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Abstract

A framework for constructing integral preserving numerical schemes
for time-dependent partial differential equations on non-uniform grids
is presented. The approach can be used with both finite difference
and partition of unity methods, thereby including finite element meth-
ods. The schemes are then extended to accommodate r-, h- and
p-adaptivity. To illustrate the ideas, the method is applied to the
Korteweg–de Vries equation and the sine-Gordon equation. Results
from numerical experiments are presented.

1 Introduction

Courant, Friedrichs and Lewy introduced difference schemes with conserva-
tion properties in [1], where a discrete conservation law for a finite difference
approximation of the wave equation was derived. Their methods are often
called energy methods [2] or energy-conserving methods [3], although the
conserved quantity is often not energy in the physical sense. The primary
motivation for developing conservative methods was originally to devise a
norm that could guarantee global stability. This was still an objective, in
addition to proving existence and uniqueness of solutions, when the energy
methods garnered newfound interest in the 1950s and 1960s, resulting in
new developments such as generalizations of the methods and more differ-
ence schemes, summarized by Richtmyer and Morton in [4]. In the 1970s,
the motivation behind studying schemes that preserve invariant quantities
changed, as the focus shifted to the conservation property itself. Li and Vu-
Quoc presented in [3] a historical survey of conservative methods developed
up to the early 1990s. They state that this line of work is motivated by the
fact that in some situations, the success of a numerical solution will depend
on its ability to preserve one or more of the invariant properties of the original
differential equation. In addition, as noted in [5,6], there is the general idea
that transferring more of the properties of the original continuous dynamical
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system over to a discrete dynamical system may lead to a more accurate nu-
merical approximation of the solution, especially over long time intervals. In
recent years, there has been a greater interest in developing systematic tech-
niques applicable to larger classes of differential equations. Hairer, Lubich
and Wanner give in [6] a presentation of geometric integrators for differential
equations, i.e. methods for solving ordinary differential equations (ODEs)
that preserve a geometric structure of the system. Examples of such geomet-
ric structures are symplectic structures, symmetries, reversing symmetries,
isospectrality, Lie group structure, orthonormality, first integrals, and other
invariants, such as volume and invariant measure.

In this paper we will be concerned with the preservation of first integrals
of PDEs. From the ODE literature we find that the most general methods
for preserving first integrals are tailored schemes, in the sense that the vec-
tor field of the ODE does not by itself provide sufficient information, so the
schemes make explicit use of the first integral. An obvious approach in this
respect is projection, where the solution is first advanced using any consistent
numerical scheme and then this approximation is projected onto the appro-
priate level set of the invariant. In the same class of tailored methods one
also has the discrete gradient methods, usually attributed to Gonzalez [7].
For the subclass of canonical Hamiltonian systems, the energy can be pre-
served by means of a general purpose method called the averaged vector field
method, see e.g. [8].

The notion of discrete gradient methods for ordinary differential equa-
tions has a counterpart for partial differential equations called the discrete
variational derivative method. Such schemes have been developed since the
late 1990s in a number of articles by Japanese researchers such as Furihata,
Matsuo, Sugihara, and Yaguchi. A relatively recent account of this work can
be found in the monograph [9]. More recently, the development of integral
preserving schemes for PDEs has been systematised and eased, in particular
by using the aforementioned tools from ordinary differential equations, see
for instance [10,11]. Most of the schemes one finds in the literature are based
on a finite difference approach, and usually on fixed, uniform grids. There are
however some exceptions. Yaguchi, Matsuo and Sugihara presented in [12,13]
two different discrete variational derivative methods on fixed, non-uniform
grids, specifically defined for certain classes of PDEs. Non-uniform grids
are of particular importance for multidimensional problems, since the use
of uniform grids will greatly restrict the types of domains possible to dis-
cretize. Another important consequence of being able to use non-uniform
grids is that it allows for the use of time-adaptive spatial meshes for solv-
ing partial differential equations. Adaptive energy preserving schemes for
the Korteweg–de Vries and Cahn–Hilliard equations have been developed re-
cently [14] by Miyatake and Matsuo. The main objective of this paper is to
propose a general framework for numerical methods for PDEs that combine
mesh adaptivity with first integral conservation.
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Several forms of adaptive methods exist; they can roughly be categorized
as r-, h- and p-adaptive. When applying r-adaptivity, one keeps the number
of degrees of freedom constant while modifying the mesh at each time step
to e.g. cluster in problematic areas such as boundary layers or to follow
wave fronts. When applying the Finite Difference Method (FDM) or the
Finite Element Method (FEM), moving mesh methods may be used for r-
adaptivity, some examples of which may be found in [15–17]. When using
Partition of Unity Methods (PUM) (and in particular when using FEM), h-
and p-adaptivity relate to adjusting the number of elements and the basis
functions used on the elements, respectively. For PUM methods there exist
strategies for h- and p-adaptivity based both on a priori and a posteriori
error analysis [18]. Common to all of these strategies is that, based on
estimated function values in preceding time steps, one can suggest improved
discretization parameters for the next time step. In the FDM approach, these
discretization parameters consist of the mesh points x, while in the PUM
approach the parameters encompass information about both the mesh and
the basis functions. We will, in general, denote a collection of discretization
parameters by p, and assume that the discretization parameters are changed
separately from the degrees of freedom u of the problem when using adaptive
methods. That is, starting with an initial set of discretization parameters
p0 and initial values u0, one would first decide upon p1 before calculating
u1, then finding p2, then u2, etc., in a decoupled fashion.

