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Background: The Arti�cial Pancreas Trondheim (APT) research group is
working towards an arti�cial pancreas (AP) for people with diabetes mellitus
type 1 (DM1). An AP is a fully automated system that adjusts the exoge-
nous insulin administration based on continuous glucose monitoring (CGM)
and possibly other measured variables. The main components of an AP are a
glucose sensor, an insulin infusion pump including an insulin reservoir and a
delivering tube, and a control unit computing the needed amount of insulin.

Faults can occur in all of these components and impair the safety of the user
if the system behaves abnormally. The control unit should therefore include
functions for fault detection and diagnosis that trigger an adjusted operation
upon fault detection.

A mathematical model and simulator describing the glucose-insulin metabolism
for meal scenarios in DM1 has been approved by the American Food and Drug
Administration (FDA) for preclinical trials. This simulator, possibly also a
clinical data set (currently being collected), shall be used in this thesis as
basis to study the potential of pattern recognition for fault detection and iso-
lation based on CGM.

Tasks:

1) Give an overview of methods that have been used for fault detection in
arti�cial pancreas. Give special attention to methods used on more than
one type of faults (i.e. >2 classes). Which methods have not been used?

2) Based on the literature review, select methods for fault detection in arti�cial
pancreas.

3) Implement the selected methods.

4) Train/test/review the methods on the simulator. If time permits, test the
methods also on clinical data (if the collected data set is suitable).
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Abstract

This thesis is concerned with research related to diabetes treatment, and more
speci�cally with treatment methods via arti�cial pancreas. A fault detection
system is developed and implemented in the APT-simulator. The presented
system is classi�cation based, and utilizes SPE monitoring charts. Both a
personal and global models are achieved. It is intended that the system is
capable of detecting several types of faults, and the presented system accom-
plishes this by detecting up to 4 di�erent types of faults. In addition to being
capable of detecting the di�erent types of faults, the presented system is also
able to di�erentiate between the faults. The fault detection method is tested
in the APT-simulator, and is capable of detecting the following faults: loss of
amplitude, pressure induced sensor attenuation (PISA), infusion faults, and
jumping signal. Furthermore, the method has an acceptable low number of
false positives.
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Sammendrag

Denne avhandlingen omhandler forsking relatert til behandling av diabetes,
og mer spesi�kt, sees det på behandling av diabetes ved bruk av kuntig pan-
creas. En feildeteksjonsmetode er utviklet og implentert i APT-simulatoren.
Systemet som presenteres, er basert på klassi�sering og tar i bruk det som
på engelsk kalles SPE-monitoring charts. Både personlige og globale modeller
oppnås. Det er hensikten at systemet er i stand til å detektere �ere typer feil,
og systemet som presenteres, innfrir dette ved å detektere opp til 4 forskjellige
typer feil. I tillegg til å være i stand til å detektere forskjellige typer feil, klarer
systemet også å di�erensiere mellom disse feilene. Feildeteksjonsmetoden er
testet i APT-simulatoren og er i stand til å detektere følgende typer feil: tap av
amplitude, trykkindusert sensor demping (PISA), infusjonsfeil og alternerende
signal. Dessuten har metoden et akseptabelt lavt antall falske feildeteksjoner.
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Chapter 1

Introduction

Diabetes mellitus is a chronic metabolic disorder where either the pancreas
stops producing insulin, or the cells do not respond to the produced insulin.
There are three main types of diabetes: Type 1, where the pancreas fails to
produce insulin. Type 2, which starts with insulin resistance and a lack of
insulin may develop as the disease develops. The third form is Gestational
diabetes occurs in pregnant women.

The number of people with dieabetes is rising, and according to the [? ],
425 million adults have diabetes. Out of those 1 in 2 are undiagnosed. This
means that 1 out of 11 adults in the world can not properly regulate their
blood glucose levels. As a result, they live with reduced life quality, and have
higher risk of disabling and life-threatening health problems.

Good control of blood glucose levels will reduce the risk of complications
and there are several potential treatments. A healthy diet, exercise, weight
loss, and use of insulin combined with normal cholesterol and blood pressure
levels will greatly reduce the risks.

The "holy grail" of diabetes treatment is the arti�cial pancreas (AP), a
closed-loop control system that regulates the user's blood glucose level by in-
fusing insulin[12]. Advances in technology and research have been done and
today we are closer to an AP than ever before.

With an AP, as with any other system, there might be faults and because of
the seriousness of the disorder they might be dangerous for the user. E�ective
fault detection is therefore an essential part of an AP, and necessary to prevent
both short and long term complications of diabetes.
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CHAPTER 1. INTRODUCTION 10

1.1 Related Work

The greatest contribution to this �eld is the Type 1 Diabetes Metabolic Simu-
lator (T1DMS) from the UVA/Padova research group. The group is a collabo-
ration between the University of Virginia (USA) and the University of Padova
(Italy), and in 2008 the T1DMS was approved as a substitute for preclinical
trials by the U.S. Food and Drug Administration (FDA). As a result in silico
experiments was made possible, and the AP research was accelerated. T1DM
and improved sensor technology has made the idea of the AP possible, and
consequently the fault detection related research has increased the last decade.

[7] proposed a continuous-discrete extended Kalman �lter for detection of
spikes and drift. The method is tested by simulations done in the Medtronic
virtual patient model.

In [13] subject-speci�c recursive linear time series models was introduced
to predict future glucose concentrations for prevention of hypoglycaemia.

Multiway principal component analysis (PCA) was used in [15] to detect
di�erent faults. Further development was done in [14] where the subjects was
provided with a sport armband which gave the fault detection additional in-
formation.

In [4] CGM and continuous subcutaneous insulin infusion (CSII) was com-
bined with a black-box model to detect spikes, loss of sensitivity in the sensor
and failure of the pump to deliver insulin. The method was tested during
night-time with the UVA/Padova-simulator. In [3] the method was extended
to the whole day, including meals, and meal information was used to further
bolster the fault detection.

[1] developed algorithms to detect infusion set failures and sensor signal
anomalies, and both in-patient and in-patient studies are presented. The de-
tection of Pressure induce sensor attenuation is later improved upon in [2].
Some years later Baysal was involved in [5] where continuous glucose monitor-
ing (CGM) was used to detect losses in infusion set actuation.

[17, 18] uses Principal Component Analysis (PCA) and monitoring charts
to detect spikes and transient loss of sensitivity of the sensor. At a late stage
the work was further developed in [11, 10], where a classi�cation based fault
detection method based on PCA was made to detect spikes and loss of sen-
sitivity. A global model based on training data independent from the user is
also proposed. Zhao and Songs methods for fault detection was tested in the
UVA/Padova-simulator.
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1.2 Scope and emphasis

The aim of the thesis is to further this important research, and to be a part
of the development towards a fully functional autonomous AP. An AP tra-
ditionally consisting of one sensor estimating blood glucose concentration, a
controller, and a pump infusing insulin. Ideally an AP should consist of as few
parts as possible, therefore the thesis will be based on the assumption that
only CGM-signals and insulin infusion rate (IIR) are available for the fault
detection. The emphasis is put on development of a fault detection method
that is capable of detecting more than one type of fault.

The work done by [10] is based solely on the information provided by the
CGM, and is not dependent other information such as meals. The method
is also able to make a global fault detection model, and have the potential
to detect several types of faults. It is therefore used as a starting point for
this thesis. Due to lack of documentation a similar, but partly di�erent fault
detection method is developed and explained in Chapter 3.

The developed method is tested on an extended scenario consisting of three
meals and 5 faults. This is done by implementing the fault detection in the
APT-simulator, a diabetes simulator provided by the research group Arti�cial
Pancreas Trondheim (APT).

1.3 Outline of the thesis

Chapter 2 gives an introduction to the theory used the thesis. Chapter 3
describes the fault detection method step-by-step and presents the di�erent
alternatives it has to o�er. Chapter 4 presents the results and other observa-
tions from simulations of the fault detection method using the APT-simulator.
Chapter 4.5 gives a short summary of what is accomplished and the conclusion
of the thesis, before Chapter 5 presents suggestions for potential improvements
and ideas for future work.



