
Yun Lin

Semantic Annotation for
Process Models:

Facilitating Process Knowledge Management via

Semantic Interoperability

Department of Computer and Information Science
Norwegian University of Science and Technology

N-7491 Trondheim, Norway

NTNU

Norwegian University of Science and Technology

Thesis for the degree of Ph.D.

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

c©Yun Lin

ISBN 978-82-471-5157-0 (printed version)
ISBN 978-82-471-5160-0 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2008:03

Printed by NTNU-trykk

iii

To MY BELOVED HUSBAND HAO DING
AND OUR DAUGHTER SABRINA DING

Abstract

Business process models representing process knowledge about doing business are nec-
essary for designing Information Systems (IS) solutions in enterprises. Interoperability

of business process knowledge in legacy systems is crucial for enterprise systems interop-
eration and integration due to increased enterprise cooperation and business exchange.
Many modern technologies and approaches are deployed to support business process

interoperability either at the instance level or the protocol level, such as BPML, WSDL
and SOAP. However, we argue that a holistic approach is necessary for semantic interop-

erability of business process models at the conceptual level when considering the process
models as reusable process knowledge for other (new or integrated) IS solutions. This

brings requirements to manage semantic heterogeneity of process knowledge in process
models which are distributed across different enterprise systems. Semantic annotation is

an approach to achieve semantic interoperability of heterogeneous resources. However,
such an approach has usually been applied to enhance the semantics of unstructured

and structured artifacts (e.g. textual resources [72] [49], and Web services [166] [201]).

The aim of the research is to introduce an ontology-based semantic annotation ap-

proach to enrich and reconcile semantics of process models — a kind of semi-structured
artifact, for managing process knowledge. The approach brings together techniques in

process modeling, ontology building, semantic matching, and Description Logic infer-
ence in order to provide a comprehensive semantic annotation framework. Furthermore,

a prototype system that supports the process of ontology-based semantic annotation
of heterogeneous process models is described. The applicational goal of our approach

is to facilitate process knowledge management activities (e.g. discovery, reuse, and
integration of process knowledge/models) by enhanced semantic interoperability.

A survey has been performed through identifying semantic heterogeneity in process
modeling and investigating semantic technology from theoretical and practical views.

Based on the results from the survey, a comprehensive semantic annotation framework
has been developed, which provides a method to manage semantic heterogeneity of

process models from the following perspectives. First, basic descriptions of process
models (profile annotation); second, process modeling languages (meta-model anno-

tation); third, contents of process models (model annotation) and finally intentions of
process model owners (goal annotation). Applying the semantic annotation framework,
an ontology-based annotation method has been elaborated, which results in two cat-

egories of research activity — ontology building and semantic mapping. In ontology
building, we use Web Ontology Language (OWL), a Semantic Web technology, which

can be used to model ontologies. GPO (General Process Ontology) comprising core
concepts in most process modeling languages is proposed; domain concepts are classi-

fied in the corresponding categories of GPO as a domain ontology; design principles
for building a goal ontology are introduced in order to serve the annotation of process

models pragmatically. In semantic mapping, a set of mapping strategies are developed
to conduct the annotation by considering the semantic relationships between model ar-

tifacts and ontology references and as well the semantic inference mechanism supported
by OWL DL (Description Logic). The annotation method is finally formalized into a
process semantic annotation model - PSAM.

The proposed approach has been implemented in a prototype annotation tool —

ii

ProSEAT to facilitate the annotation process. Procedures of applying the semantic an-
notation approach with the tool are described through exemplar study. The annotation
approach and the prototype tool are evaluated using a quality framework. Furthermore,

the applicability of the annotation results is validated by going through a process knowl-
edge management application. The Semantic Web Rule Language (SWRL) is applied

in the application demonstration. We argue that the ontology-based annotation ap-
proach combined with the Semantic Web technology is a feasible approach to reconcile

semantic heterogeneity in the process knowledge management. Limitations and future
work are discussed after concluding this research work.

The contributions of this thesis are summarized as follows. First, a general process
ontology is proposed for unifying process representations at a high level of abstraction.

Second, a semantic annotation framework is introduced to describe process knowledge
systematically. Third, ontology-based annotation methods are elaborated and formal-
ized. Fourth, an annotation system, utilizing the developed formal methods, is designed

and implemented. Fifth, a process knowledge management system is outlined as the
platform for manipulating the annotation results. Moreover, applying results of the

approach is demonstrated through a process model integration example.

Contents

Preface xv

I Background and Context 1

1 Introduction 3

1.1 Motivation . 3

1.2 Problem Statement and Research Questions 4

1.3 Objectives . 6

1.4 Approach and Scope . 6

1.4.1 Semantic reconciliation of business process models 7

1.4.2 Machine-interpretable process knowledge 7

1.5 Research Method . 8

1.6 Major Contributions . 9

1.7 Thesis Outline . 9

2 Problem Setting 11

2.1 Models in Information System Engineering 11

2.2 Modeling Basis . 12

2.2.1 Semiotic triangle . 12

2.2.2 Modeling language, meta-model and model semantics 14

2.2.3 Ontology-driven and domain-specific 15

2.3 Information Systems and Semantic Web 16

2.3.1 Ontology in information systems 17

2.3.2 RML and OWL . 20

2.4 Semantic Interoperability . 22

2.4.1 Semantic heterogeneity . 22

2.4.2 Semantic annotation . 23

2.5 Business Process Model . 25

2.6 Process Knowledge Management . 26

2.6.1 Knowledge and process knowledge 26

2.6.2 Knowledge representation . 27

2.6.3 Knowledge management activities associated with process models 28

2.7 Summary . 29

iii

iv CONTENTS

3 State of the Art 31

3.1 Process Modeling Languages . 31

3.1.1 Petri Nets . 32

3.1.2 EPC (Event-driven Process Chain) 33

3.1.3 EEML (Extended Enterprise Modeling Language) 34

3.1.4 UML Activity Diagram . 35

3.1.5 BPMN (Business Process Modeling Notation) 36

3.1.6 Categorizing the modeling constructs of process modeling languages 38

3.2 Semantic Interoperability and Process Ontologies 39

3.2.1 BWW (Bunge-Wand-Weber) ontology 40

3.2.2 MIT process handbook . 40

3.2.3 TOVE (Toronto Virtual Enterprise) ontologies 41

3.2.4 PSL (Process Specification Language) 42

3.2.5 PIF (Process Interchange Format) 43

3.2.6 OWL-S . 44

3.2.7 WSMO (Web Service Modeling Ontology) 45

3.2.8 POP* (Process, Organization, Product and others) 45

3.2.9 UEML2 (Unified Enterprise Modeling Language version 2) . . . 46

3.2.10 Comparison of process ontology representations 48

3.3 Goal Modeling . 49

3.3.1 KAOS (Knowledge Acquisition in autOmated Specification) . . . 49

3.3.2 i*/GRL (Goal-oriented Requirement Language) 49

3.3.3 GBRAM (Goal-Based Requirements Analysis Method) 50

3.3.4 Goal modeling in EEML . 50

3.3.5 Goal specification in WSMO . 50

3.3.6 Goal modeling and process modeling 51

3.4 Semantic Annotation Methods and Tools 51

3.4.1 MnM . 52

3.4.2 KIM (Knowledge & Information Management) 52

3.4.3 AeroDAML . 53

3.4.4 OntoMat-Annotizer . 53

3.4.5 MWSAF (METEOR-S Web Service Annotation Framework) . . 53

3.4.6 SAWSDL (Semantic Annotations for WSDL and XML Schema) . 54

3.4.7 Semantic annotation schema in the INTEROP project 55

3.4.8 ASTAR . 56

3.4.9 Discussion on the survey results of annotation tools and methods 56

3.5 Requirements for Semantic Annotation Systems 58

3.6 Summary . 58

II Design and Application 61

4 Semantic Annotation Framework 63

4.1 Theoretical Basis . 63

4.1.1 Semiotic triangle . 63

4.1.2 Semiotic triangle for process modeling 65

CONTENTS v

4.2 Overview of the Framework . 66

4.2.1 Ontology-based annotation . 66

4.2.2 Annotation aspects . 68

4.3 Profile Annotation . 69

4.4 Meta-model Annotation . 69

4.4.1 GPO (General Process Ontology) 71

4.4.2 Mapping rules in Meta-model annotation 73

4.5 Model Annotation . 74

4.6 Process Semantic Annotation Model . 76

4.7 A Simple Example of Process Semantic Annotation 78

4.8 Summary . 81

5 Goal Annotation 83

5.1 Goal-Driven Process Knowledge Discovery 83

5.2 Goal Ontology for Semantic Annotation 84

5.2.1 Goal ontology design principles 84

5.2.2 Semantic representations of a goal ontology 85

5.3 Relations between Process Models and a Goal Ontology 86

5.4 PSAM with Goal Annotation . 89

5.5 Goal Annotation Procedure . 90

5.6 Summary . 91

6 Pro-SEAT (Process SEmantic Annotation Tool) 93

6.1 Components of Prototype Environment 93

6.1.1 Process modeling environment — Metis 94

6.1.2 Ontology modeling environment — Protégé-OWL editor 94

6.1.3 System modules in the semantic annotation tool — Pro-SEAT . 95

6.2 Data Structure . 96

6.3 Goal Annotation Algorithm . 99

6.4 Functionality and User Interface . 100

6.5 Summary . 101

7 Exemplar Studies and Application System 103

7.1 Semantic Annotation Procedure . 103

7.2 Exemplars . 104

7.2.1 Sales logistics process in BPMN 104

7.2.2 The TelCo item receiving and delivery process in EEML 107

7.3 SCOR Reference Ontology . 110

7.4 Annotation of Process Models with Pro-SEAT 113

7.4.1 Profile annotation . 113

7.4.2 Meta-model annotation . 114

7.4.3 Model annotation . 116

7.4.4 Goal annotation . 116

7.4.5 Annotation results . 116

7.5 Process Knowledge Management System 117

7.5.1 System architecture . 121

vi CONTENTS

7.5.2 Semantic reasoning . 121

7.5.3 Simple walkthrough examples . 123

7.6 Summary . 126

III Evaluation 127

8 Quality Evaluation of the Method 129

8.1 Evaluation Design . 129

8.2 Settings for the Quality Evaluation . 129

8.2.1 SEQUAL . 130

8.2.2 The facts corresponding to the quality categories from the exem-
plar studies . 133

8.3 Quality Analysis . 134

8.3.1 GPO and PSAM quality evaluation 134

8.3.2 Quality analysis of the annotation model instances 136

8.3.3 Quality Evaluation of Pro-SEAT 139

8.4 Requirements Satisfaction of the Semantic Annotation System 140

8.5 Summary . 141

9 Validation of Applicability 143

9.1 Validation Design . 143

9.1.1 Application requirements . 144

9.1.2 SWRL rules and tool . 145

9.2 SWRL Formulation . 146

9.2.1 Formalize RE1 - Navigation requirements 146

9.2.2 Formalize RE2 - Search requirements 146

9.2.3 Formalize RE3 - Semantic check requirements 147

9.2.4 Formalize RE4 - Knowledge discovery requirements 148

9.3 Applicability Validation in an Integration Application 151

9.4 Discussion on Results of the Validation 158

9.4.1 Automatic vs. manual annotation 158

9.4.2 Model analysis based on semantic relationships 159

9.4.3 Detecting missing annotation . 159

9.4.4 Semantic validation . 161

9.5 Summary . 162

IV Synopsis 163

10 Conclusions and Future Work 165

10.1 Research Questions and Findings . 165

10.2 Summary of the Contributions . 168

10.3 Limitations and Future Work . 169

CONTENTS vii

V Appendices 171

A BPMN 173

A.1 BPMN Elements Categories . 173

A.2 Flow Objects . 173

A.2.1 Events . 173

A.2.2 Activities . 174

A.2.3 Gateways . 174

A.3 Connecting Objects . 174

A.3.1 Sequence flows . 174

A.3.2 Message flows . 175

A.3.3 Association . 175

A.4 Swimlanes . 176

A.4.1 Pool . 176

A.4.2 Lane . 176

A.5 Artifacts . 176

A.5.1 Data Object . 176

A.6 BPMN meta-model tree in Metis 5.2.2 177

B EEML 2005 179

B.1 Process Modeling Domain . 179

B.1.1 Task . 179

B.1.2 Decision Point . 180

B.1.3 Milestones . 180

B.1.4 Resource role . 180

B.2 Recourses Modeling Domain . 181

B.3 EEML modeling relationships . 181

B.4 EEML 2005 in Metis 5.2.2 . 182

C SCOR 183

C.1 Level 1 Process Definitions . 184

C.2 Level 2 Toolkit . 185

C.3 Level 3 Process Elements . 186

D Algorithm for Goal Annotation 189

E GUI of Pro-SEAT 197

F Analysis of Exemplar Studies 203

F.1 Semantic Annotation Based on SCOR ontology 203

F.2 Integration Application Based On Semantic Annotation 205

G Schema of PSAM Model and SWRL Rules 209

G.1 PSAM Model in OWL . 209

G.2 Rules Definition in SWRL . 212

viii CONTENTS

H PSAM Annotation Results in OWL 217
H.1 Annotation of PMA . 217
H.2 Annotation of PMB1 . 218

H.3 Annotation of PMB2 . 220

List of Figures

2.1 Zachman Enterprise Architecture Framework [189] [171] [214] 13

2.2 COEUR-SW triangle . 16

2.3 Graphical Notations of RML (limited to the constructs used in this thesis) 20

2.4 Embedded annotation and stand-off annotation [81] 23

2.5 Abstraction levels of processes [155] . 25

2.6 Knowlege Process [174] . 28

3.1 The paradigm of business process management systems 32

3.2 An example of EPC model [60] . 34

3.3 Overview of EEML modeling constructs and relationships for process
and resource domains . 35

3.4 An example of UML activity model [107] 36

3.5 PSL modules for generic classes of activities and their ordering relations
[161] . 42

3.6 The PIF classes and relationships [85] 43

3.7 The process ontology of OWL-S [198] . 44

3.8 The POP* meta model for Process dimension [138] 46

3.9 Generalization hierarchy of UEML ontology classes [144] 48

3.10 Schema for semantic annotation of enterprise models [143] 55

4.1 Relationships between ontology, model, meta-model and modeling lan-

guage in the semiotic triangle . 64

4.2 Relationships between modeling ontology, meta-model and modeling lan-
guage in the semiotic triangle . 65

4.3 Relationships between model level, process ontology, process model, pro-
cess meta-model and process modeling language (adapted from model

level ontology in [87]) . 66

4.4 Semantics reconciliation of process models through ontology-based an-

notation . 67

4.5 General Process Ontology . 72

4.6 EEML process model example: purchase process 79

4.7 Annotated EEML process model example: purchase process 80

5.1 Meta-model of the proposed goal ontology 87

5.2 Goal annotation procedure . 90

ix

x LIST OF FIGURES

6.1 System modules of the prototype . 95
6.2 Structure of entities in the Pro-SEAT prototype 96
6.3 Structure of entities in the profile annotation 96

6.4 Structure of entities in the meta-model annotation 97
6.5 Metis meta-model structure . 97

6.6 Structure of entities in the model annotation 98
6.7 Metis model structure . 98

6.8 Structure of entities in the goal annotation 99
6.9 Structure of process model fragment . 100

6.10 Main components of the UI in Pro-SEAT 101
6.11 The UI of process knowledge navigator in Pro-SEAT 102

7.1 Semantic annotation process based on PSAM 104

7.2 Sales logistics process of enterprise A in BPMN 105
7.3 Checking availability of the delivery of enterprise A in BPMN 106

7.4 Picking, packing and create delivery of enterprise A in BPMN 107
7.5 TelCo item receiving process . 108

7.6 Decomposition of the check items . 108
7.7 The item delivery process of enterprise B in EEML 109

7.8 The delivery process to franchisees of enterprise B in EEML 109
7.9 The delivery process to shops of enterprise B in EEML 110
7.10 SCOR S1 process of sourcing stocked product [164] 111

7.11 SCOR process element S1.2 Receive Product in Protégé-OWL editor 113
7.12 SCOR input/output Sourced Product On Order in Protégé-OWL editor113

7.13 SCOR hard goal Sourced Products are Verified in Protégé-OWL
editor . 114

7.14 SCOR soft goal Improve Supplier Delivery Performance in Protégé-
OWL editor . 115

7.15 Architecture of the process knowledge management system based on se-
mantic annotation . 122

8.1 SEQUAL framework for discussing quality of models [80] 131

8.2 Language quality in the quality framework [80] 132

9.1 The SWRL rules in Protege-OWL SWRLTab 151
9.2 The query result of QRule-Activity-achievesHardGoal on PMA . . 152

9.3 The query result of QRule-Activity-achievesHardGoal on PMB2 . . 152
9.4 The query result of QRule-Activity-hasActor on PMA 153

9.5 The query result of QRule-Activity-hasActor on PMB2 154
9.6 The query result of QRule-Activity-hasActor-sameas on PMA . . . 154
9.7 The query result of QRule-Activity-hasActor-sameas on PMB2 . . . 155

9.8 The query result of QRule-Activity-hasActor-kindof on PMB2 . . . 155
9.9 The query result of QRule-Activity-hasSuccedingActivities on PMA156

9.10 The query result of QRule-Activity-hasSuccedingActivities on PMB2156
9.11 The query result of QRule-Activity-phaseof on PMA 157

9.12 The query result of QRule-Activity-phaseof on PMB2 157
9.13 The query result of QRule-Activity-Input-mappedto on PMB2 . . . 158

LIST OF FIGURES xi

9.14 The query result of QRule-Activity-Output-mappedto on PMA . . 158

A.1 BPMN Events . 174
A.2 BPMN Activities – Sub-Process, Task 174
A.3 BPMN Gateways . 175

A.4 BPMN Sequence Flows . 175
A.5 BPMN Message Flow . 175

A.6 BPMN Associations . 176
A.7 BPMN Swimlanes – Pool and Lane . 176

A.8 BPMN Object Data . 177
A.9 BPMN modeling constructs and notations in Metis 5.2.2 178

B.1 EEML Tasks . 179

B.2 EEML Decision Points . 180
B.3 EEML Milestone . 180
B.4 EEML Resource role . 181

B.5 EEML Resources . 181
B.6 EEML 2005 modeling constructs in Metis 5.2.2 182

C.1 Three levels in the SCOR scope [208] . 183

C.2 Performance Attributes and Level 1 Metrics [164] 185
C.3 Process Categories [164] . 185

C.4 Level 2 Toolkit [164] . 186
C.5 Level 3 process elements of S1 Source Stocked Product [164] 187

C.6 Level 3 process elements of D1 Deliver Stocked Product [176] 188
C.7 Level 3 metrics for S1.1 Schedule Product Deliveries [164] 188

E.1 Profile annotation UI in Pro-SEAT . 197

E.2 Meta-model annotation UI in Pro-SEAT 198
E.3 Mapping meta-model to GPO in Pro-SEAT 199
E.4 Model annotation UI in Pro-SEAT . 200

E.5 Goal annotation UI in Pro-SEAT . 201
E.6 Automatic goal annotation in Pro-SEAT 201

xii LIST OF FIGURES

List of Tables

3.1 Modeling constructs of different business process modeling languages . . 37
3.2 Ontological representations of different process ontologies 47

3.3 EEML goal modeling relations . 51
3.4 Lossless mismatches and examples . 57

4.1 Metadata for profile annotation . 70
4.2 Semantic relationships, corresponding annotation denotations, and OWL

constructs . 76

7.1 OWL definition of the SCOR ontology 112
7.2 Mapping the EEML and BPMN meta-model elements to the GPO concepts115

7.3 Part of semantic annotation results of PMA 118
7.4 Part of semantic annotation results of PMB1 119

7.5 Part of semantic annotation results of PMB2 120

9.1 SWRL queries and rules for RE1 . 147
9.2 SWRL queries and rules for RE2 . 148

9.3 SWRL queries and rules for RE3 . 149
9.4 Query results of the inferred annotation options 160

xiii

xiv LIST OF TABLES

Preface

This thesis is submitted to the Norwegian University of Science and Technology (NTNU)
for the doctoral degree – Doctor of Philosophy (Ph.D.). The work has been carried out

at the Information System Group (IS-group), Department of Computer and Informa-
tion Science (IDI), under supervision of Professor Arne Sølvberg.

Acknowledgments

First and foremost, I would like to acknowledge my principle supervisor — Professor
Arne Sølvberg. I am grateful that Arne became my supervisor and gave the guidance
in conducting my doctoral research work. I thank Arne for his constant encouragement

and precise advice all the way through. He helped me a lot to clarify the research
issues, especially during the thesis edition phase. His professional working attitudes

have also influenced me, from which I gain the benefits for my future carrier.

I am thankful to my second supervisor — Professor John Krogstie, especially for ad-
vising me on the research topics on process modeling and quality evaluation framework.
He also provided me access to the resources such as process modeling languages and

tools. I also thank Professor Mihhail Matskin, my third supervisor, who enlightened
me with some ideas from the semantic Web services. I would like to thank Professor

Arne Jørgen Berre for hosting my visit at SINTEF in Oslo and providing the working
environment where I finished the implementation of the prototype.

I am lucky to have knowledgeable, friendly and helpful colleagues around during
my work in IS-group. I especially acknowledge Darĳus Strašunskas for the productive

collaboration, inspiring and constructive discussions and the generous and sincere help
in reviewing my papers as well as proof reading of the thesis. Thank Jennifer Sampson

for exchanging study and life experiences with me when we shared the office for four
years. I also thank her very much for the proof reading of the final version of the

thesis. I thank Sari Hakkarainen for her constructive advice on the scientific writing.
Many thanks go to Xiaomeng Su for the personal communication and encouragement.

Thanks to Csaba Veres, Peep Küngas, Raimundas Matulevic̆ius, Lillian Hella, Rune
Molden for all the support, talks and discussions.

Thanks to the members of the INTEROP project for providing a platform for the
development and exchange of research issues on ontology and semantic interoperability.

The exemplars in this work were adapted from the INTEROP project.
I appreciate all the people, past and present, at IDI for providing the needed working

environment and atmosphere. Warm thanks to my friends in Norway and abroad for
the joy I shared with them and the help received from them.

xv

xvi PREFACE

My tremendous gratitude goes to my family. I am greatly indebted to my parents
for their love, support and help anytime anywhere. I thank my sister and brother-in-
law for sharing cheerful time together in Norway. I also thank my parents-in-low for

helping look after Sabrina during the final stage of this work. I am grateful to my
husband Hao Ding for his enormous love, support, understanding as well as thoughtful

discussions. Thanks to my lovely daughter Sabrina Ding for bringing me happiness and
enriching my life.

Yun Lin

February 24, 2008

Part I

Background and Context

1

Chapter 1

Introduction

Business process models depict process knowledge of enterprises and they are reusable

knowledge assets in building Information System (IS) solutions for the business. When
different enterprises collaborate in business by integrating their process for a new IS

solution, there is a need for methods and technologies to manage reusable process
knowledge in the distributed process models. Semantic interoperability is an important

and difficult issue caused by the heterogeneity of various models. This thesis addresses
semantic annotation for improving semantic interoperability of heterogeneous process
models to manage process knowledge from different enterprises.

In this chapter we explain our initial interests of the topic and state the research
problem. Then we specify research questions and objectives of the work and describe

our approach under a set of research methods. Finally, we present our contributions
and outline the structure of the thesis.

1.1 Motivation

IS solutions applied in enterprises are usually expressed in certain documents addressing
different features on many levels of abstraction. For each feature and level there is a

choice of competing languages employing different system specification models (i.e.,
different modeling concepts). In addition, every IS solution is developed in its own

context, and has to satisfy the intentions of the "system’s owner". Yet, similar IS
problems may have different solutions, because the contexts differ as do the intentions

and goals of the systems’ owners.

On the other hand, different solutions for similar systems may have many similar-

ities, so that components of one system solution may be reused (with possible modifi-
cations) for another system. In such a case, the reusable solutions can be considered
as knowledge addressing the problem of the system. The question is to recognize the

candidates for reuse, in spite of the different languages employed, the different contexts
and the different goals of the system owners.

As one type of IS solution models play essential roles in the modern system devel-
opment method, such as MDD (Model Driven Development) and MDA (Model Driven

Architecture) [123]. With the method of MDD, business process models representing
organizational knowledge consist of potentially reusable process model fragments for

3

4 CHAPTER 1. INTRODUCTION

other similar business system development; the logical business process models on the
conceptual level can be transformed into physical models for implementation (e.g. ser-
vices). Hence, facilitating reuse and management of business process models becomes

critical.

Business process models built as solutions for different enterprises are as well var-

ious in process modeling languages, process context and intentions of the systems’
owners. Different levels of interoperability can be identified based on different types of

information heterogeneity and system heterogeneity. Our research objects are business
process models at conceptual level, mainly concerning the representation of process

semantics. We therefore focus on semantic interoperability. Semantic interoperability
is about how to achieve the mutual understanding of interchanged data [170] in spite
of semantic heterogeneity.

Ontology-based semantic annotation is usually considered as a technique to achieve
semantic interoperability by introducing common understanding and standardization.

Semantic annotation has been developed and applied on both unstructured and struc-
tured artifacts to improve semantic interoperability (e.g. textual resources and Web

services). The main applications based on semantic annotation are semantics-based
information retrieval and automatic semantics-based discovery of services. Accord-

ing to our knowledge, few efforts on annotating semi-structured artifact (e.g. enter-
prise/business process models) were found when we started this work. The importance
of semantic interoperability of enterprise process models becomes more and more ob-

vious as pervasive development of applications for business process integration under a
SOA (Service Oriented Architecture), where process models are vital assets of system

specifications and interoperating objects in integration systems. On the other hand,
semantic issues are leveraged and the usage of Semantic Web technology is gradually

gaining attention in the enterprise modeling domain due to the advances of machine
intelligence on semantics and inference. We follow such a trend and contribute our

efforts on the research activities of building a descriptive methodology and implement
a tool for the semantic annotation of heterogeneous business process models in order

to facilitate managing process knowledge from different organizations.

1.2 Problem Statement and Research Questions

The following scenario exemplifies the problem to be solved in this thesis. A travel

agency wants to build a new travel booking service. In the travel domain, there are
legacy models about business of travel agency made by different organizations, e.g.,

models for a flight ticket booking system and models for a hotel reservation system.
For the new system it is not necessary to build models for the travel booking service

from the scratch, but try to reuse available models. In this case, we assume that the
business process models from legacy systems are at conceptual level and can be used as
business process knowledge. In order to reuse the knowledge, it requires a centralized

management system to manipulate those heterogeneous models which were built by
different organizations. The following semantic interoperability problems may arise:

• Since models are created in different modeling languages, a same business phe-
nomenon is represented variously in different models. For example, a process

1.2. PROBLEM STATEMENT AND RESEARCH QUESTIONS 5

model of flight tickets booking is built in ActionWorkflow [103] and one hotel
reservation process is modeled in CPR (Core Plan Representation) [135]. There
would be interoperability problem when exchanging information about Agent or

Actor between two models because they are using different modeling languages.
In this case, Agent in ActionWorkflow models is semantically equal to Actor in

CPR models. However, it is difficult for the user and the machine to identify they
are the same without the support of the semantic mappings between those two

modeling elements.

• Terminology is used differently in different models. For instance, "Client" is used

in the flight ticket booking model and "Customer" is used in the hotel reservation
model, although the two terms represent the same concept in this case. If only
keyword based search is applied, the concept Client represented by Agents in

ActionWorkflow model and the concept Customer represented by Actors in CPR
model can not be recognized as the same concept by machine.

• Conceptualization mismatches include different classifications, aggregations, at-
tribute assignments and value types. For example in this case, City is modeled

in a class containing city name, graphic location and tourism information. It is
used as the resource of a hotel reservation model. City is also one of attributes

of Class Airport as input of a flight ticket booking process. Though the same
term is used, the ways of representing the semantics are different. When reusing
or integrating the models by the third party, incomplete or redundant semantics

might be applied without knowing the differences.

In order to cope with semantic interoperability problems, agreed semantics should

be referenced to annotate the heterogeneous representations in process modeling lan-
guages and business process model contents in a human and machine understandable

manner. An ontology is considered a kind of agreement on a domain representation.
Hence, ontologies of process modeling languages and modeling domains must be devel-

oped. The Semantic Web technologies as the emerging technological advances in the
manipulation of ontologies, have made several new possibilities and challenges apparent.

Hence the main research question that the thesis attempts to answer: How can
semantic interoperability of process models be improved by using semantic technologies

such as ontologies in the process knowledge management applications? More specifically,

• RQ1. What kind of semantic interoperability problems exist in process knowl-
edge management?

• RQ2. What kind of ontologies are required for process knowledge management
and how to represent them?

• RQ3. What metadata are essential for process model interoperability and how
are they defined concerning reference ontologies for the reconciliation of the het-
erogeneous semantics of process models?

• RQ4. How can Semantic Web technology to be incorporated in a tool using the
proposed approach?

6 CHAPTER 1. INTRODUCTION

• RQ5. How can we use the proposed approach to facilitate process knowledge
management?

1.3 Objectives

Corresponding to the main research question, the overall objective of this thesis is to

propose a semantic annotation approach for dealing with semantic heterogeneity of
process models in order to facilitate process knowledge management activities (such as

recognizing and reusing IS solutions of process models) via semantic interoperability.
It is decomposed into the following four sub-objectives which are to be achieved step

by step during the development of the work.

1. To investigate semantic heterogeneity issues in business process modeling.

2. To explore a comprehensive annotation approach to deal with heterogeneous se-

mantics of process knowledge with referenced ontology.

3. To develop an annotation tool to implement the approach by applying Semantic

Web technologies.

4. To evaluate quality and use feasibility of the proposed approach and tool in

supporting process knowledge management activities.

1.4 Approach and Scope

We focus on business process models at a conceptual level. They are available process

knowledge resources which need to be managed for further reuse. Therefore, hetero-
geneous process models should be reconciled and process knowledge conveyed by the

models should be explicitly expressed.

The approach taken is (1) to express the process properties of each business process

model in a common annotation system, (2) to express model context in ontologies that
may be compared to each other, one ontology for each context, and (3) to map the

intentions of the systems’ owners to goal structures that may be compared to each
other. These three elements constitute the means to profile a business process model,

and provides the basis for building a library of modeling assets, and for recognizing
similar model fragments to make them easier available for reuse.

Ontologies aid to share knowledge on the basis of the assumption that there is a
single reality and the sharing is a matter of aligning the way different people or sys-

tems think about it [70]. Annotating models with the agreed ontologies provides a
way of reconciling heterogeneity and reaching consensus on the semantics of terms and
concepts. To facilitate management and reuse of the reconciled models, the semantics

of the process models should be interpretable and inferable by machines as model-
ing assets. The approach is hereby deployed having the two concerns: 1) reconciling

process knowledge representation of heterogeneous models, and 2) explicating process
knowledge in a machine-interpretable manner.

1.4. APPROACH AND SCOPE 7

1.4.1 Semantic reconciliation of business process models

The central topic of the research is within information system modeling area. Thus, the
working basis is modeling theory. We distinguish semantic heterogeneity into two levels:
meta-model and model, which correspond to the M2 and M1 layers defined in MOF [124].

Although there is semantic heterogeneity on the M0 layer (instance level models), we
do not take instance level models as reusable knowledge in this research. Therefore,

ontologies related to meta-model and model levels are required for the annotation in
this approach. For meta-model level, an ontology should supply common terminology

and conceptualization of process modeling. There is no mature process ontology as we
know, though there are many ongoing activities relevant to this topic [12] [139] [140].

Based on the investigation and analysis of numbers of existing process ontologies and
process meta-models, we propose a process ontology which consists of most essential

concepts for process modeling languages. For model level, an ontology should con-
tain standardized terms and definitions of concepts and relationships about a certain
domain. Domain-specific ontologies should be created by domain experts. Such on-

tologies can be built based on certain domain standards or reference models. Besides,
to facilitate process knowledge management, a set of profile metadata is required to

describe process models as products. Furthermore, process models can be pragmati-
cally discovered based on intentional knowledge by goals of process. To explicate such

knowledge, intentional concepts are represented in a goal ontology. Goal concepts are
used to annotate intentional usage of process models. In our approach, all those on-

tology references and profile information are annotated to the original models through
a set of metadata. Metadata can aid in the identification, discovery, assessment, and

management of the described information-bearing entities [28]. In this way, annotation
does not intervene the original semantic representation and it is stored separately from
the original models. One original model can have several versions of annotation serving

different purposes. As an outcome of the research work, a semantic annotation frame-
work is developed to systematically organize the above four perspectives, i.e. profile

annotation, meta-model annotation, model annotation and goal annotation.
Annotating models with ontologies is a procedure to establish certain mapping

between objects in models and in ontologies. Two objects from the different sets —
’annotater’ and ’annotatee’ have not only a simply one-to-one correspondence but more

comprehensive semantic relationships. We define a set of mapping strategies and rules
to guide users to conduct the annotation. An annotation model — PSAM (Process

Semantic Annotation Model) is formalized following the proposed framework and the
mapping method. The PSAM model provides a basis for the implementation. An

annotation system is proposed and implemented as a prototype in order to prove the
feasibility of the proposal.

1.4.2 Machine-interpretable process knowledge

From a technical aspect, semantics of ontologies and PSAM models should be machine-

interpretable. Emerging Semantic Web technology can encode semantics of Web re-
sources in a machine-readable form. The OWL Web Ontology Language is a language

for defining and instantiating Web ontologies. An OWL ontology may include descrip-
tions of classes, properties and their instances. Given such an ontology, the OWL formal

8 CHAPTER 1. INTRODUCTION

semantics specifies how to derive its logical consequences, i.e. facts not literally present
in the ontology, but entailed by the semantics [195]. As a result of this research, the
management of distributed process models can be operated through the Web within

or across applications and systems. It is reasonable and feasible in that Internet and
Intranet are so pervasive in enterprises and the Web provides a good platform to share

distributed information. Moreover, the Semantic Web technology is already applied
in cooperative business and industries for the interoperability as a technical standard.

OWL is consequently chosen in this thesis to define ontologies and annotation models
in order to make use of the Semantic Web technology.

Semantics of different models are reconciled through annotation. The annotation

information is represented in a machine-interpretable way for a common platform – the
Semantic Web. Process knowledge is exposed by annotation and it is organized in a

semantic annotation model. Then the process knowledge can be inferred based on the
definitions of ontologies. Such knowledge will enable applications to better understand

process models and to use them more intelligently, which is also the goal of the Semantic
Web research [52]. The applicability of the proposal is validated through a walkthrough

scenario of a process management application.

1.5 Research Method

The research methods applied in this work consist of a descriptive analysis phase, a
normative development, an implementation phase and an evaluation phase. All together

the phases include the following steps.

1. The survey of the state-of-the-art step includes investigation and analysis of the
semantic representations of process models, semantic interoperability and process
ontologies, semantic annotation methods, and knowledge management.

2. The analysis of requirements step includes an inventory of the problems about

the semantic heterogeneity of process models with regard to process knowledge
management and an analysis of raised requirements on semantic annotation tool.

3. The development of the approach step includes the specification of the semantic

annotation framework, the design of the annotation approach, the efforts to gen-
eralize the ontological specifications for process modeling and goal modeling, and
the definitions of mapping rules involved in the annotation process.

4. The prototype application step includes development and implementation of the

prototypical environment for the process models and knowledge management
based on the results of the previous steps.

5. The quality evaluation and applicability analysis step includes the evaluation of

the proposed framework and approach using a quality framework based on the
observations from a walkthrough scenario of a process knowledge management
application.

1.6. MAJOR CONTRIBUTIONS 9

1.6 Major Contributions

Following the above research method and steps, the research has been deployed and it

has resulted in the following major contributions of this thesis:

1. A General Process Ontology (GPO) is the result of our investigation and analysis

of process ontologies and business process modeling languages, which is an effort
towards the unified process ontology for the interoperability of process models.

2. A basic semantic annotation framework is proposed to enrich semantics of process
models for process knowledge management.

3. An ontology-based annotation method including a semantic annotation model and
rules are elaborated to guide users to apply the framework for the annotation.

4. The extended semantic annotation framework is a goal annotation method with
a goal ontology representation and semi-automatic goal annotation algorithms.

5. A prototype of the annotation tool applying the Semantic Web technology is
implemented following the proposed framework and method.

6. A process knowledge management system integrating the semantic annotation ap-
proach is outlined to validate the applicability of the framework and the method.

1.7 Thesis Outline

In this introduction chapter, we has explained the motivation of the work, described

the problems, listed the objectives of this work, provided an overview of the approach,
and presented the research method and our major contributions. The rest of the thesis

is organized following the research phases described in the research method in section
1.5. Chapter 2 and 3 provide a background, context and relevant work survey for

this research. Chapter 4 and 5 present our theoretical and methodology contributions,
while chapter 6 describes the implementational contributions of the work. Exemplar

studies are deployed to demonstrate the proposed approach in chapter 7. Chapter 8
evaluates the quality of the method, and Chapter 9 validates the applicability of the
work. Finally, conclusions and further work are discussed in chapter 10.

Chapter 2 - Problem Settings provides basic concepts, theory and technology about

information modeling, business process modeling, semantic interoperability, Semantic
Web and process knowledge management. Those issues compose the context of this
research work.

Chapter 3 - State of the Art discusses a number of existing business process mod-

eling languages and process ontologies to investigate modeling constructs and ontolog-
ical concepts corresponding to process modeling perspectives. The survey of semantic
annotation methods and tools shows most of work has been done on the semantic an-

notations of unstructural and structural information, e.g. Web pages or Web services.
Comprehensive approaches for the semantic annotation of semi-structured information,

e.g. business process models, from meta-model and model levels are also demanded and
some efforts have been launched.

10 CHAPTER 1. INTRODUCTION

Chapter 4 - Semantic Annotation Framework for Process Models introduces our
basic semantic annotation framework consisting of profile annotation, meta-model an-
notation and model annotation. Metadata are defined for profile annotation. A general

process ontology is presented as ontological basis for meta-model annotation to cope
with various modeling languages applied in different IS solutions. In model annotation,

domain ontologies are referenced by model contents to represent systems’ context. A
semantic annotation model formalizes the framework with a set of semantic mapping

rules.
Chapter 5 - Extension Semantic Annotation — Goal Annotation elaborates a goal

ontology representation and goal annotation algorithms. Such extension can be used to
compare the IS solutions brought by the process models of systems through specifying

the intentions of the systems’ owners.
Chapter 6 - Pro-SEAT (Process SEmantic Annotation Tool) presents the imple-

mentation of the prototype of a semantic annotation tool. System modules provide

an overview of the architecture of the prototype. Data structures depict the logical
design of the proposed approach. Goal algorithms are implemented to automate the

goal annotation. Functionality and graphical user interfaces are illustrated to elucidate
the interactions between users and the tool prototype.

Chapter 7 - Exemplar Studies and Application System exemplifies the procedure of
the approach and the usage of the prototype through two exemplar cases from different

business organizations. A process knowledge management system is also outlined by
integrating the semantic annotation approach.

Chapter 8 - Quality Evaluation of the Method evaluates the quality of the work using
a quality framework. The quality evaluation of our annotation approach is discussed
according to the quality categories defined in a quality framework.

Chapter 9 - Validation of Applicability validates the applicability of the semantic
annotation approach in a walkthrough scenario of an integration application of process

models. The integration is deployed based on the semantic annotation results of models
in the exemplar studies.

Chapter 10 - Conclusions and Future Work summarizes the work, and outlines the
future work to point out the possible improvements and the interesting directions of

further research on semantic interoperability of business process management.

Chapter 2

Problem Setting

In this chapter, we establish basic concepts, theoretical and technical background and
the context of this research work. Since we work in the information modeling area,
we start the study with theories and methodologies in information system engineering

discipline. Concepts, standards and relevant issues about semantic interoperability and
semantic annotation are then discussed in this chapter. The research target – business

process model and its application – business process knowledge management are also
discussed concerning the context of the work.

2.1 Models in Information System Engineering

A model of a system is defined by OMG1 as a description or specification of that sys-
tem and its environment for certain purpose. In the conventional system development

lifecycle, models are mainly used in system analysis and design phases and they are not
reusable resources after a system is developed. In the modern methods of information

system development, models play an important role as reusable IS solutions.

MDA2 is an approach to system development, which increases the power of mod-

els in that work. MDA provides a means for using models to direct the course of
understanding, design, construction, deployment, operation, maintenance and modifi-

cation [117]. MDA is initiated with the idea of separating specifications of the operation
of a system from details of the way that system uses the capabilities of its platform.

The three primary goals of MDA are portability, interoperability and reusability. The
objective of MDA is to provide an open, vendor-neutral approach to the challenge of
business and technology change [123] by separating different concerns. Three differ-

ent viewpoint models are distinguished as Computation Independent Model (CIM),
Platform Independent Model (PIM) and Platform Specific Model (PSM) [117].

• CIM — A computation independent model is a view of a system from the compu-
tation independent viewpoint. A CIM is sometimes called a domain model and a

vocabulary that is familiar to the practitioners of the domain in question is used
in its specification.

1Object Management Group, http://www.omg.org/
2Model Driven Architecture, http://www.omg.org/mda/

11

12 CHAPTER 2. PROBLEM SETTING

• PIM — A platform independent model is a view of a system from the platform
independent viewpoint. A PIM exhibits a specified degree of platform indepen-
dence so as to be suitable for use with a number of different platforms of similar

type.

• PSM — A platform specific model is a view of a system from the platform specific

viewpoint. A PSM combines the specifications in the PIM with the details that
specify how that system uses a particular type of platform.

In our research, we adopt the vision of MDA. Model plays an essential role in the in-
formation system development lifecycle and it should achieve system products portable,

reusable and interoperable. Model itself can be treated as product and representation
of knowledge. Therefore, model should also be portable, reusable and interoperable.

Model is also found central and important in the Zachman framework [171], where

models are classified based on different roles involved in the system development and
enterprise’s functionings (see Figure 2.1). In this architecture framework, there are

three model categories — enterprise model, system model and technology model, dis-
tinguished from different perspectives of the different participants [214]. Each model

category contains six basic models regarding different types of descriptions oriented to
different aspects of the object being described. The six types of descriptions are entities,
functions, locations, people, times and motivations. In the matrix representation of the

framework, enterprise model is at the conceptual level and it includes semantic model,
business process model, business logistics system, workflow model, master schedule and

business plan.

In our work, we mainly focus on the business process model, which indicates that
our research focus and scope is the functional descriptions of enterprise business at the

conceptual level. While, corresponding to the MDA definitions, our research subject is
CIM.

2.2 Modeling Basis

2.2.1 Semiotic triangle

Modeling at the conceptual level is an activity of representing phenomena of the real
world in a model. It complies with the famous semiotic triangle adapted from Ogden

and Richards’ triangle of meaning [121], i.e. the relationships between a concept, a
referent and a sign. Concepts are mental things, words of mind. A referent is a thing

in reality to which a concept refers. Signs are expressions, symbols or labels to signify
concepts in some language. Modeling aims to conceptualize referents by employing
modeling signs in certain languages. Obviously models could be quite different from

each other due to what (referent) to model, how to model (concept) and with what (sign)
to model. The three elements interact on each other from a semantic representation

perspective. The capability of signs’ expressiveness can determine what semantics of
referents can be represented, also how semantics are conceptualized.

2
.2

.
M

O
D

E
L

IN
G

B
A

S
IS

1
3

Figure 2.1: Zachman Enterprise Architecture Framework [189] [171] [214]

14 CHAPTER 2. PROBLEM SETTING

2.2.2 Modeling language, meta-model and model semantics

Any model must be built in a certain modeling language. A modeling language is any
artificial language that can be used to express information or knowledge or systems in

a structure that is defined by a consistent set of rules. A modeling language is used
to represents concepts and relationships and other phenomena with a set of graphical
notations or symbols. Such a modeling language is often called graphical modeling

language. ER [15], UML [125], BPMN [12], EPC [160] are examples of graphical
modeling languages. A modeling language can also be a set of standardized textual

keywords or markup language accompanied by parameters, for instance, OWL [195],
BPML [11], BPEL4WS [116], and EPML [105]. Graphical modeling languages usu-

ally facilitate readability of models whilst textual modeling languages enable models
machine-interpretable and tool-interchangeable.

Interpretations of the meaning of modeling components in a modeling language are
generally defined in a meta-model. A modeling components such as a graphical notation

or a symbol and a textual keyword or a markup label is called a meta-model element or
a modeling construct in our work. Meta-model elements defined in a meta-model are

the building bricks of a model. A meta-model is also a model of a domain of interest
and it is an instance of a meta-meta-model. A model in a certain modeling language
is the instance of the meta-model of this modeling language. A model having all the

instances of user objects is the instance of model. Instantiated model, model, meta-
model and meta-meta-model respectively correspond to the M0, M1, M2 and M3 layers

of OMG’s four layer meta-data architectures [124].
In this thesis, meta-meta-model is beyond our research focus. While, instantiated

model at the M0 layer is too specific to be reused. We therefore mainly focus on M1
and M2 layers, i.e. model and meta-model.

Common uses of meta-models are as follows [207]:

• As a schema for semantic data that needs to be exchanged or stored.

• As a language that supports a particular method or process.

• As a language to express additional semantics of existing information.

The three usages of meta-models are all employed in the thesis. The meta-model of

a business process model supports process modeling. It is also stored as a schema
associated with a model file. Facilitating the exchange of different process models is

one of our research goals so that meta-model is one of our research objects. Establishing
a semantic annotation method itself is a process of creating a meta-model to specify

the additional semantics of an existing model.
The term semantics in linguistics means the study or science of meaning in language,

or the study of relationships between signs and symbols and what they represent. It
also indicates the meaning or the interpretation of a word, sentence, or other language
form [3]. Model semantics is hereby the meaning or the interpretation of a model. Model

semantics are represented by model elements. Model elements are the components of a
model. Interpretation of model elements usually depends on the context of the system

which the models represent the solutions for. Besides, model elements are composed
of modeling constructs, and the semantics of modeling constructs are defined in a

2.2. MODELING BASIS 15

meta-model of the modeling language. Thus, we conclude that model semantics are
interpreted according to the system’s context and the modeling language applied in the
solution.

2.2.3 Ontology-driven and domain-specific

Modeling at the conceptual level trends to be seemingly independent of the computer

world in the development of modeling methodologies. Researchers turn to philosophy
and linguistics to try to find the inherent principles in the concepts of real world do-

mains. And the boundary between the conceptual modeling and knowledge modeling
becomes gradually fuzzy.

For example, Ontology-Driven Conceptual Modeling draws fundamental notions
from formal ontology and establishes a minimal top-level ontology to drive concep-
tual modeling [47]. Thesaurus Conceptual Model uses the Knowledge/Data Model

(KDM) [137] that incorporates an object-oriented view of data, together with knowl-
edge regarding its usage [68]. Ontologies are used for the development of conceptual

schemas of information systems by pruning irrelevant concepts in the ontologies [18].

On the other hand, domain model framework and meta-model make reuse and

flexibility of models possible. A software system can never be finished, new and changed
domain concepts will always be appearing, forcing continuous rebuilding, testing and re-

deployment of systems [8]. The main idea of the approach proposed in [8] is the removal
of domain concepts from concrete software and database models, into standardized

vocabularies and libraries of domain concept models. Re-engineering software and
database is done using a generic reference object model (ROM) system architecture

in [8]. Reference models are used in [160] to combine "formal driven" and "content
driven" approaches in a new way to develop information systems. The formal driven
approach aims to develop and implementing a technical correct running system. The

goal of the content driven approach is developing and implementing an organizational
correct running system. Goals of content and technology are concerned in reference

models, which are regarded as "blue prints" for business engineering and can be used
to model and optimize business processes. Domain-specific methods implemented with

metaCASE technology [67] use meta-modeling languages to develop a domain meta-
model mapped to combinations of components in order to generate a product.

All these approaches address the process of modeling, and the ideas can be ana-
logically applied on the results of modeling — models. In an ontology-based semantic

annotation method, the utility of an ontology and domain knowledge is applied af-
ter modeling. The additional semantic treatment is still necessary for the exchange
or reuse of models across different organizations, because a modeling process usually

is not centralized and local ontologies and local domain/reference models applied in
the modeling are still various from different organizations. In this work, consensual

ontologies and domain reference models are therefore needed to be determined in an
annotation phase based on the requirements on interoperability and applications.

16 CHAPTER 2. PROBLEM SETTING

2.3 Information Systems and Semantic Web

As the development of the Web, more and more Information Systems start to be imple-
mented using Web technology. Some Web technologies, e.g. Semantic Web techologies,

are introduced into Information Systems development. On the other hand, the Web
applications also benefit from traditional Information Systems theories and practices.

COEUR-SW (Concepts On Enhancing, Understanding and Representing the Seman-
tics on the Web) triangle [170] discloses how an Information Systems on the Semantic

Web comply with the semiotic triangle [121]. COEUR-SW triangle is developed based
on the semiotic triangle in the IS group at IDI3. In the COEUR-SW triangle (see Fig-

ure 2.2), a concept in a Universe of Thought (UoT) is related to an uttered symbol
in a Universe of Language (UoL), the symbol is related to a referent in a Universe of

Structure (UoS), and the referent is related back to the concept. The concept, the
symbol and the referents are related to a context in the Universe of Discourse (UoD).
The COEUR-SW program approaches the UoD from three interrelated angles and thus

seeks to capture the heart of the Semantic Web. Domain modeling is used in order
to capture the knowledge within a UoT into a man/machine understandable theory

in a UoS. Ontology Mapping is used in order to capture the utterances in a UoL into
man/machine-retrievable knowledge. Metadata analysis is used in order to capture the

theories in a UoS into enriched man/machine generative utterances in a UoL.

Figure 2.2: COEUR-SW triangle

COEUR-SW triangle defines three roles of the Web in Information Systems [170]:

• the role of the dominant medium for information dissemination;

• the role of the tool for information compilation;

• the role of the evolving information repository.

3Dept. of Computer and Information Science at Norwegian University of Science and Technology

2.3. INFORMATION SYSTEMS AND SEMANTIC WEB 17

In the context of our research, process models as process knowledge resources can
be disseminated through the Web. The consequent question is how the Web compiles
process models. This issue relates to the knowledge categorization and semantic in-

terpretation issues. The Semantic Web supplies some standards such as RDF [199],
OWL [195] to support the semantic interpretation. The knowledge representation of

process models needs to be transformed into those Semantic Web standards. The Web
can be viewed as a large distributed repository for the process models. However, dis-

tributed models are originally from different autonomous systems and stored in various
schemas. Technologies facilitating interoperability of heterogeneous models such as on-

tology and semantic annotation, are required when organizing the knowledge in such a
repository.

2.3.1 Ontology in information systems

Ontology

Ontology is "an explicit representation of conceptualization" [42]. According to the in-
vestigation in [13], ontology locates two disjoint literatures with virtually no personnel

in common: the world of formal ontology specification e.g. [36] and the world of ontolo-
gies for language-related AI (Artificial Intelligence) tasks e.g. [113]. It is consequently
found that people use the word "ontology" to mean different things, e.g. glossaries &

data dictionaries, thesaurus & taxonomies, schemas & data models, and formal ontolo-
gies & inference. Ontologies applied in this work are defined as formal ontologies. A

formal ontology defines the basic terms and their relationships comprising the vocabu-
lary of an application domain and the axioms for constraining the relationships among

terms [194]. A formal ontology is usually expressed in an ontology representation lan-
guage, e.g. OWL.

A formal ontology consists of a set of specifications of representational vocabularies
(concepts) for a shared universe of discourse, which may include definitions of classes,

relations, functions, and other objects [43]. In AI applications and research, ontology is
often used as a means of achieving consistent communication between agents in multi-
agent systems [134]. Hence, ontology contains agreed-upon definitions in the form of

human readable text and machine-enforceable, declarative constraints (agent readable
format) on their well-formed use [41]. Besides, ontologies consist of a set of inference

rules from which machines can make logical conclusions [1].
In [45], different kinds of ontologies are classified based on the level of generality as

follows:

• Top-level ontologies describe very general concepts like space, time, matter, ob-
ject, event and action. They are independent of a particular problem or domain.

Top-level ontologies in some literature are also called upper-level ontologies.

• Domain ontologies describe the vocabulary related to a generic domain (like
medicine, or automobiles).

• Task ontologies describe generic tasks or activities (like diagnosis or selling).

• Application ontologies describe concepts depending both on a particular domain
and task.

18 CHAPTER 2. PROBLEM SETTING

The concepts in domain ontologies and task ontologies are specialized from the
ones in the top-level ontology. Application ontologies are often specializations of both
domain ontologies and task ontologies. Such classification can be reflected into the

four layer meta-data architecture mentioned previously, i.e. top-level ontologies are at
M2 and domain and task ontologies are at M1 and application ontologies are at M0.

Domain, task and application ontologies about a certain domain usually construct the
general context of the systems in that domain.

Three main uses of ontology are identified in [45]: 1) For communication between
implemented computational systems, between humans, between humans and imple-

mented computational systems; 2) For computational inference, e.g. for internally
representing and manipulating plans and planning information, and for analyzing the

internal structures, algorithms, inputs and outputs of implemented systems in theoreti-
cal and conceptual terms; 3) For reuse (and organization) of knowledge e.g. structuring
or organizing libraries or repositories of plans and planning and domain information.

The beneficial applications of ontology could locate in the following areas [178]:

• Semantic Web. The Semantic Web relies heavily on formal ontologies that
structure underlying data for the purpose of comprehensive and transportable

machine understanding. Ontologies are used to define the proper meaning of
data and metadata for the Semantic Web [173].

• Knowledge Management. The technology of the Semantic Web brings out

the knowledge pieces oriented view of knowledge management. Ontologies enable
intelligent push service, the integration of knowledge management and business

process to support the vision of ubiquitous knowledge. For the applications of
knowledge management, ontologies are employed to annotate unstructured infor-

mation with semantic information, to integrate information and to generate user
specific views that make knowledge access easier [180] [25].

• Interoperability. Interoperability is an important issue in the applications of

integration and reusing existing systems. As inter-lingua, ontology provides a
common and machine-interpretable format for data interchange [177] [188].