A first integral of a PDE is a functional I on an infinite-dimensional
function space, whereas the numerical methods considered here will reduce
the problem to a finite-dimensional setting. Therefore, we cannot preserve
the exact value of the first integral; instead, we will preserve a consistent
approximation to the first integral, Ip(u). The approximation will be de-
pendent on the discretization parameters p and, since adaptivity alters the
discretization parameters, we will therefore aim to preserve the value of the
approximated first integral across all discretization parameters, i.e. we will
require that Ipn+1(un+1) = Ipn(un). Here, and in the following, superscripts
denote time steps unless otherwise specified.

In this article, we will present a method for developing adaptive numerical
schemes that conserve an approximated first integral. In Section 2, the PDE
problem is stated, and two classes of first integral preserving methods using
arbitrary yet constant discretization parameters are presented; one using an
FDM approach and the other a PUM approach for spatial discretization. A
connection to previously existing methods is then established. In Section 3,
we present a way of adding adaptivity to the methods from Section 2 and the
modifications needed to retain the first integral preservation property, before
showing that certain projection methods form a subclass of the methods thus
obtained. Section 4 contains examples of the application of the methods to
two PDEs and numerical results pertaining to the quality of the numerical
solutions as compared to a standard implicit method.
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2 Spatial discretization with fixed mesh

2.1 Problem statement

Consider a partial differential equation

ut = f(x, uJ), x ∈ Ω ⊆ Rd, u ∈ B ⊆ L2, (2.1)

where uJ denotes u itself and its partial derivatives of any order with respect
to the spatial variables x1, ...., xd. We shall not specify the space B further,
but assume that it is sufficiently regular to allow all operations used in the
following. For ease of reading, all t-dependence will be suppressed in the
notation wherever it is irrelevant. Also, from here on, square brackets are
used to denote dependence on a function and its partial derivatives of any
order with respect to the independent variables t and x1, ..., xd. We recall the
definition of the variational derivative of a functional H[u] as the function
δH
δu [u] satisfying〈

δH

δu
[u], v

〉
L2

=
d

dε

∣∣∣∣
ε=0

H[u+ εv] ∀v ∈ B, (2.2)

and define a first integral of (2.1) to be a functional I[u] satisfying〈
δI
δu

[u], f(x, uJ)

〉
L2

= 0, ∀u ∈ B.

We may observe that I[u] is preserved over time, since this implies

dI
dt

=

〈
δI
δu

[u],
∂u

∂t

〉
L2

= 0.

Furthermore, we may observe that if there exists some operator S(x, uJ),
skew-symmetric with respect to the L2 inner product, such that

f(x, uJ) = S(x, uJ)
δI
δu

[u],

then I[u] is a first integral of (2.1), and we can state (2.1) in the form

ut = S(x, uJ)
δI
δu

[u]. (2.3)

This can be considered as the PDE analogue of an ODE with a first integral,
in which case we have a system

dx

dt
= S(x)∇I(x), (2.4)

where S(x) is a skew-symmetric matrix [19]. Note that Hamiltonian equa-
tions are contained of this class of ODEs. For such differential equations,
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there exist numerical methods preserving the first integral I(x), for instance
the discrete gradient methods, which are of the form

xn+1 − xn

∆t
= S̄(xn,xn+1)∇I(xn,xn+1),

where S̄(xn,xn+1) is a consistent skew-symmetric time-discrete approxima-
tion to S(x) and ∇I(v,u) is a discrete gradient of I(x), i.e. a function
satisfying

(∇I(v,u))T (u− v) = I(u)− I(v), (2.5)

∇I(u,u) = ∇I(u). (2.6)

There are several possible choices of discrete gradients available, one of which
is the Average Vector Field (AVF) discrete gradient [10], given by

∇I(v,u) =

1∫
0

∇I(ξu + (1− ξ)v)dξ,

which will be used for numerical experiments in the final chapter. Our
approach to solving (2.1) on non-uniform grids is based upon considering
the PDE in the form (2.3), reducing it to a system of ODEs of the form (2.4)
and applying a discrete gradient method. This is done by finding a discrete
approximation Ip to I and using this to obtain a discretization in the spatial
variables, which is achieved through either a finite difference approach or a
variational approach.

2.2 Finite difference method

In the finite difference approach, we restrict ourselves to obtaining approx-
imate values of u at the grid points x0, ...,xM , which can be interpreted as
quadrature points with some associated nonzero quadrature weights κ0, ..., κM .
The grid points constitute the discretization parameters p. We can then ap-
proximate the L2 inner product by quadrature to arrive at a weighted inner
product:

〈u, v〉L2 =

∫
Ω

u(x)v(x)dx '
M∑
i=0

κiu(xi)v(xi) = uTD(κ)v = 〈u,v〉κ ,

where D(κ) = diag(κ0, ..., κM ). Assume that there exists a consistent ap-
proximation Ip(u) to the functional I[u], dependent on the values of u at the
points xi. Then, we can characterize the discretized variational derivative
by asserting that〈

δIp
δu

(u),v

〉
κ

=
d

dε

∣∣∣∣
ε=0

Ip(u + εv) ∀v ∈ RM+1,
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meaning (
δIp
δu

(u)

)T
D(κ)v = (∇Ip(u))Tv ∀v ∈ RM+1,

from which we conclude that
δIp
δu

(u) = D(κ)−1∇Ip(u). (2.7)

Using this as a discretization of δIδu [u] and approximating S(x, uJ) by a matrix
Sd(u), skew-symmetric with respect to 〈·, ·〉κ, we obtain a discretization of
(2.3) as:

du

dt
= Sp(u)∇Ip(u), (2.8)

where Sp(u) = Sd(u)D(κ)−1. This system of ODEs is of the form (2.4),
since

Sp(u)T = (Sd(u)D(κ)−1)T

= D(κ)−1Sd(u)TD(κ)D(κ)−1

= −D(κ)−1D(κ)Sd(u)D(κ)−1

= −Sd(u)D(κ)−1

= −Sp(u).

