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ABSTRACT
In an accompanying paper submitted concurrently to

this conference, we present our first complete version of
a generic and modular software framework for intelligent
computer-automated product design. The framework has
been implemented with a client-server software architec-
ture that automates the design of offshore cranes. The
framework was demonstrated by means of a case study
where we used a genetic algorithm (GA) to optimise the
crane design of a real and delivered knuckleboom crane.
For the chosen objective function, the optimised crane
design outperformed the real crane. In this paper, we
augment our aforementioned case study by implementing
a new crane optimisation client in Matlab that uses a
GA both for optimising a set of objective functions and
for multi-objective optimisation. Communicating with an
online crane prototyping tool, the optimisation client and
its GA are able to optimise crane designs with respect to
two selected design criteria: the maximum safe working
load and the total crane weight. Our work demonstrates the
modularity of the software framework as well as the vi-
ability of our approach for intelligent computer-automated
design, whilst the results are valuable for informing future
directions of our research.

INTRODUCTION
The need to reduce the time and cost involved in taking

a product from conceptualisation to production and the
desire to meet customers’ demands and their ability to
compete have encouraged companies to turn to new and
emerging technologies in the area of manufacturing. One
such technology is virtual prototyping (VP) (Mujber et al.,
2004). VP refers to the process of simulating the user,
the product, and their combined (physical) interaction in
software through the different stages of product design,
and the quantitative performance analysis of the product
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(Song et al., 1999). Being a relatively new technology, VP
typically involve the use of virtual reality (VR), virtual
environments (VE), computer-automated design (CautoD)
solutions, computer-aided design (CAD) tools, and other
computer technologies to create digital prototypes (e.g.,
Gowda et al., 1999).

Together with two companies in the industrial mari-
time cluster of Norway, ICD Software AS (provider of
industrial control systems software)1 and Seaonics AS (de-
signer and manufacturer of offshore equipment),2 we have
received funding from the Research Council of Norway
and its Programme for Regional R&D and Innovation
(VRI) for two independent but related research projects
(grant nos. 241238 and 249171) for using artificial in-
telligence (AI) for intelligent computer-automated design
(CautoD) of offshore cranes and winches, respectively. In
an accompanying paper submitted concurrently (Bye et al.,
2016), we present our first complete version of a generic
and modular software framework for intelligent computer-
automated product design. The framework has been im-
plemented with a client-server software architecture for
the design of offshore cranes and consists of several
modules: a server-side crane prototyping tool (CPT); a
client-side web graphical user interface (GUI); and a
client-side artificial intelligence for product optimisation
(AIPO) module that uses a genetic algorithm (GA) for
optimisation.

The framework was demonstrated by means of a case
study where we used the AIPO module and its GA
to optimise the crane design of a particular real-world
knuckleboom crane that has already been designed by
Seaonics AS and sold to a company in Baku, Azerbaijan,
for a total delivery price of approximately 2.9 million
EUR. For the chosen objective function, the optimised
crane design outperformed the real crane.

Motivation and Aim
For the work we present here, we will focus solely on

intelligent CautoD of offshore cranes, using the software
framework developed concurrently (Bye et al., 2016). In

1www.icdsoftware.no
2www.seaonics.com
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the concurrent paper, we tested the framework with a
case study that only involved a single crane optimisation
client using a single objective function. Here, we aim
at complementing this work by completing the following
three goals: (i) examine the modularity of the framework
by developing a new crane optimisation client in Matlab
(the MCOC module) to be used instead of the AIPO
module; (ii) augment the abovementioned case study with
a set of alternative objective functions as well as multi-
objective optimisation (MOO); and (iii) interpret the res-
ults to inform the directions of future work.

To make this paper self-contained, we reproduce some
of the material from our accompanying paper (Bye et al.,
2016). However, much of the relevant background liter-
ature pertaining to VP, CautoD, and design of offshore
cranes has been left out. The interested reader is encour-
aged to read the accompanying paper for further details.

METHOD
This section outlines the software architecture and de-

scribes the main components. We provide details on GAs,
objective functions, and multi-objective optimisation, be-
fore we present a case study on intelligent CautoD of
offshore cranes.

