)

�1C2Y2, (1.22)

and the filter gain becomes

L2 = �Y2C
>
2 (D21D

>
21)

�1. (1.23)

This equals the filter-gain matrix L2 = �Y2C
>
2 ⇥

�1 of a steady-state, continuous-time
Kalman filter minimizing the covariance of the estimation error, E

�
(x � ˆx)(x � ˆx)>

 
,

when ⇥ = D21D
>
21 is the covariance matrix of the measurement noise.

With the state estimator in (1.18), and the controller in (1.11), the H2-optimal controller
K2(s) can be presented as a state-space model

˙

ˆx = (A+ L2C2 +B2F2 + L2D22F2)ˆx � L2y

u = F2ˆx,
(1.24)
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Figure 1.4: Block diagram of the H2 controller

where F2 and B2 are as defined in (1.12) and (1.19) respectively. Figure 1.4 illustrates the
controller in a block diagram. As a combination of an LQR controller and a Kalman Filter,
the H2 controller solves the Linear Quadratic Gaussian (LQG) control problem.

It is important to notice that this controller only guarantee nominal stability and perfor-
mance, i.e. in the case the plant being controlled is identical to the linear plant P (s).
However, for real physical systems there will in almost every case be impossible to recon-
struct an exact mathematical representation, so there will usually be unmodelled dynamics
and/or linearization of the dynamics being modelled. Hence, there is no guarantee that an
H2 controller being designed according to the procedure above gives stability or perfor-
mance robustness when applied to the real plant P (s) is supposed to represent (Athans,
2004).

1.4.3 Frequency Weighted Controller Design

Frequency weighting in the controller design will be presented according to description
provided by Athans (2004).

For more sophisticated controllers, there might be preferable to penalize state errors and
control inputs differently at different frequencies. E. g. penalize the state errors due to
disturbances and/or change in the commands more at low frequencies, and penalize the
control input more at high frequencies, where sensor noise and dynamic model errors
are expected. Consider the state-space model in (1.7) to (1.9) for the plant P (s). De-
fine the frequency weighted performance signals z1(s) = Wy(s)z(s) for the output error,
and z2(s) = Wu(s)u(s) for the control input. Wy(s) and Wu(s) are diagonal frequency-
weighting matrices, designed according to the control engineer’s preferences. By aug-
menting these weighting matrices to the plant model P (s), it is possible to design a feed-
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back controller K(s) minimizing the performance signals z1(s) and z2(s) such that the
desired frequency weighting is taken into account. By just penalizing the signals in z(s)
and u(s) directly, as for the H2 controller presented in previous section, or for a static LQR
controller with static cost matrices Q and R, it will not be possible to obtain this frequency
weighting flexibility.

It also might be necessary to use frequency weights on the external inputs to the sys-
tem. The H2 (LQG) controller presented in Section 1.4.2 assumes the elements of the
external-input vector w(s) being continuous-time, zero-mean, white noise with unit inten-
sity. However, this is not necessarily the case for the plant subject to control. Process
disturbances and commands are typically limited to specific frequency regions, and the
sensor noises might also be limited to high frequencies. Consider a plant being exposed to
process disturbances d(s) dominating in a specific frequency region, and where the sensor
noise v(s) is strong for high frequencies, or it is desired to make the close-loop system
insensitive to the high-frequency sensor noise. This problem can be solved by augment-
ing the weighting matrices Wd(s) and Wv(s) to the plant model, such that the process
disturbances d(s) and sensor noise v(s) can be modelled as functions of the zero-mean,
unit-intensity, white-noise vectors w1(s) and w2(s), respectively:

d(s) = Wd(s)w1(s) (1.25)

v(s) = Wv(s)w2(s) (1.26)

Figure 1.5 shows a block diagram of a frequency weighted plant model, where the objec-
tive is to control the measured states, yp to zero. It includes the performance weighting
matrices Wy(s) and Wu(s), and the disturbance weighting matrices Wd(s) and Wv(s). The
disturbance inputs w1 and w2 are continuous-time, zero-mean, while noise with unit inten-
sity. The matrices B and L in the figure corresponds to B2 and B1 in (1.7), respectively.
In this block diagram, C1 in the performance equation (1.8), and C2 in the measurement
equation (1.9) are identical and denoted by C. The frequency weighted H2-optimal con-

Figure 1.5: Block diagram of a frequency weighted plant

troller for this augmented plant will be the dynamic feedback compensator K(s) = K2(s)
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minimizing ||Twz(s)||2, for Twz(s) being the transfer matrix of the closed-loop system
from the external input vector [w1,w2]

> to the performance output vector [z1, z2]>.

The augmentation of the plant model and frequency weights can be implemented in the
time domain by realizing all the weighting matrices into state-space models and augment
these to the state-space model of the plant. The order of this augmented system will equal
the plant order plus the sum of the order of each weighting matrix. The feedback compen-
sator K(s) will typically be of the same order. Even in the case all the states in the plant
were perfectly measured and the estimation problem vanished, the feedback compensator
K(s) has to be dynamic in order to handle the frequency-weighting dynamics.
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Chapter 2
Simulation Model

The model used for the simulations in this study has a simplified geometry, build up of
rectangular cuboid blocks. The craft has a catamaran shape, with two side blocks repre-
senting the two hulls and one middle block connecting these. The body-fixed coordinate
system is as shown in Figure 2.1. The origin is located in the center of the area spanned
by the length and width of the craft, at a height level equal to the bottom of the hulls.

The craft is equipped with four identical foils with a constant profile, arranged as one pair
in the front and one pair in the aft. Each pair has the same distance to the origin, and
is supporting the rest of the craft with two identical legs. Hence, the craft is completely
symmetric about both the xz and the yz plane. All foils are completely submerged during
normal operating conditions.

The dimensions of the craft model are given in Table 2.1. Definitions of the dimensions
are provided in Figure 2.1. Length and width is set to approximately the same as for the
passenger catamaran Trondheimsfjord I, whose values are available at the homepage of
Brødrene AA (2017). The height is chosen to be 3/4 of the width. Due to improvements in
the technology of low-weight materials during the last years, the weight can be assumed
to be significant less than the weight of Trondheimsfjord I. The location of the center of
gravity (COG) and the moments of inertia are calculated assuming a homogeneous mass
distribution.

Table 2.2 lists the constants used for gravity acceleration, water density, cruising speed
and operating elevation, which is the distance between the water surface and the body-
frame origin in cruising conditions. The cruising speed is approximately the same as for
Trondheimsfjord I
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Figure 2.1: Shape of the vessel used for simulation: Projections into the yz- and xz-plane, respec-
tively
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Table 2.1: Dimensions of the model

Length 24.0 m
Width 8.0 m
Height 6.0 m
Mass 60 · 103 kg
Center of gravity:

xg 0 m
yg 0 m
zg �3.33 m

Moments of inertia:
Ix 1.036 · 106 kg ·m2

Iy 3.570 · 106 kg ·m2

Iz 3.270 · 106 kg ·m2

Ixy , Ixz , Iyz 0 kg ·m2

x position front foils 9.0 m
x position aft foils �9.0 m
z position of all foils 4.0 m
Dimensions of each foil:

Chord length (c) 1.0 m
Span (b) 2.8 m

Dimensions of each rudder:
Chord length (cr) 0.25m
Span (br) 1.12m

2.1 Dynamics

The goal of this section is to find the equations of motion describing the dynamics of the
craft. According to Fossen (2011), the dynamics can be divided into two parts: kinematics,
which describes the geometrical aspects of motion, and kinetics, which relates the motions
of a body to the forces acting on it.

2.1.1 Kinematics:

For the hydrofoil craft, the kinematics relates the body-frame velocities of the craft to the
North-East-Down (NED) coordinate system, {n} = (xn, yn, zn). The NED frame is a
local Cartesian coordinate system with origin on a desired point of the Earth surface, and
where the x-axis point toward North, the y-axis point toward East and the z-axis point
downward normal to the Earth’s surface (Fossen, 2011).
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Table 2.2: Constants

Gravity acceleration: g 9.81m/s2

Water density (salt water): ⇢ 1025 kg/m3

Cruising speed: U0 17 m/s
Operating elevation: h0 2.5 m

North

Down

East

p
b/n

n
= [p , p , p ]

n e d

T

co

z

y x

Figure 2.2: NED versus body-fixed coordinate system

Figure 2.2 shows the relation between the NED frame and the body frame for the hydrofoil
craft. The position of the Body-Frame Origin (CO) is given by pn, pe and pd denoting the
North, East and Down coordinates, respectively. Following Fossen’s convention, these
coordinates can be combined into one vector:

p

n
b/n :=

2

4
pn
pe
pd

3

5 2 R3 (2.1)

The orientation of the body frame relative to the NED frame will in this paper be described
with the Euler angles �, ✓ and  , which also will be denoted as roll, pitch, and yaw,
respectively. The Euler angles are represented by the following vector:

⇥nb :=

2

4
�
✓
 

3

5 2 R3 (2.2)
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Combining p

n
b/n and ⇥nb into one vector representing all the 6 DOF:

⌘ :=


p

n
b/n

⇥nb

�
2 R6 (2.3)

The velocities of the craft are described in body frame. There are three linear velocities
u, v and w along the body-frame x-, y- and -axis, respectively. These three velocities are
combined into the vector

vb
b/n :=

2

4
u
v
w

3

5 2 R3. (2.4)

There are also three angular velocities p, q and r about the x, y and z-axis, respectively.
These three velocities are combined into the vector

!b
b/n :=

2

4
p
q
r

3

5 2 R3. (2.5)

Combining all velocities into one vector ⌫ for all the 6 DOF:

⌫ :=

"
vb
b/n

!b
b/n

#
=

2

6666664

u
v
w
p
q
r

3

7777775
2 R6 (2.6)

According to Fossen (2011) is the kinematic relation between the body frame and the NED
frame given by

˙⌘ = J⇥(⌘)⌫, (2.7)
where J⇥ is the transformation matrix, build up of the rotation matrix R

n
b (⇥nb) and the

angular transformation matrix T⇥(⇥nb), such that

ṗ

n
b/n
˙

⇥nb

�
=


R

n
b (⇥nb) 03⇥3

03⇥3 T⇥(⇥nb)

� "
vb
b/n

!b
b/n

#
. (2.8)

Fossen (2011) provides the following definitions of Rn
b (⇥nb) and T⇥(⇥nb):

R

n
b (⇥nb) =

2

4
c c✓ �s c�+ c s✓s� s s�+ c c�s✓
s c✓ c c�+ s s✓s� �c s�+ s s✓c�
�s✓ c✓s� c✓c�

3

5 (2.9)

T⇥(⇥nb) =

2

4
1 s�t✓ c�t✓
0 c� �s�
0 s�/c✓ c�/c✓

3

5 (2.10)

Here, using the abbreviations s · = sin(·), c · = cos(·) and t · = tan(·). The definitions
of R

n
b (⇥nb) and T⇥(⇥nb), shows that J⇥ depends on the Euler angles. Hence, the

kinematic equation for the system is nonlinear.
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2.1.2 Kinetics:

According to Fossen (2011), the rigid body kinetics of the craft can be expressed in the
vectorial setting

MRB⌫̇ +CRB(⌫)⌫ = ⌧RB , (2.11)

where MRB is the rigid-body mass matrix, CRB(⌫) is the rigid-body Coriolis and cen-
tripetal matrix, due to the rotation of the body frame about the inertial frame, and ⌧RB is
a vector of external forces and moments acting on the body, expressed in body frame.

The rigid-body mass matrix is according to Fossen (2011) defined by

MRB =


mI3⇥3 �mS(r

b
g)

mS(r

b
g) Ib

�
, (2.12)

where m is the body mass, Ib 2 R3⇥3 is the inertia matrix about CO, rbg = [xg, yg, zg]
>

is the distance vector from CO to CG, and S(r

b
g) is a skew-symmetric matrix defined by

S(�) =

2

4
0 ��3 �2
�3 0 ��1
��2 �1 0

3

5 , � =

2

4
�1
�2
�3

3

5 . (2.13)

There exists several representations of the Coriolis and centripetal matrix CRB(⌫), which
all gives the same vector CRB(⌫)⌫ (Fossen, 2011). We are here using the representation
that is independent of the linear velocities,

CRB(⌫) =


mS(⌫2) �mS(⌫2)S(r

b
g)

mS(r

b
g)S(⌫2) �S(Ib⌫2)

�
, (2.14)

where ⌫2 = !n
b/n = [p, q, r]>.

The external forces are given by the sum

⌧RB = �g(⌘) + ⌧w + ⌧ c, (2.15)

where �g(⌘) is the body-frame force vector only due to gravity, ⌧ c contains the actua-
tor forces, and ⌧w contains the reminding forces due to environmental disturbances. The
buoyancy, as well as the added mass, from foils and other submerged equipment is ne-
glected.

The gravity force vector g(⌘), derived from the definition in Fossen (2011) by setting
buoyancy equal to zero, is

g(⌘) = �

R

n
b (⇥nb)

�1
f

n
g

r

b
gR

n
b (⇥nb)

�1
f

n
g

�
, (2.16)

where

f

n
g =

2

4
0

0

m · g

3

5 (2.17)

20



is the gravity force vector expressed in NED frame, and

r

b
g = [xg, yg, zg]

> (2.18)

is the vector from CO to Center of Gravity (CG).

For a hydrofoil craft in cruising speed, the resistance from the water is small compared
to a displacement vessel, and it is mainly due to the pressure and viscous drag on the
lifting foils, which will be treated as a part of the actuator forces described in Section 2.2.
Resistance from foil legs, both in surge and sway, is neglected. However, the air resistance
and lateral wind disturbances have a significant impact on the craft’s behaviour, due to
relatively high cruising speed and a large side area, respectively. Hence, we have made it
possible to include these forces as an external force vector ⌧w = ⌧wind in the body frame.
However, as mentioned in the introduction, we will in this study neglect such forces, and
will for now set ⌧w = 0. The wave-induced disturbance forces are due to change in inflow
angle and speed relative to the lifting foils and rudders, and will therefor be considered as
a part of the actuator forces ⌧ c.

Finally, the total dynamics of the simulation model can be written:

˙⌘ = J⇥(⌘)⌫ (2.19)

MRB⌫̇ +CRB(⌫)⌫ + g(⌘) = ⌧ c (2.20)

2.2 Lifting Foils

Figure 2.3 shows the profile of a lifting foil. xf and zf denotes the x and z-axis of the
local foil coordinate frame {f} = (xf , yf , zf ), and are parallel to the body-frame x-and
z-axis, respectively. The y-axis, yf , is not drawn in Figure 2.3, but according to the right-
hand rule it is supposed to go inward and is parallel to the body-frame y-axis. V1 is the
speed of the inflow due to the relative motion between the foil and the water. ↵1 is the
angle between the inflow direction and the x-axis of the foil, and ↵ is the geometrical
angle between the chord line of the foil and the xf axis. The hinge axis of each foil is
aligned with its yf axis, and positive direction of the geometric angle ↵ is determined by
the right-hand rule for rotation about the yf axis. The net force vector acting on the foil,
due to pressure distribution and viscosity, is divided into a lifting component F f

L , which is
perpendicular to the inflow direction, and one drag component F f

D in the same direction as
the inflow. Side-way drag forces, i.e. in the y direction of the foil, as well as the vessel’s
body frame, are in this study neglected. The foil can be rotated about its origin, which is
assumed located such that the moment acting on the foil due to the pressure distribution
becomes small compared to the inertia of the craft and can be neglected.