Chapter 2

Background Theory

2.1 Principal Component Analysis

2.1.1 Introduction

Principal component analysis (PCA) aims to reduce the dimensionality of data
sets consisting of large numbers of interrelated variables, while at the same time
retaining as much as possible of the variation present in the data set. This
is done by transforming the data set to a new set of uncorrelated variables,
the principal components (PCs), which are ordered so that the �rst few retain
most of the variation present in all of the original variables [6]. The data set
X is organized with distinct observations along each row and the columns are
recorded values for each observation. The data set is then decomposed into
three matrices.

X = ZPT + E

where ZPT is the bilinear model of the data set and E is the residual matrix. Z
is the score matrix containing the transformed coordinates of the observations
in X, and P is the loading matrix which contains the axis/directions of the
transformed coordinate system.

2.1.2 Mathematical description

Suppose the data matrix X consists of vectors xi with m random variables
on the form xi = (x1i , x

2
i , . . . , x

m
i ). We want to examine the variance of the m

variables and the covariance or correlations between the variables. Unless m
is small it will not be very helpful to look at the m variances and correlations
or covariances. A better approach is to �nd a few variables that preserve most
of the information in the variances and correlations or covariances. PCA does
not ignore covariances and correlations, but the main focus is on variance.
First we search for a linear function pT1 xi of the elements in xi for which we
want to maximize the variance. p1 is a vector of m constants p11, p12, . . . , p1m
so that

12



CHAPTER 2. BACKGROUND THEORY 13

pT1 xi = p11x
1
i + p12x

2
i + · · ·+ p1mx

p
i

=
m∑
j=1

p1jx
j
i

The next step is to �nd a linear function pT2 xi uncorrelated with pT1 xi having
maximum variance. As we progress pTk xi is found with maximum variance
and uncorrelated with pT1 xi,p

T
2 xi, . . . ,p

T
k−1xi. The variable pTk xi is the kth

PC and up to m PCs could be found, but generally it hoped that most of the
variation in xi will be accounted for by d� m PCs. Figure 2.1 shows a plot

Figure 2.1: Plot of 50 observations on two variables x1 and x2. [6]

of 50 observations with the two highly correlated variables x1 and x2 (not to
be confused with x1 and x2). If we transform the data to the PCs z1 and z2
the resulting plot can be seen in Figure 2.2. We can now see that there are a
greater variation in the z1-direction than in both the original variables. On the
other hand there is very little variation in the direction of z2. In the general
case, if a data set has m > 2 variables with substantial correlation between
them, the �rst PCs will represent most of the variation of the original variables.
The last PCs will identify directions with little variation, the directions with
near-constant linear relationship among the original variables.

For the derivation of the PCs consider pT1 xi, where the vector p1 maximizes
var
(
pT1 xi

)
= pT1 Σp1, where Σ is the covariance matrix. The maximum can
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Figure 2.2: Plot of the 50 observations from Figure 2.1 with respect to their
PCs z1 and z2. [6]

not be reached with a �nite p1 so a normalization constraint is imposed. The
constraint used is pT1 p1 = 1. To maximize pT1 Σp1 with regards to pT1 p1 = 1
Lagrange multipliers is used. Maximize

pT1 Σp1 − λ
(
pT1 p1 − 1

)
,

where λ is a Lagrange multiplier. Di�erentiation with respect to p1 then gives

(Σ− λIm) p1 = 0,

where Im is the identity matrix with dimensions (m×m). This results in
λ being an eigenvalue of Σ with p1 as the corresponding eigenvector. To
decide which of the m eigenvector maximizes the variance of pT1 xi we need to
maximize

pT1 Σp1 = pT1 λp1 = λpT1 p1 = λ.

In other words we need λ as large as possible. Therefore, p1 is the eigenvector
corresponding to the largest eigenvalue of Σ, and var

(
pT1 xi

)
= pT1 Σp1 = λ1,

the largest eigenvalue.
In general, the kth PC of xi is pTk xi and var

(
pTk xi

)
= λk, where λk is the

kth largest eigenvalue of Σ and pk is the corresponding eigenvector. Proof for
k > 1 can be found in ??, but is not needed to understand this thesis. We
then get the model on the form
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Z =XP, (2.1)

where Z in on the form zij = pixj. This leads us back to the expression given
in 2.1.1:

X = ZPT + E (2.2)

where E, the residual space, represents the information not used in the model,
and depends on the number of PCs used. The fewer PCs used the more
information is discarded into the residual matrix section E.

2.1.3 Monitoring charts

As described by [17] PCA-models can be used to develop PCA based Moni-
toring Chart. Squared prediction error (SPE), also known as Q-statistic, is a
lack-of-�t statistic calculated as the sum of squares for each row of E. Equa-
tions 2.1 and 2.2 gives us

E = X−XPPT .

SPE for observations i is then given by

SPEi = eie
t
i

where ei is the ith row of E. The total SPE-vector is given by

SPE = diag
(
E2
)

where diag (E2) represents the diagonal of E2. When a new observation xnew

is available it is preprocessed using the same normalization information as was
used for X. Then the PCA-model is used for calculating the new SPE-value

SPEnew = eneweT
new
,

where enew = xnew − xnewPPT . The new SPE-value is then compared to
a prede�ned control limit. If it is large and go out of the prede�ned normal
region, it is not representative of the process modelled and something is wrong.
If not the new observation is normal and expected.

2.2 Preprocessing

Before modelling the data set it is beni�cial to perform preprocessing [16].
Preprocessing the data greatly a�ects the outcome of the data analysis, and
[16] concluded that autoscaling and range scaling performed better than the
other pretreatment methods. As autoscaling is the most �tting preprocessing
method it will be used in this thesis. Autoscaling consists of two parts, mean-
centering and normalization to unit variance.
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Centering

Centering the data set X removes the o�set from data. It consists of sub-
tracting the column mean from each column in X. The mean is estimated
as:

x̄i =
1

J

J∑
i=1

xij

The mean-centered data set is then given by:

x̃ = xi,j − x̄i

Unit variance

Normalizing the data to unit variance ensures that variables with large magni-
tudes do not dominate the model, and all variables become equally important.
This is done by using the standard deviation as a scaling factor. The standard
deviation is estimated as

si =

√∑J
i=1 (xij − x̄i)

2

J − 1

The data with unit variance is then given by:

x̃ij =
xij
si

Autoscaling

In combination centering and normalization to unit variance becomes autoscal-
ing and the precessed data is given by

x̃ij =
xi,j − x̄i

si

2.3 Discriminant analysis classi�er

Matlab function fitcdiscr makes a classi�er based on a table with observa-
tions and accompanying table with responses. Matlab function predict can
then be used to predict class for an unknown observation. Predict classi�es
so as to minimize the expected classi�cation cost:

ŷ = argy=1,...,Kmin
K∑
k=1

P̂ (k|x)C (y|k)
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where ŷ is the predicted classi�cation, K is the number of classes, P̂ (k|x) is
the posterior probability of class k for observation x. C (y|k) is the cost of
classifying an observation as y when its true class is k. The cost is given by
Cost(i, j) = 1 if i 6= j, and Cost(i, j) = 0 if i = j. An example can be seen in
2.3 where tree di�erent types of �owers is separated by the classi�er. This is
used in chapter 3, but a more theoretical understanding is not necessary for
the implementation.

Figure 2.3: Three di�erent types of �owers separated by the classi�er. Taken
from Matlabs documentation page for fitcdiscr.

2.4 Naive Bayesian Classi�er

The Naive Bayesian Classi�er is based on Bayes' theorem with independence
assumptions between the predictors. Despite its simplicity it often outperform
more sophisticated classi�cation methods and is therefore widely used. Bayes'
theorem makes it possible to calculate the posterior probability P (c|f) from
the prior probability of class P (c), prior probability of the predictor P (f) and
the probability of a predictor given class P (f |c). It is given by

P (c|f) =
P (f |c)P (c)

P (f)

The posterior probability can be calculated by constructing a frequency table
for each attribute against the target.The frequency tables are transformed
into likelihood tables which can be used as P (f |c). We can then use this to
calculate the probability of a class given the predictor, P (c|f).



