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Abstract

As the full genomic DNA sequence is now available for several organisms, a
major next challenge is determining the function of DNA elements. This task
is often referred to as functional genomics. An important part of functional
genomics is gene regulation, and particularly the binding of specific proteins
called Transcription Factors (TFs) to DNA. This TF binding regulates the
production of mRNA, and thereby eventually proteins, from genes. As ex-
perimental determination of TF binding sites in DNA is a very laborious
process, there is great interest in computational prediction methods.

The basic idea behind computational binding site prediction is to use motifs
(sequence patterns) to capture sequence similarity between separate binding
sites for a given TF. Based on a set of known binding site examples, the
sequence similarity can be exploited for prediction of additional binding sites
for a given TF. As motifs representing TF binding sites should occur more
frequently than expected by chance alone in co-regulated DNA sequences,
computational methods can even be used to discover novel TF binding site
motifs and associated binding sites using only un-annotated target DNA
sequences as input.

The focus of this thesis is on the computational prediction of TF binding
sites, and specifically on understanding the current limitations and poten-
tial for improvement of binding site prediction. Two of the papers in the
thesis relate to the assessment of computational predictions. The data sets
used in a recent benchmark of prediction methods is analyzed in relation
to three commonly used motif models, showing some fundamental perfor-
mance limitations that should be attributed either to the motif models or
to the benchmark data sets themselves. A first broad benchmark of meth-
ods predicting higher-order organization of TF binding sites is also part of
this thesis. The benchmark showed some differences in prediction accuracy
between methods, and more generally that a moderate level of prediction
accuracy can be expected in the considered scenario.
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Two novel motif discovery methods are also presented in the thesis. Both of
the methods consider the problem of predicting higher-order organization of
binding sites, given motifs representing binding of individual TFs as input.
One method takes a Bayesian probabilistic approach to binding site modeling,
while the other method uses a discrete approach. Both methods use highly
expressive models and show good quantitative performance in relation to
existing methods. Each method also introduces some additional elements
that may bring qualitative advantages.

A third and final direction of research in this thesis concerns the extended
process of motif discovery in DNA. Topics considered include how data is
compiled before binding site prediction is performed, how prediction results
can be interpreted in a multiple-testing scenario, and how prediction can be
accelerated by the use of parallel hardware.
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Chapter 1

Introduction

Motif discovery is, in the context of this thesis, the discovery of sequence
patterns that occur frequently in a set of target DNA sequences [1]. The
discovery of sequence motifs in DNA is an established field that has developed
from a few basic methods in the early 80s to a large variety of complex
models and algorithms today [4, 5]. This chapter will give a brief and general
introduction to DNA motif discovery. It will present important principles of
transcriptional regulation and the basics of the computational problem. A
more detailed presentation of motif models, motif discovery algorithms and
other aspects that are of particular relevance to this thesis are given in the
state-of-the-art chapter.

In DNA motif discovery, the DNA is basically viewed as a sequence of the
letters a,c,g and t. Motifs (sequence patterns) occurring frequently in se-
lected subsets of DNA are often thought to represent functional elements in
DNA, typically regulatory elements which are the main focus of this thesis.
The full DNA motif discovery process involves compiling a set of DNA target
sequences of interest, predicting functional elements by running a motif dis-
covery method on the target sequences, interpreting the results, and possibly
proceeding with experimental validation of the computational predictions.

The accuracy of computational predictions is a main concern in the motif
discovery process, but several other aspects are also important for a suc-
cessful outcome. Appropriate selection of target sequences is important to
ensure that a strong motif exist for the computational methods to discover.
Execution speed of the computational methods may put limitations both on
the maximum size of target sequences and the possibility for iterating be-
tween motif discovery and other parts of the process. Precise interpretation
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2 CHAPTER 1. INTRODUCTION

of results is important to handle the uncertainty involved in the computa-
tional predictions and allow appropriate decisions on further use on the motif
discovery results.

1.1 What are regulatory elements

It is commonly known that the fundamental instructions of living organisms
are contained in a double helix of DeoxyriboNucleic Acid (DNA). Each strand
of this double helix contains a sequence of simple subunits called nucleotides.
There are only four different nucleotides in DNA, and the DNA can for
computational purposes be represented as a long text string of four different
letters. Today, relatively complete drafts are available of the DNA sequence
of several organisms, including humans. For many organisms, most of the
genes are also known. Genes are relatively short stretches of DNA that
are direct recipes for proteins, which again perform most of the biological
functions of an organism.

The DNA and genes do, however, only give a static and general view of
the genome. The body of an advanced organism like human is composed
of several very different tissues, consisting of cells that are also dynamic
and changing over time, although the basic DNA is the same across the
body and across time. The dynamics of organisms are handled by the gene
regulatory mechanisms. A main part of regulation is performed by specific
proteins called transcription factors (TFs) that regulate the production of
RNA and proteins from genes. This regulation is achieved by the TFs binding
to DNA near genes, thus influencing the recruitment of RNA polymerase.
RNA polymerase is a protein that performs the translation of genes into
RNA, the first step in translating genes to proteins. The regions where TFs
bind are often called regulatory regions. The region just before the gene,
called upstream region, is the most basic regulatory region, but TFs can
also bind in regulatory region that are situated after the gene (downstream),
within the gene (introns), or further upstream.

Gene regulation is a finely orchestrated mechanism, and the TFs do not
attach randomly to the DNA. As both the TFs and the DNA are molecules
containing a structured organization of positive and negative charges, binding
of a TF to DNA will depend on whether these charges can be aligned in a
complementary way that forms strong physical bonds between the molecules.
Because of this, each TF will have its own sequence-specific requirement for
binding to DNA. This will not be a strict requirement for an exact DNA
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sequence, however, but rather a preference for binding to short stretches of
DNA that share some sequence similarity.

Determining where in the DNA each TF can bind is important for several
reasons. The regulation of genes by TFs is a basic component of a very com-
plex system of interactions between genes (mediated by proteins). Accurate
understanding of TF regulation is thus essential for understanding a range
of different processes that occur within cells, including differentiation and
cell-type specific regulation. Knowing the exact locations where TFs can
bind is an important step towards determining how genes are regulated by
a given TF, and it may also explain how slight sequence variations between
individuals in the regulatory regions may influence for instance the risk for
a specific disease.

Experimental determination of where TFs bind to DNA is still a very tedious
process, and therefore our current knowledge of the details of regulation
is very limited, even for the most well-studied organisms. Computational
methods for predicting binding sites is an important alternative, but after
more than 20 years of development, the problem is still very challenging.

1.2 Basic problem formulation

The basic idea behind computational binding site prediction is to capture
the sequence similarity of related binding sites by a motif (sequence pat-
tern), and apply this motif on a target sequence. Three basic computational
problem formulations can be envisioned regarding transcription factor bind-
ing sites (TFBS) and motifs: Motif inference, motif scanning and de novo
motif discovery.

1.2.1 Motif inference

In the motif inference problem, a set of binding sites for a specific TF are
known, and the task is to infer a motif representation that captures the
binding specificity of the TF.

As the DNA sequence of related binding sites shows some variation, it is
usually not sufficient to describe the binding specificity of a TF by an exact
sequence. In computer science, regular expressions are commonly used to
represent sequence patterns. Simplified regular expressions, consisting of
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character sets at each position and sometimes also variable gaps, have been
used for describing patterns in proteins, but have not seen much use for
describing patterns in DNA. A discrete Hamming distance string model has
seen more use. This model allows instances to have a certain number of
mismatches compared to a base string. This allows thresholds on variation to
be applied over the whole instance, instead of being specified independently
on each position as in the simplified regular expressions. Both simplified
regular expressions and Hamming distance models can be constructed from
a set of observed sites by enumerating motifs, using a scoring function to
determine how well candidate motifs capture the observed sequences, and
then selecting the highest scoring motif.

The most widespread model for capturing the binding specificity of a TF is
the position weight matrix (PWM), sometimes also referred to as a position-
specific scoring matrix (PSSM). This is technically a product-multinomial
probability distribution describing the observed sequences. At each position,
the PWM gives the probability of observing each of the four nucleotides.
The probability of observing a specific sequence given a PWM model is then
the product of the probabilities of the observed symbols over all motif po-
sitions. A PWM is constructed simply by aligning the observed sequences
(which should be equal length), counting the observed frequency of each
symbol at each position, and then setting the underlying probabilities equal
to the observed frequencies (see Figure 1.1). This corresponds to a maxi-
mum likelihood solution for seeing the observed sequences given the product-
multinomial probability distribution represented by the PWM. To avoid es-
timating zero- or close-to-zero-probabilities based on few examples, a small
number of pseudo counts are typically added to the real counts, a process
which corresponds to enforcing a soft prior on the multinomial probabilities
represented by the PWM.

A main property, and potential limitation, of the PWM model is that the
probability distributions for individual positions are independent. This means
that the PWM is not able to capture any higher-order nucleotide dependen-
cies. The importance of this limitation is, however, still a matter of debate.
Sometimes a model of how nucleotides are distributed in background is also
incorporated into a PWM, with the PWM then representing the odds of a
sequence belonging to motif versus background.
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What are DNA sequence motifs?
Patrik D’haeseleer

Sequence motifs are becoming increasingly important in the analysis of gene regulation. How do we define sequence motifs, 
and why should we use sequence logos instead of consensus sequences to represent them? Do they have any relation with 
binding affinity? How do we search for new instances of a motif in this sea of DNA?

Sequence motifs are short, recurring patterns 
in DNA that are presumed to have a biologi-
cal function. Often they indicate sequence-
specific binding sites for proteins such as 
nucleases and transcription factors (TF). 
Others are involved in important processes at 
the RNA level, including ribosome binding, 
mRNA processing (splicing, editing, polyad-
enylation) and transcription termination.

In the past, binding sites were typically 
determined through DNase footprinting, and 
gel-shift or reporter construct assays, whereas 
binding affinities to artificial sequences were 
explored using SELEX. Nowadays, com-
putational methods are generating a flood 
of putative regulatory sequence motifs by 
searching for overrepresented (and/or con-
served) DNA patterns upstream of function-
ally related genes (for example, genes with 
similar expression patterns or similar func-
tional annotation). For a while, it seemed 
like we had more computationally predicted 
sequence motifs without a known match-
ing transcription factor, than transcription 
factors without a known binding sequence, 
although large-scale efforts to analyze the 
genome-wide binding of transcription fac-
tors using ChIP-chip are rapidly rectifying 
this situation.

The abundance of both computationally 
and experimentally derived sequence motifs 
and their growing usefulness in defining 
genetic regulatory networks and deciphering 
the regulatory program of individual genes 
make them important tools for computa-
tional biology in the post-genomic era.

Patrik D’haeseleer is in the Microbial Systems 
Division, Biosciences Directorate, Lawrence 
Livermore National Laboratory, PO Box 808, 
L-448, Livermore, California 94551, USA
e-mail: patrikd@llnl.gov

Restriction enzymes and consensus 
sequences
Type II restriction enzymes, discovered in the 
late 1960s, need to bind to their DNA targets 
in a highly sequence-specific manner, because 
they are part of a primitive bacterial immune 
system designed to chop up viral DNA from 
infecting phages. Straying from their con-
sensus binding site specificity would be the 
equivalent of an autoimmune reaction that 
could lead to irreversible damage to the bacte-
rial genome. For example, EcoRI binds to the 
6-mer GAATTC, and only to that sequence. 
Note that this motif is a palindrome, reflect-
ing the fact that the EcoRI protein binds to 
the DNA as a homodimer. Other restriction 
enzymes bind to a degenerate consensus 
sequence. For example, HindII bind to the 
sequences GTYRAC, where Y stands for ‘C 
or T’ (pYrimidine), and R stands for ‘A or G’ 
(puRine). (See http://www.chem.qmul.ac.uk/
iubmb/misc/naseq.html#tab1 for a listing of 
the IUPAC symbols for degenerate consensus 
sequences.)

We can calculate how often we would 
expect these consensus sequences to occur, 
based on their length and degeneracy. The 
probability that a random 6-mer matches 
the EcoRI binding site is (1/4)6, so the site 
occurs about once every 46 (= 4,096) bp in a 
random DNA sequence. The HindII binding 
site, containing two positions where two out 
of four bases can match, would occur once 
per 44 × 22 (= 1,024) bp.

Consensus or caricature?
Other DNA binding proteins tend to be less 
picky in sequence specificity. In 1975, Pribnow 
discovered the ‘TATAAT box,’ a well-conserved 
sequence centered around 10 bp upstream of 
the transcription initiation site of Escherichia 
coli promoters. This motif, together with a 
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Figure 1.1: Constructing a PWM from aligned binding sites. a) shows aligned
binding site sequences for a common TF. b) shows a consensus string repre-
sentation of the binding sites, with e.g. symbol Y representing either C or T
at a position. c) shows the counts of a,c,g and t at each position. d) visually
shows the proportion of counts at each position. e) shows a sequence logo,
with total height of a column representing the total information content at
a position, and each symbol scaled by its relative frequency at the position.
f) Same as e, but with information in relation to a non-uniform background
distribution. From D’haeseleer [1].
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1.2.2 Motif scanning

The second problem formulation can be seen as the opposite of the first
problem. The binding specificity of a TF is known in the form of a motif, but
the binding sites are unknown. In other words, this corresponds to scanning
for instances of a motif in a target sequence. This is shown schematically for
scanning of PWM model against sequence in Figure 1.2.

With discrete motif models, determining instances corresponds to trivial pat-
tern scanning. As DNA motif models are almost always of fixed length, every
substring of the target sequence of the required length is matched against the
motif model (pattern). Every substring that gives a match are considered
binding sites for the TF.

As the PWM gives a continuous match score for each substring of the target
sequence, a score threshold has to be applied in order to determine hits and
non-hits. This threshold can be determined in several ways. Since the PWM
describes a probability distribution, a threshold can be set directly based on
probability considerations. Alternatively, scores can be computed for every
substring of the target sequence, and a threshold specified afterwards that
will lead to a desired number or frequency of hits.

Although the matches of the common motif models are very simple to com-
pute, the accuracy of motif scanning is often quite low in realistic settings.
In addition to the annotated binding sites, a lot of locations without any
known binding activity will typically be predicted as being binding sites. In
some cases the reason for the discrepancy may simply be limited data on
binding activity, but in general it reflects a prediction weakness. The reason
for the many false predictions is that binding sites represented by TF motifs
are often quite short, with a relatively large degree of sequence variation.
Although several locations may then appear to be binding sites according to
a simple computational model, there are a variety of reasons for why such
locations may not constitute real biological binding sites. The suitability for
binding may be more complex than what is captured by simple motif mod-
els, the surrounding DNA sequence may influence binding, and finally e.g.
the three-dimensional structure of DNA may make parts of the sequence less
available for binding.
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use a consistent scoring metric that allows motifs to be
compared and ranked regardless of their source. Any scoring
metric relies first and foremost on the ability to scan a
sequence to determine whether the motif is present. For
motifs represented as a consensus sequence, scanning is
accomplished by searching for subsequences that match the
consensus word, with a prespecified threshold on the number
of allowable errors. For motifs represented with PWMs, it is
necessary to specify a method for scoring sites, and also to
specify a threshold score that defines a match. Statistically
principled methods of assessing cutoff thresholds for motif
matches have been presented [59,60]. Scanning sequences for
motifs using PWMs is an important problem in its own right
[54,59–62], and we present an overview of the basic procedure
in Figure 2.

Once a criterion for specifying a match to a motif has been
determined, it is possible to evaluate particular motifs
learned from a dataset. Various scoring criteria for motifs
have been developed, and most motif discovery programs
have their own preferred metric for scoring. Most scores
involve a measure of information content [63] or statistical
overrepresentation [32,64,65]. In our experience, two
particularly intuitive and useful scores are the
hypergeometric enrichment and the area under the receiver
operating characteristic curve (ROC-AUC).

The hypergeometric enrichment score can be used to
measure the statistical overrepresentation of a motif [64]. We
assume that there are many sequences representing the
genomic background from which the input sequences were
selected. If for example, motif discovery was performed on a
set of Drosophila melanogaster promoters, a suitable background
might be the set of all known promoter regions in Drosophila.
The enrichment score is calculated by counting the number

of occurrences of the motif in the input and in the entire
background. The hypergeometric p-value is the probability
that we would observe an equal or greater number of motif
occurrences if the input dataset had been drawn randomly
and without replacement from the background. The
enrichment score is the negative log of this p-value [39]. If the
motif is highly overrepresented in the input dataset, then the
probability of observing a count that large at random will be
very small, and the enrichment score will be large.
A receiver operating characteristic (ROC) curve presents

the trade-off between the sensitivity (true-positive rate) and
specificity (false-positive rate) of a classifier [66]. If a very
stringent threshold is specified when determining a match to
the motif, only the strongest true-positive sites will be
identified, and the weaker matches will be missed. As the
stringency of the match threshold is reduced, more true sites
are identified at the expense of selecting more false-positive
sites. An ROC curve allows us to examine how the false-
positive and true-positive rates change as the threshold used
to determine a match is altered. A useful score for integrating
these two characteristics is the ROC-AUC score [67].
Intuitively, the closer the ROC-AUC is to 1.0, the better the
motif. A score of 1.0 indicates that the motif is able to pick
out all the true-positive sites with no false positives. If a motif
is not able to do better than random, the ROC curve will be
an approximately diagonal line, and the ROC-AUC score will
be close to 0.5.
Clustering motifs eases analysis. Analyzing large datasets

with multiple motif discovery programs typically yields a
large number of motifs. Even after filtering out spurious
motifs that do not meet basic score-threshold requirements,
there will often be many motifs left. These may correspond to
subtle variants of a few distinct sequence signals present in

DOI: 10.1371/journal.pcbi.0020036.g002

Figure 2. Scanning for Motifs with PWMs
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Figure 1.2: Scanning target sequence for discrete PWM hits. The PWM is
matched against a sliding window on the target sequence, and positions with
scores above a given threshold are reported. From MacIsaac and Fraenkel
[2].

1.2.3 De novo motif discovery

A third and very challenging problem formulation is the discovery of both
motif and binding sites when neither are known. The only thing that is
known (or assumed) is that a TF has multiple binding sites with a certain
sequence similarity within one or more target sequences.

The basic assumption behind de novo motif discovery is that since there
exists a set of binding sites with shared sequence similarity that could be
represented by a motif, this unknown motif will have more instances than
expected in the target sequence. In other words, an unknown motif repre-
senting the binding specificity of the TF should be over-represented in the
target sequence.

In addition to the motif model chosen to represent the TF binding specificity,
a central aspect of a de novo motif discovery method is the score function
used to measure the over-representation of a motif in the target sequences.
Several different score function are presented in the state-of-the-art section.

As both instance locations and motif representation are unknown, there are
two basic ways to approach the problem from the algorithmic side. The first
approach is to enumerate motif candidates, scan for instances, score each
candidate, and select the best scoring motif. This works well for relatively
short and simple motif models that can be enumerated efficiently. The other
basic approach is to instead enumerate instance locations, infer a motif from
these instances, score the inferred motif, and select the best scoring motif.
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As there are too many possible combinations of instance locations, these can
not be enumerated exhaustively, but have to be estimated heuristically, e.g.
by MCMC methods. Several algorithmic approaches for motif discovery are
presented in the state-of-the-art section.

1.3 Higher-order organization

1.3.1 Cis-regulatory modules

When TFs bind to DNA and influence gene expression, the TFs do not per-
form this function in isolation. Instead, several TFs, and often also several
other proteins called co-activators, form a complex of molecules. It is this
complex as a whole that attracts the transcriptional machinery and thus in-
fluences gene expression. This structure of TFs is also reflected in the binding
sites for TFs on DNA, meaning that TFBS are not distributed randomly in
the regulatory regions. As the TFs form complexes by physical contact, the
DNA binding sites for interacting TFs will also have to be in physical prox-
imity to each other. As the DNA may form loops, the binding sites are not
necessarily close in DNA sequence, but they are generally thought to be so.
This observation has led to the notion of a cis-regulatory module (CRM) —
a cluster of binding sites for interacting TFs. Sets of TFs are also thought to
interact similarly in the regulation of several genes, meaning that the same
combination of binding site motifs would be co-occuring in several regulatory
regions. The higher-order organization of TF binding is shown schematically
in Figure 1.3.

1.3.2 Composite motif discovery

Composite motif models — models composed of several short contiguous se-
quence motifs — have been introduced in many varieties to model the CRMs
directly (see Figure 1.4). The rationale for this has been that the clustering
and co-occurrence of binding sites for interacting TFs can be exploited to
increase the accuracy of CRM detection. In the same way as for individ-
ual binding sites, a distinction can be drawn between scanning and de novo
discovery of CRMs. Pure scanning for CRM instances would mean that all
parameters of the CRM model are fixed beforehand, while de novo discovery
would mean that all parameters of the CRM model are inferred from the
data.
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Figure 1.3: Higher order organization of transcriptional regulation. a) shows
how cis-regulatory modules, consisting of several motif instances, are dis-
tributed at different locations upstream of the gene (transcription unit). b)
shows how the DNA sequence may form loops that allow TFs binding to
different CRMs to form complexes based on physical contact. From Wray et
al. [3].

Something between pure scanning and pure de novo discovery is a model
where a list of potential short sequence models are pre-defined, while the
selection of, and relation between, these short motifs are inferred from the
data. This variant is here referred to as supervised composite motif discovery,
and is a realistic and practical variant, since potentially relevant TF motifs
are often available in public motif libraries. Computational methods can
then be used to select from the list of potential TF motifs and to infer the
structure between binding sites for these factors.

De novo composite motif discovery The most common argument for
doing de novo discovery of composite motifs directly, instead of discovering
motifs for single TFs individually, is that considering CRMs can help in dis-
covering binding site motifs that are too weak to be detected in isolation,
but that are significantly different from background when viewed in relation
to other TFs. De novo inference of composite motifs is, however, more com-
putationally demanding than inference of single motifs, and it remains to be
shown on sufficiently large collections of data that the theoretical advantage
of directly discovering CRMs is realized in practice.
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Figure 1.4: A computational view of the higher order organization of tran-
scriptional regulation. The main components of this computational view
are single motifs (denoted as m), distances between single motif instances
(denoted as d), and composite motifs (denoted as c).

Supervised composite motif discovery The main rationale for doing
supervised composite motif discovery, compared to just scanning for instances
of the pre-defined PWMs in isolation, is to reduce the number of false positive
predictions. In order to detect a reasonable number of the annotated binding
sites for a TF, the threshold on PWM score has to be set at a level that
will also predict a large number of binding sites at un-annotated positions
across the genome. By exploiting the clustering property and co-occurrence
of binding sites for interacting TFs, it is possible to filter out a lot of false
positives, while not loosing out too many annotated binding sites.

In addition to being an advanced filter for PWM matches, the inference of
CRM structure and delineation of CRM instances can also be of value in it-
self. As CRMs are thought to be the basic units of gene regulation, knowledge
of CRM instances, rather than isolated binding sites, may be fundamental for
understanding and manipulation of gene regulation. Furthermore, knowledge
of which TFs are interacting and how this is reflected on the DNA (binding
site) level is important, both for general understanding of how different TFs
act together in transcriptional regulation, and for determining which genes
are co-regulated.

1.4 Measuring prediction performance

There is no unanimously accepted way of evaluating the prediction perfor-
mance of a CRM discovery method against annotations. First, as CRM
discovery methods typically predict both the locations of individual motifs
and also predict a grouping of motif locations into CRMs, either the predicted
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motif intervals or the predicted CRM intervals can be compared against an-
notations.

Second, the way of evaluating single predictions and determining the number
of true/false positives/negatives (TP,FP,TN,FN) has to be decided. True/false
here refers to whether a prediction is correct or not. Positive/negative refers
to annotated binding sites and non-binding respectively (ground truth). Only
considering exact correspondence between motif start positions is for instance
generally not a reasonable choice, as the experimentally based annotation of
binding sites is not an exact and unambiguous procedure. One reasonable
choice is to consider a motif/CRM prediction as a true positive if it is less
than a fixed number of bases off an annotated position, or similarly if at least
a fixed proportion of the prediction overlaps with annotation (site-level). A
problem with the site-level is that one has no trivial measure of true nega-
tives, as there is some tolerance in predicted locations. Another possibility
is to operate on the single nucleotide level, counting each nucleotide that
is encompassed both by a predicted and annotated motif/CRM as a true
positive, and FP,TN,FN counted similarly (nucleotide-level).

Third, some summarizing statistics should be computed and used for com-
paring the performance of different methods. The precision (TP/(TP+FP))
and recall (TP/(TP+FN)) together gives a good view of the performance of
a method. However, as different methods may get high score on different
measures, a simple ranking of method performance is generally not possible.
It is difficult to compare the performance of methods that achieve a very dif-
ferent balance between precision and recall. Alternatively, a single measure
such as the phi coefficient of correlation (CC) can be used to achieve a single
performance value that can be compared and used to rank methods.

Although producing a single performance value is often convenient, is may
also hide important aspects of the performance of methods. Another option
for comparing performance is therefore to go the other way, and instead pro-
duce a richer representation of performance in the form of a precision-recall
(PR) curve. The PR-curve shows the relationship between precision and
recall for a given method. This gives a more unbiased comparison between
different methods.

When using several datasets, summarizing statistics could either be com-
puted for each dataset and then averaged, or statistics could be computed
from the combined counts across datasets. As the confidence of predictions
are not necessarily comparable across datasets, PR-curves are generally spe-
cific to a single dataset.
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Figure 1.5 shows the basic way of measuring prediction performance on the
single nucleotide level.

Motif 1  Motif 2                        ... Annotated motifs

Predicted motifs
Target 

sequences

TN FP TP FN

Figure 1.5: Counting the number of true/false positives/negatives between
predictions and annotations at the nucleotide level.

1.5 Developments in the motif discovery field

The first computer programs for computational prediction of binding sites
for transcription factors appeared in the late 70s. In the first articles, such as
that by Korn et al. [6], the idea of using a computer and the software itself
was of primary interest. These methods used very simple models of sequence
similarity and searched for binding site in the core promoter region of genes —
short stretches of sequence immediately upstream of transcription start. The
sequence similarity model used by Staden was a Hamming distance model.
Already a few years later the position weight matrix (PWM), which still is
the most common motif model, was introduced by Stormo [7] and Staden [8].

Around ten years later, a new burst of development occurred, with Gibbs
Sampling and Expectation Maximization techniques successfully applied to
the motif discovery problem. The Gibbs Sampler [9] and MEME [10], both
using PWM as motif model, are still among the most widely used methods.
During the next ten years, more than a hundred motif discovery methods
were proposed, employing a wide variety of models and algorithms. In the
latter half of the 90s, it became widely acknowledged that TFs act in combi-
nation to regulate genes, and that this combinatorial nature was important
also for computational motif discovery. Several methods therefore tried to
discover composite motifs, either directly from regulatory regions alone or
by using a list of single motifs as additional input. Alongside the focus on
composite motifs, there was in the beginning of 2000 also strong focus on in-
tegrative motif discovery methods. Different methods integrated orthologous
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sequences, gene expression and additional properties of the DNA sequence
into the discovery of motifs.