The angle ↵i is called ideal angle of attack. At this angle all of the lift force is due to the
curvature of the foil, and it is usually giving the lowest risk of cavitation (Steen, 2011). We
assume the lifting foils are designed such that, when the craft is in a trim condition with
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Figure 2.3: Forces acting on a lifting foil

a surge speed equal to the cruising speed U0, and all other velocity components and Euler
angles equal to zero, then ↵ = ↵i for all foils gives a total lift force equal to the weight of
the craft. Since the simulation will be done around the cruising speed, ↵⇤

= ↵i|↵1=0 is
set to be the default angle of the foils. Deviation from ↵⇤ is denoted by �, which will be
the input from the controller. The total geometrical angle relative to the body-frame x-axis
becomes

↵ = ↵⇤
+ �. (2.21)

The relative angle between the chord line and the inflow direction is denoted by ↵r:

↵r = ↵+ ↵1 = ↵⇤
+ � + ↵1 (2.22)

The inflow speed V1 and direction ↵1 depends on the local velocity of the foil, relative
to the water. This relative velocity will here be denoted by

vf
rel :=

2

4
uf
rel

vfrel
wf

rel

3

5 , (2.23)

where uf
rel, v

f
rel and wf

rel are the relative velocity components along the xf , yf and zf
axes, respectively. Projection into the foil’s xz plane gives:

V1 =

q
(uf

rel)
2
+ (wf

rel)
2

(2.24)

↵1 = tan

�1
�wf

rel

uf
rel

�
(2.25)

The relative-velocity vector vf
rel is defined as the difference between the local velocity

of the foil relative to the NED frame, vf
f/n, and the local velocity of the water particles

22



relative to the NED frame, vf
w/n, both expressed in the foil’s reference frame:

vf
rel := vf

f/n � vf
w/n (2.26)

For each foil, vf
f/n depends on the craft’s velocity ⌫ and the position of the foil in the body

frame. Hence, the different foils might experience different velocities due to rotational
motions of the craft. Figure 2.4 shows the configuration of the four foils seen from above.
The origin of each foil is located by a distance vector rbf from CO. Due to motions of the
craft, the local velocity vf

f/n becomes

vf
f/n = ⌫1 + ⌫2 ⇥ r

b
f = ⌫1 � S(r

b
f )⌫2, (2.27)

where ⌫1 = vb
b/n = [u, v, w]> and ⌫2 is as previously defined. A more compact expres-

sion is
vf
f/n =

⇥
I3⇥3 �S(r

b
f )
⇤
⌫. (2.28)

The local velocity of the water particles, vf
w/n, will in this study only be related to waves.

However, in a real situation it may also be affected by currents. In Section 2.5 a wave
model and its relation to vf

w/n for each foil will be derived.

Applying aerodynamic theory from Beard and McLain (2011), the lift and drag force can
be expressed i terms of non-dimensional coefficients:

FL =

1

2

⇢V 2
1S

"
CL(↵r) + CLq

c

2V1
qff/n

#
(2.29)

FD =

1

2

⇢V 2
1S

"
CD(↵r) + CDq

c

2V1
qff/n

#
(2.30)

Here, S = c · b, where c and b is chord length and span of the foil, respectively. The
terms on the right-hand side in the brackets depends on the rotation of the foil relative to
the NED frame. To simplify, CLq

and CDq
is in this study assumed to be zero. Equation

(2.29) an (2.30) becomes

FL =

1

2

⇢V 2
1SCL(↵r) (2.31)

FD =

1

2

⇢V 2
1SCD(↵r). (2.32)

The coefficient CL(↵r) is nonlinear. According to Beard and McLain (2011), it can be
composed out of a linear coefficient

CLlin
(↵r) = CLlin,0 + CL↵↵r (2.33)

that dominates for small angles of attack, and a nonlinear coefficient

CLflat plate
= 2sign(↵r) sin

2
(↵r) cos(↵r), (2.34)
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Figure 2.4: Configuration of lifting foils
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which equals the corresponding coefficient of a flat plate and is dominating at large angles
of attack, when stall conditions occur. The two coefficients are combined together with
the equation

CL(↵r) = (1� �(↵r))CLlin
+ �(↵r)CLflat plate

, (2.35)

where

�(↵r) =
1 + e�M(↵r�↵0)

+ eM(↵r+↵0)

(1 + e�M(↵r�↵0)
)(1 + eM(↵r+↵0)

)

. (2.36)

This is a blending function with cutoff at ±↵0 and transition rate M , with the result that

CL(↵r) ⇡ CLlin
(↵r), 8 � ↵0 < ↵r < ↵0. (2.37)

↵0 = 20

� and M = 2 has been used in the model. Inserting (2.22) into (2.33) gives

CLlin
(↵r) = CLlin,0 + CL↵

(↵⇤
+ � + ↵1)

= (CLlin,0 + CL↵
↵⇤

) + CL↵
(� + ↵1)

, (2.38)

where the first term is constant. Then we define

CL0 := CLlin,0 + CL↵
↵⇤ (2.39)

and obtain
CLlin

(�,↵1) = CL0 + CL↵(� + ↵1). (2.40)

We assume the foil is designed such that

CL0 = CL(↵
⇤
) =

1
4mg

1
2⇢V

2
1S

=

mg

2⇢V 2
1S

(2.41)

in order to give lift equal to a quarter of the weight of the craft when ↵ = ↵⇤. An approx-
imation for CL↵

provided by Beard and McLain (2011) is

CL↵
=

⇡AR

1 +

p
1 + (AR/2)2

, (2.42)

where AR = b/c is the aspect ratio of the foil.

The drag coefficient CD(↵r) in (2.32) is also nonlinear. Beard and McLain (2011) is
approximating this by the formula

CD(↵r) = CDp +

CLlin
(�,↵1)

2

⇡eAR
, (2.43)

where CDp
is a constant due to plastic drag, and e is Oswald efficiency factor, with a

range between 0.8 and 1.0 (Beard and McLain, 2011). In this simulation model, we have
simplified by assuming CDp = 0, and e = 1 has been used.

The foil forces has to be expressed in the body frame of the craft. Because the lift and drag
force for each foil is expressed normal and parallel to the local inflow, these forces first
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have to be expressed in the local coordinate system of each foil. A rotation matrix for the
cross section of the foil can be used:

f

f
=

2

4
ff
x

ff
y

ff
z

3

5
=

2

4
� cos(↵1) sin(↵1)

0 0

� sin(↵1) � cos(↵1)

3

5

FD

FL

�
(2.44)

In body frame each foil is giving a force f b = f

f and a moment mb
= r

b
f ⇥f

f
= S(r

b
f )f

f .
Expressed as one vector which can be applied to the dynamics model:

�⌧ c,foil =


f

f

S(r

b
f )f

f

�
(2.45)

The physical limitation for deviation in foil angles is assumed to be ±20

�.

2.3 Rudders

The craft is equipped with four flaps giving lateral forces, one behind each foil leg. Figure
2.5 shows the configuration of these flaps seen from above. The deflection of a flap is
denoted by �r, and positive direction is determined by applying the right-hand rule about
the body-frame z-axis. This corresponds to positive deflection in clockwise direction,
when seen from above. Since the hydrodynamics of the foil legs is not implemented to the
model, the flaps will here be modelled as vertical standing foils with a profile symmetric
about the chord line. Hence, each of these foils will behave almost like a rudder, and will
referred to as rudders to distinguish from the lifting foils.

Figure 2.6 shows the profile of a rudder. xr and yr denotes the x- and y-axis of the local
rudder coordinate frame {r} = (xr, yr, zr), and are parallel to the body-frame x- and y-
axis, respectively. V r

1 is the velocity of the inflow, due to the relative motion between the
rudder and the water. ↵r

1 is the angle between the inflow direction and the x-axis of the
rudder. The net force vector acting on the rudder is divided into a lifting component F r

L,
which is perpendicular to the inflow direction, and one drag component F r

D in the same
direction as the inflow. Vertical drag forces, i.e. in the z direction of the craft’s body frame,
are in this study neglected.

Due to the symmetric profile, there is no lift force due to curvature, and no ideal angle of
attack. Figure 2.6 gives that the angle relative to the inflow becomes:

↵r
r = �r � ↵r

1 (2.46)

V r
1 and ↵r

1 are calculated in the same way as for the lifting foils, but with the local relative
velocities ur

rel along the xr axis and vrrel along the yr axis:

V r
1 =

q
(ur

rel)
2
+ (vrrel)

2 (2.47)
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Figure 2.5: Configuration of rudders, seen from above
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Figure 2.6: Profile of a rudder, seen from above

↵r
1 = tan

�1
� vrrel
ur
rel

�
(2.48)

Similarly as for the lifting foils, the relative velocity vr
rel = [ur

rel, v
r
rel, w

r
rel]

> is defined
by

vr
rel := vr

r/n � vr
w/n, (2.49)

where the local velocity vector vr
r/n = [ur, vr, wr

]

> depends on the rudder position r

b
r

relative to the body-frame CO:

vr
r/n =

⇥
I3⇥3 �S(r

b
r)
⇤
⌫ (2.50)

The velocity of the water particles, vr
w/n, will depend on the wave model being derived in

Section 2.5.

Assuming small rudder deflections, and considering the fact that loss of lift not is as critical
as for the lifting foils, the linear model of the lift coefficient is chosen:

Cr
L(↵

r
r) = Cr

L↵
↵r
r = Cr

L↵
(�r + ↵r

1) (2.51)
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Due to symmetry, there is no lift at ↵r
r = 0, so Cr

L(0) has to be zero.

The plastic drag force at zero deflection angle is assumed such small compared to the drag
forces of the foils that it can be neglected. Hence, a simplification of (2.43) is used to find
the drag coefficient:

Cr
D(↵r

r) =
[Cr

L↵
(�r + ↵r

1)]

2

⇡eAR
(2.52)

The lift and drag forces on each rudder becomes

F r
L =

1

2

⇢SrV 2
1Cr

L(↵
r
r) (2.53)

F r
D =

1

2

⇢SrV 2
1Cr

D(↵r
r), (2.54)

where Sr
= crbr is the 2D area of the rudder, similar as for a lifting foil. cr and br are

cord length and height of the rudder, respectively.

Figure 2.6 gives that the lift and drag force transformed into the rudder frame becomes:

f

r
=

2

4
fr
x

fr
y

fr
z

3

5
=

2

4
� cos(↵r

1) � sin(↵r
1)

� sin(↵r
1) cos(↵r

1)

0 0

3

5

F r
D

F r
L

�
(2.55)

Similarly as for the lifting foils, this force vector is transformed into body frame with the
formula

�⌧ c,rudder =


f

r

S(r

b
r)f

r

�
. (2.56)

The physical limitation for rudder angles is assumed to be ±20

�.

The total actuator forces becomes:

⌧ c =

4X

i=1

�⌧ i
c,foil +

4X

j=1

�⌧ j
c,rudder (2.57)

2.4 Allocation of foil angles

The inputs from the controller is given in quantities associated with motions in the different
DOF. The craft is supposed to be controlled in heave, roll, pitch and yaw. The following
control inputs will be used:

• �a : Giving positive moment in roll

• �e : Giving positive moment in pitch
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• �z : Giving upward force in heave

• �r : Giving positive moment in yaw

The subscripts a, e and r are adopted from the aircraft terminology used by Beard and
McLain (2011), and are abbreviations for aileron, elevator and rudder, respectively. Fol-
lowing the convention used by Beard and McLain (2011), these inputs can be thought of
as a composite deflection, where the magnitude equals the average of the net angular de-
viation contributing to force or moment in the respective DOF, on each foil or rudder. The
definitions are:

�a :=

1

4

[�FL � �FR + �AL � �AR] (2.58)

�e :=
1

4

[�FL + �FR � �AL � �AR] (2.59)

�z :=

1

4

[�FL + �FR + �AL + �AR] (2.60)

�r :=

1

4

[�rFL + �rFR � �rAL � �rAR] (2.61)

The capital letter subscripts denotes the position of the respective foil or rudder, each
defined in Table 2.3.

Table 2.3: Controlled deviations in foil and rudder angles

�FL Front left foil
�FR Front right foil
�AL Aft left foil
�AR Aft right foil
�rFL Front left rudder
�rFR Front right rudder
�rAL Aft left rudder
�rAR Aft right rudder

Applying the constraint that change in one control input shall only result in a net force or
moment (due to lift forces) in the respective DOF, and assuming equal inflow on each foil
and rudder, a solution of the equation set (2.58) - (2.61) gives

�FL = �a + �e + �z (2.62)

�FR = ��a + �e + �z (2.63)

�AL = �a � �e + �z (2.64)

�AR = ��a � �e + �z (2.65)
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and
�rFL = �rFR = �r (2.66)

�rAL = �rAR = ��r. (2.67)

Equation (2.62) - (2.62) assumes the foil and rudder angles such small that the linear lift
coefficients are dominating. Hence, the superposition principle holds. Written in matrix
form:

2

66666666664

�FL

�FR

�AL

�AR

�rFL

�rFR

�rAL

�rAR

3

77777777775

=

2

66666666664

1 1 1 0

�1 1 1 0

1 �1 1 0

�1 �1 1 0

0 0 0 1

0 0 0 1

0 0 0 �1

0 0 0 �1

3

77777777775

2

664

�a
�e
�z
�r

3

775 (2.68)

Actuator dynamics of both foils and rudders are implemented to the model as first order a
low-pass filters with time constant T� = 1/20 s. The transfer function from a commanded
angle deviation �c to the actual deviation � becomes

�

�c
(s) =

20

s+ 20

. (2.69)

2.5 Wave Model

A dynamic model of waves is implemented to the simulation model in order to perform
simulations of the craft when affected by waves. The interaction between the waves and
the craft will in our simulations solely be related to the wave-induced local velocity of
the water surrounding the lifting foils and rudders. Wave-induced forces due to local
pressure differences in undisturbed water (Froude-Kriloff forces), as well as added-mass
effects due to local acceleration of the water, are neglected. We also assume that the waves
are unaffected by the foils, such that the front and aft foils are experiencing the same
unaffected waves, but in different positions. Struts and other submerged appendices are
assumed unaffected. In the end of this section we will have a model for the local water
velocity around the lifting foils and the rudders.

2.5.1 Linear Wave Model

In order to describe the waves with a mathematical model, we do the following assump-
tions:

31



• Infinite water depth

• Free water surface of infinite horizontal extent

• Irrotational water particles

• The water is incompressible and inviscid

• Waves are such low compared to their wave length that a first-order approximation
is valid

Remark that these assumptions are only applied to the wave model and not necessarily to
other parts of the simulation model. E. g. the foils would not achieve any lifting force
without some viscosity in the fluid (Faltinsen, 2005).

The craft will be simulated when sailing in long-crested regular waves, long-crested ir-
regular waves and short-crested irregular waves. Mathematical models of these waves
will be provided in the rest of this subsection. For the irregular waves, the distribution of
frequencies are determined by a wave spectrum described in Section 2.5.2.

