
Adaptive Behaviour Based Robotics
using On-Board Genetic Programming

Anders Kofod-Petersen

For the degree of Cand. Scient.
Norwegian University of Science and Technology

2002

i

Abstract
This thesis investigates the use of Genetic Programming (GP) to evolve controllers for
an autonomous robot.

GP is a type of Genetic Algorithm (GA) using the Darwinian idea of natural selec-
tion and genetic recombination, where the individuals most often is represented as a
tree-structure. The GP is used to evolve a population of possible solutions over many
generations to solve problems.

The most common approach used today, to develop controllers for autonomous
robots, is to employ a GA to evolve an Artificial Neural Network (ANN). This approach
is most often used in simulation only or in conjunction with online evolution; where
simulation still covers the largest part of the process.

The GP has been largely neglected in Behaviour Based Robotics (BBR). The is
primarily due to the problem of speed, which is the biggest curse of any standard GP.

The main contribution of this thesis is the approach of using a linear representation
of the GP in online evolution, and to establish whether or not the GP is feasible in this
situation. Since this is not a comparison with other methods, only a demonstration of
the possibilities with GP, there is no need for testing the particular test cases with other
methods.

The work in this thesis builds upon the work by Wolfgang Banzhaf and Peter
Nordin, and therefor a comparison with their work will be done.

ii

Acknowledgements
I would like to thank Asbjørn Thomasen and Trond Kandal for their invaluable help
with the C programming. Wolfgang Banzhaf for pointers and good suggestions for
improvement. Gorm Andersen for his assistance with the experiments. And, last but
not least, my supervisor Keith Downing for his patience with me.

Contents

I Introduction 1

1 Introduction 3
1.1 Motivation . 4
1.2 Layout of the thesis . 4

II Theory and Approach 5

2 Theory 7
2.1 Introduction . 7
2.2 Behaviour Based Robotics . 7

2.2.1 Introduction . 7
Behaviour based on neuroscience 8
Behaviour based on psychology 8
Behaviour based on ethology 9

2.2.2 Behaviour in robot . 9
2.2.3 Behaviour based architectures 10
2.2.4 Adaptive behaviour . 10

Adaptive individuals – learning 11
Reinforced learning 11
Fuzzy control . 11
Artificial Neural Networks 11

Adaptive populations – evolution 13
2.2.5 Summary . 14

2.3 Genetic Programming . 14
2.3.1 Introduction . 14
2.3.2 Definition . 14
2.3.3 Genetic programming basics 15

Terminals and functions . 15
Fitness and selection . 15
Mutations . 17
Crossover . 17
Asexual reproduction . 18

2.3.4 Summary . 18

iii

iv CONTENTS

3 Related Work 19
3.1 Introduction . 19
3.2 Work with genetic algorithms . 19

3.2.1 Introduction . 19
3.2.2 Simulation . 20
3.2.3 On-board . 21
3.2.4 Hybrid . 22

3.3 Work with genetic programming . 22
3.3.1 Introduction . 22
3.3.2 Simulation . 23
3.3.3 On-Board . 24

Introduction . 24
Basic model . 25
ADF model . 26

3.3.4 Hybrid . 27
3.4 Summary . 27

4 Approach 29
4.1 Introduction . 29
4.2 The Khepera . 29
4.3 Genetic programming structure . 30

4.3.1 Individuals . 32
4.3.2 Reproduction . 33

Selection . 34
Crossover . 34
Mutation . 35

III Results and Evaluation 37

5 Results 39
5.1 Introduction . 39
5.2 General settings . 39

5.2.1 Function set . 40
5.2.2 Terminal set . 41
5.2.3 Selection, crossover, and mutation 41

5.3 Test run . 41
5.3.1 Upside down . 42
5.3.2 Correct orientation . 43

5.4 Obstacle avoidance . 43
5.4.1 Test case 1 - The population way 44
5.4.2 Result . 44
5.4.3 Test case 2 - The individual way 45
5.4.4 Result . 46

5.5 Comparison . 48
5.5.1 Introduction . 48
5.5.2 Comparison between the two experiments 48

Verification . 49
Individual vs. population solution 49
Performance . 49

CONTENTS v

5.5.3 Comparison between this work and others 50

6 Discussion 51
6.1 Introduction . 51
6.2 Summary . 51
6.3 The research area . 52
6.4 Robots . 52
6.5 Future work . 53

Bibliography 53

IV Appendices 61

A Code 63
A.1 Header file . 63
A.2 Main code . 71

vi CONTENTS

List of Figures

2.1 Overview of a GP tree structure . 16

4.1 The Khepera robot . 29
4.2 Overview of the framework . 30
4.3 Systems execution cycle . 31
4.4 Overview of the individuals structure 32
4.5 Example of crossover . 34

5.1 Fitness graph for first test run . 42
5.2 Fitness and collisions graphs for second test run 43
5.3 Population first run . 45
5.4 Population second run . 45
5.5 Population third run . 45
5.6 Population average . 45
5.7 Three stages of behaviour . 46
5.8 Individual first run . 47
5.9 Individual second run . 47
5.10 Individual third run . 47
5.11 Individual average . 47
5.12 Average number of collisions for both experiments 48

vii

viii LIST OF FIGURES

Part I

Introduction

1

Chapter 1

Introduction

The most exciting phrase to
hear in science, the one that
heralds the most discoveries,
is not ”Eureka!”, but ”That’s
funny...”

– Isaac Asimov

Within the last decade a huge amount of work has been made in the field of Be-
haviour Based Robotics (BBR).

Up until the mid-1980s the majority of work was based on the sense-plan-act
paradigm. At this time Rodney Brooks developed his subsumption architecture, which
is a purely reactive behaviour based method. As a result of Brooks work on BBR, the
research in the later years have been mostly concentrated on the reactive behaviour,
and less on the sense-plan-act paradigm; the later haven’t completely vanished, since
a lot of work is still done in the field of Reinforced learning.

For the last decade most of the research on BBR has been concentrated on using
some kind of Artificial Neural Network (ANN) to control a robot. This has either been
pure ANNs or ANNs in conjunction with some kind of Evolutionary Method (EM).

Most of the work on BBR have been directed towards the use of simulation, even
though lately some focusing have been done on the use of simulation and on-board
evolution simultaneous, and some work have been done on on-board evolution only.

One major approach within the field of EM has been largely neglected. Namely
the field of Genetic Programming (GP). This is largely because of the time this method
consumes when running, and some have argued that level at which a GP operates is
not low enough. Some work has been done in trying to use GP to generate ANNs for
controlling a robot, most of this work, however, has been done in simulation and then
tested on the real robot.

Recently some work from Peter Nordin and Wolfgang Banzhaf has explored the
possibilities of using a variation of the GP to evolve controllers for the Khepera robot
on-board [NB95].

3

4 CHAPTER 1. INTRODUCTION

1.1 Motivation
Robots, or agents, working in the real world is faced with the problem of a very open
domain; it is often hard to know any thing about the dynamics of the real world.
This uncertainty leads us, according to Brooks [Bro87] and others, for an example
see [BG92], [HHC+96], to the pragmatic view that reactive behaviour is more suited
to “survival” than the more conservative sense-plan-act paradigm; as used by Nilson
[Nil84].

The subsumption theory is not the only way of achieving a reactive behaviour. Sev-
eral interesting approaches have emerged in the last decade. One of the most promising
“bottom-up” approaches today is the use of an EM, often in conjunction with ANNs,
to generate the controller for a particular robot and its task.

The motivation for this work can be divided into two major parts: first, the lack of
GP in todays BBR, and secondly the problem of simulation, where it is very hard to
construct a simulator which somehow mimic the world in any useful way.

This work will try to show that it is possible, and feasible, to use a GP running
on-board on the robot.

1.2 Layout of the thesis
This thesis is organised into tree pieces. First the theory and background to support
this work will be covered. The design choices and implementation will be described.
Secondly, the implementation will be tested on obstacle avoidance. Last, but not least,
it will try to draw some conclusions based on the work presented here.

Part II

Theory and Approach

5

Chapter 2

Theory

The science of today is the
technology of tomorrow.

– Edward Teller

2.1 Introduction
This chapter will first cover the theory of behaviour based robotics, it will then describe
an overview of the Genetic programming theory, and finally it will describe and discuss
the pros and cons of on-board evolution.

2.2 Behaviour Based Robotics
This part will briefly cover a definition of intelligence; it will then describe what be-
haviour in animals is, and how it can inspire the use of behaviour based (artificial)
systems, covering the more theoretical part first, and then the engineering view. Then
a few behaviour based architectures will be covered; with a discussion of adaptive be-
haviour to follow.

2.2.1 Introduction
Before the topic can be covered in any meaningful way, some definition of robots and
intelligence must be agreed upon. This work will adapt the definition stated by Arkin
([Ark98]).

An intelligent robot is a machine able to extract information from its
environment and use knowledge about its world to move safely in a mean-
ingful and purposive manner.

Furthermore some kind of framework for the classification of behaviour is required.
The science of behaviour can be classified into three major fields†; neuroscience, psy-
chology, and ethology.

†Not exclusive in any way, and defi nitely overlapping

7

8 CHAPTER 2. THEORY

Behaviour based on neuroscience

From the field of neuroscience the study of the central nervous system (CNS), and the
brains of humans and other animals has resulted in a number of theories concerning
behaviour and the brain.

The brain of any mammal consists of three major parts: the fore brain, the brain
stem, and the spinal cord.

The fore brain includes, among other things, the limbic system, which provides the
basic behavioural survival responses; Thalamus, which processes incoming sensory in-
formation and outgoing motor activity; and Hypothalamus, which controls homeosta-
sis. The later is the place which is most often associated with what is called behaviour
based systems.

The brain stem includes, the mid brain, which processes incoming sensory infor-
mation, and controls primitive motor response systems; the hind brain, which consists
of the pons; the cerebellum; and the medulla oblongata, which connects the brain to
the spinal cord.

The spinal cord is the reflexive pathway which is use for controlling the differ-
ent motor systems. For a more thorough discussion of the brain see for an example:
[GIM98].

Behaviour based on psychology

Psychology has historically focused more on the functions of the mind as opposed
to the functions of the brain. The two most interesting fields within psychology, at
least from the perspective of behaviour based robotics, is probably behaviourism and
ecological psychology.

Behaviourism was founded by John B. Watson in 1913, as a reaction to the psy-
chology of his time, which was primarily based on introspection. Watson argued that
almost all behaviour is a result of conditioning, and that the environment shapes our
behaviours by reinforcing habits†. The behaviourists based their theories on the stimuli-
response paradigm, which states that to any stimulus some kind of response will be the
result.

Ecological psychology owes a great deal to the American psychologist J. J. Gib-
son. He suggests a high correlation between the organism, it’s environment, and how
evolution affects it’s development. In Gibson’s own words:

The word “animal” and “environment”make an inseparable pair. Each
term implies the other. No animal could exist without an environment
surrounding it. Equally, though not so obvious, an environment implies an
animal (or at least an organism) to be surrounded.
[Gib79]

Gibson was mostly concerned with the theories of visual perception, both in ani-
mals and humans. From his theories spring forth the two concepts of (in the terms of
Brooks [Bro91]) situatedness, the robot (organism) is situated and surrounded by the
real world; and embodiment, a robot (organism) has a real physical form.

†Perhaps one of the most known examples of this approach is Pavlov’s dogs.

2.2. BEHAVIOUR BASED ROBOTICS 9

Behaviour based on ethology

Ethology is the study of animals behaviour in their natural environment, or as Niko
Tinbergen puts is “the biological study of behaviour”. Tinberg focused on four pri-
mary behaviour areas: i) causation, which is the study of those outside influences and
internal states that lead animals to specific behaviour; ii) survival value, which is pretty
much self explanatory; iii) development, which springs from the the controversy be-
tween comparative psychologist and ethologists, where the psychologists concentrated
on nurture as opposed to the ethologists who stressed the importance of nature; iv)
evolution, where ethology borders genetics, evolutionary biology, and ecology. For a
more thorough introduction to ethology see [Sla85].

2.2.2 Behaviour in robot
Behaviour in robots comes in a broad spectrum. From the purely reactive, or reflex-
ive; to the very deliberate. This work will lean heavily on the part of the spectrum
concerning reactive behaviour.

The simplest way to view behaviour in robotics is to adopt the position advocated
by behaviourists, that to each stimulus some reaction exists. In this view behaviour is
seen as basic building blocks for actions. Probably the most famous example of this
approach is Braitenberg’s vehicles [Bra84].

The behaviouristic approach to robotics grows from the recognition that planning is
often a waste of time; especial in a highly dynamical world, i.e. the real world [Bro87].

The reactive system, or reflexes, avoids the use of explicit abstract knowledge about
the world which the robot inhabits. Since the construction of abstract world models can
be very time consuming, this approach is very valuable in very dynamic and/or haz-
ardous worlds. Three key concepts of the reactive view on behaviour emerges. Namely,
situatedness and embodiment, which already has been discussed i section 2.2.1, and the
third emergence, which states that intelligence arises from the interaction between the
robot and the environment [Bro91].

The major issue in behaviour base robotics is where do behaviour come from? what
are the right building blocks? and how do we define primitive behaviours? Several
approaches has been tested throughout the short history of behaviour based robotics.
Three major directions stands out: ethologically guided design, situated activity based
design, and experimental driven design.

In Ethologically guided design the basis is the study of animals. A model of a
particular animals behaviour is found in biology. The model is modified to suit any
computational, or hardware, restrictions. The experiment is then conducted, preferably
on a physical robot, and any result is compared with the original biological experiment.

One nice example of this approach can be found in [LWH98] where the phonotaxis
of the female cricket Gryllus Bimaculatus was produced on a robot with a simple ar-
tificial neural network. The experiment was conducted under the same conditions as
the biological experiment. The robot responded with phonotaxis to the calling song of
real male Gryllus Bimaculatus. This work showed that phonotaxis could be achieved
with a ANNmuch smaller than the model used when studying the real cricket. Further-
more, it showed that the close coupling between the morphological auditory matched
filtering of the robot cricket, and it’s simple neural control mechanism could explain
the behaviour seen in nature.

The major point with this work was, not that the model of Lund et. al. is the way
a real cricket works, but that this very simple model could explain the patterns seen in

10 CHAPTER 2. THEORY

nature.
Other work of the same kind has been done by Miglino and Lund, where they re-

constructed an well known experiment on rats, where the rats are supposed to navigate
through a labyrinth. Here they also showed that there was a much more simple model
than the one used by most biologists, which is based on the rat making cognitive maps
of the labyrinth [LM98],[ML99].

Situated activity based design is based on the approach that whenever a robot finds
itself in a new situation it chooses one appropriate action to take. This means that any
problem becomes one of perception. The robot have to recognise which situation it is
in to select the proper response.

Experimental driven design is the “true” human bottom up approach. The principle
is that one starts of with some limited amount of capabilities, test whether or not they
work, debug the behaviour which does not work, add new features, and go through the
loop again.

One very nice example can be found in [Bro89], where a six legged robot’s ability
to walk was developed. Several iterations were used, where different capabilities were
added, such as force balancing, whiskers, and pitch stabilisation.

2.2.3 Behaviour based architectures
The design and building of behaviour based robotic systems has lead to a great variety
of types. Each with their own idiosyncrasies; yet they exhibit a lot of common features.

First of all, the emphasis is on the coupling of sensory inputs to responses, as
dictated by behaviourists (see section 2.2.1).

Secondly, the use of sub symbolic methods is prevalent, as opposed to representa-
tional symbolic knowledge.

Third, the use of decomposition is common, i.e. use of meaningful behaviour units.
For a very thorough discussion of different architectures see [Ark98], and for a

overview of current work in the field see [GG96].

2.2.4 Adaptive behaviour
Up until now this part has covered the purely reactive robotic systems. Since reactive
behaviour, or reflexes, only can help in a narrow group of problems, some kind of
adaptation is needed to function in an ever changing environment.

Before continuing it would be fruitful to define adaptation. According to Merriam-
Webster’s Collegiate Dictionary, adaptation is:

Modification of an organism or its parts that makes it more fit for ex-
istence under the conditions of its environment

Adaptation comes in two general flavours, a) adaptation in an individual within its
own life time – learning, or b) adaptation within a population over time – evolution.

This part will first cover some different methods for introducing adaptation in an
individual: reinforced learning, the use of fuzzy system, and artificial neural networks.

It will then describe the different approaches to applying evolution to a population
of possible solutions (individuals).

2.2. BEHAVIOUR BASED ROBOTICS 11

Adaptive individuals – learning

Adaptation in an individual throughout its lifetime is learning. According to Merriam-
Webster’s Collegiate Dictionary, learning is:

Modification of a behavioral tendency by experience (as exposure to
conditioning)

Learning in robotic systems comes in a variety of flavours, here reinforced learn-
ing and fuzzy control will be covered briefly. Since the trend in the behaviour based
robotics community has been to use ANNs, this will be cover more throughly.

Reinforced learning has its roots in behaviourism and the likes ofWatson and Pavlov
(see section 2.2.1). For reinforced learning to work an agent (robot) has to build on a
certain model. In this model an agent has a set of sensors to observe the state of its
environment, and a set of actions it can perform to change the state in which the agent
is. Last, not not least, the agent needs a goal.

To learn the agent how to achieve it’s goal reinforcement is used. A reward is given
to each distinct action the agent can perform in each distinct state. So, a reward will be
given to each state-action transition which achieves the goal, and no reward to all other
transitions. One of the most popular learning algorithms used today is Q learning.

Since this is beyond the scope of this work, a more through description of rein-
forced learning can be found here [Mit97]. Examples of work done with robots and
reinforced learning includes: [MB90], [Tan91], [Lin91], [MC91], and [Kae92].

Fuzzy control is based on fuzzy logic, which set itself apart from predicate logic by
allowing values to be, more or less, members of different set, and not just the conven-
tional true or false based membership. Fuzzy systems has been one of the AI worlds
biggest success stories, largely due to the fact that “fuzzynes” is an integrated part of
many things connected with humans; especial our language; almost everyone has used
a sentence like: “This car is a bit more green than this one”.