• Information Retrieval. Conventional information retrieval approaches suffer

from problems of the inconsistency between the query and the vocabulary of the
documents, which reduces recall of search. Ontologies help to decouple description

and query vocabulary and increase retrieval performance [46].

• Service Retrieval As the development of the research activities and applica-
tions of Web services, locating online services is increasingly critical in many

domains. Online services include software applications, software components,
process models, or service organizations. The approaches of using ontologies in
querying those services are exploited and evaluated to improve the retrieval pre-

cision [10] [182] [131].

Those areas are usually overlapping in an application. For example, knowledge
management is conducted under a Semantic Web environment; information retrieval or

services retrieval may be one of required services in knowledge management; the proper
knowledge management facilitates interoperability.

2.3. INFORMATION SYSTEMS AND SEMANTIC WEB 19

Conceptual model vs. ontology

The term "conceptual model" appears contrastively to "logical model" and "physical

model" to differentiate the levels of model abstraction. The enterprise models on the
second row of the Zachman framework are conceptual models. A conceptual model is

often taken as an abstract model and defined as a theoretical construct that represents
phenomena in a certain problem domain, with a set of variables and a set of logical and

quantitative relationships between them. Conceptual model, especially conceptual data
schema – representing the structure perspective, is comparable with ontology because

they share some modeling principles.
A comparison of conceptual data schema and ontology is made in [63]. They are

similar because both consist of concepts, relations and rules4. There are two main

disparities discussed in [63]:

1. Conceptual data schema is being preserved in off-time model diagrams; while, on-

tology typically is sharable and exchangeable at run-time, i.e. machine-processable
semantics.

2. Unlike conceptual data schema that capture semantics for a given application
domain, ontologies are supposed to capture semantics about real-world domains,
independent from specific application needs, i.e. "relatively" generic knowledge.

Therefore, the generality (application-independency) of knowledge is a fundamen-
tal asset in ontology modeling, and that mostly distinguishes ontology from con-

ceptual data schema.

The two disparities just characterize the two essential aspects of ontologies as described

in [35]: ontologies define formal semantics for information, consequently allowing infor-
mation processing by a computer; ontologies define real world semantics, which makes
it possible to link machine processable content with meaning for humans based on

consensual terminologies.
Conventional conceptual models are still widely used in information systems en-

gineering and play vital roles in enterprise modeling as we have discussed previously.
Meanwhile, ontologies become key enabling technology for the Semantic Web. More-

over, ontology modeling can benefit from the existing conceptual modeling methodolo-
gies and tools [5] [19] [38] [104]. Legacy conceptual schema can be also mined and/or

"ontologized" [63]. On the other hand, ontology and the Semantic Web technology are
also found to be applied in enterprise modeling and applications [139] [140].

We are aware of common grounds and differences between the two disciplines in
this work and devote our efforts to build the links between conceptual process models
and process ontologies. The work results in a combination of the usage of ontologies

and conceptual models. Business process models at the conceptual level created for
a given application domain still serve information systems development as Represen-

tation of systems and requirements, Vehicle for communication, Basis of design and
implementation and Documentation and sense-making [76]. Meanwhile the extensive

exchange, integration and reuse of business process models between different organiza-
tion can benefit from the Semantic Web technology through annotating models using

ontologies.

4Rules in conceptual modeling are called "constraints", and they are axioms in ontology.

20 CHAPTER 2. PROBLEM SETTING

2.3.2 RML and OWL

Two modeling languages – RML and OWL – related to ontology modeling in this

thesis, are introduced in this sub-section. RML (Referent Model Language) [168] [169]
is a concept modeling language representing structural perspective [76]. OWL (Web

Ontology Language) is a language for defining and instantiating Web ontologies for
creating Semantic Web applications [195].

RML

RML is concentrated on describing the static structure of a model. It is targeted to-

wards applications in areas of information management and heterogeneous organization
of data. The formal basis of RML is the set theory. The phenomena in RML are mod-

eled as collections (set) or atoms (an individual phenomenon). A set is represented
by a list of elements, or by stating property that all elements must have to qualify

as a member of the set. Four different types of concepts – individual concepts, class
concepts, relation concepts and quantitive concepts, are identified in RML. From the
four types, the modeling constructs of RML are derived: class concepts, individual

concepts, attributes, binary relationships, cardinality of a relationship, hierarchical ab-
straction of classification (instance of), aggregation(part of), generalization (is-a), and

association (member of). Refined semantics can also be specified in RML: generaliza-
tion is specified into disjoint generalization (e.g. A person is either a man or a woman.)

and overlapping generalization (e.g. A person may both be an artist and an athlete.);
relation concepts are distinguished into individual relation concepts, class relation con-

cepts, order concepts and operation concepts; binary relation concepts are depicted as
many-to-many, many-to-one or one-to-one mappings; "any" (∀) and "some" (∃) value

restrictions are specified as the coverage of a relation concept; properties can be elabo-
rated into reflexivity, symmetry, transitivity and connexity. Part of notations of RML
are displayed in Figure 2.3. Detailed specifications of RML are provided in [169].

Figure 2.3: Graphical Notations of RML (limited to the constructs used in this thesis)

2.3. INFORMATION SYSTEMS AND SEMANTIC WEB 21

OWL

OWL is designed for use by applications that need to process the content of information
instead of just presenting information to humans [197]. Building upon RDF and RDFS,

OWL provides more machine-interpretable semantics by defining additional vocabulary
along with formal semantics. OWL builds on Description Logics which is a restriction

of First Order Logic. OWL provides three increasingly expressive sublanguages: OWL
Lite, OWL DL (Description Logics), and OWL Full. Each of these sublanguages is an

extension of its simpler predecessor. Compared to the other two sublanguages, OWL
DL is often chosen as the ontology modeling language because of its capacity of fair
semantics expressiveness and inference. Most available OWL reasoners support OWL

DL, such as Pellet [96], RACER [61] and FaCT++ [162].

An OWL ontology usually consists of classes, properties, instances of classes, and
relationships between these instances. Instances of classes in OWL are called individ-

uals. OWL classes are described through "class descriptions", which can be combined
into "class axioms" [196]. With class axioms, OWL Lite can represent generalization
(rdfs:subClassOf), equality (owl:equivalentClass). Besides, OWL DL can specify

classes as logical combinations of other classes (owl:intersectionOf, owl:unionOf,
owl:complementOf), or as enumerations of specified objects (owl:oneOf) or as distinc-

tion of two classes (owl:disjointWith).

OWL distinguishes between two main categories of properties — object proper-
ties (owl:ObjectProperty) to link individuals to individuals and datatype properties
(owl:DatatypeProperty) to link individuals to data values. Properties can be speci-

fied through domains (rdfs:domain) and ranges (rdfs:range). More property axioms
are supported by OWL are sub-property (rdfs:subPropertyOf), equivalent property

(owl:equivalentProperty), inverse property (owl:inverseOf), functional property
(owl:FunctionalProperty), transitive property (owl:TransitiveProperty), symmet-

ric property (owl:SymmetricProperty) and etc. An arbitrary number (zero or more)
of values for a property is represented by cardinality constraints (owl:maxCardinality,

owl:minCardinality, and owl:cardinality). Value constraints (owl:allValuesFrom,
owl:someValueFrom and owl:hasValue) specify the quantifier restriction of a property.

OWL individuals are specified through the class axiom rdf:subClassOf. The identity
of individuals can be stated by referring to the same individual (owl:sameAs), or re-
ferring to different individuals (owl:differentFrom), or listing all different individuals

(owl:AllDifferent).

Use of RML and OWL

In our work, RML is used during the descriptive analysis and the normative develop-
ment phases to analyze concepts and relationships at meta-model level in our research.

While, OWL DL is applied during the implementation and the experimental evalua-
tion phases for serving as the three roles of: ontology modeling language, machine-
interpretable semantics builder and first order logic inference basis. Meanwhile, RML

is also used as a graphical modeling language to model ontologies in this work. Al-
though Protégé-OWL provides a tool to model an ontology in a graph, the graphical

notations are not as rich as ones defined in RML. Some axioms and constraints can not
be visually displayed in the graphic models. When comparing the semantic expressiv-

22 CHAPTER 2. PROBLEM SETTING

ity of RML and OWL, it is not surprising to find a big overlapping of the modeling
constructs between the two languages since both of them share a similar logic basis5.
We do not intend to build one-to-one mapping between RML and OWL, but take the

advantages of both as our research tools. We mainly use RML to visualize the concepts
and relations of ontologies for human comprehension, and employ OWL to formalize

ontology models for machine interpretation and reasoning.

2.4 Semantic Interoperability

Interoperability is the ability of two or more systems or components to exchange infor-
mation and to use the information that has been exchanged [119]. Interoperability is a

broadly used term, encompassing many of the issues impinging upon the effectiveness
with which diverse information resources might fruitfully co-exists. The issues can be

defined for different purpose, such as, semantics.

Semantic interoperability is the ability of two or more computer systems to exchange
information and have the meaning of that information accurately and automatically

interpreted by the receiving system. The main obstacle of semantic interoperability is
semantic heterogeneity of the information to be exchanged. Common understanding of

semantics and standardization of semantic representation are usually concerned as the
solutions tackling the semantic heterogeneity to achieve semantic interoperability.

2.4.1 Semantic heterogeneity

Semantic heterogeneity is usually distinguished from syntactic heterogeneity and struc-

tural heterogeneity in the database community [37] [39] [86] [88] [89]. Syntactic hetero-
geneity is concerned with the heterogeneity of data formats. Standardizing data formats
is taken as an approach to solve syntactic heterogeneity problems. For example, XML is

used as a standard format for all forms of Web-accessible data. Structural heterogeneity
is associated with different data models, data structures or schemas, e.g. relational and

object-oriented database models. An example of the solutions for structural heterogene-
ity is that RDF based on XML syntax provides a unified way to structure information

sources or object models for Web-based information exchange [100]. When two informa-
tion sources are modeled in a same format by applying a same modeling methodology,

there still might be semantic heterogeneity problem. Semantic heterogeneity can be
identified according to the different types of conflicts [172]:

1. Semantic conflicts. Different modelers do not perceive exactly the same set of
real world objects, but instead they visualize overlapping sets (included or inter-

secting sets). For example, a "Student" object class may appear in one schema,
while a more restrictive "CS-Student" object class (grouping students majoring in

computer science) is in another schema. The "CS-Student" class will be integrated
as a subclass of the "Student" class in the integration of two schemas.

2. Descriptive conflicts. Descriptive conflicts include naming conflicts due to homonyms
and synonyms [7] [111], attribute domain, scale, constraints, operations, etc. [84].

5FOL (Fist Order Logic) can formalize the set theory.

2.4. SEMANTIC INTEROPERABILITY 23

3. Structural conflicts. Such structural conflicts are different from structural het-
erogeneity. Even if two modelers use the same data model, they can choose
different constructs to represent common real-world objects. For instance, in

object-oriented models when a modeler describes a component of an object type
O, he has the modeling choices between creating a new object type or adding an

attribute to O.

2.4.2 Semantic annotation

The goal of empowering computer systems with semantic interoperability rests on the
desirability of computer systems being able to find information and to use it for purposes

that the original creator of the information did not anticipate. This goal of flexible
information reuse requires some degree of understanding of the information, which

in turn requires that the information be encoded in some standard fashion that is
interpreted identically by all systems using that information. As a shared model of

what the information represent, ontologies are usually used to achieve the level of
understanding. Semantic annotation is an approach to link ontologies to the original

information sources.

Annotation is the extra information associated with a particular point in a docu-
ment or other piece of information. For semantic annotation, the extra information is

meaning definitions of the concepts used in a document. The meaning definitions are
in most cases represented in ontologies. Annotation can be in the form of comments,

or in the form of metadata. Metadata is data about data and it is used to facilitate the
understanding, use and management of data. Machine-manipulable annotations are

often organized as metadata, which is also the format of semantic annotations. There
are a number of alternative approaches regarding the organization, structuring, and

preservation of annotations. For instance, all the markup languages (HTML, SGML,
XML, etc.) can be considered schemas for embedded or in-line annotation. On the

contrary, open hypermedia systems use stand-off annotation models where annotations
are kept detached, i.e. non-embedded in the content. Both annotation approaches can
be document-level (annotating the document as a whole) or character-level (referring

just a specific part of the text) [81] (see Figure 2.4). Embedded annotation seems
easier to maintain. However, non-embedded annotations allow dynamic, user-specific

semantic annotations because they can change corresponding to the interest of the user
or the context of usage. The embedded annotations might also have negative impact

on the volume of the content and complicate the maintenance [70].

Figure 2.4: Embedded annotation and stand-off annotation [81]

24 CHAPTER 2. PROBLEM SETTING

In [70], semantic annotation is used to establish links from the entities in the text
to their semantic descriptions so that a number of basic prerequisite for representation
of semantic annotations are identified:

• Ontology (or at least taxonomy) defining the entity classes. It should be possible
to refer to those classes;

• Entity identifiers which allow those to be distinguished and linked to their se-

mantic descriptions;

• Knowledge base with entity descriptions.

Semantic annotation of Web services has emerged under the hypothesis that se-

mantics can improve software reuse and discovery, significantly facilitate composition
of Web services and enable integrating legacy applications as part of business process

integration [203]. Semantic annotation of Web services is also called semantic markup
of Web services, for which numbers of semantic markup languages and approaches are

proposed such as WSMO [209], METEOR-S [187], OWL-S [198], SWSA/SWSL [181],
WSDL-S [203]. They can be categorized into: a) annotating information in WSDL

with ontologies (METEOR-S, WSDL-S); b) formalizing ontologies of Web service as a
Semantic Web services representation language (WSMO, OWL-S and SWSA/SWSL).

In [206], semantic annotation of process models is concerned as a prerequisite of the

vision of Semantic Business Process Management, which is very close to our proposal.
It will enable (or enhance) additional functionalities, namely the discovery and auto-

completion of process fragments, which lead to more effective modeling with respect to
the reuse of existing process artifacts at the conceptual level. The executable process

models can be partly generated from the conceptual business process models, which in-
dicates there are underlying links between business process models and executable Web
services. Semantic annotation of business process models could therefore enable more

automation in the implementation phase because the corresponding Semantic Web ser-
vices can be discovered automatically [206]. Although the work has just initiated and it

is still an ongoing project, it shares the same vision with ours, i.e. semantic annotation
can be also concerned as an alternative approach to achieve the semantic interoper-

ability of semi-structured sources such as business process models, in spite of semantic
annotations of unstructured sources (e.g. textual documents) and structured sources

(e.g. WSDL described Web services). Efforts on the semantic enrichment of enterprise
models by semantic annotations are also put by TG4 (Task Group 4: Semantic Enrich-

ment of Enterprise Modeling, Architectures and Platforms) in EU project INTEROP
(Interopreability Research for Networked Enterprise Applications and Software, FP6
508011) [62], in which the main achievable targets are the semantic interoperability for

model exchange, model transformation and model traceability. As the contemporary
work, our research shares some similar objectives and available technologies. Since we

participated in the INTEROP project, our contributions are also devoted as part of
the results in the project.

2.5. BUSINESS PROCESS MODEL 25

2.5 Business Process Model

A business process is defined in [23] as a set of coordinated tasks and activities, con-
ducted by both people and equipments, that will lead to accomplishing a specific orga-

nizational goal. A process model describes a way of working at the type level according
to the abstraction levels for processes in [155], which is corresponding to OMG’s M1

layer. A process is an instantiation of the process model, corresponding to the M0 layer.
The same process model is used repeatedly for the development of many applications

and thus, has many instantiations. A process meta-model is at the meta-type level
with respect to a process (see Figure 2.5).

Figure 2.5: Abstraction levels of processes [155]

There are four types of coverage where the term process model has been defined
differently in [27]:

• Activity-oriented: related set of activities conducted for the specific purpose of
product definition; a set of partially ordered steps intended to reach a goal [34].

• Product-oriented: series of activities that cause successive product transforma-
tions to reach the desired product.

• Decision-oriented: set of related decisions conducted for the specific purpose of
product definition.

• Context-oriented: sequence of contexts causing successive product transforma-
tions under the influence of a decision taken in a context.

Therefore a business process model defines the details of a business process flow and
modeling all the data, resources, and other elements that the flow uses. As described in

[9], a business process is usually composed of process steps that are normally connected
through control flows, and these control flows connect activities with decision nodes.

A decision node holds the business rules (transition conditions) that are evaluated to
decide what path in the process should be followed. Modeling includes decomposition
of a business process into sub-processes and adding required process elements to the

model.
A business process model is initially constructed based on certain business require-

ments. The usage of a process model could be for the analysis of the process (i.e.
descriptive, prescriptive and explanatory) or the creation of new process models by

26 CHAPTER 2. PROBLEM SETTING

modifying existing models rather than recreating it from scratch [9]. A process model
fragment is a part of a business process model which is designed and managed to be
reusable. Generally, reuse of pre-existing model fragments can facilitate and speed-up

the construction of a new model.

As reusable knowledge, process models can be discovered and reused in a goal-driven

approach through matching process models to the desired goals. Goals lead to the
exploration and consideration of alternatives, decision spaces, tradeoffs and decisions.

Goals have been used as an important mechanism for connecting requirements to design
and supporting reuse [213]. Goal-driven search of design components [54] and goal-

driven discovery of services [90] use such kind of mechanism, where the components or
services are selected based on capability to fulfill the desired goals (requirements).

A process model represents how to do things not why to do things. Although a
process must achieve certain goals, the relationships between goals and processes are not
explicitly represented in many process models because few process modeling languages

and modeling tools offer such mechanism. With few process modeling languages, goals
can be modeled and linked to elements of process models, e.g. EEML process and goal

models [77]. Some goal modeling methods for requirement engineering such as KAOS
[21], i*/GRL [55], GBRAM [56] need to be adapted for process modeling. However,

the representations of the goals and processes are various in different models.

2.6 Process Knowledge Management

2.6.1 Knowledge and process knowledge

Knowledge is information that comes laden with experience, judgment, intention and

values, in short, knowledge is information that is digested and internalized by human
beings [169]. However, a simply collection of information is not knowledge. In [185],

information and knowledge is distinguished as follows. Information only tells what it
is, with great dependence on context for its meaning and with little implication for the

future. Pattern [6] has the potential to represent knowledge when one is able to realize
and understand the patterns and their implications. For example, the information —
interest rate 5% — is the factor used by the bank to compute interest on the principal.

Based on the information, there is a pattern that for $100 in a savings account the bank
pays 5% interest yearly and then at the end of one year the principal in the account will

be $105. Such pattern represents knowledge of the amount of the interest will be earned
depends on the interest rate, the amount of the principle in the account and the period

of the saving. Therefore, a pattern tends to create its own context rather than being
context dependent to the same extent that information is. Pattern also serves as an

Archetype [165] with both an implied repeatability and predictability. Understanding
the pattern knows one what is knowledge.

Process knowledge is also known as process-related knowledge. Taking the pattern

view of knowledge, process knowledge is the pattern about processes which are under-
standable, repeatable and predictable. Another way to specify process knowledge is to

ask the question "Where is the knowledge in processes?". The answers are provided
in [112] such as:

2.6. PROCESS KNOWLEDGE MANAGEMENT 27

• Inputs and Outputs. One place knowledge comes into play in a process is as a
production input, which is to be operated upon and transformed into an output.

• Controllers. Another place where knowledge comes into play in a process is in
the form of controls. In this case, knowledge can be regarded to be "embedded"

in the process.

• Processors. The "Processor" performs the actions needed to produce a result
from the process. This kind of knowledge is "encoded" in the process.

• Design. A lot of knowledge is "embedded" in the processes in the form of spec-

ifications for the outputs, the inputs, the routines and the requirements. The
knowledge in the process makes itself felt through what is done, when, how, by

whom and to what standards.

The first three answers concern the process automation and execution. The last
one is associated with process models in the analysis and design phases. Our research

objects are business process models at the conceptual level. In [122], Olivé visions a
goal of automating IS building by a conceptual schema-centric development (CSCD).
A conceptual schema provides general knowledge about the IS domain and about the

functions the IS has to perform. With such a vision, the main purpose of the activity
of business process modeling is to elicit the process knowledge of the corresponding IS.

Hence, we take the fourth answer to specify that the process knowledge in our research
context is embedded in business process models. This statement is also reflected in [79]

with "process models are carriers of process knowledge, knowledge of how to do things".

2.6.2 Knowledge representation

Nonaka and Takeuchi [114] argued that a successful knowledge management program

needs to, on the one hand, convert internalized tacit knowledge into explicit codified
knowledge in order to share it, but also on the other hand for individuals and groups

to internalize and make personally meaningful codified knowledge once it is retrieved
from the knowledge management system. A crucial fact is knowledge representation.

Although process knowledge is embedded in process models, it does not mean all
process models are process knowledge, that is, not every process modeling representa-

tion is knowledge representation. Knowledge representation can be various in terms of
the distinct roles it plays, each crucial to the task at hand [22]:

• A knowledge representation (KR) is most fundamentally a surrogate, a substitute

for the thing itself, used to enable an entity to determine consequences by thinking
rather than acting, i.e., by reasoning about the world rather than taking action

in it.

• It is a set of ontological commitments, i.e., an answer to the question: In what
terms should we think about the world?

• It is a fragmentary theory of intelligent reasoning, expressed in terms of three
components: (i) the representation’s fundamental conception of intelligent rea-

soning; (ii) the set of inferences the representation sanctions; and (iii) the set of
inferences it recommends.

28 CHAPTER 2. PROBLEM SETTING

• It is a medium for pragmatically efficient computation, i.e., the computational
environment in which thinking is accomplished.

• It is a medium of human expression, i.e., a language in which we say things about

the world.

The conclusions of the research in [22] are drawn all five roles matter; representation

and reasoning are interwinded; different representations are often combined; they have
formal equivalence. Various artificial languages and notations have been proposed for

representing knowledge, such as CycL [20], IKL [50], KIF [29], Loom [97], OWL [195]
and KM [71]. They are typically based on logic and mathematics, and have easily

parsable grammars to ease machine processing.

2.6.3 Knowledge management activities associated with process mod-
els

Knowledge Management (KM) is an approach to discovering, capturing, and reusing

both tacit (in people’s heads) and explicit (digital or paper based) knowledge as well as
the cultural and technological means of enabling the knowledge management process to

be successful. Usually, the knowledge management covers both instance level and type
level knowledge — learning from instances and abstracting them to reusable knowledge.

In a KM system, knowledge processes essentially revolve around the following steps
[174]:

Figure 2.6: Knowlege Process [174]

2.7. SUMMARY 29

• Creation or import. The contents need to be created or converted so that they
fit the conventions of the company.

• Capture. Knowledge items have to be captured in order to determine their im-
portance and how they mesh with the company’s vocabulary conventions.

• Retrieval and access. This step satisfies the searches and queries for knowledge
by the knowledge worker.

• Use. The knowledge worker will not only recall knowledge items, but will process
them for further use.

The steps are illustrated in Figure 2.6. In this thesis, the scope of the knowledge
management is only limited on type level process knowledge – enterprise/business pro-

cess models. Therefore, in the context of our process knowledge management, process
modeling in knowledge representation language is concerned as knowledge creation.

Importing knowledge can be the transformation of conventional process models in the
knowledge representations. Knowledge capture is to capture the essential contents in

process models through annotation techniques by creating metadata conforming to
ontologies. Process knowledge retrieval and access can be conducted through a conven-
tional query or search tools, or by applying the ontology and the inference mechanism

to derive further views of process knowledge. The possible uses of process knowledge
include analysis of existing process models, reusing the legacy models to create new

process models, integrating systems based on the process descriptions, etc.

2.7 Summary

This chapter has outlined the context of this research work. We have introduced the
theoretical and technical setting relevant to our research topic, such as modeling the-

ories and methodologies, the Semantic Web, ontology, semantic annotation, business
process model and knowledge management. Main points are summarized as follows.

• From the discussion of modeling theory and methodology, we has scoped that our
research area is at conceptual modeling level.

• Ontology as the key enabling technology for the Semantic Web provides an explicit
representation of a shared conceptualization.

• Ontology and conceptual model share certain common grounds, which indicates
the potential links between them, e.g. usage combination and technology benefits

from each other.

• In this work, a concept modeling language – RML is used to analyze meta-models

and ontologies with graphical notations; while, an ontology modeling language –
OWL is applied to enable ontology machine-interpretable.

• Semantic annotation is an approach to achieve semantic interoperability of het-
erogeneous information resources making use of ontology.

30 CHAPTER 2. PROBLEM SETTING

• Process knowledge is embedded in process models whose semantics might be
represented heterogeneously.

• Semantic annotation can be applied in capturing and representing process knowl-
edge to facilitate process knowledge management such as the retrieval and reuse

of heterogeneous process models.

After having established the key areas of our research in this chapter, we will con-
tinue to detail survey of state of the art in the these areas, namely, process modeling
languages, process ontologies, goal modeling and annotation approaches.

Chapter 3

State of the Art

This chapter investigates a number of existing process modeling languages and process
ontologies which are often used in industrial business and academic research projects.

Such investigation is intended to seize the most essential concepts and relationships
describing the semantics of process, which construct the basis of the process ontol-

ogy. The process ontology is used as the intermediary for the semantic annotation to
build the semantic mapping between different process representations. Semantic anno-

tation approaches and tools for different types of information are surveyed to identify
requirements of semantic annotation methods and tools.

3.1 Process Modeling Languages

Business Process Modeling (BPM) plays a vital role in the lifecycle of enterprise systems
development. BPM is sometimes known as Business Process Management. Over the
years, the scope of business processes and BPM has broadened. It ranges from process

definition, workflow management system, and integration techniques. For the specifica-
tion aspect, process definition is conducted by modeling activities with certain process

modeling language. For the execution aspect, workflow management system is neces-
sary for the automation and control of process execution based on process models. For

the system aspect, BPM today is an enterprise integration technology complementing
Service-Oriented Architecture (SOA) and other integration APIs.

In the history of business process modeling, numbers of process modeling languages

were created, evolved and new proposals continue to emerge. Some of them cease to
be used because of the evolution of the modeling methodologies, but many of them

are still lively applied. Those process modeling languages exist contemporaneously due
to their special expressive powers to emphasize different aspects for various applica-

tional purposes. Process modeling languages might be informal, semi-formal or formal.
Informal modeling language is just natural language, which is seldom used in model-
ing discipline. Most visual modeling languages are semi-formal modeling languages, in

which there are a set of notations with semantic definitions by meta-models. Formal
modeling languages are those whose semantics are rigidly defined by logic or mathemat-

ics. A semi-formal modeling language is generally easier to understand than a formal
language, while the latter can enable the computation of model semantics.

31

32 CHAPTER 3. STATE OF THE ART

Process modeling languages are distinct from each other because they have differ-
ent meta-model elements/modeling constructs to represent process properties. Process
properties are also generally called process perspectives in this thesis. Although the rep-

resentations of process properties are various from the different modeling languages, the
following perspectives of business process are often presented in most process models:

structural, operational/functional, control, resources, organizational, data transaction.
Structural perspective is a view of the structure of activities or processes, such as the

structure of parts (sub-activity, sub-process). Operational/Functional perspective is
normally represented through the descriptions about activities or functions with their

inputs and outputs. Control is associated with operational/functional perspective and
it emphasizes the ordering and constraints of processes. Resources of processes are those

consumed or produced along the processes, and they also include tools or other mech-
anisms required to aid processes. Organizational perspective display the process flows
between different organizations and participants involved in processes. Data transac-

tion includes information or message transit and state change, in which data value is
often involved.

Based on the discussions above, we make a paradigm of BPM (Business Process
Management) systems with the focuses on process definitions (Figure 3.1), which is

adapted from the Business Process Management Mind Map [14].

Figure 3.1: The paradigm of business process management systems

We in this chapter introduce several business process modeling languages. The fea-
tures of each modeling language are investigated from the process definition perspective

according to the paradigm of business process management systems. Being consistent
with our research subject and scope, those modeling languages should be able to repre-
sent business processes on the conceptual level. That is, the process modeling languages

could be used for CIM (Computation Independent Model), but not restricted only to
CIM.

3.1.1 Petri Nets

Petri net is a formal, graphical, executable language for specifying dynamic behavior.

Petri nets were introduced by C.A.Petri in the early 1960s as a mathematical tool for
modeling distributed systems. It is widely used in software design, workflow manage-

3.1. PROCESS MODELING LANGUAGES 33

ment, data analysis, concurrent programming, reliability engineering and diagnosis of
programming. As a graphical modeling language, Petri nets can visualize dynamic be-
havior with the nets consisting of place nodes (circles), transition nodes (bars) and arcs

connecting places with transitions. Places can contain tokens. Tokens are used in these
nets to simulate the dynamic and concurrent activities of systems. In a mathematical

form, the state of a Petri nets can be represented as a M vector, algebraic equations,
and other mathematical models governing the behavior of systems.

Due to such a small number of modeling constructs, Petri nets have the limited

expressivity of the structural, resources, organizational, functional or operational per-
spectives. However, it performs very well on the data transaction and control per-
spectives. Many execution, simulation and analysis techniques and applications have

been developed based on Petri nets. Numbers of extensions have also been made to deal
with the drawbacks of Petri nets, such as lacking data and hierarchy concepts, not user-

oriented and scope limited to process aspects. The development of high-level Petri nets
and hierarchical Petri nets targets the data structuring and hierarchical decomposition

issues, e.g. coloured Petri nets [64]. User-oriented visualizations and complementary
modeling perspectives, e.g. for resources [30], structural [82] [83] [108], and time, have

been proposed.

3.1.2 EPC (Event-driven Process Chain)

EPC is a semi-formal graphical modeling language for business process workflows. It

was developed within the framework of ARIS [160] in the early 1990s. EPC has been
applied in ERP system describing workflow, e.g. SAP R/3, and now more widely.

Basic EPC notations only include events (hexagon), functions (rounded rectangle) and
connectors which can be transformed into Petri nets, but it introduces AND, OR and

XOR connectors. An example of the notations in an EPC model is illustrated in Figure
3.2. EPC emphases more on the operational/functional and control perspectives than
data transaction perspective as Petri nets do. An extended EPC includes organizational

units to represent roles or persons, information or resource object that can be seen as
input or output to functions, and process path to describe hierarchies of EPC processes.

A major strength of EPC is claimed to be its simplicity and easy-to-understand

notation. This makes EPC a widely acceptable technique to denote business processes.
Unfortunately, neither the syntax nor the semantics of EPC are well-defined [190]. EPC

requires non-local semantics [69], so that the meaning of any portion of the diagram
may depend on other portions arbitrarily far away. Recently, an XML-based EPC
— EPML (Event-driven Process Chain Markup Language) has been proposed by Jan

Mendling [105]. The motivation of EPML is to support data and model interchange
in the face of heterogeneous Business Process Modeling tools. Tool orientation deals

with the graphical representation of EPCs and EPML is able to store various layout
and position information for EPC elements [129].

34 CHAPTER 3. STATE OF THE ART

Figure 3.2: An example of EPC model [60]

3.1.3 EEML (Extended Enterprise Modeling Language)

EEML is originally developed in EXTERNAL project [59] to support development
and use of interactive models1. The technological approach in EXTERNAL involves

integration of several business process technologies, such as process-centric enterprise
modeling, computational simulation models, hypermedia collaboration tools and emer-

gent workflow tools. EEML is the research result of process-centric enterprise modeling.
EEML is created to support process modeling across the four layers of process models:

• Generic Task Type. Identifying the constituent tasks of generic, repetitive

processes and the logical dependencies between these tasks (so-called reference
processes).

• Specific Task Type. Expanding and elaborating process models to facilitate
business solutions. Elaboration includes concretization, decomposition, and spe-

cialization.

• Manage Task Instances. Detail planning, co-ordination and preparation for
resource allocation concerning actual work environment and process instance.

• Perform Task Instances. The actual execution of tasks according to the de-

termined granularity of work breakdown, which in practice is coupled to issues
of empowerment and decentralization. At this layer resources are utilized or
consumed, in an exclusive or shared manner.

EEML can be used for process and enterprise modeling on different levels (both

type and instance level). Type level related to generic task type and specific task type
layers are our interests. The language vocabulary of EEML is grouped into several

domains. In this work, we only concern two domains: EEML process domain and EEML

1Interactive model: prescribed aspects of the model are automatically interpreted and ambiguous
parts are left to the users to resolve, with tool support [65].

3.1. PROCESS MODELING LANGUAGES 35

resource domain. EEML is a semi-formal language and has a set of graphical modeling
notations. An illustrated example of EEML process model provides an overview of
EEML notations for the process and resource domains in Figure 3.3. In process domain,

EEML models the operational/functional perspective by task which is notated as a
round rectangle with input and output (two diamonds on the left and right side within

the rectangle). A task can be decomposed so that the hierarchy of process can be
structured. The control perspective is represented through the flows (lines with arrow)

linking tasks, milestones (diamonds along the flow with "start", "milestone" and "finish")
and decision point (diamonds along the flow with logic connector like AND, OR, XOR).

Organizational and resources perspectives are well supported by specifying different
resource types (e.g. person, organization, information object, ...) associated with

resource roles (circles in a task). It is not obvious to model the data transaction
perspective in EEML although milestone could be used as "state" sometimes. Details
of the EEML modeling language are described in Appendix B.

Figure 3.3: Overview of EEML modeling constructs and relationships for process and resource
domains

3.1.4 UML Activity Diagram

As one of standard proposals in UML [125], UML Activity Diagrams in the behavior

category are typically used for business process modeling. An Activity Diagram in
UML represents the business and operational step-by-step workflows of components in a

system, the overall flow of control. In UML 1.x, an Activity Diagram is a variation of the
UML State Diagram2 where the "states" represent actions, and the transitions represent

the activities that happen when the operation is complete. The UML 2.0 Activity
Diagram, while similar looking to the UML 1.x Activity Diagram, now has semantics

based on Petri nets. In UML 2.0, Activity Diagram can represent the interaction
overview of e-business.

UML Activity Diagram is a semi-formal language with the following basic graphical

notations [2]: initial node and activity final node (filled circle with or without border),
activity (round rectangle), flow/edge (arrow), fork and join (black bar), decision and

2UML State Diagrams depict the dynamic behavior of an entity based on its response to events,
showing how the entity reacts to various events depending on the current state that it is in [2].

36 CHAPTER 3. STATE OF THE ART

Figure 3.4: An example of UML activity model [107]

merge (diamond), partition/swimlane (line without arrow like a border). The nota-

tions are exemplified in Figure 3.4. Partition/swimlane is normally used to indicate
who/what is performing the activities, which can specify the organizational perspective.

The rest notations can represent the operational/functional and control perspectives.
No particular notations are provided for the phenomena associated with data in UML

Activity Diagram. However, it allows to use texts linked to the flows and activities to
indicate condition, object or message passed in the process. UML Activity Diagram

is often asked to be combined with other UML diagrams to model multiple process
perspectives. For example, UML Use Case Diagram can capture loose collections of

related activities at the high level, which might provide a view of the structural per-
spective of processes. After all, the lack of first class process modeling primitives is a
major limitation of UML [26].

3.1.5 BPMN (Business Process Modeling Notation)

BPMN is a new standard of modeling business processes and Web service processes
put forth by the Business Process Management Initiative [126], which is merged with

OMG organization now. BPMN is a semi-formal modeling language providing no-
tations understandable by business users. Nevertheless, it is also created as visual

3
.1

.
P

R
O

C
E

S
S

M
O

D
E

L
IN

G
L

A
N

G
U

A
G

E
S

3
7

Table 3.1: Modeling constructs of different business process modeling languages

Petri Net EPC EEML UML Activ-

ity

BPMN

Structural - process path process/task
decomposition

UML use case collapsed
/expanded

sub-processes

Operational
/Functional

- functions process/task
(with input

and output)

activity task, process

Control transition
node, arc

connector, flow flow, mile-
stone, decision

point

flow/edge,
fork, join,

decision and
merge

sequence flow,
fork, join, deci-

sion, merging,
looping

Resource - extension with

information,
resource object

resource role,

resource type

- data object

Organizational - extension with

role, person

resource role,

resource type
(organization,

person)

partition,

swimlane

pool,

(swim)lane

Data Transaction token event milestone, flow
with resource

UML state dia-
gram

message flow
with data

object

38 CHAPTER 3. STATE OF THE ART

modeling language for execution languages, such as BPEL4WS [58] and BPML [11].
The BPMN specification provides a mapping between the graphics of the notation and
the constructs of those formal languages. BPMN intends to provide businesses with

the capability of understanding their internal business procedures in graphical nota-
tions and give organizations the ability to communicate these procedures in a standard

manner.

BPMN is initiated as a standard process modeling language for conventional busi-
ness, B2B and services process modeling. Hence BPMN has the capabilities of handling
B2B business process concepts, such as public and private processes and choreograhies,

as well as advanced modeling concepts, such as exception handling and transaction com-
pensation in addition to the traditional business process notations [12]. Private business

processes are those internal processes to a organization and they are traditional business
processes or workflows. Public processes are also called abstract processes or interface

processes according to the BPMI terminology. They represents the interactions between
a private business process and another process or participant. Choreographies repre-

sents collaboration processes. A collaboration process depicts a sequence of activities
that represent the messages being sent between the entries involved.

According to the BPMI terminology, the modeling constructs are the elements with
corresponding notations. The main elements of BPMN are event, task, process/sub-

process, sequence flow, message flow, pool, lanes, data object, fork (AND-split), join
(AND-join), decision/branching point (OR-split), merging (OR-join), looping, etc. We

refer those elements to the perspectives in the BPM systems paradigm. A sub-process
is a compound activity included within a process. The collapsed/expanded sub-process

can hide and show the details of the sub-process. Hereby, the structural perspective can
be represented by BPMN through such a mechanism. Respectively, task, process/sub-

process are elements for the operational/functional perspective. Tasks and processes
are controlled through event, sequence flow, fork, join, decision, merging and looping.
Resource can be represented by data object. Organizations are usually represented by

lanes in the pool. The data transaction is specified through message flow together with
data object.

The details of the BPMN specifications from BPMI can refer Appendix A. The

names and the notations of the BPMN elements used in this section are from the
standard proposal. When a modeling tool implements a certain modeling language
(e.g. BPMN), the names and the notations might be slightly changed to adjust the tool

implementation. For example, task, process/subprocess are implemented as "Logical
Process" in an enterprise modeling tool Metis [183].

3.1.6 Categorizing the modeling constructs of process modeling lan-
guages

The investigation of existing process modeling languages has shown the diversity of
modeling constructs. The modeling constructs of the process modeling languages is cat-

egorized in Table 3.1 according to the six process perspectives defined in the paradigm
of BPM systems.

3.2. SEMANTIC INTEROPERABILITY AND PROCESS ONTOLOGIES 39

3.2 Semantic Interoperability and Process Ontologies

Semantic heterogeneity baffles the effective management of distributed knowledge,
which relates to semantic interoperability under an extensive system exchange and

integration situation. Semantic interoperability issue has been studied in different do-
mains and applications such as schema and data integration of databases, meta-data

interoperation among distributed digital libraries , agent-based Web services discovery
and composition, enterprise integrations and so on. Research on semantic interoper-
ability generally is categorized as: mapping and intermediary approach. The mapping

approach can be sub-classified into point-to-point mapping and global mapping. Point-
to-point mapping is the particular mapping built for two participating systems. Such a

mapping can maximally preserve the original semantics of each system, but it is costly
when a large number of systems need to interchange with each other or new unexpected

system needs to participate. Global mapping attempts to construct mappings between
participant systems and a global schema [24] [17] [66]. This requires to build a global

schema which is designed to be dependent of particular schemas or applications [152].
The problem of this solution is not portable and does not adapt well to the addition of

new systems. The intermediary approach is to make use of intermediary mechanisms
to coordinate heterogeneous semantics. Domain-specific knowledge, mapping knowl-
edge, or rules are modeled by the intermediary mechanisms such as mediators, agents,

ontologies, etc. [132]. Generally, this approach uses a machine understandable defini-
tion of concepts and relationships between concepts so that there is a shared common

understanding within a community. The knowledge or rules are domain specific, but in-
dependent of particular schemas and applications. However, one needs additional tools

to actually capture and represent the knowledge (i.e., specifications and mappings)
needed in order to resolve semantic conflicts.

Semantic Web technology and some research results of ontology have initiated larger
amount of research interests on the intermediary approach, especially applied in the ap-

plications of collaborative business (such as interoperation of enterprise processes, Web
services, etc.). We apply the intermediary approach in this research work. Hence, the
top-level ontology — process ontology for business process representation, and domain

ontology for a given business domain are used as the intermediaries in our approach.

The process ontology is used to reconcile the heterogeneous semantics of process

modeling constructs (i.e. meta-model semantics) existing in different process modeling
languages. It indicates that a process ontology should include a set of meta-concepts

that are able to describe the semantics of process models. In this section we survey
a number of process ontologies having different motivations: BWW ontology [204] for

building a modeling fundamental of information systems, MIT process handbook [99]
for organizing process knowledge, TOVE ontologies [31] for creating a set of ontologies

to support enterpise modeling, PSL [120] for serving as an interlingua of all types
of manufacturing processes, PIF [85] for exchanging business process models across
different formats and schemas, OWL-S [198] for establishing a descriptive language

of Web services, WSMO [209] for describing various aspects related to Semantic Web
services, POP* [139] for providing a mapping mechanism between enterprise models

and modeling tools, and UEML2 [140] for creating an intermediate language of various
existing modeling languages. The process perspectives of the paradigm of BPM systems

40 CHAPTER 3. STATE OF THE ART

(Figure 3.1) are also applied to study the semantic representations of those process
ontologies.

3.2.1 BWW (Bunge-Wand-Weber) ontology

BWW (Bunge-Wand-Weber) ontological constructs provide a semantic basis of meta
models of conceptual models. The BWW ontology can be used as the top level ontology

because the BWW ontology is initially built as a set of core constructs that underlie
the computer science and information systems fields, especially for modeling tasks.

Although BWW ontology is not specially created as process ontology, it covers the
concepts which can be used for process modeling. BWW ontology consists of the

following major concepts, namely thing, property, state, law, event, transformation and
system. Those concepts are too abstract to specify semantics regarding the process

perspectives. Therefore, the BWW ontology is often used as a meta-meta-model and
specified further according to the modeling perspectives, e.g. the process perspectives.

The BWW ontology has been modeled in different languages, e.g. originally set-

theoretic definition [204] (a formal representation), a list of textual descriptions [128] (an
informal representation), entity relationship model [158] (a semi-formal representation).

3.2.2 MIT process handbook

The MIT process handbook project has developed rich online libraries for sharing and

managing many kinds of knowledge about business. The essential activity of the MIT
process handbook is to organize process knowledge in libraries, which is related to

the process representation issue. Two sources of intellectual leverage are exploited
for the representation: (1) notions of specialization of processes based on the ideas

about inheritance from object-oriented programming, and (2) concepts about managing
dependencies from coordination theory [98]. Specialization includes part specialization
and type specialization. Dependencies are distinguished as flow dependencies, sharing

dependencies and fit dependencies.

The representation of a process in the MIT process handbook is modeled as different

types of entries of a given activity in the repository [99]:

• Description. Descriptions include any useful or interesting information to users
such as definitions, comments, figures, sources for further information, links to

other entries, or links to other Web pages.

• Parts. The point of view embodied in this entry is that these activities constitute
one possible representation of the ’deep structure’.

• Properties. Any other kind of information related to a given activity: the last
modification, time required to do the activity, cost of doing the activity, location
of the activity, and so on.

• Related Processes. An extensive network of relationships among different entries.

• Specializations. Specialization hierarchies listing a number of levels (e.g. 18 levels
in some cases) of increasingly specialized activities of the given activity.

3.2. SEMANTIC INTEROPERABILITY AND PROCESS ONTOLOGIES 41

• Bundles. A group of related specializations. In general, they are grouped based
on questions of an activity: how? what? who? when? where? and why? For most
activities in the handbook, some subset of these questions provides a systematic

and logical way of grouping the different specializations that appear.

• Uses. A list of activities where the given activity is used as a part.

• Generalizations. The set of activities are type processes of the given activity.

Other kinds of entries are also used in the process handbook, such as Dependencies
(flow, sharing and fit), Resources (inputs, outputs, actors and locations), and Excep-

tions (exception types and ways of exception detection, anticipation, avoidance and
solution).

For the process perspectives, the operational/functional perspective of a process
is elaborated through the entries of an activity. Parts and Uses provide a structural
view of activities. Resources and Bundles can specify resources and organizational

perspectives. The control perspective is represented through Dependencies. The data
transaction perspective is not specified explicitly through those entries.

The MIT process handbook contains generic models of typical business activities
(e.g. buying, making, and selling) and specific case examples of business practices.

They are classified and represented through the entries. In such a way, process knowl-
edge in the repository looks like business process taxonomy and patterns. The semantics

of entries are not formally defined for the repository but they can be represented in
PIF [85] to share the process descriptions.

3.2.3 TOVE (Toronto Virtual Enterprise) ontologies

TOVE ontologies are stated as a common sense enterprise model covering a set of in-

tegrated ontologies for the modeling of both commercial and public enterprises. The
TOVE consists of a set of generic core ontologies, including an activity ontology that

spans activity, state, time and causality, a generic resource ontology describing the
properties of the enterprise resources such as machines, electricity or raw materials,
capital, human skill and information, an organization ontology spanning structure,

roles, and communication, and a product ontology which includes features, parame-
ters, assemblies, versions, and revisions. It also includes a set of extensions to these

generic ontologies to cover concepts such as cost and quality. However, the primary
component of the ontology is the terminology for classes of processes and relations for

processes and resources, along with definitions of the classes and relations [44]. The
KIF (Knowledge Interchange Format) [29] is the language providing the logical lexicon

for the TOVE ontologies. The non-logical part of the lexicon consists of expressions
(constants, functions, relations) that refer to concepts in some domain.

At the heart of the TOVE enterprise model lies the representation of an activity
and its corresponding enabling and caused states. Activities and states specify trans-
formations by fluent and actions. Axioms of temporal projection represent how the

actions change the status of a state. A set of constants are defined for status (of state
and of activities), and a set of actions are defined by functions with parameters of

the state and the associated activity [101]. Evidently, the data transaction perspec-
tive can be supported by activity ontology. The states related to classes of resources

42 CHAPTER 3. STATE OF THE ART

in resource ontology can represent the resources perspective. Organization ontology
in TOVE includes organization-role, goal, skill, constraints, organization-membership,
communication link, authority link and empowered, which covers the organizational

perspective. Logic connections of process are not explicitly specified in TOVE, but the
temporal axioms describe the control of the activities at the time dimension. TOVE

includes the aggregation of activities by the predicate subactivity(a,a’) to present the
structure perspective.

3.2.4 PSL (Process Specification Language)

The PSL project at the National Institute of Standards and Technology (NIST) is ad-

dressing the interoperability issue by creating a neutral, standard language for process
specification to serve as an interlingua to integrate multiple process related applica-
tions throughout the manufacturing life cycle [161]. PSL is a formally defined process

specification language. The underlying language of PSL is KIF. The model theory of
PSL provides a rigorous mathematical characterization of semantics of the terminology

of PSL. The proof theory of PSL provides axioms for the interpretation of terms in the
ontology.

PSL-Core specifies the semantics of the primitives in the PSL ontology correspond-
ing to the fundamental intuitions about activities. In PSL-Core, there are four basic

classes: Object, Activity, Activity Occurrence, and Timepoint and four basic relations:
Participates-in, Before, BeginOf, and EndOf. Extensions can be made to PSL-Core.

Figure 3.5 illustrates the extended modules required to define the terminology for
generic classes of activities and their ordering relations. Other extensions are made

to PSL-Core, such as Resource Roles, Processor Actions, and Resource Paths.

Figure 3.5: PSL modules for generic classes of activities and their ordering relations [161]

PSL-Core provides basic expressivity on the operational/functional, data transac-

tion, control, and resources perspectives. The extensions can enrich the semantics of
those perspectives.

3.2. SEMANTIC INTEROPERABILITY AND PROCESS ONTOLOGIES 43

3.2.5 PIF (Process Interchange Format)

PIF [85] aimed to develop an interchange format to help automatically exchange process
descriptions among a wide variety of business process modeling and support systems

such as workflow software, flow charting tools, process simulation systems, and process
repositories. PIF is a formal process modeling language, whose syntax adopts that of

KIF. The main classes and their relationships are displayed in Figure 3.6. The classes
and the relationships are notated with rectangle box in the figure, and they are all the

modeling constructs of PIF.

Figure 3.6: The PIF classes and relationships [85]

There are three core classes — Activity, Actor and Resource. Other classes related
with the three classes through the relationships are attributes of them. It is obvious

that PIF supports the structural perspective by the decomposition relationship of Ac-
tivity. The operational/functional perspective can not be properly represented by lack-

ing input/output specifications. Relationships among the class Resource provide the
expressivity of the resources perspective. The control perspective can be represented

through the classes such as Prerequisite, Cannot-be-concurrent, Successor, Decision
and the relationships among them and Activity. Actor and their attributes can depict

the organizational perspective. No data transaction is supported by PIF.

PIF provides formally-defined declarative semantics, the expressive power to repre-
sent knowledge required for a typical application knowledge base, and a structure that
enables semi-automatic translation into and out of typical representation languages.

PIF also adopts the frame syntax, which is an extension of the KIF syntax for repre-
senting object-based knowledge [85]. The PIF project has been merged with the PSL

project at NIST, so that the PIF has been incorporated into the PSL Core and its
extensions.

44 CHAPTER 3. STATE OF THE ART

3.2.6 OWL-S

OWL-S is a language for specifying the Web service ontology, based on OWL, which

augments current Web services architecture with semantic metadata [186]. The mo-
tivations of the applications of OWL-S are automatic Web services discovery, auto-

matic Web services invocation and automatic Web service composition and interoper-
ation [198].

Three essential types of knowledge about a service can be described with OWL-

S: advertising information for prospective clients by ServiceProfile, process model by
ServiceModel, and transport protocols by ServiceGrounding. A process represented by

the ServiceModel is a specification of the ways that a client may interact with a service.
The process ontology is a set of concepts and relationships which are used to represent

a ServiceModel. The process ontology modeled in OWL classes, properties and axioms
is shown in Figure 3.7.

Figure 3.7: The process ontology of OWL-S [198]

In the process ontology of OWL-S, the operational/functional perspective is repre-

sented through process classes, parameter classes, their subclasses, and their relations.
Distinguished subclasses of process — atomic process, simple process and composite
process depict the structural perspective. A set of control constructs connecting pro-

cesses support the control perspective. The organizational perspective is included by
specifying the class participant in a process. The data transaction perspective is im-

plicitly represented through the effect (the class result) of a process. The resources
perspective is not specified in the process ontology although it might be inferred by

3.2. SEMANTIC INTEROPERABILITY AND PROCESS ONTOLOGIES 45

linking the parameters to a resource class which is defined separately from the process
ontology.

The Intelligent Software Agents Lab at Carnegie Mellon University has played a

critical role in the development of OWL-S from its very conception. In addition, the
Softagent Group has also developed the most complete and integrated set of OWL-S

development tools, the OWL-S IDE. However, OWL-S is criticized to suffer conceptual
ambiguity, lack concise axiomatization, be designed too loosely and offer an overly

narrow view on Web services [106].

3.2.7 WSMO (Web Service Modeling Ontology)

WSMO is a conceptual model for describing various aspects related to Semantic Web
services. The objective of WSMO and its accompanying efforts is to solve the ap-

plication integration problem for Web services by defining a coherent technology for
Semantic Web services [210].

WSMO provides ontological specifications for the core elements of Semantic Web

services. The representation of WSMO follows the MOF (Meta-Object Facility) [124]
specification, and the MOF constructs Class, sub-Class, Attributes and type are

used in the definition of WSMO. Every construct of WSMO is called a WSMO ele-
ment. There are five top-level elements: annotations, ontologies, Web services, goals

and mediators. WSMO does not contain the constructs to represent any of the pro-
cess perspectives, but only provide interface to describe the functionality of the Web

service. A twofold view on the operational competence of the Web service is provided:
choreography decomposes a capability in terms of interaction within the Web service;
orchestration decomposes a capability in terms of functionality required form other Web

services. The process of Web services composition is excluded from WSMO. Another
important feature of WSMO is that it introduces the elements Goal and Mediator.

Goal can represent an objective of the execution of a Web service. Mediator is exploited
to overcome interoperability problems between different WSMO elements. For example,

a wgMediator (Web service to goal Mediator) links Web services to goals, indicating
that the Web service (totally or partially) fulfills the goal to which it is linked. Such a

mediator may explicitly state the difference between the two entities and map different
vocabularies through the use of ooMediators (ontology to ontology Mediators) [209].

3.2.8 POP* (Process, Organization, Product and others)

POP* methodology is one of the research contributions of the EU project ATHENA

[139]. The overall objective of ATHENA is to enable enterprise to seamlessly inter-
operate with others. The POP* methodology aims to develop a set of core modeling

methodology elements for capturing collaborative enterprises design and management.
It offers a model exchange device by providing a common format along with a mapping
methodology to define the mappings from the various enterprise modeling languages

to the common format. The POP* methodology includes a common format as the ex-
change format — the POP* meta-model containing a set of basic modeling constructs.

There are five dimensions included in POP*, namely the Process, Organization, Prod-
uct, Decision and Infrastructure dimensions [138].

46 CHAPTER 3. STATE OF THE ART

Figure 3.8: The POP* meta model for Process dimension [138]

The POP* meta-model is represented in UML class diagram to specify the concepts

and their interrelations (including the cardinality). The properties of each concept and
relationship are defined by property names and value types. Therefore, POP* can be

described in the UML 2.0 Profile as a basis for further implementation of POP* as an
enterprise modeling language [138]. Figure 3.8 provides an overview of the modeling

constructs in the Process dimension.

Process is the central construct and the other constructs associated with it can well
support the representations of the operational/functional, structural, control and re-

sources perspectives. Transactions of state and data are implicitly represented through
the constructs event and process role carried by flow. Th organizational perspective is

not included in the Process dimension in this version of POP*. Some organizational
concepts are introduced in the Organizational dimension, but no specific relationships

are defined to associate them to process.