Long-crested regular waves

Figure 2.7 shows a regular long-crested wave in an xz coordinate frame. It is propagating
in positive x direction with a mean free-surface at z = 0. Let ⇣ denote the wave profile, i.e.
the elevation of the water surface compared to completely calm water, and let � denote the
velocity potential of the water particles in the wave. With the assumptions above, Faltinsen
(1990) provides the following expressions to describe ⇣ and �:

⇣(x, t) = ⇣A cos(kx� !t) (2.70)

�(x, z, t) =
g⇣A
!

ekz sin(kx� !t) (2.71)

Here, ⇣A is the wave amplitude, k is the wave number, ! is the circular frequency, g is the
gravity acceleration and t is the time. Due to our assumption of infinite water depth, the
wave number is given by the dipersion relation

k =

!2

g
. (2.72)

The velocity components of the water particles are derived by taking the partial derivatives
of � with respect to x and z:

u(x, z, t) =
@�

@x
=

kg⇣A
!

ekz cos(kx� !t) (2.73)

w(x, z, t) =
@�

@z
=

kg⇣A
!

ekz sin(kx� !t) (2.74)
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Figure 2.7: Regular Wave

Long-crested irregular waves

Long-crested irregular waves cannot be described by a single sinusoidal term since the
water surface does not follow a regular sinus curve. For linear waves, the superposition
principle can be used to describe irregular waves as a finite or infinite sum of regular
waves with different amplitude, frequency and phase (Faltinsen, 1990). Considering a
long-crested irregular sea that propagates along the positive x-axis and can be described
as the sum of N regular wave components. The wave elevation and velocity potential can
then be written as

⇣(x, t) =

NX

n=1

⇣An
cos(knx� !nt+ "n) (2.75)

�(x, z, t) =

NX

n=1

g⇣An

!n
eknz

sin(knx� !nt+ "n), (2.76)

where ⇣An
, kn, !n and "n respectively denotes the wave amplitude, wave number, circular

frequency and phase angle of wave component number n. It follows from (2.76) that

u(x, z, t) =

NX

n=1

kng⇣An

!n
eknz

cos(knx� !nt+ "n) (2.77)

w(x, z, t) =

NX

n=1

kng⇣An

!n
eknz

sin(knx� !nt+ "n). (2.78)

Short-crested irregular waves

Short-crested sea consist of two or more wave components propagating in different di-
rections. Let the xy-frame represent the sea surface, and z the vertical direction. For an
arbitrarily wave component propagating in direction ✓ relative to the x-axis (positive angle
determined by the right-hand rule), the surface elevation and velocity potential respectively
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becomes (Faltinsen, 1990)

⇣(x, y, t) = ⇣A cos(kx cos ✓ + ky sin ✓ � !t+ ") (2.79)

�(x, y, z, t) =
g⇣A
!

ekz sin(kx cos ✓ + ky sin ✓ � !t+ "). (2.80)

Summarizing regular wave components with N frequencies and K directions, we get

⇣(x, y, t) =

NX

n=1

KX

k=1

⇣Ank
cos(knx cos ✓k + kny sin ✓k � !nt+ "nk) (2.81)

�(x, y, z, t) =

NX

n=1

KX

k=1

g⇣Ank

!n
eknz

sin(knx cos ✓k + kny sin ✓k � !nt+ "nk). (2.82)

With partial derivation of � with respect to x, y and z, we respectively obtain the velocity
components in the x-, y- and z-direction:

u(x, y, z, t) =

NX

n=1

KX

k=1

kng⇣An

!n
eknz

cos(knx cos ✓k + kny sin ✓k � !nt+ "nk) cos ✓k

(2.83)

v(x, y, z, t) =

NX

n=1

KX

k=1

kng⇣An

!n
eknz

cos(knx cos ✓k + kny sin ✓k � !nt+ "nk) sin ✓k

(2.84)

w(x, y, z, t) =

NX

n=1

KX

k=1

kng⇣An

!n
eknz

sin(knx cos ✓k + kny sin ✓k � !nt+ "nk) (2.85)

2.5.2 Wave Spectrum

Natural waves generated by wind are in almost every situations irregular, with the energy
distributed over a range of frequencies. This energy distribution is referred to as the wave
spectrum of the sea and can be described by a mathematical function S(!) depending on
location and other parameters as e.g. the wind speed. S(!) is, by definition, related to the
total wave energy E in one unit area by integration over all frequencies (Myrhaug, 2007):

E

⇢g
=

1Z

0

S(!)d! (2.86)

Here ⇢ is the water density, and g is the gravity acceleration.

With the assumption of free surface and infinite water depth, the original standardized
wave spectrum developed by Pierson and Moskowitz (1963) will be satisfactory for mod-
elling the irregular waves in our simulations. This spectrum, also known as the PM spec-
trum, is based on collected data from fully developed wind-generated seas in the North
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Atlantic Ocean. The PM spectrum is given by

S(!) = A!�5
exp(�B!�4

), (2.87)

where
A = 8.1⇥ 10

�3g2 = constant (2.88)

and

B = 0.74

✓
g

U19.4

◆4

=

3.11

H2
s

. (2.89)

Here, g is the gravity acceleration, U19.4 is the wind speed at 19.4 m above the sea surface,
and Hs is the significant wave height. Figure 2.8 shows the plot of S(!) for wind speed
U19.4 = 10 m/s.
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Figure 2.8: PM Frequency spectrum for wind speed U19.4 = 10 m/s. Y-axis shows absolute values
for S(!)

For short-crested sea, the energy is also distributed over waves propagating in different
directions. This can be modelled by a two-dimensional wave spectrum called directional
spectrum:

S(!, ✓) = S(!)f(✓) (2.90)

Here f(✓) is the spreading function. According Myrhaug (2007), a standardized spreading
function recommended by International Towing Tank Conference (ITTC) is

f(✓) =

(
2
⇡ cos

2
(✓ � ✓0), �⇡

2  (✓ � ✓0)  ⇡
2

0; elsewhere , (2.91)
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where ✓0 is the main wave-propagation direction. With this spreading function, and the
PM spectrum S(!), the directional spectrum S(!, ✓) depends on two parameters which
can be adjusted specifically for each simulation: U19.4 (or Hs) and ✓0. The total wave
energy for short crested waves is found by integrating S(!, ✓) with respect to both ! and
✓:

E

⇢g
=

2⇡Z

0

1Z

0

S(!)d!d✓ (2.92)

The wave and directional spectra can be used to find ⇣An and ⇣Ank
for the components

of irregular long-crested and short-crested waves, respectively. According to Myrhaug
(2007), the wave energy per unit area of a linear wave component is directly related to the
square of its amplitude ⇣An

:
En

⇢g
=

1

2

⇣2An
(2.93)

If the frequency spectrum S(!) is divided into N small intervals of �! (see Figure 2.9),
and !n is the average frequency inside the n’th interval, the energy of all wave components
inside this interval becomes approximately

En

⇢g
= S(!n)�!. (2.94)

For short-crested waves, the spreading function can be divided into K small sectors of �✓.
This means that for each frequency interval �!, the energy En

⇢g can further be divided into
K sectors of �✓, with energy

Enk

⇢g
= S(!n, ✓k)�!�✓. (2.95)

From (2.93) and (2.94) it follows that the amplitude of each component in a frequency
spectrum is given by

⇣An =

p
2S(!n)�!. (2.96)

For a directional spectrum, it follows from (2.93) and (2.95) that the amplitude of each
component is given by

⇣Ank
=

p
2S(!n, ✓k)�!�✓. (2.97)

In order to make a realistic simulation of the waves, Faltinsen (1990) recommends using a
large number of wave components, minimum 1000. However, this will increase the com-
putational demand and, depending on the computer running the simulation, significantly
increase the simulation time. In our case, the goal is to study how the RCS being designed
in Chapter 4 is able to penalize the disturbances caused by orbital motions of the water
particles around each foil, when sailing in irregular waves. We do the assumption that the
controller’s behaviour is similar when the foils are exposed to disturbances due to a smaller
number of components. Hence, we choose to use maximum 100 wave component in the
simulations. Anyway, by only considering wave loads from orbital motions of particles,
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Figure 2.9: Frequency spectrum divided into rectangular components

and with all the other assumptions applied to the wave model and the hydrodynamics of
the foils, we cannot assume our simulation model recreating realistic magnitudes for the
wave loads. However, we obtain different, irregular disturbance forces on each foil.

2.5.3 Velocity of Water Particles in a Specific Location in the NED
frame

In order to implement the wave model to the rest of the simulation model, we let the wave
components be described by a coordinates in the NED frame. We let the x-, y- and z-axis
equal the North, East and Down axis, respectively, and the rotation ✓ becomes positive
in clockwise direction when seen from above. For a water particle in position P

n
w/n =

[pn, pe, pd]
> in the NED frame, pn and pe can directly replace x and y, respectively, in

the equations for ⇣(x, y, t) and �(x, y, z, t). However, since the direction of the gravity
acceleration always is pointing downward, z has to be replaced with �pd. According to
the rules of differentiation, this will change the sign of w(x, y, t), which now is defined
as positive downward. If we now define un

w/n, vnw/n and wn
w/n as the water particle’s

velocity components along the North, East and Down axis, respectively, substitutions
into Equation (2.83) to (2.85) gives

un
w/n(pn, pe, pd, t) =

NX

n=1

KX

k=1

kng⇣Ank

!n
e�knpd

cos[W (pn, pe, t)] cos ✓k, (2.98)
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vnw/n(pn, pe, pd, t) =

NX

n=1

KX

k=1

kng⇣Ank

!n
e�knpd

cos[W (pn, pe, t)] sin ✓k (2.99)

and

wn
w/n(pn, pe, pd, t) = �

NX

n=1

KX

k=1

kng⇣Ank

!n
e�knpd

sin[W (pn, pe, t)], (2.100)

where
W (pn, pe, t) = knpn cos ✓k + knpe sin ✓k � !nt+ "nk. (2.101)

Since we want to find the velocity of the water particles surrounding each foil and rudder,
we need to find the instant position of each foil and rudder relative to the NED frame. For
each time instant, the origin of the craft has a position P

n
b/n and orientation ⇥nb relative

to the NED frame. For each foil, located by a vector rbf in the crafts’ body frame, the
position relative to the NED frame becomes

P

n
f/n = P

n
b/n +R

n
b (⇥nb)r

b
f , (2.102)

where R

n
b (⇥nb) is the rotation matrix defined in (2.9). Similarly for each rudder located

in the crafts’ body frame by a vector rbr:

P

n
r/n = P

n
b/n +R

n
b (⇥nb)r

b
r (2.103)

The components pn, pe and pd of Pn
f/n or Pn

r/n can be inserted into Equation ( to ( in
order to find the local velocity of the water particles expressed in the NED frame. We
denote this velocity by the vector

vn
w/n =

2

64
un
w/n

vnw/n

wn
w/n

3

75 . (2.104)

Finally, in order to find the velocity of the water particles expressed in the local frame of
each foil and rudder, a rotation matrix between the NED frame and these coordinate frames
has to be applied. Since all these coordinate frames are parallel with the body frame, the
transpose of the rotation matrix R

n
b (⇥nb) can be used:

vf
w/n = R

n
b (⇥nb)

>vn
w/n (2.105)

vr
w/n = R

n
b (⇥nb)

>vn
w/n (2.106)

2.6 Sensors and Measurement Noise

We let the model be equipped with sensors measuring the states that are necessary for the
different controllers. In real situations, it is typical to not measure all the states indepen-
dently, but rather measure some of the states and use an observer to estimate the remaining
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states as well as filtering out the sensor noise (Sørensen, 2013). This observer can also
be used to predict the states in the case of temporally loss of measurements. However, in
this study we assume that all the states necessary for the controllers are measured. The
H2 receives signals for position and velocity in heave, roll and pitch, and these six sig-
nals are contaminated with white measurement noise which has a standard deviation of
approximately 1-3% of the expected standard deviation of the state being measured. This
is implemented in Simulink by using the block for Band-Limited White Noise, where the
sampling time is set to 0.01 s, and the variance is set to 1 · 10�8. The noise signal is added
to each measurement signals going to the H2 controller, as illustrated in Figure 2.10.

Figure 2.10: Block diagram from Simulink showing the noise signal being added to the measure-
ment signals before entering the H2 controller. The m-subscript denotes measured state with noise

All the external controllers (i. e. not the H2 controller) are fed with signals not contain-
ing noise. This is because we in this study primarily are focusing on designing the H2

controller and using its built-in observer functionality, while the external controllers, as
mentioned in the introduction, more are used as a tool to handle surge sway and yaw when
simulating in 6 DOF.
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Chapter 3
Linearized Model

Design of both the H2-optimized and the LQR controller assumes that the plant that are
going to be controlled is linear. See Section 1.4.2. But, the simulation model of the craft
is highly nonlinear, and when considering all its 6 DOF given in Equation (2.3), it will not
make sense to linearize about a trim condition where all the sates remain constant. This
because one or more of the states related to the craft’s position or heading in the North-
East plane is changing as the craft is moving along the surface of the water. However,
since the objective of the RCS is to enforce the craft to maintain approximately constant
states in heave, roll and pitch, we only need linearized Equations of Motion (EOM) for
these DOF. Of same reason, the RCS will only use actuators acting in these 3 DOF, which
means only the lifting foils. Later in this chapter we will see that the linearized dynamics
for heave, roll and pitch is independent of the remaining DOF, assuming a constant speed
in surge and negligible motions in sway.

3.1 Rigid Body Dynamics

Recall the equations (2.19) and (2.20), in Section 2.1.2, for the nonlinear rigid-body dy-
namics of the simulation model:

˙⌘ = J⇥(⌘)⌫

MRB⌫̇ +CRB(⌫)⌫ + g(⌘) = ⌧ c

Considering only heave, roll and pitch, we define the new, reduced position and velocity
vectors ⌘3 and ⌫3, respectively:

⌘3 =

⇥
pd � ✓

⇤> (3.1)
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⌫3 =

⇥
w p r

⇤> (3.2)
We only consider control inputs from the lifting foils. From Section 2.4, we see that these
are �a, �e and �z , controlling roll, pitch and heave, respectively. We define the control-
input vector

� =

⇥
�a �e �z

⇤>
. (3.3)

We choose to linearize about a trim condition (⌘⇤
3, ⌫⇤

3, �⇤) corresponding to the expected
cruise condition, with surge speed U0 and vertical position �h0, as defined in Table 2.2.
In the linearization process, we also assume the speed in sway, v to be zero, and that the
yaw rate r is small. The trim states and input vector are respectively defined as

⌘⇤
3 :=

2

4
�h0

0

0

3

5 , (3.4)

⌫⇤
3 :=

2

4
0

0

0

3

5 (3.5)

and
�⇤ := [0, 0, 0]>. (3.6)

We let ¯⌘3 := ⌘3 � ⌘⇤
3, ¯⌫3 := ⌫3 � ⌫⇤

3 and ¯� := � � �⇤ denote the deviations away from
the trim condition. Expanded:

¯⌘3 =

2

4
z̄
�
✓

3

5 , (3.7)

¯⌫3 =

2

4
w
p
q

3

5
= ⌫3 (3.8)

and
¯� = [�a, �e, �z]

>
= �, (3.9)

where z̄ := pd � (�h0). Since ¯� = � and ¯⌫3 = ⌫3, they will from now only be denoted
as � and ⌫3, respectively.