Chapter 3

Method description and

implementation

This section describes the methods used in the thesis. First there is some infor-
mation about the simulator, the scenario and the faults used. Then the fault
detection method is described step-by-step. At the end the fault recognition
method is explained.

3.1 The APT simulator

In this thesis a diabetes simulator will be used to test the fault detection
method. The simulator used is made by Erlbeck on behalf of the research
group Arti�cial Pancreas Trondheim (APT) and o�ers di�erent scenarios and
di�erent subjects. In total there are 10 adults, 10 adolescents and 10 children,
in addition to one average person from each group. In this thesis only the adult
group i used. Adult 1-3 are used as test subjects and adult 4-10 are used to
generate independent training data for global training. In other words glucose
measurements from a group of people used as training data for an independent
person. A full description of the simulator can be found in Erlbecks master
thesis.

3.1.1 Main scenario

The main scenario used in this thesis consists of 1 day (24 hours) of glucose
measurements from a subject. During the 24 hours there are three meals
of variable size at semi random times. The meals takes place [1,3], [7,9] and
[14,16] hours after simulation start and consists of [35,55], [65,85], [75,95] grams
of carbohydrate. Boluses are included, are assumed to be optimal and given
at the same time as the meal. The optimal bolus, as described in [8], is given
by

optimal bolus =
ingested carbohydrates[g]

CR [ g
U
]

,

18
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where CR is the subjects carbohydrate ratio. CR is included for each subject
in the simulator. The duration of each meal is set to 15 minutes. To make the
scenario more realistic noise is added to the measurements and new measure-
ments are only available every �ve minutes as that is the standard for sensors
today. Figure 3.1 shows the main scenario for the subject Adult 1.

Figure 3.1: Glucose concentration measurements from Adult 1 in the main
scenario.

3.1.2 Faults

Then APT-simulator also o�ers di�erent known faults for an AP. The simu-
lator has three di�erent sensors faults and one infusion fault implemented. In
addition spikes was implemented as a part of this thesis. The sensor faults in
the simulator are then:

- Pressure induced sensor attenuation (PISA): If the sensor is ex-
posed to pressure, the measured signal drops. This usually happens
during nights when the subject is sleeping and is lying on the sensor.
The wrong measurement causes a the pump to shut of and the subject
is not given the needed insulin. The PISA response has a duration of
15-105 minutes, a depth of 3-5 mmol/L and variable shape.

- Loss of amplitude: Towards the end of the sensors lifetime the mea-
surements can be e�ected by di�erent irregularities. One irregularity
that can occur is that the sensor signal gradually loses amplitude.This
results in false information to logic unit and the wrong amount of insulin
might be given to the subject. The randomized version of loss of ampli-
tude starts after one hour in the main scenario, and the sensor signal is
gradually decreased before approaching zero at the end of the day.
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- Jumping signal: Another irregularity that can occur towards the end
of the sensors lifetime is a jumping signal. The sensor signal starts
to change between the real measurements and the measurements with
an o�set. The time of the jumps are randomized and the o�set is 1-5
mmol/L.

- Spike: When the subjects movement causes movement in the sensor,
single measurements that are signi�cantly higher than the ones before
and after may occur. A spike consists of a measurement 1-3 mmol/L
higher than the real measurement.

The start time of PISA, jumping signal, and spike is random. The infusion
fault implemented simulates decreased delivery of insulin from the pump, and
is meant to cover a range of di�erent situations that ultimately results in
decreased insulin delivery. Examples of such situations are twisted, clogged or
loose delivery tube, a faulty pump or infusion set failure. Infusion fault Full
description of each fault is found in Unstads term project. An illustration of
each fault can be seen in Figure 3.2.

Figure 3.2: Glucose consentration over 24 hours with one meal. Each fault
starts after 12 hours.

3.2 Fault detection

This section describes the fault detection method step-by-step. It is inspired by
[10] and aims to improve the fault detection method. The target is to monitor
changes in glucose characteristics and notify the user when a fault is occurring.
Firstly training data is simulated and arranged. The training data is then
split into classes depending on di�erent speci�cations. For each class a control
limit is set for the acceptable SPE-values. Each class is then transformed into
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feature classes which are used to train a classi�er. The classi�er is then used
on the training data and a probability table for the Naive Bayesian classi�er
is made. When a new measurement is available the SPE-value for each class
is calculated and compared to the control limit. Then the features of the
measurement is calculated and the classi�er is used to determine the assumed
class. The corresponding Bayesian probabilities are then combined with the
result from the PCA models from each class. If the �nal result, which is a
probability, is large enough the new measurement is marked as a fault.

3.3 Data arrangement

The training data consists of glucose measurement time series g (t) from the
main scenario simulated with the APT-simulator. The time series are bro-
ken down into windows of length L and arranged in the data matrix X. A
window of length L consists of the L last measurements and is treated as one
observation in X. X is given by:

X (N × L) =


x (1)
x (2)
...

x (N)


where x (k) = [g (k) g (k + 1) · · · g (k + L− 1)], N = K−L+1 is the number
of observations in the data matrix, and K is the number of original time-series
observations. X is then preprocessed by autoscaling.

3.4 Splitting of classes

If one should model the windows in X it might result in an inaccurate model
and some windows might have high SPE-values. By splitting the training data
into classes with similar windows the PCA models for each class improves
compared to using the . A lot of time and e�ort went in to replication of
the splitting method in [10]. But the article gave to little and to inaccurate
information and the split method was not possible to replicate. Therefore
two alternative methods are proposed and developed by the author. The
�rst method, Split by SPE, aims to replicate the split method in [10], but
in a simpli�ed fashion. The second method, Split by Slope, is an entirely
new approach that aims to exploit the linearity of the PCA modelling. An
introduction to both methods are given in the following.

3.4.1 Split by SPE

This method aims to replicate the splitting of training data in [10]. For each
split the method relies on the range of SPE-values for each class and windows
with similar SPE-values are put in classes. In addition other requirements
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to variance, linearity and stationarity is set for each class. As a result the
training set is split into three classes where class 1 contains roughly twice the
number of samples as class 2, and class 2 contains roughly twice the number
of samples as class 3.

As an attempt to replicate split method a simple method based on SPE-
values is suggested. A PCA model is made for the entire training data. Then
the SPE for each window is calculated. The bn·4

7
c samples with lowest SPE is

placed in class 1, the next bn·2
7
c samples is placed in class 2, and the remaining

samples is placed in class 3. The resulting three classes are similar to the ones
in [11, 10] and give resembling results.

3.4.2 Split by slope

"Linear judgement" and a minimum for variance is two of the criterias in
[11, 10] for a class. In an attempt to split the training data into classes that
comply with these criteria, without having the possibility to test for linear and
stationary judgement, Split by Slope was mate. Split by slope is a simplistic
approach that split the training data based on the slope of the window. The
slope for x (k) is given by

s = g (k + L− 1)− g (k)

After some initial testing a range given by ±0.0025[mmol/L] · L was found.
If the slope of a window is within the range it it put in class 1. If the
slope is greater than 0.0025[mmol/L] · L it goes in class 2, and if it less than
−0.0025[mmol/L] · L it goes in class 3. The aim is to class together windows
that are roughly linearly which will give lower variance in each class, and each
class is also easier modelled by the PCA. An example of this is given in Figure
3.3 where the start and endpoint of windows with length 10 is plotted.

As we can see from Figure 3.3 each class contains windows that are similar
to one another. Hopefully this will result in good PCA-models which again
will result in a sensitive fault detection.
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Figure 3.3: Windows of length 10 classi�ed by Split by Slope.

3.5 Control limits

After the training data is split into classes a control limit for acceptable SPE-
values is set for each class. Since the training datas is split in a di�erent
fashion than in [10], the control limit used might not be suitable. Therefore,
three di�erent approaches for deciding the control limits are suggested:

- Max 1 Limit (M1): One PCA-model is made of the entire training
data. SPE-values are calculated for each window in each class. The
control limit for a class is set to the maximum SPE-value of the windows
in that class.

- Max 2 Limit (M2): After the training data is split one PCA-model is
made for each class. The control limit for a class is set to the maximum
SPE-value of the classes windows in the corresponding PCA-model.