Software Architecture
The diagram in Figure 1 shows the client-server soft-

ware architecture of the framework that we present in our
accompanying paper (Bye et al., 2016). On the server-side,
the CPT is able to calculate a number of key performance
indicators (KPIs) of a specified crane design based on a
set of about 120 design parameters. On the client-side,
the web GUI facilities the process of manually selecting
the design parameters of the designed CPT and providing
a simple visualisation of the designed crane and its 2D
workspace safe working load (SWL) chart. Additionally,
the AIPO module that uses a GA for optimising the design
parameters in a manner that achieves the crane’s desired
design criteria (that is, the level or quality of the KPIs,
typically related to performance and cost).

In the work we present here, we replaced the AIPO
module and its GA library with a new Matlab soft-
ware module that implements a crane optimisation client
for CautoD, the MCOC module. To emphasise that the
framework is generic and modular, we chose to use the
WebSocket (WS) communication interface instead of the
hypertext transfer protocol (HTTP) that the AIPO module
used (see Figure 1). WS is a protocol providing full-duplex
communication channels over a single TCP connection.
Because WS enables streams of messages on top of
TCP, using WS for communication is advantageous for
bidirectional conversations involving many small messages
being sent to and from a server. JavaScript Object Notation
(JSON), a lightweight human-readable data-interchange
format, was used for data messages. We also kept the
existing web GUI in order to obtain visualisations of load
charts. The software architecture for this reduced subsys-
tem is highlighted with white boxes and solid connections

in Figure 1, whereas the remaining boxes in grey and the
dashed lines indicate modules and their interconnections
outside the scope of this paper.

Online Crane Prototyping Tool (CPT)
The CPT server consists of a crane calculator and two

modules for handling WS/JSJON and HTTP/JSON con-
nections (see Figure 1). Here, we let our MCOC connect
via WS/JSON to the CPT (see Figure 1). Messages are
sent as JSON objects in a standardised format that the
CPT accepts, consisting of three parts (subobjects): (i)
a “base” object with a complete set of default design
parameter values; (ii) a “mods” object with a subset of
design parameter values that modifies the corresponding
default values; and (iii) a “kpis” object with the desired
KPIs to be calculated and returned by the CPT.

Crane Calculator
The components of an offshore crane may total several

thousand parameters, making it infeasible to manually
pick good values for each parameter. However, through
the years, crane designers have been able to reduce this
number to a set of about 120 design parameters that are
considered the most important. Based on the values of
these parameters, which can be set manually or by a
CautoD tool such as MCOC, our crane calculator is able to
calculate a fully specified crane design and its associated
KPIs. The goal of the designer is thus to determine appro-
priate design parameter values that achieve desired design
criteria (based on KPIs), while simultaneously meeting
requirements by laws, regulations, codes and standards.

The accuracy of our crane calculator has been verified
against other crane calculators and spreadsheets currently
in use in the industry, and, as a result, Seaonics AS has
already adopted the CPT server and web GUI client for
manual crane design.

Web Graphical User Interface (GUI)
To simplify practical use of the crane calculator, we

have created a web graphical user interface (GUI) that can
be used to interact with the crane calculator via WS/JSON
communication. Using the web GUI to manually adjust the
120 design parameters in the crane calculator by trial-and-
error, the effect of the parameters on a number of KPIs
and other design criteria can be investigated numerically,
with the possibility for exporting to text files, and visually,
by depicting the main components of the crane and its 2D
SWL load chart.

Due to space consideration, we refer to Bye et al. (2015,
2016) for a screenshot of the GUI and more information.

Matlab Crane Optimisation Client (MCOC)
The manual design process using the web GUI together

with the CPT is cumbersome. Indeed, there are more
than 120 parameters that must be specified by the crane
designer. Clearly, this large number of parameters makes



Figure 1: Generic and modular software architecture for intelligent CautoD of offshore cranes, winches, or other
products. The modules in white (grey) and their solid (dashed) interconnections are inside (outside) the scope of this
paper.

the search space (the space of all possible combinations
of parameter values) very large and a manual trial-and-
error approach will necessarily be both time-consuming
and cost-inefficient and lead to suboptimal designs.