This allows us to apply first integral preserving methods for systems of ODEs
to solve the spatially discretized system. For example, we may consider using
a discrete gradient ∇Ip, and a skew-symmetric, time-discrete approximation
Sp(un,un+1) to Sp(u), where un = u(tn), tn = n∆t. Then, the following
scheme will preserve the approximated first integral Ip in the sense that
Ip(un+1) = Ip(un):

un+1 − un

∆t
= Sp(un,un+1)∇Ip(un,un+1). (2.9)

2.3 Partition of unity method

One may also approach the problem of spatially discretizing the PDE through
the use of variational methods such as the Partition of Unity Method (PUM)
[20], which generalizes the Finite Element Method (FEM). Here, the varia-
tional structure of the functional derivative can be utilized in a natural way,
such that one avoids having to approximate S(x, uJ). We begin by stating
a weak form of (2.3). Then, the problem consists of finding u ∈ B such that

〈ut, v〉L2 =

〈
S(x, uJ)

δI
δu

[u], v

〉
L2

= −
〈
δI
δu

[u], S(x, uJ)v

〉
L2

∀v ∈ B.

(2.10)
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Employing a Galerkin formulation, we restrict the search to a finite dimen-
sional subspace Bh = span{ϕ0, ...ϕM} ⊆ B, and approximate u by the func-
tion

uh(x, t) =

M∑
i=0

ui(t)ϕi(x).

We denote by p the collection of discretization parameters defining Bh; this
includes information about mesh points, element types and shapes of basis
functions. Furthermore, we define the canonical mapping Φp : RM+1 → Bh
given by

Φp(u) =
M∑
i=0

uiϕi, (2.11)

and the discrete first integral Ip by

Ip(u) = I(Φp(u)).

The following lemma will prove useful later in the construction of the method:

Lemma 1. For any uh, v ∈ Bh,

d

dε

∣∣∣∣
ε=0

I(uh + εv) = (∇Ip(u))Tv.

Proof.

d

dε

∣∣∣∣
ε=0

I(uh + εv) =
d

dε

∣∣∣∣
ε=0

I(Φp(u + εv))

=

〈
δI
δu

[Φp(u + εv)],
d

dε
Φp(u + εv)

〉
L2

∣∣∣∣
ε=0

=

〈
δI
δu

[Φp(u + εv)], (∇Φp(u + εv))Tv

〉
L2

∣∣∣∣
ε=0

=

〈
δI
δu

[Φp(u)], (∇Φp(u))Tv

〉
L2

=
M∑
i=0

vi

〈
δI
δu

[Φp(u)],
∂

∂ui
Φp(u)

〉
L2

=
M∑
i=0

vi
∂

∂ui
I[Φp(u)] =

M∑
i=0

vi
∂

∂ui
Ip(u) = (∇Ip(u))Tv.
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We observe that for u, v ∈ Bh, the L2 inner product has a discrete counter-
part:

〈u, v〉L2 =
M∑
i=0

M∑
j=0

uivj 〈ϕi, ϕj〉L2 = uTAv = 〈u,v〉A

with the symmetric positive definite matrix A given by Aij = 〈ϕi, ϕj〉L2 .
Note also that equation (2.10) is satisfied in Bh if it is satisfied for all basis
functions ϕj . The Galerkin form of the problem therefore consists of finding
ui(t) such that

M∑
i=0

dui
dt
〈ϕi, ϕj〉L2 = −

〈
δI
δu

[uh], S(x, uh,J)ϕj

〉
L2

∀j ∈ {0, ...,M}. (2.12)

This weak form is rather unwieldy and does not give rise to a system of the
form (2.4), so in order to make further progress, we consider the projection
of δIδu [uh] onto Bh:

δI
δu

h

[uh] =

M∑
i=0

whi [uh]ϕi(x) =

M∑
i=0

wi(u)ϕi(x),

where wi(u) = whi [Φ(u)] = whi [uh] are coefficients that will be characterized
later. Replacing δI

δu [uh] by its projection in (2.12) gives the approximate
weak form:

M∑
i=0

dui
dt
〈ϕi, ϕj〉L2 = −

M∑
i=0

wi(u)
〈
ϕi, S(x, uh,J)ϕj

〉
L2

∀j ∈ {0, ...,M}.

Thus, we obtain a system of equations for the coefficients ui:

A
du

dt
= −B(u)w(u), (2.13)

with the skew-symmetric matrixB(u) given byB(u)ji =
〈
ϕi, S(x,Φ(u)J)ϕj

〉
L2 .

Furthermore, we may characterize the vector w(u) by the following argu-
ment:

w(u)TAv =

〈
δI
δu

h

[uh], v

〉
L2

=

〈
δI
δu

[uh], v

〉
L2

=
d

dε

∣∣∣∣
ε=0

I(uh + εv) = (∇Ip(u))Tv,

where the last equality holds by Lemma 1. This holds for all v ∈ RM+1, and
thus

w(u) = A−1∇Ip(u). (2.14)
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Inserting (2.14) into (2.13) and left-multiplying by A−1, we are left with an
ODE for the coefficients ui:

du

dt
= Sp(u)∇Ip(u). (2.15)

Here, Sp(u) = −A−1B(u)A−1 is a skew-symmetric matrix, and the system
is thereby of the form (2.4), meaning Ip can be preserved numerically using
e.g. discrete gradient methods as in equation (2.9).

