
Searching large data volumes
with MISD processing

Thesis for the degree doctor philosophiae

Trondheim, September 2008

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and
Electrical Engineering
Department of Computer and Information Science

Olaf René Birkeland

I n n o v a t i o n a n d C r e a t i v i t y

NTNU
Norwegian University of Science and Technology

Thesis for the degree doctor philosophiae

Faculty of Information Technology, Mathematics and
Electrical Engineering
Department of Computer and Information Science

© Olaf René Birkeland

ISBN 978-82-471-1099-7 (printed version)
ISBN 978-82-471-1100-0 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2008:207

Printed by NTNU-trykk

Abstract

Historically, supercomputing has focused on number crunching. Non-
numeric applications, such as information retrieval and analysis, have to a
lesser extent been able to exploit the inherent resources of supercomputers.
This thesis presents the results from the development of a novel multiple
instruction, single data (MISD) architecture, targeting evaluation of com-
plex queries in large data volumes. For such applications, this architecture
provides a better price versus performance ratio, better use of the available
memory bandwidth, lower power consumption, as well as linear scalabil-
ity.

The core element of this technology is the Pattern Matching Chip (PMC).
Each chip provides 1024 processing elements, with an accumulated perfor-
mance of 1011 operations per second. Multiple chips can be run in parallel
with linear scalability, either within one computer, or in larger clusters.
Up to half a million processing elements have been used in parallel in this
project, providing 5 · 1013 operations per second at 48 GB per second data
throughput, in a unit smaller than one cubic meter. Even larger systems
can be constructed, still with linear scalability.

Through the novelty of this hardware architecture, the performance
gained has enabled information processing in a way that would have been
cost prohibitive with traditional computers. Such processing has demon-
strated the capability of finding nuggets of valuable data in large and com-
plex data volumes. The main effort — thus also the most important prac-
tical results — has been in bioinformatics. However, the technology has
applicability in numerous other data mining applications.

Preface

THIS DISSERTATION is submitted to the Norwegian University of Sci-
ence and Technology (NTNU) in partial fulfillment of the requirements

for the degree of Doctor philosophiae. The dissertation contains seven pa-
pers, which will be referenced as Paper I through Paper VII, and one patent
(see List of Papers on page xiii and List of Patents on page xv).

Acknowledgement

Fortunately, my solitude position as a hardware developer within the In-
teragon team has been complemented by extremely skillful software de-
velopers. Without them, the result would only be a large numbers of tran-
sistors etched into silicon. Within Interagon, I would especially like to
thank Magnar Nedland for his excellent analytical capabilities, his depth
of hardware competence, and his ability to produce flawless software; Pål
Sætrom as the mastermind in using genetic programming to tap the re-
sources of the PMC; and Ola Snøve for moving to Oslo. Without the inspi-
ration and guidance from Ola, I would not have started writing this thesis.

The Interagon team started as a project group within Fast Search &
Transfer (FAST) in 1998, backed by professor Arne Halaas at NTNU. Arne
has a long experience in data filtering that substantially accelerated our de-
velopment. He has provided valuable suggestions and guidance through-
out the entire project. FAST and Interagon should both be honored for hav-
ing stamina in funding this research over such a long period of time. Inter-
agon has been backed by NTNU’s bioinformatics platform in the national
functional genomics programme (FUGE). Furthermore, professor Lasse
Natvig at NTNU deserves a large credit for reading through my manuscript
and providing numerous valuable comments on the content.

I would also thank my co-authors for their contributions, including
Ståle H. Fjeldstad, Thomas Grünfeld, Arne Halaas, Håkon Humberset,
Magnar Nedland, Ola Snøve Jr., Børge Svingen, and Pål Sætrom.

iv

Finally, I would like give my greatest gratitude to my entire family,
especially my wife Anne Ma and our children René and Ingrid, for their
love and support. You demonstrate that working as a team is a lot more
productive — not just when developing computer technology.

Olaf René Birkeland
Oslo, April 25th 2008

Contents

Preface iii

Contents v

List of Figures ix

List of Tables xi

List of Papers xiii

List of Patents xv

1 Introduction 1
1.1 Aim of Study . 1
1.2 Thesis structure . 2
1.3 Research questions . 3
1.4 Research methods . 4
1.5 Contributions . 4
1.6 Paper Abstracts . 5
1.7 On joint authorship . 10
1.8 Supplementary material . 11

2 Hardware aware optimizations in data search applications 13
2.1 Background . 14

2.1.1 The evolution of the x86 processor 14
2.1.2 The evolution of memory technology 18

2.2 Sorting large arrays . 19
2.2.1 Characteristics of search application at hand 20
2.2.2 Rearranging memory references 20
2.2.3 In-place radix sort . 21
2.2.4 Algorithm complexity 24
2.2.5 Measuring the sorting throughput 26

vi CONTENTS

2.2.6 Remarks on practical aspects 28
2.3 Counting the number of 1-bits 28

2.3.1 The naive approach . 29
2.3.2 Using a lookup table 29
2.3.3 Using the full register width 30
2.3.4 Implementation . 32

2.4 Comments . 35

3 Sequential data processing — in parallel 37
3.1 When indices fall short . 37
3.2 Pattern matching without indices 39

3.2.1 Dynamic programming 39
3.2.2 Finite state machines 40
3.2.3 Limitations with dynamic programming and automata 41

3.3 Sequential data processing . 42
3.4 Improving speed by parallel execution 42
3.5 Sequential access is aligned with technology trends 43

4 The Pattern Matching Chip 45
4.1 Introduction . 45
4.2 Existing technologies . 46
4.3 Design goals . 48

4.3.1 Linearly scalable architecture 48
4.3.2 No preprocessing before analyzing data 48

4.4 Previous architectures . 49
4.4.1 The F and H-matrices 49
4.4.2 The MS160 . 50

4.5 Implementation choices for the PMC 52
4.5.1 Increasing parallelism 53
4.5.2 Maintaining high data throughput 54
4.5.3 Balancing memory volume with processing power . 56
4.5.4 Memory interface . 56
4.5.5 Data distribution . 56
4.5.6 Processing elements 59
4.5.7 Result processing . 60
4.5.8 System interface . 60
4.5.9 Query configuration 61
4.5.10 Scalability . 61

4.6 Designing the PMC . 62
4.6.1 Extensive acceptance testing 62
4.6.2 Hardware and software co-development 63

CONTENTS vii

4.6.3 ASIC and hardware system co-development 65
4.6.4 Final ASIC and full scale system tests 66

4.7 Programming model . 67
4.7.1 Interagon Query Language (IQL) 68
4.7.2 Code compilation and mapping 69
4.7.3 Multi-threaded execution 69

4.8 Distance metrics . 71
4.8.1 One dimensional data 71
4.8.2 Multidimensional data 71
4.8.3 PMC distance metrics avoid expensive arithmetics . . 74

4.9 Results . 76

5 Applications for the Pattern Matching Chip 79
5.1 Introduction . 79
5.2 Characteristics of suitable applications 80
5.3 String data mining . 82

5.3.1 Bioinformatics . 83
5.3.2 Digital network communication 85
5.3.3 Written text . 85

5.4 Vector data processing . 86
5.5 Genetic programming . 87

5.5.1 Methodology and issues with genetic programming . 87
5.5.2 Molecular biology . 88
5.5.3 Financial fraud . 88
5.5.4 Seismic processing . 89

5.6 Commonalities across application areas 90

6 Evaluation of results 93
6.1 Summary of findings . 93

6.1.1 Better usage of available memory bandwidth 93
6.1.2 Scalable parallel architecture 94
6.1.3 Low cost — high performance 94

6.2 Propositions to the research questions 95
6.3 Evaluation of the contributions 97

6.3.1 Summary of contributions 97
6.3.2 Comparison with state-of-the-art 97
6.3.3 Discussion . 97

6.4 Further work . 98
6.4.1 Context save and restore 98
6.4.2 Spatial awareness beyond 1D 99

viii Contents

Glossary 101

Bibliography 107

Papers 121

List of Figures

1.1 Relations between papers in this thesis 6

2.1 Block diagram of the Intel 8086 processor 15
2.2 Block diagram of the Intel Pentium4 (Prescott) processor . . 16
2.3 Historic development of the x86-family of CPUs 17
2.4 Radix sort algorithm . 21
2.5 In-place radix sort example 23
2.6 In-place radix sort algorithm 25
2.7 In-place radix sort scalability 27
2.8 Half-adder . 30
2.9 Adding four bits with half-adders 31
2.10 Implementation of parallel bit-serial bit counting 33

3.1 NFA state machine accepting the pattern ab?c+. 40
3.2 DFA state machine accepting the pattern ab?c+. 40

4.1 MS160 block diagram . 50
4.2 High level PMC block diagram 53
4.3 Data distribution for a small query 57
4.4 Detail level PMC block diagram 58
4.5 PMC search core data distribution 58
4.6 PMC search core result processing 59
4.7 PMC FPGA test jig . 64
4.8 PMC ASIC test jig . 67
4.9 Mapping of a siRNA query . 70
4.10 Multithreading of query evaluation 70
4.11 2D distance decomposition 72
4.12 Comparison of Minkowski metrics in 2D 73

5.1 PMC search card . 80
5.2 Cluster of PMC-accelerated machines 81
5.3 Deriving data from music for PMC-enabled searching 86

x List of Figures

5.4 Test wells for lithology training 90
5.5 Predicted properties of seismic cube 91

List of Tables

1.1 Relations between papers and contributions 5

2.1 Performance development for DRAM devices 18
2.2 Throughput for different bit counting methods 32

4.1 Technical data for different string search ASICs. 76

5.1 Comparison of siRNA screening capabilities 83

List of Papers

Paper I Arne Halaas, Børge Svingen, Magnar Nedland, Pål Sætrom,
Ola Snøve Jr., and Olaf René Birkeland. A recursive MISD ar-
chitecture for pattern matching. Published in IEEE Trans. on
VLSI Syst., 12(7):727–734, 2004.

Paper II Olaf René Birkeland, Ola Snøve Jr., Arne Halaas, Magnar Ned-
land, and Pål Sætrom. The petacomp machine — A MIMD clus-
ter for parallel pattern-mining. 2006 IEEE International Confer-
ence on Cluster Computing. In proceedings.

Paper III Ola Snøve Jr., Håkon Humberset, Olaf René Birkeland, and Pål
Sætrom. Sequence Explorer: interactive exploration of genomic
sequence data, 2005. Manuscript.

Paper IV Ola Snøve Jr., Magnar Nedland, Ståle H. Fjeldstad, Håkon Hum-
berset, Olaf René Birkeland, Thomas Grünfeld, and Pål Sæ-
trom. Designing effective siRNAs with off-target control. Pub-
lished in Biochem. Biophys. Res. Commun., 325(3):769–773, 2004.

Paper V Olaf René Birkeland, Magnar Nedland, Ola Snøve Jr. Massively
parallel MIMD system achieves high performance in a spam fil-
ter. Presented at Parallel Computing 2005. In proceedings.

Paper VI Pål Sætrom, Olaf René Birkeland, Ola Snøve Jr. Boosting im-
proves stability and accuracy of genetic programming in bio-
logical sequence classification Presented at Genetic Programm-
ing Theory and Practice 2006. Published as book chapter in Ge-
netic Programming Theory and Practice IV by T. Soule and R. Riolo
and W.P. Worzel (editors), Springer, 2007.

Paper VII Olaf René Birkeland, Ola Snøve Jr. The Pattern Matching Chip
Technical whitepaper for Interagon AS, 2002

List of Patents

Patent I Børge Svingen, Arne Halaas and Olaf René Birkeland. A pro-
cessing circuit and a search processor circuit. International
patent PCT/NO99/00344, 1999

This patent is not enclosed in the printed version of this thesis. It can
be obtained at http://v3.espacenet.com/origdoc?RPN=WO0029981

Chapter 1

Introduction

THIS doctoral thesis discusses searching through large data volumes
with multiple instruction, single data (MISD) processing. In order to

test the applicability of this approach, a custom processor was designed
and implemented, called the Pattern Matching Chip (PMC). Throughout
this thesis I will describe the reasoning behind the PMC’s construction, and
how this architecture was able to efficiently solve demanding non-numeric
applications.

1.1 Aim of Study

The overall aim of this research was to investigate and design methods
for searching though large volumes of data. The initial work focused on
an index based search system, with construction of new algorithms for
efficient processing of the related data structures. As index based systems
have limitations in the type of queries that can be handled, the focus was
switched to processing unstructured data natively. Although no common
definition of unstructured data exists, the term is used in this thesis to cover
any kind of data where no efficient indexing scheme is known.

The main part of this research has been to identify, design and test a
novel MISD architecture for processing unstructured data. The hypothesis
of this being an efficient way for processing came from the observed un-
suitability of SIMD architectures to parallelize such processing. It is impor-
tant to note that this work does not claim to replace index based systems
in general. This thesis will discuss a subset of search applications where
indexing has several disadvantages, and where the proposed architecture
is shown to be more appropriate.

In a MISD architecture, multiple parallel searches are executed on a

2 Introduction

smaller number of data streams. In the extreme case, there is one shared
data stream, originating from a high bandwidth source. The speed of se-
quential data transfer bandwidth has historically scaled better than other
storage technology performance parameters (Patterson 2004). Architec-
tures based on sequential rather than random memory access can thus
more readily exploit memory technology improvements.

Further, MISD processing presents a different way of algorithm con-
struction. Evaluating this approach is only possible by formulating new
algorithms specifically for the PMC. These algorithms can be benchmarked
versus exiting methods solving the same tasks. Our research has demon-
strated the applicability of the PMC across multiple application areas.

Throughout all the papers and underlying work, my main contribu-
tions on the hardware side have been within designing the processor and
system architecture, and identifying feasible implementations. The latter
includes everything from ASIC development, to handling the production
of the final systems. A lot of effort has been put into making the system
as general as possible, enabling multiple application usage cases. On the
software side, I have worked on overall algorithm design, and finding ef-
fective mappings from the problem domains onto the PMC feature set.

1.2 Thesis structure

This thesis includes seven papers and one patent as the main contributions.
The papers will be referenced as Paper I through Paper VII, as defined in
the List of Papers on page xiii. Reprints of the original papers are attached
at the end of this thesis. The relations between the papers are shown in
figure 1.1.

The introduction to this thesis provides the overall structure of the
document. Chapter 2 describes work done in bridging the architectural
gap between software algorithms, the CPU and system memory in index
systems. From this work it became evident that the random access pat-
tern exhibited by many algorithms was not optimal for the most common
semiconductor memory technology, dynamic RAM (DRAM). Chapter 3 dis-
cusses a somewhat unconventional approach for searching large volumes
of data through parallel searches across multiple sequential fragments.
This approach brought up a number of data processing applications, for
which a traditional CPU would not be a good solution. This led to the cre-
ation of the PMC, as described in chapter 4. Chapter 5 describes how this
technology was used in different applications. The last chapter summa-
rizes the findings of the research, providing some ideas for further work.

1.3 Research questions 3

1.3 Research questions

The following is a list of the most important research questions behind
this thesis. The propositions to these questions will be summarized in sec-
tion 6.2.

RQ1 What are the system requirements for doing unstructured data processing
efficiently?

The main focus for computer performance is on calculation through-
put, FLOPS, exemplified by the constant competition for inclusion in
the Top500 ranking (http://www.top500.org). Computers are to an
increasing extent being used for handling “information”, rather than
crunching numbers. This might need more attention to other aspects
than calculation performance, for example data bandwidth.

RQ2 What are the constraints for processing unstructured data with standard
CPU technologies?

Off-the-shelf computer hardware has very good availability and af-
fordability. The generic computer is although a tradeoff in function-
ality to enable a fit with as many application categories as possible.
Is the central processing regime also suitable for unstructured data
processing? Could such processing be served better with a more dis-
tributed system?

RQ3 Can other processing architectures than SIMD provide better performance
for unstructured data processing?

SIMD (single instruction, multiple data) is currently the most com-
mon CPU architecture in personal computers and servers. This is a
good fit for many computational intensive applications, where the
same operation is applied to more than one data element. For ex-
ample, all the components of a vector might be scaled with the same
factor, regardless of their value. Otherwise, if the flow of operations
is dependent on the data values — an important feature for unstruc-
tured data processing — , it would be hard to take advantage of the
parallelism in a SIMD architecture.

RQ4 What are the obstacles for massively parallel systems in unstructured data
processing?

Massively parallel systems have scalability limited by Amdahl’s law.
Furthermore, large numbers of processors are likely to have high
power consumption and space requirements, not only for the system

4 Introduction

itself, but also the associated cooling systems. What aspects of un-
structured data processing can be exploited to overcome — or lessen
the impact of — these aspects?

RQ5 What applications could benefit from unstructured data processing?

Although researching new technology has a value by itself, improve-
ments in solving real problems are needed for long term sustainabil-
ity. What existing application classes could benefit from such pro-
cessing? Does a novel technology approach enable new opportuni-
ties?

1.4 Research methods

The research process leading to this thesis has gone through several phases,
requiring different methodologies. The initial work for processing un-
structured data on regular CPUs consisted mainly of research, develop-
ment and testing of small prototypes for critical code sections. These served
as tools for better understanding of the bottlenecks in such systems.

This first phase suggested that the SIMD architecture was not a good
fit for the applications under investigation. Thus the next phase included
a study of existing literature on alternative technologies. A MISD archi-
tecture was in theory a good fit, but lagged behind the other alternatives
in terms of existing research and deployment. Furthermore, we wanted a
degree of parallelism not previously tested in existing studies. Thus most
of the proposed ideas for a MISD architecture could only be simulated on
existing hardware.

To identify if this architecture and parallelism imposed limitations over-
seen by theoretical estimations, the third phase was to identify, design and
construct such an MISD processing device, the PMC, and the surrounding
hardware and software systems. This phase is further described in chap-
ter 4.

Armed with this technology, the fourth and final phase consisted of
extensive benchmarking of the novel architecture in several applications;
both synthetic scenarios — and in my opinion more importantly — real
world applications.

1.5 Contributions

The main contributions of this thesis are:

1.6 Paper Abstracts 5

Table 1.1: Relations between papers (see section 1.6) and contributions (see
section 1.5).

Contributions
Paper C1 C2 C3 C4 C5 C6
Paper I • • • •
Paper II • • • •
Paper III • •
Paper IV • •
Paper V • • • •
Paper VI •
Paper VII •
Patent I • •

C1 Development of the Pattern matching Chip (PMC), an MISD architec-
ture parallel processor implemented as an ASIC

C2 A scalable system architecture, with proven operation of 500,000 par-
allel processing elements at near 100 % utilization.

C3 A parallel processing architecture with low infrastructure requirements.

C4 A power efficient design, with power consumption at par with or bet-
ter than alternative technologies.

C5 Patenting of the PMC architecture

C6 Research, development and benchmarking of selected applications for
the PMC architecture.

The merits of the research are presented in the enclosed papers, while
chapter 2 through 6 rather provides the context of the overall work. Given
the diversity of topics covered in the papers, all details will not be reit-
erated in these chapters. Table 1.1 summarizes the relations between the
papers and the respective contributions.

1.6 Paper Abstracts

Paper I and Paper IV have appeared in peer-reviewed scientific journals.
Paper V and Paper VI have been presented at scientific conferences. Pa-

6 Introduction

Paper I

Paper VII Paper II

Paper III

Paper IV

Paper VI

Hardware Software

Chip level System level Screening Machine learning

Paper V

Patent I

Figure 1.1: The papers in this thesis present both hardware and
software aspects of our work. Paper I, Paper VII and Patent I de-
scribe research and design of the chip level technology. The cluster
level system is covered by Paper II. Paper III and Paper V present
the usage of this cluster when screening for occurrences of prede-
fined patterns. Finally, Paper IV and Paper VI explain how the same
cluster can be used for accelerating genetic programming.

1.6 Paper Abstracts 7

per VI will also be published as a book chapter with Rick Riolo as editor.
Paper II has been accepted for conference presentation in September 2006.
Paper III has been submitted for publication, but not yet accepted. Pa-
per VII is a technical note. More detailed information on each paper can be
found in the List of Papers on page xiii.

The patent has been filed in the European EP system and 13 additional
countries. The patent has so far been granted by 6 of these 14 patent bod-
ies, with 8 countries still pending. Due to the volume of the patent (107
pages), it is not reprinted in this thesis. A version can be found for down-
loading at the address given in the List of Patents at page xv. The patent is
a formalization of the material in Paper I and Paper VII, thus reading the
entire patent is not required for an understanding of the work behind this
thesis.

The following list of abstracts is taken from the papers and patent re-
lated to the research in this thesis.

Paper I A recursive MISD architecture for pattern matching. Many applica-
tions require searching for multiple patterns in large data streams for
which there is no preprocessed index to rely on for efficient lookups.
A multiple instruction stream-single data stream (MISD) VLSI archi-
tecture that is based on a recursive divide and conquer approach to
pattern matching is proposed. This architecture allows searching for
multiple patterns simultaneously. The patterns can be constructed
much like regular expressions, and add features such as requiring
sub-patterns to match in a specific order with some fuzzy distance
between them, and the ability to allow errors according to prescribed
thresholds, or ranges of such. The current implementation permits
up to 127 simultaneous patterns at a clock frequency of 100 MHz, and
does 1.024 × 1011 character comparisons per second.

Paper II The petacomp machine — A MIMD cluster for parallel pattern-mining.
Multiple instruction stream-single data stream (MISD) architectures
have not found many practical applications in supercomputing. We
present a multiple instruction stream-multiple data stream (MIMD)
cluster implementation that uses MISD search processors with ex-
treme pattern mining performance as a building block.

We use PCI cards that hold sixteen search processors with local mem-
ory to build a relatively small cluster of five PC nodes with six PCI
cards each. This cluster can handle anything between 64 indepen-
dent queries at 48 GB per second, to 30,720 independent queries at
100 MB per second.

8 Introduction

The cluster’s performance characteristics are such that we can easily
scale the system to 1015 operations per second with containable over-
head using just 100 nodes. Further, the solution has lower power
consumption and memory bandwidth requirements than compara-
ble technologies.

Paper III Sequence Explorer: interactive exploration of genomic sequence data.
Current solutions for complex motif searching in DNA and protein
sequences are not interactive as users usually wait tens of seconds
before the results can be viewed. We propose a hardware-accelerated
client-server solution that is fast enough to retain the interactive feel-
ing even when screening whole genomes. We structured our frame-
work for interactive sequence analysis around query, dataset, filter,
and result presentation modules. The query and dataset specifica-
tion enable simultaneous, interactive screening of multiple complex
queries against several datasets. The filters impose restrictions such
as only allowing hits to be reported if they occur in coding regions,
and the different result presentations include histograms and hit lists.
Our results show that interactive searching is possible even though
response times vary significantly depending on filter, network band-
width and hit frequencies. With a relatively small server, we obtain
response times of about one and a half second on gigabytes of data
when queries are sufficiently complex to avoid network bottlenecks
due to high hit frequencies.

Paper IV Designing effective siRNAs with off-target control. Successful gene
silencing by RNA interference requires a potent and specific depletion
of the target mRNA. Target candidates must be chosen so that their
corresponding short interfering RNAs are likely to be effective against
that target and unlikely to accidentally silence other transcripts due
to sequence similarity. We show that both effective and unique tar-
gets exist in mouse, fruit fly, and worm, and present a new design
tool that enables users to make the trade-off between efficacy and
uniqueness. The tool lists all targets with partial sequence similarity
to the primary target to highlight candidates for negative controls.

Paper V Massively parallel MIMD system achieves high performance in a spam
filter. Supercomputer manufacturing is usually a race for floating
point operations, and must therefore opt for a design that allows for
the highest possible clock frequency. Many modern applications are,
however, limited not only by the number of operations that can be
performed on the data, but by the available memory bandwidth. We

1.6 Paper Abstracts 9

review the main features of a MISD architecture that we have intro-
duced earlier, and show how a system based on these chips is able to
scale with respect to query and data volume in an email spam filter-
ing application. We compare the results of a minimal solution using
our technology with the performance of two popular implementa-
tions of deterministic and nondeterministic automatons, and show
how both fail to scale well with neither query nor data volumes.

Paper VI Boosting improves stability and accuracy of genetic programming in
biological sequence classification. Biological sequence analysis presents
interesting challenges for machine learning. Using one of the most
important current problems — the recognition of functional target
sites for microRNA molecules — as an example, we show how join-
ing multiple genetic programming classifiers improves accuracy and
stability tremendously. When moving from single classifiers to bag-
ging and boosting with cross-validation and parameter optimization,
you require more computing power. We use a special-purpose search
processor for fitness evaluation, which renders boosted genetic prog-
ramming practical for our purposes.

Paper VII The Pattern Matching Chip. The Pattern Matching Chip (PMC) is
an Application Specific Integrated Circuit (ASIC), capable of search-
ing for advanced patterns in arbitrary data at a constant high speed.
The PMC is based on breakthroughs made by researchers at the Nor-
wegian University of Science and Technology (NTNU), who have
devoted more than 15 years into developing ASICs for approximate
searching. With a clock frequency of 100 MHz, the PMC is able to
search with up to 64 distinct queries on 100 MB of data per second.

Patent I A processing circuit and a search processor circuit. A processing cir-
cuit P1 for recognition and comparison of complex patterns in high
speed data streams can form a node in a network of circuits of this
kind and comprises an interface for inputting of parameters for the
circuit, at least one kernel processor P0 in the form of a comparator
unit (COM) for comparing two data words, a logic unit (E) connected
with the comparator unit and comprising a multiplexer (MUX1), a
first D flip flop (2), a latency unit (LAT) for delaying a positive binary
value with a given number of time units, a second D flip flop (4), a se-
quence control unit (SC) which monitors and controls a comparison
operation in the comparator unit (COM), and a result selector (RS)
which combines two result values from other processing circuits or
other result selectors.

10 Introduction

A search processor circuit (PMC) for performing search and compar-
ison operations on complex patterns comprises a multiprocessor unit
Pn with processing circuits P1 in a tree structure and forms a binary
or superbinary tree with n + 1 levels S and degree k = 2m, m being
a positive integer ≥ 1. An underlying level Sn−q generally comprises
2mq circuits Pn−q provided nested in the 2m(q−1) circuits Pn−q+1 on
the level Sn−q+1. A 0th level S0 defined for q = n in the unit Pn com-
prises 2m(n−1) to 2mn kernel processors P0 which form comparator
units (COM) in the circuits P1. All circuits P1, P2 . . . Pn have identical
interfaces (I) and a logic unit (E) with a result selector (RS) for collect-
ing the results of a search operation or a comparison operation. Use
in search engines for search and retrieval of data stored in data bases.

1.7 On joint authorship

All papers and patents building the base for this dissertation origin from
collaborations with several other people, bringing together a multidisci-
plinary team, with each member contributing with unique competence in
our respective fields.

The papers and patents are listed on page xiii and xv respectively. My
specific contributions beyond co-writing all of the manuscripts are as fol-
lows:
Paper I Contributed to the architecture research for the PMC, identified

suitable solutions for implementation, headed the research project.

Paper II Researched the cluster architecture, evaluated the resulting per-
formance, identified potential system enhancements.

Paper III Defined requirement specifications, researched implementation
optimizations, and wrote the user tutorial.

Paper IV Contributed to the research on methodology, especially on en-
suring efficient usage of the PMC.

Paper V Identified workload distribution scheme, performed performance
comparisons.

Paper VI Contributed to methods.

Paper VII Selected topics to be presented. Researched selection of process-
ing element functions to provide both any Boolean function as well
as higher order functionality.

1.8 Supplementary material 11

Patent I Contributed to the architecture research for the PMC

1.8 Supplementary material

I have written a tutorial on usage of the screening application described in
Paper III. This tutorial is available upon request.

Chapter 2

Hardware aware optimizations in
data search applications

Grove giveth and Gates taketh away
Robert Metcalfe (1946 –)

THERE is a large gap between the increments in raw compute speed
and the resulting application level benefits. While the semiconductor

industry has been able to keep on track with Gordon Moore’s predictions,
often referred to as “Moore’s law”, providing a doubling in the number
of transistors on an integrated circuit every 18 months, all of this added
compute power has not been harnessed.

This chapter will describe some of the most important issues that pre-
vent applications from getting full advantage of hardware improvements.
The discussion will focus on two main aspects. First, the widening gap
in performance between processing and memory (Wilkes 2001); secondly
— and perhaps even more important — the resulting effects when this
memory gap and other feats of a modern processor are not top priorities
within the general programmer community. For most applications, ad-
vanced compilers can help bridging the technology gap (Tian et al. 2005).
For data intensive algorithms, the programmer can use hardware aware-
ness to gain large improvements (Eichenberger et al. 2005). These aspects
will be illustrated by examples taken from the implementation of an index
based web search engine, described in more detail in Risvik (2004).

The examples presented in this chapter are taken from work done in the
construction of commercial program code in 2000, and are not previously
published. The proposed solutions are more an illustration of achievable
improvements through CPU-aware programming, than claiming to be the

14 Hardware aware optimizations in data search applications

state-of-the-art algorithms in their respective fields. The main purpose of
this chapter is to describe the difficulties in getting decent performance
from a SIMD architecture applied to algorithms with a data dependent in-
struction flow. These findings provided motivation and inspiration for
developing an application targeted processor architecture, which will be
described in the following chapters.

2.1 Background

Modern approaches to programming agree that code optimization should
wait until a profiler reports a performance bottleneck in the application.
The 20-80 rule applies to all stages of software development, meaning that
large portions of a programmer’s time and a program’s runtime are spent
on relatively small parts of the total volume of code (see for instance Beck
2001, for a discussion of these topics). Programmers should therefore write
comprehensible code that implements simple designs rather than opting
for complex solutions that often turn out to have only a marginal effect on
the application’s performance.

Add to the aforementioned arguments that today’s compilers often out-
smart the average programmer when it comes to local optimizations, and
it may seem like it is all a matter of selecting the best algorithm with re-
spect to theoretical complexity and memory requirements. This is not the
case. Critical parts of the code, as identified by performance profiling, may
benefit significantly from architecture-dependent code optimizations.

2.1.1 The evolution of the x86 processor

One of the most widespread processor architectures is based on the Intel
8086 processor from 1978, also referred to as the x86 architecture. This
architecture will be used as an example throughout this chapter. Although
several other architectures exist, modern x86 implementations incorporate
much of the same concepts found in other processors.

During its years of existence, the x86 CPU architecture has changed con-
siderably. The original 8086, as shown in figure 2.1, was executing one
instruction at a time1. All but the very simplest instructions required mul-
tiple clock cycles, being executed as a small program within the CPU itself

1The 8086 did also have a separate bus interface unit that speculatively fetched the
next instructions. The main purpose of this unit was to remove the memory latency, that
is the function of a cache, rather than parallel execution

2.1 Background 15

ALU Address
generation

Address registersInteger registers

ALU D-bus

Temporary registers

Bus control

Figure 2.1: Block diagram of the Intel 8086 processor. All opera-
tions are executed by a single ALU.

as microcode. A typical computer had a very limited amount of memory,
typically in the tens of kilobytes.

This posed an understandable model for the programmer when design-
ing algorithms. The determining factor for performance was the number
of operations required, and how this depended on the dominating size
n of the problem at hand. The performance was analyzed using the O-
notation for characterizing algorithms, where a linear algorithm would
be described as O(n), and a cubic algorithm as O(n3). The focus among
programmers where thus to get to the fastest algorithm based on the O-
notation. (More information on O-notation can be found in Aho et al. 1982,
page 16–27).

Throughout the generations following the original 8086, deeper pipelin-
ing and higher frequencies were used. Released in 2005, the Prescott de-
sign was a very different architecture, as shown in figure 2.2 (Boggs et al.
2004). The instructions are decoded into RISC-style micro-operations, which
are fed to the execution engine. Instead of a single ALU, there were seven
execution units, of which two could issue two operations per clock cycle.
Thus up to nine instructions can be started in a single clock cycle2. The
processor has a deep pipeline with 31 stages. There could potentially be
more than a hundred operations in some state of execution at any moment.
The parallelism implied high sensitivity to serial dependencies in the in-

2Only three operations can complete simultaneously

16 Hardware aware optimizations in data search applications

Load
address

AGU
Store

address

AGU
Simple
µops

2x ALU
Simple
µops

2x ALU
Complex

µops

Slow ALU
MMX
SSE

FP

Move

FP

L1 data cache

Integer register file / bypass network FP register / bypass

Memory scheduler

Memory queue

Integer / floating point scheduler

Integer / floating point µops queue

Allocator / register renamer

µops queue

Instruction trace cache (L1 code cache)

Figure 2.2: Block diagram of the Intel Pentium4 (Prescott) proces-
sor. Execution is run in parallel across two floating point and five
integer ALUs (Boggs et al. 2004, Adapted from).

struction stream, as warned by Amdahl’s law (Amdahl 1967). A previous
study suggests that this level of instruction level parallelism is not readily
achievable (Wall 1991).

From the initial 8086 and up to the Prescott design, each generation
gave dramatic increases in clock frequency, but the instruction processing
latency saw small reductions. New architectures even increased this la-
tency at their time of introduction. This latency can to a large extent be
handled by compilers in combination with an out-of-order execution en-
gine. There are although limits to what can be achieved with these method-
ologies (Gerber et al. 2006). If the algorithms are constructed with a 25 year
old architecture in mind, reaching high utilization of the available process-
ing power is unlikely. Consequently, handbooks guiding programmers to
suitable practices are needed (Intel Corporation 2004).

Figure 2.3 shows an abrupt change between the Prescott and the more
recent Core design in terms of clock frequency. The Prescott architecture
was intended to scale to 10 GHz, but never got faster than 3.8 GHz. The
main obstacle preventing increased clock frequency was not the speed of
the transistors, but rather the power consumption. When reducing geome-
tries below 90 nm, the transistor leakage became larger than expected (Kr-
ishnarnurthy et al. 2002; Mistry et al. 2007).

2.1 Background 17

0

10

20

30

40

50

60

70

80

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

P
ip

el
in

e
la

te
nc

y
(n

s)
 [s

qu
ar

e
m

ar
ke

rs
]

0

500

1000

1500

2000

2500

3000

3500

4000

Fr
eq

ue
nc

y
(M

H
z)

 [r
ou

nd
 m

ar
ke

rs
]

P5: Pentium / Pentium MMX (5 stage pipeline)
P6: Pentium II/III (10 stage pipeline)
P7: Pentium 4 (20 stage pipeline)
P8: Prescott (31 stage pipeline)
P10: Core (14 stage pipeline)

Figure 2.3: Development of clock frequency and instruction pro-
cessing latency of the x86-family of CPUs over time. Clock fre-
quency is plotted with round line markers against the right hand
axis. Latency is plotted with square line markers against the left
hand axis.

The Core design reduced the clock frequency, and at the same time
almost halved the number of pipeline stages. As a result, the execution
latency did not increase despite the reduced frequency. Even though the
clock frequency of the Core architecture has increased gradually with the
maturity of the design, the road maps from Intel; the largest x86 manufac-
turer; does not suggest major future cycle time reductions.

Further advances in processing throughput are anticipated to stem from
using multiple processor cores, either identical copies, or heterogeneous
designs (Kumar et al. 2003). Parallel cores can also be implemented by
hyper-threading, which replicates the part of a processor holding the state,
but not the execution units (Marr et al. 2002). The replicated states and
their respective threads run alternatingly, increasing the time between in-
struction issue within the same thread. Since each thread runs slower,
memory access latency is reduced when measured in execution cycles. If
the threads can run independently, the overall processing throughput is
larger than for a higher frequency, single threaded execution.

Future processor designs, not only in the x86-family, it thus likely to
increase the number of parallel execution cores, but not provide significant
speed-up for single threaded applications. Any algorithm with a built in
serial dependency must be redesigned to increase its performance.

18 Hardware aware optimizations in data search applications

Table 2.1: Performance for DRAM devices over several generations. Ran-
dom access time is given as the time from issuing a row select command
from idle mode, until data appears. Per-pin bandwidth is the available
bandwidth per data pin on the component. Data adapted from Hennessy
and Patterson (2007, figure 5.14).

Year Density Random access Per-pin bandwidth
1980 64 Kbit 150 ns 13 Mbit/s
1986 1 Mbit 100 ns 40 Mbit/s
1992 16 Mbit 60 ns 66 Mbit/s
2000 256 Mbit 45 ns 133 Mbit/s
2004 1 Gbit 35 ns 533 Mbit/s
2006 2 Gbit 40 ns 1600 Mbit/s

2.1.2 The evolution of memory technology

Apart from the changes in processing architecture, there have also been
large changes in the memory subsystem. The most commonly used mem-
ory technology is still dynamic RAM (DRAM) due to its low price and high
storage capacity. As shown in table 2.1, the storage volume of DRAM de-
vices has increased dramatically, with a factor of 30000 over 25 years. The
random access time has had less than a four-fold reduction, and has seen
no improvement for the latest generation. Notably, the per-pin transfer
bandwidth has seen better improvements (Patterson 2004). Combined with
wider memory interfaces, this substantial increase in bandwidth, at a level
above the reduction of random access time, can be exploited in algorithm
development, as will be shown in section 2.2 and 2.3. Burger et al. (1996)
have predicted that off-chip access at one point will become so expensive
that all memory will reside on the CPU itself. So far, the integration of pro-
cessing and memory is not widespread, but some implementations exist
(Gebis et al. 2004; Kirsch 2003; Patterson et al. 1997).

In addition to hyper-threading mentioned in the previous section, caching
is used at one or more hierarchical levels to hide the increasing difference
in processing speed and memory random access time (Hennessy and Pat-
terson 2007, chapter 5). This do indeed provide a large performance benefit
in the average case, but one can no longer consider all memory accesses to
be equal. We can rank different memory accesses in order of increasing
execution time.

2.2 Sorting large arrays 19

Cache access Data residing in one of the cache levels is accessible with
low latency. For the uppermost cache level, this is usually within one
clock cycle (e.g. 0.3 ns).

Sequential access Due to the high bandwidth of memory, sequential ac-
cess has a low cycle time even from DRAM (less than 1 ns). Cache
fills and flushes are done through cache lines; reading address n in
memory will in most cases cause the entire cache line to be retrieved.
If n is th last element of a cache line, most processors will do specu-
lative prefetching of location n + 1, giving sequential reads a further
advantage over sequential writes.

Random access Random access to DRAM is relatively slow. Table 2.1 gives
the access time for the DRAM itself as 40 ns even for the most recent
devices. The CPU to memory bridge adds an additional delay of the
same order of magnitude.

Paged memory Paged memory is residing on a disk drive, and will in the
context of a CPU take forever to access (e.g. 10 ms). For the remaining
discussions, all memory structures will be assumed to fit within the
system memory, and not require paging. The principles explained,
will still increase the performance if paging should occur, as paging
also performs better with sequential than random accesses.

As a guideline, an algorithm should try to work with a subset of the
data that can fit within the cache (memory locality). As bringing data in
and out of the cache is costly, the data should preferably be processed to
its final results with a single access. With the expectation of large mem-
ory subsystems, algorithms frequently use large data structures residing
in memory. When accessing such structures, maintaining a predictable,
preferably also sequential, address sequence is beneficial. Random ac-
cesses will have low cache hit ratios, and a large performance impact.

In the following sections some of these principles will be applied to
real examples, demonstrating the performance potential that can be har-
nessed when keeping the processor architecture in mind during algorithm
development.

2.2 Sorting large arrays

Sorting is a common subproblem within many applications (Knuth 1997,
chapter 5). For example, it can be used to maintain ordering between ele-
ments within a data structure for more efficient retrieval, or for ranking ele-

20 Hardware aware optimizations in data search applications

ments before providing this as output to a user or other applications. Sort-
ing has been investigated for decades, but still no golden solution solves all
kinds of sorting problems. Quicksort is considered to work well for most
common application and data volumes (Knuth 1997, section 5.5), but is not
suited for parallel machines (Knuth 1997, section 5.2.2). Other important
sorting algorithms are insertion sort, bin sort and radix sort.

2.2.1 Characteristics of search application at hand

The sorting application that will be discussed, originated from ranking
web pages based on a user query. With a myriad of web pages, combined
with the lack of specificity in typical web user queries, most queries result
in a list of millions of potential web pages. Risvik (2004) describes an archi-
tecture where each web page in the listing has a relevance score. In order
to present the user with a ranked list of results, not only for the ten most
relevant web pages, but also anywhere within the results, the list must be
sorted.

A sorting algorithm had already been implemented based on recur-
sive bin sort. This algorithm was taking much of the CPU processing time
(30 % in typical scenarios), which was considered to be unacceptably high.
The algorithm was theoretically very efficient, with O(n log n) complexity.
Further analysis with CPU profiling tools3 confirmed the suspicion that the
task was not computationally demanding. But more alarming, the anal-
ysis showed that most of the time was spent waiting for memory refer-
ences. There were obvious margins for improvement if the memory access
pattern could be optimized.

2.2.2 Rearranging memory references

The main limitations causing the memory bottleneck were an unpredict-
able access pattern, and multiple intermediate moves of each data record
before reaching its final position. The unpredictability of the memory write
operations lies within the problem itself: With unsorted data as input, the
final location is data dependent. The clue to a solution would lie in mini-
mizing the number of such moves to a minimum.

This reduction was achieved by investigating the data more elaborately
before moving any records. This must be very efficient to not become a bot-
tleneck by itself. Reading sequentially through the data to calculate their

3Intel VTune

2.2 Sorting large arrays 21

procedure radixsort;
{ Sorts list A of n records with keys consisting of fields f1, . . . , fk

of types t1, . . . , tk respectively. The procedure uses arrays
Bi of type array[ti] of listtype for 1 ≤ i ≤ k, where listtype
is a linked list of records. }

begin
for i := k downto 1 do begin

for each value v of type ti do {clear bins}
make Bi[v] empty;

for each record r on list A do
move r from A onto the end of bin Bi[v],
where v is the value of field fi of the key of r;

for each value v of type ti, from lowest to highest do
concatenate Bi[v] onto the end of A

end
end {radixsort}.

Figure 2.4: Radix sort algorithm (as defined in Aho et al. 1982, page
281).

value distribution was considered. Such an approach could be integrated
with a variant of radix sort.

2.2.3 In-place radix sort

Radix sort (Hildebrandt and Isbitz 1959) is a sorting algorithm that divides
the sorting problem into sorting on a single bit of the sorting key at a time,
which also can be extended to work on multi-bit symbols (see Knuth 1997,
section 5.2.3 for details). A variant of this principle is being used even out-
side computer algorithms, such as the postal service. Here, each shipment
is initially sorted into bins by the most significant digit in the zip code,
thereafter each bin is resorted with regards to the next digit(s). A formal
description of the radix sort algorithm is given in figure 2.4. Note that this
radix sort starts by sorting on the least significant digit first, for later con-
catenation of the individual digit bins and resorting on the next digit of
increasing significance.

Due to the splitting in figure 2.4 of the sorting key into fields fi, the re-
sulting complexity for fixed size integer keys (where k is constant) is given

22 Hardware aware optimizations in data search applications

by Aho et al. (1982, page 281) as

O(n +
k

∑
i=1

si) (2.1)

where si is the number of different values of type ti. However, since si has
a constant upper bound for fixed size integers, the complexity is reduced
to O(n).

Variable sized keys would also affect the complexity of e.g. Quicksort.
The analysis of Quicksort resulting in O(n log n), assumes that each com-
parison is O(1). In practice, all digital computers require O(m) for a com-
parison, with m being the length of the variables.

While radix sort as described in figure 2.4 is O(n) for integer keys, it
has some serious disadvantages for sorting extremely large arrays. Most
obvious is the doubled memory usage for storing the sorting bins, and
secondly the handling of these when implemented as lists. More subtle,
but even more important, is the fact that radix sort starts out with the least
significant digit. Thus the records brought together in the same bin are not
more likely to end up in each others vicinity in the final sorted order. This
implies no gain in locality when processing the data, prohibiting the cache
system from hiding the memory latency of the DRAM system memory.

To improve the locality, advice was taken from the postal service sort-
ing method mentioned above: Start sorting on the most significant digit
instead. This would result in much better data locality after the initial sort-
ing step.

There was also a need to remove the duplicated memory footprint. It
was observed that if one could put a record directly into the correct posi-
tion range for each sorting iteration, there would be only one swap element
at any time requiring extra storage, i.e. in-place sorting.

In-place MSD radix sort implementations have been compared by Al-
Darwish (2005), who argues that infrequent usage of such algorithms is
due to the misconception of complex implementations and tedious book-
keeping. This was also stated by McIlroy et al. (1993) as “The troubles with
radix sort are in implementation, not in conception”. Variants of radix sort
have been used for sorting strings (Bentley and Sedgewick 1997) or us-
ing adaptive digit size (Maus 2002). Adaptive sorting algorithms seek to
avoid worst case behavior due to input data values (Estivill-Castro and
Wood 1992)

Given the application at hand, several optimizations could be applied.
The sorting keys were fixed size integers, simplifying management of the
in-place swapping of records. Similarly, by avoiding program flow de-

2.2 Sorting large arrays 23

24 02 44 79 45 35 51 1272 17 31 62 09 52 50

0x 1x 3x 4x 5x2x 6x 7x

24 02 44 79 45 35 51 1272 17 31 62 09 52 50

52 51 50

x0 x1 x2

09 12 17 24 31 35 50 5102 44 45 52 62 72 79

09 12 17 24 31 3502 44 45 62 72 79

Figure 2.5: Example of in-place radix sort using octal numbers.

pendent on the value of the sorting keys, there was no need to make an
adaptive algorithm.

These ideas were implemented into a variant of most significant digit
(MSD) in-place radix sort, with figure 2.5 showing the steps in a simple
case. For simplicity, the example uses two-digit octal numbers. The top-
most line consists of n = 15 such unsorted numbers. Starting with the
most significant digit, the number of occurrences of each symbol for that
digit is found by reading linearly through all the data. This finds two num-
bers starting with 0, another two starting with 1, and so on. After finding
the value distribution, pointers can be placed to the sections of the array
that should be used for each value of this digit.

The next step will swap all records into the right range with respect to
this digit. The algorithm starts by finding the lowest labeled range con-
taining any elements, as some ranges might be empty. The first record in
this range, in this case 72, becomes the swap element. This number is put
into the first position of the correct range, taking the place of 52 which now
becomes the new swap element. The pointer for the first available position
in the range 7x is updated accordingly. This process continues (through 51
and 12) until we reach 02 which is taking the vacant position previously
held by 72. Once such a swap cycle completes, the first element that has
not yet been moved is found, starting another swap cycle. This process is
terminated after n swaps. Since no element will be swapped more than
once due to the design of the algorithm, all elements must now have been
swapped, and consequently be placed in the correct range.