After the DNA sequence of the human genomebecame available around the
turn of the century, there has been an explosion of studies making use of
genomics, either to understand the dynamics of a normal cell, or to pinpoint
the genomic causes of diseases. As gene regulation is central to such studies,
a need has risen for more knowledge about TF regulation. As experimen-
tally determined binding site locations are yet very sparse and incomplete
even for the most well-studied organisms, there is a clear need for computa-
tional predictions to complement the experimentally verified sites. This wide
need for TFBS predictions has led to much focus on increasing usability of
computational TFBS prediction. Web page versions has been published for
several motif discovery methods, making them more easily available for use by
non-specialists. Recently, several web systems have also been published, inte-
grating different motif discovery methods in a uniform service that supports
the process from extraction of regulatory sequences, via running prediction
methods, and finally to visualization of results. A third line of work that
has made computational TFBS predictions more accessible, are databases
of genome-wide predicted TFBS locations for specific organisms. This even
alleviate the need of running computational tools in order to obtain TFBS
predictions.

1.6 Current challenges

After more than 20 years of development, the field still faces some funda-
mental questions. A recent and broad assessment of motif discovery methods
revealed a low absolute level of correctness for the prediction of DNA bind-
ing sites [11]. The notorious difficulty of the problem makes it suited as a
challenge for novel methodological development in the machine learning field,
and the wide use of computational TFBS predictions ensures clear biological
usefulness of improvements in computational methods. This suggests that
the motif discovery field will see new development for many years to come.

Although it has become clear that the discovery of TFBS is a very difficult
problem, there is large uncertainty regarding the performance level that re-
alistically can be expected from motif-based computational approaches. Al-
htough numerous methods have been proposed for the problem, it is still not
clear which methods, or even which fundamental approaches that perform
best.
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A complicating factor both for determination of a realistic performance level,
and for comparing the performance of different methods, is that the ground
truth is not accurately known. Even for the best studied sequences there may
be many un-annotated TFBSs turning up as false positives instead of true
positives when evaluating methods. Furthermore, there may be strong biases
regarding which DNA regions have been studied experimentally, meaning
that the modeling assumptions that work well on data sets used in testing
may not be representative of binding sites in general.

In spite of such challenges, increasing the quality of method evaluations,
increasing understanding of how different aspects of methods influence and
limits prediction performance, and increasing the understanding of how lim-
ited experimental data may influence the results of evaluations should be a
worthwhile and interesting endeavor. The limited performance level of cur-
rent methods also suggests that there still is a clear potential for improved
algorithmic approaches to the problem.



Chapter 2

Research outline

2.1 Research questions

Four basic questions regarding the potential for improvement in the motif dis-
covery field have formed a basis for studies presented in this thesis. Several
other relevant questions may also be envisioned, but could not be pursued
within the time frame of this PhD project. Particularly, the potential for
improving prediction accuracy by incorporating information beyond pure se-
quence, such as additional DNA properties or different experimental values,
would have been interesting to explore in relation to several of the studies
covered in this thesis. This is however a complex issue requiring one or more
separate projects.

The research questions explored in this thesis are as follows:

RQ1 — Sequence based methods

The most basic version of the motif discovery problem in DNA is to predict
a motif representing related regulatory elements, based on a set of target
sequences only. No properties except the pure base pair sequence is used,
and nothing is known about the motif a priori.

What are the limitations on prediction accuracy for pure sequence-based motif
discovery? Is there a real potential for improving the prediction accuracy
beyond the level achieved by current methods based on regulatory sequence
only?

15
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RQ2 — Composite motifs

As the goal of composite motif discovery in DNA is to discover motifs rep-
resenting a set of interacting regulatory elements (CRM), two subversions of
the problem have in general been considered.

• De novo: discover single motifs and their relationships simultaneously
from a set of target sequences.

• Supervised: discover relationships between motifs, often within a single
target sequence, with single motifs given as input.

What performance level can be achieved when searching for CRMs based on
precompiled single motifs, compared to de novo motif discovery? Further-
more, how much can prediction performance for supervised composite motif
discovery be increased by considering sets of co-regulated sequences, instead
of considering sequences in isolation?

RQ3 — Background models

As motif discovery is based on the principle of overrepresentation, a back-
ground model to contrast observations against is an important element in
evaluation of candidate motifs. For some methods, contrasting against back-
ground is done explicitly, while in other methods it is implicit in the way
target sequence is assigned to hidden motif and background states.

What background models perform well as contrast to TFBSs in motif discov-
ery? Can the use of real negative background sequence as opposed to random
background models increase prediction performance?

RQ4 — Motif models

A fundamental difference between methods for motif discovery is whether
they use probabilistic or discrete motif models. The probabilistic and discrete
models are generally also tied to distinct inference procedures and typically
have their roots in different fields of computer science or statistics.

What are the advantages and disadvantages of discrete versus probabilistic
motif models? Is the recent trend towards probabilistic composite motif models
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(HMMs) warranted by an increase in prediction performance? What other
advantages or disadvantages do each of the two approaches have?

2.2 Research context

The contributions in this thesis have been made within three subareas of mo-
tif discovery: Development of prediction methods, assessment of prediction
accuracy, and improvements in the extended motif discovery process.

RC1 — Methods

The first research context concerns development of de novo novel motif dis-
covery methods for the discovery of CRMs from a set of regulatory regions.

RC2 — Assessment

The second research context concerns analysis of the difficulty of TFBS motif
discovery and the performance of current methods.

RC3 — Process

The third research context concerns improvements in the extended DNA
motif discovery process, from compilation of input data to interpreting pre-
dictions made by a method.
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Chapter 3

State-of-the-art

More than a hundred methods have been proposed for motif discovery in
recent years, representing a large variation with respect to both algorithmic
approaches as well as the underlying models of regulatory regions. There is
also large variation regarding how methods are described and tested, making
it even harder to get a good overview of the field. Many reviews of motif
discovery methods have therefore been written, with varying focus and in-
tended audience. A recent review by Pavesi et al. [12] gives a very accessible
and broad introduction to the field. It divides methods into consensus- and
alignment-based, and surveys the most established methods one at a time. It
also discusses background modeling, evaluation of motifs and the practicali-
ties of using these methods. The review by Wasserman and Krivan [13] has
a stronger focus on the underlying biology of motif discovery in regulatory
regions. It also goes a bit more into the combinatorial nature of binding sites,
and touches upon issues such as phylogenetic footprinting, CpG-islands and
chromatin structure. Finally, some reviews focus on specific techniques such
as phylogenetic footprinting [14], or on specific genomes [15].

3.1 A mathematical perspective

As motif discovery methods can be very complex, with many possible dif-
ferences, several authors have proposed frameworks for classifying motif dis-
covery methods. Brazma et al. [16] categorize motif discovery methods with
respect to whether they use explicit negative sequence sets or not, expressive-
ness of the pattern models, whether patterns are deterministic or statistical,
and whether the algorithms are pattern driven or sequence driven. In a later

19
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paper Brazma et al. [17] define a three step paradigm consisting of choosing
a class of grammars (motif model), designing a rating function (motif score),
and developing an algorithm.

Here a mathematical perspective is used for describing motif discovery meth-
ods, with a special emphasis on the hierarchical modeling of regulatory re-
gions1. Motif discovery methods are described at three levels:

The most basic level (Level 1) represents the binding of individual transcrip-
tion factors (TFs) to short contiguous sequence segments. These sequence
segments are modeled by single motif models that give a distinct score for
each sequence segment in a regulatory region.

The next level (Level 2) represents CRMs: clusters of TFs that bind to
DNA in proximity to each other, but with a certain flexibility regarding
distance between binding sites. This is modeled by a composite motif model,
consisting of a set of single motifs. Given a set of positions, one for each
single motif, the score of a composite motif can be calculated from the score
of single motifs at given positions as well as inter-motif distances.

The final level (Level 3) represents how a single or composite motif is over-
represented across several regulatory regions. This overrepresentation is typ-
ically used to rank candidate motifs in order to return the most interesting
motifs to the user of a motif discovery tool.

3.2 Single motif models (Level 1)

Transcription factors bind to specific short segments of DNA, transcription
factor binding sites. This is the most basic element of the regulatory system,
and can be modeled using single motif models.

A single motif model is defined as a function N → R that maps a sequence
position as a non-negative integer to a real numbered motif score.

The single motif function gives the degree of match between the substring
beginning at a specific position and an underlying consensus model. In the
most general sense, the single motif function gives a distinct score for any
given substring. However, the number of free parameters has to be restricted

1This part is based on Paper 1, but uses a simplified mathematical framework. The
full framework is given in the original paper.
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to allow training of the model from a limited number of examples (e.g. known
regulatory elements). Numerous match models have been proposed, and they
are often divided into two groups, deterministic models with binary scores
and probabilistic models with weighted scores.

3.2.1 Probabilistic match models

The most widely used probabilistic model is without doubt the position
weight matrix (PWM), also known as position specific scoring matrix (PSSM),
that assumes independence between positions [7]. The score of an aligned
substring is the log-likelihood of the substring under a product multinomial
distribution. PWM scores can also be described in a physical framework as
the sum of binding energies for all nucleotides aligned with the PWM [18].

Many different extensions to the basic PWMs have been proposed in the
literature. Most of these extensions concern positional dependencies within
a motif. There is an ongoing discussion on the importance of such positional
dependencies, see for instance [19, 20, 21].

The most direct way of incorporating dependencies within motifs is to extend
the PWM to include pairs of correlated positions [22, 20]. Another straight-
forward approach is to use a mixture model in which the motif occurs as one
of a limited number of stochastic prototypes [23]. Each stochastic prototype
may be a traditional PWM, or any other model discussed in this section. A
third extension is to model probabilistic motifs as n’th order Markov chains
[24]. However, it is hard to find a good compromise between a high n that
may give too many free parameters and a low n that may miss out the depen-
dencies of interest. If the relative importance of dependencies varies within a
motif, a variable-length Markov model (VLMM) [25] may be preferable. Fur-
thermore, if some long-range dependencies seem to be significantly stronger
than dependencies between neighboring positions, the order of the positions
in the Markov chain may also be permuted before a VLMM is applied [26].

Another way to model dependencies is to use Bayesian networks. Barash et
al. [23] discuss different Bayesian network models and conclude that the use
of a Bayesian tree model, or possibly a mixture of trees, is a good compromise
between the number of free parameters, the ability to model dependencies,
and computational tractability. Similarly, Ben-Gal et al. [27] argue for vari-
able order Bayesian nets.

Instead of focusing on dependencies between specific nucleotides at different
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positions, Xing et al. [28] model the distribution of conserved positions
within a motif. In this model there is an underlying Markov chain of position
prototypes. Each prototype defines a certain Dirichlet distribution on the
parameters of the multinomial nucleotide distribution at that position. The
underlying Markov chain favors transitions between position prototypes with
similar degrees of conservation. This makes it possible to favor models where
highly conserved positions are partially contiguous rather than evenly spread
out in the motif. The work of Kechris et al. [29] achieves similar properties
by assigning conservation types (strong, moderate or low) to blocks of motif
positions.

3.2.2 Deterministic match models

A deterministic match model evaluates to a binary value indicating either
hit or no-hit. The three main kinds of deterministic match models are oligos,
regular expressions and mismatch expressions.

The simplest deterministic model is the oligo model. This is a function
that is 1 for a single specific substring, and 0 for all other substrings. The
oligo model was commonly used in early motif discovery methods, but has
also been used in recent word-counting methods [30, 31, 32] and dictionary
models [33].

A regular expression model returns 1 if the given substring is matched by an
underlying regular expression. As reviewed by Brazma et al. [16], the models
used in motif discovery are typically composed of exact symbols, ambiguous
symbols, fixed gaps and/or flexible gaps. Regular expression models are used
in e.g. [34, 32, 35, 36, 37].

Many methods use mismatch expressions as motif match models, e.g. [38,
39, 40, 41, 42, 43]. These models evaluate to 1 if the number of mismatches
(Hamming distance) between a substring and the underlying consensus sub-
string is below a given threshold. A variant is described in [44], where the
threshold is on the sum of mismatches between all motif occurrences and
the underlying motif substring. A similar variant, with a threshold on mis-
matches between occurrences in sequences arranged in a phylogenetic tree,
is described in [45].

The probabilistic models are much more expressive than the deterministic
models. In fact, all oligos, regular expressions and mismatch expressions
can be represented as PWMs. However, a major benefit of the deterministic
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models is that they often allow exhaustive discovery of optimal motifs.

3.3 Composite motif models (Level 2)

Clusters of binding sites for cooperating TFs, often called CRMs, are be-
lieved to be essential building blocks of the regulatory machinery. Werner
[46] states that “Within a promoter module, both sequential order and dis-
tance can be crucial for function, indicating that these CRMs may be the
critical determinants of a promoter rather than individual binding sites”.
The multitude of models developed for the discovery of CRMs is another in-
dication of the conceived importance of this. It is therefore natural to define
a computational motif model that represents a combination of single motifs.

A composite motif model is defined as a function 2N → R that maps a set of
single motif sequence positions as non-negative integers to a real numbered
composite motif score.

The composite motif function consists of a set of (generally different) single
motifs, with each single motif contributing with a separate score at its posi-
tion. In addition, functions may be defined on the distances between single
motifs. Given a set of positions, the score of a composite motif will typically
be the sum or product of individual single motif and distance scores.

Distance functions

Many different models have been proposed to capture the importance of
inter-motif distances within a CRM. Several methods put constraints on the
distances between consecutive motifs, requiring either fixed distances [47, 32],
distances below thresholds [48, 49, 50], or distances within intervals (e.g.
[34, 32, 51, 47, 42]).

Another common way of capturing the importance of proximity is to con-
strain all single motifs to be within a window of a certain length (e.g.
[52, 53, 54, 55, 56]). This corresponds to a threshold on the maximum dis-
tance between any two single motifs. A more general approach is to define
non-binary score functions on the distances between single motifs. This can
simply be functions that increase linearly with distance as in [57]. Similarly, a
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geometric distribution on inter-motif distances follows implicitly from many
HMM models [58, 59], and is assumed explicitly in Gupta and Liu [60].

The conservation of inter-motif distances across CRMs can also serve as a
basis for distance score functions. Wagner [61] calculates a distance score
from the p-value of observing the given degree of distance conservation in
a background model of Poisson-distributed inter-motif distances. Similarly,
Frech and Werner [62] calculate scores by comparing the distances with a
histogram of distances between the same regulatory elements in other CRMs.

Combining single motifs

There are many ways in which a set of single motif and distance scores can
be combined into a single measure.

For methods using deterministic match models and constraints on distances,
all component scores are binary. Furthermore, many probabilistic methods
use thresholds on single motif scores to obtain only binary values. The com-
posite motif score is then typically the intersection of component scores (e.g.
[61, 63, 64, 65]). A variation of this is to require that M out of N single
motif scores are 1 [66]. Similarly, the count of binary single motif values can
be used directly as a composite motif score [67, 68, 32].

For methods that use non-binary single motif scores, a common approach
is to calculate the sum of single motif and distance scores [57, 62]. Some
methods require that all distance functions are 1, and if they are, composite
motif score is the sum of single motif scores [55, 69, 53, 70]. Similarly, the
method ModuleScanner sums only single motif scores above a threshold, and
MotifLocator sums the N highest single motif scores [55]. Another variation
is to multiply the sum of single motif scores with a motif density factor,
calculated from the length of the window that contains all the single motifs
[48]. Finally, a few methods take the composite motif score to be the highest
single motif score [41], or the lowest single motif score [71].

Many specialized models have also been used to combine single motif and
distance scores, e.g. the hidden Markov model (HMM) [59], history-conscious
HMM (hcHMM) [56], self-organizing map (SOM) [72], and artificial neural
network (ANN) [73]. In all of these models, the score of several homotypic
and/or heterotypic single motifs are combined in a relatively complex way.
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3.4 Motif overrepresentation (Level 3)

Computational motif discovery is possible primarily because motifs repre-
senting regulatory elements are overrepresented. Many methods use this
overrepresentation directly when evaluating the significance of a discovered
motif. The exact way of calculating motif significance varies from method to
method, but can roughly be divided into five different approaches.

The most direct approach is to determine overrepresentation by comparing
observed motif scores with expected scores from a background model. More
specifically, the p-value [54, 36] and z-score [38, 32] of the observed sum
of gene scores has been used. The background is typically a higher order
Markov model, with parameters estimated from the sequences used for motif
discovery. Shuffled control sequences may also be used as background [9].

A simpler approach is to compare only the raw sum of gene scores when
ranking motifs. This is equivalent to the first approach under the assumption
of equal expected scores for all motifs in the background model.

A third approach is to use a significance measure related to the information
content (IC) of discovered PWMs [74]. For methods that use mixture models
of log-ratio PWMs and background, the PWM with highest IC corresponds
to a maximum likelihood solution of the mixture model.

A common approach in deterministic motif discovery is to calculate two sepa-
rate values when evaluating motifs, one concerning the support, or coverage,
of a motif, and a second concerning the unexpectedness of a motif [75, 76, 39].

The fifth approach is completely different, and focuses only on overrepresen-
tation of motif combinations. Motif significance is based on the observed
versus expected scores of composite motifs, given the observed score distri-
bution of single motifs. The significance can for instance be the p-value of
the observed composite motif scores in a background model where all single
motif occurrences are randomly reshuffled [64].

3.5 Background models

As the goal of motif discovery is to find a set of substrings with a significantly
high level of sequence similarity, the notion of a background to compare
against becomes important. In the common mixture model view of sequences,
which entails e.g. HMM-based composite motif models, the background is
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only implicit, as all non-motif parts of the target sequence will take the
role of background. In this perspective, the goal is to find a motif that can
explain as much of the target sequence as possible, reducing the entropy of
the remaining sequence.

In several other approaches, the background is explicit. One kind of explicit
background is a random model that allows analytical computation of match
probabilities, typically as a (higher-order) Markov model that is estimated
from either the target sequences or from other DNA sequence. This model
can also be directly integrated into scanning of target sequences, giving scores
that contrast motifs against background. Alternatively, background can be
empirical in the form of real negative sequence that motifs are scanned against
to compare with scores in the target sequence. By e.g. making normality
assumptions, scores can be given as easily interpretable z-scores.

3.6 Algorithmic approaches

An important trade-off in motif discovery is between representational ex-
pressibility and computational efficiency. For the case of restricted determin-
istic motif models, several algorithms exist that can exhaustively discover the
optimal motifs [75, 76, 77].

However, probabilistic motif discovery algorithms do not guarantee return-
ing the global optimum when applied to realistic problems. These algorithms
are typically based either on iterative refinement or stochastic optimization.
Expectation maximization (EM) [78, 74, 79, 80, 81] is the most widely used it-
erative refinement method, but variational EM [59] has also been used. The
stochastic optimization technique most widely used for motif discovery is
Gibbs sampling [9, 82, 47, 83], sometimes combined with general Metropolis-
Hastings [84, 85, 86]. Recently, genetic algorithms [69], evolutionary Monte
Carlo [60] and simulated annealing [68, 26, 87] have also gained some popu-
larity.

Seed-driven algorithms have been used with success in deterministic motif
discovery. They start by evaluating seeds from a very restricted class of sim-
ple motifs, and then expand promising seeds to full motifs either heuristically
[88] or exhaustively [76]. A promising approach to motif discovery is first to
use efficient deterministic motif discovery, and then use the highest scoring
deterministic motifs as seeds for probabilistic motif discovery with expressive
models. In addition, motifs may first be discovered in the sequence parts with
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highest priors, and then be used as seeds for motif discovery in the full set of
sequences. The method of Liu et al. [89] is a good example of such a strat-
egy. Several overrepresented mismatch expressions are first discovered in
upstream regions of the genes with highest group membership. The highest
scoring mismatch expressions are then used as seeds for probabilistic motif
discovery in the whole set of sequences.
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Chapter 4

Advancing the state-of-the-art

This chapter describes the contributions made within the three research con-
texts described in the research outline. Figure 4.1 shows a categorization
of the research articles included as main papers in this thesis. Within the
first research context, Paper 2 and 3 use probabilistic and discrete composite
motif models, respectively. In RC2, Paper 4 makes considerations relevant
for both scanning and discovery of single motifs, while Paper 5 assesses both
probabilistic and discrete composite motif discovery methods. In the third
reserach context, Paper 6 considers false discovery rate when scanning for
single motif hits, the PAMM framework in Paper 7 can be used for accel-
eration of both scanning and discovery of single motifs, and the iterative
methodology in Paper 8 can be used together with any motif model, and
with either scanning or discovery.

RC1 RC2

Development Assessment

Single scanning Paper 6

motifs discovery

Composite probabilistic Paper 2

motifs discrete Paper 3

Usability

RC3

Paper 4

Paper 5

Paper 7

Paper 8

Figure 4.1: Research papers included in the thesis, categorized according to
research context and motif model/computational problem.
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4.1 Development of methods (RC1)

With the important role TF regulation plays in many settings, the low avail-
ability of experimentally verified binding sites, and the low prediction ac-
curacy of current computational methods ([11]), there is a clear need for
further development in the motif discovery field. Also, the large variety of
regulation in vivo, and the large variety of contexts in which motif discov-
ery methods are used, means that a variation of available approaches might
be of value in itself. In addition to the obvious contribution to biology im-
proved methods represent, the motif discovery problem may also play a role
in computer science as a challenge for novel methodological development.
In this thesis, two very different methods are presented: one method uses
hierarchical hidden Markov models for rich probabilistic modeling of CRMs,
while another method learns expressive discrete CRM models by traversing
an implicit discrete search space.

4.1.1 BayCis

Several recent methods have used Hidden Markov Models (HMMs) for rep-
resenting CRMs, with states representing different motifs and background,
and transition probabilities capturing the clustering bias of CRMs. An HMM
can be trained from data and it can be scanned against data. In training,
the parameters of the HMM are estimated from the observed sequence, while
in scanning only the probabilities of being in the different hidden states at
each position in the sequence are estimated. Most HMMs proposed for CRM
discovery are actually quite simple methods that use fixed HMM parame-
ters, and only perform scanning to classify sequence positions to motif and
background states (e.g. [58, 90, 57]).

The BayCis method presented in Paper 2 of this thesis takes a considerably
more sophisticated approach to composite motif discovery. It uses a hier-
archical Hidden Markov Model, with a much richer state space than other
models. It is able to capture several different kinds of non-motif states and
is also able to capture preferences for specific transitions between different
motif and non-motif states. Instead of enforcing fixed HMM parameters,
only soft priors are specified, allowing parameters to be estimated from the
data based on Bayesian posterior inference. This makes the approach more
robust with respect to assumptions, and allows models to be automatically
tailored to each data set. The disadvantage of the rich model is a more com-
putationally intensive inference and a need for more data to ensure reliable
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inference.

4.1.2 Compo

Using discrete models of CRMs has some obvious advantages regarding sim-
plicity, flexibility, and inference, as well as interpretation of results. A main
concern with the discrete approach has been that it is too rigid in deter-
mining what constitutes binding sites, and in enforcing distance constraints.
With the large degree of uncertainty and irregularity in biology, making hard
decisions on for example what constitutes motif hits and whether a distance
constraint is met or broken, makes the approach too dependent on thresholds.
Discrete models have therefore seen less use in the last years. The Compo
method presented in Paper 3 revisits the discrete approach to composite
motif discovery, introducing several novel elements.

The Compo method tries to address the limitations of discrete models by ap-
plying multiple thresholds instead of a single one for each discrete decision,
and for each data set automatically select the most appropriate thresholds.
More specifically, several thresholds are used to determine hits and non-
hits from PWM scores, and several values are used as distance constraint of
CRMs. Additionally, instead of requiring that all components of a composite
motif occurs in every CRM, Compo optionally allows some of the component
motifs to be absent from CRM instances. Also, several values are used for
the number of components of composite motifs, and for the number of com-
ponent motifs (if any) that are allowed to be missing from CRM instances.
While using multiple thresholds is trivial in itself, it is more challenging to
support automatic selection of the most interesting motifs arising from dif-
ferent threshold values. Without such selection across threshold values, the
user would be flooded with a large number of similar motif variants and a
very difficult manual selection process.

Compo uses “unexpectedness” of observed composite motif support as sig-
nificance measure, and computes p-values of getting the observed support in
a partly random and partly empirical background. These p-values can be
compared across threshold values, thus allowing automatic selection among
motifs that employ different threshold values for delineating motif instances.
Other novel elements of the Compo approach is the use of a background
that is a mix of empirical data and algebraic model, and the introduction
of multi-objective optimization to the motif discovery field. When applied
on sets of co-regulated sequences, which allows estimation of CRM structure
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based on several instances, the performance of Compo is superior to several
previously published methods. This is particularly the case when the list of
input motifs contains many non-relevant motifs. The use of support across
sequences allows Compo to be more robust against non-relevant (noise) mo-
tifs compared to methods that use fixed parameters and consider each single
sequence individually.

While the strength of Compo lies in the use of the general unexpectedness
measure (probability in background) as a uniform significance measure, the
reliance on this measure for motif selection is also a potential limitation on
further development. It may be difficult to combine this general unexpected-
ness measure with prior biological knowledge. If knowledge is accumulated
on how certain features of DNA influence the tendency of a sub-sequence to
act as binding site for transcription factors, it is not obvious how to combine
such biological priors on target sequence with a significance measure based
on unexpectedness in background.

4.2 Assessment of motif discovery (RC2)

Due to the large number of proposed methods, assessing the prediction per-
formance becomes important. Assessment is important for determining the
general performance level that can be expected from computational methods,
for providing guidance in selecting among methods in practical use settings
and for giving directions on which approaches to pursue in further algorithmic
development. Assessment is challenging for several reasons. It is for example
difficult to find reliable and experimentally verified binding site data. There
are challenges regarding how to select and process binding site data to serve
as answers in evaluations, how to present input data and parameters to eval-
uated methods, and how to objectively measure the prediction performance
of different methods. Understanding data set properties and how they should
be used for performing large scale benchmarking thus becomes very impor-
tant. As the assessment of CRM discovery is even more challenging than for
single motif discovery, these questions become even more important there.

4.2.1 Assessment of single motif discovery

There has in recent years been clear progress on assessment of single motif
discovery methods. The seminal paper by Tompa et al. ([11]) presented a
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first really broad and neutral benchmarking effort in the TFBS prediction
field, assessing 13 different methods on a reasonably large collection of data
sets. Unfortunately, the study was not able to draw clear conclusions regard-
ing preferred methods or regarding preferred approaches at a more general
level. It has not acquired status as a standard benchmark for assessing newly
proposed methods. Only a few papers have since used the Tompa benchmark
for assessment (e.g. [91, 92, 93]).

