
HW/SW Codesign of a Pedestrian
Detection System

Magnus Rammel

Master of Science in Electronics

Supervisor: Per Gunnar Kjeldsberg, IES

Department of Electronic Systems

Submission date: January 2018

Norwegian University of Science and Technology

Abstract

The HW/SW co-design philosophy introduced almost two decades ago provides solutions
to common challenges in the electronic system design industry. It provides techniques
for improving the efficiency of conventional design processes for electronic systems, by
introducing methods for simultaneous design of hardware and software, as well as tech-
niques for analyzing and finding correct implementation alternatives for selected system
functions. This thesis describes the selection of a HW/SW co-design methodology for
a software-based Pedestrian Detection System, as well as results from applying the
methodology on the system itself.

In this design methodology, the system functions are evaluated from pre-defined de-
sign constraints for performance, energy consumption, excessive hardware and software
parts, and system reliability. The functions not meeting the constraints are further
selected for partitioning into either hardware or software architectures that result in
potentially new implementation suggestions for the functions selected. The evaluation
has been performed with evaluation criteria in the form of a cost function based on the
constrained factors, and the results from applying the methodology on the system have
been described. The data used for the evaluation criteria were counts of instructions
executed, data reads/writes, as well as cache hit/miss counts of these. These counts
are run time attributes of the Pedestrian Detection System’s system functions, and are
meant to indicate run time and performance demand on the system. The result of the
evaluation indicated that no new implementation alternatives were needed.

i

ii

Sammendrag

HW/SW co-design-filosofien som ble introdusert for omtrent to ti̊ar siden tilbyr løsninger
p̊a vanlige utfordringer i industrien for elektronisk systemdesign. Den tilbyr teknikker
som kan forbedre effektiviteten til konvensjonelle designprosesser for elektroniske sys-
temer, ved å introdusere metoder for å designe maskinvare og programvare simultant,
i tillegg til teknikker for å analysere og oppdage korrekte implementeringsalternativer
for utvalgte systemfunksjoner. Denne oppgaven beskriver utvelgelsen av en HW/SW
co-design-metodikk for et programvare-basert Fotgjengerdeteksjonssystem, i tillegg til
resultater fra å bruke designmetodikken p̊a systemet selv.

I denne metodikken blir systemfunksjonene evaluert ut fra forh̊andsdefinerte design-
restriksjoner for ytelse, energiforbruk, overflødig maskinvare og programvare, og sys-
temp̊alitelighet. Funksjonene med egenskaper som overg̊ar restriksjonene blir videre
valgt ut for å partisjoneres til enten maskinvare- eller programvarearkitekturer som re-
sulterer i potensielt nye implementeringsforslag for de utvalgte funksjonene. Evaluerin-
gen har blitt utført med en kostnadsfunksjon utviklet fra de restrikterte faktorene, og
resultatene fra bruken av metodikken p̊a systemet har blitt beskrevet. Dataen brukt
til evalueringskriteriene er tallverdier p̊a antall instruksjoner utført, antall lesinger og
skrivinger av data, i tillegg til tall p̊a cache treff/ikke-treff for disse. Disse tallene er
kjøretidsegenskaper for Fotgjengerdeteksjonssystemets systemfunksjoner, og er ment å
indikere kjøretid og ytelsesbelastning p̊a systemet. Resultatet fa evalueringen indikerte
at ingen nye implementasjonsalternativer behøvdes.

iii

iv

Preface

This Master thesis project has taught me a great deal on the topic of HW/SW co-design.
It has delivered a great learning outcome in terms of practical experience with previously
acquired theoretical knowledge from both courses and the Specialization project with
the same topic. The HW/SW co-design topic was chosen partly due to its relevance to
my study programme specialization, but also because of the aforementioned practical
learning outcome I assumed it would give me. The project has given me a deeper insight
into the topic of HW/SW co-design, as I expected it would do.

During the thesis work I have gotten a new insight into performing computer program
profiling in the Linux operating system. I have also learned a lot about the history
of HW/SW co-design and thus how it has influenced electronic system design since its
introduction.

I would like to thank my supervisor Per Gunnar Kjeldsberg for continually support-
ing and providing me with council on which steps to take forward, as well as for giving
me feedback on the report at several instances during the project phase.

—————————————————–
Magnus Rammel

Trondheim
17. January 2018

v

vi

Problem Description

Candidate Name:
Magnus Rammel

Assignment Title:
HW/SW Co-design of a Pedestrian Detection System

Assignment Text:
Advanced Driver Assistance Systems (ADAS) have become an integral part of mod-
ern high-end cars. With data from cameras and other sensors, they perform services
such as pedestrian detection, blind spot detection, and lane departure warning. The
computational requirements for many of the algorithms needed to process the data are
substantial. To have price, size, compute and energy efficient solutions, a combination
of hardware and software is typically required. NTNU is partner in the EU research
project Tulipp (Towards Ubiquitous Low-power Image Processing Platforms), where a
system for pedestrian detection is one of the use-cases. A software implementation of
the system is available in an open source repository.

In this master thesis assignment, the Pedestrian Detection System shall be investi-
gated from a hardware/software co-design perspective. Based on an extensive literature
study and early investigation of the system code, a design methodology shall be selected
and described. Following the selected methodology, critical parts of the system shall be
implemented in hardware using design tools suitable for Xilinx FPGAs. Overall im-
provement in performance and energy efficiency compared to an all software solution
shall be estimated. To the extent time allows, test on an FPGA evaluation board shall
be performed.

Supervisor:
Per Gunnar Kjeldsberg.

vii

viii

Contents

Abstract i

Sammendrag iii

Preface v

Problem Description vii

List of Abbreviations xi

List of Figures xii

List of Tables xiv

1 Introduction and Motivation 1
1.1 Goals of the thesis . 2
1.2 Overview of report Chapters . 2

2 Theory and Background 4
2.1 Background . 4
2.2 Traditional design processes for electronic systems 6
2.3 The HW/SW Co-design approach . 7
2.4 Design process for HW/SW Co-design 8
2.5 HW/SW Partitioning . 8

2.5.1 Parallel or Sequential solution . 10
2.5.2 Level of complexity . 10
2.5.3 Requirements for performance/execution time 11
2.5.4 Energy efficiency . 11
2.5.5 Required reliability in design . 12

2.6 Cost function . 12
2.7 Co-simulation of HW and SW . 13
2.8 FPGA . 14

3 Previous Work on HW/SW Co-design Methodologies 15
3.1 A Hardware-Software Codesign Strategy for Loop Intensive Applications 15
3.2 An integrated high-level hardware/software partitioning methodology . . 16

4 Pedestrian Detection System 17
4.1 Code structure . 18

ix

x CONTENTS

5 Evaluation Tools 22
5.1 Profiling and energy measurements . 22

5.1.1 Valgrind tool suite . 22
5.1.2 KCachegrind . 23

6 Suggested Design Methodology 25
6.1 Technical approach . 25
6.2 Code attributes leading to a hardware or software implementation 25
6.3 Target architecture components . 26
6.4 HW/SW Partitioning . 27

6.4.1 Relevant design factors . 27
6.4.2 Granularity depth . 27
6.4.3 Evaluation criteria for system functions 27
6.4.4 Cost function . 28

7 Results of Design Methodology 29
7.1 Profiling results . 30

7.1.1 Callgrind data . 30

8 Discussions and future work 32
8.1 Applicability for other applications . 32
8.2 Delay from running with callgrind . 32

9 Conclusions 33

Appendix 36

List of Abbreviations

FPGA Field-Programmable Gate Array

HW Hardware

IoT Internet of Things

LHT Loop Hierarchy Tree

PSO Particle Swarm Optimization

SW Software

UI User Interface

xi

List of Figures

2.1 Photograph of the Autonetics D-17 guidance computer, mounted on a
Minuteman intercontinental ballistic missile. It is believed to be the first
ever embedded system produced in large quantities. [3] 5

2.2 Flow chart for generalized HW/SW co-design process. 6
2.3 Model or flow chart for a traditional design process for electronic systems.