3.2.9 UEML2 (Unified Enterprise Modeling Language version 2)

UEML was initiated by the UEML project [130] to provide industry with a unified and

expandable modeling language. UEML 2.0 and UEML 2.1 are further developed in the
INTEROP-NoE project [140]. The work on UEML2 in this project is aimed on char-
acterising correspondences between enterprise modeling languages to enable model

interchange. A "UEML template approach" is applied in the development of UEML2.1.
This approach requires a detailed (ontological) analysis of the constructs found in en-

terprise modeling languages and allows to formally define correspondences between
constructs in distinct languages and thereby a UEML-based core enterprise modeling

3
.2

.
S
E

M
A

N
T

IC
IN

T
E

R
O

P
E

R
A

B
IL

IT
Y

A
N

D
P

R
O

C
E

S
S

O
N

T
O

L
O

G
IE

S
4
7

Table 3.2: Ontological representations of different process ontologies
BWW on-
tology

MIT pro-
cess hand-

book

TOVE PSL PIF OWL-S POP* UEML

Representation primitives concept set
(set theory)

entry sets of core
ontology,
axiom

class, rela-
tionship

class, at-
tribute,
relation-
ship

class,
property,
sub-class

dimension,
class, prop-
erty (name
& value
type)

class, prop-
erty

Process
Perspec-
tives

Structural extension
of thing,
property

parts, uses subactivity - component
of activity

composite
process,
simple
process,
atomic
process

process
decomposi-
tion

composite,
component

Operational
/Functional

extension
of thing,
property

activity activity, ac-
tion

activity activity process
(with
input,
output,
local)

process
(with
input,
output)

activeThing,
input-
Thing,
output-
Thing

Control law dependency temporal
axiom

ordering re-
lationship

prerequisite,
cannot-be,
concurrent,
successor,
decision

control
construct
(sequence,
split,
split-join,
any-Order,
choice)

event,
control,
flow, deci-
sion point,
gateway

extension

Resource extension
of thing,
property

resource resource
ontology

object resource,
entity

- resource resource

Organizational extension
of thing,
property

who (bun-
dle)

organiza-
tional
ontology

- actor, skill,
group

participant organizational
dimension

extension
of resource

Data Transaction state,
transforma-
tion

- status state - result - extension
of changin-
gAttribut-
edThing

48 CHAPTER 3. STATE OF THE ART

language [141]. The meta-model level of UEML is based on the BWW ontology but
the UEML approach encourages the addition of new ontological classes, properties,
states and transformations when describing modeling constructs. The growth of the

BWW ontology is referred to as the UEML ontology [142]. Figure 3.9 displays the
main UEML ontology classes. Due to the extensibility of the core ontology, the UEML

ontology is able to cover all the process perspectives through the proper extensions.

Figure 3.9: Generalization hierarchy of UEML ontology classes [144]

The UEML ontology are represented using OWL Full with the Protégé as the

UEMLBase tool. The UEMLBase tool has been used for experimentally describing
the following languages: (Class and Activity diagrams of) UML 2.0, CPN (Coloured

Petri Net), GRL (Goal-oriented Requirements Language), KAOS (Knowledge Acqui-
sition in autOmated Specification), IDEF3 (Integrated DEFinition methods – Process

Description Capture), and, partially, ISO 19440; the result is the UEMLBase content
that can be retrieved, visualized and navigated by using the UEMLBase tool function-
ality [142].

3.2.10 Comparison of process ontology representations

Table 3.2 displays the comparison of ontology representation primitives, and main con-

cepts and representation mechanisms for the process perspectives. The comparison
presents how the semantics of process, i.e. the process perspectives are specified in dif-

ferent ontological representation forms. Some of them are specified like a meta-model
of process modeling languages, such as PIF, OWL-S, POP*. Some are very general and
need to be extended to represent more specific process semantics, such as BWW and

UEML. The MIT process handbook and TOVE provide process templates and stan-
dardized taxonomy. WSMO is unique from the other ontologies by the use of interfaces

to describe the functionality of Web services, so that there are no particular ontological
representations for the process perspectives but mainly for the mediation of services.

3.3. GOAL MODELING 49

From the survey, we also found that the formal representation of the ontologies are
usually specified through the primitives such as class (sub-class), property (attribute,
relationship), and axiom. Standard taxonomy and process templates are also often

included in the process ontologies.

3.3 Goal Modeling

Goal is considered as an important concept to represent business strategy and support
decision making. Goal models are used to represent business objectives for stakeholders

and also to drive the elaboration of business requirements for business analysis and
executions. The research on goal-driven methodologies brought out some goal modeling
approaches and languages. From the literature, goal modeling is mostly designed as

a requirements engineering method, such as KAOS [21], i*/GRL [55], GBRAM [56].
With the development of Web services, goal modeling is associated with Web services

modeling for goal-driven services discovery, such as WSMO [210].

3.3.1 KAOS (Knowledge Acquisition in autOmated Specification)

KAOS [21] is a goal-driven methodology which is based on a rich framework for re-

quirements elicitation, analysis and management. Goal modeling in KAOS is based on
a goal-oriented process. The process starts with goals which are easy to understand

and communicate. They describe the problems instead of the solutions, and can be
refined to different levels of abstraction for incremental analysis process. With KAOS,

functional and non-functional requirements are formally modeled in terms of goals, con-
straints, objects, operations, agents, etc. Goals are from available sources and asking
why and how questions; objects, relationships and attributes are derived from the goal

specifications; agents are identified and are assigned alternative responsibility based
on goals; operations and domain pre-/postconditions are also identified from the goal

specifications [192].

3.3.2 i*/GRL (Goal-oriented Requirement Language)

GRL is an extended version of i*, a language for supporting actor/role oriented model-

ing, goal-oriented modeling and reasoning of requirements, especifally for dealing with
non-functional requirements [40]. Main concepts associated with goals are represented

by intentional elements, intentional relationships and actors. The intentional elements
in GRL are goal, task, softgoal, belief and resource. The intentional relationships in-

clude means-ends, decompositions, contribution, correlation and dependency. An actor
is an active entity that carries out actions to achieve goals. Goals and requirements are

analyzed through modeling strategic actor relationships. The relationships are modeled
through Strategic Dependency (SD) models and Strategic Rational (SR) models. In
a SD model, one actor (the depender) depends on another actor (the dependee) for a

dependum. According to different types of dependum, several types of dependencies
are distinguished in the Strategic Dependency model, namely goal dependency, task

dependency, resource dependency, and softgoal dependency. The SR model provides a
more detailed level of modeling by looking "inside" actors to model internal intentional

50 CHAPTER 3. STATE OF THE ART

relationships. Intentional elements appear in SR models not only as external depen-
dencies, but also as internal elements arranged into (mostly hierarchical) structures of
means-ends, task-decompositions and contribution relationships [212]. The means-ends

links provide understanding about why an actor would engage in some tasks, pursue a
goal, need a resource, or want a soft goal; the task-decomposition links provide a hi-

erarchical description of intentional elements that make up a routine; the contribution
links provide elaboration of the effects from intentional elements to softgoals.

3.3.3 GBRAM (Goal-Based Requirements Analysis Method)

GBRAM [56] addresses the critical nature of the discovery process in goal analysis.

GBRAM can be used in goal analysis and goal refinement/evolution. It defines a
top-down analysis method refining goals and attributing them to agents starting from

inputs such as corporate mission statements, policy statements, interview transcripts
etc. Therefore operationalization process is provided for defining a goal with enough de-

tail so that its subgoals have an operational definition. GBRAM distinguishes between
achievement goals and maintenance goals. Achievement goals are objectives of func-
tional processes. Maintenance goals are those goals that are satisfied while their target

condition remains true. They tend to be operationalized as actions or constraints that
prevent certain states from being reached. Achievement goals usually map to actions

that occur in a system, while maintenance goals map to nonfunctional requirements.

In GBRAM, agents are the entities or processes that seek to achieve goals within

an organization or system based on the implicit responsibility that must assume for the
achievement of certain goals; constraints place conditions on the achievement of a goal;

goal obstacles are behaviors or other goals that prevent or block the achievement of a
given goal. GBRAM supports goal decomposition to subdividing a set of goals into a

logical subgrouping.

3.3.4 Goal modeling in EEML

Goals in an EEML model can be decomposed into sub-goals and goal connectors such
as "and", "or", or "xor". Those connectors can be used to specify logical relationships

between the goal and its sub-goals. Besides, EEML provides more connecting relation
types to associate goals with the elements in an EEML process model. The connecting

relationships in the EEML goal modeling are listed in Table 3.3.

3.3.5 Goal specification in WSMO

Goal models in WSMO [210] are descriptions of Web services that would potentially
satisfy the user desires. They provide the user view in the Web service usage process.
Goal is represented through the capability of the Web services the user would like to

have, and the interface of the Web service the user would like to have and interact with.
A set of properties strictly belonging to a goal are defined as non-functional properties

of a WSMO goal. A goal may be defined by reusing one or several already-existing
goals by using goal mediators.

3.4. SEMANTIC ANNOTATION METHODS AND TOOLS 51

Table 3.3: EEML goal modeling relations
Relation type Related type Explanation

Goal connector Goal Indicate relationships between goals. A
goal connector is used when needing to
link several goals

Is source of person|organization (origin) The person or organization that is the
source of the goal

Applies to task|resource role (target) The task or resource role which the goal
is relevant for

Is precondition for input port (target) A rule to describe more precisely the
condition for starting a task

Is postcondition for output port (target) A rule to describe more precisely the
condition for ending a task

Is decision rule of decision point (target) A rule to guide the performance of a
decision

Is action rule of task (target) A rule for automation of task

3.3.6 Goal modeling and process modeling

Although most goal modeling methods do not directly address business process issues,

the modeling primitives in those modeling languages are close to process modeling el-
ements, such as actor, task, resource. However, those goal modeling methods do not

provide mechanisms to associate goal models to legacy process models. The i*/GRL
approach analyzes requirements with strategic dependencies among goals, actors, tasks

and resources. In KAOS requirements specification, goals are refined into constraints,
objects and operations which are assigned to agents. Actor or agent, resource or ob-

ject, task or operation and constraint are usually modeling constructs in most process
models. That discloses the underlying relationships between goal models and process

models. EEML [59] includes goal modeling as one of its four modeling domains. Dif-
ferent types of connecting relationships between goals and process models are defined
in EEML goal modeling. WSMO [210] has goals to represent an objective for which

fulfillment is sought through the execution of a Web service. The association of a goal
and Web services is established through the capability of Web services and a set of

ontology mediators. For a business driven SOA, intentional service modeling [157] de-
scribes a service in business terms, i.e. goals and to organize their publication, search

and composition of the basis of these descriptions. A goal in the intentional service
model is described as a state to be reached or maintained by the service. Operation of

a business goal is executed through a composition of derived intentional services from
MAP [156], a process model expressed in a goal driven perspective.

3.4 Semantic Annotation Methods and Tools

Semantic annotation is currently regarded as an approach to enable the Web content
machine-understandable in order to achieve the Semantic Web applications. Such a
kind of approach usually requires an annotation schema or reference ontologies with

explicitly-defined, consensually-agreed, and machine-understandable semantics to an-
notate the content.

Semantic annotation methods have been proposed to be used in giving semantics
to unstructured digital resources, such as digital documents, Web pages and images by

52 CHAPTER 3. STATE OF THE ART

providing unified structured metadata. Emerging semantic annotation of Web services
is relating concepts in Web services to domain specific ontologies, such as MWSAF
(METEOR-S Web Service Annotation Framework) [133].

Manual annotation is a tedious work. Semi-automatic and automatic annotation
can facilitate this task. Some efforts on automatic and semi-automatic semantic an-

notation of textual documents have already done in [32] and [70]. Usually, the text
extraction using some lexical analysis and grammatical functions is applied to achieve

the semi-automatic annotation. AI technologies and semantic mapping are often used
in Web services for the semi-automatic semantic annotation.

3.4.1 MnM

MnM [184] is an annotation tool to support both automated and semi-automated se-

mantic markup of Web pages. MnM integrates a Web browser with an ontology editor
and provides open APIs to link to ontology servers and for integrating information

extraction tools [193]. With the browser, users can have an overview of the knowledge
models which are stored on the ontology server. A set of tags defined in the ontology
are selected to annotate segments of text on web pages. MnM uses SGML/XML format

tags and inserts them into the document.

A machine learning technique is applied for information extraction in MnM. The

manual tagged documents are treated as training corpus over which a learning algorithm
is run to learn the extraction rules. Learning can result in a library of induced rules

which can be used to extract information from texts. The extracted information is
sent to the ontology server and fills predefined slots associated with an extraction
template. The slots are the properties of a particular class defined in the ontology.

MnM can handle multiple ontologies at the same time and allows inherited definitions
to be displayed for ontology editing and browsing. Moreover, MnM can access ontology

servers through APIs, and also access ontologies specified in a markup format, such as
RDF and DAML+OIL [193].

3.4.2 KIM (Knowledge & Information Management)

KIM [127] is a knowledge and information management platform for automatic seman-

tic annotation, indexing and retrieval of Web documents. The automatic semantic
annotation in KIM can be seen as a classical named-entity recognition (NER) and

annotation process. The NE (Named-Entity) type is specified through a reference to
the KIMO (KIM Ontology) with the focus on named entity classes. KIMO is a light-

weight top-level ontology including some basic distinctions between entity types (such
as locations, agents, events, situations), real-world entity types of general importance

(e.g. mettings, employment positions, commercial, government), and characteristic at-
tributes and relations for featured entity types. The KIM KB (Knowledge Base) aims
to provide quasi exhaustive coverage of the most important entities in the world. The

entities stored in KB are instances with their proper classes and aliases. The entity
descriptions in KB and the KIM ontology are stored in the same RDF(S) repository.

Thus, KIM provides for each entity reference in the document (i) a link (URI) to the
specific class in the ontology, and (ii) a link to the specific instance in the KB [136].

3.4. SEMANTIC ANNOTATION METHODS AND TOOLS 53

The dual mapping allows the information extraction process to be improved by pro-
viding disambiguation clues based on attributes and relations [153]. KIM uses GATE’s
document management functionality and other generic NLP components such as Tok-

enizer, Part-of-Speech Tagger, and Sentence Splitter [136] in the information extraction
processing.

3.4.3 AeroDAML

AeroDAML [72] is a knowledge markup tool applying NLP (Natural Language Process-

ing) techniques to automatically generate DAML annotations from Web pages. The
natural language information extraction techniques are used to assign words and re-

lationships to ontologies as instances of DAML classes and properties. A commercial
information extraction product called AeroText is used in AeroDAML as the NLP

component. There is a common knowledge base in AeroDAML which contains do-
main independent rules for extracting proper nouns and relations. DAML generation

components are used to translate the extraction results into a RDF triple model by
referencing an ontology. As a result, the RDF model is serialized to a DAML annota-
tion. Two levels of default ontologies can be referenced: the lower level ontology from

the common knowledge base and the top level ontology from the WordNet noun synset
hierarchy. In addition, a custom ontology can also be input as the reference ontology

in the annotation.

3.4.4 OntoMat-Annotizer

OntoMat-Annotizer (OntoMat for short) is a component-based, ontology-driven an-
notation tool for Web documents. It is the implementation of CREAM (CREAting

Metadata for the Semantic Web), a framework for an annotation environment. In the
CREAM method, an ontology is represented by statements expressing definitions of

DAML+OIL classes and properties. Based on those definitions, annotations are a set
of instantiations of classes, attributes and relationships that attached to an HTML

document. Annotations are described through the metadata which are derived from
ontology definitions. Such metadata is stated as relational metadata because it contains
relationship instances [49].

OntoMat supports both manual and semi-automatic annotation. The semi-automatic
annotation approach is developed in S-CREAM (Semi-automatic CREAM) The semi-

automatic metadata creation takes advantage of information extration techniques to
propose annotations to metadata creators. A learnable information extraction compo-

nent – Amilcare [16] is integrated in S-CREAM.

3.4.5 MWSAF (METEOR-S Web Service Annotation Framework)

MWSAF [133] is a framework for semi-automatic annotation of Web service descriptions

with relevant ontologies. MWSAF is developed under the METEOR-S project [187].
METEOR-S provides a mechanism to add data, functional, execution, and QoS (Qual-

ity of Service) semantics to WSDL files and a comprehensive framework for Semantic
Web composition is provided in MWSCF [166].

54 CHAPTER 3. STATE OF THE ART

Ontologies referenced in the annotation are modeled in DAML, RDF-S, or OWL.
WSDL descriptions use XML Schema to provide the basic structure of the data to be
exchanged by Web services. Hence, a SchemaGraph is used as a common representa-

tion format to facilitate the match between an ontology model and a XML Schema.
Through the SchemaGraph, pairs of comparable concepts from the ontology model and

WSDL descriptions are found. The semi-automatic annotation of MWSAF is accom-
plished through Element Level Match and Schema Level Match between the comparable

ontology concepts and WSDL concepts. The element level match is the measure of the
linguistic similarity between two concepts based on their names. Some NLP tech-

niques are applied in the element level match, such as NGram, synonym matching,
abbreviation expansion, stemming, tokenization, etc. [159]. The schema level match is

the measure of structural similarity between two concepts. The structural similarity
is calculated by the geometric mean of sub-concept similiary and sub-concept match.
Sub-concepts of an ontology concept are the property concepts of the ontology class,

while sub-concepts of WSDL descriptions are the elements of a "complexType" entity
in the XML Schema. A ranking mechanism to find the best matching is employed after

a WSDL concept has been compared against all the concepts from the ontology.

3.4.6 SAWSDL (Semantic Annotations for WSDL and XML Schema)

SAWSDL [201] as a W3C recommendation is aimed to provide an annotation mecha-

nism to add semantics to WSDL descriptions and XML Schemas. The annotation mech-
anism is accomplished through the extension attributes of WSDL and XML Schema

elements to reference concepts from semantic models. A semantic model could be any
machine-interpretable representations about an area of knowledge or some parts of the

world, e.g. ontologies or mapping documents. The extension attributes fit within the
WSDL 2.0, WSDL 1.1 and XML Schema, so that the annotations are embedded in

WSDL files and XML Schema. The semantic annotation results are supposed to be
used in the Web service publishing, discovery and composition. Moreover, the data
mapping of XML Schema types to and from an ontology by the annotation can be used

for invocation.

SAWSDL defines the extension attributes modelReference, liftingSchemaMap-

ping and loweringSchemaMapping. The first one is used to annotate a concept in
some semantic model to a WSDL or XML Schema component. The component in-

clude XML Schema type definitions, element declarations, attribute declarations as
well as WSDL interfaces, operations, and faults. The latter two are added to XML

Schema element declarations and type definitions for specifying the URIs that refer-
ence mapping definitions. liftingSchemaMapping defines how an XML instance in a

schema is transformed to data in a semantic model. Reversely, loweringSchemaMap-
ping denotes how data in a semantic model is transformed to XML instance data
[201]. The annotation attributes have prefix "sawsdl", e.g. sawsdl:modelReferece,

sawsdl:liftingSchemaMapping.

In the SAWSDL specification, multiple semantic annotations are allowed to be

associated with WSDL elements. No restriction is made on the ontology expression
language and mapping languages.

3.4. SEMANTIC ANNOTATION METHODS AND TOOLS 55

3.4.7 Semantic annotation schema in the INTEROP project

Semantic annotation of enterprise models is the research topic of the Task Group 4
(Semantic Enrichment of Enterprise Modeling, Architectures and Platforms) of the
INTEROP project. The purpose of the annotation is to enhance the interoperability

of enterpise models in the applications of model exchange, model transformation and
model traceability.

As the research results, a semantic annotation schema is proposed based on a set
of semantic annotation concerns. The following elements are defined in the annotation

schema: identification of the annotation, annotation types, textual description of the
annotation content, identification/location of the annotation target, formal definition

of the annotation content (e.g. expression of complementary information) [143]. The
annotation schema is displayed in Figure 3.10.

Figure 3.10: Schema for semantic annotation of enterprise models [143]

The schema is extendible. It is extended in [145] by three complementary annota-
tions, i.e. structural annotation, lexical/terminological annotation, and behavior anno-

tation. Structural annotation concerns the semantic mapping of modeling constructs
at the meta-model level; lexical/terminological annotation refers the names associated
with the constructed artifacts to a commonly agreed definition of terms; behavior an-

notation is used to explicit specify the business logic, the procedures, the rules and the
policies of the annotated object.

No specific tool is developed to implement this approach. The automation of the
annotation process is neither concerned in this project.

56 CHAPTER 3. STATE OF THE ART

3.4.8 ASTAR

A* is the ATHENA semantic annotation system, which is partially supported by the
ATHENA project [57]. A* is a Web application connected with ATHOS tool and

with THEMIS tool — two tools are used to model the resources in RDF repositories.
Ontology-based semantic annotation in this system is aimed at reconciling semantic het-

erogeneity among business and technical resources. The following semantic mismatch
cases are identified in Table 3.4 [145].

A* allows four increasing levels of annotation, namely terminological, path, simple

and full level annotations.

• Terminological Annotation. By such annotation, terms are associated with a set

of terms from the ontology. Usually naming mismatch, content mismatch and
abstraction mismatch can be reconciled by terminology annotation.

• Path Annotation. The structure of the schema and the ontology are compared.

Complete paths, from the root element to the leaves, of the annotated schema
are associated with a set of paths of the ontology. Such annotation can solve the
semantic problems such as structural mismatch, subClass-Attribute mismatch,

schema instance mismatch and content mismatch.

• Simple annotation. At this level it is possible to specify the type of mismatch that
each annotation intends to cover. Such information will be re-used for Attribute

Granularity mismatch; Encoding mismatch; Precision mismatch, among others.

• Full Semantic Annotation. It is a complex annotation including OWL expressions.

3.4.9 Discussion on the survey results of annotation tools and meth-
ods

Most of annotation tools and methods in the survey are for unstructured Web textual
resources, such as MnM, KIM, AeroDAML and OntoMat-Annotizer, because there
have been many research activities and development in this area. For those unstruc-

tured information, the annotation is to structure and supply semantic descriptions for
information. Information extraction is one of the techniques often applied for the au-

tomation of the semantic annotation of the textual resources. We have also surveyed
the semantic annotation of structured information — WSDL information for the Web

services discovery and composition, such as MWSAF and SAWSDL. Since WSDL is
already structured, the annotation is to build the mapping between the structured in-

formation and the ontological concepts and relations. Some NLP techniques can also
be employed to automate the mapping. Very few work has been completed on the

semantic annotation of semi-structured information. Having the both characters of the
unstructured and the structured, the semantic annotation of semi-structured informa-
tion should be able to formalize the structure of information and also build the links

between information and ontology. We has included the related work in the INTEROP
project, which presents some initial ideas and surface results about the semantic anno-

tation of enterprise models. Another related work — A* provides a tool to annotate
models in order to develop future model transformations. The limitation of A* is that

3.4. SEMANTIC ANNOTATION METHODS AND TOOLS 57

Table 3.4: Lossless mismatches and examples
Name Description Document Schema Reference Ontology

Naming different labels for the
same concept

request for quotation
indicated as: RFQuote

request for quotation
indicated as: RFQ

Attribute
Granular-

ity

the same informa-
tion is decomposed
into a different num-
ber of attributes (or
sub-attributes)

Telephone is repre-
sented as a single
string

Telephone is a compo-
sition of hasPartCoun-
tryCode, hasPartArea-
Code, hasPartLocal-
PhoneNumber

Structuring different design struc-
tures in organizing the
information

Buyer is directly linked
to PurchaseOrder

Buyer is linked to the
Parties concept and
Parties is linked to
PurchaseOrder

SubClass-
Attribute

an attribute, with a
predefined value set, is
represented by a set of
subclasses, one for each
value

the type RawMaterial
can be represented as
an enumeration (’iron’,
’copper’)

¡ or as two subclasses:
iron subClassOf Raw-
Material, copper sub-
ClassOf RawMaterial

Schema-
Instance

data holding schema in-
formation. In the DS
example, the seman-
tics of the second field
(Name) depends on the
value of the first field
(Role). In the RO, the
semantics is fully cap-
tured in the attribute
names.

ContacInfo are repre-
sented as a pair: Role
and Name. While Role
is an enumeration =
’Director’, ’Secretary’,
Name is a string

ContacInfo has one
field for each Role,
which is indicated in
the attribute name:
DirectorName, Sec-
retaryName, both
strings

Encoding different formats
of data or units of
measure (a Weight
expressed in different
unit of measure)

Weight expressed in
ounces

Weight expressed in
kilograms

Content different content de-
noted by the same con-
cept - typically ex-
pressed by enumeration
(the concept described
by different enumera-
tion items)

PaymentTerms=(30days,
60days, 90days)

PaymentTerms=(30days,
45days)

Coverage presence/absence of in-
formation (a given in-
formation is considered
in the RO, but not in
DS)

preferredDeliveryDate
is not considered in the
DS

preferred delivery date
is present in the RO

Precision the accuracy of infor-
mation

Size of a pallet ex-
pressed by three integer
values: height, length,
width

Size of a pallet ex-
pressed by a constant
conventional value:
(small, medium, large)

Abstraction level of specialisa-
tion/refinement of the
information: generic vs
detailed representation

DeliveryTerms DeliveryTerms gets
specialized into: Na-
tionalDeliveryTerms
and InternationalDeliv-
eryTerms

58 CHAPTER 3. STATE OF THE ART

models must be expressed in RDF format and based on ATHOS metamodel. Moreover,
the full semantic annotation in OWL expressions are not supported yet.

3.5 Requirements for Semantic Annotation Systems

Based on the above survey, we have identified a list of requirements for a semantic
annotation system, some of which we are targeting in our work.

1. The system should be able to present and parse annotation source models which
are originally in certain formats and representations.

2. The system should provide an ontology browser for the overview and manipulation
of ontological knowledge.

3. Semantic annotation schema or metadata should be supplied (pre-defined) or
generated (ontology-based) by the system.

4. The annotation procedure should be easily manipulated by users with the system,
i.e. easy to locate "annotatee" (e.g. entity in source model) and "annotater" (e.g.

concept in ontology) during the annotation.

5. The system should support the maintenance of annotation results (e.g. embedded

vs. stand-off annotation).

6. Multiple-ontology references (e.g. different levels of ontologies) might be sup-

ported in the system.

7. Different types of annotations (e.g. instance identification, URI links, and other

semantic relationships) might be supported.

8. Semi-automation or automation of annotation might be considered in the system.

9. The system might be able to serialize annotation for reuse of annotation results
in different systems.

10. It might be possible to conduct semantic inference among ontology-based semantic
annotations.

3.6 Summary

In this chapter, we has investigated the diversity of the modeling constructs defined in
a number of existing business process modeling languages. The modeling constructs

have been categorized according to the process perspectives. The categories illuminates
the possibility to map the modeling constructs between different modeling languages
in each process perspective. We have also surveyed a number of different process

ontologies. Through the survey, we have compared the ontological representations of
process perspectives in different process ontologies. The comparison results provide

some principles of ontological representations of a process ontology which we can apply
in our process ontology proposal for the semantic annotation purpose.

3.6. SUMMARY 59

In the goal modeling survey, we have found some overlapping modeling constructs
in goal modeling and process modeling, such as actor or agent, resource or object, task
or operation and constraint. That discloses the underlying relationships between goal

models and process models. Connecting relationships in EEML goal modeling provide
more explicit view of such links between goals and processes.

A list of requirements have been identified based on the survey of the annotation
tools and methods. Although they are not tailored to the semantic annotation of process

models, they provide a good baseline — what a semantic annotation tool should look
like and how to develop an ontology-based semantic annotation approach.

60 CHAPTER 3. STATE OF THE ART

Part II

Design and Application

61

Chapter 4

Semantic Annotation Framework
for Process Models

As we have discussed previously, process properties of a business process model are

represented by meta-model elements/modeling constructs of a modeling language, and
model solutions are represented by model elements composed of the modeling con-
structs. Common expressions of process properties and context references make the

heterogeneous process models reconciled and comparable. The enhanced semantic in-
teroperability can facilitate the management and reuse of those process models. In

this chapter, a basic semantic annotation framework [94] [92] [93] for process models
is presented. The framework provides a common semantic schema to express process

properties and reference the heterogeneous solutions of business process models to a
consensual representation of systems’ context.

Before we present our framework, we discuss the theoretical basis of this work,

and then we elaborate the structure and components of the framework. Under such a
framework, a general process ontology is introduced and used as the reference ontology

to annotate process properties. A set of semantic mapping rules are defined as the
annotation method, and a semantic annotation model is introduced as the annotation
schema.

4.1 Theoretical Basis

The theoretical basis underlying our proposal is Ogden & Richard’s semiotic triangle
[121], which has been mentioned in section 2.2.1. We use the semiotic triangle to
analyze semantic heterogeneity of process models. Ontology plays a major role in our

semantic annotation approach, which is also fitted into the semiotic triangle. Thus, in
this section we discuss about the relationship between the process models and ontology

in the context of semantic interoperability based on the semiotic triangle.

4.1.1 Semiotic triangle

The semiotic triangle is applied in both information modeling and philosophy disci-
plines. The theory describes relationships between reference, sign and concept (refer to

63

64 CHAPTER 4. SEMANTIC ANNOTATION FRAMEWORK

section 2.2.1). Based on the semiotic triangle we can build the relationships between
model, meta-model, modeling language and ontology as shown in Figure 4.1. In the tri-
angle, a model is a conceptualization of referents and it is represented as a set of model

denotations in a certain modeling language. Model denotations are signs which signify
concepts in the model. The model is an instance of a meta-model, and the meta-model

defines a modeling language. A concept is a mental perception which is in a human’s
mind. One concept referring to a referent can be represented differently. On the other

hand, representations of different concepts may look similar in two models. The dif-
ferences are results of the way of conceptualization of modeling or representations of

model denotations defined in a modeling language. The semantic heterogeneity exist-
ing in different models can therefore be distinguished at the model and the modeling

language level (we also call it the meta-model level).

Figure 4.1: Relationships between ontology, model, meta-model and modeling language in
the semiotic triangle

In order for a machine to understand the heterogeneous semantics in the models

(e.g. various signs of referents referring to the same concepts or synonym signs of
referents referring to different concepts), a common understanding of concepts has to
be formalized in a machine-interpretable way. An ontology is created for this purpose.

In the semiotic triangle, the semantics of concepts are formally in a standard i.e. they
are represented as an ontology. Ontologies aid the sharing of knowledge on the basis of

the assumption that there is a single reality and the sharing is a matter of aligning the
way different people or systems think about it [70]. Therefore, in the semiotic triangle

4.1. THEORETICAL BASIS 65

concepts can be conceptualized as an ontology in a consensual way.

A meta-model is also a model – a model of the modeling language. For a meta-
model, a modeling referent is a meta-model element or modeling construct, and a

modeling sign is the notation of a meta-model element. A modeling sign standing for
a meta-model element is used to represent a modeling concept in a certain modeling

domain. Semantic heterogeneity problems will still occur on the meta-model level pro-
vided that a meta-model is a model. We assume that a modeling ontology can provide
the common conceptualization of modeling concepts referring to the same modeling ref-

erents. According to Leppänen’s OntoFrame [87], a meta-model can be adapted from
a modeling ontology. The semantic heterogeneity of modeling languages can there-

fore be reconciled through the modeling ontology. Based on this theory, we annotate
the meta-model of a modeling language with the modeling ontology in this research.

The relationship between modeling language, meta-model and modeling ontology is
displayed in Figure 4.2.

Figure 4.2: Relationships between modeling ontology, meta-model and modeling language in
the semiotic triangle

4.1.2 Semiotic triangle for process modeling

In the context of our research, process meta-model, process modeling language, process
model, process model denotation and process ontology are specified in the semiotic

triangle (Figure 4.3). We also include model levels in the figure to explicate the positions
of those modeling concepts. The model levels are adapted from the model level ontology
in [87] to show the different levels of process models. Process meta-model and process

model are both models. Process meta-models are categorized at the meta level, and
process models are at the type level. In this research, we focus on process models at

the type level including their meta models at the meta level. Process models at the
type level are the resources of process knowledge in our context.

66 CHAPTER 4. SEMANTIC ANNOTATION FRAMEWORK

Figure 4.3: Relationships between model level, process ontology, process model, process meta-
model and process modeling language (adapted from model level ontology in [87])

4.2 Overview of the Framework

We use ontology-based semantic annotation to deal with the interoperability of hetero-

geneous process models. The semantic annotation approach is developed and refined
in a semantic annotation framework, which contains profile annotation, meta-model

annotation and model annotation.

4.2.1 Ontology-based annotation

In this approach, ontology provides a standard representation of terminology and con-
ceptualization to reconcile the semantic heterogeneity of different models. Correspond-

ing to the two-level semantic heterogeneity — meta-model and model level, we need two
kinds of ontology: an ontology to relate constructs across different process modeling

languages, as well as an ontology to reconcile and align domain specific terminology
used in process models. A general and global process ontology can be used to annotate

4.2. OVERVIEW OF THE FRAMEWORK 67

Figure 4.4: Semantics reconciliation of process models through ontology-based annotation

68 CHAPTER 4. SEMANTIC ANNOTATION FRAMEWORK

the specific and local process meta-model element. The concepts in a local process
modeling language usually have the is_a relationship with the concepts from a global
process ontology. If the global process ontology can cover all the semantics of the local

modeling language (i.e., the local modeling language is a subset of the global process
meta model ontology), the annotation work can keep the complete semantics of the lo-

cal modeling language. If the local process modeling language is more expressive than
the global process ontology (i.e., the set of notations of the local modeling language is

larger than the global one), the model will lose some of the semantics which are not
annotated by the global process ontology. For those lost semantics, referencing the

meta-model of the modeling language is necessary.

A domain ontology provides the standardized terminology and conceptualization of

a particular domain. We suppose that a certain domain ontology is agreed and used to
reconcile the semantics of model contents. The ontological concepts are referenced by

model contents through simple URIs or semantic relationships.

Figure 4.4 provides a depiction of the basic idea of ontology-based semantic anno-

tation. Process models PM and PN are respectively represented in process modeling
languages M and N. The notations used in process models are instances of modeling

concepts defined in meta-models. For example, the notation for PM1, PM2 and PM4

is an instance of MA, and PN1, PN2 and PN3 are instances of NA. The semantics of

the notations are defined in meta-models. In order to reconcile the semantics of the no-
tations, a process ontology is used to mediate the mapping between meta-models M and
N. For instance, MA and NA are annotated with a same ontological concept POx in the

process ontology, which means notations of MA in PM (PM1, PM2 and PM4) stand
for the same meta-model element as notations of NA in PN (PN1, PN2 and PN3).

However, model contents in those notations should also be semantically reconciled to
understand both models, i.e. what domain phenomenon the notations represent. A

domain ontology is referenced to annotate model content. Usually the model contents
represented by the same meta-model element are comparable. For example, the con-

tents of PM1, PM2 and PM4 should be reconciled with PN1, PN2 and PN3. Since
PM1 and PN1 are annotated with a same domain ontological concept DOx, they are

interpreted as semantically equal concepts when comparing the two models. If the con-
tents of two model constructs with different meta-model elements reference to a same
domain ontological concept, they are not considered as semantically equal. Although

the contents of PM3 and PN4 have a same ontology reference DOy, they are not same
because they do not share a same modeling ontological concept at the meta level (POy

for PM3 and POz for PN4). In this way, various representations of process models are
aligned and reconciled through the reference ontologies, i.e. the process ontology and

domain ontology.

4.2.2 Annotation aspects

Annotation in this work is intended to expose the process knowledge carried by het-

erogeneous process models. In general, the annotation should be able to provide both
an overview and a sophisticated comprehension of the process knowledge. We there-

fore include a profile annotation to profile process models as products. In the profile
annotation, a set of metadata is defined to describe the significant characteristics of a

4.3. PROFILE ANNOTATION 69

process model from a general view. Comprehending a process model depends on the
understanding of the semantic representations of process modeling languages and model
contents. We use meta-model and model annotation to catch and represent the process

knowledge in the models through building reference relationships between models and
ontologies.

Technically, process models to be annotated are serialized into XML representations.
During the annotation, the meta-model schema of process models are mapped to a

common process ontology in OWL. Model contents in the XML file are transformed into
the OWL annotation model. Domain ontologies are referenced by the model contents

in the OWL annotation model.

4.3 Profile Annotation

Basic and characteristic features of a process model are described by a set of metadata

in a profile annotation. A profile contains information about a process model such as
the problem domain of the model, the name of the model and the location of the model

etc. We categorize metadata elements for the profile annotation according to four
types of metadata — administrative, descriptive, preservation, technical and use [4]
(see Table 4.1).

• Administrative: Metadata used in managing and administering information

resources.

• Descriptive: Metadata used to describe or identify information resources.

• Preservation: Metadata related to the preservation management of information
resources.

• Technical: Metadata related to how a system functions or Metadata behave.

• Use: Metadata related to the level and type of use of information resources.

Usually, the profile information is manually input by annotators. In order to pre-
vent the semantic heterogeneity in the input values, a set of categories and taxonomy

are chosen to be referenced for profile annotation. For example, a list of standard
abbreviations for the natural languages (e.g. "EN" for English) are predefined for the

value of dc:language.

4.4 Meta-model Annotation

Semantic heterogeneity problems of diverse process modeling languages can be solved

through mapping two modeling languages to each other, or mapping languages to one
common process modeling language. Meta-model annotation in our framework deals
with this problem by mapping different meta-mode elements to ontological concepts in

a process ontology. A process ontology is not supposed to be a new process modeling
language but provide a way to represent process knowledge. Therefore, compared

with certain process modeling languages, the process ontology provides only general
semantics for process modeling but essential semantics for process knowledge.

70 CHAPTER 4. SEMANTIC ANNOTATION FRAMEWORK

Table 4.1: Metadata for profile annotation
Type Element Label Cardinality Description

Administrative

profileAnno:model_version {0,1} Version of the process model
profileAnno:version_date {0,1} Date when this version of the

process model was created
profileAnno:URI {1,1} A Uniform Resource Identifier

(URI) is a compact string of
characters for identifying the
process model

profileAnno:URL {1,1} A Uniform Resource Locator
(URL) where the process model
can be accessed

dc:creator {1,N} Persons or organizations pri-
marily responsible for making
the structure and content of the
process model

dc:publisher {1,1} A person or an organization re-
sponsible for making the pro-
cess model available

dc:date {1,1} Date of availability of a process
model

dc:language {1,1} Natural language of contents of
a process model

Descriptive

dc:title {1,1} An name given to the process
model

dc:description {1,1} An account of contents of the
process model

profileAnno:category {1,1} Genre of contents of the process
model

profileAnno:domain {1,1} Domain of contents of the pro-
cess model

profileAnno:domainOntology_URI {1,1} A Uniform Resource Identifier
(URI) of the domain ontology
used in the model annotation

profileAnno:domainOntology_URL {1,N} A Uniform Resource Locator
(URL) where the domain ontol-
ogy can be accessed

Preservation profileAnno:documation {0,N} Different formats of description
of the content of the process
model (e.g. an abstract, an
overview of how the process
model has been developed, a
graphical representation of the
process model, etc.)

Technical

profileAnno:modeling_language {1,1} A modeling language the pro-
cess model was created in

profileAnno:language_version {0,1} A version of the modeling lan-
guage

profileAnno:modeling_tool {1,N} Modeling tools (including the
version of the tools) which sup-
port the process model

Use
profileAnno:used_in {0,N} Projects and/or applications in

which the process model is used
profileAnno:examplemodel_URL {0,N} Uniform Resource Locator

(URL) where examples of the
process model can be accessed

4.4. META-MODEL ANNOTATION 71

4.4.1 GPO (General Process Ontology)

For meta-model annotation, a process ontology is an explicit and formal specification

of concepts which are used to model processes in general. It is supposed to provide
common and core semantics of process modeling constructs. We have investigated a

number of process modeling languages and process ontologies in Chapter 3. Most of
them were not initiated for annotation purposes and are not represented in OWL,

except OWL-S. OWL-S is designed to describe processes of Web services in OWL.
Although a process model in our approach may be regarded as a service, the difference

between a Web service and a process model is that a Web service is executable and uses
programming-like control constructs as their basic building blocks which are inadequate
for all the modeling issues, especially for the type level of modeling. Therefore, we

propose a new ontology for meta-model annotation purpose in our framework.
It is difficult to build an ontology to cover all the semantics of various modeling

constructs, which would be very complicated. To facilitate the annotation, represen-
tations of the ontology should be easily understandable and able to preserve enough

semantics of process knowledge. As Musen stated [109]: "Although no simple predicate
tells us unambiguously whether a particular specification is an ontology, we can still

agree on certain things. We can agree that ontologies enumerate the salient concepts
in an application area." A process ontology therefore consists of core concepts which

can present the process perspectives specified in Chapter 3.
We set a design principle of the process ontology as simple but comprehensive for

modeling process knowledge. Based on such principle, we create an ontology for process

modeling, namely General Process Ontology (GPO).

Main concepts defined in GPO

The main concepts in GPO are Activity, Artifact, Actor-role, Input, Output,

Precondition, Postcondition, Exception and WorkflowPattern. GPO consisting

of those concepts and their relationships are represented using RML [168] in Figure 4.5.

• Activity is a central concept which composes a process. Activity is a synonym of

process. However, we also found Process is seldom a construct or just a package
construct in most process modeling languages because it is obvious that a process

model describes processes. Event is used to trigger Activities but it is sometimes
used like an Activity. It also sometimes mixed with state. In order to avoid

any ambiguity of those concepts, event and state are not included in GPO. We
still think event and state are crucial for process models at the execution level

but less at the conceptual business process level. We therefore use the concept
Activity in our general process ontology. An activity may be an atomic activity or

a composed activity represented by the aggregation relation between activities,
i.e. one activity is a subActivity of another activity.

• Artifact represents something involved in an activity such as product, information,

tool and software.

• Input and Output of an Activity specify what are consumed and produced by
this activity respectively. The way an Artifact is involved in an activity can be

72 CHAPTER 4. SEMANTIC ANNOTATION FRAMEWORK

specified through its relations with inputs or outputs.

• Actor-role is the one who interacts with an activity. Although actor and role are
two different concepts, we combine these into one to represent that a role is acted

by an actor and an actor is a person, or an organization or a system that operates
the activity. The role is not acted by any artifact which is distinguished from the
definitions of role in some modeling languages, e.g. ResourceRole in UEML.

• Precondition and Postcondition represent respectively constraints before an ac-
tivity starts and after an activity ends. Pre- or Post- conditions may also directly

constrain inputs and outputs of activities.

• Exception provides additional information about failures of a process or any ex-
ceptional cases in a process. The exception can be handled by activities.

• WorkflowPatterns represent orderings of different activities. WorkflowPattern can

be refined into several specific patterns according to the workflow patterns defined
in [191], such as Choice (Exclusive Choice, MultipleChoice, ParallelSpit), Merge

(SimpleMerge, MultipleMerge, Synchronization) and Sequence, which are basic
control workflow patterns supported by most process modeling languages with
logical symbols like AND, OR and XOR. The aim of including workflow patterns in

GPO is for the user to navigate preceding, succeeding, synchronizing and exclusive
activities, because those workflow patterns denote semantics of process orders.

Figure 4.5: General Process Ontology

Process perspectives in GPO

With regard to the process perspectives from the paradigm of BPM systems (defined
in Chapter 3), GPO has following correspondences: GPO uses Activity together with

4.4. META-MODEL ANNOTATION 73

Input and Output to represent the operational/function perspective. Decomposable
Activities and their subAcitivities can be applied to specify the structural perspective.
The resource and organizational perspectives can be presented through the specifica-

tions of Artifact and Actor-role respectively. The control perspective of a process is
represented by Precondition, Postcondition of Activities and a set of WorkflowPatterns

and Exception to link Activities. No particular concept is identified to represent the
data transaction perspective but the links between Artifact and Input or Output can be

used to specify changes of data values associated with a certain Artifact.

4.4.2 Mapping rules in Meta-model annotation

GPO is a mediator for semantic reconciliation of process modeling concepts and it

should not be seen as a new process modeling language, but a means to annotate the
process modeling constructs. In a meta-model annotation a process modeling language

is annotated manually by annotators. The procedure of meta-model annotation is in
fact to set mapping rules between the GPO concepts and process modeling language

constructs or meta-model elements. The mapping rules consist of both one-to-one
and one-to-many correspondences between the GPO concepts and modeling language

constructs or meta-model elements. More complicated cases might occur, such as a
correspondence between a GPO concept and a combination of several modeling con-

structs or meta-model elements. To define mapping rules for different cases, we cat-
egorize three types of modeling constructs — AtomicConstruct, EnumeratedConstruct
and ComposedConstruct. Each single modeling construct is an AtomicConstruct, an

EnumeratedConstuct is a list of several AtomicConstructs, and a ComposedConstruct
is composed of several AtomicConstructs.

Mapping Rules:

• One-to-one mapping: a GPO concept is referred by an AtomicConstruct (e.g.
GPO:Activity) is mapped to EEML:Task);

• One-to-many mapping: a GPO concept can be referred by several modeling

language constructs respectively which are enumerated in an EnumeratedCon-
struct (e.g. GPO:Artifact) can be mapped to EEML:Information Object or
EEML:Material Object);

• One-to-combination mapping: a GPO concept is referred by a combination of

those modeling language constructs in a ComposedConstruct (e.g. GPO:WorkflowPattern

is mapped to a combination of EEML:Flow and EEML:Decision Point).

Different technologies can be employed to represent the mapping rules, such as

XML, RDF/RDFS or OWL. An OWL representation is exemplified below. A names-
pace metaAnno is used to encode meta-model annotation in these three mapping cases:

<metaAnno:AtomicConstruct rdf:ID=CONSTRUCT_ID>

<metaAnno:refers_to

rdf:resource=&GPO_ONTOLOGY#MODELING_ONTOLOGY_CONCEPT/>

<metaAnno:modeling_language_construct

rdf:resource=&MODELNG_LANGUAGE#LANGUAGE_CONSTRUCT/>

74 CHAPTER 4. SEMANTIC ANNOTATION FRAMEWORK

</metaAnno:AtomicConstruct>

<metaAnno:EnumeratedConstruct rdf:ID=CONSTRUCT_ID>

<metaAnno:refers_to

rdf:resource=&GPO_ONTOLOGY#MODELING_ONTOLOGY_CONCEPT/>

<metaAnno:has>

<metaAnno:AtomicConstruct rdf:resource=#CONSTRUCT_ID/>

. . .

</metaAnno:has>

</metaAnno:EnumeratedConstruct>

<metaAnno:ComposedConstruct rdf:ID=CONSTRUCT_ID>

<metaAnno:refers_to

rdf:resource=&GPO_ONTOLOGY#MODELING_ONTOLOGY_CONCEPT/>

<metaAnno:composed_of>

<metaAnno:AtomicConstruct rdf:resource=#CONSTRUCT_ID/>

. . .
</metaAnno:composed_of>

</metaAnno:ComposedConstruct>

Once the mapping rules are defined for a certain process modeling language, process
models in that process modeling language can be described by the GPO concepts, i.e.

the GPO concepts are used as metadata to annotate process semantics. We call the
process models described by the GPO metadata as GPO-annotated process models.

A GPO-annotated process model will be formalized in a process semantic annotation
model (PSAM) in section 4.6.

4.5 Model Annotation

The purpose of model annotation is to annotate model (contents) with domain ontolo-
gies. Models (contents) are instances of the meta-model and those instances usually

describe certain domains. The representations of domains are often various due to
diverse uses of terminology and conceptualization, resulting in semantic heterogeneity

of model contents. Domain ontologies are agreed as standard representations and se-
mantic definitions of domain concepts by annotation users. Semantic heterogeneity of

model (contents) can be reconciled by referencing ontological concepts represented in
domain ontologies. In model annotation, the annotation method is building semantic

mappings or relationships between model contents and domain ontologies.

The mapping method for model annotation

Different mapping strategies can be used between concepts in the model and the do-
main specific ontology. They can be simple rules applied in meta-model annotation –

by referring specific model contents in modeling constructs to corresponding domain
concepts. More complicated mappings can be defined through refined semantic rela-
tionships between concepts used in models and concepts defined in a domain ontology.

Simple reference. If a simple mapping by reference is applied, it assumes that
almost all concepts in the model have equal or approximately equal concepts in the

4.5. MODEL ANNOTATION 75

ontology. The semantic relationship of mapping can be defined as one type – refers_to.
We have adopted such a mapping strategy in our method for meta-model annotation
to build the correspondences of concepts between modeling languages and GPO. In the

model annotation, users can choose this strategy provided the concepts in the models
are very close to the concepts in the domain specific ontology. The strategy of simple

reference is easy to apply and also makes it relatively simple for the machine to infer
the mapping relationships without complicated algorithms.

Refined semantic relationships. Concepts used in process models are variously

defined initially for different projects. Therefore, it might be difficult to find equally
defined concepts in the domain specific ontology for process models. However, since

they are still within one domain, there must be some semantic relationships between the
concepts in models and in ontologies. In order to represent the semantic relationships
precisely, we define some refined semantic relationships to link the concepts between

models and ontologies for the model annotation.

The model annotation can be accomplished with the help of meta-model annotation,
because the models related to domain information are usually artifacts, actor-roles,

activities and exceptions. Artifacts and actor-roles are usually static concepts in the
domain ontology. Activities and exceptions are usually related to the task concepts in

the domain ontology.

Semantic relationships and the corresponding annotation denotations generally used
for the model annotation are listed in Table 4.2. Both synonym and polysemy relation-
ships are symmetrical. Note that same_as and different_from are not at the individual

level like the OWL individuals relationships. Hypernym and hyponym are inverse rela-
tionships. Usually concepts in the ontology are more general, while model concepts are

relatively concrete for specific projects. Thus, kind_of is more often used than super-
Concept_of when annotating model concepts with ontology concepts. We provide more

human sense expressions of meronymic relationship for artifacts, actor-roles, activities
and exceptions respectively. For artifacts, we use part_of, e.g. Engine is a part of

Airplane; for actor-roles, we use member_of, e.g. Airline is a member of Air Alliance;
for activities, we use phase_of, e.g. Flying is a phase of Traveling; for exceptions, we

use partialEffect_of, e.g. Payment is cancelled is a partial effect of Booking has failed.
The inverse relationship of meronym is holonymic relationship, which is seldom used in
this framework because of the similar reason described for the hyponym relationship.

It is possible to represent some of the semantic relationships with OWL expres-

sions, such as owl:equivalentClass for synonym, owl:disjointWith for polysemy,
rdfs:subClassOf for hypernym and hyponym. Those OWL expressions can be used to

displace the corresponding annotation notations for OWL inference. If an annotation
model and a reference ontology are both represented in OWL, the inference can be made

on the two OWL files. For example, a concept Cm in the annotation model is specified
as same_as an ontology concept O1, and O1 is defined as rdfs:subClassOf another

ontology concept O2 in the ontology. An inference result could be Cm is sub-Class of
(kind_of) O2 too.

After the meta-model annotation, the model can be described as a GPO-annotated
process model. Accordingly, the model annotation can be done directly in the GPO-

annotated process model instead of the original model. Thereby, the model annotation
notations will also be formalized in the process semantic annotation model in section

76 CHAPTER 4. SEMANTIC ANNOTATION FRAMEWORK

Table 4.2: Semantic relationships, corresponding annotation denotations, and OWL constructs

Semantic
Relation-
ship

Annotation Denotation OWL expression

Synonym alternative_name(terminology
level)
same_as(concept level) owl:equivalentClass

Polysemy different_from owl:disjoinWith

Hypernym kind_of rdfs:subClassOf

Hyponym superConcept_of rdfs:subClassOf

Meronym part_of(Artifact)
member_of(Actor-role)

phase_of(Activity)
partialEffect_of(Exception)

Holonym compositionConcept_of

Instance instance_of OWL Individual

4.6.

4.6 Process Semantic Annotation Model

As described in section 4.4, a process model is represented by the GPO concepts after

the meta-model annotation. The model annotation is then applied on the contents of
the GPO-annotated model. In this section, we formalize the GPO-annotated model
as a process semantic annotation model (PSAM). The domain ontology for a certain

domain is built or selected by domain experts for the model annotation.

Definition 1. PSAM containing the concepts of GPO and domain specific ontology

is defined as follows.
PSAM = (AV, AR, AF, WP, I, O, Θpre, Θpos , E, PD)

Where AV is a set of activities composing a process, AR is a set of actor-roles
interacting with a process, AF is a set of artifacts participating in a process, WP is a
set of workflow patterns, and each workflow pattern denotes an ordering of activities.

I is a set of input parameters, O is a set of output parameters, Θpre is pre-conditions
when a process starts, Θpos is post-conditions when a process ends, E is a set of possible

exceptions occurring during a process. PD is a subset of the domain ontology (D)
concepts, i.e. PD ⊆ D, including static ontology concepts and task ontology concepts.

Definition 2. An activity can be considered as a simple process. Therefore an anno-
tated activity is described as follows.

AVi = (id, model_ f ragment, name, alternative_name, has_Actor− role, has_Arti f act,
has_Input, has_Output, is_in_Work f lowPattern_o f , has_Precondition,

has_Postcondition, has_Exception, has_subActivity, same_as, di f f erent_ f rom,

kind_o f , superConcept_o f , phase_o f , compositionConcept_o f , instance_o f)

4.6. PROCESS SEMANTIC ANNOTATION MODEL 77

Each element in a PSAM model has an id and name to uniquely identify the el-
ement. Model_ f ragment is the identifier of model fragment in the original process
model for keeping the link between the annotated model fragment and its annota-

tion information. Alternative_name provides a synonym of the name at the ter-
minology level. Elements has_Actor− role, has_Arti f act, has_Input, has_Output,
is_in_Work f lowPattern_o f , has_ Precondition, has_Postcondition, has_Exception,
has_subActivity denote the relationships between the activity and other related ele-

ments according to the GPO definition. The ids of the related elements are used in
those relationships. We use same_as, di f f erent_ f rom, kind_o f , superConcept_o f ,

phase_o f , compositionConcept_o f to annotate the activities with the domain ontol-
ogy concepts, i.e. using semantic relationship to map an activity to a concept in the

domain ontology. instance_o f is to specify the modeled activity is an instance of the
domain ontology class.

Definition 3. An actor-role is a person, agent or organization that interacts with an
activity. The annotated actor-role is represented as follows.