Paper 4 of this thesis showed that binding sites in several of the data sets used
in the Tompa benchmark could not be represented by any of the common
motif models. Even when motif models were inferred directly from the known
binding sites, the motif models were not able to reliably delineate the same
binding sites during scanning of the target DNA sequence.

This might be interpreted as a limitation of the common motif models, or
more generally as a limitation of the pure sequence based approach to motif
discovery. This might, however, also be partly due to inaccuracies in the exact
definition of binding site intervals from experimental verification, and partly
due to undetected binding sites turning up as false positives instead of true
positives when predicted by computational methods. To distinguish between
limitations of the discovery methods on one hand, and the motif models on
the other hand, benchmarking data sets were processed and filtered in Paper
4. Two different benchmarks suites were proposed, one that allows good
discrimination of binding sites with common motif models, and one that
does not allow good discrimination. Both of these suites also have binding
sites of fixed length for a given TF, which corresponds to a restriction that
is made by the large majority of motif discovery methods.

Although such processed and filtered data sets might provide for more ac-
curate comparisons between methods, the processing might make them less
suited for estimating a realistic performance level in practical use. Still, as
they are in a form that more closely reflects what can be achieved by the
computational approach, we think they might more easily be accepted by
developers of new methods. In order for a benchmark suite to become a real
de facto standard in the field, a stronger consensus on details of TF binding
and function in vivo will probably have to reached.

4.2.2 Assessment of composite motif discovery

Assessment of composite motif discovery is even more challenging than for
single motif discovery. The difficulties due to incomplete and inaccurate
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binding site annotations carry directly over to CRM discovery. There is
an even larger variety of approaches and even less consensus on the nature
of CRMs compared to single TFBS. Composite motif discovery methods
pose very different requirements and assumptions, making it difficult to do
unbiased comparisons of prediction accuracy. While single motif discovery
is based mainly on overrepresentation across sequences, CRM discovery is
also based on clustering of binding sites within limited stretches of sequence.
Some methods are even based solely on this clustering property. There is,
however, currently not a clear consensus on how large and densely populated
CRMs in general are.

Due to the difficulty of quantitative assessment, most proposed composite
motif discovery methods have resorted to qualitative assessment on small
sets of selected CRMs. This does make it very difficult to compare the
performance of different methods, and with the numerous proposed methods
it becomes difficult to navigate in the field. Paper 5 in this thesis is the
first broad and neutral benchmarking effort for composite motif discovery
methods. The paper compares eight methods on a relatively large and diverse
collection of sequences containing binding sites for interacting TFs. The main
focus is on supervised composite motif discovery, with a list of potential
regulators given as input. One motif discovery method is also included,
but its performance is close to random. Prediction accuracy is tested with
different levels of noise in the list of input motifs. Although the benchmark is
not able to identify a single preferred method, it still shows clear differences
in prediction accuracy between methods. It may also pave the the way for
future benchmarking efforts, which could add even more variation regarding
CRM size, single motif density and support across sequences. Also, future
assessments of CRM discovery would be able to make use of a continuously
increasing number of experimentally determined CRMs.

4.3 The extended motif discovery process (RC3)

In addition to improving prediction quality by algorithmic development and
improving evaluation of predictions by benchmark development, it is also
important to consider possibilities for improving the extended process of
DNA motif discovery. The first step of this process is to compile a set of
regulatory regions to serve as input data for motif discovery. It is essential
that binding sites for a common TF are highly enriched in the input data, if
the use of a motif discovery method in a next step is to be successful. In motif
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discovery, the main concern will generally be prediction accuracy. However,
in certain settings, the running time of a method may also be important.
Improvements in running time may allow larger data sets to be considered,
and may allow running motif discovery in a more interactive manner, where
input data and parameters are iteratively modified based on previous runs. A
final issue considered in this research context is the uncertainty of predictions
made by motif-based methods. Improved approaches for assigning confidence
to predictions is important to interpretation and further use of predictions.

4.3.1 Pre-processing of input data

A common use of motif discovery methods is to search for binding sites in
sets of regulatory regions arising from micro-array experiments. A set of
genes show similar expression patterns in the experiments, and the question
asked is whether some of these co-expressed genes are also co-regulated, i.e.
if the genes have binding sites for the same TFs in their regulatory regions.

In order for a binding site motif to stand out from noise, a TF should have
binding sites in most of the collected regulatory regions. This is, however,
not ensured by the gene expression clustering methods, which only consider
similarity of expression when forming groups of genes. Paper 6 describes an
iterative approach to gene clustering and motif discovery. The gene group-
ing given purely by similarity of expression is modified by similarity of motif
predictions in the regulatory regions of the genes. The gene grouping is iter-
atively updated until converging on a set of genes that show high similarity
of binding site predictions.

This iterated methodology allows expression similarity and sequence similar-
ity to be considered together, similar to what can be achieved by methods
based on regression from motif scores to expression [52, 51, 94, 95, 96], or
methods based on joint probabilistic modeling of sequence similarity and ex-
pression [97]. The iterative nature is both its strength and weakness: it is
not as expressive as a joint probabilistic model, but the simpler interaction
between expression data and sequence data allows more efficient computa-
tional inference and allows standard methods for gene expression clustering
and sequence motif discovery to be used.
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4.3.2 Significance of motifs

After using a motif-based prediction method, a user is typically faced with a
large number of predictions that should be viewed as a mixture of correct and
spurious predictions. Such predictions can arise at several levels: predictions
of exact binding site locations for a given motif, predictions of which genes
are regulated by a given motif (TF), or predictions of which motifs (TFs) are
regulators for a group of genes.

Several motif-based methods compute p-values for predictions. These p-
values should, however, be interpreted with caution. One issue is that they
are computed based on simplified randomness assumptions that do not ac-
curately reflect properties of real DNA. As a large number of predictions are
typically made simultaneously, another issue is multiple testing.

In Paper 7 we develop an approach based on false discovery rates to support
decisions when scanning a large number of library motifs against sets of reg-
ulatory regions. The task is to determine which motifs (TFs) are functional
regulators for a given gene group (set of regulatory regions). Two differ-
ent approaches to computing p-values were used. Based on the collection
of observed p-values, a false discovery rate is estimated for different p-value
thresholds. In principle this allows a researcher to control the expected pro-
portion of false positive predictions among the TFs (motifs) accepted as
regulators after a threshold is applied on p-values. This will not correct inac-
curacies in the original p-value calculation, however, so the simplified DNA
assumptions might still give overly optimistic results. Still, the ability to
control the number of accepted findings based on FDR rate instead of raw
p-values, is an important step forward.

4.3.3 Acceleration of motif scanning

Although prediction accuracy is usually the main concern in motif discovery,
running time may also be of importance. Substantial reductions in running
time can significantly increase the usability and effectiveness of motif discov-
ery, especially in explorative settings when several conditions are tried. Also,
faster methods can increase the maximum size of data sets that are practi-
cal to pursue in a motif discovery setting, allowing discovery in regulatory
regions of much larger sets of genes. In Paper 8, a framework is developed
for acceleration of motif scanning and motif discovery on parallel hardware.
The potential of the approach is shown by an implementation that runs a
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widely used motif discovery method on special purpose search hardware. The
speed-up of this implementation is close to a factor of one hundred compared
to the standard software version, showing that substantial improvement of
running time is possible through the use of special purpose hardware. Other
hardware alternatives for use in the proposed PAMM framework are graphi-
cal processors (GPUs) in standard PC graphics cards, or field-programmable
gate arrays (FPGAs). We have ourselves pursued the line of FPGA acceler-
ation, although we do not yet have a fully working implementation. We are
also aware of other groups pursuing GPU acceleration, but do not yet know
whether this has been successful.
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Chapter 5

Concluding remarks

The papers included in this thesis can all be said to have contributed towards
understanding the potential for further improvement of DNA motif discovery.

First, the work done on analyzing data sets and assessing current methods
contributes towards understanding the current status of the field, as well as
some fundamental limitations of the motif discovery approach. Second, the
work done on developing new methods shows that significant quantitative
improvement can be achieved for certain motif discovery problems. Finally,
the work done on improving the usability of motif discovery shows poten-
tial improvements in the directions of data pre-processing, interpretation of
results, and running time.

Although none of the research questions proposed in the introduction have
been answered once and for all by the work presented in this thesis, significant
contributions have been made in relation to all of them.

Regarding limitations of sequence-based motif discovery (RQ1), Paper 4
showed that binding sites could only to a limited degree be discriminated
from surrounding sequence based on sequence motifs, using data sets taken
from the recent benchmark study by Tompa et al [11].

Regarding prediction accuracy in different motif discovery settings (RQ2),
Paper 5 showed clearly superior prediction accuracy with library PWMs
supplied as input, compared to the de novo setting, for the discovery of
composite regulatory elements from the Transfac database. Additionally,
Paper 3 showed clearly higher performance of the method Compo when sets
of co-regulated sequences were considered together.

Regarding background models for motif discovery (RQ3), Paper 3 showed

39
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that Compo performed clearly better using a partly empirical background
(mix of real DNA and random assumptions), compared to a pure random
background. The use of randomly selected upstream regions and highly con-
served non-coding regions in the empirical background gave similar perfor-
mance.

Regarding probabilistic versus discrete composite motif models (RQ4), the
expressive models presented in this thesis show advantages of both approaches.
The probabilistic method BayCis, presented in Paper 2, allows expressive-
ness by inferring continuous parameters, allows weak prior knowledge to be
specified as soft priors, and allows rich interpretation of results by poste-
rior probabilities. The discrete method Compo, presented in Paper 3, allows
expressiveness through a flexible discrete model, robustness by exhaustively
finding the highest-scoring motifs, accurate DNA modeling by supporting a
partly empirical background, inference of CRM structure by considering sets
of co-regulated sequences, and rich interpretation of results either by uniform
ranking criteria or a multi-objective view of motif discovery.

Many directions of further research can be envisioned from the work pre-
sented in this thesis. The assessment studies raised some novel and impor-
tant questions that are still far from resolved, and thus opens some inter-
esting directions of further research. The analysis of benchmark sets could
be strengthened by considering larger collections of data sets, and could be
complemented by studying accuracy levels in different scenarios: when motifs
are used to detect the same TFBS they were compiled from, when motifs are
compiled from some TFBS and applied on independent binding sites for the
same TFs, and when motifs are discovered de novo from target sequences.
Composite motif discovery methods could be systematically assessed on ad-
ditional data sets, with controlled variation along several additional dimen-
sions, e.g. variation of binding sites density in regulatory regions, variation
of CRM complexity, and variation in availability of additional information
beyond pure DNA sequence.

Further improvement of motif discovery methods is clearly also important,
and the benchmarks suggest that there is still much room for future im-
provement of prediction accuracy. Future methods could borrow ideas from
both of the methods presented in this thesis, and combine them with other
novel elements into new methods that provide more accurate predictions, in a
larger variety of settings. Acceleration of motif matching may play a role for
improved usability of motif discovery. Future solutions for motif acceleration
on commonly available hardware could allow highly interactive motif scan-
ning and motif discovery, or motif discovery on much larger data sets. The
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false discovery rate approach could be extended from motif scanning to also
include motif discovery, although the large degree of correlations between
motif candidates would bring methodological challenges. Finally, the idea of
iterative data set collection as input to motif discovery could be extended to
include iterations between more types of information relevant for enrichment
of motif discovery data sets.
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Abstract
Background: There has been a growing interest in computational discovery of regulatory
elements, and a multitude of motif discovery methods have been proposed. Computational motif
discovery has been used with some success in simple organisms like yeast. However, as we move
to higher organisms with more complex genomes, more sensitive methods are needed. Several
recent methods try to integrate additional sources of information, including microarray
experiments (gene expression and ChlP-chip). There is also a growing awareness that regulatory
elements work in combination, and that this combinatorial behavior must be modeled for
successful motif discovery. However, the multitude of methods and approaches makes it difficult
to get a good understanding of the current status of the field.

Results: This paper presents a survey of methods for motif discovery in DNA, based on a
structured and well defined framework that integrates all relevant elements. Existing methods are
discussed according to this framework.

Conclusion: The survey shows that although no single method takes all relevant elements into
consideration, a very large number of different models treating the various elements separately
have been tried. Very often the choices that have been made are not explicitly stated, making it
difficult to compare different implementations. Also, the tests that have been used are often not
comparable. Therefore, a stringent framework and improved test methods are needed to evaluate
the different approaches in order to conclude which ones are most promising.
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Introduction
Understanding the regulatory networks of higher organ-
isms is one of the main challenges of functional genomics.
Gene expression is regulated by transcription factors (TF)
binding to specific transcription factor binding sites
(TFBS) in regulatory regions associated with genes or gene
clusters. Identification of regulatory regions and binding
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sites is a prerequisite for understanding gene regulation,
and as experimental identification and verification of
such elements is challenging, much effort has been put
into the development of computational approaches.
Good computational methods can potentially provide
high-quality prediction of binding sites and reduce the
time needed for experimental verification. However, the
computational approach has turned out to be at least as
challenging as the experimental one, and a very large
number of different methods have been developed.

Computational discovery of regulatory elements is mainly
possible because they occur several times in the same
genome, and because they may be evolutionary con-
served. This means that novel regulatory elements may be
discovered by searching for overrepresented motifs across
regulatory regions. However, this apparently simple
approach is complicated by the fact that most binding site
motifs are short, and they may also show some sequence
variation without loss of function. Therefore most motifs
are also found as random hits throughout the genome,
and it is a challenging problem to distinguish between
these false positive hits and true binding sites.

One of the early origins of DNA motif discovery is the
computer program written in 1977 by Korn et al. [1] that
was able to discover sequence similarities in regions
immediately upstream of TSS. Both mismatches and flex-
ible gaps were accounted for, but using only pairwise
comparisons. This approach was further developed by
Queen et al. [2], comparing multiple sequences simulta-
neously. In this work, the exact requirements of a motif
was also defined clearly, with quorum constraints on
sequence support, max number of mismatches in occur-
rences, and max distances between occurrence positions
in the different sequences. In the same year, Stormo et al.
[3] introduced a Perceptron algorithm that calculated the
sum of independent weighted match scores for each posi-
tion of a motif aligned with a sequence. Similar to this,
Staden [4] introduced a position weight matrix with
weights corresponding to log-frequencies of nucleotides
in aligned motif occurrences. A very nice historical
account of the early development of motif models is given
in [5].

The most common approach to de novo computational
discovery of regulatory elements is to extract a set of
sequences from the genome, typically fixed size upstream
regions for a set of genes having e.g. similar functional
annotation or gene expression. An algorithm is then used
to discover the most overrepresented motifs according to
some motif model and statistical measure.

Several extensions to this basic approach may be used to
increase its sensitivity, by including additional prior

knowledge about gene regulation. Regulatory elements
are not randomly distributed, but tend to form clusters of
regulatory modules. The context of putative regulatory
elements may also be important, such as other nearby ele-
ments, the presence of CpG-islands, or the position in the
overall DNA structure. Individual genes in a gene set may
show different levels of co-regulation e.g. in a microarray
experiment, and this may be used as a weight function to
increase the influence from potentially important genes.
Finally, additional sources of information, such as regula-
tory regions of orthologous genes, will often be available.

More than a hundred methods have been proposed for
motif discovery in recent years, representing a large varia-
tion with respect to both algorithmic approaches as well
as the underlying models of regulatory regions. There is
also large variation regarding how methods are described
and tested, making it even harder to get a good overview
of the field. Many reviews of motif discovery methods
have therefore been written, with varying focus and
intended audience. The recent review by Pavesi et al. [6] is
a very accessible and broad introduction to the field. It
divides methods into consensus- and alignment-based,
and surveys the most established methods one at a time.
It also discusses background modeling, evaluation of
motifs and the practicalities of using these methods. The
review by Wasserman and Krivan [7] has a stronger focus
on the underlying biology of motif discovery in regulatory
regions. It also goes a bit more into the combinatorial
nature of binding sites, and touches upon issues such as
phylogenetic footprinting, CpG-islands and chromatin
structure. Finally, some reviews focus on specific tech-
niques such as phylogenetic footprinting [8], or on spe-
cific genomes [9].

Here we present a structured framework for describing
motif discovery methods, where we focus on the mode-
ling of regulatory regions, in particular in eukaryote
genomes, and with a finer level of detail compared to pre-
vious surveys. The emphasis is on how the multiple bind-
ing sites for modules of combinatorially acting regulatory
elements can be modeled, and how additional data
sources may be integrated into such models.

Our framework allows for a systematic and quite exhaus-
tive survey of recent methods. Here we survey methods
with respect to individual elements of our model, which
makes it easier to spot important differences and similar-
ities between methods. Furthermore, this approach
reveals important differences between methods on aspects
that in most papers are not discussed as deliberate
choices. Relevant examples are how matching scores of
several motifs in a module are combined, and how the
score of multiple binding sites for the same factor is calcu-
lated.
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As discussed e.g. by Tompa et al. [10] it is very difficult to
compare the performance of methods, in particular on
complex genomes like the human. Furthermore, methods
will also differ in aspects like average running time, need
for manual parameter-tuning, exhaustiveness of results,
general usability and so on. Individual methods may also
perform better on one type of genomes compared to oth-
ers, making it difficult to compare performance on a gen-
eral scale. We have therefore to a large extent deliberately
avoided comparing relative performance of individual
methods. We mainly indicate important elements of the
problem, and show the breadth of possible solutions that
have been tested, both when it comes to established ele-
ments of motif discovery, such as single motif models, as
well as less common approaches, such as the incorpora-
tion of DNA structure. However, there is a definite need
for more standardized routines for testing and comparing
alternative approaches to motif discovery, and the work
by Tompa et al. [10] is an important step in that direction.

Biological background
The system for transcriptional regulation of the eukaryotic
genome is complex. The regulatory processes are found at
several hierarchical levels, in particular at the sequence
level, the chromatin level and the nuclear level [11]. The
sequence level includes coding regions, regulatory bind-
ing sites and sequence elements affecting the 3-dimen-
sional fold of the chromatin fiber. It is mainly the binding
sites for transcription factors that will be discussed here.

In eukaryotic cells DNA is packed as chromatin, and this
affects transcriptional regulation. The basic unit consists
of 150 base pairs of DNA wrapped 1.7 times around a pro-
tein octamer, consisting of histones. This unit is called the
nucleosome, and it can exist in different structural and
functional states. Transitions between states are linked to
gene activity. These transitions are influenced by post-
translational modifications of histones, and this is often
described as the histone code. Also gene silencing by DNA
methylation is an important chromatin modification.

In addition to the linear (sequence) and pseudo-linear
(chromatin) organization of DNA, it is also organized in
a highly folded state. This brings together genome regions
that are far apart, which may affect the co-regulation of
these regions. However, we lack efficient tools for study-
ing global chromatin folding.

In particular the transcriptional regulation at the sequence
level has been extensively studied, and several reviews are
available, e.g. by Werner [12], Wray et al. [13] and Peder-
sen et al. [14]. The key regulatory region is the promoter
region, located upstream of the coding sequence. It is
often separated into the basal (or core) promoter, where
the transcriptional machinery is assembled, and the gen-

eral promoter, where most of the transcription factors
bind. The promoter basically integrates information
about the status of the cell, and adjusts the transcription
level according to this information. The transcription fac-
tors are proteins that bind to specific DNA motifs. These
motifs are short. The effective length may be just 4–6 base
pairs (bp) for a typical binding site, although the region
affected by the transcription factor (the footprint) is
longer, typically 10–20 bp. Each gene contains a large
number of binding sites, 10–50 binding-sites for 5–15 dif-
ferent transcription factors is not unusual. These transcrip-
tion factor binding sites are often organized in modules
consisting of several binding sites, where each module
produces a discrete aspect of the total transcription pro-
file. For many genes most of the binding sites are found
within a few kb upstream of the start site. However, the
variation is large, the size of the region where cis-regula-
tory elements are found can vary by nearly three orders of
magnitude from a few hundred bp to >100 kb. Regulatory
regions have also been found downstream, in introns and
even in exons of genes. The actual transcriptional regula-
tion is achieved through a complex, combinatorial set of
interactions between transcription factors at their binding
sites [15].

An integrated framework
As motif discovery methods can be very complex, with
many possible differences, several authors have proposed
frameworks for classifying motif discovery methods.
Brazma et al. [16] categorize motif discovery methods
with respect to whether they use explicit negative
sequence sets or not, expressiveness of the pattern models,
whether patterns are deterministic or statistical, and
whether the algorithms are pattern driven or sequence
driven. In a later paper Brazma et al. [17] define a three
step paradigm consisting of choosing a class of grammars
(motif model), designing a rating function (motif score),
and developing an algorithm. However, the major recent
advances in the field have been on modeling of regulatory
regions, rather than individual sites, and on integration of
additional data. The frameworks mentioned above are not
well suited to highlight developments in these directions.
We therefore use an extended, integrated framework for
the description of motif discovery methods, where both
the representation of the transcription factor based regula-
tory system itself, as well as additional sources of informa-
tion, can be represented.

The most basic level of our framework (Level 1) represents
the binding of transcription factors (TFs) to short contig-
uous sequence segments. These sequence segments are
modeled by single motif models that give a distinct score
for each sequence segment in a regulatory region. This
score is based on the match between the sequence seg-
ment and a motif consensus model, and on the prior
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belief that any regulatory element may occur at the given
location.

The next level of our framework (Level 2) represents mod-
ules: clusters of TFs that bind to DNA in proximity to each
other, but with a certain flexibility regarding distance
between binding sites. This is modeled by a composite
motif model, consisting of a set of single motifs. Given a
set of positions, one for each single motif, the score of a
composite motif can be calculated from the score of single
motifs at given positions as well as inter-motif distances.

The third level of the framework (Level 3) represents how
several modules may act together, possibly in a combina-
torial manner, to determine the regulation of a single
gene. This is modeled by a gene score function that com-
bines composite motif scores across the regulatory
reglon(s).

The final level of our framework (Level 4) represents sev-
eral sets of modules acting on sets of genes, e.g. at the
genome level. Scores at this level are mostly used for eval-
uation and ranking of de novo discovered motifs. The eval-
uation is based either on overrepresentation of motifs, or
on correspondence between motif scores and experimen-
tal data.

A schematic view of our framework, reflecting the differ-
ent levels of regulatory processes, is given in Figure

1. The different elements of this figure will be described in
more detail in the following sections.

We will now use this framework to categorize a large
number of existing methods for motif discovery. Table 1
gives an overview of how various elements of our frame-
work are approached by selected methods, including both
novel and more established approaches. A larger table,
which includes most current methods, is available as sup-
plementary material [18].

Single motif models (Level 1)
Transcription factors bind to specific short segments of
DNA, transcription factor binding sites. This is the most
basic element of the regulatory system, and can be mod-
eled using single motif models. A single motif model is
defined as a function mg : !→" that maps a sequence position
p as a non-negative integer to a real numbered motif score
mg(p). It consists of a match score m*(p) and an occurrence
prior og(p).

The function mg(p) returns a value indicating whether an
occurrence of the motif is found at position p. This func-
tion is typically the product or sum of two conceptually
different functions. The match model, m*(p) gives the
degree of match between the substring beginning at posi-
tion p and an underlying consensus model. The occur-
rence prior, og(p), gives the prior belief that position p
represents a regulatory element for gene g.

A schematic view of the integrated frameworkFigure 1
A schematic view of the integrated framework. A single motif, denoted by mg, consists of two parts, mg is how well the 
sequence matches a consensus, while og is a prior on whether any regulatory element is to occur at that position. A set of sin-
gle motifs, together with inter-motif distance restrictions (d), then forms a composite motif (cg). Finally, multiple occurrences 
of a composite motif in the regulatory regions of a gene is represented by a gene score Gc.
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Match models
In the most general sense, the match model m*(p) is a
function that gives a distinct score for any given substring.
However, the number of free parameters has to be
restricted to allow training of the model from a limited
number of examples (e.g. known regulatory elements).
Numerous match models have been proposed, and they
are often divided into two groups, deterministic models
with binary scores and probabilistic models with
weighted scores.

Probabilistic match models
The most widely used probabilistic model is without
doubt the position weight matrix (PWM), also known as
position specific scoring matrix (PSSM), that assumes
independence between positions [3]. The score of an
aligned substring is the log-likelihood of the substring
under a product multinomial distribution. PWM scores

can also be described in a physical framework as the sum
of binding energies for all nucleotides aligned with the
PWM [19].

Many different extensions to the basic PWMs have been
proposed in the literature. Most of these extensions con-
cern positional dependencies within a motif. There is an
ongoing discussion on the importance of such positional
dependencies, see for instance [20-22].

The most direct way of incorporating dependencies within
motifs is to extend the PWM to include pairs of correlated
positions [21,23]. Another straightforward approach is to
use a mixture model in which the motif occurs as one of a
limited number of stochastic prototypes [24]. Each sto-
chastic prototype may be a traditional PWM, or any other
model discussed in this section. A third extension is to
model probabilistic motifs as n'th order Markov chains

Table 1: Overview of methods. The match model is the consensus representation of a single motif, motif combination is how the 
component scores of a composite motif are combined, and distance score is how the conservation of inter-motif distances within a 
composite motif is modeled.

ALGORITHM NAME MATCH MODEL MOTIF COMBINATION DISTANCE SCORE

Weeder [42] mismatch - -
Dyad analysis [35] oligos dyad1 constraint
MCAST [71] PWM sum gap penalty
REDUCE [67] PWM dyad constraint2

MDScan [87] PWM - -
Gibbs sampler [97] PWM intersection3 uniform
MEME [98] PWM - -
LOGOS [73] DM HMM distribution
Motif regressor [89] PWM - -
ModuleSearcher [70] PWM sum window4

Stubb [48] PWM HMM window
GANN [60] flexible ANN5 window
ANN-Spec [86] PWM - -
(Wasserman) [58] PWM Logistic regr. window
CoBind [68] PWM sum window
Cister [72] PWM HMM distribution
SeSiMCMC [122] PWM - -
SMILE [40, 123] mismatch intersection constraint
BioProspector [49] PWM sum constraint
(Segal) [94] PWM - -
(Sinha) [33] reg.exp dyad constraint
ConsecID [56] PWM intersection window
SCORE [69] IUPAC intersection window
Gibbs recursive [52] PWM mixture model distribution
(Hong) [95] PWM - -
AlignACE [124] PWM - -
Improbizer [117] PWM - -
CisModule [119] PWM mixture model mixture model
(Thompson) [66] PWM Markov model constraint

1Two single motifs that both have to occur
2Separate constraints on each inter-motif distance
3Several single motifs that all have to occur
4All single motifs have to occur within a sequence window of restricted length
5Artificial neural network
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[25]. However, it is hard to find a good compromise
between a high n that may give too many free parameters
and a low n that may miss out the dependencies of inter-
est. If the relative importance of dependencies varies
within a motif, a variable-length Markov model (VLMM)
[26] may be preferable. Furthermore, if some long-range
dependencies seem to be significantly stronger than
dependencies between neighboring positions, the order
of the positions in the Markov chain may also be per-
muted before a VLMM is applied [27].