Fuzzy systems are excellent for a large group of problems, such as: maintaining an
airplane in straight-and-level flight, hold the temperature of a room at 20 degrees, and
dispatching elevators in a building [MF00]. Even though this approach should be well
suited to solve behaviour based problems, only a few experiments has been conducted.
The best known are properly the robot “Flakey” from SRI, and “MARGE” from North
Carolina State University.

For a more through description of fuzzy systems, see for example: [MF00].

Artificial Neural Networks was first described in 1943, where McCulloch-Pitts, in-
spired by neurobiology, proposed a model of neurons [MP47]. This model was based
on the assumption that neuron was either on or off. This led to a network structure
where the network was composed of directed unweighted edges of excitatory or in-
hibitory type. Each unit is also provided with a certain threshold value.

Even though this kind of neuron is a very simple structure, it can been shown that
all logical functions can be implemented with a McCulloch-Pitts network. Weighted
networks and McCulloch-Pitts Networks are equivalent, and any finite automaton can
be simulated (see [Roj96] for examples and references).

12 CHAPTER 2. THEORY

The major problem with the McCulloch-Pitts units is their lack of free parameters.
Learning can only be implemented by modifying the way units are connected, and their
threshold values.

This lack of flexibility leads to a more complex version of ANNs. In 1958 Frank
Rosenblatt proposed thePerceptron, a more general computationalmodel thatMcCulloch-
Pitts units. In the 1960s The model was refined by Minsky and Papert [MP69]. The
model proposed by Rosenblatt consisted of a whole network for the solution of pattern
recognition problems, where the only significant difference from the McCulloch-Pitt
unit was the presses of weights in the network. The learning algorithm proposed by
Rosenblatt was the Perception Learning Algorithm (see equation: 2.1), where A is the
set on input vectors where a perceptron computes the binary function fw(x) = 1; ∀x∈
A and fw(x) = 0; ∀x ∈ B

E(w) = ∑
x∈A

(1− fw(x))+∑
x∈B

fw(x) (2.1)

This function is defined over all of weight space and the purpose is to minimise it.
Since E(w) is positive or zero, we want to reach the global minimum where E(w) = 0.
This is done by selecting a weight, by random, and then search the weight space for a
better solution, in an attempt to reduce the error function E(w) in each step.

Minsky and Papert modified Rosenblatt’s model. By adding the possibility of pred-
icates in the input layer, where the value of a single input bit can be calculated. These
predicates can be of any format, e.g. a simple logical function, or a large program
running on a super computer.

McCulloch-Pitts and Minsky-Papert was not the only ones conducting research
on ANNs; But they were some of the more influential. Several others deserves to
be mentioned, here I will only name two of the best known: Hebb, who described
a learning paradigm. Where one of the core ideas was that the strength of synaptic
connection was proportional to the correlation of pre- and post-synaptic potentials.
Uttley, who in the late 50’s developed a paradigm based on Shannon’s theorem. From
all the contributions these researchers have made, spring forth a great variety of ANN
theories today. One of the most common topologies of ANNs today is the feed-forward
network.

In general, the feed-forward network is defined as a graph whose notes are com-
puting units, and whose directed edges transmit numerical information from node to
node. Each node can compute a single primitive function, which transform input to
output. The learning algorithm should find the optimal combination of weights. It is
well known that a multi-layer network can compute a wider range of Boolean functions
than a single-layer network. However the effort needed to find the correct combination
of weight increases dramatically when the number of parameters grows. One of the
most common learning algorithms today is the Back-propagation algorithm (BPA).

The Back-propagation algorithm minimises the error function in weight space us-
ing the gradient decent method. Since this method requires that the gradient function
is calculated at each iteration it must be continuous and differential. One of the most
popular functions for a back-propagation network is the Sigmoid (see equation 2.2).

fc(x) =
1

1+ e−cx
(2.2)

Since the use of back-propagation is beyond the scope of this work, I will not go
into details about the mathematics of this algorithm. Most of the work in BBR which
uses ANNs, has a model where some kind of evolutionary method is used to evolve

2.2. BEHAVIOUR BASED ROBOTICS 13

ANNs (see section 3.2.1). One work which is based on the use of back-propagation for
making controllers to a Khepera robot can be found here: [MWO+98].

Adaptive populations – evolution

Adaptation in a population over time is evolution. AgainMerriam-Webster’s Collegiate
Dictionary can give a good definition before continuing, evolutions is:

A process of continuous change from a lower, simpler, or worse to a
higher, more complex, or better state

Artificial evolution used in BBR, and many other areas in computer science, is
based on Darwin’s work in the 19th century. Darwin was not the first to speculate
about the evolutionary way of nature: Thomas Malthus had already written Essay on
the Principle of Population in 1798 [Mal98].

Malthus had three major points: i) If a population is unchecked, it will grow expo-
nentially. ii) The environment has limited capacity to support life (when a competition
for resources arises it is known as the Malthusian Crunch), iii) More children are pro-
duced than can possibly survive to the age of reproduction.

Darwin extended the work of Malthus, and in his now so famous book On the
Origin of Species [Dar28], he made the following points: i) When the Malthusian
crunch comes, some phenotypes will be better equipped to deal with the environment,
hence have a better chance of survival. ii) These individuals will have a higher chance
of survival and reproduction. iii) If these individuals can pass on their advantages to
their offsprings, this will increase the chance of survival for future generations. So the
essence of Darwin’s work on evolution can be, rather crudely, summarised as:

Competition for resources + heritable variation => evolution by nat-
ural selection.

A very complete discussion of evolution, and genetics in general can be found in
[Rou96].

Several people was inspired by the work of Darwin, and the potential they could see
for using evolution as computer algorithms. The one who came to be one of the most
influential was John H. Holland with his book Adaptation in Natural and Artificial
Systems from 1975 [Hol92], where Genetic algorithms (GA) was, more or less, born.

Genetic algorithms, and most other evolutionary algorithms, basically works in the
follow way:

1. Generate initial random population of genotypes.

2. Translate the genotypes to phenotypes.

3. Test each member against your fitness function.

4. Select the best fit individuals.

5. Perform crossover on the parents’ genotypes to obtain children.

6. Mutate the children.

7. Perform step 2 through to 6 until you are satisfied.

14 CHAPTER 2. THEORY

In the standard GA the population typically consists of bit-strings (the genotype),
which maps to some phenotype which fits a particular problem. Beside a random initial
population, some kind of fitness function has to be supplied to test the individuals.

Evolutionary methods has lately become very popular in many fields within com-
puter science, and extremely popular in behaviour based robotics. When behaviour
based robotics uses a evolutionarymethod it is often referred to as evolutionary robotics
(ER). The popularity of evolution in BBR is partly based on the notion that when evo-
lution is used, the biased view a programmed should not explicitly hamper the robots
possibilities; hence, the system can possibly construct solutions an engineer couldn’t
thing off.

This view is not blindly shared by all, Stone [Sto94] argues that trusting the objec-
tivity of a evolutionary method only goes so far, and Harvey describes the limitation of
standard GA methods in ER [Har97]. Nolfi, on the other hand, describes many positive
sides with using an evolutionarymethod in robotics [Nol98]. Several examples of work
done with different evolutionary methods can be found in chapter 3.

2.2.5 Summary
As it has been shown behaviour based robotics has threads back to the real world; in
particular the world of psychology and biology. BBR draws upon theories from as
diverse fields as neuroscience, psychology, ethology, and evolution.

Even though there is many different views on how BBR should be done something
common stands out.

First of all, the concepts of situatedness and embodiment is central to most, if not
all, work conducted in this field.

Secondly, learning and, more often than not, a genetic algorithm plays a big role in
BBR.

One problem with the GA is its fixed representation; the chromosome it most often
a bit string. When using a GA one must find a suitable way to encode the solution
to the particular problem; this is still an art, and successful GAs often depends on the
encoding of the problem. This problem is avoided in the extension to GA called genetic
programming, where the population consists of computer programs.

2.3 Genetic Programming
This part will briefly cover the history of genetic programming (GP). It will then cover
the basics of GP.

2.3.1 Introduction
Genetic Programming is a part of a major field within artificial intelligence called Evo-
lutionary Algorithms (EA). Several importen contributions have been made to this field
since it’s beginning some forty years ago. (For a good summary of the history of EA,
see [BNKF98]).

2.3.2 Definition
Since the work of Koza [Koz92] the most common definition of Genetic Programming
has been the evolution of tree-structures. This is a very strict and confining definition,

2.3. GENETIC PROGRAMMING 15

so this work will adopt the definition given in [BNKF98]. Which states the following:
(paraphrased)

1. The term genetic programming includes all systems that constitutes or contains
explicit references to programs or to programming language expressions.

2. The definition of GP includes all means of representing programs.

3. Algorithms which are not primarily programs, such as artificial neural networks,
should not be excluded from this definition.

4. This definition is not limited to the use of crossover; all systems which use a
population of programs or algorithms for the benefit of search are included.

2.3.3 Genetic programming basics
This part will cover the basic terminology of GP. First the primitives used in a GP,
and the importance of choosing them carefully. Secondly, the use of fitness and how
selection in executed will be discussed. Then it will cover the two most important
operators in any evolutionary system: mutation and crossover. Finally, the rules of
reproduction will be covered.

Terminals and functions

The terminals and functions are the two primitives with which any GP will build it’s
structure. Both terminals and functions are referred to as nodes in the GP structure.

The terminals and functions for any GP fill two different roles. The terminals will
provide the system with values. This means that any constants, sensor values from
sensors attached to a robot, or functions which takes no arguments constitute terminals.

Using the tree analogy, any node which is a leaf is a terminal. Functions, on the
other hand, are composed of any statements, operators, or functions available to the GP.
Examples could be: boolean functions, arithmetic functions, conditional statements,
loop statements, or subroutines. Using the tree analogy, any node which is a branch is
a function (see figure: 2.1).

When it comes to choosing the terminals and functions for any GP run, some care
must be taken. It is important not to choose the function set to strictly. For example,
using only AND will probably not solve any very interesting problems. But, on the
other hand, it is important not to choose a set which is too large. Often a parsimonious
approach, or the use of Occam’s razor, is recommended.

The same carefulness is also importen in choosing the constants in any GP. The
ability of the GP to combine chosen constants via arithmetic functions, will often com-
pensate for a small number of constants.

Fitness and selection

For GP to work it must somehow choose which subset of the population is to un-
dergo the genetic operators such as mutation, crossover, and reproduction. To do that
GP utilises one of the most importen cornerstones in biologically evolutionary theory,
namely fitness based selection. Where the best suited individual for a specific task (in
biology often survival) will be allowed to reproduce.

16 CHAPTER 2. THEORY

Function/
Branch

Terminal/
Leaf

+

−

10 5

5

Figure 2.1: Overview of a GP tree structure

This theory which was first proposed by Charles Darwin [Dar28], inspired by the
1798 essay by Thomas R. Malthus, On the Principle of Population, where theMalthu-
sian Crunchwas introduced (see section 2.2.4). Two other well know theories deserves
to be mentioned her: First, Wright’s theorem which states that natural selection in-
creases the adaptation of individuals to their environment; and Fisher’s fundamental
theorem of natural selection which states that evolution requires fitness variance, and
the more variance, the faster the population evolves. See [Rou96] for a more through
discussion of both theorems.

Since GP, as natural evolution, utilises the variation in fitness and selects the most
fit, some sort of fitness function must be provided. Fitness functions can be very dif-
ferent depending on the problem which is to be solved. A fitness function must be able
to measure how well a given program is to predict the output from the programs input.

Examples of factors used in fitness functions could include:

• The number of walls hit by a robot.
• Time spent travelling in a straight line.
• Area cover in exploration.
• A combination of any above.
Once the GP has assigned fitness to all of the tested individuals selection must be

initiated. Selection can be viewed as the competition between individuals within the
subset† of the population chosen for testing.

Several standard selection mechanisms exists, including fitness-proportional, rank,
tournament, sigma scaling, and elitism. Here the first three will briefly be described.

Fitness-proportional selection is perhaps the most common, and has definitely been
the primary choice for many since it’s introduction by Holland [Hol92]. An individuals

†The subset can of course include all individuals in the population

2.3. GENETIC PROGRAMMING 17

chance to form offspring in the next generation is given by equation 2.3; where the
probability of a particular individual’s selection, is the fitness of the individual divided
by the fitness of the whole population.

pi =
fi

∑ j f j
(2.3)

The fitness-proportional selection has been criticised for it’s tendency to fuel pre-
mature convergence. Premature convergence occurs early in an evolutionary run, when
the fitness variance is high, and a limited number of individuals will multiply quickly,
thereby preventing the GP from doing any more exploration.

The fitness-proportional selection has also been criticised for attaching differential
probabilities to the absolute fitness value.

Rank selection is another often used mechanism. The fitness value assigned to a
particular individual is a function of the rank within the population. For linear ranking,
which is often used, the probability is a linear function of the rank (2.4).

pi =
1
N

[
p− +(p+− p−)

i−1
N−1

]
(2.4)

where p−
N is the probability of the worst individual being selected, and p+

N that of the
best being selected, and (2.5)

p− + p+ = 2 (2.5)

should hold if the population size is to stay constant.
Last, but not least, is tournament selection. This mechanism separates itself from

the rest by not using the whole population, but only a true subset. Some group of the
population, the tournament size, is randomly selected, and a selective competition is
initiated. The traits of the fitter individuals are then allowed to replace the less fit.

Tournament selection has onemajor advantages over, for an example, fitness-proportional
selection. It does not require any centralised comparison module. This allows more
parallelising and a general speed up of a GP.

Mutations

Mutation in GP and other Darwinian based systems, serves two beneficial purposes:
i) Mutation sets the stage for evolution. Without mutation, there can be no variation
in genotypes, hence no basis for evolutionary change (The Hardy-Weinberg law and
Fisher’s Theorem). ii)Mutation works as a rescue operator; given that the GP is stuck
in one, of potentially several local maxima, mutation can push the population off the
peak, and hopefully towards the global maximum.

Mutation, on the other hand, can also have a negative effect. If, for instance, the
mutation rate of a given system, natural or artificial, is to high, all the beneficial effects
of mutation will drown in its destructive forces.

Crossover

The crossover operator is, by far, the most importen operator of the GP. Given a tree
based GP the crossover operator works in the following manner:

18 CHAPTER 2. THEORY

1. Select two individuals, based on the selection mechanism.

2. Select a random subtree in each parent.

3. Swap the two subtrees or sequences of instructions.

The crossover operator closely mimics the process of biological sexual reproduc-
tion. Based on this notion, the crossover operator has been used to claim that GP search
is more efficient than methods based solely on mutation. Koza [Koz92] argued that a
population in a GP system contains building blocks; a building block can be any tree
or subtree which is present within a fraction of the population. This hypothesis follows
the same line of argument as the Building block hypothesis from genetic algorithms
[Hol92].

Given the building blocks and crossover the systems should be able to combine
“good” building blocks to more fit individuals, and small building block should be able
to combine into larger building blocks, hence, making the GP search more efficient
than other methods. A more thorough discussion of the viability of this hypothesis it
outside the scope of this work, and can be found in chapter 6 of [BNKF98].

Asexual reproduction

Asexual reproduction is, by far, the easiest operator to handle. When an individual is
selected, it is copied, and there are now two of the same individual in the population.

2.3.4 Summary
Genetic programming is a method which has shown great promise in a lot of areas.
However, it still possesses some problems or challenges. First of all, the choice of
functions and terminals is a major issue. Secondly, the mutation rate of a system must
be carefully chosen, since mutation can go both ways. Last, but not least, lack of speed
has long been the major problem with GP.

Chapter 3

Related Work

I can see as far as I do because
I stand on the shoulders of gi-
ants

– Issac Newton

3.1 Introduction
This section will first cover some of the work done in the fields of GAs and ANNs, then
it will describe the work done with GP and robotics, most notable the work by Nordin
and Banzhaf.

3.2 Work with genetic algorithms
3.2.1 Introduction
Within the last couple of years a new approach in BBR has evolved; this involves some
form, of simulated evolution. What is to be evolved has been heavily debated. One
approach which seems to be growing is the use of a GA to evolve an ANN.

The research within the field of GAs and ANNs can be divided into three groups: i)
Those who use simulation only. ii) Those who use on-board evolution only. iii) Those
who use some kind of hybrid approach, i.e. simulation and on-board. Nolfi et. al. de-
fends the approach with GAs and ANNs by stating the following reasons. [NFMM94]
i) “Neural networks can easily exploit various forms of learning during a life-time”,
and like the Baldwin effect [Bal96] in GA shows, the “learning process may help and
speedup the evolutionary process” [HN87], [FM90], [FP96]. ii) Neural networks are
notable for there resistance to noise which is highly present in robot interaction with
the real world. iii) The common agreement today is that primitives manipulated by
evolution should be on the lowest level possible, to avoid the possibility of undesirable
choices made by a human programmer.

To support this approach Nolfi et. al. conducts three experiments with a Khepera
robot, unfortunately all of these experiments were only supposed to roughly evolve
the same ability, all of which were some kind of exploration. The experiments were

19

20 CHAPTER 3. RELATEDWORK

divided into: evolution of controller in simulation only, and then testing on the physical
robot; evolution on-board; and a hybrid solution, where the first 300 generations were
in simulation and the last 30 on-board. Furthermore they used fixed ANNs, a single
layer feed forward net with eight input- and two output nodes. As Stone [Sto94], and
Harvey [Har92] notes, there is always some degree of human meddling no matter how
low a level we evolve from. The use of fixed nets is not a perfect fit with the point of
the risk of undesirable choices made by a human programmer.

They did, however, show that it is possible and feasible to utilise a GA in construct-
ing controllers for autonomous robots. They also concluded that it is better to employ
the physical robot in the process, not in an on-board situation only, but in a hybrid way.
Several other examples of use of GAs and ANNs has been described. Here I will divide
the examples into three groups: simulation only, on-board only, and hybrid.

3.2.2 Simulation
Nolfi demonstrated the possibilities of evolving non trivial behaviour, specifically a
garbage collection robot, based on the Khepera robot with a gripper attached [Nol96].
Here several basic behaviour were pre-generated, such as: leave-nest, get-food, avoid-
obstacles. Then an ANN was constructed consisting of a feed-forward net with 7
sensory nodes, 16 motor nodes, and no internal nodes. The controller was evolved
in simulation and then downloaded on the real robot for testing. He was able to show
that the best fit individual was able to clean the arena of garbage.