We define the functions
f1(⌘3,⌫3, �) := ˙⌘̄3 (3.10)

and
f2(⌘3,⌫3, �) := ˙⌫3. (3.11)

The linearizations about the trim condition are defined by

˙⌘̄3 =

@f1(⌘⇤
3,⌫

⇤
3, �

⇤
)

@⌘3

¯⌘3 +
@f1(⌘⇤

3,⌫
⇤
3, �

⇤
)

@⌫3
⌫3 +

@f1(⌘⇤
3,⌫

⇤
3, �

⇤
)

@�
� (3.12)

and

˙⌫3 =

@f2(⌘⇤
3,⌫

⇤
3, �

⇤
)

@⌘3

¯⌘3 +
@f2(⌘⇤

3,⌫
⇤
3, �

⇤
)

@⌫3
⌫3 +

@f2(⌘⇤
3,⌫

⇤
3, �

⇤
)

@�
�. (3.13)
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3.1.1 Linearized Kinematics

The kinematic equations for heave roll and pitch can easily be separated from the similar
equations of the remaining DOF. From (2.8) and (2.9) we extract

ṗd = � sin(✓)u+ cos(✓) sin(�)v + cos(✓) cos(�)w, (3.14)

and from (2.8) and (2.10) we extract

˙� = p+ sin(�) tan(✓)q + cos(�) tan(✓)r (3.15)

˙✓ = cos(�)q � sin(�)r. (3.16)

Linearizing these according to (3.12) gives:

˙z̄ = �U0✓ + w (3.17)

˙� = p (3.18)

˙✓ = q. (3.19)

These can be expressed in vectorial form as

˙⌘̄3 = A⌘3
¯⌘3 + ⌫3, (3.20)

where

A⌘3
=

2

4
0 0 �U0

0 0 0

0 0 0

3

5 . (3.21)

3.1.2 Linearized Kinetics

For the kinetics, (2.20) can be rewritten as

˙⌫ = M

�1
RB

⇣
�CRB(⌫)⌫ � g(⌘) + ⌧ c(⌫, �)

⌘
. (3.22)

Here, it is more difficult to directly extract three uncoupled differential equations for the
desired DOF. This due to the mass matrix MRB , which is not necessarily diagonal. We
see this by expanding the the definition given in (2.12):

MRB =

2

6666664

m 0 0 0 mzg �myg
0 m 0 �mzg 0 mxg

0 0 m myg �mxg 0

0 �mzg myg Ix �Ixy �Ixz
mzg 0 �mxg �Iyx Iy �Iyz
�myg mxg 0 �Izx �Izy Iz

3

7777775
(3.23)
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We have from Table 2.1 that Ixy = Ixz = Iyx = Iyz = Izx = Izy = 0, and that
xg = yg = 0, but zg 6= 0. Hence, we see from the mass matrix in (3.23) that forces
acting in the x- and y-direction, in the body frame CO, will cause angular accelerations in
pitch and roll, respectively. In order to not loose the effect of these coupled dynamics, we
linearize the right-hand side of all the six equations concatenated in (3.22), with respect to
the three DOF heave, roll and pitch. After that, we use a selction matrix

L3 =

2

4
0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

3

5 , (3.24)

satisfying ⌫3 = L3⌫, in order to pick the equations for the desired states. Hence, the
derivative of ⌫3 becomes

˙⌫3 = L3M
�1
RB

⇣
�CRB(⌫)⌫ � g(⌘) + ⌧ c(⌫, �)

⌘
. (3.25)

Since L3M
�1
RB is constant with respect to ⌘3, ⌫3 and �, the linearization of f2, according

to (3.13), becomes

˙⌫3 = L3M
�1
RB

"
� @c(⌫⇤

3)

@⌫3
⌫3� @g(⌘⇤

3)

@⌘3

⌘3+
@⌧ c(⌫⇤

3, �
⇤
)

@⌫3
⌫3+

@⌧ c(⌫⇤
3, �

⇤
)

@�
�

#
. (3.26)

Here, we have defined c(⌫⇤
3) := CRB(⌫⇤

)⌫⇤, where CRB is as defined in (2.14), and
⌫⇤

=

⇥
U0 0 ⌫⇤>

3 0

⇤> is the trim condition for velocity when including all 6 DOF.

According to Fossen (2011), we can express

@

@⌫3

⇣
CRB(⌫

⇤
)⌫⇤

⌘
= MRBLcU0 =: C⇤

RB , (3.27)

where Lc is a selection matrix defined as

Lc =

2

6666664

0 0 0

0 0 0

0 0 �1

0 0 0

0 0 0

0 0 0

3

7777775
. (3.28)

The gravity force vector can be expanded to (Fossen, 2011)

g(⌘3) = mg

2

6666664

sin(✓)
� cos(✓) sin(�)
� cos(✓) cos(�)
�yg cos(✓) cos(�) + zg cos(✓) sin(�)
zg sin(�) + xg cos(✓) cos(�)
�xg cos(✓) sin(�)� yg sin(�)

3

7777775
, (3.29)
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and linearization gives
@

@⌘3

⇣
g(⌘⇤

3)

⌘
⌘3 = G⇤⌘3, (3.30)

where

G⇤
:= g

2

6666664

0 0 m
0 �m 0

0 0 0

0 zgm 0

0 0 zgm
0 �xgm �ygm

3

7777775
. (3.31)

Similary as for C⇤
RB , we can express G⇤ as a function of MRB

G⇤
= MRBLgg, (3.32)

where Lg is a selection matrix defined as

Lg =

2

6666664

0 0 1

0 �1 0

0 0 0

0 0 0

0 0 0

0 0 0

3

7777775
. (3.33)

Now, we can rewrite (3.34) as

˙⌫3 = L3M
�1
RB

"
�C⇤

RB⌫3 �G⇤⌘3 +
@⌧ c(⌫⇤

3, �
⇤
)

@⌫3
⌫3 +

@⌧ c(⌫⇤
3, �

⇤
)

@�
�

#

= �U0L3Lc⌫3 � gL3Lg⌘3 +L3M
�1
RB

"
@⌧ c(⌫⇤

3, �
⇤
)

@⌫3
⌫3 +

@⌧ c(⌫⇤
3, �

⇤
)

@�
�

#
.

(3.34)
Linearization of the last two terms is more extensive and will be handled in the following
subsections.

3.1.3 Linearized Foil Forces due to Motions of the Craft

From Section 2.2 we find that the foils’ lift and drag forces (FL and FD) depends on both
the water’s inflow speed V1 and direction ↵1. Further, (2.44) gives that the transforma-
tion of FL and FD into the local foil frame, and hence also the craft’s body frame, depends
on ↵1. We will now show how the velocity components of ⌫3 affects V1 and ↵1 for an
arbitrarily lifting foil, and how the body-frame forces �⌧ c for that foil can be linearized
with respect to ⌫3. Finally, the linearized terms of all four foils will be summarized in
order to find the total force. When deriving these linear terms, we assume calm water,
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such that V1 and ↵1 only depends on the motions of the craft.

Since each local foil frame is constantly fixed with respect to the CO, we can start by
linearizing the foil forces expressed in the foil frame. Applying (2.44), we find these
forces to be

f

f
=

2

4
ff
x

ff
y

ff
z

3

5
=

2

4
�FD cos(↵1) + FL sin(↵1)

0

�FD sin(↵1)� FL cos(↵1)

3

5 . (3.35)

Partial differentiation with respect to ⌫3 yields:

@ff

@⌫3
=

2
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�@FD

@⌫3
cos(↵1) + FD sin(↵1)

@↵1
@⌫3

+

@FL

@⌫3
sin(↵1) + FL cos(↵1)

@↵1
@⌫3

0

�@FD

@⌫3
sin(↵1)� FD cos(↵1)

@↵1
@⌫3

� @FL

@⌫3
cos(↵1) + FL sin(↵1)

@↵1
@⌫3

3

77775
(3.36)

From (3.36), we see that we have to express ↵1, FL, FD, @↵1
@⌫3

, @FL

@⌫3
and @FD

@⌫3
as functions

of ⌫3, for then applying the trim conditions ⌫⇤
3 and �⇤ in order to find @f(⌫⇤

3 ,�
⇤)

@⌫3
. This

process will be divided into the following steps.

Step 1:

To find @↵1(⌫⇤
3)

@⌫3
and ↵1(⌫⇤

3).

Figure 3.1: Change in inflow velocity due to change in the foil velocity

Figure 3.1 illustrates how the inflow angle ↵1 changes due to velocity perturbations �u
and �w in the foil’s x- and z-direction, respectively. The inflow angle becomes

↵1 = tan

�1
⇣ �w

U0 + �u

⌘
. (3.37)

Assuming �w small compared to U0 + �u, an approximation for ↵1 is

↵1 ⇡ �w

U0 + �u
. (3.38)
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�u and �w can be expressed as functions of the components ⌫3, which are w, p and q. Let
x, y and z denote the body-frame position of the foil, satisfying rbf = [x, y, z]> according
to definition of rf in Section 2.2. From (2.27) or (2.28), we find:

�u = qz (3.39)

�w = w + py � qx (3.40)

Inserted into (3.38):
↵1 ⇡ w + py � qx

U0 + qz
(3.41)

Now, we have an expression for ↵1 which can be used to find its partial derivative with
respect to ⌫3:

@↵1
@⌫3

=

h
@↵1
@w

@↵1
@p

@↵1
@q

i
=

h
1

U0+qz
y

U0+qz
�x(U0+qz)�z(w+py�qx)

(U0+qz)2

i
(3.42)

For the trim condition ⌫3 = ⌫⇤
3, it becomes:

@↵1(⌫⇤
3)

@⌫3
=

⇥ 1
U0

y
U0

� x
U0

⇤
(3.43)

It is also clear that for the trim condition, the inflow angle becomes zero:

↵1(⌫⇤
3) = 0 (3.44)

Step 2:

To find @FL(⌫⇤
3 ,�

⇤)
@⌫3

and FL(⌫⇤
3, �

⇤
).

From (2.31) in Section 2.2, we have

FL =

1

2

⇢V 2
1SCL(↵r).

Differentiation using the product rule gives

@FL

@⌫3
=

1

2

⇢S

 
@(V 2

1)

@⌫3
CL(↵r) + V 2

1
@CL(↵r)

@⌫3

!
. (3.45)

According to Figure 3.1, we can express V 2
1 as a function of �u and �w:

V 2
1 = (U0 + �u)2 + (�w)2 = (U0 + qz)2 + (w + py + qx)2 (3.46)

This gives

@(V 2
1)

@⌫3
=

h
@(V 2

1)
@w

@(V 2
1)

@p
@(V 2

1)
@q

i

=

⇥
2(w + py � qx) 2y(w + py � qx) 2z(U0 + qz)� 2x(w + py � qx)

⇤
,

(3.47)
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such that
@(V 2

1(⌫⇤
3))

@⌫3
=

⇥
0 0 2zU0

⇤
. (3.48)

It also follows from (3.46) that
V 2
1(⌫⇤

3) = U2
0 . (3.49)

We assume the total relative angle of attack to be such small that the linear term of the lift
coefficient CL(↵r) is dominating. Hence,

CL(↵r) = CLlin
(�,↵1) = CL0 + CL↵

· (� + ↵1), (3.50)

where CL0 and CL↵ are as defined in (2.41) and (2.42), respectively. Partial differentiation
with respect to ⌫3 gives

@CL(↵r)

@⌫3
=

@CL(↵r)

@↵1

@↵1
@⌫3

= CL↵

h
1

U0+qz
y

U0+qz
�x(U0+qz)�z(w+py�qx)

(U0+qz)2

i
,

(3.51)

such that
@CL(⌫⇤

3)

@⌫3
= CL↵

1

U0

⇥
1 y �x

⇤
. (3.52)

It also follows from (3.50) that

CL(⌫
⇤
3, �

⇤
) = CL0 . (3.53)

Now, we have linearized all four expressions inside the parentheses in (3.63), about (⌫⇤
3, �

⇤
).

When put together,

@FL(⌫⇤
3)

@⌫3
=

1

2

⇢SU0

⇥
CL↵

yCL↵
2zCL0 � xCL↵

⇤
. (3.54)

In order to find FL(⌫⇤
3, �

⇤
), we combine (2.31), (3.49) and (3.53):

FL(⌫
⇤
3, �

⇤
) =

1

2

⇢U2
0SCL0 (3.55)

Step 3:

To find @FD(⌫⇤
3 ,�

⇤)
@⌫3

and FD(⌫⇤
3, �).

From (2.32) in Section 2.2, we have

FD =

1

2

⇢V 2
1SCD(↵r).
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Differentiation using the product rule gives

@FL

@⌫3
=

1

2

⇢S

 
@(V 2

1)

@⌫3
CD(↵r) + V 2

1
@CD(↵r)

@⌫3

!
. (3.56)

From (2.43) we have that

CD(↵r) =
CLlin

(�,↵1)

2

⇡eAR
, (3.57)

when we assumes CL = CLlin
and the plastic drag CDp

to be zero. This gives

CD(⌫⇤
3, �

⇤
) =

C2
L0

⇡eAR
(3.58)

and

@CD(↵r)

@⌫3
=

@CD(↵r)

@CLlin
(↵r)

@CLlin
(↵r)

@⌫3
=

2CLlin
(↵r)

⇡eAR

@CLlin
(↵r)

@⌫3
, (3.59)

such that
@CD(⌫⇤

3, �
⇤
)

@⌫3
=

2CL0

⇡eAR
CL↵

1

U0

⇥
1 y �x

⇤
. (3.60)

To simplify, we define

CD↵ :=

2CL0

⇡eAR
CL↵ (3.61)

and

CD0 :=

C2
L0

⇡eAR
. (3.62)

Reusing the expressions for @(V 2
1(⌫⇤

3 ,�
⇤))

@⌫3
and V 2

1(⌫⇤
3, �

⇤
) derived in Step 2, we get

@FD(⌫⇤
3, �

⇤
)

@⌫3
=

1

2

⇢SU0

⇥
CD↵

yCD↵
2zCD0 � xCD↵

⇤
. (3.63)

In order to find FD(⌫⇤
3, �

⇤
), we combine (2.32), (3.49), (3.58) and (3.62):

FD(⌫⇤
3, �

⇤
) =

1

2

⇢U2
0SCL0 (3.64)

Step 4:

Now, we can use (3.36) and the expressions derived in Step 1-3 to express @ff (⌫⇤
3 ,�

⇤)
@⌫3

:

@ff (⌫⇤
3, �

⇤)
@⌫3

=
1
2
⇢SU0

2

66664

(CL0 � CD↵) y(CL0 � CD↵) x(CD↵ � CL0)� 2zCD0

0 0 0

�(CD0 + CL↵) �y(CD0 + CL↵) x(CD0 + CL↵)� 2zCL0

3

77775
(3.65)
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Then we define

Df
⌫3

= �@f
f
(⌫⇤

3, �
⇤
)

@⌫3
, (3.66)

such that the linearization of ff with respect to ⌫3 can be expressed as

f

f
⌫3

= �Df
⌫3
⌫3. (3.67)

Step 5:

To express the linearized force in body frame, we apply (2.45) from Section 2.2, which
can be rewritten as

�⌧ c,foil =


I3⇥3

S(r

b
f )

�
f

f . (3.68)

Combining (3.67) and (3.68), the linearized force contribution expressed in body frame
becomes

�⌧⌫3
foil = �


I3⇥3

S(r

b
f )

�
Df

⌫3
⌫3 =: �Db

⌫3
⌫3. (3.69)

Here, we have defined

Db
⌫3

=


I3⇥3

S(r

b
f )

�
Df

⌫3
, (3.70)

which can be expanded to

Db
⌫3

= �1

2

⇢SU0

2

6666664

CL0 � CD↵ y(CL0 � CD↵) x(CD↵ � CL0)� 2zCD0

0 0 0

�(CD0 + CL↵
) �y(CD0 + CL↵

) x(CD0 + CL↵
)� 2zCL0

�y(CD0 + CL↵
) �y2(CD0 + CL↵

) xy(CD0 + CL↵
)� 2yzCL0

z(CL0 � CD↵
) + x(CD0 + CL↵

) yz(CL0 � CD↵
) + xy(CD0 + CL↵

) xz(CL0 � CD↵
)� 2z2CD0 � x2

(CD0 + CL↵
) + 2xzCL0

�xy(CL0 � CD↵) �y2(CL0 � CD↵) �xy(CL0 � CD↵) + 2yzCD0

3

7777775
.

(3.71)

Total Force

Since the craft has four lifting foils, the total linearized force due to motions of the craft
becomes

⌧⌫3
foil =

4X

i=1

�⌧⌫3
foil,i = �

4X

i=1

Db
⌫3,i⌫3, (3.72)

where i denotes the index of the foils, defined in an arbitrarily order. Finally, we define
the total linearization matrix D representing all the four foils:

D =

4X

i=1

Db
⌫3,i (3.73)

The term to insert in the linearized equation for ˙⌫3 becomes

L3M
�1
RB

@⌧ c(⌫⇤
3, �

⇤
)

@⌫3
⌫3 = �L3M

�1
RBD⌫3.
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It can be shown that the diagonal numerical values for L3M
�1
RBD are positive, which

means that the linearized forces and moments are acting in the opposite direction as the
motion in the corresponding DOF and can therefor be considered as damping forces.
Hence, the notation D is used.