Another way to model dependencies is to use Bayesian
networks. Barash et al. [24] discuss different Bayesian net-
work models and conclude that the use of a Bayesian tree
model, or possibly a mixture of trees, is a good compro-
mise between the number of free parameters, the ability to
model dependencies, and computational tractability.
Similarly, Ben-Gal et al. [28] argue for variable order Baye-
sian nets.

Instead of focusing on dependencies between specific
nucleotides at different positions, Xing et al. [29] model
the distribution of conserved positions within a motif. In
this model there is an underlying Markov chain of posi-
tion prototypes. Each prototype defines a certain Dirichlet
distribution on the parameters of the multinomial nucle-
otide distribution at that position. The underlying Markov
chain favors transitions between position prototypes with
similar degrees of conservation. This makes it possible to
favor models where highly conserved positions are par-
tially contiguous rather than evenly spread out in the
motif. The work of Kechris et al. [30] achieves similar
properties by assigning conservation types (strong, mod-
erate or low) to blocks of motif positions.

Deterministic match models
A deterministic match model evaluates to a binary value
indicating either hit or no-hit. The three main kinds of
deterministic match models are oligos, regular expres-
sions and mismatch expressions.

The simplest deterministic model is the oligo model. This
is a function that is 1 for a single specific substring, and 0
for all other substrings. The oligo model was commonly
used in early motif discovery methods, but has also been
used in recent word-counting methods [31-33] and dic-
tionary models [34].

A regular expression model m*(p) returns 1 if the given
substring is matched by an underlying regular expression.
As reviewed by Brazma et al. [16], the models used in
motif discovery are typically composed of exact symbols,
ambiguous symbols, fixed gaps and/or flexible gaps. Reg-
ular expression models are used in e.g. [33,35-38].

Many methods use mismatch expressions as motif match
models, e.g. [39-44]. These models evaluate to 1 if the
number of mismatches (Hamming distance) between a
substring and the underlying consensus substring is below
a given threshold. A variant is described in [45], where the
threshold is on the sum of mismatches between all motif
occurrences and the underlying motif substring. A similar
variant, with a threshold on mismatches between occur-
rences in sequences arranged in a phylogenetic tree, is
described in [46].

The probabilistic models are much more expressive than
the deterministic models. In fact, all oligos, regular expres-
sions and mismatch expressions can be represented as
PWMs. However, a major benefit of the deterministic
models is that they often allow exhaustive discovery of
optimal motifs.

Occurrence priors
The genetic context of a regulatory element is important
for its activity. Distance to transcription start site,
sequence conservation in orthologous genes, DNA struc-
ture and presence of CpG-islands may be relevant factors.
In our model, these context features are represented by an
occurrence prior, og(p), representing the prior belief that
an (unspecified) regulatory element is located at a given
position p.

The simplest kind of occurrence prior is a motif abun-
dance ratio [47]. This ratio influences only the number of
substrings that count as occurrences. Another simple prior
is strand bias, which corresponds to an occurrence prior
that is higher on one strand than on the other [48]. Several
methods including Bioprospector [49] and TFBScluster
[50] optionally constrain the search to only one of the
strands, which corresponds to a binary strand bias.

Spatial distribution of binding sites
In higher organisms, regulatory elements may be located
far upstream of the gene, downstream of the gene, in
introns, and even in exons. Nevertheless, most known ele-
ments are located immediately upstream of the transcrip-
tion start site (TSS). In general, this can be represented by
a function giving the prior belief that a regulatory element
is located at a given position relative to the TSS. An occur-
rence prior based on the empirical distribution of element
locations in E. coli has been used in [51] and [52]. Never-
theless, the by far most common approach is to only
search for motifs in a fixed region upstream of TSS, which
corresponds to a binary function for og(p).

Conservation in orthologous sequences
The term phylogenetic footprinting is commonly used to
describe phylogenetic comparisons that reveal conserved
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elements in regulatory regions of homologous (in partic-
ular orthologous) genes [53].

The reasoning behind phylogenetic footprinting is that
since regulatory elements are functionally important and
are under evolutionary selection, they should evolve
much more slowly than other non-coding sequences.
Moreover, genome-wide sequence comparisons and stud-
ies of individual genes have confirmed that regulatory ele-
ments are indeed conserved between related species [54].
More specifically, Krivan and Wasserman [55] reported
that highly conserved regions were around 320 times
more likely to contain regulatory elements than non-con-
served regions, based on findings from a set of liver-spe-
cific genes.

Several methods exploit information about conservation
in orthologous gene regulatory regions by searching for
motifs only in highly conserved sequence parts (typically
human-mouse orthologs) [44,48,56,57]. This approach
corresponds to using a binary occurrence prior that is 1 if
the conservation score is above a given threshold and 0
otherwise. Wasserman and Fickett [58] use non-binary
conservation scores, but they do not incorporate these
into the search as priors. Instead, they use conservation to
filter the discovered motifs. Similarly, Xie et al. [38] calcu-
lates the proportion of motif occurrences that are con-
served in related species, and uses this in the evaluation of
motif significance. Finally, Wang and Stormo [59] con-
structs phylogenetic profiles, representing the frequency
of nucleotides in each position based on multiple align-
ment of promoters in related species.

DNA structure
The three-dimensional structure of DNA, densely packed
as chromatin, inhibits transcriptional initiation in vivo
[14]. The bendability of a region, as well as its position in
DNA loops, may indicate whether it contains regulatory
elements or not. Only a few motif discovery methods take
DNA structure into consideration. Beiko and Charlebois
[60] average structure scores of all k-mers in a window
around a given position, independently of any particular
motif. Conversely, Pudimat et al. [61] incorporate helical
parameter features [62,63] in a Bayesian net that is specific
for each motif.

Nudeotide distribution
Both high GC content and presence of CpG-islands may
indicate that a region contains regulatory elements. The
method of Pudimat et al. [61] is one of a few methods that
take GC content and CpG-islands into consideration
when calculating motif scores.

Composite motif models (Level 2)
Clusters of binding sites for cooperating TFs, often called
modules, are believed to be essential building blocks of
the regulatory machinery. Werner [12] states that "Within
a promoter module, both sequential order and distance
can be crucial for function, indicating that these modules
may be the critical determinants of a promoter rather than
individual binding sites". The multitude of models devel-
oped for the discovery of modules is another indication of
the conceived importance of this. It is therefore natural to
define a computational motif model that represents a
combination of single motifs.

A composite motif model is defined as a function cg: 2N→" that

maps a set of single motif sequence positions  as non-negative

integers to a real numbered composite motif score cg( ). It con-

sists of single motifs g.

The function cg( ) consists of a set of (generally different)

single motifs g, with each single motif contributing with

a separate score at its position. In addition, functions may
be defined on the distances between single motifs. Given
a set of positions, the score of a composite motif will typ-
ically be the sum or product of individual single motif and
distance scores.

Distance functions
Many different models have been proposed to capture the
importance of inter-motif distances within a module. Sev-
eral methods put constraints on the distances between
consecutive motifs, requiring either fixed distances
[33,49], distances below thresholds [64-66], or distances
within intervals (e.g. [33,35,43,49,67]).

Another common way of capturing the importance of
proximity is to constrain all single motifs to be within a
window of a certain length (e.g. [48,58,68-70]). This cor-
responds to a threshold on the maximum distance
between any two single motifs. A more general approach
is to define non-binary score functions on the distances
between single motifs. This can simply be functions that
increase linearly with distance as in [71]. Similarly, a geo-
metric distribution on inter-motif distances follows
implicitly from many HMM models [72,73], and is
assumed explicitly in Gupta and Liu [74].

The conservation of inter-motif distances across modules
can also serve as a basis for distance score functions. Wag-
ner [75] calculates a distance score from the p-value of
observing the given degree of distance conservation in a
background model of Poisson-distributed inter-motif dis-
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tances. Similarly, Frech and Werner [76] calculate scores
by comparing the distances with a histogram of distances
between the same regulatory elements in other modules.

We have implicitly assumed in this discussion that dis-
tance is the number of base pairs between two positions
in the genome. It is in principle possible to measure dis-
tance in other ways. An example is to require all motifs in
a module to be on the same strand [36], which corre-
sponds to a simple binary distance function. More impor-
tantly, as our understanding of DNA folding increases,
new and more complex distance measures may appear.

Combining single motifs
There are many ways in which a set of single motif and
distance scores can be combined into a single measure.

For methods using deterministic match models and con-
straints on distances, all component scores are binary.
Furthermore, many probabilistic methods use thresholds
on single motif scores to obtain only binary values. The
composite motif score is then typically the intersection of
component scores (e.g. [56,75,77,78]). A variation of this
is to require that M out of N single motif scores are 1 [79].
Similarly, the count of binary single motif values can be
used directly as a composite motif score [33,80,81].

For methods that use non-binary single motif scores, a
common approach is to calculate the sum of single motif
and distance scores [71,76]. Some methods require that
all distance functions are 1, and if they are, composite
motif score is the sum of single motif scores
[68,70,82,83].Similarly, the method Modulescanner
sums only single motif scores above a threshold, and
MotifLocator sums the N highest single motif scores [70].
Another variation is to multiply the sum of single motif
scores with a motif density factor, calculated from the
length of the window that contains all the single motifs
[64]. Finally, a few methods take the composite motif
score to be the highest single motif score [42], or the low-
est single motif score [84].

Many specialized models have also been used to combine
single motif and distance scores, e.g. the hidden Markov
model (HMM) [73], history-conscious HMM (hcHMM)
[48], self-organizing map (SOM) [85], and artificial neu-
ral network (ANN) [60]. In all of these models, the score
of several homotypic and/or heterotypic single motifs are
combined in a relatively complex way.

Gene level models (Level 3)
In addition to the motif scores, which are defined for spe-
cific positions, we may also be interested in the presence
of motifs across the regulatory regions of a gene. The pos-
sibility of multiple binding sites for TFs is often not dis-

cussed explicitly in articles presenting motif discovery
methods. Scores at this level may, however, be relevant
both when predicting which genes are regulated by a TF or
module, and when evaluating the significance of a de novo
discovered motif.

A gene score model is defined as a function Gc: !→" that maps

a gene index g as a non-negative integer to a real numbered

gene score Gc(g). It consists of composite motif models cg( ).

The gene level score is calculated from composite motif

scores, cg( ), across the regulatory region of gene g, and is

referred to as gene score. For methods that only discover
binding sites for single TFs, the composite motif score is
simply the single motif score.

Multiple binding sites
The gene level score is often defined simply as the maxi-
mum motif score in the regulatory region(s) of a gene
[46,70,81,86,87]. This corresponds to an implicit
assumption of exactly one relevant occurrence of a motif
in the regulatory reglon(s).

It is, however, reasonable to assume that the presence of
multiple binding sites for TFs plays an important biologi-
cal role that should not be neglected. Many methods
therefore calculate gene score from all motif scores across
the regulatory region(s) of a gene. As motif scores are typ-
ically log-scores, most methods add the exponentials of
motif scores (e.g. [67,68,88-90]). A slight variation is to
only sum motif scores above a certain threshold [71].

In addition to these approaches, many variations have
been used to calculate gene score. Caselle et al. [91] and
Cora et al. [57,92] calculate gene score as the p-value of the
observed set of motif scores. Curran et al. [93] calculate
gene scores based on logistic regression. Similarly Segal et
al. [94] use a logistic function, and Hong et al. [95] a
hyperbolic tangent, on the sum of motif scores. Finally,
Beiko et al. [60] use an artificial neural network to com-
bine motif scores.

The dictionary models of Bussemaker et al. [34] and
Gupta and Liu [96] represent a special case, as they always
span whole regulatory regions. In these methods the score
of all valid segmentations of the region into contiguous
words from the dictionary is added together to form the
gene score.

Multiple modules
In addition to multiple binding sites for the same module,
a set of different modules may also be introduced at the
gene level. A gene may be seen as having several regulatory
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regions, with tight distance constraints between binding
sites within a regulatory region (module), and larger and
more variable distances between different regulatory
regions. Xing et al. [73] define an HMM that can represent
different modules of binding sites with different implicit
geometric distributions within and between modules.
This model can also represent different intra-module
background distributions in addition to the global inter-
module background distribution. This corresponds to a
gene score that is calculated from the scores of several dif-
ferent composite motifs across the regulatory regions of a
gene.

Genome level models (Level 4)
Motif scores at the genome level are generally used for sig-
nificance evaluation of de novo motifs, although it may in
some situations also be relevant to look at the presence of
motifs (TFs or modules) in different genomes. Here we
focus on the first situation, evaluation of motif signifi-
cance at the genome level. In most cases the genome level
score is based on just the (assumed) regulatory regions for
a selected subset of the genes.

A genome score model is defined as a function sc,F : !→" that
maps a genome index i as a non-negative integer to a real num-
bered genome score sc,F(i). It consists of a gene score model
Gc(g) and a gene membership function µF(g).

Genome score (motif significance) is typically based on
either the genome level overrepresentation of the motif,
or on the correspondence between gene scores and exper-
imental data.

Motif overrepresentation
Computational motif discovery is possible primarily
because motifs representing regulatory motifs are overrep-
resented. Many methods use this overrepresentation
directly when evaluating the significance of a discovered
motif. The exact way of calculating motif significance var-
ies from method to method, but can roughly be divided
into five different approaches.

The most direct approach is to determine overrepresenta-
tion by comparing observed motif scores with expected
scores from a background model. More specifically, the p-
value [37,69] and z-score [33,39] of the observed sum of
gene scores has been used. The background is typically a
higher order Markov model, with parameters estimated
from the sequences used for motif discovery. Shuffled
control sequences may also be used as background [97].

A simpler approach is to compare only the raw sum of
gene scores when ranking motifs. This is equivalent to the
first approach under the assumption of equal expected
scores for all motifs in the background model.

A third approach is to use a significance measure related
to the information content (IC) of discovered PWMs [98].
For methods that use mixture models of log-ratio PWMs
and background, the PWM with highest IC corresponds to
a maximum likelihood solution of the mixture model.

A common approach in deterministic motif discovery is to
calculate two separate values when evaluating motifs, one
concerning the support, or coverage, of a motif, and a sec-
ond concerning the unexpectedness of a motif
[40,99,100].

The fifth approach is completely different, and focuses
only on overrepresentation of motif combinations. Motif
significance is based on the observed versus expected
scores of composite motifs, given the observed score distri-
bution of single motifs. The significance can for instance
be the p-value of the observed composite motif scores in a
background model where all single motif occurrences are
randomly reshuffled [56].

Correspondence with experimental data
In recent years, the development of microarray technology
has revolutionized studies of regulatory processes, in par-
ticular because it can be used to identify genes that are co-
regulated under specific conditions. Microarrays are used
to measure relative expression levels of genes in a set of
experiments. This may be e.g. time series experiments like
cell cycle studies or before/after experiments like stress
response studies and studies of malignant vs. normal tis-
sue. It is a reasonable hypothesis that genes showing syn-
chronized changes in expression levels share important
aspects of transcriptional regulation, e.g. transcription fac-
tor binding sites. Sets of genes showing co-regulation may
therefore be used for data mining for shared regulatory
motifs [101], although it has been shown that this type of
data mining is difficult and error prone [10]. A variant of
this approach is to cluster genes based on expression sim-
ilarity with specific transcription factors [102,103].

Recently, genome-wide binding analysis like ChIP/chip
experiments have appeared as an approach for more reli-
able identification of actual binding site regions
[104,105]. In a ChlP/chip experiment a known transcrip-
tion regulator is tagged with an antibody epitope, and the
tagged regulator is expressed in a suitable system where it
binds to DNA, either directly or via other proteins. The
complex is then chemically crosslinked, the DNA is frag-
mented, and the protein/DNA complex is isolated by
immunoprecipitation. The genomic position of the DNA
fragment is then identified by a microarray experiment.
This gives the location of binding sites for this specific reg-
ulator, although the relevance of the information may be
limited by the specific set of experimental conditions used
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and the resolution of the experiment itself (DNA fragment
size and genome resolution on the microarray chip).

Besides ChIP/chip and microarray experiments, gene
groups are often formed from conserved orthologous
genes [46,88,106,107], or genes with similarities in func-
tional annotation [32,57]. Finally, genes that make up
functional pathways, genes that are homologous to regu-
lons from a well-studied species, and groups of genes
derived from conserved operons have also been used
[108].

Many methods cluster genes based on experimental simi-
larities, assigning each gene to a single group of putatively
co-regulated genes. All genes are then treated equally dur-
ing motif discovery, regardless of the degree of similarity
between a gene and the rest of the group (e.g.
[66,93,95,108,109]). However, as a gene may be co-regu-
lated with several groups of genes, depending on condi-
tions, it may make sense to use fuzzy sets to represent
prior grouping of genes. In our model, every gene g has a
weighted membership µF(g) in each fuzzy set F. Segal et al.
[81] and Liu et al. [87] are among the few authors that
have used weighted values for set membership during
motif discovery.

The correspondence between gene level scores and exper-
imental data may be used as a measure of motif signifi-
cance. This can be calculated in several ways. One
approach is to evaluate the fit of a logistic regression from
gene scores Gc(g) to membership values µF(g) [58,93]. A
simplification of this approach is to compare binary gene
scores with binary membership values, and calculate the
mismatch ratio [95] or ROC50 score [71]. Alternatively,
grouping of genes can be avoided altogether, and motif
significance can be measured as the fit of a linear regres-
sion directly from gene scores to observed log-expression
in microarray experiments [67,89,94].

Park et al. [110] consider the problem in the opposite
direction. They first discover motifs in the regulatory
regions of all genes and form groups of genes that share
common motifs. Motif significance is then measured as
the similarity in gene expression within the group formed
from the common motif.

Finally, Holmes and Bruno [111] calculate the joint like-
lihood of both shared motifs and expression similarity for
hypothesized gene groups.

Although several methods may be configured to use dif-
ferent kinds of experimental data [32,57,108], only a few
methods try to combine different kinds of data in a single
similarity measure. Takusagawa and Gifford [37] use the
GRAM algorithm [112] to cluster genes based on both

ChIP-data and gene expression data. Further work incor-
porating more kinds of experimental data and using fuzzy
set membership could give more robust priors on co-reg-
ulation and increase the sensitivity of motif discovery.

Some algorithmic concerns
An important trade-off in motif discovery is between rep-
resentational expressibility and computational efficiency.
For the case of binary priors and restricted deterministic
motif models, several algorithms exist that can exhaus-
tively discover the optimal motifs [99,100,113].

However, probabilistic motif discovery algorithms do not
guarantee returning the global optimum when applied to
realistic problems. These algorithms are typically based
either on iterative refinement or stochastic optimization.
Expectation maximization (EM) [98,114-117] is the most
widely used iterative refinement method, but variational
EM [73] has also been used. The stochastic optimization
technique most widely used for motif discovery is Gibbs
sampling [49,52,97,118], sometimes combined with gen-
eral Metropolis-Hastings [47,96,119]. Recently, genetic
algorithms [82], evolutionary Monte Carlo [74] and sim-
ulated annealing [27,81,120] has also gained some popu-
larity.

Seed-driven algorithms have been used with success in
deterministic motif discovery. They start by evaluating
seeds from a very restricted class of simple motifs, and
then expand promising seeds to full motifs either heuris-
tically [121] or exhaustively [100]. A promising approach
to motif discovery is first to use efficient deterministic
motif discovery, and then use the highest scoring deter-
ministic motifs as seeds for probabilistic motif discovery
with expressive models. In addition, motifs may first be
discovered in the sequence parts with highest priors, and
then be used as seeds for motif discovery in the full set of
sequences. The method of Liu et al. [87] is a good example
of such a strategy. Several overrepresented mismatch
expressions are first discovered in upstream regions of the
genes with highest group membership (µF(g)). The high-
est scoring mismatch expressions are then used as seeds
for probabilistic motif discovery in the whole set of
sequences.

Comparison of methods
Given the very large number of different methods for
motif discovery, it is obviously crucial to have good test
methods in order to identify the most promising
approaches. However, this has turned out to be a chal-
lenging problem by itself.

It is difficult to identify optimal test sets for benchmark-
ing. When comparing the performance of methods the
output has to be compared against some biological truth.
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Even though biological sequences with experimentally
verified binding sites are available, they may contain addi-
tional (yet unidentified) binding sites that may show up
as false positives in motif discovery. Using implanted
motifs in synthetic background sequences may avoid this
problem, but creates new problems with respect to realis-
tic background sequences and motif distributions, in par-
ticular for composite motifs. It may also be difficult to get
enough data to get a good representation of the diversity
of regulatory regions.

It is also difficult to know whether a test result actually
reflects the assumed methodological difference between
alternative approaches. Many methods will require differ-
ent degrees of parameter tuning. This may introduce bias
in test results, and makes automatic testing difficult. Typ-
ical examples of tunable parameters may be motif length,
expected number of motif occurrences, and inter-motif
distances. Also, many methods make use of additional
data, in addition to the actual sequences, in order to
increase performance. For instance, several methods
include phylogenetic footprinting using related organ-
isms. Finally, different implementations may have been
optimized and fine tuned to different degree. This makes
it difficult to distinguish between the performance of
underlying algorithmic approaches and the effect of sev-
eral years of tweaking on a specific implementation. If
radically different and possibly better performing
approaches are to be identified, it is essential that novel
algorithmic approaches are tested against existing meth-
ods in comparable frameworks and implementations.

These challenges make it difficult to actively compare the
performance of alternative approaches and use this as a
basis for recommendations. The seminal benchmark of
single motif discovery methods by Tompa et al. [10]
mainly concludes that biologists are advised to use a few
complementary tools in combination rather than relying
on a single one, and to pursue the top few predicted
motifs of each rather than the single most significant
motif of any given method. Some of the most established
methods, such as MEME, AlignACE and ANN-Spec, per-
formed reasonably well, at least on simple data (e.g.
yeast). However, the best method overall on these datasets
was the more recent method Weeder. Only single motif
discovery was tested in this work. No other study of com-
parable breadth has tested composite motif discovery
methods, probably because it is even more challenging to
find suitable test sets and to evaluate alternative methods
for composite motifs.

However, on a more general basis we believe that some
recent developments on expressive models for combina-
tion of motifs are particularly interesting. The method
"motif regressor" represents a relatively simple, yet prom-

ising approach [89]. First it uses the MDScan algorithm
[87] to discover single motifs based on CHiP-chip data.
Motifs that are too similar to the background distribution
are filtered out, and the remaining motifs are used as fea-
tures in a multiple regression from gene level scores of
motifs to gene expression levels. In this way, only motifs
that serve (independent) explanatory roles on gene
expression are retained. Another interesting approach is
the LOGOS method [73] that uses a hidden Markov
model (HMM) to model the combinatorial nature of
binding sites. Furthermore, single motifs are modeled by
a HMDM model [29] that promotes binding sites with
certain spatial distributions on single nucleotide conser-
vation. All of this is combined using a coherent probabil-
istic model.

Conclusion
The field of motif discovery brings together researchers
from several disciplines, in particular from biology, statis-
tics and informatics. Additionally, research in the field is
fairly recent and moving at a fast pace. This has resulted in
a broad range of computational methods that are
described with different vocabulary and different focus,
making it difficult to spot similarities as well as differences
between methods. Most papers on novel computational
methods tend to focus on the authors' own data sets and
scientific problems. Hence, the authors often put less
emphasis on giving a clear description of the algorithm
itself, e.g. precisely what it requires as input, how it evalu-
ates motifs, and what it returns as output. This makes it
harder to compare methods based on their descriptions.

When trying to compare the accuracy and computational
efficiency of methods by measurement, there are addi-
tional problems. The choice of data set, choice of perform-
ance measures and tuning of program parameters all have
strong influence on the relative performance of methods
[10].

Establishing a standardized framework for testing would
be an important contribution to the field. Such a frame-
work should include a collection of diverse data sets and
several complementary measures of performance. Fur-
thermore, a consensus on what constitutes essential
aspects of motif discovery methods could ease the com-
parison of methods, making it easier to choose between or
integrate different approaches. This could also make it
easier for researchers to identify the choices that have to
be made when a new model or approach is being devel-
oped, as well potential previous models where these
choices already have been evaluated. The integrated
model described in this paper may be one step towards a
common vocabulary and framework for this problem.
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When surveying recent literature we have made several
interesting observations. One is the sheer breadth of
approaches used in the field when it comes to how motifs
are modeled and how experimental information is inte-
grated. A somewhat related observation is the great varia-
tion between motif models, even when it comes to aspects
that are typically not discussed explicitly in papers, e.g.
how the gene level score is calculated. In other words,
some papers implicitly treat the chosen model as obvious
and the only possible solution, whereas comparison to
similar methods shows that there indeed are several pos-
sible approaches that should have been evaluated.

A third observation is that even though there are many
aspects of a basic motif model that can be improved, each
article typically considers only one of them. If we add
together the possible enhancements to different parts of
the models for regulatory regions, and the different kinds
of additional data that have been incorporated, based on
all papers in the field, wee see a much more complex and
enhanced model. Although such a model may be too
complex for a full implementation, one should at least
make deliberate choices with respect to which elements
are included in a given approach. Hopefully the integra-
tion of techniques and experiences across existing
approaches will give rise to refined and advanced meth-
ods with higher sensitivity than what we have seen so far.

Reviewers' comments
Reviewer's report 1
Eugene V. Koonin, National Institutes of Health, Bethesda,
MD, USA

This is a detailed and useful survey of the computational
approaches used for discovery of sequence motifs in DNA,
with an emphasis on transcription-factor-binding sites.
The paper is well-structured and properly referenced. I
believe that many researchers will find it helpful.

Reviewer's report 2
Philipp Bucher, Swiss Institute of Bioinformatics and Swiss
Institute for Experimental Cancer Research, Switzerland (nom-
inated by Mikhail Gelfand, Institute of Information Transfer
Problems, Moscow, Russia)

This article clearly responds to a need. The literature on
motif discovery methods has grown vast, confronting the
reader with a bewildering variety of methods and con-
cepts. The authors rightly point out that the different
methods are not always appropriately described in the sci-
entific articles. Underlying assumptions are often not
explicitly stated, and methodological choices are not men-
tioned as they may appear self-explanatory to the develop-
ers.

This comprehensive review makes and attempt to consol-
idate the field by providing a framework for categorizing
the large number of existing motif discovery methods. The
various methods are classified according to four hierarchi-
cal levels of genome organization: Individual motifs,
composite elements, genes, and genomes. This framework
is useful from a biological perspective as it allows for joint
presentation and comparison of methods that address
similar questions. A potential drawback is that technical
issues may be arbitrarily spread over different parts of the
manuscript. For instance, it is debatable whether the sig-
nificance measure related to the information content of a
PWM, which is used by MEME, should be presented under
the heading " genome level models".