In our accompanying paper (Bye et al., 2016), we
present an AIPO software module replacing the human
crane designer in order to automate and optimise the
design process. Here, we use Matlab to implement such
a crane optimisation client, the MCOC module. Two
libraries freely available from the MathWorks File Ex-
change3 were used for the WS/JSON interface, namely
MatlabWebSocket, which is a simple library consisting of
a websocket server and client for Matlab, and JSONlab,
which is a toolbox to encode/decode JSON files in Matlab.
For optimisation, we used the GA Solver and the Multiob-
jective GA Solver from the Global optimisation Toolbox
(Mathworks, Inc., 2015). The GA solvers were used to
optimise a set of objective functions that we define later.

The Genetic Algorithm (GA)
A GA is a search method based on principles of natural

selection and genetics (Holland, 1975). GAs encode the
decision variables of a search problem into finite-length
strings of alphabets of certain cardinality. The strings,
which are candidate solutions to the search problem, are
referred to as chromosomes, the alphabets are referred to
as genes, and the values of the genes are called alleles. In
contrast to traditional optimisation techniques, GAs work
with coding of parameters, rather than the parameters
themselves. To evolve good solutions and to implement
natural selection, a measure for distinguishing good solu-
tions from bad solutions is required. This measure is
usually an objective function, and is called a fitness (cost)
function if the goal is to maximise (minimise) it.

3http://www.mathworks.com/matlabcentral/fileexchange

Another important concept of GAs is the notion of
population. Unlike most traditional search methods, GAs
rely on a population of candidate solutions. The popula-
tion size, which is usually a user-specified parameter, is
one of the important factors affecting the scalability and
performance of GAs. A small population size might lead
to premature convergence and yield substandard solutions.
On the other hand, large population sizes lead to unne-
cessary expenditure of valuable computational time. Once
the problem is encoded in a chromosomal manner and a
fitness or cost measure for discriminating good solutions
from bad ones has been chosen, a GA can start to evolve
solutions to the search problem using the following steps:

1) Initialization. The initial population of candidate
solutions is usually generated randomly across the
search space. However, domain-specific knowledge
or other information can be easily incorporated.

2) Evaluation. Once the population is initialized or an
offspring population is created, the fitness values of
the candidate solutions are evaluated.

3) Selection. Selection allocates more copies of those
solutions with higher fitness (lower cost) and thus
imposes the survival-of-the-fittest mechanism on the
candidate solutions. The main idea of selection is
to prefer better solutions to worse ones, and many
selection procedures have been proposed to accom-
plish this idea, including roulette-wheel selection,
stochastic universal selection, ranking selection and
tournament selection.

4) Recombination. Recombination combines parts of
two or more parental solutions to create new, pos-
sibly better solutions (i.e. offspring). There are many
ways of accomplishing this, and good perform-
ance depends on a properly designed recombination
mechanism.

5) Mutation. While recombination operates on two or

http://www.mathworks.com/matlabcentral/fileexchange


more parental chromosomes, mutation locally but
randomly modifies a solution.

6) Replacement. The offspring population created by
selection, recombination, and mutation replaces
the original parental population. Many replacement
techniques such as elitist replacement, generation-
wise replacement and steady-state replacement
methods are used in GAs.

7) Repeat. Steps 2–6 are repeated until a termina-
tion criterion is satisfied, for example, a maximum
number of generations, a run-time limit, a fitness
threshold, or no improvement is detected for certain
number of generations or run-time.

Objective Functions
In GAs, an objective function (either a cost function

or a fitness function) is used to generate an output from
a set of input variables (a chromosome). The goal is to
modify the output in some desirable fashion by finding
the appropriate values for the input variables (Haupt and
Haupt, 2004).

GAs are generally customised for solving single-
objective optimisation problems (SOPs). However, many,
or most, real-world engineering problems require MOO,
since they have multiple, often conflicting, objectives such
as minimising cost while maximising performance. GAs
can be used for MOO through the aggregation of the
individual objective functions into a single composite
function. Determination of a single objective is possible
with methods such as utility theory or the weighted sum
method but the problem lies in the correct selection of the
weights or utility functions to characterise the decision-
makers’ criteria. In practice, it can be very difficult to
precisely and accurately select these weights, even for
someone very familiar with the problem domain. Also,
small perturbations in the weights can lead to very differ-
ent solutions. For this reason and others, decision-makers
often prefer a set of promising solutions given the multiple
objectives (Konak et al., 2006). Such a set is called a
Pareto optimal set of solutions.