ARi = (id, model_ f ragment, name, alternative_name, same_as, di f f erent_f rom,

kind_o f , superConcept_o f , member_o f , compositionConcept_o f , instance_o f)

Definition 4. An artifact is a thing consumed, used or produced in an activity.

AFi = (id, model_ f ragment, name, alternative_name, same_as, di f f erent_ f rom,

kind_o f , superConcept_o f , part_o f , compositionConcept_o f , instance_o f)

Definition 5. A workflow pattern represents the type of the ordering of activities.

WPi = (id, model_ f ragment, name, alternative_name)

Refined workflow patterns are defined as follows.

Choicei = (id, model_ f ragment, name, alternative_name, has_inActivity,

has_outActivity, has_logicConnector)

Where the cardinality of has_inActivity is 1. The has_logicConnector element of

ExclusiveChoicei, MultipleChoicei and ParallelSpliti has value XOR, OR or AND respec-
tively.

Mergei = (id, model_ f ragment, name, alternative_name, has_inActivity,

has_outActivity, has_logicConnector)

Where the cardinality of has_outActivity is 1. The has_logicConnector element
of SimpleMergei, MultipleMergei, and Synchronizationei has value XOR, OR or AND re-
spectively.

Sequencei = (id, model_ f ragment, name, alternative_name, has_inActivity,

has_outActivity)

78 CHAPTER 4. SEMANTIC ANNOTATION FRAMEWORK

Where the cardinalities of both has_inActivity and has_outActivity are 1.

Definition 6. Input and output are defined as parameters of an activity, which include
value and data type. They are usually related to artifacts participating in the activity.

Ii = (id, model_ f ragment, name, alternative_name, data_type, related_arti f act)

Oi = (id, model_ f ragment, name, alternative_name, data_type, related_arti f act)

If the same artifact related with both input and output parameters of an activity,

the state of the artifact must change through this activity. We call it transformation.

Definition 7. Precondition and postcondition are presented by expressions to constrain

input and output. The constraints are usually used as contract in services or process
composition.

Θpre = (id, model_ f ragment, name, alternative_name, related_input)

Θpost = (id, model_ f ragment, name, alternative_name, related_output)

Definition 8. Exception happens in an activity and it can be handled by an activity.

Ei = (id, model_ f ragment, name, alternative_name, handler_Activity, same_as,

di f f erent_ f rom, kind_o f , superConcept_o f , partialE f f ect_o f ,

compositionConcept_o f , instance_o f)

Exception will be annotated using predefined exception types in a domain ontology.

The activity handling the exception is pointed out by handler_activity.

PSAM is modeled in OWL when it is implemented for annotation applications.
Appendix G.1 presents the OWL representation of a complete PSAM 1.

4.7 A Simple Example of Process Semantic Annotation

There is a business process model to describe a very simple process of buying mer-
chandise. It can be reused in any specialized and complicated purchase process. We

assume it is originally built in EEML [77]. This purchase process contains only a task
"purchase". There are two person roles in this task named "Client" and "Seller". The

process starts with a milestone "agreed deal" and ends with a milestone "deal finishes".
One flow links from "agreed deal" to the input port of the task "purchase" and another

flow links from the output port of "purchase" to "deal finishes". A resource role "Order"
coming to the input port is and another resource role "Receipt" is out of the output
port. The EEML process model of a purchase process is illustrated in Figure 4.6.

We applied the semantic annotation approach to annotate the purchase model.

The EEML modeling constructs are annotated with GPO concepts in meta-model an-
notation. In this case, EEML modeling constructs are mapped to the GPO concepts

1A complete PSAM contains the part of PSAM presented in this chapter and the extension part of
PSAM in Chapter 5.

4.7. A SIMPLE EXAMPLE OF PROCESS SEMANTIC ANNOTATION 79

Figure 4.6: EEML process model example: purchase process

following the mapping rules for meta-model annotation. For example, the EEML Task

is one-to-one mapped to the GPO Activity. Based on the meta model annotation, the
GPO concepts will take the place of the corresponding process modeling constructs to

describe the process. A domain ontology is employed to annotate the model contents
which are described in the process annotation model. For instance, the EEML task

"purchases" is a GPO activity, and this activity is annotated as a kind of domain ontol-
ogy concept "buy" in the PSAM model. Figure 4.7 illustrates the annotation results of
the purchase model.

We exemplify parts of the PSAM instance of annotation results which are repre-

sented in OWL. The example here is only a demo of the OWL representation. In the
demo the data type of model_fragment is defaulted as URI and the data types of other

properties are not specified, which can be compared with the PSAM instances in OWL
from exemplars in Appendix H2.

<GPO:Activity rdf:ID="av1">

<GPO:model_fragment rdf:resource="&eeml_purchase;#oid6"/>

<GPO:name>purchases</GPO:name>

<GPO:alternative_name>Purchase</GPO:alternative_name>

<GPO:has_Actor-role>

<GPO:Actor-role rdf:resource="#ar1">

<GPO:has_Actor-role>

<GPO:has_Actor-role>

<GPO:Actor-role rdf:resource="#ar2">

<GPO:has_Actor-role>

<GPO:has_Input>

<GPO:Input rdf:resource="#in1">

<GPO:has_Input>

2The exemplars are introduced in Chapter 7.

80 CHAPTER 4. SEMANTIC ANNOTATION FRAMEWORK

Figure 4.7: Annotated EEML process model example: purchase process

<GPO:has_output>

<GPO:Output rdf:resource="#out1">

<GPO:has_Output>

<GPO:kind_of rdf:resource="&domonto;#buy"/>

</GPO:Activity>

<GPO:Actor-role rdf:ID="ar1">

<GPO:model_fragment rdf:resource="&eeml_purchase;#oid181"/>

<GPO:name>Client</GPO:name>

<GPO:alternative_name>Buyer</GPO:alternative_name>

<GPO:alternative_name>Purchaser</GPO:alternative_name>

<GPO:alternative_name>Customer</GPO:alternative_name>

<GPO:same_as rdf:resource="&domonto;#customer"/>

</GPO:Actor-role>

<GPO:Actor-role rdf:ID="ar2">

<GPO:model_fragment rdf:resource="&eeml_purchase;#oid182"/>

<GPO:name>Seller</GPO:name>

<GPO:alternative_name>Salesperson</GPO:alternative_name>

<GPO:alternative_name>Salesman</GPO:alternative_name>

<GPO:alternative_name>Vender</GPO:alternative_name>

<GPO:same_as rdf:resource="&domonto;#vendor"/>

</GPO:Actor-role>

<GPO:Input rdf:ID="in1">

<GPO:model_fragment rdf:resource="&eeml_purchase;#oid11"/>

<GPO:name>Order</GPO:name>

<GPO:alternative_name></GPO:alternative_name>

4.8. SUMMARY 81

<GPO:datatype rdf:resource="&xsd;#anyURI"

<GPO:same_as rdf:resource="&domonto;#purchase_order"/>

</GPO:Input>

<GPO:Artifact rdf:ID="af1">

<GPO:model_fragment rdf:resource="&eeml_purchase;#oid122"/>

<GPO:name>Order</GPO:name>

<GPO:alternative_name></GPO:alternative_name>

<GPO:alternative_name>Salesman</GPO:alternative_name>

<GPO:alternative_name>Vender</GPO:alternative_name>

<GPO:same_as rdf:resource="&domonto;#vendor"/>

</GPO:Artifact>

4.8 Summary

In this chapter, we have proposed a semantic annotation framework to manage seman-

tic heterogeneity of process models from the following perspectives: basic description of
process models (profile annotation), process modeling languages (meta-model annota-

tion), and process models (model annotation). Two ontologies are used for annotation
purposes: General Process Ontology for meta-model annotation, and a domain ontol-

ogy for model annotation. Furthermore, we have defined a set of mapping strategies
for guiding users to annotate models.

As a formal result of the proposed framework, the process semantic annotation

model (PSAM) provides a common semantic annotation schema for annotating semi-
structured IS solutions. A PSAM model describes the process properties of a process

model fragment in a way of representing process knowledge, and contents in the PSAM
model are mapped to context references for domain semantic reconciliation. Process

models are therefore transformed into process knowledge of IS solutions which are
represented in the PSAM models after annotation. The PSAM models are supposed to

be able to help the human and machine to understand heterogeneous process models
with reconciled process semantics.

An extension of the semantic annotation framework will be elucidated in next chap-
ter. The framework is extended by adding pragmatic metadata, namely providing a
method to specify intentions of systems’ owners, which are achieved through process

models.

82 CHAPTER 4. SEMANTIC ANNOTATION FRAMEWORK

Chapter 5

Extension Semantic Annotation
— Goal Annotation

In this chapter, we elucidate the annotation of process models and process model frag-
ments with a goal ontology to specify organizational objectives (i.e. intentions of sys-

tems’ owners) achieved by processes. The aim of goal annotation is to pragmatically fa-
cilitate recognizing process knowledge conveyed by heterogeneous process models based

on the enriched intentional semantics of processes [95].

A goal ontology is a set of conceptualized goals and relationships among them.

Based on the investigation of several goal modeling methods applied in requirements
engineering and process modeling, we propose goal ontology design principles and se-

mantic representations.

Goal annotation is a procedure to organize and define the process knowledge with
goal ontology, i.e. building relationships between process models and pre-defined goal

concepts. Defining those relationships is the major task of goal annotation, which
indicates what relationships are supported in annotation and how annotation can be

implemented. Consequently, the goal annotated models can be queried and reused in
a goal-driven method with the goal ontology.

5.1 Goal-Driven Process Knowledge Discovery

As knowledge, business process models are required and reused for achieving business

objectives or goals. On the other hand, a process model describes the capability and
utility of a process, i.e. how the process achieves certain results. Therefore, goals

can be used to describe what a knowledge user desires when searching and applying
process models, which is known as goal-driven discovery approach. In such a way, the

knowledge user does not need to specify models’ identification such as name or location
of the process models, but only specify his/her business objectives or goals to query the
models. The search engine finds the process models through mapping the goal request

and capability of process models. This approach provides a pragmatic way for users
to discover knowledge because goals are obvious for users to specify their request. The

discovery process is a black box for users who have no idea of the availability (existence
and location) of desired process models. Goal-driven discovery is also transparent for

83

84 CHAPTER 5. GOAL ANNOTATION

process models since there is no need for representations of process models but only for
process capability specifications.

To facilitate the goal-driven discovery, capability of processes should be explicated

in process models. However, most process modeling languages do not supply such a
mechanism. Even if they are goal-supported modeling, they typically differ in various
languages. Moreover, the representations of capability might also differ by terminology

and conceptualization, which are common problems in any heterogeneous models. By
extending our semantic annotation framework, a goal ontology is adopted to annotate

process models for specifications of the process capability. With a goal ontology, the
user can specify his/her goal request. The goal-driven discovery process is to match goal

requests with goal annotation of process models through the goal ontology definitions.

In goal annotation, a goal ontology provides definitions of a set of business objectives
or goals. In requirements engineering, business objectives or goals can be described in

natural language or specified in goal models. Goal models are usually made for re-
quirements elicitation and then used to derive process models. Goal modeling methods

in requirements engineering provide references for building a goal ontology. When im-
plementing a goal annotation, we need to establish the relationships between process

models and the goal ontology. Goal annotation becomes one element of the semantic
annotation framework which complements the approach from a pragmatic perspective.

5.2 Goal Ontology for Semantic Annotation

In this work, business goals are formalized in a goal ontology, which provides semantic
representations of goals in a consensual way for different organizations. The focus in

this section is goal ontology modeling. Firstly, we start from the discussion about the
principles of goal ontology modeling in our approach. Based on the principles, we then
define our goal ontology model in OWL.

5.2.1 Goal ontology design principles

Since we focus on process models, the first design principle is that the goals to be linked
to process models should be process achievable. Thus, the research will not include the

goals related to technical factors such as the usage of computing resources or financial
aims like reaching a certain amount of gross profit. Furthermore, the process knowledge

in our research is at model level not at instance level. Accordingly, goals defined for a
certain domain are relatively abstract but not very concrete for an application. We are

concerned with for example, the accomplishment of customers ordering of a cell phone
but do not interested in the instance goal like satisfying Joan’s ordering of SAMSUNG
E568. In order to organize goals at a rational abstraction level, a goal ontology is

domain specific and organized into categories.

As the second design principle, the corresponding relationships between a goal on-
tology and a process model should be easily built to facilitate the goal annotation.

Many goal modeling languages have modeling constructs which are relevant to process
modeling, so that those goal modeling approaches from the literature could be referred

to model goal ontology concerning this principle. Distinct from those goal modeling
languages, a goal ontology is used to normalize the semantic representation of agents’

5.2. GOAL ONTOLOGY FOR SEMANTIC ANNOTATION 85

intentions not to analyze goals for requirements elicitation, specification or validation.
The goal analysis mechanism can find out from why to how, but a goal ontology just fo-
cuses on why. Hereby, we should tailor those goal modeling approaches for our purpose

rather than just reuse them.

However, in the existing goal modeling methods, goals are represented informally
or semi-formally, and they are not machine-understandable. A goal ontology provides

references of goal concepts for annotation users to annotate process models, and the
annotation results are supposed to be machine-understandable in order to enable ma-

chine to manipulate process knowledge discovery and reuse. Therefore, semantics of
goal ontology should be both human- and machine-interpretable, which is the third

design principle. We use OWL to represent a goal ontology and they are well modeled
in classes, properties and relationships. The details of modeling the goal ontology in

OWL are further elaborated in next section.

5.2.2 Semantic representations of a goal ontology

Following those principles, we make a meta-model of the goal ontology. In this meta-

model, the goal ontology is defined based on goal categories and goal targets.

A goal is a condition or state of affairs in the world that stakeholders would like to
achieve [40]. Soffer et al. [167] defines a goal as a set of stable states. In [205], state

of a thing is described as the vector of values for all property functions of a thing. In
the context of process modeling, states must be represented as values for properties of

process and properties of objects involved in process. That is, a goal can be expressed
as states of activities (e.g. "delivery is processed") or states of artifacts (e.g. "receipt

is received"). The goal target could be Activity or Artifact. Usually the ’accomplished’
is regarded as the goal state of an activity, whilst the state of an artifact has to be
specified for different goals. Goal is an organizational concept and goals are held by

stakeholders. ’Actor’ is defined to represent the goal owner in i*/GRL and ’Agent’ is
applied in KAOS when analyzing the potential goal realizer. Actor-role is therefore the

goal target in the goal ontology as well. In KAOS, goals are non-operational objectives
and constraints are operational objectives. Although constraints are not goals, goals

can be operated by constraints [21]. In this sense, Constraint is also the goal target.
Some goals may be represented as constraints statements, e.g. the quality constraints

(wrt. time, cost, security etc.) to processes according to domains. The relationships
between Goal and those targets are simply defined because the purpose of the goal

ontology is not to analyze the goal like those existing goal modeling methods. The
targets show the different perspectives of viewing a goal. These targets are represented
in the same way as the concepts in PSAM, which provides potential links between a

goal ontology and process models.

In general, goals can be classified into hard goals and soft goals [110]. Hard goals
are related to functional requirements and they are obviously supported by process.

Soft goals are about global qualities of a system. Most of soft goals are related to
non-functional requirements (colloquially "-ilities"). Soft goals do not have clear-cut

criterion for their satisfaction, and they are satisfied when there is sufficient positive
and little negative evidence for this claim [110].

Relations of goals should be specified in a goal ontology. A goal could be represented

86 CHAPTER 5. GOAL ANNOTATION

in a relatively general sense (e.g. security goal) or in a specific way (e.g. safe payment),
so the subsumption relationship should be supported. Relations between two goals
having the same or different effects can be regarded as semantic equivalence or semantic

difference. Decomposition relation – an important characteristic found in most goal
analysis should be specified in the goal ontology too.

Based on the above analysis, semantics of goals in a goal ontology are specified
through categories, expression perspectives and relationships. OWL Classes and

Properties provide a way to define the semantics of goal concepts. Standing for
goal categories, Hard Goal and Soft Goal are two upper level classes for all goals in

general. Hard goals are functional and usually they are domain-dependent, so they
are usually specific from different domains. Soft goals can be described generally

in a set of "-ilities" (which are regarded as soft goal category), and also specific ac-
cording to domains. Attributes and relations of a goal class are represented through
owl:DatatypeProperty and owl:ObjectProperty respectively. Based on the analysis

of expression perspectives, we know that a goal can be represented through specifying
the targets such as Activity, Artifact, constraint and Actor-role. If those targets are

already defined in domain ontology as classes, a goal can establish relationships with
them. Otherwise, the goal uses attributes to represent them. To make the terminology

consistent (with GPO), we name the relations/attributes as targetActivity, targe-

tArtifact, targetRole and targetConstraint. State is modeled as an attribute of

Artifact, which is associated with the targetArtifact of a goal.

The subsumption relationship (owl:subClass) is used to represent goal hierarchy.
A simple part-whole relationship represent goal composition. OWL does not provide

any built-in primitives for part-whole relations (as it does for the subclass relation).
However OWL contains sufficient expressive power to capture most, but not all, of

the common cases [200]. We therefore apply a simple part-whole relationship to rep-
resent the decomposition of goal concepts. The ’part’ goals contribute the impacts to

the ’whole’ goal. The logic connections (OR, AND, XOR) between the parts are not
considered in the goal ontology due to two reasons as follows. First, it is the represen-

tational capability of OWL. Second, such concrete goal analysis mechanisms are not
necessary for a goal ontology. A goal ontology should be general to applications and

decomposition of a goal depends on a specific application. A goal ontology is more like a
taxonomy of goal concepts serving for semantically-aligned goal representation. Hence,
the terminology presenting goal concepts in a goal ontology should be normalized. In

addition, some general attributes such as ID, name, description are attached to a goal
class to identify a goal concept. Semantic representation of a goal ontology is specified

in the meta-model shown in Figure 5.1.

5.3 Relations between Process Models and a Goal Ontol-

ogy

We can see that based on the design principles of a goal ontology modeling, underlying
relations between process models and a goal ontology becomes clear. These relations

can be used to derive goal annotation relationships of process models.

We start by clarifying some concepts involved in the relations. We assume that a

5.3. RELATIONS BETWEEN PROCESS MODELS AND A GOAL ONTOLOGY87

Figure 5.1: Meta-model of the proposed goal ontology

process model depicts a process, and a process consists of numbers of activities. As we

have defined in GPO, an activity may be an atomic activity or a composite activity.
In our semantic annotation framework, we define that a process model comprises a

set of activities (AV) and an activity can be decomposed into sub-activities. If an
activity in a process model is not an atomic activity1 which is composed of a set of
related activities, it is regarded as a process model fragment in this context. A goal

(g) can be linked to a whole process model or to a process model fragment. We assume
that process models are already organized into a decomposable hierarchy of activities

referencing a domain ontology in the model annotation phase. Each level of activities
in the hierarchy can be considered as goal annotation targets.

Definition 9. In the semantic annotation framework, a process model (PM) can be
partitioned into several process model fragments (PMF). Each PMF comprises a set of

hierarchically organized and decomposable AV.
PM = PMF

⊗
PMF and PMF = AV

⊗
AV

Definition 10. Any goal concept (g) in a goal ontology (G) is possibly related to an

activity (av) in a PM/PMF:

∀(g, av)goalRelated(g, av) (a)

• if the property targetActivity (av′) of a g is same or synonymous with av:

∃(av′)targetActivity(g, av′)
∧

av′ = av (b)

• if the property targetArtifact (a f ′) of a g is related to the output of av and the

State (s’) of a f ′ is the value of the Output (o) of the Artifact (a f):

∃(a f ′, a f , s′, o)targetArti f act(g, a f ′)
∧

hasState(a f ′, s′)
∧

s′ = o ⊃ hasOutput(av, o)
∧

a f ′ = a f ⊃ relatedTo(o, a f) (c)

1Note: An atomic activity can not be decomposed, but it is not an event either.

88 CHAPTER 5. GOAL ANNOTATION

• if the property targetRole (ar′) of a g is related to an Actor-role (ar) involved
in av:

∃(ar′)targeRole(g, ar′)
∧

ar′ = ar ⊃ hasActor− role(av, ar) (d)

• if the targetConstraint (c′) expressed in a g is involved in (involvedIn) pre-

Condition (pre), postCondition (post) or Exception (e) of av:

∃(c′, pre, post, e)targetConstraint(g, c′)
∧

(involvedIn(c′, pre) ⊃
hasPrecondition(av, pre)

∨
involvedIn(c′, post) ⊃

hasPostcondition(av, post)
∨

involvedIn(c′, e) ⊃
hasException(av, e)) (e)

Therefore,

(a) ≡ (b)
∨

(c)
∨

(d)
∨

(e)

Those definitions denote how an activity might be associated with a goal by spec-
ifying the facts of an activity that might affect a goal. Checking above cases through
matching algorithms can automatically provide a list of possible goal annotations. The

decisions of the desired goal annotations are left to the annotators. We hereby call such
a mechanism semi-automatic goal annotation.

Definition 11. A goal ontology (G) comprises a set of hard goals Gh and a set of soft
goals Gs.

G = {Gh, Gs}

The relations are further specified based on the context of the process models and

the goal ontology. We define the relations as follows:

Definition 12. Hard goals can be achieved by an activity or activities. I.e. the relation

between an activity (av) and a hard goal (gh) is achieves(av, gh).

Definition 13. Soft goals can be positively or negatively satisfied by an activity or activ-

ities. I.e. the relation between an activity (av) and a soft goal (gs) is positively_satisfies(av, gs)
or negatively_satisfies(av, gs).

Since the activities in the process models are decomposable, the relation between
goals and a composite activity could be inferred based on the relations between goals

and component activities.

Definition 14. If an activity (av) is a component of another activity (av∆) in a process

model/model fragment, av is the subactivity of av∆, i.e. subActivityOf(av, av∆). av∆

is a Composite Activity in that model.

Usually the effects of hard goals achieved by a subActivity can contribute to its
composite activity. That is,

Definition 15. If av is the subactivity of av∆ and av achieves gh, av∆ achieves gh:

(∀(av, gh)∃av∆)subActivityO f (av, av∆)
∧

achieves(av, gh)
−→ achieves(av∆, gh)

5.4. PSAM WITH GOAL ANNOTATION 89

However, the effects of soft goals can not be simply passed in the same way as hard
goals. To a composite activity, the contribution of a soft goal from a subactivity might
be enhanced or reduced by other subactivities which positively or negatively satisfy

the same soft goal. The contribution could be calculated if the effects of soft goals
are quantified. This issue is only simply considered in our current work by simple

contribution calculation rules. All effects of soft goals are regarded as the same.
The contribution of a soft goal to a composite activity is determined by comparing the

numbers of subactivities which positively satisfy and negatively satisfy the same soft
goal. That is,

Definition 16. Let a gs is positively satisfied by N subactivities, and is negatively

satisfied by M subactivities in a composite activity av′. Consequently,

• positively_satisfies (av′, gs), if N > M

• the effect of gs is counteracted for av′, if N = M

• negatively_satisfies (av′, gs), if N < M

The relations between goals and activities defined in this section will be applied to

build annotation links between the goal ontology and process models in the goal anno-
tation. That is to say, the metadata schema of the goal annotation for process models is:

ActivityID

achieves|positively satisfies|negatively satisfies

GoalID

5.4 PSAM with Goal Annotation

With goal annotation in the semantic annotation framework, the PSAM includes the
references of the goal ontology.

PSAM = (AV, AR, AF, WP, I , O, Θpre, ΘposE, PD, PG), where PG is a subset of goal

ontology (G).

The annotated activity is also updated as follows and the complete PSAM can be
represented in OWL (see Appendix G.1).

Definition 17. AVi = (id, model_ f ragment, name, alternative_name, has_Actor− role,

has_Arti f act, has_Input, has_Output, is_in_Work f lowPattern_o f ,

has_Precondition, has_Postcondition, has_Exception, has_subActivity, same_as,

di f f erent_ f rom, kind_o f , superConcept_o f , phase_o f , compositionConcept_o f ,

instance_o f , achieves|positively_satis f ies|negatively_satis f ies)

90 CHAPTER 5. GOAL ANNOTATION

5.5 Goal Annotation Procedure

In goal oriented requirements engineering, goal analysis and modeling is usually a top-
down procedure — decomposing high level goals down to lower level goals and opera-

tional activities. Goal annotation is a bottom-up procedure — first annotating low level
sub-activities and then annotating higher level activities and finally the whole process

model with goal ontology. Focusing on the activity, we describe the goal annotation pro-
cedure accompanied with the meta-model annotation and model annotation in a UML

Activity diagram in Figure 5.2. Through meta-model annotation, activities are identi-

Figure 5.2: Goal annotation procedure

fied by the markup Activity in PSAM. In the model annotation phase, if a domain
ontology is available as the activity references, the identified activities are annotated

with concepts in domain ontology references via the semantic relations such as same_as,
di f f erent_ f rom, kind_o f , superConcept_o f , phase_o f , and compositionConcept_o f .

If the domain goal ontology is available, the possible links between the activities and
the goal ontology can be checked based on the relations described in section 5.3. We

5.6. SUMMARY 91

employ the annotation from the component activities to the composite activities. The
contributions of the goals annotated to the low level component activities can be passed
to or calculated for their upper level composite activities.

In goal annotation, we modify goal annotation relations through
achieves_Goal/positively_satis f ies_Goal/negatively_satis f ies_Goal in previ-

ously defined PSAM in Chapter 4. An example of goal annotation of an activity that
achieves a hard goal is as follows:

<psam:Activity rdf:ID="ID">

<psam:model_fragment rdf:resource="&MODEL_NAMESPACE#MODEL_ID">

...
<psam:achieves rdf:resource="&GOAL_ONTOLOGY#GOAL_ONTOLOGY_CONCEPT"/>

5.6 Summary

As an extension of the semantic annotation framework, a goal annotation approach has

been elaborated in this chapter. The goal annotation has been designed for a goal-driven
management of heterogeneous process models on the conceptual level. Since business
process models as IS solutions were created for achieving the intentions of systems’

owners, a new problem to achieve similar intentions might reuse those solutions. Goal
annotation helps humans and machines to locate the process knowledge by specifying

the goals of process models.
The approach relies on a goal ontology, which provides common semantic represen-

tations of goal concepts. A goal ontology reconciles intentional semantics represented
in heterogeneous models. The purpose of the goal annotation is twofold: 1) to enrich

the semantics of the objectives of processes; 2) to provide a pragmatic way to find
process knowledge based on business goals. Based on a set of goal ontology design

principles, we proposed a way to describe the semantics of goals for process model an-
notation purpose. We have also discussed relations and rules between process models

and goal ontologies. The formalization of the relations can be implemented to facil-
itate an automatic or semi-automatic goal annotation procedure in practice. In our
semantic annotation framework for process models, process models are first described

by PSAM (process semantic annotation model) after meta-model annotation, and then
referenced with domain ontology in model annotation. Goal annotation is therefore

employed based on the domain annotated PSAM models.

92 CHAPTER 5. GOAL ANNOTATION

Chapter 6

Pro-SEAT (Process SEmantic
Annotation Tool)

In order to facilitate semantic annotation of process models, we have developed a pro-

totype of the semantic annotation tool — Pro-SEAT (Process SEmantic Annotation
Tool). The tool implements the proposed semantic annotation framework. Develop-

ment of the tool included planning system modules, defining data structure, designing
annotation algorithms, and implementing functions and user interfaces. The tool sup-

ports all the phases of the semantic annotation procedure. In addition, a query-based
model navigator is included in the tool.

6.1 Components of Prototype Environment

Pro-SEAT is an isolated application, independent of modeling tools. As an annotation
tool, it is used to attach additional information in models. However, we need to import

existing process models into the annotation tool. This requires the annotation tool to
read models created by certain modeling tools. In this work, we take Metis1, a modeling

product from Computas partner Troux Technologies, as our modeling environment.
Metis supports different modeling languages, such as UML, EEML and BPMN by its

powerful Metamodel Developer. Models created by Metis are formated in XML which
is analyzable by XML parsers. The annotation tool therefore contains functions to

parse and read Metis models.

OWL technology is chosen for modeling ontology in the proposed semantic an-

notation approach. Therefore, the annotation tool should provide an OWL ontology
browser and an ontology selection to support the ontology-based annotation. In the

prototype, we integrate the Protégé-OWL API which can parse and manipulate OWL
ontologies. An OWL ontology could be edited by any ontology editors, including the

Protégé-OWL.

The current version of the semantic annotation tool — Pro-SEAT can read original

process models created in Metis and OWL ontologies. The main task of the tool is to
apply the annotation framework to build relationships between models and ontologies.

1http://www.computas.com/templates/Page____371.aspx

93

94 CHAPTER 6. PRO-SEAT (PROCESS SEMANTIC ANNOTATION TOOL)

As an output of the system, the annotation result is stored in an OWL instance file,
separately from the original process model.

6.1.1 Process modeling environment — Metis

Metis is an enterprise modeling environment. Metis provides a Metis Architect includ-
ing:

• Model Browser. Provides end-users with ability to view (read-only) models pub-
lished on the Internet or local area network.

• Model Annotator. Model reviewers can offer comments and feedback in "sticky

note" style. Annotated models provide an easily accessed audit of proposed model
changes and decisions.

• Model Editor. Creates visual models from enterprise data and can accommodate

change on a detailed, operational level to assure information relevancy. It also
allows users to publish models to a web server.

• Model Designer. Targets the more advanced modelers responsible for visual dis-
play and dynamic behavior of models, objects, and relationships.

• Model Developer. Offers a powerful development tool for advanced developers

who need to create, adapt, or extend objects, relationships, and search criteria
within a meta-model template.

• Data Import Facility. Allow users to visually model how external data should be
imported into Metis.

Metis is a family of integrated products for visual model development and publishing

plus a repository. Metis is a XML modeling tool and all models and meta-models are
stored in an XML repository. The entire tool is configured by XML Schemas, and can

be used to create or extend XML Schemas. The point-and-click publishing capability
produces Web-browsable XML graphical models and views [51].

The XML files of models which are created in Metis are the inputs to Pro-SEAT.
Therefore, Pro-SEAT should provide support to parse and read Metis generated models.

6.1.2 Ontology modeling environment — Protégé-OWL editor

The Protégé-OWL editor is an extension of Protégé [147] that supports the Web On-
tology Language(OWL). The Protégé-OWL editor enables users to load and save OWL

and RDF ontologies; edit and visualize classes, properties and SWRL rules [202]; define
logical class characteristics as OWL expressions; execute reasoners such as description

logic classifiers; edit OWL individuals for Semantic Web markup [148]. We make use
of the Protégé-OWL editor as the ontology modeling environment to model the GPO,
the domain ontology and the goal ontology. Those onologies are then saved in OWL

files which will be loaded in the annotation tool. The annotation results — PSAM
models generated from the annotation tool are in OWL. The results can be loaded in

Protégé-OWL editor so that we can use Protégé-OWL editor to edit, visualize, and
reason on the PSAM models independent from the annotation tool.

6.1. COMPONENTS OF PROTOTYPE ENVIRONMENT 95

6.1.3 System modules in the semantic annotation tool — Pro-SEAT

Pro-SEAT includes a module to read and display the Metis process models as the source

of process knowledge. Because meta-models and models generated by Metis are both
in XML format, an XML parser is needed when reading models. There are several

XML parsers available. Since it is a prototype, we did not examine the performance
of different parsers at this stage. We chose XML DOM Parser from JAXP [179] to

parse meta-models and models into DOM tree nodes, so that meta-models and models
are displayed in a tree view. Besides, profile and meta-model annotation results are

exported in XML format and they will be parsed when being loaded.

Figure 6.1: System modules of the prototype

In order to keep the Metis model structures and also facilitate the manipulation of
models, a module of constructing parsed data into Metis model structures is developed

in the system. In the module, a set of Java Classes and Interfaces are defined which
follow the data structures of Metis.

An ontology management module is required for loading, parsing and manipulating

OWL ontologies using the Protégé-OWL API [146]. The Protégé-OWL API is an open-
source Java library for the Web Ontology Language and RDF(S). The API provides

classes and methods to load and save OWL files, to query and manipulate OWL data
models, and to perform reasoning [146]. By applying the Protégé-OWL API, we can

have the Protégé ontology browser and the ontology selection panel integrated in Pro-
SEAT. The PSAM model generated from a meta-model annotation file is an OWL file,

and the annotation results are stored as instances of this OWL file. We can use the
same module of handling the OWL ontology to open and save the annotation results.

The central modules of the system are those realizing the annotation phases de-
fined in the semantic annotation framework: profile annotation module, meta-model
annotation module, model annotation module, and goal annotation module. The main

functions of those modules are connecting models and ontologies through semantic rela-
tionships which are defined as annotation properties in PSAM. The annotation results

are saved respectively in a profile annotation result file, a meta-model annotation result
file and a PSAM file.

96 CHAPTER 6. PRO-SEAT (PROCESS SEMANTIC ANNOTATION TOOL)

A process knowledge query application module interacts with the OWL module by
loading the ontology and the annotation results for an ontology-based query.

The user interface module manages interactions between a user and the system, so

that it connects most system modules. Figure 6.1 specifies the interaction relations
between those system modules.

6.2 Data Structure

In this section, we present the data structures using RML from the logical view to spec-

ify the interrelations between the entities participating in the system. We have adapted
the MDD (Model Driven Development) methodology in the design and the implemen-

tation of the prototype. The structured entities in the design phase correspond to the
Java Classes and Interfaces in the implementation.

Figure 6.2: Structure of entities in the Pro-SEAT prototype

Figure 6.3: Structure of entities in the profile annotation

First, we provide an overview of data structures of the entities in Figure 6.2. Gen-

erally, an annotation structure is the annotation link between a model and the annota-
tion framework. A model usually consists of meta-model file(s) and model file(s). Both

6.2. DATA STRUCTURE 97

types of model files share same features such as "file name", "file suffix" and "file type".
Profile annotation, meta-model annotation, model annotation and goal annotation are
four components of the annotation framework. Ontologies (GPO, domain ontology and

goal ontology) are the reference ontologies in the different annotation components. A
PSAM file is derived from GPO and its content comprises the model annotation and

the goal annotation. The schema of PSAM models we defined in section is in fact the
extended GPO model in OWL, which is included in section G.1 of Appendix G.

Next we describe the data structure of each annotation component. In Figure 6.3,

any model is the target of a profile annotation and URIs of reference ontologies are to
be specified in the profile annotation.

Figure 6.4: Structure of entities in the meta-model annotation

Figure 6.5: Metis meta-model structure

For a meta-model annotation (Figure 6.4), the meta-model file is the annotation
target and the reference ontology is GPO. A meta-model file is composed of meta-model
elements. GPO contains a number of the GPO concepts. The meta-model annotation

results are composed of semantic mappings between meta-model elements and the GPO
concepts. In the current version of the prototype, only Metis models are imported. In

Figure 6.5, two specific modeling languages are exemplified in the data structure of the
Metis meta-model elements.

98 CHAPTER 6. PRO-SEAT (PROCESS SEMANTIC ANNOTATION TOOL)

Figure 6.6: Structure of entities in the model annotation

Figure 6.7: Metis model structure

Figure 6.6 displays the structure of entities in the model annotation, in which a

model file is the annotation target. The model file is composed of model constructs.
The ontological concepts defined in a domain ontology are referenced or semantically

mapped to model elements in the model annotation. The Metis model element is one
kind of model element and its members include ’Object’ and ’Relation’ — two

abstract types in the meta-level definitions of the Metis model (Figure 6.7).

In Figure 6.8 we can see that the structure of entities in the goal annotation analo-
gous with the model annotation. One distinct difference is that an intermediate granu-

larity of the model — model fragment is between a model file and model elements. The
goal annotation can link a goal ontology concept to a model fragment that comprises

several model elements. In terms of the process model annotation, the process model
fragments are composed of a set of activities (Figure 6.9).

6.3. GOAL ANNOTATION ALGORITHM 99

Figure 6.8: Structure of entities in the goal annotation

6.3 Goal Annotation Algorithm

In the current version of Pro-SEAT, there are no particular algorithms to implement
the manual procedures of profile, meta-model and model annotations. However, based

on the formal definitions of goal annotation (see Chapter 5), we design algorithms to
semi-automate the goal annotation procedure. A semi-automatic goal annotation is

implemented through the algorithms in the following cases.

• A. Match a target activity (av′) of a goal (g) in the goal ontology (G) with the
Activity (av) in a PSAM model.

• B. Match a target artifact (a f ′) of a goal (g) in the goal ontology (G) with the

Artifact (a f) and Output (o) in a PSAM model.

• C. Match a target role (ar′) of a goal (g) in the goal ontology (G) with the

Act-role (ar) in a PSAM model.

• D. Match a target constraint (c′) of a goal (g) in the goal ontology (G) with

the Precondition (pre), Postcondition (post), and Exception (e) in a PSAM
model.

To automate the matching, we exploit semantic mappings through both ontology
comparison and string match between ontology references and model elements. To
rank mapping results, weights are assigned to the different ways of mapping (σ is for

a weight of ontology comparison. τ is for a weight of string match). In ontology com-
parison, three different semantic relationships applied in model annotation are taken

into account in the assignment of weights. The synonym ("same_as") relationship is
given the highest weight for a complete match (σ = 1), and the hypernym ("kind_of")

100 CHAPTER 6. PRO-SEAT (PROCESS SEMANTIC ANNOTATION TOOL)

Figure 6.9: Structure of process model fragment

is given a lower weight for a subsumption relationship (σ = 0.8), and the meronym

("phase_of" for activity, "part_of" for artifact, "member_of" for actor-role) is given the
lowest weight for a subset relationship (σ = 0.5). In the string match, an exact match

gets higher weight than a sub-string match (τ = 1 for exact match, and τ = 0.5 for
sub-string match).

Weights are also different for each case. We set different weight parameters for four
cases matching. Values of parameters can be set by users. For example, α is used as the

weight for calculation results of ontology comparison in case A, and ε is for calculation
results of ontology comparison in case C. Details of the algorithm are described in

Appendix D.

When matching a goal concept (g) with an activity (av) in models, all the four cases
must be checked on g and av. The result of a match is a total weight by summing the

calculation results from four cases. The higher total weight is, the better g matches av.

6.4 Functionality and User Interface

The main functionalities of Pro-SEAT in this prototype version are as follows: profile

annotation, meta-model annotation, model annotation, goal annotation and query-
based model navigation. UI (User Interface) for each annotation phase has a similar

layout, which is built as a template and instantiated for different annotation phases.
Figure 6.10 shows main user interface components in the Pro-SEAT tool.

A meta-model tree and a model tree are listed on the left side of the main frame.

The meta-model and the model trees have the same hierarchical structure as the tree
structure viewed from the Metis tool. The panel on the right side is for manipulating
annotations and displaying results. If it is an ontology-based annotation, such as a

meta-model, a model or a goal annotation, a reference ontology browser will be opened
and embedded on the right annotation panel. A console is located at the bottom of

the frame. Figure 6.10 is an instantiation of the user interface template for a meta-
model annotation. Appendix E presents and visualizes the graphical user interfaces of

6.5. SUMMARY 101

Figure 6.10: Main components of the UI in Pro-SEAT

Pro-SEAT for each annotation phase.

In the current version of Pro-SEAT, a navigator UI provides the function of query-

based model navigation (Figure 6.11). The process knowledge user can select a reference
ontology concept as the query word and submit the query to the system. During the
query, the system can make inference based on the ontology. Therefore, the system

would return the model elements annotated with not only the given ontology concept
but also the inferred concepts of the given ontology concept. Inferences concerned

in a query includes semantic equivalence, subsumption and aggregation relationships
between concepts.

6.5 Summary

The proposed annotation approach could be realized through different tool implementa-

tions by various technologies. The prototype developed in this work shows one possible
implementation. This annotation tool provides a way of annotating meta-models and
model elements with OWL ontological concepts. The current version of the model an-

notation tool is mainly designed for interpreting models created by the Metis tool. It
can be extended to import other models produced by different modeling tools. Because

the tool integrates the Protégé-OWL API, it can load any OWL ontology created by
Protégé.

102 CHAPTER 6. PRO-SEAT (PROCESS SEMANTIC ANNOTATION TOOL)

Figure 6.11: The UI of process knowledge navigator in Pro-SEAT

Annotation results are stored in OWL files which are separated from the original

models. Links to the original models are specified in the annotation results. It indicates
that one model may have more than one annotation file. Different annotation results

might be used for different applications.
Annotation results are modeled in an annotation schema which is built on GPO –

a process meta-model ontology. Hereby, the annotation schema is defined as ontology
properties of GPO. The annotation schema can be extended through extending prop-

erties of GPO. The annotation schema is independent of this annotation tool and it
can be interpreted by any OWL reader.

One of the limitations of the tool is a lack of the visual model explorer. Only a
tree view of the model hierarchy is provided. Moreover, when re-generating the PSAM
models from a meta-model annotation, the results of the model and the goal annotation

will be lost. Most of the annotation work is still manual. Automatic annotation using
the mapping algorithm can be considered in the further development of the annotation

tool.

Chapter 7

Exemplar Studies and
Application System

Having the methodology guidance and tool support, we can demonstrate the semantic

annotation approach in exemplar studies. In the study, we have process models that
describe a same business domain (logistics process) but are modeled in different model-
ing languages and by different enterprises. We need domain and goal ontologies about

such a business domain for the annotation. Since there are no formal logistics ontology
available, we formalize the SCOR (Supply Chain Operations Reference-model) [163]

specifications into logistics domain and goal ontologies using OWL. Following the se-
mantic annotation framework and methods, we deploy the annotation by using Pro-

SEAT. Complete annotation results are used in the evaluation phase to validate the
applicability of the semantic annotation approach in a process knowledge management

application. Therefore, a system architecture is also depicted in this chapter to ex-
ploit a process knowledge management application based on the semantic annotation

framework.

7.1 Semantic Annotation Procedure

The semantic annotation employed in the exemplar studies consists of four phases: pro-

file annotation, meta-model annotation, model annotation and goal annotation (Figure
7.1). In a profile annotation phase, the annotator inputs basic information following

the format of metadata which has been defined in Table 4.1. A general process ontology
is employed to map process modeling constructs in a meta-model annotation. Based on

the meta-model annotation results, PSAM can be initially generated for a new model
annotation. The model content represented by PSAM is then annotated with the do-

main ontology in the model annotation phase. A goal annotation is employed as a
succeeding step of the model annotation, i.e. annotating PSAM with goal ontology.
Generally, the meta-model, model and goal annotation phases should be implemented

step by step in a sequence, but the profile annotation can be made at any time. For
example, the URI of the domain ontology can be inputed when the domain ontology is

loaded for the model annotation. After completing all the four phases, process models
become the process knowledge represented in PSAM models.

103

104 CHAPTER 7. EXEMPLAR STUDIES AND APPLICATION SYSTEM

Figure 7.1: Semantic annotation process based on PSAM

7.2 Exemplars

Three process models have been chosen in order to explicate how the proposed semantic
annotation framework and approach are applied in the process knowledge management
of heterogeneous process models. The models are from two different enterprises, and

they are created in different modeling languages. The business processes described in
those models are from logistics domain. PMA is from enterprise A and it is a purchase

order process made in BPMN [12], whilst two other models PMB1 (an item receiving
process) and PMB2 (an item delivery process) from logistics department in enterprise

B are built in EEML [77]. The models depicts different detail of process knowledge,
because two enterprises have different ways of dealing with their business. For example,

the delivery process models for enterprise B are relatively simple compared with the
delivery processing in enterprise A. However, both of them can achieve the same goals.

7.2.1 Sales logistics process in BPMN

The case of enterprise A is taken from [48]. PMA is a big model covering most detail

processes of sales logistics. The process model includes the following main activities —
Client RFQ processing, Client quotation processing, Standard order processing, Delivery

processing, Shipping processing and Bill processing.

Four actors are involved in PMA — client, sales department, financial department,
and logistics department. Client RFQ processing, Client quotation processing, Stan-

dard order processing and Bill processing are mainly carried out by sales department
and interacted with client. Delivery processing and Shipping processing are the main

activities in the logistics department. Both Delivery processing and Standard order
processing need the task credit control in the financial department.

Client RFQ processing and client quotation processing

In PMA, the client RFQ processing can produce the quotation created from the inquiry
or the inquiry is rejected if it is invalid. Analogously, after the client quotation pro-

cessing, the validity of the quotation is checked. The quotation might be rejected if it
is invalid, otherwise it can be referred to by an order in the standard order processing.

7
.2

.
E

X
E

M
P

L
A

R
S

1
0
5

Figure 7.2: Sales logistics process of enterprise A in BPMN

106 CHAPTER 7. EXEMPLAR STUDIES AND APPLICATION SYSTEM

Standard order processing and credit control

Standard order processing begins when an order is placed. In this processing, the order
must be checked and edited accordingly. The credit control in financial accounting is

carried out just following the task – edit order. After credit control, one of three tasks
is possible: 1)accept order, 2)block order, or 3)reject order.

Delivery processing

The delivery will be opened when the delivery date takes place. Once opened, the credit
control is carried out to check if the credit requirements are fulfilled. If the credit

control is successful, a series of tasks follow, such as determine or transfer delivery
route, determine serial numbers of delivery item, check the stock of the delivery items,

determine picking place and delivery batch, check the availability of delivery items
(fully or partially available). If the partial delivery is not allowed, the delivery quantity

can be accordingly corrected or items are rejected. Next, the delivery items are picked
completely or partially. The task – pick delivery items, can be iterated if the partially

picked occurs and the picking is carried out again. Pack delivery items follows the task
of picking delivery items. As a result, a delivery is created at the end of the delivery

processing.

Figure 7.3: Checking availability of the delivery of enterprise A in BPMN

Shipping processing and bill processing

The shipping processing starts with the task of transportation planning after the deliv-
ery processing. Based on the planning, the transportation processing takes place. The

shipping papers and the bill are consequently created and checked.

The original models of PMA displayed in Figure 7.2. Some details of the delivering

are illustrated in Figure 7.3 and Figure 7.4. The main processing and tasks described
in the exemplar are modeled as the BPMN Logical Processes and are allocated into

different Swimlanes which represent the four actors in the BPMN model. Sequences of
the processing are represented by the control and flow notations.

7.2. EXEMPLARS 107

Figure 7.4: Picking, packing and create delivery of enterprise A in BPMN

7.2.2 The TelCo item receiving and delivery process in EEML

The second case is from INTEROP project [145]. Enterprise B is specialized in telecom-

munications, in production and distribution of batteries, as well as in retail sales of
everyday technology products. The company is called TelCo. TelCo does not have its
own warehouse but uses the services of logistics company – Orbit Ltd. But TelCo has

its logistics department who is responsible for items receiving and delivering. Thus the
main functions of logistics department are to make orders and control Orbit Ltd.

In PMB1 and PMB2, the item receiving process and the item delivery process are de-

scribed as a series of EEML tasks. The actors in the PMB1 are commercial department,
logistics department and Orbit warehouse, whilst the actors in the PMB2 are logistics
department, IT, sales department, financial department, Orbit warehouse, franchisee

and shop. Those actors are modeled as the EEML organization in both models.

Item receiving process

PMB1 depicts the items receiving process of the TelCo company (Figure 7.5). The
logistics department receives orders to suppliers about expected quantities of items,
and then starts to receive the items. After receiving the items, the logistics department

checks the items.

These are sub-tasks included in some tasks in the model because of three types of
items receiving — regular orders to local suppliers, consignment and import. In the

case of the regular orders to local suppliers, they deliver the items with protocols and
issue an invoice. In the case of the import deliveries, sometimes there are differences in
quantities received from a foreign supplier. The department issues a protocol for the

whole quantity and another protocol for the deficit with minus quantity. The second
protocol is followed by an export invoice or an invoice to the insurance company. The

process details are described in the decomposition of the task check import items in
Figure 7.6. After checking the items, the received items will be transferred to Orbit.

108 CHAPTER 7. EXEMPLAR STUDIES AND APPLICATION SYSTEM

Figure 7.5: TelCo item receiving process

Figure 7.6: Decomposition of the check items

7.2. EXEMPLARS 109

Figure 7.7: The item delivery process of enterprise B in EEML

Figure 7.8: The delivery process to franchisees of enterprise B in EEML

Meanwhile the department sends a report to Orbit in order to inform them what to
expect.

Item delivering process

PMB2 is the item delivery process in the TelCo case. Items are delivered to shops and
franchisees. On a certain date (predefined) all orders from one shop are consolidated.

The orders are checked against the available stock. The orders are corrected if there
is not enough items in the stock. The order correction procedure is set by the sales
department and it is processed using an external application in the IT department.

After all the orders for a day are approved, items are to be delivered. If it is a franchisee
order, it is followed by a delivery protocol and an invoice. The invoice is issued in the

Orbit warehouse and is sent to the customer along with the items. If it is an order
from a shop, there follows only a delivery protocol.

110 CHAPTER 7. EXEMPLAR STUDIES AND APPLICATION SYSTEM

Figure 7.9: The delivery process to shops of enterprise B in EEML

The delivery processing of PMB2 describes only a part of the sales logistics process.
PMB2 in EEML is illustrated in Figure 7.7, and some of the process detail is displayed

in Figure 7.8 and Figure 7.9.

7.3 SCOR Reference Ontology

SCOR is a process reference model that has been developed and endorsed by the Supply-
Chain Council as the cross-industry standard diagnostic tool for supply-chain manage-

ment. A SCOR reference model has been developed to describe the standard business
activities associated with all phases of satisfying a customer’s demand. As standards,
the model can be formalized as a reference ontology for supply-chain management do-

main.

There are three level process details in the reference model. The top level defines
the scope and content of SCOR. Five process types — Plan, Source, Make, Deliver and

Return are defined at this level. The second level is the configuration level defining
the core "process categories". The third level is the process element level, decomposing

the process categories into the process elements. The process element level consists
of process element definitions, process element information inputs, and outputs, pro-

cess performance metrics, best practices, system capabilities required to support best
practices, and systems/tools. As an example, a logic flow of the SCOR level 3 process

elements is depicted in Figure 7.10.

The level 3 process elements provide enough details of references for domain activ-
ities. In this work, we model domain ontology concepts based on the SCOR process
elements at level 3 for model annotation purpose. The SCOR ontology from the IN-

TEROP project [62] is extended. The extended ontologies include SCOR_INPUT_OUTPUT,
SCOR_MGM_PROCESS and SCOR_ORGANISATION. SCOR_INPUT_OUTPUT are objects which

are needed or produced by SCOR process elements. SCOR_MGM_PROCESS are the SCOR
process elements at level 3 which are organized in a hierarchy following the SCOR

7.3. SCOR REFERENCE ONTOLOGY 111

Figure 7.10: SCOR S1 process of sourcing stocked product [164]

levels (from level 1 to level 3). SCOR_ORGANISATION are organizations/persons who are
involved in the process elements. The goal ontology in this domain is also from SCOR.

Usually the hard goals are derived from process elements and also from their inputs
and outputs. Performance attributes defined in SCOR can be modeled as a set of Gen-

eral Soft Goal Category such as Reliability, Responsiveness, Flexibility, Cost,
and Assets. Domain specific soft goals are derived from the metrics of performance

attributes [167].

The SCOR ontology is formalized in OWL. To organize those concepts, we catego-
rize domain concepts with the 3A concepts (Activity, Artifact, Actor-role) defined

in GPO. The purpose of the categories is to establish the mapping relationship be-
tween a PSAM model and the reference ontology when annotation. The categories
and concepts are modelled as OWL Classes, and they are organized by a subsumption

hierarchy.

The ontology concepts which are organized in "SCOR_MGMT_PROCESS"
are sub-classes of Activity, the input/output ontology concepts

("SCOR_INPUT_OUTPUT") are sub-classes of Artifact and the organizational
ontology concepts ("SCOR_ORGANIZATIONAL") are sub-classes of Actor-role.

112 CHAPTER 7. EXEMPLAR STUDIES AND APPLICATION SYSTEM

Table 7.1: OWL definition of the SCOR ontology
OWL Ontology Class Subsumption

Relation
OWL Proper-
ties

Property Range

SCOR_MGMT_PROCESS

owl:subClassOf

Activity
hasInput multiple

SCOR_INPUT_OUTPUT
hasOutput multiple

SCOR_INPUT_OUTPUT
precedes multiple

SCOR_MGMT_PROCESS
isPrecededBy multiple

SCOR_MGMT_PROCESS

SCOR_INPUT_OUTPUT

owl:subClassOf

Artifact
isInputTo multiple

SCOR_MGMT_PROCESS
isOutputOf multiple

SCOR_MGMT_PROCESS
has_state (data property inherited from

Artifact

SCOR_ORGANIZATIONAL owl:subClassOf

Actor-role

Goal

has sub-Class
Hard Goal,
Soft Goal

has_parts multiple Goal

part_of multiple Goal
targetActivity multiple Activity
targetArtifact multiple Artifact
targetRole multiple Actor-role
targetConstraint (data property)

Each SCOR_MGMT_PROCESS has object properties hasInput and hasOutput to
specify inputs and outputs of each process element. The object properties precedes

and isPrecededBy indicate logic flows between the process elements. Inversely,
SCOR_INPUT_OUTPUT has the object properties isInputTo and isOutputOf to

relate itself to SCOR_MGMT_PROCESS. A data property has_state is defined as
a property of Artifact. This property can be used associated with isInputTo and

isOutputOf properties to indicate that a same artifact with different states represents
different inputs/outputs.

Goal ontology concepts are organized into Hard and Soft Goals. Soft goals are
further organized into some general soft goal categories. We integrate the domain

ontology and goal ontology into one OWL file, because they are both derived from
SCOR descriptions. According to the semantic representation of the goal ontology

in Chapter 5, the values of the object properties targetActivity, targetArtifact,
and targetRole are from the domain ontology Activity, Artifact and Actor-role respec-
tively. TargetConstraint is modeled as a data property since there is no corresponding

ontological definition in the domain ontology. A pair of inverse properties has_parts

and part_of are defined for a goal concept to represent the semantics of goal decom-

position. An OWL model of the SCOR ontology is presented in Table 7.1.

