
A Framework for Supporting Shared
Interaction in Distributed Product

Development Projects

Babak Amin Farshchian

Information Systems Group
Department of Computer and Information Science
Faculty of Physics, Informatics and Mathematics

Norwegian University of Science and Technology

May 22, 2001





Abstract

Geographically distributed software development projects are becoming commonplace due to
the wide-spread use of network technologies. Software development is an activity that is based
on intensive cooperation among groups of developers. Therefore, network technologies used to
support such projects have to provide proper support for this cooperation.

It is shown in this thesis that the(software) productbeing developed by a group of develop-
ers plays an essential role as aresource for cooperation. The product is used for externalizing
knowledge, for resolving misunderstandings, and for coordinating the daily activities of the de-
velopers. Continuous, flexible and customized access to the product is shown to be a necessary
prerequisite for using the product as a resource for cooperation. It is also shown, through a case
study of a geographically distributed project, that geographical distribution hampers continuous,
flexible, and customized access to the product. This often leads to break-downs in coordination
and cooperative learning in product development projects.

A product-based shared interaction modelis proposed as a suitable approach for supporting
distributed product development projects in using the product as a resource for cooperation. The
model emphasizes the uncertain nature of product development processes, and therefore does
not impose any predefined patterns of cooperation. Instead, the model simulates some of the
properties of the physical space. Awareness mechanisms are used to provide the developers with
continuous information about the modifications to the shared product. A flexible interface to the
product allows the developers to modify and annotate the product according to their emerging
needs. Local customization mechanisms are used to allow the product to be used as a boundary
object.

The product-based shared interaction model is formalized in form of a generic framework.
The framework consists of three service layers, each with a well-defined set of services. The
lower layers of the framework are concerned with cooperation in large groups, and use ashared
product spacefor supporting shared interaction involving the product. The higher layers of the
framework emphasize close and dynamic cooperation among the developers in smaller groups,
and usecenters of interactionfor supporting cooperation in shared workspaces. The framework is
implemented in form of a generic shared interaction platform that can be used to construct a range
of cooperation support environments for product development projects. One such environment
is described in details and demonstrates how the framework can solve some of the problems of
geographically distributed product development projects.



ii



Preface

This thesis is submitted to the Norwegian University of Science and Technologies for the doctoral
degree “doktor ingeniør.” The work reported has been carried out during the time period 1995–
2000 at the Information Systems Group, Department of Computer and Information Science, under
the supervision of Professor Arne Sølvberg. Parts of the work have been done in the context of
the EU-sponsored project Aquarius, where I was involved during 1996-1998.

During the last five years I have enjoyed a dynamic and encouraging environment at IDI.
The work presented in this thesis is a result of my interaction with this environment and the
wonderful people who work there. My supervisor Prof. Arne Sølvberg has provided me with a
perfect combination of freedom and guidance. I can say without any hesitation that it has been
an honor for me to work in his group. My colleagues in IS group throughout the last five years
have contributed continuously to this work through discussions and ideas. I thank in particular
Terje Brasethvik, Hallvard Trætteberg, Arne Dag Fidjestøl, Tom Reidar Henriksen, Xiaomeng Su,
Harald Haibo Xiao, and H̊avard Jørgensen for their contributions. I also thank Lisbeth Vaagan and
Anne Berit Dahl for their valuable help with preparing the thesis.

Many diploma and project students have been actively involved in defining and implementing
the ideas in this thesis. I thank all of them. Their contributions are referred to throughout this
thesis. In particular I thank the following: Yin Bin, Tieyan Li, Jinghai Rao and Xiaomeng Su for
their efforts in implementing MultiCASE. Nils–Helge Garli and Anders Lund for implementing
the last version of Gossip. Stig Peter Olsrød and Trond Isaksen for implementing ICE.

During the first half of year 2000 I was given the opportunity to stay at the Cooperation Tech-
nologies Laboratory of University of Milano Bicocca. I thank Prof. Giorgio De Michelis, the
head of the laboratory, and Alessandra Agostini for making my stay possible and very instructive.
I thank Andersen Consulting Forskningsfond for their economical contributions to my stay in Mi-
lano, and to the work presented here. I thank my colleagues at Telelogic Norge AS, in particular
St̊ale Deraas, for providing me with an enjoyable and instructive work environment, and for giving
me the freedom to finish the last steps in my study.

My wife, Monica Divitini, deserves a special acknowledgement. She has been helping me both
with forming the ideas presented in this thesis, and with thoughtful reviewing of almost everything
I wrote. Her presence has also been invaluable in my difficult moments, when I thought I would
never be able to finish. I thank you for all this Monica, and above all for giving Veronica to me.

Babak Amin Farshchian
Trondheim May 22, 2001

iii



iv



Contents

1 Introduction 1
1.1 Research Questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 The Structure of the Thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Cooperative Product Development 11
2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Cooperative Product Development. . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 The properties of the product. . . . . . . . . . . . . . . . . . . . . . . . 14
Product is externalized knowledge. . . . . . . . . . . . . . . . . . . . . 14
Product is boundary object. . . . . . . . . . . . . . . . . . . . . . . . . 17
Product is coordination mechanism. . . . . . . . . . . . . . . . . . . . 18

2.2.2 Utilizing the properties in co-located settings. . . . . . . . . . . . . . . 19
Continuous access to product. . . . . . . . . . . . . . . . . . . . . . . . 20
Flexible access to product. . . . . . . . . . . . . . . . . . . . . . . . . 21
Customized access to product. . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Impact of Geographical Distribution: A Case Study. . . . . . . . . . . . . . . . 24
2.3.1 Settings for the study. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Project participants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Cooperation infrastructure. . . . . . . . . . . . . . . . . . . . . . . . . 26
The product. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
The method of the study. . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.2 Observations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Sharing product-related information. . . . . . . . . . . . . . . . . . . . 31
Communication about the product. . . . . . . . . . . . . . . . . . . . . 35
Cooperation in performance of specific tasks. . . . . . . . . . . . . . . 36
Decentralized control and diversity of skills. . . . . . . . . . . . . . . . 37

2.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Lack of continuous access to the product. . . . . . . . . . . . . . . . . 38
Difficulty of flexible interaction with the product. . . . . . . . . . . . . 39
Difficulty of customized interaction with the product. . . . . . . . . . . 40
Advantages of using WWW and mailing lists. . . . . . . . . . . . . . . 40

v



2.4 Requirements for Support Environments. . . . . . . . . . . . . . . . . . . . . . 41
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Cooperation Support in Product Development: State of the Art 47
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Computer Aided Software Engineering: An Overview. . . . . . . . . . . . . . . 48

3.2.1 Integration in SEE and CASE. . . . . . . . . . . . . . . . . . . . . . . 51
3.2.2 Supporting vs. controlling cooperation. . . . . . . . . . . . . . . . . . 53
3.2.3 Limited cooperation support in contemporary CASE tools. . . . . . . . 54

3.3 Cooperation Technologies: An Overview. . . . . . . . . . . . . . . . . . . . . 56
3.4 Systems for Cooperative Product Development. . . . . . . . . . . . . . . . . . 59

3.4.1 Configuration management tools. . . . . . . . . . . . . . . . . . . . . . 59
3.4.2 CASE tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

MetaEdit+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
TDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.3 Shared workspace applications. . . . . . . . . . . . . . . . . . . . . . . 67
BSCW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
CBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
TeamWave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Orbit Gold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.4 A comparison of the studied systems. . . . . . . . . . . . . . . . . . . . 78
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4 A Model for Shared Interaction in Product Development 81
4.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Shared Interaction: A Definition. . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Elements of a Shared Interaction Model. . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 The shared space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.2 Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3.3 Support for cooperation. . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 A Comparison of Some Existing Models. . . . . . . . . . . . . . . . . . . . . . 89
4.4.1 The spatial model of interaction. . . . . . . . . . . . . . . . . . . . . . 91
4.4.2 The room–based model of interaction. . . . . . . . . . . . . . . . . . . 91
4.4.3 The locale model of interaction. . . . . . . . . . . . . . . . . . . . . . 92
4.4.4 Shared interaction in product development environments. . . . . . . . . 93
4.4.5 An evaluation of the models. . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 A Product–based Shared Interaction Model. . . . . . . . . . . . . . . . . . . . 95
4.5.1 Support for shared space. . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5.2 Support for awareness. . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.5.3 Support for cooperation. . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

vi



5 The IGLOO Framework: Overview and Examples 105
5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
5.2 The IGLOO Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
5.3 An Example IGLOO Client: MultiCASE. . . . . . . . . . . . . . . . . . . . . . 110

5.3.1 Meeting in a shared workspace. . . . . . . . . . . . . . . . . . . . . . . 110
5.3.2 Editing the product. . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
5.3.3 Interacting with composite products. . . . . . . . . . . . . . . . . . . . 117
5.3.4 IGLOO functionality in MultiCASE. . . . . . . . . . . . . . . . . . . . 118

5.4 Creating an IGLOO Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

6 Product Layer 123
6.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
6.2 Services of Product Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

6.2.1 Shared product space services. . . . . . . . . . . . . . . . . . . . . . . 126
6.2.2 Product awareness services. . . . . . . . . . . . . . . . . . . . . . . . . 131

Awareness configuration services. . . . . . . . . . . . . . . . . . . . . 133
Awareness subscription services. . . . . . . . . . . . . . . . . . . . . . 137

6.2.3 Community services. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3 The Implementation of Product Layer: Gossip. . . . . . . . . . . . . . . . . . . 141

6.3.1 An overall view of Gossip. . . . . . . . . . . . . . . . . . . . . . . . . 142
6.3.2 Gossip network protocol. . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3.3 Gossip client extension. . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3.4 Gossip’s internal consistency. . . . . . . . . . . . . . . . . . . . . . . . 147
6.3.5 The implementation of Gossip. . . . . . . . . . . . . . . . . . . . . . . 148

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149

7 Cluster Layer 151
7.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151
7.2 Clusters, Cluster Objects and Cluster Relations. . . . . . . . . . . . . . . . . . 153
7.3 Services of Cluster Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157

7.3.1 Cluster management and customization services. . . . . . . . . . . . . 158
7.3.2 Communication services. . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.3.3 Product Layer services. . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.4 The Implementation of Cluster Layer: CoClust. . . . . . . . . . . . . . . . . . 168
7.4.1 An overall view of CoClust . . . . . . . . . . . . . . . . . . . . . . . . 168
7.4.2 CoClust client extension. . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.4.3 CoClust’s internal consistency. . . . . . . . . . . . . . . . . . . . . . . 172

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173

8 Workspace Layer 175
8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175
8.2 Shared Workspaces and Their Contents. . . . . . . . . . . . . . . . . . . . . . 177
8.3 Services of Workspace Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

8.3.1 Shared workspace services. . . . . . . . . . . . . . . . . . . . . . . . . 180
8.3.2 Informal object services. . . . . . . . . . . . . . . . . . . . . . . . . . 181

vii



8.3.3 Inhabitant services. . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
8.3.4 Cluster services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184
8.3.5 Query services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185

8.4 The Implementation of Workspace Layer: SWAL. . . . . . . . . . . . . . . . . 186
8.4.1 An overall view of SWAL . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.4.2 SWAL client extension. . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189

9 Deploying IGLOO Framework 191
9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
9.2 The Instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
9.3 Activities in the Deployment Process. . . . . . . . . . . . . . . . . . . . . . . . 195
9.4 Incremental Deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200

9.4.1 The role of specialized clients in incremental deployment. . . . . . . . . 202
9.5 Architectural Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203
9.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205

10 Evaluating IGLOO Framework 207
10.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207
10.2 Step 1: Initial Deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . .208

10.2.1 Defining the organizational vocabulary. . . . . . . . . . . . . . . . . . 209
10.2.2 Defining the awareness policies. . . . . . . . . . . . . . . . . . . . . . 211
10.2.3 Developing specialized clients. . . . . . . . . . . . . . . . . . . . . . . 212

The Web-based clients. . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Java-based clients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218

10.3 Step 2: Enhancing the Cooperation Support. . . . . . . . . . . . . . . . . . . . 220
10.3.1 Refining the vocabularies. . . . . . . . . . . . . . . . . . . . . . . . . . 220
10.3.2 Refining the awareness policies. . . . . . . . . . . . . . . . . . . . . . 224
10.3.3 Developing specialized clients. . . . . . . . . . . . . . . . . . . . . . . 224

Modifying the existing Product Layer clients. . . . . . . . . . . . . . . 225
Web-based Cluster Layer clients. . . . . . . . . . . . . . . . . . . . . . 225
The Java-based clients. . . . . . . . . . . . . . . . . . . . . . . . . . . 226

10.4 Evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229
10.4.1 Meeting the requirements. . . . . . . . . . . . . . . . . . . . . . . . . 229
10.4.2 A comparison to other systems. . . . . . . . . . . . . . . . . . . . . . . 232
10.4.3 The cost of deploying IGLOO. . . . . . . . . . . . . . . . . . . . . . . 233

10.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235

11 Conclusions and Future Research Directions 237
11.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237
11.2 Answering the Research Questions. . . . . . . . . . . . . . . . . . . . . . . . . 237
11.3 Major Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238
11.4 Directions for Future Research. . . . . . . . . . . . . . . . . . . . . . . . . . . 239

11.4.1 Implementing a suite of IGLOO clients. . . . . . . . . . . . . . . . . . 239
11.4.2 Improving the generic implementations. . . . . . . . . . . . . . . . . . 240
11.4.3 Empirical testing of example IGLOO networks. . . . . . . . . . . . . . 240

viii



11.4.4 Integration with existing CASE tools and methods. . . . . . . . . . . . 241

A A Description of ICE 243
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243
A.2 ICE building blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244

A.2.1 Information objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . .245
A.2.2 Collaboration objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
A.2.3 User interface objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

A.3 ICE functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248
A.3.1 Tailorability in ICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248
A.3.2 Support for development process. . . . . . . . . . . . . . . . . . . . . . 248
A.3.3 An example of using ICE. . . . . . . . . . . . . . . . . . . . . . . . . . 250

A.4 ICE architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251
A.4.1 ICE objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251
A.4.2 Inter–object communication. . . . . . . . . . . . . . . . . . . . . . . . 253
A.4.3 Access control in ICE . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
A.4.4 Email interface to ICE. . . . . . . . . . . . . . . . . . . . . . . . . . . 254

A.5 Related research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254
A.6 Conclusions and further work. . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
A.7 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256

ix



x



Chapter 1

Introduction

The aim of this thesis is to develop collaboration technologies that can support geographically
distributed software development projects. Software development is considered as the process of
creating a newproductbased on the stated needs of a customer. This process involves refinement
of requirements and ideas, externalization of developers’ knowledge, creation of an agreed-upon
understanding of the needs and solutions, as well as development of software that will support the
customers in their business. The process of product development is highly cooperative. Coop-
eration among large groups of people is needed because one person’s knowledge, authority, and
available time are not enough for developing a large product.

Cooperationis considered in this thesis to be the social interaction that happens among the de-
velopers on a day-to-day basis, and that contributes to the refinement of the product. Cooperation
is distinguished fromcontrol. The assumption is that control and cooperation are two aspects of
product development that have to co-exist in order to create high-quality products.

Most product development environments, such as CASE (Computer Aided Systems Engineer-
ing) and SE (Software Engineering) tools, have focused on supporting the formal aspects of prod-
uct development, including project management aspects. This focus on formal aspects has played
an important role in the acceptance and advancement of conceptual modeling and development
methods. However, we see two important reasons why future product development environments
cannot afford to underestimate the cooperative aspects of product development. First, more and
more often development projects become geographically distributed. Social interaction that was
previously supported by physical proximity breaks down when this proximity does not exist any-
more. Development environments have to advance their support for cooperation in a way that
is coherent with how developers cooperate face-to-face. Second, since cooperation takes a large
part of day-to-day activities of developers, by supporting cooperation (even in case of co-located
groups) a development environment can create a medium for capturing the knowledge that is nec-
essary for the development of the productas this knowledge is created.

The perspective on cooperation as an emergent social process is strongly based on our first-
hand experience from a distributed product development project called ALPHA (1997-1998). AL-



2 CHAPTER 1. INTRODUCTION

PHA was a research and development project involving approximately 40 developers from three
European countries. The aim of the project was to develop an Internet-based information system
for knowledge sharing and cooperation in the European aquaculture sector (more details on this
project are provided in Chapter2 of this thesis). The characteristics of the project were:

• Local control: The involved parts were universities and research centers with a high degree
of local autonomy. This made it difficult to impose any strong control, at the same time
stressing the cooperative aspects of product development.

• Complex product: The project was set out to develop an innovative and quite large product
based on a set of abstract needs. This necessitated dynamism, creativity, and intensive
cooperation.

• Distribution: The project demonstrated a high level of both geographical and intellectual
distribution. The participants had diverse background knowledge, ranging from aquaculture
scientists to project managers and computer scientists. In addition, all the participants were
facing geographical distribution and had to use some form of collaboration technology in
order to cooperate with others.

The ALPHA experience revealed to us the important impact of cooperation on facilitating
knowledge creation and coordination in product development projects, and the negative impact of
geographical separation of project participants on the quality of the resulting product. ALPHA has
also demonstrated the need for computer-based systems to support seamless interaction between
the formal and informal.

The research reported in this thesis is conducted in the Information Systems (IS) group at the
Norwegian University of Science and Technology. IS group has a strong tradition in develop-
ing formalisms and tools for information systems modeling. Within this tradition, cooperation
has always been considered as an important part of the overall process of developing informa-
tion systems (Sølvberg2000, Andersen1994, Lindland, Sindre and Sølvberg1994, Andersen and
Sølvberg1993). The need to support geographically distributed groups of developers has emerged
with the wide-spread use of Internet in the recent years, and has further increase the need for de-
velopment environments that can support these distributed groups in their work. This thesis finds
itself in the research tradition of IS group, and contributes to the research in information systems
development by suggesting and developing novel systems for supporting cooperation in distributed
project teams.

1.1 Research Questions

The overall research question this thesis tries to answer is:

How can we support, through computer-based tools and environments, cooperation
among developers in geographically distributed product development projects?

As a necessary step in answering this overall question, the thesis also tries to give an answer
to the following questions:

• RQ1: What is the nature of cooperation in product development groups, i.e. what is the
meaning of “cooperative product development”?



1.2. APPROACH 3

• RQ2: What is the effect of geographical distribution on cooperative product development?

• RQ3: What kind of computer-based tools and environments are needed for supporting co-
operative product development?

1.2 Approach

We have approached the problem through defining a framework for enhancing product develop-
ment environments with cooperation support. This framework, called IGLOO, is developed as a
result of our experience from ALPHA, but also as a result of developing and testing a number of
prototypes. Our participation in ALPHA in particular gave rise to several important observations:

• Descriptions and specifications of the product being developed are used actively by de-
velopers asresources for cooperation. These descriptions and specifications are used for
exchanging knowledge and for cooperative learning. They are also powerful coordination
mechanisms, used by developers on a day-to-day basis for aligning their actions to that of
others.

• A precondition for using the descriptions of the product as a resource for cooperation is
that developers can participate inshared interactionwith each other and with these product
descriptions. Shared interaction, as opposed to individual interaction, is interaction that
is visible in a shared context. Shared interaction is easily achieved in co-located groups.
For geographically distributed groups explicit efforts are needed in order to enable shared
interaction.

• The emergent nature of product development, the high degree of local control, and the
difficulty of enforcing global procedures and tools requireflexibility andinteroperabilityin
the computer-based support.

Different prototypes were developed in the course of this research in order to find out how
computer-based systems can best support the above observations. The focus of all these prototypes
has been onthe product being developedby a group of developers. This focus is not only based
on our observation from ALPHA. It is also based on the fact that most conventional product
development tools and environments support a strong notion of a product and its specifications
stored in a central repository. Constructing cooperation support technology that can co-exist with
already-existing and widely used tools and environments necessitates an appreciation of what has
been already used as a successful support mechanism.

The developed prototypes have resulted in the genericIGLOO frameworkwith the following
properties:

• IGLOO introduces a new perspective on the product being developed by a project team. It
regards the product and its descriptions primarily as a resource for cooperation. IGLOO
makes active use of these descriptions, not only as a container of information, but also as a
place for exchanging knowledge, resolving misconceptions, and coordinating the efforts of
the developers.

• IGLOO emphasizes the flexibility of the cooperative work that is needed for creating a new
product. Instead of specifying policies for how this cooperation would or should happen,



4 CHAPTER 1. INTRODUCTION

IGLOO provides a medium for supporting learning, and for capturing knowledge that is
created as a result of this learning.

• IGLOO supports the interplay between the formal and the social. It is recognized that
product development consists of highly informal interactions among developers. It is these
informal interactions that eventually result in formal products.

• IGLOO supports geographically distributed groups by providing avirtual spacefor en-
abling shared interaction. This virtual space makes extensive use ofawarenessmechanisms
developed in the CSCW (Computer Supported Cooperative Work) research field in order
to allow developers to participate in a shared environment, regardless of their geographical
location.

• IGLOO is defined as an “operative system” for cooperation. IGLOO can be used for inte-
grating already existing tools into a coherent cooperative environment.

In addition to the prototypes that were developed during this research, the core IGLOO frame-
work has been designed and partly implemented in form of ageneric implementation. This generic
implementation can be developed into a full-fledged cooperative product development environ-
ment. In addition, IGLOO framework and its generic implementation can be used to enhance
existing conventional CASE and SE tools with support for awareness and shared interaction. Our
approach has been to focus on the cooperative aspects of product developmentfirst, and then ex-
tend to the more formal aspects. This means for instance that although IGLOO places the product
and its representations in the center of attention, it does not support traditional repository oper-
ations such as transformations, version control, and configuration management. We believe the
approach of “shared interaction first” has given us the freedom to focus on what is important for
cooperation, without compromising cooperation support for other purposes.

1.3 Background

The research reported in this thesis is by and large constructive. Our goal has been to design and
develop innovative systems for supporting cooperation in geographically distributed product de-
velopment teams. This is in line with the research tradition of the IS group, where the results of the
reported research are to be applied in a larger framework of support tools for information systems
engineering (Sølvberg2000). Grounding the design of cooperation technologies in real world ob-
servations of groups is a critical success factor for research within the tradition of CSCW (Schmidt
and Bannon1992, Olson and Olson1991), where this thesis is partly located.

The method undertaken in this thesis is a mixture of empirical investigations, literature study,
and prototyping activities. The resulting IGLOO framework and its generic implementation are
based on the following sources of data:

• The empirical study of ALPHA, and the analysis of everyday problems that distributed
product development project similar to ALPHA experience. This case study, in combination
with published empirical investigations of cooperative product development done by other
researchers, has largely shaped the constructive part of the thesis.

• The study of existing support technology, their shortcomings and their strong points, and
the feasibility of future technological solutions.



1.3. BACKGROUND 5

• The development of various prototypes. Some of these prototypes have been used by end
users, and in this way have provided valuable feedback for the development of new proto-
types. Some have served as demonstrators of ideas.

The author’s involvement in ALPHA resulted in a prototype of a Web-based knowledge-
sharing system called ICE (Internet Collaboration Environment). ICE is aradically tailorable1

system, allowing its users to create Web-based knowledge-intensive applications through an easy-
to-use tailoring interface. These applications serve the emerging knowledge-sharing needs of the
users. All user-tailored ICE applications are based on a predefined set of building blocks, i.e. a
predefined set ofknowledge object typesand a specific type ofshared workspace. ICE was de-
fined cooperatively by ALPHA team, and was designed and developed by the author and a group
of project and diploma students who were supervised by the author. The development took ap-
proximately 30 work-months over one year. ICE is described in AppendixA in this thesis. More
details on the different parts of the prototype can be found in (Farshchian and Divitini1997) and
in the various technical reports and diploma theses (Knudsen and Solheim1999, Asbjørnsen and
Ellingsen1997, Damskog1997, Sivesind and Grimstad1997, Olsrød and Isaksen1996).

During the project, several versions of ICE were released. Each version was used by the
participants for testing and collecting feedback for the next version. Feedback was collected both
for adding new functionality and for improving existing functionality. These usage and feedback
cycles allowed us to evaluate ICE with respect to supporting a distributed group of developers.
The analysis of the usage of ICE together with other WWW applications and mailing lists used
by ALPHA members threw light on some strong and weak points of the prototype. The strong
points were thetailorability and accessibilityof ICE. End users could freely tailor their own
shared workspaces, and structure multiple workspaces into hierarchies. They could freely insert
knowledge objects such as documents, drawings, source code, etc. in these spaces. In this way
the users could build knowledge-intensive applications tailored to their real needs. In addition,
ICE had an intuitive WWW-based user interface and a limited email interface. In this way the
functionality of the prototype was available to anybody using a standard Web browser or email
client.

However, ICE had limitations in three areas that were critical for product development. First,
ICE providedlimited support for coordination and cooperative learning. ICE lacked support for
visibility of overall work. The shared workspaces tailored by the users were disconnected from
each other. This meant that user activities and contents in single workspaces were completely
invisible to remote users who were not using those workspaces. Moreover, ICE provided little
active support for delivery of information to its users. Because of these limitations, often users
were not aware of what other remote users were doing, with consequences for coordination and
long-term learning (see Chapter2 for more on these issues). Second, ICE had aweak notion of
product. ICE had little support for representing and sharing of conceptual objects such as models
and descriptions of the product being developed. In addition, ICE had no support for relations
among different objects. Third, ICE wasweak in supporting explicit communicationamong its
users. Asynchronous communication was supported by external mailing lists, and support for
synchronous communication was mainly lacking.

1The termradically tailorablewas introduced byMalone, Lai and Fry(1995) to denote computer systems that allowed
their end-users to tailor applications that were fundamentally different from each other. This tailoring was called radical
because most tailoring mechanisms only allow end-users to change the “surface behavior” of an application. In these
cases, the functionality of the underlying application is the same before and after the tailoring activity.



6 CHAPTER 1. INTRODUCTION

After ALPHA was finished, we did an analysis of the cooperation that had taken place among
the project participants. We tried to understand how a geographically distributed product develop-
ment project such as ALPHA, with participants having different background knowledge and skills,
used collaboration technologies to conduct their work. This analysis revealed the importance of
being able to continuously share representations of the product being developed in form ofin-
terconnected knowledge artifacts. Our analysis also revealed the importance offlexible computer
supportfor shared interaction in geographically distributed teams. The results of this analysis,
together with a comparison to related literature, are presented in Chapter2 of this thesis.

This empirical analysis guided our second round of prototyping. This time we focused on
the shortcomings of ICE. In particular we tried to increase the support for visibility of work us-
ing ashared product spaceand associatedawareness support mechanismsfor active delivery of
information. We put less emphasis on the tailorability and accessibility aspects (which were the
strong points of ICE) because of limitation in development time and resources. We designed and
implemented a prototype of a product development tool, called MultiCASE, with focus on shared
interaction centered around the product being developed by a project group. This prototype was
designed and implemented by the author and four diploma students supervised by the author. The
development consumed approximately 30 work-months and lasted six months. Details about the
prototype’s functionality can be found in (Farshchian2000b, Farshchian1999) and in Chapter5
of this thesis. Details about the implementation of MultiCASE can be found in (Bin, Farshchian,
Li, Rao and Su1999). In short, MultiCASE is a synchronous product development tool built on
top of a shared product space consisting of objects and relations among these objects. MultiCASE
allows a group of distributed developers to share the model of a product (a software architecture)
through the shared product space, and to interact with this model through synchronous shared
workspaces. MultiCASE has a much stronger notion of a product model. In addition, shared
workspaces in MultiCASE contrary to those in ICE are not completely isolated from each other.
MultiCASE helps its users to keep themselves aware of the activities involving other parts of the
product than those currently in focus. The shared product space is in charge of producing enough
awareness informationto let this keeping aware happen.

Our experience from developing ICE and MultiCASE, and from analyzing ALPHA, resulted
in the development ofIGLOO framework, which is described in details in this thesis.2.

IGLOO builds on aproduct-based shared interaction modelas outlined in Chapter4 of this
thesis. This model consists of ashared product spaceand centers of interaction. The shared
product space provides a virtual space where product developers can be involved in product devel-
opment activities. The product development activities of the developers may happen in centers of
interaction. A center of interaction provides customized access to the underlying product and cre-
ates a context for the activities happening inside it. IGLOO framework is a detailed formalization
of this model in form of threeservice layers. The service layers are partly implemented in form
of an operative system for supporting cooperation. Generic implementations of each layer are
developed partly and used for testing the functionality of the framework (Farshchian2000a, Garli
and Lund2000, Lie-Nielsen2000, Rømma and Skjønhaug2000). IGLOO is developed in a way
to support the creation ofIGLOO networks. IGLOO networks are collections of product devel-
opment tools that communicate through IGLOO framework and create a flexible environment

2Igloos are built on a landscape of ice. They are an integral part of the landscape since they are built using the same
underlying ice. At the same time, each igloo gives protection to the eskimos living in it, separating them from the harsh
and messy environment outside. In our framework, the ice landscape can be thought of as being a large and messy product,
while each igloo gives shelter to a small group of developers.



1.3. BACKGROUND 7

ICE

ALPHA
study

MultiCASE

IGLOO
framework

IGLOO
networks

IGLOO
deployment

process

Figure 1.1:The research contributions.

for cooperative product development. The deployment of IGLOO framework happens through
IGLOO deployment process.

We developed IGLOO as a framework rather than a single application. By framework we mean
that IGLOO is a definition of a set of generic services instead of being a specific application.
Practical issues were one reason for making this decision. Implementing a specific application
required us to implement a large amount of functionality within the application (functionality
that was not the focus of this research, such as advanced repository services), and promoting the
application as the best one among all the existing advanced development tools. Having chosen to
develop IGLOO as a framework has provided us with a number of advantages, such as allowing
third-party tools and environments to be integrated into a cooperative environment through well-
defined service interfaces. In addition, the services of the framework do not enforce any strict
“cooperation policies” on the applications that can be developed or integrated into the framework.
This means that widely different cooperation scenarios can be supported by the framework.

Figure1.1 shows roughly some of the main contributions of this thesis and the dependencies
among them. IGLOO networks will be developed through deploying IGLOO framework. Al-
though an example IGLOO network is described in this thesis, IGLOO networks are future work
and are not treated in details in this thesis. The box with IGLOO networks is drawn with dashed
lines in Figure1.1in order to indicate this. Table1.1shows an overview of the developed systems
and frameworks, and their strong and weak points.



8 CHAPTER 1. INTRODUCTION

Table 1.1: Systems developed during the reported research, and their
strong and weak points with respect to support for cooperative product
development

System/
frame-
work

Strong points Weak points

ICE Ease of use – Accessible and open user
interface – High level of support for tai-
lorability.

Weak notion of product model and in-
terdependencies among product parts
– No support for active delivery of
(awareness) information – Little sup-
port for explicit communication.

MultiCASE Strong notion of a large product model
– Support for dependencies among
product parts and among developers –
Active delivery of (awareness) infor-
mation – Support for synchronous co-
operation.

Little support for tailorability – Lack of
an open and extendable architecture.

IGLOO
frame-
work

Supports strong points of both ICE and
MultiCASE – Supports a high degree
of tailorability and flexibility in defin-
ing different types of product models
– Support highly tailorable awareness
services for active delivery of informa-
tion.

See Chapter10.

IGLOO framework is developed as a result of several cycles of development and empirical
evaluation. The possibility of being involved in a real world project has provided essential in-
sight into problems that may occur as a result of geographical distribution in product development
teams. Together with an study of the literature on software engineering as a cooperative activity
we believe we have been able to base our technical contributions on real requirements. The de-
velopment of prototypes has played a central role in understanding the complexity of distributed
systems and their existing limitations.

1.4 Contributions

The main contributions of this thesis are the following:

• An empirical analysis of cooperative product development: This analysis shows the im-
portance of computer support forshared interaction. It also demonstrates the importance
of integrating support for formal and informal levels of product development in the same
support environment. In particular, the interaction between the formal product and the in-
formal processes ofcooperative learningandcoordinationneed to be explicitly supported
for geographically distributed groups.



1.5. THE STRUCTURE OF THE THESIS 9

• A product-based model of shared interaction: This model is an improvement of existing
models of interaction with respect to support for product development. The central role
of product is emphasized by extending the notion of an artifact to support coordination,
knowledge creation and cooperative learning. Centers of interaction allow flexible inter-
action with the product. The model acknowledges the differences between cooperation in
small and large groups, and is an attempt to provide an integrated support for both.

• A framework for cooperative product development: IGLOO framework formalizes the
product-based interaction model into detailed definitions of three service layers that pro-
vide different levels of cooperation support.

• A generic implementation of the framework: The framework is partly implemented in form
of three generic servers, one for each service layer. These servers provide a scalable dis-
tributed architecture for the framework and facilitate the deployment of the framework.

• A method for deploying the framework: Due to a high degree of flexibility, IGLOO frame-
work has to be customized for each individual project. A companion method is developed
to facilitate the deployment process of the framework in different types of project.

1.5 The Structure of the Thesis

Chapter2 is an analysis of cooperative product development. The analysis shows the importance
of the product as a resource for cooperation. This chapter also present a case study of ALPHA as
an example of geographically distributed product developed project. The chapter concludes with
a set of requirements for product development environments.

Chapter3 present a state-of-the-art survey of computer-based tools and environments for sup-
porting cooperative product development. We focus on configuration management and CASE
tools, and shared workspace applications. The survey gives an overview of the feasibility of
computer-based systems, and also reveals a number of shortcomings in the existing systems.

Chapter4 outlines a product-based shared interaction model. This model enhances the existing
shared interaction models with concepts that are specific for cooperative product development,
such as shared product space and centers of interaction.

Chapters5–9 define IGLOO framework. Chapter5 gives an overview of the framework and
describes an example, i.e. MultiCASE. Chapters6–8 describe the three service layers in IGLOO
framework. Chapter9 outlines the IGLOO deployment process and its different activities.

We evaluate IGLOO framework through applying the IGLOO deployment process to ALPHA
in Chapter10. Chapter11concludes the thesis and proposes some directions for future research.



10 CHAPTER 1. INTRODUCTION



Chapter 2

Cooperative Product Development

2.1 Introduction

This chapter provides an analysis of the key role that the product being developed plays as are-
source for cooperationin product development projects. The analysis is based on data from two
sources. First, a review of the literature on the social aspects of product development is presented
in Section2.2. We focus on co-located teams, and see how the product is used for supporting co-
operation in co-located teams. Second, our own experience from a real world distributed project is
presented as a case study in Section2.3. This case study further investigates the effect of geograph-
ical distribution in the practice of product development. Section2.4presents a set of requirements
for supporting collaboration in product development environments. Before proceeding to these
sections, some basic concepts used in this chapter and the rest of the thesis are defined in the
following.

The (software) product and its developers are in focus in this chapter. We make an analytical
distinction between the product being developed, and the end-product of a development project. In
this thesis we use the termproductwhen we refer tothe product being developedby the develop-
ment project, while the termend-productis used to denote the resultingexecutable softwarethat is
used by its intended users in its intended environment. The product contains all requirements and
design documents, drawings, minutes, notes, source code, intermediate prototypes1, etc. that are
generated during the lifetime of a development project. The end-product is the executable code
and its user documentation that are delivered to the customers of the project as the end result of
the project. The product itself plays a “dual role” in the development process (Seltveit1994). The
product is used for supporting communication and understanding among the developers in the de-
velopment project. The same product and its different configurations are later used for (automati-
cally or semi-automatically) manufacturing the end-product in form of an executable software (see

1Note that an earlier version of an end-product may play a central role in supporting the communication among the
developers when they develop a future version. In this case the version is regarded as an intermediate prototype for the
next cycle of development.



12 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT

Target
information

system
(end-product)

1.0

Basis for communication
and understanding

Basis for coding of
software

Specification
(product)

Figure 2.1:Duality of systems specifications. Adapted fromSeltveit(1994).

Figure2.1). Our concern is about using the product for communication and understanding among
developers.

We use the termdeveloperto denote all the people who play a visible role in the product
development activities. Developers can be analysts, different domain experts, project managers,
programmers, etc. Aproduct development project, or project for short, is the organizational unit
that is actually performing the product development activities. Aproduct development group, or
group for short, is a subset of the developers in a project who are involved in solving a specific
issue or a task related to a product.Product development activities, or activities, are those activ-
ities of the developers that influence the product, i.e. result in refinements to the product. These
activities do not need to be those that modify the product directly. For instance, chance encoun-
ters and opportunistic discussions in hallways and coffee rooms always play an important role in
shaping a product. Aproduct development environment, or development environment for short,
is a technical infrastructure, tool, or technology that is used to support the developers in a project
during their product development activities.

The product is seen as constituted by a set of interconnected artifacts calledproduct objects.
Examples of product objects are requirements documents used for collecting user requirements,
user interface mock-ups for demonstrating future usage scenarios, formal and semi-formal models
describing the problem domain, design documents describing the technical design of the computer
system, source code files written in a programming language, etc. Product objects do not exist in
isolation, but their meaning is normally defined in relation to other product objects. There exist
differentrelationsamong product objects. Examples of relations are dependency relations, import
relations, “part of” relations, etc. An end-product is created through transforming aconfiguration
of product objects into an executable software. A configuration will normally include a subset
of all the available product objects.Cooperative product developmentis the process of creating
these product objects and relations. This process consists of intensive cooperation among the
developers, which in turn results in externalized knowledge that constitutes and shapes the product.
As we will see in this chapter, this process is a highly emergent one. Because of this emergent
nature of the process, it is important to consider the product, together with its developers, existing
within a continuoussocial environment(see Figure2.2). In this social environment, the product is
regarded as an “anchor” for supporting cooperation among the developers.



2.2. COOPERATIVE PRODUCT DEVELOPMENT 13

Database
module

Middlewa re
module

User
interface
module

Sub-
module 1

Sub-
module 2

Sub-
module 3

Sub-
module 4

Sub-
module 5

Sub-
module 6

Sub-
module 8

Sub-
module 7

User A User B

User D

User C

The social environment

The formal product

Communication

Communication

User E

Figure 2.2:A product is always developed within a social environment.

2.2 Cooperative Product Development

This section presents an analysis of cooperative product development. This analysis is based on
empirical and theoretical studies of cooperative product development as published in the literature.
We focus in particular on the role of the product in the development process, and the way it
supports cooperation among developers. The product being developed is a central part of any
product development project because it is used as the basis for manufacturing the end-product. The
success or failure of the whole project will normally be related to the quality of the product. Most
product development environments, such as CASE and SE tools, are built around a product (which
is often stored in a central repository). Interacting with the product takes a considerable part of
the activities of the developers. Our analysis, which is summarized in this section, shows clearly
that the product being developed plays an essential role in supporting the cooperation among the
developers in the course of a project. This perspective on products has implications for current
product development environments, where the assumption is often that the product is a (semi-
) formal specification used as the basis for various transformations.

The rest of this section is organized as follows. First, three properties of products are exam-
ined. These are the properties of beingexternalized knowledge, boundary object, andcoordination
mechanism. From our analysis of the literature we believe these three properties are the most cen-
tral ones with respect to cooperation. Second, we look at how co-located teams utilize these
properties of the product. It is shown that physical proximity plays an important role in using the
product as a resource for cooperation. Physical proximity (e.g. being in the same room, or in
the same building within reasonable physical distance from other developers) offers continuous
access to the product, supports flexible interaction with the product, and allows groups of devel-



14 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT

opers to easily cooperate on different tasks related to the product. A summary of the discussion is
shown in Table2.1. In this table, the three properties of the product are show in the left column,
their positive effects on cooperation are shown in the middle column, and the effects that physical
proximity has on utilizing the properties are shown in the right column.

Table 2.1: Three properties of product that are important for supporting
cooperation, with the necessary pre-conditions for utilizing them

Property Support for cooperation The role of physical proximity
Product is external-
ized knowledge

Supports cooperative learn-
ing, criticism, creativity.

Shared physical space: embodies the
developers and the product – sup-
ports continuous exchange of informa-
tion related to the product – supports
flexible and customized interaction be-
tween the developers and the product.

Product is bound-
ary object

Supports understanding
across different communities
of practice – Facilitates
negotiation of local un-
derstandings – Supports
information sharing.

Shared physical space: allows the de-
velopers to customize the product to
their local needs – offers low-cost and
dynamic communication channels for
resolving misunderstandings.

Product is coordi-
nation mechanism

Supports coordination of
day-to-day activities of
developers.

Shared physical space: allows continu-
ous access to information about modi-
fications to the product – supports ac-
cess to information about the process
through which these modifications are
made.

2.2.1 The properties of the product

Our analysis of the literature on social aspects of product development shows that at least three
properties of products are crucial for cooperative product development. First, a product is exter-
nalized knowledge. Developers cooperate in order to externalize their knowledge and confront it
with that of other developers. The product is created as the result of this knowledge creation and
learning process. Second, a product is a boundary object. Every development project consists of
developers with varying domain knowledge and background. The same product is often used by
all these developers in order to support the different local understandings of accumulated knowl-
edge. Third, a product is a coordination mechanism. Information about the status of the product is
used effectively by the developers in order to coordinate their day-to-day work with that of other
developers.

Product is externalized knowledge

Developing large products is a knowledge-intensive process (Waterson, Clegg and Axtell1997,
Walz, Elam and Curtis1993, Curtis, Krasner and Iscoe1988). This is true in two senses. First,



2.2. COOPERATIVE PRODUCT DEVELOPMENT 15

Machine
Architecture

Algorithmic &
Data Structure

Software Architecture

System Architecture

Application Domain

User
Behavior

Figure 2.3: Different types of domain knowledge involved in software development. Adopted
from Curtis et al.(1988).

due to the product’s complex operational environment there is a need for different kinds of spe-
cialized and overlappingdomain knowledgein order to be able to develop the product (see Fig-
ure2.3). Second, products themselves are often complex, and knowing them in detail requires
a large amount of knowledge about the product, i.e.product knowledge. Mutual knowledge is
a prerequisite for effective cooperation (Krauss and Fussell1990). Mutual knowledge facilitates
communication and makes cooperation more effective. Product knowledge constitutes a large
part of this mutual knowledge in a project. Developers need to know enough about the product’s
conceptual model in order to be able to communicate about it, and to cooperate with each other
for its development. Product and domain knowledge are often interwoven, and the boundaries are
changing dynamically during the course of a project. In fact, product knowledge is gained through
acquiring and integrating the domain knowledge of the developers. On the other hand, in most
cases product knowledge does not only mean knowledge about an isolated technical construct.
Product knowledge also may include knowledge about how the end-product will function in its
future environment, and how it will interact with organizational, social, and technical aspects of
this environment2.

Product knowledge is thus knowledge that is created, shared and modified by the developers.

2There are of course other types of knowledge that are necessary in any project. These include knowledge about the
project’s organization, knowledge about the market, knowledge about competing products and organizations, etc. We
will here focus only on domain and product knowledge because they are more directly related to product development
environments.



16 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT

User A User B
Working product

knowledge

B's domain knowledgeA's domain knowledge

Externalized product
knowledge

Figure 2.4:Knowledge creation in product development. Arrows denote flow of information.

Product knowledge is mainly non-existing in the beginning of a project. It is created through a
“socialization” process where the tacit domain knowledge of each developer is confronted with
that of other developers (Nonaka and Takeuchi1995). It is important to note that, at any time
during the course of the project, product knowledge is only partly created. It is also important
to note that product knowledge resides only partly in the existing product objects and relations.
This means that the product development project as a whole will normally know much more about
the product than what is recorded in the externalized product. We will use the termexternalized
product knowledgeto denote product knowledge that is recorded in form of product objects and
relations. The termworking product knowledgeis used to denote product knowledge that is cre-
ated (i.e. understood and agreed upon by a group of developers) but is not yet recorded as part of
the product. Figure2.4shows an overview of these concepts.

From this perspective, the product (i.e. product objects and relations) is the externalized prod-
uct knowledge. Product objects and relations among them are used for externalizing product
knowledge because they are tangible and accessible in a shared context. Product objects often
start and accelerate cycles of knowledge creation as they play the role of “hooks” for attaching
new knowledge (Curtis et al.1988). Externalization of product knowledge happens interactively,
and is the basis for a continuouslearning process:

“Since we are normally used to talking about knowledge only when it is explicitly
given, a learning cycle can be characterized as the updating or revision of the re-



2.2. COOPERATIVE PRODUCT DEVELOPMENT 17

spective artifacts. A learning cycle in software development may thus be identified
with the production of a new version; in software engineering it may be the develop-
ment of a new generation of tools and methods.” (Keil-Slawik 1992, p.174)

Each new version of a product object is thus a refinement of externalized product knowledge.
Product development can from this perspective be seen as a process of convergence from vague
ideas into increasingly clearer conceptual models (Potts and Catledge1996). Product as knowl-
edge that is gradually externalized plays an important role in supporting a long termcooperative
learningprocess in the development project. This learning happens mainly through observation
of changes and gradual confrontation of ideas, i.e. it is a process ofsituated learning. What is
learned is normally unique for each project, and depends on the type of the product that is being
developed.