What is lacking in this review is a historical perspective.
The manuscript focuses on recent work disregarding
largely how current concepts have evolved over time. I
would propose to add some of the earlier landmark
papers to the bibliography, for instance:

Korn LJ, Queen CL, Wegman MN. (1977) Computer anal-
ysis of nucleic acid regulatory sequences. Proc Natl Acad
Sci USA. 10:4401–4405. This is perhaps the first paper
describing a computer algorithm that helps to find an
over-represented sequence motif.

Queen C, Wegman MN, Korn LJ. (1982) Improvements to
a program for DNA analysis: a procedure to find homolo-
gies among many sequences. Nucleic Acids Res. 10:449–
456. Perhaps the first paper implicitly using a mismatch
model for motif discovery. It also presents an efficient
algorithm to find optimal motifs of this type.

Staden R. (1984) Computer methods to locate signals in
nucleic acid sequences. Nucleic Acids Res. 12:505–19.
First paper proposing PWMs with weights proportional to
the logarithms of the observed base frequencies.

Brendel V, Trifonov EN. (1984) A computer algorithm for
testing potential prokaryotic terminators. Nucleic Acids
Res. 12:4411–4427. This work extends position inde-
pendent weight matrices to dinucleotide matrices, thereby
accounting for nearest-neighbor dependencies.

Galas DJ, Eggert M, Waterman MS. (1985) Rigorous pat-
tern-recognition methods for DNA sequence sequence
analysis of promoter sequences from Escherichia coli. J.
Mol. Biol. 186:117–128. An early paper presenting a
method that takes into account a motif's distance to the
transcription start site.

Berg OG, von Hippel PH (1987) Selection of DNA bind-
ing sites by regulatory proteins, statistical-mechanical the-
ory and application to operators and promoters. J. Mol.
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Biol. 193: 723–750. Provides a physical (thermodynamic)
interpretation of PWMs.

Author response: We have added a brief historical overview
to the introduction, including most of the references mentioned
here.

Regarding present-day genome-wide approaches, the fol-
lowing two papers may be worthwhile to mention: Xie X,
Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K,
Lander ES, Kellis M. (2005) Systematic discovery of regu-
latory motifs in human promoters and 3' UTRs by com-
parison of several mammals. Nature. 434:338–345.

Wang T, Stormo GD. (2005) Identifying the conserved
network of cis-regulatory sites of a eukaryotic genome.
Proc Natl Acad Sci USA. 102:17400–17405. Epub 2005
Nov 21.

Author response: These references have been added to the
article.

Reviewer's report 3
Frank Eisenhaber, Institute of Molecular Pathology, Vienna,
Austria

The question on how to determine the occurrence of reg-
ulatory elements in nucleic acid sequences is in the center
of biomolecular sequence analysis since many decades.
The literature has become large, it is not easy to oversee
and to evaluate. Thus, a review in this area is appropriate.

The present revised MS of Sandve and Drablos has an
acceptable style and language, the article is well structured
and easy to read.

The authors wish to present their quite formalized, inte-
grated framework (level 1 – small motif binding sites,
level 2 – clusters of sites in close proximity (= modules),
level 3 – combinations of modules in the regulatory
region of a gene, level 4 – sets of modules in regulatory
regions of sets of genes) for organizing the vast literature
and for delineating the elementary recognition tasks in
the prediction of regulatory elements.

From the very beginning (last paragraph in the introduc-
tion), the authors refrain from a comparison of various
methods with respect to their performance. Moreover,
there is no quantitative assessment in the manuscript that
allows to estimate what can be expected from the group of
methods described in this review in general. It is the pity
reality that prediction of regulatory regions is pretty unre-
liable with both false-positive and false-negative predic-
tion rivalling the number of true predictions.

The following manuscript text is merely a compilation of
the variations in mathematical formulations used in the
different methods in the literature. For assessing the rela-
tive merit of the various approaches, the authors do not
have appropriate criteria. Although a performance com-
parison is difficult and gold standard test sets are not read-
ily available, it would nevertheless give some hint on the
reliability of methods and their relative accuracy. The
comparative work of Bajic VB, Tan SL, Suzuki Y, Sugano S.
(Promoter prediction analysis on the whole human
genome. Nat Biotechnol. 2004 Nov;22(11):1467–73) is
focused on a very specifc type of a regulatory region but it
is at least a beginning of a large-scale performance evalu-
ation. If the authors do not wish to get involved in such a
comparative study, they should at least provide a review of
published data. To a certain extent, this has been provided
in an additional section in the revised version but the
wording appears very polite and a quantification of per-
formance is not provided. To emphasize the view of a
practitioner, this is what matters.

Author response: We acknowledge the concern about evalu-
ation of methods, which is why we have included an expanded
section in the revised version discussing comparison of motif
discovery methods. However, we do not feel that it is currently
possible to give clear recommendations on the issues considered
in our survey. We have elaborated more on the reasons for this
in our revised manuscript. As our focus is on the recent devel-
opment of methods taking combinatorial mechanisms and
additional data into consideration, the benchmark of Tompa et
al. (2005) could only give limited guidance. The recent article
of Bajic et al. is also very interesting, but it considers methods
for promoter prediction and in particular prediction of tran-
scription start sites (TSS). These methods are related to, but still
somewhat different from the methods considered in our survey
that predict locations of binding sites.

It would be another way to assess methods by their imple-
mentation of true biological mechanisms into their for-
mal approaches. I wonder that biological literature on
transcription regulation is not considered in this review. A
comprehensive survey is not indicated for this review. But
for the purpose of gussing future ways out of the difficul-
ties, one might analyze the experimental data available for
a few well-studied transcription complexes and genes reg-
ulated by them. Even if a method yet fails to perform in a
large-scale test, it might be a good start for further devel-
opment if its mathematical/analytical formulations cap-
tures major mechanistic aspects of the biological process
of recognizing regulatory sequences. Another mathemati-
cal reformulation of existing approaches will certainly not
change the status of the field.

Author response: We completely agree that it would be ben-
eficial to have access to a good state of the art overview over the
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biological aspects of transcription regulation, from the point of
view of motif discovery. However, we feel that such an overview
will be outside the scope of this review, and probably more
suited as a separate review paper.

The increasing availability of data from high-throuput
methodologies (e.g., microarray (ChIP) data) for certain
DNA-binding protein complexes will possibly change the
situation for developing prediction tools in the near
future.

In its present form, the review can be useful for people in
the field since some part of the vast literature is organized
in a reasonable way. At the same time, the review does not
give guidance to the reader, which lines of prediction tool
development are most promising and what conditions
must be fulfilled to move the field out of its apparent stag-
nation.

Author response: Our strong focus on methods using differ-
ent types of data in an integrated analysis, combined with a
critical attention to implementation details, should be read as a
guidance to the reader.
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Abstract
Background: An important step in annotation of sequenced genomes is the identification of
transcription factor binding sites. More than a hundred different computational methods have been
proposed, and it is difficult to make an informed choice. Therefore, robust assessment of motif
discovery methods becomes important, both for validation of existing tools and for identification
of promising directions for future research.

Results: We use a machine learning perspective to analyze collections of transcription factors with
known binding sites. Algorithms are presented for finding position weight matrices (PWMs),
IUPAC-type motifs and mismatch motifs with optimal discrimination of binding sites from remaining
sequence. We show that for many data sets in a recently proposed benchmark suite for motif
discovery, none of the common motif models can accurately discriminate the binding sites from
remaining sequence. This may obscure the distinction between the potential performance of the
motif discovery tool itself versus the intrinsic complexity of the problem we are trying to solve.
Synthetic data sets may avoid this problem, but we show on some previously proposed benchmarks
that there may be a strong bias towards a presupposed motif model. We also propose a new
approach to benchmark data set construction. This approach is based on collections of binding site
fragments that are ranked according to the optimal level of discrimination achieved with our
algorithms. This allows us to select subsets with specific properties. We present one benchmark
suite with data sets that allow good discrimination between positive and negative instances with
the common motif models. These data sets are suitable for evaluating algorithms for motif
discovery that rely on these models. We present another benchmark suite where PWM, IUPAC
and mismatch motif models are not able to discriminate reliably between positive and negative
instances. This suite could be used for evaluating more powerful motif models.

Conclusion: Our improved benchmark suites have been designed to differentiate between the
performance of motif discovery algorithms and the power of motif models. We provide a web
server where users can download our benchmark suites, submit predictions and visualize scores
on the benchmarks.
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Background
Computational discovery of motifs in biological
sequences is an important challenge. It has in recent years
attracted much research interest, resulting in more than a
hundred different tools for motif discovery [1]. A motif
discovery method has three important elements: a motif
model that can capture the similarities of a diverse set of
binding sites for the same transcription factor, an objec-
tive function defining the ranking of potential motifs and
a search strategy for parameterisation of the motif model.
The first two elements can be given an abstract representa-
tion, but should probably be designed to utilize and
enhance biologically relevant information. The most
commonly used motif models are position weight matri-
ces (PWMs) [2,3], mismatch strings (MMs) [4,5] (consen-
sus string allowing some mismatches) and IUPAC strings
(IUPACs) [6,7] (consensus string with degenerate sym-
bols).

Due to the large number of available tools, robust assess-
ment of motif discovery methods becomes important, not
only for validation of existing tools, but also for pointing
out the most promising directions for future research in
the field. A major difficulty is our limited knowledge
about the biological mechanisms of gene regulation at a
detailed level. Although collections of experimentally
determined transcription factor binding sites (TFBS) are
available, these collections do have inaccuracies and
biases. This has been shown e.g. by Fogel et al. in their
analysis of the TRANSFAC database [8], and by Bergman
et al. in their study of Drosophila gene regulation [9].

A recent article by Tompa et al. [10] used experimental col-
lections of TFBS to benchmark a large number of motif
discovery tools. This was an important and timely contri-
bution to the field, and it gave good guidance to biologists
regarding the level of performance that can be expected
with current tools. However, it gave less guidance to the
motif discovery field itself. That is, although the study
clearly showed a lack of correspondence between in silico
predictions and in vivo experiments, the authors were not
able to give much guidance with respect to how we can
identify the most promising motif discovery approaches.
Furthermore, due to the inherent complexities of the data
set, it was hard to distinguish between clever preprocess-
ing and method parameterization done by the expert user
on one hand, and the performance of the motif discovery
algorithms themselves on the other hand. We note that
one of the few clear differences that can be spotted from
the generally low performance values – the relatively high
score of Weeder – is in the paper partly attributed to judi-
cious choices regarding when to make predictions, while
nothing is concluded regarding any superiority of the
algorithm itself.

Synthetic data sets may avoid many of these problems. By
ensuring that high motif discovery performance is at least
theoretically possible, the performance differences
between tools may be clearer and more consistent, thus
giving more guidance to developers. On the other hand,
the coupling may be too loose between the synthetic data
sets and the biological reality, introducing an artificial
bias. This bias may favor specific classes of tools in a way
that lacks biological relevance.

The performance of any motif discovery algorithm can be
measured by how well it is able to identify true binding
sites in a data set. However, the optimal performance that
can be achieved will depend upon the complexity of the
data set itself. Here we use a machine learning perspective
to analyse collections of TFBS with known binding site
locations, in order to estimate an upper bound to the
motif discovery performance that can be expected for a
given data set. We formulate the problem as a binary clas-
sification problem where all sequence windows corre-
sponding to binding sites are termed positive samples,
and all other windows are negative samples. Algorithms
are given for finding MM, IUPAC and PWM models with
optimal discrimination between positive and negative
samples.

We use this approach to analyze the experimentally based
benchmark data sets used in the recent assessment of
motif discovery tools by Tompa et al. We also analyze
some synthetic benchmark data sets proposed by Pevzner
et al. [11] and compare the results to those for the experi-
mental collections. Finally we show how the same
approach can be used to construct benchmark data sets
that combine advantageous properties of both experimen-
tally based and synthetic benchmarks. Data sets are
ranked according to the best possible discrimination score
as computed by our discrimination approach, and this
ranking is used to select subsets with specific properties.
We present one benchmark suite with data sets that allow
good discrimination between positive and negative
instances. This suite, the algorithm benchmark, is useful
for evaluating algorithms for motif discovery that rely on
the common motif models, as we know that it should be
possible to achieve good discrimination with these mod-
els. We present another benchmark suite for evaluating
motif models, the model benchmark. The data sets in this
suite are selected so that none of the common motif mod-
els are able to discriminate between positive and negative
instances in a reliable way. This suite is useful for evaluat-
ing novel and more expressive motif models, as we know
that it is not possible to achieve good discrimination with
the standard models.
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Results and discussion
We have used the discrimination algorithms described in
Methods to analyze motif occurrences in both experimen-
tally based and synthetic benchmark data sets. We present
an alternative way of constructing benchmark data sets
that uses the discrimination algorithms as a key compo-
nent.

Discrimination algorithms
We view a collection of binding sites in a machine learn-
ing perspective, where the goal is to find motifs that
achieve optimal discrimination of binding sites (at known
positions) from remaining sequence. Binding sites are
assumed to be of equal length, which may require some
alignment and truncation of related sites. Sequence win-
dows corresponding to binding sites are considered posi-
tive samples, and all other sequence windows are
considered negative samples. For each of the three com-
mon motif models, MM, IUPAC and PWM, algorithms
have been developed that find the motif that best discrim-
inates between the known positive and negative samples.
Discrimination is here defined as finding the single motif
that best separates true from false sites, and the discrimi-
nation score is the nucleotide-level correlation coefficient
(nCC) for this separation, using Formula 1 according to
Tompa et al. [10]. Details on the problem definition and
the individual algorithms are given in Methods and in
supplementary material (see additional file 1:
IUPAC_details.pdf).

Analysis of existing benchmark data
We used our discrimination approach to analyze the
benchmark suite of Tompa et al. For each data set we com-
puted the best possible discrimination between binding
sites and remaining sequence using the three motif mod-
els. As the binding sites are unaligned and of different
length within each individual data set, we had to align
and possibly truncate each set of binding sites as a pre-
processing step using a gapless alignment [12]. The result-
ing set of consensus-aligned, equal-length binding site
fragments is representative of what can be discovered by
standard motif discovery methods.

Figure 1 shows to what extent it is possible to discriminate
the set of binding sites from remaining sequence in each
of the 50 data sets with a given motif model. We see that
this varies a lot, some data sets allow a discrimination
score (nCC) of more than 0.8, while other data sets do not
allow discrimination score above 0.2 with any of the
models. These results are from the "real" data sets from
Tompa et al. (actual promoter regions), but the scores
were similar in the "generic" (binding sites implanted in
randomly selected promoter regions) and "Markov"
(binding sites implanted in Markov model backgrounds)
data sets (see Figure 2).

The IUPAC model had the highest average score, followed
by PWM and MM. The score differences between models
were statistically significant using paired t-test with 95%
confidence level. However, the difference between IUPAC
and PWM was very small, and probably not of practical
relevance. On the other hand, the score for MM was con-
siderably lower than the others.

Although PWMs are more expressive than IUPAC models,
IUPAC scored slightly higher in our tests. PWMs were
restricted to either contain log-likelihoods based on
aligned binding sites, or to contain log-odds values taking
negative data into consideration through a Markov
model. All established PWM-based methods use log-like-
lihood or log-odds matrices, we therefore see this restric-
tion as a reasonable choice. We tried different pseudo-
count values and backgrounds with different Markov
order, and chose the values that gave best overall score.
On the other hand, the algorithms for the IUPAC and mis-
match models take negative data directly into considera-
tion, and this leads to slightly better classification
performance under certain conditions.

Although the discrimination algorithms return optimal
discrimination results on the data they are given, the ini-
tial alignment of binding sites in our pre-processing step
may be sub-optimal. Multiple alignment algorithms are
heuristic, and cannot guarantee optimal solutions. Also,
the criteria for optimality of an alignment may not ensure
a motif representation that is optimal for classification. As

Discrimination on data sets by Tompa et alFigure 1
Discrimination on data sets by Tompa et al. Nucle-
otide-level CC-score for discrimination between binding 
sites and remaining sequence on data sets from Tompa et al. 
Data sets (x-axis) are sorted individually for each model in 
order of increasing nCC, making it easier to compare the 
overall distributions of discrimination scores.
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the benchmarked motif discovery methods do not
depend on this initial alignment, they may in some cases
achieve a somewhat higher nCC-score than what we esti-
mate in the discrimination case (if they can find a better
alignment). However, from our experience this is a rela-
tively rare situation, and heuristic ungapped alignment
was in general found to perform well on the data sets ana-
lyzed here.

Cross-validation performance
Averaged prediction scores for the three motif models in a
leave-one-out cross-validation experiment on the bench-
mark data sets of Tompa et al. is given together with dis-
crimination and motif discovery scores in Figure 3. We
counted the sum of TP, TN, FP and FN for the test sets
across all folds, and calculated the nCC from these accu-
mulated numbers.

As expected, for all models the scores are much lower for
cross-validation based prediction than for discrimination.
With nCC-scores below 0.2, it shows that even when most
binding sites for a TF are known, it is still difficult to pre-
dict the location of unseen related binding sites (i.e. it is
difficult to generalize from training set to independent
test set). Using some strategy to avoid overfitting, e.g. add-
ing regularization terms, could improve the prediction
performance somewhat. Still, this means that even if bet-
ter objective functions [13] could bridge the gap between
unsupervised and supervised motif discovery, it would
only amount to a limited increase in prediction accuracy
on the Tompa benchmark suite. Representation of the

sequence similarity between related binding sites seems to
be a strong limiting factor. We also see that the IUPAC
scores are lower than PWM scores in the cross-validation,
confirming that the high IUPAC scores for the discrimina-
tion case were partly due to overfitting. Still, the difference
in prediction performance between the motif models is
very low. Our results thus indicate that the choice of motif
model should not be a major limiting factor on motif dis-
covery performance on the benchmark suite of Tompa et
al. This fits well with the observation that Weeder, which
internally uses the simple mismatch model during motif
discovery, is able to outperform the many PWM-based
methods on this benchmark.

Comparison of motif discovery methods
Figure 3 also shows the scores of different de novo motif
discovery methods on the benchmark suite of Tompa et
al., in addition to the average discrimination and predic-
tion scores for each of the three motif models. Although
the limited possibility for discrimination between bind-
ing sites and remaining sequence puts an upper bound on
motif discovery performance on the data sets, the bound
is still clearly above the actual scores of these de novo motif

Motif discovery scores from Tompa et alFigure 3
Motif discovery scores from Tompa et al. nCC-scores 
of 14 motif discovery methods given in the Tompa asses-
ment, compared to prediction and discrimination scores with 
the three main motif models.

Discrimination on different data set versions by Tompa et alFigure 2
Discrimination on different data set versions by 
Tompa et al. Nucleotide-level CC-score for discrimination 
between binding sites and remaining sequence for the three 
motif models on real, generic and Markov versions of data 
sets.
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discovery methods. The discrimination score suggests that
motif discovery could be particularly difficult on many of
these data sets. We therefore looked at how the maximum
score across all motif discovery methods reported in
Tompa et al. correlated with the discrimination scores on
the different data sets. The scatter plot in figure 4 shows
that the discrimination score generally represents an
upper bound on the motif discovery score, with maxi-
mum motif discovery score for data sets typically distrib-
uted between zero and the bound given by discrimination
score. Only in rare cases may the bound be exceeded due
to suboptimal alignments, as already discussed. Most of
the motif discovery score values are well below the esti-
mated discrimination score, even though the motif dis-
covery scores we are looking at are maximums over the 14
methods considered in Tompa et al.

We also looked at how the total score of a typical motif
discovery method would change if data sets were removed
according to the discrimination score (Figure 5). We used
MEME as example, as it is a well-known method with rea-
sonable performance in the assessment by Tompa et al. If
only the 13 data sets with lowest discrimination score had
been included in the benchmark suite, the nCC-score for
MEME would have been just 0.004, compared to a nCC-
score of 0.33 if only the 6 data sets with highest discrimi-
nation score were used. The nCC-score for MEME on the
full benchmark suite was 0.07. We also wanted to explore
the remark by Tompa et al. that one reason for the good
performance of Weeder in the assessment was that the
Weeder group was conservative about making predic-
tions. The possible level of discrimination is of course
only one of several factors that could influence such a

decision, but we wanted to see whether canceling predic-
tions based on discrimination scores alone could have
increased the score of MEME on this benchmark suite. We
found that the total score of MEME could indeed have
been increased slightly by not making any predictions on
the data sets with low discrimination score. If no predic-
tions were made on the 14 data sets with lowest discrimi-
nation scores, the nCC-score of MEME on the full
benchmark suite would have increased by 30%, from
0.076 to 0.099. Actually, because of the generally low per-
formance, MEME would have gotten higher total scores in
the assessment (when judged by nCC-score) even if they
had submitted blank predictions on all but the 6 data sets
with highest discrimination scores.

Analysis of synthetic benchmark data
Synthetic benchmark data sets avoid many of the prob-
lems associated with binding site collections, as the pre-
cise locations of synthetic binding sites are known and
consistent with the location of sequence consensus. Fur-
thermore, the level of discrimination that is possible to
achieve with a given motif model can be controlled.

The problem with synthetic benchmark data is that the
generation of synthetic binding sites must necessarily pre-
suppose a model of sequence variability between related
sites, for example in the way instances of a base consensus
sequence are "mutated" before being implanted in the
benchmark sequences. As different motif discovery meth-
ods rely on different models of sequence conservation,

MEME scores after removals or erasuresFigure 5
MEME scores after removals or erasures. Total MEME 
score if the data sets with highest or lowest discrimination 
scores, respectively, had been incrementally removed from 
the Tompa benchmark, as well as total MEME score if predic-
tions on the data sets with lowest discrimination scores had 
been incrementally erased.

Motif discovery versus discriminationFigure 4
Motif discovery versus discrimination. Scatter plot of 
maximum motif discovery score versus discrimination score 
for the 50 data sets in the suite by Tompa et al.
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this will incur a bias towards methods using models sim-
ilar to the one used when generating data sets. Synthetic
benchmark data sets may therefore be suitable for com-
paring motif discovery methods using the same motif
model, but will not give a fair comparison between meth-
ods using different motif models.

Pevnzer and Sze [11] proposed the Challenge Problem for
motif discovery. A data set is constructed by implanting
one motif instance in each of 20 sequences, 600 bp long.
In the (15,4)-FM version (fixed number of mutations),
each motif instance is made by mutating 4 random posi-
tions of a 15 bp motif consensus. In the (15,4)-VM ver-
sion (variable number of mutations), each position of the
motif consensus is mutated with a probability of 4/15
when forming a motif instance. Both versions assume that
all positions are equally likely to be mutated, and that
every nucleotide is equally likely to be the result of a
mutation. These are the same assumptions as in the mis-
match model. A slight variation to the Challenge Problem
is proposed in Styczynski et al. [14], where experiments
are done on data sets with motif instances in only 15 out
of 20 sequences. Figure 6 shows the discrimination scores
of the three common motif models, averaged over 10 data
sets of 20 sequences randomly constructed according to
the three variants of the Challenge Problem. Contrary to
the results on annotated binding site collections, the MM
model gets very competitive discrimination scores on the
Challenge Problem data sets, only slightly lower than
PWM scores. The IUPAC model, which had the highest
average discrimination score on the data sets from Tompa
et al., gets the lowest score on the synthetic data sets. The
IUPAC model is the model that most clearly relies on
asymmetries in positional conservation and skewed posi-
tional nucleotide distributions, properties not present in
these synthetic data sets, although they are assumed to be
biologically relevant. Both the high empirical scores of the
mismatch model, and the low scores of the IUPAC model,
support the intuition that synthetic data sets may intro-
duce a bias towards a presupposed model.

Generation of improved benchmark data
Based on our analysis of existing benchmark data we pro-
pose a new strategy for the generation of benchmark
suites. Details are given in Methods. Basically binding site
fragments corresponding to known binding sites were
extracted from a suitable database (TRANSFAC) and rep-
resented either as real sequences (i.e. binding sites in their
original genomic context) or Markov sequences (binding
sites implanted in sequences generated with a third order
Markov model). Figure 7 shows the distribution of bind-
ing sites. The best sequence-based discrimination between
binding sites and remaining sequence was computed, as
shown in Figure 8. Based on the discrimination score two

subsets were generated, an algorithm benchmark suite
and a model benchmark suite.

The algorithm benchmark suite
For our algorithm benchmark suite we selected all data
sets with discrimination score higher than 0.79 for the real
version and higher than 0.87 for the Markov version, giv-
ing 50 data sets of each version. Figure 9 compares the dis-
tribution of discrimination scores for this suite to the suite
by Tompa et al., showing that the binding sites are stand-
ing out from background much more clearly in our algo-
rithm benchmark suite.

This gives a benchmark suite where we know that it is pos-
sible to achieve good discrimination with standard motif
models. This suite will therefore mainly evaluate the per-
formance of the algorithms for motif discovery, as lack of
performance has to be caused by failure to find optimal
motifs, and not the motif model itself.

The model benchmark suite
The field would also gain from more powerful motif mod-
els that can better capture the variability between binding
sites and discriminate these from background. This will be
even more relevant as more examples of related binding
sites become available.

Discrimination on synthetic data setsFigure 6
Discrimination on synthetic data sets. Discrimination 
nCC-scores for motif models on three variants of synthetic 
data sets: variable mutations (4/15), fixed mutations 
(4_of_15) and fixed mutations with instances in 75% of the 
sequences (4_of_15 zoops). For each variant, the scores of 
each model are averaged over 10 randomly generated data 
sets.
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For benchmarking of novel powerful motif models, we
propose a model benchmark suite with binding sites that
are hard to discriminate from background. The construc-
tion was similar to the preceding suite, except that for this
suite data sets were selected that only allow a low level of
discrimination with the common motif models. As pow-
erful models typically require the estimation of more

parameters, we also filtered out data sets with few binding
sites. We selected 25 data sets with at least 18 binding sites
in each data set, and with discrimination score below 0.72
for the three common motif models. Figure 10 shows the
distribution of the number of binding sites and the maxi-
mum discrimination score with common models for each
data set in the model benchmark suite. Table 1 shows the
aggregated results in comparison to algorithm benchmark
suites. As more experimentally determined binding sites
become available in the future, the same methodology
could give benchmark suites with a larger number of
binding sites per data set, and even lower maximum dis-
crimination scores when using the common models.

For several data sets, some of the substrings marked as
binding site also had an exact unannotated duplicate in
another sequence. This means that without working with
longer motif length, or operating with a motif context
based on flanking sequence, it is not possible to achieve
perfect discrimination with any model. The distribution
of maximum discrimination scores possible with any
model without taking such measures, as well as the maxi-
mum discrimination possible with the currently common
motif models, is given in Figure 11.