Animals and robots needs to function in a dynamic environment, for this they need
a palette of different types of behaviours. In an example given by Yamauchi and Beer
[YB94] foraging for food requires the following behaviours while exploring the envi-
ronment. It needs to react to any threats or obstacles, remember the way back to it’s
nest, and the location of any food sources. This means that if the animal is to forage in
a efficient way, it requires the capabilities of “reactive and sequential behavior, as well
as the ability to learn from experience”.

To show that it was possible to evolve these behaviours Yamauchi and Beer imple-
mented a 8-node continuous-time recurrent neural network, where the network param-
eters were encoded as a vector of real numbers in the GA. They then set up the task of
landmark recognition to test this. The ANN was evolved in simulation and then tested
on the physical robot, which was a Nomad 200.

After 15 generations, the network was capable to recognise the landmarks in sim-
ulation. It was then transfered to the robot where is was able to correctly classify the
landmarks in 85 % of the test cases.

Harvey et. al. advocates the use of GA to evolve dynamical neural networks in
simulation [HHC93]. They do, however, take the ANNs a step further. They describe
a continuous real-valued networks with unrestricted connections and time delays be-
tween units. For their implementation the use a network with a fixed number of input-
and output nodes, and no specified number of hidden nodes.

They also stress the importance of the simulator being kept as close to reality as
possible. They put forth the following techniques to do this: i) The simulator should
be calibrated with the robot hardware involved. ii) Empirical data should be the base
of sensor simulation. iii) Noise must be taken into account. These points are also
elaborated in [JHH95]. The last point which was stressed by Harvey et. al. was that
every robot which is going to do any thing useful; must have vision. To defend these
view they implemented a simulator where the ANNwas evolved, which should develop

3.2. WORK WITH GENETIC ALGORITHMS 21

wandering behaviour in an office like environment. Within the 50 generations available
to the simulator wandering behaviour was evolved.

To sum up, it is clear that this approach is useful for developing controllers for
robots. Several prerequisites most hold for this approach to be successful. Firstly, the
simulator must be as close to the robots reality as possible, meaning, for an example,
that simulated sensors should be sampled from the real robot, or that noise should be
generated to compensate for uncertainties in the real world. Secondly, the tasks seems
to have to be somewhat limited, for this approach to work; which perhaps, according
to Harvey et. al., could be remedied by vision. Lastly, perhaps the solutions where net-
work parameters have been pre-defined, should be extended to open-ended evolution;
as argued in [Har92].

3.2.3 On-board
As described above it is better to employ the physical robot in any work done with a
simulator. This enhances the performance once the real world is tackled.

The extreme approach is to run everything on the physical robot, i.e. the GA/ANN
framework and the testing. This on-board approach ensures that any physical limita-
tions, or noise, will be handled by the system.

Some of this work has already been described (see section 3.2.1), by Nolfi et. al.
[NFMM94]. More thorough investigations has been done by Floreano et. al. [FM96a],
where they describe a pseudo on-board system which consists of a Khepera robot con-
nected to a work station. The work station generated the simple ANNs which only had
three neurons; one input, one hidden, and one output. All of which received synap-
tic connections from all eight infra red sensors, and the hidden node. These were all
downloaded onto the Khepera where each node could change its strength according to
one of four Hebbian rules: i) pure Hebbian. ii) post-synaptic. iii) pre-synaptic. iv)
covariance.

The task were to follow the walls around in circular environment with an obstacle
in the middle.

After around 50 generations the best fit individuals were able to keep a straight
trajectory around the area, without hitting the obstacle. Similar results were achieved
in [FM94] were a similar problemwere solved by only evolving synaptic strength. The
results in the later work were, however, better [FM96b].

Steels argues for four major point in the use of evolution for development of robot
controllers [Ste94]: i) the use of a sub- or pre-symbolic level in evolution. ii) The use
of a “level playing field” where modules can not exhibit each other. iii) The use of
on-board (on-line) evolution. iv) open functionality, as in [Har92].

To test these statements he constructed the PDL robot architecture. This archi-
tecture consists of three basic units. i) Quantities, which can be external, like sensor
values, or internal, like world states. ii) Processes, differential equations which are
dynamical relations between quantities. iii) Behaviour units, a regularity within the
interaction dynamics between the robot and it’s environment.

Furthermore, this architecture is guided by these two principles. All behaviour
systems are active at the same time, and the influence of the different behaviour systems
are summed to select the appropriate behaviour; this is also known as Arbitration.

Steels use two experiments, one where he was suppose to evolve the behaviour
system which enables the robot to move forward and backward, and another where the
ability to come to a hold was sought after. Both problems were easily solved within an
acceptable time frame.

22 CHAPTER 3. RELATEDWORK

3.2.4 Hybrid
As it has become clear there are problems both with only using simulation or on-board.
Several people has tried to improve the quality of robot controllers by using a hybrid
method.

One interesting work by Miglino et. al. addresses several of the problems both with
simulation and on-line running [MLN95]. Their work was made on a Khepera robot.
Where the weights of an ANN was evolved in simulation, and then tested on the real
robot.

One of the major problems with simulation is the lack of perfect hardware. When
a robot has several sensors they should return the same value under the same circum-
stances; alas, no hardware does that. So the simulator used by Miglino et. al. was
build on a sample of the real world, through the physical sensors on the Khepera. This
approach greatly improved the simulator.

Miglino et. al. also investigated the introduction of “noise” into the world model.
This was based on the hypothesis that the world is dynamic, hence noisy. The introduc-
tion of noise also improved the performance of the robot, once it was tested in the real
world. The noise issue has been investigated by many people, such as Jakobi [Jak97],
Reynolds [Rey94b], and Jakobi et. al. [JHH95].

One thing which was observed by Miglino et. al., was that no matter how well
they constructed their simulator a decrees in performance was often observed when the
controller was introduced to the real environment. This problem was nicely solved by
running the last few generations on the real robot.

This work demonstrated that it can be feasible to run a simulation of a particular
robot; as long as the problems of imperfect hardware, and the “noisiness” of the real
world is addressed properly. The major benefit of simulation is the speed of the en-
tire process. Simulation speeds up the otherwise tiresome process of running a full
generational replacement on a real robot.

Other work byMiglino and others also stresses the point of the simulation/embodiment
solution. One work [MNT95], where wandering behaviour was evolved by an GA
evolving the weight for an ANN; this time using a LegoTM robot. They used one pop-
ulation which ran in simulation only. One population where the evolutionary part was
made on a workstation, and then tested on the real robot.

As it could be expected the real-world population outperformed the simulated pop-
ulation, even though not by much. And the introduction of noise improved the simu-
lated population.

The conclusion in this work argued pretty much the same as in [MLN95], that the
simulation/embodiment solution is feasible, and the solutions which is produced by
this hybrid approach can perform acceptable.

Quite a lot of work has been done with hybrid solutions, several of which has al-
ready been mentioned, others include Lewis and Fagg [LF92], Nolfi et. al. [NFMM94],
Grefenstette and Schults [GS], Yamauchi and Beer [YB94], and Lund and Miglino
[LM96].

3.3 Work with genetic programming
3.3.1 Introduction
Historically most of the work done with adaptive BBR has been done with GAs and
ANNs. More recently, with few exceptions, some work has begun to explore the pos-

3.3. WORK WITH GENETIC PROGRAMMING 23

sibilities of using GP as the evolutionary method.

3.3.2 Simulation

Properly the first experiment with autonomous robots and genetic programming is the
work of Koza and Rise [KR92], where they simulate a box pushing robot. The robot’s
controller was evolved using a standard full generational replacement GP. The GP suc-
cessfully found a solution in 45 generations.

Craig W. Reynolds expanded the work by Koza and Rise. Both used high level
functions, such as move-forward, turn-left, and turn-right [KR92]; turn, and look-for-
obstacle [Rey94a] (They both used arithmetic functions beside these high-level func-
tions). The major difference between the work of Koza and Rise, and this is the use of
a steady-state GP instead of full generational replacement. Steady-state is the opposite
of full generational replacement, here only a sub-set of the population, instead of the
whole population, is tested in each iteration.

Even though, both of these experiments clearly shows that it is possible to evolve
controllers using a GP, they also, [Rey94a] most prominent, show that robustness is
quite another matter.

The robustness of GP evolved controllers and a solutions to the problem is de-
scribed in [Rey94b]. Reynolds repeated his experiments from [Rey94a], except that he
added noise to the simulation; here noise is defined by taking the “worst of four noisy
trails”, as in [HHC93].

As discussed in section 3.2.4, noise plays a very beneficial role in evolving robust
controllers. This work by Reynolds shows that the simulation-noise connection also
holds for GP. And that it is possible to evolve robust controllers using GP.

Bennett expanded on the work by Koza and Rise. Inspired by parts of psychology,
which argues that the mind works in a distributed way, and that there is no central unit
which decides everything, he was interested in evolving a controller that could cope
with several different problems at once: lawn mower, wall following, gold collector,
and mine sweeper [III97].

The simulated world which this robot inhabits is made up of four squares – one
for each problem – which are connected in the middle. The GP structure consisted of
a “top tree” which, over time, contains sub trees for each problem. The evolutionary
system worked on two levels: i) The meta-level, where the top tree was evolved, ii)
The sub-level, where an ordinary evolution of the GP’s automatically defined functions
(ADF) was evolved.

With this work Bennett showed that a GP could discover good programs, which
could solve different problems by organising the control program so that it could select
the appropriate behaviour when needed.

Even more advanced work has been done by Lee et. al., who presented some work
where they used an evolutionary island model to evolve behaviour for a Khepera robot
[LHL97] The controllers which were evolved were defined at the logic level. The
controller works almost as a boolean network, where conditional structures are used
to select appropriate motor commands and activating behaviour primitives. The GP
system was used to evolve these boolean controllers.

They evolved behaviour for box-pushing and box-side-following, each was con-
trolled by a separate behaviour primitive. The GP consisted of three non-terminals:
dummy root nodes, which was used to connect some arbitrary number of sub-trees,

24 CHAPTER 3. RELATEDWORK

here a PROG† which allows several instructions to be executed in a sequence; logic
components, which were AND, OR, NOR, XOR; and comparators, which were >=.
The terminals were sensor values and thresholds, all were between 0 and 1 inclusive.
The controllers were evolved in simulation with sampling of the robots sensors, as de-
scribed in [Nol96]. When a suitable controller was evolved, in 50 generations, it was
transfered to the robot for testing.

When the two primitives were evolved, box-pushing and box-side-following, a ar-
bitrator was evolved to decide when the two primitives should be used.

In line with the work of Bennett [III97], this work by Lee et. al. showed that it is
possible and feasible for a GP to evolve the special structure of behaviour primitives,
and to solve more complex problems than the typical wall-following and the like.

Another work by Koza et. al. [KBKA97], investigated the use of GP for evolving
controllers to navigate a robot safely to any arbitrary point in minimal time. This work
is more or less an extension to the work of Bennett [III97], with the little twist, that they
also use a GP to evolve an analog electrical circuit to use with their evolved controller
in a robot. Other work done in this field includes [Han94].

3.3.3 On-Board
Since GP tends to be very time consuming there hasn’t been much work done in real
time on-boardGP in robots. However, lately some work has emerged fromDepartment
of Computer Science, University of Dortmund led by Wolfgang Banzhaf and Peter
Nordin [NB97b]. This part will cover this work, which is the base of the work in this
thesis.

Introduction

Banzhaf et. al. has been working on a genetic program running on-board a Khepera
robot. The work has been done in two major parts: i) evolving controllers for simple
problems, e.g. obstacle avoidance and wall following [NB95]. ii) more advanced
hierarchical structures, where they utilise the basic behaviour evolved in the first part
[ONB96].

All of the experiments is conducted using a GP where the individuals consists of
variable length strings of 32 bit instructions for a register machine. The GP individual
is represented in a linear fashion, where each node is an instruction for the register
machine. The 32 bit instructions represent basic arithmetic operations such as a= b+c
or d = b+ 9. The actual format of the instructions is the machine code format of a
SUN-4 (Sparc). The population is typically quite small, i.e. under 50 individual.

The GP itself is a steady-state system using tournament selection with the size of 4,
where candidate one and two returns one parent, and candidate three and four supplies
the second parent. Both “losers” are deleted and the children from the crossover are
added to the population instead of the two “losers”.

The crossover is a two-point string crossover, where each node is the crossover
unit. Crossover can occur on either side of the node, but because of the integrity of the
program, never inside a program. Mutation flips bits within a 32-bit block, and makes
sure that only legal functions, variables, or constants occurs [NB97a].

The design of this system are based of the following assumptions [BNO97] (para-
phrased):

†A construction very familiar to any LISP programmer

3.3. WORK WITH GENETIC PROGRAMMING 25

• Any behaviour can be produce with a general purpose language.
• GP produces symbolic output, in contrast to ANNs.
• Goal definition is only done by deciding on a fitness function.
• GP has a built-in tendency to generalise from presented situations.
• This particular type of GP is fast, memory efficient, and can run on a robot with
very limited computational power.

Another problem which is removed in this GP, is the need for the same starting
point for all test cases. This is handled implicit by the way that each individual is
tested against a real-time fitness case, thereby making a probabilistic sampling of the
environment [NB95]. This approach could give rise to “unfairness” in testing indi-
vidual, as some individual could have more “luck” with their starting point. But this
problem is removed over time.

The randomness in the starting point for each individual results in two types of
survival strategies: i) cooperative strategy where the individual manages to fulfil the
fitness criteria, even under poor conditions. ii) competitive strategy where the individ-
ual tries tominimise the fitness of the other individuals by placing the robot in situations
which are very hard to get out of [BNO97].

The two training environments were: one small rectangular shaped world 30× 40
cm., and one larger and irregular shaped rectangular world 70× 90 cm., where object
could be placed at arbitrary locations [NB97a].

Basic model

In the basic model the interest was on evolving obstacle avoidance in a sense-think-act
context. The GP systems evolved controllers in real time, using real noisy sensorial
data [NB95].

This experiment was not compiled to run autonomously on the Khepera, it ran on
a workstation were it communicated with the Khepera for sensory information, and
for sending information to the motors. Hence, this experiment was not on-board but
on-line.

The small population, typically less that 50 individuals, of genetic programs each
used six values from the sensors, and produced two output values for the motors. Each
individual does this autonomously. The fitness function was divided into two parts; a
pain and a pleasure part. The pain part was just the sum of all sensory input, and the
pleasure part was assigned by measuring how log the robot ran straight and fast. See
equation (3.1), where m1 and m2 are motor 1 and motor 2, and pi is the sum of the
sensors. The goal is to minimise the function.

f =∑ pi+ |15−m1|+ |15−m2|+ |m1−m2| (3.1)

The function set for the GP in this experiment was: addition, subtraction, multi-
plication, shift left, shift right, and, exclusive or, and or. The population size was 30,
crossover probability was 90% and mutation probability was 5%. The system also had
256 nodes as maximum length of any given individual.

This experiment showed that exploratory behaviour came right away. This was due
to the diversity in the initial randomly generated programs. During the first minutes, the
robot bumped in to the wall, but over time the bumping became less and less frequent.

26 CHAPTER 3. RELATEDWORK

After about 20 minutes, which is approximately 100-150 generations, the robot had
learned obstacle avoidance. In the more complex environment it took around a hour to
evolve obstacle avoidance.

The obstacle avoidance experimentwas expanded to include object following [NB97b].
In this work the set up was almost identical to the first experiment. There was a few
differences: i) To make sure that the algorithm was not brittle, it was evolved in the
complex environment, and then tested in an even larger environment (100× 100) cm.
ii) In the object following experiment a new fitness function was used (see equation
3.2), where s1 to s4 is the four forward looking sensors. iii) The algorithm was cross-
compiled and tested on-board; giving much the same result.

f = (s1+ s2+ s3+24−1000)2 (3.2)

For the object avoidance experiment the results were identical to the ones in [NB95].
It took around one hour to learn good object avoidance, and i 90% of the experiments
the robot learned to reduce collisions to fewer than two per minute.

The object tracking experiment the robot actual learned the appropriate behaviour
faster than the case of object avoidance; it took around 30 minutes. The reason could
most properly be the relative easier fitness function.

The most interesting part of this work is the use of on-board evolution. Both tests
were executed on-board with the same framework as the on-line version. Both per-
formed identically. The only problem were that the battery time on a Khepera is ap-
proximately 40 to 60 minutes, which is very close to the minimum time required for
training.

Both papers showed that it is possible to evolve robust controllers for a robot using
GP. The most interesting part is that it is also possible to evolve in total seclusion.

ADF model

As an extension to the work described in the last part, Banzhaf et. al. investigated
the possibility of evolving high-level action selection based on the basic behaviour
mentioned above [ONB96].

This work uses the on-board version of their GP. This GP consists of five popula-
tions, one for each action primitive and the control structure:

go ahead Moving straight at maximum speed.

avoid obstacle Avoid obstacle at maximum speed.

seek obstacle The inverse of avoid obstacle.

find dark Searches for darkness to move to.

select action The populations of selection mechanisms.

When the system is running it feeds data into the data registers of each action
selection mechanism. Four are selected for tournament selection, they each select one
of the four action primitives, through tournament selection. The winners replaces the
losers and genetic operators are used.

The performance of the system was tested in three different experiments: collision
avoidance, wall following, and hiding in the dark. As an example, the robot showed
effective collision avoidance after 800 cycles.

3.4. SUMMARY 27

After a period of four to seven minutes, the robot shows robust behaviour with it’s
action primitives.

This work was even further extended in [BNO97], where the action primitives and
action selectors were evolved. Further more, a memory-based GP was introduced. This
splits the GP into two separate processes. One which communicates with sensors and
motors as well as storing events, 50 event vectors are recorded. The other process tries
to learn an induce a model of the world.

This memory addition speeds up the learning process with about a factor 40. Fur-
ther more, an interesting thing which occurred was that a kind of “childhood” had to be
introduced to make the system work in the best possible way. When using the standard
memory model, a FIFO model, the robot forgot important early experience. The solu-
tion was to introduce a childhood, where the robot learns quickly, and the memories are
hard to forget. The robot performed better if it became harder and harder to memorise
events the older it got.