The process is repeated recursively within each range on the next digit,

24 Hardware aware optimizations in data search applications

as shown in the middle line of figure 2.5. In this case, only the range 5x
needs to be reordered, ending with a sorted array as shown in line 3. A
listing of this algorithm implemented in the C programming language is
shown in figure 2.6, using radix 256 on 32-bit integers.

Some of the implementation details in figure 2.6 justify an explanation.
The function takes the data array as an argument, in addition to the size
n and the number of right-hand shifts (shift) that is needed to bring the
current sorting digit into the least significant byte of the key. Invoking the
function is thus done with shift set to 24.

The switch statement on lines 7–12 counting occurrences could have
been replaced by the following statement:

for(i=0; i<n; i++) cnt [(a[i]. rankValue>>shift) & 0xFF]++;

Even though this is more general, expanding the capability of the func-
tion beyond 32-bit integers, it infers a non-constant shift as well as a re-
dundant AND-operation for the most significant bit. Constant shifts can
be aggressively optimized by the compiler, speeding up the execution. The
swapping is also started at the highest labeled value range, as the search
for value ranges that need processing is more efficient with a decrement of
the loop variable i.

Insertion sort is used when the size of each value range becomes rel-
atively small. The threshold for shifting to insertion sort is architecture
dependent. Insertion sort proved useful after reaching a level when the
code and all data in the current range could be contained in the upper-
most cache levels of the CPU. Furthermore, the arrays last, ptr and cnt have
some redundancy. Two tables would be sufficient, at the expense of code
readability.

2.2.4 Algorithm complexity

In the analysis of the run time of the algorithm proposed in figure 2.6, n is
the number of records to sort, each having a key of m binary digits (bits).
In each iteration, a radix of 2d is used for the partial sorts, with d being the
number of bits in that radix. ci will be used for denoting constant factors.
The initial counting of occurrences has a run time of

t1(n) = c1 · n (2.2)

Building the pointer tables has a run time of

t2(n) = c2 · 2d (2.3)

2.2 Sorting large arrays 25

1 void inplace radixsort(ArrayRep a[], unsigned int n, unsigned int shift) {
2 unsigned int last [256], ptr [256], cnt [256];
3 unsigned int i, j , k, sorted, remain;
4 ArrayRep temp, swap;
5
6 memset(cnt, 0, 256∗sizeof(unsigned int)); // Zero counters
7 switch (shift) { // Count occurrences
8 case 0: for(i=0; i<n; i++) cnt[a[i]. rankValue&0xFF]++; break;
9 case 8: for(i=0; i<n; i++) cnt [(a[i]. rankValue>>8)&0xFF]++; break;

10 case 16: for(i=0; i<n; i++) cnt [(a[i]. rankValue>>16)&0xFF]++; break;
11 case 24: for(i=0; i<n; i++) cnt[a[i]. rankValue>>24]++; break;
12 }
13 sorted = (cnt[0]==n); // Accumulate counters into pointers
14 ptr[0] = n−cnt[0];
15 last [0] = n;
16 for(i=1; i<256; i++) {
17 ptr[i] = (last [i]=ptr[i−1]) − cnt[i];
18 sorted |= (cnt[i]==n);
19 }
20 if (! sorted) { // Go through all swaps
21 i = 255;
22 remain = n;
23 while(remain>0) {
24 while(ptr[i]==last[i]) i−−; // Find uncompleted value range
25 j = ptr[i]; // Grab first element in cycle
26 swap = a[j];
27 k = (swap. rankValue >> shift) & 0xFF;
28 if (i!=k) { // Swap into correct range until cycle completed
29 do {
30 temp = a[ptr[k]];
31 a[ptr[k]++] = swap;
32 k = ((swap=temp). rankValue >> shift) & 0xFF;
33 remain−−;
34 } while (i!=k)
35 a[j] = swap; // Place last element in cycle
36 }
37 ptr[k]++;
38 remain−−;
39 }
40 }
41 if (shift >0) { // Sort on next digit
42 shift −= 8;
43 for(i=0; i<256 ; i++)
44 if (cnt[i]>INSERT SORT LEVEL) inplace radixsort(&a[last[i]−cnt[i]], cnt[i], shift);
45 else if (cnt[i]>1) insertion sort (&a[last [i]−cnt[i]], cnt[i]);
46 }
47 }

Figure 2.6: Modified radix sort for in-place sorting of 32-bit integer
keys using an initial occurrence count.

26 Hardware aware optimizations in data search applications

The swapping stage will move one of the n elements in each iteration,
yielding

t3(n) = c3 · n (2.4)

In the recursive sorting on the next digit, insertion sort is only used for
arrays below a constant size, and can thus in the context of this analysis be
considered to run in constant time. Thus the recursion step takes

t4(n) = c4

2d

∑
i=0

T(
n
ri

) (2.5)

where ri is the number of elements in range i for each of the 2d symbols
in the partial sort key, and T(n) is the runtime of the overall algorithm.
Furthermore, ∑2d

i=0 ri = n. The run time is thus recursively defined as

T(n) = (c1 + c3) · n + c2 · 2d + c4

2d

∑
i=0

T(
n
ri

) (2.6)

It is obvious that a high number d of bits to be used in the radix will
degrade the performance. In the implementation shown, d = 8. The run
time is then given as

Td=8(n) = c5 + c6 · n + c4

256

∑
i=0

Td=8(
n
ri

) (2.7)

with
256

∑
i=0

ri = n (2.8)

Thus Td=8(n) has the complexity O(n).

2.2.5 Measuring the sorting throughput

The new algorithm was benchmarked on different CPUs, spanning from
450 MHz Pentium III to 1.4 GHz Pentium4, resulting in three times faster
execution compared to the original recursive binsort. As expected, the
memory accesses were still the bottleneck, but were now being used more
efficiently. For example, in test runs with 100 million records with random
keys, each record was in average only moved 1.7 times (out of the theoreti-
cal maximum of 4) before reaching a location where the remaining sorting
would be done by insertion sort, occurring in only in the uppermost cache
level.

2.2 Sorting large arrays 27

0.001

0.010

0.100

1.000

10.000

100.000

10k 100k 1M 10M 100M

Number of records

R
un

 ti
m

e
(s

ec
on

ds
)

100 %

1 %

0.01 %

Figure 2.7: Scalability of in-place radix sort for complete (100%)
and partial (1% and 0.01%) sorts. The fractional sorts can establish
correct sorting for any range of keys, or any region within the fully
sorted list. Note that both axes are plotted with logarithmic scale.
Each record consists of 8 byte, including the 32-bit key. These tests
were run on a 733 MHz Pentium III.

28 Hardware aware optimizations in data search applications

As shown in figure 2.7, the run time is indeed linear with respect to
the number of records, in correspondence with the complexity analysis
in section 2.2.4. This figure also shows the run time when sorting only a
specified fraction of the array as described in section 2.2.6.

2.2.6 Remarks on practical aspects

Although the above algorithm sorts the entire array, this was not needed
in all application cases. For example, a user of a web search engine might
only request results ranked from position 1000 to 1500. A variant of the
algorithm that takes this into account was developed. After sorting on the
most significant digit, only the relevant subsets of ranges were sorted on
the lesser digits.

For the even more common web search, where the user only wants
the top n records, a separate version of insertion sort holding only the
n highest ranked records in sorted order was developed. This provided
a further seven fold performance increase, since the memory accesses in
practice were reduced to a linear read of all records. Using this algorithm,
processing speed was able to run at the peak bandwidth of the memory
subsystem.

A final note should be made on swapping records in memory as op-
posed to just pointers to the same records. As pointers usually would be
smaller than the entire records, this might be considered advantageous. In
reality, the records needed to be more than 20 times the size of a pointer
for this to hold true on the test machines mentioned in section 2.2.5. Stor-
ing pointers requires additional memory, stealing both storage space and
bandwidth. Additionally, accessing a small pointer still requires a full
cache line access between the cache and system memory. Sorting through
pointers should thus only be used in applications with large records.

2.3 Counting the number of 1-bits

Another problematic area within the web search engine was the seemingly
simple task of counting bits, that is finding the number of bits set to 1 in a
long vector. There are multiple algorithms for solving this problem, where
the optimal solution might not be the most intuitive one.

2.3 Counting the number of 1-bits 29

2.3.1 The naive approach

The simplest way for counting the bits would be to use two nested loops.
Since modern CPUs do not access bits individually, but rather longer words,
working directly on the bit level becomes impractical. The outer loop
would iterate through all the words containing the bit vector, while the
inner loop would accumulate the number of bits within each such word.

For each bit, three operations would be needed: Shifting the bit to the
least significant position, masking off any higher order bits, and accumu-
lating the final result. This tedious algorithm takes in the range of 200
instructions just for processing one 64-bit word. Furthermore, a direct im-
plementation would have large serial dependencies between the instruc-
tions, prohibiting efficient use of all the available parallelism in the CPU,
shown in figure 2.2

2.3.2 Using a lookup table

The typical way to get around the problems described in the previous sec-
tion, is to replace the inner loop with looking up precomputed values in
a table. For a word size of n · m bits, the number of bits would be found
through n lookups in a table of 2m potential values. While m should be
large to reduce n, and thus the number of operations, the size of the lookup
table grows exponentially with m. Selecting m in an implementation is
thus a balancing act, most commonly ending up with m = 8 as a good
compromise.

An often overseen implication of this approach is the memory accesses
inferred by the table lookups. Even though this table is relatively small,
each read of a word from the bit vector, is followed by n read operations
from the lookup table. Solving performance issues by using more memory
accesses is not attractive in a long term perspective, given the widening
gap between compute speed and memory bandwidth.

Furthermore, the functional units of the CPU are not really kept busy.
Each addition would never add a value larger than m to the accumulator.
With a 64-bit processor and m = 8, only the least significant byte of the
registers are effectively used, corresponding to 12.5%.

To increase the performance, two separate issues must be considered:
The full register width of the CPU should be used for processing. At the
same time, this should be achieved without accessing temporary data struc-
tures like the lookup table.

30 Hardware aware optimizations in data search applications

=1 >1

xi+1

xi

s c

Figure 2.8: Adding bit xi and xi+1 resulting in sum s and carry c.

2.3.3 Using the full register width

In order to find a better implementation for this problem, the basic oper-
ations in binary additions had to be investigated. This disclosed a pro-
cessing flow where every bit in the involved registers has the possibility of
doing some actual work on every operation.

Basics of binary addition

The addition of two single digits is shown in figure 2.8, using a half-adder.
The sum s is the XOR of the inputs, while the carry c is the AND of the
inputs. The concatenation of c and s are also a two-bit binary number
containing the sum, that is ∑i+1

j=i xj.
By chaining half-adders, the sum of more than two bits can be pro-

duced. Without a potential carry bit at every stage, the circuitry can be
simpler than if chaining complete full-adders, as shown in figure 2.9, for
calculation of ∑i+3

j=i xj

Parallelizing bit serial addition

At first glance, this approach might look like a step in the wrong direction.
In order to exploit CPU parallelism, bit serial adding has been introduced.
An important observation is although that all operations on the data are
now two input, single output binary operations. Such AND/XOR functions
can be run effectively in registers, where the result of each bit position will
not affect the other bits in the same register. Thus parallel operations can
be run in one register. For a n-bit register, n summations are carried out
in parallel. The register bank is so to speak used orthogonally, with n se-

2.3 Counting the number of 1-bits 31

=1 >1

xi

s0 s1

xi+1

xi+2

xi+3

=1 >1

=1 >1

=1 >1

=1 >1

s2

Figure 2.9: Calculating xi + . . . + xi+3 into the sum s2s1s0. Unused
part of half-adder is shown in gray.

32 Hardware aware optimizations in data search applications

Table 2.2: Throughput for different bit counting methods. These numbers
were measured on a 733 MHz PentiumIII CPU. All implementations but
the MMX version were limited by CPU capacity, while the latter was limited
by memory bandwidth.

Bits per Clocks per Bits processed
Method iteration iteration per clock

Mask/shift/add 64 200 0.3
Lookup-table 32 6 5

Orthogonal registers (C) 480 40 12
Orthogonal registers (MMX) 1920 100 20

rial adders in parallel. For summing m · n bits, �log2(m) + 1� registers are
needed for storing the n counters. The limiting factors for parallelization
are thus the width of each register, limiting the number n of parallel coun-
ters; and the depth of the register bank, limiting the width m of each bit
serial counter. This is quite intuitive, as the intention was to keep all the
register bits busy.

2.3.4 Implementation

This method was initially implemented in the C language, with m = 15
and n determined by the longest available integer value in that environ-
ment (shown in figure 2.10). Details for handling bit vectors of a size not
dividable with 15 integers are omitted for readability.

Lines 4–24 implement the half adders as depicted in figure 2.9. Line 26–
41 accumulates the 32 counters stored across four registers into an ordinary
binary number. The first step in these conversions (line 27, 31, 35 and 39)
deviates from the others. The obvious alternative to line 30 would be

tmpa = (s0 & 0x55555555) + ((s0>>1) & 0x55555555);

This line takes multiple pairs of one-bit counters stored as xj+1xj and cal-
culates xj+1 + xj stored as two-bit values. Even though xj+1 and xj are
individual single bit counters, they are stored as a two-bit binary number
interpreted as 2xj+1 + xj. By using this interpretation, and subtracting xj+1
we get

2xj+1 + xj − xj+1 = xj+1 + xj (2.9)

2.3 Counting the number of 1-bits 33

1 sum = 0;
2 for(i=0; i<bitVectorSize; i+=15)
3 {
4 s0 = bitVector[i];
5 tmpa = bitVector[i+1];
6 s1 = s0 & tmpa;
7 s0 = s0 ˆ tmpa;
8 tmpa = bitVector[i+2];
9 s1 = s1 ˆ (s0 & tmpa);

10 s0 = s0 ˆ tmpa;
11 tmpa = bitVector[i+3];
12 tmpb = s0 & tmpa;
13 s0 = s0 ˆ tmpa;
14 s2 = s1 & tmpb;
15 s1 = s1 ˆ tmpb;

16
...

17 tmpa = bitVector[i+14];
18 tmpb = s0 & tmpa;
19 s0 = s0 ˆ tmpa;
20 tmpa = s1 & tmpb;
21 s1 = s1 ˆ tmpb;
22 tmpb = s2 & tmpa;
23 s2 = s2 ˆ tmpa;
24 s3 = s3 ˆ tmpb;
25
26 // Join counters
27 tmpa = s0 − ((s0>>1) & 0x55555555);
28 tmpb = (tmpa & 0x33333333) + ((tmpa>>2) & 0x33333333);
29 sum += (((tmpb + (tmpb>>4)) & 0x0f0f0f0f) ∗ 0x01010101) >> 24;
30
31 tmpa = s1 − ((s1>>1) & 0x55555555);
32 tmpb = (tmpa & 0x33333333) + ((tmpa>>2) & 0x33333333);
33 sum += (((tmpb + (tmpb>>4)) & 0x0f0f0f0f) ∗ 0x01010101) >> 23;
34
35 tmpa = s2 − ((s2>>1) & 0x55555555);
36 tmpb = (tmpa & 0x33333333) + ((tmpa>>2) & 0x33333333);
37 sum += (((tmpb + (tmpb>>4)) & 0x0f0f0f0f) ∗ 0x01010101) >> 22;
38
39 tmpa = s3 − ((s3>>1) & 0x55555555);
40 tmpb = (tmpa & 0x33333333) + ((tmpa>>2) & 0x33333333);
41 sum += (((tmpb + (tmpb>>4)) & 0x0f0f0f0f) ∗ 0x01010101) >> 21;
42 }

Figure 2.10: Parallel bit-serial bit counting executed orthogonally
across multiple registers implemented in C. Note that the counting
of the 4th to the 14th bit is omitted from this listing.

34 Hardware aware optimizations in data search applications

as desired. Thus the line

tmpa = s0 − ((s0>>1) & 0x55555555);

is equivalent, and saves one AND masking operation.

An x86 specific version was written in assembly, using SIMD registers
and operations. Due to the register width in MMX registers4, n could be
increased to 128. With 8 MMX registers available, the summation was done
for m = 15 bits in each iteration with 128 parallel counters. This required 4
registers for the accumulator itself, leaving 4 registers for temporary vari-
ables. The summation loop consisted of reading data linearly from mem-
ory, followed by pure register-to-register operations. One such digest ac-
cumulated the number of 1’s across n · m = 1920 bits.

After this summation, the accumulator is stored in 4 registers, and need
to be combined and stored as a standard integer before reusing the regis-
ters for the next section of the bit vector. Fortunately, special MMX instruc-
tions are available for such purposes. This functionality is not available
when coding in C, making the assembly version even more efficient.

One assembly loop, including converting the accumulators, consisted
of approximately 200 instructions, most of which could be issued in pairs.
The run time was four times faster than the lookup table method described
in section 2.3.2. The results for the different methods are summarized in
table 2.2. The implementation in C performed 2.5 times faster than the
lookup table alternative. In practice, the limiting factor for the assembly
version was the read speed from memory. As this was a linear read, it
ran at peak bandwidth. Additionally, since the access pattern was highly
predictable, prefetch instructions were included into the program, hinting
the cache subsystem well in advance to bring in new data.

Previous implementations of bit counting in the web search engine had
special algorithms for handling bit vectors with very scarce 1’s (Risvik
2004). These could take advantage of checking whether all bits in a word
were zero, in which case no calculation needed to be done. With the new
algorithm, the processing itself was no longer a limiting factor, and such
customization was not needed. This resulted in a predictable run time of
the bit counting, independent of the input data.

4256-bit MMX2 registers are available, but operations on these take twice as long than
MMX operations, and are thus no benefit in processing speed.

2.4 Comments 35

2.4 Comments

This chapter has discussed efficient ways to handle searches in large data
volumes with an index based system. Such systems rely on organizing the
raw data into a data structure, usually an inverted index file, which by
itself becomes voluminous. These data structures must be used optimally
in order to achieve high performance. Due to its construction, any series
of random keyword lookups in an inverted index, will lead to a series of
random reads per query; although a very limited quantity. Performance
bottlenecks in accessing such data structures have also been observed in
other search engines (Barroso et al. 2003; Brin and Page 1998). Note that
the discussion in this chapter is limited to finding and sorting documents
satisfying a set of criteria, not the underlying processing step of calculating
the relevancy of each document by algorithms like PageRank (Brin and
Page 1998) or Hypertext Induced Topic Selection (HITS) (Kleinberg 1999).

As shown by the examples, algorithms can be designed to use the max-
imum capacity of the available resources, although with more hardware
dependent design, and loss of comprehensibility of the code. Hardware
aware software optimizations have been successfully implemented in sev-
eral bioinformatics applications (see for example Farrar 2007; Rognes 2001;
Rognes and Seeberg 2000). In most cases, the speed limiting factor turns
out to be the available memory bandwidth.

Indices have obvious advantages for searching by keywords in rela-
tively static collections of documents, for example a web search engine.
There are although some limitations to this approach, especially with re-
gards to the required time taken to build an index, and the limited query
flexibility. In the next chapter a different approach will be discussed, en-
tirely omitting the need for any data structures built on top of the raw
data. Chapter 4 follows with the details of one such implementation, be-
fore chapter 5 discuss applications where this approach might be more
attractive than indexing.

Chapter 3

Sequential data processing — in
parallel

The great tragedy of science — the slaying of a beautiful hypothesis
by an ugly fact

Thomas Henry Huxley (1825–1895)

UP to now, this thesis has discussed searching large volumes of data
by the means of an indexing system. This serves as an efficient im-

plementation for keyword based information retrieval. However, in some
application cases the use of an index is less efficient, or even impossible.

This chapter will argue that complex pattern matching could be ex-
ecuted by scanning sequentially through the data, rather than accessing
them through a data structure. Although sequential, such processing can
be run in parallel on a large number of processors, resulting in a short run
time despite the linear dependency on the data volume.

3.1 When indices fall short

All indexing systems are based on extracting keyword tokens from the raw
data, placing these into a data structure called an index. Later searches in
the same data are done by looking up one such keyword in the index to
find pointers to the occurrences in the original data. The efficacy of such
lookups is dependent on the data structure chosen for storing the index.

Building the index is usually a lengthy process. This is of less impor-
tance in relatively static document collections. The return on the com-
putational investment spent on building an index should be considered

38 Sequential data processing — in parallel

when the underlying data changes so rapidly that frequent re-indexing is
required.

Indexing relies on all of the following conditions to hold true:
• Later retrieval will be done with a predetermined set of keywords.

• Keyword tokens can be placed in a data structure suitable for the
application at hand. Some of the important differentiating character-
istics are the number and size of the tokens, multiple occurrences of
each token, and the specificity of each token.

• There is available time to run the indexing step ahead of the data
processing itself.

Applications conflicting with any of these requirements, will not lend
itself easily to an index based solution. Several examples of such appli-
cations will be discussed in chapter 5. Most of the work related to this
thesis has been targeting applications within bioinformatics. One such ap-
plication, siRNA design described in Paper IV, is breaking all of the above
requirements.

To illustrate the shortcomings of an indexing system, this application
can be simplistically described as follows: A 19-nucleotide (19-mer) RNA
sequence should be designed with respect to efficacy as a gene silenc-
ing agent, as well as having a large edit distance (Sankoff and Kruskal
1983) from other known sequences (Snøve Jr. et al. 2004). Since gene si-
lencing can occur even with multiple sequence differences (Amarzguioui
et al. 2003; Dykxhoorn et al. 2003; Hannon 2002; McManus and Sharp 2002;
Zamore 2001), it is not sufficient to look for identical sequences. Between
the 19 nucleotides, at least four differences can occur while the molecule
still maintains some of its silencing potency. Thus the longest consecutive
conserved fragment between two similar sequences could be as short as
three nucleotides1.

The uniqueness of the sequence, quantified by the edit distance, would
need a check for any 3-mer subsequence in the reference data as a seed
point. With four nucleotides, only 43 unique subsequences exist. Any in-
dex lookup would thus match ∼ 2% of the reference data. Checking all
seventeen 3-mers within an 19-mer, with a typical data base size of 50 MB,
would result in 17 groups of around one million fragments that need to be
patched together in an optimal way. Not only is the size of the problem
only marginally reduced in this initial step. The combinatorial explosion

1Some studies indicate that even this is too optimistic. Tolerance for more than four
mismatches could reduce the longest conserved fragment size to two nucleotides. See
Paper IV for details and references

3.2 Pattern matching without indices 39

when combining the potential seeds is unbearable, rendering indexing as
an unsuitable approach.

For the efficacy calculations, one might expect that longer tokens could
be used. In reality, the biological mechanism is not yet fully understood,
and any restrictions imposed by such tokens could affect the results. When
using genetic programming (Koza et al. 1999) to find the most effective
molecules, it is beneficial to have all degrees of freedom in hypothesis gen-
eration (Sætrom 2005). Genetic programming will by definition build mo-
tifs of random characters and operations. Using an index for finding motif
occurrences could limit what patterns that could be constructed.

3.2 Pattern matching without indices

Navarro (2001a) has reviewed different non-indexing algorithms for ap-
proximate string matching, demonstrating that no algorithm is superior
for all types of data and degrees of approximation. The fastest algorithms
discard negatives through filtering before checking for matches in the re-
maining data.

When indexing fails, another alternative approach would be to process
the raw data directly. As discussed in chapter 2, the most optimal mem-
ory access method in terms of transfer bandwidth is a linear read. This
approach is taken by several algorithms, among them dynamic program-
ming and finite state machines (automata). Belkin and Croft (1992) argues
that such data filtering is a variant of information retrieval. Filtering is eas-
ier to run in parallel (Mak et al. 1991) than data structure manipulations
like sorting (Bitton et al. 1984).

3.2.1 Dynamic programming

Dynamic programming is a bottom-up approach for solving problems (see
for example Aho et al. 1982). The opposite would be a top-down approach,
dividing each problem recursively into smaller sub-problems. A top-down
approach has the risk of solving the same sub-problem multiple times, re-
sulting in an exponential complexity. If there is only a polynomial number
of subproblems, these could be solved first, and later combined into higher
level solutions. This is the approach taken by dynamic programming. It
starts by storing the sub-problem results, typically in a multidimensional
matrix, reusing these to compute the remaining matrix values. Memoiza-
tion is a recursive approach storing the results of subproblems when en-
countered, in addition to maintaining a memorandum of the subproblems

40 Sequential data processing — in parallel

s0 s1 s2 s3 s4
a c λ

λ
c

b

Figure 3.1: NFA state machine accepting the pattern ab?c+.

q0 q1

q2

q3
a c

cb

c

Figure 3.2: DFA state machine accepting the pattern ab?c+.

that have been solved (Michie 1968). Later referrals to the same subprob-
lem do thus not need recomputation.

The Smith-Waterman dynamic programming algorithm (Smith and Wa-
terman 1981) is frequently used in bioinformatics for sequence alignment.
It starts by calculating the alignment scores for the first nucleotide in the
query versus the entire reference sequence. The remaining query nucle-
otides are added one by one, recalculating the accumulated alignment
scores in each step.

3.2.2 Finite state machines

Finite state machines (FSM), also referred to as automata, are models com-
posed of states, transitions and actions. Finite state machines are divided
into two classes: Deterministic (DFA) and nondeterministic finite automata
(NFA). Both types can be used for accepting patterns. The patterns are en-
coded into the FSM, which consumes the input data as a string. A match is
found if the state machine ends up in an accepting state.

Figure 3.1 and 3.2 show two finite state machines that accept the same
input string. Accepting states are marked with double rings. Transitions

3.2 Pattern matching without indices 41

are marked with the accepted symbol. Transitions marked with λ in the
NFA version can be taken without consuming an input symbol. In the
NFA-version, more than one traversal of the state machine might be valid
at any moment, leading to the classification as nondeterministic. In contrast,
a DFA can only be in one state. A NFA can be converted to a DFA, however
with a potential exponential increase in the number of states and transi-
tions. More information on finite state machines can be found for example
in Sipser (2005).

3.2.3 Limitations with dynamic programming and automata

Dynamic programming and finite state machines are valuable solutions to
a large range of applications, but have limitations preventing their usabil-
ity in certain scenarios. NFA-implementations need to track a large number
of simultaneous active states, making the processing speed unpredictable.
They might also need more memory than available for storing the inter-
mediate possibilities.

Dynamic programming and DFA implementations do in contrast have
predictable memory requirements as well as bandwidth. The tradeoff is
in the vast usage of memory structures; either for storing intermediate re-
sults in dynamic programming, or for capturing the state transition tables
needed with a large number of states and transitions.

As discussed in chapter 2, using large data structures for speeding up
problems does not scale well with the current directions of SIMD CPU de-
sign, which favors computational throughput rather than memory band-
width. Additionally, the common CPU architectures do not lend them-
selves to processing multiple queries in the same data stream.

Automata implemented in software have a rather large overhead even
for parsing well defined patterns, in the order of 10 – 100 of clocks per
symbol consumed (van Lunteren et al. 2004). When parsing even more
unspecific patterns, this penalty will become larger.

A SIMD architecture can process multiple data streams, but only with
the same instructions. Parallel pattern matching requires a program flow
dependent on the input data in each of the data streams. While SIMD pro-
vides large benefits in applications with a predetermined instruction flow
across different data — for example in image filtering — it falls short when
used for evaluating multiple patterns across a single data stream.

42 Sequential data processing — in parallel

3.3 Sequential data processing

The performance of running parallel queries during a linear search through
raw data is dependent on the bandwidth of the data stream, as well as
the throughput of the processing stage. Within the scope of this disserta-
tion, the focus has been on implementing the processing stage, not on im-
provements of the data bandwidth already available in commercial mem-
ory products. With a given, fixed data bandwidth, the problem reduces to
creating an architecture that can keep up with that speed.

To evaluate multiple queries versus a single data stream, a MISD ar-
chitecture emerged as an alternative. With separate instruction streams
for processing individual queries, a flexible processing unit can be built.
This approach will be discussed in the remaining chapters of this disserta-
tion. After introducing the PMC in chapter 4, chapter 5 will discuss several
applications where linear search is applicable. Several of these practical
problems could not have been efficiently solved by any of the methods
described in section 3.2.

3.4 Improving speed by parallel execution

Sequential processing has a run time of T(n) = c · n, resulting in O(n)
complexity. This is theoretically inferior to a large number of sub-linear
algorithms. In practice, it might still be attractive given the constant c
can be made sufficiently small. Given abundant processing capabilities,
c is only determined by the data bandwidth. Having such a dependency
on memory bandwidth might immediately seem counterintuitive after the
discussion in chapter 2.

The key point is that such sequential scans can be easily parallelized, at
least for the types of applications that will be discussed in chapter 5. This
is due to the fact that the patterns of interest have a limited scope. For
example, searching for a gene promoter motif is only relevant for matches
within a small window of the total data volume.

The reference data can thus be split — potentially with some overlap
dependent on the scope size — and distributed for processing across multi-
ple nodes without loosing any matches. With reference data several orders
of magnitude larger than the relevant patterns, a large number of nodes
can be applied. The aggregated bandwidth of hundreds, or even thou-
sands of such modest data channels could be sufficient to make sequential
processing attractive.

3.5 Sequential access is aligned with technology trends 43

3.5 Sequential access is aligned with technology
trends

With the performance of sequential access being bound by the data band-
width, its usability should preferably not be limited exclusively to today’s
dominating memory technology, DRAM. Fortunately, linear access is the
most efficient access method in all major current data storage technology.
Storage technologies organized in matrixes (for example DRAM, SRAM and
NOR-flash) have roughly half the access time for accesses within the cur-
rently active memory page.

Other technologies are serial by nature (for example NAND-flash and
disk drives), with huge penalties resulting from non-linear access. Even
beyond the storage segment, serial data access is a common practice, such
as network traffic. An efficient implementation for processing of linear
streams of data could thus be used with numerous data sources.

Chapter 4

The Pattern Matching Chip

If you were plowing a field, which would you rather use? Two strong
oxen or 1024 chickens?

Seymour Cray (1925–1996)

THE previous chapter introduced the concept of processing large vol-
umes of data through linear searches. This chapter will focus on the

concept and design of the Pattern Matching Chip (PMC), implementing this
idea. For readers who are unfamiliar with the PMC, it is recommended to
read Paper VII before starting on this chapter.

The research behind designing the PMC has been published in Paper I
and Patent I. This chapter complements that information by adding back-
ground material on the architecture and development process of the chip.
The implementation has taken a considerable amount of the allocated time,
and deserves some consideration. Further, the ability of the PMC to com-
pare multidimensional numeric data — although with a slightly uncon-
ventional distance metric — is presented. This chapter will focus on the
technical aspects of the PMC itself, leaving more detailed application de-
scriptions for the following chapter.

4.1 Introduction

As described in the examples in chapter 2, the largest gains when building
data search algorithms for superscalar CPUs are achieved by optimizing
the memory access patterns, as well as taking advantage of the SIMD in-
struction set of modern CPUs. SIMD vector processing reduces the required
instruction bandwidth (Kozyrakis and Patterson 2003), but require that all

46 The Pattern Matching Chip

data are treated equally in lockstep operation. This increased my aware-
ness of that a general CPU is not optimized for processing unstructured
data. Hillis and Guy L. Steele (1986) present a fine grained processing ar-
chitecture, but with a data parallel approach.

A fundamental architectural mismatch exists in applications where mul-
tiple users are processing independent queries versus the same collection
of data. Natively, such searches require multiple paths of query process-
ing on the same data, which should call out for a MISD architecture. Al-
gorithms for fuzzy pattern matching exists (see for example Isenman and
Shasha 1990; Navarro 2001b), but most of them have severe speed penal-
ties with increasing degree of non-perfect matches (Navarro and Raffinot
2002).

MISD architecture was first classified by Flynn (1972), but is still very
rare in real implementations besides systolic arrays (Chalmers and Tid-
mus 1996). MISD was considered impractical by Hwang and Briggs (1985).
Lima et al. (2001) does although describe a general purpose MISD architec-
ture with better scalability than traditional multiprocessor systems.

In a scenario with myriads of independent queries, massive parallelism
might be feasible without being bounded in performance gains by Am-
dahl’s law (Amdahl 1967). This gave the inspiration to construct a MISD
architecture tailored for data searches, and test out the practical implica-
tions in real applications.

As suggested from the findings described in section 2.3, it is easier to
distribute workload with maximum throughput with a large number of
small tasks, than the other way around. We thus chose to make an archi-
tecture building on the “atoms” of a query, that is the individual symbols
in the query string.

The technical details of the PMC are described in Paper I and Paper VII.
This chapter will thus not repeat the implementation details, but rather
focus on the reasoning and considerations behind the chosen implementa-
tion.

4.2 Existing technologies

Several architectures for approximate patterns and string matching have
been proposed over the years (Blüthgen and Noll 2000; Cheng and Fu
1987; Dahle et al. 1997; Foster and Kung 1980; Hirschberg et al. 1998; Park
and George 1999; Sastry et al. 1995; Yu et al. 1984), with some based on
content addressable memory (Hirata et al. 1988; Robinson 1992). A fair
comparison of performance is difficult due to significant discrepancies be-

4.2 Existing technologies 47

tween the algorithms (Paper I). Other proposed architectures exist for find-
ing the longest common subsequence (Lin and Yeh 2002; Michailidis and
Margaritis 2005; Mukherjee 1989), while the connection in our research to
bioinformatics have favored approximate searches. Several groups have
developed special purpose hardware for sequence analysis in computa-
tional biology (see for instance Hirschberg et al. (1998); Lindelien (2002);
Schmidt et al. (2001)), and Hughey (1996) have published a comparison of
parallel hardware for sequence comparison and alignment.

Our architecture implementation is based on previous work by Halaas
(1983), and does almost 1,000 times more character comparisons per chip
than the closest competitor (Paper I), and the outlined cluster nodes in
Paper II each contain 480 search processors with a corresponding linear
increase in performance. The queries are typically specified as regular ex-
pressions (Friedl 2002; Nedland et al. 2002b). Regular expression match-
ing in strings have been reviewed by Navarro (2001a) and Michailidis and
Margaritis (2002).

Commercial alternatives for regular expression matching in general are
available from for example Integrated Device Technologies (Santa Clara,
CA), Safenet (Belcamp, MD), TippingPoint (Austin, TX), and Tarari (San
Diego, CA). However, benchmarking is difficult as their designs have never
been published in peer-reviewed journals. Most hardware regular expres-
sion accelerators convert the problem into a DFA state machine, for exam-
ple as shown by van Lunteren et al. (2004). This provides high throughput,
with the drawback of not being able to map all relevant regular expressions
as we have shown in Paper V.

While other architectures have been proposed for solving an increasing
discrepancy between CPU and memory bandwidth in SIMD/MIMD pro-
cessing (Patterson et al. 1997), our MISD construction has reduced that
problem on the conceptual level. With this processing scheme, data is fed
only once — and in sequential order — to the processing stage, reducing
the memory subsystem requirements.

Among other groups working on MISD processing, Lima et al. (2001)
have proposed an architecture for general processing called SHIFT1. They
demonstrate better scalability with increasing chip transistor count due
to the reduced global wiring. This architecture has demonstrated general
applicability, for example in graphics processing (Nakamura et al. 2003),
and better scalability than ordinary multiprocessing (Lima and Nakamura
2002). Schneider and Rossignac (1995) have also proposed a MISD archi-

1Michael J. Flynn is one of the coauthors for this paper, helping to fill out the almost
empty MISD-quadrant of his taxonomy

48 The Pattern Matching Chip

tecture for graphics processing.

4.3 Design goals

The overall design goal for the PMC was to build a system with predictable
performance at low cost. This requires the architecture to be linearly scal-
able to maintain a constant ratio between problem sizes and the compu-
tational resources required. All operations on the data should be O(n),
including data preprocessing. Relieved from building complex data struc-
tures, all processing could be done in real time, entirely eliminating pre-
processing in most cases.

4.3.1 Linearly scalable architecture

The resources required by a PMC based system should be linearly depen-
dent on the volume n of data to be analyzed, and the total query volume.
Query volume is given as the accumulated lengths of all queries qi. Infor-
mally, the capacity p of a system can be stated as

p = n · ∑ qi (4.1)

Obviously, p as measured in comparisons between query symbols and
data, will easily become a very high number. A vast number of processing
elements must be able to operate autonomously to maintain scalability. To
keep cost down, high chip scale integration is required. This also reduces
the power consumption as seen in other multiprocessor designs (Kahle
et al. 2005; Kongetira et al. 2005)

The system should be scalable even in the situation of dynamic data (as
demonstrated in Paper V) or dynamic queries (Snøve Jr. et al. 2005). Sce-
narios where both data and queries are constantly changing were not con-
sidered, as the proposed architecture would not have the required band-
width to receive all of this information from the host system.

4.3.2 No preprocessing before analyzing data

Without an index to speed up access to the desired section of the data at
hand, all data analysis should be completed with one linear scan. The run-
time T(n) = c · n of this approach is bounded by O(n), which is not appeal-
ing for large volumes of data. However, through massive parallelization,
c could be reduced sufficiently to still make this a viable approach. The

4.4 Previous architectures 49

PMC should serve as an pattern matching accelerator within a standard
PC. Such a PC could serve as a building block for larger clusters, with near
linear performance gains when adding more machines.

Different types of preprocessing would have undesirable properties.
For example, indexing can be a lengthy process (Risvik 2004), and even
loose accuracy (Snøve Jr. and Holen 2004), while mapping the problem
into different domains could have nondeterministic resource requirements
(Paper V).

4.4 Previous architectures

The PMC is the fourth proposed architecture with origins in the Depart-
ment of Computer and Information Science at the Norwegian University
of Science and Technology. The previous implementations have provided
both a concept validation for MISD processing, and generated ideas for
more advanced architectures. All designs have shared the concept of us-
ing multiple processing elements to monitor a sequential stream of data.
The organization of the processing elements; feeding of data; aggregation
of results and the processing of these have been implemented very differ-
ently.

The processing concept is founded on orthogonal range queries, that is
finding all points within a n-dimensional box. A query box Q can formally
be described as

Q = [a1, b1] × . . . × [an, bn] ai, bi ∈ R (4.2)

For a set of points X ⊆ Rn, an orthogonal range query will find the subset
of points within the query box, that is X

⋂
Q. Orthogonal range queries

have been extensively studied, with several proposed software solutions.
Agarwal and Erickson (1996) and Willard (1996) provide good summaries
of the subject literature. Charikar et al. (2002) has a more recent data struc-
ture proposal. Algorithms can achieve sublinear search time, at the ex-
pense of superlinear data structure size or build time; or both.

4.4.1 The F and H-matrices

The F and H matrices were conceptual studies for evaluating orthogonal
range queries in hardware. The F-matrix also had extensions for handling
non-orthogonal general range queries. The H matrix had a 128 stage data
pipeline, where the range membership for the current data value was eval-
uated. The output was a Boolean function, indicating if all data values

50 The Pattern Matching Chip

Data routing

PE0
PE1
PE2

PE30
PE31

PE0
PE1
PE2

PE30
PE31

PE0
PE1
PE2

PE30
PE31

PE0
PE1
PE2

PE30
PE31

PE0
PE1
PE2

PE30
PE31

PE0
PE1
PE2

PE30
PE31

PE0
PE1
PE2

PE30
PE31

PE0
PE1
PE2

PE30
PE31

Figure 4.1: Block diagram of the MS160 data pipeline. The chip
has 256 processing elements (PEs), arranged into eight groups of 32
PEs

were within their respective range, that is

128

∏
i=1

xi ∈ [ai, bi] (4.3)

where ai and bi are the lower and upper bounds respectively for each of
the stages, being compared to the current data value xi of that stage. The
H-chip was incorporated into a demonstration system running on a PC,
providing rapid keyword searches in text collections such as Shakespeares
complete works, the Bible and the Norwegian phone directory. Halaas
(1983) describes the principles of these matrices, while Heggebø (1989) use
the H-matrix as an usage example for a VLSI compaction tool.

4.4.2 The MS160

The MS160 development was started in 1991, with the first prototype
available in late 1993. The chip has eight windows, each consisting of 32
processing elements (PEs) as shown in figure 4.1. The chip had eight byte-
wide data stream inputs, that could either be routed to their respective
windows, or replicated and sent to two, four or all eight windows. The
data routing could also take the data stream output from one window

4.4 Previous architectures 51

and use that as the input to the next window, creating a longer window
for larger search patters. All data streams ran at 20 MB/s, for a total of
160 MB/s across all eight input streams. Any query required at least one
window, allowing a maximum of eight simultaneous queries at 20 MB/s
throughput, or one query duplicated across all windows for 160 MB/s
throughput.

Each PE consisted of two comparators, checking if the current data
value was within a range specified by upper and lower limits. A window
would report a hit if all PEs had a match. Unused PEs would be configured
with upper and lower values set to accept any value. Any other function
than AND would require more than one window. Results from the eight
windows where used as a look-up table key, determining which combina-
tions that qualified as a hit.

Although the MS160 had a high theoretical throughput, there were
a number of limitations that led to performance and scalability issues in
practical use. The most important of these were:
Complex queries required multiple windows. Any other pattern than a

sequence of acceptable data value ranges required more than one
window in the MS160. Although the design allowed for variations in
the value of each element in the sequence, this proved to be an infre-
quently used feature besides handling upper and lower case letters.
Rather than variations in the value range of each element, complex
queries demanded more flexibility in the positioning of individual
values within the sequence. Without this capability, the MS160 was
limited to keyword searches, and soon surpassed by index based sys-
tems as these are especially good at prefix and keyword queries.

Low PE utilization As a result if the previous issue, even a simple query
such as a or b followed by c would require three windows if a and b
where not encoded as consecutive values. Due to limitations in the
data distribution, also a the fourth window would be unavailable for
other queries in this example. Thus half the chip, or 128 PEs was
consumed by a three symbol query.

Low bandwidth utilization The design could either run at the maximum
data bandwidth (160 MB/s), or the maximum number of simultane-
ous queries (8), but not both at the same time if all queries should
be evaluated for all the input data. This approach served single user
applications well, where query latency could be reduced under light
system load. With multiple or complex queries, half or less of the
available memory bandwidth was utilized.

52 The Pattern Matching Chip

Interrupt driven result processing When finding a hit, MS160 reported
this to the host system through an interrupt. The host system needed
to respond to this interrupt before further hits could be processed.
Slow interrupt handling in most operating systems implied a limit to
the rate of hits that could be reported. Unspecific queries returning
numerous hits would easily swamp the whole system.

Glue logic requirement The design was more a processing core than a
system component. It had a generic FIFO style interface for the data
streams, but did not include any memory controller for the data stor-
age. Correspondingly, the system interface had an address and data
interface similar to a SRAM requiring additional logic; at that time an
ISA interface. The glue logic both increased the cost and circuit board
area for building a working solution. More importantly, the lack of
integration implied that both the memory and system interface could
not use the connected devices at their full potential

Unbalanced processing resources compared to storage volume The MS160
system design had one chip supported by up to 320 MB of RAM,
which at the time took 160 memory chips to implement. The above
issues with low effective memory bandwidth as well as low PE uti-
lization made most of the RAM operating in idle mode. It was ob-
viously undesirable to have low utilization of the largest and most
expensive part of the subsystem, at that time the memory.

In summary, the MS160 was good at keyword searches, but did not
support sufficiently fuzzy queries to enable applications where index based
systems are inadequate. It was intended as a single chip accelerator, and
was difficult to use in larger configurations with parallelism outside the
chip itself. MS160 served as the query engine for the web service FTPSearch
during 1992 – 1996, when it became outperformed by an software applica-
tion. In 1996, FTPSearch served 650000 queries per day, and was one of the
most visited web sites in Norway.

4.5 Implementation choices for the PMC

This section will discuss the implementation options considered for the
PMC, and the choices made for the final design. Figure 4.2 shows the over-
all block diagram. The search core is the largest part of the design, but still
requires a number of support functions to achieve the design goals. The
design choices for these supporting functions was considered just as im-
portant as for the core itself. Figure 4.4 has a more detailed view of these

4.5 Implementation choices for the PMC 53

Search core

External
RAM

Dataflow
control

PCI
target

PCI
master

External PCI bus

Figure 4.2: High level block diagram of the PMC. The search core
is supported by a local RAM, and connected to the host system and
other PMCs through PCI.

support functions. Paper I and Paper VII provides a functional description
of the PMC. This section will thus concentrate on arguing why the different
design choices were made.

4.5.1 Increasing parallelism

The design start of the PMC coincided with more widespread network con-
nectivity. Rather than building a system for each user, the aim was to
provide a platform that could support multiple simultaneous applications
and users. The focus was shifted from reducing single query latencies, to
getting the highest query throughput achievable while still maintaining a
usable response time.

The multiple user scenario also demanded more parallelism, both within
each chip and across the whole system. On the application level, sub-
second response time while serving more than 100 queries per second was
desirable. Each user query might also map to more than one query dur-
ing execution. For example, a DNA nucleotide search might automatically
be expanded into variants with different specificity levels in addition to
the original exact sequence search. Having thousand or more simultane-
ous queries was thus expected even for entry level applications, with each
query containing 10 – 100 symbols.

When evaluating queries, two different process scheduling approaches
were considered. One would be to have one processing element for each

54 The Pattern Matching Chip

query symbol, just like the MS160 architecture. This approach is easily
modeled, given the predictability of what each PE is doing at any time.
In some applications, this approach would waste a lot of resources. For
example, if monitoring headers in network traffic, it would only be mean-
ingful to look for a specific symbol in a single position of the header. For a
n-byte header, each PE would only do necessary work for every n’th data
cycle.

The other approach considered had each PE controlled by an instruc-
tion stream representing a part of, or even a whole query. Each PE could be
implemented as a state machine as described in section 3.2.2. This would
increase the processing utilization, at the expense of a more complex sys-
tem and programming model. With PEs executing different programs, they
might also have different data rate demands. Running multiple queries on
the same data stream might thus imply that some queries was still not uti-
lizing the processing capabilities to their limits.

As discussed in chapter 3, restructuring computation for parallel exe-
cution is likely to be performance limited by the available data bandwidth.
Further, the available transistor count on a single ASIC implied that “wast-
ing” PEs was not expensive. The limiting factor for the integration level
would be the power consumption, not the transistor count as such. Idle
PEs would require much less power than active ones.

Our choice was thus to stay with the one PE per symbol architecture
inherited from the MS160 design. This was also the only legacy we kept
from the previous research. With each PE dedicated to a specific symbol
of the query, it would not change roles during a search. There is thus no
need for changing instructions, reducing instruction storage and schedul-
ing down to a set of configuration registers being static during the execu-
tion of a query. As long as the PE does not find a match, it has no activity.
The only toggling signals inside the chip are then the distribution of data,
reducing power consumption.