Examples of benchmark runs
We ran MEME and Weeder on our proposed benchmark
suite to indicate the level of motif discovery performance

Discrimination on algorithm benchmark suiteFigure 9
Discrimination on algorithm benchmark suite. Nucle-
otide-level CC-score for discrimination between binding 
sites and remaining sequence. Results are given for our algo-
rithm benchmark suite and the suite by Tompa et al., for both 
real and Markov versions. For each data set, the highest dis-
crimination score achieved by any of the three motif models 
is selected. The distribution of scores are in sorted order for 
all versions independently.

Sequences per data setFigure 7
Sequences per data set. Distribution of number of 
sequences per data set.

Discrimination on all TRANSFAC-based data setsFigure 8
Discrimination on all TRANSFAC-based data sets. 
Nucleotide-level CC-score for discrimination between bind-
ing sites and remaining sequence on real and Markov version 
of TRANSFAC-based data sets. For each data set, the highest 
discrimination score achieved by any of the three motif mod-
els is selected. The distribution of scores are in sorted order 
for real and Markov versions independently.
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that can be expected. Table 2 compares the scores of
MEME and Weeder with the discrimination scores of the
PWM model. As expected, the de novo motif discovery
scores are much lower than the upper bound given by the
discrimination score. Note that all motif discovery results
given on our benchmark suites have been achieved with
default parameters. Slightly higher scores might be
achieved by tweaking of parameters and clever post-
processing of results.

The average score of MEME is higher on the real Algorithm
suite than on the remaining real data sets. For Weeder this
difference was less clear. While MEME achieves slightly
higher scores on Markov version compared to real version
of Algorithm suite, Weeder performs better on the real ver-
sion. This might possibly be reflecting the different
approaches to estimation of background distribution in
MEME and Weeder.

Although the performance of both MEME and Weeder is
better than random even with default parameters on real

sequences, the performance is still much lower than the
bounds given by the discrimination scores, leaving much
room for improvement in the development of objective
functions and search heuristics for motif discovery.

Conclusion
We have developed discrimination algorithms for the
common motif models and used these algorithms both
for analyzing an existing benchmark suite and for con-
structing new benchmark suites. The work has highlighted
several important points:

• Considering discrimination of known binding sites
from background separates the limitations of motif mod-
els from the limitations of objective functions and search
heuristics. Discrimination algorithms for common motif
models may be used to evaluate properties of data sets, for
instance in a filtering step when constructing benchmark
data sets.

• Motif discovery is very difficult on the data sets used in
the recent benchmark of Tompa et al. Algorithms reveal
large difficulties even with the basic task of discriminating
a set of known binding sites from remaining sequence.

• Improved benchmark data sets with controlled proper-
ties can be constructed from motif databases, e.g. TRANS-
FAC matrix alignments, using discrimination algorithms
for filtering. Using this approach, we propose one bench-
mark suite for evaluating the motif discovery process itself
with current models, and another benchmark suite with
data sets that could profit from more expressive motif
models.

Our main focus has been on the level of discrimination
that is possible for a given data set, and we have used the
maximum score across the three models to avoid intro-
ducing a bias towards a specific model during the evalua-
tion and filtering of benchmark data sets. Still, we have
observed some consistent differences between the dis-
crimination power of the common models: The IUPAC
model achieves the highest level of discrimination,
slightly above the PWM model, with the mismatch model
at a clearly lower level. On the other hand, synthetic
benchmark data sets rely on a chosen computational
method for generating variability among implanted bind-

Table 1: Discrimination scores on model benchmark suite. Average nCC-scores of three motif models on our proposed model 
benchmark suites; real and Markov algorithm suite, as well as real model suite.

Algorithm suite (Real) Algorithm suite (Markov) Model suite (Real)

PWMs 0.89 0.90 0.48
IUPACs 0.87 0.87 0.50

MMs 0.67 0.64 0.33

Discrimination score and number of binding sitesFigure 10
Discrimination score and number of binding sites. 
Distribution of discrimination scores (nCC) and number of 
binding sites for each of the 25 data sets in the model bench-
mark suite.
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ing sites. As expected, the motif models that are more
compatible with the generation model achieved better
discrimination scores on three versions of synthetic data
sets that were considered.

A main line of future work would be to increase the size
and quality of benchmark data sets by using our proposed
methodology on additional binding site collections. Also,
as time goes, more data of higher quality will be available
in the TRANSFAC database used in this work as well as in
other similar databases. A different line of research would
be to use a supervised learning approach as a first step in
exploring novel and more expressive motif models. After
the power of a new motif model has been determined by
its discrimination scores on training sets, and its generali-
zation ability has been determined by its prediction scores
on independent test sets, the more complex task of devel-
oping efficent methods for de novo discovery could be

commenced. Supervised learning algorithms could be
developed for entirely new models, or for exploring
already proposed expressive models such as HMDM [15],
Bayesian nets [16,17], Markov-model motifs [18,19],
dinucleotide matrices [20,21] and SPSP [22].

Methods
Motif models
The most common models of motifs in DNA sequences
are PWM, IUPAC codes and mismatch strings. These are
considered as three different hypothesis spaces in our
work. Deciding on the hypothesis space is central to
machine learning [23]. A good hypothesis space for a
domain should be as small as possible while still contain-
ing a good hypothesis. The main motivation in this work
is to find the best hypothesis in the respective hypothesis
space of motif models. We have developed exhaustive
search algorithms to avoid any search bias. Since for large
model sizes exploring the whole search space becomes
impractical, the algorithms developed are optimized as
much as possible so as to scale well for moderate sizes.

Problem formulation
We assume that a number of upstream DNA sequences
with binding site locations are given. The locations are
positive examples while other oligos with the same length
in the same sequence set form the negative examples (Fig-
ure 12).

Let E be a set of N TFs, i.e., E = {TF1, TF2,...,TFN}. Associ-

ated with each TF is its binding site length k : E ! , usually
ranging between 6 and 20 and assumed to be known. The

input space for TFi is , i " {1,

2,...,N}. The output space Y = {0, 1}, indicating negative/
positive examples.

For TFi, let the learner be a function 

! , for a predefined hypothesis space .

We restrict our hypothesis space set to  = { PWM,

IUPAC, MM} representing PWM, IUPAC and mis-

match string models.

X TF A C G Ti
k TFi( ) { , , , } ( )=

A A C G TTF
k TF

i
i: { , , , } ( )

! !

!

! !

Discrimination score on model benchmark suiteFigure 11
Discrimination score on model benchmark suite. Dis-
tribution of discrimination scores (nCC) for the 25 data sets 
in the model benchmark suite. One curve shows the best 
score of the three common motif models on the data set, 
while the other curve shows the score possible with a more 
expressive model that still do not consider the context of 
binding sites.

Table 2: Discrimination and motif discovery scores on algorithm benchmark suite. Average nCC-scores for de novo motif discovery 
with MEME and Weeder compared to best discrimination scores on our proposed algorithm benchmarks and remaining 64 datasets.

Algorithm suite (Real) Remaining data sets (Real) Algorithm suite (Markov)

MEME 0.068 0.029 0.082
Weeder 0.11 0.10 0.052

Disc. 0.92 0.64 0.92
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We use correlation coefficient (CC) as our performance
metric. In the optimization, CC is calculated at the oligo
(sequence window) level, using oligos as individual sam-
ples as explained previously in this section. This differs
slightly from the CC at the nucleotide level (nCC), which
is the measure used in the results section to ensure consist-
ency with the results of Tompa et al.

Algorithms
Mismatch string model
The motif model for mismatch strings is a tuple, MMM =
<cs, d > where cs " {A, C, G, T}n is a consensus string of
length n and d " {0, 1,..., n} is the maximum Hamming
distance from cs. Typical values for n is 6 to 20 and that of
d is 1 to 4. Bounded values for n and d clearly suggests that
hypothesis space is finite, although large when n gets big-
ger.

For mismatch strings we have developed an algorithm
inspired by [24]. A main difference is that in our case, the
motif locations are assumed known, i.e., a supervised
case. The main idea is to enumerate every substring s
within a given Hamming distance d of each positive sub-
string in the data set. For each such substring s, matches

are determined as every substring s' of the sequences at a
Hamming distance of at most d from s.

The method described above clearly does not consider all
the hypothesis space explicitly, but the subset considered
is actually enough to find the best hypothesis among all.
Since the best hypothesis must cover at least one positive
instance, the algorithm is guaranteed to find the best
hypothesis even though not all hypotheses are explicitly
enumerated. Thus, it suffices to evaluate the score of this
subset of hypotheses. As this still involves scanning very
many different motifs against the same sequences, a q-
gram of the sequences is used to further accelerate match-
ing of short motifs (length < 7) against sequences, and the
algorithm of Yates et al. [25] for longer motifs.

IUPAC model
The motif model for IUPAC, MIUPAC, is a degenerate string
ds of length n where each position is a non-empty subset
of {A, C, G, T}. These subsets correspond to the IUPAC
symbols for DNA sequences. For finite n, the hypothesis
space is finite but grows exponentially with n. A candidate
string s is said to be a hit (match) against ds if every posi-
tion of s is a subset of respective position in ds, otherwise
it is a non-hit (non-match).

Finding a IUPAC expression that perfectly separates posi-
tive and negative substrings of equal length is indeed

nCC
TP TN FP FN

TP FP FP TN TN FN FN TP
= ⋅ − ⋅

+ ⋅ + ⋅ + ⋅ +( ) ( ) ( ) ( )

(1)

Generating positive and negative examplesFigure 12
Generating positive and negative examples. A set of upstream DNA sequences for a transcription factor where a) m 
binding locations are identified, b) generating positive and negative examples.
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straightforward if at all possible for a data set. IUPAC
expressions are a subset of regular expressions, and induc-
tion of regular expressions from sequence examples is well
studied. Each position of the motif is set to the union of
characters occurring at the respective position of the posi-
tive instances. To see that this is the only solution, note
that leaving out any symbol that occurs in a positive
instance at a given position leads to the motif not covering
the instance. Additionally, adding symbols not occurring
in any positive instance at that position may only intro-
duce hits in negative instances.

Perfect classification is generally impossible for the prob-
lem we consider. In our case, all degenerate strings should
be generated exhaustively and evaluated against a scoring
function. We have therefore developed an efficient algo-
rithm that avoids unnecessary exploration of the hypoth-
esis space. Our algorithm bears some similarities with the
SPEXS algorithm for de novo motif discovery [26], but dif-
fers in that it uses bit-strings and pre-computation for
optimization, calculates bounds and prunes subtrees, and
of course that it solves a classification problem with
known positive and negative instances instead of an unsu-
pervised data mining problem. The details of the algo-
rithm can be found in the supplementary material.

PWM model
The motif model for PWM is a tuple MPWM = <M, t > where
M is a matrix of 4 × n where each column is a probability
distribution of the nucleotide vector <A, C, G, T > and n is
the length of the motif. A candidate string is considered to
be a hit if the sum of probabilities in respective rows are
greater than the threshold t, otherwise a non-hit. The
hypothesis space is infinite regardless of n.

PWMs used for motif discovery are not just arbitrary
matrices that best separates the motif occurrences from
the remaining sequences. On the contrary, a PWM has a
clear interpretation as a product multinomial probability
distribution, or as containing log-odds values of motif
versus background. In the supervised case we calculate the
PWM from symbol frequencies in known motif locations
for log-probability matrix. Additionally, background dis-
tributions are taken into account for log-odds PWM
matrix. As the PWM thus is a direct function of the posi-
tive (and negative) instances of the data set, it is calculated
easily and efficiently even for large data sets. We used the
highest scoring PWM version for discrimination score. In
motif discovery, the hypothesized motif locations used
for constructing a PWM can in general be any probability
distribution over all sequence locations. If the hypothe-
sized motif locations exactly match the annotated sites, it
corresponds to the solution in the supervised case.

Although the PWM itself is calculated directly from
sequence data, there is more flexibility when it comes to
determining a PWM score threshold to be used when
determining binary hits of the PWM. Such score thresh-
olds are commonly used to get a list of motif locations,
instead of just a distribution on motif locations across the
whole sequence data. As there are many ways of determin-
ing score thresholds, we exhaustively find the threshold
that optimize the score of a given PWM.

We do this by exploiting the fact that the optimal thresh-
old must be equal to the PWM match score of a positive
instance. We therefore compute the classification score of
the PWM with each of these thresholds and choose the
threshold giving highest classification score. To see why
this is optimal, consider a threshold t that is not equal to
the PWM score of any positive instance. Increasing this
threshold to the PWM score of the positive instance with
least margin to the threshold (t') will give the same
number of TP. As the threshold is more stringent the
number of TN must be equal or higher. Thus, there exists
a threshold t', corresponding to the PWM score of a posi-
tive instance, with at least as high score as the threshold t.

Dataset generation
We extracted sets of binding site fragments for 213 differ-
ent TF matrices from the TRANSFAC database, version 9.4
[27]. A binding site fragment is the binding site region
that is used in the construction of a matrix in the TRANS-
FAC alignment. Both real and Markov data set versions
were constructed from the same fragment sets. For the real
version, binding sites were kept in their original genomic
sequence, which was truncated to a maximum length of
2000 bp. To make the data sets more coherent, we
removed binding site fragments that contained degener-
ate bases, that had gaps in the TRANSFAC alignment, that
were not located within the 2000 bp upstream of tran-
scription start site in the sequence linked to by TRANS-
FAC, or that had two or more occurrences in the 2000 bp
region. The binding sites used in a TRANSFAC matrix
alignment may occur on opposite strands. To simplify the
process of using these data sets we took the reverse com-
plement of linked sequences when the binding site
appeared on the negative strand. For the Markov version,
binding sites were implanted in sequences generated from
a third order Markov model inferred from all sequences of
the corresponding real data set. Both the lengths of the
Markov version sequences and the positions of the
implanted binding sites were kept equal to the corre-
sponding real sequences. Data sets with fewer than five
binding sites were removed, leaving us with 114 real and
114 Markov data sets. While most data sets had from 5 to
25 sequences, there were data sets with up to 78
sequences. We then computed the best possible discrimi-
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nation score, and used that for selecting the algorithm and
model suites, as described in the main text.

Parameter settings
For all our runs of MEME we used version 3.5.3, down-
loaded from [28]. To avoid incurring biases in our results,
we ran MEME with default DNA parameter values and
without any manual curation of output data. We think
this is realistic with regard to common usage of motif dis-
covery methods, although performance could probably
have been improved by tweaking parameters, pre-process-
ing data sets and post-processing output data. For all runs
of Weeder we used version 1.3 downloaded from [29]. We
also ran Weeder with default parameters and without any
manual curation. We used the large setting and the option
telling Weeder that each sequence should contain at least
one binding site. As Weeder requires the specification of
organism, we supplied for each data set the most frequent
organism.

Availability and requirements
Our proposed algorithm and model benchmark suites are
available for download at http://tare.medisin.ntnu.no/.
We have also implemented a web service for evaluating
predictions and visualizing benchmark results. The imple-
mentation of the discrimination algorithms for the com-
mon motif models is freely available as Python source
code at the same address.

Abbreviations
PWM: position weight matrix;

IUPAC: nomenclature for degenerate symbols as defined
by the International Union of Pure and Applied Chemis-
try;

MM: mismatch motif model;

TFBS: transcription factor binding site;

TP, TN, FP, FN: true/false positives/negatives;

nCC: nucleotide-level Pearson's correlation coefficient
(Formula 1)
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Abstract
Background: Computational discovery of regulatory elements is an important area of
bioinformatics research and more than a hundred motif discovery methods have been published.
Traditionally, most of these methods have addressed the problem of single motif discovery –
discovering binding motifs for individual transcription factors. In higher organisms, however,
transcription factors usually act in combination with nearby bound factors to induce specific
regulatory behaviours. Hence, recent focus has shifted from single motifs to the discovery of sets
of motifs bound by multiple cooperating transcription factors, so called composite motifs or cis-
regulatory modules. Given the large number and diversity of methods available, independent
assessment of methods becomes important. Although there have been several benchmark studies
of single motif discovery, no similar studies have previously been conducted concerning composite
motif discovery.

Results: We have developed a benchmarking framework for composite motif discovery and used
it to evaluate the performance of eight published module discovery tools. Benchmark datasets were
constructed based on real genomic sequences containing experimentally verified regulatory
modules, and the module discovery programs were asked to predict both the locations of these
modules and to specify the single motifs involved. To aid the programs in their search, we provided
position weight matrices corresponding to the binding motifs of the transcription factors involved.
In addition, selections of decoy matrices were mixed with the genuine matrices on one dataset to
test the response of programs to varying levels of noise.

Conclusion: Although some of the methods tested tended to score somewhat better than others
overall, there were still large variations between individual datasets and no single method
performed consistently better than the rest in all situations. The variation in performance on
individual datasets also shows that the new benchmark datasets represents a suitable variety of
challenges to most methods for module discovery.
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Background
A key step in the process of gene regulation is the binding
of transcription factors to specific cis-regulatory regions of
the genome, usually located in the proximal promoter
upstream of target genes or in distal enhancer regions
[1,2]. Each transcription factor recognizes and binds to a
more or less distinct nucleotide pattern – a motif – thereby
regulating the expression of the nearby gene. Determining
the location and specificity of each transcription factor
binding site in the genome is thus an important prerequi-
site for reconstructing the gene regulatory network of an
organism.

Since establishing these binding sites experimentally is a
rather laborious process, much effort has been made to
develop methods that can automatically discover such
binding sites and motifs directly from genomic sequence
data. More than a hundred methods have already been
proposed [3], and new methods are published nearly
every month. There is a large diversity in the algorithms
and models used, and the field has not yet reached agree-
ment on the optimal approach. Most methods search for
short, statistically overrepresented patterns in a set of
sequences believed to be enriched in binding sites for par-
ticular transcription factors, such as promoter sequences
from coregulated genes or orthologous genes in distantly
related species.

In higher organism, however, transcription factors seldom
function in isolation, but act in concert with nearby
bound factors in a combinatorial manner to induce spe-
cific regulatory behaviours. A set of binding motifs associ-
ated with a cooperating set of transcription factors is
called a composite motif or cis-regulatory module. In recent
years, the field of computational motif discovery has
therefore shifted from the detection of single motifs
towards the discovery of entire regulatory modules.

The diversity of approaches to module discovery is even
greater than for single motif discovery, and methods vary
widely in what they expect as input and what they provide
as output. For instance, methods like Co-Bind [4],
LOGOS [5] and CisModule [6] expect only a set of coreg-
ulated or orthologous promoter sequences as input and
are able to infer both the location and the structure of
modules with few prior assumptions regarding their
nature. These programs infer an internal model that
includes a representation of each individual transcription
factor binding motif as well as constraints on the distances
between them. On the other hand, programs such as LRA
[7] and Hexdiff [8] demand as input a collection of
already known module sites to serve as training data. The
known positive sites are used along with negative
sequence examples to build a model representation which
can then be compared to new sequences in order to iden-

tify novel module instances. Searching for new matches to
a previously defined model might be considered a special
case of module discovery and is often referred to as mod-
ule scanning. Programs that specialize in searching for
modules this way without inferring the models them-
selves include ModuleInspector [9] and ModuleScanner
[10]. The general problem of module discovery, however,
usually involves inferring both a model representation of
the modules and to find their locations in the sequences.

Most module discovery methods require users to supply a
set of candidate single motif models in the form of IUPAC
consensus strings or position weight matrices (PWM)
[11]. These are used to discover putative transcription fac-
tor binding sites in the sequences, and the programs then
search for significant combinations of such binding sites
to report as modules.

What constitutes a significant combination varies
between methods. MSCAN [12], for instance, searches for
regions within sequences that have unusually high densi-
ties of binding sites, more so than would be expected from
chance alone. The types of the binding motifs are irrele-
vant, however, and each potential module instance is ana-
lyzed independently from the rest. Other tools, like
ModuleSearcher [10], Composite Module Analyst [13]
and CREME [14], search for specific combinations of
motifs that co-occur multiple times in regulatory regions
of related genes.

With an increasing number of programs available, both
for single and composite motif discovery, there is a grow-
ing need among end users for reliable and unbiased infor-
mation regarding the comparative merits of different
approaches. A few independent investigations have been
undertaken to assess the performance of selected single
motif discovery methods, for instance by Sze et al. [15]
and Hu et al. [16]. The most comprehensive benchmark
study to date was carried out by Tompa et al. and included
thirteen of the most popular single motif discovery meth-
ods [17]. The authors of this study also provided a web
service to enable new methods to be assessed and com-
pared to the original methods using the same datasets.

However, in spite of the increased interest in regulatory
modules, we are not aware of any similar independent
benchmarking efforts that have been undertaken with
respect to composite motif discovery.

Results
We have developed a framework for assessing and com-
paring the performance of methods for the discovery of
composite motifs. Sequence sets containing real, experi-
mentally verified modules are made available for down-
load through our web service, and users can test programs
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of their own choice on these datasets and submit the
results back to the web service to get the predictions eval-
uated. Results are presented both as tabulated values and
in graphical format, and performances of different meth-
ods can be compared. Since most module discovery tools
require users to input candidate motifs, each sequence
dataset is supplemented by a set of PWMs capable of
detecting the binding sites involved in the modules. To
test how programs respond to varying levels of noise in
the PWM sets, we created extended PWM sets for one of
our datasets where the genuine matrices were mixed with
various decoy matrices.

Scoring predictions
We adopted a simple and general definition of a module:
a module is a cis-regulatory element consisting of a collec-
tion of single binding sites for transcription factors. A
module is thus characterized by only two aspects in our
framework: its location in a sequence and its composition,
that is, the set of transcription factor binding motifs
involved. A module's location is further defined as the
smallest contiguous sequence segment encompassing all
the single binding sites in the module, including also the
intervening bases. For our purpose, the composition of a
module is represented by a set of PWM identifiers. Differ-
ent modules that share the same composition are said to
belong to the same module class. Module class definitions
may also be limited by structural constraints. These are
rules governing, among others, the strand bias, order and
distances between the transcription factor binding sites of
modules of the same class. Since it requires a substantial
effort to determine these constraints experimentally, this
kind of information is available for a very limited number
of classes. Few methods also report such module con-
straints explicitly. Consequently, we have chosen not to
consider this aspect of modules further in our framework,
at least for the time being.

Module discovery programs are requested to predict both
the location of modules and to identify the motifs
involved by naming the proper PWMs. However, not all
programs are able to perform both these tasks. The
MCAST program [18], for instance, only reports the loca-
tion of predicted modules, even though it uses a set of
PWMs to detect single binding sites internally. On the
other hand, programs that discover single motifs de novo
without relying on pre-constructed matrices have, of
course, no way of correctly naming the motifs involved.
Methods like that of Perco et al. [19] and GCMD [20]
identify modules by looking for groups of PWMs whose
binding sites consistently appear together in multiple
sequences, but disregard any further information about
the precise position of these sites. Hence, such programs
only report the composition of modules but not their
location. By assessing the location and composition

aspects of modules separately, our framework can equally
well be used with programs that predict only one or the
other.

To measure prediction accuracy of methods with respect
to module location, we have used the nucleotide-level corre-
lation coefficient (nCC). This statistic has been widely used
before, among others, for coding region identification and
gene structure prediction [21]. It was also adopted by
Tompa et al. to evaluate binding site predictions in their
single motif discovery benchmark study. The value of nCC
lies in the range -1 to +1. A score of +1 indicates that a pre-
diction is coincident with the correct answer; whereas a
score of -1 means that the prediction is exactly the inverse
of the correct answer. Random predictions will generally
result in nCC-values close to zero.

Here, TP is the number of nucleotides in a sequence that
are correctly predicted by a program as belonging to a
module, while TN is the number of nucleotides correctly
identified as background. FN is the number of true mod-
ule nucleotides incorrectly classified as background, and
FP is the number of background nucleotides incorrectly
classified as belonging to a module.

A similar statistic, the motif-level correlation coefficient
(mCC), was used to evaluate prediction accuracy with
respect to module composition. The definition of mCC
follows that of nCC, except that instead of counting the
number of nucleotides, we count the number of single
motifs (or PWMs) correctly or incorrectly classified as
being part of a module or not. Hence, for mCC, TP is the
number of PWMs correctly identified as constituents of
the module, while FP is the number of PWMs incorrectly
predicted as being part of a module. Note that the correla-
tion statistics, as defined here, are only applicable when
both the datasets and the predictions made by a program
contain a combination of module and non-module
instances, if not, the divisor will be zero and the value of
the statistic will be undefined. Consequently, the mCC-
score is only informative when the set of PWMs supplied
to a module discovery program contains false positives,
i.e. additional matrices besides those that are actually
involved in the modules. Final scores for each dataset are
obtained by summing up TP, FP, TN and FN over all
sequences before calculating the correlation scores. If no
module predictions are made on a set of sequences, the
resulting scores for nCC and mCC are assigned a value of
zero rather than being left undefined. In addition to CC
scores, several other statistics mentioned in [17] such as
sensitivity, specificity, positive predictive value, performance

nCC
TP TN FN FP

TP FN TN FP TP FP TN FN
= ⋅ − ⋅

+ + + +( )( )( )( )
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coefficient (phi-score) and average site performance are cal-
culated for both nucleotide- and motif-level.

Datasets
We compiled three datasets from sequences containing
experimentally verified regulatory modules. The first and
the last two datasets have different characteristics and
were chosen to complement each other to test methods
under different conditions.

Our main dataset was based on annotated composite
motifs from the TRANSCompel database [22]. The mod-
ules selected for this dataset are small, each consisting of
exactly two single binding sites for different transcription
factors (TFs), but we specifically chose modules that had
multiple similar instances in several sequences. Sequences
containing modules from the same class were grouped
together producing ten sequence sets named after their
constituent single motifs as shown in Table 1. Each of the
sequences in a set contained at least one copy of the mod-
ule with the same two motifs, but the order, orientation
and distance between the TFBS could vary between
sequences. Separate PWM collections, with matrices for
the two single motifs involved, were constructed for each
of the sequence sets. All in all there were eleven distinct
single TF binding motifs in our full TRANSCompel data-
set, and PWMs representing these motifs were collected
from the companion TRANSFAC database [22]. Since
TRANSFAC often contains several different PWMs for
each motif, we grouped all the matrices corresponding to
a particular motif into an equivalence set, essentially treat-
ing these PWMs as if they were one and the same with
respect to prediction and scoring. In addition to the
TRANSFAC matrix sets, we also constructed eleven custom
matrices that were specifically tailored to the particular
motifs and binding sites present in the sequences (see
Methods). Assessment of module discovery programs on
the TRANSCompel dataset was conducted using both the

TRANSFAC sets and the customized PWM sets independ-
ently. The motivation for using two different PWM sets
was to test the stability of methods and examine how the
specific representations used for single motifs might influ-
ence the ability of methods to find the correct modules.