To achieve a robust system with learning, the population had to be increased from
50 to 10.000 [NB97a]. This removes the possibility of a true autonomous robot, since
only 256KB of memory is available on the Khepera.

All in all, this work shows that primitive behaviour as more than possible to evolve
using GP, both in an on-line and on-board fashion. Even more intelligent, or high level
behaviours, can also be evolved by the same technique. Yet, the robot’s limited hard-
ware removes the possibility of true autonomous running when learning is included;
however, this is a practical problem, which can be solved cheap and easily.

3.3.4 Hybrid
Since the use of on-board GP still is very limited, there is not much literature available
beside the work done by Banzhaf et. al. Hence, not very much has been done on hybrid
solutions either.

Marc Ebner has done some work on the use of GP both in simulation and on-
board [Ebn98]. He investigated if a GP could evolve a controller for a large mobile
robot (a Real World Interface B21); Not only a program for avoiding walls, but also a
hierarchical structure á la ADF.

First an experiment in simulation of the world and the robot was conducted. Here
several fitness cases were tested, and the most successful were then used on-board. the
on-board evolution followed the same guidelines as the simulated. The experiment had
a population size of 75, tournament selection with size 7 was used, the maximum time
per fitness case were 300 s., and the whole system was run for 50 generations. The
simulated solution and the on-board solution came out almost equal.

Due to the time problem (evolution took 197 hours, the whole experiment 2 months)
only one run was performed. The experiment still showed that it is possible to evolve
a hierarchical control architecture with GP. Ebner also concluded that it should be fea-
sible to use computer simulations, and especial to find the main parameters for the run
on the real robot.

3.4 Summary
This chapter has describe a lot of the work done with autonomous behaviour based
robotics today. Most of this work includes some kind of evolutionary method; most
often a genetic algorithm which evolves artificial neural networks. The technique has

28 CHAPTER 3. RELATEDWORK

proven most successful when simulation is used, preferable in conjunction with on-
line evaluation. This goes nicely hand in hand with Brooks [Bro91] situatedness and
embodiment. ANNs and GAs in particular are sensitive to certain problems. According
to Banzhaf et. al. [BNO97] GP can solve many of these problems.

The major problem with GP has for a long time been the slowness of the system,
but this problem has also been solved – it can even be faster than related evolutionary
systems evolving ANNs ([NB97a] p. 17).

All in all on-board, or at least on-line, GP seems to be a promising approach in
behaviour based robotics.

Chapter 4

Approach

Beware of bugs in the above
code; I have only proved it cor-
rect, not tried it

– Donald E. Knuth

4.1 Introduction
This chapter will cover the work donewith the robot, the design and the implementation
of the GP. First an introduction to the Khepera robot will be presented; secondly, the
design of the GP with details from the implementation will be covered.

4.2 The Khepera

Figure 4.1: The Khepera robot

29

30 CHAPTER 4. APPROACH

The experiments in this work has been carried out on a standard autonomousmobile
robot (see figure: 4.1), the Swiss made mobile robot platform Khepera [MFI93].

The Khepera has eight infrared proximity, or light intensity, sensors; all of which
are distributed around the robot, in a circular pattern. The robot has a diameter of six
cm. and a height of three cm. It is also equipped with two separately controllable
motors; a MotorolaTM 68331 processor with 256k of memory; a ROM containing the
operating system which has simple multitasking; and the possibility of connecting it to
a workstation with a serial cable.

There are two possible ways of controlling the robot. Either the algorithm could
be run on a workstation, communicating with the robot through a serial line; or the
algorithm could be complied for the MotorolaTM , and down-loaded to the robot, which
then runs the entire program.

4.3 Genetic programming structure
Here a short introduction to the framework will be given. Then individuals, initialisa-
tion, selection, crossover, and mutation will be covered more throughly.

The structure chosen for this work is loosely based on a synthesis of the work
done by Banzhaf et. al. (covered in section 3.3.3), and the work by Keith and Martin
[KM94].

PopulationSelection

Reproduction

Motor commands

Sensor values
Selection method

Crossover/mutation

X individuals

Khepera Robot

Evolutionary method

Figure 4.2: Overview of the framework

Since robots should behave in an autonomous fashion ([Bro91] [NB97b]). The
system run entirely on the physical robot, as can be seen in figure 4.2 (Adopted from
[BNO97]). The robot is connected to the workstation, solely for dumping statistical
information and for receiving power.

This setup contains a population of C programs, which are exposed to selection.
All input from the world arrives through the eight infrared sensors on the Khepera.
Outputs are written to the two motors, and values from both sensors and motors are
used for selection (fitness calculation).

4.3. GENETIC PROGRAMMING STRUCTURE 31

Initialise robot

Initialise population

Select father

Select mother

Crossover

Mutation

Main loop

Figure 4.3: Systems execution cycle

The choice of ANSI C as the language is based on the work of Banzhaf et. al.
They, however, used an assembler language for their evolutionary generated programs.
I argue that even though the speed of the system properly will diminish when using a
general purpose language, as opposed to assembler, the usability of evolved programs
are higher with this setup. Not only will the code generated be portable, but it will
be much more readable; and the long term goal here is not to make very efficient and
commercial successful robots, but to understand what is going on.

The overview of the GP made for this thesis is:

• Implemented in ANSI C.
• The GP uses a steady statemethod, and tournament selectionwith two times two
individuals for the tournament.

• The crossover is one point random for each parent.
• The two winning parents are kept in the population.
• Mutation is either changing one terminal for another, or changing one function.
• Individuals are a pointer-based dynamic structure. i.e. no constrains on the
length of the individual.

• Compiled on a Solaris workstation using GCC 2.8.1 cross-compiler for theMotorolaTM
68k processor.

• The system is down-loaded and executed on-board the micro controller.

32 CHAPTER 4. APPROACH

The systems goes through two preliminary steps initialise robot and initialise pop-
ulation. It then goes through a loop consisting of selection, crossover, and mutation
(see figure 4.3).

4.3.1 Individuals
The population consists of a fixed number of individuals, typically 50 or less. Since the
system should be as dynamic as possible, the individuals are represented as a pointer
structure with no maximum length (see figure 4.4). This could potential lead to a
population with very long individuals, and the size of these individuals could surpasses
the memory available on the robot. But since a minimum- and maximum length is
given when initialising the population, this hasn’t been a problem.

name
value

terminal

name
value

terminal

length
fitness
mate
number
elem

individual

next
func
term

element

next
func
term

element

next
func
term

element
.

name
arity
expression

function

NULL

NULLNULL NULL

int gpmul (int listofargs[]){
 return listofargs[0] * listofargs[1];
};

Figure 4.4: Overview of the individuals structure

The individuals are represented in a linear fashion. This should not be mistaken for
a linear GP. The GP used in this work is actual a tree-based GP, it is just represented
in a linear structure, and all manipulation is done on the linear structure. This is, with
some modifications, based on the work by Keith and Martin [KM94]. The use of a
tree-based GP in a linear form is different from the work by Banzhaf et. al. where a
true linear GP was used (see section 3.3.3).

All individuals consists of two parts. i) Information about the individual. ii) The C
program. Any individual has the following elements:

4.3. GENETIC PROGRAMMING STRUCTURE 33

• length A integer containing the length of the individual.
fitness The integer value of the individuals fitness.
mate Boolean value to keep track of whether or not this individual has been

selected as a parent of child.
number The number of the individual, used for debugging purpose.
elem A pointer to the first node in the individual’s program.

The elem is the first node in the pointer array containing the C program. All nodes
has the following in common:

• next The pointer to the next node in the array. Last one point to NULL.
func A pointer to a function. Contains NULL if the node is a terminal.
term A pointer to a terminal. Contains NULL if the node is a function.

Terminals and function has one thing in common; they both have names. These
names are only for readability. A function contains the following variables:

• name The name of the function, e.g. *, -, +, /.
arity The number of arguments handled by the function.
expression A pointer to a function, of the form:

int <name> (int listofargs[]){
return <calculation>;
};

The terminals are short structures, they only contain the name of the terminal, e.g.
sensor0, constant1. They also contains the value of the particular terminal.

The initialisation is donewith two parametersminimum-length andmaximum-length.
To insure the integrity of the random generated programs the arity of the functions se-
lected minus one was added to a checksum, and in case of terminals one was subtracted
from the checksum.

When the expression is build the checksum must be minus one to guaranty a legal
expression. This can be done purely random, but to speed up the process a trick from
[KM94] was used:

if((openbranch + currentlength) >= indiv->length){
force terminal selection

}

Where openbranch is the sum of the selected functions arity, minus one for each
terminal selected. So when the expression is filed with functions and the rest of the
available node has to be used for terminals to ensure the integrity; terminals are se-
lected.

4.3.2 Reproduction
To have a reproduction system in evolutionary computation selection is necessary. And
either crossover or mutation must be used, more often than not, both crossover and
mutation is used, as is the case in this work.

34 CHAPTER 4. APPROACH

Selection

The selection used in this system is based on the probabilistic sampling of the environ-
ment introduced by Banzhaf and Nordin in [NB95]. Here each individual is tested on a
new fitness case, i.e. a new place in the environment. A discussion of this method can
be found in ([NB95], [NB97b]) and others.

The selection itself is straight forward. It is tournament selection with the size of
four within a steady-state GP. Two parents are selected based on their fitness returned
by the fitness function, tested on-line in the real environment. For an example, if ob-
stacle avoidance is sought the function (4.1) could be used.

f = α× ((m1+m2)−|m1−m2|)−β×
7

∑
0
si (4.1)

Where α and β are constants used for scaling, m1 and m2 are the values of motor
one and two, and si are the sensors. The two individuals who “lost” the tournament
selection would be deleted and used for the children returned from the crossover func-
tion.

Crossover

/

>

sensor2

Child 1

+

sensor3

sensor7

sensor0

>

<

*

Child 2

<

-

sensor0

sensor1<

-

sensor0

sensor1

/

>

sensor2

Parent 2

+

sensor3

sensor7

sensor0

>

<

*

Parent 1

Figure 4.5: Example of crossover

To insure the integrity of any program constructed by crossover, the function has to
be constructed in a particular fashion. This is very much like the way individuals are
initialised, except the parts are bigger.

To generate a legal child the following can be done, here the two parents aremother
and father, the children are child 1 and child 2, and checksum is 0 (null) (see figure: 4.5
for an example).

• Select a random crossover point in each of the parents.
• Copy the parts before the crossover point from each of the parents to each of the
children. e.g. copy the first part of mother to child 1.

4.3. GENETIC PROGRAMMING STRUCTURE 35

• Start from the crossover point and copy each node to the child until checksum is
-1; doing just the same as in initialising. e.g. copy the crossover segment from
the father to child 1.

• Copy the rest of the parents to the children. e.g. copy the rest of mother to child
1.

It is worth noticing that if an individual is dividend in to three parts: pre-part,
crossover-part, and post-part. The pre-part and post-part can have the length of zero,
but the crossover-part must have a length of at least one.

Mutation

The mutation in this work is implemented as a simple version of sub-tree swapping.
No tree are swapped but just nodes. To ensure the correctness of the mutation operator,
functions are swapped with function of the same arity, and terminals are only swapped
for other terminals.

36 CHAPTER 4. APPROACH

Part III

Results and Evaluation

37

Chapter 5

Results

Results! Why, man, I have
gotten a lot of results. I know
several thousand thing s that
won’t work

– Thomas A. Edison

5.1 Introduction
The experiments in this work are based on the experiments done by Banzhaf et. al.
[BNO97] First of all, this work will try to reproduce the results archived by Banzhaf
et. al. This will be done by running one of their experiments, the obstacle avoidance
problem, only with my own implementation.

After the reproduction of this results, this work will try to improve the implementa-
tion used. The goal here is to evolve an individual who can solve the problem, instead
of the approach by Banzhaf et. al. where the population in cooperation solves the
problem.

Before doing the experiments first conducted by Banzhaf et. al. Two test cases
will be executed. The first test will be run to see if evolution is working, and to check
several parameters. It will be run with the robot on it’s back, i.e. with it’s wheels
spinning in the air; insuring a pure test environment.

The second test will be conducted with the robot running correctly. This will be
done for demonstration the presentation form for the statistical material.

The rest of the experiment part will cover obstacle avoidance, first in the Banzhaf
et. al. way, and then in the way specific for this work.

All experiments will be conducted in an autonomous way. The robot will be con-
nected to a workstation, but only for receiving power, and dumping statistical informa-
tion. All computation is done on the robot.

5.2 General settings
Some issues are general for all the experiments conducted here. All the general settings
will be describe here.

39

40 CHAPTER 5. RESULTS

For each experiment a table will describe the specific settings for that particular
trial.

5.2.1 Function set
The following functions are a member of the set which can be used by the GP (see
table 5.1). The function set is divided into three groups: The six first functions are
standard operations (Add, SUB, DIV, MUL, AND, and XOR); the next two are bit
shifting functions (SLL and SLR); and the two last ones are motor specific functions.

Name Symbol arity Description
ADD + 2 Addition
SUB − 2 Subtraction
DIV / 2 Protected division
MUL ∗ 2 Multiplication
AND | 2 Logical and
XOR & 2 Exclusive or
SLL L 1 Shifts bits left
SLR R 1 Shifts bits right
SMO < 1 Set motor one
SMT > 1 Set motor two

Table 5.1: Function set

The two bit shifting functions (SLL and SLR) shifts bits either left or right. They
are defined in the following way:

int gpsll (int listofargs[]){
int tmp;
tmp = listofargs[0] & (0x0fff);
return tmp<<4;

};

int gpslr (int listofargs[]){
int tmp;
tmp = listofargs[0] & (0xfff0);
return tmp>>4;

};

The way output are written to the motors are done differently here than in the work
by Banzhaf et. al.

In this work writing output to the motors are an integrated part of the function set.
The two functions gpmotorleft and gpmotorright can be called from any point within
the GP structure.

This design choice has been done for the reason of making the GP even less suspect
to meddling by the programmer; the controllers should not be forced to give output to
the motors. Again Stone has been the inspiration [Sto94].

The two functions are defined in the following manner:

5.3. TEST RUN 41

int gpmotorleft (int listofargs[]){
mot_new_speed_1m(0,listofargs[0]);
return listofargs[0];

};

int gpmotorright (int listofargs[]){
mot_new_speed_1m(1,listofargs[0]);
return listofargs[0];

};

The two functions follow the standard definition of functions within this GP (see
section 4.3.1). They return the list of argument for further calculation.

The mot new speed 1m(int motor, int value) is a function defined in the C
library, which accompanied the Khepera robot. The function takes the motor-number
as the first argument, and the speed as the second argument.

5.2.2 Terminal set
The variables in this work are only the eight motors. There are an equal number of
constants (see table: 5.2).

Name Initial value Description
Sensor0 - Sensor7 0 The infrared sensors on the Khepera

measuring distance
Constant 0 -5 Predefined constant
Constant 1 -3 Predefined constant
Constant 2 -1 Predefined constant
Constant 3 0 Predefined constant
Constant 4 1 Predefined constant
Constant 5 2 Predefined constant
Constant 6 3 Predefined constant
Constant 7 6 Predefined constant

Table 5.2: Variable and constant set

5.2.3 Selection, crossover, and mutation
The selection are done by by tournament selection with two times two individuals, with
no possibility of selecting the same individual twice in the same tournament.

Crossover is one point random for each parent chosen. For more information on
the crossover mechanism see section: 4.3.2.

The mutation rate is per gene; only one mutation can occur in any give individual.

5.3 Test run
This experiment is run with the robot turned upside down for two reasons: i) to check
if any evolution is going on, and ii) to find the good α and β parameters in function 5.1.

42 CHAPTER 5. RESULTS

f = α× ((m1+m2)−|m1−m2|)−β
7

∑
i=0

si (5.1)

The fitness function for obstacle avoidance, where m1 and m2 are the two motors,
and s0 to s7 are the eight infrared sensors. The function will be more thoroughly de-
scribed in section 5.4.

5.3.1 Upside down
When the robot is turn upside down, the second half of the fitness function will have
no effect on the fitness. The goal for this run will then be to get both motors to run
forward as fast as possible. The parameters were as follow:

Parameter Value
Population size 50
Crossover probability 100%
Mutation probability 10%
Maximum number of generations 200
Minimum initial individual length 10
Maximum initial individual length 30
Number of iterations pr. individual 1
Function set ADD, SUB, DIV, MUL, AND, XOR,

SLL, SLR
Terminal set Integers in the range int

The run took 28 minutes for a total of 200 generations.

-1000

-800

-600

-400

-200

0

200

400

600

0 20 40 60 80 100 120 140 160 180 200

Fi
tn

es
s

Generations

Max
Average

Min

Figure 5.1: Fitness graph for first test run

5.4. OBSTACLE AVOIDANCE 43

The fitness graph clearly shows evolution occurring. A few issues needs to be
covered though. It should come as no surprise that the problem is very easy. According
to the fitness graph, the program seems to hit a very good solution already in the random
population in generation one. But the average fitness improves nicely over time, giving
the indication that evolution is occurring.

5.3.2 Correct orientation
The second part of this test run is done with the robot turned the right way. This has
been done to demonstrate the way information will be presented in the following real
experiments.

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

2000

0 20 40 60 80 100 120 140 160 180 200

Fi
tn

es
s

Generations

Max
Average

Min

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16 18 20

Nu
m

be
r o

f c
ol

lis
io

ns
 p

er
 m

in
ut

e

Time

Figure 5.2: Fitness and collisions graphs for second test run

This run is based on the obstacle avoidance problem, the fitness function from
section 5.4 is used. It is evident that the fitness graph (the one to the left in figure: 5.2)
is next to useless for showing any progress in the evolution. This is due to the many
parameters which are measured. There are eight infrared sensors and two motors. The
problem is that any number of combinations of these ten values could give the same
plotted fitness value, hence another way of visualising the progress must be used.

The same graph as used by Banzhaf et. al. can be used, namely the number of
collisions pr. minute (the one to the right in figure 5.2). This graph clearly shows that
the robot is getting better and better to avoid collision over time. Hence, this is the type
of graph which will be used through out the rest of this chapter.