[13] . 7
2.4 Model or flow chart for a HW/SW co-design process for electronic sys-

tems. [13] . 8
2.5 Various cryptographic implementations in software and hardware pro-

posed from the year 2003 to 2008. [20] 11
2.6 Illustration of an applied HW/SW co-design methodology for a SoC im-

plementation [10] . 13

4.1 High level flow of Pedestrian Detection Algorithm 18
4.2 Flow chart for the main program loop. It passes the images selected for

detection to the detector and initializes the detection. 19
4.3 Flow chart for the Set Image subtask. Reads the input image and com-

putes the scaling of the detectors. 19
4.4 Illustration showcasing the most relevant parts of the PDS. 19
4.5 TRENGER INFO HER, sjekk kode eller bitbucket-repo. 20
4.6 Displays general flow employed by the classifier. 20
4.7 Run of the application ground estimation, loaded with the configuration

file test.config.ini. 21
4.8 Run of the application stixel world, loaded with the configuration file

fast.config.ini. 21

5.1 Picture of the KCachegrind program (original full resolution available in
ZIP-file). 23

5.2 Call graph output image generated by KCachegrind, from a run of ground estimation
with the Callgrind tool and cache hit/miss count enabled. Full resolution
in ZIP-file. 24

xii

LIST OF FIGURES xiii

List of Tables

2.1 Overview of the optimal implementation alternatives for the various pro-
gram statements being part of the Pedestrian Detection Systems execution. 9

6.1 Overview of the optimal implementation alternatives for the various pro-
gram statements being part of the Pedestrian Detection Systems execution. 26

7.1 Ir: Instructions executed Dr: Memory reads Dw: Memory writes I1mr: I1
cache read misses (instruction wasn’t in I1 cache but was in L2) I2mr: L2
cache instruction read misses (instruction wasn’t in I1 or L2 cache, had
to be fetched from memory) D1mr: D1 cache read misses (data location
not in D1 cache, but in L2) D2mr: L2 cache data read misses (location
not in D1 or L2) D1mw: D1 cache write misses (location not in D1 cache,
but in L2) D2mw: L2 cache data write misses (location not in D1 or L2) 30

xiv

LIST OF TABLES xv

Chapter 1

Introduction and Motivation

Electronic devices of different shapes and sizes are a vital part of today’s society. With
ever increasing demands from the market, that require both increased performance as
well as more advanced functionality from the products, the need to increase the effi-
ciency in the design process for these devices has become increasingly important for
developers and producers. By increasing the efficiency in the design process one can im-
prove the products, thus enabling improvements in areas such as medical equipment for
health concerns, automotive technology for the sake of traffic safety, and generally also
other areas where electronic devices are used. The efficiency increase is also important
to enable manufacturers to keep their position in what has become a tough and highly
competitive market. To accommodate the market demands, several techniques for in-
creasing the efficiency have been developed, and one particularly well regarded set of
techniques are some of those derived from the Hardware/Software (HW/SW) co-design
philosophy. HW/SW co-design is a design philosophy that focuses on improving the ef-
ficiency of traditional design processes and also the co-operation between the hardware
and software parts of electronic systems.

The traditional design process for developing electronic systems has usually been con-
sidered sequential and time consuming, with few design processes being conducted in
parallel. This has resulted in increasing cost and length of design schedules. The tradi-
tional design processes are thus not considered suitable for the modern market demands
in the electronics industry. Additionally, the complexity of modern systems tends to
grow with each new generation of technology, and it also seems like each new generation
replaces the old one more quickly than before [20]. With all these new challenges, a new
approach to the design philosophy behind electronic system development is considered
necessary.

A HW/SW co-design process utilizes the synergy between hardware and software to im-
prove the co-operation between the two. With the invention of the Field Programmable
Gate Array (FPGA), the available target platforms on which the system functions can
be mapped increased dramatically [25]. In an attempt to improve central factors in the
design process such as the efficiency, cost, and length of design schedules, the HW/SW
co-design philosophy has been developed. The aim with this philosophy is to decrease
the length of design schedules, the design cost, and also the chip size, among other

1

2 CHAPTER 1. INTRODUCTION AND MOTIVATION

factors also involved in the design process for electronic systems. The goal with this
design philosophy is to enable designers to design systems in a shorter amount of time,
which in turn is believed to result in a shorter time-to-market for their systems.

1.1 Goals of the thesis

The goals of this master thesis were to evaluate and analyze the Pedestrian Detection
System from a HW/SW co-design perspective. The thesis is a continuation from a
previous specialization project with the same topic. The results from the specialization
project concluded that no new implementations were needed, and the goal with this
thesis is thus to conclude on whether further studies into the system will yield a different
result.

1.2 Overview of report Chapters

This section will provide an overview of the rest of the report Chapters.

• Chapter 2: Theory and Background is the first major Chapter in this report.
This Chapter will provide the reader with a detailed overview of various aspects of
HW/SW co-design. It will go into the major factors involved when one attempts to
use the HW/SW co-design philosophy to design a system, and also the challenges
one is usually faced with when making design choices, in the form of necessary
trade-offs. This section will be used as basis for the theoretical groundwork behind
the development of the design methodology.

• Chapter 3: Previous Work on HW/SW Co-design Methodologies contains in-
formation of notable previous work and contributions performed on the topic of
HW/SW co-design, that can be considered relevant to the Pedestrian Detection
System. It focuses on the work and contributions most relevant to the selected
methodology described in this report, thus giving a brief historic overview of the
previous development on the topic.

• Chapter 4: Pedestrian Detection System will describe the system that the design
methodology is developed for. The Chapter will give a general overview of how
the system is built up, what it was developed for, and also generally how it works.

• Chapter 5: Evaluation Tools will describe how the HW/SW co-design investiga-
tion was carried out, in the form of the methods or tools that were used. It will go
into detail on each tool and thus provide some general information about them.

• Chapter 6: Suggested Design Methodology is where the selected design method-
ology will be described and reasoned for. Parallels to the Theory and background
Chapter will be drawn, and thus the various factors that will be considered in the
methodology will be described in terms of how they will affect the implementation
choices.

• Chapter 7: Results of Design Methodology is the Chapter that will describe
the results of the HW/SW co-design investigation into the Pedestrian Detection

1.2. OVERVIEW OF REPORT CHAPTERS 3

System and thus reveal the implementation choices. It will also go into detail on
how they were made and the reasons behind the choices.