- Chi-squared-Limit (CS): The last limit is the one used in [10], and
is given in [9]. The control limit is approximated by a weighted Chi-
squared distribution SPE-limiti ≈ giχ

2
h1,α

. The weight and the degrees

of freedom is given by gi = vi
2mi

and hi =
2m2

i

v1
, where vi and mi is the

variance and the average of all SPE-values in class i.

3.6 Feature selection

To train a classi�er to recognise which class a new window belongs to we need
to calculate features of the windows. It is important to choose features that



CHAPTER 3. METHOD DESCRIPTION AND IMPLEMENTATION 24

describes the di�erent classes di�erently so that classi�cation of windows with
unknown class is as easy as possible. The precise de�nition of the features
used in [10] is unclear, but these are my interpretations. In addition several
more features are added. The features listed in [10] are sliding window slope
(SWS) given by

SWS =
max (xi)−min (xi)

L
,

�rst derivative (DG) given by

DG =
g (k + L− 1)− g (k)

L
,

second derivative (SDG) is calculated by calculating the di�erences between
adjacent elements of the window, and then using the �rst derivative operation
on the resulting vector. Additionally the variance V of the window and the
newest glucose measurement G = g (k + L− 1) is included. The new features
added are window slope (WS)

WS = g (k + L− 1)− g (k) ,

the largest di�erence in the window (LD)

LD = max (xi)−min (xi) ,

the meanM of the window and the number of turns (NT) which is the number
of times the window signal changes direction.

The last added feature is the sum of infused insulin (SII) during the window.
Insulin infusion rate (IIR) is regarded as unused and signi�cant information,
and is believed to possibly contribute to better classi�cation of new windows.
The �rst idea was to include IIR over a longer time period than the window to
account for the period the insulin is active in the body. But from a logical and
programming standpoint that made some di�culties, as the window can not be
constructed before the necessary information is available. For example can a
regular window with length 10 be made 50 minutes after the �rst measurement,
as one measurement is available each �ve minutes. But if infused insulin the
last three hours is a feature one have to wait three hours to make the 50 minute
window. This seems counter-productive and SII is chosen as a feature of the
window. The option to use several windows of di�erent length enables the IIR
from di�erent time periods to be accounted for in the system. The resulting
feature vector is then given by

Features (xi) = [SWS DG SDG VGWS LDMNT SII]

If Split by Slope is used only feature needed is the slope. It is easily calculated
from the window, and the window is classi�ed accordingly.
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3.7 Classi�er

Each class is transformed into feature classes containing the feature vectors of
each window in the corresponding class. These feature classes are then used
to train a classi�er with the Matlab commando fitcdiscr. As far as possible
only the default linear options are used, but as a result of the inclusion of SII
some classes get zero within-class variance. The linear classi�er is then unable
to use training set. In those instances a pseudo-linear classi�er is used instead.

The linear classi�er are then used on the feature classes to make a (3× 3)
frequency table containing the predicted class and the real class. The fre-
quency table is then transformed into a likelihood table where each row gives
the probability for each class given the prediction of the linear classi�er. The
higher values along the diagonal of the likelihood table the better is the clas-
si�er, and a perfect classi�er the resulting likelihood table would equal the
identity matrix. The three values along the diagonal represents the proba-
bility that a new window classi�ed as class 1 actually is from class 1, and
similar for class 2 and 3. This probability table is used as a basis for the Naive
Bayesian classi�er.

3.8 Online fault detection

When a new window is available it is scaled with the same mean and standard
deviation used to autoscale X. The SPE-value for the new window is then
calculated as in ?? for each of the tree classes. The SPE-value is then compared
with the corresponding control limits of each class. If the SPE-value is lower
than the control limit resulti for class i equals to 0. If it is higher than the
control limit resulti is set equal to 1.

The features of the window is then calculated and given to the linear clas-
si�er. Based on the classi�ers prediction the corresponding row in the proba-
bility table made in section 3.7 is extracted and used for P (Ci|F ). The total
result is then given by

resulttotal =
C=3∑
i=1

P (Ci|F ) · resulti,

where C is number of classes, Ci is class i, F is the prediction of the linear
classi�er and P (Ci|F ) is the probability for class i given the prediction F .
resulttotal is a probability and if it is higher than a chosen fault limit the new
window is marked as a fault. The fault limit chosen depends on the split
method, type of control limit, and the window length, but generally lies in the
interval [0.9 - 1].

3.9 Choice of window lengths

Di�erent faults behave di�erently and have di�erent manifestations in the
glucose measurements. Therefore it follows that it might be bene�cial with
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di�erent window lengths for di�erent faults. Therefore an extension of the
method in [10] is made, and the option to use several windows of di�erent
length at the same time is implemented. Each is treated by the same method
outlined in this section. If one or more of the windows is marked as a fault,
the system as a whole marks the new window as a fault.

3.10 Fault recognition

The method in [10] is only able to detect faults, but is unable to di�erentiate
between the types of faults. This is suboptimal as the course of action after
an alarm is dependent on the fault. For example the action taken to a PISA
is to remove the pressure from the sensor, but for a infusion fault measures
for lowering the glucose concentration needs to be taken. As the origin of the
alarm is important an procedure to recognise the fault is proposed. The main
scenario is simulated with each fault. When a window is marked as a fault it
is saved as an example window of the current fault. This is done for each fault
until we have a su�cient number of detected windows. These windows and
their known fault is then used to train a classi�er using the Matlab commando
fitcdiscr. We now have a classi�er that can predict which fault has occurred
when a new window is marked as a fault. If windows of di�erent lengths are
marked as faults at the same time, the most predicted fault is chosen. In
other words if three windows are marked as faulty, and the three predictions
are "PISA", "PISA" and "Spike", "PISA" is chosen as the recognised fault.



Chapter 4

Simulations and results

In this chapter the results of simulations are presented. First is view of some
plots from each method. Then the split methods and di�erent limits are
tested with di�erent window lengths on the same faults and compared. The
best combinations is then used for fault detection and recognitions both in
personal training and in global training. In addition the selected methods are
tested on slowly decreasing glucose concentration to test sensitivity for low
blood sugar.

Features

As said in 3.6 if we Split by Slope the slope can be calculated directly for new
windows, and classi�cation is not a problem. For Split by SPE it is a bit more
complicated and we need to calculate the features of the new window for the
classi�er. Some features of a window with length 10 can be seen in Figure 4.1.

First it must be mentioned that the SWS plot in Figure 4.1 is similar to
a plot in [10]. In other words the Split by SPE method bears a resemblence
with the split method used in [10], although it is far easier. This is a good
indication for the fault detection as a whole. As for the DG, SDG and V
we can see that none of them gives a direct correlation between the features
and the class, and needer does the features not shown. But common for all
of them is that they give an indication for which class is likely. For example
a new window with high variance is more likely to belong in class 3. If we
summarize all these indications it will give a good idea of what class the new
window belongs too.

Inclusion of IIR

One of the improvements done compared to the fault detection method in
[10] was the inclusion of IIR information. As it turns out it makes a positive
di�erence for the linear classi�er. As explained in 3.7 a probability table is
made where each row gives the probability of a class given the prediction of the
classi�er. The goal is to get as high as possible percentages along the diagonal.
In Table 4.1 the three diagonal values for 5 di�erent training sets is calculated

27
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Figure 4.1: Sliding window slope, �rst derivative, second derivative and vari-
ance for each sample in classes 1,2 and 3.

with and without SII in the feature set. The data sets for Adult 1-3 consists of
15 days of that subjects personal glucose measurements, and Global 15 days
and Global 45 days consists of glucose measurements from Adult 4-10.

We can see from Table 4.1 that the inclusion of SII in the feature set has
little or no impact on the classi�cation when the data set consists of personal
measurements. But for global data sets, consisting of glucose measurements
from di�erent subjects, there is a signi�cantly improvement when SII in in-
cluded.

Initial test of the di�erent methods

To start with we take a look at how the di�erent split methods and control
limits performs in a fault free situation. The SPE-values for each class and
result�nal for each split method and each control limit type can be seen in
Figure 4.2, 4.3, 4.4 and 4.5. With en exemption of M2-limits as the SPE-plots
would be identical to the ones with CS-limits, but with a higher limit. The
glucose measurements consists of 24 hours from the main scenario for Adult 1.
Meals are after 2,8, and 15 hours and of 35, 65 and 75 g. A window length of
10 (50 minutes) is used and the glucose measurements are given in mmol/L.
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Table 4.1: Results of including SII in the feature set for a window with length
10.