After extensive testing the behaviour of the robot was at its best when α was 16 and
β was 2.

5.4 Obstacle avoidance
The first experiment is evolving obstacle avoidance. This experiment is based on the
obstacle avoidance experiment Banzhaf et. al. [NB97a] and [BNO97].

Given that high value on the sensors is equal to closeness to an object, minimising
the sum of sensory input is the main goal of the fitness function (5.2). To avoid a robot
standing still far away from any objects, the first half of the fitness function gives credit
to straight and fast moving robots.

f = α× ((m1+m2)−|m1−m2|)−β
7

∑
i=0

si (5.2)

44 CHAPTER 5. RESULTS

The arena where this system was tested is a 60× 80 centimetre regular shaped
world with no internal obstacles. The Robot was run with the cable connected to the
workstation, purely for power and data receiving purposes.

A connection to the workstation introduces the problem of tangled cables. When
the robot has been turning around for some time, it needs to be lifted and to have the
cable straightened. This, however, is not a problem for the result, since it seldom takes
more time than it takes to evaluate one individual, hence it should not interfere with the
general result.

5.4.1 Test case 1 - The population way
The approach by Banzhaf et. al. is to test a large number of individuals for a very
short time, thereby building implicit cooperation between the individuals solving the
problem [NB97b]. This will result in a population were no single individual can solve
obstacle avoidance, but the population as a whole can (see section 3.3.3 for a more
thorough description).

The following specific parameters were used:

Parameter Value
Population size 50
Crossover probability 100%
Mutation probability 10%
Maximum number of generations 100
Minimum initial individual length 10
Maximum initial individual length 30
Number of iterations pr. individual 1
Sleep time between execution and testing 400 ms
Function set ADD, SUB, DIV, MUL, AND,

XOR, SLL, SLR, SMO, SMT
Terminal set Integers in the range int

This experiment follows the format of the experiment by Banzhaf et. al. The major
difference between those experiments and the one done here is that Banzhaf et. al.
uses a register variable to hold the value of the two motors, and only when the program
is finished are the two variables written to the motors. This work includes the motor
function as an integrated part of the function set, see section 5.2.1 for an explanation.

Each run took around half an hour to conduct. In this experiment three runs were
made.

5.4.2 Result
Figure 5.3 to 5.5 is the number of collisions per minute for each run. As can clearly
be seen there are no perfect solutions for this problem. There is, however, a nice trend
where the number of collisions definitely are decreasing over time. This trend is also
visible in the graph showing the average for all three runs (Figure 5.6).

One thing which is worth noticing is the drop in number of collisions at around five
minutes. This is a recurrent problem in all three runs, and that makes it very visible in
the average graph. This drop is due to the problem of the cable. At around that time
it needed to be straightened. The same problem is visible at around twenty minutes.

5.4. OBSTACLE AVOIDANCE 45

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

Nu
m

be
r o

f c
ol

lis
io

ns
 p

er
 m

in
ut

e

Time

Figure 5.3: Population first run

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

Nu
m

be
r o

f c
ol

lis
io

ns
 p

er
 m

in
ut

e

Time

Figure 5.4: Population second run

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

Nu
m

be
r o

f c
ol

lis
io

ns
 p

er
 m

in
ut

e

Time

Figure 5.5: Population third run

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

Nu
m

be
r o

f c
ol

lis
io

ns
 p

er
 m

in
ut

e

Time

Figure 5.6: Population average

It should be noted that due to some limitations in my plotting software, the graph starts
at 0.5 and ends 0.5 before it should. This means that the first small part of the graph
should be ignored, and the very large fall in the end is not part of the data.

Here is it of a smaller scale. This diminishing in scale is due to a more varied behaviour
from five minutes to twenty.

However, there is a clear improvement in the behaviour of the population. This
improvement is also visible when conducting the experiments. When the population
starts there is a lot of erratic behaviour in the population. A lot of spinning around,
running in to walls and keep on running.

As time goes by the robot generally slows down a bit, and the spinning behaviour
diminishes. At some point the robot tries to run in a straight line, until it crashes. And
in the last five minutes there is clear evidence of a turning behaviour; that is the robot
tries to run in a large circle (see figure 5.7).

5.4.3 Test case 2 - The individual way
This experiment is an extension to the original work done by Banzhaf et. al. The goal
here is not to solve the obstacle avoidance problem by training the whole population in
implicit cooperation, but rather to train the population in such a way that one individual
can solve the problem alone.

46 CHAPTER 5. RESULTS

Figure 5.7: Three stages of behaviour

This twist is accomplished by running each individual through 10 iterations instead
of just one. Hence, each individual will be given 10 shots at solving the problem, at
(potential) 10 different locations.

Further more, the time which an individual “sleeps”, that is the time frame from
execution of the individual until measurement are done is only 40 milliseconds instead
of 400 as in the first experiment. This has been done to minimise the time spent on
running the experiments.

The following specific parameters were used:

Parameter Value
Population size 50
Crossover probability 100%
Mutation probability 10%
Maximum number of generations 100
Minimum initial individual length 10
Maximum initial individual length 30
Number of iterations pr. individual 10
Sleep time between execution and testing 40 ms
Function set ADD, SUB, DIV, MUL, AND, XOR,

SLL, SLR, SMO, SMT
Terminal set Integers in the range int

5.4.4 Result
Figure 5.8 to 5.10 is the number of collisions per minute for each run. As in the first
experiment, there are no perfect solutions for this problem. But again there is a very
good trend.

Except for the first run, the rest show a very clear improvement. The population
starts out at around the same number of collisions as the first experiment (around 20),
but has a far better rate of improvement. The final number of collisions is around seven.

The behaviour of the population mimics the first experiment. The population starts
off with the same erratic behaviour, which primarily consists of spinning around the
robot’s own axis.

5.4. OBSTACLE AVOIDANCE 47

0

5

10

15

20

25

30

0 5 10 15 20 25

Nu
m

be
r o

f c
ol

lis
io

ns
 p

er
 m

in
ut

e

Time

Figure 5.8: Individual first run

0

5

10

15

20

25

30

0 5 10 15 20 25

Nu
m

be
r o

f c
ol

lis
io

ns
 p

er
 m

in
ut

e

Time

Figure 5.9: Individual second run

0

5

10

15

20

25

30

0 5 10 15 20 25

Nu
m

be
r o

f c
ol

lis
io

ns
 p

er
 m

in
ut

e

Time

Figure 5.10: Individual third run

0

5

10

15

20

25

30

0 5 10 15 20 25

Nu
m

be
r o

f c
ol

lis
io

ns
 p

er
 m

in
ut

e

Time

Figure 5.11: Individual average

It should be noted that due to some limitations in my plotting software, the graph starts
at 0.5 and ends 0.5 before it should. This means that the first small part of the graph
should be ignored, and the very large fall in the end is not part of the data.

As time goes by the same slow down, as in the first experiment, is apparent. The
robot still seems to go through the same stages, where first it will try to run in a straight
line, disregarding any obstacles, but at some point within the last ten minutes the turn-
ing behaviour occurs.

It seems that evolutions is occurring faster here than in the first experiment. On the
other hand, spinning behaviour occurs at a far later point in time.

This is probably due to more thorough testing of each individual, ten times instead
of one, where it should be harder for less flexible individuals to survive.

This can also explain why spinning behaviour is occurring at a later time. Since
individuals are more thoroughly tested, fewer individuals will be tested within the same
time frame. And since the random generated population seems to have a preference for
spinning behaviour, it should occur at a later time.

48 CHAPTER 5. RESULTS

5.5 Comparison
5.5.1 Introduction
Before any comparison between the two different experiments, and between this work
and the work by Banzhaf et. al, can be done, a description of the way collisions are
counted would be in place.

As a rule of thumb each time that the robot hits the wall one collision is counted.
Furthermore, since the LEDs on the robot blinks each time a new individual is tested,
it is possible to count each time a new individual “hits” the wall.

This means that if the first individual hits the wall, one collision is counted. If the
next individual do not go away from the wall one more collision is counted, and so
forth. This might not be the way it was done in the original work by Banzhaf et. al. It
has not been possible to verify how counting was done by Banzhaf et. al., so it might
not be possible to directly compare the numbers in the different experiments, but the
trends and conclusions should be comparable.

5.5.2 Comparison between the two experiments

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

Nu
m

be
r o

f c
ol

lis
io

ns
 p

er
 m

in
ut

e

Time

Population
Individual

Figure 5.12: Average number of collisions for both experiments

As already mentioned in section 5.4.4 it looks like the individual way is better than
the population way. Looking at the comparison graph, it suggests that the superiority
of the individual way could be written off as pure coincidence, since it starts of better
than the population way.

I would argue that it is not solely due to coincidence. The difference could be as-
cribed to the difference in the time each individual is allowed for testing. In the first

5.5. COMPARISON 49

experiment 400 milliseconds are used for each individual. In the second only 40 mil-
liseconds. This would allow for the robot to go much further in the first experiment;
hence, getting the population closer to the wall. And since no meaningful behaviour
occurs within the first 10 minutes, the spinning behaviour would punish the first exper-
iment more than the second one.

The possible superiority of the individual way as opposed to the population way
is not the most significant result from this work. The result can be divided into three
points: i) Verification of the work done by Banzhaf et. al. ii) Evolution of a solution
based on individuals instead of cooperation. iii) Comparable performance between this
work and work by others.

Verification

For scientific work to be acceptable it must be possible for a 3rd party to verify or falsify
any experiment†. In general this work shows that the use of Genetic Programming is
both possible and feasible when working with Adaptive Behaviour Based Robotics.
Specifically it shows that the approach introduced by Banzhaf et. al. is a useful and
functional way to utilise the exiting field of Genetic Programming in conjunction with
autonomous robots; something which is at the cutting edge of this research area.

Individual vs. population solution

The approach of Banzhaf et. al. is to let the population solve the problem of obstacle
avoidance. This is done by the implicit cooperation between individuals, i.e. each
individual specialises in some area such as getting out of corners or going in a straight
line [NB97a]. The problem is then solved by individuals appearing at (hopefully) the
right time in the experiment.

As stated in section 5.1 the solution chosen in this work is somewhat different
from that approach. It is more of a standard way of using evolutionary methods. Each
individual is evolved to solve the whole problem, and not just parts of it. This is
accomplished through a more thorough testing of each individual. As described in
section 5.4.3, each individual is tested ten times in a row, at potential ten different
location. This should lead to a more flexible individual than the ones tested only ones.

This should allow for evolution of (at least) one individual who can solve the obsta-
cle avoidance problem, hence at the end of an experiment picking the best individual
should give us the solution.

Together with the choice of ANSI C as the language of the individuals genetic
material, instead of assembler as in the work by Banzhaf et. al. I would argue that an
individual who solves this problem is much more interesting from the perspective of
understanding the process, than a population of individuals represented in assembler.

Performance

The choice of ANSI C and not assembler was, as mentioned above, done to help un-
derstand how the robot solves the problem (see section 4.3). It was suggested that the
speed of the system would probably decrease compared to a system written in assem-
bler.

This does not seem to be the case. When looking at figure 5.12, the individual
approach easily compares to the populations approach. However, when comparing

†Even though Popper would probably not agree on the fi rst part

50 CHAPTER 5. RESULTS

with the original work by Banzhaf et. al. [NB97a], where they find an almost perfect
solution. This approach still lacks some performance.

A real verification of the performance between this work and the original has unfor-
tunately not been possible. The original work used approximately one hour to evolve
an almost perfect solution, something which is almost three times as long as the run
time that was possible in the experiments conducted in this work.

5.5.3 Comparison between this work and others
The implementation and testing of this work, has so far shown that the original idea by
Banzhaf et. al., that fully autonomous use of GP is possible and feasible in behaviour
based robotics.

This work also shows that to obtain reasonable results using a evolutionarymethod,
other methods than genetic algorithms evolving artificial neural networks can be used.
Looking at the on-board work presented in section 3.2.3, where the work by Nolfi et.
al. [NFMM94] and Floreano et. al. [FM96a] was described, it is obvious that this
solution is comparable to that work.

This solution does not perform as well as the work by Floreano et. al., but it is
definitely not far off. It is worth noticing that these two experiments are not directly
comparable, not just because of the two different methods, but also because of the
non-autonomous way the Floreano experiment was done. It should also be obvious
that running a GA/ANN solution, consumes far less time and resources than a full
GP solution. Given these differences, I would argue that these solutions perform in
comparable ways.

When comparing to work using the same method, the work by Banzhaf et. al. has
already been discussed. Since that work is the only known work on purely autonomous
on-board GP, it is only possible to compare this work with the work done on hybrid
solutions, see section 3.3.4.

Comparing to the work done by Marc Ebner [Ebn98], where a part simulation
and part on-board system was constructed, this work shows that speed is not a big a
problem as it might look. The original work done by Ebner took 197 hours to evolve
a controller for navigating a large physical robot. Even though his work included an
ADF like structure, the difference in speed is very noticeable. Where Ebner’s system
used 197 hours, this work used around half an hour to evolve a reasonable solution to
obstacle avoidance.

All in all it is reasonably to say that this system in certain ways, is comparable to
systems utilising GAs and ANNs, and that is performs better than other work using GP.

Chapter 6

Discussion

Get your facts first, and then
you can distort them as much
as you please

– Mark Twain

6.1 Introduction
This chapter will evaluate the project as a whole. It will first present a summary of
the thesis and the results gained from this work. It will then move on to discuss my
views on the research area, and the experiences received from working with real world
robots. Finally it will describe the future work which may yield worthwhile results.

6.2 Summary
In chapter 1 the main goals and motivations for this thesis was described. The main
goal was to show the feasibility of using Genetic Programming for evolving controllers
in a real world robot, and to it in a totally autonomous way.

The underlying reason for this is my strong belief that it is only through experiences
in the real physical world that a concrete understanding of the behaviour of organisms
(or robots) can come.

The choice of Genetic Programming springs forth from the usefulness it has shown
in a wide variety of other areas, and the possibilities of evolving robot controllers that
are not just useful, but also understandable for a person with the ability to read and un-
derstand a program written in a general purpose language; something which Artificial
Neural Networks, and to a large degree Genetic Algorithms can not do.

To design and implement the necessary experiments and software for demonstrat-
ing the usefulness of Genetic programming, a thorough understanding of, not only
Genetic Programming but also other Evolutionary Methods must be gained. But be-
fore such an understanding can be build, an understanding of the theories and research
from the fields which inspired the use of artificial evolution must be gained.

Section 2.2 in chapter 2 describes the real world foundation for Behaviour Based
Robotics, and some different approaches to adaptation in individuals and populations

51

52 CHAPTER 6. DISCUSSION

were presented. This part builds the understanding that artificial evolution it not just
some idea coming out of no where; it has been getting ripe since Malthus in 1798.
Together with section 2.3 the foundation for Artificial Evolution of Behaviour using
Genetic Programming has been constructed.

Before the specifics of the approach in this thesis can be decided upon, some re-
search must be done to how others have tackled this area. Chapter 3 describes a major
part of the relevant research done by others. The material discussed here is obviously
only a subset of all the research done in this area, but an important part of the research
is to decide what to include and what to exclude.

Since the work of Banzhaf et. al. is the first real extensive work on Genetic Pro-
gramming in physical robots, their work would naturally take a more prominent role in
this thesis than a lot of other interesting research.

In chapter 4 the specific design and implementation chosen for this thesis was de-
scribed, and the motivation for the choices made.

Chapter 5 discussed the results obtain through the experiments conducted in the
thesis. It also supported the goals and motivation from chapter 1, by showing that not
only was the use of Genetic Programming useful and feasible, but the results were also
level with the results by Banzhaf et. al., and comparable to other methodologies in
Behaviour Based Robotics.

6.3 The research area
As describe in chapter 2 there are several ways to approach the problems of Behaviour
Based Robotics. The most common way is to use a Genetic Algorithms and/or an
Artificial Neural Network. The choice of Genetic Programming has had it up-sides
and down-sides.

Looking at the positive side first, the use of Genetic Programming and real robots
has allowed this work to explore areas where, when comparing with areas such as
Artificial Neural Networks and Genetic Algorithms, very little work has been done.
This has given me the freedom of, in the words of Star Trek: “to boldly go where
[almost] no one has gone before”.

The novelty and somewhat cutting edge of this particular combination of Genetic
Programming and Robotics, has sometimes been a blessing in disguise. Since very
little work has been done, it has been hard to find any literature to support this work.

On amore general level the whole field of EvolutionaryMethods appeals verymuch
to me. The bottom-up approach and “non-determinism” easily leads to the: “That’s
funny....”.

6.4 Robots
It is always a hassle to work in the physical world, simulations and assumptions are so
much more pleasant to work with.

Even though I do not regret ever starting with robots, I must say that there are so
many more problems when working with robots, than with nice manageable models.
There are a lot of extra challenges when working with robots: mechanical problems,
power issues, time consumption, etc.

These problems which are a common challenge when using any robot, has really
been much more common with the Khepera. This robot demonstrates all the problems

6.5. FUTURE WORK 53

with computers and new technology. First of all, is the documentation poor at best.
Secondly, given the price on hardware today you do not get much for your money
(256KB of memory, around 45 minutes of battery power). And finally, it do not look
like a reliable platform.

It might sound like I dislike robots in general and the Khepera in particular. But
even though there has been a lot of nerve wrecking times, it has actually been fun
working with real physical things. It gives a new dimension to the non-deterministic
way I enjoy so much.

One learns a lot when working with robots, it can for an example be very frustrating
to see that when you instruct a robot to turn 90 degree to the left, it will only turn 80
or perhaps 100 – but not the same amount each time. These kind of experiences is
actually the best way to learn that ecological psychology, and Brooks and the like may
be right.

6.5 Future work
Even though the work presented in this thesis reaches the goals stated in chapter 1,
several areas have shown itself to be worthy of closer inspection and more work.

It is obvious that the results of this work is not a perfect solution to navigation in the
real world. It might be useful to reexamine the code written for this thesis and modify
or change different parts, thus improving the overall performance of the system.

One area which would be very interesting to work on, it to see how robust the
solutions evolved in this way are, i.e. will a controller work in another world?

