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Abstract—This paper aims to present a mathematical tool
useful for quantum key distribution network configuration.
In particular, the paper studies the throughput of secret key
distribution in a quantum key distribution network with trusted
repeaters. In addition, the backlog of secret keys at a trusted
repeater is also investigated. The analysis is based on the queueing
principle of secret keys in the trusted repeater, implied by that
the transmission of secret keys in the network is store-and-
forward. The obtained results are applied to a discrete-variable
protocol with weak coherent pulse sources, where realistic system
parameters are integrated in the analysis. It is shown that,
if the secret key rates on the transmission path are different,
the transient throughput of secret key distribution through the
network also vary, located between an upper bound and a lower
bound on the secrete key distribution rate.

Index Terms—Quantum key distribution network; trusted
repeater; key rate

I. INTRODUCTION

Quantum technology era is coming as a second quantum
revolution relative to the first one on quantum theory a century
ago [1], e.g., China launched the first ever quantum satellite in
2016 [2], Google and Microsoft plan to bring quantum com-
puters out of lab in 2017 [3], and Google contends that small
quantum devices will be commercialized in five years [4].
It is imperative to realize that the conventional cryptography
becomes frail in front of quantum computers, which operate by
manipulation of gbits and can easily solve some mathematical
problems that are complex for conventional computers and
are the basis of conventional cryptography. While quantum
computers take away the shield in conventional communica-
tion, quantum physics guarantees a new cryptography weapon,
namely quantum key distribution (QKD). QKD is the first
quantum technology ready for commercialization, and the
generated secret keys are deemed as secure for all future
as at the creation time, without putting restrictions on the
adversary’s resources or emerging side-channels [5].

However, QKD has two limitations that inhibit its wide
spread and deployment, i.e., short operational distance and
low key rate. The primary factor limiting the key rate is the
detector’s deadtime. Another crucial factor is channel loss.
Moreover, the key rate is constrained by the security require-
ment [6]. Because the quantum states are fragile, the longer
the quantum signals travel the easier they lose to decoherence.
Consequently, the maximal distance of secure QKD decreases
with increasing losses and increasing detector noise. To extend
the operational distance, quantum repeater is a perfect choice

to overcome the loss problem and form an effective quantum
channel. Unfortunately, quantum repeaters rely on elaborated
quantum operations and on quantum memories that cannot be
realized with current technologies [7]. With a pay to trust,
trusted repeaters relieve the impracticable requirements of
quantum repeaters, are implementable with current technology,
and have been deployed [8], [9].

In this paper, we consider QKD trusted repeater networks.
We aim to provide a mathematical tool useful for QKD
network configuration in practice. In particular, we establish
a close relationship between distance and key rate at network
scale and investigate the impact of network properties on the
throughput of secret key distribution through the network. It
is worth noting that while the secret key rate is a defining
characteristic of a QKD link, i.e., it is a reflection of chan-
nel loss, detector efficiency, and security requirement at the
link, the analysis of secret key distribution throughput of a
QKD network requires a network perspective and different
combinations of available resources may result in extremely
different network performance. In practice, the implementation
technology of trusted repeater implies that the transmission of
secret keys in the network is store-and-forward and follows a
queueing principle. Based on this, we obtain an expression of
secret key distribution throughput of the network as a function
of secret key rates at each link. In addition, we investigate the
backlog of secrete keys at the trusted repeater.

Though trusted repeaters are relatively easier to implement
than quantum repeaters, the throughput analysis of secret key
distribution in an end-to-end QKD network is not trivial.
We solve this problem by transforming the network into a
min-plus linear system based on the min-plus convolution
operation [10]. This convolution approach has been utilized
for performance analysis of other types of networks, such as
wireless networks [11] where the wireless channel is treated
as a queueing system and latency metrics are analyzed. In the
present paper, particularly, we extend the analysis to secret
key rate analysis in QKD networks.