Product is boundary object

Differentcommunities of practice(Brown and Duguid1991) will understand and/or interpret situ-
ations in different ways. This is in particular true in product development projects. These projects
are often constituted by developers with highly varying backgrounds and domain knowledge (i.e.
belonging to different communities of practice). Groups of developers work on different parts of a
large product, and they often employ their specialized perspectives when solving issues related to
the product. In addition, the situation or problem domain that the product tries to support is often
complex. Local interpretations are often present and necessary for coping with the complexity.
The role of the product here is that of “unifying” the different communities of practice and their
views. For instance, a module in a software product might be seen as an artifact fulfilling some
organizational or business requirements, as an operational unit capable of performing some con-
crete operations, or as a technical artifact constituted by pieces of executable code and hardware,
all depending on the background and local context of its developers. The product has to provide
a common view, but also support the local interpretations of the involved developers. In other
words, the product is aboundary objectas defined byStar and Griesemer(1989):

“ . . . an analytical concept of . . . objects which both inhabit several intersecting social
worlds . . .andsatisfy the informational world requirements of each of them. Bound-
ary objects are objects which are both plastic enough to adapt to local needs and the
constraints of the several parties employing them, yet robust enough to maintain a
common identity across sites.” (Star and Griesemer1989, p.393).

Product as boundary object is located in the boundary of several communities of practice. In
this way, it plays an important role in making possible cooperation among developers divided by
organizational, cultural, temporal, physical, or other types of distances. According toStar and
Griesemerthere are four types of boundary objects, all of which can also be identified in product
development activities:

• Repositories: These are collections (“piles”) of objects that are indexed in a standardized
fashion. Repositories are modular in that different people can use different objects from
the “pile.” An example is the set of all the product objects constituting a product, or the
set of technical manuals available to the development team. Each developer or group of
developers will use only a subset of the repository.



18 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT

• Ideal type: This is the object that can be adapted to different contexts. It is abstracted from
all contexts and is fairly vague. It serves as a means for communicating and cooperating
symbolically. “A ’good enough’ road map for all parties”. For instance, an ER diagram can
be used for communication between programmers and domain experts.

• Coincident boundaries: Common objects which have the same boundaries but different in-
ternal contents. For instance, the architecture of the product has the same boundaries (the
same boxes and the same arrows among the boxes) but can be visualized differently for a
performance analyst (interested in bottlenecks in the architecture) and a project manager (in-
terested in the progress of work in each box).

• Standardized forms: Boundary objects devised as methods of common communication
across dispersed work groups, e.g. a standardized bug report.

The product as boundary object supports cooperation among the members of a community
of practice by allowing them to create local understandings. Creating local annotations, or using
a notation that is commonly used by the members of the community of practice, allows these
members to cooperate through the product more efficiently. The “standard” representation of
the product, which is used by intersecting communities of practice, allows these communities
to cooperate across their discipline and to confront their domain knowledge with that of other
communities. Being understandable both within and across communities of practice, the product
plays a central role in sharing information and opinions in a product development project.

Product is coordination mechanism

The two previous properties of product, i.e. product as externalized knowledge and boundary ob-
ject, are based on the notion of product as container of information. Regardless of their contents,
products themselves also have a coordinating effect and are often used as resources for coordinat-
ing the day-to-day conduct of the developers. This coordinative effect of products is in particular
studied byGrinter (1995) in case of configuration management tools.Grinter shows that infor-
mation about the status of the different files in a configuration management tool is an important
resource for developers when coordinating their actions. For instance, in the case that she studied
it was normal that a developer would delay his changes to a file if the file was already checked out
by someone else. Similar scenarios have been shown byTellioǧlu and Wagner(1997) andRogers
(1993).

Using products as coordination mechanism depends on theirpredictable behaviorand their
ability to supportperipheral awareness(Robinson1993). Although a product does not put many
restrictions on how it can be changed or accessed otherwise, its behavior is often predictable.
Many product objects have a predictable form in that they are based on some standard nota-
tion/formalism, and can be subject to only a predefined set of operations/processes. Conventions
among developers about how to use different product objects can also play an important role in
increasing predictability. In the case of configuration management tools, as studied byGrinter
(1995), the programmers had established local conventions that would encourage them to talk
to each other before checking out files that were already checked-out by others. These conven-
tions would only work if all the programmers adhered to them, and if the tool provided enough
information about the status of each file.



2.2. COOPERATIVE PRODUCT DEVELOPMENT 19

Because of their existence in a shared context, products support peripheral awareness by pro-
viding continuous information about their status and the operations performed on them by others.
For instance, a configuration management tool normally contains a view of all the files belonging
to a product. This view continuously shows which files are checked out by whom, which files
change status from unlocked to locked etc. This information is extensively used by developers
as peripheral awareness, and for finding out “at a glance” who is doing what without explicitly
talking to them (Grinter1995).

This coordinative effect also applies to large and composite software products. In many cases
these products will consist of thousands of product objects and relations. The relations among
the product objects may result in dependencies among the developers working on these objects.
In these cases, not only single product objects but also the overallstructureof the product be-
comes a coordination mechanism. This large-scale coordinative effect is often a deciding factor
for organizing the overall product development process. The mutual relation between work or-
ganization and the structure of the system under development is well-documented. Conway’s
law (Conway1968) stated that the structure of a large system being develop by a large group
will often mirror the organization of the work needed for developing it.Grinter, Herbsleb and
Perry(1999) show the effect of Conway’s law in different cases of product development projects,
where divisions are often based on the architecture of the product. Acknowledging the crucial
impact that dependencies among different parts of a software product have on the organization
of the overall work,Parnas(1972) introduced the idea of “information hiding” as an attempt to
effectively divide a system into sub-modules. According to Parnas, a system should be divided
into sub-systems not based on external factors such as the organizational demands of the project
team developing it, but based on minimizing the dependencies among the work activities needed
to develop each sub-system.

The type of “implicit” coordination that is supported by products (i.e. the artifacts of the work)
is different than “explicit” coordination through for instance language and speech acts (Winograd
and Flores1986). One important difference is that implicit coordination does not impose any
sequencing of actions, as is normal in explicit coordination. Products supportmultiplicity in that
they allow themselves to be used in diversified and often unanticipated ways (Robinson1993).
This is an important property of products because product development projects are often highly
uncertain and emergent, and any prediction of action sequences should only be done at a high
level of abstraction.

2.2.2 Utilizing the properties in co-located settings

In order to use the product for knowledge creation, cooperative learning and coordination, de-
velopers have to be able to continuously exchange various information about the product and its
evolution. In addition, the product should be seamlessly integrated with the social interaction
among the developers so that developers can freely modify and refine the product. In case of
large projects, it is also necessary that the developers are able customize their interaction with the
product in order to prevent information overload. E.g. a small group of developers working on a
small part of a large product may need to be able to focus on that part, at the same time keeping
an overview of other activities in the project. For co-located groups, the sharedphysical space
is a strong facilitator of utilizing the three properties of the product. The following sections dis-
cuss this facilitator role of physical space that happens through providingcontinuous, flexible, and
customizableaccess to the product.



20 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT

Continuous access to product

Continuous access to the product is a precondition for cooperation because of the uncertain and
emerging nature of product development. The process of developing new products is that of a
“conversation with the situation”(Scḧon 1983). New and innovative solutions are tried out con-
stantly by the developers, and their consequences are discussed and evaluated. Product develop-
ment is a wicked problem, where the problem itself is never completely defined before its solution
is developed (Sølvberg and Kung1993). Information about the current status of the product, and
the activities of other developers involving the product, play an important role in choosing the
next step in the development, keeping the developers up-to-date, and enabling them to cooperate
with each other more effectively. Continuous access to the product hasshort-termandlong-term
benefits. These benefits allow developers to use the product as a resource for cooperation.

The short-term benefit is connected to using the product as a coordination mechanism. From
this perspective, any access to the shared product is potentially of importance to the developers.
Information about these accesses is used by the developers as a resource for coordinating their
conduct with that of others. This is the underlying reason for the importance of monitoring the
product, as pointed out for instance byVessey and Sravanapudi(1995) andGrinter (1995). Of
importance for effective coordination is not only information about what changes are made to the
content of the product, but also knowing through which processes these changes are made. E.g.
in a project it is often of crucial importance to know who is changing a product object. Knowing
that the changer is an expert in the field might give a completely new meaning to the change that
is made to the product (Schmidt and Bannon1992).

From a long-term perspective, continuous flow of information about accesses to the product
is a precondition for enabling the developers to learn about the product, and to more easily ex-
ternalize their knowledge. This is closely related to using the product as a boundary object, and
the product being externalized knowledge. Being exposed to a continuous flow of information
about the product’s evolution facilitates the cooperative learning processes that are necessary for
efficient cooperation (Walz et al.1993).

Continuous access to the product requires that the product and the developers reside in a shared
space. A shared space does not necessarily mean a shared physical space, but a space that allows
the developers tocontinuouslyexchange information. It is important to emphasize the necessity
of beingembodiedin a space rather than merely using the space as a communication tool. This
distinction is closely related to the distinction betweenintentionalandconsequentialcommuni-
cation (Gutwin and Greenberg1999). Intentional communication is initiated when a person (the
sender) feels the need to communicate with another person (the receiver). Verbal communica-
tion is normally intentional, but also gestures are used for intentionally conveying ideas (Tang
and Leifer1988). Consequential communication happens as aconsequenceof being in a shared
space. By being embodied in a space, people and artifacts “diffuse” information. The sender of
this information might not see the need for initiating communication; it is merely the receiver who
“discovers” the communicational value of information that is available in the shared space. Con-
sequential communication is important for product development because of the emergent nature
of the development process. It is often difficult for a developer who modifies the product to know
who will need to be informed about a particular modification.



2.2. COOPERATIVE PRODUCT DEVELOPMENT 21

Table 2.2: Elements of awareness information normally found in a shared
workspace (fromGutwin et al.1996)

Element Relevant Questions
Identity Who is participating in the activity?
Location Where are they?
Activity Level Are they active in the workspace?

How fast are they working?
Actions What are they doing?

What are their current activities and tasks?
Intentions What are they going to do?

Where are they going to be?
Changes What changes are they making?

Where are changes being made?
Objects What objects are being used?
Extents What can they see?
Abilities What can they do?
Sphere of Influence Where can they have effects?
Expectations What do they need me to do next?

Being embodied in a shared physical space guarantees that changes to the product are con-
tinuously observable by all developers. In physical space, consequential communication hap-
pens continuously and often unconsciously due to the embodiment of the participants in the
space (Robertson1996). Table2.2for instance shows a few types of information that are normally
used as resources for consequential communication in a shared workspace (e.g. a meeting room).
Such information is often calledawareness information(Gutwin and Greenberg1999, Dourish
and Bellotti 1992). Awareness information is not only important for supporting consequential
communication, but also createsopportunitiesfor intentional communication.

Flexible access to product

The distinction between the formal and the informal is treated under different banners by re-
searchers investigating the intersection between formal (often technical) constructs, e.g. computer-
based information systems, and social aspects of work practices (Grudin1994b, Orlikowski 1992,
Schmidt and Bannon1992). In particular,Robinson(1991) has argued for a double-level language
property of cooperative work:

“ In general, it can be said that any non-trivial collective activity requires effective
communication that allows both ambiguity and clarity. These ideas of ambiguity and
clarity can be developed as the ’cultural’ and the ’formal’ aspects of language as
used by participants in projects and organisations. ’Computer support’ is valuable
insofar as it facilitates the separation and interaction between the ’formal’ and the
’cultural’ ”. (Robinson1991, p.43)

This double-level property of cooperative work is highly present in product development.
Products are often formal constructs, while cooperation among developers can be highly infor-



22 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT

mal (Kraut and Streeter1995). In order for developers to use the product as a resource for cooper-
ation, the product should be accessible through an interface that is flexible enough to be integrated
with the social interaction among the developers. Physical space and physical proximity play a
crucial role in supporting such a flexible interface. Being in a shared physical space, developers
can easily externalize their product knowledge, create a common understanding of the product,
and coordination their actions using the product.

The process of externalizing product knowledge happens through a dialectic process between
the social interaction among the developers and the already externalized product knowledge. For
instance, a large part of verbal communication in a product development project results in product
knowledge, e.g. natural language documents. In factRittel (1972) regards the whole commu-
nicative activity as that of generating knowledge; utterances of the typesissue, argument, etc. are
connected in a conversation web (an IBIS, Issue-Based Information System) in order to create
new knowledge. The process of creating an IBIS can be highly flexible. A set of empirical stud-
ies of small group meetings performed by Olsons and their colleagues (Olson et al.1992, Olson
et al.1996) actually show a clear unconscious tendency by the meeting participants to follow a
conversation structure similar to that of Rittel’s IBIS (Rittel 1972). At the same time it is shown
that conversations among the participants seamlessly switch from knowledge creation to clarifica-
tion, explanation, and other types of conversation. In addition, all this conversing is mixed with
non-verbal communication such as gestures and body language (Tang1991).

Regarding the property of product as a boundary object, there exist again a large amount of
social interaction with the sole aim of clarifying misunderstandings and creating a shared under-
standing of the product. It is difficult to predict the different ways in which a product object is
perceived or used.Curtis et al.(1988) argue that the assumption that product objects produced by
one group convey all the information needed by the next group using them creates strong barriers
to communication and knowledge sharing within organizations:

“The communication needs of teams were poorly served by the written documentation
since it could not provide the dialectic necessary to resolve misunderstandings about
requirements or design decisions among project members. Rather, forging a common
understanding of these issues required interaction.” (Curtis et al.1988, pp.1280–81)

In fact, there are no “perfectly understandable” products (Robinson and Bannon1991). Too
much emphasis on the formal product may result in an underscoring of informal communication,
and the crucial role that this informal communication plays in improving the quality of the prod-
uct (Potts and Catledge1996, Kraut and Streeter1995). Inter-personal communication is used
not only when product objects are incomplete or ambiguous, but also as a vehicle for creativity,
criticism, and negotiation.

Using the product as a coordination mechanism emphasizes the importance of flexible coordi-
nation. Instead of imposing strict regulations on the activities of developers, the product provides
clues for predicting future actions (Robinson1993). Coordination through the product emerges as
a result of observing past and present interactions and predicting their consequence. This gives
developers the freedom tonegotiatethe terms of coordination (Tellioǧlu and Wagner1997), i.e. it
promotes “negotiated order” instead of “predefined order.” In this way, each developer can align
his activities to those of others. This negotiation is often done in a “low” level of interaction in
order to allow developers to get along with their day-to-day activities. It therefore requires a high
degree of flexibility in the social interactions among the developers (Button and Sharrock1995).
In the words ofButton and Sharrock:



2.2. COOPERATIVE PRODUCT DEVELOPMENT 23

“Although there were ’formal devices’ that were used to keep themselves informed of
each others’ work and others of their’s such as regular scheduled meetings at which
they would review their progress, they also, as a day-to-day feature of their work de-
velopedad hocmethods for keeping others’ progress in view and for making their own
progress visible to others. These ways included: (i) involving themselves in the reso-
lution of each others’ problems by talking these problems over; (ii) knowing, through
their engineering experience, just where what they might now do would impact upon
someone else and informing that person about what they were doing; and (iii) work-
ing out between themselves ’standardised’ ways of doing common tasks that would
figure in each module and which otherwise could have been done in many different
ways” (1996, p.379).

Using the product as a resource for cooperation requires support for flexible and dynamic
interaction with the product. Physical space allows for this dynamicity and flexibility by providing
low-cost means of communication and interaction (Clark and Brennan1991). Verbal and non-
verbal utterances in physical space are easy to produce, and can be used extensively for creating
knowledge, resolving misunderstandings, and negotiating order in presence of uncertainties.

Customized access to product

The last two points emphasize ease of access to product-related information. This “being aware”
of the state of the product will become impractical when the size of the product grows. In many
situations the developers will not have the cognitive ability to keep themselves updated about all
the changes to the product. In addition, this will be useless and time-consuming. Using the product
as a resource for cooperation will therefore require that each developer or group of developers can
customizetheir interaction with the product in order to meet their local needs. This customization
process is often supported by the resources provided by the physical space.

Development of large products consists of a number of parallel or sequential activities, or
tasks. Fixing a bug in the database module, changing the layout of the graphical user interface,
collecting feedback on a new release, etc. are all examples of tasks that have to be accomplished
by groups of developers. Each such task normally creates a focus point, or acenter of interaction,
for the developer(s) responsible for performing the task3. Each center of interaction typically
consists of a number of product objects, tools, and developers. The configuration of these objects,
tools and developers changes continuously. Focusing on a task means that the group involved in
the center of interaction wishes to neglect to some degree the periphery of the task. This focusing
is important in order to reduce the cognitive load on the participants of the center while they are
solving specific problems.

A center of interaction is thus used for defining aboundaryfor a task, in order to increase
focus and preserve privacy (e.g. by not exposing intermediary work results to the outside world).
At the same time, the center provides easy access to itsperiphery. This is an important property
because it makes it easy to dynamically reconfigure the objects, the tools, and the people involved
in the center. Such reconfigurations are often necessary because of the vague nature of the task,

3Centers of interaction are in this sense very similar to whatSuchman(1997) callscenters of coordination, andFitz-
patrick, Tolone and Kaplan(1995) call locales. We use the term interaction in order to emphasize the importance of
interacting with a product, whileSuchman’s emphasis is on coordination, andFitzpatrick et al.’s on interactions in a social
world.



24 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT

or because of the changes in the periphery of the task. In the words ofAgostini et al.(1996), the
boundaries of a center of interaction providetransparency(by hiding unnecessary organizational
information) andvisibility (by allowing access to organizational information when needed).

Shared physical space provides themediumfor a center of interaction. Physical space provides
strong social and architectural resources for creating centers of interaction. From an architectural
point of view offices, commons, “war rooms”, cafeterias, hotel rooms, dedicated project rooms,
etc. are used to give focus to a task (Covi, Olson, Rocco, Miller and Allie1998). However, social
conventions may play an equal role in dividing the space into centers of interaction. An example
is provided byDe Michelis et al.(2000). In their study of a design studio,De Michelis et al.found
that the same room was used for supporting several centers of interaction. In this case, the room
was divided through social conventions and physical artifacts (such as interior walls).

In addition to seamless support for configuring and reconfiguring centers of interaction, phys-
ical space has other properties that improve the cooperation in a center of interaction (Covi et al.
1998): Physical space increaseawarenessof overall work. By sitting close to each other, develop-
ers can see over each other’s shoulder, and in this way be aware of what is going on in the center
of interaction. Common rooms can strengthenimplicit learningby allowing developers learn by
looking at how other more experienced developers work. Common rooms supporteasy transitions
from individual to group work. Being co-present during individual work provides opportunities for
interruption in case of emergency. Common rooms also increase themotivationof the developers.

2.3 Impact of Geographical Distribution: A Case Study

With more and more product development projects distributed in different countries and conti-
nents, it becomes important to investigate the affordances of network-based collaboration tech-
nologies and to uncover the problems that geographically distributed product development teams
are likely to encounter. In this section we investigate the disruptions and break-downs in the nat-
ural (face-to-face) cooperation which may arise when a project is distributed geographically. The
main material for the following analysis is from our own observations of a real world project.
During a two-year period from 1996 to 1998 we were involved in an EU-sponsored project for
developing a large multi-media information system for knowledge sharing among the members
of the European aquaculture community. The project team consisted of approximately 40 de-
velopers (a combination of zoologists, fish farmers, computer scientists, students, and project
managers) who specified and developed a new computer-based product through a collaborative
process mainly supported by mailing lists and the WWW. The project is called ALPHA and is
used as an example to demonstrate common problems in distributed product development projects
when using Internet-based collaboration technologies. The focus of this analysis is to investigate
the role of product as a resource for cooperation in geographically distributed projects. In par-
ticular, we want to see how lack of access to a shared physical space affects knowledge creation,
cooperative learning and coordination processes related to cooperative product development.

There are several reasons why this specific case may be useful. First, the project team and the
product they developed were large enough to require a considerable amount of cooperation at the
project level, while the vague nature of the product necessitated tight collaboration and negotiation
on the small group level. Second, the project team was geographically distributed among four
countries, so cooperation using Internet was the only option for almost all of the developers in
the project. Third, the project team was intellectually distributed, involving many types of experts



2.3. IMPACT OF GEOGRAPHICAL DISTRIBUTION: A CASE STUDY 25

with their own views of the problem domain. Fourth, the control within the project team was
decentralized, with a high degree of local organizational and technical autonomy in each site.

The last point, i.e decentralized control, needs more elaboration. ALPHA is a case of a decen-
tralized organization, with several autonomous units (universities, research centers, companies)
with varying motivations and goals influencing their participation in the project. In addition, the
involvement and the motivation of the people within each unit were highly varied, with some par-
ticipants working full time with ALPHA-related tasks and some working only a small number
of hours every week. This decentralized nature of the project made it extremely difficult for the
management to enforce any standard routines or development tools across the sites. This difficulty
of “controlling” the progress of the project comes in addition to the already difficult and wicked
nature of product development. As also noticed byButton and Sharrock(1996), the progress in
such projects is mainly guided by overall heuristics known to the developers, such as the existence
of deadlines, the pressure from the management to produce results, the balance between good
practice and “quick-and-dirty” fixes, etc. rather than detailed scripting of what should happen or
what each developer should do. It is argued that this type of cooperation, i.e. cooperation among
highly autonomous agents with varying motivations and goals, will be more and more common in
the virtual organizations of the future (Faucheux1997).

The rest of Section2.3 is organized as follows. We will first describe the settings for the
project. In Section2.3.2we describe some general observations from ALPHA. Section2.3.3pro-
vides a discussion of the observations.

2.3.1 Settings for the study

We have studied a research and development project involving partners in different European
countries. The project consisted of both academic and non-academic partners. The project’s over-
all aim was to create a pan-European network of competencies in the aquaculture domain4. The
goal of the project was to develop an Internet-based multimedia information system for storing
and accessing specialized and high quality information, to provide a communication forum for
the aquaculture community, links to the international arena, as well as access to on-line courses
and learning opportunities from any multimedia desktop. The official communication and doc-
umentation language was English. All but one of the developers in the project were non-native
English speakers. The project was organized in a participatory manner. Several development
and user groups worked closely together in order to outline requirements and test intermediate
prototypes during the development. The organization of the project was in a traditional waterfall
fashion, consisting of phases for planning, user needs analysis, requirements specification, design,
implementation, and evaluation.

Project participants

The project team consisted of approximately 40 members, equally distributed among 4 geograph-
ical sites in 3 European countries. Four functional teams were officially recognized within the
project, including members with both technical and non-technical background:

4Aquaculture is “The science, art, and business of cultivating marine or freshwater food fish or shellfish, such as
oysters, clams, salmon, and trout, under controlled conditions.” (American Heritage Dictionary).



26 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT

• Scientific staff team: Constituted of ca. 15 members. This team was in charge of defining
the requirements for the target information system. The members came mainly from the
aquaculture community.

• Technical support team: Constituted of ca. 16 members, all computer scientist or software
engineers. These were computer science researchers, last year MSc. students, and adminis-
trative personnel. They worked both as developers of the target information system, and as
support staff for the cooperation infrastructure used by the project team.

• Daily management team: Constituted of 8 members. This group was mainly responsible for
the daily activities of the project, such as meeting release dates and supervising development
work.

• Project management board: Constituted of 14 members. These were responsible for contact
with sponsors, for overall management of the project, and for making sure that the deadlines
were met. They also played an essential role in finding new users and future customers for
the information system being developed.

All the teams contained members from different geographic sites. This means that everybody
involved in the project had to face the problem of geographical distribution. First site was the main
management site, which initiated the project and was the contact site for the sponsors. Second site
was the main development site, located in the computer department where the author resides.
Third site was the main scientific site, one of the major European universities in the area of aqua-
culture. The fourth site was involved in the requirements definition and the overall evaluation of
the project. Both first and third sites had available technical staff dedicated to the project, while
the second site had members from the aquaculture community and members in the management
site. There was a high amount of turnover among the members, especially in the technical support
team. This was partly due to the involvement of students in the programming activities.

The project team was distributed not only geographically, but also with respect to skills and
roles of the members. Most of the members from the aquaculture community had very low knowl-
edge of computers. They could use e-mail and WWW, while some of them had for instance dif-
ficulties setting up their e-mail accounts, using e-mail lists, editing Web pages, and setting up
a desktop video conference session. Moreover, the technical infrastructure at their disposal was
minimal. At the other end, members with a good background in computer science had a low-level
competency in aquaculture.

Cooperation infrastructure

The project management board had regular face-to-face meetings every second month. Technical
and scientific groups had face-to-face meetings and workshops in connection with each phase of
the project. These meetings involved only a few of the developers. All other communication
was done using Internet-based communication tools. There were no advanced groupware tools
used during the project. Mailing lists and WWW were the only widely available technology. The
prototype that was developed and used during the project (the “end-product” of the project) was
also WWW-based. Occasionally video conference tools were used, but mainly for demonstration
purposes.



2.3. IMPACT OF GEOGRAPHICAL DISTRIBUTION: A CASE STUDY 27

Electronic mail and mailing lists– As is the case in many distributed groups, mailing lists
quickly became the standard communication medium. In order to reduce the effort of using email
a list server was set up in an early stage, and several mailing lists were established. These lists
were created by the management in an ad hoc manner according to the needs of each phase. At
the end of the project there were 13 active lists being used by the members for different purposes.
The mailing lists were intended to be used as discussion fora for developers, managers, and user
representatives. Table2.3shows some of the lists that are relevant for the study.

Table 2.3: Some of the mailing lists used by ALPHA.

Mailing list
name

Users No.of
mem-
bers

No.of
msgs.

Total
msgs.
per
mem-
ber

No.of
thre-
ads

No.of
active
months

All all project members 41 61 1.5 48 19
Technical discussions about tech-

nology to be used, re-
lated and similar sys-
tems, products etc.

17 35 2.1 24 9

Scientific user representatives and
people with knowledge
about aquaculture

15 1 0.01 1 N/A

Daily man-
agement

people engaged in the
daily administration of
the project

15 428 28.5 209 34

Project
manage-
ment board

project managers in-
volved in the overall
management of the
project

6 5 0.8 4 5

External ac-
tors

people not involved in
the project directly, but
who were interested in
being informed about
the project and its re-
sults

N/A 24 N/A 11 2

Video con-
ferencing

the members of an inter-
est group in the area of
video-conferencing

20 87 4.4 55 14

WP5: Spec-
ification
phase

people involved in work
package 5

5 5 1 5 1

WP6: De-
sign phase

people involved in work
package 6

10 133 13.3 73 5

Continued on next page



28 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT

Continued from previous page
Mailing list
name

Users No.of
mem-
bers

No.of
msgs.

Total
msgs.
per
mem-
ber

No.of
thre-
ads

No.of
active
months

WP678: De-
sign/ testing/
evaluation
phases

people involved in work
packages 6, 7, 8

24 505 21.0 218 12

User inter-
face

user interface design
team

12 202 16.8 90 9

Development people at the main tech-
nical development site,
and programmers from
other sites

11 296 26.9 109 8

The World Wide Web– Throughout the project the developers used WWW for sharing project
information, which was organized in product objects. Moreover, the Web was the platform used
for developing prototypes of the product. The main Web server was maintained by one site (man-
agement site), but each of the other sites had their own servers with additional information and
local installations of the various prototypes. The mailing lists were also integrated with the main
Web server in that all the messages were made available on the server. It was, however, not pos-
sible to send email using the Web interface. Table2.4shows some of the product objects used by
different people within the project.

Table 2.4: Some of the product objects created and used in ALPHA.

Product
object
type

Product object contents Intended
users

Frequency
of use

Duration
of use

Project
Web site

practical information about the project,
contact information, entry point to the
online project archive and developed
prototypes

all project
members, plus
external visi-
tors wanting
to learn about
the project

high all
project
lifetime

ICE Web-based prototype developed during
the project. Tested and commented on
by the developers. Also used a period
as a cooperation tool among the devel-
opers

all project
members

high last 20
months

Continued on next page



2.3. IMPACT OF GEOGRAPHICAL DISTRIBUTION: A CASE STUDY 29

Continued from previous page

Product
object
type

Product object contents Intended
users

Frequency
of use

Duration
of use

Scientific
contents

scientific content files uploaded to the
online knowledge base (ICE). Used as
test data to test ICE

aquaculture
scientists

medium mostly in
the later
phases
of the
project

Mailing
list
archives

online Web-based list archives contain-
ing messages sent to the mailing lists

all project
members

N/A all
project
lifetime

Project
docu-
ments

natural language documents and notes.
Used to documenting requirements,
progress, achievements, etc.

project mem-
bers and exter-
nal reviewers

medium varying

User
interface
mock-
ups

mainly Shockwave-based demonstra-
tions of user interface design. Used
for evaluating the designs before im-
plementation

all project
members

high mostly in
the later
phases
of the
project

Visual
dia-
grams

used for documenting the design and
architecture of the prototypes. Mainly
used by technical staff and as illustra-
tions in project documents

technical staff low all
project
lifetime

Source
code

Java, Perl, and C source code files.
Mainly used locally by one site, but
sometimes customized by other sites.

technical staff high mostly in
the later
phases
of the
project

Bug
report
form

A Web-based form with specific fields
used for registering bugs and issues
related to the prototypes. The users
would fill in the form and push a send
button

all project
members

low short

The product

ALPHA was set out to develop a new product based on a set of high-level requirements. The
product consisted of a large informal part during all project lifetime. During the first 8-10 months
the product consisted mainly of various documents, meeting minutes, natural language specifica-
tions of requirements, etc. Short time after the main design document was produced (September
1996, written in natural language) the project team organized itself according to the architecture
of the designed system. Also in the period with a high level of technical development, a large part
of the product remained informal and consisted of natural language documents, notes, sketches,
drawings, etc. ALPHA produced various prototypes of a specific end-product called ICE (see bel-



30 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT

low). ICE was programmed in Perl, C and Java programming languages. Source code belonging
to these prototypes, and the executable prototypes themselves were the only formal part of the
product being developed.

An overview of the the end-product of the project is shown in Figure2.5. All parts of this end-
product were developed in form of executable prototypes. An integration into one system however
did not happen during the project. The connecting link was a dynamic information exchange
engine called ICE (Internet Collaboration Environment, see also AppendixA). ICE was used
for sharing different knowledge objects (Olsrød and Isaksen1996). It allowed the aquaculture
community to share their knowledge by uploading different types of content such as research
results, courses, diagnoses of diseases, trends in fish prices, etc.Content providerswere from
academia, aquaculture organizations, and individual fish farmers. They were given access to a
“back-office” interface that would allow them to upload different types ofknowledge objectsinto
their shared workspaces. Some of these objects were single files (such as images illustrating
the symptoms of different diseases), while others were composite objects (such as aquaculture-
related courses with modules and course material). Once these objects were uploaded by the
content providers, they were available tocontent consumersthrough a “front-page.” The front
page consisted of a number of services such as search, browsing, and collaboration tools. The
whole system was available through a WWW interface.

Although the project worked most of the time in a highly integrated manner, different sites
were made responsible for different parts of the end-product. Our local site was responsible for
ICE, its basic interfaces to content providers and consumers, and some of the front-page tools.
A second site was responsible for developing the interface towards fish farmers. This interface
would allow them to upload and exchange information about their daily catch, fish prices, and
other market information. A third site was responsible for developing a telecommunication infras-
tructure including video conference through Internet and ATM networks. There was also a group
of user interface designers who worked with the Web-based interface towards content consumers.

The method of the study

The case study presented here reports on a period of approximately two years, from April 1996
to January 1998. This period coincides with the development and testing of different versions of
ICE by the project team. The study is based on data collected during the project and analyzed
afterward. This data includes project deliverables, meeting notes, email messages sent to the
various mailing lists, and other product objects developed by the project team. Moreover, the
author participated in the project as a senior technical staff person from August 1996 to the end of
the project, with heavy involvement in the development of various prototypes in cooperation with
other project members. This involvement provides a deep insight into the technical aspects of the
project, and hopefully compensates the possibly negative effect of the lack of interviews with the
developers.

The analysis of the data has been based on the framework used in Section2.2. The analysis
is concerned with the project team together with the product they developed. We have mainly
focused on cooperation problems caused by geographical distribution and the support technol-
ogy used by ALPHA. Many contextual factors such as reward systems of the local organizations,
motivations and goals of the involved people, pressures on the project from the sponsoring or-
ganization, etc. are not considered because data about these factors have not been available. In
addition, the analyzed communication is limited to the mailing lists and the few meetings and



2.3. IMPACT OF GEOGRAPHICAL DISTRIBUTION: A CASE STUDY 31

  Front-page

  Back-office

ICE

Market
information

Academic
material

Professional
material

Fish farmers Academia Aquaculture
organisations

Search engine

Content browser
Collaboration

E-Commerce

Content providers

Content consumers

Figure 2.5:An overview of the end-product of ALPHA. ICE worked as a link among the different
parts.

workshops held during the project. In particular, the communication among the developers and
their communities of practice (e.g. communication among Java programmers in ALPHA with
other Java programmers) is not accessible to the study. The absence of these factors may reduce
the generality of our study. However, there is a growing body of empirical studies of distributed
team performance that supports many of our findings. We occasionally refer to these studies.

2.3.2 Observations

Four kinds of observations are presented. First, we see how the developers cooperated implicitly
through exchange of product-related information. Second, we will see how the explicit commu-
nication through mailing lists proceeded. Third, we will see how specific tasks involving small
groups of developers were performed. Fourth, we will see how the diversity of skills and the
decentralized control in the project influenced the cooperation across geographical sites.

Sharing product-related information

A critical advantage of ALPHA was recognized by the project management to be its diversity
and multi-disciplinarity. As a result of the varied backgrounds of the involved developers, rang-



32 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT

?

Module
1

?

?

Module
1

Module
2

part of

(A) (B) (C)

Figure 2.6:The creation of product structure in ALPHA.

ing from computer scientists and software engineers to aquaculture scientists, the product itself
worked very much as a unifying link among the developers. Everybody contributed to the product
from his standpoint by bringing his unique knowledge to the project. In addition to this diversity
in the backgrounds, the fact that most of the developers did not know each other well, and that
many worked only a part of their time with ALPHA, further amplified the value of the product as
a vehicle for communication and cooperation.

Figure2.6shows how the structure of the product emerged over time. Initially all the product
was one single artifact (the project plan) with a main goal, that of supporting knowledge creation
in the aquaculture community (Figure2.6.A). We saw a clear mapping between the structure of the
product being developed and the way the project was gradually organized and re-organized (Fig-
ure2.6.B). This structure was not clear in the beginning, but emerged as a result of a number of
face-to-face meetings and workshops, as well as long discussions in the mailing lists. The struc-
ture was also a close mapping of the architecture of the end-product that was gradually being
implemented. Once prototypes of the end-product were developed, they strongly guided the or-
ganization of the project. When the different components of the end-product were defined more
or less clearly, each site was made responsible for developing one or several components (Fig-
ure2.6.C).

Most product objects were informal, natural language documents. This had the advantage of
giving everybody the opportunity to get involved in the development, e.g. by reading the require-
ments document. In addition, having an informal product provide room for creativity, discussions,
and critique. On the other hand, one major disadvantage of not having a formal product from a co-
operation point of view turned out to be the difficulty of accessing product information. E.g. it was
difficult to know which objects belonged to the product, and consequently which objects should
be shared with other sites. The majority of the developers were not trained software engineers,
and it would have been too costly to educate them in structured methods. Moreover, training in
formal or structured methods was not a goal of the project.

One of the major problems facing ALPHA turned out to be the difficulty of exchanging dy-
namic product-related information. The project Web sites were used for sharing different types of
product objects. However there were a number of problems related to the process and the tech-
nology of sharing. The control of these Web sites was highly centralized, i.e. often one person



2.3. IMPACT OF GEOGRAPHICAL DISTRIBUTION: A CASE STUDY 33

was responsible for maintaining each site. The sites were mainly used for representing the project
to the outside world, and not for supporting cooperation internally. They therefore containing
information about the results of the project (e.g. deliverables) and little information about the day-
to-day activities of the developers. In addition, the sites were quite static; once a product object
made it to a Web site, it was difficult to change it.

As a result, information exchange suffered from a constant delay, and the developers normally
knew little about each others’ongoingproduct development efforts. This delay applied both
to informal product objects, and to the different prototypes of the end-product that were being
developed by the different sites. In the following message taken from a mailing list we can clearly
see the long term continuous lack of information about remote parts of the shared product:

“ If I am well informed, [site A] is developing an image archiving system based on
Paradox. Unfortunately I didn’t have the occasion to get a demonstration of this
system so far, so I have no clear view of what is possible and what is not. Can anyone
inform me? Maybe I can get remote access to this database under construction?”

The author of this message has been partly informed about a long term development activity
in a remote site involving a part of the product. He has little information about this development,
let alone the detailed functions or interfaces of the developed part.

The example above demonstrates the kind of problems that arose as a result of not having
access to remote product parts. However, merely making available product parts on the Internet
was not enough as it is shown in this message sent to a mailing list:

“ I took a look at [prototype X] but everything looked confusing to me without doc-
umentation, so I can not (yet?) share [Person A]’s enthousiasm. I want to know
how this system works and what we in [Site A] can do with it. I need more informa-
tion before I can say if the proposed system and time schedule is acceptable for [Site
A] or not. [Person B] or [Person C], please send me detailed instructions now for
evaluation, use, implementation. . . Or is there on-line documentation somewhere?”

As this message shows, even in those occasions when product-related information was acces-
sible to everybody, the information was discontinuous, incomplete and static. Incomplete and dis-
continuous information made it difficult to learn about the remote parts of the product while they
were being developed. Information about the ongoing activities in the remote sites was normally
many days old and often outdated. In addition, product-related information was often withheld
until it was in a “presentable” form. Intermediate results and artifacts were not shared until they
conformed to some level of quality.

Besides the difficulty of knowing and learning about what others were doing, coordination
of work across sites turned out to be a problem for ALPHA. The symptoms of this lack of co-
ordination were duplication of efforts in multiple sites, and problems during the integration of
the prototypes. Duplication of work was extreme in at least one case, when two different sites
developed each their own version of a large component. The existence of these two versions was
not noticed for a long time. When they were finally discovered, the project management decided
to keep them as two alternative forms of the same service, one for supporting older versions of
WWW browsers and one designed for newer browsers. This decision was not based on the stated
requirements of the project, and was mainly taken as a compromise for not choosing one site’s
version above the other. As a result of this and similar problems, the prototypes never passed an



34 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT

integration phase, and the end-product as it was design was never finished. The only integration
was realized in the project Web site, where different Web pages gave access to the different proto-
types. This was clearly against the requirements of the project, where a uniform representation of
contents was a central requirement for making the system user friendly.

Although most product objects were natural language documents, the fact that they were used
by developers with diverse backgrounds required a lot of communication related to explaining
and negotiating shared understandings. This type of communication was time-consuming and
difficult to follow in many cases. An interesting example was a classification scheme that was de-
veloped by the aquaculture scientists for classifying the contents of ICE (the contents were mainly
aquaculture-related material such as information about different species, diseases, professional
journals and other material). This classification scheme had different meanings for the computer
scientists and the aquaculture scientists. The computer scientists were interested in the technical
feasibility of implementing the scheme into the prototype in form of a menu and search function-
ality. The aquaculture scientists were more interested in having a consistent classification from an
aquacultural point of view (apparently without any concern about its technical feasibility!). The
process of arriving at a solution required a surprisingly large number of email messages, and the
discussion continued for a number of months.

Breakdowns in learning and coordination did not exist internally within each local site, where
the members were normally in the same building. In fact, two of the prototypes that were devel-
oped successfully and used also after the project was over were each defined and developed almost
completely by one single site. Each of these two sites had access to designers, programmers, and
end-users under the same roof or at least within the same city. Although easy access to product
objects and other developers was of crucial importance, we believe that the reason why these local
sites functioned so well is also related to thekind of product objects they used, and theprocess
through which these objects were used in co-located cooperation.

First, product objects in a variety of physical and digital forms were used to support co-located
groups. A quick look at the desktop of a programmer in our local site would reveal a vast range
of physical objects that were used as product objects, and served as strong facilitators of coop-
eration. Moreover, our group meetings made use of specialized artifacts, e.g. blackboards, for
collaboration. Across the geographically distributed sites there was a strongly reduced range of
product objects available to the developers. In addition, these product objects were quite limited
in their support for collaboration and unanticipated use (Robinson1993) because they were not
explicitly designed for supporting cooperation among developers. They were merely information
containers.

Second, in co-located groups product objects made their way into the product in a gradual
and evolutionary manner. We are all familiar with diagrams that are drawn on a napkin during a
lunch break, to become an important part of the product later. Across the sites, product objects
become part of the product only when they were in an acceptable (meaning almost final) form. A
“virtual napkin” did not exist in ALPHA, even though physical napkins were used very often by
at least our local site. Waiting for an almost final version of a product object meant at the same
time an inevitable absence of awareness of the existence of such an object in the meanwhile. In
the message quoted above, prototype X is an example of such a product object that is just put on
the Internet (in an operational form). The prototype has been under development for some time,
but details of the evolving artifact has not been available before the final release5.

5What is not shown in this message is that while prototype X was being developed the author of the message was



2.3. IMPACT OF GEOGRAPHICAL DISTRIBUTION: A CASE STUDY 35

Communication about the product

One would expect that the lack of access to dynamic information about the product would be com-
pensated by explicit communication. In ALPHA, the main means of explicit communication were
the different mailing lists. The frequency of use of each mailing list depended on the purpose of
the list and on the number of its members, but in average approximately 40 message from each
developer were sent to the lists during a period of 34 months. This means that each developer com-
municated approximately one message every month. Even if we assume that each developer also
sent the same number of ALPHA-related messages personally to other developers6, the amount of
explicit communication was still much lower than in co-located settings. This issue was fully rec-
ognized by the management, and face-to-face workshops were utilized in critical periods during
the project in order to cope with the lack of communication.

In addition to the low bandwidth, there were a number of problems connected to using email
in the long run (we believe these problems apply also to audio and video communication). First,
although email was used extensively for resolving technical issues, explaining things to others, and
informing about specific events, email was not used as a regular information channel for informing
about ongoing local activities. Email communication provided in this way a discontinuous picture
of the development process in the long run. Second, email lists did not manage to create the proper
context for the different tasks that existed at any time during the project. It was difficult in many
cases to keep an overview of what issues were discussed.

However, there were a number of situations where email communication turned out to be
invaluable:

• Providing feedback: Mailing lists played an essential role in collecting feedback on different
proposals and prototypes, allowing for the incorporation of different perspectives.

• Access to experts: Mailing lists provided easy access to different kinds of tacit knowledge.
This would have been extremely difficult without mailing lists due to the geographical dis-
tribution of the participants.

• Resolving design issues: Mailing lists were extensively used for sharing issues and prob-
lems, discussing and solving them, and making decisions among alternative designs. How-
ever, this worked as long as the number of the ongoing issues was low (see next section on
support for tasks).

• Accessing the product: A large number of email messages sent to the lists contained links
to product objects, or contained the objects as attachments. Including WWW links was the
main method of informing about new releases of prototypes.

One major communication topic in the mailing lists turned out to be user interface mock-ups
and prototypes that were developed and made available on the WWW. These mock-ups and proto-
types had two important properties: they wereintermediateandinteractive. This means that they
could be tested and criticized by all the developers, as opposed to other product objects that could
only be accessed and “downloaded” (e.g. project deliverables and meeting minutes). The user

developing a duplicate prototype.
6The author, being active participant during the last 24 months of the project, received approximately 400 personal

email messages related to ALPHA.



36 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT

interface mock-ups were in form of Shockwave7 demonstrations that could be run from a WWW
browser. Also the prototypes were web-based and easily accessible by all the participants. Com-
munication in the mailing lists increased dramatically whenever new versions of these product
objects were released. This might indicate that artifacts, in particular intermediate and interactive
product objects, should be used more frequently as accelerators of communication in distributed
settings.

Cooperation in performance of specific tasks

Despite the low level of explicit communication as discussed above, it was often noticed that
developers believed they received far too many ALPHA-related email messages than they needed.
This was in particular the case when resolving detailed design issues. These issues were often
raised in the proper mailing list. Arguments and opinions were sent as replies, with a possible
resolution of the issue following the discussion. The process of resolving issues related to the
product constituted the main type of cooperative tasks that the developers were involved in. The
problem with performing these tasks was the difficulty of creating a center of interaction for each
task. The lack of these centers of interaction resulted in everybody being involved in all the
ongoing tasks, with the resulting information overload.

Information overload was most visible in the way the mailing lists were used. Each issue that
was raised in a mailing list normally gave rise to related sub-issues, and the developers discussed
these sub-issues while still under the heading of the more general initial issue, which normally
was not anymore the proper heading for the sub-issues. A typical example of this kind occurred
when a member of the technical staff posted a message to one of the mixed mailing lists, sketching
a solution for the database sub-system. This message gave rise to several discussion threads about
access control, concurrency control, version control, etc. Some of these discussions continued for
weeks under the heading of the initial message, e.g. “database functionality.”