It would also be worthwhile to investigate is the approach would be successful at
solving more complex problems, and work with several more simple problems, such as
wall following. If this is successful it would be worthwhile to develop arbitrators, such
as in the work by Harvey [Har92], and use Automatically Defined Functions (ADF) for
solving more complex problems.

54 CHAPTER 6. DISCUSSION

Bibliography

[Ark98] Ronald C. Arkin. Behavior Based Robotics. MIT Press, 1998.

[Bal96] J. M. Baldwin. A new factor in evolution. American Naturalist., 1896.

[BG92] Randall D. Beer and John C. Gallagher. Evolving dynamical neural net-
works for adaptive behavior. Adaptive Behavior, 1(1), 1992.

[BNKF98] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D. Fran-
cone. Genetic Programming, An Introduction: On the Automatic Evo-
lution of Computer Programs and Its Applications. Morgan Kaufmann
Publishers, Inc., 1998.

[BNO97] Wolfgang Banzhaf, Peter Nordin, and Markus Olmer. Generating adap-
tive behavior for a real robot using function regression within genetic pro-
gramming. In 2nd International Conference on Genetic Programming,
1997.

[Bra84] Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology.
MIT Press, 1984.

[Bro87] Rodney A. Brooks. Planning is just a way of avoiding figuring out what
to do next. Technical report, MIT, 1987.

[Bro89] Rodney Brooks. A robot that ealks: Emergent behaviors from a carefully
evoled network. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 692 – 694, 1989.

[Bro91] Rodney Brooks. New approaches to robotics. Science, 253:1227 – 1232,
1991.

[CD93] Marco Colombetti andMarco Dorigo. Learning to control an autonomous
robot by dristributed genetic algorithms. In From Animals to Animats
2: Proceedings of the Second International Conference on Simulation of
Adaptive Behavior, pages 305 – 312, 1993.

[Dar28] Charles R. Darwin. The Origin of Species. J. M. Dent & Sons Ltd., 1859,
1928.

[Ebn98] Marc Ebner. Evolution of a control architecture for a mobile robot. In
Proceedings of the Second International Conference on Evolvable Sys-
tems: From Biology to Hardware (ICES 98), 1998.

55

56 BIBLIOGRAPHY

[FM90] J. F. Fontanari and R. Meir. The effect of learning on the evolution of
asexual populations. Complex Systems 4, 1990.

[FM94] Dario Floreano and Francesco Mondada. Automatic creation of an au-
tonomous agent: Genetic evolution of a neural-network driven robot. In
From Animals to Animats 3: Proceedings of the Third International Con-
ference on Simulation of Adaptive Behavior, pages 421 – 430, 1994.

[FM96a] Dario Floeano and Francesco Mondada. Evolution of homing naviga-
tion in a real mobil robot. In IEEE Transactions on Systems, Man, and
Cybernetics, 1996.

[FM96b] Dario Floreano and Francesco Mondada. Evolution of plastic neurocon-
trollers for situated agents. In From Animals to Animats 4: Proceedings of
the Fourth International Conference on Simulation of Adaptive Behavior,
pages 402 – 410, 1996.

[FP96] Forrest and Perelson. The baldwin effect in the immune system: Learning
by somatic hypermutation. Adaptive Individuals in Evolving Populations,
SFI Studies in the Sciences of Complexity, 1996.

[GG96] Takashi Gomi and Ann Griffith. Evolutionary robotics - an overview. In
Proceedings of IEEE International Conference on Evolutionary Compu-
tation, 1996.

[Gib79] J. J. Gibson. The Ecological Approach to Visual Perception. Houghton
Mifflin, 1979.

[GIM98] Michael S. Gazzaniga, Richard B. Ivry, and George R. Mangun. Cogni-
tive Neuroscience: The Biology if the Mind. W. W. Norton & Company
Inc., 1998.

[GS] J. C. Grefenstette and A. Schults. An evolutionary approache to learning
in robots. In Proceedings, Machine Learning Workshop on Robot Learn-
ing. New Brunswick, NJ.

[Han94] Simon C. Handley. The automatic generations of plans for a mobile robot
via genetic programming with automatically defined functions. In Ken-
neth E. Kinnear Jr., editor, Advances in genetic programming, chapter 18.
Massachusetts Institute og Technology, 1994.

[Har92] Inman Harvey. Species adaptation genetic algorithms: The basis for a
continuing saga. In Toward a Practice of Autonomous Systems, Proceed-
ings of the First European Conference on Artificial Life, 1992.

[Har97] Inman Harvey. Artificial evolution and real robots. Artificial Life and
Robotics, 1:35 – 38, 1997.

[HHC93] Inman Harvey, Phillio Husbands, and Dave Cliff. Issues in evolutionary
robotics. In From Animals to Animats 2: Proceedings of the Second In-
ternational Conference on Simulation of Adaptive Behavior, pages 364 –
373, 1993.

BIBLIOGRAPHY 57

[HHC+96] P. Husbands, I. Harvey, D. Cliff, A. Thompson, and N. Jakobi. Artificial
evolution of control systems. In Proc. of the 2nd Intl. Conf. on Adaptive
Computing in Engineering Design and Control, pages 41 – 49, 1996.

[HN87] Geoffrey E. Hinton and Steven J. Nowlan. How learning can guide evo-
lution. Complex System 1, 1987.

[Hol92] John H. Holland. Adaptation in Natural and Artificial Systems. MIT
press, 1975, 1992.

[III97] Forrest H. Bennett III. A multi-skilled robot that recognizes and responds
to different problem environments. In Second Annual Genetic Program-
ming Conference (GP-97), 1997.

[Jak97] Nick Jakobi. Evolutionary robotics and the radical envelope of noise hy-
pothesis. Joural Of Adaptive Behaviour, 6, 1997.

[JHH95] Nick Jakobi, Phil Husbands, and InmanHarvey. Noise and the reality gap:
The use of simulation in evolutionary robotics. In Advances in Artificial
Life: Proc. 3rd European Conference on Artificial Life, 1995.

[Kae92] Leslie Pack Kaelbling. An adaptable mobile robot. In Toward a Practice
of Autonomous Systems, Proceedings of the First European Conference
on Artificial Life, 1992.

[KBKA97] John R. Koza, Forrest H. Bennett, Martin A. Keane, and David Andre.
Automatic programming of a time-optimal robot controller and an analog
electrical circuit to implement the robot controller by means of genetic
programming. In Computational Intelligence in Robotics and Automa-
tion, Proceedings., 1997 IEEE International Symposium on Computa-
tional Intelligence in Robotics and Automation, pages 340 – 346, 1997.

[KM94] Mike J. Keith andMartin C. Martin. Genetic programming in c++: Imple-
mentation issues. In Jr. Kenneth E. Kinnear, editor, Advances in genetic
programming, chapter 13. Massachusetts Institute og Technology, 1994.

[Koz92] John R. Koza. Genetic programming: On the Programming of Computers
by Natural Selection. MIT press, 1992.

[Koz94] John R. Koza. Introduction to genetic programming. In Kenneth E. Kin-
near Jr., editor, Advances in genetic programming, chapter 2. Mas-
sachusetts Institute og Technology, 1994.

[KR92] John R. Koza and James P. Rice. Automatic programming of robots using
genetic programming. In AAAI-92, Proceedings Tenth National Confer-
ence on Artificial Intelligence, 1992.

[LF92] M. Anthony Lewis and Andrew H. Fagg. Genetic programming approach
to the construction of a neural network for control of a walking robot. In
Proceedings of the 1992 IEEE International Conference on Robotics and
Automation, pages 2618 – 2623, 1992.

[LHL97] Wei-Po Lee, John Hallam, and Henrik Hautop Lund. Applying genetic
programming to evolve behavior primitives and arbitrators for mobile
robots. In IEEE Int. Conf. on Evolutionary Computation, 1997.

58 BIBLIOGRAPHY

[Lin91] Long-Ji Lin. Programming robots using reinforcement learning and
teaching. In Proceedings of the Ninth National Conference on Artificial
Intelligence, 1991.

[LM96] Henrik Hautop Lund and Orazio Miglino. From simulated to real robots.
In Proceedings of IEEE 3rd International Conference on Evolutionary
Computation, 1996.

[LM98] Henrik Hautop Lund and Orazio Miglino. Evolving and breeding robots.
In Proceedings of First European Workshop on Evolutionary Robotics,
1998.

[LWH98] Henrik Hautop Lund, Barbara Webb, and John Hallam. Physical and
temporal scaling considerations in a robot model of cricket calling song
preference. Artificial Life, 4:95 – 107, 1998.

[Mal98] Thomas Malthus. An Essay on the Principle of Population. J. John-
son, In St. Paul’s Church-yard, 1798. Can be found on-line at:
http://www.trmalthus.com/essay.htm.

[MB90] Pattie Maes and Rodney A. Brooks. Learning to coordinate behaviors. In
Proceedings of the Eighth National Conference on Artificial Intelligence,
1990.

[MC91] Sridhar Mahdevan and Jonathan Connell. Automatic programming of
behavior-based robots using reinforcement learning. In Proceedings of
the Ninth National Conference on Artificial Intelligence, 1991.

[MF00] Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics.
Springer Verlag, 2000.

[MFI93] Francesco Mondada, Edoardo Franzi, and Paolo Ienne. Mobile robot
miniaturisation: A tool for investigation in control algorithms. In Exper-
imental Robotics III, Proceedings of the 3rd International Symposium on
Experimental Robotics, 1993.

[Mit97] Tom M. Mitchell. Machine Learning. McGraw Hill, 1997.

[ML99] Orazio Miglino and Henrik Hautop Lund. Do rats need euclidean cogni-
tive maps of the enviromental shape? Animal Behavior, Submitted 1999.

[MLN95] Orazio Miglino, Henrik Hautop Lund, and Stefano Nolfi. Evolving mo-
bile robots in simulated and real environments. Artificial Life, 2(4):419 –
434, 1995.

[MNT95] Orazio Miglino, Kourosh Nafasi, and Charles E. Taylor. Selection for
wandering behavior in a small robot. Artificial Life, pages 101 – 116,
1995.

[MP47] W. McCulloch and W. Pitts. How we know universals: the perception of
auditory and visual forms. Bulletin of Nathematical Biophysics, 9:127 –
147, 1947.

[MP69] M. Misky and S. Papert. Perceptrons: An Introduction to Computational
Geometry. MIT Press, 1969.

BIBLIOGRAPHY 59

[MWO+98] Kazuyuki Murase, Takaharu Wakida, Ryoichi Odagiri, Wei Yu, Hirotaka
Akita, and Tatsuya Asai. Back-propagation learning of autonomous be-
haviour: A mobile robot khepera took a lesson from the future conse-
quences. In Evolvable Systems: From Biology to Hardware, Second In-
ternational Conference, ICES 98, 1998.

[NB95] Peter Nordin and Wolfgang Banzhaf. Genetic programming controlling a
miniature robot. InWorking Notes of the AAAI-95 Fall Symposium Series,
Symposium on Genetic Programming, pages 61 – 67, 1995.

[NB97a] Peter Nordin and Wolfgang Banzhaf. An on-line method to evolve be-
havior and to control a miniature robot in real time with genetic program-
ming. Adaptive Behaviour, 5(2):107 – 140, 1997.

[NB97b] Peter Nordin andWolfgang Banzhaf. Real time control of a khepera robot
using genetic programming. In Cybernetics and Control, volume 26,
pages 533 – 561. 1997.

[NFMM94] Stefano Nolfi, Dario Floreano, Orazio Miglino, and Francesco Mondada.
How to evolve autonomous robots: Different approaches in evolutionary
robotics. In Rodney A. Brooks and Pattie Maes, editors, Artificial Life
IV: proceedings of the Fourth International Workshop on the Synthesis
and Simulation of Living Systems, pages 190 – 197, 1994.

[Nil84] N. Nilson. Shakey the robot. Technical report, Artificial Intelligence
Centre, SRI International, Menlo Park, CA, 1984.

[Nol96] Stefano Nolfi. Evolving non-trivial behaviors on real robots: a garbage
collection robot. Journal Robotics and Autonomous System, Special issue
on ”Robot learning: The new wave”, 1996.

[Nol98] Stefano Nolfi. Evolutionary robotics: Exploiting the full power of selfor-
ganization. Connection Sciemce, 10, 1998.

[ONB96] Markus Olmer, Peter Nordin, and Wolfgang Banzhaf. Evolving real-time
behavioral modules for a robot with gp. In Proc. 6th International Sym-
posium on Robotics And Manufacturing (ISRAM-96), 1996.

[Rey94a] Craig W. Reynolds. Evolution of corridor following behavior in a noisy
world. In Simulation of Adaptive Behaviour (SAB-94), 1994.

[Rey94b] Craig W. Reynolds. Evolution of obstacle avoidance behavior: Using
noise to promote robust solutions. In Kenneth E. Kinnear Jr., editor, Ad-
vances in genetic programming, chapter 10. Massachusetts Institute og
Technology, 1994.

[Roj96] Raul Rojas. Neural Networks: A Systematic Introduction. Springer Ver-
lag, 1996.

[Rou96] Jonathan Roughgarden. Theory of Population Genetics and Evolutionary
Ecology an Introduction. Prentice Hall, 1979, 1996.

[Sla85] P. J. B. Slater. An introduction to Ethology. Cambridge University Press,
1985.

60 BIBLIOGRAPHY

[Ste94] Luc Steels. Emergent functionality in robotic agents through on-line evo-
lution. In Rodney A. Brooks and Pattie Maes, editors, Artificial Life IV:
proceedings of the Fourth International Workshop on the Synthesis and
Simulation of Living Systems, pages 8 – 14, 1994.

[Sto94] James V. Stone. Evolutionary robots: Our hands in their brains? In
RodneyA. Brooks and Pattie Maes, editors,Artificial Life IV: proceedings
of the Fourth International Workshop on the Synthesis and Simulation of
Living Systems, pages 400 – 405, 1994.

[Tan91] Ming Tan. Cost-sensitive reinforcement learning for adaptive classifica-
tion and control. In Proceedings of the Ninth National Conference on
Artificial Intelligence, 1991.

[YB94] Brian Yamauchi and Randall Beer. Integrating reactive, sequential, and
learning behavior using dynamical neural networks. In From Animals to
Animats 3: Proceedings of the Third International Conference on Simu-
lation of Adaptive Behavior, pages 382 – 391, 1994.

Part IV

Appendices

61

Appendix A

Code

A.1 Header fi le

#include <bios.h>
#include <math.h>

/**/
/* Defines: */
/**/
#define NULL 0
#define POPULATIONSIZE 50
#define DATATYPE short int
#define NUMBEROFFUCTIONS 10
#define NUMBEROFTERMINALS 8

63

64
A
PPEN

D
IX
A
.
CO
D
E

#define NUMBEROFCONSTANTS 8
#define MAXINDIVIDUALLENGTH 30
#define MININDIVIDUALLENGTH 10
#define MUTATIONRATE 100 /* in per mille */
#define NUMBEROFITERATIONS 1 /* set it to 1 (one) for ordinary running */
#define ONLYNEWONES 0 /* 1: Only evaluate new ones in the select_individual, 0: Evaluate all */
#define KENNNY 0 /* 1: kills off bad ones before numberofiterations are finished */
#define NUMBEROFGENERATIONS 1000
#define PERIODOFSLEEP 40 /* sleep period in miliseconds */
#define ZEROFITNESSVALUE 32000 /* this is the test value for the

statistics, make sure it is well
above the maximum fitness */

/**/
/* Statestics: */
/**/
/*short int bestofgeneration[NUMBEROFGENERATIONS];*/
/*short int worstofgeneration[NUMBEROFGENERATIONS];*/
/*float averageofgeneration[NUMBEROFGENERATIONS];*/

/**/
/* Typedefs: */
/**/
/* Stack structures */
/* defines the stacknode, which contains the data of the predefined datatype, */
/* and a pointer to the next node in the stack */
typedef struct _stacknode {

DATATYPE data;

A
.1.

H
EA
D
ER

FILE
65

struct _stacknode* next;
} stacknode;

/* defines the stack */
typedef struct {
stacknode* head;

} stack;

/* GP structures: */
/* defines the terminal structure, which contains a name of type char, and the */
/* value of the type DATATYPE */
typedef struct {
char *name;
int *value;

} terminal;

/* defines the function terminal, which contains the name of type char, the */
/* functions arity, and a pointer to the C function */
typedef struct {
char *name;
short int arity;
int (*expression)();

} function;

/* defines the structure element, where the list of elements is the C "program" */
/* which consitutes the individual. element contains a pointer to the next */
/* element in the C "program", either a pointer to it’s function or a pointer */
/* to it’s terminal. */

66
A
PPEN

D
IX
A
.
CO
D
E

typedef struct _element{
struct _element* next;
function *func;
terminal *term;

} element;

/* defines the individual in the population. It contains a pointer to the first */
/* element in it’s C "program", the length of the individual, and teh fitness */
/* of the individual */
typedef struct {

element* elem;
short int length;
int fitness;
short int mate;
short int number;

} individual;

/* Stack for elements used in eval_expression */
typedef struct _elemstacknode {

element* data;
struct _elemstacknode* next;

} elemstacknode;

typedef struct {
elemstacknode* head;

} elemstack;

/**/

A
.1.

H
EA
D
ER

FILE
67

/* Variables: */
/**/
/* Structure, a "mirror" of strct terminal. */
typedef struct {
char *name;
int value;

} variable;

/* defines the terminal set to be used by the GP */
/* the number of terminals are 8 (sensors) + x (number of constants) */
/* the numbers are just random. */
variable terminalset[NUMBEROFTERMINALS+NUMBEROFCONSTANTS] ={
{"sensor0",0},
{"sensor1",0},
{"sensor2",0},
{"sensor3",0},
{"sensor4",0},
{"sensor5",0},
{"sensor6",0},
{"sensor7",0},
{"constant0",-5},
{"constant1",-3},
{"constant2",-1},
{"constant3",0},
{"constant4",1},
{"constant5",2},
{"constant6",3},
{"constant7",5}

68
A
PPEN

D
IX
A
.
CO
D
E

};

/* set the population to be an array of individuals, of the length defined by */
/* POPULATIONSIZE */
individual* population[POPULATIONSIZE];

/**/
/* Function prototyping: */
/**/
/* Stack: */
void initialisestack(stack* s);
void initialiseelemstack(elemstack* s);
DATATYPE isempty(stack* s);
DATATYPE isemptyelem(elemstack* s);
void push (stack* s, DATATYPE data);
DATATYPE pop(stack* s);
void elempush(elemstack* s, element* data);
element* elempop(elemstack* s);

/* GP: */
int gpadd(int listofargs[]);
int gpsub(int listofargs[]);
int gpdiv(int listofargs[]);
int gpmul(int listofargs[]);
int gpand(int listofargs[]);
int gpxor(int listofargs[]);
int gpsll(int listofargs[]);
int gpslr(int listofargs[]);

A
.1.