The remainder of this paper is structured as follows. In Sec.
II, some basics of quantum key distribution are introduced. In
particular, three new concepts of secret key rates are defined
with respect to the stochastic nature of raw key rate in a
time slot. In addition, the queueing principle of secret keys
in the trusted repeater network is formulated, based on which
some generic results for secret key throughput and backlog
are derived. In Sec. III, the obtained results are applied to a



concrete protocol, where the statistical property of transient
throughput is further investigated. Specifically, the impacts of
different distance configurations are illustrated. In addition,
backlog results are also presented and mean value analysis is
discussed. Finally, the paper is concluded in Sec. IV.

II. THEORY
A. Quantum Key Distribution

A generic QKD setting consists of two authorized partners,
Alice and Bob, and two communication channels, a quantum
channel used to share quantum signals and an authenticated
classical channel used to transmit classical messages. Eve is
a hypothetical adversary, tapping into the quantum channel
and listening to the exchanges on the classical channel. The
Heisenberg uncertainty principle ensures that any attempt
to measure a quantum state changes it and the no-cloning
theorem guarantees that an unknown quantum state can not
be duplicated while keeping the original intact, which means
that eavesdropping is thus detectable in principle and is the
key idea behind QKD [12]. In other words, the quantum
channel is the additional resource in QKD, without which
information-theoretically secure key distribution is impossible
through public communication only [13].

1) Photon Source: As light does not interact easily with
matter, it’s a practical choice for quantum information process-
ing, and quantum states of light can be transmitted to distant
locations basically without decoherence [13]. Optical quantum
cryptography is based on the use of single-photon Fock states,
which are difficult to realize experimentally, and practical
implementations rely on faint laser pulses or entangled photon
pairs, in which both the photon and the photon-pair number
distribution obey Poisson statistics [12], [14], i.e., given the
mean photon number p, the probability of finding n photons
reads "

P(nlu) = “en, )

n!

Particularly, the number of photon pairs per mode is thermally
distributed within the coherence time of the photons and
follows a Poisson distribution for larger time windows [12],
[14]. After key distillation, the security is just as good with
faint laser pulses as with Fock states, and the price to pay for
using such sources is a reduction of the bit rate [15].

2) Channel Loss: The dominating effect of photonic chan-
nels is loss [5], which leaks information to the eavesdropper
and imposes bounds on the secret key rate and on the achiev-
able distance. For optical fibers, losses are due to scattering
processes, and the transmission efficiency is expressed as [15]

nT — 10—(OLI+L(:)/1O, (2)

where o dB/km is the loss coefficient, [ km is the fiber length,
and L. dB is Bob’s detection loss. For free space channels,
the losses are geometric and atmospheric, and the transmission
efficiency is as follows [5], [13]

d-2

_ 1O—al/10 3
nr 7(ds+Dl)2x ; 3)

where d, m and d; m are the aperture diameter of the receiving
and sending telescopes, D mrad is the beam divergence, [
km is the channel range, and o dB/km is the atmospheric
attenuation factor.

3) Key Rate: In QKD, quantum signals are first exchanged
and measured on the quantum channel, statistics of the data are
estimated and information are communicated on the classical
channel; then, uncorrelated symbols are discarded and the
leftover symbols are the raw key'. The raw key rate is
expressed as [13]

R4 = vsProb(Bob accepts), “4)

where the first factor vg is the repetition rate, e.g., vg is
the repetition rate of the source of pulses in case of pulsed
sources and vg is the average rate of Alice’s detection in case
of heralded photon sources; the second factor depends on the
protocol and hardware, e.g., losses and detectors.

However, the gathered information by a eavesdropper for a
typical error rate is too high to use the raw key directly for
cryptographic purpose [15], to fulfill security requirement, the
key is further distilled, and the product of the raw key rate
R, and secret fraction G is defined as the secrete key rate:

R = R,0uG, &)
e.g., in case of classical information postprocessing [13],
G =1(A:B)—min(Iga, Isp), (6)

where I(A : B) is the Alice-Bob mutual Shannon information
and Ip. is Eve’s maximal information about the raw key of
Alice or Bob.