The identified domain and goal concepts from the SCOR specifications are modeled

as sub-Classes of the above categories. Values of the properties for a SCOR Class are
specified through the OWL restrictions. As examples, Figure 7.11, Figure 7.12, Fig-

ure 7.13 and Figure 7.14 illustrate the sub-Classes of the SCOR_MGMT_PROCESS,
SCOR_INPUT_OUTPUT, Hard Goal and Soft Goal in the Protégé-OWL editor.

7.4. ANNOTATION OF PROCESS MODELS WITH PRO-SEAT 113

Figure 7.11: SCOR process element S1.2 Receive Product in Protégé-OWL editor

Figure 7.12: SCOR input/output Sourced Product On Order in Protégé-OWL editor

7.4 Annotation of Process Models with Pro-SEAT

In this section, we will describe the annotation of PMA, PMB1 and PMB2 with the Pro-
SEAT annotation tool. The annotation follows our semantic annotation framework and

approach, including profile annotation, meta-model annotation, model annotation and
goal annotation.

7.4.1 Profile annotation

The descriptive and technical information about models in the profiles are important in
this scenario. Title and description of models may help to identify the model content

in general. The title of PMA is "sales logistics process" and the main processing is
depicted in the description. The titles of PMB1 and PMB2 are "stock logistics process"

and "delivery logistics process" respectively. In this scenario, the three models are
classified under the same category "Business and Economy" [211] and domain is "SCO

114 CHAPTER 7. EXEMPLAR STUDIES AND APPLICATION SYSTEM

Figure 7.13: SCOR hard goal Sourced Products are Verified in Protégé-OWL editor

(Supply Chain Operations)". The SCOR ontology is therefore a domain ontology in
the exemplar studies. We assume that the reference domain ontology applied in the

annotation is SCOR (Supply Chain Operations Reference-model) [163]. The URI and
URL of SCOR ontology are specified in the profile annotation. Technical information

about PMA shows that the modeling language is BPMN, the language_version is 1.0,
and the modeling tool is Metis 5.2.2. PMB1 and PMB2 are also built with the tool

Metis 5.2.2 but the modeling language is EEML and the version of EEML is 2005.
Part of profile annotation of PMA is exemplified in a tag language as follows.

...
<dc:title>sales logistics process</dc:title>

<profileAnno:category>Business and Economy</profileAnno:category>

<profileAnno:domain>SCO</profileAnno:domain>

...
<profileAnno:modeling_langugage>BPMN</profileAnno:modeling_language>

<profileAnno:language_version>1.0</profileAnno:language_version>

<profileAnno:modeling_tool>Metis 5.2.2<profileAnno:modeling_tool>

...

7.4.2 Meta-model annotation

The annotation of meta-models in this scenario includes annotating BPMN 1.0 and

EEML 2005 with GPO. The mapping rules as defined in the semantic annotation
framework, meta-model elements can be one-to-one, many-to-one or combined-to-one

mapped to a GPO concept. Table 7.2 shows the mapping results for meta-model
annotation.

During the implementation of the annotation tool, we made practical adjustments to
the GPO as follows. WorkflowPattern is simplified by specifying sequences of activ-

7.4. ANNOTATION OF PROCESS MODELS WITH PRO-SEAT 115

Figure 7.14: SCOR soft goal Improve Supplier Delivery Performance in Protégé-OWL
editor

Table 7.2: Mapping the EEML and BPMN meta-model elements to the GPO concepts
GPO concepts EEML elements in METIS 5.2.2 BPMN elements in METIS 5.2.2

Activity Task Logical Process
Actor-role Organization, Person Swimlane including Horizontal Swim-

lane and Vertical Swimlane
Artifact Resource, Role, Information Object,

Software Tool, Manual Tool, Material
Tool, Location

Data Object, property ’Data’ in Event

Input Input Port Input
Output Output Port Output
WorkflowPattern Combination of Flow, Milestone and

Decision Point
Combination of Event (including
Start Event, Intermediate Event, End
Event), Sequence Flow, Gateway

Precondition Milestone, Decision Point Event (including Start Event, Interme-
diate Event), Gateway

Postcondition Milestone, Decision Point Event (including End Event, Interme-
diate Event), Gateway

Exception Decision Point Event (when event type is error) to-
gether with Sequence Flow

ities with the properties has_precedingActivities and has_succedingActivities

of Activity. Moreover, mapping the same meta-model element to two different GPO
concepts is not supported, because it produces the identical instances of different OWL

Classes (e.g. a same milestone in the EEML model will be the instance of Precondi-

tion and the instance of Postcondition at the same time). This violates the OWL
modeling principle that instances of different OWL Classes should be unique. A solu-

tion of the implementation of Pro-SEAT is to modify the GPO ontology by inserting
an abstract concept Condition as the super-Class of Precondition and Postcondi-

tion. The mapping between the modeling elements and Precondition/Postcondition is
therefore transferred to the mapping between the modeling elements and Condition.

The distinction of Precondition and Postcondition (i.e. which model element is the
instance of Precondition and which model element is the instance of Postcondition) can

be specified in the model annotation phase through the properties has_Precondition

and has_Postcondition of an Activity.

After the meta-model annotation, three models can be represented using GPO

116 CHAPTER 7. EXEMPLAR STUDIES AND APPLICATION SYSTEM

concepts through the meta-model mapping. The contents in different models are then
expressed in a same process knowledge representation language, e.g. an Activity named
"check availability of delivery item" has an Actor− role called "logistics department" in

enterprise A (originally represented in PMA as a logical process "check availability of
delivery item" in a swimlane "logistics department" in BPMN) vs. an Activity named

"check stock" has an Actor− role called "logistics department" in enterprise B (originally
represented in PMB2 as an organization object "logistics department" participates in the

task "check stock" in EEML).

7.4.3 Model annotation

In the model annotation phase, model elements as GPO instances will be annotated
with reference ontologies. Since PMA and PMB2 are about the delivery process, the ref-

erence ontologies for annotating the Activities are mainly from the category DELIVER

under SCOR_MGMT_PROCESS. Furthermore, the products are stocked products so that

the process elements of D1 Deliver Stocked Product are the corresponding refer-
ences. For PMB1, most of the Activities refer to the process elements of S1 Source

Stocked Product. Artifacts and Actor-roles refer to the SCOR_INPUT_OUTPUT and

SCOR_ORGANIZATIONAL for all three models.

Relationships between model elements such as has_subActivity, has_Input,

has_Output, etc. (defined in GPO) should be instantialized in the model annotation
phase. Some of the relationships can be directly transformed from the original process

models, and some are specified by the annotation user. Such annotations can enrich
the implicit semantics in the original models or compensate for the lost information
caused by the transformation from the meta-model annotation.

7.4.4 Goal annotation

For the goal annotation, the semi-automatic goal annotation function of Pro-SEAT

is run in the exemplar studies. Through the execution of goal annotation algorithms
defined in section 6.3, the possible goal annotation results can be deduced automatically

based on the model annotation information. Pro-SEAT provides a list of goal options
by matching the SCOR goal ontology with the PSAM models. From the list, annotation

users then select suitable goals manually to annotate the model fragments.

7.4.5 Annotation results

Complete annotation results of three models are presented in Appendix H in OWL. For
the sake of representation clarity and limited space, in this section we represent parts

of the annotation results of three models in Table 7.3, Table 7.4 and Table 7.5. The
first column of the tables lists the PSAM Activity instances which are also the model
elements of Logic Process in PMA or Task in PMB1 and PB2. The second column is the

model annotation result: the Activities are annotated with SCOR process elements or
categories through the semantic relationships same_as, kind_of and phase_of. The

third and fourth columns are the goal annotation results. The SCOR goal ontology
is associated with each Activity instance in the case of achieving certain hard goals,

7.5. PROCESS KNOWLEDGE MANAGEMENT SYSTEM 117

positively and/or negatively satisfying soft goals. Details of the annotation analysis are
depicted in Appendix F.

After annotating all the Activities, Artifact, Actor-role, Input and Output of
a PSAM model with domain ontology, the knowledge representation of those process
models is aligned with the SCOR ontology. Thus the process knowledge is explicit

and open to a third party who is interested in model exchange, system integration
and business cooperation in the SCOR domain. Goal-oriented analysis and goal-driven

search of process models and model fragments can be deployed based on the SCOR
goal ontology which is referenced in the annotation. For instance, the annotation

information can help an analyst to find out the processes which are related to the
verification costs.

7.5 Process Knowledge Management System Based on

Semantic Annotation

Generally knowledge management (KM) refers to a range of practices used by organi-

zations to create, codify, and disseminate knowledge for reuse, awareness and learning
within or across the organization. In the context of the thesis, process models from

different enterprise systems are distributed process knowledge to be managed for the
cooperation business. The hypothesis is that process models have been represented

in our process annotation models — PSAM models in OWL, which is a way to rep-
resent process knowledge. However, enterprises need a service to manage the desired

knowledge. Therefore, the management service should provide the query functions to
set users’ search conditions and then return search results. The search conditions can

be set based on profiles or contents of process models. The query should not only be
keyword-based but also ontology-based, so the semantic relationships among queries
and models/model fragments should be machine-interpretable during the query. More-

over, users need the system to help them "discover" knowledge, to do this users need only
provide the business goals and the system should return the process models/knowledge

fulfilling the goals. Since the process knowledge is represented by process models, the
search results are models or model fragments. No matter which way to represent the

models — the visual display or the textual description, the knowledge management ser-
vice should allow the users to navigate the knowledge conveniently, such as providing

both a complete view and a partial view of models/model fragments.

Following our semantic annotation framework, an enterprise can use the semantic

annotation client tool to annotate model resources. The client tool sends the annotation
models to the server through which the process knowledge is stored into a knowledge

repository. Since the annotation models are represented in OWL — XML-based files,
the repository is an XML-based repository. The process knowledge query, discovery
and navigation functions can also be implemented as user interfaces on client side.

Knowledge users can edit the search queries and business goals on the client side and
submit the queries and goals to the server. The search and discovery services are

executed on the server. The search results are returned from the server to clients.
Finally, users can navigate the returned process knowledge/models on the client side.

118 CHAPTER 7. EXEMPLAR STUDIES AND APPLICATION SYSTEM

Table 7.3: Part of semantic annotation results of PMA

PSAM Activity

Instance

Semantic Annotation Goal Annotation

Relations

SCOR Goal Ontology

Client RFQ pro-
cessing

phase_of D1.1 Process Inquiry
and Quote

achieves Inquiry and Quotation is
Processed

Client quotation
processing

phase_of D1.1 Process Inquiry
and Quote

achieves Inquiry and Quotation is
Processed

Standard order
processing

same_as D1.2 Receive Enter and
Validate Order

achieves Order is Consolidated;
Order is Placed; Order is
Processed; Order is Vali-
dated

Credit Control phase_of D1.2 Receive Enter and
Validate Order

achieves Order is Validate

kind_of ED.5 Manage Deliver
Capital Assets

positively_satisfies Reduce Order Entry and
Maintenance Costs; In-
crease Return on Deliver
Capital Assets

negatively_satisfies Reduce Order Processing
Time

Monitor delivery
date

phase_of ED.1 Manage Deliver
Business Rules

positively_satisfies Improve Deliver to Cus-
tomer Delivery to Date
Performance; Improve
Deliver to Customer On
Time Delivery Perfor-
mance

Check delivery
items

phase_of D1.3 Reserve Inventory
and Determine Delivery Date

positively_satisfies Improve Deliver Per-
formance; Raise Order
Quantity Fillrate

Check availability
of delivery items

phase_of ED.3 Manage Deliver
Information

positively_satisfies Ensure Full Delivery; Im-
prove Deliver to Cus-
tomer On Time Deliv-
ery Performance; Im-
prove Delvier to Cus-
tomer Delivery to Date
Performance

Create delivery kind_of ED.3 Manage Deliver In-
formation

achieves Delivery is Scheduled;
Delivery Terms are
Generated

positively_satisfies Ensure Full Shipment;
Ensure Full Delivery

Transportation
planning

same_as D1.7 Select Carriers and
Rate Shipments

achieves Delivery is Scheduled

positively_satisfies Ensure Full Shipment;
Reduce Order Shipment
Time

Transportation
processing

same_as D1.12 Ship Product achieves End Items are Delivered

7.5. PROCESS KNOWLEDGE MANAGEMENT SYSTEM 119

Table 7.4: Part of semantic annotation results of PMB1

PSAM Activity
Instance

Semantic Annotation Goal Annotation
Relations

SCOR Goal Ontology

Get the order to
suppliers

phase_of S1.1 Schedule Product
Deliveries

achieves Sourced Product are On
Order; Order is Placed

positively_satisfies Reduce Order Processing
Time; Reduce Order Re-
ceipt Time

Check items from
local suppliers

kind_of S1.3 Verify Product achieves Sourced Product are Ver-
ified

positively_satisfies Reduce Order Receipt
Time

Check consignment
items

kind_of S1.3 Verify Product achieves Sourced Product are Ver-
ified; Product Quality is
Approved

positively_satisfies Reduce Order Receipt
Time; Reduce Verifica-
tion Costs

Check imported
items

kind_of S1.3 Verify Product achieves Sourced Product are Ver-
ified; Procurement Notifi-
cation to Supplier

negatively_satisfies Reduce Order Process-
ing Time; Improve Sup-
plier On Time Delivery
Performance; Process In-
voice Without Error; Re-
duce Order Processing
Costs; Reduce Order Re-
ceipt Time; Reduce Veri-
fication Costs

check the item
quantities

phase_of S1.3 Verify Product achieves Product Quantity is Ap-
proved

Issue the deficit
protocol

phase_of ES.9 Manage Supplier
Agreements

achieves Procurement Notification
to Supplier

negatively_satisfies Reduce Order Processing
Time; Improve Supplier
On Time Delivery Per-
formance; Reduce Order
Processing Costs; Reduce
Order Receipt Time

Issue an export in-
voice

phase_of S1.5 Authorize Supplier
Payment

achieves Payment is Authorized to
Supplier

negatively_satisfies Reduce Order Process-
ing Time; Reduce Order
Processing Costs; Reduce
Order Receipt Time; Pro-
cess Invoice Without Er-
ror

store items in Orbit kind_of S1.4 Transfer Product achieves Sourced Products are
Transferred; Available
Inventory

120 CHAPTER 7. EXEMPLAR STUDIES AND APPLICATION SYSTEM

Table 7.5: Part of semantic annotation results of PMB2

PSAM Activity
Instance

Semantic Annotation Goal Annotation
Relations

SCOR Goal Ontology

Consolidate orders same_as D1.4 Consolidate Orders achieves Order is Processed; Order
is Consolidated

positively_satisfies Reduce Order Processing
Costs; Reduce Order Pro-
cessing Time

Check stock phase_of D1.3 Reserve Inventory
and Determine Delivery Date

achieves Order is Validated

positively_satisfies Raise Order Quantity
Fillrate

Correct orders phase_of D1.2 Receive Enter and
Validate Order

achieves Order is Validated; Order
is Processed

positively_satisfies Ensure Full Delivery
negatively_satisfies Reduce Order Entry and

Maintenance Costs; Re-
duce Order Processing
Time

Credit control phase_of D1.2 Receive Enter and
Validate Order

achieves Order is Validate

kind_of ED.3 Manage Deliver In-
formation

positively_satisfies Reduce Order Entry and
Maintenance Costs

negatively_satisfies Reduce Order Processing
Time

Generate delivery
protocol

kind_of ED.3 Manage Deliver In-
formation

achieves Delivery Terms are Gen-
erated

positively_satisfies Improve Deliver to Cus-
tomer Delivery to Date
Performance; Improve
Deliver to Customer On
Time Delivery Perfor-
mance

Issue invoice phase_of D1.15 Invoice achieves Invoice to Customer is Is-
sued

negatively_satisfies Reduce Invoice to Cus-
tomer Processing Time;
Reduce Invoice to Cus-
tomer Processing Costs;
Process Invoice Without
Error

Send items kind_of D1.12 Ship Product achieves End Items are Delivered
Deliver items to
franchisees

phase_of D1 Deliver Stocked
Product

achieves Invoice to Customer is Is-
sued; End Items are De-
livered

Deliver items to
shops

phase_of D4 Deliver Retail Prod-
uct

achieves End Items are Delivered

positively_satisfies Reduce Order Shipment
Time

7.5. PROCESS KNOWLEDGE MANAGEMENT SYSTEM 121

7.5.1 System architecture

The architecture of the system for process knowledge management is shown in Figure
7.15. Since the process knowledge management system is based on the semantic anno-

tations, we include the annotation client tool in the system architecture. In the context
of this thesis, the annotation client tool is Pro-SEAT. Annotators works with the an-

noation client too to annotate the original process knowledge resources. Annotators
in this scenario should be model experts and domain experts to assure the annotation
quality1. The original process knowledge resources — models and meta-models in XML

files and XML schema files are stored in the local process model repository.

As references, ontologies are essential in our approach. Ontologies are stored on
an ontology server. When annotators employ the annotation with the client tool, the

selected ontologies must be loaded from the ontology server. The annotator should
select appropriate domain ontologies and goal ontologies according to the ontology
categories. The GPO ontology is only applied for the meta-model annotation.

Completing the annotation, annotators submit the annotated process models and/or

the annotated meta-models to process knowledge repository server. It is allowed to
modify the annotated models stored on the knowledge repository server but the autho-

rization and the authentication are required (which we do not consider in this approach).

Knowledge users might be different from annotators. They do not know about

the original process models but the system will assist them to access the desired pro-
cess models. There are three applications for knowledge users, i.e. process knowledge

query, discovery and navigation. Those applications are implemented by client user in-
terfaces and application servers. Through the user interface, users can edit the queries

or provide business goals. Queries can be keyword-based or ontology-based. For the
ontology-based query, users can browse domain ontologies from the ontology reposi-
tory and use ontology concepts to form a query. Goal ontologies can be applied by

users to set goals for the knowledge discovery. When the application server receives
queries or goal requirements from the client, the matchmaker component and the rea-

soner component co-work with ontologies to find process models. The reasoner uses
description logic inference technology on both the ontological query and the ontolog-

ical annotation, because ontologies and annotations are all in OWL. Based on the
inference, the matchmaker matches user’s query/goals with annotated models in the

repository. The application server sends the search results to the client and the re-
turned knowledge/models can be explored by the client. Users can navigate process

knowledge/models from different views according to the process properties defined in
PSAM.

7.5.2 Semantic reasoning

The underlying logic basis of OWL is description logic, which can provide the inference
services of the knowledge for semantic reasoning (w.r.t. an ontology O) [53]:

• Consistency. Check if the knowledge is meaningful. (Is C is satisfiable w.r.t.

O? i.e. C I 6= ∅ in some model I of O?)

1The quality of annotation affects the quality of knowledge.

122 CHAPTER 7. EXEMPLAR STUDIES AND APPLICATION SYSTEM

Figure 7.15: Architecture of the process knowledge management system based on semantic
annotation

• Subsumption. Structure knowledge and computer a taxonomy. (Does C sub-
sume D w.r.t. O? i.e. C I v D I in every model I of O?)

• Equivalence. Check if two classes denote same set of instances. (Is C equivalent
to D w.r.t. O? i.e. C I = D I in every model I of O?)

• Instantiation. Check if individual is an instance of a class. (Is x an instance of

C w.r.t. O? i.e. xI ∈ C I in every model I of O?)

• Retrieval. Retrieve the set of individuals that instantiate a class and a property.

– Retrieve the set of i s.t. i ∈ C w.r.t.O.

– Retrieve the set of (x, y) s.t. (x, y) ∈ R w.r.t.O.

Semantic reasoning can be useful in the ontology-based querying of process knowl-
edge. The reasoning about the classes and properties of an ontology is often called as

7.5. PROCESS KNOWLEDGE MANAGEMENT SYSTEM 123

T-Box inference, whilst A-Box inference is associated with instances of the classes [53].
In the process knowledge management system, the knowledge model PSAM is the in-
stance of the GPO ontology and the contents in PSAM are from domain ontology (e.g.

the SCOR ontology in the exemplar studies). Therefore, A-Box inference can be em-
ployed when retrieving the process model fragments which are represented as the GPO

instances in the PSAM model. Meanwhile, T-Box inference can be applied on reason-
ing the semantic relationships of the ontological concepts between query and domain

ontology.

7.5.3 Simple walkthrough examples

We use some annotation results from the exemplar studies to exemplify how the system

architecture and semantic reasoning technique are applied in the application of process
knowledge management. Three enterprise models have been annotated with GPO and
SCOR ontologies. The annotated model fragments represented in PSAM are stored in

the repository, which are to be retrieved, discovered and navigated by model users.

In one example, the model user needs to look for some model fragments about the
process which deal with "Bill" in both enterprise systems. The following steps must be

taken (formalized in (i), (ii), and (iii)):

1. The search question must be translated as a query using PSAM "language" derived
from GPO ontology and terminologies from SCOR ontology.

• The process is defined as Activity and "Bill" is instance of Artifact accord-
ing to the GPO ontology.

• The term "Bill" in the user’s question is same as the concept "Bill" in the

SCOR ontology.

• The query submitted to the system is then interpreted as "Find the Activ-

ities which have Artifact Bill.", which is formalized in (i) with respect to

the GPO and SCOR ontology.

2. The system analyzes and executes the query accompanied with reasoner.

• The reasoner employs the T-Box inference to get all the equivalent concepts

and all the sub-Classes of Bill in the SCOR ontology, which is formalized
in (ii). In this case, Invoice is semantically equal to Bill, and Bill of

Materials is a sub-Class of Bill.

• The query is expanded by the three concepts, i.e. "Find the Activities

which have Artifact Bill, Invoice or Bill of Materials".

• According to the PSAM annotation, the model instances of Artifact can

have the references of Bill, Invoice, and Bill of Materials through the
semantic relationships such as same_as, kind_of and part_of. The query is

hereby expanded based on the annotation information, which is formalized
in (iii). A-Box inference is applied in (iii) to find out the model fragments

(x, y) which are annotated as the instances of Activity and Artifact.

124 CHAPTER 7. EXEMPLAR STUDIES AND APPLICATION SYSTEM

Query: ?x|(x, Bill) ∈ R: has_artifact, x ∈ Activity
w.r.t Ogpo, Oscor (i)

T-Box inference: ?C|C = Bill w.r.t. SCOR ontology Oscor

?C|C v Bill w.r.t. Oscor (ii)

A-Box inference: ?y|(x, y) ∈ R: has_artifact, y ∈ Arti f act w.r.t. Ogpo

(y, C) ∈ R: same_as, kind_of, part_of w.r.t. Ogpo (iii)

After running query and inference tasks, the system finds the following model frag-

ments which are about the process dealing with "Bill":

1. PMA: "Check relevant bills". In the original model of PMA, this Activity has an

Artifact "bill" which is annotated with the SCOR ontology concept "Bill".

2. PMB2 "Send items". In the original model of PMB2, this Activity has an Arti-

fact "invoice" which is annotated with the SCOR ontology concept "Invoice" (an
equivalent concept of "Bill" in the SCOR ontology).

Another example is about a goal query of process knowledge. The model user would
like to search the process model fragments having the impact on the goal of improving

delivery performance. Similar steps are undertaken formalized in (j), (jj), and (jjj):

1. The search question is translated as a query using PSAM, GPO and SCOR ter-

minology.

• Goal is only used to annotate Activity in PSAM, the search target is hence

Activity of PSAM in the repository.

• Improve Delivery Performance is a soft goal defined in the SCOR ontol-
ogy, which is chosen as the keyword for the query.

• An Activity in PSAM is annotated with a soft goal through the relation-

ship positively_satisfies and negatively_satisfies. Therefore, the
query submitted to the system is then interpreted as "Find any Activity

which positively_satisfies or negatively_satisfies the goal Improve

Delivery Performance". The query is formalized in (j).

2. The system analyzes and executes the query accompanied with a reasoner.

• A reasoner employs the T-Box inference to get all the equivalent concepts, all

the sub-Classes and all the composition members (has_parts) of Improve

Delivery Performance, which is formalized in (jj):

– The sub-Class inference results in Improve Deliver to Customer

Performance and Improve Supplier Delivery Performance.

– Process Invoice Without Error, Ensure Full Delivery and

Decrease Percentage of Defective Supplied are the part-goals of
Improve Deliver to Customer Performance.

7.5. PROCESS KNOWLEDGE MANAGEMENT SYSTEM 125

– Furthermore, through the transition of the inference, the composi-
tion members of Improve Deliver to Customer Performance (i.e.
Improve Deliver to Customer On Time Delivery Performance,

Improve Deliver to Customer Delivery to Date Performance)
and of Improve Supplier Delivery Performance (i.e. Improve

Supplier On Time Delivery Performance, Ensure Supplier

Delivery to Date Performance) should also be involved in the query.

• The query is expanded by those inferred concepts, i.e. "Find the
Activities which positively_satisfies or negatively_satisfies

the goals Improve Delivery Performance, Process Invoice Without

Error, Ensure Full Delivery, Decrease Percentage of Defective

Supplied, Improve Deliver to Customer Performance, Improve

Supplier Delivery Performance, Improve Deliver to Customer

On Time Delivery Performance, Improve Deliver to Customer

Delivery to Date Performance, Improve Supplier On Time Delivery

Performance, and Ensure Supplier Delivery to Date Performance."

• When executing the query formalized in (jjj), C will be replaced by all the

inferred concepts and A-Box inference is applied to locate the instance of
Activity (x).

Query: ?x|(x, ImproveDeliveryPer f ormance) ∈ R: positively_satisfies,

negatively_satisfies, x ∈ Activity w.r.t Ogpo, Oscor (j)

T-Box inference: ?C|C = ImproveDeliveryPer f ormance w.r.t. Oscor

?C|C v ImproveDeliveryPer f ormance w.r.t. Oscor

?C|ImproveDeliveryPer f ormance has_parts C w.r.t. Oscor (jj)

A-Box inference: (x, C) ∈ R: positively_satisfies, negatively_satisfies

w.r.t. Ogpo (jjj)

After running the query and inference, the system finds the following model frag-

ments which might have an impact on the goal of improving delivery performance:

1. PMA: "Check delivery items" (positively_satisfies Improve Delivery

Performance); "Correct the delivery quantity" (positively_satisfies

Improve Deliver to Customer Performance); "Check availability of delivery
items" (positively_satisfies Ensure Full Delivery); "Monitor deliv-

ery date" (positively_satisfies Improve Deliver to Customer On Time

Delivery Performance and Improve Deliver to Customer Delivery to

Date Performance); "Edit partial delivery information" (negatively_satisfies

Ensure Full Delivery).

2. PMB1: "Receive items from local suppliers" (positively_satisfies Ensure

Supplier Delivery to Date Performance and Improve Supplier On Time

Delivery Performance); "Issue the deficit protocol" (negatively_satisfies

126 CHAPTER 7. EXEMPLAR STUDIES AND APPLICATION SYSTEM

Improve Supplier On Time Delivery Performance); "Issue an export Invoice"
(negatively_satisfies Process Invoice Without Error).

3. PMB2: "Correct orders" (positively_satisfies Ensure Full Delivery); "Is-
sue Invoice" (negatively_satisfies Process Invoice Without Error).

7.6 Summary

In this chapter, we have exemplified the semantic annotations— profile annotation,
meta-model annotation, model annotation and goal annotation through two exemplar

studies. A BPMN model and two EEML models have been selected from two differ-
ent business organizations in a same business domain about logistics processing. The

representations of two models have shown the diversities of modeling notations, con-
ceptualizations, terminologies, and business processing ways. GPO as the semantic

mediator for modeling languages, has been mapped to BPMN and EEML in the meta-
model annotation phase. Two models have been transformed into the PSAM models

with Pro-SEAT. The SCOR reference model provides the process templates and stan-
dards of logistics process, and it has been chosen as domain ontology for the model
annotation and the goal annotation. The level 3 process elements with inputs and

outputs from SCOR have been formalized as SCOR domain ontologies in OWL. In
order to facilitate the semantic reference from the PSAM model to the domain on-

tology, the SCOR concepts have been organized in Activity, Artifact and Actor-role
categories. The goal ontology has been derived from the process elements, the inputs

and outputs, and the metrics of performance attributes of the SCOR specifications.
The semi-automatic goal annotation has been conducted by Pro-SEAT based on the

goal annotation algorithms.
To illustrate the applicability of the semantic annotation approach, we have out-

lined a process knowledge management system integrating the semantic annotation
components. Making use of the Semantic Web technology, the semantic reasoning such

as T-Box and A-Box inference has also been exemplified on the semantic annotation re-
sults for the process knowledge management purpose. In next chapters we will conduct
more systematic evaluation and applicability validation of our method.

Part III

Evaluation

127

Chapter 8

Quality Evaluation of the Method

Evaluation of the method and prototype implementation consists of two parts: 1)
quality analysis of semantic annotation framework and method, and 2) applicability

validation based on annotation results. In this chapter, we focus on the quality of our
method. We apply a quality framework — SEQUAL to provide a systematic analysis on

the quality of GPO (General Process Ontology), PSAM (Process Semantic Annotation
Model) and the annotation tool Pro-SEAT. The quality of the work is evaluated based

on the use experience of the exemplar studies, which is also related to the applicability
validation of the work in Chapter 9.

8.1 Evaluation Design

Since the underlying theory of our work is information modeling, we look at the criteria
and metrics of the evaluation in the information modeling discipline. GPO and PSAM

have been created for the knowledge representation of process models. If the PSAM
definition in chapters 4 and 5 is regarded as a modeling language, GPO is the meta-

model of it, and an instance of PSAM is a model. In our exemplar studies, the original
EEML/BPMN process models are translated into the PSAM models in a common pro-

cess knowledge modeling language based on GPO. We therefore apply a general quality
framework of models and modeling languages in the evaluation. The quality framework

is based on the semiotic theory1, which is also the theoretical basis of our annotation
framework. Hence the whole work is built and evaluated under the same theoretical
foundation. The quality categories are selected from the quality framework and evalu-

ated through the exemplar studies. The annotation tool is also evaluated according to
the quality framework. However, since it is only a prototype, the performance of the

system and the user interface is not taken into account in the evaluation.

8.2 Settings for the Quality Evaluation

In this section we discuss a general quality framework — SEQUAL [80], which is used
for this evaluation work. A set of facts from the annotation approach and exemplar

1The quality categories in the quality framework correspond to the semiotic ladder [33].

129

130 CHAPTER 8. QUALITY EVALUATION OF THE METHOD

studies are identified and explained to correspond to the quality categories which are
defined in the quality framework.

8.2.1 SEQUAL

SEQUAL (SEmiotic QUALity framework) is the latest version of the general quality
framework of models and modeling languages which was earlier reported in [73], [76],
and [78]. This quality framework was developed with the objective of providing a

systematic structure for evaluating the desirable properties for conceptual models. It
has been useful in wider context of understanding quality in areas such as requirements

engineering [74], enterprise modeling [78] [115], interactive modeling [77], and evaluating
and comparing modeling languages such as UML [75], OWL [91].

Compared with other approaches and frameworks available for evaluating modeling
approaches, SEQUAL provides a systematic evaluation method and it has three unique
properties:

• It distinguishes between goals and means, i.e. by separating what to achieve from
how to achieve it.

• It is closely linked to linguistic and semantic concepts, which particularly includ-

ing the discussion on the terms of the semiotic theory — syntax, semantics, and
pragmatics.

• It is based on a constructivistic world-view, recognizing that models are usually

created as part of a dialogue between the participants involved in modeling, whose
knowledge of the modeling domain and potentially the domain itself changes as

modeling takes place.

Early version distinguished among three quality categories for conceptual models
(syntactic, semantic, and pragmatic) according to steps on the semiotic ladder [33].

The quality goals corresponding to the categories are syntactic correctness, semantic
validity and completeness, and comprehension (pragmatic). The framework distin-
guishes between goals and means to reach the goals. In the later extensions, more

quality categories have been added so that the entire semiotic ladder is included, that
is, physical, empirical, syntactic, semantic, perceived semantic, pragmatic, social and

organizational quality. The main concepts of the framework and their relationships for
quality of models are illustrated in Figure 8.1.

Physical quality is to check how the externalized model M could be persistent
and available enabling the audience to make sense of it. Persistence is usually associated
with the protection against loss or damage. It also sometime includes previous versions

of the model, if these are relevant. Availability is dependent on its externalization and
distributability.

Empirical quality focuses on model M itself. Empirical quality deals with the
variety of elements distinguished, error frequencies, and ergonomics for CHI (Computer-

Human Interaction) for documentation and modeling tools.

Syntactic quality is the correspondence between the model M and the language
extension L of the modeling language. Syntactical correctness is the goal of this quality

8.2. SETTINGS FOR THE QUALITY EVALUATION 131

Figure 8.1: SEQUAL framework for discussing quality of models [80]

category, which requires that all statements in the model conform to the syntax and

vocabulary of the language.

Semantic quality is the correspondence between the model M and the modeling

domain D. The semantic validity and the semantic completeness are goals for this
quality.

Perceived semantic quality is the correspondence between the social actors’

interpretation I of a model M and their current knowledge K of the domain D.

Pragmatic quality is the correspondence between the model M and the audiences’

interpretation of it I. Usually social pragmatic quality (to what extent people un-
derstand the models) and technical pragmatic quality (to what extend tools can

be made that can interpret the models) are differentiated. In addition, the pragmatic
quality includes to what extent the participants are able to change the domain after
interpreting the model or learning from it. The goal for pragmatic quality is compre-

hension, i.e. the degree to which a model can be understood.

Social quality focuses on social actors’ interpretations I. The goal of social quality

is agreement among their interpretations.

Organizational quality is the correspondence between the model M and the

modeling goals G. Organizational goal validity and organizational goal completeness
are related to this quality.

The quality framework of modeling languages keeps the same concepts used in the

quality framework of models. However, the core concept is language extension L but
not model externalization M anymore. Six quality categories of language quality are

132 CHAPTER 8. QUALITY EVALUATION OF THE METHOD

identified as follows.

Figure 8.2: Language quality in the quality framework [80]

• Domain appropriateness indicates whether the modeling language addresses

the problems of eliciting/representing relevant facts of the problem domain. Do-
main appropriateness is primarily a means to achieve semantic quality.

• Participant appropriateness indicates whether the modeling language corre-
sponds to what the participants perceive as a natural way of working, i.e. the

modeling language they have known. This is primarily a means to achieve prag-
matic quality.

• Modeler appropriateness indicates whether the modeling language assists the

modelers in externalizing their knowledge. Modeler appropriateness is primarily
a means to achieve semantic quality.

• Comprehensibility appropriateness indicates whether the social actors are
able to comprehend the models made in the modeling language. Comprehensi-

bility appropriateness is primarily a means to achieve empirical and pragmatic
quality.

• Tool appropriateness indicates whether the modeling language lends them-

selves to automated tool support or assists in support for reasoning. Tool appro-
priateness could be means to achieve syntactic, semantic, and pragmatic quality

through formal syntax, mathematical semantics, and operational semantics, re-
spectively.

8.2. SETTINGS FOR THE QUALITY EVALUATION 133

• Organizational appropriateness indicates whether the model made in the
modeling language achieves the organization’s goals. This is the means to support
organizational quality.

Figure 8.2 indicates how these appropriatenesses are related to the concepts in the

quality framework. Those categories are related both to the meta-model and to the
notation.

8.2.2 The facts corresponding to the quality categories from the ex-
emplar studies

In order to apply the general quality framework, we firstly specify the facts corre-

sponding to the sets in the quality framework. The quality categories relate to the
relationships between the following facts.

Annotation model

In this scenario, the annotation process and the annotation result are evaluation tar-
gets. In our approach, the annotation result is an instance of the annotation model.

Therefore, the PSAM model is the externalized model in the quality framework.

Goals of annotation

The annotation (the PSAM modeling in our approach) is to represent the knowledge
stored in the existing process models through a set of agreed semantically-defined con-

cepts and formats. Therefore, the goals of annotation depend on the original modeling
goals in each case and also depend on the goals of knowledge management. A number

of goals are identified from the cases as follows.

• G1 - The annotation should improve the readability of the existing process models.

• G2 - The annotation should help sharing process knowledge among different or-
ganizations within a domain.

• G3 - The annotation should help to analyze and validate the existing process
models.

• G4 - The annotation should be helpful in the semantic reconciliation of models

and to facilitate reuse and integration of models.

Modeling domain

In general, the modeling domain is about processes in the enterprise modeling domain.

In this case, it is the SCO (Supply-Chain-Operation) domain.

Language extension

GPO is the meta-model of PSAM and determines the definitions of PSAM. Thus,
GPO defines the syntax of the annotation model. Since GPO is created in OWL, a

PSAM model is the instance of the OWL model and it has the syntactical features and
constraints of OWL.

134 CHAPTER 8. QUALITY EVALUATION OF THE METHOD

Modeler — model annotator

In this scenario, model annotators are modelers. They create the annotation by apply-

ing their modeling and domain knowledge. In the exemplar studies, we assume that
the annotators of PMA know the modeling language BPMN and their BPMN models
quite well. The similar assumption for the annotators of PMB1 and PMB2 is the knowl-

edge of the EEML modeling language and EEML models. Moreover, they understand
thoroughly their business process and domain definitions. Such a role corresponds to

the modeler in the quality framework.

Participant actor — annotation user

Annotation users are the consumers of the annotation results. In the cases, they make

use of the annotation information in the process knowledge management activities, such
as querying information, analyzing models, and eliciting/inferring interested knowledge.

They correspond to the participant actors in the quality framework.

Annotation tool

The annotation tool is used to support the annotation procedure. The annotation tool
— Pro-SEAT provides the functions for profile annotation, meta-model annotation,

model annotation and goal annotation.

8.3 Quality Analysis

The quality evaluation includes the quality of GPO, the PSAM definitions, the anno-
tated PSAM model instances and the annotation tool for the cases. GPO is defined

as the meta-model of the annotation model, and the PSAM definitions are applied as
the notation of the modeling. Thus, the language quality is analyzed on GPO and

the PSAM definitions. The model quality is discussed based on the instances in the
exemplar studies. The quality categories of SEQUAL are also applied to evaluate to

which extent it improves the model quality.

8.3.1 GPO and PSAM quality evaluation

1. Domain appropriateness. GPO has been defined by referring most process mod-
eling languages in enterprise modeling, and GPO includes the most vital and

frequently used concepts in describing a business process. Compared with those
languages, the GPO concepts are more general in the enterprise process domain.

Accordingly, specific semantics in the domain can only be abstracted or encap-
sulated into a set in GPO. Such a quality evaluation can be made through the
analysis of the meta-model annotation in the exemplars. For example, in EEML

the resources could be the following different concepts — Organization, Person,
Information Object, Skill, Software Tool, Manual Tool, and Material Tool. And

the resource role is played by those resources. In the meta-model annotation,
only two concepts Actor-role and Artifact in GPO are found to correspond

8.3. QUALITY ANALYSIS 135

to those resources. It is obvious that more specified semantics from the organi-
zational perspective will be missing when representing the EEML model by the
GPO concepts. When annotating BPMN with GPO, an exact semantic mapping

between Data Object and Actor-role, between Swimlane and Artifact could
be made without losing the semantics of the original BPMN models. With re-

spect to the concepts of Activity, Input, Output and WorkflowPattern in
GPO, it is relatively easy to map to both EEML and BPMN concepts. Thus,

GPO is mainly designed from the process and function perspectives. The main
concepts defined in SCOR are process elements, inputs and outputs. GPO pro-

vides enough concepts to represent such a domain. However, the relationships
defined in EEML and BPMN cannot be directly mapped to the GPO concepts.

Relationships between the GPO concepts are not applied during the meta-model
annotation phase but directly generated in the PSAM model. Moreover, the an-
notation model is not only a process model but should support the ontology-based

annotation. The relations linking the GPO concepts and the ontology concepts
are specified in a PSAM model as well. All in all, GPO and PSAM have proper

domain appropriateness.

2. Participant appropriateness. As we have discussed perviously, GPO is relatively
simple compared with most enterprise process modeling languages. Since we

assume that the annotators are process modeling specialists, learning GPO should
not be a problem. In the profile, model and the goal annotation, we also assume

the annotators are domain experts and understand the original models quite well.
The only request for them is to have some knowledge about ontology and semantic

relationships when employing the ontology-based annotation.

3. Modeler appropriateness. Since the GPO concepts are more general than a partic-
ular enterprise process modeling language, some specific semantics in the original

models could not be conveyed in the PSAM model. However, as we argued before,
GPO is not initially created as a comprehensive process modeling language. The

intention of the proposal is to elicit the most important and useful process knowl-
edge and to represent it in annotation models for knowledge management. In

the meta-model annotation phase, a possible mapping from GPO to a particular
modeling language has only three types — one-to-one, one-to-many, and one-to-

combination, which means that the modeling language elements can be mapped
to only one GPO concept. In the current prototype implementation many-to-one
mappings are not supported. After the transformation based on the meta-model

annotation, all the PSAM models have the same structure. Therefore the modeler
can not make any other creative structure.

4. Comprehensibility appropriateness. Only 29 concepts are identified in the current
version of GPO and the PSAM specification. The concepts and the relationships
between them are relatively straightforward for annotation users to interpret just

by reading the names. With respect to the relations linking the GPO concepts
and the ontology concepts, only three semantic relationship categories (synonym,

hypernym, and meronym) from PSAM are chosen for the exemplar studies. Also
the name of those semantic relationships are specified according to the GPO

136 CHAPTER 8. QUALITY EVALUATION OF THE METHOD

concepts. For example, the meronym is represented by "phase_of" for Activity,
"part_of" for Artifact and "member_of" forActor-role.

5. Tool appropriateness. PSAM is defined using a formal syntax and modeled in
OWL. OWL is XML-syntactic compilable and it can be parsed by available com-

mercial or non-profit parsers. The semantics of GPO and PSAM are also formally
defined according to the OWL semantic definitions. The GPO concepts are mod-

eled as owl:Class and the relations are modeled as owl:ObjectProperty and
owl:DatatypeProperty. For our work, OWL DL is the basis of the annotation

models. OWL DL was designed to support the existing Description Logic business
segment and has desirable computational properties for reasoning systems [195].

The Protégé-OWL API is integrated in the annotation tool so that the syntax
and the semantics of GPO and PSAM can be interpreted by the tool.

6. Organizational appropriateness. Due to the fair comprehensibility appropriate-

ness and the application goals of this work, GPO and PSAM are theoretically
easy to understand for audiences from different enterprise units. However, fur-

ther empirical evidence is required to establish this claim.

8.3.2 Quality analysis of the annotation model instances

A specific annotation model is an instance of the PSAM model that is transformed

from the original process models and annotated with ontological concepts. The quality
of GPO and PSAM will impact the quality of the PSAM models. The evaluation

of the PSAM models concludes how the model quality relates to the usability of the
annotation results.

Physical Quality

We first look at how the knowledge of the domain has been externalized by the annota-
tion models. Such a goal could be achieved through the means of domain appropriate-

ness, participant language knowledge appropriateness and knowledge externalizability
appropriateness. As we have discussed in the quality analysis of those appropriate-

ness above, the PSAM models can present most information about the process and
functional perspective. The EEML and BPMN models have presented the logistics

processing comprehensively due to their expressiveness. Based on the meta-model an-
notation results, the original models are transformed into the PSAM models. Ideally,

the transformation should keep exactly the same information as the original models. It
is obvious that more one-to-one mappings in the meta-model annotation, more knowl-

edge represented in the modeling elements can be preserved after the transformation.
In the exemplar studies, five one-to-one mappings are in the annotation of BPMN and
three are in the annotation of EEML. In EEML, different resources are specified and

they all could be mapped to the GPO concepts Artifact and Actor-role respectively.
Thus, the PSAM models of PMA should have better physical quality than the ones of

PMB. Fortunately, those specific resources are not much applied in the original EEML
models PMB. That is, not much domain knowledge is lost because of the meta-model

8.3. QUALITY ANALYSIS 137

annotation in this case. However, annotating the relationships defined in the model-
ing languages is not supported by this approach. The relationships between the GPO
concepts are defined in GPO so that knowledge in the PSAM models are interpreted

according to the GPO definitions. Compared with the original models, the PSAM
models have additional knowledge — the ontological knowledge, which is introduced

during the model annotation and the goal annotation. In the exemplar studies, the
domain ontology is related to the SCOR standard, while the goal ontology provides

the knowledge about the objectives of process and also the links to the SCOR process
metrics. In chapter 9, we discuss what useful knowledge can be externalized by the

PSAM models.

The PSAM models are then checked to determine if they are easily available and
maintainable. The meta-model annotation result for each modeling language is stored

in an XML file. Such results can be reused in generating the PSAM models by different
models in the same modeling language. The generated PSAM models are OWL models,

so that the PSAM models can be read and edited by any OWL editing tools. Model
annotation and goal annotation is then made to the PSAM models. However, if there is

any change of the meta-model annotation, the PSAM models based on the meta-model
annotation result have to be re-generated. That means all the model and the goal
annotation work made on the PSAM models will be lost.

Empirical Quality

There is no graphic notation for the annotation model. All the generated PSAM models
are textual OWL files so that the readability of the model is poor without the tool

support. The PSAM models are categories according to the GPO concepts. Since
no graphic notation is used for the GPO concepts, the concepts such as "Activity",

"Artifact", "Actor-role" are not distinct to the user. There is a limited number of
categories since only eight GPO concepts are used in the exemplar studies. However,
when the original model is large2, the list of the instances for each GPO concept is

long. For example, 33 instances of Activity are listed for the annotation in PMA and
only 14 instances of Activity in PMB2. From the experience of using Pro-SEAT, it

turns out that it is more difficult to find a desired instance in the PSAM model of PMA

compared with the one of PMB2. The instance is named with the model textual title

and its model id from the original process models. When two instances have the same
model title but different model id, mistakes will be made by picking the wrong instance

because of a confusion with the title.

Syntactic Quality

As an OWL model with classes and instances, the PSAM models should comply the
OWL syntax. Since the PSAM models are generated from the meta-model annotation

result, the premise is that the syntax of GPO and the mappings have been validated.
GPO is created by Protégé and the correctness of the syntax is checked by Protégé.

The meta-model mapping rules have also been set to comply with OWL syntax.

2The size of the model depends on the number of the model elements, i.e. the instances in the
PSAM model.

138 CHAPTER 8. QUALITY EVALUATION OF THE METHOD

Semantic Quality and Perceived Semantic Quality

The semantic quality of the annotation models depends on the semantic quality of both
the original models and the annotation. We have assumed that the original process
models are semantically correct and complete. The semantics of the generated PSAM

models are consequently determined by the transformation from the original models to
the PSAM definitions.

More semantics are introduced during the model and the goal annotation. The

quality of such semantics is categorized into the perceived semantic quality in this ap-
proach because it corresponds to annotators’ and annotation users’ interpretations and

their knowledge of the domain. Most annotation operations are manual, but Pro-SEAT
supports the semi-automatic goal annotation which might help to achieve semantic va-

lidity and completeness. In Pro-SEAT, the ontology-based query interface provides the
service to perceive the semantics of the annotation. The perceived semantic quality of

annotation model is further validated through the applications and analyzed in chapter
9.

Pragmatic Quality

Since the annotated process models are OWL model instances, it is not difficult for an
annotation user to understand the annotation schema and structure. Moreover, ontol-

ogy is designed in a human understandable way and the annotation user is supposed
to know about the domain. There is no problem for the annotation user to read the
models, but it is hard for the user to see the whole picture of the models without the

support of a visualization tool. However, the OWL models can be interpreted by any
tools supporting OWL DL. Since the SCOR ontology provides explicit representation

of conceptualization of supply chain domain, the references in the annotation help an-
notation users learn the domain and adapt processes of PMA, PMB1 and PMB2, which

is evident in the applicability validation in Chapter 9. Besides, the pragmatic quality
of PMA, PMB1 and PMB2 represented in Pro-SEAT also depends on the pragmatic

quality of Pro-SEAT, which is discussed in the following section.

Social Quality

One of the goals for the proposed approach is to help process knowledge sharing among

different organizations within a domain. The ontologies are assumed to be the domain
standards which are agreed by different audience. GPO is the meta-model ontology.

The PSAM models are generated from this standard and the model content is annotated
with domain standard. In the exemplar studies, SCOR is chosen to be the common
standard and modeled as the domain ontology, because SCOR is already well known

in many enterprises for the supply-chain management in practice. The original models
PMA, PMB1 and PMB2 are all within the supply-chain domain.

Organizational Quality

For the organizational quality of the PSAM models and the tool, we can check if the
modeling goals can be fulfilled and addressed by the proposed approach.

8.3. QUALITY ANALYSIS 139

• G1 - The annotation should improve the readability and comprehensibility of the
existing process models.

The semantic annotation enriches the model semantics by referencing the ontology
concepts using semantic relationships. Thus, with the referenced ontology, the

semantics of the model elements can be interpreted more correctly and completely
by both human and machine. With respect to the pragmatic quality of Pro-SEAT

we find that the annotation functions do not really address this goal. However
the ontology-based query in Pro-SEAT provides the functions to navigate the
process models. Since the annotation results are in OWL, the machine can read

and reason the semantics in the annotation model. This goal is further analyzed
in Chapter 9.

• G2 - The annotation should help process knowledge sharing among different or-

ganizations within a domain.

From the discussion on the social quality, we find that this goal has been addressed
by the annotation models. The applicability of the approach in Chapter 9 proves
that the annotation models can fulfill this goal.

• G3 - The annotation should help to analyze and validate the existing process
models.

Satisfaction of this goal is checked and discussed in Chapter 9.

• G4 - The annotation should be helpful in model reuse and model integration.

Such goal is related to G2. The annotation models have not been applied in any

real applications of model transformation and model integration. The applicabil-
ity of the annotation results are only described in the application scenario under

the exemplar studies. This goal is further analyzed in Chapter 9.

8.3.3 Quality Evaluation of Pro-SEAT

The annotation tool is also the means to achieve quality annotation results. Thus the
tool evaluation is to validate the performance of Pro-SEAT on achieving model quality.

• Physical Quality - Pro-SEAT provides the functions of importing the original pro-

cess models, loading the ontology, editing and saving the meta-model annotation,
the model and the goal annotation results. The current version of the tool is

mainly designed for interpreting the models in XML created by Metis tool. The
tool can only load the ontology in OWL format and the integrated ontology API

is the Protégé 3.2.1 OWL API. There is no database repository deployed for the
annotated process knowledge, but only the XML or OWL files and folders are
used to manage the knowledge. Therefore, the benefit is that the knowledge is

easy to distribute and could be published on the Web, while the disadvantage is
the lack of a systematic way to manage the files and their inherent links. This

might be compensated by integrating the CO2SY system which is developed by
Strašunskas [175] for managing the interrelationships between product fragments.

140 CHAPTER 8. QUALITY EVALUATION OF THE METHOD

• Empirical Quality - The details of model annotation and goal annotation are
displayed in the property fields for each instance in Pro-SEAT. The layout of those
properties are not well organized in groups and the sequence of the properties is

displayed variously each time when running the tool. Thus, it is hard to navigate
the properties when manipulating the annotation. Nevertheless, the operation of

the annotation is simple — just select the reference concept from the ontology
tree by clicking or entering the reference value.

• Syntactic Quality - The prototype of the annotation tool does not provide the

functions for performing a syntax check from the user interface, but invalid OWL
models can not be parsed by the OWL API in Pro-SEAT.

• Semantic Quality and Perceived Semantic Quality. The current annotation tool

does not support any semantic consistency or completeness checking during the
annotation.

• Pragmatic Quality - Pro-SEAT does not provide a visualization of process models,

annotation models and ontologies. The imported original process model from
Metis is listed in the tree-view. The tree-view of the model keeps the same

structure as in the Metis tool. It is not difficult for the Metis user to interpret
the model in Pro-SEAT. The Protégé’s tree-view of ontology is also integrated in
Pro-SEAT so that the subsumption relationship between ontology concepts can be

viewed in Pro-SEAT. The other relationships represented in OWL properties and
constraints can not be displayed in Pro-SEAT, which would hide the complexity

and help the annotator to identify the concepts easily. The annotation models
are listed and navigated according to the GPO concepts. In Pro-SEAT, it is

difficult to establish an overall view of the annotation model or check the inter-
relationships between annotations. A model search interface is integrated in Pro-

SEAT. Based on the annotation results, it facilitates the navigation of the process
models and the annotation information by focusing on the GPO categories.

8.4 Requirements Satisfaction of the Semantic Annota-

tion System

Recall the requirements we identified for the semantic annotation system in section 3.5.

Next, we examine what and how the requirements for Pro-SEAT have been met in this
section.

1. The system should be able to present and parse annotation source models which
are originally in certain formats and representations.

Pro-SEAT can present and parse the process models in XML format which is
generated from Metis modeling tool.

2. The system should provide an ontology browser for the overview and manipulation

of ontological knowledge.
The integrated Protégé-OWL API provides the functionality to browse ontologies.

8.5. SUMMARY 141

3. Semantic annotation schema or metadata should be supplied (pre-defined) or
generated (ontology-based) by the system.
OWL formated GPO ontology can be loaded in Pro-SEAT. After the meta-model

annotation, the PSAM schema for model and goal annotation can be generated
in Pro-SEAT.

4. The annotation procedure should be easily manipulated by users with the system,
i.e. easy to locate "annotatee" (e.g. entity in source model) and "annotater" (e.g.

concept in ontology) during the annotation.
This requirement has been discussed through the analysis of empirical quality

and pragmatic quality in section 8.3. Stronger evidence should be collected from
more usability studies involving end-users.

5. The system should support the maintenance of annotation results (e.g. embedded

vs. stand-off annotation).
The annotation is stand-off annotation in this work so that it allows the dynamic

changes of the user-specific annotations.

6. Multiple-ontology references (e.g. different levels of ontologies) might be sup-

ported in the system.
So far, a top-level ontology for meta-model annotation and domain ontology for

model and goal annotation are supported in this work.

7. Different types of annotations (e.g. instance identification, URI links, and other
semantic relationships) might be supported.

The main supported annotation types supported by Pro-SEAT are URI links and
the semantic relationships such as synonym, hypernym and meronym.

8. Semi-automatic or automatic annotation might be considered in the system.
The implementation of the goal-annotation algorithms contribute the semi-

automation of the tool, which partially meets the requirement.

9. The system might be able to serialize the annotation results for reuse in different

systems.
The annotation result from Pro-SEAT is in OWL and it is serialized. Thus, this
requirement is met through the test that the annotation result can be represented

in Protégé-OWL Editor.