4.5.2 Maintaining high data throughput

Processing throughput in a data streaming MISD architecture is necessarily
tied to the data throughput. In the MS160 architecture, each hit generated
by any query resulted in pipeline stalls. This effect would have been larger
if the same principle were carried over to the PMC design, as the latter was
intended to have more parallel queries.

It was evident that maintaining throughput, implied each query to be
more autonomous than in the MS160. Under most conditions, finding a

4.5 Implementation choices for the PMC 55

hit should not stop the data stream, neither to this PE or to the others shar-
ing the same data. Instead of awaiting CPU intervention on each hit, we
chose to implement hit managers for each query. These hit managers are
DMA engines, capable of taking the result of a hit and storing it anywhere
in the addressable host system memory. Each hit manager included a small
buffer to increase bus utilization through larger block transfers, and to al-
low processing to go on even when there was a system bus contention.

If the hit managers report hits at a higher rate than could be handled
by the host system, these local buffers will fill up, and the processing must
be stalled. This is obviously undesirable, but anyhow unavoidable if the
host system is not able to sustain a high rate of reported hits. To reduce
such effects, we chose to add bandwidth management features to the hit
mangers. The most important of these were:

Compact reporting format Upon finding a hit, the PMC will report the lo-
cation of the hit only, and not the data that matched the query. Lim-
iting the local memory address space for each PMC to 32 bit, reduced
the required data to one 4-byte word per hit. If the data surrounding
the hit position is required, they can be read out by the CPU from the
PMCs local memory with a speed comparable to what the PMC could
have provided itself. In some setups, these data might already be
present in the main memory of the host system, making a copy sent
along with the hit position redundant.

Variable result buffer size There is often a limit for the number of hits
that is relevant from an application perspective. If a query is too
unspecific, returning numerous results, the usability of the results
might be reduced. The PMC was thus given the capability of letting
the application decide the number of desired results per query by
allocation variable length result buffer sizes. When more hits than
what fit the allocated buffer are found, the PMC will inform the host
system, which can either extend the buffer, or terminate further pro-
cessing of that specific query.

Hit decimation Not all applications needs to know the exact position of
each hit. For example, one might use a motif describing protein en-
coding DNA regions as a query across the genome of an organism
to find the chromosome regions that are more “gene-rich” that oth-
ers. Presented as a histogram along the sequence, there is no need for
single nucleotide resolution. A hit decimation mode was thus added,
with a programmable decimation of the number of hits.

56 The Pattern Matching Chip

4.5.3 Balancing memory volume with processing power

Using linear access to search through the local data of each PMC, the amount
of memory would also affect the processing time. As discussed in sec-
tion 4.4.2, previous designs was not utilizing the memory chips to their
full potential. The capacity per memory chip had also increased dramat-
ically. A low memory-to-PMC chip ratio was thus used. The upper limit
was chosen to 8 RAM chips per PMC, as this still allowed for 256 MB per
PMC initially, and with an upgrade option up to 4 GB as denser memory
should become available. Typically, the number of memory chips would
not even need to be taken to the maximum limit.

4.5.4 Memory interface

With a relatively low number of RAM chips per PMC, it did not make sense
to have a separate memory controller. Integrating the memory controller
into the PMC implied better bandwidth management. The controller was
designed to guarantee a sustained data rate to the search core exceeding
the processing rate of 100 MB/s. This was achieved by having a 16-bit
memory interface operating at the same frequency as the PMC itself, with
a burst speed of 200 MB/s. Some of this capacity is lost due to memory
refresh and protocol overhead, but there would still be more than 50 MB/s
available bandwidth from the host system to the local RAM of each PMC
even during search, which could be used for reading or altering the mem-
ory content.

In some applications, for example monitoring of real time data like net-
work traffic, storing data into the local memory of each PMC before doing
the actual processing would add to the query latency. To minimize this, it
was decided to add a bypass mode in the memory controller, where data
could be streamed directly from the system interface and into the search
core.

4.5.5 Data distribution

Data distribution within the PMC is sourced from a shared stream. Two
functionally different distribution aspects needed to be served: Distribu-
tion to parallel independent queries, and between the individual PEs that
would cooperate on evaluating one query. The latter is the most difficult,
as restrictions in which PEs that can communicate directly affects the al-
location granularity of the PEs themselves. Two distribution alternatives
was considered.

4.5 Implementation choices for the PMC 57

a b c d

Figure 4.3: Schematic view of the data distribution for the query
a(b + c)d through a binary tree. The structure ensures sequential
order of evaluation, at the expense of not utilizing all PEs. Unused
resources are shown in gray.

The first implied a synchronized broadcast of the data stream to all the
PEs. Such a distribution scheme would be easy to implement, and each
PE could be allocated independently from a data distribution perspective.
The main drawback was the lack of a native evaluation order between the
PEs. A query like a(b + c)d would require the PEs looking for b through d
to know if a match occurred one respectively two clocks after an a had a
match. In this scheme, the PEs needed some sort of history storage.

As the result processing was chosen to be best served by a binary tree
(see section 4.5.7 below), a similar scheme was also considered for the data
distribution. By pipelining data through the PEs looking for a sequence of
symbols, the evaluation order is inherently guaranteed. The binary tree
structure does although limit which PEs that can be chained. Figure 4.3
shows the data distribution for the query a(b + c)d, requiring eight PEs for
a four symbol query.

Such worst case doubling of resource usage was initially considered
prohibitively expensive. By modeling the transistor count impact of a
broadcast distribution combined with a history buffer; alternatively adding
further paths to the binary tree structure; we found that the added com-
plexity increased the processing elements size more than what could be
reclaimed in higher PE utilization. To get the same processing capacity, it
took less power and transistors to have an abundance of PEs that was not
fully utilized, than having more complex but fully utilized units.

The binary tree distribution scheme was thus selected, with Figure 4.5
showing the data distribution for the whole search core. In the physical im-
plementation, the number of multiplexers was reduced to minimize com-
binatorial delays. Instead of a large number of two-input multiplexers,

58 The Pattern Matching Chip

Configuration
Control

Control
Registers

LUT

PCI write
FIFO

PCI read
FIFO

PCI write
FIFO

Splitter

PCI
Target

Target
Address

Target
Control

SD2PCI

PCI2SD

PCI2SF

SD2SF

SD2CFG

SDRAM Controller

Search
FIFO

Dataflow Control

Main Control

PCI read
FIFO

Packer

Search
Core

Search
Control

PCI
Master

Figure 4.4: Block diagram of the PMC. The search core (shaded
block) is expanded into more detail in figures 4.5 and 4.6.

PE
0

PE
1

PE
2

PE
3

PE
4

PE
5

PE
6

PE
7

PE
508

PE
509

PE
510

PE
511

PE
512

PE
513

PE
1020

PE
1021

PE
1022

PE
1023

PE
766

PE
767

Figure 4.5: Block diagram of the PMC search core data distribution.
For readability, not all levels of the tree are shown.

4.5 Implementation choices for the PMC 59

PE

SC

PE

SC

PE

SC

PE

SC

RS

PE

SC

PE

SC

PE

SC

PE

SC

PE

SC

PE

SC

PE

SC

PE

SC

PE

SC

PE

SC

PE

SC

PE

SC

RS

SC SC

RS RS

SC SC

RS RS

SC SC

RS RS

SC SC

PE

SC

PE

SC

RS

SC

RS

SC

RS

SC

RS

SC

RS

SC

RS

SC

Figure 4.6: Block diagram of the PMC search core result processing.
The result from individual processing elements are fed through a
tree of sequence control units (SC) and result selectors (RS). Pipeline
registers are inserted between every fourth sequence controller on
the same level to avoid long combinatorial delays. Only the first
three out of eleven levels in the tree structure is shown.

fewer levels of wider input multiplexers were used. The collapsed struc-
ture is although functionally equivalent to this figure.

4.5.6 Processing elements

Partly due to the data distribution scheme chosen, an abundance of simple
PEs were required. The previous architecture used upper and lower range
comparisons in each PE, checking if the current data value x ∈ [a, b]. As
ranges had been infrequently used, and could be evaluated by combining
two single range comparisons, the PMC PE design was simplified to only
have one reference value a for comparison. The comparison mode could
be any of the following Boolean functions:

f1(x) = (x ≤ a) (4.4)
f2(x) = (x ≥ a) (4.5)
f3(x) = (x
= a) (4.6)
f4(x) = (x = a) (4.7)

The output of the f4(x) function was decided to be always available in par-
allel with one of the three others, as this allowed magnitude comparisons
for values spanning more than one byte.

60 The Pattern Matching Chip

4.5.7 Result processing

While the PEs execute the value range comparisons, it is the combination
of results from multiple PEs that allows for complex queries. The dominat-
ing functions carried out in the result processing stage is sequence control
between individual PEs; also supporting nonadjacent matches; and com-
bining partial results through some function, for example a Boolean AND
of the PE outputs.

For every PE to be fully utilized, an arbitrary number of PEs should be
able to cooperate in a query. As for data distribution, full flexibility in the
result processing would be very resource intensive. Measured by the num-
ber of transistors, the result processing would in any scheme envisioned be
the largest part of the search core. Keeping the result processing tree busy
was thus more important than utilizing all PEs for overall throughput. Re-
ducing the number of potential points where results processing could take
place was thus mandatory.

Thus a binary tree structure as shown in Figure 4.6 was evaluated and
found suitable. This implied 2n PEs allocated to any query, with n ∈ N∗.
Due to the complexity of the result processing, pipelining was needed to
achieve the desired clock rate. Pipeline registers was inserted to break
up combinatorial delays sufficiently. Higher clock frequencies could have
been achieved by further pipelining.

4.5.8 System interface

The most important system interface parameters investigated was band-
width and latency. At the same time, having system compatibility with a
wide range of host systems left only one real alternative, PCI. Vendor spe-
cific interconnect systems existed that had higher performance than PCI,
at the expense of being unique for a specific server architecture. PCI was
used not only at the add-in board level, but all the way to each individual
PMC chip.

PCI also allows more than just passive interconnect. If required, the
path between a group of PMCs and the host system can be split by a pro-
cessor that can distribute data and aggregate results, offloading the main
CPU.

With an order of hundred PMCs in a system, each with local mem-
ory, 64-bit PCI addressing was chosen to simplify the mapping of PMC
resources into the system memory space. Ideally, all of the memory on
the PMCs should be available as a linear range to the host. Initial testing
showed that most systems had BIOSes that did not allow for multiple large

4.5 Implementation choices for the PMC 61

memory regions on PCI, even though this technically should be possible.
To overcome this compatibility issue, we instead chose to only expose a 64
kB memory page from each PMC at any time. The overhead of switching
the page pointer was considered negligible. The main mode of memory
access is bulk sequential uploading data to the PMC, and not random ac-
cess.

4.5.9 Query configuration

The programming model for the PMC will be discussed in section 4.7. From
a hardware perspective, a distributed program storage, or rather configu-
ration settings, was chosen. The configuration would be static during a
query, but could be loaded from the local memory. Multiple compiled
PMC configurations could be stored in this memory, and activated by a
load command. Alternatively, all of the individual configuration registers
could be manipulated directly through the host interface. These registers
hold the settings that otherwise would have been decoded from the in-
struction stream in a conventional architecture.

4.5.10 Scalability

The PMC was intended to be a building block for larger systems, not a
one chip solution. Packing the maximum possible processing power into
each individual chip was thus not top priority. The focus was rather put
on getting the maximum processing density and power efficiency in an
assembled system.

There is no architectural limits to the number of PEs that each PMC can
hold. The overall binary structure makes scaling of the design easy for any
size of 2n for n ∈ N∗. The final sizing to 1024 PEs per PMC was dominantly
determined by the resulting die size and power consumption. Fitting into
relatively small ball grid package (14 by 14 mm, 1.4 mm thick), and using
less than 1 W of power, resulted in a chip that could be mounted in any
industry standard enclosures without added cooling systems.

The PEs within each PMC exhibit fine grain parallelism, which also
could be said for the PMCs themselves. It is not the performance of each
chip that is important, rather that thousands of PMCs can be assembled into
a handful of regular host server enclosures and used as a coherent system.

The tight coupling of the PMC and RAM is close to the concepts of in-
telligent RAM (Patterson et al. 1997), although not fully integrated on the
same die. The main reason for not choosing a hybrid solution, was that

62 The Pattern Matching Chip

processing and memory on the same die implies both reduced process-
ing performance and storage density. For the PMC project, having external
RAM was rather an advantage, as advances in memory chips could be uti-
lized immediately.

Choosing the number of PEs per PMC implies a hard limit to the maxi-
mum query size that can be evaluated natively by the hardware. A single
query can not span across multiple chips in the current implementation.
Queries needing more than 1024 PEs was considered unlikely, and can also
to some extent be modeled by splitting the query into two or more frag-
ments, followed by merging the partial results. Further, the off-chip com-
munication between different PMC cooperating on a large query would
have had significantly different timing compared to the internal pipeline.
The small potential application usage for such intra-chip communication,
and the large risk of this becoming a bottleneck, led us to not include such
a feature.

4.6 Designing the PMC

Starting on a project to develop a custom processor, using an unproven
architecture, with no system software in place, implied a large risk for fail-
ure, especially with only a handful people in the team. To manage this
risk, we sat up a series of acceptance tests in the development plan.

4.6.1 Extensive acceptance testing

Without any real silicon implementation availably until late in the project,
these tests would to a large extent be emulating the final system. Software
emulation would never be able to reach the same processing power as the
final system, implying restrictions to how extensive testing that could be
carried out. The acceptance criteria were divided into the following cate-
gories:

Physical constraints These criteria were the easiest to formulate, includ-
ing aspects like die size, power dissipation and pad drive strength
for signals. Even if noncompliance could affect all the other tests,
the compliance checks themselves would require dedicated measure-
ments on the more analog level, as described in section 4.6.4.

System compatibility The PMC is just one part in a large system, where
we would prefer to have flexibility in choosing the other components
such as host system platform, operating system, or even what brand

4.6 Designing the PMC 63

of SDRAM to use. Although most if these aspects are governed by
industry standards, a lot of effort was put into making sure that we
adhered to those standards down to the smallest details. During this
process several non-compliant issues were discovered in other ven-
dor’s products, for which we needed to make a workaround without
affecting the general compatibility.

Functional tests These tests were built to test individual functional blocks
of the PMC. As not all blocks would be directly observable in the final
product, preference was given for tests where the pass or fail criteria
could be judged by the output of the chip, in most cases the result
listing of a search.

Robustness Since the PMC contain several different types of functional
blocks, and most block classes have multiple instances, making func-
tional tests for all possible configurations was not feasible. Instead
we made a random test generator, building configurations that were
tested on at least two of the test benches described in section 4.6.2.
Even though the result of such a configuration could have no prac-
tical usage, running it though different test benches should produce
the same results. This also served as a way to make sure that the
system models we used were accurate.

Such grouping of the tests made it more containable to find the cause
of an unexpected behavior during the debugging phase. For example, we
would not try to hunt down failing functional tests before being confident
that no system compatibility issues were affecting the situation. It also
eased the communication with the subcontractors for the PMC layout and
production, as we had a defined set of criteria to use.

4.6.2 Hardware and software co-development

To avoid a long hardware development phase, followed by a software de-
velopment cycle, it was decided to run both development phases in paral-
lel. This implied software development would need to start without hav-
ing any hardware to test on. Since this was a novel architecture, we had
to build any software related specifically to the PMC from scratch, such
as system drivers, query language compilers and resource management.
Some of this did not need real hardware to be tested, but for the majority
of the components there was a dire need to get a PMC model in place.

The following three models were produced to satisfy the demands in
the different development phases.

64 The Pattern Matching Chip

Figure 4.7: Test jig for the FPGA version of the PMC. The card holds
two FPGAs, each running a miniaturized version of the final ASIC.
Memory is mounted on pluggable modules, to enable testing of
different SDRAM vendors. The FPGAs are configured from a flash
memory chip, which can be reprogrammed in-system.

Software simulator A functional software model of the PMC was built
first. This provided a way to test the different functional blocks, and
verify that it was possible to map all the query language constructs
into the hardware.

Verilog model The functional Verilog model served as the reference de-
scription of the PMC architecture. It also provided a well defined
system when starting to develop the actual PMC design, written in
VHDL.

FPGA implementation While the software and Verilog models could be
built rapidly, and provided testability for the functionality, they both
lacked the performance to run any real application tests, much less
the robustness tests outlined in section 4.6. Thus a FPGA model of
the final ASIC was built, including a PCI board to place into systems
for testing (see figure 4.7). This board also served as the test bench
for system compatibility testing. The FPGA was built with the same
VHDL as the ASIC, but with only 64 processing elements. Further-
more, it could only run at 33 MHz, and with two FPGAs on a full size
PCI card. With 8 times more chips per card, 3 times the clock speed,
and 16 times more internal resources in the ASIC version, the FPGA
was not an accurate representation of the final product. However, it
still provided sufficient processing power to become a valuable de-
bugging tool in the ASIC development.

Based on these model systems, we were able to build a complete ver-

4.6 Designing the PMC 65

sion of the required software solutions in parallel with the development of
the hardware. The experience gained from these tests enabled optimiza-
tion of parameters such as buffer sizes inside the ASIC, getting maximum
throughput.

4.6.3 ASIC and hardware system co-development

Although the ASIC was the main development task, there was also a need
to build the supporting hardware platform. As with the software develop-
ment, this also took place in parallel. With trial layouts for the production
board, the design of the ASIC could be optimized from a systems perspec-
tive, and not as a component by itself. Some of the most important issues
covered were:

Power pad placement was not done to reduce the inductance of the pack-
aged ASIC alone, but rather the effective inductance when mounted
into the board. The low inductance package pins was often not within
reach of a bypass capacitor. Choosing a higher impedance package
pin, for which it was possible to place a bypass capacitor nearby, pro-
vided a better overall solution. Special attention was given to the
analog power supply of the built in phase locked clock multiplier in
the PMC.

Signal pad placement enabled routing the high speed PMC to SDRAM in-
terface in one layer without any vias. The lower speed PCI signals
were heavily interleaved with power and ground pads, as the PCI
bus could have high capacitance, and thus cause noise with simulta-
neous switching outputs.

Pad drive strength was selected to be just strong enough to drive the sig-
nals, but not so strong that power-hungry line termination would
be needed. The only deviance for this was the clock line fed to the
SDRAM chips. As this was a multi-tap signal, line termination was
required for reliable clocking. Alternatively, multiple clock drivers
could have been chosen, but this would both use more power as well
as prohibit single layer routing.

Power dissipation would potentially have very high peaks on every clock
edge, as all PEs operated in parallel. To smooth this out (on a picosec-
ond time scale), the clock lines feeding the different functional blocks
of the PMC were deliberately skewed. By ensuring that the skew was
in the opposite direction of the data flow, no race conditions could

66 The Pattern Matching Chip

occur. A more even current draw also reduced the electromagnetic
radiation of the card.

Power distribution was laid out as solid copper layers in the board, with
dual ground planes. The power for input and output pads was kept
separately from the core supply. Extensive power gridding was also
put into the ASIC itself, providing a low inductance grid, as well as
a bypass capacitance at very high frequencies. Power supply bypass
capacitance was thus distributed as power grids within the ASIC cov-
ering the 10 GHz range; board power planes in the 1 GHz range;
multiple low inductance ceramic capacitors directly under each com-
ponent covering the 100 MHz range; larger ceramic capacitors across
the board for the 10 MHz range; and finally large bulk electrolyte
capacitors for everything below 1 MHz and power supply stabiliza-
tion.

Most of these effects were extensively modeled for their analog prop-
erties. This effort proved valuable, as no signal integrity issues arose. In
fact, radiation was so low that the testing agency for electromagnetic com-
pliance wondered if the equipment was even turned on! Low radiation
is desirable for compliance, but is also a good indicator that the system
interconnect — responsible for a large fraction of the power budget in a
multiple processor system — is wasting little energy.

4.6.4 Final ASIC and full scale system tests

After several years of development, it all boils down to a crucial moment:
The power up of the first ASIC prototypes. Using a test card as shown in
figure 4.8, specifically built for this purpose, we were able to put the first
chips into sockets without soldering them to a board. After verifying that
no fatal faults were present — like a complete short of the power supply
— the first chip was powered up. After passing the basic register and
memory access tests, complete data query tests were run successfully. It
took less than 15 minutes from receiving the prototypes until we had a
working system.

The full design verification and acceptance testing did obviously stretch
over several weeks, but without any major issues. The time spent prepar-
ing for these tests paid back. With a test portfolio and a testable platform
in place, we were also able to verify that there were wide margins for toler-
ating the production variability that would occur in full scale production.

4.7 Programming model 67

Figure 4.8: Test jig for the ASIC version of the PMC. This cards
plugs into the production version card shown in figure 5.1, sharing
the same infrastructure for power supply and PCI bridging. The
PMC is mounted in a clamshell socket. To achieve testability, this
card contains probe points to all signals, most of which would be
inaccessible on the production card. The PMC can be clocked from
other sources than the PCI clock. The card also enables measure-
ment of the real time current consumption.

4.7 Programming model

Each PMC consists of 1024 PE, an equal number of result selectors, as well
double this number of sequence controllers. Multiplied by the number
of PMCs per host system, there are potentially several hundred thousand
instructions active at any time. This is orchestrated by the host CPU. To
illustrate the the flow and life span of such instructions, one of the applica-
tions solved by the PMC is used as an example: Screening siRNA sequences.
The molecular biology foundation for this is explained in more detail in
Paper IV. This section discusses the program flow.

The user input to such an application can either be a DNA or RNA se-
quence, or even an accession number that would be used for looking up
the actual sequence in a data base. A typical sequence length is some thou-
sand nucleotides long. As an example, the following description will use
a sequence that start with actcggcttcctcctcct.....

While this example example will use a deterministic way to program
the PMCs, queries have also been generated through genetic programm-
ing, further elaborated in Snøve Jr. (2005) and Sætrom (2005).

68 The Pattern Matching Chip

4.7.1 Interagon Query Language

Based on the above sequence, siRNA candidates can be chosen as any con-
tiguous subsequence. The number of siRNA candidates are thus in the
same order as the sequence length. While real siRNA molecules are around
twenty nucleotides long, a length of seven will be used in this description
for readability.

The uniqueness of each candidate can be established by generating a
number of queries based on the sequence, and check if these have any
matches in a larger data base like the transcriptome. All of these queries
must be formulated in a query language specifically crafted for the PMC,
the Interagon Query Language (IQL), a variant of regular expressions. For
more details on IQL, please refer to Paper VII and Nedland et al. (2002a).

Starting with the first siRNA candidate, that is the first seven nucleo-
tides of the sequence, a query for an exact match is easily formulated in
IQL as

actcggc (4.8)

Further queries can allow for one, two or three mismatches in the se-
quence, formulated in IQL by the pattern modifier p, as

{actcggc:p>=6} (4.9)
{actcggc:p>=5} (4.10)
{actcggc:p>=4} (4.11)

RNA hybridization is also affected by a phenomenon called GU-wobble.
Uracil (U) is the RNA equivalent for thymine (T) in DNA. While guanine
(G) has the largest affinity for binding with cytosine (C), it will also form
weaker bindings with uracil, creating a GU-wobble. Accounting for these
bindings, thymine might take the place of a cytosine nucleotide during
hybridization. Equivalently, adenine (A) might be substituted by guanine.

Requiring that all seven nucleotides in the siRNA has a binding, but
where one through three respectively could be a weaker GU-wobble, are
specified by the IQL queries 4.12 through 4.14. The first half require (at
least) six through four perfect matches respectively, while the latter half
require any position to have a perfect match or a GU-wobble. The total
query will thus achieve the desired effect.

{actcggc:p>=6} & (a|g)(c|t)t(c|t)gg(c|t) (4.12)
{actcggc:p>=5} & (a|g)(c|t)t(c|t)gg(c|t) (4.13)
{actcggc:p>=4} & (a|g)(c|t)t(c|t)gg(c|t) (4.14)

4.7 Programming model 69

Further variants could allow for a combination of complete mismatches
and GU-wobbles, exemplified by 4.15 allowing one miss combined with
two GU-wobbles.

{actcggc:p>=4} & {(a|g)(c|t)t(c|t)gg(c|t):p>=6} (4.15)

There are further variants that could be of interest. Additionally the
reverse complementary queries must also be formed, as DNA have two
complementary strands where either could be affected. For each siRNA
candidate there are thus in the order of 10–20 required IQL queries. A
siRNA screening for a single gene; with a typical sequence length of 1000–
5000 nucleotides; would generate in the order of 10000–100000 queries.

One could argue that only the most unspecific of these queries should
be used in an initial screening for each of the subsequences. If this has
no alignments, then neither of the more specific queries will generate any
matches. Due to the small number of nucleotides, and the large number
of reference data to screen against, it is although more likely that all, even
the most specific query, has numerous hits. It is rather the statistical hit
distribution of the cohort of queries that are of interest, than individual
results. Thus it is sensible to run all queries simultaneously.

4.7.2 Code compilation and mapping

While the above step included application specific logic for mapping a
DNA sequence into IQL queries, the remaining steps are generic for all PMC
applications. The assembly of queries are fed to a compiler that generates
the configuration for each query, and the mapping of this on to a subtree
of the search core, exemplified in Figure 4.9. Such subtree configurations
are combined to utilize as many PEs as possible within each chip.

Subtrees using the same data for input, in this case all of them, will
be clustered into the same set of PMCs, potentially even a single chip. The
management software will distribute the required reference data to the rel-
evant PMCs, and reuse information that is already loaded in the local RAM
when possible. In the case of siRNA screening, this is rather trivial. All
queries should see the same reference data. When iterating through the
required query sets, no reference data needs to be altered.

4.7.3 Multi-threaded execution

The host system generate the queries, the cohort of PMCs evaluate them,
and the host system aggregates the results, for example in presentation to

70 The Pattern Matching Chip

a c t c g g c a g c t t c t g g c t

≥1 ≥1 Σ Σ

ΣΣ

Σ

Σ ≥1

Σ

Σ

Σ Σ Σ Σ

ΣΣ

≥4

≥6≥1

&

Figure 4.9: One possible mapping of the query given by equation
4.15 on to a subtree of the search core. The data distribution tree
is not shown, but would consist of a combination of parallel and
serial distribution, with the data flowing right-to-left. To align with
the binary tree structure, some parts will be unusable. These are
shown in gray, or pruned away. This query would need to allocate
all the 32 PEs being leaf nodes of the final logical AND operation.

Batch 1

Batch 1

Batch 1

Batch 2

Batch 2

Batch 2

Batch n

Batch n

Batch n

Compile (CPU)

Evaluate (PMC)

Aggregate (CPU)
time

Figure 4.10: Query evaluation involves query compilation, eval-
uation, and result aggregation. These steps can be pipelined to
achieve maximum throughput. The evaluation is executed by the
PMCs in the system, with the other tasks served by the host CPUs

4.8 Distance metrics 71

a user. These steps can be pipelined for overlapping execution in multi-
ple threads as long as the result of one query does not affect the query
that will run immediately afterward. When the number of queries exceed
the instantaneous capacity of all PMCs in the system, a query queue is un-
avoidable, but can be executed with near 100% PMC resource utilization as
illustrated by Figure 4.10.

4.8 Distance metrics

From the architectural description in Halaas et al. (2004), it might look like
the PMC is only suited for string related search applications. This is not
the case. The PMC can also work with vector or multiple attribute data,
whereof text search is a sub-class. This section will describe the distance
metrics used for specifying how a multidimensional data value will be
matched with a non-exact query. Multidimensional values could be the
exclusive content of a query, but also interpreted in combination with any
other fields.

4.8.1 One dimensional data

Each PE in the PMC can be individually programmed to compare data with
a specified value for that query. In addition to checking for equality, larger
than and less than operators can be used. By using two PEs, a range of
accepted values for each symbol can be specified. The lower and upper
bounds does not have to be symmetrical around a reference value. In fact,
only the bounds need to be specified.

For the following discussion it is assumed that the reference value is
centered between these bounds to simplify the equations. Since the PMC
does not relate to this virtual reference value at all, the results would be
the same even if the real reference is off-center.

In the one-dimensional case, the deviation δ between a query value u,
and the observed value of v, would be calculated as

δ = |v − u| (4.16)

4.8.2 Multidimensional data

Expanding into two dimensions infers multiple potential metrics for cal-
culating distances. The Euclidean distance is commonly used, defined as

δ2 =
√

x2 + y2 (4.17)

72 The Pattern Matching Chip

u

v

x

y

Figure 4.11: Decomposition of Euclidian distance into x and y com-
ponents in a two-dimensional coordinate system.

where x and y are the differences along each of the two axis as shown in
figure 4.11.

Another common metric is the Manhattan distance, defined as the short-
est distance between two points when only moving in parallel to any axis,
that is

δ1 = |x| + |y| (4.18)

Both of these are special cases of the Minkowski p-metric (Royden 1988;
Tzionas et al. 1994), defined in two dimensions as

δp = [|xp| + |yp|] 1
p (4.19)

where p = 1 for the Manhattan metric, and p = 2 for Euclidian distances.
The Minkowski p-metric is defined more generally for n dimensions by

Lp(u, v) = δp(u, v) =

(
n

∑
i=1

|ui − vi|p
) 1

p

where p ∈ [1, ∞) (4.20)

where ui and vi are the coordinates in each of the n dimensions for u and
v respectively.

When p → ∞, the Minkowski metric is dominated by the component
with the largest difference. In the extreme case it is simplified to only be
dependent on the maximum difference found in any of the components,
as given by

L∞(u, v) = limp→∞
(
δp(u, v)

)
=

n
max
i=1

|ui − vi| (4.21)

The relationship between L1, L2 and L∞ in two dimensions is shown in
figure 4.12 for distances of two units. Since

L1(u, v) ≥ L2(u, v) ≥ L∞(u, v) (4.22)

4.8 Distance metrics 73

u

���∞A

����A

���
�A

Figure 4.12: Comparison of the L1, L2 and L∞ metrics in a two-
dimensional coordinate system. All points within the circular area
of A2(2) are within an Euclidian distance (L2) of two units from u.
The inscribed rectangle defining A1(2) contains all points within
a Manhattan distance (L1) of two units. The outermost rectangle
defines A∞(2), the set of points that all are within two unit distance
from u according to the max-metric L∞.

74 The Pattern Matching Chip

and thus
A1(d) ⊆ A2(d) ⊆ A∞(d) (4.23)

where
Ap(d) =

{
v ∈ Rn | Lp(u, v) ≤ d

}
(4.24)

the L∞ metric can be used as a prerequisite for finding data within a given
distance by the other metrics.

4.8.3 PMC distance metrics avoid expensive arithmetics

Applications can have different requirements for computing the distance
between two values. When comparing for magnitude, n’th roots can be
omitted as long as the true distance is not required. Multiplication and ad-
dition are still required to find the inner sum in equation 4.20. Single clock
cycle multipliers require many transistors, even for low word widths. Sup-
porting all variants of Lp in the PMC would require in the order of 1000
transistors for each result selector on the lowest level just for the multipli-
cations. Higher level result selectors would be even larger due to wider
word widths.

Such an arrangement would easily use several million transistors in the
PMC, and was thus considered unfeasible. There was a need for a simpler
distance metric, that still would be a required conditions for all Lp metrics.

Since

Lp(u, v) ≤ C
⇓ (4.25)

Lp+1(u, v) ≤ C

as given by 4.22, L∞ can by induction be used as a required condition for all
Minkowski p-metrics. The PMC uses an extended version of the L∞ metric
when matching queries and data, given by

L′
∞(u, v) =

n
max
i=1

[wiαi |ui − vi|]
where (4.26)

wi ≥ 0, αi ∈ {0, 1} ,
n

∑
i=1

αi ≥ m

There are two differences between equation 4.21 and 4.26. First is a
weighting factor wi, allowing for different dynamic range in each compo-
nent. Implementation-wise, this is the upper and lower bounds used for

4.8 Distance metrics 75

checking each component. The valid range is inversely proportional to wi,
and defined during query compile time.

Secondly, only m out of the n components contributes to the metric,
formalized by αi = 0 for disregarded components, and αi = 1 for those
contributing to the L′

∞ metric. All possible sets of αi where at least m mem-
bers are 1 are evaluated during execution.

The L′
∞ metric was chosen for the PMC as it requires few transistors

evaluate if a value is inside or outside the n-dimensional cube defined by
a distance C from the reference value. As

L′
∞(u, v) ≤ C

� (4.27)

αi |ui − vi| ≤ C
wi

∀ i ∈ [1, n]

the calculation is reduced to a Boolean AND (masked by αi) of the value
comparison for each component. Supporting any other variant of the Lp
metric natively would have required considerable more resources. This de-
sign avoids the expensive multiplications, and replaces them with much
simpler value comparisons. Even L1, which could be implemented by
adders only, is more complex. L′

∞ also fulfills the conditions for a metric,
that is non-negativity, identity, symmetry, and the triangle inequality.

L′
∞(u, v) ≤ C can be used as an easily calculated necessary precondition

for a sufficient criteria Lp(u, v) ≤ C for all values of p. There is also a well
defined bound C′ < C for which

L′
∞(u, v) ≤ C′

� (4.28)
Lp(u, v) ≤ C

Exact calculation of Lp(u, v) to determine if this distance is within a given
boundary C, can thus be reduced to only involve the points (u, v) where

C′ ≤ L′
∞(u, v) ≤ C (4.29)

As an example based in Figure 4.12, finding the set A2(2) of all points v
within a Manhattan distance of 2 from u implies C′ =

√
2 and C = 2, and

classifies any point v by principally using L′
∞ as a metric:

L′
∞(u, v) ≤

√
2 ⇒ v ∈ A2(2) (4.30)√

2 < L′
∞(u, v) ≤ 2 ⇒ v ∈ A2(2) if L2(u, v) ≤ 2 (4.31)

2 < L′
∞(u, v) ⇒ v /∈ A2(2) (4.32)

76 The Pattern Matching Chip

Table 4.1: Technical data for different string search ASICs (adapted from
Blüthgen and Noll (2000) and Paper I).

Number Number of Silicon Maximum Character
System of PEs transistors area clock rate comparisons
PMC 1024 1.17 × 107 114 mm2 100 MHz 1.024 × 1011 ch/s
Blütgen1 64 3.4 × 105 53 mm2 132 MHz 8.448 × 109 ch/s
Kestrel2,3 64 1.4 × 106 60 mm2 33 MHz 7.04 × 108 ch/s
CASM4 7 2.047 × 104 30.7 mm2 40 MHz 2.8 × 108 ch/s
SSE5,6 512 2.176 × 105 110 mm2 10 MHz 5.12 × 109 ch/s

1Blüthgen and Noll (2000) 2Dahle et al. (1997) 3Hirschberg et al. (1998)
4Sastry et al. (1995) 5Yamada et al. (1987) 6Hirata et al. (1988)

Only 4.31 require the computationally more demanding L2(u, v) metric,
which can not be calculated by the PMC. Thus the L′

∞ metric will be used
to find which of the three cases each point v belongs to. For those that
fall within the range given by equation 4.31, the CPU must calculate the
L2(u, v) metric. This is manageable as long as the fraction of points within
this category is limited.

With the L′
∞ metric, the PMC can handle multidimensional data with

different dynamic range in the components. The “at least m out of n” fea-
ture has proved valuable for handling noisy data, as will be exemplified in
chapter 5.

4.9 Results

Table 4.1 summarizes the performance of the PMC compared to other string
search ASICs. Further details of this comparison are given in Paper I.
The resulting performance of the PMC chip as a system component has
been published in Paper II and Paper V. Further application examples
are described in chapter 5. The PMC has also been the enabling technol-
ogy for numerous publications (Hetland and Sætrom 2002, 2003, 2004; Sæ-
trom et al. 2005a; Sætrom 2004, 2005; Sætrom and Hetland 2003a,b; Sæ-
trom and Snøve Jr. 2004; Sætrom et al. 2005b; Sandve et al. 2006; Snøve Jr.
2005; Snøve Jr. and Holen 2004; Snøve Jr. et al. 2004). The PMC technol-
ogy has been granted two patents; one for the general architecture (Fast
Search & Transfer ASA 2000b); the other for the current implementation
(Fast Search & Transfer ASA 2000a).

4.9 Results 77

Based on these results, the PMC accelerated machine could be argued
to have found important practical use. In the next chapter, some of the
applicable problem domains for the PMC will be discussed.

Chapter 5

Applications for the Pattern
Matching Chip

Some day, on the corporate balance sheet, there will be an entry
which reads, ’Information’; for in most cases, the information is more
valuable than the hardware which processes it.

Grace Murray Hopper (1906–1992)

M ISD architectures have traditionally not found widespread use in
supercomputing applications (van der Steen and Dongarra 2004).

However, for a new breed of search problems, building upon the growing
volumes of unstructured data, novel MISD architectures may still have a
role to play. For example, bioinformatics (Feng 2003) and internet search
engines (Risvik and Michelsen 2002) require matching such unstructured
collections with numerous queries. Consequently, parallelism can be ex-
ploited through both query and database segmentation.

While one could justify developing a MISD architecture solely for ex-
ploring the “dark corner” of Flynn’s taxonomy, this technology has also
enabled applications to get valuable information from already existing data.

5.1 Introduction

This chapter presents different applications enabled by regular expression-
like searching accelerated by parallelization across multiple chips, cards,
and computers to achieve supercomputing performance (Paper II; Paper I).
Some of these applications have been previously published in detail in pa-
pers related to this thesis (Paper V; Paper VI; Paper IV), as well as by others
(see section 4.9. Further application examples are given in this chapter.

80 Applications for the Pattern Matching Chip

Figure 5.1: PMC search card with 16 chips and associated memory.
Eight PMC chips are mounted along the bottom edge of the card,
while another eight are mounted along the top edge on the reverse
side.

All application examples are running on a shared hardware platform.
Sixteen PMC chips are mounted on PCI search cards, and these are com-
bined in a cluster of up to five machines — dependent of the problem at
hand — containing between one and six cards each, resulting in a system
with up to 480 search processors. The system is further linearly scalable,
with no fundamental cluster size limit.

The five PC cluster was designed to solve search problems that can
be divided into sub-problems that can be solved in parallel with minimal
overhead. Typical applications consist of a large number of queries, and
works with (relatively) static and unstructured datasets. Further, data min-
ing based on genetic programming can be accelerated by our system (Koza
et al. 1999; Sætrom 2004). Example applications include data mining ap-
plications in genomics, network surveillance, and transaction monitoring.

5.2 Characteristics of suitable applications

Throughout our work we have applied the PMC technology to numerous
applications. Despite working in very different problem domains, a shared
set of commonalities has made the PMC applicable:

No known index key The data processed could be classified as unstruc-
tured data, where no (known) properties of the data could be used
as an index key. For example, much of our work in bioinformat-
ics has focused on predicting sequence properties. These predictions
are guided by biological laboratory experiments, rather than know-

5.2 Characteristics of suitable applications 81

Figure 5.2: Rack of five nodes, containing 480 PMC chips operating
in parallel.

82 Applications for the Pattern Matching Chip

ledge of the contributions of the different sequence elements them-
selves. If this was done through an index-based system, this index
would have become a filtered version of the data, capturing only es-
tablished knowledge about that sequence. Being relieved from the
restrictions of an index, we have been able to predict and later verify
novel structures.

No time for indexing Even when an index can be built, there could be real
time processing requirements prohibiting the (potentially lengthy)
creation of an index, such as in network communications. Processing
data on-the-fly reduces the decision latency, even though an index
would have been more effective regarding the amount of processing
required.

Large data volumes While the above two items both are functional re-
quirements, performance implications are not fully seen before the
data volumes are cranked up. Low volume or low bandwidth data
can be processed by software rather than the PMC. With large data
volumes, typically in the order of gigabytes, the PMC excels not only
due to the single device speed, but also the scalability when used in
larger systems.

Large number of queries In some applications it is the number of queries
that gives the PMC an advantage. The data volumes might fit within
main memory, or even the cache, of a regular CPU but still be out-
performed by a PMC solution. While a MISD architecture can ap-
ply the same set of operations across different data, it can not run
multiple instruction streams within the same thread. Running si-
multaneous queries thus requires a combination of multiple cores,
hyper-threading or context switching; alternatively an approach as
discussed in section 3.2. While a 1 W PMC can run 64 simultaneous
queries, an eight-core CPU will only have progress in eight evaluation
threads at any time, despite using typically more than 100 W.

5.3 String data mining

The most obvious use of the PMC is within data mining in string data, both
written language and non-textual data. These searches can be distributed
across several cluster nodes with little overhead (Michailidis and Margari-
tis 2003). The PMC provides access to large sets data with great flexibility
in query construction. The processing speed enables even interactive user

5.3 String data mining 83

Table 5.1: Comparison of estimated siRNA screening capabilities of PMC
systems and software algorithms. The data set is 65MB. All potential siRNA
subsequences in these data are screened versus the complete dataset

25-mers/sec Run time Sensitivity
BLAST 1.2 ∼ 3 years < 50%

Smith-Waterman 0.92 ∼ 5 years 100%
Melko and Mushegian (2004) 0.04 > 100 years 100%
Yamada and Morishita (2005) 140 300 hours < 100%

FPGA supercomputer 470 3 days < 50%
Single PMC chip 44 35 days 100%

One PMC accelerated node 4180 10 hours 100%
Five node PMC cluster 20900 2 hours 100%

interfaces, where the results of a search can be illustrated immediately as
each symbol of the query is typed in. Paper III describes one such applica-
tion for genomic sequence data.

5.3.1 Bioinformatics

The focus for our PMC applications has been on bioinformatics. This field
is attractive since it has a large volume of relatively static sequence data,
where exact matches are a rare requirement. Sequence searching and align-
ment are important problems, illustrated by the fact that seven out of nine
frequently used bioinformatic benchmarks belong to this category (Al-
bayraktaroglu et al. 2005).

The Smith-Waterman algorithm is preferred for DNA, RNA and protein
searching with high sensitivity, and is based on dynamic programming
(Smith and Waterman 1981). As this algorithm is very time consuming,
less sensitive heuristics based on indexing sequence fragments have found
wide usage, like BLAST (Altschul et al. 1990).

The PMC provides both sensitivity similar to that of the dynamic prog-
ramming solution, as well as higher throughput than the heuristic algo-
rithm. This enabled us to test numerous hypotheses without too much
concern for the required computation time. As an example, we completed
a screening of all potential gene silencing siRNA molecules within the hu-
man genome in 10 hours on one node.

Table 5.1 compares the PMC performance in this application with results

84 Applications for the Pattern Matching Chip

from other groups. The common way of measuring performance for such
workloads is in the number of symbol-to-symbol comparisons, also known
as cell updates, executed per second. Heuristic methods attempt to avoid
most of these comparisons, but their performance are still evaluated in
terms of the number of comparisons that would have been needed by a
brute force approach. For the problem described in this table, there are
65 million patterns of 25 symbols each, all to be compared with the same
65 million symbols as reference data in both the original and the reverses
order. For each 25-mer, 3.3 billion symbol-to-symbol comparisons are thus
needed, for a total of 2 · 1017 symbol-to-symbol comparisons for all the 65
million possible 25-mers.

Smith-Waterman, Melko et al., and the PMC alternatives are the only
methods that will evaluate all possibilities, and thus guarantee a 100%
sensitivity. Numerous research groups optimize Smith-Waterman for per-
formance. Farrar (2007) is one of the most recent studies, claiming more
than 3 billion cell updates per second using a single thread on a 2.0 GHz
Xeon, corresponding to 0.92 25-mers per second in this case. The same
article have also tested BLAST on similar hardware; which is the BLAST
performance used in Table 5.1; finding their Smith-Waterman implemen-
tation to be 30 % slower. In Paper IV we demonstrated BLAST to have less
than 100 % sensitivity for such applications. The numbers for Melko and
Mushegian (2004) and Yamada and Morishita (2005) are taken from their
respective papers, also referenced in Table 2 of Paper II.

Mitrionics and Silicon Graphics Inc released an “FPGA supercomputer”
in November 2007, using Xilinx programmable gate arrays as a hardware
accelerator for BLAST1. Using 70 FPGAs, they ran 600.000 25-mer queries
against a data base of 100 MB in 33 minutes, resulting in 1.5 · 1012 cell up-
dates per second, assuming their numbers also included the reverse se-
quence queries. The setup is an acceleration of BLAST, and have thus in-
herited the same lack of sensitivity. According to the product data sheet2,
every two FPGAs require 150 W of power, for a total of 5 kW for the overall
system.

In summary, this job would have taken very long using a software im-
plementation of BLAST, and still missing a large fraction of the relevant
results. The more sensitive Smith-Waterman algorithm would have found
all relevant results, but with an estimated run time around 5 years. As
discussed in Section 2.1.1, major advances in CPU sequential processing
speed is not expected. Speeding up Smith-Waterman could be done by us-

1http://www.sgi.com/company info/newsroom/3rd party/downloads/07 mitrionics 900x.pdf
2http://www.sgi.com/pdfs/3920.pdf

5.3 String data mining 85

ing more parallel threads. Around 50 CPU cores would be required to get
the same performance as a single PMC, with obvious differences in power
consumption. The usage of the PMC in bioinformatics is further discussed
in Snøve Jr. (2005) and Sætrom (2005).

Rapid hypothesis testing is important in an emerging field like molecu-
lar biology. The PMC enables a researcher to have more than one good idea
verified during her lifetime, without investing in a large computer cluster,
nor being hampered by unsuitable heuristics that can loose a large fraction
of the relevant results.

5.3.2 Digital network communication

The previous section described applications with large, static data sets, and
a less voluminous, but dynamic, set of queries. Paper V discusses use of
PMC technology as an alternative to automata (see section 3.2.2) applied to
email spam filtering.

This setup involves a moderate number of queries — rules to charac-
terize the emails — to be evaluated against a high throughout data stream.
A further complication comes from the efforts of spam providers to cir-
cumvent such rules. A rule must be flexible to catch engineered variants.
Spam must anyhow be interpretable by a human to have the desired — but
to the receiver still undesirable — effect. The flexibility in rule construction
for the PMC eases the process of encapsulating such vague patterns into a
query.

Instead of preloading the data, this setup required distribution of pre-
compiled rules across several chips. The data stream was divided into
smaller packets, each sent to one chip, which iterated all the pre-stored
rules over these data. This processing would be completed before a new
package was given to the same chip. Meanwhile, other chips took care of
the in-between data packets. With no replication of data across chips, in-
creasing bandwidths could be processed by adding linearly more PMC’s,
within the limitations of the host systems.