3.1.4 Linearized Control Force

The last term in 3.34 gives linearization with respect to the input �. In order to derive an
expression, we start by linearizing the lift and drag coefficients for an arbitrarily foil, with
respect to its angular deviation �. Assuming the linear part of the lift coefficient in (2.35)
is dominating, we get

@CL(↵
⇤
)

@�
=

@CLlin
(↵⇤

)

@�
= CL↵ . (3.74)

For the drag coefficient, we apply the chain rule on the definition in (2.43), and get

@CD(↵⇤
)

@�
=

@CD(↵⇤
)

@CL

@CL(↵
⇤
)

@�
=

2CL0

⇡eAR
CL↵

= CD↵
, (3.75)

where ↵⇤, as defined in Section 2.2, is the angle of attack when � = ↵1 = 0, i.e. in
trim conditions and mean inflow angle. Linearized lift and drag forces for ⌘3 = ⌘⇤

3 and
⌫3 = ⌫⇤

3 becomes:

¯FL =

1

2

⇢SU2
0CL↵

� (3.76)

¯FD =

1

2

⇢SU2
0CD↵

� (3.77)

Using the linearized expressions for lift and drag forces, we obtain the following body-
frame force vector:

@⌧ c(⌫⇤, �⇤)

@�
� =

1

2

⇢SU2
0

2
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�CD↵
(�FL + �FR + �AL + �AR)

0

�CL↵
(�FL + �FR + �AL + �AR)

CL↵
(�FL � �FR + �AL � �AR)yfoil

CL↵(�FL + �FR � �AL � �AR)xfoil

CD↵(��FL + �FR � �AL + �AR)yfoil

3

7777775
(3.78)

Due to geometrical symmetry, we have simplified by using xfoil, yfoil and zfoil as the
absolute values of the x-, y- and z-positions, respectively, of the force-attack points for
each foil.

Applying the configuration in (2.68), the linearized term can be expressed as a function of
�:
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@⌧ c(⌫⇤, �⇤)

@�
� =

1

2

⇢SU2
0

2

6666664

�4CD↵�z
0

�4CL↵
�z

4CL↵
yfoil�a

4CL↵xfoil�e � 4CD↵zfoil�z
�4CD↵yfoil�a

3

7777775
= B⌧�, (3.79)

where

B⌧ := 2⇢SU2
0

2

6666664

0 0 �CD↵

0 0 0

0 0 �CL↵

CL↵yfoil 0 0

0 CL↵xfoil CD↵zfoil
CD↵

yfoil 0 0

3

7777775
(3.80)

The term to insert in the linearized equation for ˙⌫3 becomes

L3M
�1
RB

@⌧ c(⌫⇤
3, �

⇤
)

@�
� = L3M

�1
RBB⌧�.

3.2 State-Space Model

The linearized rigid-body dynamics and foil forces derived in Section 3.1 will be put into
a state-space model, which also will include the actuator dynamics defined in the end of
Section 2.4.

The actuator dynamics of each foil is modelled by the first order transfer function given in
(2.69):

�

�c
(s) =

1

T�s+ 1

A realization in the time domain becomes:

˙� = � 1

T�
� +

1

T�
�c (3.81)

Since the control inputs �a, �e and �z are defined as linear combinations of the controlled
deviations in the foil angles, and T� = 1/20 s for all foils, we can apply the transfer
function to the control inputs instead of the foil angles directly. For �c := [�ca, �

c
e, �

c
z]

>

being the vector of commanded control inputs, and � = [�a, �e, �z]
> as defined in (3.3),

the multivariable dynamics becomes:

˙� = � 1

T�
� +

1

T�
�c (3.82)

Later, we will also refer to �a, �e and �a as generalized deviations in foil angles.
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For the total state-space model, we define the state vector

x =

2

4
�
¯⌘3

⌫3

3

5 . (3.83)

Also, let u = �c be the commanded input from the controller, d, be a vector of colored
noise representing system disturbances from waves, and v be a vector of zero-mean, white
Gaussian sensor noise.

The state-space model describing both the linearized rigid-body dynamics and foil forces,
as well as the linear actuator dynamics, becomes:

˙

x = Ax+Bu+ Ld (3.84)

y = Cx+ v, (3.85)

where

A =

2

4
� 1

T�
I3⇥3 03⇥3 03⇥3

03⇥3 A⌘3
I3⇥3

L3M
�1
RBB⌧ �gL3Lg �L3(LcU0 +M

�1
RBD)

3

5 , (3.86)

B =

 1
T�
I3⇥3

09⇥3

�
, (3.87)

L =


06⇥3

L3M
�1
RBB⌧

�
(3.88)

and
C =

⇥
06⇥6 I6⇥6

⇤
. (3.89)

Remark that we in the disturbance matrix L has chosen to use the relation from deviations
in foil angles to body-frame acceleration. This because the wave impact modelled in this
study is mainly due to changes in the angles of attack (see Section 2.2 and 2.5, and Kim
and Yamato (2004)), so now the disturbance vector d can be considered as changes in
the foil angles, in the same frequency domain as the velocity components of the water
particles. Hence, we are one step closer to meet the suggestion from Kim and Yamato
(2004) of having a linear model where the disturbances are based on the wave orbital
motions. Numerical values for the matrices A, B, L and C are given in Appendix A.
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Chapter 4
Controller Design and Maneuvering

4.1 Frequency Weighting

Frequency weighting is applied in order to satisfy our design criteria for the H2-optimized
feedback controller, as well as taking the expected frequency distribution of disturbances
into account. In order to do so, we design an augmented plant containing the linearized
state-space model from previous chapter, and dynamics that are implementing the desired
frequency weighting. The H2 controller will in the end be designed based on the state-
space for this augmented plant.

The augmented plant with frequency weighting is illustrated with a block diagram in Fig-
ure 4.1. The matrices A, B, C and L represents linearized craft model derived in previous
chapter, and K(s) is the dynamic feedback compensator we are going to design. yd 2 R6

is the vector containing reference values for the measured states, i.e. desired positions
and velocities in heave, roll and pitch. yp 2 R6 is the vector containing the measured
states, before the measurement noise is added. ye 2 R6 is the vector containing noise-
contaminated state errors for the measurable states. w1 2 R3 and w2 2 R6 are zero-mean,
unit-intensity white-noise vectors, and z1 2 R6 and z2 2 R3 are vector containing perfor-
mance signals for state errors and control inputs, respectively. Wy(s), Wu(s) and Wv(s)
are dynamic frequency-weighting transfer matrices, which will be designed in the follow-
ing subsections. Wv = AvI6⇥6 is a constant, diagonal gain matrix for the sensor noise.
Since the sensor noise is white, i.e. equally distributed over all frequencies, no frequency
weighting is necessary. In the process of tuning the augmented pant (in order to achieve
the desired feedback compensator), we found that Av = 1000 is a suitable gain in order to
minimize the sensor-noise impact.
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Figure 4.1: Block diagram of the frequency weighted plant

4.1.1 Weighted Output

The RCS is supposed to damp the wave induced motions, as well as keeping the craft sta-
ble in an upright position according to the reference signal. Errors due to high-frequency
unmodelled dynamics (e.g. vibrations in materials) and sensor noise shall not be consid-
ered by the controller, so we want a performance signal z1 that equals the low-pass filtered
error, ye. We choose to use a first-order low-pass filter, which according to Sørensen
(2013) has the transfer function

wLP (s) =
!c

s+ !c
, (4.1)

where !c is the cut-off frequency. From the chosen frequency spectrum in Section 2.5.2,
we find that the most of the wave energy is in components with frequency below 2.5 rad/s,
so we define that this is the upper wave-frequency limit !max. However, since the craft is
moving, we have to consider the encounter frequency, which according to Fossen (2011)
is defined as

!e =

???!0 � !2
0

g
U0 cos(�)

???, (4.2)

where !0 is the wave frequency and � is the heading between the craft’s velocity and the
wave propagation direction. If the craft moves in head sea, i.e. � = 180

�, with a forward
speed of U0 = 17 m/s, this gives a maximum encounter frequency of

!e,max =

???!max � !2
max

g
U0 cos(180

�
)

??? = 2.5 +
2.52

9.81
17 = 13.33 rad/s. (4.3)

We define !y as the cut-off frequency for the low-pass filter. We could choose to set this
equal to e.g. 14 rad/s for all the components of ye, such that !y > !e,max. However, in
the tuning process we found it better to use !y = 1 rad/s. This because the the first-order
low pass filter has such a wide transition region that !y = 14 rad/s makes the controller
penalizing high-frequency virtual state errors caused by the influence of sensor noise. The
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scalar frequency-weighting function becomes

wy(s) =
!y

s+ !y
. (4.4)

Figure 4.2 shows the singular-value plot of (4.4).
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Figure 4.2: Weighting function for the output error

For all the 6 measured states, we define the transfer matrix

Wy(s) = Apwy(s)I6⇥6, (4.5)

where we have included a performance parameter, Ap, which is supposed to be increased
as much as possible without making the system unstable (Hassani et al., 2017). The perfor-
mance vector z1, which equals the frequency weighted errors multiplied by Ap becomes:

z1 = Wy(s)ye (4.6)

In the process of tuning the frequency weights, we found that Ap could be as high as 1000
without making the system unstable (no exact upper limit is determined). However, the
sensor noise penetrated the controller, got amplified, and gave noisy control inputs not
suitable for being applied on a real plant. We found Ap = 10 to be a good compromise
giving satisfying performance and low noise penetration.
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Realization in the time domain

We let ye be an arbitrarily component of ye, and z1 be the corresponding component of
z1. The transfer function in (4.4) can be rewritten as follows:

z1
ye

(s) = Apwy(s) = Ap
!y

s+ !y

) sz1 = �!yz1 +Ap!yye

(4.7)

Then, a realization in the time domain gives the differential equation

ż1 = �!yz1 +Ap!yye. (4.8)

For all the six states, we write

˙

z1 = Ayz1 +Byye = Ayz1 �ByCx+Byyd, (4.9)

where we have defined

Ay = �!yI6⇥6, By = Ap!yI6⇥6. (4.10)

4.1.2 Weighted Control

For the same reason as not penalizing high-frequency state errors, high-frequency control
action can be penalized by letting the second performance signal z2 equal the high-pass
filtered commanded control input u. For all three control inputs we choose to use the
following weighting function, which is a first order high-pass filter:

wu(s) =
s+ a

s+ !u
(4.11)

From (2.69) in Section 2.4, we see that the actuator dynamics can be considered as a low-
pass filter with cut-off frequency !c = 1/T� = 20 rad/s. Hence, control signals varying
with higher frequencies will not have any significant effect on the physical system, so we
can choose !u = 20 rad/s as the cut-off frequency for wu(s). This also satisfies !u > !y,
such that the control action is not strictly penalized inside the frequency range where we
want to penalize state errors. We choose the parameter a to be 2 in order to keep a small
penalty of wu(s) > 0.1 for low frequencies. This in order to keep the control inputs, and
hence the deviations in foil angles, small enough to stay inside both physical limitations
and the range where the assumption of linear forces holds. From Section 2.2, we have
that the cut-off angle is ↵0 = ±20

� for the blending function distinguishing linear and
nonlinear lift coefficients. Accounting for some transition region, we should avoid foil
angles greater than 15

� or less than �15

�. Therefore, a thumb rule will be to keep the
control inputs, and hence the generalized deviations in foil angles, less than 5

� and greater
than �5

� in order to avoid a single foil angle exceeding ±15

�. Figure 4.3 shows a singular-
value plot of wu(s).
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Figure 4.3: Weighting function for the control input

For all the three control inputs, the transfer matrix becomes

Wu(s) = wu(s)I3⇥3, (4.12)

such that

z2 = Wu(s)u (4.13)

Realization in the time domain

We let u be an arbitrarily component of u, and z2 be the corresponding component of z2.
The transfer function in (4.11) can be rewritten as follows:

z2
u
(s) = wu(s) =

s+ a

s+ !u
=

s+ a+ !u � !u

s+ !u
= 1� !u � a

s+ !u

) z2 = u� !u � a

s+ !u
u

(4.14)

We see that z2 equals u minus the low-pass filtered value of u, so we define a new variable
for the low-pass filtered signal:

z2LP
=

!u � a

s+ !u
u (4.15)
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This transfer function can be realized in the time domain in the same way as for wy(s). A
realization of wu(s) can then be done by the following state-space model:

ż2LP
= �!uz2 + (!u � a)u

z2 = �z2LP
+ u

(4.16)

For all the three control inputs, we write

˙

z2LP
= Auz2LP

+Buu

z2 = Cuz2LP
+Duu

(4.17)

where we have defined z2LP
as the vector of z2LP

for all control inputs, and

Au = �!uI3⇥3, Bu = (!u � a)I3⇥3, Cu = �I3⇥3, Du = I3⇥3 (4.18)

4.1.3 Weighted Plant Disturbance

The disturbance forces acting on the craft are dominated by the waves, so we let the con-
troller be designed with respect to disturbances dominating in the range of expected en-
counter frequencies. We have already found an upper limit of !e,max = 13.33 rad/s.
According to (4.2), the encounter frequency can be as low as zero rad/s, if all wave com-
ponents have the right frequency and angle relative to the heading of the craft. However,
this is unlikely to happen in a realistic situation with short-crested irregular waves, so we
can expect that the most of the wave induced disturbances are concentrated in a more
narrow interval with a lower bound higher than zero. Hence, the disturbance weighting
function can be modelled as a band-pass filter, which here will be a cascade of a first order
low-pass filters with cut-off frequency !dH

and a first order high-pass filter with cut-off
frequency !dL

:

wd(s) =
!dH

s+ !dH

· s

s+ !dL

=

!dH
s

s2 + (!dH
+ !dL

)s+ !dH
!dL

(4.19)

By performing simulations with the complete simulation model and controller in different
wave conditions, we have found !dL = 0.2 rad/s and !dH = 2 rad/s to be suitable limits
in order to achieve good disturbance rejection. It became less good for wider intervals.
The singular-value plot of wd(s) is given in Figure 4.4. We also had to multiply wd(s)
with a scaling gain Ad = 1 · 105.

For disturbances in all the three DOF, the transfer matrix becomes

Wd(s) = Adwd(s)I3⇥3, (4.20)

such that
d = Wd(s)w1, (4.21)

where w1 is a 3-element vector of white-noise signals.
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Figure 4.4: Weighting function for the disturbance input

Realization in the time domain

We let d be an arbitrarily component of d, and w be the corresponding component of w1.
The transfer function in (4.19) can be rewritten as follows:

wd(s) =
!dH

s

(s+ !dH
)(s+ !dL

)

=

!dH
(s+ !dH

)� !2
dH

(s+ !dH
)(s+ !dL

)

=

!dH

s+ !dL

� !2
dH

(s+ !dH
)(s+ !dL

)

=: wd1(s) + wd2(s)

(4.22)

Here we have split the transfer function into two terms denoted wd1(s) and wd2(s). Then,
we can split the filtered signal d into the two parts

d1 := Adwd1(s)w, d2 := Adwd2(s)w, (4.23)

such that
d = Adwd1(s)w +Adwd2(s)w = d1 + d2. (4.24)

First, we consider d1. From (4.23) we obtain

d1 = Ad
!dH

s+ !dL

w ) sd1 = �!dL
d1 +Ad!dH

w. (4.25)

Realized in the time domain, this gives the first order differential equation

˙d1 = �!dL
d1 +Ad!dH

w. (4.26)

61



Then, we consider d2. We have

wd2(s) =
�!2

dH

(s+ !dH
)(s+ !dL

)

=

�!2
dH

s2 + (!dH
+ !dL

)s+ !dH
!dL

. (4.27)

From (4.23) we obtain

d2 = Ad

�!2
dH

s2 + (!dH
+ !dL

)s+ !dH
!dL

w

) s2d2 = �(!dH
+ !dL

)sd2 � !dH
!dL

d2 �Ad!
2
dH

w.