Multi-Objective optimisation using a GA (MOOGA)
Combining individual objective functions into a single

composite objective function is challenging and might not
be realistic or even correct. The second general approach
is to determine an entire Pareto optimal solution set or a
representative subset. A Pareto optimal set is a set of solu-
tions that are non-dominated with respect to each other.
While moving from one Pareto solution to another, there
is always a certain amount of sacrifice in one objective
to achieve a certain amount of gain in the other. Determ-
ining a set of Pareto solutions overcomes the problem of
weight selection often used in when combining individual
objectives into one composite objective function.

Case Study
We adopt the same case study as in our accompanying

paper (Bye et al., 2016), where a real knuckleboom crane

is used as a nominal benchmark against an optimised
crane. The crane has about 120 different design parameters
and a number of KPIs. Due to the large number of design
parameters, the manual design process is cumbersome,
time consuming and expensive. Even simple versions of
such offshore cranes consist of a large number of compon-
ents, including hooks, winches, slewing rings, cylinders,
booms, hinges, sheaves, and pedestals. Figure 2 illustrates
the main components of offshore cranes.

Figure 2: Illustration of the main components of an off-
shore knuckleboom crane and its 2D load chart. Image
courtesy of ICD Software AS.

In an attempt to reduce design time, cost and satisfy
customers’ need, we propose a CautoD solution in which
the MCOC module uses a GA to automate the process and
optimise the design.

Choice of KPIs: Among many relevant KPIs, two KPIs
were chosen as components of the objective functions in
order to demonstrate proof-of-concept, namely the max-
imum safe working load SWLmax and the total crane
weight W. Whilst the total crane delivery price is of great
concern, currently there is no function implemented in the
CPT that can precisely estimate the delivery price of the
crane designed. Nevertheless, the total weight can, to some
extent, be used as a proxy for price, because price will have
some correlation to the weight, and one wants to minimise
both measures. Moreover, these cranes are installed on-
board vessels and a reduced crane weight allows for
a higher deadweight tonnage (DWT). Hence, weight is
important for both capital and operating expenditure. The
maximum SWL, on the other hand, is a measure of
the maximum safe lifting capacity of the crane within
the workspace. The goal of the design is to maximize
SWLmax while simultaneously minimising W. These two
objectives are conflicting and competing with each other,
since increasing SWLmax will tend to increase W and
vice versa.



A number of objective functions were implemented in
the MCOC and are presented below.

Objective function f1: An intuitive choice for an
objective function composed of SWLmax and W is the
fitness function f1 given by

f1 = SWLmax
W

, (1)

since the evaluation of f1 will increase when SWLmax
increases and/or W decreases, and vice versa.

Objective function f2: Another composite objective
function f2 is the weighted sum of both SWLmax and
W given by

f2 = w1SWLmax + w2
1
W

, (2)

where w1 amd w2 are weight values used to reflect the
importance or amount of contribution of SWLmax and W.
We note that the total fitness will increase when SWLmax
increases and/or W decreases, and vice versa.

Objective functions f3 and f4: It may be of interest to
design a crane where either SWLmax or W is the same
as for the nominal benchmark crane, while we optimise
the remaining KPI. For example, it might be that the
crane customer wants a crane with the same “target”
weight Wtarget as the nominal crane but with a higher
SWLmax. Likewise, the crane customer might require the
optimised crane to be able to safely lift as much (but
not necessarily more, since this could for example have a
detrimental effect on the delivery price) as the benchmark
crane, denoted as SWLtarget, but with a smaller total crane
weight W. The objective function must therefore “punish”
deviations from the target KPI while optimising the other
KPI. Thus, two possible cost functions f3 and f4 are given
by

f3 = w1
1

SWLmax
+ w2

∣∣∣Wtarget − W
∣∣∣ (3)

and

f4 = w1

∣∣∣SWLtarget − SWLmax
∣∣∣ + w2W, (4)

where w1 and w2 are weight values as before.
Choice of Optimisation Variables: Among the 120

different design parameters, four design parameters that
greatly affect both SWLmax and W were chosen as
decision (i.e., optimisation) variables, namely (i) the boom
length Lboom; (ii) the jib length Ljib; (iii) the maximum
pressure of the boom cylinder Pmax,boom; and (iv) the
maximum pressure of the jib cylinder Pmax,jib. The para-
meter values were constrained to a range with minimum
and maximum limits. All other design parameters were
identical to those of the nominal crane.