The two last datasets were based on combinations of TFBS
found in the regulatory regions of genes specifically
expressed in liver [23] and muscle [7] cells. The modules
here are usually larger compared to the TRANSCompel
modules, containing up to nine binding sites for four dif-
ferent motifs in the liver regulatory regions and up to eight
sites for five motifs in the muscle regions. PWMs for these
motifs were taken from the respective publications. The
composition of the modules in these two datasets is vari-
able; modules can contain multiple binding sites for the
same motifs and not all motifs are present in every mod-
ule.

While most programs require candidate PWMs to be
entered, this can pose a problem for users who might not
always know in advance the kind of modules that should
be present in a sequence or which transcription factors
that might bind. It could be the case, for instance, that a
researcher has only a set of promoters from a coregulated
set of genes and is interested in identifying the hitherto
unknown module that controls the common expression
of these genes. A popular strategy then is to employ an
excessive set of PWMs which, hopefully, also includes the
appropriate matrices. An extreme, but not unlikely, sce-
nario would be to use all the matrices available from a
published compilation like TRANSFAC (774 matrices in
release 9.4) or Jaspar [24] (123 core matrices). Although
this approach will inevitably lead to lots of false positive
PWM matches that might thwart the module discovery
process, good module discovery tools should nonetheless
be able to report the true module instances without simul-
taneously predicting too many spurious occurrences.

Table 1: Datasets

Sequence set Sequences Modules Total size (bp) Module size, min-max (avg)

AP1-Ets 16 17 14860 14 – 99 (27)
AP1-NFAT 8 11 6893 14 – 19 (16)
AP1-NF!B 7 8 6532 18 – 135 (53)
CEBP-NF!B 8 8 7308 44 – 118 (84)
Ebox-Ets 4 6 3489 16 – 50 (25)
Ets-AML 5 5 4053 13 – 30 (19)
IRF-NF!B 6 6 5344 23 – 71 (43)
NF!B-HMGIY 6 7 5393 10 – 32 (13)
PU1-IRF 5 5 4530 12 – 14 (13)
Sp1-Ets 7 8 5787 16 – 117 (37)
Liver 12 14 11943 26 – 176 (112)
Muscle 24 24 20427 14 – 294 (120)

A brief overview of the ten TRANSCompel sequence sets and the liver and muscle datasets used in the assessment. Further information can be 
found in Additional File 1.
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To simulate these conditions and test methods' response
to noisy PWM sets, each PWM set under the TRANSCom-
pel dataset was issued in multiple versions with progres-
sively more decoy matrices added to the set of true
annotated motifs. Decoy matrices were randomly sam-
pled from the complete TRANSFAC compilation after
removing the matrices corresponding to the true motifs
for a sequence set. Decoy sets are available at 50%, 75%,
90%, 95% and 99% levels, where the percentage number
relates the amount of decoy matrices in the set. Thus, a
custom PWM set at the 90% level includes 2 genuine
matrices and 18 decoy matrices. The number of decoy
matrices in the TRANSFAC PWM sets varies with each
module class but is always higher than for the custom sets
at the same percentage level. Information on the exact
number of PWMs in each set is available in Additional File
1. The 99% sets include as decoys all of the matrices from
TRANSFAC which do not correspond to the correct
motifs. They are called "99%" for consistency, although
the actual percentage of decoys ranges between 95% and
99% depending on the module class. To avert artefacts
stemming from possibly biased selections of decoys, all
decoy sets (except at the 99% level) consist of ten inde-
pendently sampled decoy collections, and the final corre-
lation statistics for a decoy level are calculated by
averaging prediction scores made from using each collec-
tion in turn. This also means that variation due to any sto-
chastic nature of algorithms will be averaged over ten
independent runs.

Benchmark of module discovery methods
Using our assessment framework, we benchmarked eight
published methods for module discovery: CisModule [6],
Cister [25], Cluster-Buster [26], Composite Module Analyst
(CMA) [13], MCAST [18], ModuleSearcher [10], MSCAN
[12] and Stubb [27]. See Table 2 for brief descriptions of
each of these methods. CisModule, CMA and Module-
Searcher process all the sequences in a dataset simultane-
ously and look for instances of similar modules across
multiple sequences. The other methods examine the
sequences individually, although Stubb considers multi-
ple instances of similar modules within the same
sequence. Except for MCAST, which does not report mod-
ule composition, all the programs report both the loca-
tion and composition of modules. CisModule, however,
predicts modules de novo without relying on supplied
PWM sets and so does not name the single motifs
involved the way we require. Hence, motif-level scores
were not calculated for MCAST and CisModule. Cluster-
Buster and MCAST report the full module segments, while
the rest of the methods list the positions of the PWM hits
in the modules. In these cases we extracted the start posi-
tion of the first reported binding site and the end position
of the last binding site and used these as the boundaries
of a module prediction.

We generally relied on default parameter settings for all
programs. However, since choosing the proper parameter
values can sometimes prove crucial for a method's per-
formance, we decided to provide the programs with a few
general clues where applicable; specifically, that the size of
modules should not exceed 200 bp (300 bp in the muscle
dataset) and that the modules should consist of exactly
two single binding sites for different TFs in the TRANS-
Compel dataset but possibly up to ten binding sites for
four and five different TFs on the liver and muscle sets
respectively. Furthermore, binding sites could potentially
overlap and the composition of the modules in liver and
muscle sets should be allowed to vary between sequences.

Figures 1a and 1b show the resulting nucleotide-level cor-
relation scores on each sequence set in the TRANSCompel
dataset when methods were supplied with TRANSFAC
matrices and custom matrices respectively. The scores vary
widely between individual sequence sets but are generally
fairly well correlated between methods, so that most
methods tend to get high (or low) scores on the same sets.
The notable exception is CisModule which performs
poorly on all sequence sets. The correlation suggests that
some sequence sets are inherently more easy (or difficult)
to tackle than others. Scores for CEBP-NF!B and IRF-
NF!B are the highest overall. The reasons why these sets
are generally easy to predict might be that their modules
are quite long and the matrices representing the single
binding motifs have high information content (see Table
3 and Additional File 1). Conversely, the short size of the
modules and the low information content of PWMs for
AP1-NFAT would make this a hard sequence set. We also
calculated combined scores for the whole TRANSCompel
dataset which are shown in the inset legends of Figure 1
and graphically in Figure 2. These combined scores were
obtained by summing up TP, TN, FP, FN over all sequence
sets when calculating the score measures. The highest
combined nCC scores achieved were 0.388 with the
TRANSFAC matrices (MSCAN) and 0.38 with custom
matrices (MCAST). The average performances across all
methods were also about the same with the two PWM
sets. Some methods performed quite differently depend-
ing on the PWMs, however. For instance, MCAST scored
much better using custom matrices than with TRANSFAC
matrices, while MSCAN and Cluster-Buster did a better
with job with TRANSFAC. The rank order of methods is
thus somewhat altered between the two cases. Still, some
tendencies remain: CMA, Cluster-Buster, MCAST, Mod-
uleSearcher and MSCAN occupy the top five positions in
both cases, followed by Cister and Stubb and then finally
CisModule which consistently scored lowest.

Figure 3 shows the results of mixing the PWM sets with an
equal proportion of decoy matrices. The addition of decoy
PWMs leads to a drop in score values for almost all meth-
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Table 2: Description of module discovery tools

CisModule CisModule models the structure of sequences with a two-level hierarchical mixture-model and uses a 
Bayesian approach with Gibbs sampling to simultaneously infer the modules, TFBSs and PWMs based on their 
joint posterior distribution, which is the probability of a model given the input sequence set. At the first level, 
sequences are viewed as a mixture of module instances and background. At the second level, modules are 
modelled as a mixture of motifs and inter-module background. Parameters of the model include the widths 
and representations (PWMs) of single motifs and parameters related to distances between modules and 
between TFBS within modules. From a random initialization, CisModule iteratively cycles through steps of 
parameter update and module-motif detection. New parameter values are sampled from their conditional 
posterior distributions based on the currently predicted modules and motifs, and new predictions of modules 
and TFBSs are then sampled based on these updated parameter values. Positions in the sequences where the 
marginal posterior probability of being sampled within modules was greater than 0.5 were output as module 
predictions.

Cister Given a set of PWMs and parameters specifying the expected number of motifs in modules, the expected 
distances between motifs in modules and the expected distance between modules, Cister builds a Hidden 
Markov Model (HMM) with three basic states: motif, intra-module background and inter-module background. 
Transition probabilities between these states follow geometric distributions according to the expected values 
input by the user. In the motif state, one of the PWMs is chosen uniformly at random and used to decide the 
probabilities of outputting nucleotides. Background-state emission probabilities are estimated from a sliding 
window centered on the current base in the query sequence. From this HMM, the posterior probability that 
each base in the input sequence was generated from a module state as opposed to the inter-module state can 
be calculated. Predicted modules are defined to occur at local maxima of this posterior probability curve 
where the value is at least 0.5 and no larger value is observed within 1200 bp.

Cluster-Buster Cluster-Buster is developed by the same group that made Cister and is designed to search for clusters of pre-
specified motifs in nucleotide sequences. Like Cister, Cluster-Buster constructs a HMM-model based on the 
user-supplied PWMs, an expected distance between motifs in clusters and background distributions estimated 
from the input sequence over sliding windows. Log likelihood ratios are used to determine whether a 
sequence is more likely to be generated by a "cluster-model" or a "background-model". Cluster-Buster uses a 
linear time heuristic to rapidly estimate log likelihood ratios for all subsequences of the input sequence and 
outputs those subsequences with ratios above a specified threshold that do not overlap with other higher 
scoring subsequences.

Composite Module Analyst (CMA) The promoter model in CMA is expressed as a Boolean combination of one or more composite modules (CM), 
each of which consist of a set of single, independent motifs as well as pairs of motifs that must obey certain 
constraints on distance and orientation. Given a candidate promoter model, the method searches for 
potential matches to the CMs in the sequences, and a final promoter score is calculated after the presence or 
absence of each CM is established. CMA employs a Genetic Algorithm to search for the promoter model 
which best discriminates between a set of positive (co-regulated) and a set of negative sequences. The fitness 
function is based on a linear combination of several properties of the distribution of the promoter scores and 
of the individual CM scores in the two sequence sets.

MCAST MCAST builds a HMM-model consisting of an intra-module state, an inter-module state and motif-states based 
on the supplied PWMs. The score for a motif-state is called a p-score and is the negative logarithm of the p-
value of a log-odds score based on the probability of a segment in the target sequence being generated either 
by the PWM or a fixed, user-specified zero-order Markov background model. MCAST forbids transitions into 
motif-states that result in p-scores lower than some chosen threshold. Some state transitions are associated 
with certain costs. For instance, entering the inter-module state from a motif-state incurs a large one-time 
penalty while cycling through the intra-module state incurs smaller penalties for each nucleotide emitted. The 
Viterbi algorithm is used to find the highest scoring path through the HMM with respect to the input 
sequence, classifying each position in the sequence as either belonging to a module or to the background. 
Potential module segments are scored according to the number of motifs in the module and the p-scores of 
these motifs and are penalized by the number of intra-module background bases. Finally, modules are ranked 
according to the estimated E-values of these scores.

ModuleSearcher Given a list of PWM hits with match scores for putative TFBSs in a sequence set, ModuleSearcher finds the 
module model (set of k PWMs) that best fits the sequences. The score of a module model is calculated as the 
sum of scores over all sequences, and the score function for a single sequence is based on the best scoring set 
of TFBSs in the sequence that corresponds to the PWMs in the module model. To be considered a valid TFBS 
set the binding sites must all lie within a short window, and the user can choose to ignore TFBS sets with 
overlapping binding sites or penalize sets that lack sites for some PWMs. An A*-algorithm (or alternatively a 
Genetic Algorithm) is employed to search the space of possible subsets of k motifs from the full PWM library 
in order to find the highest scoring module model.

MSCAN MSCAN discovers modules by evaluating the combined statistical significance of sets of potential non-
overlapping TF binding sites in a sliding window along the input sequence. PWMs are compared against each 
position within the window to obtain match scores, and p-values are calculated as the probability of obtaining 
similar or higher scores at a specific position in a random sequence with nucleotide distribution similar to the 
distribution in the window. MSCAN proceeds by calculating significance scores for all combinations of up to k 
binding sites in the window and then selects the optimal combination (the one with the lowest score). A 
prediction is output if a final p-value computed from this score is less than some user-specified threshold.
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ods. The drop is greater for the TRANSFAC PWMs, pre-
sumably because these sets contain more genuine
matrices and therefore also more decoys. Contrary to
expectation, some methods actually score slightly better
on certain sequence sets when decoys are in use. Examples
are Cister on Ets-AML and Stubb on Ebox-Ets with custom
matrices. One explanation for this could be that these
methods make use of decoy motifs that just happen to
have a high degree of overlap with genuine modules. To
examine whether the modules are predicted with the cor-
rect motifs or not, we can look at the corresponding motif-
level correlation scores as shown in Figure 4. The generally
high mCC scores obtained for IRF-NF!B support the
notion that this is an easy sequence set, while the diffi-
culty for most methods in selecting the correct motifs for

CEBP-NF!B explains the higher drop seen in nCC for this
set when decoys were added. CMA and ModuleSearcher
are by far the best methods at predicting the correct com-
position of modules with both TRANSFAC and custom
PWMs as input, although CMA does perform notably
poor on two specific sequence sets. The mCC score for the
third best method, Cluster-Buster, is less than half of that
of ModuleSearcher.

Figures 5 and 6 show score tendencies as increasingly
more decoys are added to the PWM sets. The nucleotide-
level performances of CMA and ModuleSearcher are only
slightly affected by the larger amounts of decoys, whereas
the scores for the other methods steadily decline. At the
motif-level we clearly see a division into two groups with

Nucleotide-level correlation scores on the TRANSCompel datasetFigure 1
Nucleotide-level correlation scores on the TRANSCompel dataset. The graphs show nCC scores for each of the ten 
sequence sets in the TRANSCompel dataset when methods are supplied with TRANSFAC PWM sets (a) and custom matrices 
(b).
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Stubb The HMM used by Stubb consists of motif states based on supplied PWMs and a single background state based 
on a kth-order Markov model with probability distribution estimated from a sliding window. The scoring 
function is the log likelihood ratio that the sequence within a limited window was more likely generated by the 
full model than with a HMM consisting of only the background state. Unlike the other HMM methods 
presented here, the transition probabilities between states in Stubb are not based on user-input expectancies, 
but are estimated from the sequence using the Baum-Welch algorithm. This procedure finds the set of 
transition probabilities that maximizes the scoring function. If Stubb finds that some motifs are highly 
correlated with respect to order, it can make use of correlated transition probabilities. This means that the 
probability of entering a specific motif state will dependent on which previous motif was output. Stubb can 
also utilize phylogenetic comparisons between sequences from multiple species to highlight potentially 
regulatory modules.

The table contains short descriptions of the eight methods included in the assessment. All methods except for CisModule rely on supplied PWMs 
and consider matches on both strands, usually with equal probability (however, Stubb can estimate strand biases for all PWMs in a preprocessing 
step). Not all methods are able to consider overlapping single binding sites, which do occur in a few modules.

Table 2: Description of module discovery tools (Continued)
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CMA and ModuleSearcher performing significantly better
than the rest. Additional graphs detailing the effects of
added noise with respect to each individual sequence set
and the variations due to different decoy selections can be
found at our web site.

Results for the liver and muscle datasets are shown in Fig-
ures 7 and 8. For these datasets we supplied only four

liver- and five muscle-PWMs respectively, and no decoy
matrices were used. Since the modules in these datasets do
not necessarily include binding sites for all of these motifs
however, we could calculate motif-level scores by treating
the PWMs for the missing motifs as false instances. All
methods, except CisModule, did a better job on locating
the modules in the liver dataset than in the TRANSCom-
pel dataset. Cluster-Buster scored highest, but Stubb

Table 3: Correlations between dataset properties and nCC scores

TRANSFAC PWMs Custom PWMs

Average nCC Highest nCC Average nCC Highest nCC

Number of sequences -0.23 -0.16 -0.23 -0.05
Length of shortest sequence 0.30 0.18 0.30 0.13
Average sequence length 0.40 0.33 0.42 0.43
Total sequence set length -0.19 -0.12 -0.18 -0.02
Number of module instances -0.38 -0.32 -0.40 -0.19
Size of smallest module 0.61 0.69 0.67 0.73
Size of largest module 0.26 0.34 0.19 0.35
Average module size 0.60 0.68 0.59 0.70
Module size standard deviation 0.23 0.29 0.13 0.29
IC-content (lowest) 0.46 0.45 0.73 0.47
IC-content (total) 0.75 0.73 0.78 0.54
Module/background-ratio 0.53 0.61 0.51 0.63

We conducted a simple correlation analysis to examine which properties of the TRANSCompel sequence sets and PWMs correlated best with the 
highest and average nCC scores obtained by the methods on these sets. "IC-content (lowest)" is the information content (IC) of the PWM with the 
lowest IC of the two involved in each sequence set. The information content of a PWM is inversely related to the amount of variability in the 
binding patterns from which the PWM is constructed [38]. PWMs with higher information content are more specific and match only sites with a 
high degree of similarity to the consensus motif. "IC-content (total)" is the sum of IC-contents for the two motifs (for TRANSFAC PWMs we used 
the PWM with the highest IC in each equivalence set to represent the motif). The three highest values are highlighted in each column. The 
properties that seem to correlate best with methods' performances are the minimum and average size of modules (in basepairs) and the total IC-
content, which would imply that module discovery is harder for datasets containing short and degenerate modules.

Combined performance scores on the full TRANSCompel datasetFigure 2
Combined performance scores on the full TRANSCompel dataset. Combined nucleotide-level scores obtained for 
different performance measures when using TRANSFAC PWM sets (a) and custom matrices (b).
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showed the largest improvement in nCC score. The motif-
level scores, on the other hand, were not very high, which
can most likely be attributed to overprediction of motifs

in the case of CMA and underprediction for MSCAN.
Results on the muscle dataset display the same main ten-
dencies as the other two datasets, but for the first time,

Motif-level correlation scores with 50% noise in the PWM setsFigure 4
Motif-level correlation scores with 50% noise in the PWM sets. The graphs show mCC scores when using TRANSFAC 
PWM sets (a) and custom matrices (b) with an equal proportion of decoy matrices added. Each value represents the average 
score over ten runs with different decoy selections.
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Nucleotide-level correlation scores with 50% noise in the PWM setsFigure 3
Nucleotide-level correlation scores with 50% noise in the PWM sets. The graphs show nCC scores when using 
TRANSFAC PWM sets (a) and custom matrices (b) with an equal proportion of decoy matrices added. Each value represents 
the average score over ten runs with different decoy selections.
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CisModule obtains an nCC score above zero and actually
bypasses one the other methods.

Discussion
Objective benchmarking efforts are important for provid-
ing unbiased reviews of published methods and for estab-

lishing the methodological frontier with respect to
bioinformatics techniques. In this study we wanted to
explore benchmarking in the context of module discovery
and to investigate related design issues such as dataset
construction and performance evaluation.

Motif-level correlation scores at different noise levelsFigure 6
Motif-level correlation scores at different noise levels. Plot of mCC scores at increasing noise levels when methods are 
supplied with TRANSFAC PWM sets (a) and custom matrices (b). Scores shown are averages over all sequence sets and decoy 
selections at each noise level.
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Nucleotide-level correlation scores at different noise levelsFigure 5
Nucleotide-level correlation scores at different noise levels. Plot of nCC scores at increasing noise levels when meth-
ods are supplied with TRANSFAC PWM sets (a) and custom matrices (b). Scores shown are averages over all sequence sets 
and decoy selections at each noise level. MCAST was unable to function properly with very large PWM sets and was therefore 
assigned a score of zero at the 99% level.
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Benchmarking of tools for composite motif discovery is
harder than benchmarking of single motif discovery tools,
since the former methods are more diverse with respect to
input requirements and the type of predictions they make.
We have aimed at creating a simple and general frame-
work that can be used with a wide range of methods. Nev-
ertheless, we do not provide every kind of information

that programs might ask for, and not all module discovery
tools can be fairly assessed with our system.

To construct the benchmark datasets we relied on real
genomic sequences containing experimentally verified
modules, rather than creating synthetic datasets with fab-
ricated and planted modules. The motivation for only

Performances on the muscle datasetFigure 8
Performances on the muscle dataset. Scores obtained on the muscle dataset for different performance measures at 
nucleotide-level (a) and motif-level (b).
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Performances on the liver datasetFigure 7
Performances on the liver dataset. Scores obtained on the liver dataset for different performance measures at nucleotide-
level (a) and motif-level (b).
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using real data was to avoid introducing artificial bias
related to the composition and constraints of modules.
Good benchmark datasets should be diverse enough to
discriminate the behaviour of different methods, when
possible, and provide them with a wide range of realistic
challenges. For module discovery these challenges could
include discovering modules with few or many single
motifs, tightly clustered or widely spaced motifs and mod-
ules with highly conserved or degenerate binding sites.
Ideally, benchmark datasets should also be novel to the
methods tested. Currently the amount of experimental
data available is too limited to achieve all of these goals.
The particular dataset we have constructed based on
TRANSCompel data is novel in terms of performance test-
ing. The modules in TRANSCompel are short, however,
and to include larger modules we were forced to rely on a
few well-known datasets from liver and muscle regulatory
regions that have been used extensively in the past for test-
ing and possibly for designing and developing module
discovery methods. Some methods might therefore be
intrinsically biased to perform well on these sets. It is con-
spicuous, for instance, that CisModule – which was tested
with muscle data in its original publication – scored com-
parably well to the other methods on our muscle set, yet
close to zero on both the TRANSCompel and liver data-
sets.

We chose the correlation coefficient as our main statistic for
evaluating and comparing module discovery methods
because it captures aspects of two of the most commonly
used performance measures – sensitivity and specificity –
into a single score value. However, since different statistics
often favour different methods, it is prudent to consider
several measures to get a better comprehension of each
method's qualities. The sensitivity measure (Sn), for
instance, tells us to what extent a method's predictions
include the true module instances. At the nucleotide level,
MCAST seems overall to be the most sensitive method
among those tested here, while CMA shows high sensitiv-
ity on the TRANSCompel dataset. Yet, to achieve these
high sensitivity scores the methods at the same time make
a lot of false positive predictions, as can be seen from the
lower positive predictive values (PPV). MSCAN and Module-
Searcher, on the other hand, generally have the highest
nucleotide-level PPV scores, which tells us that the posi-
tive predictions made by these two programs are more
trustworthy than predictions made by the other programs.

PWMs from the TRANSFAC database were used to repre-
sent both the true motifs and the decoys for the TRANS-
Compel dataset. A potential problem when using
TRANSFAC is that many of the matrices are quite similar
to each other [28]. This is partly due to some TFs being
represented by several PWMs, but also because different
TFs might bind to similar-looking motifs. As a result,

module discovery programs can be unduly penalized for
selecting an incorrect PWM at the motif level, even though
the predicted PWM is very similar to the target. We have
tried to remedy this situation by grouping together PWMs
that correspond to the same TFs and consider these as the
same motif with respect to scoring. However, there might
still be other matrices in the decoy sets that can match
with the annotated binding sites.

Since we are using real genomic sequences, some of the
predicted modules that we label as false positives can in
fact represent unannotated true positives, and so the
actual performance of methods might very well be better
than indicated, especially at high noise levels.

It should be noted that while the annotated length of a TF
motif may vary from binding site to binding site, the
length of a standard PWM is fixed, and PWMs do not
always match the locations of their corresponding bind-
ing sites precisely. Perfect nCC scores can therefore be dif-
ficult or even impossible to obtain. The nCC score also
drops fast if a method predicts a larger module region
than what is annotated, even though the target module is
correctly covered by the predicted region. This can
severely penalize methods that tend to predict large mod-
ule regions, especially on the TRANSCompel dataset
where most modules are rather short.

Some programs can utilize additional information to
strengthen confidence in predictions and improve their
performance. For instance, Stubb is a sensitive method
and the predictions it makes usually include the correct
modules, especially when using large PWM sets; yet, its
CC-scores are generally low because it simultaneously pre-
dicts a lot of false positives. Stubb can employ a phyloge-
netic footprinting [29] strategy to filter out many of these
false predictions, but it requires that orthologous
sequences from related species are supplied along with the
regular sequences. However, in order to make the tests as
comparable as possible, we have not made such addi-
tional information available to the programs in our
benchmark test, unless the type of information can be
expected to be readily obtained for any dataset.

Caution should thus always be taken when interpreting
score values, since the reported scores might not accu-
rately reflect the optimal capabilities of the methods. Also,
we have run the programs using mostly their default
parameter settings. We are fully aware that adjusting the
parameters can greatly affect the performance of a pro-
gram, however, selecting the most appropriate parameter
values be can be tricky and running methods with default
settings is probably closer to typical usage.
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It is inherently difficult to conduct an assessment that is
fair to all methods. Even the most minute design choice
can influence the outcome if it unintentionally favours
some methods over others. For instance, limiting the size
of input sequences will be beneficial for most module dis-
covery tools since it improves the signal-to-noise ratio. On
the other hand, using too short sequences can disadvan-
tage methods that require substantial amounts of data in
order to derive elaborate background models. The best
solution, then, is to try to balance the scales by subjecting
methods to several different situations with datasets
exhibiting a range of characteristics. This will make it
harder still to declare a winner, since it will inevitably lead
to even greater variation in the results. Then again, the
purpose of benchmarks tests need not be to identify a sin-
gle program that can be recommended for all needs, but
rather to determine how different methods behave under
different conditions, thus enabling us to select the most
appropriate tool to use in specific situations.

The results from our assessment of eight published mod-
ule discovery tools show that the top scoring method does
vary a lot between datasets. On the TRANSCompel data-
set, for instance, all methods save Stubb and CisModule
score better than the others on at least one sequence set.
But there is also a tendency for some methods to perform
consistently better or worse across several datasets. Cis-
Module performed poorly on most sequence sets, Cister
and Stubb usually scored somewhere in the middle, while
CMA, ModuleSearcher, MSCAN and Cluster-Buster were
often found among the top scoring methods on each set.
CMA and ModuleSearcher were clearly best at identifying
the correct motif types involved in the modules, and they
were also the only methods capable of coping with large
and noisy PWM sets. The other PWM-reliant methods
appear to be more suited for detecting modules with some
prior expected composition than for discovering com-
pletely new and uncharacterized modules.

There was some variation when using custom PWMs as
opposed to TRANSFAC PWM sets. The average perform-
ance over all methods on the whole TRANSCompel data-
set was about the same in both cases, but there were a lot
of local differences between sequence sets. The most
extreme example can be seen on the Ebox-Ets sequence set
where MSCAN scores highest of all with TRANSFAC
matrices, yet completely fails to find any true modules
with custom matrices. The average deviation in scores
when using either PWM set was about 0.11 and the effect
could go both ways. MCAST was the only method which
almost consistently scored better with one set, namely
custom matrices.