This became more complicated when the number of threads increased to over 2-3. When hav-
ing too many concurrent issues, most of the issues were never handled or resolved, simply because
they were posted to the “wrong thread” in the mailing list. In addition, retrieving information about
a specific issue was laborious because of the lack of distinction between the discussion threads.

Due to the seriousness of this problem, one of the members of the technical staff made a simple
application for “submitting” issues. This application was very similar to a bug report system. A
Web-based form containing a number of fields was used for submitting issues. Information about
an issue, e.g. explanation, related product objects, etc., could be filled in and submitted to an issue
database. All the submitted issues were available from another Web page, along with information
about each. This application was an attempt to support the creation of centers of interaction.
Despite the need for such a solution, the application was never used.

Another way of creating centers of interaction, which was much more successful than the issue
submission system, turned out to be through shared workspaces in ICE. ICE was initially devel-
oped as a part of the end-product. ICE allowed developers to create shared workspaces and insert
different objects (e.g. documents and images) in these workspaces. All this was done through
an intuitive form-based Web interface. ICE did not integrate any form of explicit communication
inside a workspace, so explicit communication had to be supported through mailing lists. ICE was
used mainly for uploading different content files, and for making this content available on a sepa-

7Shockwave is a program for viewing computer animations.



2.3. IMPACT OF GEOGRAPHICAL DISTRIBUTION: A CASE STUDY 37

rate Web page through a menu. After ICE was tested by all the developers, the developers started
to use it also for sharing product objects. A number of developers created shared workspaces
for different tasks that they were working on, and used these workspaces for exchanging updated
product objects with other developers.

We believe this way of creating centers of interaction was more successful because ICE pro-
vided more freedom of action. As opposed to the issue submission application, ICE allowed
the developers to create empty workspaces, add or remove objects as they wanted, and leave
notes (text files) to each other. However, ICE had a number of limitations. For instance, it did
not actively inform the developers about the changes to a workspace, so developers often forgot to
check for new versions of product objects. In addition, ICE did not support dependencies among
tasks or product objects.

Decentralized control and diversity of skills

The technological infrastructure at the different sites were often different and sometimes incom-
patible with each other. Despite the fact that the project was involved in the development of an
Internet-based product, episodes of technical incompatibility were present during the project. One
main problem turned out to be the existence of different versions of Linux operating system. The
main technical site and two of other sites decided to use Linux for installing and testing the pro-
totypes. However, they each chose a different version of Linux. These were decisions that were
taken locally and were not challenged by the project management. The result was a consider-
able amount of overhead work connected to maintaining at least two parallel versions for each
prototype.

Demand for simplicity of collaboration technology was high in ALPHA. Due to the highly
variable level of computer- and network-related knowledge, the project as a whole was highly
sensitive to the type of technology used for sharing and communication. The following excerpt
from an introductory email message sent by the mail server administrator demonstrates well the
assumptions one could make regarding the participants’ prior knowledge of network tools. The
message shows clearly that even mailing lists were unknown technology for some of the partici-
pants:

“To facilitate the use of e-mail a list server will be set up. What is the ease of using
a list server? Within e-mail software address books can be created, containing the
e-mail addresses of groups, to which e-mail is sent frequently. The disadvantage of
local address books is that they might differ from books used at other sites. A list
server is an ’address book tool’ at network level. It contains one ore more lists with
e-mail addresses. If people want to mail to the members of one of the lists, they can
simply mail to the name of that list. . .”

And a message sent by the same person one month later:

“Dear all,
With great pleasure I see that the lists of our server are used frequently! A listserver
is a tool to ease communication, and as far as I can overlook it does. However I have
a small remark. If you use the reply or answer function of your E-mail software, after
having received a message, not only the sender will receive your answer but all the
members on the used list. This might not be your intention. So if you want to answer
the sender personally, compose a new message!”



38 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT

Complicated technology for communicating ideas and results was not always successful. An
example occurred when the user interface design team started using animations for visualizing
their screen shots. These animations required the installation of new “helper” software on de-
velopers’ computers. Since some of the developers did not have access to necessary technical
assistance for installing these helper programs, they could not view the screen shots that were
important for the development of the prototypes. This resulted in a breakdown in the feedback
cycle, and increased dissatisfaction among developers with low technical knowledge.

2.3.3 Discussion

In Section2.2 we saw how product played an important role in supporting cooperation in co-
located groups. We also saw which aspects of physical space were important for allowing this to
happen. Physical space makes it easy to have continuous, flexible and customizable access to the
product, which allows the developers to externalize their product knowledge, to use the product as
boundary object, and to coordinate their day-to-day activities with the help of the product.

Our observations show that in ALPHA the product played an even more important role in
supporting cooperation. The product was central in ALPHA because of many reasons. First, the
developers belonged to different communities of practice, and the product was mainly the only
thing connecting these communities. Second, many of the developers worked only part time in
ALPHA, and in many cases the only information they were interested in regarding ALPHA was
the status of the product (i.e. the result of the project). Third, there were no central routines
or common norms or development cultures uniting the different sites. In addition, geographical
distribution reduced the social relations among the developers compared to what we normally see
in co-located groups. We believe these conditions are not specific to ALPHA and can be observed
in many cross-organizational distributed development projects. Access to a shared product, i.e.
a shared context, becomes crucial in such settings also because the process of developing new
products is highly uncertain and emergent, and one cannot predefine the details of the activities of
the developers in advance.

Despite its importance, it turned out to be difficult to use the product as a resource for coop-
eration. Not unexpectedly, many of the problems can be related to the lack of a shared physical
space among the developers. Not being embodied in a physical shared space the developers could
not have continuous access to the product, they could not interact with the product in a flexible
way, and they could not customize their interaction with the product in an effective manner.

Lack of continuous access to the product

The project suffered from along term lack of visibility of work. Developers did not know what
was happening in the remote sites. They did not have continuous access to the remote sites of
the product, and they could not use explicit communication to keep informed about the product
in the long run. This resulted in break-downs in knowledge creation, cooperative learning, and
coordination.

The informal nature of the product, and the lack of proper technological support resulted in
many product objects not being shared across the sites. The wide range of product objects that
were shared and used for cooperation in the individual sites were never made available online, or
in the best case were shared only when they were in a final form. The additional division of the
product into parts made it further difficult to know about the remote parts of the product.



2.3. IMPACT OF GEOGRAPHICAL DISTRIBUTION: A CASE STUDY 39

Explicit communication in ALPHA was directly related to and shaped by the product. The
product created the context for communication. The possibility of access to the product strongly
affected the amount of explicit communication, and vice versa. People did not communicate about
what they did not know about. Explicit communication through mailing lists alone was not suited
for sustaining a long term awareness of the whole product. A developer who changed a product
object or created a new product object didn’t know who was interested in knowing about the
changes. In addition, explicitly providing information about such changes was overhead work
with no direct benefit for the informant.

Co-located groups do not suffer from these problems of invisibility of work because they are
all the time embodied in a physical space. Also in ALPHA physically co-located teams cooper-
ated much better than distributed ones, even if these co-located teams contained members from
different communities of practice and different institutions. The lack of a physical space, and its
consequences for the visibility of work, suggests thatexplicit effortsin form of technical or other
solutions are needed for setting up avirtual shared spacethat can simulate some of the properties
of physical space. In particular, support for consequential and opportunistic communication are
crucial. Such a virtual shared space should not only give continuous access to the shared product.
It shouldactivelyinform the right developers about accesses to the product, and in this way create
opportunitiesfor communication and cooperation. The existence of such a virtual shared space
can help the developers to utilize the product as a resource for cooperation, and not just as de-
contextualized information. This support can be provided by employing more active information
delivery mechanisms, in particular for delivery of product-related information.

Difficulty of flexible interaction with the product

The second group of problems arose as a result of the difficulty of interacting with the product.
Product objects that were made available through the project Web server were not used in coop-
eration because they were not easily modifiable. Also, the range of shared product objects was
very limited compared to what developers in co-located groups shared and used as resources for
cooperation. Product objects were very often held back until they were in an almost final form.
As a result, the developers cooperating across geographical sites had access to only a limited
range of product objects (e.g. natural language documents) and they were often not in the position
of changing or annotating these objects. The interaction between the formal and informal was
hampered considerable with respect to what is normal in physically co-located groups.

There were a number of occasions where product objects were used actively as resources for
cooperation. One case was the use of prototypes and user-interface mock-ups. These were not
modifiable by all the developers, but could be tested and commented on. They wereintermediate
product objects. Another case was the use of ICE and its shared workspaces for cooperation.
ICE provided a tailorable interface through its shared workspaces. The workspaces in ICE were
modifiableby the developers. The developers could create any number of nested workspaces, and
add any form of objects (although from a predefined set of object types) into these workspaces.
These observations suggest that the traditional “centralized control” model supported by WWW
is not suited for supporting flexible sharing of information. Physical space supports a much higher
level of flexibility in use of artifacts. Any artifact that is considered useful can be inserted into
the shared space. In addition, the transfer of artifacts from outside the product into the product is
seamless and can happen gradually. Computer support for sharing arbitrary objects is necessary. In
addition, the transition from informal to formal and from non-product artifacts to product objects



40 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT

should be supported in a seamless way.

Difficulty of customized interaction with the product

We observed problems in resolving misunderstandings and creating a common and agreed-upon
picture of the product. There was a need to use the product as a boundary object because explicit
communication through mailing lists was not enough for creating the needed common understand-
ing. The product’s role as a mediator of meaning across communities of practice was increased,
but the product was not able to live up to the expectations. Ideally the product should have sup-
ported a shared view across the communities, and at the same time incorporated different types
of details for each of the communities. Mixed mailing lists were used occasionally for explaining
things from different perspectives, but this was limited and time-consuming. In addition, the rapid
pace of changes in the product made it even more difficult to maintain a shared understanding.
The lack of effective communication channels in ALPHA increased the value of the product as a
boundary object. This suggests that the product and its representation to the different communities
of practice should be enhanced to support both a shared view, and a number of specialized and
locally customized views.

Moreover, even if only a limited part of the product was shared, and even if the amount of ex-
plicit communication was low, the developers had problems dealing with this shared information.
This is because the available technology did not support them in creatingboundariesfor the tasks
they were involved in. Sharing has to be balanced in order to allow both the project as a whole
and the individual developers to proceed with their development activities. A shared space where
all the interactions happen has to be balanced with a number of centers of interaction where the
specific interactions can happen uninterrupted. Simply increasing the amount of sharing, by for
instance putting everything in a shared repository, would have resulted in confusion and increased
information overload.

These observations suggests that the support system should provide acustomizable interface
to the shared product. This interface would allow the developers to create arbitrary centers of in-
teraction for limiting their interaction with the product. The interface should allow the developers
to customize or annotate their views of the product in order to support local understandings of
the product, and at the same time be able to share the product and its meaning across different
communities of practice.

Advantages of using WWW and mailing lists

Despite the problems that occurred during the project, mailing lists and WWW showed some
strong aspects that we believe should be noticed and followed by developers of more specialized
support technologies. This combination of technologies showed to be highly open and accessible.
Virtually all the developers were able to use the mailing lists and the product objects that were
made accessible through WWW. This is a privilege that many kinds of advanced support tech-
nologies have not enjoyed, i.e. being accessible from every desktop through a couple of clicks. In
addition, mailing lists and WWW are highly flexible. By flexible we mean they do not impose any
explicit or implicit cooperation policy on the developers. Email can be used for different kinds of
tasks such as brainstorm, planning, coordinating, discussing, etc. The users decide the usage. In
the same way, WWW and related technologies can be used to structure an information space in
many different ways. This flexibility can be an advantage when the tasks are uncertain and require



2.4. REQUIREMENTS FOR SUPPORT ENVIRONMENTS 41

flexibility, such as upstream product development activities. On the other hand flexibility requires
efforts from the part of the users in order to structure and articulate their work.

Distributed projects often cross the boundaries of various organizations, or involve virtual
organizations. In these cases it is difficult to centrally decide upon global processes, standards,
and tools. Moreover, it often becomes unrealistic to look for advanced and technically demanding
collaboration infrastructure. The participation of people from different organizations (or outside
any organization) implies that it is highly probable that different local development tools are used.
Though advanced technical solutions could be found locally, in many distributed settings what is
needed and usable is acollaboration infrastructurethat brings people together and coexists with
existing heterogeneous tools.

2.4 Requirements for Support Environments

The analyses in the previous sections will be used in this section to derive a set of requirements for
product development environments. These requirements are in particular important for supporting
geographically distributed projects, but are also useful in co-located projects. The requirements
are tailored in a way that they can also be used as basis for extending conventional CASE tools
with cooperation functionality. An overview of these requirements is shown in Table2.5.

In general, product development environments should support sharing of relevant information
about the product (REQ.1 in Table2.5). Note that this sharing might be different from sharing
through a central repository. Here, the focus is on sharing information that is of importance for
day-to-daycooperationamong the developers. This includes details about the product that are
understood and used by a group of developers, but also information about the activities of the de-
velopers involving the shared product. A product development environment should enable sharing
of information that is important for using the product as a resource for cooperation, i.e. as an en-
abler of knowledge creation, cooperative learning and common understanding, and coordination.
It is also important that this sharing is continuous, which might mean that the support should be
integrated with the tools that the developers use in their daily work.

Another basic requirement for product development environments is support forflexible access
to the product(REQ.2). Flexible access requires that the developers, regardless of their geograph-
ical location, can easily update the product, and that they can access different types of information
about the product in an ad hoc manner based on their emerging information needs.

From a knowledge externalization perspective a product development environment should al-
low the developers to share any type of product object and relation (REQ.3 and REQ.4). In ad-
dition, product development environments should supportincremental refinementof the product
through transfer of knowledge from developers and their social interaction into the product and
back (REQ.5). This transfer should be gradual and seamless. The shared product space should not
force developers to only share “perfect” product objects and relations, but allow them to gradually
refine intermediate objects and relations.

A product development environment should support the viewing of the same product from
different perspectives. A product should be represented as a boundary object (REQ.6). It should
support customized local views to be used by different communities of practice, and at the same
time provide a view that is shared among all the developers in a development project.

A product development environment should supportactive deliveryof information, without
requiring each developer to explicitly browse or query the environment for information (REQ.7).



42 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT

In situations where developers are physically co-located, they normally get “hinted” about recent
updates to the shared product through opportunistic interaction, e.g. talking in the hallways dur-
ing chance encounters. The lack of these opportunistic interactions in geographically distributed
teams implies that the development environment should take a more active role in “hinting” the
developers about changes. They should provide moreawareness informationto the distributed
developers. What awareness information is necessary is hard to guess for a computer system.
Therefore, the information that is provided actively should be tailorable by each developer or
group of developers (REQ.8).

In order to be able to use sharing as a means for cooperative learning and coordination, infor-
mation about accesses to the shared product should also include information about who did the
changes. This requirement is important for supporting cooperative learning, but becomes crucial
in case of coordinating the day-to-day work. In particular, one needs to have access to the person
in order to repair the immediate breakdowns in cooperation through direct communication with
the person. In general, every piece of information in the shared product space should be traceable
to a specific developer or a group of developers (REQ.9).

A user or a group of users will normally work and cooperate within a center of interaction and
through the resources provided by the center of interaction. A center of interaction may include
people, artifacts, tools for modifying the artifacts, different media for supporting the coopera-
tion among the members, etc. Emergence, external visibility and fluid boundaries are important
properties of a center of interaction. People may enter and leave a center, artifacts may be added
and removed, and different tools and media might be employed. A product development envi-
ronment should provide mechanisms for creating center of interactions that can bring together
developers, objects and tools regardless of geographical locations (REQ.10). These centers of
interaction should be easy to create and modify, in such a way that developers can create and use
them as cooperation emerges (REQ.11). They should provide a focused area for cooperation, and
at the same time not isolate the developers from the activities outside the center, i.e. they should
have fluid and emergent boundaries (REQ.12). In addition, centers of interaction should provide
dynamic interaction mechanisms for the involved people (REQ.13). Cooperation in centers of in-
teraction, because of being focused, often has a higher pace and requires richer interactions among
the members.

An important part of a center of interaction is the parts of the product that are made available
within it. Interaction among the members of the center of interaction are important from a product
development perspective because they will eventually modify these parts. Therefore the creation
and the usage of a center of interaction can be seen as a step in the process of refining the product.
A center of interaction should not only provide mechanisms to allow its members to easily modify
the contents, but also to allow the creation of local annotations and customization of these contents
to the local context (REQ.14).

Our experience from ALPHA shows that one major advantage of using mailing lists and
WWW is that these tools are already integrated into the desktop of many developers. The de-
velopers could get involved in the ongoing cooperation easily because the tools they used to
cooperate (i.e. email clients and Web browsers) were already integrated with their daily activi-
ties. Their involvement in ALPHA did not require much explicit effort, or large cognitive and
technical shifts. Therefore, an important part of our requirements is concerned with increasing
the ease of use and technical openness of development environments. Our experience is that it is
very hard to ask users to abandon their favorite tools in favor of a new tool or environment with



2.4. REQUIREMENTS FOR SUPPORT ENVIRONMENTS 43

similar functionality. We suspect this will be even harder in case of highly specialized tools such
as CASE tools. Multiple interfaces to the system are important in order to allow different groups
of users access the functionality of the product development environment through their familiar
tools (REQ.15).

Tailored functionality (REQ.16) is needed to allow forincremental integration. Any product
development environment will include a host of functionality, in particular if the environment is
designed to support the whole life cycle of a project. For specific (and often critical) types of
cooperation, such as user involvement, one will need only a subset of the functionality provided
by a product development environment. Taking into account that the difficulty of using CASE
and similar tools is often quoted as the most important reason for these tools not being used (Iivari
1996), it is an advantage if the users can use the part of the environment they really need.

The last requirement (REQ.17) is motivated with the fact that a large part of the communi-
cation in a product development project is informal and opportunistic (Kraut and Streeter1995).
This communication is crucial for the quality of the resulting product, in particular in the initial
phases of a project. In geographically distributed groups this form of informal and opportunistic
communication is almost totally absent. Opportunities for communication can be related to the
product, or to completely unrelated issues. The important thing is that developers should be able to
initiate contact in an easy and low-cost way. Opportunistic communication is promoted by contin-
uous awareness of what others are doing, i.e.participant awareness. Examples of computer-based
systems are media spaces (Mackay1999)

Table 2.5: Requirements for product development environments.

Req. ID Requirement description
REQ.1 Shared product space: A product development environment should provide a

shared space for embodying the product and the interactions of the developers
with the product.

REQ.2 Flexible access to the product: A product development environment should
provide flexible mechanisms for accessing and updating the product.

REQ.3 Unrestricted product object types: A product development environment
should allow the developers to share any type of object that they might find
useful for supporting their cooperation.

REQ.4 Unrestricted relation types: A product development environment should al-
low the developers to create any type of relation between any two product
objects.

REQ.5 Incremental product refinement: A product development environment
should provide the developers with flexible mechanisms for incrementlly refin-
ing the product. The developers should be allowed to start with vague products,
and to refine them into more complete and formal ones.

REQ.6 Support for boundary objects: A product development environment should
allow the developers to view the product from different perspectives. The en-
vironment should in addition support a global view of the product.

Continued on next page



44 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT

Continued from previous page
Req. ID Requirement description
REQ.7 Active delivery of information : A product development environment should

take an active part in delivering necessary information to the developers. In
particular information about changes to the shared product should be delivered
continuously to the interested developers.

REQ.8 User-defined information delivery: Active accessibility should be primarily
based on user-defined criteria about the relevance of the information.

REQ.9 Representation of developers: A product development environment should
support a representation of the developers and their activities. This represen-
tation should be used to support opportunistic communication among devel-
opers, and to connect product-related information to individual or groups of
developers.

REQ.10 Centers of interaction: The product development environment should sup-
port focused cooperation among the members of a group working on a com-
mon task. Cooperation on specific tasks should be supported among develop-
ers regardless of their geographical location.

REQ.11 Emergent creation of centers of interaction: The product development en-
vironment should provide easy mechanisms for creating centers of interaction
as they emerge.

REQ.12 Emergent boundaries for centers of interaction: The product development
environment should allow dynamic reconfiguration of centers of interaction
with respect to their members, their contents, and their supported interaction
mechanisms.

REQ.13 Dynamic and rich interaction in centers of interaction: The product devel-
opment environment should support the members of center of interaction with
mechanisms for flexible, rich and dynamic interaction.

REQ.14 Local customization of contents: The contents of a center of interaction
should be customizable based on the preferences of the members.

REQ.15 Multiple user interfaces: The functionality of the product development en-
vironment should be available through different, unanticipated user interfaces
and interaction devices.

REQ.16 Tailored functionality : The developers should not be forced to use all the
functionality of the environment. The users should be able to decide what
parts of the provided funtionality they want to use.

REQ.17 Support for oppotunistic communication: The product development envi-
ronment should support its users in getting involved in chance encounters and
opportunistic communication.

2.5 Summary

In this chapter we have investigated the role of product as aresource for cooperation. We have
seen that the product has a number of implicit properties that are used by co-located developers in
order to support their day-to-day cooperative activities. Products are used intensively for recording



2.5. SUMMARY 45

accumulated product knowledge, creating common understanding, and coordinating the activities
of the developers. These properties of products are often implicitly and transparently supported by
the shared physical space that embodies the developers and the product. Physical space provides
an efficient medium for both intentional communication, and opportunistic consequential commu-
nication. It provides seamless access to up-to-date information about what others are doing with
the product. The space also allows developers to easily create centers of interaction where they
can customize their interaction with a large product. We have seen, through a case study of AL-
PHA, that geographically distributed projects suffer from the fact that the product can no longer be
used as a resource for cooperation. Difficulty of access to the product, and to the activities of the
developers related to the product, causes breakdowns in knowledge externalization, cooperative
learning, and coordination. In addition, it becomes difficult to customize the interaction with a
large product and information overload occurs easily.

The requirements for computer systems that we have derived from our analysis are crucial
for using the product as a resource for cooperation, in particular in a geographically distributed
project. In the next chapter we will investigate a number of existing tools and environments that are
either explicitly designed for product development, or have a potential for supporting cooperative
product development.



46 CHAPTER 2. COOPERATIVE PRODUCT DEVELOPMENT



Chapter 3

Cooperation Support in Product
Development: State of the Art

3.1 Introduction

The aim of this chapter is to provide a state of the art survey of tools and environments for sup-
porting cooperative product development. Although CASE is a mature technology and has existed
since the middle of 70’s, we will see that cooperation support is often quite limited in existing
CASE tools. Advancements in cooperation technologies, in particular those originating from the
CSCW research field, have not influenced CASE research and development to a degree that one
would expect. This is unfortunate because more and more product development projects are being
conducted by geographically distributed groups. If CASE tools cannot support the cooperation
among these groups, the use of CASE will be marginalized.

A short overview of CASE research issues is presented in Section3.2. This is the main strand
of research that is concerned with supporting the upstream activities of software product devel-
opment in large groups. The goal of this overview is to show how CASE deals with the problem
of supporting a large number of people interacting with a complex artifact. We will examine the
strong and the weak aspects of CASE from a cooperation support perspective. Section3.3 gives
an overview of cooperation technologies for supporting groups of people in their cooperative ac-
tivities. This type of technology is also calledgroupware, and originates mainly from the CSCW
research field. In Section3.4we discuss some existing systems, originating both from CASE and
CSCW research. We present one configuration management system (ClearCase), two CASE tools
(MetaEdit+ and TDE), and four shared workspace applications with support for shared interaction
with artifacts (BSCW, CBE, TeamWave and Orbit). We evaluate each system according to the
requirements of Chapter2, and present the evaluation results in Section3.4.4.



48 CHAPTER 3. STATE OF THE ART

3.2 Computer Aided Software Engineering: An Overview

Systems for supporting the process of software development are as old as computers. The first
such systems were assemblers, compilers and linkers. These early examples were mainly tools
used to give instructions to computers. High level programming languages were developed later
in order to make it easier for programmers to write computer instructions. The source code files
that were created using these high level languages served also another important need: commu-
nication among programmers. Readability of source code was soon considered a most important
property (Dijkstra1968). Natural language annotations were added to computer instructions writ-
ten in high level languages. These “comments” turned out to be of crucial importance, both for
communication among the programmers who developed the software, and for those who main-
tained the software later.

As the size of software products grew, a host of supporting methods and tools were devel-
oped. These tools and methods were developed not only to cope with the increased size of the
products (which by now consisted of millions of lines of source code), but also, as a consequence
and often more importantly, to cope with the process of creating those products. These large
products could not be developed by single or few programmers. Coordinating the work of tens
or hundreds of developers working together to develop software products became a central is-
sue (Brooks Jr.1975).

The termsSoftware Engineering Environments(SEEs) andComputer Aided Software Engi-
neering1 (CASE) denote tools and groups of related tools that are used to support the work needed
to develop a software product. Tools are the building blocks in CASE and SEE, and may range
from assemblers and compilers, to graphical editors for creating visual diagrams, to project and
process management tools. Tools are often grouped according to various criteria, such as the
project phase they are used in, the type of activities they support, the information in form of prod-
uct objects they exchange, the target user group, etc. Different types of CASE and SEE may
support different aspects of work, e.g. creation and sharing of product objects, transformation of
product objects to machine-readable formats, definition of work processes and methods, etc.

There exist different definitions of these terms in the literature. In terms ofSommerville
(1992) SEEs are regarded as consisting ofCASE building blocks, where these building blocks are
integratedin different forms ofenvironments. Sommervillealso distinguishes between the types
of environments that can be created, based on the type of activities they support:Programming
environments(for coding activities),CASE workbenches(for analysis and design activities), and
Software-engineering environments(for whole life cycle).

A more comprehensive classification is provided byFuggetta(1993). This classification dis-
tinguishes between aproduction processand ametaprocess. The production process includes “all
the activities, rules, methodologies, organizational structures, and tools used to conceive, design,
develop, deliver and maintain a software product.” A production process is “defined, assessed,
and evolved through a systematic and continuing metaprocess.” (Fuggetta1993, p.26)2. These
two processes are supported by aninfrastructure(a combination of operating systems, advanced
databases, process technology, etc.), which is implemented using theenabling technology(stan-
dards that allow tools to be physically distributed and still cooperate with each other, e.g.inte-
gration platformssuch as network file systems). The infrastructure, production process support,

1Or Computer Assisted Software Engineering, or Computer Aided Systems Engineering.
2Note that this distinction is very similar to the distinction between work and articulation work ofSchmidt and Bannon

(1992).



3.2. COMPUTER AIDED SOFTWARE ENGINEERING: AN OVERVIEW 49

Production process Metaprocess

Production process support Metaprocess support

Production process technology Metaprocess technology

Infrastructure

Enabling technology

Software process support

CASE technology

Is supported by

Is implemented by means of

Software process

Figure 3.1:Fuggetta’s (1993) CASE classification framework.

and metaprocess support together constitute thesoftware process support. Figure3.1 shows the
distinction between production and meta processes in process, support, and enabling technology
levels.

Fuggetta’s definition of CASE is more generic than that ofSommerville’s (1992). In Fuggetta’s
terms, CASE is considered to be any combination of enabling technologies and software process
support technologies. This means that CASE may support both the production process and the
metaprocess.Fuggettafurther classifies CASE used in the production process as:CASE tools
(used to support single tasks),CASE workbenches(used to support activities consisting of tasks)
andCASE environments(used to support a possibly large part of the process). Parts of Fuggetta’s
further division of these three levels of support are shown in Table3.1. For each subclass of CASE
in this classification, we have added their importance for supporting cooperation among product
developers3.

Though a CASE tool is defined by bothFuggetta(1993) andSommerville(1992) to include
all types of tools ranging from programming to project management, it is recognized by both of
them that the term CASE is often used to denote tools and environments that support analysis and
design phases of a development project. These tools are also called “Upper CASE” as opposed
to “Lower CASE.” In this thesis we use CASE to denote these upper CASE tools, while the
term SEE is used to denote both upper and lower CASE.Sølvberg and Kung(1993) focus on

3There are other classifications. Forte and McCulley (cited inFuggetta1993) distinguish betweenverticalandhorizon-
tal tools. A vertical tool supports one type of activity in one specific phase of the project, while a horizontal tool supports
one type of activity across project phases. For instance, a project management tool can be seen as a horizontal tool, while
a programming tool is a vertical tool. This classification becomes very limited for iterative design, where a compiler, for
instance, may be used all over the project. Perry and Kaiser (cited inFuggetta1993) make a distinction betweenstructures,
mechanismsandpolicies. Environments can be individual, family, city and state.



50 CHAPTER 3. STATE OF THE ART

Support level Class of products Subclass of products Importance for coopera-
tion

Support for
tasks: CASE
tools

Editing tools Graphical editors; Text ed-
itors

Modification of product objects
shared by several developers.

Configuration man-
agement tools

Version managers; Config-
uration builders; Change
managers

Management of dependencies
among developers, and articula-
tion of dependencies in coopera-
tion.

Project management
tools

Project planners; Confer-
ence desks; Email; Bul-
letin boards

Articulation of project-related
aspects of cooperation, and sup-
port for communication among
developers.

Support for ac-
tivities: CASE
workbenches

Business plan-
ning and modeling
workbenches

Graphical editors; Report
generators

Articulation of organizational
aspects of cooperation.

Analysis and de-
sign workbenches
(“Upper” CASE)

Structured analysis and de-
sign tools; Graphical edi-
tors; Analyzers

Manipulation and exchange of
product objects shared by sev-
eral developers.

Programming work-
benches

Suite of edi-
tor/compiler/debugger

Manipulation and exchange of
product objects .

Configuration
management work-
benches

Suite of ver-
sion/configuration/change
control tools

Articulation and management of
dependencies, exchange of rep-
resentations.

Support for pro-
cesses: CASE
environments

Toolkits Groups of (loosely inte-
grated) tools, often sup-
porting programming and
CM

A common set of tools to be
used by the developers to manip-
ulate and share product objects.

Integrated environ-
ments

Repositories; User inter-
face integration

Integrated data and user inter-
face mechanisms to be used by
all developers.

Process-centered en-
vironments

Process definition tools;
Process execution engines

A common software process to
be followed by all developers.

Meta-
environments

Process definition
and enactment tools

Process modeling tools;
Process enactment tools;
Process evolution tools

Definition of production pro-
cesses to be followed by all de-
velopers.

Table 3.1: Some CASE product types supporting the production process in software engineer-
ing (adapted fromFuggetta1993) and their importance for cooperation.



3.2. COMPUTER AIDED SOFTWARE ENGINEERING: AN OVERVIEW 51

upper CASE and classify tools used for analysis and design intoindividual tools, workbenches,
ICASE(Integrated CASE), andIPSE (Integrated Project Support Environment). The difference
is mainly along repository integration (see next section for more on integration). Single tools
have each their own repositories, with data representations that are often incompatible with other
tools. Workbenches consist of groups of incompatible tools, which however provide a common
user interface and a common data dictionary. ICASE has the highest level of integration among
tools, with common or compatible data representations such that the output from one tool can be
used as input for another tool without manual changes. IPSEs are more focused on the project
management aspects. An IPSE is concerned with engineering practice, and takes the management
of this engineering practice as the starting point for supporting product development (Sharon and
Bell 1995).

3.2.1 Integration in SEE and CASE

Development tools are often single-user. This can be because of many reasons, for instance the fact
that these tools existed long before collaboration and network technologies were commonplace,
and the fact that these are often complex tool with priorities other than supporting cooperation.
However, the need for supporting cooperation among developers has emerged in the recent years.
The traditional approach to provide this support has mainly been tointegratethe single-user tools
into environments. Integration often means increased sharing, which is one of the main underlying
presumptions for cooperation as we have seen in Chapter2. Integration of tools into environments
or frameworks affects cooperation among developers. SEEs, by trying to integrate single tools
into coherent wholes, implicitly introduce dependencies in terms of both data and process among
developers using these tools. In addition, SEEs often try to support cooperative aspects of soft-
ware development by introducing explicit cooperation models. The nature of an environment or
framework, and the mechanisms it uses for integrating tools are therefore of crucial importance
for the cooperative work of the developers.

There are different definitions of integration. However, there seems to be an agreement about
at least the following integration policies, with varying influence on cooperation (Brown, Earl and
McDermid1992, Sommerville1992):

• Data integration: All tools are integrated into an environment through a database infrastruc-
ture that allows product objects created by one tool be shared with other tools. This is the
traditional “central repository” or “data dictionary” approach. Developers have to adhere to
the standards and models used by the repository for codifying the outcome of their work. In
addition, mechanisms for version and concurrency control may affect the way developers
use the product objects.

• User interface integration: All tools are integrated into an environment through a user in-
terface infrastructure that provides consistent user interfaces to all the tools. Examples are
X Windows (for UNIX) and Microsoft Windows (for PCs). User interface integration may
restrict access to the environment, in particular if the employed paradigms or metaphors are
not familiar for a group of users. For instance, a WWW-based user interface to a SEE might
be preferred by some developers over a UNIX-based one.

• Control integration: A uniform mechanism is provided for invoking and controlling tools,
possibly with mechanisms for invoking tools from other tools. An example is the invoca-



52 CHAPTER 3. STATE OF THE ART

Data repository services

Data integration services

Task management services

User interface services

Tool slots

Message services

Figure 3.2:Reference model defined by ECMA. Adapted from (Brown et al.1992)

tion of configuration management tools from within a text editor (e.g. emacs and CVS) or
modeling tool (e.g. Rational Rose and ClearCase).

• Process integration: All the tools operate as parts of a common work process (a software
process). The process explicitly defines the dependencies in work (often in form of a work-
flow model) and partly automates access to information and tools. Examples are workflow
management systems, and software process modeling and enactment systems.

Integration is often seen as a challenge for SEE and CASE (Sharon and Bell1995, Sølvberg
and Kung1993). Tools are developed by different companies, adhering to different standards,
methods, etc.Forte and Norman(1992) argue that the lack of flexible tool integration in order
to support different processes is the main shortcoming of CASE. The aim of CASE, according to
Forte and Norman, is to prevent defects in software, and to eliminate unnecessary clerical work.
While defect prevention has succeeded to some degree (and even become saturated in some cases),
there is a general lack of knowledge about the software process that slows down the development
of process support (Forte and Norman1992).

As an attempt to promote integration among tools from different providers, the widely ac-
knowledged ECMA (European Computer Manufacturers Association) reference model (Brown
et al.1992) has been developed in order to standardize a set of services that an ideal “universal”
SEE should provide. Adhering to the defined set of ECMA services may facilitate the integra-
tion of incompatible tools into environments. This reference model is shown in Figure3.2. The
services are divided into five groups (Brown et al.1992):

• Data repository services: Services for the maintenance, management and naming of data
entities or objects and the relations among them.



3.2. COMPUTER AIDED SOFTWARE ENGINEERING: AN OVERVIEW 53

• Data integration services: Services for enhancing the data repository services by providing
higher level semantics and operations with which to handle the data stored in the repository.

• Task management services(or software process management services): Services for provid-
ing a layer of abstraction which allows the user to deal with tasks, as opposed to accom-
plishing each job by a tedious series of invocations on individual tools.

• Message services: Provide a standard communication service which can be used for inter-
tool and interservice communication.

• User interface services: Services for developing standard user interfaces that are consistent
across tools.

According to the ECMA model, a new tool is integrated into an existing SEE by registering
itself as a client of the message services. These message services allow the tool to use the other
services and to communicate with the other tools and the users of the SEE. Data storage and
integration services and task management services in particular affect the cooperation in a project
team. Data storage and integration services define how product objects are created, accessed, and
modified by a group of developers. Task management services define the process that has to be
followed by the developers, and defines how developers access the other services, including data
access, in the context of a task.

3.2.2 Supporting vs. controlling cooperation

One look at existing SEEs, and one can clearly see that these systems are built with multiple users
in mind. Integration frameworks are developed because there are often a high number of devel-
opers involved in a product development project, and because these developers work in a network
of dependencies. The prime result of the activities of developers is the production of artifacts,
e.g. product objects that make up the final product. Data integration efforts acknowledge the im-
portance of the fact that developers depend on the result of each others’ work. Data interchange
formats such as CDIF (Gray and Ryan1997) allow the result of the work done by one developer
to be used by another. CASE repositories try to provide mechanisms for viewing a product object
or a group of product objects from different perspectives, depending on the context and the back-
ground knowledge of the particular developer group. Mechanisms such as transaction control,
version control, and concurrency control try to prevent one developer from destroying the result
of the work done by another. Process integration efforts acknowledge the fact that a software pro-
cess is a complex artifact that involves many activities and affects many developers. An integrated
software process tries to bring together developers and their data in a way that the coordinated
efforts of single developers can result in the large product.

Unfortunately, seen with another pair of glasses, a large part of these services are mechanisms
created forcontrolling cooperation, rather thansupportingit (Sommerville and Rodden1993).
For instance, as we saw in Chapter2, three important properties of products are their central
role in supporting knowledge creation, cooperative learning, and coordinating. In addition, we
saw that utilizing these properties of the products requires flexible interaction among those who
use the products. However, data and process integration services found in many SEEs (Brown
et al. 1992), and in DBMSs in general, are often perfectly designed to create “invisible walls”
between the developers (Rodden, Mariani and Blair1992). Even though many developers might



54 CHAPTER 3. STATE OF THE ART

be using the same product objects, they are hardly aware of what the others are doing with these
objects, e.g. if the objects are being read, accessed, changed, discussed, etc. by others. Many
CASE repositories are developed as “time sharing” systems: each developer is given the feeling
of being the “only user” of the system. In addition, the format of the product objects are often
controlled by strict consistency checks, making the evolution of product objects from informal
ideas to formal constructs difficult. As a consequence, CASE tools might be reduced to tools for
documenting products that are developed outside the CASE tools, which is clearly not what CASE
tools are built for.

There are of course good reasons for enforcing this “controlling” principle.Sommerville and
Rodden(1993) give three reasons: 1) SEEs were developed long before collaboration technologies
became common, and their design conventionally does not support cooperation, 2) there is little
knowledge of how developers cooperate in order to create systems to support this cooperation, and
3) the specific ideas behind cooperation technologies, such as sharing and communication, are not
familiar to developers, who are used to information hiding and minimizing interactions. We add
two related reasons: 4) time is a precious resource in product development projects, and commu-
nication must be controlled in order to save resources, and 5) the prime result of a development
effort is the product, and this product’s consistency and completion are the prime concerns of a
SEE. The main mission of SEE as an information system is to provide means for developing soft-
ware products. The obvious approach is therefore to provide services that are centered around the
product. Data and process integration services seen in many SEEs are therefore centered around
mechanisms for developing a technical construct, e.g. the product, an approach that is logical
enough.

3.2.3 Limited cooperation support in contemporary CASE tools

Upstream activities of analysis and design are highly cooperative, and integration efforts are only
one initial (and highly necessary) step in supporting cooperation. However, more advanced sup-
port, for instance direct support for interaction and communication among the developers, is hard
to find in contemporary CASE tools.Vessey and Sravanapudi(1995) performed a survey of exist-
ing CASE tools and their support for cooperation. The model they used to underlie their survey
classified cooperation support into three groups4:

• Taskware: is concerned with automated support to help the user perform the task at hand. A
methodology companion is an example. Other examples are syntax and semantics checks
in CASE editors. All these mechanisms help to provide a common framework for the de-
velopers. For instance, the fact that a tool supports a development method means that one
can rely on all the developers following the method.

• Teamware: is concerned with coordinated access to the product objects. From an organiza-
tional perspective this means controlled access to the product and its parts. From a group
perspective it means flexible sharing of the product (e.g. data sharing, consistency enforce-
ment, concurrency control), and monitoring (of both the product and the activities of the
other developers).

4This model is in our opinion too restrictive. In particular, the main focus is on teamware, and groupware functionality
is highly marginalized (mentioned only as email and calendar functionality). The shared workspace applications that we
investigate later in this chapter demonstrate some advanced groupware functionality, and show what an important role such
functionality can play in for instance supporting the performance of a tasks by multiple developers.



3.2. COMPUTER AIDED SOFTWARE ENGINEERING: AN OVERVIEW 55

• Groupware: is concerned with direct communication among the developers. This com-
munication is supported through communication media such as email, and through “tim-
ing/meeting management.”

Vessey and Sravanapudipresent a detailed set of “desired features” (35 of them) regarding
teamware and groupware support (33 for teamware and 2 for groupware). They investigated four
multi-user CASE tools5 and found out that only a total of 39.3% of the features (24 out of 35)
were implemented in these tools. Support for data sharing was strongest (implementing 54.4% of
the total number of features) followed by control (28.6%), monitoring (25.0%), and cooperation
(16.7%).

Vessey and Sravanapudi’s (1995) study shows a picture of CASE tools with very little support
for communication among developers. Communication is assumed to happen using third-party
tools such as email. This is alarming since upstream development activities that are to be sup-
ported by these tools are communication-intensive. We did a study similar to that ofVessey and
Sravanapudiin order to verify their results. We used a framework similar to theirs, but extended
the set of desired features with features for supporting availability on different platforms, flexi-
bility of tasks, and user-friendly interface6 (see Sande1998, for details). These features are all
of importance in distributed development projects, in particular when developers with varying
background and skills are involved in a project. Our study included more than a hundred tools,
compared to four inVessey and Sravanapudi’s (1995) study. 21 of these tools were chosen for
closer investigation. The tools that we investigated were naturally more modern than the ones
studied byVessey and Sravanapudi(by at least 7 years). In particular, cooperation technologies
had been widely available for 3-4 years by this time. In addition, we used questionnaires in or-
der to investigate CASE companies’ intentions and future plans regarding collaboration support.
Seven companies responded to these questionnaires. Our study was not based on the testing of the
products, as wasVessey and Sravanapudi’s (1995).

The results of our survey are based on the 21 tools that were chosen for closer investigation
(this gives an initial screening of as large as 75% of the considered tools). The obtained results con-
firm to a large extent those ofVessey and Sravanapudi(1995), however showing a weak tendency
to support real-time conference (sharing of windows), integrated email support, and accessibility
through WWW. 80% of the tools supported accessibility (mainly WWW-based views of the tasks
and the product), while task flexibility and user-friendliness were low (bellow 20%). Among the
features related to teamware, control was strongly supported (70%), with data sharing (30%) and
user monitoring (10%) being the weakest. Regarding groupware, Synchronous communication
was supported by 20% of the tools, while asynchronous communication was integrated in only
8% of the tools.

These studies show that CASE tools assume a model of cooperation in development processes
that is quite unrealistic. Many CASE tools are built out of an implicit assumption that product
development activities always happen in physically co-located groups. Therefore, these tools as-
sume the availability of a shared space similar to the physical space. For geographically distributed
groups, CASE tools in the best case confine themselves to offering a central repository where in-
formation about the product can be accessed regardless of geographical location. The underlying
assumption for these repositories is that developers will communicate implicitly through “perfect”
product objects. Direct communication is seen as “exception.” The reality, however, is that CASE

5These tools are Deft 4.0, Iconix 4.0, System Architect 2, Visible Analyst 3.0.
6The study was done by Sande, a diploma student who was supervised by this author.



56 CHAPTER 3. STATE OF THE ART

GROUPWARE = intentional GROUP processes and procedures to
achieve specific purposes
+
softWARE tools designed to support and facili-
tate the group’s work

Table 3.2:Groupware equation, defined originally byJohnson-Lenz and Johnson-Lenz(1982)

users, and developers in general, talk to each other very often. They discuss, criticize, refine each
others’ ideas. They socialize. Perfect artifacts are developedas a resultof this socialization and
not independently from it. For groups of developers who are co-located this lack of support for co-
operation is not a problem because they will manage to socialize in a face-to-face manner anyhow.
For geographically distributed teams, this lack of support may become a real problem.

3.3 Cooperation Technologies: An Overview

Multi-user applications have existed for decades. Database management systems have long demon-
strated multi-user functionalities, and multi-user operating systems have been commonplace for
a long time. Normally, the focus of these systems has been to enable the sharing of scarce re-
sources among a group of users, while giving each user the impression of being in charge of those
resources.Cooperation technologies, or groupware, are technologies developed with the main
goal of supporting cooperation among people. Cooperation technologies are often based on the
ideas developed from multi-user systems, and from a technical point of view are quite similar
to them. There are, however, some major differences between multi-user, “timesharing” systems
and cooperation technologies. In particular, a groupware application is designed to provide acon-
text for cooperationas opposed to isolating its users from each other. This context is normally
provided using avirtual shared workspace, where group members can meet, communicate, and
access common resources. In addition, the group processes unfolded in this shared workspace, as
a consequence of the facilitated interaction among its users, are to be supported by means of the
technological apparatus offered by the groupware application.

A groupware is thus defined to be not only the technology but also the group processes and
their support, as defined originally byJohnson-Lenz and Johnson-Lenz(see Table3.2). The group
processes are normally represented in a groupware application by acommon taskand acommon
environmentprovided to the users, as stated in another well-cited definition of groupware byEllis,
Gibbs and Rein:

“Computer-based systems that support groups of people engaged in acommon task
(or goal) and that provides an interface to ashared environment” (1991, pp. 40).