H
EA
D
ER

FILE
69

int gpmotorleft(int listofargs[]);
int gpmotorright(int listofargs[]);

/* defines the function set to be used by the GP */
function functionset[NUMBEROFFUCTIONS] = {
{"*",2,gpadd},
{"-",2,gpsub},
{"/",2,gpdiv},
{"+",2,gpmul},
{"ˆ",2,gpand},
{"&",2,gpxor},
{"<",1,gpmotorleft},
{">",1,gpmotorright},
{"L",1,gpsll},
{"R",1,gpslr}

};

/* Random: */
short int randomint(short int maxrange);
float randomfloat(short int maxrange);

/* Robot comm.: */
void read_sensors();
void init_motors();
void alive();
void flip();

/* GP mortor stuff: */

70
A
PPEN

D
IX
A
.
CO
D
E

int calc_result(int (*expression)(),int* list);
stack* eval_expression(element* elem, stack* argumentstack);
void cleanup_element_list(element* elem);
individual* generate_random_individual(short int in);
void initialise_population();
int fitness_function();
individual* select_individual(stack* argumentstack);
void crossover(individual* father, individual* mother, individual* fathercopy, individual* mothercopy);
element* copy_func(function* orgfunc);
element* copy_term(terminal* orgterm);
element* copy_elem(element* orgelem);
void copy_parent(individual* parent, individual* child);
void mutation(individual* indiv);
void evolution(stack* argumentstack);
void dump_data();

A
.2.

M
A
IN
CO
D
E

71

A.2 Main code
#include "khep.h"

/**/
/* Stack things */
/**/
/* initialises the stack, i.e. set the first pointer to NULL */
void initialisestack(stack* s){ s->head = NULL;};

/* initialises the elementstack, i.e. set the first pointer to NULL */
void initialiseelemstack(elemstack* s){ s->head = NULL;};

/* checks to see if the stack is empty, returns 1 if it is and 0 if not */
DATATYPE isempty(stack* s){ if (s->head == NULL) return 1; else return 0; };

/* checks to see if the elementstack is empty, returns 1 if it is and 0 if not */
DATATYPE isemptyelem(elemstack* s){ if (s->head == NULL) return 1; else return 0; };

/* push, put a new item of DATATYPE on the stack */
/* it is called by: push(&stack,value) */
void push(stack* s, DATATYPE data){

stacknode* newnode = (stacknode*) malloc(sizeof(stacknode));

newnode->data = data;
newnode->next = s->head;
s->head = newnode;

};

72
A
PPEN

D
IX
A
.
CO
D
E

/* pop, returns the top element in the stack. If the stack is empty, it returns */
/* NULL. It is called with pop(&stack) */
DATATYPE pop(stack* s){

if(isempty(s))
return ((DATATYPE) NULL);

else {

stacknode* secondnode;
DATATYPE firstnodedata;
stacknode* firstnode = s->head;

secondnode = s->head->next;
s->head = secondnode;
firstnodedata = firstnode->data;
free(firstnode);
return firstnodedata;

}
};

/* elempush, put a new item of DATATYPE on the elementstack */
/* it is called by: elempush(&stack,value) */
void elempush(elemstack* s, element* data){

elemstacknode* newnode = (elemstacknode*) malloc(sizeof(elemstacknode));

newnode->data = data;

A
.2.

M
A
IN
CO
D
E

73

newnode->next = s->head;
s->head = newnode;

};

/* elempop, returns the top element in the elementstack. If the elementstack is */
/* empty, it returns NULL. It is called with elempop(&stack) */
element* elempop(elemstack* s){

if(isemptyelem(s))
return NULL;

else{

elemstacknode* secondnode;
element* firstnodedata;
elemstacknode* firstnode = s->head;

secondnode = s->head->next;
s->head = secondnode;
firstnodedata = firstnode->data;
free(firstnode);
return firstnodedata;

}
};

/**/
/* GP things */
/**/
/* defines the functions to be used by the GP. All have the following form: */

74
A
PPEN

D
IX
A
.
CO
D
E

/* DATATYPE "name" (DATATYPE "list of arguments"){ */
/* check any constraints; */
/* return the value of the expression; */
/* } */
/* The must be in the functionset list to be used */

/* ordinary addition */
int gpadd (int listofargs[]){

return listofargs[0]+listofargs[1];
};

/* ordinary subtraction */
int gpsub (int listofargs[]){

return listofargs[0]-listofargs[1];
};

/* Protected division */
int gpdiv (int listofargs[]){

if (listofargs[1] == 0)
return 1;

else
return listofargs[0]/listofargs[1];

};

/* ordinary multiplication */
int gpmul (int listofargs[]){

return listofargs[0]*listofargs[1];
};

A
.2.

M
A
IN
CO
D
E

75

/* ordinary and (between the datetype) */
int gpand (int listofargs[]){
if (listofargs[0] && listofargs[1])

return (int) 1;
else

return (int) 0;
};

/* gpxor is just a not-and */
int gpxor (int listofargs[]){
if (listofargs[0] && listofargs[1])

return (int) 0;
else

return (int) 1;
};

/* shifts the three right bytes one places left. NOT GENERIC! */
int gpsll (int listofargs[]){

int tmp;

tmp = listofargs[0] & (0x0fff);
return tmp<<4;

};

/* shifts the three left bytes one places right. NOT GENERIC! */
int gpslr (int listofargs[]){

76
A
PPEN

D
IX
A
.
CO
D
E

int tmp;

tmp = listofargs[0] & (0xfff0);
return tmp>>4;

};

/*the motor controlfunctions*/
int gpmotorleft (int listofargs[]){

mot_new_speed_1m(0,listofargs[0]);
return listofargs[0];

};

int gpmotorright (int listofargs[]){

mot_new_speed_1m(1,listofargs[0]);
return listofargs[0];

};

/**/
/* Random functions */
/**/
/* returns a random integer between 1 and maxrange */
short int randomint (short int maxrange){

return ((short int)(((float)(rand()))/(((float)32767)/((float)maxrange))));
};

A
.2.

M
A
IN
CO
D
E

77

/* returns a random real between 1.0 and maxrange */
float randomfloat(short int maxrange){
return ((float)rand()/(((float)32767)/((float)maxrange)));

};

/**/
/* Functions for communicating with the robot */
/**/
/* The function takes the reflective light value of the 8 sensors, and stores */
/* them in the terminalset. */
void read_sensors(){

short int i;

for(i=0;i<NUMBEROFTERMINALS;i++){
terminalset[i].value = sens_get_reflected_value(i);

}
};

/* Initialise the motors, the numbers are from example 2 in the khepera package */
void init_motors()
{
mot_config_speed_1m(0,3500,800,100); /* set the PID parameters motor 0 */
mot_config_speed_1m(1,3500,800,100); /* set the PID parameters motor 1 */
exit(0);

};

/* This fuctions recives a result, splits it into two parts, and gives each */

78
A
PPEN

D
IX
A
.
CO
D
E

/* motor a new speed. */
void set_motors(int value){

short int left,right;

left = ((short int) value & (0xffff0000));
right = ((short int) value & (0x0000ffff));
mot_new_speed_1m(1,left);
mot_new_speed_1m(0,right);
return;

};

/* Just blink the leds to see if the robot is running. */
void alive(){

for(;;)
{

tim_suspend_task(1000); /* wait 1.43 seconds */
var_change_led(0); /* change state of led 0 */

}
exit(0);

};

/* Flip the leds */
void flip(){

var_change_led(0);
var_change_led(1);

};

A
.2.

M
A
IN
CO
D
E

79

/**/
/* GP "motor" stuff */
/**/
/* calculates a given expression. All expressions must use an array of */
/* arguments, in the form of: */
/* DATATYPE gpadd (DATATYPE* arguments){return arguments[1]+arguments[2];} */
int calc_result(int (*expression)(),int* list){
return (*expression)(list);

};

/* evaluates a C "program". If the give element is a terminal, it’s value is */
/* pushed onto the stack. If its a function, the number of arguments required */
/* for this function (arity) is poped from the stack, the calc_result is called */
/* and the result is pushed onto the stack. */
stack* eval_expression(element* elem, stack* argumentstack){

elemstack* tmpstack;
element* tmpelem;
short int counter,ar,result,i;

/* arl[] -- NOT GENERIC, must have enough space to hold the maximum arity of */
/* the function set! */

short int arl[2];

/* We have to swap the list around, used to be recursion, but was to slow for */
/* the m64k. */

80
A
PPEN

D
IX
A
.
CO
D
E

tmpstack = (elemstack *) malloc(sizeof(elemstack));
initialiseelemstack(tmpstack);
tmpelem = elem;
counter=0;

for (;tmpelem->next != NULL;){
elempush(tmpstack,tmpelem);
tmpelem = tmpelem->next;
counter++;

}

/* Now is the time to calculate */

for(;counter>0;){
tmpelem = elempop(tmpstack);
if(tmpelem->func){

ar=tmpelem->func->arity;
for(i=0;i<ar;i++){

arl[i]=pop(argumentstack);
}
result = (tmpelem->func->expression)(arl);
push(argumentstack,result);

}
else{

push(argumentstack, *(tmpelem->term->value));
}
counter--;

}

A
.2.

M
A
IN
CO
D
E

81

free(tmpstack);
return argumentstack;

};

/* Cleans up an elemet list */
void cleanup_element_list(element* elem){

element *current,*kenny;
short int i=0;

current = elem;
kenny = current->next;
if(current->func){

free(current->func);
}
else{

free(current->term);
}
free(current);
for(;kenny->next != NULL;){

current = kenny;
kenny = current->next;
if(current->func){

free(current->func);
}
else{

free(current->term);
}

82
A
PPEN

D
IX
A
.
CO
D
E

free(current);
i++;

}
i++;
free(kenny);

};

/* generates one legal individual, where the max length is MAXINDIVIDUALLENGTH, */
/* and, the min length is MININDIVIDUALLENGTH. To check wether an individual */
/* is legal or not the arity of the functions and terminals -1 is summed, if */
/* the sum is -1 the expression is legal. */
individual* generate_random_individual(short int in){

short int y,i,checksum,numberofnodes,openbranch,currentlength,chance,debug;
individual* indiv;
element* node;
function* cfunc;
terminal* cterm;

checksum=0;
numberofnodes = NUMBEROFFUCTIONS+NUMBEROFTERMINALS+NUMBEROFCONSTANTS;

indiv = (individual*) malloc(sizeof(individual));
indiv->elem = NULL;
indiv->fitness = ZEROFITNESSVALUE;
indiv->mate = 0;

debug = 0;

A
.2.

M
A
IN
CO
D
E

83

for(;checksum != -1;){

checksum = 0;
currentlength = 0;
openbranch = 0;

if(NULL != indiv->elem){
cleanup_element_list(indiv->elem);
indiv->elem = NULL;

}

indiv->length = randomint(MAXINDIVIDUALLENGTH-MININDIVIDUALLENGTH)+MININDIVIDUALLENGTH;
for(i=0;i<indiv->length;i++){

if((openbranch + currentlength) >= indiv->length){
y = randomint((NUMBEROFTERMINALS+NUMBEROFCONSTANTS)-1);
node->next = (element*) malloc(sizeof(element));
node = node->next;
node->next = NULL;
cterm = (terminal*) malloc(sizeof(terminal));
cterm->name = terminalset[y].name;
cterm->value = &terminalset[y].value;
node->term = cterm;
node->func = NULL;
checksum--;
openbranch--;
if (checksum == 0){

84
A
PPEN

D
IX
A
.
CO
D
E

openbranch = 0;
}

}
else{

if(currentlength==0){
y = randomint(NUMBEROFFUCTIONS-1);
node = (element*) malloc(sizeof(element));
indiv->elem = node;
node->next = NULL;
cfunc = (function*) malloc(sizeof(function));
y = randomint(5); /*numberoffunctions with arity 2*/
cfunc->arity = functionset[y].arity;
cfunc->name = functionset[y].name;
cfunc->expression = functionset[y].expression;
node->func = cfunc;
node->term = NULL;
checksum = checksum + ((cfunc->arity) - 1);
openbranch = cfunc->arity;

}
else{

chance = randomint(numberofnodes);
if(chance <= 23){
y = randomint(NUMBEROFFUCTIONS-1);
node->next = (element*) malloc(sizeof(element));
node = node->next;
node->next = NULL;
cfunc = (function*) malloc(sizeof(function));
cfunc->name = functionset[y].name;

A
.2.

M
A
IN
CO
D
E

85

cfunc->arity = functionset[y].arity;
cfunc->expression = functionset[y].expression;
node->func = cfunc;
node->term = NULL;
checksum = checksum + (cfunc->arity - 1);
if(openbranch == 0){
openbranch = openbranch + cfunc->arity;

}
else{
openbranch = openbranch + (cfunc->arity - 1);

}
}
else{

y = randomint((NUMBEROFTERMINALS+NUMBEROFCONSTANTS)-1);
node->next = (element*) malloc(sizeof(element));
node = node->next;
node->next = NULL;
cterm = (terminal*) malloc(sizeof(terminal));
cterm->name = terminalset[y].name;
cterm->value = &terminalset[y].value;
node->term = cterm;
node->func = NULL;
checksum--;
openbranch--;

}/*end make terminal*/
}/* end currentlength !=0*/

}/*end openbranch+currentlength != indiv->length*/
currentlength++;

86
A
PPEN

D
IX
A
.
CO
D
E

}/*end for(i=0;i<indiv->length;i++) */
debug++;

}/*end for(;checksum != -1;)*/
indiv->number = in;
return indiv;

};

/* This function initilises the whole population, and fills it with random */
/* idndividuals. */
void initialise_population(){

short int i;

for(i=0;i<POPULATIONSIZE;i++){
population[i] = generate_random_individual(i);

}
return;

};

/* This is a fitness function, should be changed for different experiments. */
int fitness_function(){

int fitness,m1,m2,s;
int alpha,beta,i;
/* int alpha,beta;*/

m1=mot_get_speed(0);
m2=mot_get_speed(1);

A
.2.

M
A
IN
CO
D
E

87

/* s=0;*/

/* TEST THE WEIGHTS ALPHA=1 IS TO SMALL, NOW TESTING ALPHA=5 */

/* constants for weighting*/
alpha=16;
beta=2;

for(i=0;i<NUMBEROFTERMINALS;i++){
s = s+terminalset[i].value;

}

/* s = terminalset[0].value;
/* for(i=1;i<8;i++){
/* if(s < terminalset[i].value){
/* s = terminalset[i].value;
/* }
/* }

/*obstacle avoidance */
fitness = (alpha * ((m1+m2)-abs(m1-m2))) - (beta * s);
/*WF*/
return fitness;

};

/* Function for selecting an individual */
/* Finds the sensor values, runs the robot, sleeps for 1/2 sek, reads the */

88
A
PPEN

D
IX
A
.
CO
D
E

/* sensors and finds the fitness */
/* The two parents can’t be the same individual! */
/* individual* select_individual(stack* argumentstack){ */
individual* select_individual(stack* argumentstack){

short int testindiv,i,used;
int fitness=0;
individual *indiv;
int value;

used = 1;
for(;used == 1;){
testindiv = randomint(POPULATIONSIZE-1);
indiv = population[testindiv];
used = indiv->mate;

}

indiv->mate = 1;

/* uncomment this to run ONE time */

read_sensors();
value = pop(eval_expression(indiv->elem,argumentstack));
tim_suspend_task(600);
read_sensors();
indiv->fitness = fitness_function();
mot_stop();
return indiv;

A
.2.

M
A
IN
CO
D
E

89

/* do the testing for more than one iteration */

/* for(i=0;i<NUMBEROFITERATIONS;i++){ */
/* read_sensors(); */
/* value = pop(eval_expression(indiv->elem,argumentstack)); */
/* tim_suspend_task(PERIODOFSLEEP); */
/* read_sensors(); */
/* fitness = fitness + fitness_function(); */
/* } */
/* indiv->fitness = ((int) ((float) fitness)/((float) NUMBEROFITERATIONS)); */
/* return indiv; */
};

/* Here is the crossower function. one point crossower, random. */
/* crossower is only allowed where there is no posibility of making ilegal */
/* individuals. */
/* The parents is exchanged with the children. */
element* copy_func(function* orgfunc){

element* tmpelem;
function* tmpfunc;

tmpelem = (element*) malloc(sizeof(element));
tmpelem->next = NULL;
tmpelem->term = NULL;
tmpfunc = (function*) malloc(sizeof(function));

90
A
PPEN

D
IX
A
.
CO
D
E

tmpfunc->name = orgfunc->name;
tmpfunc->arity = orgfunc->arity;
tmpfunc->expression = orgfunc->expression;
tmpelem->func = tmpfunc;

return tmpelem;
};

element* copy_term(terminal* orgterm){

element* tmpelem;
terminal* tmpterm;

tmpelem = (element*) malloc(sizeof(element));
tmpelem->next = NULL;
tmpelem->func = NULL;
tmpterm = (terminal*) malloc(sizeof(terminal));
tmpterm->name = orgterm->name;
tmpterm->value = orgterm->value;
tmpelem->term = tmpterm;

return tmpelem;
};

element* copy_elem(element* orgelem){

if(orgelem->func){
return copy_func(orgelem->func);

A
.2.