GA Settings: For GA optimisation, we used a popu-
lation size (set of candidate design solutions) of 100 and
let the GA run for 50 generations, giving a grand total of
5,000 evaluated designs.

RESULTS

Table 1 shows the values of the four design parameters
Lboom, Ljib, Pmax,boom, and Pmax,jib and the resulting
maximum SWL (SWLmax) and total crane weight (W) for
the nominal crane that we use as a benchmark with which
to compare the optimisation results. During optimisation,
each design parameter was constrained to a minimum and
a maximum value as given by the Table 1. The table also
shows the objective function evaluations of the nominal
crane.

measure units nominal (min, max)

Lboom mm 15800 (12000, 26000)
Ljib mm 10300 (6000, 16000)
Pmax,boom bar 315 (100, 400)
Pmax,jib bar 215 (50, 300)

SWLmax tonne 99.978 -
W tonne 50.856 -

objective function evaluation w1 w2

f1 1.9659 - -
f2 100.00 1 1
f2 198.29 1 5000
f2 1098.10 10 5000
f2 108.31 0.1 5000
f3 0.01000 1 1
f4 50.856 1 1

Table 1: Nominal crane, its objective function evaluations,
and optimisation constraints.

Table 2 provides a summary of the results. It shows the
total processing times and optimised values for SWLmax
and W for each of the optimised cranes, the mean and
standard deviation for these values, and the difference of
the means when compared with the nominal crane.

objective function SWLmax W T (min)

f1 142.14 44.01 98.4
f2, w1 = w2 = 1 140.63 44.22 115.21
f2, w1 = 1, w2 = 5000 140.59 44.22 89.39
f2, w1 = 10, w2 = 5000 140.02 44.22 106.19
f2, w1 = 0.1, w2 = 5000 143.37 43.88 66.36
f3, w1 = w2 = 1 112.54 50.81 125.82
f4, w1 = w2 = 1 99.94 47.1 90.97
MOO 140.95 43.88 182.83

mean 132.52 45.29 109.40
standard deviation 16.60 2.47 34.68

nominal 99.98 50.86 -
difference of mean with nominal 32.54 -5.56 -

Table 2: Processing time T in minutes and optimal values
of SWLmax and W for the set of objective functions, their
mean and standard deviation, and the difference of the
means from the nominal crane.

The total processing time is the total run-time from the
start of the optimisation process till a result was obtained,
including transfer times between the MCOC client and the
CPT server.

For reference, we include the detailed results of em-
ploying f1–f4 and MOO for optimisation in Tables 4–11.



Maximum SWL (SWLmax)
Table 2 shows that employing f1, f2, or MOO all

resulted in optimised cranes with a SWLmax greater than
140 tonnes, or an improvement of more than 40 tonnes
when compared to the SWLmax = 99.98 tonnes of the
nominal crane.

Employing f3, whose purpose is to maximimise
SWLmax while having a W as close as possible to that
of the nominal crane, resulted in an SWLmax of about 12
tonnes more than the nominal crane’s SWLmax.

Finally, employing f4 resulted in a crane with a
SWLmax = 99.94, which is almost identical to the
SWLmax = 99.98 tonnes of the nominal crane. This is not
surprising, given that the purpose of f4 was to minimise
W while having a SWLmax as close as possible to that
of the nominal crane.

The mean SWLmax for all the optimised crane designs
was 132.52 tonnes, or an improvement of 32.54 tonnes
when compared with the nominal crane. The standard
deviation of SWLmax for the optimised cranes was 16.60.

Total Crane Weight (W)
Table 2 shows that employing f1, f2, or MOO all

resulted in optimised cranes with a total W of 44.22
tonnes or less, or an improvement of about 7 tonnes when
compared to the W = 50.86 tonnes of the nominal crane.

Employing f4 resulted in a SWLmax = 47.1, or an
improvement of nearly 4 tonnes when compared to the
nominal crane.