(4.28)

Realized in the time domain, this gives the second order differential equation

¨d2 = �(!dH
+ !dL

)

˙d2 � !dH
!dL

d2 �Ad!
2
dH

w. (4.29)

In order to augment this into the total frequency weighted state-space model, we have
to rewrite it as a set of two first order differential equations. We define d21 := d2 and
d22 :=

˙d2. Hence,
˙d21 = d22 (4.30)

˙d22 = �(!dH
+ !dL

)d22 � !dH
!dL

d21 �Ad!
2
dH

w. (4.31)

Now we have a set of three first order differential equations which in combination are
relating each component of w1 to the corresponding component of d. Considering distur-
bances in all three DOF, we have nine differential equations which can be arranged as a
state-space model relating w1 to d. We define d1 2 R3 as the vector containing d1 for
heave, roll and pitch, respectively. Similarly we define d21 2 R3 and d22 2 R3 as the
vectors containing the heave roll and pitch components of d21 and d22, respectively. The
state-space model becomes

2

4
˙

d1
˙

d21
˙

d22

3

5

| {z }
ḋvec

=

2

4
Ad1 03⇥3 03⇥3

03⇥3 03⇥3 I3⇥3

03⇥3 ⌦d2 ⇤d2

3

5

| {z }
Ad

2

4
d1

d21

d22

3

5

| {z }
dvec

+

2

4
Bd1

03⇥3

Bd22

3

5

| {z }
Bd

w1

d =

⇥
I3⇥3 I3⇥3 03⇥3

⇤
| {z }

Cd

dvec,

(4.32)

where we have defined

Ad1 := �!dL
I3⇥3, ⌦d2 := �!dH

!dL
I3⇥3, ⇤d2 := �(!dH

+ !dL
)I3⇥3,

Bd1 := Ad!dH
I3⇥3, Bd22 := �Ad!

2
dH

I3⇥3.
(4.33)

Using dvec, Ad, Bd and Cd as defined by underbraces in (4.32), a more compact expres-
sion for the state-space model is

˙

dvec = Addvec +Bdw1

d = Cddvec.
(4.34)
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4.2 Augmented Plant and Weight Dynamics

With linear state-space models describing both the dynamics of the linearized plant and the
weighting functions, everything can be augmented into one state-space model. We define
the augmented state vector xaug:

xaug :=

2

664

x

dvec

z1

z2LP

3

775 (4.35)

According to MathWorks Inc. (2017), the augmented input vector uaug has to contain the
reference signal yd, the Gaussian white-noise vectors w1 and w2, and the control input u,
in the respective order. Hence, we define

uaug :=

2

664

yd

w1

w2

u

3

775 . (4.36)

It is also required that the augmented output vector yaug contains the performance vectors
z1 and z2, and the error vector of measured states, ye, in the respective order. We define

yaug :=

2

4
z1

z2

ye.

3

5 . (4.37)

The frequency weighted plant dynamics, augmented according to the block diagram in
Figure 4.1, becomes

˙

xaug = Aaugxaug +Bauguaug (4.38)
yaug = Caugxaug +Dauguaug, (4.39)
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where

Aaug =

2

664

A LCd 012⇥6 012⇥3

09⇥12 Ad 09⇥6 09⇥3

�ByC 06⇥9 Ay 06⇥3

03⇥12 03⇥9 03⇥6 Bu

3

775 (4.40)

Baug =

2

664

012⇥6 012⇥3 B

09⇥6 Bd 09⇥3

By 06⇥3 06⇥3

03⇥6 03⇥3 Bu

3

775 (4.41)

Caug =

2

4
06⇥12 06⇥9 I6⇥6 06⇥3

03⇥12 03⇥9 03⇥6 I3⇥3

�C 06⇥9 06⇥6 06⇥3

3

5 (4.42)

Daug =

2

4
06⇥6 06⇥3 06⇥3

03⇥6 03⇥3 I3⇥3

I6⇥6 06⇥3 �D

3

5 . (4.43)

4.3 H
2

Controller

The h2syn() function in the Robust Control Toolbox in MATLAB is used in order to
compute an H2-optimal and frequency weighted controller for the augmented plant. With
the ss() function in MATLAB, we creates a state-space model P for the augmented plant
by using the numerical values of the matrices denied in (4.40) to (4.43). Then, the state-
space model for the controller, here denoted by K, is obtained by using the command

K = h2syn(P,NMEAS,NCON), (4.44)

where NMEAS = 6 is the number of elements in yaug containing measured state errors
being fed into the controller, and NCON = 3 is the number of elements in uaug containing
input signals coming from the controller.

The controller can mathematically be presented as a state-space model with input yaug

and output uaug:

˙

xc = Acxc +Bcye (4.45)
u = Ccxc +Dcye (4.46)

Ac 2 R27⇥27, Bc 2 R27⇥6, Cc 2 R3⇥27 and Dc 2 R3⇥6. Their numerical values are
found by extracting the matrices stored in the state-space variable K in MATLAB, and
due to their large dimensionality, these are not provided in this report. The controller is
implemented to the Simulink model as a state-space model with initial condition xc(t0) =
0.
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Combination of this dynamic controller and the linearized state-space model in (3.84) and
(3.85), gives the following state-space model for the nominal closed-loop system:


˙

x

˙

xc

�
=


A� BDcC BCc

�BcC Ac

� 
x

xc

�
+


BDc L �BDc

Bc 0 �Bc

�2

4
yd

d

v

3

5 (4.47)

yp =

⇥
C 0

⇤ 
x

xc

�
(4.48)

Here, the reference values in yd, plant disturbances in d, and sensor noise in v are inputs,
and the output yp is the vector containing the measurable states, not contaminated with
any sensor noise. Figure 4.5 shows singular values for the closed-loop transfer functions
relating generalized disturbance inputs in heave, roll and pitch to the corresponding states
for position and velocity.

Figure 4.5: Singular values of closed-loop transfer functions from disturbance inputs in v to position
and velocity states in heave, roll and pitch
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4.4 External Controllers

Since the simulation model has six DOF and the RCS only controls heave, roll and pitch,
external controllers will be necessary to keep position and/or velocity in the remaining
DOF constrained such that the assumptions applied when linearizing the model in Section
3 holds. This includes a yaw-rate controller using the rudders to keep the yaw rate r
equal to zero, or a small value given as reference, and a sideslip controller keeping the
sway velocity v to zero by adjusting the reference for �. These controllers will also be
essential in order to make the craft turn. They will be simple PID and PI controllers,
respectively, and since the main objective of this study is to design and test the RCS in
different conditions, we will not put in any big effort in making these controllers optimally
tuned.

4.4.1 Yaw-rate Controller

Let rd be the desired yaw rate. We define the error in yaw rate to be

re = rd � r. (4.49)

The control input for the rudders is then given by the following PID controller:

�cr(t) = kpr
re(t) + kir

Z
re(t)dt+ kdr

ṙe(t) (4.50)

Recall from (2.69) that �r =

20
s+20�

c
r, and from (2.68) that
2

664

�rFL

�rFR

�rAL

�rAR

3

775 =

2

664

1

1

�1

�1

3

775 �r.

The controller gains are found from earlier work on a similar simulation model, done by
Piene (2017):

kpr
= 1.333, kir = 0.1, kdr

= 1.197 (4.51)

4.4.2 Sideslip Controller

A roll angle � different from zero will cause a sideways force acting on the craft. This
because the lifting forces acting on the foils then will have a component in horizontal
direction. Depending on environmental forces and centrifugal force from turning, the craft
will experience a sway velocity different from zero. In the aircraft terminology this is
called sideslip, and is measured by the angle � := sin

�1
(v/

p
u2

+ v2 + w2
) (Beard and

McLain, 2011). This sideslip can on the hydrofoil craft be controlled to zero by adjusting
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the roll angle �. In section 3.1.2, we linearized the kinetics for all 6 DOF, with respect
to ⌘3, ⌫3 and �, before extracting the kinetic equations for heave, roll and pitch with the
selection matrix L3. Hence, we have the following differential equation relating the sway
acceleration v̇ to the roll angle �:

v̇ = g�+ dv, (4.52)

where g is gravity acceleration, and dv denotes the sum of terms not depending on �. A
transfer function relating v to � becomes:

v

�
(s) =

1

s
g (4.53)

Figure 4.6: Singular values of �/�d(s)

We will successively close an outer PI feedback loop around the RCS controlling �. Figure
4.6 shows the singular-value plot of the transfer function �

�d
(s), which is obtained from the

nominal closed-loop system in (4.47) and (4.48). We see that roughly are �
�d

(s) ⇡ 1 for
frequencies up to approximately 1 rad/s. Hence, for lower frequencies, the block diagram
provided in Figure 4.7 is a good approximation of the successive loop closure. Here,
vd is the reference sway velocity, which in our case is supposed to equal zero, kpv

is the
proportional gain and kiv is integral gain. From the block diagram, we find that the transfer
function from vd to v becomes

v

vd
(s) =

(kpv +

1
skiv )

g
s

1 + (kpv
+

1
skiv )

g
s

=

kpv
g(s+

kiv

kpv
)

s2 + kpv
gs+ kivg

. (4.54)
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Figure 4.7: Outer feedback loop controlling sway velocity

This can be expressed in canonical form, using a suitable natural frequency !nv
and

damping ratio ⇣v:
v

vd
(s) =

2⇣v!nv
s+ !2

nv

s2 + 2⇣v!nv
s+ !2

nv

(4.55)

Comparing coefficients in (4.54) and (4.55), we get

!2
nv

= kivg (4.56)

and
2⇣v!nv = kpvg. (4.57)

Solving these equations with respect to kpv
and kiv gives

kpv
=

2⇣v!nv

g
(4.58)

and

kiv =

!2
nv

g
. (4.59)

From Figure 4.6 we see that we can pick !nv
= 0.5 rad/s and still stay inside the interval

where �
�d

(s) ⇡ 1 with an acceptable margin. By also choosing ⇣v =

p
0.5 = 0.707, we

get the gains
kpv

= 0.0721 and kiv = 0.0255. (4.60)

Later tuning showed that these gains gave better performance than significantly higher and
significantly lower values of !nv

.

4.4.3 Surge Speed Controller

Since both the foils and the rudders are experiencing drag forces in the body-frame’s neg-
ative x-direction, this will slow down the surge speed of the craft until it stops, unless a
thrust force is compensating. A change in the surge speed will also have an impact on the
behavior of the lifting foils and the rudders. As described in Section 2.2 and 2.3, the lift
and drag forces depends on the surge speed of the craft. It is important to keep a constant
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surge speed of u = U0, since the linearized model and the RCS are designed based on this
as an assumption.

In order to keep the surge speed constant, the model has implemented a virtual thrust force
uthrust acting in body-frame’s positive x-direction, with point of attack in (0, 0, 4) - which
equals the same z-position as the origin of the lifting foils (see Table 2.1). Hence, uthrust

will also compensate for the negative pitch moment caused by the drag forces acting on
the foils. The body-fixed force vector acting on the craft’s CO becomes

⌧ thrust =
⇥
uthrust 0 0 0 4 · uthrust 0

⇤>
. (4.61)

uthrust is controlled by a simple PID controller, satisfying the formula

uthrust(t) = kpuue(t) + kiu

Z
ue(t)dt+ kdu u̇e(t), (4.62)

where ue(t) = Uref � u(t) is the error in surge speed from a desired value Uref . The
constants kpu , kiu and kdu are manually tuned as follows:

kpu
= 93320, kiu = 4000, kdu

= 80000 (4.63)

4.5 Maneuvering

A simple maneuvering system making the craft able to perform coordinated turns will be
implemented. During a coordinated turn, there will be no lateral acceleration in the body
frame of the craft. This will increase the passenger comfort. The craft is tilted with a
roll angle � such that the centrifugal force acting on the craft counteracts the horizontal
component of the lift force (Beard and McLain, 2011). The input will be a preferred
turning radius R, measured in meters, commanded by e.g. a steering wheel or an autopilot.

We let Flift denote the total lift force from the foils. The first condition we apply is that the
vertical component Flift shall be equal and opposite of the gravity force mg. Assuming
the pitch ✓ is controlled to zero, this implies

Flift cos(�) = mg. (4.64)

The second condition is that the horizontal component of Flift equals the centripetal force
making the craft turning with a radius R. If we let positive R denote turning radius when
turning in clockwise direction, and use negative R for turns in counterclockwise direction,
the condition becomes

Flift sin(�) cos(�) =
mU2

R
, (4.65)

where U =

p
u2

+ v2 + w2 is the absolute speed of the craft (assumed to be in the hor-
izontal plane), and � is a possible sideslip angle. Dividing (4.65) by (4.64) and solving
with respect to tan(�), we obtain

tan(�) =
U2

Rg cos(�)
. (4.66)
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During the turn, the craft will have an angular velocity about the center of rotation equal
to U/R. In a perfect turn, the desired yaw rate of the craft has to be equal:

˙ d =

U

R
(4.67)

In order to achieve the desired yaw rate, the body frame angular velocities has to be con-
trolled. According to Fossen (2011), the angular velocities are related to the Euler-angle
rates by the equation

2

4
p
q
r

3

5
=

2

4
1 0 �s✓
0 c� c✓s�
0 �s� c✓c�

3

5

2

4
˙�
˙✓
˙ 

3

5 . (4.68)

Assuming the RCS is controling ✓ to zero and � to a constant reference given by the
sideslip controller, ˙� =

˙✓ = ✓ = 0, and the angular velocities during a turn with yaw rate
˙ becomes:

p = 0 (4.69)

q = sin(�) ˙ (4.70)

r = cos(�) ˙ (4.71)

The q velocity is necessary to keep the craft in the water plane, and it will automatically be
controlled by the RCS keeping ✓ = 0. The r velocity has to be controlled by the rudders,
getting a commanded input �cr from the yaw-rate controller. Combining (4.67) and (4.71),
the reference for r becomes

rc = cos(�)
U

R
, (4.72)

which for small angles � can be approximated to

rc ⇡ U

R
. (4.73)

The roll angle � will automatically be controlled to the value satisfying (4.66) for � = 0,
because this is the only roll angle giving no sideslip when ˙ = U/R.

Alternatively, a feed-forward reference signal can be added to the reference signal coming
from the sideslip controller. This might give better performance in the response of changes
in R. � might reach the optimal position faster since it do not have to wait for a sideslip
to occur before the reference is changed. However, dependent on the tuning, a fast change
in the reference of � might give too fast responses and overshoot decreasing the passenger
comfort.
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Chapter 5
Results

Two different cases are simulated: one where the craft is driving straight forward without
any command to actively perform a turn, and one where the craft is commanded to perform
a coordinated turn with radius of 100 m. For the case when the craft is driving in a straight
line, simulations in three different sea conditions will be performed: long-crested, regular
waves, long-crested irregular waves and short-crested irregular waves. For each sea condi-
tion is the craft simulated in both following and head sea. The case with coordinated turn
will only be simulated in short-crested irregular waves.

All simulations are done with the following initial conditions:

• pn = 0 m

• pe = 0 m

• pd = �2.5 m

• � = 0 deg

• ✓ = 0 deg

•  = 0 deg

• u = 17 m/s

• v = 0 m/s

• w = 0 m/s

• p = 0 deg/s

• q = 0 deg/s

• r = 0 deg/s

In all simulations the reference values for ✓ and v are zero, and the reference value for pd
is �h0 = �2.5 m (pd is defined as positive downwards). The reference value for � will in
the case of straight-line motion be zero, and for the case with coordinated turn it depends
on the controller of sway velocity. The reference for r depends on turning radius, or is set
equal to zero if no turn is performed. The controllers derived in Chapter 4 are used. Surge
speed is kept constant in U0 = 17 m/s, which equals approximately 33 knots (remark that
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it may differ a bit in the first seconds of the simulation due to the initializing of the surge-
speed controller). In many of the simulations, some of the states being plotted have some
large fluctuations during the first seconds of the simulation. These are transient responses
due to integrator build-up in both the H2 controller and in the external controllers with
integral gains. Since this study is focusing on control in cruise conditions with constant
speed, transient responses in the first seconds of the simulations will be neglected, and the
plots will be zoomed in to focus on the results of interest. We have chosen to plot the
actual, generalized deviations in the foil angles, and not the signals from the controller.
The difference is the actuator dynamics. The reason is that there are the actual angles of
the foils that affects the forces acting on the craft, and they are therefor more suitable to
compare with the responses of the craft.