5.3.3 Written text

Data mining in written text with fuzzy queries is a more general variant of
the bioinformatics applications discussed above. Even though more struc-
tured than DNA, it could be limited by an index. For example, the common
Scandinavian name “Johansen”, have numerous variations (for example
“Johanson”, “Johannesen”, “Johannson”, “Johnson”, “Jonsen”, all mean-

86 Applications for the Pattern Matching Chip

Δt Δp

Figure 5.3: Music can be represented as a tuple se-
ries of pitch changes and durations (Δp, Δt). In this
representation, the above score could be written as{(−3, 3

16

)
,
(
−4, 1

16

)
,
(

4, 1
4

)
,
(

3, 1
4

)
,
(

7, 1
4

)
, . . .

}
.

ing “son of John”) that would not be linked to each other in an index with-
out applying domain knowledge. A phone directory lookup for such an
ambiguous name would actually have to be executed as multiple lookups
from a synonym word list.

Optical character recognition (OCR) — reading text from an image — is
another suitable example. The OCR process is not accurate, with commer-
cial products reaching 95–99% conversion accuracy on the character level.
Text archives generated from OCR — currently a large ongoing effort in
building digital libraries with material from the pre-digital era — will not
be exact. Retrieving documents with the PMC — for example using the n
out of m feature to overcome incorrect conversions — reduces the need for
manually proofreading all the text.

5.4 Vector data processing

String data as discussed in the previous section is a subclass of vector data
or attribute data. As shown in section 4.8, the processing tree of the PMC
can also be used to find neighboring data in a multidimensional space.

For the PMC to be efficient for such data, it is dependent on having
potential usability of all the data that is streamed through the chip. Any
data reduction that could be done in advance — for example processing
only a fraction of the volume, or a small subset of all available attributes —
would increase the possibility for not needing the PMC. Data reformatting
could be done to build a compacted representation that resides in a linear
range of memory.

Searching for music is one example of vector processing that could take
advantage of the PMC. Instead of searching in the time or frequency do-
main, preprocessing could be applied to the data as shown in figure 5.3.

5.5 Genetic programming 87

By representing music as a series of pitch changes in half-tones and dura-
tions relative to the beat frequency, it will not matter what key or tempo it
is played in (see for example Arentz et al. 2005; Pickens 2001, for further
details).

5.5 Genetic programming

In the applications presented so far, the queries to be analyzed are known,
or specified by an operator of the system. The rapid evaluation of hypothe-
sis provided by the PMC enabled other approaches based on trial and error.
It became obvious that an automated iterative search for finding the opti-
mal queries could take advantage of PMC acceleration.

5.5.1 Methodology and issues with genetic programming

Genetic programming is one such supervised machine learning system for
solving multivariate problems. The essence of solvable problems is as fol-
lows: Given a set of data known to share common features (like being
implicated in the cause of a cancer), find an expression or model that char-
acterizes these data. This can also be stated as a problem of discrimination:
One wants to find an expression that distinguishes the sequences sharing
the common feature — the positive set — from sequences known not to
have this feature — the negative set.

Researchers have developed many different algorithms for solving the
discrimination problem. These algorithms vary both in ease of use, output
quality, and output interpretability, ranging from simple expressions to
complex equation sets and sets of real valued numbers.

Genetic programming — a relatively recent addition to the machine
learning toolbox — has been shown to be both simple to use and able to
create high quality solutions. In addition, the genetic programming solu-
tions are symbolic expressions like programs in a programming language
or queries in a query language. They are therefore easier to interpret than
for instance the collection of numbers forming an artificial neural network.

Genetic programming was introduced and popularized by John Koza
in 1992. It uses the Darwinian idea of evolution by means of natural selec-
tion to solve problems. It operates on a population of randomly generated
candidate solutions. Each candidate solution is evaluated and assigned
a fitness value that represents how good the candidate is at solving the
problem at hand. Then, new candidate solutions are created by randomly

88 Applications for the Pattern Matching Chip

selecting candidates from the population and either combining two candi-
dates (crossover) or introducing random change in single candidates (mu-
tation). The selection is performed so that better candidates are more likely
to be selected. This process of selection, combination and fitness evalua-
tion typically continues until a satisfactory solution has been found or a
predetermined number of iterations have been performed.

The main problem with genetic programming is the amount of com-
puter power needed to generate solutions. Genetic programming has been
successfully used, but only with small data sets using clusters containing
tens to hundreds of PCs.

In addition to helping genetic programming through acceleration, the
PMC provides an orthogonal query architecture, where the machine gen-
erated queries have few restrictions on composition, length and operators.
The tree-based query-representation makes mutation and crossover oper-
ations simple, as these can occur on any subtree or -node.

5.5.2 Molecular biology

Most of the work done by our group with machine learning in molecular
biology is discussed in detail in the PhD theses by Pål Sætrom (Sætrom
2005) and Ola Snøve Jr. (Snøve Jr. 2005). The focus has been on design and
prediction of small nucleotides, such as RNA design and gene prediction.

5.5.3 Financial fraud

Financial services are moving rapidly into an electronic mode of opera-
tion. With most transactions happening without any human intervention,
the expert knowledge of identifying dubious transactions is no longer in
the loop. Computer systems must be trained to find common patterns in
fraud, as well as having the processing power to execute such rules in a
real time environment.

There are many facets of financial fraud, with credit card fraud being
problematic due to the sheer volume of transactions. Credit card fraud
starts with someone obtaining illegitimate card information, and after-
ward using this to their own benefit. Several exploitation strategies exists
among the fraudsters, ranging from taking a small amount from a large
volume of cards, to charging large amounts as soon as possible before the
card gets blocked.

The fraud is also dynamic. As soon as fraudsters find out that their cur-
rent scheme will not pass an audit, they invent something new. Analyzing

5.5 Genetic programming 89

such data with conventional statistical tools has limitations. First order lin-
ear regressions will have difficulties picking up patterns in multi-factorial
data with heterogeneous fraud. More advanced statistical modeling will
require an expert to build a model based on a hypothesis, and later testing
this out on real data. Building a model can be difficult especially in the face
of evolving fraud patterns. Such models can also reach a complexity that
prohibits rapid evaluation and refinement of the model as the processing
time gets higher.

Genetic programming coupled with the PMC provides a solution to
such problems based on two modules: i) A rule builder and ii) a rule exe-
cution engine. The rule builder generates effective rules for characterizing
fraud based on genetic programming. The rule execution engine acceler-
ates the evaluation of such rules.

The input to the rules builder is historical data, tagged with the desired
classification, e.g. fraud vs. valid transactions. The solution from such
processing is usually a heterogeneous model, with different parts captur-
ing the different modes of fraud.

This concept has been tested with a major credit card company, provid-
ing classification accuracy at par, of even better than existing technologies.
Unfortunately, we are not able to disclose further details on this work.

5.5.4 Seismic processing

Characterization and modeling of hydrocarbon reservoirs are predomi-
nantly based on seismic surveys, but also to some extent novel modalities
such as electromagnetic logging. Seismic modeling has achieved increas-
ing resolution and accuracy, but do still require extensive human know-
ledge for accurate results. The modeling can be supported with further
data, such as attributes extracted from the seismic cube.

When building such models, a large number of variables could be con-
sidered. Even if this gives the modeler more degrees of freedom, it might
become overwhelming to sort out which variables, or even which combi-
nation of variables, that would be meaningful. A computerized tool that
builds such statistically significant models which can be judged by the an-
alyst, has the potential of helping in discovering patterns in the underlying
data that otherwise might have been overseen.

Our work has been related to lithology prediction. In case at hand,
a reservoir is known to contain hydrocarbons, with the oil dispersed in
heterogeneous sand layers. To achieve maximum drainage, the following
sequence of drilling is beneficial:

90 Applications for the Pattern Matching Chip

Well 1 Well 2 Well 3

Figure 5.4: Three test wells with pairs of lithology logs (left) and
predictions (rights) from training phase. For two of the wells, the
data logs were incomplete (shown in white).

(i) Low permeability sand layers, which could only be drained under
the initial high reservoir pressure.

(ii) High permeability sand layers, that will be sufficiently drained by
the gas pressure alone.

(iii) Gas is produced after draining all the recoverable oil.

Separating the two different sand layers proved difficult based on tra-
ditional modeling. Using the seismic data, in addition to around 40 de-
rived attribute cubes, the genetic programming platform was used to find
classification patterns.

The models were found using machine learning based on training data
from three test wells with known lithology as shown in figure 5.4. The pre-
dicted models had a high correlation with the training data as expected.
Perfect correlations could have been achieved, but that would not have
been a statistically significant result. These predictions where then applied
to the overall seismic volume as shown in figure 5.5. Based on this infor-
mation, the modeler can verify if the computer generated hypothesis is in
accordance with other information available

5.6 Commonalities across application areas

The PMC based system has demonstrated its applicability over a large range
of applications as described in the previous sections. The largest gains
compared to alternative implementation lies in the high degree of accel-
eration of each individual chip, and the scalability obtained when using

5.6 Commonalities across application areas 91

Figure 5.5: Predictions applied to seismic cube showing lateral con-
formation between the layers.

a collection of chips. As the PMC processing speed is dependent on the
number of symbols within the query, and almost independent on the com-
plexity when combining those symbols, short queries with numerous op-
erations are beneficial.

The flexibility in query construction, and the low cost of evaluating
such queries, has made the PMC a successful accelerator for genetic prog-
ramming within tractable problem domains. Genetic programming can
not be argued to be the best solution for all machine learning problems —
probably it would be hard to give that argument for any machine learn-
ing technology — but it provides a processing requirement that is easily
parallelized.

The applications have demonstrated linear scalability both for dynamic
data or dynamic queries. It should be noted that if both data and queries
were fully dynamic, there would not be enough bandwidth in the current
setup to distribute the job. A scenario where both data and queries are
static is an obvious simplification of any of the first two cases, and is easily
handled as well.

Chapter 6

Evaluation of results

. . . thus each truth discovered was a rule available in the discovery of
subsequent ones

René Descartes (1596–1650)

How is education supposed to make me feel smarter? Besides, every
time I learn something new, it pushes some old stuff out of my brain.
Remember when I took that home winemaking course, and I forgot
how to drive?

Homer Simpson

THROUGHOUT the research papers backing this thesis, the focus has
been the viability of a MISD approach for pattern matching. Never-

theless, most of the work has been put into implementing the PMC and the
surrounding systems. Any failure or success of the project does not solely
rely on the theoretical properties for this architecture, but also the ability
to build these into a real system. In this final chapter, the most impor-
tant findings will be summarized. Aspects that could have been improved
upon serves as directions for further work.

6.1 Summary of findings

6.1.1 Better usage of available memory bandwidth

As described in chapter 2, the widening gap between processing speed
and memory bandwidth will prevent CPU technology from reaching its
full performance by just increasing clock rates. Our approach — increasing
the amount of processing done per data cycle — reduces the impact of the

94 Evaluation of results

performance gap. While I can not argue that our MISD architecture can
solve any problem efficiently, this work has demonstrated its usefulness
on a carefully selected, but still wide range of applications.

The same trend towards more parallel processing can be observed in
commercial CPUs, where multi-core designs are becoming common across
all high end product lines. These multiple cores are although competing
for the same external chip bandwidth. To take advantage of the added pro-
cessing capabilities, careful hardware-aware algorithm construction might
play an even more important role than for previous CPU generations.

6.1.2 Scalable parallel architecture

Starting this project, there were many objections, both internally and ex-
ternally, that Amdahl’s law would prohibit a decent speedup when us-
ing several hundreds of thousand parallel processing elements. Amdahl’s
claim is not that massive parallelization is unfeasible, but rather that it will
be restrained by serial dependencies. The obvious way around this, is to
keep PMC usage within applications with a neglectable serial component.

Paper II has demonstrated linear scalability at 90 % of the theoretical
capability, for a system with 81920 parallel processing elements. As ex-
plained in the paper, even higher utilization could have been achieved by
fine tuning the system for the problem at hand. More importantly, we
have observed a linear scalability, with no indication that the throughput
per node would decrease for even larger systems.

6.1.3 Low cost — high performance

The main goal of this project was to build a low-cost alternative for pro-
cessing non-numeric data. Although we have not yet reached a state with
large commercial systems in operation, the findings so far indicate that the
goal could be achieved.

The largest system in operation so far contained almost 500 PMC chips,
with an accumulated 5 · 1013 comparisons executed per second, across a
data stream of 48 GB per second. Amortizing all costs for research, de-
velopment and manufacturing into this single system, still keeps the price
below five million US dollars. The system performance is equivalent to
more than 10000 PCs. For such a PC cluster to be price competitive with
the PMC, each node must cost less than 500 dollars, even if it was a one-off
project.

6.2 Propositions to the research questions 95

Building the envisioned petacomp PMC cluster (1015 operations per sec-
ond), will increase the spending, but the total cost would still be below ten
million dollars. The alternative cost if built with standard PC technology
would need to be less than 50 dollars per node to be competitive, a price
point that that is currently unreachable. While high performance clusters
like BlueGene (Adiga et al. 2002) have a more general architecture with
wider applicability, the PMC system offers cost effective performance for
an important subset of applications.

6.2 Propositions to the research questions

RQ1 What are the system requirements for doing unstructured data processing
efficiently?

Unstructured data — as defined in this thesis — does not lend itself
to preprocessing, for example into an index, without reducing the
recall when querying the same data. Processing the data natively is
most efficient under these conditions:

(i) The data storage need to provide high data bandwidth.

(ii) Linear access is most efficient for most storage technologies.

(iii) The processing circuitry should have the capability to do all re-
quired processing in a single pass of the data. The operations
would be application dependent, but for the topics covered in
this thesis the domination operations are symbol-to-symbol com-
parisons, and the combination of these into more complex queries.

RQ2 What are the constraints for processing unstructured data with standard
CPU technologies?

A standard CPU can have high performance for algorithms where
the flow of control is independent on the data values, as demon-
strated for bit counting in section 2.3. Data dependent control flow
would break two important technologies used to achieve high perfor-
mance; SIMD processing and speculative out-of-order execution. This
effect is evident even on rather simple problems like sorting (see sec-
tion 2.2), and become a major bottleneck as data value dependencies
grows larger, as discussed in Paper II, Paper IV and Paper V.

Secondly, sequential data processing can easily be parallelized across
more processing units, as discussed in section 3.4. Reducing the in-

96 Evaluation of results

frastructure requirements of the processing unit from that of a ordi-
nary CPU, would allow a higher degree of parallelism within a fixed
volume and power budget.

RQ3 Can other processing architectures than SIMD provide better performance
for unstructured data processing?

Parallel, data dependent control flow can be implemented in a MISD
architecture. In the case of the PMC, the lack of data dependent execu-
tion eliminates the need for an instruction stream as such, as the op-
erations for each query can be stored in configuration registers. Each
query — the collection of configuration registers that defines the in-
structions to be applied to the data — can execute independent of the
other queries, and without throttling the data bandwidth. Increas-
ing complexity in the queries is managed by using more processing
elements rather than compromising the throughput. A flexible pro-
cessing element allocation scheme ensures that most units will have
tasks assigned.

RQ4 What are the obstacles for massively parallel systems in unstructured data
processing?

Section 4.3.1 described the instantaneous processing capacity p of the
PMC system. Derived from this, the processing rate r is given as

r = f · ∑ qi

there f is the operating frequency of the processing elements. Thus,
in accordance with the discussion for RQ1, better performance can
be achieved by increasing the rate of processing, or the number of
parallel query evaluations.

Increasing f imposes an increase in power consumption with a factor
of f 2. Increasing ∑ qi, the number of processing elements operating
in parallel, will only give a linear increment in power consumption.
The latter is thus more feasible from a scaling perspective, under the
constraints of how many elements that can be packed onto a single
die, and the ability to avoid serial dependencies that would prohibit
speedup when employing more parallelism.

In practice, the frequency and degree of parallelism will be a com-
promise between these factors, where the PMC is one possible imple-
mentation.

6.3 Evaluation of the contributions 97

RQ5 What applications could benefit from unstructured data processing?

Throughout this research, several application areas have emerged.
Paper II through Paper VI describes the most analyzed examples.
Chapter 5 introduces some further areas of applicability.

Overall, the benefits of the PMC in certain selected applications are
substantiated. For some of these applications, the PMC might also be
attractive from a commercial perspective.

6.3 Evaluation of the contributions

6.3.1 Summary of contributions

This thesis have six major contributions, enumerated C1 – C6, as described
in section 1.5. C1 – C5 are the results of the research and analysis of MISD
architecture, exemplified by the implementation of the PMC. C6 proves the
validity of this approach by application examples.

6.3.2 Comparison with state-of-the-art

All the papers, except Paper VII, have a section describing detailed com-
parisons with state-of-the-art within the respective fields. From a top level
perspective, the novelty of the proposed architecture have been examined
thoroughly, especially in the process behind Patent I. This patent have
been granted in all designated countries so far. The architecture could thus
be considered a novel contribution to the current state-of-the-art.

Furthermore, Paper I through Paper VI, have demonstrated that this ar-
chitecture has a performance at par with, or better than, other architectures
for the selected problems. These comparisons have been on aspects such as
pure performance, as well as performance relative to power consumption,
system size and pricing.

6.3.3 Discussion

Although the PMC have demonstrated attractive capabilities, it is impor-
tant to bear in mind that the targeted applications is only a niche area
within data processing. Achieving better performance by constructing
dedicated hardware for specific problems should not be a surprise to any-
one.

98 Evaluation of results

Throughout the development of the PMC, the balancing of general ca-
pabilities versus performance in special cases have been under constant
evaluation. In retrospect, I consider the FPGA prototyping as essential task,
not only for getting an operative ASIC, but also for finding the best mix of
features for the scenarios we had in mind during development.

That being said, the PMC architecture could still be tuned for even better
performance in the demonstrated applications. Dependent on the transis-
tor budget for a given chip, this could either be additions increasing the
general applicability, or replacement of unneeded functions at the expense
of further specialization.

Overall, the main contribution of this thesis is thus to prove the viability
of MISD processing of unstructured data. With data collections currently
having a growth ratio beyond the improvement in processing capabilities,
new light might shine into the dark corner of Flynn’s taxonomy.

6.4 Further work

Based on the work already completed, several extensions to the architec-
ture could be investigated. The two main limitations prohibiting the PMC
from tackling other attractive applications are discussed below.

6.4.1 Context save and restore

In the current implementation, data must arrive as a consecutive stream
to be processed in context of the surrounding information. For static data,
this is obviously not a problematic requirement. In some dynamic data sce-
narios, such as spam processing as described in Paper V, data sequencing
can be reestablished before processing.

Other network applications that require massive pattern matching ca-
pability, especially in-stream processing like intrusion detection (Kuri et al.
2000), do not have this opportunity. Data in the same logical stream ar-
rives in packets, multiplexed with other traffic. The packets within a single
stream are not necessarily in chronological order. To some extent, this can
be overcome by storing all ongoing traffic, and replaying the preceding
packets for processing when a new packet arrives. Obviously, storing all
packets of all ongoing streams soon becomes inviable.

One solution could be to add task switching capabilities to the PMC.
This would require additional storage for inactive configurations, and the
state of all intermediate registers in the processing tree. This could either

6.4 Further work 99

be on chip storage for a limited number of suspended tasks, or using the
external memory at the expense of slower task switching.

The most flexible, yet high performance alternative, would be to have
one set of shadow registers on chip. One register set could be dumped into
and resorted from the external memory while the other is executing. As
long as each task has a sufficient data payload, which anyhow is required
for scalability, there would both be time and available memory bandwidth
to make such a task switch in the background.

6.4.2 Spatial awareness beyond 1D

A single PMC is always looking at data as a one-dimensional stream. Al-
though higher dimensionalities can be analyzed by deriving attributes into
each data point as explained in chapter 5, the chip itself has no ability to
know that distant data in a stream are adjacent — for example in a three
dimensional interpretation of the same data — an important ability for im-
age processing.

Finding a general solution to this problem might be hard. The effective
usage of memory bandwidth by the PMC relies on linear access. Obtaining
an arbitrary slice of a multidimensional space would require a fragmented
access pattern in current storage media. Alternatively, several copies of the
data could be stored, each optimized for access from different perspectives.

Glossary

IN this glossary most of the terms and acronyms used in this thesis are
provided. Some of the entries have been adapted from dictionaries and

glossaries from Merriam-Webster (Springfield, MA), the National Center
for Biotechnology Information (Bethesda, MD), Microsoft (Redmond, WA),
Invitrogen (Carlsbad, CA), the Technical University of Denmark (Kgs. Lyn-
gby, Denmark), Monster Isp (Mount Vernon, OH), and the Free On-line
Dictionary of Computing (http://foldoc.org/).

Arithmetic and logic unit (ALU). An arithmetic and logic unit is the core
compute element within a CPU. An ALU typically takes two ope-
rands, and computes the result based on a selection of one out of
several available functions.

Application-specific integrated circuit (ASIC). As it is designed for a very
specific purpose, ASICs contrast with more general-purpose devices
such as memory chips or x86 processors that can be used in many
different applications. ASICs are used in a number of specific applica-
tions, such as processors for controlling engines or chips on a mother-
board chip-sets. When produced in high volumes, ASICs have orders
of magnitude higher cost-performance ratio than field-programmable
gate arrays (FPGAs).

Basic local alignment tool (BLAST). A popular sequence comparison al-
gorithm that is used to search for optimal local alignments between
a sequence database and a pattern query. The BLAST algorithm is op-
timized for speed, and the initial seed search is done for a word of a
specific length that scores at least some threshold when compared to
the query using a substitution matrix. Word hits are then extended
in either direction in an attempt to generate an alignment with opti-
mal score. Note that when the text consists of nucleotides, practical
implementations will require a perfect seed match between the word
and the database.

102 Glossary

Central processing unit (CPU). The main processing unit performing the
general digital operations in a computer. The CPU is designed to run
a group of instructions, or instruction set. CPU instructions can con-
sist of adding and subtracting numbers, fetching information from
memory, and other simple functions.

Deoxyribonucleic acid (DNA). Any of various nucleic acids that are usu-
ally the molecular basis of heredity and localized especially in the
cell’s nucleus. DNA consists of two chains of alternate links between
deoxyribose and phosphate that are held together by hydrogen bonds
in a double helix configuration.

Deterministic finite automata (DFA). A deterministic finite automata is a
state machine where the next state is uniquely determined by a single
input event.

Dynamic random access memory (DRAM). A form of semiconductor ran-
dom access memory (RAM). Dynamic RAMs store information in in-
tegrated circuits containing capacitors. Because capacitors lose their
charge over time, dynamic RAM boards must include logic to refresh
(recharge) the RAM chips continuously. While a dynamic RAM is be-
ing refreshed, it cannot be read by the processor; if the processor
must read the RAM while it is being refreshed, one or more wait
states occur. Despite being slower, dynamic RAMs are more com-
monly used than static RAMs because their circuitry is simpler.

Floating point operations per second (FLOPS). FLOPS is an acronym used
for denoting computer performance in scientific calculations, mean-
ing floating point operations per second according to a benchmark,
e.g. Linpack. One such operation could be the addition of two num-
bers.

Field-programmable gate array (FPGA). A microchip that may contain th-
ousands of programmable logic gates. Good features of FPGAs in-
clude short development times, and FPGAs are often used for proto-
type or custom designs, including for example logic emulation. Ap-
plications that require high-volume production usually use applicati-
on-specific integrated circuits (ASICs) instead.

Genetic programming (GP). A problem-solving algorithm that uses mu-
tation and recombination to breed generations of computer programs
that is intended to solve a certain problem. Compared with genetic

Glossary 103

algorithms that operate directly on bit strings, GP operates on com-
puter programs with a predefined architecture. In theory, the best
computer programs improve with each generation, and the final so-
lution approach the optimal solution.

Gigabytes (GB). A byte is a group of eight binary digits called bits, and
a gigabyte is by definition 230 or 1,073,741,824 bytes, as this is the
power of 2 that is closest to one billion. In some cases, especially for
hard drive storage systems, one gigabyte is also used for exactly one
billion bytes.

Interagon query language (IQL). A simple expression language that de-
fines how queries are constructed using characters, strings, and string
set operators. The IQL is the preferred query language for an appli-
cation accessing the pattern matching chip (PMC), as the language’s
expressiveness corresponds closely to the available functionality of
the chip architecture.

Megabytes (MB). A byte is a group of eight binary digits called bits, and a
megabyte is by definition 220 or 1,048,576 bytes, as this is the power
of 2 that is closest to one million.

Messenger ribonucleic acid (mRNA). A ribonucleic acid (RNA) that car-
ries the code for a particular protein from the nuclear deoxyribonu-
cleic acid (DNA) to a ribosome in the cytoplasm and acts as a template
for the formation of that protein.

Multiple instruction stream - multiple data stream (MIMD). One of four
categories in Flynn’s taxonomy for classification of architectures along
two axes, namely the number of instruction streams executing con-
currently, and the number of data sets to which those instructions are
being applied. A MIMD architecture is one where many instructions
are concurrently applied to multiple data sets.

Multiple instruction stream - single data stream (MISD). One of four cat-
egories of Flynn’s taxonomy for classification of architectures along
two axes, namely the number of instruction streams executing con-
currently, and the number of data sets to which those instructions are
being applied. A MISD architecture is one where many instructions
are concurrently applied to a single data set.

Nondeterministic finite automata (NFA). The next state of a nondetermin-
istic finite automata depends not only on the current input event, but

104 Glossary

also on an arbitrary number of subsequent input events. Until these
subsequent events occur it is not possible to determine which state
the machine is in.

Random access memory (RAM). Acronym for random access memory for
information storage. Semiconductor-based memory that can be read
and written by the central processing unit (CPU) or other hardware
devices. The storage locations can be accessed in any order.

Peripheral component interconnect (PCI). A specification for high-perfor-
mance, 32-bit or 64-bit input/output (I/O) buses. A PCI bus can be
configured dynamically and is designed to be used by devices with
high-bandwidth requirements.

Reduced Instruction Set Computing (RISC). A microprocessor design that
focuses on rapid and efficient processing of a relatively small set of
simple instructions that comprises most of the instructions a com-
puter decodes and executes. RISC architecture optimizes each of these
instructions so that it can be carried out very rapidly–usually within
a single clock cycle. RISC chips thus execute simple instructions more
quickly than general-purpose CISC (complex instruction set comput-
ing) microprocessors, which are designed to handle a much wider ar-
ray of instructions. They are, however, slower than CISC chips at exe-
cuting complex instructions, which must be broken down into many
machine instructions that RISC microprocessors can perform.

Ribonucleic acid (RNA). Any of various nucleic acids that contain ribose
and uracil as structural components, and are associated with the con-
trol of cellular chemical activities

Synchronous DRAM (SDRAM). A variant of DRAM where all access is syn-
chronized to a clock signal.

Short interfering ribonucleic acid (siRNA). A short double-stranded ribo-
nucleic acid of about 21 nucleotides with 3’ overhangs of two nu-
cleotides that mediates the ribonucleic acid interference response in
mammalian cells.

Single instruction stream - multiple data stream (SIMD). One of four cat-
egories in Flynn’s taxonomy for classification of architectures along
two axes, namely the number of instruction streams executing con-
currently, and the number of data sets to which those instructions are

Glossary 105

being applied. A SIMD architecture is one where a single instruction
is concurrently applied to multiple data sets.

Single instruction stream - single data stream (SISD). One of four catego-
ries of Flynn’s taxonomy for classification of architectures along two
axes, namely the number of instruction streams executing concur-
rently, and the number of data sets to which those instructions are
being applied. A SISD architecture is one where a single instruction
is applied to a single data set.

Support vector machine (SVM). A generalized linear classifier that corre-
sponds to the optimal classifier as defined by some maximum-margin
criterion. The maximum-margin criterion provides regularization
that helps the classifier to generalize better to unseen samples.

Very-large-scale integration (VLSI). VLSI originally referred to chips with
many tens of thousands transistors, as a natural successor to large-
scale integration (LSI) chips that contain more than thousand transis-
tors. There have been efforts to name various levels of integrations
above VLSI, but these are no longer in widespread use. Note that all
microprocessors are VLSI or better.

Bibliography

N. R. Adiga, G. Almasi, G. S. Almasi, Y. Aridor, R. Barik, D. Beece,
R. Bellofatto, G. Bhanot, R. Bickford, M. Blumrich, A. A. Bright, J. Brun-
heroto, C. Cacaval, J. Castaños, W. Chan, L. Ceze, P. Coteus, S. Chatter-
jee, D. Chen, G. Chiu, T. M. Cipolla, P. Crumley, K. M. Desai, A. Deutsch,
T. Domany, M. B. Dombrowa, W. Donath, M. Eleftheriou, C. Erway,
J. Esch, B. Fitch, J. Gagliano, A. Gara, R. Garg, R. Germain, M. E. Gi-
ampapa, B. Gopalsamy, J. Gunnels, M. Gupta, F. Gustavson, S. Hall, R. A.
Haring, D. Heidel, P. Heidelberger, L. M. Herger, D. Hoenicke, R. D.
Jackson, T. Jamal-Eddine, G. V. Kopcsay, E. Krevat, M. P. Kurhekar, A. P.
Lanzetta, D. Lieber, L. K. Liu, M. Lu, M. Mendell, A. Misra, Y. Moatti,
L. Mok, J. E. Moreira, B. J. Nathanson, M. Newton, M. Ohmacht,
A. Oliner, V. Pandit, R. B. Pudota, R. Rand, R. Regan, B. Rubin, A. Ruehli,
S. Rus, R. K. Sahoo, A. Sanomiya, E. Schenfeld, M. Sharma, E. Shmueli,
S. Singh, P. Song, V. Srinivasan, B. D. Steinmacher-Burow, K. Strauss,
C. Surovic, R. Swetz, T. Takken, R. B. Tremaine, M. Tsao, A. R. Umama-
heshwaran, P. Verma, P. Vranas, T. J. C. Ward, M. Wazlowski, W. Barrett,
C. Engel, B. Drehmel, B. Hilgart, D. Hill, F. Kasemkhani, D. Krolak, C. T.
Li, T. Liebsch, J. Marcella, A. Muff, A. Okomo, M. Rouse, A. Schram,
M. Tubbs, G. Ulsh, C. Wait, J. Wittrup, M. Bae, K. Dockser, L. Kissel,
M. K. Seager, J. S. Vetter, and K. Yates. An overview of the BlueGene/L
supercomputer. In IEEE, editor, SC2002: From Terabytes to Insight. Pro-
ceedings of the IEEE ACM SC 2002 Conference, 2002. ISBN 0-7695-1524-X.
URL http://www.sc-2002.org/paperpdfs/pap.pap207.pdf.

Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its
relatives. In Advances in Discrete and Computational Geometry, Proceedings
of the 1996 AMS-IMS-SIAM, volume 223 of Contemporary Mathematics,
pages 1–56. Americal Mathematical Society, 1996. ISBN 0-8218-0674-2.

Alfred V. Aho, John E. Hopcroft, and Jeffery D. Ullman. Data Structures and
Algorithms. Addison-Wesley, 1982. ISBN 0-201-00023-7.

108 BIBLIOGRAPHY

Nasir Al-Darwish. Formulation and analysis of in-place MSD radix sort
algorithms. Journal of Information Science, 31(6):467–481, 2005.

Kursad Albayraktaroglu, Aamer Jaleel, Xue Wu, Manoj Franklin, Bruce Ja-
cob, Chau-Wen Tseng, and Donald Yeung. Biobench: A benchmark suite
of bioinformatics applications. In 2005 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages 2–9, March
2005.

Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and
David J. Lipman. Basic local alignment search tool. J. Mol. Biol., 215
(3):403–410, 1990.

Mohammed Amarzguioui, Torgeir Holen, Eshrat Babaie, and Hans Prydz.
Tolerance for mutations and chemical modifications in a siRNA. Nucleic
Acids Res., 31(2):589–595, 2003.

Gene Amdahl. Validity of the single processor approach to achieving large-
scale computing capabilities. In AFIPS Conference Proceedings, volume 30,
pages 483–485, 1967.

Will Archer Arentz, Magnus Lie Hetland, and Bjørn Olstad. Retrieving
musical information based on rhythm and pitch correlations. Journal of
New Music Research, 34(2):151–159, 2005.

Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. Web search for a planet:
The Google cluster architecture. IEEE Micro, 23(2):22–28, 2003.

Kent Beck. Extreme Programming Explained. Addison-Wesley Pub Co,
Boston, MA 02116, USA, 2001.

Nicholas J. Belkin and W. Bruce Croft. Information filtering and informa-
tion retrieval: two sides of the same coin? Communications of the ACM,
35(12):29–38, 1992. ISSN 0001-0782.

Jon L. Bentley and Robert Sedgewick. Fast algorithms for sorting and
searching strings. In SODA’97: Proceedings of the eighth annual ACM-
SIAM symposium on Discrete algorithms, pages 360–369, Philadelphia, PA,
USA, 1997. Society for Industrial and Applied Mathematics. ISBN 0-
89871-390-0.

Olaf René Birkeland and Ola Snøve Jr. The pattern matching chip, 2002.
Technical note, available upon request.

BIBLIOGRAPHY 109

Olaf René Birkeland, Magnar Nedland, and Ola Snøve Jr. Massively par-
allel MIMD system achieves high performance in a spam filter. In Ger-
hard R. Joubert, Wolfgang E. Nagel, Frans J. Peters, Oscar Plata, Paco
Tirado, and Emilio Zapata, editors, Parallel Computing: Current & Future
Issues of High-End Computing. Proceedings of the International Conference
ParCo 2005, volume 33 of John von Neumann Institute for Computing (NIC),
pages 691–697, September 2005. ISBN 3-00-017352-8.

Olaf René Birkeland, Ola Snøve Jr., Arne Halaas, Magnar Nedland, and
Pål Sætrom. The petacomp machine — a MIMD cluster for parallel
pattern-mining. In 2006 IEEE International Conference on Cluster Com-
puting (CLUSTER), September 2006. ISBN 1-4244-0328-6. Released on
CDROM, IEEE catalog number 06TH8880C.

Dina Bitton, David J. DeWitt, David K. Hsaio, and Jaishankar Menon. A
taxonomy of parallel sorting. ACM Computer Surveys (CSUR), 16(3):287–
318, 1984. ISSN 0360-0300.

Hans-Martin Blüthgen and Tobias G. Noll. A programmable processor for
approximate string matching with high throughput rate. In ASAP’00:
Proceedings of the IEEE International Conference on Application-Specific Sys-
tems, Architectures, and Processors, pages 309–316, Washington, DC, USA,
2000. IEEE Computer Society. ISBN 0-7695-0716-6.

Darrell Boggs, Aravindh Baktha, Jason Hawkins, Deborah T. Marr, J. Alan
Miller, Patrice Roussel, Ronak Singhal, Bret Toll, and K.S. Venkatraman.
The microarchitecture of the Intel Pentium 4 processor on 90nm tech-
nology. Intel Technology Journal, 08(01), 2004. URL http://developer.intel.com/

technology/itj/index.htm.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. Computer Networks, 30(1-7):107–117, 1998.

Doug Burger, James R. Goodman, and Alain Kägi. Memory bandwidth
limitations of future microprocessors. In 23rd International Symposium on
Computer Architecture (ISCA), pages 78–89. IEEE Computer Society, May
1996.

Alan Chalmers and Jonathan Tidmus. Practical Parallel Processing. Interna-
tional Thompson Computer Press, 1996.

Moses Charikar, Piotr Indyk, and Rina Panigrahy. New algorithms for sub-
set query, partial match, orthogonal range searching, and related prob-

110 BIBLIOGRAPHY

lems. In Automata, Languages and Programming, 29th International Collo-
quium, ICALP, volume 2380 of Lecture Notes in Computer Science, pages
451–462. Springer, 2002. ISBN 3-540-43864-5.

H. D. Cheng and K. S. Fu. VLSI architectures for string matching and
pattern matching. Pattern Recogn., 20(1):125–144, 1987. ISSN 0031-3203.

David M. Dahle, Jeffrey D. Hirschberg, Kevin Karplus, Hansjoerg Keller,
Eric Rice, Don Speck, Douglas H. Williams, and Richard Hughey.
Kestrel: Design of an 8-bit SIMD parallel processor. In 17th Conference
on Advanced Research in VLSI, 1997.

Derek M. Dykxhoorn, Carl D. Novina, and Phillip A. Sharp. Killing the
messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell
Biol., 4(6):457–467, 2003.

Alexandre E. Eichenberger, Kathryn O’Brien, Kevin O’Brien, Peng Wu,
Tong Chen, Peter H. Oden, Daniel A. Prener, Janice C. Shepherd, By-
oungro So, Zehra Sura, Amy Wang, Tao Zhang, Peng Zhao, and Michael
Gschwind. Optimizing compiler for a CELL processor. In 14th In-
ternational Conference on Parallel Architecture and Compilation Techniques
(PACT), pages 161–172. IEEE Computer Society, 2005. ISBN 0-7695-2429-
X.

Vladmir Estivill-Castro and Derick Wood. A survey of adaptive sorting
algorithms. ACM Computer Surveys (CSUR), 24(4):441–476, 1992. ISSN
0360-0300.

Michael Farrar. Striped smith-waterman speeds database searches six
times over other SIMD implementations. Bioinformatics, 23(2):156–161,
2007.

Fast Search & Transfer ASA. A processing circuit and a search processor
circuit, 2000a. International publication number WO 00/29981.

Fast Search & Transfer ASA. Digital processing device, 2000b. Interna-
tional publication number WO 00/22545.

Wu-chun Feng. Green destiny + mpiblast = bioinfomagic. In ParCo 2003,
pages 653–660, 2003.

Michael J. Flynn. Some computer organizations and their effectiveness.
IEEE Transactions on Computers, C(21):948–960, September 1972.

BIBLIOGRAPHY 111

M. J. Foster and H. T. Kung. Design of special-purpose VLSI chips: Exam-
ple and opinions. In ISCA’80: Proceedings of the 7th annual symposium on
Computer Architecture, pages 300–307, New York, NY, USA, 1980. ACM
Press.

Jeffrey E.F. Friedl. Mastering Regular Expressions. O’Reilly, Cambridge, MA,
2nd edition, 2002.

Joseph Gebis, Sam Williams, Christos Kozyrakis, and David Patterson. VI-
RAM1: A media-oriented vector processor with embedded DRAM. In
41st Design Automation Student Design Contenst, San Diego, CA, June 2004.

Richard Gerber, Aart J.C. Bik, Kevin B. Smith, and Xinmin Tian. The Soft-
ware Optimization Cookbook. High-Performance Recipes for the Intel Architec-
ture. Intel Press, 2nd edition, March 2006. ISBN 0-9764832-1-1.

Arne Halaas. A systolic VLSI matrix for a family of fundamental searching
problems. Integration, the VLSI Journal, 1(3), 1983.

Arne Halaas, Børge Svingen, Magnar Nedland, Pål Sætrom, Ola Snøve
Jr., and Olaf René Birkeland. A recursive MISD architecture for pattern
matching. IEEE Trans. on VLSI Syst., 12(7):727–734, 2004.

Gregory J. Hannon. RNA interference. Nature, 418(6894):244–251, 2002.

Torstein Heggebø. Compaction of Symbolic Layout. Generation of Compact and
Correct Mask Layout from Symbolic Descriptions of VLSI Circuits. PhD the-
sis, Norwegian University of Science and Technology, 1989.

John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-
titative Approach. Morgan Kaufmann, 4th edition, 2007. ISBN 978-0-12-
370490-0.

Magnus Lie Hetland and Pål Sætrom. Temporal rule discovery using ge-
netic programming and specialized hardware. In Proc. of the 4th Int. Conf.
on Recent Advances in Soft Computing, 2002.

Magnus Lie Hetland and Pål Sætrom. A comparison of hardware and
software in sequence rule evolution. In Eight Scandinavian Conference
on Artificial Intelligence, 2003.

Magnus Lie Hetland and Pål Sætrom. Temporal rule discovery using
genetic programming and specialized hardware. In Ahmad Lotfi and

112 BIBLIOGRAPHY

Jonathon M. Garibaldi, editors, Applications and Science in Soft Comput-
ing, Advances in Soft Computing, pages 87–94. Springer-Verlag, 2004.
Revised version of Hetland and Sætrom (2002).

Paul Hildebrandt and Harold Isbitz. Radix exchange — an internal sorting
method for digital computers. Journal of the ACM, 6(2):156–163, 1959.

W. Daniel Hillis and Jr. Guy L. Steele. Data parallel algorithms. Communi-
cations of the ACM, 29(12):1170–1183, 1986. ISSN 0001-0782.

Masaki Hirata, Hachiro Yamada, Hajime Nagai, and Kousuke Takahashi.
A versatile data string-search VLSI. IEEE Journal of Solid-State Circuits,
23(2):329–335, 1988.

Jeffrey D. Hirschberg, David M. Dahle, Kevin Karplus, Don Speck, and
Richard Hughey. Kestrel: A programmable array for sequence analy-
sis. Journal of VLSI Signal Processing Systems for Signal Image and Video
Technology, 19(2):115–126, 1998.

Richard Hughey. Parallel hardware for sequence comparison and align-
ment. CABIOS, 12(6):473–479, 1996.

Kai Hwang and Fayé A. Briggs. Computer Architecture and Parallel Process-
ing. McGraw-Hill Book Company, 1985. page 32–35.

Intel Corporation. IA-32 Intel R© architecture optimization reference man-
ual. Technical report, Intel Corporation, 2004. This manual is available
from http://developer.intel.com/design/Pentium4/documentation.htm.

Merrill E. Isenman and Dennis E. Shasha. Performance and architectural
issues for string matching. IEEE Transactions on Computers, 39(2):238–250,
1990. ISSN 0018-9340.

James A. Kahle, Michael N. Day, H. Peter Hofstee, Charles R. Johns,
Theodore R. Maeurer, and David Shippy. Introduction to the Cell mul-
tiprocessor. IBM Journal on Research & Development, 49(4/5):589–604, Ju-
ly/September 2005.

Graham Kirsch. Active memory: Micron’s Yukon. In 17th International Par-
allel and Distributed Processing Symposium (IPDPS), page 89. IEEE Com-
puter Society, 2003.

Jon M. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46(5):604–632, 1999.

BIBLIOGRAPHY 113

Donald E. Knuth. The Art of Computer Programming, vol 1–3. Addison Wes-
ley, 3rd edition, 1997.

Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Nia-
gara: A 32-way multithreaded sparc processor. IEEE Micro, 25(2):21–29,
March/April 2005.

John R. Koza, David Andre, Forrest H Bennett III, and Martin Keane. Ge-
netic Programming 3: Darwinian Invention and Problem Solving. Morgan
Kaufmann Publishers, San Fransisco, CA, Apr 1999.

Christos Kozyrakis and David Patterson. Overcoming the limitations of
conventional vector processors. In 30th International Symposium on Com-
puter Architecture (ISCA), pages 399–409. IEEE Computer Society, Jun
2003. ISBN 0-7695-1945-8.

R. K. Krishnarnurthy, A. Alvandpour, V. De, and S. Borkar. High-
performance and low-power challenges for sub-70 nm microprocessor
circuits. In Proceedings of the IEEE 2002 Custom Integrated Circuits Confer-
ence, pages 125–128, 2002. ISBN 0-7803-7250-6.

R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen.
Single-ISA heterogeneous multi-core architectures: the potential for pro-
cessor power reduction. In 36th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO-36), pages 81–92, December 2003.
ISBN 0-7695-2043-X.

Josué Kuri, Gonzalo Navarro, Ludovic Mé, and Laurent Heye. A pattern
matching based filter for audit reduction and fast detection of potential
intrusions. In In proceedings of the 3rd International Workshop on the Recent
Advances in Intrusion Detection, pages 17–27. LNCS, 2000.

Clecio Donizete Lima and Tadao Nakamura. Exploiting loop-level paral-
lelism with the shift architecture. In Proceedings of the 14th Symposium on
Computer Architecture and High Performance Computing (SBAC-PAD’02),
pages 184–194, 2002. ISBN 0-7695-1772-2.

Clecio Donizete Lima, Kentaro Sano, Hiroaki Kobayashi, Tadao Naka-
mura, and Michael J. Flynn. A technology-scalable multithreaded ar-
chitecture. In Proceedings of the 13th Symposium on Computer Architecture
and High Performance Computing, pages 82–89, September 2001.

114 BIBLIOGRAPHY

Yen-Chun Lin and Jih-Wei Yeh. A scalable and efficient systolic algorithm
for the longest common subsequence problem. J. Inf. Sci. Eng., 18(4):
519–532, 2002.

Jim W. Lindelien. The value of accelerated computing in bioinformatics.
See http://www.timelogic.com/whitepapers/decypher benefits e.pdf, 2002.

Victor Wing-Kit Mak, Kuo Chu Lee, and Ophir Frieder. Exploiting paral-
lelism in pattern matching: an information retrieval application. ACM
Trans. Inf. Syst., 9(1):52–74, 1991. ISSN 1046-8188.

Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A. Ko-
ufaty, J. Alan Miller, and Michael Upton. Hyper-threading technology
architecture and microarchitecture. Intel Technology Journal, 06(01):4–15,
2002. URL http://developer.intel.com/technology/itj/index.htm.

Arne Maus. ARL, a faster in-place, cache friendly sorting algorithm. In
NIK’2002: Norsk informatikkonferanse, pages 85–95. Society for Industrial
and Applied Mathematics, 2002. URL http://www.nik.no/2002/Maus.pdf.

Peter M. McIlroy, Keith Bostic, and M. Douglas McIlroy. Engineering radix
sort. Computing Systems, 6(1):5–27, 1993.

Michael T. McManus and Phillip A. Sharp. Gene silencing in mammals by
small interfering RNAs. Nat. Rev. Genet., 3(10):737–747, 2002.

O.M. Melko and A.R. Mushegian. Distribution of words with a predefined
range of mismatches to a DNA probe in bacterial genomes. Bioinformat-
ics, 20(1):67–74, 2004.

Panagiotis D. Michailidis and Konstantinos G. Margaritis. On-line approx-
imate string searching algorithms: Survey and experimental results. In-
ternational Journal of Computer Mathematics, 79(8):867–888, 2002.

Panagiotis D. Michailidis and Konstantinos G. Margaritis. Performance
evaluation of load balancing strategies for approximate string matching
application on an mpi cluster of heterogeneous workstations. Future
Generation Computer Systems, 19(7):1075–1104, 2003. ISSN 0167-739X.

Panagiotis D. Michailidis and Konstantinos G. Margaritis. New processor
array architectures for the longest common subsequence problem. The
Journal of Supercomputing, 32(1):51–69, April 2005.