Conclusion
While improvements can still be made to our systems, we
have taken a first step towards developing a comprehen-
sive testing workbench for composite motif discovery
tools. The assessment system is based on two established
datasets for module discovery plus a novel dataset we con-
structed from TRANSCompel module annotations. The
performance of methods on our novel set is comparable
to the previous two, demonstrating its utility as a bench-
mark set. Together these datasets challenge methods to
discover modules with different characteristics and vary-
ing levels of difficulty.

Not surprisingly, trying to discover composite motifs de
novo proves to be much more challenging than relying on
PWMs as an aid to detect potential single binding sites.
With large and noisy PWM sets, however, it becomes cru-
cial to consider multiple instances of conserved motif
combinations in order to identify true modules. In gen-
eral, our study shows that there are still advances to be
made in computational module discovery.

Methods
TRANSCompel dataset
Our main dataset was based on modules annotated in the
TRANSCompel database [22], which is one of very few
databases that contain entries for composite elements
whose combinatorial binding effects have been verified
through biological experiments. It comes in both a profes-
sional licensed version and a smaller public version. Our
dataset was selected from TRANSCompel Professional
version 9.4 which contains 421 annotated module sites
from 152 different module classes. The largest modules
registered in TRANSCompel are triplets (34 entries) with
the remaining being pairs of binding sites (387 entries).
To ensure a minimum of support for each module class,
we considered only classes that had at least five annotated
module sites. Unfortunately, this requirement excluded
all triplets and left us with only pairs. After further discard-
ing a few modules that were too weak to be detected with
stringent PWM-thresholds, we ended up with ten
sequence sets encompassing 81 module binding sites in
63 different sequences. The longest module spanned 135
bp with the average being 33 bp. The binding sequences
of modules are specified in TRANSCompel by using
uppercase letters to indicate bases of the constituent single
motifs and lowercase letters for the intra-module back-
ground. We used the supplied references to the EMBL
database [30] to obtain additional sequence bases flank-
ing these module sites but set an upper limit of 1000 bp
on the length of the sequences used. Most of the
sequences were from human or mouse but also some
other mammalian and a few viral sequences were
included. Each sequence set was constructed around mod-
ules of one particular class made up of two single motifs



BMC Bioinformatics 2008, 9:123 http://www.biomedcentral.com/1471-2105/9/123

Page 14 of 16

(page number not for citation purposes)

from the following set of eleven: AML, AP-1, C/EBP, E-
box, Ets, IRF, HMGIY, NF-AT, NF-!B, Sp1 and PU.1. The
sequence sets contained between 4 and 16 sequences and
the sequences themselves ranged in length from 294 to
1000 bp (average 884 bp). All sequences contained at
least one module instance, but sometimes up to three, of
the designated class. Some sequences also included anno-
tated modules of other classes. This will usually not be a
problem at low noise-levels, because the other modules
will only interfere if the set of PWMs supplied to a pro-
gram contains decoy matrices corresponding to the motifs
involved in these modules. As the noise-level approaches
99%, however, this will inevitably happen because the
PWM sets then include the complete TRANSFAC collec-
tion. Since we use real genomic data, there is also always
a possibility that additional unknown modules are
present in the sequences. Even so, for a particular
sequence set, only module sites corresponding to the des-
ignated class of that set were considered true positives.

Although the TRANSCompel database itself does not pro-
vide matrix representations for the motifs involved in
modules, its companion database TRANSFAC does [22].
Unfortunately, there is not a one-to-one correspondence
between transcription factors and matrices in TRANSFAC,
and a single factor (or family of factors that recognize the
same motif) can be represented by several different
PWMs. Instead of selecting just one canonical PWM to use
for each motif, we collected all matrices related to a spe-
cific motif and treated the whole set as an equivalence
class. Thus, a motif can be represented by either one of the
PWMs in the corresponding set, and predicted binding
sites in the sequences are considered to be instances of the
same motif even if the binding sites are predicted by dif-
ferent PWMs from the equivalence set.

As an alternative to these TRANSFAC sets, we also con-
structed custom PWMs for the eleven motifs involved in
our module classes. For each motif we extracted the corre-
sponding annotated binding sites plus four flanking bases
on each side from our sequences and used MEME [31] to
align them and infer a PWM model for the motif. Con-
structing matrices from the same binding sites they will
later on be used to detect introduces a circularity which
will probably make these sites easier to find than if the
PWMs had been constructed from independent
sequences. This was intentional, however. Since the pur-
pose of our study was to assess the methods' abilities to
find significant combinations of binding sites rather than
individual sites, we wanted the individual sites to be easily
detectable. To verify that the annotated single binding
sites in the TRANSCompel dataset were indeed detectable
by our matrices, we used an algorithm from the "TFBS"
package [32] to match the PWMs against the sequences.
Of the 81 single binding sites in the dataset, all but ten

could be detected with an 85% relative cut-off threshold.
When we lowered the cut-off to 75%, all sites could be
detected. Single binding sites were considered to be
detected if a predicted match to the corresponding PWM
overlapped with the annotated binding site. For the
TRANSFAC matrices, we regarded it as sufficient if any one
of the matrices in the equivalence set made a prediction
that overlapped with the annotated site.

Liver and muscle datasets
The liver dataset was based on a set of regulatory regions
used as a positive training set to develop a model of liver
specific regulation in the paper by Krivan and Wasserman
[23]. Sequence data as well as PWM models of four TFs
implied in liver specific regulation (C/EBP, HNF-1, HNF-
3 and HNF-4) was downloaded from their supplementary
web site [33]. After inspection of the sequence annota-
tions, we discarded from further consideration those reg-
ulatory regions that only contained a single TFBS and also
smaller annotated regions that were completely over-
lapped by larger regions. Furthermore, we ignored a small
set of TFs that only had one binding site each in the whole
dataset. This left us with regulatory regions consisting of
two or more binding sites for the four TFs previously men-
tioned. The start position of the first TFBS and the end
position of the last TFBS in each region were used as mod-
ule boundaries, and the modules thus obtained varied in
length from 26 to 176 bp with and average of 112 bp.
Long sequences were cropped to a maximum of 1000 bp.
The resulting dataset after curation consisted of 14 mod-
ules in 12 sequences with 51 binding sites for 4 different
TFs. Eight of the sequences were human, two were from
rat and the last two from mouse and chicken.

For the muscle dataset we selected a subset of the regula-
tory regions from the paper by Wasserman and Fickett [7]
obtained from their web site [34]. Five motifs (Mef-2, Myf,
Sp1, SRF and Tef) were reported as important in muscle
regulation, and PWMs for these motifs were downloaded
from the same site. We chose regions that had at least two
annotated binding sites for motifs in this set and used the
first and last binding site in the regions to delimit the
modules. Since most of the sequences at the website were
excerpts and rather short, we tried to extend them where
possible by obtaining the original sequences from EMBL,
though limiting the sequences to a maximum of 1000 bp
as usual. The final muscle dataset used contained 24
sequences with one module in each and a total of 84 TFBS
for 5 motifs. The smallest module spanned 14 bp and the
longest 294 bp (average 120 bp). 10 sequences were from
the mouse genome, 6 from human, 5 from rat, 2 from
chicken and 1 from cow.

Further statistics on the datasets and PWMs used are sum-
marized in Table 1 and Additional File 1.
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Running the programs
Most of the methods tested could be run directly from the
input sequences and a set of PWMs. Both CMA and Mod-
uleSearcher, however, rely on separate programs to match
the PWMs against the sequences in a preprocessing step.
For ModuleSearcher we used the program MotifScanner
since both of these methods are part of the Toucan tools
suite for regulatory sequence analysis [35]. MotifScanner
was run with a third order background model based on
vertebrate promoter sequences, which was also available
with Toucan. CMA comes bundled with Match [36] for
PWM scanning. Match utilizes two different threshold val-
ues which should be individually fitted for each specific
PWM. Preconstructed cut-off profiles for TRANSFAC
matrices are available for different conditions, for instance
to minimize either the false positive or false negative dis-
covery rate or to minimize the sum of these two rates. As
suggested in the CMA publication, we used cut-off profiles
designed to minimize the false negative discovery rate.
Similar cut-off profiles for the liver, muscle and custom
matrices were estimated according to the procedure
described for Match [36]. For each PWM we generated
50000 random oligos by sampling from the PWM distri-
bution. The PWM was then scored against these oligos
with Match, and a cut-off threshold was chosen so that
90% of the oligos obtained a match score above this
threshold. Since CMA is based on a discriminative model,
it also requires a set of negative sequences along with the
positive dataset. As negative data we selected 1000 bp pro-
moter segments from 50 random housekeeping genes that
were part of the default negative gene set included with
the method's web service [37].

Availability and requirements
The web service for assessing composite motif discovery
tools, as well as all the results from our benchmark test, is
available at http://tare.medisin.ntnu.no/composite.
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Abstract. Discovery of motifs in biological sequences is an important
problem, and several computational methods have been developed to
date. One of the main limitations of the established motif discovery meth-
ods is that the running time is prohibitive for very large data sets, such
as upstream regions of large sets of cell-cycle regulated genes. Parallel
versions have been developed for some of these methods, but this re-
quires supercomputers or large computer clusters. Here, we propose and
define an abstract module PAMM (Parallel Acceleration of Motif Match-
ing) with motif matching on parallel hardware in mind. As a proof-of-
concept, we provide a concrete implementation of our approach called
MAMA. The implementation is based on the MEME algorithm, and uses
an implementation of PAMM based on specialized hardware to acceler-
ate motif matching. Running MAMA on a standard PC with specialized
hardware on a single PCI-card compares favorably to running parallel
MEME on a cluster of 12 computers.

1 Introduction

Computational discovery of motifs in biological sequences has many important
applications, the best known being discovery of transcription factor binding sites
(TFBS) in DNA and active sites in proteins. More than a hundred methods have
been developed for this problem, all with different strengths and characteristics.
Methods that use probabilistic motifs (typically PWMs) are often favored be-
cause of their high expressibility. One of the best known and most widely used
methods is MEME [1]. MEME is a flexible tool that uses Expectation Maxi-
mization (EM) to discover motifs as position weight matrices (PWMs) in both
proteins and DNA.

One of the main limitations of current PWM-based motif discovery methods
is that the running time is prohibitive for large datasets such as upstream regions



of large sets of cell-cycle regulated genes. Parallel versions have been developed
for some methods, for instance the paraMEME [2] version of MEME, but this
typically requires supercomputers or computer clusters. Specialized hardware,
such as Field Programmable Gate Arrays (FPGAs), may be a very viable alter-
native to this. FPGAs have previously been used in bioinformatics for instance
to accelerate homology search [3], multiple sequence alignment [4] and phylogeny
inference [5].

In this paper, we propose and define an abstract module PAMM (Parallel
Acceleration of Motif Matching). Proposing the PAMM module serves two pur-
poses. Firstly, it introduces acceleration of motif matching by parallel hardware
to the motif discovery field. Secondly, PAMM serves as an interface between the
development of modules for parallel matching of motifs and the development of
algorithms that can make use of parallel motif matching.

As a first implementation of our methodology, we propose a method MAMA
(Massively parallel Acceleration of the Meme Algorithm) that accelerates MEME
by the use of an existing pattern matching hardware called the Pattern Match-
ing Chip (PMC) [6]. The PMC can match a subset of regular expressions with
massive parallelization1. Since this chip was not intended for weighted pattern
matching, some transformations are needed when representing and matching
motifs. Nonetheless, with these transformations in place we achieve very effi-
cient matching of PWMs against sequences. Running MAMA on a standard PC
with specialized hardware on a single PCI-card compares favorably to running
paraMEME on a cluster of 12 computers.

2 Parallel acceleration of motif matching

An ever increasing number of computing platforms offer capabilities for parallel
execution of programs. Specialized hardware exists to relieve the main CPU of
specific tasks, and FPGAs allow the creation of modules for application specific
hardware acceleration. To allow the field of motif discovery to realize the full
potential of modern computing hardware, the algorithms need to take advantage
of this. Here we propose and define an abstract module PAMM that can be
used for accelerating motif discovery by matching motifs against sequences in
parallel. The purpose of PAMM is to serve as an interface between development
of modules for parallel matching of motifs and the development of algorithms
that can make use of parallel motif matching. An overview of the PAMM module
is presented in Figure 1. The input to PAMM is a set of motifs M and a set of
sequences S, while the output depends on the requirements of the algorithm in
question. Each motif is represented as a matrix.

As the figure shows, there are two main parts in the PAMM module; a motif
matcher and a post processing unit. The motif matcher calculates the match
scores for each motif, while the post processing unit refines the results.

1 More information at http://www.interagon.com
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Fig. 1. The structure of the PAMM module.

2.1 Motif matching

The core of a PAMM implementation is a motif matcher that determines match
scores cm

s,p for each motif m when aligned at each position p in each sequence
s. As the number of motifs and sequences that can be processed in parallel will
be limited in any practical implementation of the module, the algorithm must
partition the inputs accordingly.

As a standard set-up we propose that a limited number of motifs are first
loaded into the PAMM, and that sequence data are then streamed through. The
motif matcher will continually calculate match scores for each motif against the
sequences. When all motifs have been matched against the complete sequence
data, a new set of motifs can be loaded into the module and matched against
the sequences. As this means that the same sequences will typically be streamed
through the PAMM many times, practical implementations could have an option
to store a limited amount of sequence data in local memory to further accelerate
matching and reduce bandwidth usage. This set-up is illustrated in Figure 2(a).

An alternative set-up could be to first load a limited amount of sequence
data into the PAMM, and then stream motifs through the module. This could
be an effective solution for cases with relatively short sequence data and large
number of motifs. This setup is illustrated in Figure 2(b).

2.2 Post-processing of match scores

The number of results from the motif matcher is |M | ∗ |S|, where M is the set
of motifs and S is the set of all sequence data. This potentially large amount
of results must somehow be processed by the system. By incorporating post
processing, the number of results returned from a PAMM implementation can
be reduced substantially. This reduces result processing in the algorithm module,
as well as bandwidth requirements in the case where the PAMM and algorithm
modules reside on different (sub)systems.

We envision three main branches of post processing for PAMM implementa-
tions; organizing, filtering, or aggregating (or a combination of these).

An organizing post processor organizes the results in a way that facilitates
efficient further processing of results outside the PAMM module. It could for
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Fig. 2. Two possible set-ups of the motif matcher

instance return the match scores sorted by value. Although this does not decrease
bandwidth usage, it may allow the CPU to process the results more efficiently.

A filtering post processor filters out uninteresting match scores to save pro-
cessing time outside the PAMM module. It could for instance make the PAMM
return only match scores above a threshold given for each motif. Although this
discards some information, our own experiments (not presented here) show that
the normalized match scores typically follow a distribution where most sequence
offsets have a negligible likelihood of being motif locations. In combination with
an organizing post processor, the k highest match scores could be returned, or
all scores at most l lower than the highest match score.

An aggregating post processor is tailored to a specific motif discovery algo-
rithm and may be particularly (computationally) effective. If the PAMM is to be
used in connection with stochastic optimization methods like Gibbs sampling,
it can be set to return one sequence offset per sequence, with offsets chosen
randomly based on the normalized probabilities of motif occurrences. Alterna-
tively, if the PAMM is used in connection with EM methods, a new motif may
be constructed from the match scores directly in hardware (maximization step
of EM). This new motif would represent a weighted average of every window in
the sequences, with windows weighted by the match score of a previous motif.

2.3 Motif representations

The representation of a motif in PAMM is as a motif matrix m ∈ M with element
values mi,x, where i is motif position and x is a symbol from the alphabet, i.e.

x ∈ {A, C, G, T}. The element values represent individual scores for each symbol
x from the alphabet at each position i in the motif. The motif is aligned against
sequences as a sliding window. For a given alignment at position p in sequence
s, the score of motif position i is mi,x, where x is the symbol at position p + i in
sequence s. The match score cm

s,p of the motif is the sum of scores at each motif

4



position. This motif representation maps directly to PWMs (log-likelihood or
log-odds) that are often used for motif discovery.

In addition to PWMs, strings allowing mismatches [7, 8] (a consensus string
allowing a certain hamming distance to an occurrence) and IUPAC strings [9, 10]
(strings of characters and character classes) are commonly used models in motif
discovery. Both of these can be represented by a motif matrix. For a motif matrix
representing a mismatch string, elements mi,x corresponding to the consensus
symbol at a position have value 1, and all other matrix elements are 0. Matrix
scores c >= n − h corresponds to a hit for the mismatch expression, where
n is motif length and h is allowed number of mismatches. This is shown in
Figure 3(a). For a motif matrix representing an IUPAC string, elements mi,x

corresponding to symbols in the character class at a position are valued 1, and
all other matrix elements are 0. Matrix scores c = n corresponds to a hit for the
IUPAC expression. This is shown in Figure 3(b)
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Fig. 3. Matrix representation of discrete motif models

Other and more complex motif models could also be represented with such a
matrix (variants of Markov models and bayesian trees have for instance been used
in motif discovery). This will typically require a larger motif matrix and some
preprocessing of the sequence data. Such preprocessing could be done by addi-
tional hardware modules within the PAMM. The generality of the matrix rep-
resentation makes it suitable as a standard motif representation for the PAMM
module.

3 Practical implementation

This section describes a motif discovery algorithm that uses a PAMM imple-
mentation to accelerate motif matching. To explore the potential of PAMM in
motif discovery, we have used available hardware (PMC) to implement a PAMM
module.

We have analyzed the running time of the MEME algorithm and developed
a motif discovery algorithm MAMA based on MEME that uses the PAMM
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implementation for motif matching in the performance-critial parts. As this is
a first implementation and a proof-of-concept, we have only made adjustments
to the MEME algorithm that make it run faster while not altering which motifs
are discovered.

3.1 Motif discovery using the PAMM module

MEME is a a motif discovery algorithm based on Expectation Maximization
(EM) that match motifs against sequences in the expectation step. Profiling
of the MEME implementation showed that matching initial motifs (starting
points) against sequences consumed most of the total running time. We have
therefore made the necessary adjustments to allow parallel acceleration of this
first iteration of MEME.

MEME running time EM was first used for motif discovery by Lawrence et al.

[11]. As EM is easily trapped in local minima, they used several random starting
points (initial PWMs) for EM. This was improved in the MEME algorithm of
Bailey and Elkan [1], which use every substring of a given length in the data set
as starting point. More specifically, for every substring a PWM is constructed
with a fixed weight to the elements in the matrix corresponding to symbols in
the substring, and another, lower fixed weight to the other elements. As this
typically amounts to very many starting points, they run EM for one iteration
from each starting point, and then only continue with those PWMs that seem
most promising.

Inspection of the MEME implementation2 shows that specialized code is used
for this first iteration, using dynamic programming to exploit overlap between
starting points. PWMs generated from each substring in the data set are first
matched against the sequences (expectation step). For each PWM, the sequence
offsets are then sorted by match score and the k highest scoring offsets used to
generate a PWM candidate for the next iteration (maximization step). Finally,
the significance values for all candidate PWMs are computed, and the most
significant ones kept and refined (iterated until convergence).

MEME tries a very large number of starting points in the first iteration,
and only continues with a few most promising motifs. Our profiling showed
that the first iteration amounted to around 97% of total running time in our
tests, using data sets supplied with MEME, the TCM model, and otherwise
default parameters. Although this number might vary for different test cases
and parameter settings, it shows that the first iteration is the bottleneck when it
comes to running time of the algorithm. Furthermore, matching motifs against
sequences and sorting offset scores dominate the running time.

Exploration of starting points As the first iteration dominates the running
time of MEME, we have focused on accelerating this part. More specifically, we

2 Version 3.5.0, downloaded from http://meme.nbcr.net/downloads/
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have used the PAMM module to match PWMs and sort offset scores in the first
iteration, and left the remaining parts of MEME unaltered.

Exploration of starting points differs a bit from all other iterations in MEME.
First, all matrix elements of starting point PWMs has one of two values: a fixed
high value for elements corresponding to the symbol of the substring it is based
on, and a fixed low value for every other element. Thus, all sequence windows
at a given hamming distance from the substring a PWM is based on will get
the same PWM score. Ranking of sequence offsets based on PWM score will
therefore in the first iteration be equal to ranking of sequences windows based
on hamming distance. Secondly, in a general EM iteration each sequence window
is used in the maximization step (weighted by the expectation values). When
maximizing the PWMs in the first iteration, however, only the sequence windows
corresponding to the top k expectation values are used.

These properties are exploited in MAMA by using a PAMM implementation
that represents motifs efficiently and returns sequence offsets sorted by match
score. The motif discovery algorithm thus only needs to consider the first k
sequence offsets returned by the PAMM implementation.

3.2 Implementation of the PAMM module

We have implemented PAMM using available hardware for parallel pattern
matching. This hardware, The Pattern Matching Chip (PMC) [6], is a multiple
instruction single data (MISD) parallel hardware on a PCI card. One PCI-card
can match up to one thousand simple patterns against 100 MB of sequences per
second, and it is quite straightforward to set up searches. Because of its effi-
ciency and ease of use, we have used the PMC for this first implementation of
the PAMM module. The PMC implementation covers both motif matching and
organization of match scores.

Motif matching As the PMC only supports binary matching of patterns,
and integer summation, the PWM match scores need to be discretized. The
discretization is based on the fact that the log-likelihood for any base pair in any

location is in the interval
[

log( β
n+4β ), log( n+β

n+4β )
]

, where β is the pseudo-count

and n is the number of motif sites, given as parameters to MEME. Instead of
using a fixed granulation of the interval, we define a granulation parameterized
with ε. Then, each value mi,x in the PWM m is represented by a number ci,x =

$
log(mi,x)−log( β

n+4β
)

ε
% of processing elements (PEs) in the specialized hardware.

The number of PEs matching a symbol of the alphabet at a given position is thus
proportional to the log-likelihood value of that symbol at that position. When
the PWM is aligned with a sequence window, the sum of PE match scores at
a motif position then corresponds to the score at that position. Note that since
only one of the four nucleotides can match at a position, the other three do not
contribute to the score. Furthermore, as PWM log-likelihood is the the sum of
log-likelihoods for each position, the total PWM score is given by the sum of
scores of all positions.
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Two optimizations are worth mentioning. First, if the minimum score ci =
minx(ci,x) at a given position i is higher than zero, we may subtract ci from
each score value at that position, and then add ci to the score after the search.
Secondly, if c = maxi,x(ci,x) is the maximum score value of the motif, and more
score values are close to c than are close to zero, we then use transformed score
values c′i,x = c− ci,x and compute total PWM score as: c · I −

∑

i

∑

x c′i,x, where
i runs over all I positions of m. Both optimizations give equivalent results to the
basic method while using less PEs on the PMC, thus allowing more matrices to
be matched simultaneously.

The discretization method considered above can be used generally for match-
ing arbitrary PWMs against sequences. The approximation accuracy clearly de-
pends on the granulation parameter ε. As discussed in section 3.1, the PWMs
are regular in the first iteration of MEME. Motif matching can then be done
with degenerate use of discretization, thereby avoiding approximation problems.
To ensure that MAMA gives the same results as MEME, we have therefore only
used hardware-acceleration in the first iteration, and used a standard software
solution for motif matching in the remaining iterations. Since the running time
of MEME is strongly dominated by the first iteration, we still achieve significant
speed-ups.

Organizing match scores As the PMC provides massive parallelity, we are
able to calculate expectation values for many PWMs in parallel. We also use this
parallelity to scan each PWM against the sequences several times with different
hit thresholds. By searching with several thresholds in parallel, we can make the
PMC return sequence offsets sorted by decreasing match score. This corresponds
to a PAMM organizing module for post-processing of match scores, and avoids
CPU-intensive sorting of offsets after the expectation step.

4 Results

We have compared the performance of our hardware accelerated version MAMA
with the CPU based version of MEME on data sets of different sizes. On all
test referred to here we have used the TCM model of MEME, which is the most
general model and presented as the main model in the original MEME article
[1]. We ran our tests with the following hardware configuration:

– MAMA: 2.8 Ghz Pentium4 PC with 1 GB memory and the specialized hard-
ware on a single PCI card.

– MEME: 2.8 Ghz Pentium4 PC with 1 GB memory.
– ParaMEME: a cluster of 12 computers, each 3.4 Ghz Pentium4 PC with 1

GB memory.

We evaluated the performance of MAMA on the largest data set (mini-
drosoph) supplied with MEME and on 5 data sets of human promoter regions,
consisting of from 100 to 1600 sequences of 5000 base pair length from cell cycle
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regulated genes (J.P.Diaz, in preparation). Data sets, sizes and running times are
given in Table 1 for both MEME, paraMEME and MAMA. We see that MAMA
gives a significant speed-up compared to MEME on all datasets, and that the
speed-up increases with data set size. On the 1 Mbp (Million base pairs) data
set, MAMA is more than twenty times as fast as MEME, and on the 8 Mbp
data set it is even four times as fast as paraMEME on the 12-computer cluster.
For all data sets, standard MEME and the hardware-accelerated version MAMA
discovers the same motifs.

Table 1. Results for MEME, paraMEME and MAMA on 6 data sets.

Running time (hours)
Data set Size (Mbp) MEME paraMEME MAMA

mini-drosoph 0.5 2.6 0.19 0.27
hs 100 0.5 2.7 0.20 0.23
hs 200 1 11 0.87 0.50
hs 400 2 104 3.6 1.7
hs 800 4 X3 15 6.4
hs 1600 8 X3 64 13

5 Discussion and conclusion

We have in this paper proposed an abstract module PAMM for parallel hardware-
acceleration of motif discovery. This module could be used for acceleration of
many different motif discovery methods. The acceleration could be especially
large if post-processing of match scores is tailored to a specific algorithm.

As an exemplification and proof-of-concept we have developed a version of
the MEME algorithm called MAMA that uses available hardware to implement
a PAMM module. As shown in section 4, MAMA achieves a speed-up of more
than a factor of 10 as compared to MEME on a single CPU. Our working im-
plementation thus shows that the PAMM module indeed has a potential.

Furthermore, our work shows examples of both problematic issues and po-
tential rewards in connection with hardware acceleration of algorithms within
bioinformatics. Since we have implemented weighted motif matching on hardware
that was not specifically built for that purpose, we had to do some transforma-
tions of the problem. The issues and solutions with regards to discretization and
parallelization are relevant for many algorithmic solutions involving specialized
hardware.

A natural continuation of the work presented in this paper is to develop a
FPGA-based implementation of PAMM. Such a solution would be more readily
available for practical use and further refinement by the scientific community.

3 Not tested due to excessive running times
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It could potentially also give even higher speed-ups. On the other hand, such a
solution presumes a solution of representing PWMs on FPGA that is both effi-
cient and flexible. We have ongoing work in this direction that shows promising
results.
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