2.4 Discrete variational derivative methods

Let us now define a general framework for the discrete variational derivative
methods that encompass the methods presented by Furihata, Matsuo and
coauthors in a number of publications including [2, 9, 12,13,21].

Definition 1. Let Ip be a consistent approximation to the functional I [u]
discretized on p given by grid points xi and quadrature weights κi, i =
0, ...,M . Then δIp

δ(v,u)(v,u) is a discrete variational derivative of Ip(u) if it
is a continuous function satisfying〈

δIp
δ(v,u)

,u− v

〉
κ

= Ip(u)− Ip(v), (2.16)

δIp
δ(u,u)

=
δIp
δu

(u) , (2.17)

and the discrete variational derivative methods for solving PDEs on the form
(2.3) are given by

un+1 − un

∆t
= Sd(u

n,un+1)
δIp

δ(un,un+1)
, (2.18)

where Sd(un,un+1) is a time-discrete approximation to Sd(u), and itself
skew-symmetric with respect to the inner product 〈·, ·〉κ.

Proposition 1. A discrete gradient method (2.9) applied to the system of
ODEs (2.8) or (2.15) is equivalent to a discrete variational derivative method
as given by (2.18), with

Sd(u
n,un+1) = Sp(un,un+1)D (κ) ,

and the discrete variational derivative

δIp
δ(v,u)

= D(κ)−1∇Ip(v,u) (2.19)

satisfying (2.16)-(2.17).
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Proof. Applying (2.5), we get that, for the discrete variational derivative
defined by (2.19),〈

δIp
δ(v,u)

,u− v

〉
κ

=
〈
D(κ)−1∇Ip(v,u),u− v

〉
κ

=
(
D(κ)−1∇Ip (v,u)

)T
D(κ) (u− v)

= ∇Ip (v,u)T (u− v) = Ip(u)− Ip(v),

and hence (2.16) is satisfied. Furthermore, applying (2.6) and (2.7),

δIp
δ(u,u)

= D(κ)−1∇Ip(u,u) = D(κ)−1∇Ip (u) =
δIp
δu

(u)

and (2.17) is also satisfied.

Consequently, all discrete variational derivative methods as given by
(2.18) can be expressed as discrete gradient methods on the system of ODEs
(2.8) or (2.15) obtained by discretizing (2.3) in space, and vice versa.

3 Adaptive discretization

3.1 Mapping solutions between parameter sets

Assuming that adaptive strategies are employed, one would obtain a new
set of discretization parameters p at each time step. After such a p has
been found, the solution using the previous parameters must be transferred
to the new parameter set before advancing to the next time step. This
transfer procedure can be done in either a preserving or a non-preserving
manner. Let pn, un, pn+1 and un+1 denote the discretization parameters
and the numerical values obtained at the current time step and next time
step, respectively. Also, let û denote the values of un transferred onto pn+1

by whatever means. We call the transfer operation preserving if Ipn+1(û) =
Ipn(un). If the transfer is preserving, then the next time step can be taken
with a preserving scheme, e.g. the scheme

un+1 − û

∆t
= Spn+1(û,un+1)∇Ipn+1(û,un+1),

which is preserving in the sense that

Ipn+1(un+1)−Ipn(un) = Ipn+1(un+1)− Ipn+1(û)

=
〈
∇Ipn+1(û,un+1),un+1−û

〉
= ∆t

〈
∇Ipn+1(û,un+1), Spn+1(û,un+1)∇Ipn+1(û,un+1)

〉
= 0,

since Spn+1(û,un+1) is skew-symmetric. If non-preserving transfer is used,
corrections are needed in order to obtain a preserving numerical method.
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Proposition 2. The scheme

un+1 = û−
(Ipn+1(û)− Ipn(un))z〈
∇Ipn+1(û,un+1), z

〉 +∆tSpn+1(û,un+1)∇Ipn+1(û,un+1),

(3.1)

where z is an arbitrary vector, is first integral preserving in the sense that
Ipn+1(un+1)−Ipn(un) = 0.

Proof.

Ipn+1(un+1)−Ipn(un)=Ipn+1(un+1)− Ipn+1(û) + Ipn+1(û)− Ipn(un)

=
〈
∇Ipn+1(û,un+1),un+1−û

〉
+ Ipn+1(û)− Ipn(un)

=

〈
∇Ipn+1(û,un+1),un+1−û+

(Ipn+1(û)− Ipn(un))z〈
∇Ipn+1(û,un+1), z

〉〉
= 0.

The correcting direction z should be chosen so as to obtain a minimal correc-
tion, and such that 〈∇Ipn+1(û,un+1), z〉 6= 0. One possibility is simply tak-
ing z = ∇Ipn+1(û,un+1). In the FDM case one may alternatively choose z =

D(κ)−1∇Ipn+1(û,un+1), and in the PUM case, z = A−1∇Ipn+1(û,un+1).
When using the PUM formulation, one may obtain a method for pre-

serving transfer in the following manner. Any changes through e.g. r- p-
and/or h-refinement between time steps will result in a change in the shape
and/or number of basis functions. Denote by Bh = span{ϕi}Mi=0 the trial
space from the current time step and by B̂h = span{ϕ̂i}M̂i=0 the trial space
for the next time step, and note that in general,M 6= M̂ . We do not concern
ourselves with how the new basis is found, but simply acknowledge that the
basis changes through adaptivity measures as presented in e.g. [15] or [18].
Our task is now to transfer the approximation uh from Bh to B̂h, obtaining
an approximation ûh, while conserving the first integral, i.e. I[uh] = I[ûh].
This can be formulated as a constrained minimization problem:

min
ûh∈B̃h

||ûh − uh||2L2 s.t. I[ûh] = I[uh].