10. It might be possible to conduct semantic inference among ontology-based semantic

annotations.
The satisfaction of the requirement of semantic inference will be exemplified in

next chapter.

8.5 Summary

As evaluation method for ontology-based semantic annotation is a new research topic as

the emerging semantic annotation approaches applying the Semantic Web techniques.
According to the author’s knowledge, there is no systematic evaluation methodology for

142 CHAPTER 8. QUALITY EVALUATION OF THE METHOD

semantic annotation approaches and tools. Maynard in [102] identified some require-
ments for ontology-based annotation tools such as expected functionality, interoper-
ability, usability, accessibility, scalability and reusability. Usually, criteria and metrics

for performance evaluation, such as precision, recall and F-measure [154], are defined
for the evaluation of semi-automatic or automatic semantic annotations by using in-

formation extraction techniques. However, the evaluation is mainly for the semantic
annotation of textual contents. The model features are certainly not concerned, but

they are very important in our case of the semantic annotation of business process
models. Moreover, those metrics are not sufficient for ontology-based information ex-

traction, because the distinction between right and wrong is less obvious [102]. We
do not apply any information extraction techniques in our system and the current

prototype of the annotation tool mainly supports manual annotation.
We have chosen SEQUAL that has been widely and successfully applied in the

information modeling area, to evaluate the proposed approach. Also SEQUAL shares

the same theoretical foundation with our semantic annotation framework. According
to the semiotic quality categories, the quality analysis has been made at both the meta-

model level (GPO and the PSAM specifications) and model level (the PSAM model
instances and Pro-SEAT), which make up our semantic annotation method.

Chapter 9

Validation of Applicability

In this chapter, we validate the applicability of annotation results derived from the
proposed method. The validation is undertaken through an application scenario, where

a new IS solution is modeled through selecting and reusing annotated process model
fragments. The validation is supposed to check if the annotation method can facilitate
process knowledge management, which is the general application objective of this work.

Quality evaluation for Chapter 8 is further analyzed based on the discussion of the
application results.

9.1 Validation Design

A walkthrough scenario of a process knowledge management application is deployed
in this chapter based on the semantic annotation results from the exemplar studies of

Chapter 7. In the scenario, the annotated process models (PMA, PMB1 and PMB2)
are IS solutions presenting logistics process knowledge of different organizations, and a

new IS problem (an integrated sales delivery solution for their cooperative business) is
supposed to be dealt with by reusing and integrating some of the solutions which can

achieve goals of the new system.

The annotation results which we got from the exemplar studies are the source data
consumed by the application scenario. The annotation goals set in section 8.2.2 con-

cretize a general application objective of our annotation method – to facilitate process
knowledge management. The validation is therefore to measure the goals. Based on the

goals, a set of requirements are derived. The requirements are implemented through
a set of SWRL (Semantic Web Rule Language Combining OWL and RuleML) [202]

rules and queries. The rules and queries are executed on the annotation results. The
validation is thus to check how the returned query results fulfill those requirements in

the context of the application scenario. In addition, semantic validity and semantic
completeness of the annotation models are analyzed in the validation. The implemen-

tation tool of the application is Protégé-OWL with the SWRL editor and the Jess rule
engine 1.

Accuracy of mapping between ontologies and models may affect the validation re-

sults. Therefore, we assume that the ontology-based annotation is accomplished by

1http://herzberg.ca.sandia.gov/jess/

143

144 CHAPTER 9. VALIDATION OF APPLICABILITY

modeling experts and domain specialists, who provide reliable mappings. Accuracy of
the annotation is hereby not taken into account in the evaluation.

9.1.1 Application requirements

In this applicational scenario, users need to navigate models for browsing the process
knowledge of the legacy IS solutions, search interesting knowledge candidates for build-
ing a new solution, select suitable model fragments from the candidates, and reuse

the selected model fragments in a knowledge-based integration. We therefore elicit the
following requirements to implement the application. The requirements are associated

with the annotation goals (G1-G4) identified in section 8.2.2. If the annotation method
fulfills the requirements of the application, it satisfies the annotation goals too.

• RE1 - Navigation requirements. For the purpose of browsing knowledge, navigate

process models (PMA, PMB1 and PMB2) (related to G1). Such a requirement
can be decomposed into following sub-requirements by specifying the interests of
process properties.

– RE1.1 - List Activities and their sub-Activities.

– RE1.2 - List Activities and their preceding or succeeding Activities.

– RE1.3 - List Activities and their Artifacts.

– RE1.4 - List Activities and their Actor-roles.

– RE1.5 - List Activities and their Preconditions or Postconditions.

• RE2 - Search requirements. For the purpose of locating interesting knowledge

candidates, search the corresponding process model fragments across different
business models by using the SCOR domain ontology (related to G2). Such a

requirement can be decomposed into following sub-requirements by specifying
the interests of ontological concepts.

– RE2.1 - Find the model fragments of process models that reference to SCOR

Management Process.

– RE2.2 - Find the model fragments of process models that reference to SCOR

Input/Output.

– RE2.3 - Find the model fragments of process models that reference to SCOR

Organizational.

– RE2.4 - Find the model fragments of process models that reference to SCOR

Goal.

• RE3 - Semantics checking requirements. For the purpose of selecting suitable
model fragments, check the semantics of the process models and the annotation
results (related to G3). Such a requirement can be decomposed into following sub-

requirements by specifying the interests of process semantics defined in PSAM.

– RE3.1 - Check the Artifacts related to the Input/Output of Activities.

– RE3.2 - Check the Activity sequences.

9.1. VALIDATION DESIGN 145

– RE3.3 - Check the Artifacts in sub-Activities.

– RE3.4 - Check the Actor-roles in sub-Activities.

– RE3.5 - Check the goal annotations in sub-Activities.

– RE3.6 - Check the Precondition/Postcondition of Activities.

– RE3.7 - Check the information flow from Outputs to Inputs.

• RE4 - Knowledge discovery requirements. For the purpose of reusing and inte-
grating model fragments, acquire the implicit knowledge across different models

through reasoning on ontological relationships (related to G4). Such a require-
ment can be decomposed into following sub-requirements by specifying the inter-

ests of potential relationships between process properties of different models.

– RE4.1 - Find out semantic relationships between the Activities of different
process models.

– RE4.2 - Find out semantic relationships between the Artifacts of different

process models.

– RE4.3 - Find out semantic relationships between the Actor-roles of different

process models.

– RE4.4 - Find out goal relations between the Activities of different process

models.

– RE4.5 - Find out possible integration points among different process models.

9.1.2 SWRL rules and tool

SWRL is an acronym for Semantic Web Rule Language. As stated in [149]:

It is intended to be the rule language of the Semantic Web. SWRL is
based on a combination of the OWL DL and OWL Lite sub-languages of

the OWL Web Ontology Language. It allows users to write Horn-like rules
to reason about OWL individuals and to infer new knowledge about those

individuals. These rules are expressed in terms of OWL concepts. SWRL
is more expressive that OWL DL alone yet retains its formal semantics. It

does so, however, at the expense of decidability.

We use SWRL to formalize the application requirements for each annotation model – a

PSAM instance model in OWL. Running the SWRL rules shows the computational ca-
pability of the annotation models, which is one of the benefits of the proposed approach.

Analyzing the rule-execution results helps check what knowledge can be derived from
the annotation results and how the results fulfill the application requirements.

SWRL

SWRL rules are of the form of an implication between an antecedent (body) and
consequent (head). The intended meaning can be read as: whenever the conditions

specified in the antecedent hold, then the conditions specified in the consequent must
also hold. SWRL rules are written in terms of OWL classes, properties and individuals.

146 CHAPTER 9. VALIDATION OF APPLICABILITY

Both the antecedent and consequent consist of zero or more atoms. Atoms in these
rules can be of the form C(x), P(x,y), sameAs(x,y) or differentFrom(x,y), where C
is an OWL description, P is an OWL property, and x,y are either variables, OWL

individuals or OWL data values. A "human readable" form of a SWRL rule is:

antecedent → consequent

where both antecedent and consequent are conjunctions of atoms written a1 ∧ ...∧
an. Variables are indicated using the standard convention of prefixing them with a

question mark (e.g. ?x) [202].

SWRLTab and SQWRLQueryTab

The SWRLTab [151] is a development environment for working with SWRL rules in

Protégé-OWL. It supports the editing and execution of SWRL rules. It also provides the
mechanism to turn SWRL into a query language – SQWRL (Semantic Query-Enhanded

Web Rule Language). The SQWRLQueryTab [150] is a plug-in to the Protégé-OWL
SWRLTab and it provides a convenient way to visualize the results of queries on an

OWL ontology. In the evaluation, we employ SWRLTab to formalize the requirements
from section 9.1.1 into SWRL rules in order to validate the annotation results. Most
of the rules are queries which can return the query results in SQWRLQueryTab. The

SQWRL provides SQL-like operations to retrieve knowledge from an OWL ontology.

9.2 Application Requirements in SWRL Formulation

In the exemplar studies, the BPMN model (PMA) and the EEML models (PMB1 and

PMB2) are annotated by the proposed approaches. Those three models are to be shared
with each other and integrated in a process knowledge management application. The

application requirements are formalized into a set of SWRL queries and rules which
are executed on those annotated models. The queries and rules are generally defined

for all models, but they can be also specified by replacing the variables with certain
values for specific models.

9.2.1 Formalize RE1 - Navigation requirements

RE1 is related to G1 (The annotation should improve the readability and comprehensi-

bility of the existing process models). The sub-requirements identify what knowledge of
the process models should be read directly from the annotation results. The require-

ments in RE1 are formalized in Table 9.1.

9.2.2 Formalize RE2 - Search requirements

RE2 is related to G2 (The annotation should help sharing process knowledge among dif-
ferent organizations within a domain). The search should look up all the three models

without problems associated with semantic heterogeneity. A domain ontology which
acts as the common understanding of the domain is essential in supporting the machine

9.2. SWRL FORMULATION 147

Table 9.1: SWRL queries and rules for RE1
RE1 Rule Name SWRL formulation

RE1.1 QRule-Activity-
subActivity

Activity(?x) ∧ has_subActivity(?x, ?y) → query : select(?x, ?y) ∧ query :

orderBy(?x)

RE1.2
QRule-Activity-

hasPrecedingActivities

Activity(?x) ∧ has_ precedingActivities(?x, ?y) → query : select(?x, ?y) ∧
query : orderBy(?x)

QRule-Activity-

hasSucceedingActivities

Activity(?x) ∧ has_succeedingActivities(?x, ?y) → qurey : select(?x, ?y) ∧
query : orderBy(?x)

RE1.3 QRule-Activity-
hasArtifact

Activity(?x) ∧ has_ Arti f act(?x, ?y) → query : select(?x, ?y) ∧ query :

orderBy(?x)
RE1.4 QRule-Activity-hasActor Activity(?x) ∧ has_Actor − role(?x, ?y) → query : select(?x, ?y) ∧ query :

orderBy(?x)

RE1.5
QRule-Activity-
hasPrecondition

Activity(?x) ∧ has_Precondition(?x, ?y) → query : select(?x, ?y) ∧ query :

orderBy(?y)
QRule-Activity-
hasPostcondition

Activity(?x) ∧ has_Postcondition(?x, ?y) → query : select(?x, ?y) ∧
query : orderBy(?y)

to understand the semantically-reconciled process knowledge from different organiza-
tions. In the PSAM models, an ontology is referenced by models through annotation

relationships which are represented using OWL properties such as same_as, kind_of,
part_of, mapped_to, achieves, positively_satisfies and negatively_satisfies.

Therefore, those properties should be specified in the SWRL queries or rules (see Table
9.2).

9.2.3 Formalize RE3 - Semantic check requirements

RE3 is related to G3 (The annotation should help to analyze and validate the existing
process models). It is used to infer the underlying process knowledge according to the
annotation and to check the semantic completeness and semantic validity of annota-

tion models. The SWRL formulations of RE3 are listed in Table 9.3. The queries for
inferences are usually built through correlations to OWL properties. For example, be-

sides the Object Property has_Artifact of Activity, the relationship between Activity
and Artifact can also be inferred through connecting relations among Activity, Input,

Output, and Artifact. RE3.1 (Check the Artifacts related to the Input/Output of Activi-
ties) is therefore formalized as IRule-Activity-Input-hasArtifact, IRule-Activity-

Output-hasArtifact and QRule-Activity-hasArtifact. They can be used to infer
the fact that if an Artifact is related to the Input or Output of an Activity, the Activity

might have such an Artifact. Such inference tasks can be used to find possible missing
annotations of has_Artifact.

RE3.2 (Check the Activity sequences) needs to figure out the ordinary se-
quence of activities, sequence of decomposable activities, iterative and in-

verse sequence. Sequences of decomposable activities sometimes are not
easy to navigate directly from the model specifications. Therefore, QRule-

Activity-hasPrecedingActivities-hasSubActivity and QRule-Activity-
hasSucceedingActivities-hasSubActivity are formalized to infer such implicit

semantics.

The properties of sub-Activities could be passed to their super-Activities, which are

validated in RE3.3 (Check the Artifacts in sub-Activities), RE3.4 (Check the Actor-roles
in sub-Activities) and RE3.5 (Check the goal annotations in sub-Activities). IRule-

148 CHAPTER 9. VALIDATION OF APPLICABILITY

Table 9.2: SWRL queries and rules for RE2
RE2 Rule Name SWRL formulation

RE2.1
QRule-Activity-sameas Activity(?x) ∧ same_as(?x, ?y) → query : select?x, ?y ∧ query :

orderBy(?y)
QRule-Activity-kindof Activity(?x) ∧ kind_o f (?x, ?y) → query : select(?x, ?y) ∧ query :

orderBy(?x)
QRule-Activity-phaseof Activity(?x) ∧ phase_o f (?x, ?y) → qurey : select(?x, ?y) ∧ query :

orderBy(?x)

RE2.2

QRule-Activity-Input-
mappedto

Activity(?x) ∧ has_ Input(?x, ?y) ∧ mapped_to(?y, ?z) → query :

select(?x, ?y, ?z) ∧ query : orderBy(?z)
QRule-Activity-Output-
mappedto

Activity(?x) ∧ has_Output(?x, ?y) ∧ mapped_to(?y, ?z) → query :

select(?x, ?y, ?z) ∧ query : orderBy(?z)
QRule-Activity-
hasArtifact-sameas

Activity(?x) ∧ has_ Arti f act(?x, ?y) ∧ same_as(?y, ?z) → query :

select(?x, ?y, ?z) ∧ query : orderBy(?z)
QRule-Activity-
hasArtifact-kindof

Activity(?x) ∧ has_Arti f act(?x, ?y) ∧ kind_o f (?y, ?z) → query :

select(?x, ?y, ?z) ∧ query : orderBy(?z)
QRule-Activity-

hasArtifact-partof

Activity(?x) ∧ has_ Arti f act(?x, ?y) ∧ part_o f (?y, ?z) → query :

select(?x, ?y, ?z) ∧ query : orderBy(?z)

RE2.3
QRule-Activity-
hasActor-sameas

Activity(?x) ∧ has_ Actor − role(?x, ?y) ∧ same_as(?y, ?z) → query :

select(?x, ?y, ?z) ∧ query : orderBy(?z)
QRule-Activity-
hasActor-kindof

Activity(?x) ∧ has_ Actor − role(?x, ?y) ∧ kind_o f (?y, ?z) → query :

select(?x, ?y, ?z) ∧ query : orderBy(?z)
QRule-Activity-
hasActor-memberof

Activity(?x) ∧ has_ Actor − role(?x, ?y) ∧ member_o f (?y, ?z) → query :

select(?x, ?y, ?z) ∧ query : orderBy(?z)

RE2.4
QRule-Activity-

achievesHardGoal

Activity(?x) ∧ achieves(?x, ?y) → query : select(?x, ?y) ∧ query :

orderBy(?y)
QRule-Activity-

positivelysatisfiesSoftGoal

Activity(?x) ∧ positively_satis f ies(?x, ?y) → query : select(?x, ?y) ∧
query : orderBy(?y)

QRule-Activity-
negativelysatisfiesSoftGoal

Activity(?x) ∧ negatively_satis f ies(?x, ?y) → query : select(?x, ?y) ∧
query : orderBy(?y)

Activity-subActivity-hasArtifact and IRule-Activity-subActivity-hasActor

are used to introduce the implicit annotation of has_Artifact and has_hasActor-role

for the super-Activity. The effects of goals from the sub-Activities could be transferred

to the super-Activities but it is not necessary for all cases. RE3.5 is therefore formal-
ized as SWRL queries not inference rules by only listing the possible goal annotations
transferred from the sub-Activities.

RE3.6 (Check the Precondition/Postcondition of Activities) is formal-
ized into QRule-Activity-hassamePrecondition and QRule-Activity-

hassamePostcondition. It attempts to find out the redundant Activities with
the same conditions or the workflow patterns with the branches divided from the

conditions. Besides, for RE3.7 (Check the information flow from the Output to the
Input) the information flow (/output-input flow) can be identified through comparing

the annotated Input and Output in QRule-Activity-hasOuput-mappedto-
sameonto-Activity-hasInput. If an output has an ontology reference which is also

referenced by an input, there might be an information flow between the output and
the input.

9.2.4 Formalize RE4 - Knowledge discovery requirements

RE4 is related to G4 (The annotation should be helpful in the semantic reconciliation of
models to facilitate reuse and integration of models.). This requirement is for analyzing

the potential semantic relations between different models. However, SWRL rules can
only be applied in one ontology file, such as the SWRL formulations of RE1, RE2 and

9.2. SWRL FORMULATION 149

Table 9.3: SWRL queries and rules for RE3
RE3 Rule Name SWRL formulation

RE3.1

QRule-Activity-
hasInput-relatedArtifact

Activity(?x) ∧ has_ Input(?x, ?y) ∧ related_ Arti f act(?y, ?z) → query :

select(?x, ?y, ?z) ∧ query : orderBy(?x)
QRule-Activity-

hasOutput-
relatedArtifact

Activity(?x) ∧ has_Output(?x, ?y) ∧ related_ Arti f act(?y, ?z) → query :

select(?x, ?y, ?z) ∧ query : orderBy(?x)

IRule-Activity-Input-
hasArtifact

Activity(?x) ∧ has_ Input(?x, ?y) ∧ related_ Arti f act(?y, ?z) →
Activity(?x) ∧ has_ Arti f act(?x, ?z)

IRule-Activity-Output-
hasArtifact

Activity(?x) ∧ has_Output(?x, ?y) ∧ related_ Arti f act(?y, ?z) →
Activity(?x) ∧ has_ Arti f act(?x, ?z)

RE3.2

QRule-Activity-

hasPrecedingActivities-
hasSubActivity

Activity(?x) ∧ has_ precedingActivities(?x, ?y) ∧
has_subActivity(?x, ?z) → query : select?y, ?z ∧ query : orderBy(?y)

QRule-Activity-

hasSucceedingActivities-
hasSubActivity

Activity(?x) ∧ has_succeedingActivities(?x, ?y) ∧
has_subActivity(?x, ?z) → query : select?z, ?y ∧ query : orderBy(?y)

QRule-Activity-iterative-
preceding

Activity(?x) ∧ has_ precedingActivities(?x, ?x) → qurey : select(?x)

QRule-Activity-iterative-
succeeding

Activity(?x) ∧ has_succeedingActivities(?x, ?x) → qurey : select(?x)

IRule-Activity-

preceding-inverse-
succeeding

Activity(?x) ∧ has_ precedingActivities(?x, ?y) → Activity(?y) ∧
has_succeedingActivities(?y, ?x)

IRule-Activity-
succeeding-inverse-

preceding

Activity(?x) ∧ has_succeedingActivities(?x, ?y) → Activity(?y) ∧
has_ precedingActivities(?y, ?x)

RE3.3 IRule-Activity-
subActivity-hasArtifact

Activity(?x) ∧ has_subActivity(?x, ?y) ∧ has_Arti f act(?y, ?z) →
Activity(?x) ∧ has_ Arti f act(?x, ?z)

RE3.4 IRule-Activity-

subActivity-hasActor

Activity(?x) ∧ has_subActivity(?x, ?y) ∧ has_ Actor − role(?y, ?z) →
Activity(?x) ∧ has_ Actor − role(?x, ?z)

RE3.5
QRule-Activity-
subActivity-transitive-

achievesHG

Activity(?x) ∧ has_subActivity(?x, ?y) ∧ achieves(?y, ?z) → query :

select(?x, ?y, ?z) ∧ query : orderBy(?z)

QRule-Activity-

subActivity-transitive-
positivelysatisfiesSG

Activity(?x) ∧ has_subActivity(?x, ?y) ∧ positively_satis f ies(?y, ?z) →
query : select(?x, ?y, ?z) ∧ query : orderBy(?z)

QRule-Activity-

subActivity-transitive-
negativelysatisfiesSG

Activity(?x) ∧ has_subActivity(?x, ?y) ∧ negatively_satis f ies(?y, ?z) →
query : select(?x, ?y, ?z) ∧ query : orderBy(?z)

RE3.6
QRule-Activity-

hassamePrecondition

Activity(?x) ∧ Activity(?y) ∧ name(?x, ?n) ∧ name(?y, ?m) ∧
swrlb : notEqual(?n, ?m) ∧ has_Precondition(?x, ?z) ∧
has_Precondition(?y, ?z) → query : select(?x, ?y, ?z)

QRule-Activity-
hassamePostcondition

Activity(?x) ∧ Activity(?y) ∧ name(?x, ?n) ∧ name(?y, ?m) ∧
swrlb : notEqual(?n, ?m) ∧ has_Postcondition(?x, ?z) ∧
has_Postcondition(?y, ?z) → query : select(?x, ?y, ?z)

RE3.7 QRule-Activity-
hasOutput-mappedto-

sameonto-Activity-
hasInput

Activity(?x) ∧ has_Output(?x?p) ∧ mapped_to(?p, ?o) ∧ Activity(?y) ∧
has_ Input(?y, ?q) ∧ mapped_to(?q, ?n) ∧ swrlb : equal(?o, ?n) → query :

select(?x, ?y, ?o)

150 CHAPTER 9. VALIDATION OF APPLICABILITY

RE3. For RE4, we have to run the SWRL rules of RE1, RE2 and RE3 on different
models respectively and analyze all query results manually. For example, implementing
RE4.1 (Find out semantic relationships between the Activities of different process mod-

els) needs the SWRL rules QRule-Activity-sameas, QRule-Activity-kindof and
QRule-Activity-phaseof for RE2.1 (Find the model fragments of process models that

reference to SCOR Management Process). In this application, those rules are run on all
the three models, and SCOR Management Processes in the domain ontology are used

as the common references (which are specified in the variables in the SWRL rule for-
mulations) to analyze the relationships between the query results of three models. The

relationships usually applied in the analysis are ontological relations such as OWL Class
subsumption, OWL Class equivalent, ObjectProperty part-whole relationship and etc.

To implement RE4.5 (Find out possible integration points among different process
models), we consider the following integration cases by running related SWRL queries
and rules for the above requirements.

• Case 1. Output and input. If the outputs in one model can be mapped to the
inputs in another model, then it is possible to integrate the two models through

the outputs and the inputs. QRule-Activity-Output-mappedto and QRule-
Activity-Input-mappedto are run on three models respectively. The variable

of ontology concept ?z can be replaced by a specific domain concept.

• Case 2. Sequence of activities. If the Activities from the three annotation models
that have references of the SCOR process elements, then a possible integration of

those Activities from different models can be checked according to the sequence
definition in SCOR ontology. SWRL queries for RE2.1 (Find the model fragments

of process models that reference to SCOR Management Process) can be run in this
case, and the variable ?y is specified with a SCOR process element in each query.

• Case 3. Semantic relationship of activities. If two Activities from different mod-
els have certain semantic relationships with each other according to the domain

annotation, then there is a possibility for two Activities to be integrated through
the relationships. The SWRL queries for RE2.1 (Find the model fragments of

process models that reference to SCOR Management Process) can also be used
in this case, and the annotation relationships such as same_as, kind_of and
phase_of should be concerned in the integration analysis.

• Case 4. Ontological relationship of goals. If two Activities from dif-
ferent models are annotated with the goals and the goals are same or

have certain ontological relationships, the possible integration of two mod-
els can be analyzed based on the goal annotation. Goal concept is spec-

ified to replace the ontology concept variable ?y in the queries QRule-
Activity-achievesHardGoal, QRule-Activity-positivelysatisfiesSoftGoal

and QRule-Activity-negativelysatisfiesSoftGoal. Through the ontological
relationship has_parts or rdfs:subClassOf, the parts or the sub-class of this

goal are also specified to replace ?y respectively in the queries.

The SWRL queries and rules above are edited in Protégé-OWL SWRLTab (see
Figure 9.1). They are attached to all the OWL files of the annotation models and will

9.3. APPLICABILITY VALIDATION IN AN INTEGRATION APPLICATION 151

be executed on those OWL instances for the evaluation. Section G.2 of Appendix G
presents a SWRL file of above queries and rules .

Figure 9.1: The SWRL rules in Protege-OWL SWRLTab

9.3 Applicability Validation in an Integration Application

The SWRL formulations for requirements are applied in the exemplar studies to validate
the applicability of the proposed annotation approach. The validation is described by
an application for integrating delivery process from enterprise A and B. The procedure

of the implementation of this application is also the procedure of the validation.
The following steps have been undertaken for the integration application. In each

step, some query questions are described by the application user, and the query ques-
tions are then inferred and answered by executing corresponding SWRL rules of the

formalized requirements. Results are then analyzed and adjusted based on the semantic
relationships of ontologies and models:

• Step 1. Set application goals and get goal-relevant model fragments.

Running QRule-Activity-achievesHardGoal for RE2.4 (Find the model frag-
ments of process models that reference to SCOR Goal) to find process model

fragments achieving the integration goals.

Query Question: Find model fragments from the PMA, PMB1 and
PMB2 which have impact on the goals "Delivery_is_Processed" and

"Invoice_to_Customer_is_Processed".

Query Inference: Sub-goals of "Delivery_is_Processed" and

"Invoice_to_Customer_is_Processed" are inferred to expand the query,
such as "Delivery_is_Scheduled", "Delivery_Terms_are_Generated",

152 CHAPTER 9. VALIDATION OF APPLICABILITY

"End_Items_are_Delivered", "Invoice_to_Customer_is_Issued" and
"Invoice_to_Customer_is_Paid".

Query Answer: As a result from executing the SWRL query, we have process

model fragments (sub-processes) of "Delivering_Processing" in PMA and "De-
liver_items_to_franchisee" and "Deliver_items_to_shops" in PMB2 which are

relevant to achieve those goals. The screen shot of the exemplified results in
Protégé-OWL SWRL Query Tab are illustrated in Figure 9.2 and Figure 9.3.

Figure 9.2: The query result of QRule-Activity-achievesHardGoal on PMA

Figure 9.3: The query result of QRule-Activity-achievesHardGoal on PMB2

• Step 2. Reconcile and align model semantics by using ontology as semantic me-
diator.
SWRL queries and rules are executed for RE4 (Knowledge discovery requirements)

to find semantic relationships between Activity, Artifact and Actor-role in
those model fragments resulted from step 1. For example, we check the relation-

ships between the Actor-roles involved in PMA and PMB2. We need to first find
out what Actor-roles are involved in each process.

9.3. APPLICABILITY VALIDATION IN AN INTEGRATION APPLICATION 153

Query Question: Navigate Actor-roles in the processes of "Deliv-
ering_Processing" in PMA and "Deliver_items_to_franchisee" and "De-
liver_items_to_shops" in PMB2.

Query Inference: In order to later find out the relationships between the Actor-

roles of different models based on domain ontology, we need the query results
including the model annotations by specifying which domain ontology concepts
are referenced by the Actor-roles. Hence, QRule-Activity-hasActor, QRule-

Activity-hasActor-sameas, QRule-Activity-hasActor-kindof and QRule-
Activity-hasActor-memberof are used to query PMA and PMB2.

Query Answer: As results of QRule-Activity-hasActor, an Actor-role
"logistics_department" is associated with the model fragments of "Deliver-

ing_Processing" in PMA (Figure 9.4), and for PMB2 the Actor-roles "logis-
tics_department", "financial_department", "Orbit_warehouse", "shop" and "fran-

chisee" are queried out with respect to those process model fragments of "De-
liver_items_to_franchisee" and "Deliver_items_to_shops" (Figure 9.5). The

Actor-role "logistics_department" in PMA is annotated with the SCOR ontol-
ogy "Logistics" by the annotation relationship "same_as" (Figure 9.6). The

Actor-role "logistics_department" in PMB2 is also "same_as" the SCOR ontol-
ogy "Logistics" (Figure 9.7), while the Actor-roles "shop" and "franchisee" are

both annotated with the SCOR ontology "Customer" by the annotation rela-
tionship "kind_of" (Figure 9.8). Besides, "financial_department" is "same_as"

the SCOR ontology "Finance" and "Orbit_warehouse" is "kind_of" the SCOR

ontology "Warehouse".

Figure 9.4: The query result of QRule-Activity-hasActor on PMA

Result Analysis and Adjustment: There are no semantic relationships be-

tween "Logistics" and "Customer" in the SCOR ontology. A further step is
hereby taken to search the corresponding Actor-roles for each other model. For

example, search PMA for the Actor-roles that have the annotation reference of
"Customer", and search PMB2 for the Actor-roles that have the annotation ref-

erence of "Logistics".

By taking an example of "Customer",

Query Question: Find the processes which have Actor-roles with the ontological
reference of the SCOR ontology "Customer".

154 CHAPTER 9. VALIDATION OF APPLICABILITY

Figure 9.5: The query result of QRule-Activity-hasActor on PMB2

Figure 9.6: The query result of QRule-Activity-hasActor-sameas on PMA

Query Answer: The "client" in PMA is same_as "Customer", and the Actor-

roles "shop" and "franchisee" are kind_of "Customer" in PMB2.

Query Analysis and Adjustment: "Shop" and "franchisee" in PMB1 (repre-

sented by the EEML modeling element Organization) are hence semantically
aligned as sub-classes of "client" in PMA (represented by the BPMN modeling

element Swimlane).

Similar analysis of semantic relationships between the Activities is made
by running QRule-Activity-subActivity to check their sub-activities and
super-activities, and also running QRule-Activity-phaseof, QRule-Activity-

kindof and QRule-Activity-sameas to find out how those Activities are in-
terpreted according to the SCOR ontology. "Deliver_items_to_franchisee" and

"Deliver_items_to_shops" in PMB2, and "Delivering_Processing" in PMA are all
phase_of "D1-Deliver_Stocked_Product". Since the Actor-roles "shop" and

"franchisee" in PMB2 are sub-classes of "client" in PMA, a corresponding adjust-
ment of the semantic relationship between two models can be consequently made

as "Deliver_items_to_franchisee" and "Deliver_items_to_shops" in PMB2 can
be sub-activities of "Delivering_Processing" in PMA.

A possible integration path could be expressed as follows ("→" represents
sequence flow, and "{}" represents sub-activities in the expression):

9.3. APPLICABILITY VALIDATION IN AN INTEGRATION APPLICATION 155

Figure 9.7: The query result of QRule-Activity-hasActor-sameas on PMB2

Figure 9.8: The query result of QRule-Activity-hasActor-kindof on PMB2

”Send_inquiry”(PMA) → ”Send_quotation”(PMA)
→ ”Credit_control”(PMB2) → ”Delivering_Processing”(PMA)
{”Deliver_items_to_ f ranchisee”(PMB2)}; ”Deliver_items_to_shops”(PMB2)}
→ ”Ship_items”(PMB2) → ”Receive_delivery”(PMA)
→ ”Issue_invoice”(PMB2).

• Step 3. Re-order the sequence of integrating activities.
In Step 2, we are able to figure out the ontological relationships between the activ-

ities, but we need sequential relationship to integrate them as a process. For in-
stance, the sequence of activities in the integration can be further refined through

checking the sequential Activity and sub-Activities of "Send_quotation" in PMA

and the preceding Activities and sub-Activities of "Credit_control" in PMB2.

Applying SWRL queries and rules QRule-Activity-hasSucceedingActivities
and QRule-Activity-hasPrecedingActivities for RE1 and QRule-Activity-

hasPrecedingActivities-hasSubActivity for RE3.2 to rearrange the sequence
of integrated process model fragments. Activity sequences are further checked
with the SCOR domain ontology, and adjustment of the sequence and hierarchy

of activities is made according to the integration context.

Query Question: Navigate the succeeding Activities of "Send_quotation" in
PMA and the preceding Activities of "Credit_control" in PMB2.

Query Answer: "Client_quotation_processing" is found as the succeeding Ac-

tivity of "Send_quotation" in PMA (Figure 9.9), and "Check_stock" and "Cor-
rect_orders" are retrieved as the preceding Activities of "Credit_control" in PMB2

156 CHAPTER 9. VALIDATION OF APPLICABILITY

(Figure 9.10).

Figure 9.9: The query result of QRule-Activity-hasSuccedingActivities on PMA

Figure 9.10: The query result of QRule-Activity-hasSuccedingActivities on PMB2

Query Analysis and Adjustment: The integrated sequence depends on i)

the activity sequence definitions in original process models, ii) the reference
sequence defined in the SCOR ontology, and also iii) the new integration

requirements which might need different activity sequence from the former
two. Adjustment includes mergence and decomposition of integrating ac-

tivities. For instance, "Client_quotation_processing" in PMA is annotated
with the SCOR ontology concept of "D1.1-Process_Inquiry_and_Quote"

(Figure 9.11), whilst "Correct_orders" in PMB2 is annotated as
phase_of "D1.2-Receive_Enter_and_Validate_Order" (Figure 9.12).

Therefore, "Correct_orders" in PMB2 can be succeeding activity of
"Client_quotation_processing" in PMA and then be adapted as a subAc-
tivity of "Standard_order_processing" in PMA. While, the two Activities

"Credit_control" in PMA and in PMB2 can be merged into one Activity.

The result of the integration after this step is following ("/" is used to represent

mergence):

”Send_inquiry”(PMA) → ”Send_quotation”(PMA) →
”Client_quotation_processing”(PMA) → ”Standard_order_processing”(PMA)
{...; ”Correct_orders”(PMB2) ...} → ”Credit_control”(PMA/PMB2) →
”Delivering_Processing”(PMA){...; ”Check_stock”(PMB2); ...}
→ ”Transportation_processing”(PMA)/”Ship_items”(PMB2)
→ ”Receive_delivery”(PMA) → ”Issue_invoice”(PMB2).

9.3. APPLICABILITY VALIDATION IN AN INTEGRATION APPLICATION 157

Figure 9.11: The query result of QRule-Activity-phaseof on PMA

Figure 9.12: The query result of QRule-Activity-phaseof on PMB2

• Step 4. Build output-input flow.
The step can be used to find the missing activities and also re-arrange the sequence
of activities based on the output-input flow. For example, we can find an output of

"Create_delivery" in in PMA that matches an input of "Issue_invoice" in PMB2.

Query Question: Find out which Activity in PMA produces the input of "Is-
sue_invoice" in PMB2.

Query Inference: Such output-input mapping between different models need

to be checked with the SCOR ontology as the mapping mediator, because the
input/output parameters might be defined quite differently in two models. In-

put and Output of activities are checked through running QRule-Activity-

Input-mappedto and QRule-Activity-Output-mappedto for RE2.2 (Find
the model fragments of process models that reference to SCOR Input/Output).

Query Answer: QRule-Activity-Input-mappedto is executed on

Activity of "Issue_invoice" in PMB2 and the input is mapped to
"Customer_Delivery_Terms" (Figure 9.13). From the result of QRule-

Activity-Output-mappedto in PMA (Figure 9.14), Activity "Create_delivery"
has an output "delivery" which is mapped to "Customer_Delivery_Terms" too.

Query Analysis and Adjustment: Because the input of Activity "Is-
sue_invoice" and the output of "Create_delivery" are both mapped to

"Customer_Delivery_Terms", it is possible for the two Activities to be inte-
grated with each other through the output-input flow. Not all the integrating

points have strict integration sequences. For those non-strict integrating model
fragments, more analysis have to be done manually based on the application

158 CHAPTER 9. VALIDATION OF APPLICABILITY

Figure 9.13: The query result of QRule-Activity-Input-mappedto on PMB2

Figure 9.14: The query result of QRule-Activity-Output-mappedto on PMA

context.

The final result of the integration application after above steps is presented ("|"

is used to represent non-strict sequence):

”Send_inquiry”(PMA) → ”Send_quotation”(PMA) →
”Client_quotation_processing”(PMA) → ”Standard_order_processing”(PMA)
{”Correct_orders”(PMB2)} → ”Credit_control”(PMB2) →
”Delivering_Processing”(PMA){...; ”Check_stock”(PMB2); ...; ”Create_delivery”}
→ ”Issue_invoice”(PMB2)|(”Transportation_processing”(PMA)/”Ship_items”

(PMB2) → ”Receive_delivery”(PMA)).

More details of the integration process are provided in Appendix F. By running

the above SWRL queries and rules, the integration application has been implemented.
The realized implementation validated the applicability of the proposed annotation

approach through showing the capability of the annotation results to fulfill the require-
ments listed in section 9.1.1.

9.4 Discussion on Results of the Validation

9.4.1 Automatic vs. manual annotation

During the validation, we found that the results of the SWRL queries for RE1
(Navigation requirements) can display the most information of the models through
the annotation, but still some semantics of original models are found miss-

ing or incomplete in the annotation models. The results of QRule-Activity-
subActivity are the same as the original models, i.e. it is semantic complete-

ness of the Activity composition for the annotation. Such completeness is guaran-
teed by Pro-SEAT’s automatic transformation from Metis models to PSAM models

9.4. DISCUSSION ON RESULTS OF THE VALIDATION 159

based on the meta-model annotation. However, the results of QRule-Activity-
hasPrecedingActivities, QRule-Activity-hasSucceedingActivities, QRule-
Activity-hasPrecondition and QRule-Activity-hasPostcondition are not com-

plete because current Pro-SEAT does not support the automatic annotation of the
sequence of Activities. We have to manually annotate such information.

When checking the results of QRule-Activity-hasArtifact and QRule-

Activity-hasActor, it turns out that the automatic annotation of associating Artifact
or Actor-role with Activity performs better on EEML models than on BPMN models.

The reason is that EEML Resource Role (GPO:Artifact/Actor-role) is encapsulated in
EEML Task (GPO:Activity) in Metis which behaves in the same way as GPO. How-

ever, the BPMN Logic Process (GPO:Activity) is encapsulated in BPMN Swimlane
(GPO:Actor-role) but not in the reverse way. The relations can not be automatically

transformed as has_Actor-role properties in PSAM models. Based on the above anal-
ysis, we can conclude that the function of automatic transformation should be improved
in Pro-SEAT. RE1 (Navigation requirements) is almost fulfilled in spite of the missing

annotation caused by the manual annotation.

9.4.2 Model analysis based on semantic relationships

The reference ontology is introduced in the SWRL queries for RE2 (Search require-
ments). The links between the model fragments and the ontology concepts are built

through the semantic annotation. When executing the SWRL queries for RE2 (Search
requirements) on the three model instances respectively, we found that the synonym

(same_as) (i.e. semantic equivalent) relationship is mostly used in annotating Ar-

tifacts and Actor-roles, while the hypernym (kind_of) and meronym (part_of,

member_of) relationships are rarely used. Nevertheless, for ontology-based annota-
tions of Activities the case is just reverse: more meronym (phase_of) relationships

and hypernym than synonym are applied. Such phenomena is observed in all the
three models. It shows that Artifacts and Actor-roles in the three models are not very
specialized but relatively general and close to the SCOR standard. On the contrary,

Activities in different models are quite various and meanwhile the modeling granularity
of the Activity is smaller than the SCOR process elements.

9.4.3 Detecting missing annotation

In order to detect missing annotations, we run the query rules 2 together with cor-

responding inference rules 3. For instance, when only running QRule-Activity-
hasArtifact on PMB1, 19 records are returned. If the query is run together

with IRule-Activity-subActivity-hasArtifact, the results set consists of 30
records. By running IRule-Activity-Input-hasArtifact and IRule-Activity-

Output-hasArtifact with QRule-Activity-hasArtifact the query returns 40
records. The results of the execution of those inference rules and queries on three

models are listed in Table 9.4. We comparing record numbers of the query results, we
can see that there are more missing annotation on Arifacts in PMB1 than in PMA and in

2starting with "Q" in the formulation name (see Table 9.4)
3starting with "I" in the formulation name (see Table 9.4)

160 CHAPTER 9. VALIDATION OF APPLICABILITY

Table 9.4: Query results of the inferred annotation options
SWRL inference rules and queries PMA PMB1 PMB2

QRule-Activity-hasArtifact 26 19 9
QRule-Activity-hasArtifact + IRule-Activity-subActivity-
hasArtifact

27 30 12

QRule-Activity-hasArtifact + IRule-Activity-Input-hasArtifact 26 28 12
QRule-Activity-hasArtifact + IRule-Activity-Output-hasArtifact 32 33 11

QRule-Activity-hasArtifact + IRule-Activity-Input-hasArtifact +
IRule-Activity-Output-hasArtifact

32 40 12

QRule-Activity-hasArtifact + IRule-Activity-Input-hasArtifact +
IRule-Activity-Output-hasArtifact + IRule-Activity-subActivity-
hasArtifact

33 47 15

QRule-Activity-hasActor 31 28 16
QRule-Activity-hasActor + IRule-Activity-subActivity-hasActor 32 28 23

QRule-Activity-hasPrecedingActivities 30 20 12
QRule-Activity-hasPrecedingActivities + IRule-Activity-
succeeding-inverse-preceding

37 31 14

QRule-Activity-hasPrecedingActivities + IRule-Activity-

succeeding-inverse-preceding + IRule-Activity-preceding-inverse-
succeeding

37 31 14

QRule-Activity-hasSucceedingActivities 35 21 10
QRule-Activity-hasSucceedingActivities + IRule-Activity-
preceding-inverse-succeeding

37 31 14

QRule-Activity-hasSucceedingActivities + IRule-Activity-

preceding-inverse-succeeding + IRule-Activity-succeeding-inverse-
preceding

37 31 14

PMB2. The big discrepancy is between running QRule-Activity-hasArtifact alone
and running QRule-Activity-hasArtifact together with IRule-Activity-Input-

hasArtifact. It indicates that many Artifacts are allocated in the sub-Activities in
PMB1. Such knowledge is not explicitly represented in the original model so that it

is difficult for an annotator to be aware of it when manually annotating. A simi-
lar case is observed when running QRule-Activity-hasActor and IRule-Activity-

subActivity-hasActor on PMB2. When comparing the three models we notice the
following: most Actor-roles are modeled in the sub-Activities of PMB2; no Actor-role

is attached to the sub-Activities in PMB1; since the way of modeling Actor-role in
BPMN is different from EEML(see the previous paragraph), the annotation about

has_Actor-role for each Activity is made manually but carefully (Only one anno-
tation is missed by mistake). With respect to the annotation about the sequence of
Activities, again the most missing annotations are found in PMB1. The reason is still

the hierarchy of the sub-Activities. Three levels of sub-Activities hierarchy prevents an
annotator from picking all the preceding and succeeding Activities inherited from the

super-Activities.

Not all of the inferred results should be considered as missing annotations. They

are just optional annotations to disclose more implicit knowledge carried by the
models. Some results of those queries also produce noise to the evaluation be-
cause they should not be the correct annotation. For example, the Activity vn

is the sub-Activity of V1 and the Activity V2 precedes V1, but vn is not the di-
rect preceding Activity of V2 because vn is not the last sub-Activity of V1. The

query results of QRule-Activity-subActivity-transitive-achievesHG, QRule-
Activity-subActivity-transitive-positivelysatisfiesSG and QRule-Activity-

9.4. DISCUSSION ON RESULTS OF THE VALIDATION 161

subActivity-transitive-negativelysatisfiesSG can be used in the automatic goal
annotation. In our method of "calculate the possible goal annotation from the subAc-
tivities" in the goal annotation, we synthesize the three inferences in the algorithms.

Anyway, inference mechanisms should be taken into account in the development of the
annotation tool for the sake of semi-automatic annotation.

9.4.4 Semantic validation

Some SWRL rules can be applied to validate semantic representations in both annotated
and original process models. Two examples are provided here:

• When QRule-Activity-hassamePostcondition or QRule-Activity-
hassamePrecondition is executed, the results list a set of Activities with same
pre/postcondition. Through the observation, we can conclude two situations:

1. The results are caused by the way of modeling WorkflowPattern: in an
EEML model, the logic connection "join" or "choice" is modeled by an EEML

Milestone, and the annotated workflow branches from this connection share a
same GPO Condition ("eeml:milestone" is mapped to "gpo:condition" in the
meta-model annotation). Two evaluation results are therefore brought out:

a) The EEML model should be improved by changing the way of modeling
to specify the semantics of different conditions. b) In the annotation model,

conditions for different branches should be separate.

2. Wrong model or redundant Activities with the same Conditions in the orig-
inal models.

• QRule-Activity-hasOutput-mappedto-sameonto-Activity-hasInput

is usually used to navigate the information flow between Activities, which
also can be used for the semantic validation. For instance, two different

Activities from PMB2 have a same local name "Generate_delivery_protocol",
and the outputs of these two Activities are mapped to the same concept

"Customer_Delivery_Terms" in the annotation model. According to the
query results from QRule-Activity-hasOutput-mappedto-sameonto-
Activity-hasInput, the outputs are supposed to be passed to the Activity

"Issue_invoice" as the input. When we check the original model, one of
the two Activities (named with "Generate_delivery_protocol") is a sub-

Activity of "Deliver_items_to_franchisees", and it is indeed followed by the
Activity "Issue_invoice" in the original model. However, the other "Gener-

ate_delivery_protocol" which is a sub-Activity of "Deliver_items_to_shops"
has no link to "Issue_invoice" in the original model. Such observations can be

concluded as follows:

1. Two Activities "Generate_delivery_protocol" could be functionally imple-
mented by one component.

2. The annotation of the outputs of the two Activities should be specified dis-
tinctively.

162 CHAPTER 9. VALIDATION OF APPLICABILITY

9.5 Summary

Applicability of the proposed annotation method has been validated through a pro-
cess knowledge management application based on annotated models. A set of require-

ments have been elicited for implementing the application. The validation has therefore
been undertaken by checking the fulfillment of those requirements with the annotation

results. A set of annotation goals in Chapter 8 has been associated with those re-
quirements and measured during the implementation of the application. Analyzing

the validation results also supplement the quality evaluation of Chapter 8. Moreover,
the application has demonstrated how this work can gain the benefits from Seman-

tic Web technology such as SWRL rules and Description Logic inferences through the
validation.

Part IV

Synopsis

163

Chapter 10

Conclusions and Future Work

We conclude our work in this chapter. First, answers to the research questions and the
achievements of the objectives are discussed. Then, the contributions are emphasized.

Finally, limitations of current work and directions of future work are outlined.

10.1 Research Questions and Findings

The main research question presented in Chapter 1 is:
How can semantic interoperability of process models be improved by using semantic

technologies such as ontologies in the process knowledge management applications?

Generally, this question has been answered by an ontology-based semantic anno-
tation method, i.e. building the theory of a semantic annotation framework and a
semantic annotation model based on a set of ontologies, and the design and implemen-

tation of an ontology-based semantic annotation tool, and as well as the applicability
validation in business process knowledge management applications.

Furthermore, we elaborate the answers to more specific sub-questions.

• RQ1. What kind of semantic interoperability problems exist in business process
knowledge management?

This question is related to semantic heterogeneity of business process models. We
first studied modeling basis of business process management and identified two

levels semantic heterogeneity in process models — meta-model level and model
level. In general, two cases of semantic discrepancies on both levels can be in-

terpreted according to the relationships between sign, referent, and concept in
the semiotic triangle: 1) various signs of referents refer to the same concepts;

2) synonymic signs of referents refer to different concepts. The discussion about
modeling basis and semantic discrepancies is provided in Chapter 2, Chapter

3 and Chapter 4. We surveyed semantic heterogeneity of a number of process
modeling languages by examining modeling constructs corresponding to the busi-
ness process modeling perspectives in Chapter 3. Semantics of model contents

are dependent on business domains, and only the general semantic discrepancies
are considered in this work. The research scope is narrowed down to a study of

models in one business domain which is exemplified in the exemplar studies in
Chapter 7 and a walkthrough scenario in Chapter 9.

165

166 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

• RQ2. What kind of ontologies are required for process knowledge management
and how to represent them?
Ontologies can provides a standard and formal representation of a conceptual-

ization, which can be used for semantic reconciliation. Through the analysis of
semantic discrepancies at both levels, meta-model and model levels, we have de-

termined that a process modeling ontology is needed for the meta-model level and
a business domain ontology is necessary for the model level. A general process

ontology — GPO has been proposed and the concepts and their relationships
have been defined in a meta-model of process models in Chapter 4. A business

domain is determined by the use cases so that the domain ontology is driven
from the SCOR reference models. The ontological representations of SCOR have

been exemplified in Chapter 7. Besides, a goal ontology representing the process
objectives have been regarded as an additional requirement for managing pro-
cess knowledge. The goal ontology is associated with the contextual semantics of

process models, and moreover goal specifications can be used in the goal-driven
process knowledge management. A general goal ontology representation has been

defined in Chapter 5. In order to facilitate associating goals with processes, some
concepts in GPO are reused in the goal ontology representation. A specific goal

ontology is domain dependent and an example of the specific goal ontology of
SCOR domain has been used in exemplar studies in Chapter 7. All the ontolo-

gies have been modeled in OWL with Protégé in order to make use of Semantic
Web technologies in applications.

• RQ3. What metadata are essential for process model interoperability and how are

they defined concerning reference ontologies for reconciliation of the heterogeneous
semantics of process models?

In Chapter 4 and Chapter 5, we have presented our semantic annotation frame-
work, consisting of profile annotation, meta-model annotation, model annotation

and goal annotation. The annotation metadata is also referred as annotation
schema in this thesis. A set of metadata including Dublin Core has been catego-
rized into the types of administrative, descriptive, preservation, technical and use

to describe the profile information of process models in Table 4.1. In the meta-
model annotation, different process modeling languages are mapped to GPO to

reconcile the different modeling constructs with the common definitions in GPO.
There are three cases of mapping: one-one, many-one and combination-one, which

need to be specified in the meta-model annotation schema. GPO is the basis of
the semantic annotation framework and it constructs the semantic annotation

model for model annotation and goal annotation after the meta-model annota-
tion. In the semantic annotation model, process knowledge in original models

is represented in a common knowledge representation format. Model annota-
tion is to refer model contents to domain ontology concepts. Simple reference
is not sufficient for specifying the semantic discrepancies. We refined the ref-

erence through semantic relationships (such as synonym, polysemy, hypernym,
hyponym, meronym, holonym and instance) which are usually used in ontology

specifications, so that the model annotation looks like to build "intermediate on-
tologies" between the domain ontology concepts and the local model contents.

10.1. RESEARCH QUESTIONS AND FINDINGS 167

During the process knowledge management, the "intermediate ontologies" can be
used to rank and infer the knowledge query results (see Chapter 8). Those se-
mantic relationships are defined in the semantic annotation model together with

the relationships defined in GPO. The semantic annotation model is the model
annotation schema. Such model annotation schema is extended by goal annota-

tion metadata achieves, positively_satisfies and negatively_satisfies,
which are used to associate goal ontology concept with process model fragments.

The semantic annotation schema is defined in OWL and a semantic annotation
model is instantiated when it is generated as a result of meta-model annotation.

• RQ4. How can Semantic Web technology to be incorporated in a tool using the

proposed approach?
We have integrated the Protégé Java API into the prototype of our annotation

tool — ProSEAT to manipulate the ontologies edited in Protégé (see Chapter
6). With the tool, users can browse the ontologies and select reference concepts
from the ontology for the annotation. The tool supports manual mapping be-

tween GPO and process modeling languages, automatic generation of an OWL
instances of a semantic annotation model for the model and goal annotation, man-

ual model annotation and semi-automatic goal annotation. Annotation results
are saved in the OWL instance model, which can be read by any OWL supported

system. Semantic inference can be made on the annotation results using OWL
DL reasoners such as Racer [61], FaCT++ [162], KAON2 [118], Pellet [96].

• RQ5. How can we use the proposed approach to facilitate process knowledge man-

agement?
The annotation procedure with the annotation tool in exemplar studies has been

elaborated in Chapter 7. Based on the annotation results, a process knowledge
management application has been demonstrated in Chapter 9. We have vali-
dated the applicability of semantic annotation approach and results. The process

knowledge management activities — process knowledge query and process model
integration — have been analyzed through checking the satisfactions of a set of

identified application requirements. Semantic Web technologies — OWL DL in-
ference with SWRL rules has been applied in the applications and evaluations.

The positive evaluation results proved the quality and applicability of the se-
mantic annotation approach in the exemplified process knowledge management

application.

From the answers to the research questions, we can associate them with the ob-
jectives specified in Chapter 1. We therefore conclude: the solutions to RQ1 achieve

the objective "to investigate semantic heterogeneity issues in business process model-
ing"; the solutions to RQ2 and RQ3 achieve the objective "to explore a comprehensive
annotation approach to deal with heterogeneous semantics of process knowledge with

referenced ontology"; the solutions to RQ4 achieve the objective "to develop an anno-
tation tool to implement the approach by applying Semantic Web technologies"; the

solutions to RQ5 achieve the objective "to evaluate quality and use feasibility of the
proposed approach and tool in supporting process knowledge management activities".

168 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

10.2 Summary of the Contributions

Based on the answers to the research questions and the achieved objectives, the work

contributes to theoretical, methodological and practical body of knowledge.

• Theoretical contribution:

– Applying semiotic theory as the theoretical basis of the work. Since our se-

mantic annotation targets are process models at conceptual level, conceptual
modeling theories have been adapted for this research. The meaning triangle

based on the semiotic theory has been used to identify the semantic hetero-
geneity existing at meta-model and model levels. The relationships between

ontology, model, meta-model and modeling language have been also analyzed
through the semiotic framework in section 4.1.1.