B. Trusted Repeater Network

A QKD trusted repeater network is a connected graph:
the vertices represent nodes (trusted repeaters) and the edges
represent QKD links [8]. Trusted repeaters are equipped with
classical memories, messages are encrypted and decrypted
hop-by-hop, one-time pad encryption and unconditionally se-
cure authentication are performed to ensure secrecy locally,
and global information-theoretic security between end nodes
is obtained provided that intermediate nodes are trusted [7].

Consider a QKD path of N nodes, Ny,..., Ny, ie., N—1
hops, Hy2,...,Hy—1,n. On the first hop H; 2, key materials
K are generated and shared between /V; and N»; on the second
hop Hy 3, K are decrypted and encrypted by one-time pad
using key materials K5 3 shared between Ny and NN3; in this
way, K are transported from N7 to N3, and this process is
repeated until K are transported to the destination Ny.

We treat the secret key rate as a stochastic process and focus
on its temporal behavior with three new definitions.

Definition 1. The secret key rate in time slot t is defined as
instantaneous key rate:

T(t) = Rrqw (t)G, @)

In the literature, the key rate after sifting is also called sifted key rate,
while the key rate before sifting is called raw key rate, e.g., [15].



where R,q. is supposed random in time slot t, and the
cumulative process through time (s, t is defined as cumulative

key rate:
¢

>, () (8)

T=s+1

R (s,t) =

Denote R(t) = R(0,t). The time average of the cumulative
key rate is defined as transient key rate:

9

We investigate two network performance metrics, through-
put and backlog, particularly, the rate throughput is a basic
performance metric of the QKD network and the backlog are
useful for trusted repeater buffer dimensioning. Results are
summarized in the following theorems.

Theorem 1 (Simple). Consider a QKD path of N — 1 hops.
The backlog at each hop is expressed as

Bi,i+1(t) = 7—1,1‘(75) LA W ® R; z+1( ) (10)
and the end-to-end throughput is expressed as
RinN{t)=Ri2®Ro3®...®Rn_1n(t), (11)

where [ ® g(t) = infocs<i{f(8)

convolution.

+ g(s,t)} is the min-plus

Proof. The QKD link between two trusted repeaters is es-
sentially a queueing system, with input process 7} ;(¢) and
R} | ,(t), service process 7;;+1(t) and R; ;+1(t), and output
process 7, () and R}, (¢), V2 < i < N. The queueing
principle is expressed through the backlog in the system, which

is a reflected process of the temporal increment X (¢) [16], i.e.,
Biis1(t +1) = [Biir1(t) + Xiira (D],

where X;;y1(t) = rf,,;(t) — 7iit1(f) is the temporal

increment in the system. Throughout this paper, B; ;41(0) =0

is assumed, then the backlog function is expressed as
Biis1(t) = sup (R ,;(s,1) = Riiy1(s,1)) .

0<s<t

12)

13)

For a lossless system (trusted repeater), the output is the differ-
ence between the input and backlog, R}, ,(t) = R}, ;(t) —
B, i+1(t), which is further represented by [11]

Rzz-l—l()_ i— 11®R11+1()

For an end-to-end QKD path, the secret key rate in the
first hop Ry 2(t) is the arrival process to the consecutive link,
Rs 3(t) is the service process for Ry »(t), etc., the cumulative
throughput is expressed as

(14)

Rin(t) = Rio®Re3®...®@Ry_1n(t) (15)
N
= inf Rz 17(7-1 laTz) (16)
‘reﬂ(t)
where y(t) = {‘I’ = (Tl,...,TN) 0 < To < ... < TN-1 &<
. 0

For a complex network beyond line topology, the results are
summarized in the following theorem, and it holds for both
cyclic or acyclic routing [11].