5.1 Driving Straight Forward

Simulations of the craft driving straight forward in direction north for 50 seconds. The
side-slip controller is disconnected from the system, and the yaw-rate controller is active
with the reference rate rd = 0 rad/s. To change between following and head sea, the
propagation direction of the waves is changed between 0

� and 180

�, respectively.

5.1.1 Regular Long-Crested Waves

Simulation with regular long-crested waves propagating in the north direction (0�), with
amplitude ⇣a = 0.7 m and frequency ! = 0.86 rad/s. The chosen frequency equals
approximately the peak frequency of the PM spectrum for U19.4 = 10 m/s, see Figure 2.8.
The amplitude is chosen such that the energy of the wave approximately equals the total
wave energy in the same PM spectrum.

Following Sea

Figure 5.1 plots the down position, roll angle and pitch angle for the craft when sailing
in following sea with long-crested, regular waves. The performance seems good, with
less than half a centimeter error in the heave position and almost no error in roll and pitch.
Sensor noise is causing small fluctuations. Figure 5.2 plots the velocity components, which
all stays small. Figure 5.3 plots the accelerations. There is some acceleration in roll and
pitch when sensor noise is on. For pitch acceleration less than 1 deg/s2 = 0.0175 rad/s2,
the bow and stern of the craft will experience vertical accelerations less than 12 ·0.0175 =

0.21 m/s2. Figure 5.4 plots the actual control angles. For pitch and heave they follows
sinus curves according to the encounter frequency of the waves. The two control angles
have a phase shift of 90�. The sum of the control angles shows that the maximum absolute
value for single foil angle is inside the range where linear lift-force can be assumed

72



0 5 10 15 20 25 30 35 40 45 50

Time (s)

-2.505

-2.5

-2.495
z 

(m
)

Down Position

Noise on
Noise off

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-0.05

0

0.05

 (
de

g)

Roll Angle

0 5 10 15 20 25 30 35 40 45 50

Time (s)

-0.02

0

0.02

 (
de

g)

Pitch Angle

Figure 5.1: Evolution of Heave, Roll and Pitch, when sailing in following sea with regular, long-
crested waves
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Figure 5.2: Evolution of Heave Speed, Roll Rate and Pitch Rate, when sailing in following sea with
regular, long-crested waves
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Figure 5.3: Evolution of Heave Acceleration, Roll Acceleration and Pitch Acceleration, when sail-
ing in following sea with regular, long-crested waves
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Figure 5.4: Evolution of deviations in foil angles giving forces/moments in Roll, Pitch and Heave,
when sailing in following sea with regular, long-crested waves
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Head Sea

Figure 5.5 plots the down position, roll angle and pitch angle for the craft when sailing in
head sea with long-crested, regular waves. The performance is a bit less good compared to
following sea, but still good, with approximately half centimeter error in the heave position
and almost no error in roll and pitch. Sensor noise is causing small fluctuations. Figure
5.6 plots the velocity components. They are all small, but the pitch rate shows a sinusoidal
evolution, which was not the case in following sea. Figure 5.7 plots the accelerations.
Also here, the acceleration has a more sinusoidal shape. Otherwise, not very different
from the case of following sea, with the same limitations in vertical acceleration at the
bow or the stern of the craft. Figure 5.8 plots the actual control angles. Approximately
same magnitudes and phase shift as for following sea, but higher frequency due to higher
encounter frequency. Sum of the control angles shows that maximum absolute value for
single foil angle is inside the range where linear lift-force can be assumed.
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Figure 5.5: Evolution of Heave, Roll and Pitch, when sailing in head sea with regular, long-crested
waves

5.1.2 Irregular Long-Crested Waves

An irregular sea state is simulated according to theory and methods provided in Section
2.5. A Pierson-Moskowitz frequency spectrum with 100 frequency components, for wind
speed U19.4 = 10 m/s has been used. The components are uniformly distributed inside the
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Figure 5.6: Evolution of Heave Speed, Roll Rate and Pitch Rate, when sailing in head sea with
regular, long-crested waves
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Figure 5.7: Evolution of Heave Acceleration, Roll Acceleration and Pitch Acceleration, when sail-
ing in head sea with regular long-crested waves
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Figure 5.8: Evolution of deviations in foil angles giving forces/moments in Roll, Pitch and Heave,
when sailing in head sea with regular, long-crested waves

range where S(!) > 0.05, and each component has a random phase angle between 0 and
360 degrees.

Following Sea

Figure 5.9 plots the down position, roll angle and pitch angle for the craft when sailing in
following sea with long-crested, irregular waves. Also here, the performance seems good,
with less than one centimeter error in the heave position, less than 0.05� error in pitch, and
almost no error in roll. The irregularities of the waves are causing significant irregularities
in the down and pitch position. Figure 5.10 plots the velocity components, where the
maximum absolute heave speed is less than 0.01 m/s, and the maximum absolute pitch
rate is less than 0.2 deg/s. The roll rate is zero in the case of no noise, but have high-
frequency oscillations with amplitude less than 1 deg/s when noise is present. Figure 5.11
plots the accelerations. In absence of sensor noise, there are small variations in the heave
and pitch accelerations, but no acceleration in roll. When sensor noise is on, there are high-
frequency accelerations in all three DOF. Also here, the pitch acceleration stays less than
1 deg/s2, so the bow and stern of the craft will experience vertical accelerations less than
0.21 m/s2. Figure 5.12 plots the actual control angles. The angles controlling pitch and
heave have irregular evolutions, where the first-mentioned has similarities to the evolution
of heave and pitch position. Sum of the control angles shows that maximum absolute
value for single foil angle is inside the range where linear lift-force can be assumed, but
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with smaller margin compared to the cases with regular waves, since the maximum pitch
control angle is approximately 4.5�. The roll control angle is only influenced by sensor
noise, but stays small.
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Figure 5.9: Evolution of Heave, Roll and Pitch, when sailing in following sea with irregular, long-
crested waves

Head Sea

Figure 5.13 plots the down position, roll angle and pitch angle for the craft when sailing
in head sea with long-crested, irregular waves. The performance is less good compared
to following sea, with approximately two centimeter maximum error in the heave position
and approximately 0.3 deg error in pitch. In roll there is no error when sensor noise is
off, and when the noise is on it causes small fluctuations. Figure 5.14 plots the velocity
components. In heave and pitch, the maximum values are significantly larger than for
following sea, with a maximum heave speed of approximately 0.03 m/s, and a maximum
pitch rate close to 2 deg/s. I.e. three and ten times as high, respectively. Figure 5.15
plots the accelerations. Roll acceleration is not very different from the case of following
sea, but the acceleration in heave has a peak value close to 0.2 m/s2, which is twice as
large, and the pitch acceleration has a peak value of approximately 9 deg/s2, which is nine
times as large. For a pitch acceleration of 9 deg/s2 = 0.157 rad/s2, the bow and stern of
the craft will experience vertical accelerations of 12 ⇥ 0.157 = 1.88 m/s2, which is quite
large. Figure 5.16 plots the actual control angles. Approximately same peak values as for
following sea, but higher frequency due to higher encounter frequency. As for following
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Figure 5.10: Evolution of Heave Speed, Roll Rate and Pitch Rate, when sailing in following sea
with irregular, long-crested waves
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Figure 5.11: Evolution of Heave Acceleration, Roll Acceleration and Pitch Acceleration, when
sailing in following sea with irregular, long-crested waves
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Figure 5.12: Evolution of deviations in foil angles giving forces/moments in Roll, Pitch and Heave,
when sailing in following sea with irregular, long-crested waves

sea, the sum of the control angles shows that maximum absolute value for single foil angle
is inside the range where linear lift-force can be assumed.

5.1.3 Irregular Short-Crested Waves

An irregular, short-crested sea state is simulated according to theory and methods pro-
vided in Section 2.5. A Pierson-Moskowitz (PM) frequency spectrum with 20 frequency
components, uniformly distributed inside the range where S(!) > 0.05, is combined with
a directional spectrum consisting of 5 components which are evenly distributed in the
range (�65

�,�65

�
) relative to the mean wave-propagation direction, ✓0. Hence, the total

number of components in the wave spectrum becomes 100. Each component has a random
phase angle between 0 and 360 degrees. For the PM spectrum, a wind speed of U19.4 = 10

m/s has been used. In following sea ✓0 = 0

�, and in head sea ✓0 = 180

�.

Following Sea

Figure 5.17 plots the down position, roll angle and pitch angle for the craft when sailing in
following sea with short-crested, irregular waves. The performance seems good, with less
than half a centimeter error in the heave position, and less than 0.05� error in pitch and
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Figure 5.13: Evolution of Heave, Roll and Pitch, when sailing in head sea with irregular, long-
crested waves
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Figure 5.14: Evolution of Heave Speed, Roll Rate and Pitch Rate, when sailing in head sea with
irregular, long-crested waves
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Figure 5.15: Evolution of Heave Acceleration, Roll Acceleration and Pitch Acceleration, when
sailing in head sea with irregular, long-crested waves
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Figure 5.16: Evolution of deviations in foil angles giving forces/moments in Roll, Pitch and Heave,
when sailing in head sea with irregular, long-crested waves
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roll. The irregularities of the waves are causing significant irregularities in all the position
components, and it can also be observed an inconsistency between the roll angles in the
cases when noise was on and off. Figure 5.18 plots the velocity components, where the
maximum absolute heave speed is less than 0.005 m/s, and the maximum absolute roll
and pitch rates are less than 0.1 deg/s (when disregarding the transient responses in the
beginning). When sensor noise is present, there are high-frequency oscillations on the top
of the mean evolutions, especially for the roll rate. Figure 5.19 plots the accelerations.
In absence of sensor noise, there are small variations in the pitch acceleration, but almost
no acceleration in heave and roll. When sensor noise is on, there are high-frequency
accelerations in all three DOF. The pitch acceleration stays less than 1 deg/s2, so the bow
and stern of the craft will experience vertical accelerations less than 0.21 m/s2. Figure
5.20 plots the actual control angles. All three angles have irregular evolutions, and the
roll control angle has significantly smaller magnitudes than the others. The plot of the roll
control angle shows how the sensor noise is penetrating the controller. Sum of the control
angles shows that maximum absolute value for single foil angle is inside the range where
linear lift-force can be assumed.
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Figure 5.17: Evolution of Heave, Roll and Pitch, when sailing in following sea with irregular, short-
crested waves

Head Sea

Figure 5.21 plots the down position, roll angle and pitch angle for the craft when sailing
in head sea with short-crested, irregular waves. The performance is less good compared
to following sea, with close to two centimeter maximum error in the heave position, ap-
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Figure 5.18: Evolution of Heave Speed, Roll Rate and Pitch Rate, when sailing in following sea
with irregular, short-crested waves
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Figure 5.19: Evolution of Heave Acceleration, Roll Acceleration and Pitch Acceleration, when
sailing in following sea with irregular, short-crested waves
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Figure 5.20: Evolution of deviations in foil angles giving forces/moments in Roll, Pitch and Heave,
when sailing in following sea with irregular, short-crested waves

proximately 0.1� error in roll, and approximately 0.2� error in pitch. Figure 5.22 plots
the velocity components. The maximum values are significantly larger than for following
sea, with a maximum heave speed of approximately 0.01 m/s, a maximum roll rate of ap-
proximately 0.3 deg/s, and a maximum pitch rate close to 0.8 deg/s. Figure 5.23 plots the
accelerations. In absence of sensor noise, there are small variations in the accelerations
for heave and roll, compared to when sensor noise is on, while the difference is less for
pitch. Maximum heave and roll accelerations are some higher than in the case of follow-
ing sea, but the pitch acceleration has a peak value of approximately 4 deg/s2, which is
more than four times as large as in following sea. For a pitch acceleration of 4 deg/s2,
the bow and stern of the craft will experience vertical accelerations of 0.84 m/s2, which is
quite large. Figure 5.24 plots the actual control angles. Peak values are higher than in the
case of following sea, especially for the roll control angle, and frequency is higher due to
higher encounter frequency. As for following sea, the sum of the control angles shows that
maximum absolute value for single foil angle is inside the range where linear lift-force can
be assumed. This is helped by a phase delay between the pitch and heave control angles,
which can be observed in the last 20 seconds of the simulation.
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Figure 5.21: Evolution of Heave, Roll and Pitch, when sailing in head sea with irregular, short-
crested waves
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Figure 5.22: Evolution of Heave Speed, Roll Rate and Pitch Rate, when sailing in head sea with
irregular, short-crested waves
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Figure 5.23: Evolution of Heave Acceleration, Roll Acceleration and Pitch Acceleration, when
sailing in head sea with irregular, short-crested waves
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Figure 5.24: Evolution of deviations in foil angles giving forces/moments in Roll, Pitch and Heave,
when sailing in head sea with irregular, short-crested waves
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5.2 Turning In a Circle when Irregular Short-Crested Waves

One simulation of the craft driving in a coordinated turn with 100 meter radius. This
equals a yaw rate of r = U0/R = 17/100 = 0.17 rad/s, or 9.74 deg/s. The same sea state
as in Section 5.1.3 will be used, i.e. irregular short-crested waves, with North as the mean
propagation direction. The initial heading of the craft is North, and due to the continuous
change in heading, the craft will experience both following and head sea, as well as waves
coming in from the side. The total simulation has a duration of 200 seconds, in order
to make a plot of the path for several rounds. However, only the first 50 seconds of the
simulation data will be used when plotting the relevant states and control angles. This in
order to have a good comparison to the simulations of straight-line motions.

Figure 5.25 shows the path of the craft in the North-East plane, for a simulation of 200
seconds duration. It is clear that the path does not converge into a perfect circle. Figure
5.26 plots the down position, roll angle and pitch angle for the craft. It seems clear that
the mean down position is increased with five centimeters to �2.45 m, i.e. the CO of the
craft is five centimeters closer to the mean water surface. The mean roll angle is increased
to a mean value of approximately 17

�, which is a consequence of the side-slip controller
that updates the reference for roll in order to control the speed in sway to zero. For all
three states, the wave-induced deviations away from the mean values seems larger than for
the simulations with straight-line motion Especially for pitch, where the maximum error
is close to 1

� at the time 10 seconds.

Figure 5.27 plots the velocity components. The heave speed drifts away from zero to
a mean value of approximately �0.02 m/s, but the maximum wave-induced deviations
away from this are of the same range as for straight-line motion in head sea with the same
conditions. The roll rate has a large deviation from zero in the beginning, due to the change
in the reference for the roll angle, but its mean value goes back to zero at the same time
the roll angle stops increasing. After this, the maximum error is a bit larger than 1 deg/s.
The mean value of the pitch rate increases to approximately 2.5 deg/s during the same time
as the roll angle increases. This pitch rate different from zero is necessary according to
(4.70). Deviations away from this mean value are less than 1.5 deg/s.

Figure 5.28 plots the heading, the speed in sway and the yaw rate. In the beginning, the yaw
rate is increasing rapidly when the yaw-rate controller starts to act, with the consequence
that the speed in sway increases due to the rotation of the craft. However, around 10
seconds into the simulation, when the roll angle increased, the sway speed goes back to a
mean value around zero, with some wave-induced deviations that are less than 0.5 m/s. It
can also be observed that the yaw rate is not converging perfectly to its reference value,
but maintain small wave-induced deviations.

Figure 5.29 the accelerations in heave, roll and pitch. The heave acceleration has a peak
value of approximately 0.1 m/s2 when noise is on, and less when off. The roll acceleration
has a peak value of approximately 2.5 deg/s2, and the pitch acceleration has a peak value
of approximately 4 deg/s2, which is the same as in the case of straight-line motion in head
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sea of irregular, short-crested waves. This peak value appear at the same time as the craft
has a heading of approximately 200

�, which equals sailing in almost head sea.