• Chapter 9: Discussion will discuss any uncertainties involved in the implemen-
tation choices, and will further discuss possible uncertainties or issues with the
measurements and how this has affected or not affected the end result.

• Chapter 10: Conclusion is the final content section. It sums up the project
results and elaborates and concludes on how the results match the assignment
description. It will also go into what can possibly be considered for future work.

• References features all the references used in this project report.

• Appendix provides the figures and tables that were deemed too big to be placed
in the main part of the report.

Chapter 2

Theory and Background

2.1 Background

Ever since the creation of the first known electronic components, believed to be the
creation of the first diode by Fleming in the year of 1904 [11,12], electronic devices have
gradually filled more vital roles in various areas of society. Notable examples of these
areas are information broadcasting, signal- and data processing, process control, as well
as safety systems and medical applications. Since the 1960s and onwards, embedded
systems in particular have undergone extensive developments in design and functional-
ity, and have gradually seen more use in several areas of society [17].

According to W.Wolf in [23], the term Hardware/Software co-design was introduced
in the beginning of the 1990s. The term was developed for the purpose of creating a
common term for what he refers to as ”a confluence of problems in integrated circuit (IC)
design” [Wolf, 2003, p. 38]. As further stated by Wolf in [23], the HW/SW co-design
field began to take shape when designers experimented with combining microprocessors
and standard hardware components on circuit boards.

As quoted from [4]: ”The Minuteman intercontinental ballistic missile was the first
to use an embedded computing system, and was built in 1961 for the US Air Force.
This embedded system was the Autonetics D-17 guidance computer”. The Autonetics
D-17 guidance computer is illustrated in Figure 2.1. As stated in [17], this computer
was the first ever known embedded system to have been produced in large quantities.
Following a series of additional usage of embedded systems for military- and aviation
purposes, different industries began to utilize embedded systems for other purposes from
the beginning of the 1990s.

As mentioned above, it was around this time that the HW/SW co-design term was
introduced. As of the beginning of the 21st century, embedded systems as well as sev-
eral other kinds of electronic systems have become increasingly involved in the lives
of human beings from day to day. Notably with the introduction of a wide variety of
electronic devices united under the common term Internet of Things (IoT), electronic
systems, and particularly mobile and embedded systems, are increasingly taking part in
areas of everyday life [24].

4

2.1. BACKGROUND 5

Figure 2.1: Photograph of the Autonetics D-17 guidance computer, mounted on a Min-
uteman intercontinental ballistic missile. It is believed to be the first ever embedded
system produced in large quantities. [3]

As previously described, HW/SW co-design is a term that was developed in the elec-
tronic system design industry to describe a set of challenges in IC design. It is also
described by Ha & Teich in [13] as a technology field, and as quoted, ”strives to achieve
system-level design objectives by leveraging the synergy between hardware and software
through their concurrent design” [Ha & Teich, 2017, p. 3].

The term can also be thought of as a design philosophy, seeing as it is often used
to develop new and improved design methodologies for electronic systems. Aside from
focusing on exploiting the synergy of hardware and software parts in electronic systems,
HW/SW co-design methodologies are characterized by attempts to design for the best
trade-offs based on various design attributes characteristic of hardware and software [13].
The underlying intention behind a HW/SW co-design process is to improve the efficiency
in various areas of traditional design processes to reduce design time, increase product
quality, and lower production cost. A generalized design process for HW/SW co-design
is given in Figure 2.2.

6 CHAPTER 2. THEORY AND BACKGROUND

Figure 2.2: Flow chart for generalized HW/SW co-design process.

Since this work was performed, HW/SW co-design has evolved into a well established
field [19]. Based on several aforementioned key factors, or design principles, the field has
gradually seen more use in the industry, notably in the form of Field-Programmable Gate
Arrays (FPGA) as well as in several other research projects conducted in the field [23].
Over the years, the HW/SW co-design term has evolved and is now characterized as
a mainstream technology field in the area of embedded systems, especially with the
introduction and development of the FPGA boards.

2.2 Traditional design processes for electronic sys-

tems

A simple model for the traditional design process for electronic systems is illustrated in
Figure 2.3. As illustrated, a traditional design process begins with identifying the spec-
ifications and requirements of the system, before selecting the appropriate algorithm
according to the system’s functional specification. The design process then proceeds
with the decision on the hardware architecture, based on the functional requirements,
as well as a manual partitioning process for HW and SW. The steps that however
separate the traditional design process from the HW/SW co-design approach is the de-
velopment phases of the hardware and software parts. As illustrated, these steps are
carried out separately, and the development is according to [13] often performed with
two engineering teams that work on either developing the hardware or the software by
themselves.

As illustrated in 2.3, the decisions for type and design of hardware architecture is the
first step in the implementation phase. This results in the hardware being fixed be-
fore the system software is developed and tested, which removes the opportunities for

2.3. THE HW/SW CO-DESIGN APPROACH 7

co-simulation of hardware and software to improve the synergy between them. Further-
more, this decision also results in increased design time schedules and economical cost
for the designers, in the event that the design teams encounter implementation chal-
lenges that necessitate a re-design of the hardware or software to enable a better system
integration for either the hardware or software.

Figure 2.3: Model or flow chart for a traditional design process for electronic systems.
[13]

2.3 The HW/SW Co-design approach

The aforementioned encounter of implementation challenges serves as a motivation for
employing HW/SW co-design techniques. A typical design methodology for HW/SW
co-design is illustrated in Figure 2.4. As illustrated, a typical HW/SW co-design process
begins with a system description or rather a description of the system tasks or functions
for the system to be designed, and also a selection of hardware and software architecture
platforms on which the system functions are to be implemented. This phase in the design
process is followed by the system mapping or partitioning phase, where the functions of
the system are mapped onto the various hardware and software architectures, creating
new hardware and software implementations for the system. The third and final phase
is the system is the

8 CHAPTER 2. THEORY AND BACKGROUND

Figure 2.4: Model or flow chart for a HW/SW co-design process for electronic systems.
[13]

2.4 Design process for HW/SW Co-design

The goal with a HW/SW co-design process is to co-ordinate the design of hardware and
software, ultimately seeking to avoid the design challenges usually found with traditional
design processes in the industry [14].

The fundamental goals of HW/SW co-design can be narrowed down to the following
topics:

• Shortening design schedules

• Shortening time-to-market

• Reducing cost of design

• Improving product quality

2.5 HW/SW Partitioning

As mentioned in the previous Section, the different design processes performed with the
HW/SW co-design philosophy all involve some kind of system mapping after the system
functions and architectural components have been established. This process is about
mapping the objects and components together, with the resulting implementations be-
ing in either hardware or in software, or in the form of an interface between the two.
This mapping process is called HW/SW partitioning. The purpose with this step is to
decide whether to make a hardware implementation or a software implementation for
all the system functions to be implemented. [20].