Donald Michie. Memo functions and machine learning. Nature, 218:19–22,
1968.

BIBLIOGRAPHY 115

K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Bra-
zier, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fis-
cher, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He,
J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi,
C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon,
J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince,
P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple,
D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vander-
voorn, S. Williams, and K. Zawadzki. A 45nm logic technology with
high-k+metal gate transistors, strained silicon, 9 cu interconnect layers,
193nm dry patterning, and 100% pb-free packaging. In Electron De-
vices Meeting (IEDM), IEEE International, pages 247–250, December 2007.
ISBN 978-1-4244-1508-3.

Amar Mukherjee. Hardware algorithms for determining similarity be-
tween two strings. IEEE Transactions on Computers, 38(4):600–603, 1989.

Tadao Nakamura, Masatsugu Hashimoto, Geng Chun, and Norio Izumi.
Visual architecture. INFORMATION, 6(2):215–230, 2003. ISSN 1343-
4500.

Gonzalo Navarro. A guided tour to approximate string matching. ACM
Comput. Surv., 33(1):31–88, 2001a.

Gonzalo Navarro. NR-grep: a fast and flexible pattern matching tool. Soft-
ware Practice and Experience (SPE), 31:1265–1312, 2001b.

Gonzalo Navarro and Mathieu Raffinot. Flexible pattern matching in strings:
practical on-line search algorithms for texts and biological sequences. Cam-
bridge University Press, Cambridge, UK, 2002.

Magnar Nedland, Børge Svingen, and Magnus L. Hetland. The Interagon
Query Language - a reference guide. Interagon AS (Trondheim, Nor-
way) whitepaper, see http://www.interagon.com/pub/whitepapers/IQL.reference-latest.

pdf, 2002a.

Magnar Nedland, Børge Svingen, and Magnus L. Hetland. The Interagon
Query Language – a reference guide, 2002b. Available on request: info@

interagon.com.

Jin Hwan Park and K. M. George. Efficient parallel hardware algorithms
for string matching. Microprocessors and microsystems, 23(3):155–168,
1999.

116 BIBLIOGRAPHY

David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kim-
berly Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine
Yelick. A case for intelligent RAM: IRAM. IEEE Micro, 17(2):34–44, Apr
1997.

David A. Patterson. Latency lags bandwith. Communications of the ACM,
47(10):71–75, 2004. ISSN 0001-0782.

Jeremy Pickens. Feature selection for polyphonic music retrieval. In SIGIR
2001: Proceedings of the 24th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 428–429, 2001.

Knut Magne Risvik. Scaling Internet Search Engines: Methods and Analysis.
PhD thesis, NTNU, Trondheim, Norway, May 2004.

Knut Magne Risvik and Rolf Michelsen. Search engines and web dynam-
ics. Computer Networks, 39(3):289–302, 2002.

Ian N. Robinson. Pattern-addressable memory. IEEE Micro, 12(3):20–30,
1992. ISSN 0272-1732.

Torbjørn Rognes. ParAlign: a parallel sequence alignment algorithm for
rapid and sensitive database searches. Nucleic Acids Res., 29(7):1647–
1652, 2001.

Torbjørn Rognes and Erling Seeberg. Six-fold speed-up of Smith-
Waterman sequence database searching using parallel processing on
common microprocessors. Bioinformatics, 16(8):4926–4936, 2000.

Halsey L. Royden. Real Analysis. Macmillan, 3rd edition, 1988. ISBN
0024041513.

Ola Sætrom, Ola Snøve Jr., and Pål Sætrom. Weighted sequence motifs
as an improved seeding step in microRNA target prediction algorithms.
RNA, 11(7):995–1003, 2005a.

Pål Sætrom. Predicting the efficacy of short oligonucleotides in antisense
and RNAi experiments with boosted genetic programming. Bioinformat-
ics, 20(17):3055–3063, 2004.

Pål Sætrom. Hardware accelerated genetic programming for pattern mining in
strings. PhD thesis, Norwegian University of Science and Technology,
2005.

BIBLIOGRAPHY 117

Pål Sætrom and Magnus Lie Hetland. Multiobjective evolution of temporal
rules. In Eight Scandinavian Conference on Artificial Intelligence, 2003a.

Pål Sætrom and Magnus Lie Hetland. Unsupervised temporal rule min-
ing with genetic programming and specialized hardware. In Proceed-
ings of the International Conference on Machine Learning and Applications
(ICMLA’03), pages 145–151, 2003b.

Pål Sætrom and Ola Snøve Jr. A comparison of siRNA efficacy predictors.
Biochem. Biophys. Res. Commun., 321(1):247–253, 2004.

Pål Sætrom, Ragnhild Sneve, Knut I. Kristiansen, Ola Snøve Jr., Thomas
Grünfeld, Torbjørn Rognes, and Erling Seeberg. Predicting non-coding
RNA genes in Escherichia coli with boosted genetic programming. Nucleic
Acids Res., 33(10):3263–3270, 2005b.

Pål Sætrom, Olaf Birkeland, and Ola Snøve Jr. Genetic Programming The-
ory and Practice IV, chapter Boosting improves stability and accuracy
of genetic programming in biological sequence classification. Springer-
Verlag, 2007. ISBN 0-387-33375-4.

Geir Kjetil Sandve, Magnar Nedland, Øyvind Bø Syrstad, Lars Andreas,
Eidsheim, Osman Abul, and Finn Drabløs. Accelerating motif discovery:
Motif matching on parallel hardware. In 6th Workshop on Algorithms in
Bioinformatics (WABI), 2006.

David Sankoff and Joseph Kruskal, editors. Time warps, string edits, and
macromolecules: the theory and practice of sequence comparison. Addison-
Wesley, Cambridge, MA, 1983.

Raghu Sastry, N. Ranganathan, and Klinton Remedios. CASM: A VLSI
chip for approximate string matching. IEEE Trans. Pattern Anal. Mach.
Intell., 17(8):824–830, 1995. ISSN 0162-8828.

Bertil Schmidt, Heiko Schröder, and Manfred Schimmler. Protein sequence
comparison on the instruction systolic array. In Parallel Computing Tech-
nologies, 6th International Conference, PaCT, Novosibirsk, Russia, pages 498–
509, 2001.

Bengt-Olaf Schneider and Jarek Rossignac. M-buffer: A flexible misd ar-
chitecture for advanced graphics. Computers & Graphics, 19(2):239–246,
March–April 1995.

118 BIBLIOGRAPHY

Michael Sipser. Introduction to the Theory of Computation. Course Technol-
ogy, 2005. ISBN 0619217642.

Temple F. Smith and Michael S. Waterman. Identification of common
molecular subsequences. J. Mol. Biol., 147(1):195–197, 1981.

Ola Snøve Jr. Analysis of RNAi intermediates using the pattern matching chip.
PhD thesis, Norwegian University of Science and Technology, 2005.

Ola Snøve Jr. and Torgeir Holen. Many commonly used siRNAs risk off-
target activity. Biochem. Biophys. Res. Commun., 319(1):256–263, 2004.

Ola Snøve Jr., Magnar Nedland, Ståle H. Fjeldstad, Håkon Humberset,
Olaf René Birkeland, Thomas Grünfeld, and Pål Sætrom. Designing ef-
fective siRNAs with off-target control. Biochem. Biophys. Res. Commun.,
325(3):769–773, 2004.

Ola Snøve Jr., Håkon Humberset, Olaf René Birkeland, and Pål Sætrom.
Sequence Explorer: interactive exploration of genomic sequence data,
2005. Manuscript.

Xinmin Tian, Milind Girkar, Aart Bik, and Hideki Saito. Practical compiler
techniques on efficient multithreaded code generation for OpenMP pro-
grams. Computer Journal, 48(5):588–601, 2005.

Panagiotis G. Tzionas, Philippos G. Tsalides, and Adonios Thanailakis. A
new, cellular automaton-based, nearest neighbor pattern classifier and
its VLSI implementation. IEEE Transactions on VLSI systems, 2(3):343–
353, September 1994.

Aad J. van der Steen and Jack J. Dongarra. Overview of recent supercom-
puters. Technical report, EuroBen, October 2004. This 14th issue of the
annual report is available from http://www.top500.org/ORSC/2004/.

Jan van Lunteren, Ton Engbersen, Joe Bostian, Bill Carey, and Chris Lars-
son. XML accelerator engine. In First International Workshop on High
Performance XML Processing, May 2004.

David W. Wall. Limits of instruction-level parallelism. In ASPLOS-IV:
Proceedings of the fourth international conference on Architectural support for
programming languages and operating systems, pages 176–188, New York,
NY, USA, 1991. ACM Press. ISBN 0-89791-380-9.

BIBLIOGRAPHY 119

Maurice V. Wilkes. The memory gap and the future of high performance
memories. SIGARCH Computer Architecture News, 29(1):2–7, 2001. ISSN
0163-5964.

Dan E. Willard. Applications of range query theory to relational data base
join and selection operations. Journal on Computer and System Sciences, 52
(1):157–169, 1996.

Hachiro Yamada, Masaki Hirata, Hajime Nagai, and Kousuke Takahashi.
A high-speed string-search engine. IEEE Journal of Solid-State Circuits, 22
(5):829–834, 1987.

Tomoyuki Yamada and Shinichi Morishita. Accelerated off-target search
algorithm for siRNA. Bioinformatics, 21(8):1316–1324, 2005.

Kwang-I Yu, Shi-Ping Hsu, and Peggy Otsubo. The fast data finder - an
architecture for very high speed data search and dissemination. In Pro-
ceedings of the First International Conference on Data Engineering, April 24-
27, 1984, Los Angeles, California, USA, pages 167–174. IEEE Computer
Society, 1984. ISBN 0-8186-0533-2.

Phillip D. Zamore. RNA interference: listening to the sound of silence.
Nat. Struct. Mol. Biol., 8(9):746–750, 2001.

Papers

Paper I

A recursive MISD architecture for
pattern matching

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 7, JULY 2004 727

A Recursive MISD Architecture for Pattern Matching
Arne Halaas, Børge Svingen, Magnar Nedland, Pål Sætrom, Ola Snøve, Jr., and Olaf René Birkeland

Abstract—Many applications require searching for multiple
patterns in large data streams for which there is no preprocessed
index to rely on for efficient lookups. An multiple instruction
stream–single data stream (MISD) VLSI architecture that is based
on a recursive divide and conquer approach to pattern matching is
proposed. This architecture allows searching for multiple patterns
simultaneously. The patterns can be constructed much like regular
expressions, and add features such as requiring subpatterns to
match in a specific order with some fuzzy distance between them,
and the ability to allow errors according to prescribed thresholds,
or ranges of such. The current implementation permits up to 127
simultaneous patterns at a clock frequency of 100 MHz, and does
1.024 character comparisons per second.

Index Terms—Approximate search, multiple instruction
stream–single data stream (MISD), online pattern matching,
parallel architecture, VLSI.

I. INTRODUCTION

ONLINE multipattern approximate searching applies
to situations where several patterns are to be matched

concurrently in data where no persistent index can be built
to accommodate efficient lookups. Few algorithms exist for
searching multiple complex approximate patterns simulta-
neously, and most of them are filters that lose efficiency for
increasing error levels [1].

Consider a string, , where is a character
from a finite alphabet of size . The problem is to si-
multaneously search for the occurrence of a set of predefined
patterns, , of varying complexity. The pat-
terns considered in this work are constructed much like reg-
ular expressions [2], although with some differences. Notably,
these include Hamming distance [3] operations on substrings
and arbitrary complex boolean functions on subpatterns. Fur-
thermore, hit lingering is allowed to specify coarser approxi-
mations, i.e., “match several patterns if they occur within some
distance of each other.” Order conditions combined with latency
is also an additional feature compared with regular expressions;
that is, the user may specify that several patterns are to match
in an ordered manner and with a (possibly unspecified) distance
separating them. The architecture does not yet support the full
language of regular expressions; there are limitations when it
comes to nested repeating patterns, that is, repeated patterns that
consist of subpatterns that are themselves repeating.

Manuscript received April 11, 2003; revised November 6, 2003.
A. Halaas and B. Svingen are with the Department of Computer and Infor-

mation Science, Norwegian University of Science and Technology, No-7491
Trondheim, Norway (e-mail: Arne.Halaas@idi.ntnu.no).

M. Nedland, P. Sætrom, O. Snøve, Jr., and O. R. Birkeland, are with the In-
teragon AS, Medisinsk Teknisk Senter, NO-7489 Trondheim, Norway (e-mail:
Olaf.Birkeland@interagon.com).

Digital Object Identifier 10.1109/TVLSI.2004.830918

The VLSI implementation uses 0.20- m CMOS technology
that yields a 114 mm die size, and a total of 11.7 million tran-
sistors. The architecture’s design clock frequency is 100 MHz.
Current applications for the Peripheral Component Interconnect
(PCI) card on which the chips are mounted include, but are not
limited to, optimal selection of reverse transcriptase polymerase
chain reaction (RT-PCR) primers [4], DNA sequence assembly
[5], and building libraries of siRNA oligonucleotides for mRNA
knock-down experiments [6]. Furthermore, the chip has been
used to enhance the practicability of genetic programming in
pattern mining [7], [8]: the programs that evolve are patterns
that can be evaluated in hardware, thus allowing larger datasets,
bigger populations, and longer runs than would otherwise be
possible.

A brief review of online multipattern approximate searching,
as well as previous attempts to implement flexible pattern
matching in hardware, is given in Section II. The required func-
tionality is formally described in Section III, while Section IV
presents the proposed MISD architecture. The motivation
behind this architecture comes from the recursive definitions in
Section III. Section V outlines practical design considerations
that have been made, and Section VI compares the proposed
architecture to other architectures. Finally, in Section VII, we
discuss the architecture and makes suggestions for future work.

II. PREVIOUS WORK

Several excellent surveys exist on the subject of flexible pat-
tern matching in strings [1], [9]–[11]. Among numerous ap-
plications are filters for intrusion detection [12], information
retrieval [13], and sequence similarity in biology [14]. Mul-
tiple approximate pattern matching is used in machine learning,
where the concepts of ensembles [15], and mixtures of experts
[16] use collections of patterns to increase the performance of
the overall model.

Several hardware approaches for exact and approximate
string matching have been proposed [17]–[28]. In [10], par-
allel comparators, associative memories, cellular arrays, and
finite-state automata are listed as the architectures that have
been used in hardware string matching solutions. Recently, a
lot of attention has been given to the problem of edit distance
computing and matching [29]–[34] in the context of sequence
retrieval and matching from DNA and protein sequence
databases. In [35], a review of relevant parallel hardware for
sequence comparison and alignment is given. Note, however,
that benchmarking is a difficult task due to significant algorithm
discrepancies between the systems.

III. FUNCTIONALITY

The architecture design aims to support a set of query seman-
tics:

1063-8210/04$20.00 © 2004 IEEE

728 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 7, JULY 2004

1) concatenation of basic strings and patterns;
2) alphanumerical comparisons of simple strings;
3) boolean operations on subexpressions;
4) hamming distance filtering;
5) hit lingering (latency);
6) regular expressions.

A formal query language [36], [37] has been constructed to sup-
port the given functionality (details omitted). The outlined query
modes will be described in the following.

Def. 1: A string is an ordered set of
characters from a finite alphabet of size . The th
prefix of is the string .

Def. 2: A pattern is the concatenation of
subpatterns that are expressions in some query language. The

length of the pattern is given by , where is the
maximum number of characters in the string that is matched by
the th subpattern. Multiple patterns are separated by commas.
For example, denotes separate patterns.

Def. 3: The hit function is a
function returning 1 if a pattern matches some suffix of ,
and 0, otherwise. For instance, if and

, then .
Items 1)–6) can now be formalized using Defs. 1, 2, and 3.

The concatenation of two patterns requires a hit function

(1)

When the subpatterns are the smallest possible constructs
(single characters) the hit function represents the exact
matching of strings. To illustrate, consider the pattern
and the string . Matching on the third prefix of
can then be formalized as .

An alphanumerical comparison is the operation of matching
substrings alphabetically or numerically related to a given pat-
tern. Given an alphanumeric operator, , the
hit function becomes

(2)

Thus, given the pattern and the string ,
the hit operation can be formalized as

.
Using this formalism on boolean operators is straightforward,

and the hit function yields

(3)

where denotes the boolean function. Given the pattern
, where denotes the boolean or func-

tion, and the string , the hit function becomes
.

Let denote a pattern that requires of
different patterns to match simultaneously. The hit function can
be written

A concatenated pattern version, which requires the matching of
of subexpressions, becomes

(4)

Note that (4) becomes the familiar Hamming distance threshold
when the subpatterns are single characters. As a result, matching
the pattern in the substring then
becomes .

Hit lingering allows a match to have a prolonged effect in
that it can continue to be reported for some (possibly unlimited)
time. That is, the construct requires a pattern, , to match a
prefix within a distance, , before the current prefix , i.e.,

(5)

Thus, when the pattern is and the string is ,
then , because

.
Furthermore, using the hit function formalism, it is possible

to define constructs like near (two patterns should occur within
some distance of each other) and before (one pattern should
occur before the other within some distance). The former con-
struct can be written

while the latter becomes

The defined hit functions suffice to match regular expressions
without Kleene closures since both unions and concatenations
are supported. Also, every expression containing a skip ,
which is shorthand for , can be rewritten into the union of
an expression containing and an expression with removed.

Repeated patterns, , can also be described by
the framework introduced in this section. The matching of the
concatenation between a repeating pattern, , and a preceding
pattern, , is formally expressed by the hit function

(6)

Thus, when and , the hit function is
.

The following section describes an architecture for imple-
menting these hit functions in hardware.

IV. MISD ARCHITECTURE

Recall that (1)–(4) in Section III are recursive. That is, the
evaluation of requires partitioning into its atomic
components, and combining the individual results using the ap-
propriate functions. The recursion can be visualized by drawing
a recursion tree where the result is found by propagating the re-
sults from the leaf nodes, i.e., the pattern’s atomic components,
to the root of the tree. Some of the hit function definitions re-
quire that is evaluated in parallel, i.e., (3), while others are
strictly sequential, i.e., (1), (2), and (4).

HALAAS et al.: A RECURSIVE MISD ARCHITECTURE FOR PATTERN MATCHING 729

Fig. 1. Search core with data distribution tree (top), processing elements, and
result processing nodes (bottom). Distribution nodes receive data in sequence
or in parallel. Sequence control (SC) is applied to determine the left and right
neighbor’s current hit status, while result selection nodes (RS) propagate their
results according to their configured hit function.

These observations motivate an architecture with two com-
plete binary trees that are responsible for data distribution and
result processing, respectively. The nodes of the former tree
should be able to distribute either the data from its parent or from
the rightmost leaf node of its left subtree. That is, all subtrees on
all levels can receive the data in sequence or in parallel. The leaf
nodes performing single character comparisons are processing
elements (PEs) that are shared between the trees. These compare
their current character, , to a preconfigured value, . (The
characters are shifted in by the data distribution tree.) The op-
erations , , , and are sufficient
for the proposed functionality, including alphanumerical com-
parisons. In addition, they facilitate additional features, such as
matching characters that belong to alphanumerical ranges.

The internal nodes of the result processing tree receive their
input from their children. Denote the results from a node’s left
and right child and , respectively. The node’s result is
given by a dynamically configurable function

. Note that the result is reported as the final hit if the node
is the root of the pattern’s recursion tree, or propagated to its
parent node otherwise. The hit functions , ,

, , , , and
are sufficient to support the outlined functionality

of Section III. Here, is some positive integer value. In addition,
any node should have the possibility of being disabled, meaning

Fig. 2. The tree illustrates how the pattern would be implemented in the
proposed architecture, using sequence control for the left subtree responsible
for matching occurrences of . Note that the bottom node reports the final hit
disregarding any input from its right child (dotted line).

that it should continuously report 0. To enable alphanumerical
comparisons as specified in (2), the equality signal from the
leaf nodes is also propagated up the result processing tree. That
is, the PEs output , and the internal result processing
nodes would propagate where and denotes the
equality signal from a node’s left and right child, respectively.
A conceptual view of the architecture is given in Fig. 1.

Recall from Section III that watching concatenations con-
taining repeating patterns, i.e., , amounts to knowing if
there was a hit for the first part of the expression at a position

characters earlier, as well as consecutive matches
for the second part. Consider the construct illustrated in Fig. 2,
which exemplifies how the problem may be solved in the pro-
posed double binary tree architecture. The first part of the pat-
tern is matched by the right subtree, which corresponds to the
box labeled . This subtree receives data sequentially from its
left sibling responsible for matching the second part of the pat-
tern, namely . However, the part cannot propagate a pos-
itive result to its parent node unless either 1) its right sibling
responsible for matching also has a hit or 2) the node itself
reported a hit characters ago. Note that the former condition
must be met before entering (possibly) multiple occurrences of
the latter situation. Hence, all nodes must receive information
from their neighboring node on all levels of the result processing
tree. This kind of sequence control is actually facilitated in both
directions as this, in some cases, allows cheaper implementation
of skipping patterns (details omitted). The sequence control sig-
nals are illustrated with horizontal arrows between neighboring
result processing nodes in Figs. 1 and 2. In addition, a flip-flop
chain must be associated with each node. Thus, by feeding the
chain with a bit according to its current hit state, the th bit of
the chain represents the hit state clock cycles earlier.

730 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 7, JULY 2004

Fig. 3. Illustration of PMC configuration for the queries a) {mRNA: }, that is match all strings of length four that match at least three out of four characters
in mRNA, and b) , i.e., a or an followed by a wild card and a .

Fig. 4. The PE implementation.

Fig. 3 shows two architecture configurations. The left tree
matches all strings of length four with up to one mismatch with
the pattern mRNA. The solid lines represent the data path, which
is serial between all nodes in this case. The first level result
processing nodes transmit , while their parent outputs
the boolean . Since the PEs are configured to match
the characters of the pattern, the top result processing node will
produce the desired result.

Note that the datapath is not sequential for both subtrees in
the second example: the rightmost subtree has parallel data dis-
tribution, which means that the PEs of this tree receive the same
data. As the result processing node gives this
translates to a hit if either or a is currently shifted in. The
left subtree has sequential data distribution as in the previous
example, and is responsible for matching the subpattern : the
wildcard matching PE is simply configured to match every char-
acter with a byte value greater than or equal to zero.

V. IMPLEMENTATION

The architecture may be implemented with as many PEs
as are allowed by practical implementation constraints. More
PEs makes it possible to evaluate more expressions, each rep-
resenting more complex patterns, in parallel. Area constraints
dictate the maximum number of levels in the architecture
to 10. Hence, there are 1024 PEs on the level that is shared
between the trees (level 0). The implementation of the PE’s
is as illustrated in Fig. 4. Setting PE_ENA low amounts to
disabling the PE, that is both the RES and EQ signals are 0
no matter the result of the current comparison. Data is shifted

in from the distribution tree, and the ALU performs the four
comparisons between the currently held character and the
preconfigured reference character. Note that the bus width is 8
bits, which limits the size of applicable alphabets to 256
if the patterns are to use a single PE per character comparison
(larger alphabets can be used at the expense of more PEs).

The parallel and sequential data distribution of the upper bi-
nary tree can easily be accomplished using 2:1 multiplexers on
all levels as illustrated in Section IV. However, continuously di-
viding into eight subtrees until all subtrees on the lowest level
contain two PEs, results in an implementation using a series of
2 : 1, 3 : 1, and 4 : 1 multiplexers. The longest chain will be for
the rightmost PE whose data path consists of tree 4 : 1, and one
2 : 1 multiplexer. The data from the stream is thus fed fed to
the root node of the data distribution tree, and simultaneously
distributed to several collections of PEs belonging to separate
queries. The implementation is shown in Fig. 5.

Future implementation involving more PEs will require wider
or more levels of multiplexers. For example, doubling the cur-
rent number of PEs could be implemented with only one addi-
tional multiplexer level. However, by using the implementation
in Fig. 5, another level of multiplexers is only needed when the
number of PEs is equal to , . This means
that the current data distribution tree supports up to 4096 PEs
without the addition of a new multiplexer level.

For increased clock rates, the data distribution can be
pipelined at the expense of pipelining registers as well as delay
chains to align data properly. The data distribution is not the
timing critical path in the current design. The parallel data
distribution can run at the design speed without pipelining. The
ability for both serial and parallel data distribution, as well as
combinations of these, is crucial for efficient use of all PEs.

Patterns that assume complexities beyond the atomic com-
ponents and the simplest of combinations, are usually more
significant in applications. Hence, the number of bits available
for specifying latency increases with tree level. However, all
levels are able to set all bits, which yields infinite latency.
The number of bits available are for
levels , respectively. Due to strict area constraints
in the implementation it was decided to allow sequence control
at levels 0, 2, 4, 6, and 8 only. The length of the flip-flop
chains are set to the maximum length of the data path for any
given subtree, thus restricted to 1, 4, 16, 64, and 256 at the

HALAAS et al.: A RECURSIVE MISD ARCHITECTURE FOR PATTERN MATCHING 731

Fig. 5. Data distribution tree implementation using 2 : 1, 3 : 1, and 4 : 1 multiplexers.

Fig. 6. Core functionality of the result processing nodes, excluding the advanced functionality of sequence control and latency.

respective levels. Note, however, that this does not restrict the
functionality, as there is no need to extend the knowledge of
a hit beyond the maximum datapath of a given subtree. The
core functionality of the result processing nodes, excluding
the advanced sequence control and latency features, is imple-
mented as shown in Fig. 6. The first ALU calculates the sum
or difference of the input from its children’s results. If taking
the difference, an optional comparison with zero identifies the
subtree with most hits. Alternatively, an alphanumeric compar-
ison is performed at this stage, involving the equality signal
from the most significant (left) subtree. The first multiplexer
thus receives either a scalar value (when summarizing hits)
from the left and right subtrees, or a boolean value encoded in
the least significant bit (LSB). This is optionally compared to a

configurable constant, . Furthermore, the combination of the
two ALUs can implement any binary function when receiving
boolean inputs.

Fig. 7 shows the implementation of sequence control with
a flip-flop chain for matching repeating patterns, accompanied
by a latency unit that enables holding a result for a predefined
number of clock cycles. Results are found as a combination of
the output from the connected result processing node (see Fig. 6)
and its left and right neighbors. The final result is fed back to
the same neighbors. Note that results are either flowing left- or
rightward thus avoiding asynchronous loops.

On a practical note, the architecture needs to report hits to
the host system for postprocessing. This is accomplished by as-
signing local hit managers to the result processing nodes. The

732 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 7, JULY 2004

Fig. 7. Sequence control and latency unit implementation.

hit managers report the address of hits back to host memory
using direct memory access (DMA). Alternatively, the hit man-
ager can report the document number where a hit occurred. This
is accomplished with the help of a separate unit called the doc-
ument manager, which scans the datastream before it reaches
the data distribution tree. The document manager counts the
number of documents in the stream by looking for a preconfig-
ured character sequence. The current implementation supports
a document separator sequence of up to four characters. Addi-
tionally, to prevent the chip from flooding the host system with
results, the hit managers can be configured to only report one
result from each document or within an address range.

It is assumed that queries requiring very few PEs occur in-
frequently, thus, limiting the need for area consuming hit man-
agers at lower levels. Hence, hit managers are only assigned to
the result processing nodes on level four or higher in the result
processing tree. Consequently, the architecture is limited to han-
dling a maximum of 127 parallel queries, where each query has
a minimum of 16 PEs available.

For easy support of features such as case insensitive searches,
a byte remapping table has been included in the chip. Before the
search data is passed to the document manager and data distri-
bution tree, each byte in the stream is remapped by reading its
value from the table. Thus case insensitive searches can be per-
formed by mapping - to - , and ensuring that the
PEs only matches upper case characters.

The chip is programmed through a set of 32 bit registers,
which can be divided into configuration and control registers.
The configuration registers consist of one register for each PE,
two registers for each node in the twin binary trees (the nodes
in the data distribution tree are configured using a single bit
for each node, where 0 means serial distribution and 1 means

Fig. 8. Chip layout.

parallel), and two registers for each hit manager. The document
manager is programmed using two registers, while the remap-
ping table uses 64 registers. The control registers are used for
instance to start or stop searches, or to read general status infor-
mation. As a frontend to the chip, we have developed a compiler
for translating queries in the query language [36], [37] to reg-
ister configurations. This compiler is part of a larger API, which
can be used for integrating the chip in different search applica-
tions.

Fig. 8 shows a plot of the physical layout on the chip, imple-
mented in standard cell technology. Groups of 64 PEs were cre-
ated, and separately routed. Sixteen such macros are included in
the design, and can be seen as square regions in the layout. The
remaining logic was placed and routed as a flat design.

VI. COMPARISONS

The architecture proposed in this article is primarily designed
for search problems where one would rapidly find the occur-
rences of one or more patterns in a large database. This means
that once a query is supplied by a user, both the delay before the
query is evaluated and the time needed to search the database
should be as small as possible. An important factor for reaching
the former goal, is that the architecture is able to evaluate queries
in parallel whenever possible. In other words, as few PEs as
possible should remain idle during a search. Our architecture
accomplishes this through the use of a flexible data distribution
tree and by associating hit managers with the nodes in the result
gathering tree. This gives us the possibility to pack queries for
parallel evaluation using a simple Huffman procedure. To the
best of our knowledge, no other proposed hardware design can
achieve this ease and flexibility in parallel query evaluation.

The proposed architecture also supports a wider range of
functionality than many other recently proposed architectures,
whose main features are edit distance computations [29]–[34].
On the other hand, general edit distance computations are
not supported by our architecture. Instead, the more limited

HALAAS et al.: A RECURSIVE MISD ARCHITECTURE FOR PATTERN MATCHING 733

TABLE I
TECHNICAL DATA FOR DIFFERENT ASICS (ADAPTED FROM [33])

Hamming distance filtering functionality can be used, which
is identical to using edit distances without insertions and
deletions. This lack of functionality may be offset by the fact
that our architecture makes it possible to create expressions
where mismatches at different positions in the string have
different weights. This functionality is important in several
potential applications (see for instance, [38]).

To summarize, Table I compares the technical data of our so-
lution to other recently published text processors. The compar-
ison also includes an older architecture [20], [21], which, like
our architecture, does not provide the full edit distance compar-
isons of the other architectures in Table I. The string–search en-
gine (SSE) of [20], [21] combines an associative memory with
finite state automata and is mainly used for (near)1 exact string
searches with variable length wildcards.

Initial tests using our ASIC implementation mounted on PCI
cards with SDRAM for holding the dataset, have shown that the
chip can achieve its desired search rate of 100 MB/s (data not
shown).

VII. DISCUSSION

A functionality for performing approximate pattern matching
has been outlined and formally described in terms of hit func-
tions. An MISD VLSI architecture has been proposed. The
hardware is suitable for searching an online data stream using
queries expressed in languages that support the described
functionality.

The current implementation runs at a clock frequency of 100
MHz, and is able to search for up to 127 queries, depending on
complexity, at the rate of 100 MB/s. The implementation has
1024 processing elements, so a single chip is able to perform up
to 1.024 character comparisons per second.

Work has been undertaken to implement a data processing
system based on the VLSI chip presented here. Several pos-
sible solutions are being investigated, with the primary focus
being integration of multiple chips on PCI cards with onboard
SDRAM as the primary data source. An implementation with 16
chips on a single PCI card, each chip having 128 MB of dedi-
cated SDRAM, is now in the process of being tested. A standard
PC fitted with four of these cards is theoretically able to perform
about 7 character comparisons per second.

REFERENCES

[1] G. Navarro and M. Raffinot, Flexible Pattern Matching in Strings:
Practical On-Line Search Algorithms for Texts and Biological Se-
quences. Cambridge, U.K.: Cambridge Univ. Press, 2002.

1The finite state automaton used can match strings with an edit distance of
one.

[2] J. Friedl, Mastering Regular Expressions, 2nd ed. Cambridge, MA:
O’Reilly, 2002.

[3] Time Warps, String Edits, and Macromolecules: The Theory and Prac-
tice of Sequence Comparison, D. Sankoff and J. Kruskal, Eds., Ad-
dison-Wesley, Reading, MA, 1983.

[4] W. Freeman, S. Walker, and K. Vrana, “Quantitative RT-PCR: pitfalls
and potential,” Biotechniques, vol. 26, no. 1, pp. 112–122, 1999.

[5] S. Smith, W. Welch, A. Jakimcius, T. Dahlberg, E. Preston, and D.
Dyke, “High throughput DNA sequencing using an automated elec-
trophoresis analysis system and a novel sequence assembly program,”
Biotechniques, vol. 14, no. 6, pp. 1014–1018, 1993.

[6] M. McManus and P. Sharp, “Gene silencing in mammals by small inter-
fering RNAs,” Nature Rev. Genetics, vol. 3, no. 10, pp. 737–747, 2002.

[7] M. L. Hetland and P. Sætrom, “Temporal rule discovery using genetic
programming and specialized hardware,” in Proc. 4th Int. Conf. Recent
Advances in Soft Computing, 2002.

[8] P. Sætrom and M. L. Hetland, “Unsupervised temporal rule mining
with genetic programming and specialized hardware,” in Proc. 2003
Int. Conf. Machine Learning and Applications (ICMLA’03), 2003, pp.
145–151.

[9] G. Navarro, “A guided tour to approximate string matching,” ACM
Comput. Surveys, vol. 33, no. 1, pp. 31–88, 2001.

[10] G. Stephen, String Searching Algorithms, Singapore: World Scientific,
1994.

[11] P. Michailidis and K. Margaritis, “On-line approximate string searching
algorithms: Survey and experimental results,” Int. J. Comput. Math., vol.
79, no. 8, pp. 867–888, 2002.

[12] J. Kuri, G. Navarro, L. Mé, and L. Heye, “A pattern matching based filter
for audit reduction and fast detection of potential intrusions,” in Proc.
3rd Int. Workshop Recent Advances in Intrusion Detection, LNCS, 2000,
pp. 17–27.

[13] N. Belkin and W. Croft, “Information filtering and information retrieval
– 2 sides of the same coin?,” Commun. ACM, vol. 35, no. 12, pp. 29–38,
1992.

[14] S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and
D. Lipman, “Gapped blast and psi-blast: A new generation of protein
database search programs,” Nucleic Acids Res., vol. 25, pp. 3389–3402,
1997.

[15] M. Perrone and L. Cooper, “When networks disagree: Ensemble
methods for hybrid neural networks,” in Neural Networks for Speech
and Image Processing, R. Mammone, Ed. London, U.K.: Chapman
& Hall, 1993, pp. 126–142.

[16] M. Jordan and R. Jacobs, “Hierarchical Mixtures of Experts and the EM
Algorithm,” Univ. Calif. Berkeley, Berkeley, CA, Tech. Rep. AIM-1440,
1993.

[17] M. J. Foster and H. T. Kung, “The design of special-purpose VLSI
chips,” Computer, vol. 13, no. 1, pp. 26–40, 1980.

[18] A. Halaas, “A systolic VLSI matrix for a family of fundamental
searching problems,” Integration, VLSI J., vol. 1, no. 3, 1983.

[19] H. Cheng and K. Fu, “VLSI architectures for string matching and pattern
matching,” PR, vol. 20, pp. 125–141, 1987.

[20] H. Yamada, M. Hirata, H. Nagai, and K. Takahashi, “A high-speed
string-search engine,” IEEE J. Solid-State Circuits, vol. 22, pp.
829–834, Oct. 1987.

[21] M. Hirata, H. Yamada, H. Nagai, and K. Takahashi, “A versatile data
string-search VLSI,” IEEE J. Solid-State Circuits, vol. 23, pp. 329–335,
Apr. 1988.

[22] A. Mukherjee, “Hardware algorithms for determining similarity
between two strings,” T-COMP, vol. 38, pp. 600–603, 1989.

[23] A. Halaas, “Arguments and architectures for ASIC’s in future informa-
tion retrieval systems,” in In Proc, IFIP Workshop Design & Test of
ASICs, 1990.

[24] M. E. Isenman and D. E. Shasha, “Performance and architectural is-
sues for string matching,” IEEE Trans. Computers, vol. 39, pp. 238–250,
1990.

734 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 12, NO. 7, JULY 2004

[25] V. W.-K. Mak, K. C. Lee, and O. Frieder, “Exploiting parallelism in pat-
tern matching: An information retrieval application,” ACM Trans Infor-
mation Systems, vol. 9, pp. 52–74, Jan. 1991.

[26] J. Park and K. George, “Efficient parallel hardware algorithms for
string matching,” Microprocessors and Microsystems, vol. 23, no. 3,
pp. 155–168, 1999.

[27] Y. Lin and J. Yeh, “A scalable and efficient systolic algorithm for the
longest common subsequence problem,” J. Inform. Sci. Eng., vol. 18,
no. 4, pp. 519–532, 2002.

[28] K.-I. Yu, S.-P. Hsu, and P. Otsubu, “The fast data finder – An architecture
for very high speed data search and dissemination,” in Proc. 1st. Int.
Conf. Data Engineering, 1984, pp. 167–174.

[29] R. Sastry, N. Ranganathan, and K. Remedios, “Casm: A VLSI chip for
approximate string-matching,” PAMI, vol. 17, no. 8, pp. 824–830, Aug.
1995.

[30] D. M. Dahle, J. D. Hirschberg, K. Karplus, H. Keller, E. Rice, D. Speck,
D. H. Williams, and R. Hughey, “Kestrel: Design of an 8-bit SIMD par-
allel processor,” in Proc. 17th Conf. Advanced Research in VLSI, 1997,
pp. 145–162.

[31] J. Hirschberg, D. Dahle, K. Karplus, D. Speck, and R. Hughey,
“Kestrel: A programmable array for sequence analysis,” J. VLSI Signal
Processing Systems for Signal Image and Video Technol., vol. 19, no.
2, pp. 115–126, 1998.

[32] J. Lindelien. “The Value of Accelerated Computing in Bioinfor-
matics,” Whitepaper. TimeLogic, Crystal Bay, NV. [Online]. Available:
http://www.timelogic.com/whitepapers/decypher_benefits_e.pdf

[33] H.-M. Blüthgen and T. G. Noll, “A programmable processor for approx-
imate string matching with high throughput rate,” in Proc. Int. Conf.
Application-Specific Systems, Architectures, and Processors (ASAP’00),
2000, pp. 309–316.

[34] B. Schmidt, H. Schroder, and M. Schimmler, “Protein sequence com-
parison on the instruction systolic array,” in Proc. 6th Int. Conf., Par-
allel Computing Technologies, vol. 2127, Lecture Notes in Computer
Science, V. E. Malyshkin, Ed., Novosibirsk, Russia, Sept. 2001, pp.
498–509.

[35] R. Hughey, “Parallel hardware for sequence comparison and alignment,”
CABIOS, vol. 12, no. 6, pp. 473–479, 1996.

[36] M. Nedland, B. Svingen, and M. Hetland. (2002) “The Interagon Query
Language – A User’s Guide,” Whitepaper. Interagon AS, Trondheim,
Norway. [Online]. Available: http://www.interagon.com/pub/whitepa-
pers/IQL.overview-latest.pdf

[37] , (2002) “The Interagon Query Language – A Reference Guide,”
Whitepaper. Interagon AS, Trondheim, Norway. [Online]. Available:
http://www.interagon.com/pub/whitepapers/IQL.reference-latest.pdf

[38] M. Amarzguioui, T. Holen, E. Babaie, and H. Prydz, “Tolerance for mu-
tations and chemical modifications in a siRNA,” Nucleic Acids Res., vol.
31, no. 2, pp. 589–595, 2003.

Arne Halaas is a Professor in algorithm construction
at the Norwegian University of Science and Tech-
nology, Trondheim, Norway, where he was Head
of the Computer and Information Department from
1982 to 1984 and from 1993 to 1994. From 1981 to
1982, he was a Visiting Professor at the University
of Kaiserslautern, Kaiserslautern, Germany. From
1994 to 1995, he was also a Visiting Professor at
Laboratoire d’Informatique, de Robotique et de
Microélectronique de Montpellier (LIRMM), Uni-
versity of Montpellier, Montpellier, France. Since

1981, he has worked with special purpose search engines and cofounded three
companies operating in this field: Turbit AS (1987), Fast Search & Transfer
ASA (1997), and Interagon AS (2002). Fast Search & Transfer ASA is now a
major global actor on search engines, while Interagon AS has specialized on
complex search tasks, primarily in bioinformatics, requiring high-performance
solutions for imprecise, small-fragment searching, and pattern discovery.

Prof. Halaas has served on the Editorial Board of the VLSI Journal Integra-
tion, since it was established in 1983. He took an active part in establishing the
International Federation for Information Processing (IFIP) working group 10.5
on VLSI systems in 1981, and has been involved for over a decade in the ar-
rangements of its biannual series of VLSI conferences.

Børge Svingen received the M.Sc. degree in com-
puter science from the Norwegian University of Sci-
ence and Technology, Trondheim, Norway, in 1996.

In 1997, he cofounded Fast Search & Transfer
ASA, Oslo, Norway, and then in 2002 he cofounded
Interagon AS, Trondheim, Norway. He has worked
with machine learning, genetic programming,
pattern matching and discovery, special-purpose
hardware, and architecture and algorithm design.
He is now the Chief Technology Officer of IMP
Technology AS, Kråkerø, Norway, a database search

engine company.

Magnar Nedland received the M.Sc. degree in com-
puter science from the Norwegian University of Sci-
ence and Technology, Trondheim, Norway, in 2000.

From 2000 to 2001, he was a Systems Engineer
with Fast Search & Transfer ASA, Oslo Norway.
In 2002, he cofounded Interagon AS, where he is
currently a Research Scientist and specializes in
C++ software development and architecture design
for pattern-matching integrated circuits. He has been
involved with the hardware design and development
since 1998.

Pål Sætrom received the M.Sc. degree in Computer
Science from the Norwegian University of Science
and Technology, Trondheim, Norway, in 2000, where
he is currently pursuing the Ph.D. degree using ma-
chine learning in biological discovery.

He was a Systems Engineer with Fast Search &
Transfer ASA, Oslo, Norway, from 2000 to 2001.
In 2002, he cofounded Interagon AS, Trondheim,
Norway, where he is currently a Research Scientist.
He has been involved with hardware design and
development since 1998, and has used the chip as a

hardware accelerator for challenging genetic programming experiments in his
research.

Ola Snøve, Jr. received the M.Sc. degree in me-
chanical engineering from the Norwegian University
of Science and Technology, Trondheim, Norway, in
2000.

From 2000 to 2001, he was a Systems Engineer
with Fast Search & Transfer ASA, Oslo, Norway.
In 2002, he cofounded Interagon AS, Trondheim,
Norway, where he is currently a Research Scientist
working with biology applications and business
development for the chip architecture.

Olaf René Birkeland received the M.Sc. degree in
computer science from the Norwegian University
of Science and Technology, Trondheim, Norway, in
1993.

From 1993 to 1998, he was the Director
of Engineering with MRT Micro ASA, Oslo
Norway/Intelens Inc., Boca Raton, FL. From 1998
to 2001, he was Senior Research and Development
Manager with Fast Search & Transfer, Oslo,
Norway, ASA. In 2002, he cofounded Interagon AS,
Trondheim, Norway, where he is currently Chief

Technology Officer. He is a specialist in the development of high-performance
hardware for search systems and video processing, and core competencies in-
clude ASIC design and development, electronics design, hardware architecture,
software design, algorithm design, and system architecture.

Paper II

The petacomp machine — A
MIMD cluster for parallel
pattern-mining

The Petacomp Machine —
A MIMD Cluster for Parallel Pattern-mining

Olaf René Birkeland1, Ola Snøve Jr.1, Arne Halaas2, Magnar Nedland1, Pål Sætrom1,2

1Interagon AS 2Department of Computer and Information Science
St. Olavs hospital Norwegian University of Science and Technology

Trondheim, Norway Trondheim, Norway

Abstract

Multiple instruction stream-single data stream (MISD)
architectures have not found many practical applications in
supercomputing. We present a multiple instruction stream-
multiple data stream (MIMD) cluster implementation that
uses MISD search processors with extreme pattern mining
performance as a building block.

We use PCI cards that hold sixteen search processors
with local memory to build a relatively small cluster of five
PC nodes with six PCI cards each. This cluster can handle
anything between 64 independent queries at 48 GB per sec-
ond, to 30,720 independent queries at 100 MB per second.

The cluster’s performance characteristics are such that
we can easily scale the system to 1015 operations per sec-
ond with containable overhead using just 100 nodes. Fur-
ther, the solution has lower power consumption and mem-
ory bandwidth requirements than comparable technologies.

1 Introduction

Supercomputers nowadays are either single machines
with sophisticated architectures or many relatively simple
machines in a cluster configuration. The trend is towards
clusters as illustrated by the popularity of Linux clusters.
Furthermore, IBM’s BlueGene/L cluster machine is num-
ber one on the November 2005 list of the world’s top su-
percomputers on http://www.top500.org. Clusters
are relatively cheap alternatives to integrated machines, and
have traditionally enabled people to work with problems
that have been too demanding for standard workstations, but
that do not require the use of every clock cycle of a vector
machine (capacity versus capability computing) [35].

Still, cluster supercomputers are not cheap, and clus-
ter solutions based on standard components carries several
costs in addition to acquiring the hardware. For example,

the estimated cost for a 65,536 node BlueGene/L is less
than $800,000,000, but still requires 9 GWh of electricity
annually for the machine itself [26]. The cooling, mainte-
nance, and hardware replacement costs of Google’s 15,000
node search cluster are considerable [2].

Our aim was to build a small cluster of machines with
special-purpose search processors to enable pattern mining
with performance comparable to modern supercomputers at
a fraction of the cost. The cluster consists of several PCs
that are equipped with PCI boards that contain multiple in-
struction stream-single data stream (MISD) search proces-
sors with local memory. With the possible exception of sys-
tolic arrays [7], MISD architectures have been considered
impractical [16], and our search processor may be one of
the first MISD architectures to find practical applications
(cf. [35]). Figure 1 shows the various building blocks of our
pattern mining cluster, achieving a performance as given by
Table 1.

2 Motivating example from modern genetics

DNA molecules can be viewed as two sequences where
characters in a four-letter alphabet base-pair due to pref-
erential binding in GC and AT pairs. RNA molecules are
normally single stranded, which means there is only one se-
quence, but RNA molecules can also form double-stranded
structures by GC and AU base-pairing.

Many methods in genetics use short DNA or RNA probes
to selectively bind to longer molecules that have regions
with base-pairing potential. For instance, short interfer-
ing RNAs (siRNAs) are 21 base-pair RNAs that can bind
to messenger RNAs—the intermediates that are translated
to proteins—and thereby decrease the protein output of its
target. These siRNAs should be as specific to their targets
as possible in order to avoid side-effects, and it is therefore
desirable to build a library of specific probes.