Data set Without SII With SII Di�erence

Adult 1
62.58 80.01

0.8267.86 57.48
73.14 57.18

Adult 2
73.60 76.67

-2.0248.47 43.13
82.67 82.92

Adult 3
60.90 60.90

054.52 54.52
46.43 46.43

Global 15 days
64.65 68.68

14.2756.80 67.59
72.22 71.67

Global 45 days
70.18 66.47

8.2958.33 66.35
66.57 70.55

Figure 4.2: SPE-plot for Split by SPE with M1-limit.
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Figure 4.3: SPE-plot for Split by SPE with CS-limit.

Figure 4.4: SPE-plot for Split by Slope with M1-limit.

As we can see the, di�erent methods appear to be functioning as intended.
At the same time we can see that the response di�ers for the di�erent split
methods. In Figure 4.2 and 4.3 we can se that split by SPE seems to be more
sensitive than Split by Slope as there is a response in restult�nal even in the
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Figure 4.5: SPE-plot for Split by Slope with CS-limit.

fault free case. In Figure 4.2 we can see that Split by SPE combined with M1-
limits is very sensitive and restult�nal is close to 1 several places. Therefore this
method is dependent on a high fault limit to avoid false positives. In Figure
4.3 the response is smaller and might have been avoided if M2-limits are used
instead of CS-limits. Split by Slope gives no indication of fault as seen in
Figure 4.4 and 4.5. This can be a good sign as the glucose measurements are
fault free, but at the same time it is possible that the split method gives low
sensitivity. We can also see that the SPE-values and the �nal result do not
start at the same time as the glucose measurements. This is because enough
measurements are needed to �ll the window before the calculations can be
done. Another window length might be bene�cial depending on the fault we
are searching for, but a longer window gives a longer down period before the
fault detection starts.

In Figures 4.6, 4.7, 4.8 and 4.9 the same scenario with the same meals are
repeated, but this time a PISA is introduced after 12 hours. The PISA goes
over 9 measurements (40 minutes) and has a depth of 5 mmol/L.
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Figure 4.6: SPE-plot for Split by SPE with M1-limit and introduced PISA.

Figure 4.7: SPE-plot for Split by SPE with CS-limit and introduced PISA.
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Figure 4.8: SPE-plot for Split by Slope with M1-limit and introduced PISA.

Figure 4.9: SPE-plot for Split by Slope with CS-limit and introduced PISA.

As we can see from Figure 4.6, 4.7, 4.8 and 4.9, all combinations of split
methods and control limits gives a response to the fault. Interestingly the
response is di�erent between the methods which might indicate that the re-
sponse is triggered by di�erent glucose �uctuations. This may again mean
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that di�erent split methods and control limits might detect di�erent types of
fault with di�erent precision. These plots are also only for a window of length
10. Di�erent window lengths can again give us di�erent responses. This leaves
us with 6 permutations of split methods and control limits in addition to the
variable window length, which gives us a good basis for fault detection.

4.1 Choice of main method and window lengths

Because of time constraints and the number of permutations of split methods,
control limits and window lengths a simple approach was used to select the
best combinations. Each split method was combined with each control limit
and a number of chosen window lengths and tested on the main scenario.
Each combination was simulated 10 times for loss of amplitude, PISA, infusion
fault and spikes, and 10 times on fault free measurements. Jumping signal
was omitted as implementation in the simulator made it di�cult to de�ne
and count detections. This was �rst done for Adult 1 with personal data set
consisting of 15 fault free simulations from the main scenario. It was then
repeated for Adult 1, but this time with a global data set consisting of 45 fault
free simulations from the main scenario from Adult 4-10. The faults was held
constant and was the same for each of the 10 simulations. The only variables
was meal times and amounts.

For loss of amplitude detection, detection time and the glucose concen-
tration at the detection time was considered. Glucose concentration at the
detection time was considered because it gives an indication of the rapidness
of the detection. A detection is not usable if the signal has decreased too
much as it might be dangerous for the user. For PISA detection, number of
detections and detection time was considered. For infusion fault detection,
detection time, and glucose concentration at the detection time was consid-
ered. Glucose concentration was considered on the same basis as with loss of
amplitude. A detection of infusion fault is no good if the glucose concentra-
tion has risen to dangerous levels. For Spike the number of spikes detected
was considered. The resulting tables are large and can therefore be found the
attachment.

When selecting split methods, control limits and window lengths for further
testing the selection was based on the combinations performance on each fault.
The combinations with best performance for each fault are selected and used
for fault detection. In addition the selected combinations must have a low
number of false positives, as good fault detection is rendered useless if the user
su�ers from alarm fatigue. This resulted in three combinations was chosen
for personal training, and three combinations was chosen for global training.
The associated performance can be seen in Table 4.2 and 4.3. The column
F/P contains the average number of false positives. For loss of amplitude
there is percentage of detection, average detection time and average glucose
concentration at detection. For PISA there is percentage of detection, average
number of detections per PISA, and average detection time. For infusion fault
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there is percentage of detection, average detection time and average glucose
concentration at the detection. The last column shows the number of detected
spikes.

Table 4.2: Performance of the selected methods, limits and window lengths
for personal training.

Split method Limit type Window length F/P
Loss of amplitude PISA Infusion fault Spike

Det. Det. time Det. G Det. Num. Det. Det. time Det. Det. time Det. G Det.
SPE M1 8 0.00 100 % 1199 4.25 67 % 4 34 100 % 209 17.01 0
SPE M1 10 0.05 100 % 1220 3.59 80% 2 29 100 % 200 15.78 0
Slope M2 10 0.45 100 % 1247 3.08 100 % 13 6 100 % 209 16.06 3

Table 4.3: Performance of the selected methods, limits and window lengths
for global training.

Split method Limit type Window length F/P
Loss of amplitude PISA Infusion fault Spike

Det. Det. time Det. G Det. Num. Det. Det. time Det. Det. time Det. G Det.
SPE M2 5 0.15 100% 1205 3.85 70% 2 20 100% 217 17.79 0
SPE CS 3 0.10 100% 1253 2.49 0 % 100% 220 15.75 0
SPE CS 5 0.05 100% 1255 2.52 100 % 1 14 100% 220 15.44 0

I total there is a di�erence in performance between the two split methods,
and between personal and global training. For personal training Split by Slop
combined with CS-limits performed well for all types of faults, but averages
over one false positive per day. On the other side Split by SPE combined with
M1-limit barely had a false positive, but with later detections. In general it
seems that Split by Slope is better at detecting instantaneous faults as PISA,
and that Split by SPE is better in regards to detecting loss of amplitude and
infusion fault. Split by SPE also have fewer false positive than Split by Slope.
For general training a lot of sensitivity was lost, both for Split by SPE and
for Split by Slope. Split by Slope appears inferior to Split by SPE, as Split by
Slope either have worse detection or more false positives.

The fact that none of the combinations is able to regularly detect spikes is a
disappointment. Another interesting result is that none of the longer windows
performs as good as the short ones, even on loss of amplitude that manifests
over a long time.

4.2 Personal training

After the selections of split methods, limits and window lengths additional
testing was done to �nd better fault limits. The �nal fault limits for the
selection is given in Table 4.4.

Fault detection

For personal training the data set consists 15 fault free days from the main
scenario with the current subject. The testing is done on three di�erent sub-
jects, Adult 1, Adult 2 and Adult 3. For each subject the main scenario is
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Table 4.4: Fault limits for personal training.

Split method Limit type Window length Fault limit
SPE M1 8 90 %
SPE M1 10 90 %
Slope M2 10 100 %

simulated 10 times containing each fault. In addition 10 fault free days are
simulated to test for false positives. The di�erence from the previous chapter
is that the faults are now randomized. For detection of the jumping signal one
window marked as a fault during a jump is classi�ed as a detection of that
jump. Detection time is not accounted for for loss of amplitude as the random-
ized faults renders the average detection time useless. Number of detections
for PISA is not included as it obviously depend on the randomized PISA. The
results for training and testing for Adult 1, Adult 2, and Adult 3 can bee seen
in Table 4.5, 4.6 and 4.7.