We observe that

||ûh − uh||2L2 =
M̂∑
i=0

M̂∑
j=0

ûiûjÂij − 2
M̂∑
i=0

M∑
j=0

ûiu
n
jCij +

M∑
i=0

M∑
i=0

uni u
n
jAij

= ûT Âû− 2ûTCun + unAun,
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where Aij = 〈ϕi, ϕj〉L2 , Âij = 〈ϕ̂i, ϕ̂j〉L2 and Cij = 〈ϕ̂i, ϕj〉L2 . Also observ-
ing that

I[ûh] = Ipn+1(û), I[uh] = Ipn(un),

the problem can be reformulated as

min
û∈RM̂+1

ûT Âû− 2ûTCun + unAun s.t. Ipn+1(û)− Ipn(un) = 0.

This is a quadratic minimization problem with one nonlinear equality con-
straint. Using the method of Lagrange multipliers, we find û as the solution
of the nonlinear system of equations

Âû− Cun − λ∇Ipn+1(û) = 0

Ipn+1(û)− Ipn(un) = 0,

which can be solved numerically using a suitable nonlinear solver.
In general, applicable also in the FDM case, given ū obtained by inter-

polating un onto pn+1 in a non-preserving manner, a preserving transfer
operation is obtained by solving the system of equations

û− ū− λ∇Ipn+1(û) = 0

Ipn+1(û)− Ipn(un) = 0.

3.2 Projection methods

Let the function fp : RM × RM → RM be such that

un+1 − un

∆t
= fp(un,un+1) (3.2)

defines a step from time tn to time tn+1 of any one-step method applied
to (2.1) on the fixed grid represented by the discretization parameters p.
Then we define one step of an integral preserving linear projection method
un 7→ un+1 from pn to pn+1 by

1. Interpolate un onto pn+1 by whatever means to get û,

2. Integrate û one time step by computing ũ = û + ∆tfpn+1 (û, ũ),

3. Compute un+1 by solving the system of M + 1 equations un+1 =
ũ + λz and Ipn+1(un+1) = Ipn(un), for un+1 ∈ RM and λ ∈ R,
where the direction of projection z is typically an approximation to
∇Ipn+1(un+1).
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By utilizing the fact that for a method defined by (3.2) there exists an
implicitly defined map Ψp : RM → RM such that un+1 = Ψpu

n, we define

gp(un) :=
Ψpu

n − un

∆t
,

and may then write the tree points above in an equivalent, more compact
form as: Compute un+1 ∈ RM and λ ∈ R such that

un+1 − û−∆tgpn+1 (û)− λz = 0, (3.3)

Ipn+1(un+1)− Ipn(un) = 0, (3.4)

where û is un interpolated onto pn+1 by an arbitrary procedure.
The following theorem and proof are reminiscent of Theorem 2 and its

proof in [22], whose subsequent corollary shows how linear projection meth-
ods for solving ODEs are a subset of discrete gradient methods.

Theorem 1. Let gp : RM → RM be a consistent discrete approximation of f
in (2.1) and let ∇Ip(un,un+1) be any discrete gradient of the consistent ap-
proximation Ip(u) of I [u] defined by (2.2) on the grid given by discretization
parameters p. If we set Spn+1 in (3.1) to be

Spn+1(û,un+1) =
gpn+1(û)zT − zgpn+1(û)T〈
∇Ipn+1 (û,un+1) , z

〉 , (3.5)

then the linear projection method for solving PDEs on a moving grid, given
by (3.3)-(3.4), is equivalent to the discrete gradient method on moving grids,
as given by (3.1).

Proof. For better readability, we set ∇I := ∇Ipn+1

(
û,un+1

)
. Assume that

(3.3)-(3.4) are satisfied. By applying (3.4), we get that

Ipn(un)− Ipn+1(û) = Ipn+1(un+1)− Ipn+1(û)

=
〈
∇I,un+1 − û

〉
= ∆t

〈
∇I, gpn+1(û)

〉
+ λ

〈
∇I, z

〉
,

and hence

λ =
Ipn(un)− Ipn+1(û)〈

∇I, z
〉 −∆t

〈
∇I, gpn+1(û)

〉〈
∇I, z

〉 (3.6)

Substituting this into (3.3), we get

un+1 = û +
Ipn(un)− Ipn+1(û)〈

∇I, z
〉 z + ∆t

(
gpn+1 (û)−

〈
∇I, gpn+1(û)

〉〈
∇I, z

〉 z

)
,
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where

gpn+1 (û)−
〈
∇I, gpn+1(û)

〉〈
∇I, z

〉 z =
∇ITzgpn+1(û)−∇ITgpn+1(û)z〈

∇I, z
〉

=
gpn+1(û)zT∇I − zgpn+1(û)T∇I〈

∇I, z
〉

and thus (3.1) is satisfied, with Spn+1 as given by (3.5). Conversely, if un+1

satisfies (3.1), then (3.4) is satisfied. Furthermore, inserting (3.5) into (3.1)
and following the above deduction backwards, we get (3.3), with λ defined
by (3.6).

Since (3.5) defines a particular set of choices for Spn+1 , the linear pro-
jection methods on moving grids constitute a subset of all possible discrete
gradient methods on moving grids as defined by (3.1). Note also that, since
the linear projection methods are independent of the discrete gradient, each
linear projection method defines an equivalence class of the methods (3.1),
uniquely defined by the choice of gpn+1 .