Formally, you have an alphabet of four characters that

1-4244-0328-6/06/$20.00 c©2006 IEEE.

Figure 1. A MISD processor die containing 1024 parallel elements are packaged and mounted in
quantities of 16 chips on a PCI accelerator card. Multiple cards are inserted into a PC node, which
servers as the building block for the cluster.

can be divided into two different pairs that have a strong
preference for each other. A major determinant for success
is the degree of similarity between the probes and the target
sequence as measured by the Hamming distance as similar-
ity to sequences other than the target sequences results in
poor performance.

We use the notation of [25], and let δ(x,y) denote the
Hamming distance between two equally long strings x and
y. We define the k-neighborhood of x as all strings y that
satisfy δ(x,y) ≤ k. Note that multiple probe matches
within some region is usually only counted once. For ex-
ample, the specificity of a microarray probe is not compro-
mised due to multiple binding sites within the same mRNA
transcript. Therefore, we let T = (t1, . . . , tm) denote a
target database with m documents that may correspond to
genes or other biological entities.

A library of specific oligos can be built for any entity
and in general consists of patterns that are unique to that
particular entity with some degree of fuzziness—that is, the
pattern is found only in the target entity even if a matching
region is allowed to differ somewhat from the exact pat-
tern. A special case is the k-neighborhood library, which
for the entity ti consists of all oligonucleotides, x ∈ ti,
where δ(x,y) > k for all y ∈ T − ti; that is, all probes
mismatch in at least k positions with all other equally long
oligos from other transcripts. The k-neighborhood library
can be useful when selecting siRNA probes, as you want to
find binding regions with a high k to other messenger RNAs

to avoid side-effects.
The above problem can be solved by measuring the simi-

larity between each candidate subsequence in the target and
each subsequence in the rest of the target database. That
is, we repeatedly search the target database with a large set
of query sequences, and in the case where we want to de-
sign oligo probes against each target in the database, the
number of searches approach the database size. Thus, the
search problem consists of a high number of readily avail-
able queries that is screened against a static document col-
lection. What is more, all queries can be screened against
the database in parallel with very little overhead.

3 Cluster implementation

In the following, we will describe the design and imple-
mentation of a high-performance search cluster, intended to
solve problems similar to the k-neighborhood library prob-
lem. More specifically, the cluster is designed to solve
search problems that share the important characteristics of
(i) being dividable into independent subproblems that can
be solved in parallel with minimal overhead; (ii) consisting
of a large number of queries; and (iii) having a relatively
static dataset. Note in particular that our search architec-
ture’s functionality permits far more advanced queries than
will be used in the motivating example, but in the interest of
simplicity, we will describe the architecture in the context
of the k-neighborhood problem that use simple mismatch

similarities.
The design will be described bottom up, starting with

our previously published special purpose search architec-
ture [14], the PCI card implementation, and how these are
the cornerstones in our cluster of PCs with otherwise ordi-
nary specifications.

3.1 A MISD search architecture

We developed an application specific integrated circuit,
the Pattern Matching Chip (PMC), designed to obtain ex-
treme performance on search problems involving complex
patterns [11,12,14]. Each chip provides 1.024× 1011 char-
acter comparisons per second and permits searching up to
64 independent patterns at 100 MB per second.

To understand the main principle of our design, visualize
the overall operation of the PMC as a stream of data flowing
through the chip from left to right. The data is distributed
to 1,024 processing elements (PEs) via a binary data dis-
tribution tree. The results from the PEs’ comparisons are
then used to obtain the final output in a result processing
tree. We illustrate the chip’s basic function with two simple
queries, namely x|y and xy. That is, either an x or a y in
the former, and an x directly followed by a y in the latter.
Figure 2a) shows how this is mapped to two PEs matching
the respective characters, have them receive the data stream
in parallel, and make the result processing tree perform a
boolean OR operation by reporting a match if the sum of its
two children’s results is greater than or equal to one. Note
that the data flow is illustrated by solid lines in the data dis-
tribution tree. Similarly, the expression xy is matched if
the data flow becomes sequential—that is, the rightmost PE
receives the data flow from its left neighbor—and the result
processing node’s operation is changed to the AND operator,
as shown in figure 2b).

These two queries illustrate how the PMC can utilize par-
allel and sequential data distribution, and use the boolean
OR and AND operators in the result gathering tree to obtain
the desired result.

The processing elements and the result processing nodes
can perform several more advanced operations. The func-
tionality is sufficient to implement limited regular expres-
sion matching [13] excluding nested Kleene closures with
constant response time in arbitrary data. A description of
the architecture along with advanced configuration exam-
ples have been published elsewhere [14], and a detailed
technical note is available from the authors upon request.

3.2 A PCI search card for PC integration

We designed the PMC chip with an integrated PCI in-
terface for wide system compatibility. The host system has
full control over each individual PMC through transparent

PCI-PCI bridges. Each card holds 16 PMC chips along
with local memory, typically 2 GB per card, which gives
128 MB of dedicated memory per PMC. With 1,024 PEs
per chip, the card carries an accumulated 16,384 PEs within
one full length PCI card. The card is powered through the
PCI slot and has a peak power consumption less than 25W.
The distribution of processing across several chips results
in no local hot spot, providing sufficient heat management
through passive cooling of the card. Consequently, there are
no moving parts, and that results in less power consump-
tion, less noise, and increased reliability. These favorable
features are highly important when scaling into a larger sys-
tem.

Using exclusively low-profile surface mount compo-
nents, the cards can be stacked side by side in adjacent PCI
slots without restricting the system’s airflow. In a typical
system, this allows six PCI cards to be inserted into each
server, or a total of 98,304 PEs per machine at 100 MHz
each. This accumulates to about 1013 operations per sec-
ond. Any server grade power supply easily handles this
added system load of 150W.

3.3 Resource scheduling for optimal scalability

The search problems we are considering scale in two
independent dimensions, namely (i) query volume and (ii)
data size. Risvik describes a general framework for design-
ing clusters to handle this kind of search applications [29].
The main principles in this framework are partitioning of
data to handle larger data sizes, and duplication of data to
handle larger query volumes. These design principles have
also been used in the Google search engine [2].

We use the above partitioning principles in our cluster
implementation. First, because of the 128 MB of memory
dedicated to each PMC, we partition a given dataset of size
d MB on p = �d/128� PMCs. To minimize communica-
tions between nodes in the cluster when joining the search
results, we generally divide the data on PMCs located on
the same cluster node. Nevertheless, our cluster implemen-
tation can also handle searches in larger datasets that must
be partitioned on several nodes. For example, in a cluster
where each node has 6 search cards, giving a maximum size
per node of 6 × 16 × 128 MB = 12 GB, we partition a 20
GB dataset on two nodes. In the following, we will, how-
ever, only discuss search problems where the dataset can fit
on one node.

Second, we duplicate the dataset on the remaining PMCs
in the cluster. Thus, in a cluster with n nodes, each equipped
with m search cards, we could at search up to

⌊
n·m·16

p

⌋
in-

stances of the dataset in parallel. Requiring that each dataset
is located on the same node reduces the number of instances
to n ·

⌊
m·16

p

⌋
.

Given some highly parallel search problem, having a

b)a)

= y = x = y = x

≥ 2≥ 1

Figure 2. Data flow, character matching, and result processing for queries a) x|y and b) xy. The data
is fed to the righthand element through a multiplexer for either a) parallel or b) serial evaluation.

large number of queries that can be parallelized with little
overhead, our current partitioning and scheduling algorithm
works as follows:

1. Cluster distribution. The total query space is divided
evenly on the nodes in the cluster.

2. Node distribution. Each node process duplicates the
dataset to be searched on its available PMCs, and runs
a multi-threaded parallel search on these PMCs.

To illustrate this scheduling process, consider the k-
neighborhood library problem described in Section 2. First,
we evenly distribute the |T | entities against which the li-
brary should be designed to the nodes in the cluster. Second,
a separate thread at each node parses the entities, generates
queries for each of the subsequences to be evaluated, and
pushes the queries on a synchronized search queue. The
PMC search threads read the queue, run the searches, and
write the results to a common result pool for post process-
ing. In Section 4.4, we compare the performance of this so-
lution to the theoretical maximum performance of our clus-
ter.

3.4 A cluster with great flexibility

Our current search cluster consists of five rack-mounted
PCs, each being single Pentium4 R© CPU systems with 1 GB
RAM running disk-based Debian Linux as is freely avail-
able from http://www.debian.org. The CPU speed
ranges from 2.4 GHz to 2.8 GHz. Each node has six search
cards for a total of 5 · 1013 comparisons per second. We
currently connect the nodes through a 100 Mbps Ethernet
switch, but as each node has a gigabit Ethernet interface, we
can easily upgrade the cluster network to 1 Gbps if needed.

As Table 1 indicates, we can reach 1 peta comparisons
per second with 100 cluster nodes. To get this size, we
can extend our current fully meshed design by adding ad-
ditional routers and switches. Alternatively, we can use the
tree-based design of [29]. The mesh design is more flex-
ible, but the tree design will reduce network communica-
tions, as this can allow dedicated nodes for post-processing
if required. We would therefore prefer the tree design when,
for instance, searching datasets that must be distributed over
more than one cluster node.

4 Results

We now present the characteristics of our cluster solu-
tion. That is, we present the requirements for maximal
search throughput in the cluster, the memory bandwidth
characteristics, and the cluster’s power consumption. Fi-
nally, we compare the cluster’s observed performance to its
theoretical maximum performance on the k-neighborhood
screening problem outlined in Section 2.

4.1 Theoretical search throughput and scalability

As outlined in Section 3.3, the two main scalability fac-
tors to consider are query volume and data size. The follow-
ing calculations assume that the entire dataset can be held
in the PMC’s local memory. During any search, the CPU
will upload the configuration for the next search into local
memory. The configuration upload time for a single pass in
each server is

tc =
M · C

S
(1)

where M is the number of PMCs in each server, C is the
configuration image size for each chip, and S is the effective

Table 1. Parameters for different system sizes using the current PCI card. Memory per PMC can be
configured between one 64 Mbit SDRAM chip to four 1Gbit devices. 128 MB per PMC is used in this
table.

System PMCs PEs Comparisons/s Memory Bandwidth Power
One chip 1 1,024 1011 128 MB 100 MB/s 1 W
PCI card 16 16,384 1.6·1012 2 GB 1.6 GB/s 25 W
One server 96 98,304 1013 12 GB 9.6 GB/s 350 W
5 nodes 480 491,520 5·1013 60 GB 48 GB/s 1750 W
100 nodes 9600 9,830,400 1015 1.2 TB 1 TB/s 35 kW

PCI bandwidth. In one machine with ninety-six PMCs, tc
becomes approximately 30 ms given an effective PCI band-
width of 50 MB per second.

The search time for a single pass of the data is given as

ts(n) =
n

θmax
, (2)

where n is the amount of data distributed to each chip, and
θmax is the search speed of a single PMC.

Hence, the effective search throughput for each chip is
given as

θs(n) =
{

θmax if tc < ts(n)
ts(n)

tc
θmax otherwise

(3)

We may combine equations 1 through 3 to obtain the
minimum dataset n that must be used for a system of M
PMCs to run at peak bandwidth. A single PMC must search
more than three megabytes per pass, and a six card machine
with ninety-six PMCs consequently must be configured
with almost 300 megabytes or more. As the search time
is linearly dependent on the data size, the search through-
put will not be altered if data is added beyond the minimum
requirement.

Adding more queries can be handled either by running
queries in parallel on more PMCs, alternatively evaluating
groups of queries serially. Either way, more queries or data
only requires a linear increase in run time or compute re-
sources.

4.2 MISD provides better usage of available mem-
ory bandwidth

In a conventional SIMD processor architecture, the
memory bandwidth is usually a major performance bottle-
neck. Additional memory latency reductions demanded by
increasing CPU clock rates, come at the expense of further
increased bandwidth requirements [6]. Traditional proces-
sors compensates the lack of bandwidth with SIMD vector
processing to minimize instruction stream bandwidth [24].
Still, there is a high load on the memory subsystem. System

testing shows a range from 0.2 bytes of data traffic per in-
struction for computationally intensive programs, to 7 bytes
per instruction for memory intensive benchmarks [28].

The MISD architecture of the PMC implies that each
memory access is used more efficiently, i.e. by being pro-
cessed simultaneously by several PEs. Even a petacomp
cluster consisting of 100 servers (see Table 1) will achieve
full performance with 100 · 6 · 16 · 100 MB/s = 1 TB/s
bandwidth. Ordinary low-cost SDRAM can provide this.
Note that the PMC architecture does not have a separate in-
struction stream requiring bandwidth during searches as the
instructions are stored in configuration registers inside each
chip.

4.3 Reduced power consumption

With an energy-efficient MISD architecture, the PMC
system requires very little power to operate. In a server con-
figuration, 35 pJ is used per character comparison including
system overhead (cf. table 1). As a comparison, a CPU
requires about 150 times more energy per character com-
parison assuming 200 W system power and the optimistic
theoretical performance described in Section 6.3.

The power consumption by the PMC itself is around
10 pJ per comparison. The Cell processor [18] uses in
comparison roughly 5 pJ based on a (unrealistic) 100% uti-
lization of 16-wide SIMD instruction issue on every clock.
Based on the same assumptions, the Sun UltraSPARC T1
processor with less parallelism and higher chip power con-
sumption uses around 250 pJ per comparison [21].

4.4 Application performance with near linear
scalability

As outlined in Section 2, the k-neighborhood screening
problem can be solved by measuring the similarity between
each candidate subsequence in the target and each subse-
quence in the rest of the target database. In the following,
we present our k-neighborhood screening solution.

To do a k-neighborhood screening, we use the PMC’s
Hamming distance functionality [14]. The binary tree struc-

ture of the PMC’s data distribution and result gathering tree
results in that a k-neighborhood screening of a string of
length n will use a number of PEs equal to n rounded up
to the nearest power of 2, that is

π(n) = 2�log2 n� (4)

PEs. As a single PMC has 1,024 PEs, it can handle
1024/π(n) k-neighborhood screenings in parallel. So, for
example, one PMC can screen 32 25mers at once (a 25mer
is a nucleotide subsequence of length 25). Note that the
number of parallel screenings is independent of the size of
the neighborhood.

A single PMC can screen up to 128 MB at a rate of 100
MB per second. Thus, if we only consider databases smaller
than 128 MB, a single PMC can theoretically get a through-
put (short oligonucleotide queries per second) of

θ(d, n) =
1024
π(n)

· 100
d

, (5)

where d is the size of the sequence to be screened (in MBs)
and π(n) is defined in (4). By considering more than one
PMC, we can extend this result to an arbitrary data size:

θ(d, n, p) = θ(d, n) · p, (6)

where p is the number of PMCs used and θ(d, n) is defined
in (5). This means that four PMCs screening 25mers in a
database of 200 MB will have a throughput of 64 25mers
per second. A node in our search cluster, having six PCI
cards, achieves a theoretical throughput of 1,536 25mers per
second on the same database.

To test the system, we built libraries that contain the most
specific 25mers from any genomic transcript in the latest
Ensembl release of Human cDNA [4]. This dataset is 65
MB, which means that it fits on a single PMC and that the
PMCs can run at full search speed (see Equation (3)).

Figure 3 shows the true performance plotted against
the theoretical performance when using more PMCs in the
oligonucleotide screening application for a single cluster
node. Note that the performance is nearly linearly scalable
when adding mode nodes, hence increasing the number of
PMCs will increase the performance accordingly. The sys-
tem was set up with non-overlapping configuration, search
and result processing. As these can be pipelined, the ∼ 90%
utilization can be further increased.

In general, the standard similarity search algorithms
from computational biology cannot be used as these ei-
ther lack in performance as is the case with Smith-
Waterman [32] or in sensitivity as is the case with
BLAST [1] (cf. [33]). To put our performance figures
in perspective, we compare them to the results reported
by [25], who used a dynamic programming algorithm to
create a complete k-neighborhood library for a small dataset

of 106 nucleotides. They screened 104 25mers in approxi-
mately one hour on a single CPU of a Compaq GS80 server.
This gives a throughput of approximately three 25mers per
second on this dataset. Because the search time of their al-
gorithm scales linearly with the size of the database, they
would have a throughput of about 0.04 25mers per second
(or about three 25mers per minute) when screening the hu-
man transcriptome. This means that they would need about
103 CPUs to reach the throughput of a single PMC and
nearly 105 CPUs to reach the throughput of a single PMC
server.

Recently, Yamada and Morishita [36] reported an index-
based solution for k-neighborhood screenings of 19mers,
with k ≤ 4, to be used in RNAi experiments. Using a
database of human transcripts (its exact size not listed),
they report a throughput of 140 (k = 3) and 37 (k = 4)
19mers respectively per second on a Dell Precision 650
with a 3.2 GHz Xeon CPU and 2 GB main memory. Al-
though this throughput is comparable to that of a single
PMC chip (for k = 3 and k = 4 one of their CPUs is equiv-
alent to 3.1 and 0.82 PMCs), their solution do not share
the PMCs scalability, power efficiency and flexibility for
handling other known aspects of sequence similarity than
k-neighborhood [10, 31]. Table 2 summarizes these com-
parisons.

5 Other pattern mining applications

The k-neighborhood screening problem referred to
throughout this paper, is an example of a search problem
where you want to find instances in the dataset that satisfy
some known properties. The opposite problem occurs when
you have a dataset with some known properties, and you
want to create a model that characterizes parts of—or even
the complete—dataset. In the former problem, you know
the query and want to find the data that the query matches;
in the latter, you want to find the queries that characterize
the data. The latter problem is also known as data mining.

We have previously described a boosted, hardware ac-
celerated, genetic programming algorithm [30], which cre-
ates models that characterize sequences belonging to some
conceptual class. In [30], we used this algorithm to create
models that predicted whether short oligonucleotides were
effective when used in antisense and RNAi experiments.

Cluster-based solutions are common when using ma-
chine learning to solve data mining problems (for exam-
ple [8, 22]), and there are two main reasons for this. First,
using machine learning requires several independent ex-
periments to establish good method accuracy (for exam-
ple bootstrap [9] and cross-validation [5, 34]—compared
in [20]). These independent experiments require no coor-
dination, and are consequently easy to run in parallel [8].
Second, many data mining problems require large CPU re-

(a)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 20 40 60 80 100

PMCs

Th
ro

ug
hp

ut
 (2

5m
er

s/
se

c)

Theoretical Actual

(b)

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

PMCs

Sp
ee

du
p

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Pe
rc

en
ta

ge
 o

f t
he

or
et

ic
al

Speedup % of theoretical

Figure 3. Performance statistics for 25mer screenings of the human transcriptome on a single cluster
node. The theoretical performance is plotted with the actual performance (a). A single PMC achieves
around 90% of the theoretical maximum performace. Adding mode PMCs results in linear speedup
compared to one chip (b). Each siRNA is screened versus a dataset of 65 MB.

Table 2. Throughput and energy consumption for different siRNA screening implementations versus
a 65 MB dataset. Throughput in the PMC-based solutions is not dependent on the size of the
k-neighborhood. The PMC based solutions have the same throughput for all siRNAs of length 17–32.

Energy
System 25mers/s Power per 25mer
One PMC node 4180 350 W 0.084 J
5 node PMC cluster 20900 1750 W 0.084 J
Melko et al 0.04 1150 W 28750 J
Yamada et al (k = 3)† 140 460 W 3.3 J
Yamada et al (k = 4)† 37 460 W 12.4 J
†Yamada et al used less demanding 19mers in their results.

sources to be solved, hence parallelizing the algorithm may
be the only way to get results [22, 23].

We use the above approaches to parallelize our data min-
ing algorithm on the search cluster. First, we do several
independent runs on each cluster node—the number of par-
allel runs depending both on the number of PMCs available
and the total CPU load. Second, we partition large datasets
on several PMCs, not only to handle datasets larger than
128 MB, but also to speed the search process on smaller
datasets (as per Equation 3). In addition to bioinformatics,
we have applied this within seismic data processing, finan-
cial knowledge mining, and network surveillance [3].

6 Potential system enhancements

Depending on the application, it may be preferable with
slightly different designs. In this section, we list some al-
ternatives that can easily be implemented on our existing
search card if required by a specific application.

6.1 I/O processor on card

Adding an I/O processor to each accelerator card is the
obvious next step for improving the system performance.
These improvements come from one or more of the follow-
ing factors:

• Reduced configuration time. Maintaining 16 PMCs on
each card, these are now configured from the local I/O
processor instead of the CPU. This alters the configu-
ration time in Equation (1) by reducing M to a fixed
value of 16. Correspondingly, optimal query through-
put can be achieved with as little as 0.5 MB of data per
PMC for each query.

• Faster data loading. Loading of data can be handled
locally without CPU intervention. This could be from
a shared system resource like the disk drive, or with
direct connection to a storage subsystem. Combin-
ing broadcasted writes with a sufficient data storage,
a throughput of 800 MB per second are achievable.

• Reduced main CPU load. The I/O processor can parse
and map high level queries to PMC register configura-
tions. This offloads the CPU computationally and in
bandwidth as only compact high level queries need to
be sent to each card. In practice, each I/O processor
could run the cluster node’s applications.

An alternative to implementing an I/O processor on the
card would be to reduce the host server to a minimum. This
could for example be a blade server managing a limited
number of PMCs. Most commercial blade servers include a
proprietary expansion slot, thus such a design would have to

be customized for a specific server brand. The blade server
solution would be more costly and larger than using an I/O
processor, but with the benefit of a single processor archi-
tecture for the software.

6.2 Network interface on card

In the network surveillance applications the data can be
fed directly to the card by adding a network interface. This
would most likely be combined with an I/O processor as de-
scribed in section 6.1, which will handle the network stack
as well as all of the PMC resources.

6.3 CPUs instead of PMCs

The high production volumes of CPUs allow extensive
design and manufacturing efforts. Consequently one should
expect a CPU to achieve higher clock rates than a stan-
dard cell ASIC like the PMC. With an increasing number
of parallel pipelines in the CPU, the CPU’s number of op-
erations per second will approach the PMC’s. For exam-
ple, a 3.8 GHz Pentium4 R© processor can in one clock cycle
execute eight byte comparisons with the streaming single
instruction multiple data (SIMD) unit, potentially in paral-
lel with two ALU-operations [17]. Theoretically, this accu-
mulates to 38 billion comparisons per second, approaching
the 100 billion comparisons for a single PMC chip. De-
spite this narrow gap in performance, the PMC architecture
has several advantages that makes it more feasible for high-
performance pattern mining clusters than a standard CPU.

• The PMC operates closer to peak performance. The
SIMD architecture of the CPU allows parallel compar-
isons, but not parallel branching dependent of individ-
ual results. For anything but long fixed keyword com-
parisons, which are easily handled by indexing rather
than brute force comparisons, the CPU will not reach
its peak performance. The MISD architecture of the
PMC chip, or the MIMD architecture of our cluster, is
more appropriate.

• The PMC executes patterns directly, without overhead.
Evaluating regular expressions is much more than the
low level comparisons. While the PMC has sepa-
rate units for handling these functions, a CPU must
use the same processing core as for the comparisons
themselves. Fine grained pattern matching results in a
large number of data dependent branching, which ef-
fectively kills the performance of super-scalar specular
out-of-order execution.

• The PMC’s design has a much higher potential. In
this comparison, the CPU has a technology advantage
being fabricated on a 90 nm process. With a similar

PMC

SDRAM

PCI-PCI
bridge

System bus

I/O
processor PCI

PMC

SDRAM

PCI

SDRAMNetwork
interface

Figure 4. Block diagram of accelerator card with built in I/O processor and optional network interface.
The I/O processor might also connect directly to other peripherals like a storage subsystem.

process the PMC would integrate five times more pro-
cessing elements, in addition to a potential increase in
operating speed.

• The PMC has much lower power requirements. The
thermal design power of the CPU used is 115 W, ex-
cluding required support circuitry and memory. For
the PMC, this number is 1 W for the chip alone, 1.5 W
including peripherals and memory.

Taking these factors into account, the performance advan-
tage of the PMC increases, especially when building a peta-
comp cluster (see Table 1). Using nrgrep [27] on a 1 GHz
Pentium3 R© as a benchmark for evaluating regular expres-
sions, a single PMC demonstrated a three orders of magni-
tude increase in speed [15]. The PMC system also scaled
better with increasing data volumes.

6.4 Integration of PMC and memory

Even denser systems can be built by integrating memory
and processing on the same die. This approach is limited to
relatively small memory arrays, e.g. 8 MB per chip, as em-
bedded memory can not be packed as dense as in a separate
memory chip. As an intermediate alternative, a multi chip
module (MCM) can be constructed.

Any such integration eliminates the memory sizing flex-
ibility with the current configuration, as well as the cost ad-
vantage of using standard memory components. The inte-
gration also implies suboptimal implementation of both the
compute and memory function [19, 28]. It would thus only

be viable for applications with moderate memory volume
demands.

7 Summary of this work

We have presented a supercomputing cluster for pattern
mining purposes. The MIMD cluster is based on search
processors with MISD architectures, and it seems that this
is one of the first MISD implementations ever to find prac-
tical applications. The search processor’s architecture is
patented [11, 12] and details on its functionality and per-
formance in a single chip configuration has been published
elsewhere [14].

We have demonstrated that the performance of our clus-
ter is orders of magnitude higher for pattern mining pur-
poses than can be obtained with similar-sized clusters of
machines with ordinary CPUs. The high computational
density is due to a power efficient core element with a high
utilization of the available memory bandwidth.

References

[1] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman. Basic local alignment search tool. J. Mol. Biol.,
215(3):403–410, 1990.

[2] L. A. Barroso, J. Dean, and U. Hölzle. Web search for
a planet: The google cluster architecture. IEEE Micro,
23(2):22–28, 2003.

[3] O. R. Birkeland, M. Nedland, and O. Snøve Jr. Mas-
sively parallel MIMD system achieves high performance in

a spam filter. In Proceedings of Parallel Computing (ParCo),
September 2005. to be printed.

[4] E. Birney, D. Andrews, P. Bevan, M. Caccamo, G. Cameron,
Y. Chen, L. Clarke, G. Coates, T. Cox, J. Cuff, V. Cur-
wen, T. Cutts, T. Down, R. Durbin, E. Eyras, X. Fernandez-
Suarez, P. Gane, B. Gibbins, J. Gilbert, M. Hammond,
H. Hotz, V. Iyer, A. Kahari, K. Jekosch, A. Kasprzyk,
D. Keefe, S. Keenan, H. Lehvaslaiho, G. McVicker, C. Mel-
sopp, P. Meidl, E. Mongin, R. Pettett, S. Potter, G. Proc-
tor, M. Rae, S. Searle, G. Slater, D. Smedley, J. Smith,
W. Spooner, A. Stabenau, J. Stalker, D. Storey, A. Ureta-
Vidal, C. Woodwark, M. Clamp, and T. Hubbard. Ensembl
2004. Nucleic Acids Res., 32(1):468–470, 2004.

[5] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees. Wadsworth, Belmont,
CA, 1984.

[6] D. Burger, J. R. Goodman, and A. Kägi. Memory bandwidth
limitations of future microprocessors. In 23rd International
Symposium on Computer Architecture (ISCA), pages 78–89.
IEEE Computer Society, May 1996.

[7] A. Chalmers and J. Tidmus. Practical Parallel Processing.
International Thompson Computer Press, 1996.

[8] I. Dutra, D. Page, V. Santos Costa, J. Shavlik, and M. Wad-
dell. Toward automatic management of embarrassingly par-
allel applications. In Euro-Par 2003 Parallel Processing,
volume 2790 of Lecture Notes in Computer Science, pages
509–516, 2003.

[9] B. Efron and R. J. Tibshirani. An Introduction to the Boot-
strap. Chapman & Hall, New York, 1993.

[10] S. M. Elbashir, J. Martinez, A. Patkaniowska, W. Lendeckel,
and T. Tuschl. Functional anatomy of siRNAs for mediating
efficient RNAi in drosophila melanogaster embryo lysates.
EMBO J., 20(23):6877–6888, 2001.

[11] Fast Search & Transfer ASA. Digital processing device,
2000. International publication number WO 00/22545.

[12] Fast Search & Transfer ASA. A processing circuit and
a search processor circuit, 2000. International publication
number WO 00/29981.

[13] J. E. Friedl. Mastering Regular Expressions. O’Reilly, Cam-
bridge, MA, 2nd edition, 2002.

[14] A. Halaas, B. Svingen, M. Nedland, P. Sætrom, O. Snøve
Jr., and O. R. Birkeland. A recursive MISD architecture for
pattern matching. IEEE Trans. on VLSI Syst., 12(7):727–
734, 2004.

[15] M. L. Hetland and P. Sætrom. A comparison of hardware
and software in sequence rule evolution. In Eight Scandina-
vian Conference on Artificial Intelligence, 2003.

[16] K. Hwang and F. A. Briggs. Computer Architecture and
Parallel Processing. McGraw-Hill Book Company, 1985.
page 32–35.

[17] Intel Corporation. IA-32 Intel R© architecture opti-
mization reference manual. Technical report, Intel
Corporation, 2004. This manual is available from
http://developer.intel.com/design/
Pentium4/documentation.htm.

[18] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy. Introduction to the Cell mul-
tiprocessor. IBM Journal on Research & Development,
49(4/5):589–604, July/September 2005.

[19] G. Kirsch. Active memory: Micron’s Yukon. In 17th In-
ternational Parallel and Distributed Processing Symposium
(IPDPS), page 89. IEEE Computer Society, 2003.

[20] R. Kohavi. A study of cross-validation and bootstrap for
accuracy estimation and model selection. In Proc. of the
14th IJCAI, pages 1137–1143, 1995.

[21] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-
way multithreaded sparc processor. IEEE Micro, 25(2):21–
29, March/April 2005.

[22] J. R. Koza, David Andre, F. H. Bennett III, and M. Keane.
Genetic Programming 3: Darwinian Invention and Problem
Solving. Morgan Kaufmann Publishers, San Fransisco, CA,
Apr 1999.

[23] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu,
and G. Lanza. Genetic Programming IV: Routine Human-
Competitive Machine Intelligence. Kluwer Academic Pub-
lishers, 2003.

[24] C. Kozyrakis and D. Patterson. Overcoming the limitations
of conventional vector processors. In 30th International
Symposium on Computer Architecture (ISCA), pages 399–
409. IEEE Computer Society, Jun 2003.

[25] O. Melko and A. Mushegian. Distribution of words with a
predefined range of mismatches to a DNA probe in bacterial
genomes. Bioinformatics, 20(1):67–74, 2004.

[26] N. R. Adiga et al. An overview of the BlueGene/L super-
computer. In IEEE, editor, SC2002: From Terabytes to In-
sight. Proceedings of the IEEE ACM SC 2002 Conference,
2002.

[27] G. Navarro. NR-grep: a fast and flexible pattern matching
tool. Software Practice and Experience (SPE), 31:1265–
1312, 2001.

[28] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Kee-
ton, C. Kozyrakis, R. Thomas, and K. Yelick. A case for
intelligent RAM: IRAM. IEEE Micro, 17(2):34–44, Apr
1997.

[29] K. M. Risvik. Scaling Internet Search Engines: Methods
and Analysis. PhD thesis, NTNU, Trondheim, Norway, May
2004.

[30] P. Sætrom. Predicting the efficacy of short oligonucleotides
in antisense and RNAi experiments with boosted genetic
programming. Bioinformatics, 20(17):3055–3063, 2004.

[31] S. Saxena, Z. O. Jónsson, and A. Dutta. Implications for off-
target acitivity of small inhibitory RNA in mammalian cells.
J. Biol. Chem., 278(45):44312–44319, 2003.

[32] T. F. Smith and M. S. Waterman. Identification of com-
mon molecular subsequences. J. Mol. Biol., 147(1):195–
197, 1981.

[33] O. Snøve Jr. and T. Holen. Many commonly used siRNAs
risk off-target activity. Biochem. Biophys. Res. Commun.,
319(1):256–263, 2004.

[34] M. Stone. Cross-validatory choice and assessment of sta-
tistical predictions. Journal of the Royal Statistical Society.
Series B (Methodological), 36(2):111–147, 1974.

[35] A. J. van der Steen and J. J. Dongarra. Overview of recent
supercomputers. Technical report, EuroBen, October 2004.
This 14th issue of the annual report is available from http:
//www.top500.org/ORSC/2004/.

[36] T. Yamada and S. Morishita. Accelerated off-target search
algorithm for siRNA. Bioinformatics, 21(8):1316–1324,
2005.

Paper III

Sequence Explorer: interactive
exploration of genomic sequence
data

Sequence Explorer: interactive exploration of

genomic sequence data

Ola Snøve Jr. a H̊akon Humberset a Olaf René Birkeland a

P̊al Sætrom a,∗,

aInteragon AS, Medisinsk teknisk senter, NO-7489 Trondheim, Norway

Abstract

Current solutions for complex motif searching in DNA and protein sequences are not
interactive as users usually wait tens of seconds before the results can be viewed. We
propose a hardware-accelerated client-server solution that is fast enough to retain
the interactive feeling even when screening whole genomes.

We structured our framework for interactive sequence analysis around query,
dataset, filter, and result presentation modules. The query and dataset specifica-
tion enable simultaneous, interactive screening of multiple complex queries against
several datasets. The filters impose restrictions such as only allowing hits to be re-
ported if they occur in coding regions, and the different result presentations include
histograms and hit lists.

Our results show that interactive searching is possible even though response times
vary significantly depending on filter, network bandwidth and hit frequencies. With
a relatively small server, we obtain response times of about one and a half second on
gigabytes of data when queries are sufficiently specific to avoid network bottlenecks
due to high hit frequencies.

Key words: siRNA, RNA interference, efficacy prediction

Searching RNA, DNA, and protein sequence data usually means looking for
similarities between a query sequence and some database. The Smith-Waterman
algorithm [12] is the most sensitive algorithm, but it is very CPU intensive,
which is why several heuristic approaches have emerged with great success.

∗ Corresponding author. Fax: +47 455 94 458
Email addresses: ola.snove@interagon.com (Ola Snøve Jr.),

haakon.humberset@interagon.com (H̊akon Humberset),
olaf.rene.birkeland@interagon.com (Olaf René Birkeland),
paal.saetrom@interagon.com (P̊al Sætrom).

Preprint submitted to 14 April 2005

Notable heuristics include FASTA [8], BLAST [1], ParAlign [9], and Pattern-
Hunter [6]. Similarity search algorithms may, however, be too advanced when
searching for occurrences and distributions of simple motifs such as repeti-
tive sequences or transcription factor binding sites in genomic data. Regular
expressions are widely used for pattern matching in text [3], and specialized
versions of the familiar algorithms have been proposed for DNA and protein
sequences [11]. Betel and Hogue showed that low-level pattern matching was
valuable in identifying genetic targets in a cancer characterized by a high
frequency of mutations in coding regions containing mononucleotide repeats
[2].

Due to novel algorithms, improved implementations, and increased CPU speed,
similarity search algorithms now have acceptable response times when running
on large publicly funded and freely available supercomputers. Pattern match-
ing algorithms are also impressive for some purposes, but the process is still not
interactive when screening for complex patterns in large volumes of sequence
data. We hypothesize that many ideas do not realize their full potential be-
cause biologists can not (i) query sequence databases with biological questions;
(ii) view the results at the appropriate abstraction level; and (iii) explore the
search space and develop their hypotheses interactively. For example, when
searching the genome looking for disease genes that display some sequence
features found in a family of known genes, a researcher may initially want to
focus on genomic positions that are close to known promoter loci. Further-
more, comparing high-level results such as hit rate distributions from several
different genomes might be valuable. Finally, observing the results while vary-
ing the search parameters such as distance bounds and fuzziness may reveal
important differences between genomes.

We have developed a client-server solution that aims to provide interactive
searches at different abstraction levels. The client’s graphical user interface
consists of four main panes that correspond to pattern, filter, dataset, and
result specifications. A common feature for all panes is that layered specifi-
cations is possible; that is, the user can specify multiple questions and result
views that will be executed simultaneously. A screening against all specified
datasets is performed whenever the queries change, which means that result
differences due to changes in query parameters are observed almost instanta-
neously. As queries are automatically scheduled for execution when they are
constructed, we have removed the familiar “submit” button because we felt
that it would prevent the application from being truly interactive. To avoid
excessive scheduling, we have introduced a quiet time frame from the last
character entry to query submission. Furthermore, to maintain interactivity,
an ongoing search is automatically aborted if its results have not been re-
ported at the time its corresponding query is altered in the client. The user
may pose restrictions on queries by adding filters such as requiring that only
hits in coding regions should be reported. We aim for result presentations that

2

enable researchers to quickly grasp the important information without being
distracted by annotation that is only needed if the results justify careful in-
vestigation. That being said, the application provides linkouts to annotation
from the region surrounding individual hits.

We use special purpose search processors on PCI search cards to accelerate
standard workstations for pattern-matching purposes. The high performance
of these processors is critical to get interactive searches in gigabytes of data.
Each chip can screen anything from one to sixty-four patterns against 100
MB depending on the queries’s complexity [4]. A single chip is three orders of
magnitude faster for regular expression-searching than “nr-grep” [7] running
on a 1 GHz Pentium III with 256 MB of memory [5]. Furthermore, there are
sixteen chips with local memory on the search card, which means that the
theoretical throughput of each card is 1.6 GB per second.

The search processor is designed to match fuzzy patterns in arbitrary data.
We have developed the Interagon Query Language (IQL) that uses regular
expression-like syntax to take advantage of the search processor’s function-
ality. Although similar to regular expressions, the language has features not
feasible in software. Especially, this is the case for n of m expressions; that is,
“match n out of m subparts” where the latter can be everything from a single
sequence of characters to complex patterns defined by the language. Moreover,
the possibility of specifying that two patterns of arbitrary complexity should
be separated by some length, or be present in a specific order, is useful. (See
the tutorial in the supplementary information for practical examples on us-
ing IQL for interactive exploration of DNA sequence data.) IQL is neither
specialized for DNA searching nor optimized with respect to this particular
application, but should have sufficient functionality to illustrate the potential
of interactive searching. The language does, for example, easily support both
Prosite patterns and position weight matrices.

Our results show that we can interactively search entire genomes by using
special-purpose pattern-matching hardware to accelerate a standard worksta-
tion. Typical response times are a few seconds depending on the query com-
plexity. Because of network transfer limitations, simple patterns with high hit
rates get high response times. To reduce this negative effect, we do not report
all the results for queries with high hit rates. Simple patterns are however
seldom very informative, and we therefore question whether this limitation
has practical consequences. Furthermore, filters sometimes hamper the perfor-
mance, especially if there are many hits being post processed. We are currently
working on finding ways to implement faster filters.

We believe that our interactive search tool will be valuable for iterative hy-
pothesis testing and refinement. By integrating a machine learning algorithm
that automatically creates pattern hypotheses (for example, [10]), researchers

3

can also investigate problems where they only have some qualitative descrip-
tion of the desired solution, and thus cannot formulate the initial pattern
hypothesis themselves. The interactive tool can then be used to further in-
vestigate or refine the pattern hypotheses generated by the machine learning
algorithm. We are currently investigating this approach.

Supplementary information

A Java client querying a hosted server is freely available upon request at http:
//www.interagon.com/demo/. Four chromosomes are available in this demo
version of the server. In addition to the demo application, a tutorial describing
system requirements, installation, and use of the program is available along
with a technical note on the Interagon Query Langauge.

Acknowledgements

We thank H.E. Krokan, F. Drabløs, A. Halaas, T.B. Grünfeld, S.H. Fjeldstad,
and M. Nedland for valuable help during the development of this demo. The
work was supported by the Norwegian Research Council, grants 151899/150
and 151521/330, and the bioinformatics platform at the Norwegian University
of Science and Technology, Trondheim, Norway.

References

[1] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and
David J. Lipman. Basic local alignment search tool. J. Mol. Biol., 215
(3):403–410, 1990.

[2] Doron Betel and Christopher W.V. Hogue. Kangaroo - a pattern-
matching program for biological sequences. BMC Bioinformatics, 3(1):
20–22, 2002.

[3] Jeffrey E.F. Friedl. Mastering Regular Expressions. O’Reilly, Cambridge,
MA, 2nd edition, 2002.

[4] Arne Halaas, Børge Svingen, Magnar Nedland, P̊al Sætrom, Ola Snøve
Jr., and Olaf Renè Birkeland. A recursive MISD architecture for pattern
matching. IEEE Trans. on VLSI Syst., 12(7):727–734, 2004.

[5] Magnus Lie Hetland and P̊al Sætrom. A comparison of hardware and
software in sequence rule evolution. In Eight Scandinavian Conference
on Artificial Intelligence, 2003.

4

[6] Bin Ma, John Tromp, and Ming Li. PatternHunter: faster and more
sensitive homology search. Bioinformatics, 18(3):440–445, 2002.

[7] Gonzalo Navarro. NR-grep: a fast and flexible pattern matching tool.
Software Practice and Experience (SPE), 31:1265–1312, 2001.

[8] William R. Pearson and David J. Lipman. Improved tools for biological
sequence comparison. J. Mol. Biol., 85(8):2444–2448, 1988.

[9] Torbjørn Rognes. ParAlign: a parallel sequence alignment algorithm for
rapid and sensitive database searches. Nucleic Acids Res., 29(7):1647–
1652, 2001.

[10] P̊al Sætrom. Predicting the efficacy of short oligonucleotides in antisense
and RNAi experiments with boosted genetic programming. Bioinformat-
ics, 20(17):3055–3063, 2004.

[11] S.S. Sheik, Sumit K. Aggarwal, Anindya Poddar, N. Balakrishnan, and
K. Sekar. A fast pattern matching algorithm. J. Chem. Inf. Comput.
Sci., 44(4):1251–1256, 2004.

[12] Temple F. Smith and Michael S. Waterman. Identification of common
molecular subsequences. J. Mol. Biol., 147(1):403–410, 1981.

5

Paper IV

Designing effective siRNAs with
off-target control

Designing effective siRNAs with off-target control

Ola Snøve Jr.1, Magnar Nedland1, Ståle H. Fjeldstad, Håkon Humberset,
Olaf R. Birkeland, Thomas Grünfeld, Pål Sætrom*

Interagon AS, Medisinsk teknisk senter, NO-7489 Trondheim, Norway

Received 7 October 2004
Available online 6 November 2004

Abstract

Successful gene silencing by RNA interference requires a potent and specific depletion of the target mRNA. Target candi-
dates must be chosen so that their corresponding short interfering RNAs are likely to be effective against that target and unli-
kely to accidentally silence other transcripts due to sequence similarity. We show that both effective and unique targets exist in
mouse, fruitfly, and worm, and present a new design tool that enables users to make the trade-off between efficacy and unique-
ness. The tool lists all targets with partial sequence similarity to the primary target to highlight candidates for negative
controls.
� 2004 Elsevier Inc. All rights reserved.

Keywords: siRNA design; RNAi; Gene silencing; Efficacy prediction; Uniqueness; Specificity; Off-target effects

Sequence-specific knockdown of mRNA is a natu-
rally occurring mechanism in many organisms: posttran-
scriptional gene silencing in plants [1], quelling in fungi
[2], and RNA interference (RNAi) in flies [3], nematodes
[4], and mammals [5]. They all have in common that Di-
cer, a ribonuclease III enzyme, initiates the silencing
pathways by cleavage of long double-stranded RNA
into shorter duplexes [6]. These short interfering RNAs
(siRNAs) are 21–23 nucleotides long and have charac-
teristic 3 0 overhangs of two nucleotides [7]. The thermo-
dynamic properties of the siRNA determine which of
the two strands is incorporated into the RNA induced
silencing complex [8,9], a ribonucleoprotein complex
that mediates sequence-specific cleavage of mRNA by

recognition of sites complementary to its RNA
component [10].

The sequence-specificity of RNAi is still unclear. For
example, one group reported that a single central mis-
match between the siRNA and its target mRNA is en-
ough to abolish silencing in Drosophila [3], whereas
another group published conflicting results [11]. Yet an-
other group has shown that siRNAs targeting the hu-
man tissue factor generally tolerated single mismatches
but that mismatches at the 3 0 end of the strand comple-
mentary to the mRNA were more harmful than 5 0 mis-
matches [12]. Microarray approaches have not been able
to settle the controversy as both widespread [13,14] and
non-existing [15,16] off-target gene regulation has been
reported. Moreover, there is also a risk that siRNAs
may function as microRNAs [17,18], a class of non-cod-
ing RNAs that are incorporated in a ribonucleoprotein
complex called microRNP that may repress protein
translation of mRNA with partial complementarity to
the microRNA (see [19] for a review).

Even the earliest siRNA design rules stated that po-
tential sequences should be checked for similarity with

0006-291X/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.bbrc.2004.10.097

* Corresponding author. Fax: +47 455 94 458.
E-mail addresses: ola.snove@interagon.com (O. Snøve Jr.), magnar.

nedland@interagon.com (M. Nedland), staale.fjeldstad@interagon.
com (S.H. Fjeldstad), haakon.humberset@interagon.com (H. Humber-
set), olaf.birkeland@interagon.com (O.R. Birkeland), thomas.grunfeld@
interagon.com (T. Grünfeld), paal.saetrom@interagon.com (P. Sætrom).

1 These authors contributed equally to this work.

www.elsevier.com/locate/ybbrc

Biochemical and Biophysical Research Communications 325 (2004) 769–773

BBRC

other genes to ensure that only a single transcript is tar-
geted [20]. We recently showed, however, that most
commonly used siRNAs risk off-target gene regulation
due to sequence similarity with other transcripts [21].

About one in five randomly selected siRNAs will be
effective at silencing their targets. Several criteria and
algorithms for rational design of siRNAs have been pro-
posed [20,8,9,22–30]. The methods aim to increase the
probability of selecting effective siRNAs. We recently re-
ported that only the Reynolds et al. [22], Ui-Tei et al.
[24], Amarzguioui and Prydz [27], and Sætrom
(GPboost) [30] methods seem to have a high and stable
performance across several independent datasets [31].

Several commercial vendors have offered pools of
siRNAs targeting the same transcript to increase the
probability of getting target knockdown. (Note that a
pool of four siRNAs where each has a 50% probability
of being effective has an accumulated 94% chance of
being effective assuming independent probabilities.) This
approach may not be appropriate, at least not for ther-
apeutic purposes. First, the risk for off-target gene regu-
lation increases with pooled siRNAs as more potential
targets with (partial) similarity exist. Second, even siR-
NAs have been shown to trigger the interferon response
[32,33], apparently in a concentration-dependent man-
ner [14]. Third, RNAi may be prone to saturation,
which means that unprocessed siRNAs remain in the
cell free to enter other cellular pathways [34]. It is there-
fore important to find targets that are effectively silenced
at the lowest possible concentrations and pooled ap-
proaches may not be amenable to this requirement.