– Survey and comparison of business process modeling languages and process

ontologies according to the process perspectives defined in a Business Process
Management Systems Paradigm (Figure 3.1). The semantic heterogeneity of

various business process modeling languages has been investigated through
the language survey. Existing process ontologies have been surveyed and

compared in order to grasp the common and core concepts for process se-
mantics, which are the basis of our GPO.

– General Process Ontology (GPO). Based on the investigation and analysis

of process ontologies and business process modeling languages, a process on-
tology has been created for reconciling various process modeling constructs.

GPO is a sep forward to the unified process ontology for the interoperability
of process models.

• Methodological contribution:

– A semantic annotation framework for enriching the semantics of process
models when treating them as knowledge. A fundamental semantic annota-
tion structure and annotation components (profile annotation, meta-model

annotation and model annotation) depict how the process knowledge is or-
ganized through such annotation framework.

– An ontology-based annotation method. A semantic annotation model has
been formalized and a set of semantic mapping rules have been elaborated
to guide users to apply the framework and conduct the annotation.

– A goal annotation method. As the way of specifying the objective of pro-
cesses, a goal ontology representation method has been proposed. Based

on the underlying relationships between goal ontology and process models,
semi-automatic goal annotation algorithms have been introduced to facili-

tate the annotation.

• Practical contribution:

– OWL representation of domain and goal ontologies driven from SCOR spec-
ifications. Since domain and goal ontologies are domain dependent, SCOR

10.3. LIMITATIONS AND FUTURE WORK 169

was chosen as the domain references for the annotation in the exemplar
studies. SCOR specifications have not been originally represented in OWL
ontologies. As the ontology engineering contributions, the SCOR ontologies

in OWL representations in this work can be reused in other applications.

– A prototype of the annotation tool. The development of the annotation tool

has provided the technical contribution to the system implementation by
integrating Semantic Web technology. Also the prototype serves as a test-

bed in the evaluation of our approach .

– Quality evaluation and applicability validation. The quality evaluation has

presented how an evaluation procedure was conducted applying SEQUAL
[80]. Through the applicability validation, a possible process knowledge

management application has been demonstrated based on the annotation
results. The ways of applying the relevant Semantic Web technologies such

as DL reasoning and SWRL have also been presented in the application.

10.3 Limitations and Future Work

Semantic annotation enabling e-business and B2B is still an interesting topic in aca-
demic and industrial research. On one hand, the needs of semantic annotation for rec-

onciling heterogeneous informations are obviously crucial for the cooperative business
nowadays. On the other hand, there exist few comprehensive academic or industrial

standards and mature off-the-shelf products for semantic annotation. Moreover, the
related methodology and technology such as development and application of ontologies

and Semantic Web, are still open issues for the ontology-based semantic annotation.
Some limitations of the work and possible extensions are discussed in this section.

• Further automatic enhancement is needed to facilitate the annotation proce-
dure. NLP techniques such as information extraction from model contents and AI

techniques like machine learning might be considered in the annotation of semi-
structured information too. Furthermore, model abstraction mechanism can be

applied to categorize models.

• The work should be evaluated in various domains and applications. The approach
has been evaluated on two models for one business domain. The exemplars are
from literature sources, and the process models and domain ontologies are ex-

perimental design. The usability and applicability should be further validated
through real cases studies.

• Evolution of ontologies and model changes have not been taken into account in

the annotation. This issue is associated with the flexibility of the approach. Since
no gold standard ontology is available and changes are impossible to avoid, the
ontology will certainly evolve with the evolution of the domain knowledge, and

process models might change too. When that happens, the annotation results
will be inconsistent with models and ontologies. It should be possible to provide

a mechanism to keep the annotation results for the unchanged parts of model and
to evolve the ontology references when the ontology is modified.

170 CHAPTER 10. CONCLUSIONS AND FUTURE WORK

• Semantics of relationships in original models have not been taken into account in
this approach. Most of the annotation targets in our approach are entities/classes.
Semantics conveyed by the relationships between the modeling entities/classes

have not been preserved but transformed into the relationships between the GPO
concepts, which might cause some loss of model semantics. However, the an-

notation of relationships is difficult due to the complexity and flexibility of the
relationship representations in most semi-structured models.

• Relationship between the semantic annotations of process models at the concep-

tual level and at the execution level could be developed. Although process models
in our application may be regarded as a service, the difference between a Web
service and a process model is that a Web Service is executable. A Web service

uses programming-like control constructs as their basic building blocks which are
inadequate for all the modeling issues. Our approach can compensate for the

inadequacy from a different modeling perspective, but more work needs to be
completed.

Part V

Appendices

171

Appendix A

BPMN

This chapter presents the BPMN modeling elements and notations. The BPMN mod-
eling elements consist of a set of core elements from which an entire set of the BPMN

modeling elements are extended. The core elements support the requirement of a sim-
ple notation and define the basic look-and-feel of BPMN. The entire list of elements,

including the core elements, help support requirement of a powerful notation to handle
more advanced modeling situations [12]. The definition of the BPMN elements are

standards from [12]. The complete notations are illustrated in [12], but this chapter
illustrates the modeling notations implemented in Metis 5.2.2, which we have applied

in our work.

A.1 BPMN Elements Categories

There are four basic categories of elements — Flow Objects, Connecting Objects, Swim-
lanes, and Artifacts. The elements classified into the four categories as follow.

• Flow Objects are the main graphical elements to define the behavior of a Business

Process: Events, Activities, and Gateways.

• Connecting Objects provide ways of connecting the Flow Objects to each other
or other information: Sequence Flow, Message Flow, and Association.

• Swimlanes are used to group the primary modeling elements: Pool and Lane.

• Artifacts model additional information about the Process: Data Objects, Group,

and Annotation.

A.2 Flow Objects

A.2.1 Events

An Event is something that "happens" during the course of a business process. These

events affect the flow of the process and usually have a cause (trigger) or an impact
(result). Events are circles with open centers to allow internal markers to differentiate

different triggers or results. There are three types of Events, based on when they affect
the flow: Start, Intermediate, and End.

173

174 APPENDIX A. BPMN

Figure A.1: BPMN Events

A.2.2 Activities

An Activity is a generic term for work that company performs. An activity can be

atomic or non-atomic (compound). The types of activities that a part of a Process
Model are: Process, Sub-Process, and Task. Tasks and Sub-Processes are either un-
bounded or a contained within a Pool. In Metis, notations of Tasks and Sub-Processes

look same – round rectangles. Besides for those Activities, Input and Output can be
attached. The notations of Activities are listed in Figure A.2.

Figure A.2: BPMN Activities – Sub-Process, Task

A.2.3 Gateways

A Gateway is used to control the divergence and convergence of multiple Sequence Flow.
Thus, it will determine branching, forking, merging, and joining of paths. Gateways

are represented with diamonds and they can be specified with Gateway Control Types
which are icons within the diamond shape (Figure A.3).

A.3 Connecting Objects

A.3.1 Sequence flows

A Sequence Flow is used to show the order that activities will be performed in a
Process. A Sequence Flow can be further elaborated as Normal Flow and Exception
Flow. A Normal Sequence Flow is usually notated by a line with an arrow connecting

activities or gateways. Exception Flow occurs outside the Normal Flow of the Process
and is based upon an Intermediate Event that occurs during the performance of the

Process. Figure A.4 provides the graphical notation of a Normal Sequence Flow and
an Exception Flow.

A.3. CONNECTING OBJECTS 175

Figure A.3: BPMN Gateways

Figure A.4: BPMN Sequence Flows

A.3.2 Message flows

A Message Flow is used to show the flow of messages between two participants that are

prepared to send and receive them. In BPMN, two separate Pools in the Diagram will
represent the two participants (e.g., business entities or business roles). The notation

for a Message Flow is illustrated in Figure A.5.

Figure A.5: BPMN Message Flow

A.3.3 Association

An Association is used to associate information with Flow Objects. Text and graphical
non-Flow Objects can be associated with the Flow Objects. A dash line with an arrow

is used to associate between Data Objects and Activities. A dash line without arrows
is to link between Data Objects to a Sequence Flow or a Message Flow (Figure A.6).

176 APPENDIX A. BPMN

Figure A.6: BPMN Associations

A.4 Swimlanes

A.4.1 Pool

A Pool represents a Participant in a Process. It is also acts as a "swimlane" and a

graphical container for partitioning a set of activities from other Pools, usually in the
context of B2B situations.

A.4.2 Lane

A Lane is a sub-partition within a Pool and will extend the entire length of the Pool,

either vertically or horizontally. Lanes are used to organize and categorize activities.
The Pool is notated as Swimlane Diagram and the Lane can be notated with Horizontal

Swimlane or Vertical Swimlane, which are illustrated as Figure A.7.

Figure A.7: BPMN Swimlanes – Pool and Lane

A.5 Artifacts

A.5.1 Data Object

Data Objects are considered Artifacts because they do not have any direct effect on
the Sequence Flow or Message Flow of the Process, but they do provide information

about what activities require to be performed and/or what they produce. The notation
of Data Object is displayed in Figure A.8.

Grouping and Annotation are not supported by Metis 5.2.2 currently.

A.6. BPMN META-MODEL TREE IN METIS 5.2.2 177

Figure A.8: BPMN Object Data

A.6 BPMN meta-model tree in Metis 5.2.2

The modeling elements are grouped into two categories in Metis, which are BPM Mod-

eling Domain and Swimlane Diagram. In the Swimlane Diagram category, a Swimlane
Diagram Object can group several Swimlanes and Swimlane can be either horizontal
or vertical. Other modeling elements are in BPM Modeling Domain. Some additional

modeling elements such as Input, Output, Control, Mechanism, Internal Flow are ex-
tended and categorized in the BPM Modeling Domain. The screen shot of the BPMN

modeling constructs and notations in Metis 5.2.2 is illustrated in Figure A.9.

178 APPENDIX A. BPMN

Figure A.9: BPMN modeling constructs and notations in Metis 5.2.2

Appendix B

EEML 2005

The language vocabulary of EEML 2005 is presented in this chapter. EEML can be

used for process and enterprise modeling on different levels (both type and instance
level). The language vocabulary is grouped into several domains focusing on different

modeling perspectives.

Currently EEML includes four modeling domains — Process modeling, Resources
modeling, Goal modeling and Data modeling (UML Class Diagram). In this research,
we mainly concern the Process modeling and Resource modeling necessary for describ-

ing a business process.

B.1 Process Modeling Domain

B.1.1 Task

The Task concept should be used to represent a limited piece of work within a process.
A task can be decomposed into smaller tasks, and, likewise, be a part of a larger task.

The notation of a task is a round rectangle. Each task can have an Input Port and an
Output Port which are the small diamonds attached to the left and right side within

the round rectangle. A task-subtask-structure is shown in an onion-style notation as
illustrated below (Figure B.1):

Figure B.1: EEML Tasks

179

180 APPENDIX B. EEML 2005

B.1.2 Decision Point

A decision point models a (normally manual) decision performed as part of the overall

process. The behavior of the decision point is largely defined by Logical Relation spec-
ified in a decision point, which describes how to handle multiple flows in or out from
the decision point.

A default icon for the decision point is a diamond. And the logical relations can be

specified within a diamond. Figure B.2 presents three types of decision points – OR,
AND and XOR.

Figure B.2: EEML Decision Points

Figure B.3: EEML Milestone

B.1.3 Milestones

The Milestone concept is used to denote a decision point that is regarded to be of

specific importance in the process it is a part of.
Examples: When ready to issue a contract, When ready to start a project.

The behavior of Milestone is largely defined by the property Logical Relation, which

has similar semantics as described on decision-point above. The default icon for a
Milestone is in Figure B.3.

B.1.4 Resource role

The term "role" designates some part played by some resource. A role should always
be specified within a context. Typical examples of a role context are i) the organi-

zation as a whole, ii) organizational units within an organization iii) a task within
the extended enterprise. Roles can be modeled in the context of Task, or externally,

meaning the given (implicit) organizational context of the model. In addition, roles
may be connected to flows, which is particularly relevant for the Roles of the object-

type. Connecting object roles to flows is a convenient way to model document flow, for
instance.

Roles may be considered as placeholders for resources, and are introduced to make
it possible to talk about the use of resources without being concrete. In principal the

B.2. RECOURSES MODELING DOMAIN 181

role types as such do not imply anything in terms of being active or passive. A role can
be filled by any type of Resource. The default icon for Role is a circle (Figure B.4).

Figure B.4: EEML Resource role

B.2 Recourses Modeling Domain

Resources are things that play specific roles during the process execution or in the
organization in general. The resource roles may vary greatly, - some resources are

typically viewed as enablers, whereas others comprise the result (or part thereof) of the
process.

EEML distinguishes between 6 types of resources, namely Person, Organization,

Software Tool, Manual Tool, Material Object, and Information Object.

The typical way of connecting resources to processes is to assign them to resource
roles included in the process, or attaching them to flows between tasks e.g. document

flow.

The notations of those resources are illustrated in Figure B.5.

Figure B.5: EEML Resources

B.3 EEML modeling relationships

Besides the above object types, EEML defines a set of relationships to link those ob-
ject types. The relationships are: flows into (between two Decision Points), has part
(between a Task and its components, or between a Resource and its component Re-

sources), has input port (between a Task and its Input Port), has output port (between
a Task and its Output Port), has resource role (between a Task and its components of

type Role), collaborates with (collaborations between two Tasks), is filled by (between
Roles and its assignment of Resources), is candidate for (the possible filling of a Role

182 APPENDIX B. EEML 2005

by a Resource), describe flow (linking a Resource role to a Flows Into), has member
(between Organization and its components of Person).

B.4 EEML 2005 in Metis 5.2.2

The EEML 2005 modeling constructs are organized in different domains in Metis 5.2.2.
Each domain consists of a set of object types and relationships. The metamodel tree

structure of EEML in Metis 5.2.2 is displayed in Figure B.6.

Figure B.6: EEML 2005 modeling constructs in Metis 5.2.2

Appendix C

SCOR

SCOR — Supply Chain Operations Reference model [163] is a process reference model
that has been developed and endorsed by the Supply Chain Council (SCC) as the cross-

industry de facto standard diagnostic tool for supply chain management. The SCOR
process reference model provides standard descriptions of management processes, a

framework of relationships among the standard processes, standard metrics to measure
process performance, management practices that produce best-in-class performance,

standard alignment to features and functionality.
By applying process modeling building blocks, the model hereby can be used to

describe supply chains that are very simple or very complex using a common set of
definitions. SCOR provides three-levels of process detail, namely top level (Level 1),
configuration level (Level 2), and process element level (Level 3). The three levels are

illustrated in Figure C.1 [208].

Figure C.1: Three levels in the SCOR scope [208]

183

184 APPENDIX C. SCOR

• Level 1 defines the scope and content for the Supply Chain Opertations Reference-
model. Here basis of competition performance targets are set.

• A company’s supply chain can be "configured-to-order" at Level 2 from 30 core

"process categories". Companies implement their operations strategy through the
configuration they choose for their supply chain.

Level 3 defines a company’s ability to compete successfully in its chosen markets, and

consists of:

• Process element definitions

• Process element information inputs, and outputs

• Process performance metrics

• Best practices, where applicable

• System capabilities required to support best practices

• Systems/terms

The metrics are used in conjunction with performance attributes. The Performance

Attributes are characteristics of the supply chain that permit it to be analyzed and
evaluated against other supply chains with competing strategies. Most metrics in the

Model are hierarchical just as the process elements are hierarchical. Level 1 Metrics
are created from lower level calculations and are primary, high level measures that
may cross multiple SCOR processes. Lower level calculations (Level 2 and metrics) are

generally associated with a narrower subset of processes.

C.1 Level 1 Process Definitions

SCOR is based on five distinct management processes: Plan, Source, Make, Deliver,

and Return.

• Plan - Processes that balance aggregate demand and supply to develop a course
of action which best meets sourcing, production, and delivery requirements.

• Source - Processes that procure goods and services to meet planned or actual

demand.

• Make - Processes that transform product to a finished state to meet planned or

actual demand.

• Deliver - Processes that provide finished goods and services to meet planned or
actual demand, typically including order management, transportation manage-

ment, and distribution management.

• Return - Processes associated with returning or receiving returned products for
any reason. These processes extend into post-delivery customer support.

C.2. LEVEL 2 TOOLKIT 185

Level 1 Metrics do not necessarily related to a SCOR Level 1 process. The Level 1
Metrics are the calculations by which an implementing organization can measure how
successful they are in achieving their desired positioning within the competitive market

space. Figure C.2 list a set of Level 1 Metrics defined in SCOR version 7.0.

Figure C.2: Performance Attributes and Level 1 Metrics [164]

C.2 Level 2 Toolkit

At Level 2, each process can be further described by type. The SCOR process types are
Planning, Execution and Enable. The SCOR configuration toolkit defines process cat-

egories by the relationship between a SCOR process and a process type. Practitioners
select appropriate process categories from the SCOR configuration toolkit to represent

their supply-chain configuration(s). The relationship of SCOR process, process type
and process category are presented in Figure C.3. The overview of Level 2 process

categories are outlined in Figure C.4.

Figure C.3: Process Categories [164]

186 APPENDIX C. SCOR

Figure C.4: Level 2 Toolkit [164]

C.3 Level 3 Process Elements

Level 3 presents detailed process element information, including process model, process

element definition, performance attributes and accompanying metrics, for each Level
2 Process Category. Process details of S1 Source Stocked Product and D1 Deliver

Stocked Product are exemplified in models in Figure C.5 and C.6. In the models, the
process elements are ordered in sequence and specified with inputs and outputs. Figure

C.7 provides some examples of metrics associated with the performance attributes for
the process element Schedule Product Deliveries.

C.3. LEVEL 3 PROCESS ELEMENTS 187

Figure C.5: Level 3 process elements of S1 Source Stocked Product [164]

188 APPENDIX C. SCOR

Figure C.6: Level 3 process elements of D1 Deliver Stocked Product [176]

Figure C.7: Level 3 metrics for S1.1 Schedule Product Deliveries [164]

Appendix D

Algorithm for Semi-Automatic
Goal Annotation

The semi-automatic goal annotation is implemented through the algorithms in the

following cases.

• A. Match a target activity (av′) of a goal (g) in the goal ontology (G) with the
Activity in a PSAM model(av).

• B. Match a target artifact (a f ′) of a goal (g) in the goal ontology (G) with the

Artifact and Output in a PSAM model (a f , o).

– B.I Match a f ′ with the annotation of o.

– B.II Match a f ′ with the annotation of a f which is directly associated with

av through has_Activity relationship.

– B.III Match a f ′ with the annotation of a f which is indirectly associated
with av through has_Output and related_Artifact relationships.

• C. Match a target role (ar′) of a goal (g) in the goal ontology (G) with the
Act-role in a PSAM model (ar).

• D. Match a target constraint (c′) of a goal (g) in the goal ontology (G) with the

Precondition, Postcondition, and Exception in a PSAM model (pre, post,
e).

For the automatic match, we exploit the semantic mapping through both ontol-

ogy comparison and string match between ontology references and models. To rank
the mapping results, weights are assigned to the different ways of mapping (σ is for a

weight of ontology comparison. τ is for a weight of string match). In ontology com-
parison, three different semantic relationships applied in model annotation are taken
into account in the assignment of weights. The synonym ("same_as") relationship is

given the highest weight for complete match (σ = 1), and the hypernym ("kind_of")
is given a lower weight for a subsumption relationship (σ = 0.8), and the meronym

("phase_of" for activity, "part_of" for artifact, "member_of" for actor-role) is given the
lowest weight for a subset relationship (σ = 0.5). In the string match, the exact match

189

190 APPENDIX D. ALGORITHM FOR GOAL ANNOTATION

gets higher weight than the sub-string match (τ = 1 for exact match, and τ = 0.5 for
sub-string match).

Weights are also different for each case. We set different parameters for weighing

each case. The values of parameters can be set by users. In the algorithm, α stands for
the weight of case A with ontology comparison and β for case A with string match.

The case B is relatively complex. Sub-cases are distinguished for case B: case B.I – the
target artifact a f ′ of the goal concept is mapped to the annotation of the Output; case

B.II – the target artifact a f ′ of the goal concept is mapped to the annotation of an
Artifact which is directly associated with the activity; case B.III – the target artifact

a f ′ of the goal concept is mapped to the annotation of an Artifact which is indirectly
related with the activity. An Artifact can be associated with an Activity through

direct relation "has_Artifact" or through the indirect relation "related_Artifact" of
the Output. If the association is built through the indirect relation, the state of the
target artifact a f ′ should be checked to match the Output too. Parameter θ is used

for weight of case B.I, γ is for case B.II with ontology comparison, and δ is for case
B.II with string match. ε and µ are for case B.III. That the models are mapped to

the goals by case C (matching the target role) is regarded less important than by the
other cases, because the actor role is seldom considered as the stand alone target of

a goal. Two parameters ε and ζ are applied in case C for ontology comparison and
string match respectively. The values for the two parameters should be set lower than

other parameters. No ontology comparison is employed in case D, so one parameter η

is assigned in such case.

When matching a goal concept (g) with an activity (av) in models, all the four cases
must be checked on g and av. The result of a match is a total weight by summing the
weights from four cases. The higher total weight is, the better g matches av.

191

Algorithm 1 Goal Annotation Algorithm for Case A

Require: weight parameters α and β

initialize values of weight f oractivityonto, weight f oractivityname, σ, τ as 0
onto = OD(av) {av is the activity to be annotated in goal annotation, and OD(av)
gets the domain ontological concept which was annotated to av in model annotation}

r = SR(av, onto) {SR(av, onto) gets the semantic relationship between av and onto}
for each target activity av′ of a g in goal ontology do

if o equals av′ then

if r is "same_as" then
σ = 1

else if r is "kind_of" then
σ = 0.8

else if r is "phase_of" then
σ = 0.5

end if
end if

weight f orativityonto = weight f oractivityonto +σ

if av.name equals av′.name by string match then
τ = 1

else if av.name partly equals av′.name by string match then
τ = 0.5

end if
weight f oractivityname = weight f oractivityname + τ

end for
return α ∗ weight f oractivityonto + β ∗ weight f oractivityname

Algorithm 2 Goal Annotation Algorithm for Case B.I

Require: weight parameters θ

initialize value of weight f oroutput as 0

Arrayout[] is a set of output associated with av {av is the activity to be annotated
in goal annotation. out[] is got from has_Output relationship}
for each output in out[] do

onto = OD(out) {OD(out) gets the domain ontological concept which was anno-
tated to output through mapped_to relationship}

for each target artifact a f ′ of a g in goal ontology do
if onto equals a f then

weight f oroutput = weight f oroutput + 1

end if

end for
end for

return θ ∗ weight f oroutput

192 APPENDIX D. ALGORITHM FOR GOAL ANNOTATION

Algorithm 3 Goal Annotation Algorithm for Case B.II

Require: weight parameters γ, δ

initialize value of weight f orarti f actonto, weight f orarti f actname as 0
Arraya f [] is a set of artifacts associated with av through has_Artifact

for each a f in a f [] do
onto = OD(a f) {OD(a f) gets the domain ontological concept annotated to a f }

for each target artifact a f ′ of a g in goal ontology do
r = SR(a f , onto) {SR(ar, onto) gets the semantic relationship between a f and
onto}

initialize σ, τ as 0
if onto equals a f ′ then

if r is "same_as" then
σ = 1

else if r is "kind_of" then
σ = 0.8

else if r is "phase_of" then
σ = 0.5

end if
end if
weight f orarti f actonto = weight f orarti f actonto +σ

if a f .name equals a f ′.name by string match then
τ = 1

else if a f .name partly equals a f ′.name by string match then
τ = 0.5

end if
weight f orarti f actname = weight f orarti f actname + τ

end for
end for

return γ ∗ weight f orarti f actonto + δ ∗ weight f orarti f actname

193

Algorithm 4 Goal Annotation Algorithm for Case B.III

Require: weight parameters ε, µ

initialize value of weight f oroutarti f actonto, weight f oroutarti f actname as 0 {Case

B.III}
Array oa f [] is a set of artifacts indirectly related to av through has_Output and

related_Artifact
for each a f in oa f [] do

onto = OD(a f) {OD(a f) gets the domain ontological concept annotated to a f }
for each target artifact a f ′ of a g in goal ontology do

r = SR(a f , onto) {SR(av, onto) gets the semantic relationship between a f and
onto}

initialize σ, τ as 0
if onto equals a f ′ then

if r is "same_as" then

σ = 1

else if r is "kind_of" then

σ = 0.8

else if r is "phase_of" then

σ = 0.5

end if

end if
if state s′ of a f ′ equals output o of av then

weight f oroutarti f actonto = weight f oroutarti f actonto +σ + 1

else
weight f oroutarti f actonto = weight f oroutarti f actonto +σ

end if
if a f .name equals a f ′.name by string match then

τ = 1

else if a f .name partly equals a f ′.name by string match then

τ = 0.5

end if

if state s′ of a f ′ equals output o of av then
weight f oroutarti f actname = weight f oroutarti f actname + τ + 1

else
weight f oroutarti f actname = weight f oroutarti f actname + τ

end if

end for
end for

return ε ∗ weight f oroutarti f actonto + µ ∗ weight f oroutarti f actname

194 APPENDIX D. ALGORITHM FOR GOAL ANNOTATION

Algorithm 5 Goal Annotation Algorithm for Case C

Require: weight parameters ε, ζ

initialize value of weight f oractoronto, weight f oractorname as 0
Arrayar[] is a set of actor-roles associated with av through has_Actor-role

for each ar in ar[] do
onto = OD(ar) {OD(ar) gets the domain ontological concept annotated to ar}
for each target role ar′ of a g in goal ontology do

r = SR(ar, onto) {SR(ar, onto) gets the semantic relationship between ar and
onto}

initialize σ, τ as 0
if onto equals ar′ then

if r is "same_as" then
σ = 1

else if r is "kind_of" then
σ = 0.8

else if r is "phase_of" then
σ = 0.5

end if
end if
weight f oractoronto = weight f oractoronto +σ

if ar.name equals ar′ .name by string match then
τ = 1

else if ar.name partly equals ar′.name by string match then
τ = 0.5

end if
weight f oractorname = weight f orartorname + τ

end for
end for

return ε ∗ weight f orarti f actonto + ζ ∗ weight f orarti f actname

195

Algorithm 6 Goal Annotation Algorithm for Case D

Require: weight parameters ε, ζ

initialize value of weight f orprecondition, weight f orpostcondition,
weight f orexception as 0

Arraypre[] is a set of preconditions associated with av through has_Precondition
initialize σ, τ as 0

for each precon in pre[] do
for each target constraint c′ of a g in goal ontology do

if precon.name equals c′ .name by string match then

τ = 1

else if precon.name partly equals c′ .name by string match then

τ = 0.5

end if

weight f orprecondition = weight f orprecondition+ τ

end for

end for
Arraypost[] is a set of postconditions associated with av through has_Postcondition

initialize σ, τ as 0
for each postcon in post[] do

for each target constraint c′ of a g in goal ontology do
if postcon.name equals c′ .name by string match then

τ = 1

else if postcon.name partly equals c′ .name by string match then

τ = 0.5

end if

weight f orpostcondition = weight f orpostcondition+ τ

end for

end for
Arrayexc[] is a set of exceptions associated with av through has_Exception

initialize σ, τ as 0
for each exception in exc[] do

for each target constraint c′ of a g in goal ontology do

if exception.name equals c′ .name by string match then
τ = 1

else if exception.name partly equals c′ .name by string match then
τ = 0.5

end if
weight f orexception = weight f orexception + τ

end for
end for

return η ∗ (weight f orprecondition + weight f orpostcondition + weight f orexception)

196 APPENDIX D. ALGORITHM FOR GOAL ANNOTATION

Appendix E

GUI of Pro-SEAT

The properties defined for annotating the profile are edit-able in the profile annotation

UI (Figure E.1).

Figure E.1: Profile annotation UI in Pro-SEAT

Figure E.2 displays the main frame layout of the meta-model annotation UI. The

tree view of the original process model is on the left, and on the right side of the
annotation panel is the reference ontology browser (In this case, it displays the GPO

197

198 APPENDIX E. GUI OF PRO-SEAT

ontology). The meta-model annotation results are listed in the center of the frame.
The manipulation of the meta-model annotation can be activated through the buttons
beside the panel of the annotation result list.

Figure E.2: Meta-model annotation UI in Pro-SEAT

Figure E.3 shows the activated dialogs in mapping the meta-model elements to the
GPO ontology concepts.

In the model annotation UI (Figure E.4), a PSAM model can be generated for the
model annotation from one meta-model annotation result. In a PSAM, the classes are

GPO concepts and the model contents transformed from the original models are OWL
instances of those GPO concepts. The model and the goal annotations are made to the

instances of the generated PSAM models. The user can browse those instances by se-
lecting a GPO concept in the annotation panel. For each model element/instance, there

are a set of properties for editing the model annotation. Those properties are displayed
between the panels of the model elements and the reference ontology. Some of the prop-
erties are the relationships defined in the GPO ontology (e.g. has_subActivities),

and some are for linking the reference ontology (e.g. same_as). For those relationships
of GPO, the values of the properties are still the model constructs/instances that can

partly transferred from the original process model by the generation of PSAM. New
values can be inserted or the values can be deleted by "New" and "Delete" buttons

199

Figure E.3: Mapping meta-model to GPO in Pro-SEAT

for those properties. Since the value is also the annotatable model element/instance,

"Annotate" button provides a short-path to browse this instance. For those links to
the reference ontology, "Add" button can activate the ontology selection dialog and

"Remove" button is for deleting the values of the property.
The goal annotation requires the generated PSAM model from the model annota-

tion. Having the similar UI with the model annotation, the goal annotation properties
are listed in the middle between the model elements and the reference ontology (Figure

E.5). The target of the goal annotation is Activity and the sub-activity hierarchy is
important for the automatic annotation, so that the model elements are listed as not
the GPO instances but the model tree in the goal annotation UI. The manual annota-

tion is to select the goal concept from the ontology selection dialog. When automating
the goal annotation, a list of the goal options for the annotation is generated from the

automatic goal annotation algorithm. The weights of the match are also displayed to
indicate which goals have the higher priority for this annotation. Figure E.6 illustrates

the results of the automatic goal annotation.

200 APPENDIX E. GUI OF PRO-SEAT

Figure E.4: Model annotation UI in Pro-SEAT

201

Figure E.5: Goal annotation UI in Pro-SEAT

Figure E.6: Automatic goal annotation in Pro-SEAT

202 APPENDIX E. GUI OF PRO-SEAT

Appendix F

Analysis of the Annotation and
the Integration Application in
Exemplar Studies

In this chapter, we provide analysis details of exemplar studies. Section F.1 describes

how SCOR ontology is annotated to PMA, PMB1 and PMB2 with our semantic an-
notation approach. Based on the annotation results, an analysis of the integration

application for the applicability of the semantic annotation approach is depicted in
section F.2.

F.1 Semantic Annotation Based on SCOR ontology

Parts of the annotation results of the exemplar studies are displayed in Table 7.3, Table
7.4 and Table 7.5. Ten representive Activities out of 33 instances in PMA are listed in

Table 7.4. For the model annotation, same_as is applied when the Activity instance
undertakes the same task as the SCOR process element. "Transportation planning" in
PMA does actually accomplish the carriers selection and shipments rating (D1.7), no

more and no less work than that. When one Activity instance specifies the way of
doing of a certain SCOR process element, kind_of can be used. "Credit control" is

one way of managing the deliver capital assets (ED.5) in the context of PMA. Usu-
ally the granularity of the Activity instances is smaller than the SCOR level 3 process

element, i.e. they are decomposed parts of SCOR process elements. Those Activi-

ties are therefore phase_of the reference ontology concepts. Both "Client RFQ pro-

cessing" and "Client quotation processing" are two phases of D1.1 Process Inquiry

and Quote. As the goal annotation results, they are not obvious to see the inherent

link between the Activity instance and the goal ontology in the table. The auto-
matic goal annotation algorithm deduces the optional goal ontology concepts which
have the features relevant to the model fragment of the Activity instance. But it does

not mean that all the deduced goals are fulfilled by the Activity, the options are re-
turned with the weights. Generally the higher weight indicates that the returned goal

is more relevant to the Activity instance. Besides, the annotator will make the choices
based on the context of process models and manual annotation is also necessary in

203

204 APPENDIX F. ANALYSIS OF EXEMPLAR STUDIES

some cases. For the example of "Create delivery", the goal algorithm deduces two
hard goals Delivery Date is Determined with weight ’1.0’ and Delivery Date is

Determined with weight ’0.06’. Delivery Date is Determined is not selected be-

cause of low weight. Delivery is Processed is further checked in the goal ontology
and its parts Delivery is Scheduled and Delivery Terms are Generated are con-

sidered more precise than Delivery is Processed in the goal annotation of "Create
delivery". Nine soft goals are also returned but only two goals with weight ’1.8’ (Ensure

Full Delivery and Ensure Full Shipment) are selected by an annotator.

In PMB1, "get the order to supplier" can be regarded as a phase of the activity

ontology Schedule Product Deliveries from SCOR. Because there are three kinds
of items receiving, they are respectively checked in sub-Activities of the activity "check

items". Therefore, three sub-Activities all achieves Sourced Product are Verified.
The procedure of "check imported items" is a little more complicated compared with

the other two kinds of items receiving because it includes issuing deficit protocols and
an invoice to insurance company. "Check imported items" are depicted with a serial of

sub-Activities such as "issue the deficit protocol", "issue an invoice to insurance com-
pany", etc. Those negatively satisfy the soft goal Reduce Verification Costs. The
consignment can simplify the check and item receiving procedure, so it positively sat-

isfies Reduce Verification Costs. Issuing invoices are steps of "Authorize Supplier
Payment", and "issue an export invoice" are to authorize payment to suppliers. The

soft goal of Process Invoice Without Error will be risked by the invoice issue pro-
cedures. In the context of the TelCo use case, "store items to Orbit" is the way of

Transfer Product and the result of the procedure is an Available Inventory.

PMA starts the process from the order inquiry from the client, whilst PMB2 begins

with the existing orders but the orders are managed and edited during the delivery
process. It is hereby observed that the sequence of the Activities of PMB2 does not

comply with the sequence of the SCOR DELIVER. The first Activity "Consolidate or-
ders" accomplishes the same task as D1.4 Consolidate Orders. As the descriptions of

the TelCo case, the "Consolidate orders" is executed by a computational software SEN
which can Reduce Order Processing Costs and Reduce Order Processing Time.
"Check stock" in PMB2 is more general compared with "Check delivery items" and

"Check availability of delivery items" in PMA so that no specific goals are annotated to
"Check stock". Although both PMA and PMB2 have the Activity "Credit control" and

they are both phase_of D1.2 Receive Enter and Validate Order, they are not ex-
actly same. "Credit control" in PMA deals with the capital assets but in PMB2 it

is just kind_of ED.3 Manage Deliver Information. Delivery protocol is treated as
Delivery Terms and "Generate delivery protocol" of PMB2 is similar to "Create deliv-

ery" of PMA. They are also the way of ED.3 Manage Deliver Information. How-
ever, the delivery protocol in PMB2 is mainly focus on the agreed delivery date so

that Improve Deliver to Customer Delivery to Date Performance and Improve

Deliver to Customer On Time Delivery Performance are selected as the goal an-
notation for "Generate delivery protocol". "Send items" serves in both "Deliver items

to franchisees" and "Deliver items to shops" and should be specified as kind_of D1.12

Ship Product if they are using different ways to ship product. The items delivered to

shops are retail product so "Deliver items to shops" is phase_of D4 Deliver Retail

Product not D1 Deliver Stocked Productas "Deliver items to franchisees". Since

F.2. INTEGRATION APPLICATION BASED ON SEMANTIC ANNOTATION 205

the shops are local shops, it usually takes less time to ship the products so that it
positively_satisfies Reduce Order Shipment Time.

After annotating the low level activity elements, the goal contributions can be cal-
culated to the upper level activities. Taking the example of the composite activity

"Check items", we have annotated its component activities with hard goals and soft
goals. "Check imported items" negatively satisfies Reduce Verification Costs and

"check consignment items" positively satisfies Reduce Verification Costs, so the ef-
fects are counteracted for the composite activity "check items" if we apply the simple

contribution calculation rules. The hard goals "Sourced Products are Verified",
"Procurement Notification to Supplier" and "Product Quantity is Approved" which are
annotated to "check imported items", "check consignment items" and "check items from

local suppliers" are simply passed to "check items". Applying the same rules, the goals
related to the whole process model are specified through the goal annotation.

F.2 Integration Application Based On Semantic Annota-

tion

An integration application in the exemplar studies is to integrate delivery processes of

Enterprise A and B. We deploy this application based on semantic annotation results
of process models.

The following steps have been undertaken for the integration application:

1. Running QRule-Activity-achievesHardGoal for RE2.4 to find process model
fragments achieving the integration goals.

2. Using ontology as semantic mediator, SWRL queries and rules are executed for

RE4 to find semantic relationships between Activity, Artifact and Actor-role

in those model fragments resulted from step 1.

3. Based on semantic relationships between model fragments, listing some possible
integration paths.

4. Applying SWRL queries and rules QRule-Activity-hasSucceedingActivities
and QRule-Activity-hasPrecedingActivities for RE1 and QRule-Activity-
hasPrecedingActivities-hasSubActivity for RE3.2 to rearrange the sequence

of integrating process model fragments.

5. Checking the results from step 4 with activity sequences in the SCOR domain

ontology.

6. Adjusting the sequence and hierarchy of integrating activities according to the

integration context.

7. Build output-input flow by checking Input and Output of activities through
running QRule-Activity-Input-mappedto and QRule-Activity-Output-

mappedto for RE2.2. The step can be used to find the missing activities and
also re-arrange the sequence of activities based on the output-input flow.

206 APPENDIX F. ANALYSIS OF EXEMPLAR STUDIES

Firstly, the goals "Delivery_is_Processed" and
"Invoice_to_Customer_is_Processed" are chosen from the goal ontology
as the integration goal. Running QRule-Activity-achievesHardGoal for

RE2.4 on annotated models from both enterprises. There is no result from
PMA, PMB1 and PMB2 which is directly related to the two goals. However,

reasoning from the goal ontology, "Delivery_is_Processed" has sub-goals
(has_parts) "Delivery_is_Scheduled", "Delivery_Terms_are_Generated",

and "End_Items_are_Delivered". "Invoice_to_Customer_is_Processed" has sub-
goals "Invoice_to_Customer_is_Issued" and "Invoice_to_Customer_is_Paid".

By running the queries about these sub-goals, we are aware that such knowledge is
distributed in PMA and PMB2 and mostly related to "Delivering_Processing" in PMA

and "Deliver_items_to_franchisee" and "Deliver_items_to_shops" in PMB2.

Another integration concern in this application is the integration of "Customer"

of two enterprises. In PMA the BPMN Swimlane "client" is same_as the ontology
concept "Customer" whilst in PMB2 the EEML Organization "shop" and "franchisee"

are both kind_of "Customer". When transforming or integrating two models, "shop"
and "franchisee" can be modeled as sub-class of "client" in PMA. The identical and
the unique parts of "Deliver_items_to_franchisee" and "Deliver_items_to_shops"

can be modeled as sub-Activities of "Delivering_Processing" in PMA respectively.
Moreover, we should check all the Activities relevant to "shop" or "franchisee" in

PMB2 and the Activities relevant to "client" in PMA. In the exemplar studies, the
Activity "Send_inquiry", "Send_quotation", "Receive_delivery" in PMA and the

Activity "Deliver_items_to_shops" and "Deliver_items_to_franchisees" in PMB2 are
returned in the query results. To check the underlying semantic relationships between

those Activities, we can run QRule-Activity-phaseof, QRule-Activity-kindof
and QRule-Activity-sameas to find out how those Activities mapped to the SCOR

ontology. Both "Deliver_items_to_shops" and "Deliver_items_to_franchisees" in
PMB2 are phase_of D1-Deliver_Stocked_Product, while in PMA "Send_quotation"
and "Send_inquiry" are phase_of D1.1-Process_Inquiry_and_Quote and "Re-

ceive_delivery" is kind_of D1.13-Receive_and_Verify_Product. It is obvious that
the two Activities in PMB2 are too general (mapped to a process category of the SCOR

level 2), so that we can check if they have sub-Activities by running QRule-Activity-
subActivity. If there is no sub-Activities, the Activities in PMA can be considered

as the refined sub-Activities for PMB2 because D1.1 and D1.13 are sub-Activities of
D1 according to the SCOR ontology. If there are any sub-Activities, further check

of those sub-Activities is to be deployed. Four sub-Activities are returned for "De-
liver_items_to_franchisees": "Generate_delivery_protocol", "Credit_control", "Is-

sue_invoice" and "Send_items". When checking the semantic mapping between those
sub-Activities and the SCOR ontology, "Send_items" is kind_of D1.12-Ship_Product,
"Credit_control" is phase_of "D1.2-Receive_Enter_and_Validate_Order" and "Is-

sue_invoice" is phase_of "D1.15-Invoice". By filling RE4.5, a possible integration
path could be

”Send_inquiry”(PMA) → ”Send_quotation”(PMA) → ”Credit_control”(PMB2)
→ ”Delivering_Processing”(PMA){”Deliver_items_to_ f ranchisee”(PMB2};

”Deliver_items_to_shops”(PMB2)} → ”Ship_items”(PMB2) →

F.2. INTEGRATION APPLICATION BASED ON SEMANTIC ANNOTATION 207

”Receive_delivery”(PMA) → ”Issue_invoice”(PMB2).

Certainly that is not a complete and fine integration. The succeeding Activities of
"Send_quotation" in PMA and the preceding Activities of "Credit_control" in PMB2

should be checked by QRule-Activity-hasSucceedingActivities and QRule-

Activity-hasPrecedingActivities for RE1. Because "Credit_control" is a sub-
Activity in PMB2, the QRule-Activity-hasPrecedingActivities-hasSubActivity

for RE3.2 should be executed as well. The returned succeeding and preceding
Activities are then checked with the reference ontology based on the annotation.

"Client_quotation_processing" and "Standard_order_processing" (succeeding Activ-
ities of "Send_quotation") in PMA are mapped to "D1.1" and "D1.2" respectively.

The sequence of "Check_stock" and "Correct_orders" (preceding Activities of
"Send_quotation") in PMB2 are found not consistent to the SCOR ontology because

"Check_stock" is phase_of "D1.3-Reserve_Inventory_and_Determine_Date" and
"Correct_orders" is phase_of "D1.2". The decision of adapting PMB2 to SCOR se-
quence in the integration model is made. Compared with "Standard_order_processing"

in PMA, "Correct_orders" has the same ontology reference "D1.2" and the same
Actor-role "Sales". Therefore, "Correct_orders" can be adapted as a subActivity of

"Standard_order_processing". Searching the Activities referencing D1.3 in PMA,
the Activity "Check_delivery_items" is found so that it is considered to be merged

with "Check_stock" in PMB2. Analogously, the two Activities "Credit_control" in
PMA and in PMB2 are merged into one, and "Ship_items" in PMB2 is merged into

"Transportation_processing" in PMA just because they share the same ontology
references.

”Send_inquiry”(PMA) → ”Send_quotation”(PMA) →
”Client_quotation_processing”(PMA) → ”Standard_order_processing”(PMA)
{...; ”Correct_orders”(PMB2) ...} → ”Credit_control”(PMA/PMB2) →
”Delivering_Processing”(PMA){...; ”Check_stock”(PMB2); ...}
→ ”Transportation_processing”(PMA)/”Ship_items”(PMB2)
→ ”Receive_delivery”(PMA) → ”Issue_invoice”(PMB2).

Checking the succeeding Activities of "Credit_control" in PMA, a serials of

delivery checking takes place before the Activity "Create_delivery" produces an
output "delivery" which is mapped to "Customer_Delivery_Terms". However, in

PMB2 only one Activity "Generate_delivery_protocol" following "Credit_control"
and has the output of "delivery_protocol". "Delivery_protocol" is annotated with

"Customer_Delivery_Terms". Such knowledge is got from running QRule-Activity-
Output-mappedto. Hence the integration model can take the functions defined in

PMA to specify "Generate_delivery_protocol" in PMB2. Besides, the input of Activity
"Issue_invoice" is checked through QRule-Activity-Input-mappedto and it is also
mapped to "Customer_Delivery_Terms". According to Case 1 of RE4.5, "Create

delivery" in PMA can be followed by "Issue_invoice" of PMB2 in the integration model.
Since there is no strict sequence requirement between "Transportation_processing"

and "Issue_invoice", the two Activities can proceed parallely.

208 APPENDIX F. ANALYSIS OF EXEMPLAR STUDIES

”Send_inquiry”(PMA) → ”Send_quotation”(PMA) →
”Client_quotation_processing”(PMA) → ”Standard_order_processing”(PMA)
{”Correct_orders”(PMB2)} → ”Credit_control”(PMB2) →
”Delivering_Processing”(PMA){...; ”Check_stock”(PMB2); ...; ”Create_delivery”}
→ ”Issue_invoice”(PMB2)|(”Transportation_processing”(PMA)/”Ship_items”(PMB2)
→ ”Receive_delivery”(PMA)).

Appendix G

Schema of PSAM Model and
SWRL Rules

G.1 PSAM Model in OWL

Parts of the PSAM model are exemplified as follows. The complete model is available
at http://www.idi.ntnu.no/∼yunl/schema/GPOmetaOnto.owl

<?xml version="1.0"?>

<rdf:RDF

xmlns="http://www.owl-ontologies.com/GPO.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xml:base="http://www.owl-ontologies.com/GPO.owl">

<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://protege.stanford.edu/plugins/owl/protege"/>

</owl:Ontology>

<owl:Class rdf:ID="Actor-role">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="same_as"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="kind_of"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="member_of"/>

</owl:onProperty>

209

210 APPENDIX G. SCHEMA OF PSAM MODEL AND SWRL RULES

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="#name"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

</owl:Class>

<owl:Class rdf:ID="Activity">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="#name"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="#same_as"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="#kind_of"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="phase_of"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Artifact">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:about="#name"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

G.1. PSAM MODEL IN OWL 211

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="has_Artifact">

<rdfs:range rdf:resource="#Artifact"/>

<rdfs:domain rdf:resource="#Activity"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="has_Postcondition">

<rdfs:range rdf:resource="#Postcondition"/>

<rdfs:domain rdf:resource="#Activity"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="way_of">

<rdfs:range rdf:resource="#Activity"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="has_Input">

<rdfs:domain rdf:resource="#Activity"/>

<rdfs:range rdf:resource="#Input"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="related_Parameter">

<rdfs:domain rdf:resource="#Condition"/>

<rdfs:range rdf:resource="#Parameter"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="related_Actor">

<rdfs:range rdf:resource="#Actor-role"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="has_succeedingActivities">

<rdfs:domain rdf:resource="#Activity"/>

<rdfs:range rdf:resource="#Activity"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:ID="alternative_name">

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Activity"/>

<owl:Class rdf:about="#Actor-role"/>

<owl:Class rdf:about="#Artifact"/>

<owl:Class rdf:about="#Exception"/>

<owl:Class rdf:about="#Parameter"/>

<owl:Class rdf:about="#Condition"/>

<owl:Class rdf:about="#WorkflowPattern"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#kind_of">

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Activity"/>

<owl:Class rdf:about="#Actor-role"/>

<owl:Class rdf:about="#Artifact"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#anyURI"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="filename">

<rdfs:domain rdf:resource="#ProcessModel"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

</owl:DatatypeProperty>

<owl:FunctionalProperty rdf:ID="id">

212 APPENDIX G. SCHEMA OF PSAM MODEL AND SWRL RULES

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Activity"/>

<owl:Class rdf:about="#Actor-role"/>

<owl:Class rdf:about="#Artifact"/>

<owl:Class rdf:about="#Exception"/>

<owl:Class rdf:about="#Parameter"/>

<owl:Class rdf:about="#Condition"/>

<owl:Class rdf:about="#WorkflowPattern"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#ID"/>

</owl:FunctionalProperty>

</rdf:RDF>

G.2 Rules Definition in SWRL

Some rules defined in SWRL are exemplified as follows. The complete definition of the
SWRL rules is available at http://www.idi.ntnu.no/∼yunl/schema/swrl.txt

<?xml version="1.0"?>

<rdf:RDF

xmlns="http://www.owl-ontologies.com/GPO.owl#"

xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

xmlns:swrlx="http://swrl.stanford.edu/ontologies/built-ins/3.3/swrlx.owl#"

xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"

xmlns:query="http://swrl.stanford.edu/ontologies/built-ins/3.3/query.owl#"

xmlns:temporal="http://swrl.stanford.edu/ontologies/built-ins/3.3/temporal.owl#"

xmlns:tbox="http://swrl.stanford.edu/ontologies/built-ins/3.3/tbox.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:abox="http://swrl.stanford.edu/ontologies/built-ins/3.3/abox.owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:swrl="http://www.w3.org/2003/11/swrl#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:swrla="http://swrl.stanford.edu/ontologies/3.3/swrla.owl#"

xml:base="http://www.owl-ontologies.com/GPO.owl">

<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/tbox.owl"/>

<owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/3.3/swrla.owl"/>

<owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/abox.owl"/>

<owl:imports rdf:resource="http://protege.stanford.edu/plugins/owl/protege"/>

<owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/query.owl"/>

<owl:imports rdf:resource="http://www.w3.org/2003/11/swrlb"/>

<owl:imports rdf:resource="http://www.w3.org/2003/11/swrl"/>

<owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/swrlx.owl"/>

<owl:imports rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/temporal.owl"/>

</owl:Ontology>

<swrl:Imp rdf:ID="QRule-Activity-Input-mappedto">

<swrl:body>

<swrl:AtomList>

<rdf:rest>

<swrl:AtomList>

<rdf:first>

<swrl:IndividualPropertyAtom>

<swrl:argument2>

<swrl:Variable rdf:ID="y"/>

</swrl:argument2>

<swrl:propertyPredicate rdf:resource="#has_Input"/>

G.2. RULES DEFINITION IN SWRL 213

<swrl:argument1>

<swrl:Variable rdf:ID="x"/>

</swrl:argument1>

</swrl:IndividualPropertyAtom>

</rdf:first>

<rdf:rest>

<swrl:AtomList>

<rdf:first>

<swrl:DatavaluedPropertyAtom>

<swrl:argument1 rdf:resource="#y"/>

<swrl:propertyPredicate rdf:resource="#mapped_to"/>

<swrl:argument2>

<swrl:Variable rdf:ID="z"/>

</swrl:argument2>

</swrl:DatavaluedPropertyAtom>

</rdf:first>

<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

</swrl:AtomList>

</rdf:rest>

</swrl:AtomList>

</rdf:rest>

<rdf:first>

<swrl:ClassAtom>

<swrl:argument1 rdf:resource="#x"/>

<swrl:classPredicate rdf:resource="#Activity"/>

</swrl:ClassAtom>

</rdf:first>

</swrl:AtomList>

</swrl:body>

<swrl:head>

<swrl:AtomList>

<rdf:first>

<swrl:BuiltinAtom>

<swrl:arguments>

<rdf:List>

<rdf:first rdf:resource="#x"/>

<rdf:rest>

<rdf:List>

<rdf:first rdf:resource="#y"/>

<rdf:rest>

<rdf:List>

<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

<rdf:first rdf:resource="#z"/>

</rdf:List>

</rdf:rest>

</rdf:List>

</rdf:rest>

</rdf:List>

</swrl:arguments>

<swrl:builtin rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/

query.owl#select"/>

</swrl:BuiltinAtom>

</rdf:first>

<rdf:rest>

<swrl:AtomList>

<rdf:first>

<swrl:BuiltinAtom>

<swrl:arguments>

<rdf:List>

<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

<rdf:first rdf:resource="#z"/>

</rdf:List>

</swrl:arguments>

<swrl:builtin rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/

query.owl#orderBy"/>

214 APPENDIX G. SCHEMA OF PSAM MODEL AND SWRL RULES

</swrl:BuiltinAtom>

</rdf:first>

<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

</swrl:AtomList>

</rdf:rest>

</swrl:AtomList>

</swrl:head>

</swrl:Imp>

<swrl:Imp rdf:ID="QRule-Activity-achievesHardGoal">

<swrl:body>

<swrl:AtomList>

<rdf:first>

<swrl:ClassAtom>

<swrl:classPredicate rdf:resource="#Activity"/>

<swrl:argument1 rdf:resource="#x"/>

</swrl:ClassAtom>

</rdf:first>

<rdf:rest>

<swrl:AtomList>

<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

<rdf:first>

<swrl:DatavaluedPropertyAtom>

<swrl:propertyPredicate rdf:resource="#achieves"/>

<swrl:argument1 rdf:resource="#x"/>

<swrl:argument2 rdf:resource="#y"/>

</swrl:DatavaluedPropertyAtom>

</rdf:first>

</swrl:AtomList>

</rdf:rest>

</swrl:AtomList>

</swrl:body>

<swrl:head>

<swrl:AtomList>

<rdf:first>

<swrl:BuiltinAtom>

<swrl:arguments>

<rdf:List>

<rdf:first rdf:resource="#x"/>

<rdf:rest>

<rdf:List>

<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

<rdf:first rdf:resource="#y"/>

</rdf:List>

</rdf:rest>

</rdf:List>

</swrl:arguments>

<swrl:builtin rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/

query.owl#select"/>

</swrl:BuiltinAtom>

</rdf:first>

<rdf:rest>

<swrl:AtomList>

<rdf:first>

<swrl:BuiltinAtom>

<swrl:arguments>

<rdf:List>

<rdf:first rdf:resource="#y"/>

<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

</rdf:List>

</swrl:arguments>

<swrl:builtin rdf:resource="http://swrl.stanford.edu/ontologies/built-ins/3.3/

query.owl#orderBy"/>

</swrl:BuiltinAtom>

</rdf:first>

G.2. RULES DEFINITION IN SWRL 215

<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

</swrl:AtomList>

</rdf:rest>

</swrl:AtomList>

</swrl:head>

</swrl:Imp>

<swrl:Imp rdf:ID="IRule-Activity-subActivity-hasActor">

<swrl:body>

<swrl:AtomList>

<rdf:first>

<swrl:ClassAtom>

<swrl:classPredicate rdf:resource="#Activity"/>

<swrl:argument1 rdf:resource="#x"/>

</swrl:ClassAtom>

</rdf:first>

<rdf:rest>

<swrl:AtomList>

<rdf:rest>

<swrl:AtomList>

<rdf:first>

<swrl:IndividualPropertyAtom>

<swrl:argument2 rdf:resource="#z"/>

<swrl:argument1 rdf:resource="#y"/>

<swrl:propertyPredicate rdf:resource="#has_Actor-role"/>

</swrl:IndividualPropertyAtom>

</rdf:first>

<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

</swrl:AtomList>

</rdf:rest>

<rdf:first>

<swrl:IndividualPropertyAtom>

<swrl:argument1 rdf:resource="#x"/>

<swrl:propertyPredicate rdf:resource="#has_subActivity"/>

<swrl:argument2 rdf:resource="#y"/>

</swrl:IndividualPropertyAtom>

</rdf:first>

</swrl:AtomList>

</rdf:rest>

</swrl:AtomList>

</swrl:body>

<swrla:isEnabled rdf:datatype="http://www.w3.org/2001/XMLSchema#boolean"

>true</swrla:isEnabled>

<swrl:head>

<swrl:AtomList>

<rdf:rest>

<swrl:AtomList>

<rdf:first>

<swrl:IndividualPropertyAtom>

<swrl:propertyPredicate rdf:resource="#has_Actor-role"/>

<swrl:argument1 rdf:resource="#x"/>

<swrl:argument2 rdf:resource="#z"/>

</swrl:IndividualPropertyAtom>

</rdf:first>

<rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>

</swrl:AtomList>

</rdf:rest>

<rdf:first>

<swrl:ClassAtom>

<swrl:argument1 rdf:resource="#x"/>

<swrl:classPredicate rdf:resource="#Activity"/>

</swrl:ClassAtom>

</rdf:first>

</swrl:AtomList>

</swrl:head>

216 APPENDIX G. SCHEMA OF PSAM MODEL AND SWRL RULES

</swrl:Imp>

</rdf:RDF>

Appendix H

Annotation Results in Exemplar
Studies — PSAM Instances in
OWL

H.1 Annotation of PMA

Parts of the annotation results of PMA are illustrated as follows. The whole OWL file
is available at http://www.idi.ntnu.no/∼yunl/schema/PMA_bmp_modelAnno.owl

<?xml version="1.0"?>

<rdf:RDF

xmlns="http://www.owl-ontologies.com/GPO.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xml:base="http://www.owl-ontologies.com/GPO.owl">

...