Table 4.5: Fault detection results for Adult 1 with 15 days personal training.

Day F/P
Loss of amplitude PISA Infusion fault Spike Jumping signal
Det. Det. G Det. Det. time Det. Det. time Det. G Det. Det.

1 0 Yes 5.20 Yes 19 Yes 204 15.68 No 1/5
2 0 Yes 5.94 Yes 22 Yes 235 15.81 No 4/8
3 0 Yes 5.86 Yes 35 Yes 243 16.41 No 3/10
4 1 Yes 4.89 Yes 22 Yes 215 14.92 No 3/6
5 0 Yes 4.25 Yes 37 Yes 215 15.64 Yes 6/11
6 0 Yes 4.88 Yes 34 Yes 181 14.80 No 6/9
7 0 Yes 5.52 Yes 23 Yes 224 15.37 No 6/8
8 0 Yes 5.90 Yes 61 Yes 210 15.73 No 9/9
9 0 Yes 4.11 No Yes 140 13.97 No 8/9
10 0 Yes 4.52 Yes 32 Yes 207 15.27 Yes 6/7

Total 0.1 100 % 5.1 90 % 32 100 % 207 15.36 20% 63 %

Table 4.6: Fault detection results for Adult 2 with 15 days personal training.

Day F/P
Loss of amplitude PISA Infusion fault Spike Jumping signal
Det. Det. G Det. Det. time Det. Det. time Det. G Det. Det.

1 3 Yes 3.69 Yes 10 Yes 212 14.99 No 3/3
2 0 Yes 4.66 Yes 8 Yes 167 14.24 No 6/6
3 0 Yes 3.62 Yes 13 Yes 160 14.64 No 9/9
4 0 Yes 4.80 Yes 8 Yes 180 14.73 No 5/6
5 0 Yes 4.91 Yes 12 Yes 210 14.92 No 9/11
6 1 Yes 3.66 Yes 8 Yes 180 15.75 No 8/9
7 1 Yes 4.05 Yes 6 Yes 197 14.45 No 4/5
8 0 Yes 3.98 Yes 9 Yes 214 14.79 No 8/9
9 0 Yes 3.25 Yes 7 Yes 212 14.85 No 7/9
10 0 Yes 3.26 Yes 7 Yes 216 14.81 No 4/5

Total 0.5 100 % 3.99 100% 9 100% 195 14.82 0 % 88 %
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Table 4.7: Fault detection results for Adult 3 with 15 days personal training.

Day F/P
Loss of amplitude PISA Infusion fault Spike Jumping signal
Det. Det. G Det. Det. time Det. Det. time Det. G Det. Det.

1 0 Yes 4.54 Yes 12 Yes 153 14.17 No 10/10
2 0 Yes 3.84 Yes 11 Yes 185 14.29 No 10/10
3 1 Yes 3.93 Yes 127 Yes 216 13.78 No 10/10
4 0 Yes 6.20 Yes 11 Yes 183 14.26 No 4/4
5 0 Yes 3.30 Yes 15 Yes 173 13.49 No 10/10
6 0 Yes 3.92 Yes 17 Yes 225 14.68 No 7/7
7 0 Yes 3.33 Yes 12 Yes 236 15.19 No 9/9
8 0 Yes 3.47 Yes 18 Yes 209 15.32 No 9/10
9 0 Yes 2.86 Yes 10 Yes 222 15.77 No 7/7
10 0 Yes 3.72 Yes 7 Yes 181 14.05 No 6/6

Total 0.1 100 % 3.91 100 % 24 100% 198 14.50 0 % 99 %

As we can see from Table 4.5, 4.6 and 4.7 the three selected combinations
for personal training is able to detect 4 out of the 5 faults and at the same time
have an acceptable amount of false positives. The loss of amplitude is detected
every time and is also detected long before the sensor signal is completely
gone. The PISA is detected 29 out of 30 times and the short detection time is
satisfactory as it gives little time for incorrect dosage of insulin. Infusion fault
is detected every time, although ideally it could have been detected at a lower
glucose concentration. Unfortunately very few of the spikes are detected, but
that is not a surprise given it was rarely detected in testing done in 4.1. A
positive result is the number of detections of the jumping signal as that fault
was not part of the testing done when selecting combinations of split methods,
control limits and window lengths.

4.3 Global training

As with the personal training additional testing was done to �nd better fault
limits for the selected combinations. The resulting fault limits can be seen in
table 4.8.

Table 4.8: Fault limits for global training.

Split method Limit type Window length Fault limit
SPE M2 5 70 %
SPE CS 3 97 %
SPE CS 5 97 %

4.3.1 45 day training set

For global training the training set consists of 45 fault free days from the main
scenario with Adult 4-10. 6 days each and 1 day from three randomly selected
subjects from Adult 4-10. This training set is then used with the selected split
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methods, limits and window lengths, and tested on Adult 1, Adult 2 and Adult
3 in same fashion as for personal training. The results can be seen in table
4.9, 4.10 and 4.11.

Table 4.9: Fault detection results for Adult 1 with 45 days global training.

Day F/P
Loss of amplitude PISA Infusion fault Spike Jumping signal
Det G Det t det det d time G det det

1 0 Yes 3.63 Yes 12 Yes 200 14.39 No 4/7
2 1 Yes 3.64 Yes 31 Yes 141 13.39 Yes 4/6
3 0 Yes 3.48 No Yes 156 14.05 No 4/10
4 0 Yes 3.32 Yes 11 Yes 180 13.84 No 7/11
5 1 Yes 1.11 No Yes 186 14.49 No 3/6
6 0 Yes 3.15 No Yes 205 14.05 No 7/10
7 4 Yes 3.83 No Yes 224 14.65 No 5/9
8 0 Yes 1.66 No Yes 214 15.79 No 3/5
9 0 Yes 1.74 Yes 105 Yes 121 14.11 No 6/7
10 0 Yes 3.42 Yes 114 Yes 211 16.57 No 5/6

Total 0.6 100% 2.90 40 % 55 100% 184 14.53 10% 62 %

Table 4.10: Fault detection results for Adult 2 with 45 days global training.

Day F/P
Loss of amplitude PISA Infusion fault Spike Jumping signal
Det G Det t det det d time G det det

1 0 Yes 4.04 Yes 21 Yes 207 14.50 No 6/7
2 0 Yes 3.39 Yes 10 Yes 184 14.06 No 5/8
3 0 Yes 2.88 No Yes 160 13.62 No 4/8
4 0 Yes 2.82 Yes 13 Yes 151 13.58 No 5/7
5 0 Yes 2.40 Yes 9 Yes 215 14.74 No 4/7
6 0 Yes 3.45 Yes 18 Yes 169 13.19 No 7/9
7 0 Yes 2.60 No Yes 190 14.96 No 7/9
8 0 Yes 3.01 Yes 41 Yes 187 15.48 No 5/7
9 0 Yes 2.41 Yes 12 Yes 179 14.55 No 6/8
10 0 Yes 3.34 Yes 13 Yes 191 13.99 No 7/7

Total 0 100 % 3.03 80% 17 100% 183 14.27 0 % 73 %

Table 4.11: Fault detection results for Adult 3 with 45 days global training.

Day F/P
Loss of amplitude PISA Infusion fault Spike Jumping signal
Det G Det t det det d time G det det

1 0 Yes 3.12 No Yes 234 14.62 No 8/8
2 0 Yes 2.53 No Yes 235 14.54 No 6/8
3 0 Yes 2.86 Yes 79 Yes 210 15.12 No 5/9
4 0 Yes 1.93 No Yes 226 14.20 No 5/6
5 0 Yes 3.38 No Yes 209 15.28 No 6/7
6 0 Yes 2.99 Yes 13 Yes 235 15.42 No 4/4
7 0 Yes 2.95 No Yes 238 15.19 No 5/6
8 0 Yes 2.17 No Yes 125 13.20 No 4/6
9 0 Yes 2.89 No Yes 177 13.84 No 8/8
10 0 Yes 3.17 Yes 42 Yes 222 14.17 No 9/10

Total 0 100% 2.80 30 % 45 100% 211 14.56 0 % 83 %
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As can be expected the results are not as good as with personal training.
The detection of loss of amplitude is slowed down as the detection happens
at lower glucose concentrations. Fewer of the PISA's are detected and with
a higher detection time. When it comes to the detection of infusion fault
the results are actually better than for the personal training, as the detection
happens at a lower glucose concentration.