Early experiments with groupware applications have resulted in different classes of tools.
These early groupware examples are normally specialized in supporting one or few types of tasks,
such as decision making (Nunamaker, Dennis, Valacich, Vogel and George1991), argumenta-
tion (Rein and Ellis1991), etc., or specific application domains such as co-authoring (Sharples



3.3. COOPERATION TECHNOLOGIES: AN OVERVIEW 57

Time
P

la
ce

Same

Different
but
predictable

Different
and
unpredictable

Meeting facilitation Work shifts Team rooms

Tele/video desktop
conferencing

Electronic mail Collaborative writing

Interactive multicast
seminars

Computer bulletin
boards

Workflow

Same
Different
but
predictable

Different
and
unpredictable

Figure 3.3:Grudin’s (1994a) extension to time/space taxonomy

1993), co-drawing (Bly 1988), programming (Hu and Wang1998), etc. These tools have provided
us with valuable knowledge about the group processes they try to support, and in particular about
the effects of technological support on these processes.

There are a variety of classifications of groupware applications. Maybe the most known clas-
sification is the time/space taxonomy proposed byDeSanctis and Gallupe(1987). The two dimen-
sions of this classification aretime (synchronous/asynchronous collaboration modes) andspace
(same/different geographical locations). The four classes of groupware defined by this classifica-
tion have guided the development of groupware applications for years. The classification has been
extended many times by other researchers.Nunamaker et al.(1991) have extended it with indi-
cations for group size, and number and nature of collaboration sites.Grudin (1994a) has added
a third measure along each dimension, indicating whether the collaboration type and the location
of participants are predictable or not (see Figure3.3). Rodden(1991) also uses the time/space
taxonomy as the basis for his application-level classification shown in Figure3.4.

The time/space taxonomy has been criticized by some researchers (Greenberg and Roseman
1998, Schmidt and Rodden1996). According to some researchers, basing the development of
groupware applications on one or few of the classes introduced by these taxonomies will eventu-
ally lead to conceptual and cognitive gaps in different modes of cooperation supported by each
application. Group processes are fluent and shift seamlessly from synchronous to asynchronous,
and from remote to co-located7. In addition, the concept of a group as a canonic entity that can be

7This fact is already recognized byRodden(1991). In his classification of groupware applications (Figure3.4) many



58 CHAPTER 3. STATE OF THE ART

Asynchronous

Co-located Remote

Synchronous

In
te

ra
ct

io
n 

ty
pe

Location

Co-authoring
and argumentation

Meeting rooms
Multi-media
conferencing

Real-time
conferencing

Conferencing
systemsMessage

systems

Meeting room

Conferencing

Co-authoring

Message systems

Key:

Figure 3.4:Rodden’s (1991) application level classification based on the time/space dimensions.

supported by a tool is also debatable (Schmidt and Bannon1992). The challenge for a groupware
application is to support many types of processes and modes of cooperation seamlessly, and to
ease transitions from one type of cooperation to another (Greenberg and Roseman1998).

Another more interesting classification from this perspective is presented byEllis, Gibbs and
Rein(1991). This classification is based on two (continuous) dimensions ofcommon taskandcom-
mon environment(see Figure3.5). The classification does not distinguish between synch./asynch.
cooperation, and is also orthogonal with respect to the location of the participants. Timesharing
systems, such as DBMS, support many concurrent users, but they normally don’t have any notion
of a common task to be shared among these users and lie therefore to the low end of the common
task dimension. On the other hand, WYSIWIS (What You See Is What I See) shared window sys-
tems (Lauwers and Lantz1990) support to a much higher degree the notion of a common task. The
shared environment dimension focuses on how much of the environmental context of a common
task is preserved by the system, and is accessible to the cooperating parts when needed. Elec-
tronic mail systems based on single textual email messages do not support the notion of a shared
environment despite the fact that they support a high degree of common task.

Other classifications exist.Ngwenyama and Lyytinen(1997) classify groupware as different
types of resource for social action.McGrath and Hollingshead(1994) classify groupware de-
pending on whether they modify the group’s internal communication system, information base,
external communication system, or performance processes.Ellis and Wainer(1994a) classify
groupware based on if they arekeepers, synchronizers, communicators, or agents. Moran and An-
derson(1990) divide groupware development into three paradigms: shared workspace paradigm,
coordinated communication paradigm, and informal interaction paradigm. Recent groupware re-

applications cross the boundaries of time and space. For instance, conference systems span almost all the four classes of
groupware.



3.4. SYSTEMS FOR COOPERATIVE PRODUCT DEVELOPMENT 59

Low High

Low High

Timesharing
System

Software Review
System

Electronic Mail
 System

Electronic Classroom
System

Figure 3.5:Ellis et al.’s (1991) classification dimensions.

search is more and more focused on providing generic services that are independent of the type of
groupware application or the supported task (Schmidt and Rodden1996).

3.4 Systems for Cooperative Product Development

In this section we will describe a number of systems that can be used for supporting coopera-
tive product development. The systems demonstrated here are chosen because they demonstrate
some potential for satisfying the requirements of Chapter2. We will look at one configuration
management tool, two CASE tools, and four shared workspace applications. For each tool we
provide a short evaluation. An overall evaluation of these systems according to the requirements
of Chapter2 is presented in Section3.4.4.

3.4.1 Configuration management tools

Software products are frequently modified, and there is a need for keeping track of the changes.
Knowing what is changed by whom is crucial for controlling the development of software, for
tracking problems, and for creating successive versions of the product. In addition, for each prod-
uct there will often be different co-existing variants, for instance for different operating systems
and different languages.Configuration Management(CM) is a common term for tools that allow
developers to keep track of changes, and to choose the right versions of the right parts for a spe-
cific release of a product (Babich1986). CM tools therefore have two main functions: to manage
the changes to the product parts, and to manage the build of a complete product. Both these func-
tions have important effects on cooperation. In this section we will investigate CM technology in
general from a cooperation support perspective, using ClearCase (Allen et al.1995) as an example
of a specific CM tool8.

8ClearCase from Rational is the leading CM tool in the market. ClearCase includes also other functionality than
configuration management, such as software process support. Here we consider only conventional CM functionality of



60 CHAPTER 3. STATE OF THE ART

Version control is the ability to create different versions of the same product object. Version
control is not only important for source code, but also for documentation and other types of product
objects.Sølvberg and Kung(1993) define version control (and CM in general) as a fundamental
requirement for CASE tools. However, for source code there is an immediate need for version
control: to track unexpected side-effects. Updating a source code file may introduce a new error
or may influence other developers because of various formal dependencies. It is important to be
able to compare the old and the new versions in order to find the cause of possible problems. An
early example of a version control tool is RCS (Revision Control System,Tichy 1985). RCS is
a part of the UNIX operative system, and has played an important role in making CM popular
in the commercial world. However, the model used in RCS is based on check-out and check-in
combined with locking, which does not scale to large groups of developers. In RCS, once a file
is checked out it is also locked, and cannot be changed by other developers until the lock-holder
checks the file into the repository. This disables parallel development of the same file by several
developers. The problem becomes more severe in case of long transactions, where a file can be
checked out for weeks or even months, and in some cases not be changed at all. More advanced
version control tools solve this problem by allowing multiple copies of the same file to be checked
out at the same time. An example from the ClearCase (Allen et al.1995) is shown in Figure3.6.
In ClearCase, single files or groups of files can be checked out from the mainbranch into local
subbranches, and developed in parallel with the main branch. Once the development is finished
in a local branch, the files in the local branch may be merged with the corresponding files in the
main branch.

Different configurations of a product normally co-exist, as for instance ports into several oper-
ative systems, product versions in different languages, etc. Each configuration may include older
or newer versions of varying product objects. Another important function of a CM tool is therefore
the ability to keep track of the co-existing configurations, and to automate the build of a complete
product based on any specific configuration. In addition, the CM tool may help in automatically
including other files in the configuration according to some dependency rules. A build is created
(semi-)automatically by the CM tool. Frequent creation of builds guarantees that the work done
by different developers or groups can be integrated. Daily builds are in fact common in many
software houses (Iansiti and MacCormack1997).

CM tools have gained great popularity in the software industry, and one can hardly find a
software development project that does not use one or another CM tool (Radding1999). Accord-
ing to Ovum (Ovum 1999) the market for CM tools reached $1 billion in 1998. Most popular
are those CM tools that also support geographically distributed projects. For instance, ClearCase
MultiSite (Allen et al.1995) allows each site in a distributed project to have a replica of the repos-
itory. Replication mechanisms used in MultiSite are based on the existing branches: a site is
made responsible for a group of branches, and is consequently the only site that can change these
branches. Updates to the branches are then replicated to the other sites periodically.

From a cooperation support perspective, a CM tool is a good example of an application that
gives all its users direct benefit in return for the cost of using it (Grudin 1994b). For a project
manager, the proper use of the tool guarantees control over the various products of the project.
For a build manager (the person who is responsible for building a specific configuration) the tool
largely automates the tedious task of manually getting hold of the latest versions of all the files
belonging to the configuration. From a developer perspective, the tool helps protect the work

ClearCase, e.g. version and configuration control.



3.4. SYSTEMS FOR COOPERATIVE PRODUCT DEVELOPMENT 61

0

1

2

3

4

5

6

0

1

2

3

0

1

2

main

bug_fixes

port

RLS1.0

main branch

mnemonic

subbranch

subbranch

merge

Figure 3.6: ClearCase branching model for parallel development. Adapted from (Allen et al.
1995).

done by a developer, and as a central repository it also gives access to the latest versions of other
developers’ files. In addition, many CM tools make visible the status of the different files in the
repository (e.g. if they are checked out, changed, etc.) so that the developers can coordinate the
work among themselves9.

Despite their popularity among programmers, CM tools are not without problems. CM tools
are mainly based on isolating the developers from each other, and delaying direct communication
among them as much as possible. An example can be seen in Figure3.6. Here, the developer or
the group of developers working with the branch called “bugfixes” are effectively isolated from
those working with the “main” branch. This policy is implemented into the tool intentionally
in order to allow focused work to be carried out in each branch. However, the result is that
“merging” becomes a complex problem (Grinter 1995). The two branches can develop in quite
different ways, and include updates that are incompatible with each other. The tool does not
take this aspect into consideration, and assumes that the two groups do not need to talk or be
aware of each other’s work. In cases where the two groups working on the two branches are
physically co-located, (offline) awareness and communication among them helps them to keep
updated about each other’s work (Rogers1993). However, if the two groups are geographically
distributed they will not have this opportunity, and in fact merging and integration problems are
quite common in these situations (Herbsleb and Grinter1999). Frequent replication of updates
among geographically distributed groups is suggested as a solution to the merging problem by

9More data on the usage of CM tools can be found in form of empirical studies done by Grinter (2000, 1996, 1995) and
Tellioǧlu and Wagner(1997).



62 CHAPTER 3. STATE OF THE ART

Allen et al. (1995). This might be a partial solution only in case of well-defined development
tasks that require minimum communication among developers.

Merging is a much “feared” problem even among co-located developers. Merging facilities
offered by existing CM tools are quite limited, and merging almost always has to be done manually
by the developers. Therefore, most developers will prefer to avoid situations where they have to do
merging. In fact, many tools either forbid the occurrence of these situations (such as RCS that does
not allow more than one check-out for each file) or warn the developers about conflict situations
before they occur. It is often the case that if a developer knows that a file is checked out by
another developer, he or she will wait for this other developer to be finished, or will negotiate with
the other developer about the changes he or she intends to do (Tellioǧlu and Wagner1997). This
is a contradiction with respect to the “information hiding” model of cooperation that many CM
tools, including ClearCase, support. This problem of invisibility is not limited to merge situations.
Generally, there is need for more organizational visibility of work in CM tools, as observed both
by Grinter(2000) andTellioǧlu and Wagner(1997).

Direct communication support is very limited in CM tools, and is often provided through a
“hook” (such as email address) of the developers. Co-located programmers might be able to deal
with the lack of communication support, both because they are co-located and because program-
ming tasks often have well-defined interfaces to each other. Using a CM tool in all the phases of
a geographically distributed project will require more advanced support for communication than
what is currently provided. This lack of support for communication might in fact be the main rea-
son why CM tools are primarily used for supporting programming tasks. An attempt to use CM
in an upper CASE tool is reported byAndersen and Sølvberg(1993). The model of cooperation
reported here is very similar to the one used in ClearCase. In particular, communication is still
limited to merge situations. Merging of high-level conceptual representations, such as graphical
conceptual models used by many CASE tools, is even harder to automate than merging source
code. Andersen and Sølvbergtherefore suggest using groupware technology, such as multi-user
editors and shared whiteboards, for supporting the manual merging activities. One may also imag-
ing a solution where communication is initiated before conflicting situations occur. This can be
done for instance by notifying both developers about potentially conflicting check-outswhile they
occur instead of delaying this notification until a merge is needed. In addition, more general in-
formation about the status of the different parts of the product can be provided in order to keep the
developers up-to-date about other developers’ changes or intentions for change.

Evaluation– Shared interaction is not supported well in conventional CM tools. Although most
CM tools provide support for a shared product in a central repository or file system, developers’
interactions with this product are not fully shared. This is because of the check-out mechanisms,
and the resulting information hiding focus of CM tools. This problem is being addressed by some
recent CM tools, such as CVS (Fogel1999), where developers can “watch” different files and be
notified of changes to them. Most CM tools provide flexible access to the product through easy-to-
use graphical tools, or through seamless integration with common tools of developers. CM tools
are often capable of operating on files of arbitrary type. This is very practical because even the
most sketchy and informal drawings can be put under version control in the central repository. CM
tools support formal dependencies among files, such as import relations among program source
files. Some tools, such as ClearCase, allow users to add arbitrary metadata to the files, and to
search for files based on these metadata. CM tools associate all events with individual developers,



3.4. SYSTEMS FOR COOPERATIVE PRODUCT DEVELOPMENT 63

often through their user name or email address. Their accessible user interface, their notification
facilities, and their often tight integration with the underlying operating system make CM tools
good candidates for being integrated into the desktop of the users. Many CM tools provide a
command line or network-based interface that allows them to be invoked from the developers’
familiar tools in a user-friendly manner.

CM tools are very weak in providing support for centers of interaction. They often don’t have a
notion of center of interaction at all; all CM tools to our knowledge support a notion of a “private
workspace” instead of a shared workspace. This means that they are fundamentally incapable
of supporting tight interaction among a group of users. The cooperation model supported by
CM tools is that of a lonely programmer. However, CM tools have a great potential for being
enhanced with functionality needed for centers of interaction. Research in the area of cooperative
transactions (Ramampiaro and Nyg̊ard1999) might be a step forward.

3.4.2 CASE tools

There are only few CASE tools that have taken an active stance in supporting cooperation. In
this section we describe two CASE tools in order to illustrate the kind of cooperation support
that might be provided. The first tool is a metaCASE tool called MetaEdit+ (Kelly 1998, Kelly
and Lyytinen1996), and the other is a CASE tool called TDE (Telecom Design Environment,
Taivalsaari and Vaaraniemi1997). Both tools are fully implemented. MetaEdit+ is a commercial
tool, while TDE is used internally by Nokia designers. An important difference between these
CASE tools is that MetaEdit+ was developed as a traditional CASE tool and cooperation support
is added to it recently, while TDE has been developed with cooperation support in mind and as its
main priority.

MetaEdit+

MetaEdit+10 (Kelly 1998, Kelly and Lyytinen1996) is a metaCASE tool that provides a full multi-
user environment where different users can access a central repository. The user interface of a
MetaEdit+ client is shown in Figure3.7. The basic concepts of MetaEdit+ from a user perspec-
tive aresessions, transactions, andlocks. A session is the time from when a user logs in to the
repository to when he or she logs out. Each session is composed of one or more transactions. A
transaction is an atomic unit of work. A user does his or her work in a transaction, and changes
that are made by the user to the repository are not visible to others before the user commits the
transaction. A read, write or exclusive lock can be obtained by a user for an object in the repos-
itory. Locks can be obtained for single transactions or for whole sessions. MetaEdit+ employs a
pessimistic locking mechanism in that a lock has to be obtained by a user for any information that
is to be changed by that user. Transactions can be very short, for example when changing a single
object, and the results of a transaction are immediately visible in the repository. In addition, the
files that are locked by a transaction always provide information about who has locked them. This
means that the repository provides almost full visibility of work (except the visibility of work that
is being done inside an ongoing transaction).

Locking is performed automatically by MetaEdit+ on behalf of the user, based on the user’s
actions. The actions of the user can be starting and ending sessions and transactions. For instance,

10MetaEdit+ was one of the 21 CASE tools evaluated in our survey. See (Sande1998).



64 CHAPTER 3. STATE OF THE ART

Figure 3.7:MetaEdit+ client user interface.

when a user opens a diagram in an editor, MetaEdit+ will try to get write or other type of lock
for the diagram’s graphical and conceptual properties. The actions available to the user after the
diagram is opened depend on the type of obtained lock. If write locks are obtained for both
graphical and conceptual parts of the diagram, the objects in the diagram can be changed freely.
If write is obtained for only graphical part, the user can move around objects and change their
representation. If no lock was obtained, the user can still view the diagram but is not allowed to
change anything11.

Evaluation– MetaEdit+ supports cooperation by 1) following a fine-grained pessimistic locking
mechanism, 2) minimizing lock durations by getting and releasing locks automatically, and 3) us-
ing identified locks, e.g. a user can see who has locked an object. This is clearly a step forward
regarding the information hiding principle that is common to many CASE tools; a developer can
see who is locking an object, and can possibly contact that person for negotiation. In addition,
the results of transactions are immediately available after commit. Developers can in this way
coordinate their work with each other more easily based on the information the repository pro-

11It is not clear from available information whether opening a diagram requires locking all the conceptual objects in that
diagram, or only those diagrams that the user intends to work on.



3.4. SYSTEMS FOR COOPERATIVE PRODUCT DEVELOPMENT 65

vide about other developers’ activities. A shortcoming might be that the activities of a developer
within a transaction are not visible to other developers before they are committed to the repository,
but this is difficult to avoid with a pessimistic locking approach, and is probably even a desirable
“limitation” because of privacy reasons. Further,Kelly (1998) takes an active stance in excluding
support for direct communication and for synchronous cooperation in MetaEdit+. This means that
a diagram or single objects cannot be shared in a shared workspace, and communication among
developers has to go through external tools. All in all, MetaCase+ repository solves some of the
problems of invisibility in the shared repository that we see in CM tools, but provides little support
for constructing centers of interaction. MetaEdit+ provides a Web-based interface to some of its
functionality.

In addition, metaCASE functionality of MetaEdit+ (Kelly and Lyytinen1996) in itself can be
used for supporting cooperation by allowing the construction of product object types of different
formality. MetaEdit+ supports the definition of any product object or relation type, but these types
do not provide different views of the same repository; they are merely developed for different
projects using different methods and formalisms.

TDE

TDE (Telecom Design EnvironmentTaivalsaari and Vaaraniemi1997) is a CASE environment
developed at Nokia Research Center (see Figure3.8). TDE has been used by Nokia staff for
designing telecommunication products. The reason for including TDE here is because TDE ad-
dresses some of the limitations of CASE tools that has been pointed out by many researchers, e.g.
rigidity in how data is represented (Jarzabek and Huang1998) and formality in processes that are
allowed performed by the developers (Orlikowski 1993). In addition, TDE explicitly includes the
developers in the system, and supports communication and awareness among them.

The main object for supporting cooperation in TDE is theworkbook. Workbooks are also the
main user interaction mechanism in TDE. Workbooks are “large, flat, shared, graph-structured,
versioned work areas” used for collecting, representing, and modifying information of different
types (Figure3.8 shows three workbooks as windows within the main window). Workbooks are
highly flexible in that they can contain any type of information, can be freely annotated using
text, and both workbooks and their contents can be freely linked to each other. In addition, a
workbook can be shared and modified by more than one developer simultaneously. Workbooks
have an intuitive graphical and icon-based representation. The basic object types that can be in a
workbook include other workbook objects, diagram objects (such as DFD and use case diagrams),
user objects (objects containing “business cards” that users can leave in a workbook), host sys-
tem objects (programs existing on the client, such as a word processor), objects in external CM
tools (objects that are fetched from a CM tool upon clicking on them), WWW objects (links to
WWW), text comments, and pictures. There are generic linking capabilities that apply to all these
objects. Links can be made between any two objects in a workbook, or between two objects in
two different workbooks. In addition,aliasescan be made of the same object, allowing an object
to be inserted in more than one workbook with changes to it being propagated to all the referring
workbooks. Aliases also allow users to view an object in different contexts (i.e. workbooks).
According to the authors aliases are a powerful and much used feature of TDE.

The more traditional CASE functionality is provided through the diagram objects. TDE takes
a metaCASE approach to diagram support, in that it provides a meta-model that can be used to
derive different types of graphical languages. The tested version provides support for creating



66 CHAPTER 3. STATE OF THE ART

Figure 3.8:TDE client user interface.

class diagrams, object interaction graphs, message sequence charts, state charts, and use case
diagrams. A diagram is basically a special type of workbook, which can be shared, linked to,
versioned, etc. similar to a workbook.

In short, TDE provides a highly flexible and adaptable shared interaction framework that can
be extended using the simple concepts ofplaces(workbooks),things(objects in the workbooks)
andpeople(user objects). TDE might seem very limited regarding traditional CASE functionality,
and might even be regarded by some to be only a graphical editor and not a CASE tool. However, it
is important to take into consideration the underlying principles for developing TDE, as formulated
by its developers:

• Focus on design rather than programming: Rather than focusing on programming-oriented
features such as code generation, integrated compiling and debugging facilities, syntax-
oriented editing, and simulation capabilities, the main emphasis is on facilitating communi-
cation among designers.

• Focus on representation and communication rather than formalization: A goal of TDE is to
serve as a collaborative media that allows designers to effortlessly and clearly express what
they really mean, regardless of whether the information is formal, semiformal, or informal.



3.4. SYSTEMS FOR COOPERATIVE PRODUCT DEVELOPMENT 67

• Going away from document-driven design: TDE aims at replacing the document-driven de-
sign approach with a more interactive, collaborative approach in which design information
–whether contained in TDE itself or in legacy systems– is represented primarily visually,
and all information is accessible to the designers location-transparently.

• Supporting location-transparent teamwork and informal collaboration: The often formal
and restrictive models of cooperation used in contemporary CASE tools do not foster true
designer collaboration and is often counterproductive, since the designers have a tendency
to keep their designs in their own private work areas until the very last minute.

Evaluation– TDE supports cooperation among its users by 1) supporting a shared product space
and allowing full sharing of the content of this space (i.e. everything is shared and can be modified
freely), 2) allowing high flexibility both regarding the type of product objects and the processes to
be followed. Any type of product object can be inserted into in a workbook, different development
methods can be supported as specializations of diagram object and its graphical languages, and
workbooks can be used in any type of activity. The same product object can be used in different
contexts. These are important steps in supporting cooperation. The product itself is protected by
version control mechanisms integrated in each workbook (though version control is provided by
a third party tool). It is also interesting to see that TDE is the only CASE tool we know of that
includes an extended representation of the developers in the system. Each developer can leave his
user object in any workbook (possibly together with a note), indicating that he has been visiting
the workbook. Also, user objects can be used to indicate “membership” in a workbook, and will
allow others to regard the developer as a member of the workbook. A list of other connected
developers is shown in a dedicated window, in this way supporting opportunistic communication
among developers. A workbook can be shared by a group of developers, which provides a simple
and flexible mechanism for creating centers of interaction.

TDE is rather weak from the point of view of traditional CASE tool functionality (configu-
ration management, formal methods, transformation of specifications, etc.). According to TDE’s
developers, when constructing a collaborative CASE tool the right approach is to construct a com-
pletely new tool with cooperation support in mind. This approach will provide more freedom (to
provide cooperation support) than an approach that is based on extending an existing conventional
CASE tool with cooperation support functionality.

3.4.3 Shared workspace applications

In this section we will look at some example shared workspace applications that are developed as
generic cooperation technologies within the field of CSCW. What is common for these applica-
tions is that they focus on technical support for creatingshared workspaces, i.e. virtual rooms that
allow a group of distributed people to cooperate in solving a problem or performing a task. These
applications are not specialized in supporting cooperative product development. However, they
demonstrate functionality that can be useful also in a product development context. In particular,
they are all based on shared artifacts, and support cooperation through shared manipulation of
artifacts within shared workspaces.



68 CHAPTER 3. STATE OF THE ART

Figure 3.9:BSCW user interface as seen in a WWW browser.

BSCW

BSCW (Basic Support for Cooperative Work,Bentley, Horstmann and Trevor1997) was initially
developed as a research prototype at GMD (German National Research Center), and is now avail-
able as a commercial system. BSCW is a web-based shared workspace application with a focus on
sharing of artifacts. Using BSCW does not require the installation of any programs, and a standard
WWW browser suffices in order to access BSCW’s full functionality. BSCW can be characterized
as a system which is easy to use, and which provides basic and essential support for cooperation.
The user interface of BSCW as viewed in a WWW browser is shown in Figure3.9.

The model of cooperation supported by BSCW consists offolders, shared workspaces, objects,



3.4. SYSTEMS FOR COOPERATIVE PRODUCT DEVELOPMENT 69

awareness events, andusers. Each user is provided with a “homepage,” which is a web page that
provides access to the functionality of BSCW. In this homepage, the user can create folders and
invite users to these folders. Each folder has its own web page. Once a user invites somebody to
a folder, the folder becomes a shared workspace. This is shown in the homepage with a special
icon in order to help the user distinguish folders from shared workspaces. The invited user gets
notified through email, and is provided instructions on how to register to BSCW in case he is not
already a BSCW user.

A folder or a shared workspace can be used to upload files. BSCW is indifferent regarding
the type of the uploaded files. Also, beside some simple conversion mechanisms (for instance
converting a MS Word file into HTML), BSCW does not process the contents of the uploaded files
in any form. This is done by the users’ local applications. However, BSCW supports the addition
of various metadata to each file in order to allow the users to explain the contents and the purpose
of the files they upload to a shared workspace. BSCW uses an advanced access control mechanism
for the uploaded files, supporting negative rights and delegation of rights (Sikkel 1997). The later
versions of BSCW also include simple version control with support for variants.

A shared workspace in BSCW offers a number of functions. These include operations on
objects and folders (such as adding, deleting, modifying, putting under version control, attaching
notes, etc.), operations for adding/removing members, and operations for creating discussions.
Discussions can be connected to single objects, and can have an IBIS-like structure consisting of
issues, replies, arguments, etc. There are a number of navigation mechanisms, allowing a user to
see where he or she is currently, and allowing the user to move to other workspaces easily.

BSCW supports awareness of others’ activities related to the shared objects. BSCW logs
all access to the existing objects. This means that a log is created every time a new object is
created, or every time an existing object is read, changed, revised, deleted, moved, or accessed
otherwise. This log is used to notify the users about other users’ activities. Each time a user
visits his homepage, various “awareness icons” in his homepage show an overview of the recent
activities in the shared workspaces the user is a member of. This awareness information can also
be sent to the user by email. The awareness icons will be displayed in a user’s homepage until
the user “catches up” with the events, an action that tells BSCW the user has seen the awareness
information. Catch-up function is object-based, meaning that a user can catch up a single file, all
the files in a single shared workspace, or all the files in all the workspaces.

Members of a shared workspace can be viewed easily by clicking on the “members” icon.
Users have a rich representation in BSCW. A user can enter detailed contact information about
himself, including a picture. In addition, hooks to other communication media such as NetMeet-
ing (a popular video conferencing tool) and ICQ (an instant message tool) can be added in order
to allow others to contact the user using NetMeeting or ICQ.

Due to its WWW-based nature, BSCW is weak at supporting synchronous cooperation. Once
in a shared workspace, a user cannot see the other members who may be viewing the same
workspace at the same time. There has been some attempt to extend BSCW with functionality
to allow this (Trevor, Koch and Woetzel1997). The current version of BSCW includes a Java
applet that shows a list of currently connected users. Users shown in this applet can be contacted
through email.

Evaluation– As a system for supporting product development, BSCW has the advantage of
being a highly flexible system that provides some basic support for sharing, and no advanced



70 CHAPTER 3. STATE OF THE ART

support for specific tasks. BSCW allows the users to create an arbitrary structure for their coop-
eration in form of nested shared workspaces. It allows an arbitrary set of product object types to
be shared in a uniform way. It supports the creation of centers of interaction (in form of shared
workspaces) that combine product objects, people, and communication tools. The visibility of
work is supported by sharing of product objects and the structure of the shared workspaces, and
by the integrated awareness mechanisms. An important advantage of BSCW is of course its being
WWW-based, which makes it universally accessible. BSCW also supports tailoring of its user
interface to different levels of skills.

The weakness of BSCW regarding product development is the lack of an underlying shared
product space to support shared interaction in the large. Despite the fact that BSCW employs
a shared object system in its architecture, an object in BSCW can exist in only one shared
workspace. This is very limiting since objects in a shared product space have to be accessible
in different centers of interaction, possibly visualized in different forms. An object may be used
by many groups in different phases of a project. In addition, BSCW does not support any notion
of dependencies among objects (except through putting them in the same shared workspace). This
is again a strong weakness that limits the use of an object to only one context. Another weakness
of BSCW is connected to its being an asynchronous system. BSCW falls short in supporting inter-
active and dynamic cooperation in a center of interaction. In particular, communication is limited
to asynchronous text messages, which can be quite slow and not so interactive.

CBE

CBE (Collaboratory Builder’s Environment,Lee et al.1996) is a system developed at the Uni-
versity of Michigan, An Arbor, for supporting cooperation among scientists. CBE is a part of
a larger scientific testbed called UARC (The Upper Atmospheric Research Collaboratory,Olson
et al.1998) developed for supporting research in upper-atmospheric physics. UARC aims to sup-
port a community of researchers cooperating with each other over the Internet, and accessing
remote instrumentations (often located in the Arctic areas) for viewing collected data about the
earths ionosphere12. CBE is interesting for us because it is an example of an advanced cooperation
technology used to support cooperation among experts in a complex domain. CBE is designed to
integrate already existing domain-specific tools of the scientists. In this way it allows the scientists
to access and view large quantities of collected data from different perspectives, and to base their
cooperation on this shared data.

Figure3.10shows the user interface of CBE. CBE is a synchronous shared window applica-
tion. The main concepts areshared/private rooms, applets, URLs, andusers. CBE uses a room
metaphor for organizing the activities of the users. Users can create rooms according to the ac-
tivities they want to be involved in. The window to the top-left corner in Figure3.10 is a room
navigator. All the existing rooms are shown in this window. There are two types of rooms, private
and shared. For each user who logs into the system, a private room is created automatically. Other
users cannot enter a user’s private room, but are made aware of its existence. In this way all users
have an overview of who is currently logged into the system. Users can send messages to a private
room, which will be displayed to the owner of the room. For shared rooms it is possible to view
who is currently inside a room by clicking on the name of the room.

12Data collection instruments are radars that are located in Sondrestrom in Greenland, Tromsø in Norway, Millstone
Hill in Massachusetts, USA, and Saskatoon, Kapuskasing, and GooseBay in Canada. However, researchers consuming the
data collected by these radars (i.e. the users of UARC) are in a number of different universities around the world.



3.4. SYSTEMS FOR COOPERATIVE PRODUCT DEVELOPMENT 71

Figure 3.10:The user interface of a CBE collaboratory.

Cooperation in CBE is supported by real-time sharing of windows. A room may contain an
arbitrary number of applets and URLs. Applets are CBE-specific single-window applications. In
the context of scientific research, an applet is normally an application for viewing or analyzing
large amounts of data. In product development, an applet might be a graphical editor or a pro-
gramming tool. Each applet runs in its own window, and is shared in real-time among all the users
in a shared room. Sharing means that the contents of the applet are synchronized in real time on
the screens of all the users in the room containing the applet. In addition, each applet provides
a telepointer (shared mouse pointer) to each user, which can be used to simulate the user’s ges-
tures. All the URLs in a room are shared, but shared browsing of the objects they refer to is not
supported.

Applets can be moved back and forth between private and shared rooms. For any applet in
a shared room, the user can easily move the applet back to his private room. After the applet is
moved to the private room, the user’s actions regarding the applet will not be visible to the other
users in the shared room13. For the other users in the shared room this move will not make any
difference, i.e. the original applet will still be shared in the shared room. In the same way, an

13Technically this means that a new copy of the applet is created which is not shared by the other users.



72 CHAPTER 3. STATE OF THE ART

applet in a private room can be moved into a shared room14.
Communication among the users in a shared room is supported by the integrated chat tool

which allows the users to send text messages to each other. In addition, specialized communication
applets can be imported into a room to allow for more advanced communication.

CBE has many useful aspects. Maybe the strongest aspect is the flexibility in switching be-
tween private and group work. A user can easily move an applet back and forth between a shared
room and his private room15. Another strong point is that already-existing single-user applets can
be made multi-user by sharing them in a room. However this requires that these applications are
written in Java (which is the programming language used to implement CBE) and their source
code is available for modification. Also, CBE is implemented to be used on the Internet, and can
be accessed through a Java-enabled browser. CBE uses advanced object-sharing and data manage-
ment technology for keeping the different replicas of the applets consistent in a chaotic Internet
environment with varying quality of service (seePrakash, Shim and Lee1999, for an overview of
the technical merits of CBE.).

Evaluation– From a product development point of view, CBE is interesting because it is de-
signed to support scientists in accessing large amounts of data. As we have seen in Chapter2, this
feature is also of central importance for product development projects dealing with large products.
The solution that is chosen in CBE is to integrate existing domain-oriented data processing tools
into a cooperation support environment (i.e. a shared window system), rather than developing
these tools within the system. An applet in a room can be a complicated data visualization tool
that is shared among the inhabitants of the room. This can be seen as a strong point because a
weakness of cooperation technologies is that they often do not provide advanced domain-oriented
support. However, this approach has the disadvantage that CBE does not support the concept of
shared interaction in the large. A shared product space is considered as “external” to CBE, only to
be accessed through the domain-oriented tools of the users. The consequence is for instance that
the same data can be manipulated by the inhabitants of two different rooms only if the specific
applets that are used for modifying the data are capable of concurrent access to data. This means
that CBE by itself does not provide any support for shared access to a product unless within the
same shared room. Rather, CBE can be seen as a “session manager,” used for keeping track of the
created rooms and the objects within each room, and for keeping consistent the different replicas
of the applets that are shared within a room16. This means that CBE by itself (without the exter-
nal domain-oriented tools) does not support any of our requirements for interacting with a large
product.

From a center of interaction perspective, CBE supports focused work by an explicit emphasis
on rooms containing people and objects. The contents of a room can be changed in an ad hoc
manner. Users and applets can easily enter and leave a shared room. Communication in each

14This flexible window sharing mechanism is provided by the underlying object-sharing toolkit called DistView (Prakash
and Shim1994), which allows for sharing of applets and provides telepointers for each applet. DistView enables the sharing
of applets that are initially single-user, though some changes to the code of the single-user applet is necessary.

15Though the metaphors can be somehow confusing for new users. For instance, moving an applet out of a shared room
creates a new copy of the applet. This means that when the applet is moved back to the shared room it will be a completely
new applet seen from the other users’ points of view. In a face-to-face situation, moving a document out of a meeting room
will normally remove that document from the meeting room, and returning the document will not create a new copy of it.

16In fact, the central concept in CBE is that of anapplet group, i.e. a group of applet replicas that have to be kept
consistent. The consistency is guaranteed through a notification server called Corona (Shim, Hall, Prakash and Jahanian
1997)



3.4. SYSTEMS FOR COOPERATIVE PRODUCT DEVELOPMENT 73

room is supported by an integrated chat tool, and any other “communication applet” that might
be in the room. Inhabitants are made aware of each other through a window showing their names
and email addresses. Interaction with data, and in particular customization of data in a center of
interaction is allowed only if the specific applets used in the room allow it. Sharing is on a window-
based WYSIWIS basis, i.e. all the users see exactly the same information in each window, but
they can re-arrange the windows on their desktop independently from others. Overall view of
work is visualized in the room navigator as a list of the existing rooms. There are no relations
among either rooms or data.

TeamWave

TeamWave is the commercial successor of TeamRooms (Roseman and Greenberg1996), initially
developed as a research prototype at the University of Calgary, Canada. TeamWave is a shared
workspace application based on the room metaphor. TeamWave is agenericshared workspace
application. This means that TeamWave is not developed to support a specific domain. TeamWave
is a tool that can be used for supporting a wide range of cooperative activities that can happen in a
normal meeting room. The user interface of a TeamWave client is shown in Figure3.11. Central
concepts of TeamWave areusers, rooms, andtools. Users create rooms, and place different types
of tools in each room. A room in TeamWave is a two-dimensional surface. In Figure3.11, the
large white surface is a room that contains a number of tools.

A room in TeamWave can be used as a shared desktop where the users can leave tools and
artifacts of different types, or use the surface for annotations and sketching. The toolbar to the left
contains different tools for drawing freehand sketches on the surface of the room. In addition, a
collection of simple tools, including file holders, URL references, concept maps, address books,
post-it notes, to-do lists, and voting tools are provided. The default tools in TeamWave are mainly
simulations of tools that are used in conventional meeting rooms. TeamWave also provides a
programming interface for developing new tools, for instance domain-specific tools. Tools in
TeamWave are in form of objects that can be left on the desktop and shared with others. All the
changes to the surface of a room, including changes to the tools, are replicated in real time to all
the users in the room.

Users can create new rooms and doors between any two rooms. Clicking on a door will take
the user to another room. A room navigator window on the top-left corner (see Figure3.11) shows
an overview of all the existing rooms together with the name of the current users in each of them.
Users can enter a room by clicking on the name of that room. The list of the rooms in the room
navigator can be sorted chronologically. Grouping of the rooms in the room navigator is however
not possible.

A room can be “inhabited” by a single user or simultaneously by several users. The contents
of a room, i.e. tools and artifacts left there by the users, are shared in real-time among all the users
inhabiting the room. TeamWave allows the users in the same room to be aware of each other in a
number of different ways. The window above the room navigator in Figure3.11(top-left corner)
shows a list of all the users currently in the room. This list can be augmented by a small portrait
of each user. By clicking on a portrait one can send email or instant text message to that user. The
list of users is updated as users enter and leave a room. The window on top-right corner shows
status information about other users in the room, and also indicates their level of activity, i.e. if
they are active, and if not how long they have been idle. There are two other important information
about the users in a room. Atelepointer(a special mouse pointer) is given to each user, and the



74 CHAPTER 3. STATE OF THE ART

Figure 3.11:The user interface of a TeamWave client.

movements of each telepointer are visible to all the other users in the room. Each user’s initials
are written on his telepointer, in this way allowing others to identify the user easily. Telepointers
are the main gesturing tool within a room.

The other important information is about the location of the users in a room. TeamWave
follows a relaxed WYSIWIS (Lauwers and Lantz1990) approach. This means that not all the
users need to see exactly the same view of the room. A room is typically much larger than what
can be viewed on the screen, and each user can be in a different corner of the room. The small
window on down-left corner is aradar view(Gutwin et al.1996) of the current room, showing the
location of each user in form of a rectangle. The users’ telepointers are also shown in this radar
view, which can be used as an indication of activity levels. As users “move” within a room, their
associated rectangle also moves to indicate their new location in the room. Both telepointers and
the rectangles in the radar view assign a separate color to each user.

Direct communication in a TeamWave room is supported by a chat tool (the lower-most win-
dow). A “pager” tool is available for direct communication among any two users.



3.4. SYSTEMS FOR COOPERATIVE PRODUCT DEVELOPMENT 75

Evaluation– The strong aspect of TeamWave is the advanced interaction mechanisms provided
within a room. Combined with an audio connection, the users can be involved in a rich and
dynamic interaction. This is mainly thanks to the advanced shared workspace awareness mecha-
nisms and the groupware widgets provided within a room (Greenberg and Roseman1999, Gutwin
et al.1996). Virtually any activity in a room is visible to all the other users in the room in real
time. A TeamWave room can be used for holding interactive design meetings. The tools provided
in the room such as telepointers, brainstorm and voting tools, free-hand sketching tools, etc. can
be used to support interactive meetings. TeamWave in this way supports the ad hoc creation of
advanced centers of interaction that combine users, objects and communication, and that support
the interaction through a spatial medium.

However, seen from a product development point of view, TeamWave is weak in supporting
shared interaction in large shared spaces. Although visibility is supported to a high degree within
a room, it is almost non-existent across the rooms. In order to know what is happening within a
room a user has to be inside that room. In addition, a user is not allowed to be in more than one
room. These limitations were also reported in a study of a group of developers using TeamWave
for requirements engineering (Herlea and Greenberg1998), where the different groups involved in
the task had to divide the task into activities to be performed within different rooms. In this study,
although the rooms where the developers resided were connected through doors, and a common
foyer was provided for plenary discussions, the level of isolation caused problems for the overall
task of requirements engineering. In particular, objects within one room (such as documents and
other data objects) were not accessible in other rooms unless they were moved or copied to those
rooms. This indicates that TeamWave does not support the concept of a shared product space.

From an integration perspective, TeamWave is again quite weak. The only interface to the
system is through the TeamWave client shown in Figure3.11. TeamWave is written in Tcl, which
also makes it difficult to run the client directly from a WWW browser.

Orbit Gold

Orbit Gold (Mansfield et al.1999), and its predecessors Orbit Mercury, Orbit Light, and WORLDS,
are all cooperation support systems that are based on thelocales frameworkfor CSCW system de-
sign (Fitzpatrick, Mansfield and Kaplan1996), influenced by the work of sociologists Anslem
Strauss and Antony Giddens. All these systems (and the locales framework itself) are devel-
oped at the university of Queensland, Australia. Here we discuss Orbit Gold. However, a short
introduction to the main concepts of the locales framework is given first (based onFitzpatrick
et al.1996).

Maybe the most distinct feature of the locales framework, compared to the room-based sys-
tems we have seen so far, is the abandoning of “space” as the basis for supporting cooperation.
The spatial metaphor is seen as limiting because the virtual world is as much conceptual as it is
physical. For instance, a group of people can cooperate in performing a task regardless of the ge-
ographical location of the members. It is the concept of a “common task” that binds the members
together, not that of a meeting room. In the real world, people live insocial worlds, i.e. “a group
of people bonded by a common, sometimes implicit, goal.” Membership in social worlds can be
considered along dimensions such as size, duration, and the formality of the membership. The
notion of alocale is introduced, instead of space, as the “site and means” of shared interaction
in social worlds: “A locale is not simply the environment in which interaction occurs but it is the
environment as part of the interaction. Hence, we purposely use the term locale to move the fo-



76 CHAPTER 3. STATE OF THE ART

cus away from space itself to capture some of the purpose for which space is used” (Fitzpatrick
et al. 1996, p.35)17. This means that a locale is independent of any domain-specific instances,
such as physical space. For instance, a task can be performed both in a meeting room and through
telephone calls. Here, both the meeting room and the telephone calls are examples of locales.
According toFitzpatrick et al.(1996), the reason why space has been used so often as a metaphor
for supporting cooperation is because it is so obvious. We all live in space and interact within
space. However, space is not so meaningful in the virtual world, where moving “can occur via a
simple mouse click or a command.”18. For this reason, a locale is seen as consisting of acentre
rather than aboundary. A center allows varying levels of membership ranging from core to pe-
ripheral, while a person can only be either within or outside a boundary. In addition to the notion
of a locale, the locale framework supports the notion of presence and awareness (in combination
calledmutuality), and individual views over multiple locales. A person is often involved in many
social worlds, where involvement in each of these worlds migh have different intensity. A person
has thus a view of all the locales he involved in, with an intensity that is specific to that person.

Orbit Gold (hereafter called Orbit) is a system based on the notion of locales. A locale is a
“conceptual center” created for performing a task. Each locale has a number of members and a
collection of objects associated to it. As opposed to a room in TeamWave, a locale does not have
any notion of physical space or spatial relations. A user is allowed to be a member of several
locales concurrently. The user interface of an Orbit client is shown in Figure3.12. A list of all the
locales that a user is a member of are shown in the locale navigator window (the “Orbit navigator”
window to the left in Figure3.12). The larger window to the right is the private workspace of the
user. The icons on the workspace denote a selection of objects belonging to the different locales
the user is a member of. As indicated in the figure using circles and arrows, each group of objects
belong to a specific locale. Objects can be documents, source code, etc. For each locale, the user
can decide what objects from that locale are to be displayed in the private workspace. All the
objects from the same locale are shown with the same color in order to separate them from each
other. The user can in addition arrange the objects into groups according to the locales they belong
to (this is the only notion of spatial relations used in Orbit). The workspace is in this way tailored
to the needs of its user.