Finally, employing f3 resulted in a crane with a W =
50.81, which is almost identical to that of the nominal
crane.

The mean W for all the optimised crane designs was
45.29 tonnes, or an improvement of 5.56 tonnes when
compared with the nominal crane. The standard deviation
of W for the optimised cranes was 2.47.

Processing Times
The total processing time for each of the optimisation

processes ranged from 66.36 minutes for f2 with w1 = 0.1
and w2 = 5000 to 182.83 minutes for the MOO. The
mean processing time was 109.40 minutes, with a standard
deviation of 34.68 minutes. The fastest processing time
was more than one standard deviation lower than the mean,
whereas the slowest processing time was more than two
standard deviations higher than the mean. The remaining
processing times were all within one standard deviation
from the mean.

SWL Load Charts
The SWL load charts for nominal crane and the optim-

ised crane designs are shown in Figures 3–6.
Each load chart shows the workspace and the SWL

lifting capacity in various coloured zones of the workspace
for a given crane. The legend at the top left indicates the
capacity of a particular zone with colours in a spectrum
from red (3 tonnes) up to blue (150 tonnes).

Comparing the charts, it is apparent that all the op-
timised cranes have one or several zones with a SWL
capacity in the range 50–150 tonnes, whereas the zone
of the nominal crane with the highest SWL capacity is 50
tonnes.

It can also be observed that the overall lifting capacity
of the workspace is higher than that of the nominal crane.

However, a notable observation is that all crane designs
apart from that obtained using f3 has a smaller workspace
than the nominal crane. The reason for this is that whereas
the goal of using f3 is to obtain a total crane weight
W identical to the nominal crane (while maximising
SWLmax), the other objective functions and the MOO
try to minimise W. As a result, the lengths of the boom
and jib are shorter than the nominal crane for these latter
designs, thus making W smaller, but at the expense of a
smaller workspace.

Figure 3: SWL load charts: nominal (top); f1 (bottom).



Figure 4: SWL load charts: f2: w1 = w2 = 1 (top);
f2: w1 = 1, w2 = 5000 (bottom).

Multiobjective Optimisation (MOO)
For MOO, the two KPIs SWLmax and W were used

as two individual objective functions to be respectively
maximised and minimised by the Matlab MOOGA Solver.
The optimal solution is provided as a set of Pareto-optimal
solutions for values of the design parameters given by
Table 3. Each of these solutions results in a crane design
with SWLmax = 140.95 tonnes and W = 43.88 tonnes. A
sample solution is presented in Table 11 in the Appendix.

DISCUSSION
In this paper, we have presented an intelligent computer-

automated design solution for optimising offshore cranes
using a genetic algorithm for single-objective or multi-
objective optimisation. Candidate crane designs suggested
by a GA incorporated in a Matlab crane optimisation

Figure 5: SWL load charts: f2: w1 = 10, w2 = 5000 (top);
f2: w1 = 0.1, w2 = 5000 (bottom).

client are sent to an online crane prototyping tool that
uses a crane calculator to determine two key performance
indicators, the maximum safe working load and the total
crane weight, for each crane design. The CPT server
sends the results back to the MCOC and the GA uses
them to evolve another set of candidate solutions. The
process iterates until some stopping criteria is satisfied,
for example when the solutions do not improve for a
prolonged number of iterations.

Case Study
To test the viability of our approach, we adopted the

case study of our accompanying paper (Bye et al., 2016).
Here, we used MOO and a set of four different objective
functions to optimise the design of an offshore crane
consisting of about 120 design parameters. Of about 120
design parameters, most were fixed to values correspond-



Figure 6: SWL load charts: f3 (top); f4 (middle);
MOO (bottom).