M
A
IN
CO
D
E

91

}else{
return copy_term(orgelem->term);

}
};

void copy_parent(individual* parent, individual* child){

element *origelem,*copyelem;
short int i;

origelem = parent->elem;
copyelem = copy_elem(origelem);
child->elem = copyelem;
if(parent->length != 1){

for(i=1;i<parent->length;i++){
copyelem->next = copy_elem(origelem->next);
copyelem = copyelem->next;
origelem = origelem->next;

}
}
child->length = parent->length;

};

void crossover(individual* father, individual* mother, individual* fathercopy, individual* mothercopy){

short int fathercross,mothercross,i,checksum,fathercopylength,mothercopylength;
element *origelem,*copyelem,*elemorig,*elemcopy;

92
A
PPEN

D
IX
A
.
CO
D
E

cleanup_element_list(fathercopy->elem);
cleanup_element_list(mothercopy->elem);
fathercopy->elem = NULL;
mothercopy->elem = NULL;
fathercopy->mate = 0;
mothercopy->mate = 0;
fathercopy->fitness = ZEROFITNESSVALUE;
mothercopy->fitness = ZEROFITNESSVALUE;

if((father->length == 1) && (mother->length == 1)){
/* both parents has a length of 1 */
fathercopy->elem = copy_elem(father->elem);
fathercopy->length = 1;
mothercopy->elem = copy_elem(mother->elem);
mothercopy->length = 1;

}
else if(father->length == 1){
/* only father has a length of 1 */
mothercross = randomint(mother->length);
if(mothercross == 0){

copy_parent(father,fathercopy);
copy_parent(mother,mothercopy);

}
else{

/* mother has another crossoverpoint that 0 but father->length == 1 */
/* copy mothers first part onto mothercopy */
origelem = mother->elem;
copyelem = copy_elem(origelem);

A
.2.

M
A
IN
CO
D
E

93

mothercopy->elem = copyelem;
mothercopylength = 1;
for(i=1;i<mothercross-1;i++){
copyelem->next = copy_elem(origelem->next);
copyelem = copyelem->next;
origelem = origelem->next;
mothercopylength++;

}
/* copy mothers crossoverpart onto fathercopy */
checksum = 0;
elemcopy = copy_elem(origelem->next);
fathercopy->elem = elemcopy;
origelem = origelem->next;
fathercopylength = 1;
if(origelem->func){checksum = checksum + origelem->func->arity-1;}
else{checksum--;}
for(;checksum != -1;){
elemcopy->next = copy_elem(origelem->next);
elemcopy = elemcopy->next;
origelem = origelem->next;
if(origelem->func){checksum = checksum + origelem->func->arity-1;}
else{checksum--;}
fathercopylength++;

}
/* copy father onto mothercopy */
copyelem->next = copy_elem(father->elem);
copyelem = copyelem->next;
mothercopylength++;

94
A
PPEN

D
IX
A
.
CO
D
E

/* copy the last part of mother onto mothercopy */
for(;origelem->next != NULL;){

copyelem->next = copy_elem(origelem->next);
copyelem = copyelem->next;
origelem = origelem->next;
mothercopylength++;

}
fathercopy->length = fathercopylength;
mothercopy->length = mothercopylength;

}
}
else if(mother->length == 1){
/* only mother has a length of 1 */
fathercross = randomint(father->length);
if(fathercross == 0){

copy_parent(father,fathercopy);
copy_parent(mother,mothercopy);

}
else{

/* mother has the length of 1 and father has a crossoverpoint which is not 0*/
/* copy the first part of the father onto fathercopy */
elemorig = father->elem;
elemcopy = copy_elem(elemorig);
fathercopy->elem = elemcopy;
fathercopylength = 1;
for(i=1;i<fathercross-1;i++){

elemcopy->next = copy_elem(elemorig->next);
elemorig = elemorig->next;

A
.2.

M
A
IN
CO
D
E

95

elemcopy = elemcopy->next;
fathercopylength++;

}
/* copy fathers crossoverpart onto the mothercopy */
checksum = 0;
mothercopy->elem = copy_elem(elemorig->next);
elemorig = elemorig->next;
copyelem = mothercopy->elem;
mothercopylength = 1;
if(elemorig->func){checksum = checksum + elemorig->func->arity-1;}
else{checksum--;}
for(;checksum != -1;){
copyelem->next = copy_elem(elemorig->next);
copyelem = copyelem->next;
elemorig = elemorig->next;
if(elemorig->func){checksum = checksum + elemorig->func->arity-1;}
else{checksum--;}
mothercopylength++;

}
/* copy mother onto fathercopy */
elemcopy->next = copy_elem(mother->elem);
elemcopy = elemcopy->next;
fathercopylength++;
/* copy the last part of father onto fathercopy */
for(;elemorig->next != NULL;){
elemcopy->next = copy_elem(elemorig->next);
elemcopy = elemcopy->next;
elemorig = elemorig->next;

96
A
PPEN

D
IX
A
.
CO
D
E

fathercopylength++;
}
fathercopy->length = fathercopylength;
mothercopy->length = mothercopylength;

}
}
else{
/* neither of the parents has a length of 1*/
mothercross = randomint(mother->length);
fathercross = randomint(father->length);
if((mothercross == 0) && (fathercross == 0)){

copy_parent(father,fathercopy);
copy_parent(mother,mothercopy);

}
else if(fathercross == 0){

/* only the father has a crossoverpoint of 0 */
/* copy the first part of the mother onto mothercopy */
origelem = mother->elem;
mothercopy->elem = copy_elem(origelem);
copyelem = mothercopy->elem;
mothercopylength = 1;
for(i=1;i<mothercross-1;i++){

copyelem->next = copy_elem(origelem->next);
origelem = origelem->next;
copyelem = copyelem->next;
mothercopylength++;

}
/* copy the whole father onto the mothercopy */

A
.2.

M
A
IN
CO
D
E

97

elemorig = father->elem;
copyelem->next = copy_elem(elemorig);
copyelem = copyelem->next;
mothercopylength++;
for(i=1;i<father->length;i++){
copyelem->next = copy_elem(elemorig->next);
elemorig = elemorig->next;
copyelem = copyelem->next;
mothercopylength++;

}
/* copy the mothercrossoverpart onto the fathercopy */
checksum = 0;
fathercopy->elem = copy_elem(origelem->next);
origelem = origelem->next;
elemcopy = fathercopy->elem;
fathercopylength = 1;
if(origelem->func){checksum = checksum + origelem->func->arity-1;}
else{checksum--;}
for(;checksum != -1;){
elemcopy->next = copy_elem(origelem->next);
elemcopy = elemcopy->next;
origelem = origelem->next;
if(origelem->func){checksum = checksum + origelem->func->arity-1;}
else{checksum--;}
fathercopylength++;

}
/* copy the last part of the mother onto the mothercopy */
for(;origelem->next != NULL;){

98
A
PPEN

D
IX
A
.
CO
D
E

copyelem->next = copy_elem(origelem->next);
copyelem = copyelem->next;
origelem = origelem->next;
mothercopylength++;

}
fathercopy->length = fathercopylength;
mothercopy->length = mothercopylength;

}
else if(mothercross == 0){

/* only the mother has a crossoverpoint of 0 */
/* copy the first part of the father onto fathercopy */
elemorig = father->elem;
elemcopy = copy_elem(elemorig);
fathercopy->elem = elemcopy;
fathercopylength = 1;
for(i=1;i<fathercross-1;i++){

elemcopy->next = copy_elem(elemorig->next);
elemorig = elemorig->next;
elemcopy = elemcopy->next;
fathercopylength++;

}
/* copy the whole mother onto the fathercopy */
origelem = mother->elem;
elemcopy->next = copy_elem(origelem);
elemcopy = elemcopy->next;
fathercopylength++;
for(i=1;i<mother->length;i++){

elemcopy->next = copy_elem(origelem->next);

A
.2.

M
A
IN
CO
D
E

99

origelem = origelem->next;
elemcopy = elemcopy->next;
fathercopylength++;

}
/* copy the fathercrossoverpart onto the mothercopy */
checksum = 0;
mothercopy->elem = copy_elem(elemorig->next);
elemorig = elemorig->next;
copyelem = mothercopy->elem;
mothercopylength = 1;
if(elemorig->func){checksum = checksum + elemorig->func->arity-1;}
else{checksum--;}
for(;checksum != -1;){
copyelem->next = copy_elem(elemorig->next);
copyelem = copyelem->next;
elemorig = elemorig->next;
if(elemorig->func){checksum = checksum + elemorig->func->arity-1;}
else{checksum--;}
mothercopylength++;

}
/* copy the last part of the father onto the fathercopy */
for(;elemorig->next != NULL;){
elemcopy->next = copy_elem(elemorig->next);
elemcopy = elemcopy->next;
elemorig = elemorig->next;
fathercopylength++;

}
fathercopy->length = fathercopylength;

100
A
PPEN

D
IX
A
.
CO
D
E

mothercopy->length = mothercopylength;
}
else{

/* none of the parents has a crossoverpoint of 0*/
/* copy the first part of the father onto the fathercopy */
elemorig = father->elem;
fathercopy->elem = copy_elem(elemorig);
elemcopy = fathercopy->elem;
fathercopylength = 1;
for(i=1;i<fathercross-1;i++){

elemcopy->next = copy_elem(elemorig->next);
elemorig = elemorig->next;
elemcopy = elemcopy->next;
fathercopylength++;

}
/* copy the first part of the mother onto the mothercopy */
origelem = mother->elem;
mothercopy->elem = copy_elem(origelem);
copyelem = mothercopy->elem;
mothercopylength = 1;
for(i=1;i<mothercross-1;i++){

copyelem->next = copy_elem(origelem->next);
origelem = origelem->next;
copyelem = copyelem->next;
mothercopylength++;

}
/* copy the crossover part of the father onto the mothercopy */
checksum = 0;

A
.2.

M
A
IN
CO
D
E

101

copyelem->next = copy_elem(elemorig->next);
elemorig = elemorig->next;
copyelem = copyelem->next;
mothercopylength++;
if(elemorig->func){checksum = checksum + elemorig->func->arity-1;}
else{checksum--;}
for(;checksum != -1;){
copyelem->next = copy_elem(elemorig->next);
copyelem = copyelem->next;
elemorig = elemorig->next;
if(elemorig->func){checksum = checksum + elemorig->func->arity-1;}
else{checksum--;}
mothercopylength++;

}
/* copy the crossover part of the mother onto the fathercopy */
checksum = 0;
elemcopy->next = copy_elem(origelem->next);
origelem = origelem->next;
elemcopy = elemcopy->next;;
fathercopylength++;
if(origelem->func){checksum = checksum + origelem->func->arity-1;}
else{checksum--;}
for(;checksum != -1;){
elemcopy->next = copy_elem(origelem->next);
elemcopy = elemcopy->next;
origelem = origelem->next;
if(origelem->func){checksum = checksum + origelem->func->arity-1;}
else{checksum--;}

102
A
PPEN

D
IX
A
.
CO
D
E

fathercopylength++;
}
/* copy the last part of the father onto the fathercopy */
for(;elemorig->next != NULL;){

elemcopy->next = copy_elem(elemorig->next);
elemcopy = elemcopy->next;
elemorig = elemorig->next;
fathercopylength++;

}
/* copy the last part of the mother onto the mothercopy */
for(;origelem->next != NULL;){

copyelem->next = copy_elem(origelem->next);
copyelem = copyelem->next;
origelem = origelem->next;
mothercopylength++;

}
fathercopy->length = fathercopylength;
mothercopy->length = mothercopylength;

}
}
father->mate = 0;
mother->mate = 0;
/* father->fitness = 16384;*/
/* mother->fitness = 16384;*/

};

/* We Need mutation! */
/* The mutation rate is set by MUTATIONRATE. Only one random function or */

A
.2.

M
A
IN
CO
D
E

103

/* terminal is mutated; if nessesary. */
/* If a function is to be mutated, another function with the same arity! is */
/* selected a replaceses the mutated gene. If it is a terminal, another radom */
/* terminal is selected to be used as replacement. */
void mutation(individual* indiv){

int chance;
int node,i,arity;
element* tmpelem;
function* tmpfunc;
terminal* tmpterm;

chance = randomint(1000);
/* Lets mutate */
if (chance <= MUTATIONRATE){

node = randomint(indiv->length);
tmpelem = indiv->elem;
for(i=1;i<node;i++){

tmpelem = tmpelem->next;
}
/* heres the element to be mutatet */
/* function ? */
if (tmpelem->func != NULL){

tmpfunc = (function*) malloc(sizeof(function));
arity = tmpelem->func->arity;
switch (arity) {
case 1:

104
A
PPEN

D
IX
A
.
CO
D
E

node = randomint(3);
tmpfunc->name = functionset[node+6].name;
tmpfunc->arity = functionset[node+6].arity;
tmpfunc->expression = functionset[node+6].expression;
break;

case 2:
node = randomint(5);
tmpfunc->name = functionset[node].name;
tmpfunc->arity = functionset[node].arity;
tmpfunc->expression = functionset[node].expression;

}
free(tmpelem->func);
tmpelem->func = tmpfunc;

}
/* If the node is a terminal just replace it. */
else{

tmpterm = (terminal*) malloc(sizeof(terminal));
node = randomint(((NUMBEROFCONSTANTS+NUMBEROFTERMINALS)-1));
tmpterm->name = terminalset[node].name;
tmpterm->value = &terminalset[node].value;
free(tmpelem->term);
tmpelem->term = tmpterm;

}
}

};

A
.2.

M
A
IN
CO
D
E

105

/* the main evolutionay loop, all selection is tournament, and the GP is */
/* running as steady state. */
/* For each generation select two cadidates, the best will become the mother. */
/* Do it again, and find the father. Do crossower adn mutaion. All until we run */
/* out of generations. */
/* Flip the leds each time a new individual is beeing testet. */
void evolution(stack* argumentstack){

individual* mother;
individual* father;
individual* mothercopy;
individual* fathercopy;
individual* candidate1;
individual* candidate2;

short int debug,j,i,k,bestofgeneration,worstofgeneration;
float averageofgeneration;

for(i=0;i<NUMBEROFGENERATIONS;i++){

#ifdef DEBUG
printf("Her starter generation %i\n",i);

#endif
flip();

/* in obstacle avoidance fitness should be maximised */

candidate1 = select_individual(argumentstack);

106
A
PPEN

D
IX
A
.
CO
D
E

flip();

candidate2 = select_individual(argumentstack);
if(candidate1->fitness > candidate2->fitness){ /* note which way does the fitness go? */

mother = candidate1;
mothercopy = candidate2;

}else{
mother = candidate2;
mothercopy = candidate1;

}
/* Find the father */
flip();

candidate1 = select_individual(argumentstack);
flip();

candidate2 = select_individual(argumentstack);
if(candidate1->fitness > candidate2->fitness){

father = candidate1;
fathercopy = candidate2;

}else{
father = candidate2;
fathercopy = candidate1;

}

/* Find the best, worst, and average of each generation */
bestofgeneration=0;
worstofgeneration=0;

A
.2.

M
A
IN
CO
D
E

107

averageofgeneration=0;

for(j=0;j<POPULATIONSIZE;j++){
candidate1 = population[j];
if(candidate1->fitness != ZEROFITNESSVALUE){
bestofgeneration=candidate1->fitness;
worstofgeneration=candidate1->fitness;
averageofgeneration=((float) candidate1->fitness);
break;

}
}
k=j+1;
for(k;k<POPULATIONSIZE;k++){

candidate1=population[k];
if(candidate1->fitness != ZEROFITNESSVALUE){
if(candidate1->fitness < worstofgeneration){

worstofgeneration=candidate1->fitness;
}else{

if(candidate1->fitness > bestofgeneration){
bestofgeneration=candidate1->fitness;

}
}
averageofgeneration = (((float) j) * averageofgeneration + ((float) candidate1->fitness)) / ((float) (j+1));

}
}
printf("%i : %i : %f : %i\n",i,bestofgeneration,averageofgeneration,worstofgeneration);

108
A
PPEN

D
IX
A
.
CO
D
E

#ifdef DEBUG
printf("\n I generation %i er fitness som følger:\n",i);
printf("\tBEST: %i",bestofgeneration[i]);
printf("\tAVERAGE: %f",averageofgeneration[i]);
printf("\tWORST: %i\n",worstofgeneration[i]);

#endif

/* Do the crossower and mutation. */
crossover(father,mother,fathercopy,mothercopy);

mutation(fathercopy);
mutation(mothercopy);

}
return;

};

void dump_data(){

int i;

mot_stop();
var_on_led(0);
var_on_led(1);
tim_suspend_task(10000);
/* print out the stuff */
flip();
tim_suspend_task(5000);
printf("Generation\tBest\tAverage\tWorst\n");

A
.2.

M
A
IN
CO
D
E

109

for(i=0;i<NUMBEROFGENERATIONS;i++){
var_off_led(0);
/* printf("%i : %i : %f : %i\n",i,bestofgeneration[i],averageofgeneration[i],worstofgeneration[i]);*/
var_on_led(0);

}
var_on_led(0);
var_on_led(1);
return;

}

/**/
/* Main function */
/**/

main(){

stack* argumentstack;
short int i;

/* Do all the initialising of the robot. */
bios_reset();
mot_reset();
sens_reset();
msg_reset();
var_reset();
ser_reset();
str_reset();
tim_reset();

110
A
PPEN

D
IX
A
.
CO
D
E

/* Hopefully setting the cpu to 16 Mhz */
/* var_set_cpu_speed(0); */

/* srand(8913610860);*/

/* Fire up the motors. */
tim_new_task(init_motors);

/* Turn on both leds to see we are generation the population. */
var_on_led(0);
var_on_led(1);
/* Init pop. */

#ifdef DEBUG
printf("begin initialise_population();\n");

#endif
initialise_population();

#ifdef DEBUG
printf("end initialise_population();\n");

#endif

/* Turn off both leds to see we are through with the init pop */
var_off_led(0);
var_off_led(1);

/* fork off "debug" mode. */
/* tim_new_task(alive); */

/* init the stack. */

A
.2.

M
A
IN
CO
D
E

111

argumentstack= (stack *) malloc(sizeof(stack));
initialisestack(argumentstack);

/* Run the main loop. */
evolution(argumentstack);

/* dump the stats */
/* dump_data();*/

};