In total the main di�erence between the personal training and the global
training us the slower detection of loss of amplitude and fewer detections of
PISA. One possible cause might be that the large data set makes the selected
combinations "blunter" and not able to detect loss of amplitude and PISA the
same way as with a small data set. In addition it would be interesting to see if
a change in training set size results in a change in fault detection performance.
Therefore, a new try is made for global training with a data set containing
only 15 simulations of the main scenario.

4.3.2 15 days training set

This time the global training set consists of 15 days from the main scenario
with Adult 4-10, and is of the same size as the personal training data. 2 days
each and 1 day from one randomly selected subject from Adult 4-10. It is
also simulated independent of the 45 days used in the previous training set.
The testing is performed in a similar fashion as the previous sections and the
results can be seen in table 4.12, 4.13 and 4.14.

Table 4.12: Fault detection results for Adult 1 with 15 days global training.

Day F/P
Loss of amplitude PISA Infusion fault Spike Jumping signal
Det G Det t det det d time G det det

1 1 Yes 3.40 No Yes 189 14.16 No 1/7
2 1 Yes 3.91 No Yes 230 14.39 No 4/6
3 1 Yes 2.93 No Yes 146 14.65 No 3/5
4 0 Yes 3.27 Yes 10 Yes 215 13.63 No 5/7
5 5 Yes 2.33 Yes 16 Yes 228 14.23 No 5/7
6 2 Yes 2.71 No Yes 197 13.54 No 4/7
7 0 Yes 2.55 Yes 9 Yes 164 15.37 No 5/7
8 0 Yes 3.67 Yes 40 Yes 212 14.56 No 7/8
9 4 Yes 3.58 No Yes 205 13.83 No 9/11
10 0 Yes 2.39 No Yes 169 14.93 No 4/6

Total 1.4 100 % 3.08 40% 19 100% 196 14.33 0 % 66 %
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Table 4.13: Fault detection results for Adult 2 with 15 days global training.

Day F/P
Loss of amplitude PISA Infusion fault Spike Jumping signal
Det G Det t det det d time G det det

1 0 Yes 2.76 No Yes 176 13.96 No 1/5
2 0 Yes 2.82 No Yes 150 12.99 Yes 3/7
3 0 Yes 2.91 Yes 39 Yes 169 15.76 No 4/7
4 0 Yes 2.27 No Yes 176 13.39 No 6/6
5 0 Yes 3.30 No Yes 176 13.10 No 6/11
6 0 Yes 2.91 Yes 18 Yes 144 14.60 No 4/5
7 0 Yes 3.04 No Yes 177 13.17 No 8/9
8 0 Yes 2.63 Yes 47 Yes 164 13.33 No 8/9
9 1 Yes 2.13 Yes 12 Yes 198 15.00 No 4/5
10 0 Yes 3.00 No Yes 188 14.25 No 9/9

Total 0.1 100 % 2.78 40 % 29 100% 172 13.96 10% 73 %

Table 4.14: Fault detection results for Adult 3 with 15 days global training.

Day F/P
Loss of amplitude PISA Infusion fault Spike Jumping signal
Det G Det t det det d time G det det

1 0 Yes 1.17 No Yes 176 14.25 No 6/10
2 0 Yes 2.92 Yes 72 Yes 201 13.81 No 6/8
3 0 Yes 2.30 No Yes 199 13.45 No 5/6
4 0 Yes 3.45 No Yes 218 13.53 No 5/8
5 0 Yes 3.12 Yes 15 Yes 180 13.61 No 5/8
6 0 Yes 1.93 No Yes 229 14.23 No 4/5
7 0 Yes 2.95 Yes 13 Yes 225 14.15 No 5/7
8 0 Yes 3.58 Yes 43 Yes 203 12.95 No 5/6
9 0 Yes 3.13 Yes 16 Yes 211 13.85 No 6/6
10 0 Yes 3.22 Yes 16 Yes 199 14.30 Yes 5/5

Total 0 100 % 2.78 60 % 29 100% 204 13.81 10 % 75 %

As can be seen in Table 4.12, 4.13 and 4.14, the fault detection results for
global training data consisting of 15 days is close to identical to the results
for the training data containing 45 days. The only signi�cant di�erence is in
the increased number of false positives for Adult 1. All loss of amplitude is
detected at roughly the same glucose concentration. Only one less PISA was
detected, all infusion faults was detected, and about the same number of jumps
was detected. This shows that 15 days of glucose measurements is su�cient
training data for the fault detection. It also indicates that the size of the
training data not nececcarly correlated with the fault detection performance.

Detection of low glucose concentration

In addition to detection faults it would be interesting to see if the selected
combinations are able to detect gradually decreasing glucose concentration,
and in so be able to detect hypoglycaemia. And if so, at what glucose con-
centration is it detected. Therefore the implementation of the amplitude fault
is exploited. A time period of 5 days (120 hours) is simulated with the fault.
There is no meals and glucose concentration is supposed to be constant with
exception of the noise. But the loss of amplitude will slowly decrease the
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glucose concentration. This way we can see if the selected combinations will
detect low glucose concentration that appear slowly. The results for personal
training can be seen in Table 4.15, the results for global training with a large
data set can be seen in Table 4.16, and the results for global training with a
small data set can be seen in Table 4.17.

Table 4.15: Results for detection of low glucose concentration with 15 days
personal training.

Day Adult 1 Adult 2 Adult 3
1 5.63 4.89 5.89
2 6.00 5.18 5.23
3 5.73 5.08 5.02
4 5.82 4.89 5.75
5 5.81 5.26 5.49
6 5.95 5.09 5.74
7 5.89 4.92 5.69
8 5.97 4.92 5.40
9 5.73 4.98 5.56
10 5.79 5.14 5.84

Avg 5.83 5.04 5.56

Table 4.16: Results for detection of low glucose concentration with 45 days
global training.

Day Adult 1 Adult 2 Adult 3
1 4.54 4.81 4.14
2 4.51 4.66 4.34
3 4.45 4.01 4.90
4 4.74 4.39 4.38
5 4.22 4.55 4.14
6 3.85 4.44 4.69
7 4.57 4.82 4.56
8 4.20 4.06 4.62
9 4.53 3.98 4.15
10 4.03 4.44 4.12

Avg 4.36 4.41 4.40

In Tables 4.15, 4.16 and 4.17 we can see that the selected combinations
is sensitive for gradually decreasing glucose concentration. For the personal
training the thresholds vary, which indicates that the thresholds is depends
on the training data. For the global training they are approximately the same
for Adult 1-3. Interestingly the threshold for global training with the small
data set is about the same as for the global training with a large data set.
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Table 4.17: Results for detection of low glucose concentration with 15 days
global training.

Day Adult 1 Adult 2 Adult 3
1 3.97 4.61 4.28
2 4.27 4.32 4.32
3 4.17 4.28 4.34
4 4.02 4.20 4.18
5 4.35 4.15 3.91
6 4.21 4.27 4.51
7 4.40 4.38 4.29
8 3.75 3.96 4.32
9 4.19 4.02 4.01
10 3.85 4.17 4.28

Avg 4.12 4.24 4.24

Again we see that the size of the data set not necessarily have an e�ect on the
performance of the selected combinations.

4.4 Fault recognition

In addition to detecting when a fault occur it needs to be decided what fault
has occurred. The procedure proposed in section ?? is used and the window
sets are used to train the classi�er in 3.7. 200 windows for each of the selected
combinations for fault is used. Obliviously it would be hard to get 200 de-
tections of each fault for personal training, and a general fault recognition is
needed also for personal training. Therefore Adult 1 with the corresponding
personal training set of 15 days was used to make a training set for fault recog-
nition for personal use. The fault recognition was then tested with Adult 2 and
3. For global training the data set consisting of 45 days was used and faults
was detected for Adult 4-10. Therefore, the fault recognition is independent
of Adult 1-3 on which it is tested on.