Lboom Ljib Pmax,boom Pmax,jib

12000.9 6000.95 331.309 67.1085
12000.8 6000.50 331.183 75.4687
12000.9 6000.39 332.326 88.6125
12000.9 6000.60 332.32 71.5644
12000.6 6000.95 331.309 67.1085
12000.6 6000.49 332.241 80.8655
12001.0 6000.69 332.101 72.0046
12000.9 6000.88 331.984 68.08
12000.9 6000.61 332.333 83.6164
12000.9 6000.98 331.788 74.0161
12001.0 6000.99 331.876 75.4702
12000.8 6000.95 331.309 67.1554
12000.9 6000.74 332.816 66.7924
12000.9 6000.55 331.308 75.4687
12000.7 6000.92 332.344 82.1006
12000.8 6000.61 332.227 82.379
12000.8 6000.82 332.414 66.8399
12000.5 6000.97 331.109 72.9711
12000.7 6000.79 331.142 87.5899
12000.6 6000.99 332.633 81.1601
12000.6 6000.95 331.151 84.4106
12000.8 6000.93 332.252 89.7784
12000.9 6000.86 331.048 82.0198
12000.6 6000.81 331.017 80.539
12000.9 6000.51 332.668 68.4269
12000.7 6000.98 331.41 79.5427
12000.9 6000.91 331.983 68.8521
12000.7 6000.99 331.75 81.9171
12000.7 6000.66 332.401 82.9699
12000.8 6000.82 331.325 72.0107
12000.9 6000.95 331.246 67.1085
12000.7 6000.49 332.264 80.928
12000.9 6000.93 331.261 68.3642
12000.8 6000.63 332.088 78.7431
12000.9 6000.51 332.668 68.4269

Table 3: Pareto set of optimised cranes using MOO that
all have SWLmax = 140.95 and W = 43.88.

ing to the design of a real and delivered crane, whereas
four design parameters, the boom length, jib length, max-
imum boom cylinder pressure, and maximum jib cylinder
pressure, were optimised by the MCOC. The goal of the
optimisation was to maximise the lifting capacity given
by SWLmax and the total crane weight W. Two of the
objective functions (f3 and f4) only tried to optimise one
of the KPIs while keeping the other as close as possible
to that of the nominal crane.

The results show that all the optimised crane designs
outperform the nominal crane on the two selected KPIs.
However, other KPIs not incorporated in the optimisation
process will inevitably also be change when the crane
design changes. This can lead to unwanted and unexpected
results. For example, as can be seen from the load charts
in Figures 3–6, whilst the optimised crane designs have
improved the maximum SWL, most of them have reduced
workspace as a sideeffect. One way to overcome this
would be to incorporate another KPI, or optimisation
objective, relating to the workspace area.

Future Work
Importantly, this case study was limited to optimising

only a fraction of all the design parameters needed to
construct an offshore crane, and only two KPIs were
considered. For more realistic use, our method needs to



be expanded to involve both more design parameters and
and more KPIs. The first is trivial, as it only involves
minor modification to the GA; the latter is non-trivial, as
many KPIs are interrelated and mutually conflicting (for
example, delivery cost versus performance), and care must
be taken in the choice of objective functions. We plan to
work in close cooperation with our industrial partners and
their crane designers to develop a set of useful KPIs and
objective functions for real-world use.

Using optimisation weights for single-objective optim-
isation is one means for handling this problem, however,
choosing the right weights can be difficult. Using MOO
can, at least to some extent, handle the problem automat-
ically without the need to determine such weights. Instead
of a single design solution, one obtains a Pareto set of
solutions, all with the same values for the desired KPIs.
The crane designer and customer must then decide which
solution in the set to implement and build for delivery.

Being able to handle many more design parameters and
KPIs will likely lead to slower processing times, since
objective function evaluation is the main contributor to
computational load. Still, for the proof-of-concept study
we do here, the mean processing time was less than 2
hours, which is many orders of magnitude smaller than
what a human crane designer would require. In future
work, we intend to implement several other AI algorithms
for optimisation, possibly using parallel computation, and
examine their performance both with respect to optimisa-
tion and processing time.

We will also use the knowledge we gain from our
study on offshore cranes inform related work on optimised
CautoD of offshore winches.