3.3 Family of discretized integrals

At the core of the methods considered here is the notion that an approxi-
mation to the first integral I is preserved, and that this approximation is
dependent on the discretization parameters which may change from iteration
to iteration. That is, we have a family of discretized first integrals Ip, and
at each time step the discretized first integral is exchanged for another. For
each set of discretization parameters p, there is a corresponding set of de-
grees of freedom u, in which we search for a u such that Ip(u) is preserved.
This can be interpreted as a fiber bundle with base space B as the set of all
possible discretization parameters p, and fibers Fp as the sets of all degrees
of freedom such that the discretized first integral is equal to the initial dis-
cretized first integral, i.e. Fp = {u ∈ RM |Ip(u) = Ip0(u0)}. A similar idea,
although without energy preservation, has been discussed by Bauer, Joshi
and Modin in [23].

4 Numerical experiments

4.1 General remarks on type of experiments made

To provide examples of the application of our method and to investigate
its accuracy, we have applied it to two one-dimensional PDEs: the sine-
Gordon equation and the Korteweg–de Vries (KdV) equation. The choice
of these equations were made because they both possess traveling wave so-
lutions in the form of solitons, providing an ideal situation for r-adaptivity,
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which allows the grid points to cluster around wave fronts. The following
experiments consider r-adaptivity only, and not p- or h-adaptivity. The sine-
Gordon equation is solved using the FDM formulation of section 2.2, while
the KdV equation is solved using the PUM formulation of section 2.3.

We wish to compare our methods to standard methods on fixed and adap-
tive meshes. This gives us four methods to consider: Fixed mesh methods
with energy preservation by discrete gradients (DG), adaptive mesh meth-
ods with preservation by discrete gradients (DGMM), a non-preserving fixed
grid method (MP), and the same method with adaptive mesh (MPMM). The
former two methods are those described earlier in the paper, while the latter
two are made differently for the two equations. In the sine-Gordon case,
we use a finite difference scheme where spatial discretization is done using
central finite differences and time discretization using the implicit midpoint
rule. In the KdV case, the spatial discretization is performed the same way
as for the discrete gradient schemes, while the time discretization is done
using the implicit midpoint rule. Note that the MPMM scheme for the sine-
Gordon equation proved unstable unless restrictively short time steps were
used, and the results of those tests are therefore omitted from the following
discussion. The results using MPMM for the KdV equation were better, and
are presented. The procedure for mesh adaptivity is presented in the next
subsection.

Using adaptive mesh methods, one obtains a different set of mesh points
at each time step, meaning the numerical solution u from the previous time
step must be transferred onto the new set of mesh points. We tested three
different ways of doing this, two of which are using linear interpolation
and cubic interpolation. The linear interpolation consists of constructing
a function û(x) which is piecewise linear on each interval [xni , x

n
i+1] such that

û(xni ) = uni , then evaluating this function at the new mesh points, giving the
interpolated values ûi = û(xn+1

i ). The cubic interpolation consists of a simi-
lar construction, using cubic Hermite splines through the MATLAB function
pchip. Of these two transfer methods, the cubic interpolation yielded su-
perior results in all cases, and so only results using cubic interpolation are
presented. The third way, using preserving transfer as presented in section
3.1, applies to the KdV example, where the PUM is used. Here, we found
little difference between cubic interpolation and exact transfer, so results are
presented using cubic interpolation for the transfer operation here as well.

4.2 Adaptivity

Concerning adaptivity of the mesh, we used a simple method for r-adaptivity
which can be applied to both FDM and FEM problems in one spatial di-
mension. When applying moving mesh methods, one can either couple the
evolution of the mesh with the PDE to be solved through a Moving Mesh
PDE [24] or use the rezoning approach, where function values and grid points
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are calculated in an intermittent fashion. Since our method is based on hav-
ing a new set of grid points at each time step, and not coupling the evolution
of the mesh to the PDE, the latter approach was used. It is based on an
equidistribution principle, meaning that when Ω = [a, b] is split into M
intervals, one requires that

xi+1∫
xi

ω(x)dx =
1

M

b∫
a

ω(x)dx,

where the monitor function ω is a function measuring how densely grid points
should lie, based on the value of u. The choice of monitor function is problem
dependent, and choosing it optimally may require considerable research. A
variety of monitor functions have been studied for certain classes of problems,
see e.g. [25,26]. Through numerical experiments, we found little difference in
performance when choosing between monitor functions based on arc-length
and curvature, and have in the following used the former, that is, the gener-
alized arc-length monitor function [25]

ω(x) =

√
1 + k2

(
∂u

∂x
(x)

)2

.

In this case, the equidistribution principle amounts to requiring that the
weighted arc length (in the case k = 1 one recovers the usual arc length) of u
over each interval is equal. In applications, we only have an approximation
of u, meaning ω must be approximated as well; in our case, we have applied a
finite difference approximation and obtained approximately equidistributing
grids using de Boor’s method as explained in [15, pp. 36-38]. We tried
different smoothing techniques, including a direct smoothing of the monitor
function and an iterative procedure for the regridding by De Boor’s method
(see e.g. [15, 27, 28]). In the case of the KdV equation, there was little to
no improvement using smoothing, but the sine-Gordon experiments showed
significant improvement with direct smoothing; i.e., in De Boor’s algorithm,
we use the smoothed discretized monitor function

ω̄i =
ωi−1 + 2ωi + ωi+1

4
.