Theorem 2 (Complex). Consider two input processes
*RE () and ‘RY 14(t), sharing one service process
Rm-l-l( ), let

() =R () + Rz 1:(1), 17)
the backlog is expressed as
Bi,i+1 = Rz* 1, z( ) R'Zk 1, z( >®Ri,i+1(t>7 (18)

the service process *R, ; 41(t) for the input of interest

*RY, ;(t) is bounded by
Riiv1(t) = "R, ;11(t) = Riia(t) - ), (19
and the end-to-end throughput is bounded by
Rios®Rys®...®Ry_1,n(t) = "Ry n(t)
> "Rio® Ros®...® Ry_1.n(t). (20)

Proof. The first inequality is intuitive. The second inequality
follows the monotonicity of bivariate min-plus convolution
[11], , f®g < gif f(t,t) = 0or f®g < fif
g(t, ) = O. O

Remark 1. The queueing principle of the trusted repeater
network indicates that the secret key rate of the consecutive
nodes should be greater than the previous nodes’, at least,
greater than the secret key rate of the initial nodes, in view of
network stability. It’s different for lossy system.

III. APPLICATION
A. Discrete-variable Protocol

Discrete-variable protocols use photon counting detection
schemes, coding of bits can be based on any discrete quantum
degree of freedom in principle, and free-space implementa-
tions and fiber-based implementations frequently use polar-
ization and phase coding respectively [13]. The raw rate is
essentially the product of the pulse rate v, the transmission
efficiency nr, the detection efficiency 7p, and the number of
photons p(t) in a time slot ¢, i.e.,

Ryaw(t) = pqunrnpp(t),

where p is the sifting factor, e.g., p = 1/2 for the BB84 and
the B92 protocol, and p = 1/3 for the six-state protocol [17];
and ¢ (¢ < 1, typically 1 or 1/2) is introduced in phase coding
setups to account noninterfering path combinations [14].

The secret fraction formula for realistic photon signals is
expressed as [15]

2n

pea;p - ST)’L pewp
G = PpostPesps —— | 1 —1 1+4
p 2
—4 eeM') + flellelogs (e
Crn D flelletogs(e)
+(1 —e)log,(1 - e)l}, (22)



where pp.s; is the post-selection probability, pe,p is the
probability that Bob detects a signal, Sy, S1, and S;, are the
probability that the signal contains zero, one, or more than one
photon, and e is the signal error rate that is observable and
f[e] is the ratio of redundant bits to approach Shannon limit
with error correction codes. Assume that the signal photon
detection and the dark counts are independent, then [15]

Peap = pi% ral 4 plark — pgignalpdark (23)
pigt = 25 Z ( ) nenr) (1 —nenr)'™, (24
plark = dp, (25)

where dp is the dark count, S; is the probability that the source
sends ¢ photons, np is the detection efficiency, and 7 is the
transmission efficiency.

For weak coherent pulse, the photon number is Poisson
distributed [12]; thus, with mean p,

Sp = 1—(1+pe™, (26)
signal —
ei% = 1— e mBITH (27)

given a post-selection probability p,.s¢ = 1, the expected se-
cret fraction G per time slot of an experiment is obtained. The
cumulative key rate R(s,t) also follows a Poisson distribution
with mean

AR(s,t) = PqUnTnBHG - (t — 5), (28)

and the moment generating function is expressed as

Mpgep[—0] = neo (e’ =1), (29)

B. Metric analysis
We consider the simple network scenario only and results
are summarized in the following corollaries.

Corollary 1 (Throughput). For weak coherent pulse, the lower
bound \. and upper bound \!' of the transient throughput \;,
given a violation probability ¢, are expressed as,

1 1 t+N— 2
AL Sup{)\(G)wL o8(€) — log (Ty )}, (30)

>0 ot
. log(e)
o -5},

A Ai—l‘i(579

2<isN

A= 31)

_1)

where A(—0) =
V )\i_lri(ee—l)

S . In infinite time regime, the lower bound

converges to the minimal average rate of all hops, i.e.,

taoc= /\ i 1,35

2<i<N

— and \O) =
(32)

while the upper bound converges to the maximal average rate

of all hops, i.e.,
= \/ /\z 1,%-

2<i<N

(33)
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Fig. 1. Secret key throughput of a 2-hop network. The solid lines depict

the analytical upper and lower bounds, the dotted lines depict the maximal
and minimal means, and the shaded areas depict the upper and lower bound
intervals. Distance matrix [15 5;12 8;10 10] km, p = 1/2, ¢ =1, v = 10
MHz, np = 0.18, p = 0.1, « = 0.2 dB/km, L. = 1 dB, e = 0.01,
fle]l = 1.16, dg = 2 x 1074 /slot, ppost = 1, and € = 0.001. The
parameter values are given in [15].