The contents of the objects are not stored within Orbit, but reside in external repositories or on
the Internet. The processing of the contents of the objects is neither handled by Orbit, but by helper
applications from the user’s desktop. Orbit supports access to several types of repositories, which
allows the users to use their familiar objects from these repositories. This makes it also possible
to reuse the same object in different locales. When an object is accessed by a user, notifications
are sent to all the members of the locale the object belongs to.

A locale is a centre shared by all its members. Each member can be involved in the locale
with varying intensities. The intensity of a user’s membership in a locale can be changed in the
locale navigator window by choosing among high, medium, and low intensity, and by turning on
and off video and audio connections. For instance, if a user is currently focused on the locale
called “power supply” (the lower most locale in the locale navigator window in Figure3.12) the

17This is very similar to the distinction made byHarrison and Dourish(1996) between “space” and “place.” According
to their definition, space is independent from its use as a place for performing some activity. For instance, a meeting room
can be used for holding a variety of meeting types, or for having a Christmas party.

18This is highly relevant to product development, because a product is a conceptual and not a spatial construct. “Dis-
tances” between modules in a software system are not spatial. In fact, as we have seen in Chapter2, these distances are
often socially and organizationally determined.



3.4. SYSTEMS FOR COOPERATIVE PRODUCT DEVELOPMENT 77

Figure 3.12:The user interface of an Orbit Gold client, with navigator (to the left) and workspace
windows.

intensity of membership in this locale can be increased by turning on video and audio. In this way,
the user shows his presence and “readiness” for cooperation with the other members of the locale.
This will allow the other members, who might also be intensively working in the same locale, to
start communicating with the user through audio and video. In this way, Orbit allows a range of
“cooperation intensities” from pure asynchronous to total synchronous. For instance, if all the
members of a locale increase their membership intensity to high, they can start having a meeting.
However, it is not clear how a user who is not currently focusing on a locale is made aware of
another user’s increased focus on that locale. This would be useful for supporting opportunistic
interaction.

Evaluation– Orbit demonstrates only a subset of the ideas from the locales framework. Since we
are evaluating specific systems, our evaluation here will necessarily be based on the functionality
of Orbit as a system by its own and not of the locales framework.

From a shared product space perspective, Orbit integrates different third-party repositories, but
does not store any objects internally. When an object belonging to a locale is changed, notifications
are sent to the members of that locale only. This has the same isolating effect as TeamWave, and
can be problematic for large groups working with large composite products. Orbit creates a space
that is shared only among the members of the same locale. This means that Orbit will not support
a large group interacting with a large product.

Orbit takes a novel approach to supporting centers of interaction. A locale corresponds to a
center of interaction. The strong aspects of Orbit regarding centers of interaction is that it allows



78 CHAPTER 3. STATE OF THE ART

a (near) continuous involvement intensity in several locales. A user can be working intensively in
one locale, and still be aware of what is happening in the other locales. This is a strong improve-
ment compared to for instance TeamWave, where a user is either inside or outside one single room.
However, interaction in a locale is not supported as well as for instance TeamWave. Users have
access to audio and video for communication and awareness of others. It is reported byMansfield
et al.(1999) that Habanero, a toolkit for sharing windows, is integrated in Orbit. This can strongly
increase the support for rich interaction within a center of interaction through the integration of
Habanero tools such as chat and application sharing.

3.4.4 A comparison of the studied systems

Table3.3shows an overview of how each of the studied tools supports the requirements of Chap-
ter2. The support for each requirement has been evaluated to be either high, medium, or low for
each tool. What we see is a clear division into two types of tools.

Genuine product development tools, i.e. CM tools, MetaEdit+ and TDE, are good at providing
a space for the product, and for allowing a potentially large group of developers to interact with
this product. All three tools provide a central repository where product objects can be stored.
They also support relations among different parts of a large product. Along with the product space
comes often methods for customizing the interaction to some degree. For instance, both MetaEdit+
and TDE allows the users to create ad hoc diagrams or workbooks. CM tools often provide
multiple user interfaces that allow the users to integrate CM functionality into their desktop tools.
CM tools and MetaEdit+ have no support for creating centers of interaction where many people
can participate in the performance of a task. However, TDE workbooks can be shared by many
developers, and in this way provide support for centers of interaction.

The four shared workspace applications show a clearly different functionality. All of them are
specialized in supporting small groups of workers. For this they provide support for creating so-
phisticated centers of interaction, with mechanisms for supporting rich interaction within a center
of interaction. However, none of the tools support the notion of a central product that has to be
shared among many developers, possibly through a large number of centers of interaction. One
major disadvantage is that the different workspaces are often isolated from each other. This is
problematic for product development because a product often consists of complex relationships
among its different parts. As we saw in the case of TeamWave, not being able to connect several
workspaces together poses serious limitations on cooperation involving a large product.

Table 3.3: Overview of which systems support what requirements to
what degree.

Req.
ID

Requirement
description

CM
tools

Meta-
Edit+

TDE BSCW CBE Team-
Wave

Orbit
Gold

REQ.1 Shared product
space

medium high high medium low low low

REQ.2 Flexible access
to the product

high low high medium low low medium

Continued on next page



3.4. SYSTEMS FOR COOPERATIVE PRODUCT DEVELOPMENT 79

Continued from previous page
Req.
ID

Requirement
description

CM
tools

Meta-
Edit+

TDE BSCW CBE Team-
Wave

Orbit
Gold

REQ.3 Unrestricted
product object
types

high medium high high medium medium high

REQ.4 Unrestricted
relation types

medium medium high low low low low

REQ.5 Incremental
product refine-
ment

medium medium high medium medium high medium

REQ.6 Support for
boundary
objects

low low medium medium low low low

REQ.7 Active delivery
of information

medium low low medium low low low

REQ.8 User-defined
information
delivery

medium low low medium low low low

REQ.9 Representation
of developers

medium medium medium high high high high

REQ.
10

Centers of in-
teraction

low low medium medium high high high

REQ.
11

Emergent cre-
ation of centers
of interaction

low low high high high high high

REQ.
12

Emergent
boundaries
for centers of
interaction

low low medium medium medium medium high

REQ.
13

Dynamic and
rich interaction
in centers of
interaction

low low medium medium high high high

REQ.
14

Local cus-
tomization of
contents

medium medium medium high medium low medium

REQ.
15

Multiple user
interfaces

high low low high low low low

REQ.
16

Tailored func-
tionality

high low low high low low low

REQ.
17

Support for op-
potunistic com-
munication

medium low medium medium medium medium medium



80 CHAPTER 3. STATE OF THE ART

3.5 Summary

In this chapter we have investigated some existing technologies that we believe have the potential
for supporting geographically distributed product development projects. We reviewed some sys-
tems that are specifically designed for supporting product development. We have also looked at
some shared workspace applications that are designed to support cooperation in distributed teams
in general. Our study shows that there is a separation of concerns between these two groups of
technologies. Product development tools support the creation of a large composite product, and
allow global access to this product. Shared workspace applications on the other hand have a weak
notion of a large composite product, but are good at supporting cooperation in small groups. As we
have seen in Chapter2, for supporting geographically distributed product development teams we
need both types of support. We need tools that allow the creation and access to a central composite
product, and at the same time support cooperation within and across centers of interaction. In the
next section we will review the underlying cooperation models used in some of the investigated
tools, and we will develop a new model for product-based shared interaction. This model will be
used later as the basis for IGLOO framework. IGLOO framework solves some of the problems of
the investigated systems.



Chapter 4

A Model for Shared Interaction in
Product Development

4.1 Introduction

In this chapter we will discuss the concept ofshared interaction, and we will explain how shared
interaction can be used to support cooperation in dispersed groups. We will review some shared
interaction models that are used in existing cooperation technologies, and will evaluate them ac-
cording to the requirements for collaboration support in product development groups. Based on
this evaluation we will develop a shared interaction model for supporting product development.

4.2 Shared Interaction: A Definition

Shared interaction is, for a group of people, to be able to interact with each other and with the
subject of their work, i.e. the artifacts that they are using or producing. Shared interaction is
interaction within a shared context. As opposed to individuals interacting with their private field
of work, shared interaction must be visible to a group of individuals. Developing a product is an
example of shared interaction. A group of developers share a set of artifacts, tools, information,
etc. They interact with these artifacts and with each other in a public manner, i.e. in a way that
the interactions are visible to the other group members. Interdependencies make it necessary
that changes to these artifacts, tools, information, etc. are made visible to the involved people.
Cooperation depends on shared interaction. A group of developers cannot cooperate if they are
only involved in interactions that are not visible to others.

Probably the most common form of shared interaction is being within the same room with
others. A group of people in a meeting room are engaged in shared interaction because they can
see each other, they can see what the others are doing in the room, they can see the changes to the
artifacts in the room, and they can themselves access and change the artifacts. In this way shared
interaction creates a basis that supports cooperation among the meeting participants. An example



82 CHAPTER 4. A MODEL FOR SHARED INTERACTION

of shared interaction in a larger scale happens among the members of an organization. People in
an organization share a view of the organization, e.g. which departments exist, who works where,
who has power, who works with whom, etc. Efficient operation of an organization depends among
other things on providing the basis for shared interaction among its members.

Shared interaction happens within ashared space. The shared space contains the people and
the artifacts that are involved in shared interaction. In a meeting room, the shared space consists
of the meeting participants and the artifacts within the room. In an organization, the shared space
consists of people, processes, procedures, organizational maps, artifacts, etc. A shared space can
take on differentstructures. The structure of a meeting room is spatial, meaning that the artifacts
are located in spatial positions and have spatial relations among themselves. The shared space
within an organization has an organizational structure, representing organizational boundaries,
relations, norms, etc. In addition to having different structures, shared spaces have varyingsize.
In a meeting room, the shared space is small enough for its contents to be fully perceived and
understood by an individual. In an organization the shared space will typically be much larger
than what any individual can keep an overview of. Moreover, theboundariesof a shared space are
often not defined well. This is in particular visible in shared spaces that have a more conceptual
nature. For instance, while it is easy to point out the boundaries of a meeting room, it is not clear
where the boundaries of an organization reside.

The contents of a shared space undergo changes, and there is a need for the involved people
to keep up-to-date. In a meeting room, people move around and artifacts get moved around by
people, people enter and leave the room, bring to the room new artifacts and remove artifacts
from the room, etc. The participants need to keep updated about the changes in the meeting room
in order to be able to cooperate with each other. In a similar vein, cooperation among people
in an organization depends on how up-to-date they are with regard to the shared state of the
organization. The phenomenon of perceiving the changes and understanding their consequences
is calledawareness.

Shared interaction thus involves access to two types of information.State informationis in-
formation about the contents of the shared space (i.e. what is in the shared space that might
be of interest to me), whileawareness informationis information about changes to the shared
space (i.e. what is going on in the shared space that might be of interest to me). In many cases,
information in the shared space (both state and awareness information) is much larger than what
any individual can understand and keep track of.Shared interaction modelsare developed in or-
der to estimate the information needs of groups involved in shared interaction within large shared
spaces. A shared interaction model (dynamically) structures the shared space according to differ-
ent criteria (i.e. who might need what information), and facilitates access to state and awareness
information based on the needs of the users. A shared interaction model uses differentheuristics
in order to estimate what information (both state and awareness) will be needed by each user or
group of users.

Shared interaction is a prerequisite for communication and cooperation. Shared interaction as
defined here does not restrict the way people can cooperate with each other (i.e. the process of
cooperation) but provides a basis on which different cooperation processes can be built. Shared
interaction can be used for providing the information basis for cooperation without enforcing any
specific style of cooperation. As we saw in Chapter2, the processes of product development are
highly flexible with a large amount of uncertainty involved. We argued there that a support system
should not predefine how people should work. This fits well with the concept of shared interaction.



4.3. ELEMENTS OF A SHARED INTERACTION MODEL 83

Of course there is always a possibility that a shared interaction model will not be able to estimate
the information needs of its users in an optimal way. A precondition should therefore be that
shared interaction models are built based on empirical evidence of how people really work, and
that systems implementing specific shared interaction models are flexible and adaptive.

Our interest is in particular related to computer-based shared interaction models. We saw in
Chapter2 that lack of visibility of work was one of the biggest problems facing ALPHA. In the
case of ALPHA, the shared space (i.e. the developers, the shared product, and the developers’
activities related to the shared product) was divided into isolated sub-spaces according to the ge-
ographical distribution of the project team. For instance, a part of the product being developed
by one site was not visible to the developers in the other sites. A computerized shared interaction
model can connect these isolated sub-spaces using avirtual shared space, in this way increas-
ing the visibility of work by giving access to both state and awareness information regardless of
geographical barriers.

4.3 Elements of a Shared Interaction Model

In this section we will look closer into the elements of a shared interaction model. We will see how
a shared space is created and what constitutes it. We will look at different ways of structuring large
shared spaces. We will describe the processes of awareness involved in shared interaction that
must be supported by a shared interaction model. We will in particular focus on the challenging
aspects of developing a computer-based model of shared interaction.

4.3.1 The shared space

The shared space is thewhat of shared interaction. It relates to the question: “What do we need
to share in order to be able to cooperate efficiently?” The shared space might consist of artifacts,
people, organizational facts, processes, etc. In ALPHA, for instance, the shared space consisted of
the developers and the artifacts (e.g. prototypes, notes, source code files, documents, tools, etc.)
that the developers were using in their shared interaction. Such a shared space is a resource for
shared interaction.

We adoptRodden’s (1996) definition of shared space: “a collection of objects shared by a
number of users.” In this definition, the users themselves are represented as objects contained
within the space. This definition of space makes use of thecontainment propertyof space1, i.e.
for an object to be shared it has to be contained, orembodiedin the shared space2 (Benford,
Bowers, Fahĺen, Greenhalgh and Snowdon1995). In case of a computer-based interaction model,
being embodied might mean that the object isrepresentedin the shared space using a number of
attributes, instead of actually being “inside” the space3. The embodiment information for each
object is used (by the shared interaction model) topositionthe object in the shared space. While
embodiment information itself is a property of the object, positioning an object within the space

1Physical space has additional properties that are not included in our use of the term space. See (Harrison and Dourish
1996) and (Benford, Bowers, Fahlén, Mariani and Rodden1994) for a discussion of other properties of space.

2Embodiment here does not refer to “body” as opposed to “mind.” The term is used in this thesis in a neutral way for
denoting containment of any sort in a space.

3This is because both people and a large number of artifacts that are used as resources for cooperation are physical, and
exist in the physical world. See Chapter2 for a discussion of the importance of physical objects for product development
groups.



84 CHAPTER 4. A MODEL FOR SHARED INTERACTION

happens in relation to other objects or an observer (e.g. a user). Positioning of objects in a shared
space decides thestructureof the space.

Positioning objects in a shared space is a critical task for a shared interaction model. The way
the objects in the shared space are positioned in relation to each other or to a user (e.g. “close
to” or “far away from” him) often decides how the contents of the space can be accessed. In
large shared spaces containing complex objects it is often not an easy task to choose the proper
positioningheuristics. Benford et al.(1994) have recognized four approaches to structuring what
they call “Populated Information Terrains” (PITS):

1. The shared interaction model uses explicitly provided properties of objects as embodiment
information for positioning them in the space. The attributes are divided into two groups,
following Benedikt’s (1992) definition of space.Extrinsicproperties specify locations in the
space, whileintrinsic properties specify characteristics of the objects, such as their color.
This approach is used for instance in virtual reality systems.

2. The shared interaction model uses statistical methods to analyze large collections of data in
an attempt to cluster objects according to some measure of “semantic closeness.” This is
normally done in spaces containing document collections.

3. The shared interaction model uses explicitly provided links or relations between objects in
order to position them in the shared space. An example is the WWW.

4. The shared interaction model uses ad hoc user input in order to structure the space. An
example is the organization of files and folders in the desktop metaphor.

The first approach is usable in cases where the shared interaction model has access to well-
structured and ordered data. An example is thespatial model of interaction(Benford and Fahlén
1993). This model is based on ethnographical studies of people using a physical space as a re-
source for cooperation (Benford et al.1994). According to this model, objects are embodied in a
virtual N-dimensional space using a set of co-ordinates computed based on a spatial frame. In this
case embodiment information (i.e. the co-ordinates of the objects) is explicitly provided by the
objects, and positioning information (i.e. the distances among the objects) is easily computable by
the shared interaction model because a space is defined through “spatial metrics”: “well-defined
ways of measuring position and direction across a set of dimensions.” (Benford et al.1994, p.656).
This is shown in Figure4.1. This figure illustrates a two-dimensional space where objects and
users are embodied using X and Y co-ordinates provided in relation to a shared frame [i.e. the
point with co-ordinates (0,0)]. The shared interaction model can in this case position user U close
to objects A and C and far from object B (where “being close to” means the user can easily ap-
proach or access the objects). It is important here to note the division of responsibilities between
the objects and the shared interaction model. The responsibility of the objects (including the users)
is to register and regularly update their embodiment information. The responsibility of the shared
interaction model is to position the objects in the space (e.g. giving user U access to objects A and
C and preventing access to object B).

In most cases it will not be easy for the objects to provide the right embodiment information,
or for the shared interaction model to find the right heuristics for positioning the objects. As an
example consider a shared space consisting of a collection of documents constituting the docu-
mentation of a computer system. In this case, pure spatial positioning will position the documents
in the space without any meaningful structure (similar to accidentally spreading the documents on



4.3. ELEMENTS OF A SHARED INTERACTION MODEL 85

A(xa,ya)

B(xb,yb)

C(xc,yc)

Y

X

U(xu,yu)

(0,0)

Figure 4.1:Spatial frames, embodiment and positions in a spatial model of interaction.

a desk). For the programmers of the computer system, however, the documents have meaningful
relations to each other. They are often placed on the desk reflecting these relations. The other
three approaches to structuring shared spaces are suited for such cases.

The second approach (using statistical positioning) is particularly suited for unstructured, often
highly textual information spaces. In these cases the relations among the objects are not known to
the users, or are difficult to specify in a formal way. In the above example, a model based on this
approach will typically analyze the contents of the documents, and will position the documents
on the programmers’ desk according to “probabilistic distances” among their contents. In this
approach the objects themselves provide too little meaningful embodiment information that can be
used as a basis for positioning them in the space. The main responsibility of the shared interaction
model is therefore to find the right embodiment information and to use the right algorithm to
position the objects in the space.

The third approach requires that the relations among the objects in the space are made explicit.
An example can be a user manual for a large computer system. In this case, the chapters and
the sections of the manual are already structured in a predefined way. This approach puts less
responsibility on the shared interaction model and more responsibility on the objects in the shared
space. Although the objects may not have registered the right embodiment information, they have
already specified how they should be positioned in the shared space in relation to each other.

The fourth approach (ad hoc structuring) is suited for shared spaces where not only the rela-
tions among the objects are unknown, but also the information needs of the users are uncertain.
An example can be a shared space containing the requirements for a computer system under de-
velopment. In this case the shared interaction model has too little information (both embodiment
information and predefined heuristics) for deciding how to structure the shared space. The objects
themselves take the main responsibility for structuring the space, and this structuring happens in



86 CHAPTER 4. A MODEL FOR SHARED INTERACTION

an ad hoc manner often with frequent changes.
There are different trade-offs among these four approaches. These trade-offs are mainly related

to two issues:

• The amount of “meaningful” embodiment information that a shared interaction model has
available for positioning the objects in the shared space: This information is either provided
by the objects themselves, such as in the spatial model (which means more overhead work
for the objects) or computed by the model, such as in the probabilistic approach (which
means more complicated models, and most probably less accurate embodiment information
seen from users’ perspective).

• The type of heuristics used for positioning the objects in the space: These heuristics can
again be totally provided by the objects themselves, such as in the case of ad hoc structur-
ing (with more overhead work for the objects) or be implemented by the model, such as in
the case of spatial models (with less flexibility regarding different contexts of use).

The problem of positioning objects in a shared space is not only related to the technicalities of
providing the right embodiment information and using the right positioning heuristics. There is
also a problem of multiple representations and understandings of the same object. In the majority
of shared interaction models, and in cooperation technologies built based on these models, artifacts
are represented in an objective form. For instance, in the spatial model of interaction, objects
are represented using objective embodiment information such as spatial co-ordinates (i.e. once
the common frame and the metrics are defined, all objects have well-defined co-ordinates). The
situation is more complex when objects can be viewed differently (subjectively) by different users.
A common example is that of vocabulary problems found in cooperation support systems, where
different terms are used by the users to denote the same concept (Chen1994).

Robinson and Bannon(1991) have discussed these representation problems specifically for
(conceptual) models used in software development. One of the problems discussed by them is
“ontological drift,” i.e. when different “semantic communities” perceive the same objects in dif-
ferent ways. Also in the discussion in Chapter2 we saw the importance of being able to view the
same object across different perspectives, i.e. as a boundary object. This makes the embodiment
of objects in a shared space problematic since one cannot predict what properties of the objects
are considered important in different situations by different people.

In addition, once we acknowledge that the same object can be viewed differently by different
users or groups of users, it follows that the positioning of the object in the space will be different
for different users or groups of users. This makes it difficult, if not impossible, to have a shared
interaction model that can always provide the right positioning of objects without any ad hoc user
input.

These problems are highly visible in product development processes. The uncertain nature
of the activities of the developers makes it difficult to provide the right embodiment information
or to use the right heuristics for positioning the objects in the shared space. The product and its
objects are under development, and change all the time. These changes include both change in
specific properties, in the interpretations of the developers, and in how objects relate to each other.
The same is true for the developers themselves, whose roles and competencies are changing as
the product objects change. Uncertainty in the course of the interactions that the developers are
involved in also makes it difficult to know what objects are needed when and by whom.



4.3. ELEMENTS OF A SHARED INTERACTION MODEL 87

4.3.2 Awareness

Awareness is concerned with thehow of shared interaction. It relates to the question: “How do
we keep aware of a shared state?” Awareness is knowledge about changes in a shared space. In
ALPHA, for instance, not only it was necessary to share the product objects, but also to shared
the knowledge about changes to these objects and other developers’ interactions with these ob-
jects. This knowledge was important for supporting cooperative learning, and coordination of
day-to-day activities. Awareness information is similar to state information, but differs from it in
important ways (Gutwin and Greenberg1999):

• Awareness must be constantly maintained and kept up-to-date because environments change
over time.

• The maintenance of awareness happens as part of the interaction with the environment.

• Awareness is almost always part of some other activity. Maintaining awareness is rarely the
primary goal of the activity.

There are three mainprocessesinvolved in achieving awareness in shared interaction. A basic
awareness process is that ofproducingawareness information. In a shared interaction model,
awareness information is produced as the embodiment information of the objects in the shared
space is changed. Anawareness eventis a unit of awareness information if we consider an object’s
embodiment information as being constituted of discrete units4. An awareness event is often
produced in a context that helps the receiver to observe the nature of the change, e.g. who did the
change, what objects were involved, etc. It is the continuous exchange of awareness information
that keeps the involved objects aware of the activities in the shared space.

Consumptionof awareness information is another important process that helps the objects in
a shared space make use of the produced awareness information. Consuming awareness infor-
mation includes three sub-processes (Endsley1995). Perceptionis the process of perceiving the
awareness events produced by the environment (here the shared space),comprehensionis the pro-
cess of understanding the meaning of the awareness information, andprojectionis the process of
predicting a future status for the environment based on the understood meaning of the awareness
information. More details on awareness production and consumption processes can be found in
(Gutwin and Greenberg1999).

A third process is that of awareness informationdistribution. For a shared interaction model,
an important issue is to provide the right awareness information to the right objects. In a small
space, such as a meeting room, it is not difficult to keep oneself up-to-date about all the changes
to the shared space. However, in large spaces the users will need only a limited amount of the
total awareness information that is produced within the space. In these cases the shared interac-
tion model is responsible for distributing the right awareness information to the right objects. In
many shared interaction models, this issue is solved by allowing the structure of the shared space
guide the distribution of the awareness information among the objects. In the spatial model of
interaction (Benford and Fahlén1993), objects embodied in the space carry their ownaura with
them. Auras are calculated by the shared interaction model (as part of the task of structuring the

4We consider here onlydiscreteawareness information. In many groupware applications, such as video communication
tools, awareness information is transferred through continuous streams of information (mainly vision and sound). These
applications do not support any configuration of awareness information, and therefore are only useful for very small groups
of people engaged in close cooperative tasks.



88 CHAPTER 4. A MODEL FOR SHARED INTERACTION

B

C

Y

X

U
A

U's aura
U's focus

Figure 4.2:Aura and focus in the spatial model ofBenford and Fahlén(1993).

space). An aura decides what awareness information is available to an object. Figure4.2shows a
user U in a two-dimensional space. U’s aura is in form of a circle (it can be any shape). U is able
to receive awareness information related to all the objects within his aura. U can further decide his
own focus, i.e. the part of the available awareness information he is interested in. In Figure4.2, U
has chosen to focus on object A and disregard object C, which is also within U’s aura.

The spatial model simulates the awareness processes that take place in a physical space, where
awareness information is related to spatial relations among objects (e.g. I cannot see objects
moving in a distance from me). In a large shared space it might as well be the conceptual relations
that are of importance. In case of ALPHA we saw that relations among objects in a shared space
are more based on factors such as the conceptual architecture of the product being developed, or
social relations among the developers. Spatial relations were of marginal importance for ALPHA.
This problem is similar to that of structuring a shared space based on other heuristics than spatial
relations. In the previous section we reviewed four approaches to structuring shared spaces, which
are also recognizable for the distribution of awareness information.

However, using the same approaches does not mean that awareness information needs always
be distributed according to the structure of the space. It is completely feasible, and in many cases
necessary, to distinguish between the structure of the space and the scope of awareness information
one receives about the space. An example isperipheral awareness, i.e. awareness of the part of
our surroundings that is not completely in our focus. As also observed bySimone and Bandini
(forthcoming), peripheral awareness can be about parts of the shared space that are not at all
related to what we are currently focusing on. It is for instance quite normal to be aware of what
is happening outside a meeting room (through hearing voices) while being involved in a meeting
inside the meeting room. Put bySimone and Bandini:”it is not always the case that focus fully
dictates the peripheral attention.” This means that the distribution of awareness information needs



4.4. A COMPARISON OF SOME EXISTING MODELS 89

to be separated to some degree from the structure of the space.

4.3.3 Support for cooperation

Shared interaction involves additional activities on part of the users, such as communication, co-
operation, and coordination. For instance, in order to comprehend a shared situation, the users
need to have a shared mental model of that situation (otherwise they may interpret the same sit-
uation in different ways, with resulting different decisions for action). This shared mental model
is often achieved by communication among the users. For solving complex problems, additional
group processes such as decision making may be needed. In larger groups, communication and
cooperation among a few people gives way to large scale “articulation” or coordination of commu-
nication and cooperation (Schmidt and Bannon1992). Although these processes are not directly
related to a shared interaction model as defined here, a shared interaction model should have a
level of flexibility that allow the users to be engaged in different courses of interaction based on
the information provided by the model.

4.4 A Comparison of Some Existing Models

In this section we will take a look at some existing shared interaction models. We will see how
these different models are implemented in form of systems, and how they function from a user
perspective. The term shared interaction model as we have defined it in this chapter is not ex-
plicitly identifiable in many collaboration technologies. But as we will see here, it is quite easy
to find some notion of a shared space, heuristics for structuring the shared space, and means for
embodiment of the objects in the space in all these technologies. The models we review here are
used as basis for the collaboration technologies we have reviewed in Chapter3.

We will evaluate the models according to the definition of shared interaction and its elements
as defined in Section4.3. In short, we will investigate the following points for each model:

• What kind of objects can be embodied in the space? What type of embodiment information
is available to the shared interaction model?

• What is the size of the shared space? What kind of heuristics are used for structuring the
space?

• How is awareness generated? What is the amount of generated awareness information?
What is the type of awareness information that is available to the users?

• What kind of structuring is used for distributing awareness information? Can the model
support awareness in a large shared space?

• What type of cooperation is supported by the shared interaction model?

In particular, awareness support is compared along the two dimensions shown in Figure4.3.
The first dimension focuses on thequantityof the exchanged awareness information. This quantity
is decided by the kind of embodiment information that is available to the model. Larger amounts
of embodiment information must be available to the shared interaction model if large quantities of
awareness information are needed. The second dimension is the level of support fororganizational



90 CHAPTER 4. A MODEL FOR SHARED INTERACTION

Amount of awareness information

S
u

p
p

o
rt fo

r o
rg

an
izatio

n
al aw

aren
ess

Product
development
environments

Media rooms

Room-based model
of interaction

Spatial model of
interaction

Locale model of
interaction

Face-to-face
interaction

DBMS

Figure 4.3:A comparison of awareness support in different systems.

awarenessprovided by the model. By organizational awareness we mean awareness of the overall
organization of the shared interaction, and how users can access this information. Factors that
increase organizational awareness are the size of the shared space, the way the shared space is
structured, and the way awareness information is distributed to the users of the shared interaction
model.

As a reference point for our comparison we consider face-to-face interactions (see Figure4.3).
In a meeting room the type of objects include the people and the physical artifacts they use as
resources for their cooperation. The quantity of transmitted awareness information is largest in
face-to-face interactions, where all the objects are fully embodied in the space (they exist within
the space), and where all available social channels are used for shared interaction. The structure of
the space is spatial, i.e. objects are located according to spatial relations. Face-to-face interaction
is normally limited regarding organizational awareness (normally limited to meeting room settings
with a few people and a few artifacts involved). This is mainly because such interactions are fo-
cused in space and time, and because there are limitations in our perceptual abilities in processing
large shared spaces with lots of information.



4.4. A COMPARISON OF SOME EXISTING MODELS 91

4.4.1 The spatial model of interaction

Thespatial model(Benford and Fahlén1993)5 is a shared interaction model that is directly based
on observations of people using physical spaces for cooperation. The model is mainly used for
realizing virtual reality environments, such as MASSIVE (Benford et al.1994), but is also identi-
fiable in more familiar applications such as virtual desktops. In this model, each object embodies
itself in the shared space using its coordinates according to some spatial measure (e.g. geograph-
ical location), and other attributes such as color, shape, etc. The structure of the resulting shared
space is spatial, i.e relations among the objects in the shared space are based on spatial metrics.
By changing its coordinates, an object can “move” in the shared space, and in this way change
its relation to other objects (movement in the space is implemented by the model, based on the
changes in the embodiment information of each object). The spatial model can implement shared
spaces of arbitrary size. However, each object’s access to the contents of the space is limited to
the “spatial surroundings” of the object.

As we see in Figure4.3, systems that adopt the spatial model often result in moderate amounts
of awareness information. The amount of embodiment information is often much lower than what
is available in the physical space, e.g. in the case of face-to-face cooperation. In addition, in
cases where the objects themselves exist in the physical world (which is the case for e.g. human
beings) it is often difficult to collect large amounts of awareness information about the objects.
This results in lower amounts of awareness information generated by the model. In addition,
distribution of awareness information is based on the structure of the space. This means that an
object cannot be aware of objects that are “spatially” far away from it, even if these objects are
“conceptually” close to it. The spatial model is therefore not capable of providing a high level
of organizational awareness in cases where organizational relations cannot be formalized into
straight-forward spatial metrics (which is the case in many cooperation types with high level of
uncertainty).

4.4.2 The room–based model of interaction

The room–based model(Greenberg and Roseman1998) (also called shared workspace model)
is a model of shared interaction that has gained popularity among the researchers and develop-
ers of collaboration technologies. Rooms of different kinds are used in BSCW (using folders),
TeamWave (using simulations of 2-dimensional physical surfaces), CBE (using collections of win-
dows and applets), and TDE (using workbooks)6. In this model the shared space is a room with
more or less rigid walls. The walls control the visibility of the objects in the room. These rooms
simulate to different extent physical meeting rooms, where people can meet, leave documents and
other artifacts for each other, and be aware of who does what within the room (Greenberg and
Roseman1998).

Systems based on the room-based model of interaction often provide a high degree of support
for shared interaction, but many of them do not support large shared spaces (Farshchian1999).
Different types of objects (both users and artifacts) can be embodied in a room with varying

5This model is not directly used in any of the systems discussed in Chapter3. We discuss this model here because
it is a fundamental model for systems using any form of spatial metaphors. Elements of this model are recognizable in
TeamWave, Orbit Gold, CBE, and in many graphical editors in conventional CASE tools.

6The original room-based model was developed byHenderson and Card(1986) for single-user applications. While the
problemHenderson and Cardaddressed was that of limited screen space, to be solved by providing the user with a number
of rooms, rooms are used in collaboration technologies in order to provide a place for cooperation, i.e. as “meeting rooms.”



92 CHAPTER 4. A MODEL FOR SHARED INTERACTION

amounts of embodiment information. Spatial relations among the objects within a room are
common (for instance in TeamWave and CBE). The interaction in the room is supported by ad-
vanced collaboration support techniques, such as telepointers, specialized user interface widgets,
etc. (Gutwin et al.1996). All interactions that happen within a room are visible to all the users in
the room. However, interactions within a room are limited to small numbers of users and artifacts,
and are not visible outside the room.

The amount of awareness information in typical applications based on the room-based model
can be as much as that for spatial models (see Figure4.3). This awareness is related to changes in
the embodiment information of the objects in the shared space. For instance, TeamWave provides
visual clues when objects in a room are changed, moved around, deleted, added, etc., and when
users enter or leave the rooms or get involved in some activity. In reality, however, this awareness
information is often less than what is available in typical virtual reality systems, and is limited
to what is important for performing a specific task in a room. For instance, TeamWave has a
quite limited representation of human beings in a room, and awareness information about other
objects is limited to the changes being done to them. Room-based models are often quite limited
in providing organizational awareness because they separate the inhabitants of a room from the
outside. For instance, being within a room in TeamWave is quite isolating because the user is never
aware of what is happening outside the room (Kaplan, Fitzpatrick, Mansfield and Tolone1997).

Applications based on the room-based interaction model normally support the creation and
maintenance of several rooms, or shared “sub-spaces.” One can argue that the shared space in
these applications is the collection of all these sub-spaces, such as all the rooms currently existing
in a TeamWave installation. In these cases, each room is normally treated as a shared space of its
own, and there are (often loose) connections among the rooms. For instance, in TeamWave two
rooms can be connected to each other by creating a door between them. However, doors do not
solve the isolation problem because the users still have to enter a room (through a door) in order
to see what is happening in the room (Herlea and Greenberg1998).

4.4.3 The locale model of interaction

Thelocale modelused in Orbit Gold (Mansfield, Kaplan, Fitzpatrick, Phelps, Fitzpatrick and Tay-
lor 1997) differs from traditional space- and room-based models in significant ways. In this model,
the shared space is divided intolocales. Locales are similar to rooms in the room-based model
in the sense that they partition the shared space. They are however different because they do not
have rigid boundaries and might involve different people and objects at any time. In addition,
locales are conceptual constructs as opposed to physical rooms which are often spatial. A locale
is created in Orbit Gold in order to support a specific activity, and work in this way as a focus
point for a group of users involved in the activity. In this sense, a locale does not require that
the activity is performed in a physical room, as is the assumption in for instance TeamWave or
CBE (see Section3.4.3on page67 for more details on this).

The shared space in this model consists of locales and objects within the locales. Locales are
created in an ad hoc manner, and different kinds of objects can be embodied in a locale. A user
can be involved in a number of locales at the same time. The involvement in each locale has a
different intensiveness according to how much the user focuses on the activities in the locale. The
locale interaction model is suited for situations where the shared space cannot be structured using
computable relations among the objects. The model is in this way capable of structuring shared
spaces in a conceptual way.



4.4. A COMPARISON OF SOME EXISTING MODELS 93

The locale interaction model as used in Orbit Gold produces lesser amounts of awareness
information compared to spatial and room-based models. This is because awareness information
is normally connected to more abstract happenings in the shared room. For example users do not
get awareness of objects moving around in a locale (this is in fact not possible because a locale
does not have any notion of space), but are made aware if the contents of the objects are changed.
However, awareness is connected to the structure of the space in that users get awareness of locales
they are involved in at any time. This gives a moderate organizational awareness because there is
a cognitive limit for how many locales each user can be involved in.

4.4.4 Shared interaction in product development environments

In this section we will look at how product development environments support shared interaction
among their users. There is not a single identifiable model of shared interaction in these tools.
We will try therefore to generalize. The generalization is based on the review of the product
development tools in Chapter3, and our own experience from using this type of environment.

All the product development environments that we reviewed in Chapter3 (i.e. ClearCase,
MetaEdit+ and TDE) are implemented to handle large numbers of artifacts and people. They allow
their users to create arepositoryconsisting of a large number of artifacts. These artifacts are often
conceptual, and can have conceptual relations among themselves. The contents of the repository
can be inspected by any user, in this way providing the users with information about the shared
product. Such a repository, seen as a shared space, has a large size and a conceptual structure.
Spatial relations among artifacts are of less importance7. Conceptual relations are mainly created
explicitly by the users, meaning that the space is structured in an ad hoc manner based on input
from the users.

The repository in product development environments is mainly used as a place forstoring
the product. Shared interaction often does not happen within the repository. For instance, in
ClearCase, every time a user wants to change a part of the product, he has to “check out” the
part he wants to use. In MetaEdit+, interaction with the product is private and happens within the
private session of the user. In neither case the users can be involved in shared interaction with
each other, and even their private interactions with the product is “disconnected” from the shared
repository. The shared repository by itself is thus not used so much for shared interaction. It is
mainly used as a “protected” place for storing information about the product.

The situation is similar regarding the awareness support in these tools. Product development
environments do not take active role in providing awareness information, and rely on users in-
specting the repository in order to keep themselves updated about the changes. Most interactions
happen outside the repository, and the tools actually do not have the possibility of informing their
users about these changes because they happen somewhere else than in the repository. Also,
users are often represented in a minimal form, and awareness information about other users is not
available. This implies for instance that users do not have the possibility of getting involved in
opportunistic communication resulting from changes to the shared product.

TDE is one CASE tool that has solved some of these problems. In TDE, the repository by
default contains the latest version of all the objects. This means that the latest changes to the
objects are always visible to all the users, and all interactions with the product happens within the

7Spatial relations among objects can be seen in graphical editors used in many CASE tools. Spatial relations among
objects in a graphical diagram might be used for making the diagram more understandable.



94 CHAPTER 4. A MODEL FOR SHARED INTERACTION

global repository. TDE still does not take an active role in providing awareness information to its
users, and is based on the assumption that users will inspect the state of the repository. TDE puts
more focus on representing the users in the shared space by allowing the users to leave business
cards in workbooks as placeholders. In the case of TDE, the repository has acquired some of the
properties of a shared space as we discussed earlier.

4.4.5 An evaluation of the models

The spatial model, the room-based model, and the locale model of interaction have been devel-
oped as generic models for shared interaction and cooperation. The spatial and the room-based
models in particular try to simulate face-to-face cooperation among geographically distributed
groups of people. The underlying concepts, such as rooms, spatial relations and co-ordinates,
are all resources that we normally use in face-to-face interaction and cooperation. The models
themselves are developed in close accordance with empirical investigations of interactions among
people, and this is the main reason why these models are so powerful and universal. However,
each cooperation domain normally poses additional restrictions, characteristics, and ways of do-
ing things that can be different from other domains. The domain investigated in this thesis is that
of product development. We have seen in Chapter2 how groups of developers do things in order
to develop a product. Our goal is to develop a shared interaction model that is more suited to this
way of working, and that can support developers in product development. Based on the analysis
in Chapter2 we can point out some shortcomings in the reviewed shared interaction models and
the systems built on them:

• Product development is an activity that involves a large number of conceptual (knowledge)
artifacts and conceptual relations among them. A shared interaction model for supporting
it should put more emphasis on the product and its conceptual structure. Spatial and room-
based models provide a limited notion of artifacts, with focus on objective properties of
these (such as their physical shape and geometric co-ordinates). Product development envi-
ronments are more advanced with respect to conceptual representation of artifacts, but are
limited in providing support for shared interaction.

• Product development involves a large number of people and artifacts, and at the same time
requires intense focused cooperation among developers. There is a need for a globalshared
product spaceand localcenters of interactionin the same model. The models we have seen
mainly focus on one of these aspects. Room-based models support well focused cooperation
involving a small number of people and artifacts, while product development environments
and the spatial model have limited notion of a center of interaction.

• A typical product has a complex structure, where dependencies among the parts are often
critical. Changing one part of the product may affect other related parts, and as a conse-
quence may affect the work being done by others. There is a need for a separation between
the part of the product a developer works on, and the part of the product he needs to be
aware of. Spatial and room-based models assume that users need to be aware of what they
are working with, and nothing more. However, in product development, a developer might
be interested in changes to the parts that are not in his current workspace. Separating the
structure of the space from the structuring of awareness distribution can help developers to
explicitly specify what “peripheral awareness” they need to have.



4.5. A PRODUCT–BASED SHARED INTERACTION MODEL 95

copy
copy

copy copy
copy

copy

A) Product development environments.
Each developer has his/her own copy of the product

B) Shared workspace applications.
Groups of developers work with their own product.

Figure 4.4: Product development environments isolate each developer from the others, while
shared workspace applications isolate small groups of developers from other groups.

• Though product development environments provide access to an organizational context in
form of a large repository, and they often support advanced conceptual structuring of this
repository using conceptual objects and relations among them, the degree of support for
shared interaction is low. These repositories are normally developed in form of time-sharing
systems. In particular, they are based on the assumption that conflicts among developers
should be delayed as long as possible (Jarke, Maltzahn and Rose1992), with the conse-
quence of isolating developers from each other.

These limitations and strengths of the reviewed models are summarized (at a system level) in
Figure4.4. To the left we see a scenario that is common for product development environments. In
this case each developer is given his own copy of the product to work with. Interactions with the
product happen in the private workspace of the developer, and interactions with other developers
are not supported. To the left, shared workspace applications support interactions among a (small)
group of developers. Interaction across these groups is not supported well, and the groups are
isolated from each other.

Central repositories provide a first technological step for supporting shared interaction in prod-
uct development groups, but more is needed. In the next section we will introduce a new shared
interaction model that addresses some of the discussed problems.

4.5 A Product–based Shared Interaction Model

In this section we develop aproduct-based shared interaction modelthat uses the product, in par-
ticular its structure, as a basis for supporting shared interaction among developers in a distributed
project. In accordance with the definition of shared interaction in the previous sections, our model
contains a shared space and supports awareness of events in this shared space. The shared space
in our model consists of two integrated parts. There is an underlyingshared product spacethat
contains the shared product. The structure of this space mirrors the structure of the product be-
ing developed. A shared product space has in this way a structure that is similar to a repository



96 CHAPTER 4. A MODEL FOR SHARED INTERACTION

copy
copy

copy copy
co

py
copy

Figure 4.5:The product-based shared interaction model allows groups of developers to work in
centers of interaction, and at the same time be integrated through a global shared product space.

in product development environment. However, our focus here is on defining a place for shared
interaction, and not on storing different versions of the product. The second part of the shared
space consists ofcenters of interactions. These are focus points that allow groups of developers
to interact with the shared product space in context of a common task. Centers of interaction are
similar to rooms in the room-based model of interaction, but they are integrated with the under-
lying shared product space. This is shown in Figure4.5. The shared space in this way integrates
the strong aspects of product development environments (i.e. access to a large shared space con-
taining a composite conceptual artifact) with those of room-based systems (i.e. support for shared
interaction in a center of interaction).

Awareness in product-based shared interaction model is primarily related to the events related
to the shared product, and is calledproduct awareness. Product awareness is supported at two
levels. First,product awareness information, i.e. information about changes to a shared product,
is produced according to the contents and the structure of the shared product space. Awareness
information is generated according to what objects are within the shared product space, and what
relations exist among these objects. In a second level, centers of interaction decide what aware-
ness information will be delivered to which groups. Awareness information is distributed to the
developers based on what part of the shared product space they work with, and what other parts of
the space they are interested in. Awareness distribution thus need not strictly follow the structure
of the shared product space. In this way, the developers in Figure4.5 can be involved in a com-
mon task in a center of interaction, and at the same time be kept informed about what is happening



4.5. A PRODUCT–BASED SHARED INTERACTION MODEL 97

Shared product space

Database
module

Middleware
module

User
interface
module

Sub-
module 1

Sub-
module 2

Sub-
module 3

Sub-
module 4 Sub-

module 5

Sub-
module 6

Sub-
module 8

Sub-
module 7

Depends Depends

Sub-part

S
u

b
-p

ar
t

Sub-part

S
u

b
-p

ar
t S

ub-part

Sub-part

S
u

b
-p

ar
t

Sub-part

Developer A
(producer)

Developer B
(consumer)

Developer D
(consumer)

Developer C
(consumer and

producer)

Communication

Communication

Developer E
(consumer and

producer)

Figure 4.6:An example shared product space. Round rectangles are product objects and arrows
are relations. Dotted arrows are awareness relations.

outside the center of interaction (this is indicated by a dashed line separating the two groups, as
opposed to Figure4.4where the developers were isolated by a solid line).

The following sections describe in more details the shared space, awareness support, and co-
operation support as defined in product-based shared interaction model.