4.3 Sine-Gordon equation

The sine-Gordon equation is a nonlinear hyperbolic PDE in one spatial and
one temporal dimension exhibiting soliton solutions, with applications in
predicting dislocations in crystals and propagation of fluxons in junctions
between superconductors. It is stated in initial value problem form as:

utt − uxx + sin(u) = 0, (x, t) ∈ R× [0, T ], (4.1)
u(x, 0) = f(x), ut(x, 0) = g(x).
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We consider a finite domain [−L,L] × [0, T ] with periodic boundary condi-
tions u(−L) = u(L) and ut(−L) = ut(L). The equation has the first integral

I[u] =

∫
R

1

2
u2
t +

1

2
u2
x + 1− cos(u)dx.

Introducing v = ut, (4.1) can be rewritten as a first-order system of PDEs:[
ut
vt

]
=

[
v

uxx − sin(u)

]
,

with first integral

I[u, v] =

∫
R

1

2
v2 +

1

2
u2
x + 1− cos(u)dx. (4.2)

Finding the variational derivative of this, one can interpret the equation in
the form (2.3) with S and δI

δu as follows:

S =

[
0 1
−1 0

]
,

δI
δu

[u, v] =

[
sin(u)− uxx

v

]
.

We will apply the FDM approach presented in section 2.2, approximating
(4.2) by some quadrature with points {xi}Mi=0 and weights {κi}Mi=0,

I[u, v] '
M∑
i=0

κi

(
1

2
v2
i +

1

2
u2
x,i + 1− cos(ui)

)
.

In addition, we approximate the spatial derivatives with central differences.
At the endpoints, a periodic extension is assumed, yielding the approxima-
tion

Ip(u) =
M∑
i=0

κi

(
1

2
v2
i +

1

2

(
δui
δxi

)2

+ 1− cos(ui)

)
.

Here, δwi = wi+1−wi−1 denotes central difference, with special cases δu0 =
δuM = u1 − uM−1, and δx0 = δxM = x1 − x0 + xM − xM−1. Taking the
gradient of Ip(u) and applying the AVF discrete gradient gives

∇Ip(un,un+1) =

1∫
0

∇Ip(ξun + (1− ξ)un+1)dξ

The periodic boundary conditions are enforced by setting u0 = uM . In the
implementation, the κi were chosen as the quadrature weights associated
with the composite trapezoidal rule, i.e.

κ0 =
x1 − x0

2
, κM =

xM − xM−1

2
, κi =

xi+1 − xi−1

2
, i = 1, ...,M − 1.
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Figure 1: Left : Illustration of kink-antikink solution. Right : Grid movement
- each line represents the path of one grid point in time.

Furthermore, S was approximated by the matrix

Sd =

[
0 I
−I 0

]
,

with I an M ×M identity matrix. The exact solution considered was

u(x, t) = 4 tan−1

 sinh

(
ct√

1− c2

)
c cosh

(
x√

1− c2

)
 .

This is a kink-antikink system, an interaction between two solitons, each
moving in different directions with speed c ∈ (0, 1), resulting in two wave
fronts traveling in opposite directions. The wave fronts become steeper as
c→ 1.

Figure 1 illustrates the analytical solution and shows the time evolution
of the mesh as obtained with the DGMM method. Note that the grid points
cluster along the wave fronts. The left hand side of Figure 2 shows the
time evolution of the error Eun = ||uIn(x) − u(x, tn)||L2 , where uIn is a linear
interpolant created from the pairs (un,xn). The right hand side of Figure
2 shows the time evolution of the relative error in the discretized energy,
EIn = (Ipn(un)−Ip0(u0))/Ip0(u0). We can see that the long-term behaviour
of the MP scheme is superior to that of the DG scheme, but when mesh
adaptivity is applied, the DGMM scheme is clearly better. Also note that
while the DG and DGMM schemes preserve Ip to machine precision, the MP
scheme does not.

Figure 3 shows the convergence behaviour of the three schemes with
respect to the number of spatial discretization points M , and the number of
time steps N . Note that the DG and MP methods plateau at N ' 400; this
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Figure 2: Left : L2 error. Right : Relative error in Ip. Parameters: ∆t = 0.01,
M = 300, L = 30, c = 0.99.
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is likely due to the error stemming from spatial discretization dominating
the time discretization error for these methods, while the DGMM scheme
has lower spatial discretization error.

Finally, to illustrate the applicability of the DGMM scheme to harder
problems, Figure 4 shows the error at stopping time of the methods as a
function of a parameter ε representing the increasing speed of the solitons
(c = 1 − ε). From this plot, it is appararent that while the non-adaptive
MP scheme is competitive at low speeds, the moving mesh method provides
significantly more accuracy as c→ 1.

4.4 Korteweg–de Vries equation

The KdV equation is a nonlinear PDE with soliton solutions modelling shal-
low water surfaces, stated as

ut + uxxx + 6uux = 0. (4.3)

It has infinitely many first integrals, one of which is the Hamiltonian

H[u] =

∫
R

1

2
u2
x − u3dx.

With this Hamiltonian, we can write (4.3) in the form (2.3) with S and δH
δu

as follows:

S =
∂

∂x
,

δH
δu

[u] = uxx + 3u2.

We will apply the PUM approach to create a numerical scheme which pre-
serves an approximation to H[u], splitting Ω = [−L,L] into M elements
{[xi, xi+1]}M−1

i=0 and using Lagrangian basis functions ϕj of arbitrary degree
for the trial space. Approximating u by uh as in section 2.3, we find

Hp(u) = H[uh] =

∫
Ω

1

2
(uhx)2 − (uh)3dx

=
1

2

∑
j,k

ujuk

∫
Ω
ϕj,xϕk,xdx−

∑
j,k,l

ujukul

∫
Ω
ϕjϕkϕldx. (4.4)

The integrals can be evaluated exactly and efficiently by considering elemen-
twise which basis functions are supported on the element before applying
Gaussian quadrature to obtain exact evaluations of the polynomial integrals.
We define

Dijk =

∫
Ω
ϕjϕkϕldx and Eij =

∫
Ω
ϕj,xϕk,xdx.