We aim to bridge the gap between efficacy algorithms
and uniqueness requirements and will show that many
siRNA target sites that are predicted to be highly effec-
tive and sufficiently unique are available for most tar-
gets. An online application where the users are able to
make qualified trade-offs between predicted efficacy
and risk for off-target activity accompanies the results
and will be presented throughout this article.

Materials and methods

Datasets. For this study, we performed complete off-target
screenings on the mouse, fruitfly, and worm transcriptomes from En-
sembl [35]; more specifically, Mus musculus version 32b (NCBI: m32),
Drosophila melanogaster version 3a (NCBI: BGDP 3.1), and Caenor-

habditis elegans version 116a (NCBI: WS 116).
Hardware. Our online server runs Debian Woody Linux on a

2.8 GHz Pentium 4 processor with 1024 MB RAM and special purpose
search processors. The Pattern Matching Chip (PMC; Interagon AS,
Trondheim, Norway) is an application-specific integrated circuit
(ASIC) designed to provide orders of magnitude higher performance
than that of comparable regular expression matchers [36]. The server is
equipped with five PCI cards, which amounts to 80 PMCs and a
capacity to screen 64 complex patterns against 8.0 GB/s.

Uniqueness algorithm. We evaluate the risk for off-target effects by
screening siRNAs for uniqueness in the transcriptome using our spe-

cial purpose search processors. BLAST [37] is not applicable for this
purpose as it is prone to miss potentially important matches when the
queries are short [21]. Other heuristics such as FASTA [38], ParAlign
[39], and PatternHunter [40] use similar pruning schemes as BLAST to
avoid searching parts that are unlikely to contain matches; thus, only
the time-consuming Smith–Waterman algorithm [41] is guaranteed to
yield complete results. In this particular application we run ungapped
Smith–Waterman with special treatment of G:U wobble basepairing;
more advanced constructs with insertions and deletions as well as
weighting of mismatch positions are also possible using our hardware.

Efficacy algorithms. Several siRNA efficacy predictors run on our
online server, including that of Sætrom [30], Amarzguioui and Prydz
[27], Hsieh et al. [23], Reynolds et al. [22], Schwarz et al. [8], Chalk
et al. [28], Takasaki et al. [29], and Ui-Tei et al. [24]. The algorithms are
implemented as previously described by our group in [31].

Availability. Our online demo version screens the mouse tran-
scriptome and is available on http://www.interagon.com/demo/ (re-
quires registration). Full siRNA libraries are available for all
sequenced species in commercial and academic partnerships.

Results

Our siRNA design tool is largely based on our previ-
ous work with siRNA efficacy [31] and off-target risk
[21]. Fig. 1 shows several screenshots from the demo ver-
sion that is available online.

We have previously shown that unique siRNAs are
available, at least for the human transcriptome [21],
and that four publicly available efficacy algorithms have
a high and stable performance across several datasets
[31]. But how many sufficiently unique siRNAs have a
high efficacy prediction, and vice versa? Assuming that
the probabilities pu that a sequence is unique and pe that
a sequence is effective are independent yields the proba-
bility pupe that the sequence is both unique and effective
(according to efficacy predictors).

Table 1 shows the average value of pe with 95% con-
fidence intervals for M. musculus, D. melanogaster, and
C. elegans, given different levels of specificities for the
GPboost efficacy predictor [30]. (The output of a
GPboost classifier is on a scale from �1 to 1, and 19mers
with scores above a threshold value are regarded as
effective. Increasing the threshold yields higher specific-
ity, but at the expense of a lower sensitivity.) The values
are the average of pe as has been exhaustively computed
for different levels of specificity under the assumption
that efficacy is independent of uniqueness.

Fig. 2 shows that unique 19mers will be available for
most transcripts of a certain length on all levels up to
three mismatches; that is, the siRNAs are unique for
one target site even if up to three mismatches are al-
lowed between the siRNA and other sites in the tran-
scriptome. The average transcript of 2000 bp will
therefore contain more than one unique siRNA on all
uniqueness levels except for (3,0) even if you allow only
one percent false negative efficacy predictions
(Sp = 0.99). Note that about half of the transcripts are
expected to contain effective siRNAs at the (3,0) level.

770 O. Snøve Jr. et al. / Biochemical and Biophysical Research Communications 325 (2004) 769–773

Surprisingly, the assumption that efficacy and
uniqueness are independent features may not be entirely
valid as demonstrated by the line for C. elegans in Fig. 3.

These are the true dependencies as the curves have been
calculated exhaustively; that is, we have determined
both predicted efficacy and uniqueness level for all

Fig. 1. Screenshots of (A) the selection screen where the users input the RNA sequence or accession number and choose an siRNA efficacy predictor;
(B) the scatter plot showing predicted efficacy versus uniqueness for each siRNA; (C) the result overview where the siRNAs are ranked according to
predicted efficacy and uniqueness; and (D) the alignment of the ranked siRNAs with potential off-target regions.

Table 1
pe with 95% confidence intervals when the siRNA efficacy predictor has specificities of 0.99, 0.95, 0.90, and 0.75

Species Specificity

0.99 0.95 0.90 0.75

M. musculus 0.127 ± 0.008 0.214 ± 0.011 0.282 ± 0.012 0.392 ± 0.012
D. melanogaster 0.120 ± 0.002 0.203 ± 0.003 0.270 ± 0.005 0.378 ± 0.009
C. elegans 0.184 ± 0.034 0.294 ± 0.049 0.376 ± 0.056 0.498 ± 0.063

O. Snøve Jr. et al. / Biochemical and Biophysical Research Communications 325 (2004) 769–773 771

19mers in the given transcriptomes. The averages pre-
sented in Table 1 should, however, represent good
approximations as the differences in pe are relatively
small. Moreover, it appears that C. elegans has a higher
fraction of effective siRNAs, and that efficacy decreases
with higher uniqueness, whereas D. melanogaster and
M. musculus do not show this dependency. We hypoth-
esized that the lower GC-content in C. elegans resulted
in higher efficacy prediction values; however, such a
dependency was not confirmed when generating random
19mers with identical base composition (data not
shown).

It may not be important if a siRNA unintentionally
targets a mRNA that is known to be unrelated to the
pathway under study. We therefore list all potential
off-target matches so that the users are able to evaluate
the risk with respect to the biology of their experiments.

Discussion

We have shown that the average transcript of 2000 bp
in M. musculus, D. melanogaster, and C. elegans will

contain several siRNAs that are both unique and effec-
tive. Thus, effective RNAi with risk of off-target effects
should be viable for most transcripts from these
genomes.

The presented siRNA design tool lists all candidates
for off-target mRNA depletion, given that the mecha-
nism depends only on mismatches and G:U wobbles be-
tween siRNA and target. We suggest that targets on this
list become candidates for negative controls in silencing
experiments. We propose, however, that the potential
for translational repression by microRNAs will become
an even bigger challenge in siRNA design. We therefore
work on including algorithms for microRNA off-target
effect predictions in future versions of the design tool.

Acknowledgments

We thank O. Sætrom, F. Drabløs, and A. Halaas for
valuable comments on the manuscript.

References

[1] D. Baulcombe, Fast forward genetics based on virus-induced gene
silencing, Curr. Opin. Plant Biol. 2 (2) (1999) 109–113.

[2] N. Romano, G. Macino, Quelling: transient inactivation of gene
expression in Neurospora crassa by transformation with homol-
ogous sequences, Mol. Microbiol. 6 (22) (1992) 3343–3353.

[3] S. Elbashir, J. Martinez, A. Patkaniowska, W. Lendeckel, T.
Tuschl, Functional anatomy of siRNAs for mediating efficient
RNAi in Drosophila melanogaster embryo lysates, EMBO J. 20
(23) (2001) 6877–6888.

[4] A. Fire, S. Xu, M. Montgommery, S. Kostas, S. Driver, C.
Mello, Potent and specific genetic interference by double-stranded
RNA in Caenorhabditis elegans, Nature 391 (6593) (1998) 806–
811.

[5] S. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, T.
Tuschl, Duplexes of 21-nucleotide RNAs mediate RNA interfer-
ence in cultured mammalian cells, Nature 411 (6836) (2001) 494–
498.

[6] E. Bernstein, A. Caudy, S. Hammond, G.J. Hannon, Role for a
bidentate ribonuclease in the initiation step of RNA interference,
Nature 409 (6818) (2001) 295–296.

[7] P. Zamore, T. Tuschl, P. Sharp, D. Bartel, RNAi: double-
stranded RNA directs the ATP-dependent cleavage of mRNA at
21 to 23 nucleotide intervals, Cell 101 (1) (2000) 25–33.

[8] D.S. Schwarz, G. Hutvágner, T. Du, Z. Xu, N. Aronin, P.D.
Zamore, Asymmetry in the assembly of the RNAi enzyme
complex, Cell 115 (2003) 199–208.

[9] A. Khvorova, A. Reynolds, S.D. Jayasena, Functional siRNAs
and miRNAs exhibit strand bias, Cell 115 (2003) 209–216.

[10] J. Martinez, T. Tuschl, RISC is a 5 0 phosphomonoester-producing
rna endonuclease, Genes Dev. 18 (9) (2004) 975–980.

[11] A. Boutla, C. Delidakis, I. Livadaras, M. Tsagris, M. Tabler,
Short 5 0-phosphorylated double-stranded RNAs induce RNA
interference in Drosophila, Curr. Biol. 11 (22) (2001) 1776–1780.

[12] M. Amarzguioui, T. Holen, E. Babaie, H. Prydz, Tolerance for
mutations and chemical modifications in a siRNA, Nucleic Acids
Res. 31 (2) (2003) 589–595.

[13] A. Jackson, S. Bartz, J. Schelter, S. Kobayashi, J. Burchard, M.
Mao, B. Li, G. Cavet, P. Linsley, Expression profiling reveals off-

Fig. 3. pe depends on the uniqueness level, but shows small variations.
The given curves for pe are given for specificity 0.99 for the efficacy
predictions; other specificities show similar results (data not shown).

Fig. 2. Probabilities of an siRNA being unique even if a certain
number of mismatches and G:U wobbles are allowed between the
siRNA and its target.

772 O. Snøve Jr. et al. / Biochemical and Biophysical Research Communications 325 (2004) 769–773

target gene regulation by RNAi, Nat. Biotechnol. 21 (6) (2003)
635–637.

[14] S. Persengiev, X. Zhu, M. Green, Nonspecific, concentration-
dependent stimulation and repression of mammalian gene expres-
sion by small interfering RNAs, RNA 10 (1) (2004) 12–18.

[15] J.-T. Chi, H. Chang, N. Wang, D. Chang, N. Dunphy, P. Brown,
Genomewide view of gene silencing by small interfering RNAs,
Proc. Natl. Acad. Sci. USA 100 (11) (2003) 6343–6346.

[16] D. Semizarov, L. Frost, A. Sarthy, P. Kroeger, D. Halbert, S.
Fesik, Specificity of short interfering RNA determined through
gene expression signatures, Proc. Natl. Acad. Sci. USA 100 (11)
(2003) 6347–6352.

[17] J. Doench, C. Petersen, P. Sharp, siRNAs can function as
miRNAs, Genes Dev. 17 (4) (2003) 438–442.

[18] S. Saxena, Z. Jonsson, A. Dutta, Implications for off-target
activity of small inhibitory RNA in mammalian cells, J. Biol.
Chem. 278 (45) (2003) 44312–44319.

[19] D.P. Bartel, Micro RNAs: genomics, biogenesis, mechanism, and
function, Cell 116 (2) (2004) 281–297.

[20] S. Elbashir, J. Harborth, K. Weber, T. Tuschl, Analysis of gene
function in somatic mammalian cells using small interfering
RNAs, Methods 26 (2) (2002) 199–213.

[21] O. Snøve Jr., T. Holen, Many commonly used siRNAs risk off-
target activity, Biochem. Biophys. Res. Commun. 319 (1) (2004)
256–263.

[22] A. Reynolds, D. Leake, Q. Boese, S. Scaringe, W.S. Marshall, A.
Khvorova, Rational siRNA design for RNA interference, Nat.
Biotechnol. 22 (3) (2004) 326–330.

[23] A. Hsieh, R. Bo, J. Manola, F. Vazquez, O. Bare, A. Khvorova, S.
Scaringe, W. Sellers, A library of siRNA duplexes targeting the
phosphoinositide 3-kinase pathway: determinants of gene silencing
for use in cell-based screens, Nucleic Acids Res. 32 (3) (2004) 893–
901.

[24] K. Ui-Tei, Y. Naito, F. Takahashi, T. Haraguchi, H. Ohki-
Hamazaki, A. Juni, R. Ueda, K. Saigo, Guidelines for the
selection of highly effective siRNA sequences for mammalian and
chick RNA interference, Nucleic Acids Res. 32 (3) (2004) 936–948.

[25] K. Luo, D. Chang, The gene-silencing efficiency of siRNA is
strongly dependent on the local structure of mRNA at the targeted
region, Biochem. Biophys. Res. Commun. 318 (1) (2004) 303–310.

[26] P. Pancoska, Z. Moravek, U. Moll, Efficient RNA interference
depends on global context of the target sequence: quantitative
analysis of silencing efficiency using Eulerian graph representation
of siRNA, Nucleic Acids Res. 32 (4) (2004) 1469–1479.

[27] M. Amarzguioui, H. Prydz, An algorithm for selection of
functional siRNA sequences, Biochem. Biophys. Res. Commun.
316 (4) (2004) 1050–1058.

[28] A. Chalk, C. Wahlestedt, E. Sonnhammer, Improved and
automated prediction of effective siRNA, Biochem. Biophys.
Res. Commun. 319 (1) (2004) 264–274.

[29] S. Takasaki, S. Kotani, A. Konagaya, An effective method for
selecting siRNA target sequences in mammalian cells, Cell Cycle,
Epub ahead of print.

[30] P. Sætrom, Predicting the efficacy of short oligonucleotides in
antisense and RNAi experiments with boosted genetic program-
ming, Bioinformatics (in press), Epub ahead of print).

[31] P. Sætrom, O. Snøve Jr., A comparison of siRNA efficacy
predictors, Biochem. Biophys. Res. Commun. 321 (1) (2004) 247–
253.

[32] C. Sledz, M. Holko, M. de Veer, R. Silverman, B. Williams,
Activation of the interferon system by short-interfering RNAs,
Nat. Cell Biol. 5 (9) (2003) 834–839.

[33] A. Bridge, S. Pebernard, A. Ducraux, A.-L. Nicoulaz, R. Iggo,
Induction of an interferon response by RNAi vectors in mamma-
lian cells, Nat. Genet. 34 (3) (2003) 263–264.

[34] L. Scherer, J. Rossi, Approaches for the sequence-specific
knock-down of mRNA, Nat. Biotechnol. 21 (12) (2003) 1457–
1465.

[35] E. Birney, D. Andrews, P. Bevan, M. Caccamo, G. Cameron,
Y. Chen, L. Clarke, G. Coates, T. Cox, J. Cuff, V. Curwen,
T. Cutts, T. Down, R. Durbin, E. Eyras, X. Fernandez-Suarez,
P. Gane, B. Gibbins, J. Gilbert, M. Hammond, H. Hotz, V.
Iyer, A. Kahari, K. Jekosch, A. Kasprzyk, D. Keefe, S.
Keenan, H. Lehvaslaiho, G. McVicker, C. Melsopp, P. Meidl,
E. Mongin, R. Pettett, S. Potter, G. Proctor, M. Rae, S. Searle,
G. Slater, D. Smedley, J. Smith, W. Spooner, A. Stabenau, J.
Stalker, D. Storey, A. Ureta-Vidal, C. Woodwark, M. Clamp,
T. Hubbard, Ensembl 2004, Nucleic Acids Res. 32 (1) (2004)
468–470.

[36] A. Halaas, B. Svingen, M. Nedland, P. Sætrom, O. Snøve Jr., O.R.
Birkeland, A recursive MISD architecture for pattern matching,
IEEE Trans. VLSI Syst. 12 (7) (2004) 727–734.

[37] S. Altschul, W. Gish, W. Miller, E. Myers, D. Lipman, Basic
local alignment search tool, J. Mol. Biol. 215 (3) (1990) 403–
410.

[38] W. Pearson, D. Lipman, Improved tools for biological sequence
comparison, J. Mol. Biol. 85 (8) (1988) 2444–2448.

[39] T. Rognes, ParAlign: a parallel sequence alignment algorithm for
rapid and sensitive database searches, Nucleic Acids Res. 29 (7)
(2001) 1647–1652.

[40] B. Ma, J. Tromp, M. Li, PatternHunter: faster and more sensitive
homology search, Bioinformatics 18 (3) (2002) 440–445.

[41] T. Smith, M. Waterman, Identification of common molecular
subsequences, J. Mol. Biol. 147 (1) (1981) 403–410.

O. Snøve Jr. et al. / Biochemical and Biophysical Research Communications 325 (2004) 769–773 773

Paper V

Massively parallel MIMD system
achieves high performance in a
spam filter

1

Massively parallel MIMD architecture achieves high performance in a spam
filter

O.R. Birkelanda, M. Nedlanda, O. Snøve Jr.a

aInteragon AS, Medisinsk teknisk senter, NO-7489 Trondheim, Norway

Supercomputer manufacturing is usually a race for floating point operations, and most therefore
opt for a design that allows for the highest possible clock frequency. Many modern applications
are, however, limited not only by the number of operations that can be performed on the data, but
by the available memory bandwidth. We review the main features of a MISD architecture that we
have introduced earlier, and show how a system based on these chips is able to scale with respect to
query and data volume in an email spam filtering application. We compare the results of a minimal
solution using our technology with the performance of two popular implementations of deterministic
and nondeterministic automatons, and show how both fail to scale well with neither query nor data
volumes.

1. Introduction

Mainstream parallel computer systems have diverse design targets. Projects like BlueGene/L
aim for the highest performance on numerical calculations [6], whereas designs like Green Destiny
target efficiency, reliability and availability instead [2]. A common characteristic of most designs is
the dominating supercomputer requirement for floating point operations, but several applications, for
instance within bioinformatics and network traffic monitoring, are limited by the available memory
bandwidth rather than the raw floating point compute power [8,1]. Brute force data mining, that is
linear searching through raw data, is one such application.

Fine grain parallelism have been proposed by others, both as minute compute nodes [4] or inte-
gration of memory and processing circuitry [8,5]. In our work, we propose an architecture that takes
advantage of one of the main assets of synchronous memory technology, which is high sustainable
bandwidth during linear access. We review a MIMD architecture for pattern matching with regular
expression-type queries, with high performance, high density and low infrastructure requirements.
By tailoring the compute logic for the given problem, the system’s size and complexity can be re-
duced to a minimum. Focusing on non-computational applications, we are able to build systems
with higher density and more operations per second than traditional clusters and supercomputers.

One application that requires scalability with respect to both query and data volume is email spam
filtering. Spam is prevented with a large number of approaches, but most involve (among others)
using regular expressions to find common spam patterns. The number of required spam patterns are
increasing, as well as the volume of email, resulting in an increasing demand for compute power.
Some of the common regular expression evaluators like DFA scanners have severe scalability issues.
We propose a scalable architecture for evaluation queries such as regular expressions, that achieves
high performance in a compact system by use of fine grain parallel processing.

2. System architecture

We concentrate on the design considerations for this architecture, including general purpose ver-
sus special purpose hardware; fine grain versus coarse grain parallelism; compute density; cost of
ownership; and requirements for development resources.

2

Our project started with the observation that an index-based algorithm requires that the keywords
are known beforehand, and the realization that an extremely rapid brute force linear search eliminates
the need for an indexing step. A continuous linear search also implies that searching becomes
independent of the queries’s complexity. Since the execution time for such a search is O(n), it
becomes important to use the peak memory bandwidth, and have as many independent memory
channels as possible.

We developed a fine-grain parallel architecture called the pattern matching chip (PMC) [3], where
each node can be as small as a single ASIC and a single memory device. Each PMC contains 1,024
individual processing elements operating on a shared data stream. We constructed a MIMD system
with PCI cards, each containing 16 PMC chips, accelerating a standard PC to perform 1013 symbol
comparisons per second. Each chip has a dedicated memory bank; thus, the memory volume and
bandwidth scale at the same rate as the number of processing elements (PEs).

16 or more PEs are used for each query, depending on query size. This allows for up to 64
simultaneous queries per chip. Additional queries can be stored in the local memory, requiring 16
kB for each configuration for all 1024 PEs. Thus several thousand queries can be resident for each
PMC, and be used with minimal system involvement, only to specify which queries to use. In spam
filtering, the email data can be uploaded to local memory once, and then interactively processed by
several sets of queries. If the data rate is lower than the scan rate, the difference can be reclaimed
in the form of an increased number of queries. For example, one chip could scan 64 queries at 100
MB/s data rate, or 6400 queries at 1 MB/s data rate. Query configurations, as well as data, can be
loaded to local SDRAM, even during searches, without any performance penalties. The performance
is linear with respect to the number of queries, the length of the queries, and the data rate. It is also
linearly scalable with more PMC chips.

The processing speed is limited by the memory bandwidth in each node. Consequently, the PMC
is tailored to run at the memory data rate. As we did not aim for the highest processing clock
frequency, a low power design was possible, and that proves essential when small building blocks are
used to build dense systems. As all memory accesses take place as linear scans, the required power
for searching though the data is minimized as well. Any non-predictable access pattern involves
protocol overhead, for example in switching pages within the memory chip, during which a lot of
time and energy are consumed.

The same methodology is applied to the configuration of the chip. The entire configuration is
read once into the chip and stored in configuration registers. Thus, there are no instruction memory
accesses during searches. As a side effect, the full memory bandwidth is available for data transfer.

The large number of small PEs on each chip implies no local hot spot. The same applies when
several chips are used on the PCI card, without a requirement for active cooling. The density that can
be achieved in the system is thus governed by the transistor density on silicon (PMC and SDRAM),
rather than the power consumption density.

Another feat of this design is that smaller cores also imply less engineering. As we target appli-
cations where data can easily be distributed for processing, no elaborate interconnection scheme is
required. The only custom part in the design is the PMC, and the remaining components are sourced
from standard technologies like SDRAM and PCI. Correspondingly, the use of a small, repetitive,
orthogonal core element also makes the compiler design simpler. Such compilation also involves
minimal optimization steps, and executes very fast. DFA scanners like lex could achieve high scan
rates, but with an unpredictable compile time.

The architectural concepts have been proven in a five PC cluster, achieving 5 · 1013 operations
per second with near-linear scalability. Performance is achieved by massively distributed compute

3

resources, which translates to 500,000 processing elements in the aforementioned cluster. Further-
more, our evaluation system has a total of 60 GB of memory, with an aggregated bandwidth of 48
GB per second.

We will compare the performance of the PMC with two popular software algorithms in a email
spam filtering application. Our reason for choosing this application as our example, is that we are
able to show how we can tailor the performance to yield the appropriate ratio of search speed to
query throughput.

3. Problem definition

Spam—unsolicited commercial emails or unsolicited bulk emails—has become a tremendous
problem for email users, and is increasing. Users around the world receive billions of spam messages
each day and are indirectly forced to bear the cost of delivery and storage of these unwanted emails.
A number of ways exist to deal with the problem—they range from simple blacklists of bad senders,
words, or IP addresses to complex automated filtering approaches. One of these popular filters is
SpamAssassin, a program that uses hundreds of weighted rules to obtain a score for each email
header (see http://spamassassin.apache.org/ for additional details). Patterns are con-
structed to match popular words used by spammers and a genetic algorithm optimizes the weights so
that the combined predictor achieves optimal performance on a manually curated training set. Users
must determine the actions that should be taken when an email receives a score that puts a spam
label on the message according to the user’s predefined thresholds.

SpamAssasin, and similar automatic filters, ensures that a message cannot be deemed spam based
on a single rule, and conversely, that a message cannot bypass the filter just by avoiding a single
rule. Such filters must evaluate many complex rules per message, which may not be a problem if
you have a limited number of users on your system. Centralized hubs, such as those operated by
internet service providers, however, must process a substantial query volume with high bandwidth
message streams. This almost invariably leads to performance problems because most solutions does
not scale well with both query and message volume.

Spam rules of an automatic filter are examples of queries that can be efficiently processed by
our PMC. A trigger word such as viagra can be written in many ways, including for instance
v|agra, vı̀agrá, v*i*a*g*r*a, and so on. The name of Pfizer’s popular treatment for erectile
dysfunction can actually be written in well above hundred different ways that must be dealt with by
spam filters. We wanted to investigate the performance of widely used regular expression algorithms
and compare their performance against that of our PMC-accelerated workstation.

We choose to compare our PMC system with efficient implementations of deterministic and non-
deterministic automatons. Deterministic automatons are expected to be fast at the expense of large
compile times and memory requirements, whereas their non-deterministic counterparts are expected
to have a more compact representation, but as their name suggests, they are nondeterministic in their
execution speed.

We compared the performance of our system against two software algorithms; one was a determin-
istic finite automaton (DFA) generator called flex and the other was nrgrep, which is essentially
a simulated nondeterministic suffix automaton. (See Materials and Methods for the appropriate ref-
erences.)

When regular expressions are input, flex compiles C code for the appropriate DFAs that are
constructed to match the expressions. In turn, this code must be compiled into executables that can
then be run to scan for the specified patterns in a data stream. Nrgrep uses a technique called
bit-parallelism to simulate automaton behavior instead of actually generating them.

4

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0 50 100 150 200 250 300 350 400

Query volume

Se
ar

ch
 ti

m
e

(s
)

PMC
flex
nrgrep

Figure 1. Search time versus query volume for different solutions.

4. Results

In our benchmarks, we risk comparing apples and oranges. For example, should we take into con-
sideration the time it takes to compile the flex scanners or should we assume that the application
is sufficiently static to render even flex compilation negligible eventually. Even though this may
not necessarily be true in a real spam filtering solution, we have assumed that dynamic updating
of queries will not affect the performance of the flex algorithm. Figure 1 shows the search time
versus query volume for the PMC, flex, and nrgrep, respectively. The test was run using 10
duplicate entities of the dataset (see Materials and Methods), but the result is similar when using 1,
2, and 5 entities.

In our benchmark, we see that scalability is the main obstacle of flex and nrgrep. As the figure
shows, we are able to keep a low gradient with respect to the query volume, in contrast to the other
algorithms. Typical query volumes in a real-time application hosted by an internet service provider
is about 10,000 queries, which emphasizes the need to be able to scale well in that dimension.

Figure 2 shows how the algorithms compare with the PMC solution when scanning with 250
queries in 1, 2, 5, and 10 times the data volume of the downloaded spam examples. As shown, the
nrgrep and flex algorithms run into a much steeper gradient with respect to the dataset size than
do the PMC, which is important considering that an internet service provider needs to scan hundreds
if not thousands of emails per second.

To summarize, our PMC-based solution scales better than flex and nrgrep both with respect
to query volumes and dataset size. Even though it appears that the flex algorithm is the closest
competitor in the above benchmarks, it will probably be impractical in production systems due to

5

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.00 20.00 40.00 60.00 80.00 100.00

Dataset size (MB)

Se
ar

ch
 ti

m
e

(s
)

PMC
flex
nrgrep

Figure 2. Search time versus dataset size for various solutions.

a lengthy and unpredictable compilation process. In the above benchmarks, we used only patterns
that flex could handle in order to get a fair evaluation, but we experienced that flex broke down
completely on several occasions. Consider the following listing, which is the first part of a query
that flex were not able to handle:

(earn|make).{1, 20}[0 − 9][0 − 9][0 − 9] + .{1, 30} . . .

Here, repetition of wildcards succeeds either of the words “earn” or “make”. Note that the “e” in
“make” could mean the beginning of “earn” and if a number occurs it could either be a wildcard or
one of the three or more numbers that are to follow the wildcards. Thus, the pattern cannot easily be
represented by a DFA, as illustrated by the program’s performance breakdown. Patterns such as these
were removed from the queries that comprised the benchmark set, even though neither the PMC nor
the nrgrep algorithm experienced performance problems due to these patterns. A spam filtering
must therefore either use other algorithms than flex or avoid rules that affect its performance at the
potential expense of lower spam filtering performance.

5. Discussion

We have introduced a special-purpose search processor into a spam filtering solution to achieve
higher performance and better scalability. As shown, the solution scales well in both the query
volume and dataset size dimensions. In addition to higher screening performance and better scal-
ability, our solution has the advantage of having negligible configuration processes compared with

6

the lengthy and unstable compilation of DFAs by flex. The nrgrep simulates a nondeterministic
automaton, but does not generate it explicitly, which is why we are unable to compare its compi-
lation performance to that of flex. Note, however, that the scaling performance is slightly worse
than that of flex, which is not surprising considering that the flex numbers were obtained with
precompiled scanners.

There is also substantial room for improvements in our solution. First, we can achieve six times
the performance of these benchmarks by adding more PCI cards to the workstation. In these tests,
we used a single card even though up to six cards can easily be fitted into a standard workstation
provided there are enough PCI slots. Furthermore, the PMCs’s lookup table (LUT) can be used
to map any byte value from the input stream to another [3], which means that several patterns can
be collapsed into a single expression. For example, viagra, VIaGrA, v|agrA, and so on can
all be matched by viagra if uppercase letters are mapped to lowercase and | are mapped to i.
Mapping schemes can be developed for characters that are often used to rewrite trigger words to
avoid automatic filters that rely on correct spelling, but to remain easily comprehensible to the human
eye.

6. Materials and Methods

6.1. Dataset
We downloaded data from the public spam repository SpamArchive.org. The set comprised

1,705 emails totaling 8,998,303 bytes of data, and a compressed version can be downloaded at
ftp://spamarchive.org/pub/archives/submit/691.r2.gz. To test the methods’s
scalability with respect to data volumes, we concatenated two, five, and ten entities of this dataset.

6.2. Algorithms
As described in the main text, we benchmarked the performance of our PMC system against the

nrgrep and flex algorithms. The fast lexical analyzer generator (flex) is a free implemen-
tation of the well-known lex program with some new features (see http://www.gnu.org/
software/flex/ for details, including a manual).

Nondeterministic reverse grep (nrgrep) is a member of the grep family of search algorithms,
and uses bit-parallelism to simulate a nondeterministic suffix automaton. See the excellent book by
Navarro and Raffinot for a detailed treatment of DFAs, NFAs, bit-parallelism, and the use of these
concepts in regular expression matching [7].

6.3. Hardware
We used a standard workstation with an Intel Pentium 4 2.8 GHz processor with 1,024 MB DDR-

SDRAM running the Woody release of Debian Linux (see http://www.debian.org). Tests
that involve special purpose search processors were run on the same workstation with a single PMC
card installed.

References

[1] Doug Burger, James R. Goodman, and Alain Kägi. Memory bandwidth limitations of future micro-
processors. In 23rd International Symposium on Computer Architecture (ISCA), pages 78–89. IEEE
Computer Society, May 1996.

[2] Wu-chun Feng. Green destiny + mpiblast = bioinfomagic. In ParCo 2003, pages 653–660, 2003.
[3] Arne Halaas, Børge Svingen, Magnar Nedland, Pål Sætrom, Ola Snøve Jr., and Olaf René Birkeland. A

recursive MISD architecture for pattern matching. IEEE Trans. on VLSI Syst., 12(7):727–734, 2004.

7

[4] W. Daniel Hillis and Lewis W. Tucker. The CM-5 connection machine: a scalable supercomputer.
Communications of the ACM, 36:31–40, 1993.

[5] Graham Kirsch. Active memory: Micron’s Yukon. In 17th International Parallel and Distributed
Processing Symposium (IPDPS), page 89. IEEE Computer Society, 2003.

[6] N. R. Adiga et al. An overview of the BlueGene/L supercomputer. In IEEE, editor, SC2002: From
Terabytes to Insight. Proceedings of the IEEE ACM SC 2002 Conference, 2002.

[7] Gonzalo Navarro and Mathieu Raffinot. Flexible pattern matching in strings: practical on-line search
algorithms for texts and biological sequences. Cambridge University Press, Cambridge, UK, 2002.

[8] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Keeton, Christoforos
Kozyrakis, Randi Thomas, and Katherine Yelick. A case for intelligent RAM: IRAM. IEEE Micro,
17(2):34–44, Apr 1997.

Paper VI

Boosting improves stability and
accuracy of genetic programming
in biological sequence
classification

Boosting improves stability and accuracy of

genetic programming in biological sequence

classification

P̊al Sætrom1,2, Olaf René Birkeland1, and Ola Snøve Jr.1,3

1 Interagon AS, Laboratoriesenteret, NO-7006 Trondheim, Norway
{paal.saetrom,olaf.birkeland,ola.snove}@interagon.com

2 Department of Computer and Information Science, Norwegian University of
Science and Technology, NO-7491 Trondheim, Norway

3 Department of Cancer Research and Molecular Medicine, Faculty of Medicine,
Norwegian University of Science and Technology, NO-7489 Trondheim, Norway

Summary. Biological sequence analysis presents interesting challenges for machine
learning. With an important problem – the recognition of functional target sites
for microRNA molecules – as an example, we show how multiple genetic program-
ming classifiers improve accuracy and stability. Moving from single classifiers to bag-
ging and boosting with crossvalidation and parameter optimization requires more
computing power. A special-purpose search processor for fitness evaluation renders
boosted genetic programming practical for our purposes.

Key words: Bioinformatics, microRNA, gene prediction, RNAi

1 Introduction

In a typical conversation between a biologist and a computer scientist, the
former will often refer to the enormous amount of biological sequence infor-
mation and slip in a sentence about exponential growth of available data. In
reality, however, the current fifty odd billion characters of sequence data will
not scare off many programmers, and the relative growth is likely to slow
down or be upheld only due to redundant information [3]. Add to that the
fact that any real application that you would work on is likely a much smaller
problem that allows you to slash most of the data volume and you may start
to think that computational biology is a piece of cake.

Unfortunately, biology is so incredibly complex that almost any problem
turns out to be challenging. Famous Professor Emeritus of Stanford University,
Donald Knuth, once said that he was confident that biology will easily keep
scientists busy for 500 years [13]. He is probably not far off.

2 Sætrom, Birkeland and Snøve Jr.

In this paper, we will focus on the need for robust learning methods in
bioinformatics in general, and the applicability of boosted genetic program-
ming in particular. In addition, we will show how we use special-purpose
pattern matching hardware to speed up the learning process, which despite
limited data volumes becomes necessary when you have to make millions of
passes over the same data.

Molecular biology is in many ways digital. DNA codes for RNA that codes
for protein, which is a simplistic version of the central dogma for genetic in-
formation transfer [6]. Digitalized, we may view this as a two-step process
where DNA’s letters A,C,G, and T can be translated to U,G,C, and A in
RNA’s alphabet. From a sequence of RNA letters, protein factories called ri-
bosomes translate triplets of RNA characters to the amino acids that consti-
tute proteins [4]. DNA is a double-stranded helix where the strands base-pair
according to Watson-Crick rules, which means A to T and C to G. RNA is
preferentially single-stranded, but RNA may also base-pair in an A to U and
C to G configuration. Characters that preferentially base-pair to each other
are complementary, which means that A is complementary to T in DNA and
U in RNA, whereas G is complementary to C. Strands are said to be antipar-
allel, which refers to the internal configuration of the nucleotides that we view
as characters. Sometimes, we need to specify the end we are talking about,
and DNA and RNA strands are therefore said to run in 5’ to 3’ direction (see
chapter 1 in [15] for a detailed discussion of nucleic acids and their properties).

Sequence analysis in computational biology usually means to find se-
quences that are similar to a given template or to find complex patterns
that are functionally significant. Our machine learning examples will describe
methods for identification of functionally significant patterns in RNA se-
quences, but the methods are applicable to DNA and amino acid sequence
mining as well.

2 Methods

2.1 Genetic programming with string queries

The inspiration for our genetic programming (GP) system came from our
ability to quickly evaluate an expression’s fitness with the special-purpose
search processor [11] that will be described in Sect. 2.3.

Our algorithm is designed to solve two-class classification problems and
operate directly on positive and negative string samples without additional
encoding steps. The population of solutions consist of syntax trees that rep-
resent queries in a formal query language [14]; we use strong typing to ensure
that all individuals are legal expressions in the language [18]. Although we
base our solution language on a query language that can be evaluated on
our search hardware (http://www.interagon.com/pub/whitepapers/IQL.

Boosting improves accuracy in sequence classification 3

reference-latest.pdf), we may restrict expressions to a subset of the full
functionality, depending on the application (see Fig. 2 for an example).

In all our experiments, we use strongly typed crossover and mutation [18],
and standard reproduction as genetic operators (89%, 1%, and 10%); ramped
half-n-half with a maximum tree depth of 7 to initialize populations; and
a modified tournament selection (Ø. Grotmol, unpublished) that treats in-
dividuals with identical phenotypes as a single individual for the purpose of
selecting individuals to a tournament (tournament size 5). The fitness function
is [23]

ε(h, S,D) =

|S|∑

i=1

di · |h(xi) − yi|, (1)

where h is the individual, S is the training set consisting of sequences x and
binary labels y, and D is a weight vector that gives the relative importance d
of each sequence in the training set. The weights are initialized to 1/(2 ·p) and
1/(2·n) for the positive and negative sequences, where p and n are the number
of positive and negative sequences. This ensures that the naive solutions that
predict all positives or all negatives have a fitness of 0.5.

2.2 Boosted genetic programming

Our classifiers are queries that are either present or not in an input string.
In our experience, a single binary classifier can not satisfactorily capture the
complexity of the applications we have addressed. A way of mending this
problem is to build a soft classifier f =

∑T

t=1
αtht, by assigning weights αt to

our so-called hard classifiers ht. There are several ways to assign the weights
to each classifier. In the simplest case, each weight is set to 1/T , which means
that the model corresponds to the average of the hard classifiers. Boosting
algorithms attempt to assign the weights iteratively. Our implementation is
based on AdaBoost, which puts more effort into learning the difficult parts of
the dataset [9]. Since GP is stochastic, two independent runs will generally not
produce identical results. To reduce the variance, we construct a model that
corresponds to the average of several boosted classifiers, which in addition to
the reduced variance can also give higher accuracy [12]. In this work, averaged
classifiers consist of ten single classifiers.

Note that AdaBoost works similar to maximum margin classifiers known
from statistical machine learning [17]. One example of a maximum margin
classifier is the popular support vector machine, which attempts to construct
a classifier that maximizes the distance to any example in the training set
[5]. As a result, however, our algorithm would be expected to have prob-
lems with noise and outliers. We therefore implemented a regularized boosted
genetic programming algorithm along the lines of Rätsch [21] and have suc-
cessfully used it in genetic sequence classifications [23, 24]. As the regularized
algorithm has an extra parameter that should be optimized, estimating the
regularized algorithm’s performance on a particular problem is more complex

4 Sætrom, Birkeland and Snøve Jr.

and time-consuming than estimating the performance of the standard or aver-
aged AdaBoost. In addition, simple averaging of boosted classifiers often has
performance similar to the regularized algorithm [23]. We therefore do not use
the regularized algorithm in this work.

2.3 The pattern matching chip

Interagon’s pattern matching chip (PMC) is a custom processor for finding
patterns in data [11]. Instead of building data structures, the PMC makes a
pass through the entire data set on every search. Each chip has a dedicated
local memory bank, with a 100 MB/s search bandwidth. Multiple patterns
can be evaluated towards the data in parallel due to the MISD architecture.

Each chip has 1024 parallel processing elements (PEs). 16 chips are inte-
grated into a PCI accelerator card along with 2 GB of DRAM. One PC can
typically hold up to 6 of these cards, rendering a total of 6 ·16 ·1024 ≈ 100000
parallel PEs in one PC. Operating at 100 MHz, this corresponds to 1013 sym-
bol comparisons per second. The aggregated processing bandwidth of one such
system is 9.6 GB/s.

The individual symbol comparisons are combined in a programmable bi-
nary tree, allowing for any Boolean operators, counting, ordering or adjacency
between symbols or subexpressions. The throughput of the PMC is thus not
limited by the complexity of the operators within the query, but rather the
number of symbols used.

This capability is important when screening short nucleotide patterns built
from a grammar rich in operators. As a bonus, the tree structure of PMC query
processing is easily manipulated during mutation and crossover steps in GP.

Table 1. Run time of sequence similarity searches on different algorithms and plat-
forms. Run time is measured for screening 3519 individual 25 nucleotide sequences
versus a 3 billion nucleotide data base

Algorithm Platform Run time

Proprietary PMC system with 6 cards 15 minutes
Smith-Waterman PC 44 days
Smith-Waterman GeneMatcher2 (Paracel) 255 minutes
BLAST BlastMachine2 (Paracel) 15 hours
Smith-Waterman DeCypher (TimeLogic) 14 hours
BLAST Tera-BLAST (n = 7, TimeLogic) 3 hours

Other sequence similarity screening methods exists, most notably the
BLAST [1] and Smith-Waterman [27] algorithms. The Smith-Waterman al-
gorithm is considered the gold standard for such searches. It uses dynamic
programming to build a cost table for the potential alignments of a query

Boosting improves accuracy in sequence classification 5

versus the reference data. The different types of individual nucleotide align-
ments – that is, match, mismatch, insertion or deletion – have different costs.
Smith-Waterman requires extensive updating of the cost table for each query
symbol processed, and is thus inherently slow (see Table 1). In our experience,
insertions and deletions are less relevant when working with short nucleotides,
rendering a considerable fraction of the processing in the Smith-Waterman al-
gorithm as unnecessary.

BLAST uses heuristics to speed up the search, by indexing all consecutive
n nucleotides in the reference data, with n typically being 11. This index is
used as seed points, from which longer alignments are found through similar
cost functions as in Smith-Waterman. Consequently, BLAST can not search
for patterns unless there are n consecutive exact matches in the query. For
queries in the same order of magnitude as n, this implies that BLAST can
only find exact matches, without any operators on the character level (see
Table 2). BLAST becomes more sensitive for smaller values of n, but also
slows down a factor of 4 for each reduction in n. BLASTn=7 is thus 256 times
slower than BLASTn=11, and is considered to be the practical lower limit.

Table 2. Capability comparison for short sequence similarity searches using the
pattern matching chip (PMC), BLAST and Smith-Waterman. Entries marked with
a dash indicates a search not feasible with the specified algorithm

BLAST BLAST Smith-
Query PMC (n = 11) (n = 7) Waterman

GGGAAACCCTTTGGGAAACCCT • • • •
GGGAAACCC...GGGAAACCCT • – • •
GGGAAA...TTTGGG...CCCT • – – •
{GGGAAACCCTTTGGGAAACCCT : p ≥ 21} • – • •
{GGGAAACCC...GGGAAACCCT : p ≥ 20} • – – •

3 Results

3.1 Predicting microRNA targets

Most genes – that is, functionally important stretches of DNA – code for pro-
teins. But during the last decade, biologists have become aware that some
genes encode RNA that is not translated into a protein. MicroRNAs (miR-
NAs) – so named because they are only about 22 nucleotides long – consti-
tute one such class of non-protein-coding RNAs. MicroRNAs base-pair with
the RNA intermediate of genes before protein translation occurs, and thereby
marks them for destruction by designated protein complexes. This provides a
way for miRNAs to decrease the protein output from regular genes.

6 Sætrom, Birkeland and Snøve Jr.

There are two ways that miRNAs can decrease the expression of their
targets. First, their sequence may be an almost perfect complement of their
target’s RNA intermediate, as shown in Fig. 1a. Second, the complemen-
tarity may be more fuzzy, but still prevalent in one end of the miRNA, as
shown in Fig. 1b. Near-perfect complementarity results in target cleavage
[16], whereas partial complementarity prevents the ribosomes from complet-
ing protein translation [19]. The latter binding form is more challenging from
a computational point of view, as we only have a few examples of valid target
sites and have to deduct the rules from these.

Fig. 1a. The near-perfect complementarity between the human mir-196a miRNA
and Hoxb8 mRNA results in mRNA degradation [30]

Fig. 1b. The imperfect complementarity between the C. elegans lin-4 miRNA and
lin-14 mRNA results in translational repression [29]

Currently, several hundred human miRNAs are known [10] (332 in Release
8.0), but only a limited number of mRNA targets have been verified [26]. Sev-
eral tools for predicting miRNA target sites have been published (see [26] for
an overview), but these tools were developed based on the current imperfect
understanding of miRNA target site recognition. Many of the tools may there-
fore be overly biased towards the authors’ preconceptions of an ideal miRNA
target site; especially, the importance of overall binding energy between the
miRNA and mRNA target site.

Our approach is to use machine learning to create a miRNA target site
predictor [22]. Although this approach is not without its biases – especially
regarding the data set used to train the predictor – the approach should at
least create a predictor that is consistent with currently available data. In
addition, we can easily create new predictors as new data becomes available.

We have previously shown that our boosted GP solution creates miRNA
target site predictors that are at least as good and better than human created
predictors [22]. In the following sections we will study the robustness of our
algorithm in terms of the impact of the choice of GP parameters and of the
boosting step. We start, however, by defining the query language we will use

Boosting improves accuracy in sequence classification 7

to predict miRNA target sites. The genetic programming step will search for
candidate solutions in this language.

3.2 A query language for recognizing microRNA target sites

A microRNA target site is characterized by the base-pair interactions between
the miRNA and the mRNA; that is, certain nucleotides in the miRNA binds
to nucleotides in the mRNA target site. These base-pairing characteristics can
be used to search for other similar target sites, by using search queries that
matches the base-pair interactions of the target site. To illustrate, the query
CCCAACAACAUGAAACUGC will find target sites identical to the mir-196a site in
Hoxb8 (Fig. 1a) and the query UCA...CUCAGG.A, where the dot (.) matches
any character, will find target sites similar to the lin-4 site in lin-14 (Fig. 1b).

To make this basic idea applicable for general miRNA target site predic-
tion, we extend the query language as follows. First, as we want our queries to
represent the characteristics of miRNA target sites in general and be indepen-
dent of the particular miRNAs, we use the positions of the miRNA nucleotides
instead of the nucleotides themselves. Thus, we write the general query for the
lin-4 site in Fig. 1b as p21p20p19...p8p7p6p5p4p3.p1, where pi represents the
complement of the miRNA nucleotide at position i counted from the miRNA’s
5’ end. We can then search for the target sites of a particular miRNA by re-
placing the pi’s with the miRNA’s corresponding nucleotide.