2.5. HW/SW PARTITIONING 9

According to [5], the ideal partition tool for hardware and software automatically pro-
duces a set of high-quality partitions within a short and predictable time frame for
computation. The process rests on a solid foundation of practical and theoretical in-
sight into the various alternatives of hardware and software components available for
implementation [5]. Generally, this decision making process considers all the attributes
of the different system functions, and concludes on an implementation choice based on
the best fit of the available architecture components, as well as constraints from key
HW/SW co-design factors such as design complexity, performance, energy efficiency,
and reliability [18,20]. From these factors, the choice of whether to implement in hard-
ware or in software is made from different attributes of these factors [20]. The attributes
and constraints that favor hardware or software implementations are all dependent on
the system to be designed, but can to some extent be divided into general categories.
These categories are listed below.

Attribute Implementation alterna-
tive

Suitability/aptitude for parallel implementa-
tion

Hardware

Large amount of excessive software Hardware

Small amount of calculations Hardware

High speed requirement Hardware

High desire for energy efficiency Hardware

Suitability/aptitude for sequential imple-
mentation

Software

High level of complexity Software

Large amount of calculations Software

Low speed requirement Software

Energy efficiency less important Software

Table 2.1: Overview of the optimal implementation alternatives for the various program
statements being part of the Pedestrian Detection Systems execution.

As stated by M. B. Abdelhalim et al. (2011) in [5], programmable software parts
of embedded systems are often less costly and time consuming to develop and improve

10 CHAPTER 2. THEORY AND BACKGROUND

than the application specific hardware parts of the system.

Following from this, the various design factors will be elaborated on in greater detail in
the following Subsections below.

2.5.1 Parallel or Sequential solution

A fundamental decision involved in the system design is whether the functionality has
an aptitude for being carried out in a parallel or a sequential manner. Implementation
wise, a hardware implementation is well suited for parallel execution, while a software
implementation is more suited for sequential execution of tasks [20]. For parallel imple-
mentations, hardware implementations can feature redundant components and circuits,
and can thus easily be designed in a way that allows for parallel execution of tasks [20].
The trade-off in this regard is the added space requirement for the system. Running
tasks in parallel in software is more complicated, and often requires dedicated processes
for scheduling the system tasks in what is called a concurrent execution [21]. Issues
such as interference, race conditions, deadlocks and livelocks are all fairly common in
concurrent execution of software, in addition to the added design time necessary to
implement concurrent execution of tasks [8]. It is therefore simpler to run a software
implementation in a serial manner on a single CPU core. Running the implementation
on a single core however leads to more concentrated accumulation of heat, which will
require more cooling.

2.5.2 Level of complexity

Design complexity is another important factor. Producing hardware is expensive, and
the more complicated a hardware implementation becomes, the more space it usually
requires from the system. The decision making in terms of design complexity therefore
involves much of the same considerations as when deciding from an abstraction level
point of view. Solving complex system tasks is usually far easier to do with lines of
code, and only takes up virtual space in registers and memory instead of demanding big
physical footprints.

Level of abstraction is another important and fundamental factor in HW/SW co-design.
All tasks meant to be implemented have a level of abstraction to them that normally
results in a software implementation being more favorable the higher the abstraction
level becomes. Implementing a task with a high abstraction level in hardware, such
as for instance a complicated mathematical calculation, might result in the hardware
becoming complicated and requiring a larger footprint, thus increasing design cost and
space requirements for the system. Choosing a software implementation for a task fea-
turing complicated calculations is far less complicated, as tasks can be implemented
simply with the use of lines of code instead of big and complicated physical circuits.

Software libraries also often contain extensive amounts of functionality options, and
a programmer also usually has several software languages to choose from that suits
different abstraction levels of programming. In general, one could say that unless the

2.5. HW/SW PARTITIONING 11

task is about transmitting signals or performing very simple calculations, a software
implementation is the most optimal choice, if not the only choice. As further support
to this claim, some typical operations done in software such as making lists or arrays,
and performing manipulations in the form of adding and deleting elements, is more or
less impossible to accomplish with a HW implementation alone.

(KOMMENTAR: Her og andre steder mangler det en del referanser, da det er et resultat
av at jeg prøvde å bare f̊a noen ord p̊a papiret. Kan være noe av det er feil ogs̊a.)

2.5.3 Requirements for performance/execution time

As mentioned before, the speed requirements or time constraints demanded from the
task is, when considered on its own, a requirement that almost always leads to a HW
implementation, due to the aforementioned nature of hardware. Proof of this statement
is given in Figure 2.5.

Figure 2.5: Various cryptographic implementations in software and hardware proposed
from the year 2003 to 2008. [20]

2.5.4 Energy efficiency

Energy efficiency is one of the biggest and most important factors of HW/SW co-design.
When designing a system to improve this factor, one can decrease heat dissipation or
heat accumulation in the whole system, making the cooling demands lower. One can also
improve the potential system performance because of a higher performance threshold due
to the lower heat accumulation, and also improve battery life for mobile applications
due to the smaller power consumption. In addition, one is also able to use smaller
batteries that have a smaller footprint, thus taking up less space and leaving room for
more parts on the circuit boards or similar. In terms of implementation choice, a HW
implementation is generally favored due to the spreading of heat dissipation over several

12 CHAPTER 2. THEORY AND BACKGROUND

locations rather than one concentrated location. By implementing in SW, all the work
is usually performed by a single processor regardless of the amount of cores it has. This
concentrates the heat accumulation and thus increases cooling demands. Despite this
fact, implementing smaller and less CPU demanding tasks in SW might consume less
power than a corresponding HW implementation due to the HW often having a standby
current. This is in the context of situations where only very low amounts of power are
tolerated.

2.5.5 Required reliability in design

Reliability concerns are a more separate topic from the others. According to [16], relia-
bility is defined as ”The probability that a required item will perform a required function
without failure under stated conditions for a stated period of time.” [16].
By this definition, one could state that a reliable system seldom fails. Basing an imple-
mentation choice on reliability is likely to result in a difficult decision making process
with many factors to consider. In terms of potential for creating redundancy in the sys-
tem, both a HW implementation and a SW implementation are viable options. Creating
redundancy in hardware will often simply be solved by creating more parallelism in the
hardware, meaning using more physical space by using more components than strictly
necessary, which ensures the likelihood of continued task accomplishment even if certain
components cease to function. Creating redundancy in software might be more compli-
cated, but will probably demand less physical space in return. To make redundancy in a
SW implementation one could design the software to feature backup recovery, meaning
the executing program has a backup program that monitors the main program and takes
over as the main program in the event of failure of the main program, and also in the
process spawns a new backup program. Another way to design for redundancy in SW
could be to use multiple registers, memory, CPUs, etc, and in the process also design
the software to use all the resources indiscriminately. In the end, the reliability of the
system is likely to depend on what is most cost efficient and best suits the physical space
requirements for the system.

2.6 Cost function

As mentioned before, designing and applying a well thought out cost function to guide
the design [15] is important in a HW/SW co-design methodology. The cost function is
created as a mathematical equation based on functions presented in the work of [5] and
[6], and contains the various design factors that are by the designer considered important
in making the design as efficient as possible. The design factors are represented as
addends in a large equation, where each design factor is constrained by a threshold value,
and represented as a percentage of cost for the given implementation. For an optimally
designed cost function, the computation result of the function provides a calculated
cost that is close to the actual cost for the chosen system function and architecture
component in question.