4.5.1 Support for shared space

The model introduces ashared product spaceas a shared space within which interactions involving
a shared productcan happen. There are two types of objects that can be embodied in this space,
product objectsand

relations. These constitute the shared product. In addition, developers are represented in
the shared product space in form ofproducersandconsumers. Figure4.6 shows a shared prod-
uct space containing product objects (shown as rounded rectangles), relations among these ob-
jects (shown as arrows), and developers.

Product objects represent parts of the shared product being developed. Product objects can be
documents, diagrams, source code files, etc. The product parts may be stored in a CASE reposi-
tory, on the Internet, or in a database elsewhere. For each such part, one product object may exist
in the shared product space. The embodiment information for each product object contains those
properties of the object that are important for cooperation. These properties are not predefined by
the model. This means that product objects may be embodied with the simplest embodiment infor-
mation (e.g. geometric co-ordinates) or more complex conceptual information (such as semantic
properties), based on the needs of developer groups.

In addition to product objects, the shared product space may contain relations among product



98 CHAPTER 4. A MODEL FOR SHARED INTERACTION

objects. Relations are unidirectional, and have asourceand adestinationproduct object. Rela-
tions have two main functions. First, they represent conceptual relations of different kinds. For
instance, the relation from product object “Database module” to product object “Middleware mod-
ule” in Figure4.6 is a “Depends” relation, which may mean (for a group of users) that “Database
module” depends on “Middleware module.” The second function of a relation isproduct aware-
ness mediation. Relations may mediate product awareness from their source to their destination.
Product awareness information can in this way propagate from one part of the product to another,
possibly through several intermediate parts. This mediation property of relations is not completely
connected to their function as conceptual constructs. This means that a relation can be only an
awareness mediator, only a conceptual relation, or both. This separation, as we will see in Sec-
tion4.5.2, allows more control over distribution of awareness information. For making it easy
to distinguish between these two properties of a relation, we will in the following use the term
awareness relationwhen referring to a relation as an awareness mediator, andconceptual relation
when referring to it as a conceptual object.

In the shared product space shown in Figure4.6, the shared product consists of three main
modules. These are represented as product objects “Database module,” “Middleware module”
and “User interface module.” In addition, each module consists of other sub-modules also rep-
resented in form of product objects. There are in addition a number of relations created among
these product objects. Some of these relations are conceptual relations of type “Sub-part,” and
“Depends,” and some are awareness relations (dotted arrows).

Both product objects and conceptual relations are represented using property sets. The model
does not predefine what types of product object or conceptual relation might exist in a shared
product space. This is done by the users defining what properties each product object or conceptual
relation type may have. In addition, the model does not require that all object and relation types are
defined a priori by the users. Users might introduce new types any time, or redefine existing types
by adding or removing properties. The configuration of product objects and conceptual relations
constitutes thestructureof the shared product space. The heuristics for creating this structure
are not defined by the model. This means that product objects and conceptual relations might be
created using any computer-based heuristics, or they may be created in an ad hoc manner by the
users.

Once product objects and conceptual relations are embodied within the shared product space,
they are subject to shared interaction initiated by producers and consumers. Producers and con-
sumers represent the developers within the shared product space. Producers are those developer
who access the contents of the shared product space in order to read, update, or otherwise manip-
ulate them. Producers may also insert or remove product objects and relations from the space at
any time. Consumers are those developers who use the awareness information that is produced
as a result of producers accessing the shared product space (see next section on awareness). The
distinction between producers and consumers is analytical; each developer can be a producer, a
consumer, or both. Many developers, such as developer C in Figure4.6, will be both consumers
and producers.

The shared product space implements a global space where all the components of the shared
product and all the developers can be involved in shared interaction. The second part of the
shared space iscenter of interaction. A center of interaction is a center for a specific activity
involving a small number of developers and a small part of the shared product space. A center of
interaction has two main functions. First, it allows a group of developers to define aview into the



4.5. A PRODUCT–BASED SHARED INTERACTION MODEL 99

shared product space. Second, it defines themediumthrough which interactions in the center of
interaction happen.

The view in a center of interaction gives access to a part of the shared product space with-
out overloading the developers with too much information about irrelevant parts. As opposed to
rooms in the room-based model of interaction, or private workspaces in product development en-
vironments, views in centers of interaction are not disconnected from the shared product space.
all interactions with the shared product space happenthroughthe view, and notwithin the view.
This means that all the interactions of the developers in a center of interaction are visible to other
developers who use the shared product space. In addition, those developers interacting through a
view are integrated into the shared product space in that they can see, through the view, what is
happening in the shared product space.

A view is in this way a focus point similar to a locale in the locale interaction model used in
Orbit (see Section3.4.3). It gives access to those artifacts and people that are related to each other
because they are part of the focus point. As opposed to a locale, a view is connected to the shared
product space and is in this way a part of the structure of that space8. Another difference between
a view and a locale (or a room) is that views arecooperative, i.e. they can exchange information.
This is illustrated in Figure4.7. This figure shows two views into a shared product space. Each
view contains a small group of product objects and relations. View A is connected to view B
through the existing relations among the product objects. This means that developers using A will
be notified of some of the activities of the developers using B. In addition, both views will notify
their users of other users’ activities involving the shared product space.

Views arecustomizable. Product objects and relations within a view can be annotated by the
users of the view. We distinguish betweendeepandshallowproperties of product objects and
relations when they are part of a center of interaction. Deep properties are those properties that
exist within the shared product space and are independent of how the objects or relations are
viewed. Deep properties are the embodiment information of each object or relation in the shared
product space. Shallow properties are specific to a view and are visible only when accessing the
shared product space through that view. Shallow attributes can be used for annotating the contents
of a view, and for customizing the view for different audiences. The shared interaction model does
not predefine any shallow properties. This means that the users can decide what shallow properties
they want to add to each object or relation, in the same way that they can decide what embodiment
information (i.e. deep properties) each object or relation should have.

Beside providing a view, a center of interaction also contains a medium for supporting the
interaction with the shared product space. The medium is responsible for supporting the commu-
nication among the people involved in the center of interaction. A medium is also responsible for
providing proper tools for interacting with the product. A medium can be in different forms. In
TeamWave, the medium is a two dimensional room that supports informal cooperation among the
users in the room. In MetaEdit+ the medium is the surface of a graphical diagram and the tools
used to edit the contents of the diagram. Separating the view from the medium has the advantage
that the interacting with the the same view can be supported using different mediums. A view can
for instance reside in a document, in a meeting room (through electronic whiteboards), in a Web
page, etc. This is very similar to the concept of a locale in that a locale is also disconnected from

8Locales in Orbit Gold are also structured, but this structure is very limited and takes the form of a linear list of existing
locales. In addition, the activities in different locales are disconnected from each other. Later developments in Orbit
Gold may have solved some (but not all) of these isolation problems by employing one global space underlying all the
locales (personal communication with Tim Mansfield).



100 CHAPTER 4. A MODEL FOR SHARED INTERACTION

  Shared Product Space

Product object D

Product object G

Product object A

Product object F
Product object E

Product object C

Product object B

Product object H

View A

Product object I

View B

Product object J

Product object K

Product object L

Figure 4.7:Views into the shared product space.

the specific medium (Mansfield et al.1997).

4.5.2 Support for awareness

The shared product space contains information that is of importance for cooperation among de-
velopers. As product development activities proceed, the space is accessed by the developers in
different ways. The developers may access the space for reading or updating its contents. All
accesses to the shared product space will result in awareness information being produced. The
model is responsible for producing this awareness information. There are two types of awareness
information. Product awareness informationis information about access to the product objects
and relations in the shared product space.Participant awareness informationis information about
the developers themselves. Product awareness is the main focus of the model.

Product awareness information is produced as a result of any access to the product objects
and relations within the shared product space. All product awareness information is discrete and
consists ofawareness events. Awareness events belong to one of two types,direct or mediated.
A direct awareness event is produced by the model whenever a developer accesses a product ob-
ject or a conceptual relation. This access can be read, update, or any other kind of interaction.
For instance, if developer A in Figure4.6 accesses product object “Sub-module 2,” developer B
will receive a direct awareness event. A direct awareness event indicates what kind of access was
performed on the contents of the shared product space. In addition, the event contains informa-
tion about who did the access. Mediated awareness events are used by theawareness mediation
mechanisms for propagating awareness through a product.



4.5. A PRODUCT–BASED SHARED INTERACTION MODEL 101

An important property of the model is that it supports the propagation of awareness informa-
tion in the shared product space. The majority of the shared interaction models we have seen
supports awareness of what each user is currently focusing on. Peripheral awareness is in this
way limited to the current focus of the user (Simone and Bandiniforthcoming). As we have seen
in Chapter2, products are often large and have complex structures. Often, the part of the prod-
uct that each developer is working with resides within a web of interdependencies. Propagation
of awareness information guarantees that users can receive awareness information about remote
parts of the product. Awareness information can propagate from one part of the product to another
following a path containing awareness relations among product objects. In this way, a group of
developers working on one part of the product can get the proper awareness information from any
other part without explicitly focusing on that part.

Developers sharing the same product objects and conceptual relations can exchange direct
awareness events related to these objects. Moreover, direct awareness events can be propagated to
other product objects. Propagation of awareness inside the shared product space happens through
the awareness mediation mechanism . A mediation starts as a product object X broadcasts its
awareness information (i.e. direct awareness event that is produced as a result of a developer
accessing that object) to all the product objects in the shared product space. A product object Y
that is interested in X will produce amediated awareness eventbased on the broadcasted event (Y
will be interested in X if there is an awareness relation from X to Y.) The mediated awareness event
produced by Y contains the same information as the original direct awareness event, except that
its originator product object is changed to the new product object, i.e. Y. However, the mediated
awareness event also contains a pointer to the original product object X. Mediation from a product
object X to a product object Y is possible only if amediation pathconsisting of (possibly several)
product objects and awareness relations exists between X and Y.Recursive mediationhappens
when an awareness event is mediated more than once.

As an example consider developers A and E in Figure4.6. As developer A accesses product
object “Sub-module 2,” the access will result in a direct awareness event (which is sent directly to
developer B). This direct awareness event might be mediated through a mediation path consisting
of product objects “Database module,” “Middleware module,” “User interface module,” and the
relations among them. Developer E will then receive a mediated awareness event that not only
tells him who accessed which product object, but also which product objects that were in the
awareness path from developer A to him.

Not all awareness events need to be mediated by all awareness relations. There are two ways
to control the mediation mechanisms without explicitly removing awareness relations. First, each
awareness relation is assigned a set ofinteraction typesthat it is allowed to mediate. This makes
it possible to have an awareness relation that only mediates update accesses to its source product
object. For instance, in the example above developer E may not be interested in knowing who is
reading “Sub-module 2” but may be interested in changes to it. The users can define and change
the set of access types for each awareness relation in order to configure the production of mediated
awareness events.

As a further means for configuring the amount of mediated awareness information generated
by the model, each mediation in a mediation path is checked against astrength factor. Each
awareness relation has a strength factor that can be changed by the users. Before a mediated
awareness event is mediated further, the awareness relation’s strength factor is compared with the
number of times the mediated awareness event is already mediated. If this number is equal to



102 CHAPTER 4. A MODEL FOR SHARED INTERACTION

the strength of the relation, the mediation stops. This feature, in combination with the interaction
types mentioned earlier, can be used to configure the generation of awareness information to fit the
different needs of the users. For instance, in Figure4.6, user E might not be interested in knowing
every access to “Sub-module 1.” In this case, the relation from “Middle-ware module” to “User
interface module” can be given a strength of 2. This will prevent “User interface module” from
producing any mediated awareness related to “Sub-module 1.”

Criteria for deciding how awareness relations should be created among product objects is not
defined by the model. In some occasions the conceptual structure of the product may be suited
for awareness mediation. In such cases all relations in the shared product space may be both
conceptual and awareness relations. An example is dependency relations among source code
files in a software product. In this case, the structure of the product (defined by the conceptual
dependency relations) strictly defines the dependencies among the developers. This means that
if a source file A imports another file B, A not only is conceptually related to B, but also the
developers working on A will need to be aware of changes to B in order to coordinate their work.

Relations might as well be created based on social relations among the developers themselves.
This will be more common in earlier phases of a project, where the product itself and its structure
are not defined in details. In such cases it may not be possible to define conceptual relations, but
one might need awareness relations for keeping oneself aware of what others are doing with their
parts of the product (see Figure2.6 on page32). It is not possible for a model to predict all the
possible criteria since they will be influenced by the way different groups do their work. These
criteria are therefore left to be defined by the users of the model. The shared interaction model
and its implementation focus only on providing easy mechanisms for modifying the structure of
the shared product space, and for configuring the mediation of awareness as needed.

Centers of interaction make use of the product awareness (both direct and mediated). When
a group of developers are working in a center of interaction, the model supports the delivery of
exactly the same product awareness to all the members of the group. This is done through the view
part of the center of interaction. For instance, in Figure4.6, developers A and B can define a view
that contains “Sub-module 2.” In this way, they can interact with the shared product through this
view. The view is responsible not only for providing the same picture of the product to both A and
B, but also delivering the same awareness information. This is useful in a shared workspace (e.g.
in a shared room) where an important prerequisite for cooperation is having access to the same
information and being aware of the same events.

Participant awareness is not the focus of the model. However the model supports combining
participant awareness with product awareness in two ways. First, all product awareness events that
are produced by the model contain information about the developer who was responsible for the
event. Second, developers can be embodied in the shared product space by becoming a producer
or consumer. Each developer who is already a producer or consumer will get participant awareness
about other developers becoming producer or consumer, or leaving the shared product space.

4.5.3 Support for cooperation

The product-based shared interaction model supports opportunistic communication among devel-
opers by allowing them to see who is doing what to the shared product. This is done by explicitly
informing each developer about the events related to the product, and by connecting each product
awareness event to the developer who was responsible for it. In addition, the model supports a
limited notion of participant awareness by producing awareness events when developers enter or



4.6. SUMMARY 103

leave the shared space. These features of the model can be used in different ways to support a
variety of communication patterns among the developers.

Moreover, cooperation in small groups is supported by centers of interaction. These centers
provide a shared context for a group, and give access to shared information and a medium for
interaction. However, the model does not predefine the overall course of the interactions. For ex-
ample there is no coordination among the different centers of interaction besides what is promoted
by the structure of the shared space. Coordination in terms of workflow and software processes is
external to the model, and can be done in different forms according to the preferences of the users.
What model provides is the information basis for supporting different forms of coordination.

4.6 Summary

In this chapter we have defined a shared interaction model for product development. The model
combines the strong aspects of existing shared interaction models and product development envi-
ronments. It emphasizes the importance of the product as a resource for cooperation in the large
project team, and at the same time acknowledges the existence of close and dynamic cooperation
within groups of developers. The combination of a shared product space and centers of interac-
tion is in line with the requirements developed in Chapter2 and shown in Table2.5 on page43.
Locating the product in a shared space allows the developers to access the product easily, and to
be aware of the other developers interactions with the product. This can facilitate both short term
coordination of actions, and long term cooperative learning in distributed product development
projects.

The product-based shared interaction model is realized in form of a framework for shared
interaction in product development environments. In the next chapters we will introduce this
framework in details, and will see how it can be used to build cooperative systems for supporting
distributed product development projects.



104 CHAPTER 4. A MODEL FOR SHARED INTERACTION



Chapter 5

The IGLOO Framework: Overview
and Examples

5.1 Introduction

In the previous chapter we developed a product-based shared interaction model for cooperative
product development. This model consists of a shared product space and centers of interaction.
The model was developed based on requirements posed from several sources, including our ex-
periences from the ALPHA project and our earlier prototyping efforts. This and the following
chapters describe an architectural framework that realizes the product-based shared interaction
model. The framework is calledIGLOO. The relations between IGLOO and the shared interac-
tion model are shown in Figure5.1. The round rectangles in the upper part of the figure denote
the shared interaction model and its sub-parts. The middle part of the figure (the white rectangles)
shows the different parts of the IGLOO framework. IGLOO framework consists of three parts
calledservice layers. Product Layeris a detailed specification of the shared product space, while
Cluster LayerandWorkspace Layertogether provide a specification of the centers of interaction.
Workspace Layer in particular provides the medium for a center of interaction in form of shared
workspaces, while Cluster Layer is the provider of product-related information to a center of inter-
action. This is in accordance with the product-based shared interaction model, where a center of
interaction contains aview into the shared product space and amediumfor supporting the interac-
tion in the center of interaction. The advantage of separating the medium from the informational
contents of a center of interaction, as we have done here by having Cluster Layer and Application
Layer specify each of them separately, is that contents and medium for the center can be applied
separately. For instance, a center may need to use a different medium than what an implementa-
tion of IGLOO supports, and still use the contents provided by IGLOO. This makes it possible to
use IGLOO in combination with other existing advanced shared workspace application.

For each of the service layers in the framework we have developed ageneric implementation
in the Java programming language. These implementations are in form of stand-alone network
servers with their own well-defined protocols and services. The implementations are shown as



106 CHAPTER 5. THE IGLOO FRAMEWORK

Shared interaction
model

IGLOO framework

Shared product
space

Center of
interaction

Product Layer Cluster Layer Workspace Layer

Part of

Realizes

Part of Par
t o

f

Part of

Part o
f

Realiz
es

R
ealizes

SWAL

Im
p

le
m

en
ts

CoClustGossip

Im
p

le
m

en
ts

Im
p

le
m

en
ts

R
ealizes

R
eq

u
irem

en
ts

(C
h

ap
ters 2,3,4)

S
p

ecificatio
n

(C
h

ap
ters 5,6,7,8,9)

Im
p

lem
en

tatio
n

(C
h

ap
.6,7,8)

IGLOO Client

Uses services Uses services

Uses services

IGLOO user

Figure 5.1:The relations between concepts, specifications, and implementations underlying the
IGLOO framework.

gray rectangles in Figure5.1. The services offered by each implementation are used by different
IGLOO clients(lowest part of Figure5.1). IGLOO clients are software applications that cooperate
with each other through the IGLOO framework. An IGLOO client does not need to make use
of all the services provided by IGLOO, and may choose to use any combination of the services
provided by the three service layers. This is indicated in Figure5.1 in form of dashed lines.

In this chapter we provide an overview of the IGLOO framework and its service layers, and de-
scribe an example IGLOO client. The structure of this chapter is as follows: Section5.2provides
an introduction to the different service layers of the framework, shows how the layers are con-
nected to each other, and describes their relation to the shared interaction model. In Section5.3
we introduceMultiCASE. MultiCASE is a shared graphical editor for creating architecture dia-
grams. MultiCASE demonstrates the usability of the framework, and how the different layers
of the framework can be used for developing group support applications. The service layers of
the framework are described in more details in the chapters following this chapter. Section5.5
provides a map for reading these chapters.



5.2. THE IGLOO COMPONENTS 107

Gossip network-based API

G
o

ssip

P
ro

du
ct

 L
ay

er

Cluster Cluster

CoClust client extention API

Cluster Layer

C
lu

st
er

 L
ay

er

Enter title here

< Back Next > Cancel

Graphical editor
Menu

W
or

ks
pa

ce
 L

ay
er

Tex t

Tex t

Tex t

Tex t

Tex t

Tex t Tex t

Tex t

Tex t

C
o

C
lu

st

Focus on
small
group

interaction

Focus on
large
group

interaction

Focus on
informal

interaction

Focus on
formal

product

S
W

A
L

Figure 5.2:The three layers in the IGLOO framework, each implementing a set of service that are
provided to the layer above.

5.2 The IGLOO Components

IGLOO framework employs a layered architecture. The core services of the framework are pro-
vided through threeservice layers(see Figure5.2). Each layer provides a set ofservicesto the
layers higher up in the framework. The lower part of the framework is concerned with the cre-
ation and maintenance of a large shared product space used by all the developers, and in this way
should be seen as a common information space (Bannon and Bødker1997). This means that the
shared product space should be understandable and predictable, i.e. be formal. This formality is
not the same as the formality required for a product as the basis for code generation. It is merely
a formality that is called upon because a large number of people with different backgrounds and
contexts will use the product (see also Section2.1on a definition of product). The product objects
within the shared product space should therefore be packaged for a larger audience, their contents
and changes to them should be understandable to all the users, and the changes to the shared prod-
uct space should be understandable to all the involved people (Bannon and Bødker1997). The
shared product space should support the articulation of work within large groups (Schmidt and
Bannon1992).



108 CHAPTER 5. THE IGLOO FRAMEWORK

The higher levels of the framework, on the other hand, are concerned with small groups and
their local needs. They support the creation of centers of interaction. Formality in the sense
discussed above is no longer the main priority. What is needed is a focus point within the shared
product space, and a medium for supporting rich interaction among a group of people involved
in solving a specific task. Formality is not as important because each local group will eventually
develop their own local understanding of the shared product space. Formality is even restricting
with regard to cooperation because it will hinder the emergence of local understanding that is
important for the focused task of the small group. The speed of changes made to the product
objects by a small group will inevitably be very high due to the focused work on these objects,
making the achievement of formality further impractical. What is needed here is mechanisms
for customizing the common information space to local needs and interpretations (Bannon and
Bødker1997). Cluster Layer provides local and customized views of the shared product space,
while the Workspace Layer provides the medium for interaction among the developers and for the
interaction between the developers and the shared product.

The unifying factor between the small group and the large group, between the formal and
the informal, isproduct awareness. Product awareness is information about user access to the
shared product space. This information might be needed in different forms depending on the
context of cooperation. For example, for two groups working with two dispersed parts of the
product what may be of importance is the changes done to the product by the other group, i.e. the
what of awareness. Knowledge ofwho in the other group did the changes may be of secondary
importance. However, this knowledge of who did the changes may be of primary importance
when the changes are done by the members of the same small group during the course of a task.
The knowledge of who may for instance be used as a resource for fine-grained coordination of the
work within a shared workspace (Gutwin and Greenberg1999). In IGLOO, each unit of product
awareness information is connected closely to the developer who produces it. As we will see later
in this chapter, IGLOO clients can customize their use of product awareness information based on
their local needs.

The three service layers of IGLOO framework are developed to support both large and small
groups cooperating to develop a product. A short description of each layer and the types of services
they provide is given here:

• Product Layer(explained in details in Chapter6) is in charge of maintaining a shared prod-
uct space. The main abstractions supported by Product Layer areshared product space,
product objectsandrelations. Shared product space is a virtual space where a group of co-
operating users can make available and share their product objects. Product Layer provides
services for inserting new product objects into the shared product space, for modifying the
presence of the objects in different ways, and for creating arbitrary relations among the ob-
jects. Product Layer should not be mistaken for a repository. Product Layer is not meant for
storing and processing product objects (as is normal in a CASE repository), but merely for
sharingthem. As such, it does not focus on services that are common in these repositories,
such as version control and consistency preservation (Brown et al.1992). Product Layer
supports partial sharing of product objects. This means that the users decide how much and
what aspects of a product object they want to share (normally those aspects that are neces-
sary for the cooperation). The relations among the product objects are generic relations that
can be specialized into product-specific relations (such as part-of or dependency relations)
or to socially-defined “interest” relations. Product Layer actively provides its users with



5.2. THE IGLOO COMPONENTS 109

awareness information about access to the shared product space. Product awareness pro-
vided by Product Layer is in a basic form (i.e.unitsof awareness information, orproduct
awareness events). The basic awareness services of Product Layer are further customized
for different contexts by the higher levels of the framework. Awareness events are provided
based on the shared interaction model, and support both direct and mediated awareness (see
Chapter4). In addition, awareness events provided by Product Layer are connected to the
developers who produce the events. In this way Product Layer supports opportunistic com-
munication among awareness producers and consumers.

• Cluster Layer(explained in details in Chapter7) is the intermediate level between a large
shared product space and small groups interacting with this space. The main abstraction pro-
vided by Cluster Layer iscluster. Clusters supply centers of interaction with shared prod-
uct information. Clusters are user-defined collections of product objects from the shared
product space (Product Layer) that are considered by a group of users to be important for
performing a task. Cluster Layer allows its users to create clusters, and to customize the
clusters’ contents (i.e. which objects that are part of the cluster) and form (i.e how the ob-
jects should be represented). In addition, Cluster Layer allows a group of users to share a
cluster and its content, and to have access to product awareness that is generated by Product
Layer. Clusters are created in a way to provide both focus (by selecting only a subset of
existing product objects from the shared product space and hiding the other objects) and
overview (by allowing the users to monitor product objects external to a cluster).

• Workspace Layer(explained in details in Chapter8) provides a medium for informal coop-
eration in small groups of users working on a focused task. The main abstraction provided
is a shared workspace. A shared workspace provides the medium for a center of interac-
tion. Each shared workspace in IGLOO may consist of any number of clusters,informal
objects, andinhabitants. Informal objects support the informal interaction among a group
of inhabitants within the workspace. Informal objects might be notes, documents, tools,
etc. An IGLOO shared workspace is provided as a basic construct, and may be specialized
to support one or several types of group processes such as brain-storming, decision mak-
ing, editing, discussions, etc., or be used as a flexible interaction medium (e.g. as a room).
The same IGLOO shared workspace might be viewed in different forms, e.g. through a
Web page or in an interactive graphical editor. This is due to the conceptual representation
of the workspace in IGLOO that is independent of any interaction techniques. A shared
workspace has in addition access to the shared product space through the clusters within
the workspace. In this way the underlying shared product space is used as a unifying com-
ponent among all the shared workspaces. Each shared workspace can decide to visualize
the clusters and the objects from the shared product space in different forms. For instance,
a graphical editor will visualize a cluster in form of a graphical diagram, while a browser
tool will use a simpler outline. In addition, each shared workspace might provide tools for
modifying the objects from the shared product space, and tools for supporting generic group
processes such as communication through text, video, audio, etc.

As part of the specification of the layers, the services necessary for each layer are identified
and specified in details. This modular approach with well-defined interfaces makes it easy to
customize the functionality of the framework for different types of IGLOO client. For instance,
one client may use only the services provided by Product Layer, while another may in addition



110 CHAPTER 5. THE IGLOO FRAMEWORK

use the services of Workspace Layer. The framework allows for such configurations to co-exist
and cooperate with each other.

Moreover, the definition of the services in form of service layers is independent of any design
or programming languages. Each layer can be implemented in different ways, but must adhere to
service definitions and provide the services to its clients. During the definition of the framework,
we have implemented a generic implementation of each service layer. The design of these imple-
mentations, together with the API (Application Programmer Interface) provided by each of them,
are described later in the thesis.

5.3 An Example IGLOO Client: MultiCASE

In this section we will describe a graphical multi-user editor calledMultiCASE. MultiCASE is an
IGLOO client as shown in the lower part of Figure5.1. It uses the services provided by all the
three layers of IGLOO. MultiCASE was developed for testing the usability of the IGLOO frame-
work. It demonstrates the types of clients that can be developed using the services provided by
IGLOO framework. MultiCASE is a simple graphical editor that allows a group of developers
to cooperatively develop a product. The developed product is a software architecture consisting
of software modules and dependency relations among them. The shared product space consists
thus of software modules (as product objects) and dependency relations (as relations). Using Mul-
tiCASE, a group of geographically distributed developers can cooperatively develop a possibly
large product consisting of interdependent software modules. MultiCASE allows the developers
to create shared workspaces and to meet and cooperate with other developers in these workspaces
regardless of existing geographical distances. The shared workspaces provide virtual places for
cooperation where the developers can create and modify parts of the product being developed. A
shared product space provides a high degree of sharing, meaning that all the changes to the product
are immediately available to all the interested developers. In this way MultiCASE increases the
visibility of work despite geographical distances, and provides centers of interaction for groups of
geographically distributed developers.

5.3.1 Meeting in a shared workspace

After connecting to a MultiCASE server, the user will enter into a default shared workspace (i.e.
the one he was working in last time). The user can choose to view this workspace in two different
ways, with the possibility for easily switching from one view to the other. These two views are
shown in Figure5.3. The window to the left is themonitor window. Monitor window is used
when the user is not actively using MultiCASE. It can be used as a background window that is
always “on” (e.g. activated upon logging into the computer). It can be minimized or stay in the
background, and will constantly monitor the shared workspace for various activities. It generates
sound signals when something happens, e.g. when another user enters the workspace or when the
contents of the workspace are accessed by other inhabitants1. In this way the monitor window
will provide continuous awareness to the users without taking too much attention away from what
they are currently doing.

The monitor window can be used for informal communication with the other inhabitants of
the workspace. The window contains information about the inhabitants, including an image and

1The terminhabitantis used to denote all other users currently in the same workspace as this user.



5.3. AN EXAMPLE IGLOO CLIENT: MULTICASE 111

A) High participant awareness.
Low product awareness

B) Low participant awareness.
High product awareness

Figure 5.3: Choosing between background monitoring mode and focused task mode in Multi-
CASE.

an indication of what communication tools each inhabitant is equipped with (upper part of the
window in Figure5.3.A). A speaker icon means that the user can communicate using audio. This
information facilitates opportunistic communication by providing easy access to available users.
As the inhabitants of the workspace change, monitor window generates sound signals to notify
the user. The middle part of the window is a text area used for chatting and for receiving system
messages. The inhabitants can use this area for sending instant messages to each other. Each type
of message (e.g. chat or system message) can be given its own priority, in this way adjusting the
level to which the message should interrupt the inhabitants. The lower part of the window shows a
radar view of the shared workspace, with the location of each of the inhabitants in the workspace.
The locations are shown in form of rectangles colored with each inhabitant’s characteristic color.

The window in Figure5.3.B is theeditor windowand is the second type of view into the same
shared workspace. This window can be activated by double-clicking on the radar view in monitor
window. Editor window is used for focused cooperation in the workspace, and is where all the
development activities happen. It provides functionality for modifying the product (the software



112 CHAPTER 5. THE IGLOO FRAMEWORK

architecture and its modules) and for managing shared workspaces. There are three main areas in
editor window. The middle part of the window (the large gray area) is theactiveshared workspace.
A user can be in several workspaces simultaneously. These are calledjoined workspaces of the
user. The active workspace is the one joined workspace that the user is actually working in.
Othernon-activejoined workspaces are hidden behind the active workspace and can be brought
to front (activated) by clicking on their tab. In addition to the joined workspaces of a user, there
are a number of other workspaces in the system that are not visible to the user (because he is not
currently interested in them) but can be joined at any time. This is explained later.

Inside the active shared workspace there is a graphical diagram showing a part of the soft-
ware architecture the user is currently working on. The graphical shapes and lines within the
diagram denote software modules and dependency relations among them. The gray area outside
the diagram is theinformal partof the shared workspace. This area is used for informal cooper-
ation among the inhabitants, e.g. for leaving short messages and notes, and exchanging informal
documents and other artifacts that are not part of the product (these artifacts are calledinformal
objects2). The informal area is larger than thecurrent viewof the user, and can be navigated us-
ing the scroll bars of the shared workspace. The views of the clients are not connected to each
other, so each user might independently from other users navigate to a different part of the shared
workspace3. The small window on the top-left corner of editor window labeled “Joined Users”
shows the names of all the inhabitants of this shared workspace. In Figure5.3, in addition to the
current user, three other users called “trondka,” “perc” and “eva” are present in the workspace.

The contents of the editor window, i.e. the diagrams and their contents, can be modified
through direct manipulation. As a user changes the contents by moving them around or modifying
them otherwise, all the inhabitants of the workspace are notified through real-time synchronization
of their screens. This continuous flow of visual clues is a part of whatGutwin et al.(1996)
call shared workspace awareness. Besides the shared workspace awareness, MultiCASE also
providesmonitoring facilities for allowing the users to monitor the activities of other users in
other workspaces as far as those activities change the shared product. The window on the lower-
left corner in editor window labeled “Awareness” shows awareness of the product-related activities
outside current shared workspace (i.e.mediated product awareness, see Chapter4). This area is
used for receiving mediated awareness events about parts of the software architecture that are
external to this workspace.

By allowing easy switching between the two views (monitor and editor windows) we gain
the advantage of continuously keeping the users within a shared context without requiring their
full attention when they are busy with other tasks. MultiCASE can become an integrated part
of the desktop of a user. The user can have the monitor window in the background while he
is working with other things, and switch to the editor window when he wants to work with the
product and cooperate with the other users. In this way, the user gets continuous background
awareness about what the others are doing, and is all the time available for being contacted by
them. This is similar to working in the same room with other people. Sometimes you work
on your own, while other times you switch to cooperative mode unconsciously. This form of
continuous background awareness has proven to be important for supporting long term cooperative
learning (Mackay1999).

2Informal objects are not implemented in this prototype but are part of IGLOO framework. See Chapter8.
3This is called relaxed WYSIWIS (What You See Is What I See) as opposed to strict WYSIWIS where the screens and

the views are fully synchronized (Lauwers and Lantz1990).



5.3. AN EXAMPLE IGLOO CLIENT: MULTICASE 113

Figure 5.4:The user interface of the editor window in MultiCASE.

Besides the joined workspaces of each user, there might be a number of other workspaces in
the system, possibly created by other groups of developers. Once shared workspaces are created
they are stored in ashared workspace databaseand are accessible to all the users who want to enter
them. Theshared workspace management toolgives access to all the existing shared workspaces,
and allows the users to create, delete, join other workspaces. Figure5.4 shows a scenario of a
user browsing the existing workspaces using the shared workspace management tool (the small
window in lower-front). Figure5.4 also shows how several joined workspaces are organized in
form of layered windows. In this figure there are three joined workspaces called “Software” (the
active one in the front) “Thesis,” and “Babaks.” Only the active workspace is visible. However, if
something happens in a non-active shared workspace while the user is working in the active one,
the tab belonging to the non-active workspace changes its color to indicate the activity.

Communication among the inhabitants is supported by a chat tool (the window in the upper-
right corner in Figure5.4). In addition, sound communication is supported when all the users are
in the monitor window.



114 CHAPTER 5. THE IGLOO FRAMEWORK

5.3.2 Editing the product

Editor window is used not only for meeting and communicating with other users, but also for
editing the shared product. This is done by importing parts of the product into a workspace in
form of graphical diagrams. Inside the “Software” shared workspace in Figure5.4 there are two
graphical diagrams called “database” and “Notification server.” These diagrams contain different
shapes and lines. The shapes represent software modules from the shared product space, and
the lines are dependency relations. All diagrams are stored in a database and are accessible to
all the users. When creating a diagram, the user can choose among already existing diagrams
or create a new one. These choices are available from a window menu, or through a pop-up
menu by right-clicking on the informal area of a shared workspace. Several diagrams can reside
within the same shared workspace, and any diagram can be modified by any inhabitant of the
workspace. All the modifications to a diagram are visible in real time to all the other inhabitants.
Diagrams in MultiCASE are in this way quite different from conventional diagrams in CASE
tools: MultiCASE diagrams can be shared (in real time) among a group of users.

Shapes in a diagram refer to software modules constituting a software architecture (remem-
ber that the shared product in MultiCASE is a software architecture, and the product objects are
the software modules making up the architecture). The modules can be modified through direct
manipulation of the shapes in a diagram. When creating a new shape in a diagram, the shape
can be put to refer to an existing module from the shared product, or to refer to a newly created
module. New modules are immediately created and stored as part of the shared product and can
be accessed by others. In Figure5.4 the diagram called “database” has a number of shapes in it.
Each shape in “database” refers to a software module in the shared product. The modules “notifi-
cation server” and “message” (shown as triangles in diagram “database”) are also used in another
diagram called “Notification server.” It is important to note that even if the shapes represent the
same modules from the same shared product, their use as shapes in the two diagrams can be quite
different. As software modules, some of their properties are global. For instance, changing the
name of one shape (e.g. “notification server” in diagram “database”) will change the name of all
the other shapes referring to the same module (including “notification server” in diagram “No-
tification server”). On the other hand, changing the line style of one shape will not affect the
other shapes referring to the same modules. For instance, software module “notification server” is
shown as triangle and rectangle in the two diagrams in Figure5.4. This allows for some amount
of customization within each diagram, while sharing the changes to the global properties. Those
attributes of shapes that are local to a diagram are calledshallow properties(e.g. geometric shape,
position in the diagram, color, etc.). Those attributes that are global to the shared product, i.e.
belong to the actual software modules, are calleddeep properties(such as name, version number,
module type, etc.).

A diagram and its contents can be concurrently modified by all the inhabitants of the workspace.
Shapes in a diagram can be moved around using the mouse, and their attributes such as their name,
owner, contents, etc. can be changed through direct manipulation and through dialogue boxes.
Figure5.5shows a properties dialogue box for a shape called “subscription.” The properties of the
shape include deep properties such as name, owner, type, and version (the left part of the property
window in front lower-left corner in Figure5.5), and shallow properties such as shape (the left
part of the properties window in Figure5.5). In addition, for each software module it is possible to
attach a file that contains the contents of the module (e.g. a source code file). Content files belong
to deep attributes, i.e. they are stored in the shared product space. Figure5.5 shows how a file



5.3. AN EXAMPLE IGLOO CLIENT: MULTICASE 115

Figure 5.5:Changing the properties of a product object in MultiCASE.

from the local file system can be uploaded into the shared product using a file open dialogue box.
Concurrent access to diagrams and their contents requires concurrency control for prevent-

ing illegal sequences of user actions. Concurrency control is implemented in MultiCASE using
identified locks(Mariani and Prinz1993). When a shape is selected (i.e. when a user clicks on
it), it acquires ashallow lockthat allows the user to modify its shallow properties. Shallow locks
are diagram-wide (i.e. one lock per shape in a diagram) and are identified, meaning that other
inhabitants of the workspace can see that the shape is locked, and can see the name of the lock
holder on the shape. In Figure5.6the shape called “message” inside the diagram called “database”
has a shallow lock labeled “monica.” It is a shallow lock because another shape referring to the
same module (i.e. “message” in diagram “Notification server”) is not locked. This identified lock
allows the user to see that user “monica” is modifying a shallow property of the shape, and the
user is not allowed to change the shallow properties of this shape as long as the lock is held by
user “monica.” However, the other shape called “message” in diagram “Notification server” can
be modified freely.

Unlike shallow locks, which are acquired implicitly when a shape is selected by clicking on
it, deep locksare acquired explicitly by selecting a shape and choosing a menu entry (through a
pop-up or window menu). Deep locks have to be acquired before modifying any deep property of



116 CHAPTER 5. THE IGLOO FRAMEWORK

Figure 5.6:Element-based locking in MultiCASE allows high degree of flexibility.

a shape (i.e. for changing the underlying software module), and are unique throughout the shared
product space (i.e. only one lock per software module). Deep locks are also identified, with
one important difference: they are visible across diagrams. This means that if the same software
module is represented by several shapes in different diagrams, once a user in one shared workspace
acquires a deep lock all the diagrams containing a shape that refers to that software module will
show that the module gets locked and by whom. Once a deep property (such as the name of a
module) is changed, the changes are immediately visible in all the diagrams. In Figure5.6 one
can see that user “terje” has acquired a deep and a shallow lock on shape “notification server”
in diagram “database” (the name “terje” appears twice on this shape) and that the deep lock has
also locked the shape “notification server” in diagram “Notification server.” (One can see it is a
deep lock because the shape is shown three-dimensional, in contrast to the shallow lock on shape
“message” in diagram “database.”) However, the shape in diagram “Notification server” is not
shallow-locked, and its shallow attributes can be changed by other users.

This combination of shallow and deep properties and locks has the advantage of providing
the users with a high degree of flexibility and local customization. Shallow properties can be
changed without being visible outside the shared workspace, and can be used to represent the
same software modules in different ways for different types of user. Flexible locking allows users



5.3. AN EXAMPLE IGLOO CLIENT: MULTICASE 117

to work in parallel on different software modules in a diagram. For instance, in Figure5.6, users
“monica” and “terje” are each working with one software module while the current user is working
on the third (called “profile register” with a cross icon on it, indicating that the module is being
moved), all concurrently. In addition, other users in other shared workspaces might change other
shallow properties of the same software modules at the same time without interfering with the
inhabitant of this workspace.

5.3.3 Interacting with composite products

Software architectures that are created using MultiCASE typically grow large and eventually
will not fit within one shared workspace. MultiCASE allows its users to create multiple shared
workspaces, and to work with different parts of the software architecture in different workspaces.
Using MultiCASE it is possible for a group of developers to focus on one small part of the ar-
chitecture, and at the same time to monitor the other parts of the architecture. This is a strong
point of MultiCASE compared to other shared workspace applications that we have seen in Chap-
ter3, where the users are completely isolated from the activities outside their own workspace.
Monitoring the product in MultiCASE is done using dependency relations.

MultiCASE allows its users to create dependency relations among software modules. A de-
pendency relation is created explicitly by specifying its source and destination software modules.
All dependency relations in MultiCASE are created as part of the shared product, and are visible
to all the developers working with the same product. For creating relations, at least the destination
software module has to exits in form of a shape in a diagram in the active shared workspace of
the user. When both source and destination software modules are present as shapes in a diagram,
relations can be created by direct manipulation, i.e. by clicking on the destination shape, choosing
an item from a pop-up menu, and dragging a line to the source shape (Figure5.7). In cases when
only the destination module is present, a dependency relation can be created by selecting the des-
tination, and choosing a source from a list of available software modules. Existing relations are
visualized directly in the surface of a diagram as lines connecting the shapes. Lines leading to
outside a diagram are dependency relations connected to software modules that are not currently
represented in the diagram in form of shapes. For instance shape “notification server” in diagram
“database” in Figure5.7 has a line leading to the outside of the diagram. This is because the
software module represented by the shape has a relation to another software module “notification
server version” that is not currently inside the “database” diagram (the relation between “noti-
fication server” and “notification server version” can however be seen in diagram “Notification
server” in Figure5.6). Moving the mouse pointer on to this line displays the name of the external
software module. Once a new shape is added to a diagram, the lines are updated to show the cur-
rent configuration of relations. In this way the users can constantly see the dependencies among
the parts of the product.

All modifications to the source software module of a dependency relation will generate a
notification that will be sent to its destination software module. This is how the users can monitor
changes to the remote parts of the software architecture. External notifications that are relevant
for a diagram are displayed in the “Awareness” window in editor window (the window in the
lower-left corner in Figure5.7). These external notifications are useful if the user does not want
his workspace to be overloaded by a large number of shapes and diagrams.



118 CHAPTER 5. THE IGLOO FRAMEWORK

Figure 5.7:A pop-up menu used for creating a relation from cluster object “profile register” to
“user”.

5.3.4 IGLOO functionality in MultiCASE

MultiCASE is an IGLOO client (see Figure5.1). A large part of the functionality of MultiCASE
is already implemented by IGLOO framework in form of services that are available to MultiCASE
or any other IGLOO client. The part of the functionality of MultiCASE that is implemented by
IGLOO framework includes:

• A shared product: IGLOO’s Product Layer allows MultiCASE users to share software mod-
ules and dependency relations among them. MultiCASE itself does not implement any
sharing mechanisms. Sharing is done by using the services provided by Product Layer. The
product, i.e. the software architecture in MultiCASE is placed in a shared product space pro-
vided by Product Layer. Anything that is placed in the shared product space is automatically



5.3. AN EXAMPLE IGLOO CLIENT: MULTICASE 119

shared through the awareness services of Product Layer. Moreover, Product Layer allows
any type of product object and relation to be shared. This allows the clients to share quite
complex products with many conceptual object and relation types. The simple software
architecture in MultiCASE is only one example. In addition, the propagation of awareness
through the relations in a product is supported by Product Layer. This functionality is used
by MultiCASE to implement product monitoring in a shared workspace. Product Layer
provides a well-defined service protocol towards its clients. This protocol allows widely
different types of clients to cooperate with each other. For instance, a Web-based client
can be developed to view or modify the software architecture created using MultiCASE (an
example of this is shown in Chapter10.4).

• Shared diagrams: MultiCASE diagrams and their contents are implemented using Cluster
Layer’s cluster abstraction. Clusters implement real-time sharing. This means that Multi-
CASE does not need to implement sharing mechanisms within its diagrams. Seen from a
MultiCASE client, a diagram is created as a normal (single-user) data structure. It is Cluster
Layer that allows the diagram to be shared by many MultiCASE clients. All the users of the
joined clients automatically see an updated view of the diagram as it is changed by other
users. In addition, Cluster Layer allows any combination of shallow and deep properties
for the objects in its clusters. Cluster Layer keeps all these attributes synchronized across
all the joined clients. Cluster Layer, similar to Product Layer, implements a well-defined
network protocol. This means that MultiCASE diagrams, or any cluster, can be used in
any application. For instance, a MultiCASE diagram can be used in a single-user graphical
editor. The single-user editor’s user will see (in real time) all the modifications that are done
by MultiCASE users, and vice versa.

• Shared workspaces: MultiCASE shared workspaces are implemented using Workspace
Layer’s shared workspace abstraction. Workspace Layer provides a conceptual data struc-
ture that allows its users to define any type of workspace with any type of content. The type
of workspace used in MultiCASE is very simple and contains users, diagrams, and a chat
tool. Whatever contents for a workspace is defined, Workspace Layer is responsible for
keeping the contents synchronized across all the joined clients. For instance, when a user
enters a workspace, Workspace Layer notifies all the MultiCASE clients. More advanced
workspaces may include telepointers, radar views, video communication tools, etc. In addi-
tion, Workspace Layer provides a service interface for managing workspaces. For instance,
the workspace management tool used by MultiCASE is implementing using this interface.