New simulations with unknown faults are run and when a fault is detected
the classi�er is used to decide what fault has occurred. Spikes are not included
as they rarely are detected. Only the three �rst detections of a fault is consid-
ered as those are the most critical. It is assumed that most people will check
the alarm in the �rst 15 minutes. Only the faults that was detected three or
more times are taken into account in the following tables. The results for the
personal training can be seen in Table 4.18 and 4.19, and the results for global
training can be seen in Table 4.20, 4.21 and 4.22.
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Table 4.18: Fault recognition results for Adult 2 with 15 days personal training.

Day Loss of Amplitude PISA Infusion Fault Jumping signal
1 1/3 3/3 0/3 3/3
2 3/3 3/3 3/3 2/3
3 0/3 3/3 3/3 2/3
4 0/3 3/3 1/3 3/3
5 0/3 3/3 3/3 1/3
6 2/3 2/3 3/3 0/3
7 3/3 3/3 1/3 2/3
8 2/3 3/3 3/3 0/3
9 0/3 3/3 3/3 0/3
10 2/3 2/3 0/3 0/3

Result 43 % 93% 67% 43%

Table 4.19: Fault recognition results for Adult 3 with 15 days personal training.

Day Loss of Amplitude PISA Infusion Fault Jumping signal
1 3/3 3/3 0/3 3/3
2 2/3 3/3 3/3 3/3
3 2/3 3/3 3/3 3/3
4 0/3 3/3 0/3 3/3
5 1/3 1/3 0/3 3/3
6 1/3 3/3 3/3 3/3
7 1/3 3/3 3/3 2/3
8 0/3 3/3 3/3 3/3
9 2/3 3/3 3/3 2/3
10 2/3 3/3 2/3 3/3

Result 47 % 93 % 67% 93%

Despite the fault recognition classi�er being trained on windows detected
based on another data set it preforms surprisingly well. For the personal train-
ing it classi�es almost all PISA's correctly. There are some uncertainties like
loss of amplitude being confused with PISA, which might indicate that the
classi�er is favouring PISA. Also infusion fault and jumping signal is occa-
sionally confused. The fault recognition classi�er for the global training data
seems to do the opposite, and favour loss of amplitude over PISA. The weak
classi�cation of PISA is slightly disappointing, but most of the other classi-
�cations are on point, which is impressing with regards to the independent
data set. As a whole the fault recognition performs reasonably well both for
personal training and for global training, and we are able to decide what fault
have occurred with some degree of accuracy.
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Table 4.20: Fault recognition results for Adult 1 with 45 days global training.

Day Loss of Amplitude PISA Infusion Fault Jumping signal
1 3/3 1/3 3/3 1/3
2 3/3 1/3 3/3 3/3
3 3/3 1/3 3/3 3/3
4 3/3 1/3 3/3 3/3
5 3/3 0/3 3/3 3/3
6 3/3 1/3 3/3 1/3
7 2/3 2/3 1/3 1/3
8 3/3 1/3 0/3 3/3
9 3/3 1/3 3/3 0/3
10 3/3 1/3 3/3 3/3

Result 97 % 33 % 83% 70%

Table 4.21: Fault recognition results for Adult 2 with 45 days global training.

Day Loss of Amplitude PISA Infusion Fault Jumping signal
1 3/3 2/3 3/3 1/3
2 3/3 0/3 1/3 3/3
3 3/3 1/3 3/3 1/3
4 3/3 1/3 2/3 1/3
5 3/3 2/3 1/3 0/3
6 2/3 3/3 3/3 1/3
7 3/3 0/3 3/3 3/3
8 3/3 0/3 3/3 3/3
9 3/3 2/3 3/3 3/3
10 3/3 2/3 0/3 3/3

Result 97 % 43% 73 % 63%

4.5 Conclusion

The aim of this thesis was to develop a fault detection method able to detect
several types of faults. The work of [10] was used as a starting point, and a
similar method was developed and implemented in the APT-simulator. Two
new methods for splitting the training data was proposed. Both functioned as
intended and was usable for fault detection. For personal training, each split
method had strengths and weaknesses. Split by SPE gave the best results for
detection of loss of amplitude and infusion fault, while Split by Slope gave
the best results for detection of PISA. In the case of global training, Split by
SPE outperformed Split by Slope with regards to all faults. Inclusion of IIR
was another new function. The e�ect was negligible for personal training, but
for global training, a clear positive e�ect was observed for the classi�cation of
windows.
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Table 4.22: Fault recognition results for Adult 3 with 45 days global training.

Day Loss of Amplitude PISA Infusion Fault Jumping signal
1 3/3 1/3 3/3 0/3
2 3/3 1/3 3/3 1/3
3 3/3 2/3 3/3 1/3
4 3/3 1/3 3/3 3/3
5 3/3 1/3 3/3 3/3
6 3/3 1/3 3/3 0/3
7 3/3 2/3 3/3 0/3
8 3/3 1/3 3/3 2/3
9 3/3 1/3 3/3 2/3
10 3/3 1/3 1/3 2/3

Result 100 % 40% 93% 47%

The implementation of several windows at the same time strengthens the
system as no window performs well for all faults. The possibility of using
several windows then enabled us to use windows which performed well for dif-
ferent faults. The fault detection was tested for both personal training and
global training. As can be expected, the personal training performed better
than the global, but the chosen combinations of split methods, control limits,
and window lengths, was able to detect faults in both cases. In addition to
detecting faults, a fault recognition procedure was constructed and applied.
The constructed system was able to classify the detected faults in a manner
which produced decent results.

In conclusion, we have proposed and implemented a working fault detec-
tion and recognition system. The method has an acceptable number of false
positives, is able to detect 5 di�erent faults, and is sensitive to low glucose
concentration. Additionally, the method is capable of di�erentiating between
the 4 faults. The described fault detection method has potential, and can be
improved with further work. It may very well serve as a building block for a
method that is capable of to detecting a range of di�erent types of faults, and
is a step towards a fault detection method that can be used in an real arti�cial
pancreas.
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Suggestions for future work

For the current implementation there is some room for tuning of di�erent
parameters, such as the fault limits, that might boost the performance. The
chosen combinations of split methods, control limits, and window lengths may
not be optimal, and a di�erent combination might give better results.

The largest potential for improvement lays in the splitting of the training
data into classes, which is the corner stone for this fault detection. The current
methods works, but is simplistic. A more sophisticated method for splitting the
data that results in better PCA-models for each class will have several positive
e�ects. First of all the improved PCA-models will have a lower average SPE-
value within each class, which will result in a more sensitive fault detection.
A more sensitive and sharp detection will also make it easier to di�erentiate
between di�erent types of faults. A sensible splitting method might also make
classi�cation of new unknown windows easier as with Split by Slope. Another
approach might be to split the training data into more than three classes. It
might improve the PCA-models and further make the fault detection more
sensitive. But at the same time it will make classi�cation of new windows
more di�cult. It is a trade o�, but one worth examining. Especially if the
split method of the training data is easy and classi�cation is easy. The split
method and number of classes also e�ects the performance of the windows
used in the fault detection. A new split method and a di�erent number of
classes might enable us to use other window lengths and use speci�c windows
for speci�c faults. And as a result an entirely di�erent combination of window
lengths might be bene�cial.

The classi�er used is linear and another type of classi�er might improve
the results, both for the fault detection and for the fault recognition. There
are many di�erent directions one can take, but maybe the most interesting
is maybe arti�cial intelligence. A arti�cial neural network might improve the
classi�cation of new windows, and what could �t better to an arti�cial pancreas
than arti�cial intelligence? On the other hand the progression from a linear
to a non-linear classi�er is not without challenges and one need to avoid for
example over�tting.

One drawback with this fault detection method is that it is only tested
on faults implemented in the APT-simulator. The fault detection method

46
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should be tested on other fault implementations to see if one could produce
comparable results. The method is also solely tested on simulated data, so
testing on real life data should also be a natural next step.
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