2.7. CO-SIMULATION OF HW AND SW 13

2.7 Co-simulation of HW and SW

A major technique used for shortening the design schedules and reducing cost is using co-
simulation of HW and SW from the beginning of the design process. This is achievable
through the use of modern hardware simulators, which have become accurate enough to
replicate physical hardware testing to a large extent. Major benefits with this approach
is the ability to handle design errors and other hardware related problems before the
actual hardware is produced [9].

Figure 2.6: Illustration of an applied HW/SW co-design methodology for a SoC imple-
mentation [10]

14 CHAPTER 2. THEORY AND BACKGROUND

2.8 FPGA

With the development of the Field-Programmable Gate Array, or FPGA for short, a new
and simpler way of designing systems in HW/SW co-design arrived. [23] The FPGA plat-
form, while differing in characteristics and design solutions depending on manufacturer,
is by some viewed as the chip for which cosynthesis was created [23]. The architecture of
the chip is built to be programmable, meaning it is well suited for HW/SW partitioning
and thus for HW/SW co-design.

The FPGA circuit boards are capable of being programmed and re-programmed af-
ter production through the use of programmable on-board hardware resources [22]. The
FPGAs feature many similarities to fixed specialized hardware, with features such as
”application-tailored parallelism”, ”low power-consumption” and ”integration advan-
tages” [Teubner & Woods, 2013, p. 5]. Despite the fact that they also exhibit charac-
teristics associated with simulated hardware such as increased power consumption and
reduced clock speed, it is usually concluded that the benefits of an FPGA implementa-
tion outweigh the drawbacks in most cases.

Chapter 3

Previous Work on HW/SW
Co-design Methodologies

This chapter will describe various HW/SW co-design methodologies presented in vari-
ous publications the last three decades since the term was first introduced. The aim of
this chapter is to illustrate the variety of HW/SW co-design methodologies that have
been developed to illustrate the various ways in which the HW/SW co-design techniques
can be employed. Notably the methodology described in [5] by M. B. Abdelhalim et
al. (2011) has been used as inspirational material for the selection of the appropriate
design methodology described in Chapter 6.

3.1 A Hardware-Software Codesign Strategy for Loop

Intensive Applications

The generation of a Loop Hierarchy Tree LHT) was performed by Zhang & Kandemir
in 2009 [25] in their work on developing a HW/SW co-design methodology for loop
intensive applications. The authors believe they were the first to utilize a LHT in a
HW/SW co-design methodology. The LHT is generated from an intermediate code rep-
resentation, for the purpose of carrying out a co-design exploration through what is
called a branch-and-bound search. The end goal for Zhang & Kandemir was to create
a HW/SW partitioning that would reduce the delay in execution for an application to
a minimum, while satisfying pre-defined constraints on hardware area.

This particular work’s focus on targeting and improving the efficiency of applications
that are loop and data intensive is one of the reasons it was included in this chapter.
The mapping tree bears a close resemblance to the call graph representation generated
by KCachegrind in the thesis project for the Pedestrian Detection System. Further, the
mapping tree is generated from a breadth-first search through the LHT, which in a way
resembles the way in which the call graph view in KCachegrind is generated from the
Callgrind output file from the PDS.

15

16CHAPTER 3. PREVIOUS WORK ON HW/SW CO-DESIGN METHODOLOGIES

3.2 An integrated high-level hardware/software par-

titioning methodology

A publication presented by M. B. Abdelhalim et al. in the year 2011 [5] proposed
a HW/SW co-design methodology developed with the use of the Particle Swarm Op-
timization (PSO) technique for partitioning the hardware and software parts. The
methodology also featured modeling of the hardware with two so-called ”extreme imple-
mentations” (M. B. Abdelhalim et al., 2011, p. 19) using different hardware scheduling
alternatives. The system functions are determined with the PSO technique. The target
architecture is FPGAs.

The PSO technique utilized in this methodology was based on a previous work published
in 2006 [7], which is believed by the authors to be the first ever HW/SW co-design work
to employ the PSO technique.

The partitioning phase for this methodology was

1. Application domain: whether the partitioning algorithm is “multi-domain” (con-
ceived for more than one or any application domain, thus not considering par-
ticularities of these domains and being technology-independent) or is “specific
domain” algorithm.

2. The target architecture type.

3. Consideration of the HW/SW communication costs.

4. Possibility of choosing the best implementation alternative of HW nodes.

5. Possibility of sharing HW resources among two or more nodes.

6. Exploitation of HW-SW parallelism.

7. Single-mode or multi-mode systems.

Chapter 4

Pedestrian Detection System

As referred to in previous chapters, the objective of this master thesis project has been
to develop a HW/SW co-design methodology for a Pedestrian Detection System. Since
changing or altering the application was not a part of this thesis project, the whole
system remains unchanged as the result of previous work performed by other or former
project participants. The system used for the basis of this project’s results, consists of
a single code repository that is meant to be compiled and run on the Linux computer
operating system. Further details about the system are outlined in the rest of this sec-
tion.

As mentioned above, the system is created from a single open sorce code repository.
As stated by the creator, the repository contains code that has been extracted from a
much larger code base. The system therefore contains code that has been developed
specifically for research purposes, meaning that it has been modified from the original
release to be able to function separately without the rest of the original code base. The
system has been in development for more than four years, with the focus being placed
on ”easy exploration of multiple variants” and ”computational efficiency”. Improving
the compactness of the code has therefore been a secondary focus, thus one can expect
to find some areas with potential for improvement at several places in the code.

The system was made to be compiled on two hierarchical levels, i.e. the first level
had to be compiled first to enable one to compile on the second level. The first compila-
tion level only makes use of what is referred to as ”CPU only code”, which is code that
uses the computer’s CPU alone to run the test applications. The second level uses what
is called ”test time code” i.e. it contains code that makes use of the CUDA platform for
parallel computing developed by the Nvidia corporation, in addition to the CPU code
from the first level.

The results presented in this report are all derived from the ”CPU only code”. There
are two reasons for this, with the first being that the student decided that using code
made for a parallel computing platform to do a HW/SW co-design investigation would
make identifying the order of execution for the different processes harder.

The system compiled with CPU only code contains several test applications that il-

17

18 CHAPTER 4. PEDESTRIAN DETECTION SYSTEM

lustrate the functionality of the Pedestrian Detection System in different ways. These
test applications are the ones used for generating the results presented in this report,
and are in turn also the platforms that the HW/SW co-design investigation was carried
out on, based on the proposed HW/SW co-design methodology. Figure 4.7 and Figure
4.8 display excerpts of screenshots from running the applications ground estimation and
stixel world respectively.

4.1 Code structure

The Pedestrian Detection System is a software-only system, with multiple , and thus
contains a substantial amount of program files. The amount of program files inherent
in the PDS is rougly estimated to be slightly less than 3000, and the programming lan-
guages used in the files are mostly written in C++, C and Python, complemented with
header files. Some other program file types exist as well, notably CMake files used for
building, packaging and testing software [1], and also standard Makefiles and other files
used for compilation purposes.