MultiCASE as an IGLOO client needs to implement only two things. First, it implementsvi-
sualization mechanismsthat are necessary for visualizing the software architecture, the diagrams,
and the workspaces. Second, it implementsinteraction mechanismsthat are needed for modifying
the software architecture, the diagrams and their contents, and the shared workspaces and their
contents. In fact, MultiCASE is implemented as a single-user application. Everything that has to
do with sharing is implemented by IGLOO framework. Joining and leaving workspaces, manag-
ing existing workspaces, being aware of other users and being able to communicate with them,
creating and modifying multi-user diagrams, and keeping all users informed about the changes to
a shared product are made possible through the services provided by the three layers of IGLOO
framework.



120 CHAPTER 5. THE IGLOO FRAMEWORK

Shared product space

IGLOO Client

IGLOO Client

IGLOO Client

IGLOO Client

Cluster Layer services

Workspace Layer services

IGLOO Client

IGLOO Client

IGLOO Client

Coupling

S
ervices available to all the clients

Coupling

Product Layer services

Figure 5.8:An IGLOO network.

5.4 Creating an IGLOO Network

MultiCASE is an example of an IGLOO client. Later in this thesis we will demonstrate a number
of other IGLOO clients. What is common to all these clients is that they can communicate through
IGLOO framework. They can create anIGLOO network. An IGLOO network is a collection of
cooperating IGLOO clients. Figure5.8 shows an IGLOO network. IGLOO clients in an IGLOO
network may be viewers, editors, shared workspace applications, automatic agents, event moni-
tors, single-user CASE tools, etc. IGLOO clients make use of IGLOO services provided by one
or several service layers in the framework.

Not all IGLOO clients need to make use of all the three service layers of the framework. It
might be the case that an IGLOO client will only need to add its product objects into the shared
product space, and does not need advanced cluster and workspace functionality. Another client,



5.5. SUMMARY 121

such as an already existing graphical editor, might want to use a cluster within its own workspace.
An IGLOO network allows all these clients to cooperate with each other.

The minimum requirement for becoming a member of an IGLOO network is to use Product
Layer services. This means that any application used for modifying or viewing a shared product
space may become an IGLOO client, and becomeintegratedinto an IGLOO network. Integration
in an IGLOO network happens through deciding which service layer contains the desired services,
and to integrate the application in that level. For instance, a simple viewer application that is used
to view the product objects in a shared product space will only need the services of Product
Layer and can be integrated through that layer, while a multi-user graphical editor for real time
modification of graphical diagrams will require services from higher layers. In general, a client
application that does not require tight interaction among a group of developers will not need the
services provided by the higher layers of the framework. However, if a client application has to
support tight interaction in a small group, and/or support the sharing of a large amount of local
context among the members of a group (i.e. requires highcouplingabout its users), it will need the
services from Cluster Layer and Workspace Layer. Communication between two different IGLOO
clients does not require them to integrate through the same layer, be of the same application
type, or even be similar applications. But the framework requires them to share a product space
as a minimum common denominator. For instance, a graphical document outline viewer and a
text-based document editor can communicate by sharing their “product” (e.g. a document) in an
IGLOO network using IGLOO services.

IGLOO networks are created through adeployment processthat allows a project group to cre-
ate a network in an incremental way. IGLOO clients can be added any time during the deployment
process, and the IGLOO network can be improved all the time. Old clients can communicate with
newly added ones. More details on the IGLOO deployment process will be given in Chapter9.

5.5 Summary

In this chapter we gave an overview of IGLOO framework. We also introduced MultiCASE, a
graphical editor for creating large software architectures. We gave a short introduction to IGLOO
networks, and showed how they may support cooperation among different types of applications.
IGLOO framework is based on the product-based shared interaction model developed in Chap-
ter4. IGLOO framework’s primary task is to provide a shared product space that can support
shared interaction in a product development project. This shared product space is implemented by
Product Layer using awareness support mechanisms. Centers of interaction are implemented by
Cluster Layer and Workspace Layer.

The rest of this thesis will describe IGLOO framework in details. The next three chapters
will describe the three service layers of the framework. Each chapter will start by sketching the
detailed services defined for the a layer, and will describe a generic implementation of the layer.
Chapter9 describes how IGLOO deployment process can be used for creating different types of
cooperative environments, i.e. IGLOO networks, for supporting a variety of settings and projects.



122 CHAPTER 5. THE IGLOO FRAMEWORK



Chapter 6

Product Layer

6.1 Introduction

As discussed in Chapter2, the product being developed by a team of developers plays a central
role in supporting cooperation among developers. Product objects are used by developers to ex-
ternalize shared knowledge about the product. Product is also a resource for coordinating the
day-to-day work of the project team. We also saw that geographical distribution has the effect of
breaking down these processes of knowledge creation and coordination. Distributed groups such
as ALPHA do not have access to ashared product spacethat can guarantee continuous access
to information about the product being developed. This situation is shown in Figure6.1.A, where
each developer only has access to his own private space. The result is that not only access to shared
data is hindered (with its own connected problems) but also opportunities for communication and
cooperation are removed as a consequence of the lack of awareness of what others developers
are doing. Figure6.1.B shows a situation where all the developers interact with a shared space.
In this case the developers have the possibility for making available the information they regard
as important for the project (such as information that other developers depend on), and they can
obtain a higher degree of awareness of what the others are doing to the shared space. This aware-
ness can in turn facilitate learning (through continuous observation of changes) and opportunistic
communication (by being aware of occasions for communication).

Product Layer is a detailed specification of services that can be used by a group of developers
to build a shared product space, and to use it for supporting their cooperation. An overview of
these services is shown in Figure6.2 (a detailed description of the services is provided later in
this chapter). A large part of the services are concerned with setting up and maintaining a shared
product space (left-most branch in Figure6.2). The shared product space that is set up using these
services consists ofproduct objectsandrelations, in accordance with the shared interaction model
developed in Chapter4. Product Layer facilitates access to a flexible space where developers
can share a variety of product objects and relations among them. A second group of services
is concerned with allowing the developers to exchangeproduct awareness informationamong
themselves (the middle branch in Figure6.2). This is information about who is accessing the



124 CHAPTER 6. PRODUCT LAYER

Private
space

(A)

Private
space

Private
space

(B)

Shared product space

Figure 6.1:A shared space can increase awareness and support opportunistic communication.

contents of the shared product space and how (e.g. if they are reading, changing, browsing, etc.),
and is produced automatically as a result of these accesses. This means that Product Layer users
do not need to worry about explicitly sending awareness information to each other. However,
each user has to set up anawareness subscription, telling Product Layer what product awareness
information is of interest for that user.

Having access to a shared product space and being continuously informed about other devel-
opers’ access to this space creates the basis for shared interaction. It also creates opportunities for
communication among developers because now the developers can seewho is doingwhat. The
third set of services provided by Product Layer is therefore concerned with promoting opportunis-
tic communication among a community of users (the right-most branch in Figure6.2). These are
services forparticipant awareness(i.e. who else is using Product Layer) andinstant message(i.e.
sending text messages to other users of Product Layer). Each piece of awareness information that
is generated by Product Layer can be tracked down to the developer who caused it. This facilitates
communication when necessary. For instance, if a developer A changes something in the shared
product space and that change affects another developer B, Product Layer will inform B about the
changes and will help B to contact A for possible clarifications.

The services are provided through a service interface (see Figure6.3) that is independent of
any specific design or implementation. The interface is meant to be a programming interface. This
means that the actual users will not have direct access to the interface, but will access the services
through their IGLOO clients (see Chapter5 for a definition of IGLOO clients). IGLOO clients
can create a shared product space by registering their product objects and relations in Product
Layer. This is shown in Figure6.3. In this figure each of the clients A to D have registered a
subset of their product objects (the black objects) in the shared product space (the grey objects)
with relations among them. For instance, MultiCASE (explained in Chapter5) uses Product Layer
to create a shared product space consisting of software modules and dependency relations among
them. Each MultiCASE client can register new product objects and create relations among the
existing objects using Product Layer services1. Access and modifications to the shared product

1In MultiCASE this is actually done through Cluster Layer. Cluster Layer acts as a mediator between Product Layer
and Workspace Layer. This will be explained in more details in Chapter7.



6.2. SERVICES OF PRODUCT LAYER 125

Product Layer
services

Shared product space
services

Product awareness
services

Community services

Product object
services

Relation services

Awareness
subscription services

Participant
awareness services

Instant messaging
services

Query services
Awareness

configuration services

Figure 6.2:Overview of the services provided by the Product Layer.

space result in awareness information that is sent to each client based on the client’s information
needs. In MultiCASE, when a developer changes an attribute (for instance the name) of a software
module, a unit of awareness information (a notification) is sent to all the other developers who use
that software module. In this way, the developers can be engaged in continuous shared interaction
by adjusting their views and having up-to-the-minute information about the shared product space
and changes to it.

It is important to note that Product Layer is not a repository. Product Layer is a place to
shareinformation that is of importance for the cooperative work. Product Layer’s primary task
is not to store or process the product. The important requirement is that Product Layer has to be
flexible regarding the types of product objects it can contain, and has to provide easy access to the
shared product space and the awareness information that is generated (See Chapter2 for a list of
requirements for a shared product space.) The range of possible product objects and relations that
can be registered in a shared product space is therefore not predefined by Product Layer. Objects
and relations are registered in form of attribute-value pairs, which allows the clients to register
virtually any type of objects and any type of relations among these objects.

6.2 Services of Product Layer

Product Layer is mainly defined in form of services. The services are grouped as shown in Fig-
ure6.2 and will be described in details in this section. Product Layer services can be used in the
following and similar situations:

• When a user wishes to share some information (documents, drawings, sketches, notes, or
other information) with other users of Product Layer. In this case shared product space
services can be used. These services allow a client to register product objects of arbitrary
type consisting of an arbitrary set of attribute-value pairs. The client can register the nec-
essary objects, create arbitrary relations (also consisting of attribute-value pairs) among the
objects, and modify these objects and relations through shared product space services.



126 CHAPTER 6. PRODUCT LAYER

shared product space

Product Layer service interface

IGLOO client C

� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �� � � � � � �

IGLOO client B

� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � �� � � � �� � � � �� � � � �� � � � �� � � � �

� � � � � � �� � � � � � �� � � � � � �� � � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

IGLOO client A

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

	 	 	 	 	 		 	 	 	 	 		 	 	 	 	 		 	 	 	 	 		 	 	 	 	 		 	 	 	 	 	

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 


IGLOO client D

� � � � � � �� � � � � � �� � � � � � �� � � � � � � � � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 


Figure 6.3:Clients can use the services provided by Product Layer in order to register product
objects and relations among them in a shared product space.

• When a user wants to know what other users are doing. A user might want to know who has
been reading the files that he/she registered in the shared product space some time ago. In
this case the client application of the user will use the product awareness services of Product
Layer to exchange awareness information with other clients.

• When a user wants to communicate with another user. All product awareness information
in Product Layer is connected to specific users who created them as a result of their access
to the shared product space. This allows users to know who has been reading or changing
a product object in the shared product space. Community services help users to directly
contact other users when situations for communication arise.

These three groups of services are explained in details in the following sections.

6.2.1 Shared product space services

As we saw in Chapter3, the majority of integrated software engineering environments provide
a shared repository where the product under development isstoredand processed by different
tools. The focus of such repositories is often to provide inter-operability among the various tools
used throughout a development project, and to preserve the consistency of the product during
modifications done by developers. Product Layer, on the other hand, is more concerned with
sharingof product information among the developers. This information is held within the shared
product space, and can be accessed and updated through shared product space services.

Product objects and relations are the main elements in a shared product space. A product
object represents a part of a product. The part is registered in the shared product space in form of
a product object when a user wishes to share it with other users of Product Layer. Each product
object is distinguished by an identifier that is unique within the shared product space. Each product
object is represented in Product Layer in form of a set ofattribute-valuepairs. This set is not
predefined by Product Layer. This means that virtually any type of product object can be defined



6.2. SERVICES OF PRODUCT LAYER 127

Attribute A

Attribute B

Attribute C

Attribute D

Attribute E

Attribute F
Attribute G

Attribute H

Product
object P

Client X

Attribute A

Attribute C

Attribute D

Client Y

Attribute A

Attribute C

Attribute D

Attribute G

Attribute H

Client Z

Attribute A

Object
P

Object
P

Object
P

{Contents}

Product Layer

Figure 6.4:A product object can be viewed in differently by each client.

by just using the right combination of attributes. Attributes are distinguished by their name, and
it is the responsibility of the users to decide and share a consistent set of attributes for each object
type2.

Figure6.4shows a product object P consisting of attributes A through H. This set of attributes
is defined by the group of (heterogeneous) clients X, Y and Z, and reflects the information they
want to share about P. The set of attributes is dynamic, meaning that at any time any client can
decide to add new attributes, such as annotations3. In addition, not all types of client may need to
use all of the existing attributes. In the figure, client Y is making use of five of the attributes, while
X and Z use only three and one attribute respectively. This opens the possibility for different types
of clients to cooperate with each other.

Consider a scenario where MultiCASE (the graphical editor described in Section5.3) is only
one of several types of IGLOO clients using Product Layer. In Figure6.4, Z could be a MultiCASE
client, showing only P’s title in a graphical diagram. Y could be another IGLOO client, a web-
based viewer, showing detailed information about P on a Web page. X can then be thought of as
a third type of IGLOO client, a browser, showing the name of the object together with its owner
and the date it was last changed. In this scenario the three clients will share attribute A, the name
of the object. Any changes to P’s name will be noticed by all the clients. In addition, X and Y

2Deciding a set of agreed-upon object types is crucial for cooperation among the users. This is part of the process of
deploying IGLOO framework, and is explained in details in Chapter9.

3This feature has to be supported by each client, i.e. the clients should allow the users to add arbitrary attributes to the
object in runtime.



128 CHAPTER 6. PRODUCT LAYER

Product
object P

Product
object Q

Relation R
Attribute A

Attribute B

Attribute C

Attribute D

Client Y

Object
P

Object
Q

Relation R

Client Z

Object
P

Object
Q

Relation R
Attribute A

Attribute B

Attribute A

Attribute D

Product Layer

Figure 6.5:Relations in Product Layer are represented as attribute-value pairs with source and
destination product objects.

will have a tighter cooperation through sharing additional attributes C and D. Still other types of
clients can make use of other combinations of these attributes. A client might also want to store
“private” attributes not known to any other client4.

In addition to the set of attribute-value pairs, each product object has acontent(shown in
Figure6.4as a round rectangle for object P). Clients are allowed to register and modify one shared
content for each product object in the shared product space. This functionality can be used for
registering already existing documents, diagrams, photos, e-mail messages, etc. A content is
treated as a file, and does not need to reside within the shared product space together with product
object attributes. The product object may instead contain a pointer to its own content (for instance
an Internet address). In Figure6.4 product object P has a content file that is set by the user of
client X (the content file shown as a sheet of paper to the left of the figure). The product object
in Product Layer contains a link to this content, allowing clients X and Z to access it. Contents
can be useful when a client already has data stored in a repository. Information about the data in
the repository can be registered in Product Layer together with a pointer to the real contents. The
pointer may also specify specific access methods to allow other clients access the contents (for
instance if the content is a web page, the pointer may tell the clients to use the HTTP protocol in
order to access it).

4In Chapter5 we introduced the notion of shallow and deep properties for software modules in MultiCASE. In IGLOO
framework all the attributes belonging to product objects in the shared product space are deep properties. Shallow proper-
ties are first created as local attributes for user-defined cluster objects. See Chapter7 for more details on this.



6.2. SERVICES OF PRODUCT LAYER 129

Similar to product object services, Product Layer also provides a set of services for modifying
relations among product objects. Relations are represented in form of attribute-value pairs with
source and destination product objects. This is shown in Figure6.5. In this figure, relation R from
object P to object Q has four attributes. Again each client may be concerned with only a subset
of the attributes that exist for each relation depending on the type of the client. Relations are
also used for generating mediated awareness according to the shared interaction model. This is
described in Section6.2.2.

The services provided by Product Layer for setting up and maintaining a shared product space
are shown in Table6.1. These services also include a set of simple and flexible querying services
for allowing the clients investigate and retrieve the contents of the shared product space.

The services defined here do not cover all the possible operations that the clients might want to
perform on their products. In particular “repository-like” operations are missing. It would be im-
possible to predict all such operations. Product Layer defines a minimum set of required services.
An implementation of Product Layer might choose to support more. For instance, our implemen-
tation of Product Layer called Gossip (described in Section6.3) allows the clients to simulateany
operation on the shared product space besides the ones defined here. These simulations are then
mediated to all the clients by Gossip, even if the actual simulations do not modify the state of
the shared product space. For instance, if the clients support version control on product objects
they may issue commands such as “create new version” just to inform other clients that they are
creating new versions.

Table 6.1: Product Layer’s shared product space services

Service Semantics
Product object services:
Register a new product objectRegister a new product object in the shared product space. The

service also allows the client to specify a list of attribute-value
pairs in order to initialize the newly created object. Each at-
tribute’s name must be a distinct string. Each attribute’s value
must be a string. A new product object identifier is created and
returned to the client upon success.

Remove an existing product
object

Remove an already existing product object from the shared
product space. The client has to provide a valid product object
identifier. All attribute-value pairs belonging to the object are
also removed. In addition, all relations that this product object
is source or destination for are removed.

Update an existing product
object

Update the values of one or several attributes for an existing
product object. The client has to provide a valid product object
identifier, and a set of attribute-value pairs. For each attribute-
value pair that is provided, Product Layer will: a) if the attribute
already exists, update its value using the provided value, b) if
the attribute does not exist, create the attribute and set its value
to the provided value.

Continued on next page



130 CHAPTER 6. PRODUCT LAYER

Continued from previous page
Service Semantics
Remove attributes from a
product object

Remove one or several attributes from an existing product ob-
ject. The client has to provide a valid product object identifier
and a set of attribute names.

Update the contents of an ex-
isting product object

Set a new file or a URL as the new content for an existing prod-
uct object. The client has to provide a valid product object iden-
tifier, a file or URL, and an optional (MIME) type for the new
contents.

Relation services:
Register a new relation be-
tween two product objects

Register a new relation in the shared product space. Valid
source and destination object identifiers must be provided. The
service also allows the client to specify a list of attribute-value
pairs in order to initialize the newly created relation. Each at-
tribute’s name must be a distinct string. Each attribute’s value
must be a string. A new relation identifier is created and re-
turned to the client upon success.

Remove an existing relation Remove an already existing relation from the shared product
space. The client has to provide a valid relation identifier. All
attribute-value pairs belonging to the relation are also removed.

Update source for a relation Update the source product object of a relation. The client has
to provide a valid relation identifier and a valid product object
identifier.

Update destination for a rela-
tion

Update the destination product object of a relation. The client
has to provide a valid relation identifier and a valid product ob-
ject identifier.

Update attributes of a rela-
tion

Update the values of one or several attributes for an existing
relation. The client has to provide a valid relation identifier, and
a set of attribute-value pairs. For each attribute-value pair that is
provided, Product Layer will: a) if the attribute already exists,
update its value using the provided value, b) if the attribute does
not exist, create the attribute and set its value to the provided
value.

Remove attributes from a re-
lation

Remove one or several attributes from an existing relation. The
client has to provide a valid relation identifier and a set of at-
tribute names.

Shared product space query services:
Get attribute values for a
product object

Return the current values of one or several attributes for a given
product object. The client has to provide a valid product object
identifier and a set of one or several attribute names.

Get all attribute-value pairs
for a product object

Return the set of all attribute-value pairs for a given product ob-
ject. The client has to provide a valid product object identifier.

Continued on next page



6.2. SERVICES OF PRODUCT LAYER 131

Continued from previous page
Service Semantics
Search for product objects
with a specific attribute-value

Return product object identifiers for all the existing product ob-
jects that have a specific value for a specific attribute. The client
has to provide an attribute name and a value for that attribute.

Search for product objects
with a specific attribute

Return product object identifiers of all the existing product ob-
jects that have a specific attribute. The client has to provide an
attribute name in form of a string.

Get all existing product ob-
jects

Return a list of the identifiers of all the existing product objects.

Get the contents of an exist-
ing product object

Return the current contents of an existing product object along
with its (MIME) type. The content may be a file or a URL. The
client has to provide a valid product object identifier.

Get attribute values for a re-
lation

Return the current values of one or several attributes for a given
relation. The client has to provide a valid relation identifier and
a set of one or several attribute names.

Get all attribute-value pairs
for a relation

Return the set of all attribute-value pairs for a given relation.
The client has to provide a valid relation identifier.

Search for relations with a
specific source

Return identifiers for all the existing relations that have a spe-
cific product object as source. The client has to provide a valid
product object identifier.

Search for relations with a
specific destination

Return identifiers for all the existing relations that have a spe-
cific product object as source. The client has to provide a valid
product object identifier.

Search for relations with a
specific attribute-value

Return identifiers for all the existing relations that have a spe-
cific value for a specific attribute. The client has to provide an
attribute name and a value for that attribute.

Search for relations with a
specific attribute

Return identifiers of all the existing relations that have a specific
attribute. The client has to provide an attribute name in form of
a string.

Get all existing relations Return a list of the identifiers of all the existing relations.

6.2.2 Product awareness services

As discussed in Chapter2, geographically distributed groups often lack access to continuous flow
of awareness information. Having access to the right information, which is guaranteed when using
shared repositories with global access, is often not enough by its own. The problem is merely that
users are not hinted about changes in the shared product space simply because they are not physi-
cally co-located with those making the changes. Providing active support (i.e. explicitly informing
users about others’ activities) can strengthen awareness processes that are so important for cooper-
ation. Product awareness services allow Product Layer clients to receiveproduct awareness events
about access to the shared product space. A product awareness event is a message generated au-
tomatically by Product Layer as a result of a client accessing the shared product space. Product
awareness events are generated as the services shown in Table6.1 are requested by a client and



132 CHAPTER 6. PRODUCT LAYER

performed by Product Layer. Each event is delivered to the other clients in order to inform them
about the access. Such an event contains information about the kind of access (i.e. read, update,
add, delete, etc.), what objects or relations were involved, which client accessed the shared product
space, and some additional information depending on the type of the event. Through generating
product awareness events, Product Layer becomes an active provider of awareness information.

There are three groups of services for allowing the clients to make use of product awareness in
Product Layer (see Figure6.2). First, awareness configuration services allow the clients define the
overall type and amount of product awareness events to be generated by Product Layer. It might
be that a group of users do not want Product Layer generate events for all types of accesses to the
shared product space simply because the amount of product awareness information generated in
this way might be seen as too much. The users can configure the number of generated events as
long as it does not affect the internal state of the shared product space and the consistency of the
clients.

When product awareness events are generated, they have to be delivered to the clients. The
needs of the clients regarding product awareness information will be different from time to time
depending on what part of the shared product space they are working with. The second group of
subscription services are used by each client to inform Product Layer about the actual awareness
information needs of that client. Each client is required to create anawareness subscriptionfor
itself in order to let Product Layer know what product awareness events have to be sent to that
client. The third group of services is concerned with the automatic delivery of events to clients in
accordance with each client’s awareness subscription.

An overview of awareness support in Product Layer is shown in Figure6.6. In this figure,
each client has already set up an awareness subscription that consists of product objects and re-
lations (called awatch list, more on this and other subscription options later). Client W’s sub-
scription consists of product object A, client X’s subscription consists of product objects A and C,
etc. Subscriptions tell Product Layer what objects and relations each client is interested in. The
contents of a subscription are normally those objects that the client’s user is currently working
with. In MultiCASE, for instance, the subscription of each client contains all the product objects
that are in all the joined workspaces of a user.

Product awareness information is generated according to the shared interaction model devel-
oped in Chapter4. This means that product awareness is divided intodirect andmediatedaware-
ness. In Figure6.6a scenario containing both direct and mediated awareness is initiated as client
W issues a service request. This might be a request for any of the services listed in Table6.1.
Such a request will result in access to the shared product space. After the service is performed,
for instance an attribute of product object A is updated, all the clients currently having product
object A as part of their subscription will receive adirect product awareness event about the per-
formed service. This includes client X. On the other hand, client Y that is using product object B
is also informed about W’s access to A because there is an awareness relation R from A to B. This
mediated awareness is provided through amediatedproduct awareness event5.

In the rest of this section we will take a closer look at each of the three groups of product
awareness services.

5An implementation of Product Layer should have algorithms for detecting that client X, for instance, does not need a
mediated event even if it subscribes to C. This is because the user of X is already informed about access to A through a
direct event.



6.2. SERVICES OF PRODUCT LAYER 133

Relation RProduct object A Product object B Product object CRelation S

Client W

Product
object A

Client X

Product
object A

Client Y

Product
object B

Client Z

Product
object C

Product Layer

Product
object C

S
ervice req

ues t Dire
ct

 n
ot

ifi
ca

t io
n

M
ed

ia
te

d 
no

tif
ic

at
io

n

M
ed

ia
te

d 
no

t if
ic

at
io

n

Figure 6.6:Product awareness mechanisms in Product Layer.

Awareness configuration services

The set of product awareness events that is generated for each service request and the information
contents of each event are designed to guarantee that all the clients receive correct information
about what the other clients are doing. Awareness needs of groups are highly diverse and one
cannot assume that the same configuration of Product Layer will work in all situations and for
all project groups. For instance in a co-located project, where the members have easy access to
each other, lots of product awareness information may be exchanged simply as a result of being
co-located. In this case it might not be necessary for Product Layer to generate product awareness
events for every possible access to the shared product space. In fact most of the events will be of
no use and the effect might turn out to be negative. On the other hand, a geographically distributed
group might benefit from a higher amount of events in order to compensate for the lacking aware-
ness of co-workers. Awareness configuration services are used to control the amount of product
awareness events that are generated by Product Layer. It is important to configure Product Layer
correctly because all clients will eventually receive a subset of the events that are generated by
Product Layer in the first place. This means for instance that if Product Layer is configured not to
generate product awareness events for query operations the clients will never get such events even
if they would like to. Before we describe the awareness configuration services it is important to
understand the mechanisms used by Product Layer for generating product awareness events.

All the services of Product Layer that access the shared product space (i.e. the services in
Table6.1) will potentially result in one or severaldirect product awareness events. These events
are used to make public the exact nature of the activities of the clients. Assume that client X in
Figure6.4 updates attribute D on product object P. As a result, Product Layer will generate two
product awareness events. The first event will be of type “Update product object” and the second
will be of type “Update product object attribute.” The first event can be used by both clients Y



134 CHAPTER 6. PRODUCT LAYER

and Z in order to inform their respective users that object P was accessed (by blinking the object
on the screen, for instance). The second event will not be useful for Z because attribute D is not
used by this client. However, Y can use this event and update its copy of product object P in
order to inform its user which attribute was updated. Note that product awareness events are not
limited to “updates.” Such events are also generated as a result of product objects being subject
for queries. It might for instance be interesting for client X in Figure6.4 to know if Y and Z are
reading product object P, or that some other client just searched for product objects similar to P.

In addition to direct product awareness events, another type of product awareness events is
generated by Product Layer that is calledmediatedproduct awareness event. Mediated events
are distributed following the existing relations among product objects, and support the concept of
mediated awareness as discussed in Chapter4. Relations can be created among any two product
objects as described above. A relation not only connects two product objects according to some
criteria (for instance dependency or “subpart”), but can also be set (explicitly by the clients) to
mediateproduct awareness events. In Figure6.6 there are two relations, relation R from product
object A to B, and relation S from B to C. Once client W performs an operation on product object
A, product object B may be informed about the operation through relation R. B will then generate
a mediated product awareness event. This event is sent to the clients using B, in this case Y.
This process is calledawareness mediation(see Chapter4). Awareness mediation can happen
recursively all through amediation pathamong product objects. For instance, in Figure6.6, the
mediated product awareness event from product object B also causes product object C to generate
a mediated awareness event, which is sent to client Z. The mediated event received by Z originates
from C, but the object identifiers of all the product objects in its mediation path (i.e A and B) are
appended to the event in order to let the user of Z investigate the cause of the product awareness6.

In addition to the set of attribute-value pairs that each relation may have, a set ofoperation-
strengthpairs can be defined for each relation. This set functions as a filter for selecting the
product awareness events that can be mediated by the relation. Theoperationfield in each such
pair decides what kind of interaction types the relation will mediate, and thestrengthfor that
operation type decides how many product objects each mediated product awareness event can
pass before it is stopped (i.e. the strength factor of the awareness relation, see Chapter4. For
instance, if a relation has an “Update product object attribute” field with a strength 2, the relation
will mediate all the events that are of type “Update product object attribute,” and that have not
already been mediated twice.

Product Layer can be configured to generate different combinations of both direct and medi-
ated product awareness events. For direct events, the users can decide if Product Layer should
generate events for all kinds of access to the shared product space (including read access) or if
Product Layer should generate events only for modifications to the shared product space. For
mediated product awareness events, users can define the behavior of each relation in the shared
product space regarding awareness mediation. Relations are by default not mediators of aware-
ness. Each relation has to be “switched on” explicitly, and after it is switched on it will mediate to
its destination all user access to its source. Using operation-strength values for each relation one
can regulate the number of mediated events that are generated in the presence of relations. For
instance, awareness of read operations on an attribute from a product object that is “three objects
away” is normally considered not so important, while it would be interesting to get information

6Pointers to all the product objects in the mediation path are appended to each mediated event also in order to detect
and avoid loops by stopping the awareness mediation when the same relation has mediated the same event once before.



6.2. SERVICES OF PRODUCT LAYER 135

Product
object

Product
object

Product
object

Product
object

Product
object

Product
object

Product
object

G

Product
object

Product
object

Product
object

Product
object

Product
object

L1

G
G

G

G

G

L2

L1 L1

L2

L2

L2

Figure 6.7:Each user can subscribe to one or more awareness schemes, or create his own.

about who is reading the objects in one’s own workspace.
Both kinds of configurations mentioned above (i.e. controlling the generation of direct and

mediated product awareness events) have global effects. This means that all users might become
affected by changes to configuration. For instance, when Product Layer is set to generate only
events as a result of modifications to the shared product space, no client will no longer receive read
events. However, the situation is different for mediated events. Although all the relations exist in
the shared product space, and basically every mediated product awareness event is accessible by
any user, each user can decide what kind of mediated event he will actually receive. This is done
through subscribing to the properawareness schemes. Awareness schemes are described below,
and their use in awareness subscriptions is described in the next section.

Each relation, after it is turned on and is ready to mediate awareness, will belong to an aware-
ness scheme. Users can decide to subscribe to already existing schemes, or create their own (see
next section for awareness subscriptions). Figure6.7shows a shared product space with three dif-
ferent awareness schemes. The thick gray relations labeled G belong to scheme G (G for global).
All users might be expected (by the project manager) to subscribe to this scheme in order to get
a shared view of the activities in the project. Such an awareness scheme will most probably not
satisfy the awareness needs of all the users. Additional awareness schemes might be created by
each user or group. In Figure6.7two such schemes exist, represented by relations labeled L1 and
L2 (L for local). A user who subscribes to G and L1 will receive mediated product awareness
events resulting from all relations labeled G and L2, but not by those labeled L27. Awareness
schemes may be used for supporting local group awareness: A group of users might create their
own local scheme that allows them to receive the same awareness information about a part of the
shared product space. Note that awareness schemes are not stored explicitly but exist implicitly.

7In recursive mediation (See Chapter4), it is the last relation in the mediation path that is considered the originator
of the mediated product awareness event. This means that if a mediated event passes several relations, it will eventually
belong to the scheme of the last relation that mediated it.



136 CHAPTER 6. PRODUCT LAYER

This means that an awareness scheme exists if there is at least one relation in the shared product
space that belongs to that scheme (i.e. a relation that is labeled with that scheme’s name).

Following the discussion above, awareness configuration services fall into three sub-groups.
The first group controls the generation of direct product awareness events, i.e. if Product Layer
should generate direct product awareness events for all operations or only when the shared product
space is modified. The second group controls the behavior of the relations in the shared product
space by making them awareness mediators and configuring their filter settings. The third group
is concerned with the management of awareness schemes by allowing the users decide which
scheme each relation should belong to. These services are shown in Table6.2.

Table 6.2: The services provided by Product Layer for configuring prod-
uct awareness.

Service Semantics
Generate product awareness
events for queries

Tell Product Layer to also generate direct product awareness
events for any read operation. This will result in generating an
event for any access to the shared product space.

Don’t generate product
awareness events for queries

Tell Product Layer to stop generating direct product awareness
events for read access. Direct events will still be generated for
updates to the shared product space.

Make a relation an awareness
mediator

Switch on an existing relation so that it can start mediating
awareness from its source to its destination. A valid relation
identifier and an optional list of operation-strength is provided
by the client. If the list of operation-strength pairs is empty,
the relation will propagate all the events from its source to its
destination. The client may also provide an awareness scheme
identifier this relation will belong to.

Update the operation-
strength pairs of a relation

Update one or several operation-strength pairs for a given rela-
tion. The client has to provide a valid identifier for the relation,
and a set of operation-strength pairs. Product Layer will, for
each operation-strength pair, a) if the pair already exists, update
its strength with the provided strength value, b) if the pair does
not already exist, create the pair with the provided values.

Remove operation fields
from an existing relation

Remove one or several operation fields from an existing rela-
tion. The client has to provide a valid relation identifier, and a
set of one or several operation names.

Get operation strengths for a
relation

Return the current strengths of one or several operation fields
for a given relation. The client has to provide a valid relation
identifier and a set of one or several operation names.

Get all operation-strength
pairs for a relation

Return the set of all operation-strength pairs for a given aware-
ness relation. The client has to provide a valid relation identifier.

Update awareness scheme
for a relation

Update the awareness scheme that a relation belongs to. The
client has to provide a valid relation identifier and a scheme
label.

Continued on next page



6.2. SERVICES OF PRODUCT LAYER 137

Continued from previous page
Service Semantics
Search for relations belong-
ing to a specific awareness
scheme

Return relation identifiers of all the existing relations that be-
long to an existing awareness scheme. The client has to provide
a scheme identifier.

Get a list of awareness
schemes

Return a relation of all the awareness schemes that currently
exist in the shared product space.

Awareness subscription services

The awareness configuration services discussed above can be used to adjust the behavior of Prod-
uct Layer regarding the generation of product awareness events. Once these events are generated
they have to be delivered to the clients. It is highly probable that each client will have a different
and varying interest in the shared product space. Therefore it is the responsibility of the clients
to tell Product Layer what product awareness events they want to receive. The clients can do this
by creatingawareness subscriptionsusing Product Layer’s awareness subscription services. An
awareness subscription is a description of a client’s awareness needs. Awareness subscriptions
add a new level of customization, and give each client full control over its awareness needs8.

A client’s awareness subscription consists of three parts as shown in Figure6.8. The first
part (to the left in the figure) is thewatch list. Each client will typically be interested in only a
sub-set of product objects and relations from the shared product space. For instance a MultiCASE
client uses only the product objects in the user’s joined workspaces, and will have a watch list
containing only those objects. A client can tell Product Layer what objects and relations it is
currently using by adding those objects and relations to its own watch list. Figure6.8 shows the
awareness subscription of client X in Figure6.6. X’s watch list contains product objects A and C
and no relations. When a watch list is defined by a client, only those direct and mediated product
awareness events that originate from the objects and relations in the watch list are delivered to the
client. In addition, for both objects and relations, the client can decide the type of operations it
is interested in. For instance, in Figure6.8 X has specified that it is interested in delete, update
attribute, and read attribute operations on product objects, but only delete and update attribute
operations on relations.

The second part of an awareness subscription contains the list of awareness schemes that the
client subscribes to. In Figure6.8 X has subscribed to schemes called G, L1, L2, and “Private
scheme 1.” The subscribed schemes decide which mediated product awareness events are deliv-
ered to the client. A mediated event that does not belong to one of the subscribed schemes of a
client will not be delivered to that client.

The first two parts of an awareness subscription are concerned with product awareness (see
Figure6.8). The third part of an awareness subscription describes a client’s interest on any other
events that Product Layer may generate. This part includes subscriptions to events related to other
clients’ activities, e.g. when other client join or leave Product Layer (“Participant awareness”
part). A client’s user can also specify if he is interested in receiving instant text messages from

8An additional benefit of explicit subscriptions is that an implementation of Product Layer will be more efficient
because it will not need to send all product awareness events to all clients. This would have caused too much network
traffic in case of a network-based implementation. More details on this in Section6.3.



138 CHAPTER 6. PRODUCT LAYER

Participant awareness:
  -Join
  -Leave
Instant messages:
  -All users
User-defined:
  -"access"
  -"version"

Watch list:
  -Product objects:

A, C
  -Relations:
Watch list operations:
  -Product objects:

delete
update attribute
read attribute

  -Relations:
delete
update attribute

Awareness schemes:
  -G
  -L1
  -L2
  -Private scheme 1

Awareness
subscription for

client X

Product awareness subscriptions
Other subscriptions

Direct events Mediated events

Figure 6.8:The different parts of an awareness subscription.

other users (“Instant messages” part). Finally, users can add user-defined strings that are checked
for by Product Layer when user-defined operations are performed. These strings are stored in the
“User-defined” part of a subscription. User-defined strings are used when awareness events about
user-defined operation types (i.e. those not supported by Product Layer) are to be forwarded to
the client. For instance, if Product Layer is used for sending version control information to other
clients, a string “version” can be added to the subscription of a client. Product Layer will then
know which clients want to receive events containing the string “version.”

A client might change its awareness subscription dynamically using awareness subscription
services of Product Layer shown in Table6.3. A client will start consuming awareness by joining
the Product Layer and setting up a watch list in its awareness subscription, and will stop consuming
awareness by leaving Product Layer.



6.2. SERVICES OF PRODUCT LAYER 139

Table 6.3: The services provided by Product Layer for creating and up-
dating awareness subscriptions.

Service Semantics
Add a product object to the
watch list

Add an existing product object to the watch list of the client.
The client has to provide a valid product object identifier.

Remove a product object
from the watch list

Remove a product object from the watch list of the client. The
client has to provide a valid product object identifier.

Add a relation to the watch
list

Add an existing relation to the watch list of the client. The client
has to provide a valid relation identifier.

Remove a relation from the
watch list

Remove a relation from the watch list of the client. The client
has to provide a valid relation identifier.

Get all product objects in the
watch list

Return a list of the identifiers of all product objects in the watch
list of the client.

Get all relations in the watch
list

Return a list of the identifiers of all relations in the watch list of
the client.

Update operation list for
product objects

Update the list of subscribed operation types for product ob-
jects. The client provides a list of operation types. The new list
replaces the old one.

Update operation list for re-
lations

Update the list of subscribed operation types for relations. The
client provides a list of operation types. The new list replaces
the old one.

Subscribe to an awareness
scheme

Add an awareness scheme to the list of schemes the client sub-
scribes to. The client has to provide a label for the scheme.

Remove an awareness
scheme

Remove an awareness scheme from the list of schemes the client
subscribes to. The client has to provide a label for the scheme.

Get all awareness schemes Get a list of all awareness schemes the client subscribes to.
Update participant awareness
list

Update the list of subscribed participant awareness events. The
client has to provide a list of valid event types. The old list is
replaced with the new one.

Get participant awareness listReturn the list of subscribed participant awareness events.
Update instant message list Update the list of users the client will receive instant messages

from. The client has to provide a list of valid user identifiers.
The old list will be replaced with the new one.

Get instant message list Get the list of users the client receives instant messages from.
Update user-defined string
list

Update the list of user-defined strings the client subscribes to.

Get user-defined string list Get the list of user-defined strings the client subscribes to.



140 CHAPTER 6. PRODUCT LAYER

6.2.3 Community services

Product awareness results in increased up-to-the-minute knowledge about who is doing what in the
shared product space. This knowledge creates opportunities for interpersonal communication that
would have not existed without product awareness. Product Layer supports a few simple services
in order to allow direct communication among its users. These are called community services and
include services for joining and leaving Product Layer, finding out about other clients and their
activity level, and for sending instant text messages to other joined clients. These services are
shown in Table6.4. Each of these services result in one or severalparticipant awareness events,
that are a special type of awareness events. The range of participant awareness events sent to each
client is defined in the client’s awareness subscription. In addition,instant messages, that are short
text messages delivered to the users in real time, can be exchanged among the users.

Table 6.4: Different community services supported by Product Layer.

Service Semantics
Join Product Layer A client joins Product Layer. The client has to provide a valid

client identifier.
Leave Product Layer A client leaves Product Layer.
Get a list of all joined clients The Product Layer will provide a list of the client identifiers of

all the clients currently connected.
Get activity level for a client Return an indicator of how active a client has been recently. The

indicator can be high, medium, low, or no activity.
Get a list of clients watching
a product object

Return the client identifiers of all clients that have a specific
product object in their watch list. The client has to provide a
valid product object identifier.

Get a list of clients watching
a relation

Return the client identifiers of all clients that have a specific
relation in their watch list. The client has to provide a valid
relation identifier.

Send instant message to a
client

The client can compose a text message and send it to another
currently connected client. The sender has to provide a valid
client identifier for the recipient.

Send instant message to all
clients

The client can composed a text message and send it to all cur-
rently connected clients.

Send instant message to users
of a product object

The client can composed a text message and send it to all the
currently connected clients that have a specific product object
in their watch list.

Send instant message to users
of a relation

The client can composed a text message and send it to all the
currently connected clients that have a specific relation in their
watch list.

Community services connect product awareness to the users. Community services can be used
to create chat-like tools such as the one used in MultiCASE, where users can engage in discussions.
The services can also be used for creating e-mail solutions by allowing each user to have an inbox
where instant messages can be stored. There are also services for sending instant messages to the



6.3. THE IMPLEMENTATION OF PRODUCT LAYER: GOSSIP 141

users of a specific product object or relation. These services can be used to initiate discussions
related to these objects and relations, and can be used as basis for design rationale support.

6.3 The Implementation of Product Layer: Gossip

In this section an example implementation of Product Layer calledGossipis described9. The
implementation is in form of anawareness engine, i.e. a specialized notification server that is in
charge of supplying product awareness information to the clients in an IGLOO network. The basic
mechanisms behind using notification servers for supporting awareness are shown in Figure6.9.
In this figure, the user of client A performs an action. The action results in client A sending a
service request to the notification server. If the request is performed, an acknowledgement is sent
to client A, and other clients receive a notification. The effect of the action is shown to client
A’s user as afeedback, while other users will observe the action performed by client A’s user in
form of a feedthrough. In this way, clients B, C and D can simulate for their own users the action
performed by client A’s user.

Notification servers have proved to be efficient means for supporting awareness in collabo-
ration support systems (Ramduny, Dix and Rodden1998). Notification servers provide generic
awareness support, as opposed to specific solutions such as shared window systems. This means
that clients of different kinds can use a notification server for exchanging awareness informa-
tion as long as a uniform protocol is used for communication with the server. A notification
server often employs an information push policy, where notifications are sent to clients instead of
clients pulling the server for information10. This has the technical advantage of reducing network
traffic to only a number of necessary notifications being exchanged between the server and the
clients. Push policy is in particular useful for synchronous applications, where performance and
feedthrough speed are critical (Day1997).

The difference between a notification server and an awareness engine is fluid. In this thesis we
will use the following distinction: An awareness engine is a notification server with an internal
logic that guides the distribution of notifications to the clients. This internal logic is often based
on a specific interaction model. For instance, NSTP (Day, Patterson, Kucan and Chee1996) is
an awareness engine that uses a room-based model of interaction. As a result, notifications of
changes to the contents of a room are sent only to the inhabitant of that room. According to our
definition all awareness engines are also notification servers.

Gossip is a notification server based on information push policy. Gossip implements a uniform
network protocol where all service request adhere to a standard format. This protocol allows any
IGLOO client to connect and perform the Product Layer services described in the previous section.
Gossip will then distributed product awareness events to its clients in form ofnotifications. In
addition, Gossip is an awareness engine because it also implements a specific awareness model
based on the shared interaction model developed in Chapter4. The shared interaction model
guides the distribution of notifications, and in this way provides a customized flow of awareness
information to the clients.

9A number of the properties of Gossip as described in this section are common for the implementations of the other
layers of IGLOO framework, i.e. CoClust described in Section7.4 and SWAL described in Section8.4. These common
parts, including the network protocol format and notification mechanisms, will not be repeated for CoClust and SWAL.

10Though a pull policy is also a perfectly possible solution in many cases. See (Ramduny et al.1998) for a discussion.



142 CHAPTER 6. PRODUCT LAYER

Service request

N
otification

Notific
atio

n

U
se

r 
ac

tio
n

N
ot

ifi
ca

tio
n

Notification server

F
ee

db
ac

k

F
ee

dt
hr

ou
gh

F
ee

dt
hr

ou
gh

F
ee

dt
hr

ou
gh

Client
B

Client
C

Client
D

Client
A

ACK/NACK

Figure 6.9:Using notification servers to support awareness.