20



The matrices A and B with

Aij =

∫
Ω
ϕiϕjdx and Bji =

∫
Ω
ϕiϕj,xdx

are formed in the same manner. Note that B is in this case independent of
u. Applying the AVF method yields the discrete gradient

∇Hp(un,un+1) =

1∫
0

∇Hp(ξun + (1− ξ)un+1)dξ

such that, with the convention of summation over repeated indices,

(∇Hp)i =
1

2
Eij(u

n
j + un+1

j )−Dijk(u
n
j (unk +

1

2
un+1
k ) + un+1

j (
1

2
unk + un+1

k )).

This gives us all the required terms for forming the system (2.15) and apply-
ing the discrete gradient method to it. During testing, the ϕj were chosen
as piecewise linear polynomials. The exact solution considered is of the form

u(x, t) =
c

2
sech2

(√
c

2
(x− ct)

)
, (4.5)

which is a right-moving soliton with c as the propagation speed, chosen
as c = 6 in the numerical tests. We have considered periodic boundary
conditions on a domain [−L,L] × [0, T ], with L = 100 in all the following
results.

Our discrete gradient method on a moving mesh (DGMM) is compared
to the same method on a static, equidistributed mesh (DG), and the implicit
midpoint method on static (MP) and moving mesh (MPMM). The spatial
discretization is performed the same way in all cases. Figure 5 shows an
example of exact and numerical solutions at t = 15. Note that the peak in
the exact solution will be located at x = ct.
To evaluate the numerical solution, it is reasonable to look at the distance
error

Edist
n = ctn − x∗,

where x∗ = argmax
x

uh(x, tn), i.e. the location of the peak in the numerical
solution. Another measure of the error is the shape error

Eshape
n =

∣∣∣∣∣∣∣∣uh(x, tn)− u
(
x,
x∗

c

)∣∣∣∣∣∣∣∣ ,
where the peak of the exact solution is translated to match the peak of the
numerical solution, and the shapes of the solitons are compared.
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Figure 6: Relative error in the Hamiltonian plotted as a function of time
t ∈ [0, 15]. ∆t = 0.01, M = 400.

Figure 6 confirms that the DG and DGMM methods preserve the ap-
proximated Hamiltonian (4.4), while it is also worth noting that in the case
of the midpoint method, the error in this conserved quantity is much larger
on a moving than on a static mesh. Similar behaviour is also observed for
a moving-mesh method for the regularized long wave equation in the recent
paper [29], where it is concluded that a moving mesh method with a conser-
vative property would be an interesting research topic. Figure 7, where the
phase and shape errors are plotted up to T = 15, is an example of how the
DGMM method performs comparatively better with increasing time.

In figures 8 and 9 we present the phase and shape errors for the differ-
ent methods as a function of the number of elements M and the number of
time steps N , respectively. We observe that the DGMM scheme performs
especially well, compared to the other three schemes, for a coarse spatial
discretization compared to the discretization in time. In figure 10, the phase
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Figure 7: Phase error (left) and shape error (right) as a function of time.
∆t = 0.01, M = 400.
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Figure 8: Phase error (left) and shape error (right) as a function of the
number of elements M , at time T = 5. ∆t = 0.01.

and shape errors are plotted as a function of the parameter c in the exact
solution (4.5), where we note that c

2 is the height of the wave; increasing c
leads to sharper peaks and thus a harder numerical problem. As expected,
the advantages of the DGMM method is less evident for small c, but we ob-
serve that the DGMM method outperforms the static grid midpoint method
already when c = 2.

4.5 Execution time

The code used is not optimized, so any quantitative comparison to standard
methods has not been performed; it is still possible to make some qualitative
observations. Adding adaptivity increases time per iteration slightly since
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Figure 9: Phase error (left) and shape error (right) at time T = 5, as a
function of the number of time steps N = T/∆t. M = 800.
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exact solution (4.5), at time t = 5. ∆t = 0.01, M = 800.
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the systems become more complicated, especially in the case of the PUM ap-
proach where the matrices A and B need to be recalculated, at each time step
when adaptivity is used. This increases runtime somewhat when compared
to fixed grid methods. However, adaptivity allows for using fewer degrees
of freedom, and so decreases the degrees of freedom needed for a given level
of accuracy. This accuracy gain is more pronounced the harder the problem
is (steeper wave fronts etc.), and so it stands to reason that there will be
situations where adaptive energy preserving methods will outperform non-
adaptive and/or non-preserving methods. This is in accordance with what
we have observed from our not optimized experiments.

5 Conclusion

In this paper, we have introduced a general framework for producing adap-
tive first integral preserving methods for partial differential equations. This
is done by first providing two means of producing first integral preserving
methods on arbitrary fixed grids, then showing how to extend these methods
to allow for adaptivity while preserving the first integral. Numerical testing
shows that moving mesh methods coupled with discrete gradient methods
provide good solvers for the sine-Gordon and Korteweg–de Vries equations.
It would be of interest to apply the method to higher-dimensional PDEs
with a more challenging geometry, preferably using the PUM approach, to
investigate its accuracy as compared to conventional methods, and to test
whether h- and/or p-refinement provides a notable improvement. It may
also prove fruitful to explore the ideas presented in [23] to make the trans-
fer operations between sets of discretization parameters in a more natural
setting than simply interpolating, as suggested in section 3.3. Furthermore,
analysis of the methods considered here could provide important insight into
e.g. stability, consistency and convergence order.
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