<Activity rdf:ID="Check_delivery_items__Logical_Process___ID____

002asmm019p9am10kf6g__">

<has_Output>

<Output rdf:ID="item_availability__Output___ID____

002asmm01aig8619d5uc__">

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>item availability</name>

<mapped_to rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Inventory_Availability</mapped_to>

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002asmm01aig8619d5uc</model_fragment>

<related_Artifact>

<Artifact rdf:ID="stock__Data_Object___ID____002asmm01e1g3iu6rr7q__">

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002asmm01e1g3iu6rr7q</model_fragment>

<same_as rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Stock</same_as>

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>stock</name>

</Artifact>

</related_Artifact>

<related_Artifact>

<Artifact rdf:ID="delivery_items__Data_Object___ID____

217

218 APPENDIX H. PSAM ANNOTATION RESULTS IN OWL

002asmm01dkqc62v0gnf__">

<kind_of rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Goods</kind_of>

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>delivery items</name>

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002asmm01dkqc62v0gnf</model_fragment>

</Artifact>

</related_Artifact>

</Output>

</has_Output>

<positively_satisfies rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Improve_Delivery_Performance</positively_satisfies>

<positively_satisfies rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Raise_Order_Quantity_Fillrate</positively_satisfies>

<phase_of rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>D1.3-Reserve_Inventory_and_Determine_Delivery_Date</phase_of>

<has_Postcondition>

<Condition rdf:ID="Is_items_in_stock___Gateway___ID____

002asmm019tqpgr5teji__">

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002asmm019tqpgr5teji</model_fragment>

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Is items in stock?</name>

<alternative_name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>items are stored in the inventory</alternative_name>

</Condition>

</has_Postcondition>

<has_Artifact rdf:resource="#stock__Data_Object___ID____

002asmm01e1g3iu6rr7q__"/>

<has_succeedingActivities rdf:resource="#Reject_the_delivery_items__Logical_Process

___ID____002asmm01b7291tj043o__"/>

<has_Actor-role rdf:resource="#logistics_department__Horizontal_Swimlane___ID____

002asmm00p3r9tn7e6c4__"/>

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Check delivery items</name>

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002asmm019p9am10kf6g</model_fragment>

<has_precedingActivities rdf:resource="#Determine_or_transfer_delivery_route

__Logical_Process___ID____002asmm019imrma0mdf5__"/>

</Activity>

...

<ProcessModel rdf:ID="D__Project_models_sales_logistics_bpm.kmv">

<filename rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>D:\Project\models\sales_logistics_bpm.kmv</filename>

</ProcessModel>

</rdf:RDF>

<!-- Created with Protege (with OWL Plugin 3.2.1, Build 365) http://protege.stanford.edu -->

H.2 Annotation of PMB1

Parts of the annotation results of PMB1 are illustrated as follows. The whole OWL file
is available at http://www.idi.ntnu.no/∼yunl/schema/PMB1_eeml_modelAnno.owl

<?xml version="1.0"?>

<rdf:RDF

xmlns="http://www.owl-ontologies.com/GPO.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

H.2. ANNOTATION OF PMB1 219

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xml:base="http://www.owl-ontologies.com/GPO.owl">

<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://protege.stanford.edu/plugins/owl/protege"/>

</owl:Ontology>

...

<Activity rdf:ID="make_a_report_on_expected_quantities__Task___ID____

002ashn00tq5gtqi5ps3__">

<has_Input>

<Input rdf:ID="__Input_Port___ID____002ashn00tq5hh6820mc__">

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

></name>

<related_Artifact>

<Artifact rdf:ID="order__Resource_role___ID____002ashm029nhieleknj3__">

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>order</name>

<same_as rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Order</same_as>

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002ashm029nhieleknj3</model_fragment>

</Artifact>

</related_Artifact>

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002ashn00tq5hh6820mc</model_fragment>

<mapped_to rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Receipt_Verification</mapped_to>

</Input>

</has_Input>

<has_Output>

<Output rdf:ID="__Output_Port___ID____002ashn00tq5gthg1l9t__">

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

></name>

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002ashn00tq5gthg1l9t</model_fragment>

</Output>

</has_Output>

...

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002ashn00tq5gtqi5ps3</model_fragment>

<has_succeedingActivities rdf:resource="#transfer_items_to_Orbit__Task___ID____

002ashm02257o1b2mk88__"/>

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>make a report on expected quantities</name>

<has_precedingActivities rdf:resource="#check_imported_items__Task___ID____

002ashn00svtm1opmcfb__"/>

<has_precedingActivities rdf:resource="#check_consignment_items__Task___ID____

002ashn00ti8hhhhnmv7__"/>

<phase_of rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>ES.4-Manage_Product_Inventory</phase_of>

<has_Actor-role rdf:resource="#logistics_department__Organization___ID____

002asiu01firmt85i7ok__"/>

</Activity>

...

<ProcessModel rdf:ID="D__Project_models_sales_logistics_bpm.kmv">

<filename rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>D:\Project\models\item_receiving.kmv</filename>

</ProcessModel>

</rdf:RDF>

<!-- Created with Protege (with OWL Plugin 3.2.1, Build 365) http://protege.stanford.edu -->

220 APPENDIX H. PSAM ANNOTATION RESULTS IN OWL

H.3 Annotation of PMB2

Parts of the annotation results of PMB2 are illustrated as follows. The whole OWL file
is available at http://www.idi.ntnu.no/∼yunl/schema/PMB2_eeml_modelAnno.owl

<!-- Created with Protege (with OWL Plugin 3.3, Build 399) http://protege.stanford.edu -->

<?xml version="1.0"?>

<rdf:RDF

xmlns="http://www.owl-ontologies.com/GPO.owl#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:protege="http://protege.stanford.edu/plugins/owl/protege#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xml:base="http://www.owl-ontologies.com/GPO.owl">

<owl:Ontology rdf:about="">

<owl:imports rdf:resource="http://protege.stanford.edu/plugins/owl/protege"/>

</owl:Ontology>

...

<Output rdf:ID="delivery_protocol__Output_Port___ID____002asiu0004l3j1u57o3__">

<mapped_to rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Customer_Delivery_Terms</mapped_to>

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>delivery protocol</name>

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002asiu0004l3j1u57o3</model_fragment>

</Output>

<Actor-role rdf:ID="shops__Organization___ID____002asiu012fh51i4fosm__">

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002asiu012fh51i4fosm</model_fragment>

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>shops</name>

</Actor-role>

<Condition rdf:ID="every_morning__Milestone___ID____002asiu012aqkekt00mj__">

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002asiu012aqkekt00mj</model_fragment>

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>every morning</name>

</Condition>

...

<Activity rdf:ID="Make_inventory_report__Task___ID____002asiu0014lfhvqb4cc__">

<has_Artifact>

<Artifact rdf:ID="inventory__Resource_role___ID____002asiu01gctup01d1qn__">

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002asiu01gctup01d1qn</model_fragment>

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>inventory</name>

</Artifact>

</has_Artifact>

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002asiu0014lfhvqb4cc</model_fragment>

<has_subActivity rdf:resource="#report_stock_availability__Task___ID____

002asiu012cl46vpmgon__"/>

<has_Artifact>

<Artifact rdf:ID="available_stock__Resource_role___ID____002asiu01gbuangfov0s__">

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>available stock</name>

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002asiu01gbuangfov0s</model_fragment>

</Artifact>

</has_Artifact>

<achieves rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Available_Inventory</achieves>

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Make inventory report</name>

H.3. ANNOTATION OF PMB2 221

<has_Output rdf:resource="#__Output_Port___ID____002asiu0014lfhclk3h2__"/>

<has_Input rdf:resource="#__Input_Port___ID____002asiu0014lfrq31hu2__"/>

<has_subActivity>

<Activity rdf:ID="Make_inventory__Task___ID____002asiu012hb1nj4m9hn__">

<achieves rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Available_Inventory</achieves>

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002asiu012hb1nj4m9hn</model_fragment>

<has_Output>

<Output rdf:ID="__Output_Port___ID____002asiu012hb1nf120lp__">

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002asiu012hb1nf120lp</model_fragment>

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

></name>

</Output>

</has_Output>

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>Make inventory</name>

<has_Actor-role>

<Actor-role rdf:ID="logistics_department__Organization___ID____

002asiu012kuuptiee45__">

<name rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>logistics department</name>

<model_fragment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>_002asiu012kuuptiee45</model_fragment>

</Actor-role>

</has_Actor-role>

<has_Input rdf:resource="#__Input_Port___ID____002asiu012hb210krl92__"/>

</Activity>

</has_subActivity>

</Activity>

...

<ProcessModel rdf:ID="D__Project_models_sales_logistics_bpm.kmv">

<filename rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

>D:\Project\models\delivery.kmv</filename>

</ProcessModel>

</rdf:RDF>

222 APPENDIX H. PSAM ANNOTATION RESULTS IN OWL

Bibliography

[1] ALTOVA. What is the Semantic Web? http://www.altova.com/semantic_web.

html, Last Visited: 2007.5.20.

[2] Scott W. Ambler. The Object Primer: Agile Model Driven Development with
UML 2, 3rd Edition. Cambridge University Press, 2004.

[3] Answers.com. Answers definition of "semantics". http://www.answers.com/topic/

semantics?cat=health, Last Visited: 2007.2.1.

[4] Murtha Baca. Introduction to Metadata: Pathways to Digital Information. Getty
Information Institute, 2000.

[5] Kenneth Baclawski, Mieczyslaw M. Kokar, Paul A. Kogut, Lewis Hart, Jeffrey E.
Smith, III William S. Holmes, Jerzy Letkowski, and Michael L. Aronson. Ex-

tending UML to support ontology engineering for the semantic web. In Proc.
of the 4th International Conference on The Unified Modeling Language, Model-

ing Languages, Concepts, and Tools, pages 342–360, London, UK. LNCS 2185,
Springer-Verlag, 2001.

[6] Gregory Bateson. Mind and Nature: A Necessary Unity. Bantam, 1988.

[7] Carlo Batini and Maurizio Lenzerini. A methodology for data schema integration

in the entity-relationship model. In Proc. of the 3rd International Conference on
Entity-Relationship Approach (ER 1983), pages 413–420. North-Holland, 1983.

[8] Thomas Beale. Archetypes: Constraint-based domain models for future-proof

information systems. In Kenneth Baclawski and Haim Kilov (Eds.) 11th Workshop
on Behavioral Semantics: Serving the Customer at OOPSLA2002, 2002

[9] Ken Beck, Joshy Joseph, and German Goldszmide. Learn business process mod-

eling basics for the analyst. http://www.ibm.com/developerworks/webservices/
library/ws-bpm4analyst/, 2005.

[10] Abraham Bernstein and Mark Klein. Towards high-precision service retrieval. In
Proc. of the 1st International Semantic Web Conference (ISWC 2002), volume

2342, pages 84–101. Lecture Notes in Computer Science, 2002.

[11] BPMI. Business process modeling language. http://xml.coverpages.org/
BPML-2002.pdf, Last Visited: 2005.2.22.

223

224 BIBLIOGRAPHY

[12] BPMI. Business process modeling notation Version 1.0 May 3, 2004. http://
www.bpmn.org/Documents/BPMN%20V1-0%20May%203%202004.pdf, Last Vis-
ited: 2005.2.22.

[13] Christopher Brewster, Kieron O’Hara, Steve Fuller, Yorick Wilks, Enrico Fran-
coni, Mark A. Musen, Jeremy Ellman, and Simon Buckingham Shum. Knowledge

representation with ontologies: The present and future. IEEE Intelligent Systems,
19(1):72–81, 2004.

[14] Ang Chen. Business process management mind map. http://smv.unige.ch/∼chen/
?attachment_id=13, Last Visited: 2007.6.22.

[15] Peter P. Chen. The Entity-Relationship Model – Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1):9–36, 1976.

[16] Fabio Ciravegna, Alexiei Dingli, Yorick Wilks, and Daniela Petrelli. Adaptive
information extraction for document annotation in amilcare. In Proc. of the 25th

annual international ACM SIGIR conference on Research and development in
information retrieval (SIGIR 2002), pages 451–451, New York, NY, USA, 2002.
ACM Press.

[17] Christine Collet, Michael N. Huhns, and Wei-Min Shen. Resource integration
using a large knowledge base in Carnot. IEEE Computer, 24(12):55–62, 1991.

[18] Jordi Conesa and Antoni Olivé. A method for pruning ontologies in the develop-
ment of conceptual schemas of information systems. Journal on Data Semantics,

Vol.5, 64–90, 2006.

[19] Stephen Cranefield, Stefan Haustein, and Martin Purvis. UML-based ontology

modeling for software agents. In Proc. of Workshop on Ontologies in Agent Sys-
tems, 5th International Conference on Autonomous Agents, pages 21–28, 2001.

[20] Cycorp. The syntax of CycL. http://www.cyc.com/cycdoc/ref/cycl-syntax.html,
Last Visited: 2005.3.11.

[21] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed re-
quirements acquisition. Science of Computer Programming, 20(1-2):3–50, 1993.

[22] Randall Davis, Howard Shrobe, and Peter Szolovits. What is a knowledge repre-
sentation? AI Magazine, (1):17–33, 1993.

[23] SearchCIO Definitions. Business process management. http://searchcio.
techtarget.com/sDefinition/0,,sid182_gci1088467,00.html, Last Visited: 2007.9.15.

[24] Linda G. DeMichiel. Resolving database incompatibility: An approach to per-

forming relational operations over mismatched domains. IEEE Transactions on
Knowledge and Data Engineering, 1(4):485–493, 1989.

[25] Rose Dieng-Kuntz. Corporate semantic webs. ERCIM News Special Theme:
Semantic Web, (51), 2002.

BIBLIOGRAPHY 225

[26] Dov Dori. Why significant UML change is unlikely. Communications of the ACM,
45(11):82–85, 2002.

[27] Mark Dowson. Iteration in the software process; review of the 3rd international

software process workshop. In Proc. of the 9th International Conference on Soft-
ware Engineering (ICSE 1987), pages 36–41, Los Alamitos, CA, USA, 1987.

[28] William R. Durrell. A Practical Guide to Data Administration. McGraw-Hill,
1985.

[29] ARPA Knowledge Sharing Effort. Knowledge interchange format (KIF). http:
//www-ksl.stanford.edu/knowledge-sharing/kif/, Last Visited: 2007.7.20.

[30] Clarence A. Ellis and Gary J. Nutt. Workflow: The process spectrum. In Proc.

of NSF Workshop on Workflow and Process Automation in Information Systems,
1996.

[31] University of Toronto Enterprise Integration Laboratory. Tove ontology project.
http://www.eil.utoronto.ca/enterprise-modelling/tove/index.html, 2002.

[32] Michael Erdmann, Alexander Maedche, Hans-Peter Schnurr, and Steffen Staab.
From manual to semi-automatic semantic annotation: About ontology-based text

annotation tools. In Proc. of the COLING 2000 Workshop on Semantic Annota-
tion and Intelligent Content, 2000.

[33] Eckhard D. Falkenberg, Wolfgang Hesse, Paul Lindgreen, Björn E. Nilsson,

J.L.Han Oei, Colette Rolland, Ronald K. Stamper, Frans J.M. Van Assche,
Alexander A. Verrĳn-Stuart, Klaus Voss. FRISCO — A framework of infor-

mation system concepts — The FRISCO Report. IFIP WG 8.1 Task Group
FRISCO, 1998.

[34] Peter H. Feiler and Watts S. Humphrey. Software process development and enact-
ment: Concepts and definitions. Technical report, Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, PA, 1991.

[35] Dieter Fensel. Ontologies: Dynamic networks of formally represented meaning.
http://sw-portal.deri.at/papers/publications/network.pdf, Last Visited: 2004.3.2.

[36] Dieter Fensel, Ian Horrocks, Frank van Harmelen, Stefan Decker, Michael Erd-
mann and Michel C.A. Klein Oil in a nutshell. In Knowledge Acquisition, Model-

ing and Management, Proc. of 12th International Conference on (EKAW 2000),
pages 1–16. LNCS 1937, Springer, 2000.

[37] Daniela Florescu, Ioana Manolescu, and Donald Kossmann. Answering XML
queries over heterogeneous data sources. In Proc. of the 27th International Con-

ference on Very Large Data Bases (VLDB 2001), pages 241–250. Morgan Kauf-
mann, 2001.

[38] Enrico Franconi. Tutorial on description logics for conceptual design, information

access, and ontology integration: Research trends. In 1st International Semantic
Web Conference (ISWC 2002), 2002.

226 BIBLIOGRAPHY

[39] Leonidas Galanis, Yuan Wang, Shawn R. Jeffery, and David J. DeWitt. Locating
data sources in large distributed systems. In Proc. of the 29th International
Conference on Very Large Data Bases (VLDB 2003), pages 874–885. Morgan

Kaufmann, 2003.

[40] GRL. GRL ontology. http://www.cs.toronto.edu/km/GRL/, Last Visited:
2007.8.12.

[41] Thomas R. Gruber. The role of common ontology in achieving sharable, reusable
knowledge bases. In James F. Allen, Richard Fikes, and Erik Sandewall (Eds.)

Proc. of 2nd International Conference on Principles of Knowledge Representation
and Reasoning, pages 601–602, San Mateo, California, 1991. Morgan Kaufmann.

[42] Thomas. R. Gruber. Towards Principles for the Design of Ontologies Used for

Knowledge Sharing. In N. Guarino and R. Poli (Eds.) Formal Ontology in
Conceptual Analysis and Knowledge Representation, Deventer, The Netherlands.

Kluwer Academic Publishers, 1993.

[43] Thomas R. Gruber. A translation approach to portable ontology specifications.

Knowledge Acquisition, 5(2):199–220, 1993.

[44] Michael Grüninger, Katy Atefi, and Mark S. Fox. Ontologies to support process
integration in enterprise engineering. Computational & Mathematical Organiza-

tion Theory, 6(4):381–394, 2000.

[45] Nicola Guarino. Formal ontology and information systems. In N. Guarino (Eds.)

Proc. of the 1st International Conference on Formal Ontologies in Information
Systems (FOIS 1998), pages 3–15. IOS Press, 1998.

[46] Nicola Guarino, Claudio Masolo, and Guido Vetere. OntoSeek: Content-based

access to the Web. IEEE Intelligent Systems, (3):70–80, 1999.

[47] Nicola Guarino and Luc Schneider. Ontology-driven conceptual modeling. In

Proc. of the 21st International Conference on Conceptual Modeling (ER 2002),
page 10, London, UK. LNCS 2503, Springer-Verlag, 2002.

[48] Prentice Hall. Chapter 5 sales logistics. http://www.phptr.com/content/images/

0130853402/samplechapter/0130853402.pdf, Last Visited: 2006.11.15.

[49] Siegfried Handschuh, Steffen Staab, and Rudi Studer. Leveraging metadata cre-

ation for the semantic web with CREAM. In Proc. of the Annual German Confer-
ence on Advances in Artificial Intelligence (KI 2003), pages 19–33, Berlin. LNCS

2821, Springer, 2003.

[50] Pat Hayes and Chris Menzel. IKL specification document. http://nrrc.mitre.org/
NRRC/Docs_Data/ikris/IKLspec.pdf, Last Visited: 2007.4.19.

[51] Bob Hendry. Metis 3.3 by Computas. Wireless Business & Technology http:
//wbt.sys-con.com/read/41291.htm, Last Visited: 2007.10.25.

BIBLIOGRAPHY 227

[52] Ian Horrocks. Ontology reasoning: Why and How. Invited talk on the Workshop
of Reasoning on the Web at WWW2006. http://www.aifb.uni-karlsruhe.de/WBS/
phi/RoW06/procs/horrocks.txt/, Last Visted: 2007.5.10.

[53] Ian Horrocks. Reasoning with expressive description logics: Theory and practice.

In Automated Deduction - CADE-18, 18th International Conference on Auto-
mated Deduction, Copenhagen, Denmark, July 27-30, 2002, Proceedings, Lecture

Notes in Computer Science, pages 1–15. LNCS 2392, Springer Berlin/Heidelberg,
2002.

[54] Karin Anna Hummel, Wolfgang Jochum, Stefan Leitich, and Bernhard Schandl.
Supporting meetings with a goal-driven service-oriented multimedia environment.

In Proc. of the 1st ACM International Workshop on Multimedia Service Compo-
sition (MSC 2005), pages 55–65, New York, NY, USA, 2005. ACM Press.

[55] i*. An agent-oriented modelling framework. http://www.cs.toronto.edu/km/istar/,

Last Visited: 2007.6.11.

[56] Annie I.Anton. Goal based requirements analysis. In Proc. of the 2nd Inter-

national Conference on Requirements Engineering (ICRE 1996), pages 136–144,
1996.

[57] LEKS IASI-CNR. AStar. http://leks-pub.iasi.cnr.it/Astar, Last Visited: 2007.2.1.

[58] IBM. Business process execution language for web services Version
1.1. http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/

ws-bpel.pdf, Last Visited: 2007.5.12.

[59] EXTERNAL Project in EU’s IST programme. Extended enterprise resources,
network architectures and learning (ist-1999-10091). http://research.dnv.com/

external/default.htm, Last Visited: 2007.9.1.

[60] Inicio. EPC and eEPC. http://paginas.terra.com.br/negocios/processos2002/epc_

e_eepc.htm, Last Visited: 2007.5.11.

[61] Technische Universität Hamburg-Harburg (TUHH) Institut für Softwaresys-
teme. Racer/racerpro: The first OWL reasoner in the market. http://www.

sts.tu-harburg.de/∼r.f.moeller/racer/, Last Visited: 2007.9.1.

[62] INTEROP. Interoperability research for networked enterprises applications and

software. http://interop-noe.org/, Last Visited: 2007.4.8.

[63] Mustafa Jarrar, Jan Demey, and Robert Meersman. On using conceptual data
modeling for ontology engineering. Journal on Data Semantics (Special issue on

Best papers from the ER, ODBASE and COOPIS 2002 Conferences), 2800:185–
207, October 2003.

[64] Kurt Jensen. Coloured Petri Nets – Basic Concepts, Analysis Methods and Prac-
tical Use. Springer-Verlag, 1997.

228 BIBLIOGRAPHY

[65] Håvard D. Jørgensen. Interactive process models. PhD thesis, Norwegian Uni-
versity of Science and Technology, 2004.

[66] Vipul Kashyap and Amit P. Sheth. Semantic and schematic similarities between
database objects: A context-based approach. VLDB Journal: Very Large Data

Bases, 5(4):276–304, 1996.

[67] Steven Kelly and Juha-Pekka Tolvanen. Visual domain-specific modeling: Bene-
fits and experiences of using metacase tools. In J. Bezivin, J. Ernst(Eds.) Proc.
of the International workshop on Modeling Engineering, ECOOP, 2000.

[68] Larry Kerschberg and Doyle Weishar. Conceptual models and architectures for

advanced information systems. Applied Intelligence, 13(2):149–164, 2000.

[69] Ekkart Kindler. On the semantics of EPCs: A framework for resolving the vicious
circle. Technical report, Institue fur Informatk, Universitat Paderborn, 2003.

[70] Atanas Kiryakov, Borislav Popov, Ivan Terziev, Dimitar Manov, and Damyan
Ognynoff. Semantic annotation, indexing, and retrieval. Journal of Web Seman-

tics, 2(1), 2005.

[71] KM. The knowledge machine. http://www.cs.utexas.edu/users/mfkb/RKF/km.
html, Last Visited: 2007.6.12.

[72] Paul Kogut and William Holmes. AeroDAML: Applying information extraction
to generate DAML annotations from web pages. In Proc. of the 1st International

Conference on Knowledge Capture (K-CAP 2001), 2001.

[73] John Krogstie, Odd Ivar Lindland, and Guttorm Sindre. Defining quality aspects
for conceptual models. In Proc. of the IFIP international Working Conference
on Information System Concepts, pages 216–231, London, UK. Chapman & Hall,

Ltd., 1995.

[74] John Krogstie. Using quality function development in software requirements
specification. In Proc. of the 5th International Workshop on Requirements Engi-

neering: Foundations for Software Quality (REFSQ 1999), pages 171–185, 1999.

[75] John Krogstie. Using a semiotic framework to evaluate UML for the development

of models of high quality. Unified Modeling Language: Systems Analysis, Design
and Development Issues, pages 89–106. IGI Publishing, 2001.

[76] John Krogstie and Arne Sølvberg. Information Systems Engineering: Concep-

tual Modeling in a Quality Perspective. Norwegian University of Science and
Technology, Trondheim (NTNU). Unpublished book, 2003.

[77] John Krogstie and Håvard D. Jørgensen. Interactive models for supporting net-
worked organisations. In Proc. of the 16th International Conference on Advanced

Information Systems Engineering, pages 550–562. LNCS 3084, Springer-Verlag,
2004.

BIBLIOGRAPHY 229

[78] John Krogstie and Sofie de Flon Arnesen. Assessing enterprise modeling lan-
guages using a generic quality framework. Information Modeling Methods and
Methodologies, pages 63–79. Idea Group Publishing, 2005.

[79] John Krogstie, Csaba Veres, and Guttorm Sindre. Integrating semantic web

technology, web services, and workflow modeling achieving system and business
interoperability. In International Journal of Enterprise Information Systems,

3(1):22–41, 2007.

[80] John Krogstie. Integrated goal, data and process modeling: from TEMPORA to

model-generated work-places. In Paul Johannesson and Eva Soderstrom (Eds.)
Information Systems Engineering: From Data Analysis to Process Networks, IGI

publishing, in print, 2008.

[81] Ontotext Lab. The KIM platform: Semantic annotation. http://www.ontotext.

com/kim/semanticannotation.html, Last Visited: 2007.5.12.

[82] Charles Lakos. From Coloured Petri Nets to Object Petri Nets. In Proc. of the
Application and Theory of Petri Nets, pages 278–297.LNCS 935, Springer-Verlag,

Berlin, Germany, 1995.

[83] Charles Lakos. Pragmatic inheritance issues for object Petri Nets. In Proc. of

TOOLS Pacific Conference, 1995.

[84] James A. Larson, Shamkant B. Navathe, and Ramez Elmasri. A theory of at-
tributed equivalence in databases with application to schema integration. IEEE
Transactions on Software Engineering, 15(4):449–463, 1989.

[85] Jintae Lee, Gregg Yost, and the PIF Working Group. The PIF process interchange

format and framework. Technical report, MIT Center for Coordination Science,
1994.

[86] Maurizio Lenzerini. Data integration: a theoretical perspective. In Proc. of the
21st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems (PODS 2002), pages 233–246, New York, NY, USA. ACM Press, 2002.

[87] Mauri Leppänen. An ontological framework and a methodical skeleton for method
engineering — a contextual approach. PhD thesis, University of Jyväskylä,

Jyväskylä, Finland, 2005.

[88] Alon Y. Levy. Combining artificial intelligence and database for data integration.

In Artificial Intelligence Today: Recent Trends and Developments, pages 249–268,
Berlin/Heidelberg, LNCS 1600, Springer. 1999.

[89] Alon Y. Levy, Anand Rajaraman, and Joann J. Ordille. Querying heterogeneous
information sources using source descriptions. In Proc. of the 22nd International

Conference on Very Large Databases, pages 251–262, Bombay, India. VLDB En-
dowment, Saratoga, California. 1996.

230 BIBLIOGRAPHY

[90] Manshan Lin, Heqing Guo, and Jianfei Yin. Goal description language for se-
mantic Web service automatic composition. In Proc. of IEEE/IPSJ Interna-
tional Symposium on Applications and the Internet (SAINT 2005), 31 January -

4 February 2005, pages 190–196, Trento, Italy, 2005.

[91] Yun Lin, Jennifer Sampson, Sari Hakkarainen, and Hao Ding. An evaluation of
UML and OWL using a semiotic quality framework. Advanced Topics in Database

Research Volume 4, pages 178–200, Idea Group Publishing. Hershey, PA, USA,
2004.

[92] Yun Lin and Darĳus Strašunskas. Ontology-based semantic annotation of pro-
cess models. In Proc. of 10th CAiSE/IFIP8.1/EUNO International Workshop on

Evaluation of Modeling Methods in System Analysis and Design (EMMSAD05)
Porto, Portugal. 2005

[93] Yun Lin and Hao Ding. Ontology-based semantic annotation for semantic iner-
operability of process models. In Proc. of International Conference on Computa-

tional Intelligence for Modelling, Control and Automation (CIMCA 2005) IEEE
USA, 2005.

[94] Yun Lin, Darĳus Strašunskas, Sari Hakkarainen, John Krogstie and Arne

Sølvberg. Semantic annotation framework to manage semantic heterogeneity
of process models. In Proc. of the 18th International Conference on Advanced
Information Systems Engineering (CAiSE 2006) pages 433–446, Luxembourg,

Luxembourg. LNCS 4001, Springer-Verlag, 2006.

[95] Yun Lin and Arne Sølvberg. Goal annotation of process models for semantic
enrichment of process knowledge. In Proc. of the 19th International Conference

on Advanced Information Systems Engineering (CAiSE 2007) pages 355–369,
Trondheim, Norway. LNCS 4495, Springer-Verlag, 2007.

[96] Clark & Parsia LLC. Pellet. http://pellet.owldl.com/, Last Visited: 2007.11.1.

[97] LOOM. Loom knowledge representation systems. http://www.isi.edu/isd/LOOM/
LOOM-HOME.html#OVERVIEW, Last Visited: 2007.8.19.

[98] Thomas W. Malone and Kevin Crownston. The interdisciplinary study of coor-
dination. ACM Computing Surveys, 26(1):87–119, 1994.

[99] Thomas W. Malone, Kevin Crownston, and George A. Herman. Organizing Busi-
ness Knowledge — The MIT Process Handbook. The MIT Press, Cambridge,

Massachusetts, London, England, 2003.

[100] Frank Manola. Towards a web object model. http://www.objs.com/OSA/wom.
htm, Last Visited: 2007.6.18.

[101] TOVE Manual. Chapter 3 an activity ontology for enterprise modeling. http:
//www.eil.utoronto.ca/tove/active/active32.html, Last Visited: 2007.6.22.

BIBLIOGRAPHY 231

[102] Diana Maynard. Benchmarking ontology-based annotation tools for the semantic
web. In Workshop of Text Mining, e-Research and Grid-enabled Language Tech-
nology at UK e-Science Programme All Hands Meeting (AHM 2005) Nottingham,

UK, 2005.

[103] Raul Medina-Mora, Terry Winograd, Rodrigo Flores, and Fernando Flores. The
action workflow approach to workflow management technology. In Proc. of the
1992 ACM conference on Computer-supported cooperative work (CSCW 1992),

pages 281–288, New York, NY, USA. ACM Press, 1992.

[104] Robert Meersman. Ontologies and databases: More than a fleeting resemblance.
In Proc. of OES/SEO Workshop, 2001.

[105] Jan Mendling and Markus Nüttgens. EPC Markup Language (EPML) — an
XML-based interchange format for Event-driven Process Chains (EPC). Inter-

national Journal of Information Systems and e-Business Management (ISeB),
4(3):245–263, 2006.

[106] Peter Mika, Daniel Oberle, Aldo Gangemi, and Marta Sabou. Foundations for
service ontologies: Aligning OWL-S to DOLCE. In Proc. of the 13th International

Conference on World Wide Web (WWW2004), pages 563–572, New York, NY,
USA. ACM Press, 2004.

[107] Randy Miller. Practical UML: A hands-on introduction for developers. Borland
Software Corporation, Inc. 2003. http://dn.codegear.com/article/31863, Last Vis-

ited: 2007.5.12.

[108] Daniel Moldt and Rüdiger Valk. Object oriented petri nets in business process

modeling. In Business Process Management, Models, Techniques, and Empirical
Studies, pages 254–273, London, UK. LNCS 1806, Springer-Verlag, 2000.

[109] Mark A. Musen. Ontologies: Necessary — indeed essential — but not sufficient.
IEEE Intelligent Systems, 19(1):77–79, 2004.

[110] John Mylopoulos, Lawrence Chung, and Eric Yu. From object-oriented to goal-
oriented requirements analysis. Communications of the ACM, 42(1):31–37, 1999.

[111] Shamkant B. Navathe and Suresh G. Gadgil. A methodology for view integra-
tion in logical database design. In Proc. of the 8th International Conference on

Very Large Data Bases (VLDB 1982), pages 142–164, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc., 1982.

[112] Fred Nickols. Knowledge Management (KM) and process performance — im-
plications for action. http://home.att.net/∼nickols/KM_and_Processes.htm, Last

Visited: 2007.6.17.

[113] Sergei Nirenburg and Yorick Wilks. What’s in a symbol: Ontology, representa-

tion, and language. Experimental and Theoretical Artificial Intelligence, 13(1):9–
23, 2001.

232 BIBLIOGRAPHY

[114] Ikujiro Nonaka and Hirotaka Takeuchi. The Knowledge-Creating Company: How
Japanese Companies Create the Dynamics of Innovation. Oxford University
Press, 1995.

[115] Anna Gunhild Nysetvold and John Krogstie. Assessing business process model-

ing languages using a generic quality framework. Advanced Topics in Database
Research Volume 5 pages 84–101, Idea Group Publishing. Hershey, PA, USA,
2006.

[116] OASIS. Business Process Execution Language for Web Services (BPEL4WS).

http://xml.coverpages.org/bpm.html#bpel4ws, Last Visited: 2007.4.5.

[117] OMG. MDA guide version 1.0.1. http://www.omg.org/docs/omg/03-06-01.pdf,

Last Visited: 2004.1.10.

[118] AIFB (Institute of Applied Informatics and University of Karlsruhe Formal

Description Methods). KAON2. http://kaon2.semanticweb.org/, Last Visited:
2007.7.17.

[119] IEEE. IEEE Standard Computer Dictionary: A Compilation of IEEE Standard
Computer Glossaries Institute of Electrical and Electronics Engineers, 1991.

[120] National Institute of Standards and Technology. Process Specification Language
(PSL) core. http://www.mel.nist.gov/psl/psl-ontology/pslcore_page.html, 2004.

[121] Charles Kay Ogden and Ivor Armstrong Richards. The Meaning of Meaning.

London: Kegan Paul, 1923.

[122] Antoni Olivé. Conceptual schema-centric development: A grand challenge for

information systems research. In Proc. of the 17th International Conference on
Advanced Information Systems Engineering (CAiSE 2005) pages 1–15, Porto,

Portugal. LNCS 3520, Springer-Verlag, 2005.

[123] OMG. Model driven architecture. http://www.omg.org/mda/, Last Visited:

2007.6.7.

[124] OMG. Meta Object Facility (MOF) specification version 1.4.1 formal/05-05-05.

http://www.omg.org/docs/formal/05-05-05.pdf, Last Visited: 2007.6.7.

[125] OMG. Unified modeling language. http://www.uml.org/, Last Visited: 2007.6.7.

[126] BPMI & OMG. Business process management initiative. http://www.bmpi.org/,

Last Visited: 2007.6.7.

[127] Ontotext.com. KIM platform. http://www.ontotext.com/kim/introduction.html,

Last Visited: 2007.6.7.

[128] Andreas L. Opdahl and Brian Henderson-Sellers. Ontological evaluation of the

UML using the Bunge-Wand-Weber model. Software and Systems Modeling,
1(1):43–67, 2002.

BIBLIOGRAPHY 233

[129] OASIS Cover Pages. Event-driven Process Chain Markup Language (EPML) for
business process modeling. http://xml.coverpages.org/ni2003-11-21-a.html, Last
Visited: 2007.7.17.

[130] Hervé Panetto, Giuseppe Berio, Khalid Benali, Nacer Boudjlida, and Michae̋l
Petit. A unified enterprise modeling language for enhanced interoperability of
enterprise models. In Proc. of the 11th IFAC INCOM2004 Symposium,, 2004.

[131] Massimo Paolucci, Naveen Srinivasan, Katia Sycara, and Takuya Nishimura. To-
wards a semantic choreography of web. In Proc. of the 1st International Confer-

ence on Web Services (ICWS 2003), pages 22–26, 2003.

[132] Jinsoo Park and Sudha Ram. Information systems interoperability: What lies
beneath? ACM Transactions on Information System, 22(4):595–632, 2004.

[133] Abhĳit A. Patil, Swapna A. Oundhakar, Amit P. Sheth, and Kunal Verma.

METERO-S Web service annotation framework. In Proc. of the 13th Interna-
tional Conference on World Wide Web (WWW 2004), pages 553–562, New York,

NY, USA. ACM Press, 2004.

[134] Jean-Christophe R. Pazzaglia and Suzanne M. Embury. Bottom-up integration
of ontologies in a database context. In Alexander Borgida, Vinay K. Chaudhri,

Martin Staudt (Eds.): Proc. of the 5th INternational Workshop on Knowledge
Represenation Meets Databases (KRDB 1998): Innovative Application Program-
ming and Query Interfaces, pages 7.1–7.7. Seattle, Washington, USA, 1998.

[135] Adam Pease. Object Model Working Group (OMWG) Core Plan Representation,
version 4. Technical report, Defense Advanced Research Projects Agency, 1998.

[136] Borislav Popov, Atanas Kiryakov, Angel Kirilov, Dimitar Manov, Damyan

Ognyanoff, and Mirosla Goranov. KIM - semantic annotation platfrom. In Proc.
of the 2nd International Semantic Web Conference (ISWC2003), pages 834–849,

2003.

[137] Walter D. Potter and Larry Kerschberg. A unified approach to modeling knowl-
edge and data. Data and Knowledge (DS-2), pages 265 – 292, 1988.

[138] ATHENA Project. Deliverable DA1.3.1 report on methodology description and

guidelines definition. http://www.athena-ip.org/, Last Visited: 2005.12.17.

[139] European Project. Athena (advanced technologies for interoperability of het-
erogeneous enterprise networks and their applications) project (ist-2003-2004).

http://www.athena-ip.org, Last Visited: 2007.12.17.

[140] European Project. Interop (interoperability research for networked enterprises
applications and software) project (ist-508011). http://www.athena-ip.org, Last

Visited: 2007.7.27.

[141] INTEROP Project. Deliverable DEM 1 UEML2.1. http://www.interop-noe.org/,
Last Visited: 2005.7.17.

234 BIBLIOGRAPHY

[142] INTEROP Project. Deliverable DEM 2 roadmap for UEML and UEML2.1. http:
//www.interop-noe.org/, Last Visited: 2006.12.1.

[143] INTEROP Project. Deliverable DTG4.1 a practical experiment on semantic en-
richment of enterprise models in a homogeneous environment. http://interop-noe.

org/, Last Visited: 2006.12.1.

[144] INTEROP Project. UEML ontology overview. http://www.interop-noe.org/, Last

Visited: 2006.12.1.

[145] INTEROP Project. Deliverable DTG4.2 experimental semantic enrichment of en-

terprise models for interoperability and its practical impacts. http://interop-noe.
org/, Last Visited: 2007.8.6.

[146] Protégé. Protégé-OWL API. http://protege.stanford.edu/plugins/owl/api/, Last
Visited: 2007.5.26.

[147] Protégé. What is Protégé? http://protege.stanford.edu/overview/index.html, Last
Visited: 2007.5.26.

[148] Protégé. What is Protégé-OWL? http://protege.stanford.edu/overview/

protege-owl.html, Last Visited: 2007.5.26.

[149] ProtegeWiki. SWRL Language FAQ. http://protege.cim3.net/cgi-bin/wiki.pl?

SWRLLanguageFAQ, Last Visited: 2007.5.26.

[150] ProtegeWiki. SQWRLQueryTab. http://protege.cim3.net/cgi-bin/wiki.pl?

SQWRLQueryTab, Last Visited: 2007.11.30.

[151] ProtegeWiki. SWRL Tab. http://protege.cim3.net/cgi-bin/wiki.pl?SWRLTab, Last

Visited: 2007.5.26.

[152] Sudha Ram and Venkataraman Ramesh. Schema integration: Past, current and
furture. A. Elmagarmid,. M. Rusinkiewicz, A. Sheth, (ed.) Management of Het-
erogeneous and Autonomous Database Systems, pages 119–155, 1999.

[153] Lawrence Reeve and Hyoil Han. Survey of semantic annotation platforms. In

Proc. of the 2005 ACM symposium on Applied computing, pages 1634–1638, New
York, NY, USA. ACM Press, 2005.

[154] Cornelis Joost van Rĳsbergen. Information Retrieval (2nd edition). Butterworths,
1979.

[155] Colette Rolland. Modeling the requirements engineering process. In Proc. of the
3rd European-Japanese Seminar on Information Modeling and Knowledge Bases,

1993.

[156] Colette Rolland and Naveen Prakash. Bridging the gap between organizational

needs and ERP funtionality. Requirements Engineering, 5(3):180–193. Springer
London, 2000.

BIBLIOGRAPHY 235

[157] Colette Rolland and Rim-Samia Kaabi. An intentional perspective to service
modeling and discovery. In Proc. of the 31st Annual International Computer
Software and Applications Conference - Vol. 2- (COMPSAC 2007), pages 455–

460, Washington, DC, USA. IEEE Computer Society, 2007.

[158] Michael Rosemann and Peter Green. Developing a meta model for the Bunge-
Wand-Weber ontological constructs. Information Systems, 27(2):75–91, 2002.

[159] Gerard Salton. Automatic Text Processing: The Transformation Analysis and
Retrieval of Information by Computer. Addison-Wesley, 1988.

[160] August-Wilhelm Scheer and Markus Nüttgens. ARIS architecture and reference

models for business process management. Business Process Management, Models,
Techniques, and Empirical Studies, Volume 1806/2000 pages 376–389, Springer-

Verlag. London, UK, 2000.

[161] Craig Schlenoff, Michael Gruninger, Mihai Ciocoiu, and Jintae Lee. The essence

of the process specification language. Transactions of the Society for Computer
Simulation International, 16(4):204–216, 1999.

[162] The University of Manchester School of Computer Science. FaCT++. http:

//owl.man.ac.uk/factplusplus/, Last Visited: 2007.5.1.

[163] SCOR. SCOR model. http://www.supply-chain.org/page.ww?section=SCOR+
Model\&name=SCOR+Model, Last Visited: 2007.5.10.

[164] SCOR. SCOR version 7.0 overview. http://www.supply-chain.org/cs/root/scor_
tools_resources/scor_model/scor_model, Last Visited: 2006.3.22.

[165] Peter Senge. The Fifth Discipline: The Art & Practice of the Learning Organi-

zation. Doubleday-Currency, 1990.

[166] Kaarthik Sivashanmugam, John A. Miller, Amit P. Sheth, and Kunal Verma.

Framework for semantic web process composition. Special Issue of the Interna-
tional Journal of Electronic Commerce (ĲEC), 9(2), 2004.

[167] Pnina Soffer and Yair Wand. On the notion of soft-goals in business process

modeling. Business Process Management Journal, 11(6):663–679, May-June 2005.

[168] Arne Sølvberg. Data and what they refer to. In Conceptual Modeling: Current

Issues and Future Trends., pages 211–226. LNCS 1565, Springer-Verlag, 1999.

[169] Arne Sølvberg. Introdution to concept modeling for information systems. Nor-
wegian University of Science and Technology, Trondheim, Norway, 2002.

[170] Arne Sølvberg, Sari Hakkarainen, Terje Brasethvik, Xiaomeng Su, Mihhail
Matskin, and Darĳus Strašunskas. Concepts on enriching, understanding and

retrieving the semantics on the Web. ERCIM News. Special Theme: Semantic
Web, (51), 2002.

236 BIBLIOGRAPHY

[171] John.F. Sowa and John A. Zachman. Extending and formalizing the framework
for information systems architecture. IBM System Journal, 31(3):590–616, 1992.

[172] Stefano Spaccapietra, Christine Parent, and Yann Dupont. Model indepentent

assertions for integration of heterogeneous schemas. VLDB Journal, 1(1):81–126,
1992.

[173] Steffen Staab, Jurgen Angele, Stefan Decker, Michael Erdmann, Andreas Hotho,
Alexander Maedche, Hans-Peter Schnurr, Rudi Studer, and York Sure. Seman-

tic community web portals. In Proc. of the 9th International World Wide Web
Conference on Computer Networks : the International Journal of Computer and

Telecommunications Netowrking, pages 473–491, Amsterdam, The Netherlands.
North-Holland Publishing Co., 2000.

[174] Steffen Staab, Rudi Studer, Hans-Peter Schnurr, and York Sure. Knowledge
processes and ontologies. IEEE Intelligent Systems, 16(1):26–34, 2001.

[175] Darĳus Strašunskas. Domain Model-Centric Distributed Development — An Ap-
proach to Semantics-based Change Impact Management. PhD thesis, Norwegian
University of Science and Technology, 2006.

[176] Scott Stephens. Supply Chain Operations (SCOR) reference model and the inte-
grated business reference framework. Speech on the Supply Chain International

Conference, 2006.

[177] Heiner Stuckenschmidt. Ontology-based Information Sharing in Weakly Struc-

tured Environments. PhD thesis, Vrĳe University Amsterdam, 2003.

[178] Xiaomeng Su. Semantic Enrichment for Ontology Mapping. PhD thesis, Norwe-

gian University of Science and Technology, 2004.

[179] SUN. JAXP java API for XML processing. http://java.sun.com/webservices/

jaxp/, Last Visited: 2007.2.10.

[180] York Sure, Alexander Maedche, and Steffen Staab. Leveraging corporate skill

knowledge — from ProPer to OntoProPer. In Proc. of the 3th international
Conference on Practical Aspects of Knowledge Management, 2000.

[181] Semantic Web Services Language (SWSL) Committee. Semantic Web Ser-
vices Framework (SWSF). http://www.daml.org/services/swsf/1.0, Last Visited:
2007.5.3.

[182] Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen Srinivasan.
Automated discovery, interaction and composition of semantic web services. Jour-

nal of Web Semantics, 1(1):2–27, 2003.

[183] Troux Technologies. Metis. http://www.troux.com/, Last Visited: 2007.7.10.

[184] Advanced Knolwedge Technology. MnM. http://kmi.open.ac.uk/projects/akt/
MnM/, Last Visited: 2007.6.22.

BIBLIOGRAPHY 237

[185] Systems Thinking. Knowledge management — emerging perspective. http://
www.systems-thinking.org/kmgmt/kmgmt.htm#anex, Last Visited: 2007.6.22.

[186] Eran Toch, Avigdor Gal, and Dov Dori. Automatically grounding semantically-

enriched conceptual models to concrete web services. In Proc. of 24th Inter-
national Conference on Conceptual Modeling (ER 2005), pages 304–319. LNCS

3716, Springer, 2005.

[187] Computer Science Department University of Georgia. METEOR-S: Semantic web
services and processes. http://lsdis.cs.uga.edu/projects/meteor-s/, Last Visited:

2007.6.22.

[188] Mike Uschold and Michael Grüninger. Ontologies: Principles, methods, and
applications. Knowledge Engineering Review, 11(2):93–155, 1996.

[189] VA. A tutorial on the zachman framework for enterprise architecture. http:

//www.va.gov/oirm/architecture/EA/theory/tutorial.ppt, Last Visited: 2007.3.5.

[190] Wil M.P. van der Aalst. Formalization and verification of event-driven process
chains. Information and Software Technology, 41(10):639–650, 1999.

[191] Wil M.P. van der Aalst, Ana P. Barros, Arthur H.M. ter Hofstede, and Bartek

Kiepuszewski. Advanced workflow patterns. In O. Etzion en P. Scheuermann,
editor, Proc. of 7th International Conference on Cooperative Information Systems

(CoopIS 2000), pages 18–29. LNCS 1905, Springer-Verlag. Berlin, 2000.

[192] Axel van Lamsweerde. Building formal requirements models for reliable software.
In Proc. of the 6th Ade-Europe International Conference Leuven on Reliable Soft-

ware Technologies, pages 1–20, London, UK. Springer-Verlag, 2001.

[193] Maria Vargas-Vera, Enrico Motta, John Domingue, Mattia Lanzoni, Arthur

Stutt, and Fabio Ciravegna. MnM: Ontology driven semi-automatic and au-
tomatic support for semantic markup. In Proc. of the 13th International Con-
ference on Knowledge Engineering and Knowledge Management (EKAW 2002),

pages 379–391, London, UK. LNCS 2473, Springer-Verlag, 2002.

[194] Olegas Vasilecas and Diana Bugaite. Ontology-based elicitation of business rules.
In Proc. of Information Systems Development (ISD 2005), pages 795–806, Swe-

den. Springer-Verlag, 2006.

[195] W3C. OWL web ontology language guide. http://www.w3.org/TR/2004/

REC-owl-guide-20040210/, Last Visited: 2007.5.2.

[196] W3C. OWL web ontology language reference. http://www.w3.org/TR/2004/
REC-owl-ref-20040210/, Last Visited: 2007.5.2.

[197] W3C. OWL web ontology language overview. http://www.w3.org/TR/

owl-features/, Last Visited: 2007.5.2.

[198] W3C. OWL-S: Semantic markup for web services. http://www.w3.org/
Submission/OWL-S/, Last Visited: 2004.10.24.

238 BIBLIOGRAPHY

[199] W3C. RDF vocabulary description language 1.0: RDF schema. http://www.w3.
org/TR/rdf-schema/, Last Visited: 2006.12.1.

[200] W3C. Simple part-whole relations in OWL ontologies. http://www.w3.org/2001/
sw/BestPractices/OEP/SimplePartWhole/index.html, Last visited: 2006.3.17.

[201] W3C. Semantic annotations for WSDL and XML schema. http://www.w3.org/
TR/sawsdl/, Last Visited: 2007.9.20.

[202] W3C. SWRL: A semantic web rule language combining OWL and RuleML.
http://www.w3.org/Submission/SWRL, Last Visited: 2007.8.19.

[203] W3C. Web service semantics — WSDL-S. http://lsdis.cs.uga.edu/library/
download/WSDL-S-V1.html, Last Visited: 2005.10.5.

[204] Yair Wand and Ron Weber. An ontology model for an information system. IEEE

Transactions on Software Engineering, 16(11):1282–1292, 1990.

[205] Yair Wand and Ron Weber. On the deep structure of information systems. In-

formation System Journal, 5:203–223, 1995.

[206] Branimir Wetzstein, Zhilei Ma, Agata Filipowska, Monika Kaczmarek, Sami

Bhiri, Silvestre Losada, Jose-Manuel Lopez-Cobo, and Laurent Cicurel. Seman-
tic business process management: A lifecycle based requirements analysis. In

Proc. of Workshops on Semantic Business Process and Product Lifecycle Man-
agement (SBPM 2007) at the 4th European Semantic Web Conference (ESWC

2007), pages 1–11. CEUR WS, 2007.

[207] Wikipedia. Metamodeling. http://en.wikipedia.org/wiki/Meta-modeling, Last Vis-

ited: 2007.12.12.

[208] Wikipedia. Supply-chain operations reference. http://en.wikipedia.org/wiki/

SCOR-model, Last Visited: 2007.11.10.

[209] WSMO.org. Web Service Modeling Ontology (wsmo). http://www.wsmo.org/,

Last Visited: 2007.11.10.

[210] WSMO.org. D3.1 v0.1 WSMO primer. http://www.wsmo.org/TR/d3/d3.1/v0.1/,
Last Visited: 2007.8.16.

[211] Yahoo! Yahoo!directory. http://dir.yahoo.com/, Last Visited: 2007.7.12.

[212] Eric Yu, Lin Liu, and Ying Li. Modeling strategic actor relationships to support

intellectual property management. In Proc. of the 20th International Conference
on Conceptual Modeling (ER 2001), pages 164–178, London, UK. LNCS 2224,

Springer-Verlag, 2001.

[213] Eric Yu and John Mylopoulos. Why goal-oriented requirements engineering. In

Proc. of the 4th of International Workshop on Requirements Egnineering: Foun-
dations of Software Quality, 1998.

BIBLIOGRAPHY 239

[214] John.A. Zachman. A framework for information systems architecture. IBM Sys-
tem Journal, 26(3):454–470, 1987.