Concluding Remarks
The work presented here has accomplished the three

goals set out in the introduction: We have successfully
been able to use the software framework developed con-
currently (see Bye et al., 2016) by creating a new product
optimisation client customised for offshore cranes and
insert it as a module in our existing framework. Moreover,
we have augmented the case study we present in Bye
et al. (2016) with a set of alternative objective functions
and with MOO and the results are valuable for our future
development. Finally, we would like to point the reader to
our accompanying paper for related concurrent and future
work (Bye et al., 2016).
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APPENDIX
All tables show the optimised values for the four

design parameters, the resulting SWLmax and W, and the
optimised objective function value. Values are compared
with the nominal crane and the difference and percentage
change is shown.

measure units optimised difference change

Lboom mm 12038 -3762 -23.81%
Ljib mm 6124 -4176 -40.54%
Pmax,boom bar 383 68 21.59%
Pmax,jib bar 262 47 21.86%

SWLmax tonne 142.14 42.16 42.17%
W tonne 44.01 -6.84 -13.45%

f1 - 3.23 1.26 64.27%

Table 4: Optimised crane using f1.

measure units optimised difference change

Lboom mm 12266.9 -3533.10 -22.36%
Ljib mm 6120.56 -4179.44 -40.58%
Pmax,boom bar 340.9 25.90 8.22%
Pmax,jib bar 266.84 51.84 24.11%

SWLmax tonne 140.63 40.65 40.66%
W tonne 44.22 -6.64 -13.05%

f2, w1 = w2 = 1 - 140.65 40.65 40.66%

Table 5: Optimised crane using f2, w1 = w2 = 1.

measure units optimised difference change

Lboom mm 12266.9 -3533.10 -22.36%
Ljib mm 6123.56 -4176.44 -40.55%
Pmax,boom bar 392.14 77.14 24.49%
Pmax,jib bar 297.62 82.62 38.43%

SWLmax tonne 140.59 40.61 40.62%
W tonne 44.22 -6.64 -13.05%

f2, w1 = 1, w2 = 5000 - 253.66 55.37 27.92%

Table 6: Optimised crane using f2, w1 = 1, w2 = 5000.

measure units optimised difference change

Lboom mm 12269.6 -3530.40 -22.34%
Ljib mm 6121.56 -4178.44 -40.57%
Pmax,boom bar 304.72 -10.28 -3.26%
Pmax,jib bar 249.9 34.90 16.23%

SWLmax tonne 140.02 40.04 40.05%
W tonne 44.22 -6.64 -13.05%

f2, w1 = 10, w2 = 5000 - 1513.27 415.17 37.81%

Table 7: Optimised crane using f2, w1 = 10, w2 = 5000.

measure units optimised difference change

Lboom mm 12000 -3800.00 -24.05%
Ljib mm 6000 -4300.00 -41.75%
Pmax,boom bar 353.42 38.42 12.20%
Pmax,jib bar 297.48 82.48 38.36%

SWLmax tonne 143.37 43.39 43.40%
W tonne 43.88 -6.98 -13.72%

f2, w1 = 0.1, w2 = 5000 - 128.28 19.97 18.44%

Table 8: Optimised crane using f2, w1 = 0.1, w2 = 5000.

measure units optimised difference change

Lboom mm 14321.5 -1478.5 -9.36%
Ljib mm 11864.1 1564.1 15.19%
Pmax,boom bar 396.89 81.89 26.00%
Pmax,jib bar 187.75 -27.25 -12.67%

SWLmax tonne 112.54 12.562 12.56%
W tonne 50.81 -0.046 -0.09%

f3, w1 = w2 = 1 - 0.0549 0.0449 448.74%

Table 9: Optimised crane using f3, w1 = w2 = 1.

measure units optimised difference change

Lboom mm 13443.9 -2356.1 -14.91%
Ljib mm 8328.99 -1971.01 -19.14%
Pmax,boom bar 273.36 -41.64 -13.22%
Pmax,jib bar 101.05 -113.95 -53.00%

SWLmax tonne 99.94 -0.038 -0.04%
W tonne 47.1 -3.756 -7.39%

f4, w1 = w2 = 1 - 47.138 -3.718 -7.31%

Table 10: Optimised crane using f4, w1 = w2 = 1.

measure units optimised difference change

Lboom mm 12000.9 -3799.1 -24.04%
Ljib mm 6000.95 -4299.05 -41.74%
Pmax,boom bar 331.31 16.31 5.18%
Pmax,jib bar 67.11 -147.89 -68.79%

SWLmax tonne 140.95 40.972 40.98%
W tonne 43.88 -6.976 -13.72%

Table 11: Optimised crane using MOO.