Figure 5.30 plots the actual control angles for roll, pitch and heave. For the first 10 seconds,
the roll control angle is large in order to tilt the craft in direction of the desired roll angle.
After that, it has a mean value of approximately zero. The control angles for pitch and
heave behave like for straight-line motion in the same sea conditions, and the frequency
varies with the heading. The sum of the control angles shows that maximum absolute
value for single foil angle is inside the range where linear lift-force can be assumed.

Figure 5.25: Path in the horizontal plane when driving in a circle with radius 100 m. Irregular,
short-crested waves with mean direction North. Compared to results from controller designed for no
sensor noise
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Figure 5.26: Evolution of Heave, Roll and Pitch, when sailing in a circle path, in sea with irregular,
short-crested waves
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Figure 5.27: Evolution of Heave Speed, Roll Rate and Pitch Rate, when sailing in a circle path, in
sea with irregular, short-crested waves
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Figure 5.28: Evolution of Heading, Sway Speed and Yaw Rate, when sailing in a circle path, in sea
with irregular, short-crested waves
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Figure 5.29: Evolution of Heave Acceleration, Roll Acceleration and Pitch Acceleration, when
sailing in a circle path, in sea with irregular, short-crested waves
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Figure 5.30: Evolution of deviations in foil angles giving forces/moments in Roll, Pitch and Heave,
when sailing in a circle path, in sea with irregular, short-crested waves
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Chapter 6
Discussion

The general observations from the straight-line simulations are that the performance is bet-
ter in regular than irregular waves, and it is better in following sea than in head sea. The
latter is not consistent with the experiences from industry and earlier experimental stud-
ies, according to Kim and Yamato (2004). However, we have in this study not accounted
for any effect of proximity to the water surface. A good explanation for less good per-
formance in head sea is the use of frequency weighting on the performance signals, more
exactly low-pass filters with a cut-off frequency of 1 rad/s. Hence, the encounter frequency
in the case of head sea is inside the transition region of the low-pass filter, and will get less
penalty than in the case of following sea, where the encounter frequency is lower. This
is even more significant for irregular waves, where we from Section 4.1.1 know that the
encounter frequency for the given sea state and craft speed can reach 13.33 rad/s. From
Figure 4.5 we see that the resonance frequencies roll and pitch, and roll rate and pitch rate,
due to generalized wave disturbances in pitch, are in the range 10-20 rad/s, and the peak
singular values for roll and pitch rate are grater than 1. For heave is the singular value
from disturbance to heave speed significantly grater, but the resonance frequency is ap-
proximately 30 rad/s. It can also be discussed whether irregular sea in some cases causes
such abrupt changes in the disturbance forces that the controller consider this as distur-
bances with higher frequency than it is supposed compensate. More like a step input.
Anyway, an abrupt change in the disturbance force is in general more difficult to handle
for a feedback controller, compared to more smooth changes, like e.g. a pure sinusoidal
curve. An interesting observation is the difference in maximum pitch acceleration when
sailing in head sea with irregular long-crested and irregular short-crested waves. The first
has a peak (absolute) value of approximately 9 deg/s2, while the latter has a peak (abso-
lute) value of approximately 4 deg/s2. This might be because of just randomness due to the
random generation of phase angles for the wave components. Another reason can be the
number of frequencies, where the long-crested waves did consist of 100 different frequen-
cies, while the short-crested waves only had 20 different frequencies. The higher number
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of frequencies, the higher probability of large abrupt changes in the load. A third theory is
that the wave components not propagating along the North-South axis (i.e. parallel to the
mean craft velocity) will have a lower impact on the lifting foils, since the water particles
velocity component parallel to the foil’s x-axis, xf , is less than their total speed. Remark
that foil forces due to relative velocity parallel to the lifting foil’s y-axis, yf , are neglected
in the simulation model. Hence, when parts of the wave energy is distributed over com-
ponents in non-parallel direction, this will reduce the total impact on the lifting foils. A
fourth explanation is that the interference between wave components with different direc-
tions causes effective encounter frequencies outside the frequency region for resonance, or
the interference reduces the amplitudes of disturbance forces inside that region. Anyway,
a maximum pitch acceleration of 9 deg/s2, giving vertical accelerations of 1.88 m/s2 at the
bow and the stern is quite large, and it can be further discussed whether this is more than
we can accept on real craft transporting passengers. A possible solution to reduce the ac-
celerations is to include them as additional states in the augmented state-space model and
let the performance vector z1 also include these states with a desired frequency weighting.

The performance during the coordinated turn was less good compared to straight line mo-
tions. This is probably due to the roll angle ✓ and yaw rate r deviating too much away
from zero, such that the linearized model, and hence also the estimation performed by
the H2 controller becomes less accurate. There are several possible ways to improve the
performance in this situation. One method is to include the yaw rate and the sway veloc-
ity as states in the linearized frequency weighted model in order to optimize the control
when considering all DOF, except of surge. It may also be possible to include the yaw
angle  , but this requires a guidance system continuously updating the reference by e. g.
integrating the desired yaw rate. A good reason for including the yaw rate, especially, is
that the Coriolis-and-centripetal matrix of the 6 DOF model depends on it, and the Cori-
olis and centripetal forces becomes significant for high surge speeds. When including the
yaw rate, and eventually also the sway velocity, it is obviously a good idea to also include
the rudders as actuators. Further, by including all four rudders as separate actuators with
separate control inputs, the control system could be even more optimized with the possi-
bility to use the rudders to control other DOF than yaw. However, an optimized MIMO
controller using more actuators will be less reliable, and should on a real craft be designed
with redundancy with respect to losing one of the actuators.

We see that during the coordinated turn, the pitch rate was different from zero. According
to (4.70), the craft needs to have a pitch rate different from zero when both the derivative of
the heading angle  and the roll angle � are different from zero. It is good that controller
did not force q back to zero, even though qd = 0 was the reference. Another observation
was the change in the down position, pd, and the heave speed, w. We see that the pitch
angle was negative for the first 14 seconds, which explains why the down position changed
in the first place. Further will the vertical component of the lift force from a lifting foil
be reduced for a roll angle � 6= 0. This should be compensated by the RCS increasing
the control input for heave, and according to (4.65) will this give the horizontal force
component necessary to obtain the desired centripetal acceleration. However, we see that
the errors in down position and heave speed are of opposite sign, so the heave control
input from one will equalize the heave control input from the other. The error could have
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been removed by designing the controller with an integrator feedback for the position
states. This solved the problem for Hatzakis and Sclavounos (2006), which also simulated
a hydrofoil craft without restoring forces. For the H2-controller, this could be implemented
by including states for integrated position errors in the augmented state-space model, and
included these in the performance output z1. However, the error in down position was not
large compared to the height of the craft, and for a real craft it would anyway be a good
idea to place CO more close to the water surface when tilting in roll, since we do not want
the foils to get too close to the water surface. Since the craft stayed stable for both straight-
line motions and coordinated turn with 100 m turning radius, we can assume it also will
for coordinated turns with longer radii. However, we cannot assume the same for shorter
radii, since this involves larger �, q and r, and makes our linear model less accurate.

When comparing results from simulations with and without sensor noise, we see that the
noise has an influence of the most of the states and control angles. Especially for the
accelerations, and for the roll angle, roll rate and roll control angle in the simulations of
the craft sailing in a straight-line. It seems like the H2 controller is not able to filter away
all the sensor noise when estimating the state vector of x, so some noise is penetrating the
controller, where it gets amplified and causes noisy signals of control inputs. The most of
the noise in these control signals is filtered away in the actuator dynamics, which actually
work as a low-pass filter, but there are still some high-frequency vibrations in the foil
angles, and hence also the control forces. Since the accelerations are directly related to
the control forces, they will also experience high-frequency vibrations, while the velocity
components, which are the integrals of the accelerations, have smaller vibrations. The
vibrations are even more reduced for the down position and roll and pitch angles, while
heading, sway speed and yaw rate are not directly affected, since we in this study are
providing the external controllers with perfect measurements.

The process of selecting the weighting matrices Wy(s) and Wu(s), as well as the gain
matrix for sensor noise, Wv, was challenging. The goal was to select a cut-off frequency
for Wy(s), !y, high enough to penalize wave induced state errors, but not high-frequency
errors due to sensor noise and unmodelled dynamics, and let the cut-off frequency for
Wu(s), !u, be a bit higher in order to penalize control inputs with higher frequencies.
However, when selecting too high values for !y or the performance gain Ap, a lot of
high-frequency sensor noise penetrated the H2 controller and caused really noisy control
signals. This gave very good performance with almost no state errors, but we cannot expect
that the actuators on a real hydrofoil craft is handling these high-frequency vibrations.
This could be counteracted by further increasing the noise gain Av in the gain matrix
for sensor noise, Wv, but this gave bad performance and instability in some simulations
with coordinated turn in irregular waves. Decreasing !u did not have any good effect
on removing the nose from the control inputs, but rather decreased the performance for
high-frequency wave loads. In the end, we had to go for a trade-off where we allowed
some noise penetrating the controller, but with small impact on the actual control angles
of the foils, and where the performance not was optimal in all situations, e.g. in irregular
head sea. A possible solution of the problem will be to implement higher order frequency-
weighing functions for the performance signals, in order to narrow the transition regions.
Hence, less high-frequency sensor noise will have impact on the performance signals in
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z1, such that higher values for !y and/or Ap can be used. However, higher order low-pass
and high-pas filters will have a larger phase shift (Sørensen, 2013). Since the process of
selecting the weighting functions was a trial and error method, there is no guarantee that
the selected cut-off frequencies and gains were the optimal choices, and there might exist
first order weighting functions getting rid of the problem with noise penetration. We also
have to remark that when a too high value of Av is giving bad performance, it seems like
the linearized model is not enough accurate to make good estimations of the states subject
to control.

Further we have to look at the limitations of the RCS we have designed. It was designed
under the assumption of a constant surge speed of u = U0 = 17 m/s, but for a real hydro-
foil craft in commercial traffic it will probably be desirable to operate in different surge
speeds. E.g. it may be desirable to have a lower speed in rough sea conditions compared to
calm water, both due to safety and passenger comfort. However, recall that the lift forces
are modelled as FL =

1
2⇢SV

2
1CL(↵r), so the surge speed has an important impact on how

large control angles are necessary in order to achieve a given lift force. A hybrid control
system with multiple controllers designed for different nominal surge speeds is a possible
solution. These controllers will require a robustness design with respect to the parametric
uncertainty in u in order to guarantee stability and performance when u is different from
the nominal values. The method of Robust Multiple Model Adaptive Control can be used
(Hassani et al., 2011). Anyway, since the RCS we designed only guarantee performance
and stabillity for the nominal plant model, i.e. the linearized model assuming a trim con-
dition of � = ✓ = v = w = p = q = r = 0 and u = U0, it will be necessary to include
robustness design if an H2 controller, or another controller assuming a linear plant, is go-
ing to be applied on the real Flying Foil hydrofoil craft in the end. As we can see from
the simulation results, there will always be some deviations away from the trim condition
due to disturbances or reference signals different from the trim condition. There will also
be some unmodelled dynamics not included in the linearized model. A possible method is
to use mixed-µ synthesis in order to guarantee robustness and a desired performance for a
given range of parametric uncertainty and unmodelled dynamics (Athans, 2004).

It is also worth to emphasize that we in this study only has simulated a limited number of
possible wave loads, and we have neither performed simulations where wind loads and/or
currents are acting on the craft at the same time as the wave loads. Hence, we have no
guarantee that the RCS designed in this study will give the satisfying performance, or
keep the craft stable, in such situations.
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Chapter 7
Conclusions and Further Work

7.1 Conclusions
Based on the results obtained in this study, we can draw the following main conclusions:

• The frequency weighted H2-optimized feedback controller for heave, roll and pitch
was able to control the attitude of, and reduce wave-induced disturbances on, a 6
DOF simulation model of a fully submerged hydrofoil craft, both when sailing in
straight line motions and when performing a coordinated turn. The yaw rate, and
the speed in surge and sway were controlled by external, independent controllers.

• Sensor noise is penetrating the controller, and affects the actuators, for the first-
order weighting functions used. A trade-off between performance and low noise
penetration was necessary. Higher order weighting functions or a more accurate
linearized model of the craft can reduce the problem.

• Low-pass frequency weighting of the performance signal for state errors gave less
good performance in head sea than in following sea, due to the necessary choice of
a cut-off frequency lower than the encounter frequencies in head sea. It also made it
more difficult to handle abrupt disturbances in head sea with irregular waves.

• In general best performance in long-crested, regular waves, and least good perfor-
mance in long-crested, irregular waves.

• Less good performance during coordinated turns than for straight-line motions, be-
cause of nonzero roll angle, pitch rate and yaw rate.

The conclusions above are limited to the simulations performed in this study. No guarantee
of the same performance or stability for different sea conditions or sharper turns.
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7.2 Further Work
In the further work in developing the control system for Flying Foil, a deeper study into
the following topics will be of great interest:

• Try to solve the problem with noise penetration by using higher order weighting
functions.

• Studying whether penalty on states representing acceleration can reduce the pitch
acceleration in irregular head sea, without giving bad performance in other states or
instability.

• Designing the frequency weighted H2 controller for a case where where only states
we expect can be measured, are measured. Compare the performance with a system
measuring all states subject to control.

• Study whether the position in heave can be measured with e.g. a laser rangefinder
measuring the distance to the water surface, for then designing an H2 controller
with a band-pass frequency-weighting function on the sensor noise for the given
measurement, in order to filter away the influence from the waves and estimate the
distance to the mean surface. An external processing unit with notch filtering re-
moving the wave frequencies can also be used. This can also be used for a smooth
transition between platforming in short waves and contouring in long waves.

• Designing a frequency weighted H2 or H1-optimal controller, which is robust with
respect to parametric uncertainties an unmodelled dynamics. The mixed-µ synthesis
can be used.

• Using nonlinear control theory in order to design a feedback controller which do
not require a linearized model of the hydrofoil craft, and where stability can be
theoretically proved. Further comparing the performance of this with the linear
feedback controllers.

• Study whether a feed-forward controller, in combination with sensors and an ob-
server estimating the incoming waves, can increase the performance in irregular
sea.

• Assemble a simulation model with higher fidelity, including air resistance, added-
mass forces and hydrodynamic resistance from foil struts and other submerged parts.
It is also of interest to model the craft with a more realistic shape and mass distri-
bution, as well as a configuration of foils that is different in the front and the aft. A
high-fidelity model should also include more accurate hydrodynamics of the foils,
including moments, change in lift and drag coefficients due to rotation of the foils,
and the effect of the front foils affecting the water entering the aft foils. Using flaps
as actuators instead of changing the angle of attack should also be considered.
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Appendix

A: Matrices in Linearized Plant

A =

2

6666666666664

�20.0 0 0 0 0 0 0 0 0

0 �20.0 0 0 0 0 0 0 0

0 0 �20.0 0 0 0 0 0 0

0 0 0 0 0 �17.0 1.0 0 0

0 0 0 0 0 0 0 1.0 0

0 0 0 0 0 0 0 0 1.0
0 0 �122.42 0 0 0 �7.2128 0 12.383

18.787 0 0 0 0 0 0 �1.5497 0

0 21.463 �0.3206 0 0 0 0.0409 0 �11.394

3

7777777777775

B =

2

6666666666664

20.0 0 0

0 20.0 0

0 0 20.0
0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

3

7777777777775

C =

2

6666664

0 0 0 1.0 0 0 0 0 0

0 0 0 0 1.0 0 0 0 0

0 0 0 0 0 1.0 0 0 0

0 0 0 0 0 0 1.0 0 0

0 0 0 0 0 0 0 1.0 0

0 0 0 0 0 0 0 0 1.0

3

7777775

L =

2

6666666666664

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 �122.42
18.787 0 0

0 21.463 �0.3206

3

7777777777775
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