The results are illustrated in Fig. 1. It’s shown that when the
distance difference between different hops becomes big, the
interval between the maximal and minimal mean rate becomes
big, thus the jitter in the key throughput becomes big. This
property also applies to the rate differences resulting from
other parameters. In addition, it’s shown the stochastic analysis
is capable of characterizing the rate fluctuation in finite time
regime before it converges to the mean interval in infinite time
regime.

Lemma 1. Consider the output process R} ; ;(s,t), V(s,t]
and V8 > 0, the moment generating function is bounded by

E[ HORF | (s, t)] < Z HE[ +6R;_1,;(7j— 1,TJ)]’ (34)

TET (s8,t) j=2

{T= T2<...§T1;_1§

where T (s,t) =
t}.
Corollary 2 (Backlog). For weak coherent pulse, the lower

bound bl i+1 and upper bound bl 41 of backlog at each hop,
given a violation probability €, are expressed as

(T1,...,7) : s <

log (¢) — log (by(0))

bt = su , (35)

bitl 0>13 ot

ut .. —log (€) + log (b, (0))

i = 0 -
where

t+1—2 t i (t_s)[ A Njo1(e =1+ 2 i1 (e? 1)
bl(9)=( J ) e s 3

i

Vo A1 (€f =D Asisa(e”?-1)

to( *S)[
Z e ! 2<)<i (

s=0

o= (1357)

)

b
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Fig. 2. Secret key backlog upper bound at the second hop of a 2-hop network.
The violation probability increases with the distance decrease of the first hop.
The parameter values are the same as in Fig.1.

Since the queue length is a regenerative process, the abso-
lute backlog lower bound is 0, in this way, only the upper
bound makes sense in infinite time regime. It’s intuitive that
the backlog increases with the incoming secret key rate. The
results are illustrated in Fig. 2.

Corollary 3. Consider mean value analysis, let R;_1 ;(t) =
Ai—1,i - t, the throughput is expressed as

Rin®t) = /\ At (39)
2<i<N
Proof. Since
/\ Aic1,i -t < Rin(t) < v Aic1,i -t (40)
2<i<N 2<i<N
the proof follows directly. O

Remark 2. The result based on deterministic analysis is a
conservative lower bound, and the upper bound is obtained
from stochastic analysis. It indicates that, without considering
the upper bound, the configuration in practice based on
deterministic analysis is pessimistic.

IV. CONCLUSION

In this paper, we investigated the rate performance of
secret key distribution in a QKD trusted repeater network.
We derived secret key distribution throughput formulas for
both a simple and a complex topology network. Considering
that the secret keys in the trusted repeater network are stored
and forwarded hop-by-hop, the QKD link was modeled as a
queueing system and the queueing principle was represented
by the accumulation process of the keys at the repeaters.
Based on this, the throughput was specifically expressed as
a min-plus convolution of secret key rates at each link. In
addition, an expression of backlog at each link was also
obtained. We applied the obtained results to a discrete-variable

protocol with weak coherent pulse sources, for which, more
concrete formulas of throughput and backlog were derived,
where realistic system parameters were integrated into the
analytical framework, e.g., photon number, channel loss, and
detector efficiency. We showed that, if the secret key rates at
each link are not equal, the secret key throughput may have
fluctuation even at steady state, and the approach to reduce
the fluctuation is to reduce the difference of individual secret
key rates. Applications to other protocols are our future work.

APPENDIX A
PROOF OF COROLLARY 1

Proof. Recall the definition of transient throughput,

Rin(t
A = Lf().