The profiling was collected from various runs of the different modes of the PDS, namely
the ground estimation and stixel world modes. The application runs with Callgrind and
cache simulation enabled produced various kinds of data that which was presented in
KCachegrind. The Call Graph feature of KCachegrind presented the tree structure of
the various kinds of functions and statements that were part of the application run.

FOllowing are illustrations of various features of the Pedestrian Detection System:

Figure 4.1: High level flow of Pedestrian Detection Algorithm

4.1. CODE STRUCTURE 19

Figure 4.2: Flow chart for the main program loop. It passes the images selected for
detection to the detector and initializes the detection.

Figure 4.3: Flow chart for the Set Image subtask. Reads the input image and computes
the scaling of the detectors.

Figure 4.4: Illustration showcasing the most relevant parts of the PDS.

20 CHAPTER 4. PEDESTRIAN DETECTION SYSTEM

Figure 4.5: TRENGER INFO HER, sjekk kode eller bitbucket-repo.

Figure 4.6: Displays general flow employed by the classifier.

4.1. CODE STRUCTURE 21

Figure 4.7: Run of the application ground estimation, loaded with the configuration file
test.config.ini.

Figure 4.8: Run of the application stixel world, loaded with the configuration file
fast.config.ini.

Chapter 5

Evaluation Tools

This Chapter provides an overview of all the tools used for performing the HW/SW
co-design analysis in the thesis.

5.1 Profiling and energy measurements

A central part in developing the design methodology was spent performing program
profiling on the Pedestrian Detection System. The profiling was carried out with a
selection of tools that are part of the Valgrind tool suite described below, as well as a
separate profiling data visualization tool called KCachegrind.

5.1.1 Valgrind tool suite

The Valgrind tool suite was used for measuring the program thorugh its various appli-
cations while it was running, and for producing the corresponding profiling output data
files.

Callgrind

The Callgrind tool is, as previously stated, a tool that a profiling output was used for pro-
ducing the callgraph output files that were hence presented visually by the KCachegrind
tool. As mentioned, Callgrind is a profiling tool that is part of the Valgrind tool suite.
It is built and run in the Linux operating system and is enabled and executed along with
the program in the Linux terminal with additional arguments. It runs along with the
program being profiled. While the program is running, Callgrind monitors the following
data:

• Ir: Instruction Fetch, meaning I cache reads and instructions executed.

• Dr: Data Read Access, meaning D cache reads in the form of memory reads.

• Dw: Data Write Access, meaning D cache writes in the form of memory writes.

• I1mr: L1 Instruction Fetch Miss, meaning cache read misses and that instruction
wasn’t in I1 cache but was in L2.

• D1mr: L1 Data Read Miss, meaning D1 cache read misses where data location
was not in D1 cache, but in L2.

22

5.1. PROFILING AND ENERGY MEASUREMENTS 23

• D1mw: L1 Data Write Miss, meaning D1 cache write misses where location not
in D1 cache, but in L2.

• ILmr: LL Instruction Fetch Misses.

• DLmr: LL Data Read Misses.

• DLmw: LL Data Write Misses.

• L1 Miss Sum: L1m = I1mr + D1mr + D1mw

• Last-level Miss Sum: LLm = ILmr + DLmr + DLmw

• Cycle Estimation: CEst = Ir + 10 L1m + 100 LLm

As presented, Callgrind monitors all the successful and unsuccessful instruction calls
during the execution of the chosen program application. It was used for attempting to
uncover the functionality of the Pedestrian Detection System, and also to pinpoint all
the unsuccessful operations and loop-intensive program parts involved in the program
execution.

When a program was executed with Callgrind enabled, the experience was that the
program run time was slowed down, presumably due to the added processing and mon-
itoring involved. During the project, the amount of experienced run time delay varied
quite a lot, and seemed to depend on different factors, among them the amount of times
the program had been run previously with profiling enabled.

5.1.2 KCachegrind

KCachegrind is a presentation tool for profiling data that supports data files from a
number of different profiling tools. After receiving a profiling output file, it presents the
data in a detailed user interface, as depicted in Figure 5.1.

Figure 5.1: Picture of the KCachegrind program (original full resolution available in
ZIP-file).

24 CHAPTER 5. EVALUATION TOOLS

The KCachegrind tool was used for generating a visual call graph for the execution of
the Pedestrian Detection System, as illustrated partly in Figure 5.1 and in detail in
Figure 5.2.

Figure 5.2: Call graph output image generated by KCachegrind, from a run of
ground estimation with the Callgrind tool and cache hit/miss count enabled. Full reso-
lution in ZIP-file.

Chapter 6

Suggested Design Methodology

This Chapter will describe the selected design methodology for the Pedestrian Detec-
tion System. The material used for developing this methodology was primarily ex-
tracted from the various research work described in Chapter 3: Previous Work, as well
as from the basic theoretical background material described in Chapter 2: Theory and
Background. The methodology was further designed around the Pedestrian Detection
System, and later applied on the system to produce suggestions for an improved design
from a HW/SW co-design perspective. The results from the appliance of the method-
ology are described in Chapter 7.

In addition to the HW/SW co-design principles used as basis for developing the design
methodology, the environment in which the Pedestrian Detection System is intended to
operate in also influenced the design of the methodology. The PDS is intended to oper-
ate in cars, which meant concerns for overheating, physical space restrictions, and also
response time to camera inputs were factored into the evaluation criteria as well. With
the system’s purpose being to spot pedestrians appearing in front of the car, for the
sake of improving the traffic safety for pedestrians as well as the driver and passengers
of the car. Incorporating this perspective into the methodology was thus considered a
necessary course of action.

6.1 Technical approach

As mentioned, the Valgrind tool suite distribution [2] was used for the profiling per-
formed on the system to uncover the PDS’ main functions, along with the KCachegrind
program for interpreting and presenting the profiling data in a more orderly fashion.

6.2 Code attributes leading to a hardware or soft-

ware implementation

The program code being executed when running the Pedestrian Detection System in
different modes contained several types of common program code statements whom are
included in Table ??. To make a proper HW/SW co-design evaluation of the program
code, these statements were evaluated based on their execution mechanics, the amount

25

26 CHAPTER 6. SUGGESTED DESIGN METHODOLOGY

of instruction calls they performed during run-time, and also the precentage of time
spent executing the statements in relation to the execution time as a whole.

Code functions Implementation alterna-
tive

If/else tests Hardware

Case structures Software

While loops Software

Mathematical operations Hardware

Arrays Hardware

Table 6.1: Overview of the optimal implementation alternatives for the various program
statements being part of the Pedestrian Detection Systems execution.

6.3 Target architecture components

CPU
Memory
Xilinx Design tools for FPGA

6.4. HW/SW PARTITIONING 27

6.4 HW/SW Partitioning

6.4.1 Relevant design factors

Energy consumption: Because of the expected scope of work for this thesis, with lim-
ited access to optimal measurement tools, the measurements of energy consumption was
handeled with a 1. order model, stating that the amount of time spent executing a task
provides a rough estimate of the overall energy spent to execute the task.

Design complexity: Viewed in the sense of chip area, maybe not the amount of op-
erations involved.