Second, to introduce more flexibility when searching for potential sites,
we allow a certain number of mismatches between our query Q and potential
target sites. We write this as {Q : p ≥ x}, where x is the number of nucleotides
that have to match in the original query. Note that this is identical to requiring
a Hamming distance of at most |Q|−x between the query and target sequences,
where |Q| is the number of nucleotides in the query.

Third, we require that the positions in the query are continual and in
sequence. Thus, p6p5p4p3 is a valid query, but p6p4p2 is not. Figure 2 formally
defines our query language. The grammar shows the legal production rules
in the language with alternatives represented as separate productions and
nonterminals represented by uppercase letters.

The terminal pi represents a position in the miRNA sequence, and, as
the semantic productions in Fig. 2 show, the exact position depends on the
terminal’s position in the parse tree. More specifically, the first terminal en-
countered in a walk of the parse tree defines the query’s start position in the
miRNA sequence; the rest of the terminals have their positions derived from
the initial terminal to ensure that the final query defines a continual sequence
of miRNA positions. The in and index node attributes in the semantic rules
handle this.

A query matches a sequence if Q.hit is true. match(pk) returns 1 if the
character in the position indicated by pk is identical to the character it is
compared with. Note that we use two sets of terminals A and N to define the
cutoff value on the number of mismatches. The cutoff is initially zero and each

8 Sætrom, Birkeland and Snøve Jr.

Production Semantic Rule

(1) Q →{C : p ≥ x} C.in := -1
x := C.cut

Q.hit := C.count ≥ x

(2) C → C1C2 C1.in := C.in
C2.in := C1.index

C.index := C2.index
C.count := C1.count + C2.count

C.cut := C1.cut + C2.cut
(3) C → A A.in := C.in

C.index := A.index
C.count := A.count

C.cut := A.cut
(4) C → N N .in := C.in

C.index := N .index
C.count := N .count

C.cut := N .cut
(5) A → pi, i ∈ {1, . . . , 21} k := A.in = −1 ? i : A.in − 1

A.cut := 1
A.count := match(pk)
A.index := k

(6) N → pi, i ∈ {1, . . . , 21} k := N .in = −1 ? i : N .in − 1
N .cut := 0

N .count := match(pk)
N .index := k

Fig. 2. The grammar and semantics of the pattern language used in our microRNA
target prediction experiments. The grammar and semantics are explained in the
main text

terminal from A increases the cutoff by one. Consequently, queries where all
terminals are from N have a cutoff of zero, and queries where all terminals
are from A have a cutoff equal to the number of terminals. This ensures that
the cutoff always has a meaningful value.

3.3 Genetic programming produces good but unstable classifiers

The choice of parameters in a GP run often has a major impact on the quality
of the results [7, 8]. We therefore wanted to study how different input param-
eters affected the performance of the target site queries created by the GP
step in our machine learning system. To do this, we ran several experiments
where we varied the population size and the number of generations in the GP
run. We used the same dataset as in [22], which consisted of 36 experimentally
verified miRNA target sites for 4 miRNAs and 3000 random negative sites,
and used leave-one-miRNA-out cross-validation to train and test classifiers.

As Fig. 3a shows, increasing the number of generations and the popula-
tion size resulted in GP finding queries that had an increasingly higher per-

Boosting improves accuracy in sequence classification 9

Fig. 3a. The ROC-score of the best-
of-run individual increases with in-
creasing population size and number
of generations in both the training and
test sets. The graph shows the ROC-
score average and standard deviation
of 10 independent GP runs on the
query language in Fig. 2

Fig. 3b. GP overfits a more complex
query language. The graph shows the
ROC-score average and standard de-
viation of 10 independent GP runs on
the query language used in [22]

formance in the training set. This was expected, as increasing the population
size and the number of generations increases GP’s ability to find better can-
didate solutions [14, 8]. Good performance in the training set does, however,
not guarantee good performance on unseen data [28]; this is especially the
case when the training set is small or contains noise. In this case it is both, as
the positive set only consists of 36 experimentally verified target sites and the
random negatives likely contain sites that closely resemble the verified sites.
Nevertheless, the target site queries produced by GP show no sign of overfit-
ting, as their performance in the test set closely resemble their performance
in the training set.

What is more, the graph indicates that the solutions produced with the
largest population size run for more than five generations are the best pos-
sible with our solution language. This is because neither the performance
in the training set nor in the test set improves with increasing number of
generations, and because there is no variance in the test scores. Manual in-
spection of the results confirmed the convergence: all the 30 runs on the 3
largest training sets produced the query {p8p7p6p5p4p3p2 : p ≥ 6}; the 10
runs on the smallest training set with the let-7 sites excluded produced the
query {p8p7p6p5p4p3p2p1 : p ≥ 6} or equivalents. These results indicate that
base-pairs between nucleotides 2-8 are most important for miRNA target site
recognition, but also that some mismatches are tolerated.

Sætrom et al. defined a query language that used variable length wildcards
to join the sequence motif of Fig. 2 and an unordered motif [22]. This is
a query language that can model more complex relationships in the data,
and we wanted to determine if GP could evolve even better solutions than
the ones based on our initial query language. As Fig. 3b shows, however,
genetic programming could not. Even though the best solutions have a higher
performance in the training set, their performance in the test set is much

10 Sætrom, Birkeland and Snøve Jr.

worse. Thus, even though GP now finds solutions that better describe the
training data, these solutions are overfitted and do not generalize to unseen
data.

From statistical learning theory, we know that overfitting is closely re-
lated to the capacity of the set of functions from which we draw our solutions
[28]. The above results illustrate this relationship. The above analysis also
illustrates the impact that parameter choices have on the results produced
by genetic programming. First, the average ROC-score on the test set varies
greatly depending on the parameter choice (standard deviations of 0.055 and
0.099 for the ROC-score averages in Figs. 3a and 3b). Second, even though
genetic programming can in some cases produce optimal results simply by
choosing a large population size and running for many generations, this is a
sure recipe for overfitting in the general case. Consequently, finding good solu-
tions requires parameter optimization, but on problems where slight changes
in parameters give large changes in results, this is inherently difficult [20]. Fur-
thermore, parameter optimization is an extra training step that risks overfit-
ting, which means that the parameter optimization must be kept completely
independent of the test set. Otherwise one will get biased estimates of the
classifier’s performance in unseen data [25].

3.4 Averaging significantly improves predictor accuracy and

stability

The previous section illustrated a major problem with using genetic program-
ming for pattern mining: the solutions produced by genetic programming are
brittle, as slight changes in input parameters can give large changes in solution
quality. This is illustrated by the large variances in the average ROC-scores
for the different parameter settings and in the ROC-scores for some of the
individual parameter settings. This latter observation does, however, hint at
a possible way to improve the GP results, as diverse and accurate classifiers
can be combined to produce more accurate and less variable classifiers [12].

Fig. 4. Averaging GP classifiers improves performance and reduces parameter vari-
ance. The graphs show the ROC-scores in the training and test sets for the classifiers
created by averaging the expressions from Fig. 3a (left) and Fig. 3b (right)

Boosting improves accuracy in sequence classification 11

Figure 4 shows the result of averaging the solutions from the GP runs in
Sect. 3.3. A comparison with Figs. 3a and 3b shows the improved performance
of the average classifiers compared to the individual classifiers. For all parame-
ter settings where GP produce varying solutions, the average classifiers have a
higher performance than the individual classifiers. The increased performance
was significant (p = 4 · 10−3 and p = 3 · 10−8 with paired Student’s t-tests on
the simple and complex grammar) and the ROC-scores also varied less across
the different parameter settings for the simple grammar (p = 0.04 with an
F-test), which indicates that the average classifiers are more robust than the
single classifiers. In fact, the average classifiers use the stochastic nature of
GP to improve the classifier performance.

3.5 Boosting further improves predictor accuracy and stability

To try to improve our classifiers further, we combined our genetic program-
ming system with the AdaBoost algorithm [9]. Fig 5 shows the performance
of the resulting weighted sequence motif classifiers for different parameter
settings of GP.

Fig. 5. Boosting further improves performance and reduces parameter variance.
The graphs show the ROC-scores in the training and test sets for the classifiers
created by boosting the expressions from Fig. 3a (top left) and Fig. 3b (top right)
for 25 iterations, and by averaging the boosted classifiers (bottom left) and (bottom
right)

Comparing with the single and averaged GP results (Figs. 3a and 4),
the boosted expressions from Fig. 2 have both increased performance and
parameter stability (p = 7 ·10−7 and p = 9 ·10−7 with paired Student’s t-tests

12 Sætrom, Birkeland and Snøve Jr.

and p = 9 · 10−12 and p = 6 · 10−8 with F-tests). The boosted versions of
the more complex expressions from [22] also had increased performance and
parameter stability, but the differences were not as large as for the simpler
grammar (p = 6 · 10−7 and p = 0.1 with paired Student’s t-tests and p =
6 · 10−5 and p = 1 · 10−4 with F-tests). Averaging the boosted classifiers
further improved the performance and parameter stability for both grammars
(Figs. 5 bottom left and right; p = 0.004 and p = 1·10−5 with paired Student’s
t-tests and p = 0.1 and p = 0.1 with F-tests).

Running the boosting algorithm for additional iterations had a minor im-
pact on the classifiers’ performance. We repeated the above experiment with
both classifier languages for the different GP parameters, but increased the
number of boosting iterations to 75. The only difference between these results
and the results from the 25 iteration boosting was a small, but significant
decrease in the average performance across the different parameter settings
for the averaged boosted classifiers based on the complex expressions (from
0.947 to 0.924; p-value = 6 · 10−6 with a paired Student’s t-test).

The AdaBoost algorithm creates a classifier that maximizes the minimum
margin in the training set [2], and theoretically, AdaBoost converges towards
this maximum margin classifier exponentially with the number of boosting
iterations [17]. Thus, the first boosting steps have the highest impact on the
final boosted classifier’s performance, and increasing the number of boosting
iterations have less and less impact on the performance of the final classifier.

In summary, boosting the classifiers created by GP significantly improved
the classifiers’ performance and significantly improved the stability of the al-
gorithm with respect to the choice of GP parameters. In particular, the aver-
age performance of the boosted classifiers was, for all the parameter settings,
higher than the best performance of any of the single classifiers created by
GP. Thus, we do not get the best performance by ensuring that GP finds the
optimal solution in the training set; we get better results by running many GP
runs on small populations for few generations and combining the suboptimal
solutions found in these runs into a single robust classifier.

3.6 The solution language has a major impact on classifier

performance

As the previous sections showed, both the solution languages we investigated
could accurately separate real miRNA target sites from random sequences.
These solution languages were based on the hamming distance filtering func-
tion, which our special purpose hardware evaluates fast and efficiently. We
used this hardware in our experiments to accelerate the fitness evaluation of
the candidate expressions and thereby reduced the total runtime of the ex-
periments. Simpler solution languages that use exact matching can, however,
be evaluated much faster in software than can the approximate Hamming
distance-based expressions. We therefore wanted to determine whether we

Boosting improves accuracy in sequence classification 13

could create accurate miRNA target predictors based on a solution language
that only allowed exact matches between miRNAs and potential target sites.

To create a solution language that only allowed exact matches, we removed
productions (4) and (6) from the grammar in Fig. 2. Consequently, a query
now only returns a hit when all the positions in the query report a match.
Using this solution language, we repeated the analyzes of the miRNA target
site data. Figure 6 summarizes the results.

Fig. 6. Classifiers that only allow exact matches between miRNAs and target sites
have a much lower accuracy than the classifiers based on approximate matches
(Figs. 3a, 3b, 4, and 5). The graphs show the ROC-scores in the training and test
sets for single GP (top left), averaged GP (top right), GP boosted 25 iterations
(bottom left), and averaged boosted GP (bottom right) classifiers based on a solution
language that only allowed exact matches

A comparison with the previous results showed that all the “approximate
match” classifiers were significantly more accurate than the “exact match”
classifiers (all p-values < 1 · 10−6 with paired Student’s t-tests). The “ex-
act match” classifiers did, however, have relatively high accuracies in their
training sets; in other words, these classifiers were severely overfitted to their
training sets. And even though some of the classifiers had a relatively high
performance in the test set – especially, the averaged GP classifiers – this
best accuracy is still much lower than the best accuracy for the “approximate
match” classifiers. This high accuracy may also be an artefact of our multiple
testing.

These results show that the solution language that only allows exact
matches is inappropriate for predicting miRNA target sites. This was ex-
pected as miRNA binding is inexact in itself. The results also illustrate the
impact the solution language has on the classifier performance.

14 Sætrom, Birkeland and Snøve Jr.

3.7 The superior performance of ensemble classifiers generalize to

other sequence classification problems

The previous sections have shown that when predicting microRNA target
sites, combining several single GP classifiers into an ensemble classifier gives
classifiers that are significantly more accurate than the single GP classifiers.
To show that this property also generalizes to other problems, we compared
the performance of the single, averaged, boosted, and averaged boosted GP
classifiers on two other sequence classification problems. These were (i) pre-
dicting whether 50 nucleotide long sequences are parts of non-coding RNA
genes [24], and (ii) predicting the knockdown efficacy of 19 nucleotide long
short interfering RNAs [23].

We used the same test setup as in the previous experiments, except that
we excluded 50 generations from the set of parameters tested. We used the
solution language from [23] in both experiments. This language resembles the
one in Fig. 2, except that the terminals are the four nucleotides and not a
template position in the sequence. The language also allows alternatives at
each position; see [23] for complete details.

Fig. 7. Ensemble classifiers are more accurate than single genetic programming
classifiers. The graphs show the test set ROC-scores for the non-coding RNA gene
prediction (left) and short interfering RNA efficacy prediction (right) problems

As Fig. 7 shows, the ensemble classifiers are better than the single clas-
sifiers for all parameter settings, and the averaged boosted classifiers have
the highest overall performance. The differences are significant for both prob-
lems. More specifically, all p-values in the paired Student’s t-tests that com-
pare the performance of the single GP classifiers to the ensemble classifiers
are < 3 · 10−8. Similarly, all p-values for the averaged boosted classifiers are
< 4 · 10−8.

4 Discussion

We have presented our boosted genetic programming (GP) system, and shown
how we can use a special-purpose search processor for fitness evaluation by

Boosting improves accuracy in sequence classification 15

operating on parse trees that represent search queries. Using a motivating
example from molecular biology – recognition of viable target sites for small
RNA molecules called microRNAs – we have demonstrated how the system’s
performance varies with different setups.

Importantly, GP can produce classifiers with satisfactory performance for
target recognition. Populations with more than 100 individuals that are run
for 50 or more generations seem to be adequate for good performance. The
solution language is very important, and increasing the algorithm’s capacity
by allowing more complex queries is a recipe for overfitting.

Unfortunately, the stochastic property of GP results in a great difference
between best-of-run classifier performances. Using the average of several clas-
sifiers significantly improves the stability of our algorithm, but accuracy is
also improved in the process. When we used a boosted GP algorithm on our
problem, we saw an impressive stability with negligible variance between runs.
Also, the boosted classifiers have higher accuracy and increased generalization
performance, as shown by their high and stable performance on the test set.

References

1. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.

2. P. Bartlett, Y. Freund, W. S. Lee, and R. E. Schapire. Boosting the margin: a
new explanation for the effectiveness of voting methods. Annals of Statistics,
26(5):1651–1686, 1998.

3. D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler.
GenBank. Nucleic Acids Research, 33(DB):D34–D38, 2005.

4. S. Brenner, F. Jacob, and M. Meselson. An unstable intermediate carrying
information from genes to ribosomes for protein synthesis. Nature, 190:576–
581, 1961.

5. C. J. C. Burges. A tutorial on support vector machines for pattern recognition.
Knowledge Discovery and Data Mining, 2(2):121–167, 1998.

6. F. H. C. Crick. The biological replication of macromolecules. Symposia of the
Society for Experimental Biology, 12:138–163, 1958.

7. Agoston Endre Eiben, Robert Hinterding, and Zbigniew Michalewicz. Parameter
control in evolutionary algorithms. IEEE Transations on Evolutionary Compu-
tation, 3(2):124–141, July 1999.

8. Robert Feldt and Peter Nordin. Using factorial experiments to evaluate the
effect of genetic programming parameters. In Riccardo Poli, Wolfgang Banzhaf,
William B. Langdon, Julian F. Miller, Peter Nordin, and Terence C. Fogarty,
editors, Genetic Programming, Proceedings of EuroGP’2000, volume 1802 of
LNCS, pages 271–282, Edinburgh, 15-16 April 2000. Springer-Verlag.

9. Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. Journal of Computer and System Sci-
ences, 55(1):119–139, Aug 1997.

10. S. Griffiths-Jones. The microRNA registry. Nucleic Acids Research,
32(90001):D109–111, 2004.

16 Sætrom, Birkeland and Snøve Jr.

11. A. Halaas, B. Svingen, M. Nedland, P. Sætrom, O. Snøve Jr., and O. R. Birke-
land. A recursive MISD architecture for pattern matching. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 12(7):727–734, 2004.

12. L. K. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 12(10):993–1001, 1990.

13. D. E. Knuth. All questions answered. Notices of the AMS, 49(3):318–324, 2002.
14. John R. Koza. Genetic Programming: On the Programming of Computers by

Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.
15. B. Lewin. Genes VII. Oxford University Press, Oxford, UK, 2000.
16. J. Martinez and T. Tuschl. RISC is a 5’ phosphomonoester-producing RNA

endonuclease. Genes & development, 18(9):975–980, 2004.
17. R. Meir and G. Rätsch. An introduction to boosting and leveraging. In

S. Mendelson and A. Smola, editors, Advanced Lectures on Machine Learning,
volume 2600, pages 118–183. Springer-Verlag, 2003.

18. David J. Montana. Strongly typed genetic programming. Evolutionary Compu-
tation, 3(2):199–230, 1995.

19. C. P. Petersen, M.-E. Bordeleau, J. Pelletier, and P. A. Sharp. Short RNAs
repress translation after initiation in mammalian cells. Molecular cell, 21(4):533–
542, 2006.

20. L. Prechelt. Automatic early stopping using cross validation: quantifying the
criteria. Neural Networks, 11(4):761–767, 1998.

21. G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Machine
Learning, 42(3):287–320, Mar 2001.

22. O. Sætrom, O. Snøve Jr., and P. Sætrom. Weighted sequence motifs as an im-
proved seeding step in microRNA target prediction algorithms. RNA, 11(7):995–
1003, 2005.

23. P. Sætrom. Predicting the efficacy of short oligonucleotides in antisense
and RNAi experiments with boosted genetic programming. Bioinformatics,
20(17):3055–3063, 2004.

24. P. Sætrom, R. Sneve, K. I. Kristiansen, O. Snøve Jr., T. Grünfeld, T. Rognes,
and E. Seeberg. Predicting non-coding RNA genes in Escherichia coli with
boosted genetic programming. Nucleic Acids Research, 33(10):3263–3270, 2005.

25. S. Salzberg. On comparing classifiers: Pitfalls to avoid and a recommended
approach. Data Mining and Knowledge Discovery, 1(3):317–328, 1997.

26. P. Sethupathy, B. Corda, and A. G. Hatzigeorgiou. TarBase: a comprehen-
sive database of experimentally supported anima l microRNA targets. RNA,
12(2):192–197, 2006.

27. T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. Journal of molecular biology, 147(1):403–410, 1981.

28. V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, New York, NY,
USA, 1998.

29. B. Wightman, I. Ha, and G. Ruvkun. Posttranscriptional regulation of the
heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C.
elegans. Cell, 75(5):855–862, 1993.

30. S. Yekta, I. Shih, and D. P. Bartel. MicroRNA-directed cleavage of HOXB8
mRNA. Science, 304(5670):594–596, 2004.

Paper VII

The Pattern Matching Chip

The Pattern Matching Chip

Olaf René Birkeland and Ola Snøve Jr∗

3 September, 2002

Contents

1 Introduction 2

2 Simple Pattern Matching 2

2.1 The Basic Idea . 2
2.2 The Data Distribution Tree . 3
2.3 The Processing Elements . 4
2.4 The Result Gathering Tree . 5
2.5 Example Queries with Configurations . 6

3 Advanced Pattern Matching 9

3.1 Forward Sequence Control . 9
3.2 Backward Sequence Control . 10
3.3 Repeating Patterns . 10
3.4 Skipping Patterns . 13
3.5 Sequence Control Limitations . 14

4 Managing Documents and Hits 15

4.1 The Document Manager . 15
4.2 The Hit Managers . 16

A Result Gathering Tree Details 17

A.1 Alphabetical and Numerical Comparisons 17
A.2 Implementing Boolean Functions . 18

References 20

∗Interagon AS, Medisinsk teknisk senter, NO-7489 Trondheim, Norway

1

1 Introduction

The Pattern Matching Chip (PMC) is an Application Specific Integrated

Circuit (ASIC), capable of searching for advanced patterns in arbitrary data

at a constant high speed. The PMC is based on breakthroughs made by

researchers at the Norwegian University of Science and Technology (NTNU),

who have devoted more than 15 years into developing ASICs for approximate

searching. With a clock frequency of 100 MHz, the PMC is able to search

with up to 64 distinct queries on 100 MB of data per second.

This document serves as an introduction to the PMC. The reader familiar

with the principles introduced here, should cf. [1, 4, 5] for details on the PMC

design and architecture.

2 Simple Pattern Matching

This section starts with an introduction to the main ideas behind the PMC.

Furthermore, a description of the major parts of the circuit is presented. To

enhance the readers understanding, a number of example queries with corre-

sponding PMC configurations are included towards the end of this section.

2.1 The Basic Idea

We should think of the overall operation of the PMC as a stream of data

flowing through the chip. The data is distributed to 1024 processing elements

(PEs) via a binary data distribution tree. The results from the comparisons

in the PEs are then processed in a result gathering tree.

We illustrate the basic workings of the PMC with two simple queries,

namely x|y and xy. That is, either an x or a y in the former, and an x

directly followed by a y in the latter. Consider figure 1 where the data flows

and the PE configurations are illustrated for these queries. If one asks for an

x or a y in a data stream, a natural approach would be to configure one PE

to report a match if an x occurs, and the other to match a y. Then, have

them receive data in parallel and the result gathering tree node collecting

the results to report a match if either the first, the second or both PEs have

a match. That is, report a match if the sum of the results from the PEs

2

b)a)

= y = x = y = x

≥ 2≥ 1

Figure 1: Data flow, pattern matching and result gathering for
queries a) x|y and b) xy.

is greater or equal to one. This is illustrated in figure 1 a). Note that the

implementation of parallel or sequential data distribution is simply a 2 : 1

multiplexer deciding whether to pass data received from above or from the

left neighbor PE, illustrated in the figure by dotting the non-preferred line

in the respective cases. Figure 1 b) shows how sequential data distribution is

used to match an x directly followed by a y. If the pattern xy were to occur

in the data stream, both PEs would report a match, and the result gathering

tree node should report a match only if this is the case, i.e. if the sum of the

results from the PEs equals two. Remark that matching the latter pattern

requires two clock cycles as the x first has to be shifted into the left and then

to the right PE. As the x is directly followed by a y in the data stream, the

situation will become as shown in the figure after the second shift.

These two queries illustrate how the PMC can utilize parallel and sequen-

tial data distribution, and use the boolean OR and AND operators in the result

gathering tree to obtain the desired result. As the basic idea should be clear

to the reader, we proceed with a more detailed presentation of the processing

elements and the trees.

2.2 The Data Distribution Tree

The processing elements are leaf nodes in a binary data distribution tree,

where each internal node can decide whether to pass data to its two chil-

3

PE 0 PE 1 PE 2 PE 3 PE 4 PE 5 PE 6 PE 7

f(L, R) f(L, R) f(L, R) f(L, R)

f(L, R) f(L, R)

f(L, R)

Figure 2: A data distribution tree with eight leaf nodes (PEs),
and the corresponding result gathering tree with function f(L,R)
calculated from the above left (L) and right (R) results.

dren in parallel or make the right child receive the data sequentially from

the rightmost leaf node (PE) in the left sibling tree. Figure 2 shows an

implementation of such a data distribution tree with eight PEs (the result

gathering tree will be described in section 2.4). This tree is just a direct

expansion of the single node tree with two PEs shown in section 2.1. In the

actual ASIC implementation there are, as mentioned before, 1024 PEs.

2.3 The Processing Elements

The line of 1024 PEs represent the pattern matching part of the chip, and

will sometimes be referred to as level zero of both the data distribution and

result gathering tree. Each PE is configured with a reference value, i.e. a

byte which is assumed to be a character. It can be configured to perform one

out of four possible comparisons:

(i) Check if the reference value, x, is less than or equal to the character,

a, it is compared to, i.e. indicate match if x ≤ a.

4

(ii) Check if the reference value, x, is greater than or equal to the character,

a, it is compared to, i.e. indicate match if x ≥ a.

(iii) Check if the reference value, x, is not equal to the character, a, it is

compared to, i.e. indicate match if x �= a.

(iv) Check if the reference value, x, is equal to the character, a, it is com-

pared to, i.e. indicate match if x = a.

Every PE has the possibility of reporting hits one, two, three or infinitely

many clock cycles for each time it has an actual match, i.e. the user can

specify a latency of 0, 1, 2 or ∞. Moreover, each PE can be disabled, meaning

that it does not perform any operation on its received data.

2.4 The Result Gathering Tree

Each node in the result gathering tree uses the result from the two nodes

directly above it to perform its destined task. Nodes at level one, i.e. directly

below the line of PEs, uses the output from the two PEs directly above it.

We will refer to result from the node above and to the left as L, and the

result from its right neighbor as R. Figure 2 shows the result gathering tree

below a line of eight PEs, and the operation is denoted f(L,R). The results

of the operation can be either boolean or integers, and each node can be

configured to perform one out of eight possible operations:

(i) Alphabetical/numerical comparison (cf. appendix A.1).

(ii) Check if the result from the left branch is equal to the result from the

right branch, i.e. indicate a match if L = R.

(iii) Check if the result from the left branch is greater than the result from

the right branch, i.e. indicate a match if L > R.

(iv) Check if the result from the left branch is greater than or equal to the

result from the right branch, i.e. indicate a match if L ≥ R.

(v) Summarize the result from the left and right branches, i.e. pass the

value L + R to the next level.

(vi) Check if the sum of the results from the left and right branches is

greater than or equal to some predefined value, c ∈ {0, 1, . . . , N}, i.e.

indicate a match if L + R ≥ c.

5

(vii) Check if the sum of the results from the left and right branches is less

than or equal to some predefined value, c ∈ {0, 1, . . . , N}, i.e. indicate

a match if L + R ≤ c.

(viii) Check if the sum of the results from the left and right branches is equal

to some predefined value, c ∈ {0, 1, . . . , N}, i.e. indicate a match if

L + R = c.

Note that the maximum accumulated sum for a node in the result gathering

tree is N = 2level. Hence specifying a positive integer c > N makes no sense,

and is not permitted in the PMC. By using the above operations it is possible

to perform all boolean operations (cf. appendix A.2).

As for the PEs, the result gathering nodes can be given a latency value

to maintain hits for a certain number of clock cycles. There is a limited

number of bits available for specifying the latency value for each node. The

maximum number of bits is four on level one, eight on levels two and three,

and sixteen on higher levels. If the four, eight or sixteen respective bits are

all set, the node is given infinite latency.

2.5 Example Queries with Configurations

The PMC comes with two query languages: The PMC Specification Lan-

guage (PSL) [3], which is a low level chip specific query language, and the

Interagon Query Language (IQL) [2], which is a high level query language

similar to regular expressions. This section contains a few example queries

with matching PMC configurations. Although the queries will be expressed

in IQL, they will be explained in plain English as well, so the reader does

not have to be familiar with IQL beforehand.

Example 1 (Range of characters). By combining the functionality of

the PEs, we can easily configure the PMC to match any character within

a specific range. For consider the query [b-f], that is a b, an f or any

character between them. Figure 3 a) shows an illustration on how to obtain

the desired result: One PE matches every character less than or equal to f,

while the other one matches every character greater than or equal to b. With

parallel data distribution, and a result gathering node that reports a hit if

and only if both PEs report a hit, we realize that the PMC will produce the

right output.

6

≤ f ≥ b

≥ 2

= x= y

≥ 2

a) b)

Figure 3: Illustration of PMC configuration matching the queries
a) [b-f], i.e. either a b, an f or any character between them,
and b) x NEAR y. Remark that latency is required for the PEs
in b).

Example 2 (The NEAR operator). The IQL has a NEAR operator, which

makes it possible to inquire the existence of a sequence in the data stream

where one expression occurs in the neighborhood of another. Figure 3 b)

shows how we can make the PMC match the query x NEAR y, that is an x

appearing close to a y in the data stream. By having one PE match an x and

the other one a y, and use latency for both PEs we obtain the desired result

if we have parallel data distribution and an AND configuration for the result

node (sum of left and right branch greater than or equal to 2, as indicated

by ≥ 2 in the figure). The statement “close” is a matter of definition. In

the IQL, the user may specify what this should mean in terms of number of

bytes between the expressions. In our example “close” have to mean one,

two or infinitely many (!) clock cycles, because that is the choices we have

with respect to latency at the PE level (cf. section 2.3). However, we could

easily extend the height of our tree to propagate the latency to higher levels

where we could configure a larger latency value.

Example 3 (The n-of-m modifier). A useful feature of the IQL is the

pattern n-of-m modifier. This modifier can be used to search for patterns

in the data stream which are, if not entirely correct, at least accurate to

some extent. A simple example is the query {mRNA:p>=3}, which is an IQL

7

a) b)

≥ 1

= C = G= A≥ \0= N = m

++

= A = R

≥ 3

≥ 2

≥ 2

Figure 4: Illustration of PMC configuration for the queries a)
{mRNA:p>=3}, that is match all strings of length four that match
at least three out of four characters in mRNA, and b) (G|A).C, i.e.
a G or an A followed by a wild card and a C

expression demanding that at least three out of the four characters in the

string mRNA have to match. Figure 4 shows an appropriate PMC configura-

tion. Since we are to match a string, we want every node in the distribution

tree to have sequential data distribution. The PE configuration then follows

intuitively, and the desired result is obtained if we summarize the results

from the PEs at level one, and at level two checks if the sum of the results

from level one is greater than or equal to three. The chip will now match the

string mRNA, as well as tRNA, mDNA, mRSA etc.

Example 4 (Use of wild cards). Probably indispensable when performing

any type of search is the ability to put wild cards into the query, i.e. we allow

any character to match. To illustrate this, consider the query (G|A).C, that

is either a G or an A, followed by any character, directly followed by a C. Figure

4 b) illustrates a tree configuration for this query. The second leftmost PE

is configured to match any character greater than or equal to the “empty”

character (ASCII 0), which means that it will act as a wild card. We have

serial data distribution at level two, and in the left subtree of level one,

whereas the right subtree has parallel data distribution to enable matching

of either A or G in the same position. We use boolean AND to account for the

.C part of the query, and the OR operator to ensure we have either of the

8

two specified characters, G or A, in place. Finally, we use the AND operator to

establish if the entire query match. Such a configuration will match strings

like GGC, ACC, ABC, GCC, and so on.

3 Advanced Pattern Matching

With the reader being familiar with the main ideas behind the PMC, i.e. the

binary distribution and result gathering trees, and the processing elements,

we move on to introduce the concept of sequence control. Sequence control is

used, among other things to enable the PMC to match repeating or skipping

patterns.

3.1 Forward Sequence Control

With forward sequence control we can specify that a PE or a node in the

result gathering tree should not report a match unless the node in front of

it (in the data flow direction) also reports a match. This is best illustrated

with an example.

Example 5 (The BEFORE statement). With the use of forward sequence

control one is able to specify that a pattern should appear before another

pattern in the data stream. The IQL has its own BEFORE operator, thus

permitting queries like REM BEFORE (cd|lp). In other words, the string REM

has to appear before either cd or lp in the data stream. Figure 5 shows the

applicable tree configuration. The distribution tree configuration should be

clear from previous examples. This is the first time we encounter a pattern

that does not completely fill all PEs in a subtree. The simple solution is

to disable the unused PEs. In this case we need to disable a single PE, as

illustrated in figure 5 by a “×” in this PE. Another feature, not previously

mentioned, is the possibility of specifying that a result should be blocked and

not passed on to the rest of the result tree. The right result node at level

two will report a match if REM exist in the data stream. This node should

be configured with infinite latency to ensure that the result node on its left

can report a hit whenever either cd or lp is found afterwards. Due to the

forward sequence control of this node (indicated by a broken arrow in the

figure) a hit will not be reported on the occurance of either cd or lp if REM

9

= p = l = d = c = M = E = R

≥ 2= 1≥ 2≥ 2

≥ 1 ≥ 2

= 1

Figure 5: Illustration of complete distribution tree, PE line and
result gathering tree for the query REM BEFORE (cd|lp). Re-
mark that the right result node at level two has to be configured
with infinite latency.

has yet to appear. Note that the result signal from the right node on level

two has to be blocked for this configuration to work.

3.2 Backward Sequence Control

Backward sequence control works like forward sequence control, only in the

opposite direction, i.e. a node cannot report a hit unless the node behind it

also reports a match. Backward sequence control will be essential when we

explain the matching of skipping patterns in section 3.4.

3.3 Repeating Patterns

It may be of great interest to match a query where parts of the expression

is repeated one or several times. We start off with a very simple example

query, and describe a way to implement matching of repeating patterns in a

tree structure like in the PMC.

Example 6 (Repeating patterns I). Consider the query co+p, i.e. a c,

directly followed by one or more o’s, followed by a p. Figure 6 shows the

appropriate configuration. Note that there is only one PE, namely the one

10

= 1

= c= o= p

= 1= 1

Figure 6: The appropriate configuration for the query co+p is
shown above. The broken arrow means forward sequence control,
while the solid represent forward sequence control with repeat.

responsible for matching p’s, that is allowed to report its match to the result

tree. All other PEs have their result signal blocked. However, because this

PE is configured with forward sequence control, it cannot report a hit if a

p occurs unless there is also a match on the PE responsible for matching

o’s. This particular PE is configured with a special sequence control called

forward sequence control with repeat, which means that either of the following

conditions must be satisfied for this PE to indicate a match:

(i) An o is matched by the PE, and the PE in front of it, the one matching

c’s, also reports a match. This is exactly the same as with plain forward

sequence control.

(ii) An o is matched by the PE, and there was also a match reported by

this PE one clock cycle ago. This means that the two rightmost PEs

in the line has recognized the pattern co+, that is a c followed by one

or more o’s.

Naturally, the second condition cannot be satisfied unless the first one has hit

to allow matching of repeated o’s. As long as the pattern co+ is recognized,

that is the second rightmost PE reports a match, the second leftmost PE is

11

= 1 = 1

≥ 2≥ 2≥ 2= 1≥ 2≥ 2= 1= 1

= m = o = c = . = 3 = p = m = . = w = w = w

≥ 2≥ 2≥ 2= 1

= 1

Figure 7: Illustration of a tree configuration for the query
www\.(mp3)+\.com. Note that to complete the tree it is necessary
to introduce a “dummy” subtree where all data is distributed in
parallel and nothing is matched, whence it has no effect.

allowed to report a match if a p is shifted in. This means that the result node

at level two will report a match, i.e. the entire pattern co+p is recognized.

Valid matches are for instance cop, coop, cooop and so on. However, if

a p does not occur, and any character besides o is shifted into the second

rightmost PE, the pattern co+ is no longer recognized and the match is

cleared, meaning that a full match is no longer possible until another co+

pattern arrives in the data stream.

Obviously, the repeating patterns can be longer than a single character.

We illustrate this with another example.

Example 7 (Repeating patterns II). There is no principal difference

between matching a single repeating character and a repeating pattern of

arbitrary length. However, as we have seen before, the matching of a pattern

require that an appropriate subtree is configured for this purpose, whence

sequence control must be applied at a higher level in the tree. Consider

the query www\.(mp3)+\.com. Note that \. is the IQL punctuation mark

notation (the single character . is reserved for wild cards). Figure 7 shows the

appropriate configuration for this particular query. We see that the situation

is no different from example 6 and figure 6, except for the “dummy” subtree

with four disabled PEs, that is included to complete the tree. The conditions

for a full match remain the same, i.e. the rightmost subtree with four PEs

12

has to match www. for the second rightmost subtree to report a hit on an

occurence of mp3. If this is the case, the second leftmost subtree is allowed

to match .com, thus setting up the result node at level four to match the

string www.mp3.com. Another possibility is that the second rightmost subtree

can continue to report a hit three clock cycles later if and only if there is a

repeated occurence of the string mp3. Any match of the pattern www\.(mp3)+
will be cleared if not followed by either of the strings .com or mp3.

Clearly, if a node is to match repeating patterns it has to hold information

about the past, e.g. the second rightmost PE in example 6 has to know

whether or not it reported a match one clock cycle ago. Equivalently, the

subtree reporting an occurence of the pattern www\.(mp3)+ in example 7

need information on its own state three clock cycles ago. Generally, a subtree

which is supposed to match a repeating string needs to hold all its reported

results for as many clock cycles as equals the length of the data path in its

own data distribution subtree. This is done by linking memory bits in a flip-

flop chain to hold historical information. The bits flow through the chain so

that the nth bit tells if there was a match for this node n clock cycles earlier.

3.4 Skipping Patterns

Skipping patterns, i.e. where parts of the query may or may not occur in the

data stream, are important search features. They are also easily implemented

on the PMC, and utilize backward sequence control with skip. We illustrate

with an example.

Example 8 (Skipping patterns). Consider the query Joh?n, that is Jo,

with an optional h, followed by an n, i.e. John and Jon will be matched.

Figure 8 shows an appropriate configuration for this query. The broken

arrows illustrate backward sequence control, while the solid arrow represents

backward sequence control with skip. The backward sequence control with

skip configuration means that the second leftmost node has two possibilities

for indicating a match:

(i) The leftmost PE reports a matching n character, and the second left-

most PE can at the same time match the h. This is exactly the same

as with plain backward sequence control.

(ii) There was a match on the leftmost PE one character ago. Since the h

is optional the result remains positive.

13

= 1

= 1= 1

= n = h = o = J

Figure 8: Skipping patterns tree configuration illustrated for
query Joh?n, i.e. occurences of either of the strings John or
Jon will be matched.

As the PE responsible for matching o’s has backward sequence control, it

cannot report a hit unless the pattern h?n has been matched. Likewise, the

PE matching J’s cannot report a match unless oh?n is already matched.

Hence, the desired result can be obtained by blocking all results to the result

tree except from the PE matching J’s. This PE alone reports a full match

of the query.

As for forward sequence control with repeat, a node utilizing backward

sequence control with skip needs to know whether there was a hit on its

left sibling node n clock cycles ago, where n is the length of the data path

of the skipped pattern subtree. In example 8 this subtree held only one

character, i.e. the length of the data path was one. However, when having

arbitrary optional parts in a query, the situation changes as in example 7

with repeating patterns.

3.5 Sequence Control Limitations

Sequence control is available at all levels in the result tree, including level zero

(the PE level). However, design constraints and practical considerations are

the reasons why the PMC has the possibility of using sequence control with

14

skipping or repeating patterns only at levels 0, 2, 4, 6 and 8. Also, the length

of the flip-flop chains are 1, 4, 16, 64 and 256 at these levels respectively. Note

that this does not restrain functionality since the numbers are identical to

the maximum length of the data path for these levels. Also, sequence control

chains cannot span more than sixteen nodes at the same level.

As we have seen, the length of the expressions to be repeated or skipped

has to be predefined, which is why the PMC cannot handle nested repeats

or skips. Furthermore, because repeating and skipping patterns are funda-

mentally different in that the former use forward sequence control and the

latter backward sequence control, one cannot use both in the same sequence

control chain.

4 Managing Documents and Hits

The aim of this chapter is to introduce the document manager and the hit

managers of the PMC, and how they are used to search and manage hits

from multiple queries in multiple consequtive documents. We start off with

the document manager, before moving on to the hit managers of the result

gathering tree.

4.1 The Document Manager

A common situation when searching large data sets, is that there exist a nat-

ural way to divide them into non-overlapping subsets. For instance, books are

easily divided into chapters and genomes into chromosomes. In the following

we will refer to these subsets as documents.

Occasionally, hits spanning several documents are undesireable, so it is

necessary to have some way of knowing which document a hit belongs to. For

this reason, the PMC is equipped with a document manager, which is capable

of matching a predefined document separator tag of length one, two, three or

four bytes. This is done simply by chaining three extra processing elements.

Hence, the document separator tag to be matched can be represented with

the same functionality as in the pattern matching part of the PMC, i.e.

each PE can match characters that are either less than or equal to, greater

than or equal to, not equal to or equal to a predefined character. When a

document separator tag is encountered in the data stream, the document

15

manager feeds a signal to the data distribution tree which follows the same

path as the data stream. Hence, this signal will reach all nodes at the same

time as the characters defining the document separator tag, thus being able

to prevent all matches and reset all values such as latencies due to earlier

matches, so that the PMC can start afresh on the new document.

Example 9 (Tag of length two). Needless to say, an expression which is

supposed to be a document separator tag cannot occur in any other place in

the data set except between documents. Hence, some knowledge of the data

is necessary to choose an appropriate document separator tag. Assume that

the complete works of William Shakespeare - thirtyseven plays and five poems

- are concatenated into one large data set. A sensible document separator

tag of length two could for instance be ##, as two consecutive #’s are very

unlikely to appear in written English.

4.2 The Hit Managers

Many of the queries previously presented as examples in this text use very

few, some no more than two, PEs. In theory, all nodes in the result tree could

report hits. To limit the number of hits to an amount small enough for the

receiving system to handle, and at the same time ensure that a reasonably

high number of queries can be handled simultaneously, the PMC has hit

managers from level four and higher in the result gathering tree. Hence, a

query can use no less than sixteen (24) PEs, and the maximum number of

simultaneous queries per PMC become 64 if all queries use the minimum

amount of PEs 1. Altogether, there are 127 hit managers in the result tree,

each of which has five different modes of operation:

(i) The hit manager can be switched off, i.e. no hits are reported to host

system memory. This is the default configuration.

(ii) The hit manager can report all hits to host system memory.

(iii) To limit the amount of hits, the hit manager can report only the first

hit during a predefined range of bytes to host system memory.

1Note that a query can be arbitrary complex, as several PMCs can be used to search
for patterns whose queries does not map on a single chip.

16

(iv) Like the previous mode of operation, the main purpose of this mode

is to limit the amount of reported hits, but instead of reporting the

first hit within a range of bytes, the PMC is to report only the first hit

within a document to host system memory.

(v) To handle queries asking if a pattern is NOT present in the data stream,

there is a mode for reporting a hit to host system memory if there is a

hit at the last byte of a document.

The hit managers can report either the address or the document and hit

number of the hits. The hit counter is reset between documents, meaning

that the hit number represent hit count number within the current document.

A Result Gathering Tree Details

As described in section 2.4, the nodes in the result gathering tree can perform

one out of eight possible operations on the results from their left and right

children. Thus, they can be viewed as binary operators. This appendix

contains details with respect to the functionality of the result gathering tree.

We start off by explaining how alphabetical and numerical comparisons are

performed, before moving on to an overview of how to implement all boolean

operators with the functionality present in the tree.

A.1 Alphabetical and Numerical Comparisons

By exploiting the recursive nature of the alphabetical and numerical string

comparison problem (denote the operator A/N), one can perform alphabetical

and numerical comparisons in a tree structure like that of the PMC. Alpha-

betical and numerical comparisons are best illustrated with an example.

Example 10 (Alphanumeric on the PMC). Consider the query (≥1990),

i.e. match all expressions that are alphabetically/numerically larger than

1990. Figure 9 illustrates the PMC configuration. The extra lines in the re-

sult gathering tree are drawn to illustrate that every node in the result tree in

the PMC has knowledge of whether or not there was an equality in the nodes

above them, e.g. the right node at level one knows both if the rightmost PE

matched a character greater than or equal to 1 and, in addition, if it was

17

≥ 9≥ 0 ≥ 1≥ 9

A/N

A/NA/N

Figure 9: Illustration of the configuration for the query (>=1990),
i.e. match all strings alphabetically/numerically larger than
1990.

identical to 1. Obviously, if the rightmost PE does not match, the string is

alphabetically/numerically smaller than 1990. If it matches, and in addition

there is no equality, the string is greater. If the match is an equality, one

has to gain information from the second rightmost PE. If there is also an

equality here, the right node at level one can conclude with an equality, and

one has to move on to the left node at level one. Denoting the equlity and

result signals from the upper right and left branches eqright, resright, eqleft and

resleft respectively, the A/N operation becomes

res = {resright AND (NOT eqright)} OR {resleft AND eqright}

and

eq = eqright AND eqleft.

A.2 Implementing Boolean Functions

With the operations of the result tree introduced in section 2.4, all boolean

operations can be performed. Again, denoting the result from the left upper

branch L, the result from the right upper branch R, and assuming that these

18

Function Implementation Commment
0 L + R ≥ 3 Null
(L AND R) L + R ≥ 2
(L AND NOT R) L > R
(Transfer L) L + R Subtree R assumed to always generate zero
(L NOR NOT R) R > L Subtrees swapped
(Transfer R) L + R Subtree L assumed to always generate zero
(L XOR R) L + R = 1
(L OR R) L + R ≥ 1
(L NOR R) L + R ≤ 0
(L XNOR R) L = R Equivalence
(NOT R) L + R ≤ 0 Subtree L assumed to always generate zero
(L OR NOT R) L ≥ R Implication, if R then L else true
(NOT L) L + R ≤ 0 Subtree R assumed to always generate zero
(NOT L OR R) R ≥ L Implication, if L then R else true
(L NAND R) L + R ≤ 1
1 L + R ≥ 0 Identity

Table 1: Implementation of all boolean functions using the func-
tionality present in the nodes of the result gathering tree.

results are always zero or one when performing boolean functions, table 1

shows an overview on how to implement them.

19

References

[1] Fast Search & Transfer ASA. The FAST pattern matching chip, rev. c1.

More detailed description of sequence control.

[2] Fast Search & Transfer ASA. The FAST query language (FQL). Reference

guide for a high level query language.

[3] Fast Search & Transfer ASA. The PMC specification language (PSL).

Reference guide for chip specific query language.

[4] Synopsis Finland Oy. Architectural plan, PMC. Design document, version

0.3, November 25, 1999.

[5] Synopsis Finland Oy. Technical specification, PMC. Design document,

version 0.21, Mai 08, 2001.

20

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Subsample
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Subsample
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Subsample
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