The lower bound of the transient throughput is expressed as

[11]

(41)

P{Ry n(t) < X, -t} (42)

< Z 62522(771—77:71))\1'71,1'(679—1)_eeAit (43)
TET (L)

PEN 2\ A et
< 2<isSN . t

( N_2 )e e (44)
_ (PN =2 e -ae
- ( N >e . (45)

The upper bound of the transient throughput is expressed as

[11]
P{Ry n(t) =\ -t} (46)
< inf eXa(mmmeDA (¢ -1) L mONE (47)

TeT (t)

V A,,_lwi(ee—l)t “
< e2<isN Cem Nt (48)
_ e—@()x(e)-‘r)\;‘)t- (49)

. log (7
Observe lim,, o # = 0, the lower and upper bounds,
in infinite time regime, are expressed as

M, = sUp (=), (50)
0>0

e = inf \(). (51)
0>0

Considering the monotonicity of A(—6) and A(#), the deriva-
tives are respectively

0 Xe (0 +1)— A
07))\(—9) = — e (52)
] Xef (0 —1) + X
@)\(9) = T (53)
letting %)\(—9) =0 and %/\(0) = 0, we obtain
N = T A(-0) = A, (54)
Moo = lmA@) =X (55)

where \ = /\2<i<N /\i—l,i and \ = \/2<i<N )\i—l,i- O



APPENDIX B
PROOF OF LEMMA 1
Proof. Let T (s,t) = {7 = (11,...,7%) :
Ti—1 < t}, consider the output process R;’lu
and V6 > 0,

N

§ < To < ...
(s,t), V(s,t]

6 inf t o Rj—1 i(Tj_1,7;
I ] I
<E| sup eZim2Bimnimoim) | (57)
TE€T (8,t)
< Z E [6923:2 Ra‘—ld(ﬁ—lﬁj)] (58)
TET (8,t)
= Z H E [QGRj—l,j(Tj—l,Tj)] ., (59)
TET (8,) j=2
—6 inf i Rj_1,(T5-1,75
I [efeR;"_M(s,t)] _r [e ontYies Rimas(mia >] ©0)
=FE| sup e 052 Bim1,5(mj-1,75) 61)
TET (8,t)
< Z E [e_GZ;:Q Rj—l,j(Tj—lej)] (62)
TET (8,t)
;
= Z HE[e*("Rj—l,j(Tj—lvTj)]_ (63)
T€T (8,t) J=2
O
APPENDIX C
PROOF OF COROLLARY 2
Proof. Recall the backlog is expressed as
Bii+1(t) = Sup (RF_1i(s,t) = Riiga(s,t)) . (64)
S
The lower bound is expressed as
P{Bj;+1(t) < x}
t
= [[P{RE1i(5.,) = Riga(s,t) <z} (65)

0

®
Il

N
:Pﬁ

{E [e_e(R;kﬂ,i(svt)—Ri,Hl(S,t))] ,eex} (66)

Z li[ E [e—GRJ—l,j(Tj—th)]

0\ reT(s,t)j=2

[
Il
)

1~

<

S

.E I:eeRi,z‘Jrl(s’t)] . 69:1: (67)
t . Ajo1,5(t—s)(e”?—1)
t+4 2 </‘\<A j—=1,3
()
s=0
i (t=s)(e”=1) | oz , (68)

where the first inequality follows Chernoff bound, and the last
two inequalities follows Lemma 1.

The upper bound is expressed as

P{B;+1(t) = x}

M~

< ), P{Rf | (s,t) = Riis1(s,t) =z} (69)

[
Il
o

)
b1~

B[ Rec0)| 05 o)

[V
Il
o

Z ﬁ E [eeRj—l.j(Tj—th)]

01eT (s,t) j=2

N
01~

S

B I:efeR-;,wrl(Sst):I . 67993 (71)
t . Aj— ,,v(t—s)(ee—l)
t 4+ 2 \/ J—=1,J
<20< iiQ >€2<j<i
i (t=s)(e 0 -1) | —br (72)

where the first step follows union bound, the second step
follows Chernoff bound, and the last two steps follow Lemma

1.
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