Abstraction level

Aptitude for either parallel or sequential implementation

Design cost

6.4.2 Granularity depth

The granularity depth used for evaluating the attributes of the PDS was largely decided
from the granularity depth available from the profiling tools. The call graph view from
KCachegrind, illustrated in Figure 5.2, was set to present all function calls available
from the profiling data. The configuration was thus set to:

• Caller depth unlimited

• Callee depth unlimited

• Min.Node cost 1 %

• Min.Call cost 10 % of node

6.4.3 Evaluation criteria for system functions

The evaluation criteria stated in this Subsection describe the criteria used for evalu-
ating the various tasks involved in the call graph view generated from the Callgrind
and KCachegrind tool sets. The purpose of this set of criteria is to create a judgement
module for the various system functions that the Pedestrian Detection System contains,
which is meant to decide whether or not certain functions should be considered for an
alternative implementation. The criteria are developed primarily from a HW/SW co-
design perspective, but also from the perspective of the environment which the system
is to be operating in. The reason for the product environment perspective is the . The
criteria are as follows:

HW/SW co-design perspective
-Energy: first order model; run time/instruction calls and data r/w operations
-HW complexity: footprint/chip area
-SW complexity: heavy use of SW functions and statements (if/else, case structures, for

28 CHAPTER 6. SUGGESTED DESIGN METHODOLOGY

and while loops)

Product environment perspective
-Low heat development
-Low power requirement
-Safety: if fails, fails to a safe state where user is notified of failure. Must then not be
used.

Profiling perspective
- Ir, Dr, Dw counts, used to indicate run time or program demand/load/cost, the more
it is the stronger
- Ir, Dr, Dw misses, the more the worse

As outlined in Chapter 2, the initial stage of a design process for a system developed
with HW/SW co-design principles involves discovering and searching through the vari-
ous components that the system is to contain, which in this case are the various system
functions that are part of the program execution of the PDS. A method for searching
through the various software-based system functions of the PDS was therefore devel-
oped. This method is formulated as such: 1. By using the Callgrind profiling tool suite
for creating an output file, and then using the KCachegrind UI-representation tool to
enhance the readability and presentation of the data, a call graph was generated with
KCachegrind from the Callgrind output data with a granularity level for instruction
fetch cost down to 1 % of the total amount of instructions executed during a program
run.

6.4.4 Cost function

Cost = 100∗

A ∗ Complexitycost

ConstrainedComplexityCost
+ B ∗ Run− timeCost

ConstrainedRun− timeCost
+

C ∗ EnergyCost

ConstrainedEnergyCost
+

D ∗ PowerDissipationCost

ConstrainedPowerDissipationCost
+ E ∗ Productioncost

ConstrainedProductioncost

(6.1)

The design of the cost function used for this methodology was inspired by the work of
Abdelhalim et al.(2011) in [5] and [6]. The function is composed of the following design
factors:

• Complexity cost

• Run-time cost

• Energy cost

• Power dissipation cost

• Production cost

Chapter 7

Results of Design Methodology

Skal omfatte resultatene fra bruk av designmetodikken p̊a systemet. P̊a grunn av dette
ble det gjort s̊ann, p̊a grunn av dette ble det gjort slik. This Chapter describes the
measured results from applying the selected HW/SW co-design methodology on the
Pedestrian Detection System.

Factors to note before reading the results are as follows:

• The PDS was designed to be compiled in incremental steps. The first step provides
the basic allows the system to run at all, and provides. The next compilation steps
introduce more features that are optional. These features are as such not required
for running the program, but are by the designers claimed to be was compiled
with what the

29

30 CHAPTER 7. RESULTS OF DESIGN METHODOLOGY

7.1 Profiling results

7.1.1 Callgrind data

Function name Ir counts
Dr
counts
Dw
counts

I1mr

I2mr

D1mr

D2mr

D1mw

D2mw

???:0x0000000000024e70 788,103,340
290,361,960
75,283,480

640 576,050 672,010

???:0x000000000000ad10 528,811,917
56,461,526
20,327,928

168 35,169 1,479

???:0x0000000000007ec0 359,046,579
92,344,890
20,736,076

682 540,454 6,875

Funksjon nr 4 13935 277,867,551
39,360,464
350,964

368 422 19,534

Table 7.1:
Ir: Instructions executed
Dr: Memory reads
Dw: Memory writes
I1mr: I1 cache read misses (instruction wasn’t in I1 cache but was in L2)
I2mr: L2 cache instruction read misses (instruction wasn’t in I1 or L2 cache, had to be
fetched from memory)
D1mr: D1 cache read misses (data location not in D1 cache, but in L2)
D2mr: L2 cache data read misses (location not in D1 or L2)
D1mw: D1 cache write misses (location not in D1 cache, but in L2)
D2mw: L2 cache data write misses (location not in D1 or L2)

As illustrated in the tables above, the profiling tools yield counts of instructions ex-
ecuted, data reads and writes, and also the amount of times these operations were
unsuccessful. This data was used in combination with other types of data to measure
the amount of time spent within each function of code.
With the use of the ”Call Graph” view from the KCachegrind tool, the functions con-
taining the most cost in terms of the amount of instruction calls they contained were
selected from the final elements of the call tree of the detection system. This was due to

7.1. PROFILING RESULTS 31

them having no calls to other functions, meaning that their cost did not become a sum
of the costs associated with other called functions. The functions are listed in Table ??.

Chapter 8

Discussions and future work

8.1 Applicability for other applications

With the methodology being very specific in its nature, it is unlikely that it will be
applicable for many other systems. However, it might be applicable for other software
only systems due to its sole focus on software functions.

8.2 Delay from running with callgrind

As mentioned earlier in the report, running the applications for the Pedestrian Detection
System with the callgrind profiling tool severely increased the run time of the system.
Both the ground estimation and the stixel world applications were measured to run for
1 second without any measurement tools enabled, but while the ground estimation ap-
plication spent 56 seconds with callgrind enabled, stixel world spent approximately 10
minutes with the same callgrind configuration. The reason behind this is unclear, but
it clearly shows that the two applications are more different than they could otherwise
be considered to be. When comparing the annotated callgrind outputs from both ap-
plications, it can be seen that the ground estimation output is severely more detailed,
containing more than ten times the amount of lines of text than the output from the
callgrind run with stixel world. It is the student’s belief that this might indicate that
callgrind could have some difficulty with properly measuring the instruction calls and
cache hits/misses from stixel world. Aside from this issue, there are few observable
differences between the two applications.

32

Chapter 9

Conclusions

The purpose and goals of this thesis wereto select and describe a HW/SW co-design
methodology based on an extensive literature study and early investigation into the
system code. The student was also tasked with simulating the system with design tools
suitable for Xilinx FPGAs, and also if time allowed to implement the system on an
actual FPGA evaluation board. Neither of these two tasks were accomplished by the
student due to time constraints.

The results from the evaluation of the ground estimation application points to leav-
ing most of the application unchanged, albeit with some suggested changes to a more
concurrent execution of the system.
The results from the evaluation of the stixel world application also points to leaving
most of the application unchanged, but with more suggested changes to a more concur-
rent execution of the system.
With the results of the evaluations elaborated on, the conclusion is that the Pedestrian
Detection System works fairly well in its current state, as both of the tested applica-
tions performed well without any profiling tools enabled. It is however a bit unknown
what could be the cause of the severe amount of delay experienced with the stixel world
application with the callgrind tool enabled.

33

References

[1] About cmake. https://cmake.org/. last visited: 2018-1-16.

[2] About valgrind. http://valgrind.org/info/about.html. last visited: 2017-06-
21.

[3] D-17b. https://en.wikipedia.org/wiki/D-17B. last visited: 2018-1-12.

[4] Fasttrack to embedded systems. https://www.digit.in/technology-guides/

fasttrack-to-embedded-systems.html. last visited: 2018-1-9.

[5] M. B. Abdelhalim and S. E.-D. Habib. An integrated high-level hardwaresoftware
partitioning methodology. Design Automation for Embedded Systems, 15:19–50,
2011.

[6] M. B. Abdelhalim and S. E. –D. Habib. Fast hardware upper-bound power esti-
mation for a novel fpga-based hwsw partitioning scheme. 2008 IEEE Computer
Society Annual Symposium on VLSI, 2008.

[7] M. B. Abdelhalim, A. E. Salama, and S. E.-D. Habib. Hardware software partition-
ing using particle swarm optimization technique. In Hardware Software Partitioning
using Particle Swarm Optimization Technique, 2006.

[8] Gregory R. Andrews and Fred B. Schneider. Concepts and notations for concurrent
programming. ACM Computing Surveys (CSUR), 15:3–43, 1983.

[9] A. Ferrari and A. Sangiovanni-Vincentelli. System design: traditional concepts and
new paradigms. Proceedings 1999 IEEE International Conference on Computer
Design: VLSI in Computers and Processors, 1999.

[10] K.M. Deliparaschos G.P. Moustris and S.G. Tzafestas. Feedback equivalence and
control of mobile robots through a scalable fpga architecture. In Dr. Andon Topalov,
editor, Recent Advances in Mobile Robotics, chapter 20, pages 401–427. InTech,
2011.

[11] M. Guarnieri. The age of vacuum tubes: Early devices and the rise of radio com-
munications. IEEE Industrial Electronics Magazine, 6:41–43, 2012.

[12] M. Guarnieri. The history of electronics reviewed through the history of magneti
marelli factory in pavia, italy. 2015 ICOHTEC/IEEE International History of
High-Technologies and their Socio-Cultural Contexts Conference (HISTELCON),
2015.

34

https://cmake.org/
http://valgrind.org/info/about.html
https://en.wikipedia.org/wiki/D-17B
https://www.digit.in/technology-guides/fasttrack-to-embedded-systems.html
https://www.digit.in/technology-guides/fasttrack-to-embedded-systems.html

BIBLIOGRAPHY 35

[13] Soonhoi Ha and Jürgen Teich. Handbook of HardwareSoftware Codesign. Springer
Netherlands, 2017.

[14] K. Keutzer, A.R. Newton, and J.M. Rabaey. System-level design: orthogonalization
of concerns and platform-based design. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 19:1523 – 1543, 2000.

[15] M.L. Lopez, C.A. Iglesias, and J.C. Lopez. A knowledge-based system for hardware-
software partitioning. Proceedings Design, Automation and Test in Europe, 1998.

[16] Patrick O’Connor and Andre Kleyner. Practical Reliability Engineering. John
Wiley & Sons, 2011.

[17] Jivan S. Parab, Santosh A. Shinde, Vinod G. Shelake, Rajanish K. Kamat, and
Gourish M. Naik. Practical Aspects of Embedded System Design using Microcon-
trollers. Springer, Dordrecht, 2008.

[18] A. Sangiovanni-Vincentelli and G. Martin. Platform-based design and software
design methodology for embedded systems. IEEE Design & Test of Computers,
18:23–33, 2001.

[19] Patrick R. Schaumont. A senior-level course in hardware–software codesign. IEEE
Transactions on Education, 51:306–311, 2008.

[20] Patrick R. Schaumont. A practical introduction to Hardware Software Codesign.
Springer US, 2013.

[21] Fred B. Schneider. On Concurrent Programming. Springer New York, 1997.

[22] Jens Teubner and Louis Woods. Data Processing on FPGAs. Morgan & Claypool,
2013.

[23] Wolf Wayne. A decade of hardwaresoftware codesign. Computer, 36:38–43, 2003.

[24] Ass-Prof Dr Wortmann, Felix and Dr Flüchter, Kristina. Internet of things: Tech-
nology and value added. Business & Information Systems Engineering, 57:221–224,
2015.

[25] Yuanrui Zhang and Mahmut Kandemir. A hardware-software codesign strategy
for loop intensive applications. 2009 IEEE 7th Symposium on Application Specific
Processors, 2009.

Appendix

Tips for getting Pedestrian Detection System to run

The necessary software libraries, as well as all system requirements, are described in
the readme-file included in the Pedestrian Detection System repository available from
bitbucket. This should be looked at before anything else.
As for tips and tricks with getting things to work, one should first and foremost avoid
deleting files that are not possible to delete without being a sudo user. This might cause
your Linux distribution to crash on start up, and you will probably have to reinstall the
whole operating system.
Further one should ensure one has enough available space on the selected storage parti-
tion, as getting the Pedestrian Detection System to run from a fresh default installation
will require downloading a fair amount of additional libraries and tools.
One should also preferably use a backup program that supports incremental backups,
so that one can easily restore to a recent save state in the event of failure. A thing to
watch out for in this regard is programs that have scheduled backups enabled by default.
If your storage partition is already close to being full, this scheduled backup might run
anyway, which will effectively remove all available space on your storage device, thus
meaning you will have problems with booting up the system.
For removing files that one did not intend to download, or if one wishes to upgrade
to a newer version of the file, consulting google is the way to go. Web pages such as
stackoverflow, askubuntu, stackexchange, etc have a lot of answers in general. Some tips
for removing are the use of the autoremove command, and also make uninstall.

36

	Abstract
	Sammendrag
	Preface
	Problem Description
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction and Motivation
	Goals of the thesis
	Overview of report Chapters

	Theory and Background
	Background
	Traditional design processes for electronic systems
	The HW/SW Co-design approach
	Design process for HW/SW Co-design
	HW/SW Partitioning
	Parallel or Sequential solution
	Level of complexity
	Requirements for performance/execution time
	Energy efficiency
	Required reliability in design

	Cost function
	Co-simulation of HW and SW
	FPGA

	Previous Work on HW/SW Co-design Methodologies
	A Hardware-Software Codesign Strategy for Loop Intensive Applications
	An integrated high-level hardware/software partitioning methodology

	Pedestrian Detection System
	Code structure

	Evaluation Tools
	Profiling and energy measurements
	Valgrind tool suite
	KCachegrind

	Suggested Design Methodology
	Technical approach
	Code attributes leading to a hardware or software implementation
	Target architecture components
	HW/SW Partitioning
	Relevant design factors
	Granularity depth
	Evaluation criteria for system functions
	Cost function

	Results of Design Methodology
	Profiling results
	Callgrind data

	Discussions and future work
	Applicability for other applications
	Delay from running with callgrind

	Conclusions
	Appendix