6.3.1 An overall view of Gossip

Figure6.10shows the main components of Gossip’s architecture, and their relationships. Boxes
denote functional components, while gray boxes denote persistent object stores. Black thin arrows
denoteGossip eventcommunication, and white thick arrows denote other data communication.
There are two types of Gossip clients. emphProducer clients can send requests to Gossip for
performing aGossip operation. They are the producers of awareness information.Consumer
clients are those connected clients who have an awareness subscription in Gossip. These are
the consumers of awareness information. A client can choose to be a producer, a consumer, or
both11. An application becomes a client by explicitly connecting to the proper network channel.
Consumer-only clients are not permitted to access any internal data but they might change their
awareness subscriptions, so they will typically be event monitors. Shared product space browsers
are for instance producer clients because they query the shared product space and may therefore
produce product awareness.

The contents of the shared product space are stored in persistent registers. Attribute-value
pairs for product objects are stored inProduct Object Register, and relations are stored inRelation
Register. Gossip supports the storage of one content file for each product object, but content
files are logically external to Gossip (i.e. Gossip only stores a pointer to them internally). A
content file can be stored in theContent Database(the local file system) with a local pointer

11There is also a third type of client that has the privilege of registering other clients as producer or consumer clients.
CoClust, which is an implementation of Cluster Layer (see Chapter 7) is such a privileged client. Privileged clients are not
a part of the public Gossip network protocol, and are used only internally by IGLOO framework.



6.3. THE IMPLEMENTATION OF PRODUCT LAYER: GOSSIP 143

Gossip

Product
Object

Register

 Relation
Register

Subscription
Register

Producer client
Consumer clientConsumer clientConsumer client

ReceiverReceiverReceiver
SenderSenderSender

Request
Manager

Content
Manager

Content
DB

Notification
Manager

Internal Notification Bus

Figure 6.10:The internal architecture of Gossip.

from the corresponding product object to it. Contents can also be available on the Internet, in
which case Gossip stores only a pointer to their location. Awareness subscriptions are also stored
in a persistent register calledSubscription Register. The contents of watch lists in awareness
subscriptions are not stored persistently since they must be specified each time a client connects
to Gossip.

Any Product Layer service can be asked for by a client sending arequestto Gossip. Each
request will initiate an operation and will result in one or several notifications, as defined byGossip
network protocol(see Section6.3.2). All requests, notifications and other types of messages are
Gossip eventand follow a standard format. Gossip event is extendable, meaning that for instance
additional request types may be defined by the clients and in future versions of Gossip. Requests
of client-defined types are not processed internally by Gossip, and are simply forwarded to other
clients interested in them (based on each client’s subscription for user-defined strings).

All clients have to communicate their requests to aReceiver. A Receiver is a translator be-
tween a specific network protocol and Gossip’s internal representation, i.e. Gossip event. There
are several Receiver objects in Gossip, one for each supported network protocol (currently only
one). When a request arrives through a network channel to a Receiver, the Receiver creates a
Gossip event object of typeREQUEST(see Table6.5 for Gossip event types), and initializes
it based on the contents of the received request. The Gossip event is then delivered toRe-
quest Managerthat is responsible for the processing of requests. After the corresponding op-
eration is performed, the client will get back an event of typeACKNOWLEDGEMENTor NEGA-
TIVE ACKNOWLEDGEMENTdepending on whether the request was performed successfully. If
the operation was successful a new Gossip event object of typeNOTIFICATIONDIRECTor NO-
TIFICATION COMMUNITY(depending on whether the original request was for a shared product



144 CHAPTER 6. PRODUCT LAYER

space service or a community service) is created by Request Manager based on the initial request.
The new event is sent directly toNotification Manager. In cases where the event was of type
NOTIFICATIONDIRECT, it is also sent toInternal Notification Bus. Request Manager can be
configured (through awareness configuration services) to generate direct product awareness events
for only a subset of Gossip operations.

Each awareness relation is implemented in Gossip in form of anawareness agentwith related
source and destination product objects. Awareness agents are responsible for generating mediated
product awareness events on behalf of their destination product objects, and therefore listen to
Internal Notification Bus in order to monitor accesses to product objects12. Each Awareness agent
will check the bus for events that have originated from the agent’s source product object. For each
such event, the agent will generate a new Gossip event of typeNOTIFICATIONMEDIATEDon
behalf of its destination product object. These events are again sent to Internal Notification Bus,
and other awareness agents may in turn generate new mediated events based on them.

Notification Manageris in charge of sending proper notifications or instant messages to each
client. Upon arrival of a new Gossip event (from Request Manager or Internal Notification Bus)
Notification Manager consults the awareness subscription of each consumer client in order to see
if the event should be sent to it. For each client that has a subscription for an event, the event is
delivered to the client’s preferredSenderobject. Each client has a preferred network protocol, and
Senders are in charge of translating the internal Gossip event to this preferred network protocol
understandable by the Consumer client.

Awareness subscription requests are sent by consumer clients. This means that a client in
order to change its awareness subscription has to connect as a consumer client. This is done in
order to allow consumer-only clients have the possibility for changing their subscriptions without
becoming producer clients. A consumer client cannot request any service that will change the
shared product space or the awareness configuration of the server. This makes it easy to separate
monitor clients from other kinds of clients. Sender is accordingly capable of receiving requests
for awareness subscription services. These requests are sent to Request Manager as usual, and
acknowledgements are sent back to the consumer client through Sender.

Awareness configuration and subscription requests are handled differently in that they do not
produce notifications. In this case Request Manager will receive the request (for instance for
changing the watch list of a client), will process the request, and send an acknowledgement back
to the client without creating any notifications.

6.3.2 Gossip network protocol

The services of Product Layer are implemented in form of a logical network protocol to be used
for communication with Gossip. All the messages sent using the protocol, both from a client to
Gossip and from Gossip to a client, areGossip eventsas shown in Figure6.11. The fields may
have different meanings according to originator and type of event.clientID is a unique identifier
for the client that sent the initial event to Gossip. The same clientID is copied to all the events sent
from Gossip to other clients as a result of the original event. For instance, if a producer client sends
aREQUESTto update a product object, all the resulting events of typeNOTIFICATIONDIRECT

12Conceptually mediated events are generated by the affected product objects (see Figure6.6). However, from an
implementation point-of-view it has been more convenient to let relations take the responsibility of generating mediated
events. For the clients of Gossip these events are still received from the actual product object.



6.3. THE IMPLEMENTATION OF PRODUCT LAYER: GOSSIP 145

will have the clientID of the original request. This allows other clients see which client sent the
initial request. eventTypecan be one of the supported types shown in Table6.5, or other user-
defined event type. An event from a client to Gossip is always of typeREQUEST. Events sent
from Gossip to the clients may be of any of the types shown in Table6.5 except theREQUEST
type.

operationTypehas different meanings according to the type of the event. In an event of type
REQUESTsent from a client to Gossip, operationType indicates the requested Product Layer ser-
vice, for instanceUPDATEPRODUCTOBJECT. In an event of any other type sent from Gossip
to the clients, operationType indicates the operation that resulted in the event being sent. For in-
stance, if a client sends aREQUESTof type UPDATEPRODUCTOBJECTto Gossip, Gossip
will send the following events:

• An event of typeACKNOWLEDGEMENTor NEGATIVEACKNOWLEDGEMENT(de-
pending on if the request succeeded or not) with operationTypeUPDATEPRODUCTOB-
JECT to the client that sent the original request.

• In case the request was successful all other clients will get an event of typeNOTIFICA-
TION DIRECT with operationTypeUPDATEPRODUCTOBJECTand additional infor-
mation about the performed operation.

• If the updated object is source for any relations, Gossip will send one or more events of type
NOTIFICATIONMEDIATEDwith operationTypeUPDATEPRODUCTOBJECT.

operationType of an event sent to the clients may sometimes be different from operationType
of the originating request. For instance, a request of typeUPDATEPRODUCTOBJECTwill pro-
duce one event (of typeNOTIFICATIONDIRECTas shown above) indicating anUPDATEPRO-
DUCT OBJECToperation, and one or more additional events (of typeNOTIFICATIONDIRECT)
indicatingUPDATEPRODUCTOBJECTATTRIBUTEoperations for each updated attribute of
the product object.

schemeIDis an awareness scheme label, and has a meaning only for events of typeNOTIFI-
CATIONMEDIATED. It indicates which scheme the mediated product awareness event belongs
to. eventID is a unique identifier derived from a time stamp, and can be used by the clients
to synchronize the reception of events.authenticationInfois used in combination with clien-
tID to authenticate the connected clients. The body of the event contains additional information
about the event. For instance an event of typeNOTIFICATIONDIRECTand operationTypeUP-
DATE PRODUCTOBJECTATTRIBUTEwill include the identifier of the updated product object,
and the name and the new value of the updated attribute. This data is different from event to event,
and abodySizeindicates its size.

The protocol provides a basis that can be expanded both in new versions of Gossip, and in
the current version by the clients. Clients can define new event types and new operation types
according to their needs. This can be useful in cases where the set of services provide by Product
Layer does not include frequently used local activities of the developers. For user-defined event
and operation types, Gossip will work as a pure notification server and only forward the events
to those clients interested in them. A part of each client’s awareness subscription is reserved for
subscribing to such user-defined messages (the part called “User-defined” in Figure6.8).



146 CHAPTER 6. PRODUCT LAYER

One byte

eventID

authenticationInfo

clientID eventType operationType schemeID

bodySize

Figure 6.11:The format of a Gossip event. This format is used uniformly for communication with
Gossip

6.3.3 Gossip client extension

As part of the Gossip server, a small library of classes calledGossip client extensionis developed.
The purpose of this library is to hide most of the details of Gossip network protocol from clients.
Keeping the programming interface to Gossip as simple as possible has been one of our main goals
in order to motivate developers to develop Gossip-enabled clients, or extend existing clients with
Gossip-related functionality. Using Gossip client extension, clients can easily send and receive
events from Gossip.

The client extension contains classes calledGossip Server, Gossip Producer Channel, Gossip
Consumer Channel, Gossip Awareness Subscription, andGossip Event. An application can initiate
an instance of the Gossip Consumer Channel class, which will automatically set up a network
channel towards a Gossip server, and register the application as a producer client of that server.
After this, the application can make requests to the server using instances of the Gossip Event
class. In the same way, creating an instance of a Gossip Consumer Channel will automatically
register the application as a consumer client of the Gossip server. Upon the creation of a Gossip
Consumer Channel, the application is requested to provide a call-back function. Events that arrive
from the server will force the execution of this function. The application can then implement
the call-back function in proper way in order to handle the received events. Gossip Awareness



6.3. THE IMPLEMENTATION OF PRODUCT LAYER: GOSSIP 147

Field Semantics

REQUEST A request event sent by a client for performing
a service. All events from clients to Gossip are
requests.

NOTIFICATION DIRECT A direct product awareness event sent as a result
of access to the shared product space.

NOTIFICATION MEDIATED A mediated product awareness event sent as a re-
sult of awareness mediation.

NOTIFICATION COMMUNITY An event sent to a client as a result of a commu-
nity activity, such as a client joining or leaving
Product Layer.

NOTIFICATION SYSTEM An event sent to a client as a result of a system
activity.

MESSAGECOMMUNITY An instant message sent to a client by another
client.

MESSAGESYSTEM An internal system message sent to a client.
ACKNOWLEDGEMENT An event sent back to a client as a result of a

successful request.
NEGATIVE ACKNOWLEDGEMENT An event sent back to a client as a result of a

failed request. The event will contain an error
code explaining the reason for failure.

Table 6.5:Different Gossip event types supported by current Gossip version. New event types can
be defined by the clients

Subscription allows a client application to change its awareness subscription on the server. These
classes support all the functionality provided by Gossip through an easy-to-use object-oriented
interface.

6.3.4 Gossip’s internal consistency

Gossip, as any other notification server (Ramduny et al.1998), may be used in two quite different
ways. It can be used in a tool to provide informal awareness about a shared field of work. A
notification server, in particular one with an internal state (Gossip with its shared product space
belongs to this category) may also be used in a more formal way for synchronizing a group of
clients. In the first case, the consistency of the internal state is not so important as long as the
notification server is able to send a more or less correct flow of notifications to the clients. For
instance, an event monitor that shows a graphical representation of the level of activity within a
shared state will not become inconsistent if the underlying notification server does not send all
activity notifications, or sends some out of order.

In the second case, the notification server has to guarantee correct delivery of notifications,
and if the clients rely on the internal state of the server, it also has to be able to preserve the



148 CHAPTER 6. PRODUCT LAYER

consistency of this internal state. For instance, if a notification server has to synchronize editors
used by a group of developers, the server has to guarantee that all the developers see and change
the same data, and that changes by one or several developers does not leave the internal state
of the server inconsistent. The internal state in these cases is also of crucial importance for late
comers. Whether Gossip will be used in the first or the second sense depends on its users. But
since Gossip offers services that have to do with creating and maintaining product objects and
relations which containing shared data, it has to be able to guarantee the consistency of this data.
Other pure notification servers, such as Elvin (Segall and Arnold1997), normally do not need to
take this issue into consideration because they do not have any internal state.

Whenever consistency of shared data is of concern, a concurrency control mechanism has to be
employed in order to control concurrent accesses to shared data. Concurrency control algorithms
are used for this purpose. The choice of such an algorithm is influenced by several factors, maybe
the most important one being performance. A central control mechanism may become a bottleneck
in a distributed environment because all control has to go through a central controller. Another
important issue is whether the algorithm makes extensive use of coarse-grained locking. If the
algorithm has to lock all the internal state of the server in order to allow one client change one
product object it is not useful because it will prevent others from working with other product
objects.

Concurrency control mechanisms may be divided into two groups, pessimistic and optimistic
ones (Prakash1999). Pessimistic algorithms try always to stay in the safe side; no editing of
the shared state is allowed before permission is granted by a controller. Optimistic algorithms
allow unsafe editing of shared data, and use some recovery method (such as undo-skip-redo of
operations) to recover from any inconsistent state that may occur.

The most common pessimistic algorithm is simple locking. For accessing a piece of shared
data a lock has to be obtained from a lock server. Locks are also needed for simple viewing of
data because the data might change while it is viewed by someone. Simple locking has shown
to be unsuited for real-time editing of shared data because retrieving locks over network is time-
consuming. A refined form of locking, that is also used by Gossip, is token-based locking. Each
piece of shared data has a token that has to be obtained by anybody wanting to change that data.
The advantage of this method is that a token does not need to be retrieved every time the data is
edited. Once a client obtains a token, it can safely perform the editing and free the token. The
free token stays with the client until some other client asks for it. In this way an optimization
is achieved because each piece of data is often edited by only one person (Prakash1999). This
mechanism provides sufficient performance, and guarantees the consistency of the shared data. In
Gossip, each product object and each relation have their own tokens. A finer grained implementa-
tions would allow to have one token per attribute in these objects, allowing concurrent editing of
the same object or relation.

6.3.5 The implementation of Gossip

The current version of Gossip is implemented in the Java programming language. Network com-
munication in Gossip, both towards clients and internally in the notification bus, is based on
JSDT (Java Shared Data Toolkit13). JSDT is a flexible toolkit provided by Sun as an extension
to the Java Development Toolkit. This toolkit implements useful groupware abstractions such as

13http://java.sun.com/products/java-media/jsdt/



6.4. SUMMARY 149

sessions and channels. The connection between the clients and Gossip is through a JSDT session.
Inside this session, two channels are used for communication between Gossip and the producer
and consumer clients.

The internal notification bus is implemented in form of a network channel that is accessible
only by other Gossip servers. Several Gossip servers can share the same notification bus, in this
way creating a Gossip network. This is useful for scalability and performance reasons. Our expe-
rience with using Gossip shows that inside a high-speed local network notifications are distributed
in real time. We have in fact used Gossip in a synchronous graphical group editor where the no-
tifications are used to synchronize the screens of the clients. The notifications are distributed in a
much slower speed on the Internet. Having one local server for each local group can help to build
a more optimized Gossip infrastructure.

6.4 Summary

In this section we have defined Product Layer of IGLOO framework in form of a set of basic
services that can be used to set up and maintain a shared product space, and increase product
and participant awareness in a distributed project team. The underlying concept is that of a shared
product space that can be accessed by a group of developers. Product Layer increases the visibility
of these accesses, and allows developers be aware of each others’ activities.

Product Layer fulfills the requirements we posed to a shared product space in Chapter2. The
shared product space offered by Product Layer isopenin that access to it is supported by a well-
defined set of services, and implemented in form of a network protocol that can be used by any
application. The shared product space is alsoaccessiblein that information is represented in a
uniform format and can be accessed in a uniform way. Updates to the contents can be done using
a few services. Product Layer supportsunrestricted object typesby not predefining any object
types at all, and allowing users define their own types. Objects and relations can be registered
and modified in anincremental way, i.e. users can start with simple objects and refine them by
adding new attributes. Each product object or relation can be viewed in a number of ways by
using different combinations of attributes, in this way supporting the concept ofboundary objects
to some degree. The shared product space isactivein that it actively provides product and other
awareness information to its users. The delivery of information isuser-definedand can be re-
configured in a number of ways. Product Layer supportsrelationsof different types. Relations
can be created among product objects according to the inherent structure of the product being
developed. This is facilitated by allowing any type of relation with any attribute-value pair to
be defined by the users. In addition, relations of a more social type can be defined based on
social relations among users. This is facilitated by allowing awareness information be propagated
through relations.

Product Layer is developed in form of a basic service for an IGLOO network. All clients
within an IGLOO network will directly or indirectly rely on Product Layer for receiving product
awareness. In addition, Product Layer takes the first step in integrating the product in a social con-
text. First, each piece of awareness information is augmented with a reference to the originating
user, in this way making it easy for the users to initiate opportunistic communication. Second, the
community services allow the users be aware of who is currently interacting with the shared prod-
uct space. In Chapter9 we will see examples of how Product Layer can be used in combination
with the other layers of IGLOO in order to create IGLOO networks for supporting cooperation.



150 CHAPTER 6. PRODUCT LAYER



Chapter 7

Cluster Layer

7.1 Introduction

In this chapter we will look at the second component of IGLOO framework, i.e.Cluster Layer.
Cluster Layer is concerned with supporting focused cooperation in small groups of developers.
Product Layer (see Chapter6) allows a project team to create and maintain a shared product space,
while Cluster Layer allows smaller groups to interact with this space. The discussion in Chapter2
revealed the need forcenters of interaction. A center of interaction provides a local context for
cooperation. It has the property of beingbounded, i.e. distinguishing what is within it from what
is outside it. At the same time, the boundaryis not rigid, i.e. people and artifacts within the center
can easily move in and out. Based on this analysis, the product-based shared interaction model
developed in Chapter4 includes centers of interaction as a central part. In this model, a center of
interaction consists of two main parts, a view and a medium. Cluster Layer is concerned with the
view part (see also Figure5.1on page106).

In Product Layer, the shared product space is created as a global information space for in-
tegrating all the work involving the shared product. Because of this focus on large-scale coop-
eration, Product Layer has little support for creating centers of interaction. This is illustrated in
Figure7.1.A. In this figure, users A and B are using the same product object. While Product Layer
supports communication between these two users (through product awareness, participant aware-
ness and instant messages, see Chapter6), Cluster Layer allows them to create a local context for
their cooperation (Figure7.1.B). Local context is created by providing acooperative customizable
view into the shared product space. This view contains product objects and relations that are the
subject of cooperation in the center of interaction. The view, together with the medium of interac-
tion (provided by Workspace Layer, see Chapter8) allows the members of the center of interaction
to get involved in focused cooperation.

The main abstraction provided by Cluster Layer iscluster. A cluster helps developers to select
a group of product objects and relations from the shared product space, and to use these objects and
relations in a center of interaction. A cluster tailors the functionality of the shared product space
to small group usage. The developers using a cluster still have access to the shared product space,



152 CHAPTER 7. CLUSTER LAYER

Shared product spaceShared product space

Product
object 1

Product
object 2

Product
object 3

Sub-part

Sub-part

User A
User B

User C

Communication

Product
object 1

Product
object 2

Sub-part

User C

Center of interaction

Product
object 3

User A
User BCooperation

Sub-part

A) A shared product space supports communication
among developers, but has little support for centers

of interaction

B) A center of interaction supports cooperation
amog a small group of developers by allowing them

to create a local context for their cooperation

Figure 7.1:A center of interaction provides a context for groups of developers in order to support
cooperation among them.

and their interaction with the cluster is fully integrated with the shared product space. In particular,
all awareness information generated by Product Layer is available to the users of a cluster. This
is quite different from conventional shared workspace applications, where interactions within a
shared workspace is often isolated from those outside the workspace.

As an example, MultiCASE (see Section5.3) uses clusters to allow its users create graphi-
cal diagrams. The graphical diagrams in MultiCASE contain software modules and dependency
relations in a software architecture. All the objects inside a MultiCASE diagram are fully inte-
grated into the underlying shared product space, which contains the whole software architecture.
Through these graphical diagrams, MultiCASE users can change the software architecture, and
at the same time be aware of the changes to the shared product space while being involved in
cooperation within a shared space.

In addition to providing a shared view into the shared product space, another important prop-
erty of a cluster is that it allows its users to customize the shared product space to their local needs.
Different clusters can provide different views to the shared product space. In this way, clusters
support local understandings of their users, who might have varying backgrounds and interests in
the shared product. As a simple example, in MultiCASE, the same module can be represented in
each cluster using a different shape.

Similar to Product Layer, Cluster Layer is defined in form of a set of services. These services
can be used by the clients of Cluster Layer in different forms and combinations in order to provide
desired functionality to the users. There are three main groups of Cluster Layer services. An
overview of these services is shown in Figure7.2. A large part of these services is concerned
with managing and customizing clusters and their contents (the right-most branch in Figure7.2).
These services allow the clients to create new clusters and manage existing clusters in different



7.2. CLUSTERS, CLUSTER OBJECTS AND CLUSTER RELATIONS 153

Cluster Layer
services

Cluster management
and configuration

services

Communication
services

Product Layer services

Cluster services

Cluster object
services

Instant messaging
services

Query services

Participant awareness
services

Cluster relation
services

Figure 7.2:Overview of the services provided by Cluster Layer.

ways (e.g. delete, search, update, merge, etc.). They also allow the clients to modify the contents
of the clusters by adding and removing objects and relations. A second important group of services
allow the clients to communicate with the other clients (the left-most branch in Figure7.2). Clients
can join and leave different centers of interaction, and communicate with other clients sending and
receiving instant messages.

Cluster Layer communicates with Product Layer in order to give the users access to the shared
product space. A third group of services provide therefore a mapping from some of Product Layer
services (the middle branch in Figure7.2). These services include awareness configuration and
shared product space query services of Product Layer. Through this mapping, the users of Cluster
Layer do not need to communicate directly with Product Layer; Cluster Layer provides full access
to the underlying Product Layer.

Before we describe these services in more details, in the next section we will give an explana-
tion of the core concepts used in Cluster Layer.

7.2 Clusters, Cluster Objects and Cluster Relations

Cluster Layer provides theclusterabstraction as the main means of supporting cooperation in a
small group. Clusters can be seen as user-defined shared views into the shared product space,
used to access, arrange, edit, contextualize, customize, and possibly visualize a sub-set of product
objects and relations in a locally defined way. Figure7.3shows a shared product space consisting
of a number of product objects and relations among them (for the details of the shared product
space see Chapter6). In this figure, clusters A and B are defined on the top of the shared product
space, each containing only a sub-part of this space. The users of A and B view the shared product
space, and interact with it through these clusters.

Views are not uncommon in computer systems. Databases often contain large amounts of
data, while individual users often need access to a small part of this data. Different users access-
ing the same database are therefore provided with different views. For instance, as a fundamental
functionality, SQL provides support for views into relational databases, where “a view may be



154 CHAPTER 7. CLUSTER LAYER

  Shared Product Space

Product object D

Product object G

Product object A

Product object F
Product object E

Product object C

Product object B

Product object H

Cluster A

Product object I

Cluster B

Product object J

Product object K

Product object L

Figure 7.3:Clusters are user-defined views into the shared product space.

a subset of the database or it may contain virtual data that is derived from the database files but
is not explicitly stored”(Elmasri and Navathe1989, p.9). It is also quite common in distributed
computing to provide views into shared resources, e.g. shared information spaces. All the product
development tools we reviewed in Chapter3 provide views into a shared repository containing
the product. As another example,Bentley, Rodden, Sawyer and Sommerville(1992) describe an
architecture for multi-user applications where each user owns a view into a shared information
space. However, these views are oftenindividual, while cooperation in a center of interaction
needssharedviews. Tables in a SQL database, and graphical diagrams in CASE tools, are indi-
vidual views.Bentley et al.(1992) and other groupware researchers have solved this problem by
having mechanisms for synchronizing the views of several users. In Cluster Layer, a cluster is an
inherently sharedview. Users canjoin a cluster, and once joined they will share the cluster and all
its contents with other joined users. This implies that the activities of each joined user is visible
to all the other joined users.

An additional property of clusters is that they arecooperative. As an example consider clusters
A and B in Figure7.3. If A and B were simply shared views, a group of users would be working
with A while another group would be working with B. This means that having only shared views
will allow the members of each group to cooperate internally, but the members of the two groups
will not be able to cooperate across group boundaries. Clusters solve this problem by cooperating
with each other. For instance, users of cluster A will be informed about the activities of the users
of cluster B because there are relations connecting the contents of the two clusters. This is made
possible through integrating clusters into a shared product space, which allows the users of the
clusters to exchange mediated awareness information and in this way cooperate across centers of



7.2. CLUSTERS, CLUSTER OBJECTS AND CLUSTER RELATIONS 155

     Product layer

     Cluster layer

     Cluster

     Cluster

Cluster objects

Figure 7.4:Cluster Layer uses cluster objects and cluster relations to represent product objects
and conceptual relations from the shared product space.

interaction.
A third property of clusters is that they arecustomizable. Clusters, in addition to providing

a view of the shared product space, allow their users to enrich this view with local information.
Arbitrary information in form of local properties can be added to each object and relation in a
cluster. This customization is user-defined, and is local to each cluster. Customizing a cluster
supports the local activities and understandings of the users of the cluster. In addition, it allows
the clients to specialize each cluster differently based on the type of activity that is to be supported.

Product objects and relations are represented in a cluster in form ofcluster objectsandcluster
relations, respectively. Each cluster object in a cluster represents a product object in the shared
product space, and each cluster relation represents a conceptual relation in the shared product
space. These relations are shown in Figure7.4. Awareness relations are not represented in Cluster
Layer, but the resulting mediated awareness is made available to the users of the clusters. There is
a one-to-many relation from product objects and conceptual relations in Product Layer, to cluster
objects and cluster relations in Cluster Layer. Each cluster object can represent only one product
object, but several cluster objects can represent the same product object. The same is true for
cluster relations. Changes to a cluster object or relation in Cluster Layer may change the cor-
responding product object or conceptual relation in the underlying shared product space. Also,
changes to product objects and conceptual relations in the shared product space will change all the
cluster objects and cluster relations representing them in the Cluster Layer.

This way of separating cluster objects and cluster relations from their corresponding product
objects and conceptual relations has several advantages, both conceptually and architecturally.
First, it allows IGLOO clients to use Product Layer services without any knowledge of Cluster



156 CHAPTER 7. CLUSTER LAYER

Layer, and vice versa (see Chapter5 on IGLOO networks). Second, separating clusters from the
underlying shared product space makes it easier to customize each cluster separately, without
affecting the shared product space. Third, from an architectural perspective it allows us to imple-
ment Product Layer independently from Cluster Layer. This allows for a distributed architecture
with high amounts of local processing, which leads to higher performance1.

Figure7.5shows in details the relations between cluster objects and cluster relations in Cluster
Layer, and product objects and conceptual relations in Product Layer. Cluster objects and relations
are represented in Cluster Layer in form of attribute-value pairs, while cluster relations in addi-
tion have a source and a destination cluster object (these correspond to the conceptual relation’s
source and destination product objects). In this figure, cluster M consists of two cluster objects
X and Z, and one cluster relation Y. Cluster objects X and Y represent product objects P and R,
respectively. Cluster relation Y represents conceptual relation Q in Product Layer. Note that repre-
senting a product object or a conceptual relation does not mean that all the attributes of these will
be available to the users of the cluster. A cluster object may contain only a subset of the properties
of the underlying product object. Cluster objects in cluster M, for instance, include only three of
the six attributes that are defined for the product objects they refer to (the same is true for cluster
relation Y with respect to conceptual relation Q). Those attributes of cluster objects and cluster
relations that represent attributes from the underlying product objects and conceptual relations
are calleddeepattributes (these are colored gray in Figure7.5). Deep attributes are shared across
different clusters since they are attributes from objects residing in the shared product space. How-
ever, each cluster may use different combinations of deep attributes available in the underlying
product objects and conceptual relations.

Each cluster object, beside representing a product object from the shared product space, has
a set of additional attributes that are accessible only to the users of the parent cluster. In the case
of cluster M in Figure7.5, cluster object attributes labeled M and N (colored in white) are local to
the cluster. These are calledshallowattributes. Shallow attributes are defined by the users of the
cluster and may be any additional attributes.

The two types of attributes can be used to customize a cluster’s contents. This is demonstrated
in Figure7.6. In this figure, we can see two clusters called M and N, each with four and three
cluster objects respectively. Cluster objects X and Y representing a product object P in Product
Layer are shown in more details. Attributes A, B and C in cluster object X, and attributes A, B
and E in cluster object Y are deep attributes. In addition, each cluster object has its own shallow
attributes. Attributes K and L in cluster object X, and attributes G, H, I and J in cluster object
Y are shallow attributes. The users of a cluster can in this way decide what aspects of a product
object (or a conceptual relation) should be visible in a cluster, and what additional local attributes
should be added.

As an example consider the graphical diagrams used in MultiCASE (see Section5.3). The
objects in these diagrams have both deep and shallow attributes. Deep attributes include the name
of the objects, their version number, the name of their owner, etc. For instance, changing the
name of an object in one diagram will change the name of the object in all the other diagrams
containing that object. Shallow attributes include the shape and the spatial position of each object
in the diagram. Moving an object around in one diagram or changing its shape will not affect the

1In fact, our implementation of Cluster Layer, called CoClust (see Section7.4) can also work without a Gossip server.
This means that users can still work with clusters and their contents locally even if a shared product space is not available.
This has benefits for example for mobile users. More on this later.



7.3. SERVICES OF CLUSTER LAYER 157

B
elongs to

Belongs toBelongs to

Attribute M

Attribute N

Attribute A

Attribute B

Attribute C

Cluster
object X

Cluster M

Attribute O

Attribute P

Attribute G

Attribute H

Attribute I

Attribute M

Attribute N

Attribute A

Attribute B

Attribute C

Cluster
object Z

Product Layer

Cluster Layer

R
ep

resents

R
ep

resents

R
ep

resents

Relation Q
Attribute G
Attribute H
Attribute I
Attribute J
Attribute K
Attribute L

Attribute A
Attribute B
Attribute C
Attribute D
Attribute E
Attribute F

Attribute A
Attribute B
Attribute C
Attribute D
Attribute E
Attribute F

Product
object P

Product
object R

Cluster relation Y

Figure 7.5:The relation between product objects and conceptual relations in Product Layer, and
cluster objects and relations in Cluster Layer.

object in other diagrams.
Cluster Layer does not restrict the possible set of deep or shallow attributes for cluster objects

and relations. The range of possible deep attributes is limited to the set of available attributes in
the underlying product objects and conceptual relations, while shallow attributes can be defined
based on the needs of the users using the cluster.

7.3 Services of Cluster Layer

The services of Cluster Layer are divided into three groups: 1) services for managing and cus-
tomizing clusters, 2) services for communication among the users of Cluster Layer, and 3) ser-
vices for interacting with Product Layer (see also Figure7.2). The following sections describe
each group in details.



158 CHAPTER 7. CLUSTER LAYER

Attribute K

Attribute A
Attribute B
Attribute C
Attribute D
Attribute E
Attribute F

Product
object P

Product Layer

Cluster Layer

Attribute L

Attribute A

Attribute B

Attribute C

Cluster
object X Attribute G

Attribute H

Attribute I

Attribute J

Attribute A

Cluster M
Cluster NCluster

object

Cluster
object

Cluster
object

Cluster
object

Attribute B

Attribute E

Cluster
object Y

Cluster
object

Figure 7.6:Customizing clusters using different combinations of deep and shallow attributes.

7.3.1 Cluster management and customization services

A large group of Cluster Layer services is related to the management and customization of clusters
and their contents. For convenience, these services are further divided into sub-groups that relate
to clusters, cluster objects, and cluster relations. In addition, services related to querying Cluster
Layer for information about clusters and their contents are grouped together as a fourth sub-group.

Cluster management services are shown in Table7.1. These services support modifying a
cluster in different ways. A cluster, in addition to its contents, has a set of attribute-value pairs
used for sharing information about the cluster itself. The services allow a client to create clusters,
to copy clusters, to merge two clusters, to modify the set of attribute-value pairs for a cluster, and
to delete clusters.

“Copy a cluster” and “Merge two clusters” need further explanation. “Copy a cluster” creates
a completely new cluster containing copies of each of the cluster objects and relations in the old
cluster. This means that the new cluster will have new cluster objects and relations in it, but these
objects and relations will point to the same objects and relations in the shared product space as
those of the original cluster.

“Merge two clusters” results in a new cluster that contains copies of all cluster objects and
relations in the two original clusters. A new copy of those cluster objects and relations that exist in
only one of the original clusters will be included in the new cluster without any changes. However,
if two cluster objects (or two cluster relations) in the two original clusters refer to the same product
object (or the same conceptual relation) in the shared product space, they have to be merged



7.3. SERVICES OF CLUSTER LAYER 159

themselves. This is because a cluster cannot have more than one cluster object (or cluster relation)
pointing to the same product object (or conceptual relation). The new cluster will contain only one
cluster object (or cluster relation), including all the shallow and deep attributes from both original
cluster objects (or cluster relations).

Table 7.1: Cluster Layer’s cluster management services

Service Semantics

Create a cluster
Create a empty cluster. The client may provide a set of attribute-
value pairs for initializing the cluster. A cluster identifier is
returned to the client.

Delete an existing cluster Delete an existing cluster. The client has to provide a valid clus-
ter identifier. All cluster objects and relations within the cluster
are also deleted, but product objects and conceptual relations
they refer to are not changed.

Update an existing cluster Update one or several attribute-value pairs in a cluster. The user
has to provide a valid cluster identifier and a set of attribute-
value pairs. For each attribute-value pair that is provided, Clus-
ter Layer will: a) if the attribute already exists, update its value
with the provided value, b) if the attribute does not exist, create
the attribute and set its value to the provided value.

Remove attributes from a
cluster

Remove one or several attributes from an existing cluster. The
client has to provide a valid cluster identifier and a set of at-
tribute names.

Copy a cluster Make a new copy of a cluster, including all its cluster objects
and relations. The client has to provide a valid cluster identifier
for the original cluster. The identifier of the new cluster is re-
turned to the client. The contents of the new copy point to the
same product objects and conceptual relations as those of the
original cluster.

Merge two clusters Create a new cluster containing copies of all cluster objects and
relations in two existing clusters. The client has to provide two
valid cluster identifiers. The identifier of the new cluster is re-
turned to the client.

Cluster object services of Cluster Layer are shown in Table7.2. These are services for creat-
ing, deleting, and modifying cluster objects. The services distinguish between deep and shallow
attributes, and allow clients to modify them separately. These services can also be used to cus-
tomize clusters in a number of ways. Both deep and shallow attribute sets for cluster objects and
cluster relations can be defined by the clients using these services. Note that some of these services
make use of the services provided by Product Layer for modifying product objects (see Table6.1
on page129). However, clients of Cluster Layer will not need to know how Cluster Layer uses
those services internally. Some of cluster objects services need further explanation.

For creating a cluster object, clients can choose one of two services: “Shallow-create” and
“Deep-create.” The first one creates a cluster object based on an already-existing product ob-



160 CHAPTER 7. CLUSTER LAYER

ject, while the second one also creates a new product object in the shared product space. Using
“Shallow-create” will normally require browsing the contents of the shared product space in order
to allow the clients to choose a product object. This access is provided by Product Layer service
mapping as described in Section7.3.3. Both services allow the clients to initialize the new cluster
object with shallow and deep attributes.

Deleting a cluster object is similar. There are two services for deleting cluster objects: “Shallow-
delete” and “Deep-delete.” The first one deletes only the cluster object and its shallow attributes,
while the second one also removes the underlying product object from the shared product space.

There are two services that allow a client change a shallow attribute to deep, and vice versa.
These services are important in order to allow local modifications become public gradually. Clients
may create cluster objects that are “empty,” i.e. that contain a minimum set of attributes. These
objects can then be refined as the users gradually get a clearer idea about what attributes the ob-
jects should contain. As we saw in Chapter2, gradual refinement of ideas is characteristic for
product development. Proper use of these two services by a group of clients can make this grad-
ual refinement highly user friendly2. Also note that clients cannot directly add or remove deep
attributes from a cluster object. A deep attribute has to be added as a shallow attribute first, and
then transferred into a deep attribute. In the same way, a deep attribute has to be transferred into a
shallow attribute before it can be deleted3.

Table 7.2: Cluster Layer’s cluster object services

Service Semantics

Shallow-create cluster object
Create a new cluster object based on an existing product object
from the shared product space. The client has to provide a valid
cluster identifier for indicating which cluster this cluster object
should belong to. In addition, the client has to provide a valid
product object identifier. The new cluster object will be set to
point to the product object with the provided identifier. An op-
tional list of attribute-value pairs can be passed for initializing
the shallow attributes of the cluster object. An optional list of
attribute names can be passed to tell Cluster Layer which deep
attributes (from the attributes of the underlying product object)
should be included in this cluster object.

Continued on next page

2An example of a system supporting this type of transition from informal to formal is provided byPendergast, Aytes
and Lee(1999). In this system, users can gradually create conceptual models by attaching textual annotations to concepts.
These annotations are later refined into attributes for those concepts.

3This is also what happens when a client calls “Deep-delete” service on a cluster object. Cluster Layer transfers all
the deep attributes of the object into shallow attribute before deleting it. This way of accessing the shared product space
supports future implementations of checking out/in of information to the shared product space.



7.3. SERVICES OF CLUSTER LAYER 161

Continued from previous page
Service Semantics
Deep-create cluster object Create a new cluster object. Also create a product object in the

shared product space and set this cluster object to point to it.
The client has to provide a valid cluster identifier for indicating
which cluster this cluster object should belong to. Two lists of
attribute-value pairs can be passed for initializing both shallow
and deep attributes of the cluster object. The underlying product
object will be initialized with the attribute-values in the deep
attributes list. The identifier of the new object will be returned
to the client.

Shallow-delete cluster object Delete an existing cluster object. The client has to provide a
valid cluster identifier and a valid cluster object identifier. This
service does not delete the underlying product object that the
cluster object points to.

Deep-delete cluster object Delete an existing cluster object. The client has to provide a
valid cluster identifier and a valid cluster object identifier. This
service also deletes the underlying product object that this clus-
ter object points to.

Update shallow attributes of
an existing cluster object

Update one or several shallow attribute-value pairs of a cluster
object. The client has to provide a valid cluster identifier, a valid
cluster object identifier, and a set of one or more attribute-value
pairs. For each provided attribute-value pair that is provided,
Cluster Layer will: a) if the shallow attribute already exists, up-
date its value with the provided value, b) if the shallow attribute
does not exist, create the shallow attribute and set its value to
the provided value.

Update deep attributes of an
existing cluster object

Update one or several deep attribute-value pairs of a cluster ob-
ject. The client has to provide a valid cluster identifier, a valid
cluster object identifier, and a set of one or more attribute-value
pairs. All the provided attributes have to be valid deep attributes
of the cluster object. For each attribute-value pair, Cluster Layer
will update the value of the attribute (note that the correspond-
ing attribute of the underlying product object is also updated).

Remove shallow attributes of
an existing cluster object

Remove one or several shallow attributes from an existing clus-
ter object. The client has to provide a valid cluster identifier, a
valid cluster object identifier, and a set of attribute names.

Make a shallow attribute
deep

Remove a shallow attribute from a cluster object and add the
attribute to the cluster object as a deep attribute. Note that the
attribute is also added to the underlying product object. The
client has to provide a valid cluster identifier, a valid cluster
object identifier, and the name of the shallow attribute.

Continued on next page



162 CHAPTER 7. CLUSTER LAYER

Continued from previous page
Service Semantics
Make a deep attribute shal-
low

Remove a deep attribute from a cluster object and add the at-
tribute to the cluster object as a shallow attribute. Note that
the attribute is also removed from the underlying product ob-
ject. The client has to provide a valid cluster identifier, a valid
cluster object identifier and the name of the deep attribute.

A set of services similar to those for cluster object manipulation is provided for cluster rela-
tions. These services are shown in Table7.3. Note that source and destination of a cluster relation
is always the same as those of the underlying conceptual relation. It is up to the clients to make
proper use of this information. As an example consider cluster M in Figure7.5 on page157.
Here, the client using M may wish to visualize cluster relation Y as an arrow from Y’s source to
its destination. For doing this, the client has to find out whether there are any cluster objects in M
that point to Y’s source or destination product objects (in this case, cluster objects X and Z).

Table 7.3: Cluster Layer’s cluster relation services

Service Semantics

Shallow-create cluster rela-
tion

Create a new cluster relation based on an existing conceptual
relation from the shared product space. The client has to provide
a valid cluster identifier for indicating which cluster this cluster
relation should belong to. In addition, the client has to provide
a valid conceptual relation identifier. The new cluster relation
will be set to point to the conceptual relation with the provided
identifier. An optional list of attribute-value pairs can be passed
for initializing the shallow attributes of the cluster relation. A
list of attribute names can be passed to tell Cluster Layer which
deep attributes (from the attributes of the underlying conceptual
relation) should be included in this cluster relation.

Deep-create cluster relation Create a new cluster relation. Also create a conceptual rela-
tion in the shared product space and set this cluster relation to
point to it. The client has to provide a valid cluster identifier
for indicating which cluster this cluster relation should belong
to. Two lists of attribute-value pairs can be passed for initial-
izing both shallow and deep attributes of the cluster relations.
The underlying conceptual relation will be initialized with the
attribute-values in the deep attributes list. The identifier of the
new relation will be returned to the client.

Shallow-delete an existing
cluster relation

Delete an existing cluster relation. The client has to provide a
valid cluster identifier and a valid cluster relation identifier. This
service does not delete the underlying conceptual relation that
the cluster relation points to.

Continued on next page



7.3. SERVICES OF CLUSTER LAYER 163

Continued from previous page
Service Semantics
Deep-delete an existing clus-
ter relation

Delete an existing cluster relation. The client has to provide a
valid cluster identifier and a valid cluster relation identifier. This
service also deletes the underlying conceptual relation that this
cluster relation points to.

Update the source of a cluster
relation

Update the source of an existing cluster relation. This update is
done in both the cluster relation and the underlying conceptual
relation.

Update the destination of a
cluster relation

Update the destination of an existing cluster relation. This up-
date is done in both the cluster relation and the underlying con-
ceptual relation.

Update shallow attributes of
an existing cluster relation

Update one or several shallow attribute-value pairs of a clus-
ter relation. The client has to provide a valid cluster identi-
fier, a valid cluster relation identifier, and a set of one or more
attribute-value pairs. For each provided attribute-value pair that
is provided, Cluster Layer will: a) if the shallow attribute al-
ready exists, update its value with the provided value, b) if the
shallow attribute does not exist, create the shallow attribute and
set its value to the provided value.

Update deep attributes of an
existing cluster relation

Update one or several deep attribute-value pairs of a cluster re-
lation. The client has to provide a valid cluster identifier, a valid
cluster relation identifier, and a set of one or more attribute-
value pairs. All the provided attributes have to be valid deep
attributes of the cluster relation. For each attribute-value pair,
Cluster Layer will update the value of the attribute (note that the
corresponding attribute of the underlying conceptual relation is
also updated).

Remove shallow attributes
from a cluster relation

Remove one or several shallow attributes from an existing clus-
ter relation. The client has to provide a valid cluster identifier, a
valid cluster relation identifier, and a set of attribute names.

Make a shallow attribute
deep

Remove a shallow attribute from a cluster relation and add the
attribute to the cluster relation as a deep attribute. Note that
the attribute is also added to the underlying conceptual relation.
The client has to provide a valid cluster identifier, a valid cluster
relation identifier, and the name of the shallow attribute.

Make a deep attribute shal-
low

Remove a deep attribute from a cluster relation and add the at-
tribute to the cluster relation as a shallow attribute. Note that
the attribute is also removed from the underlying conceptual re-
lation. The client has to provide a valid cluster identifier, a valid
cluster relation identifier and the name of the deep attribute.

The last group of cluster management services is concerned with querying the contents of
Cluster Layer. These services are shown in Table7.4. Clients can query Cluster Layer for infor-
mation about clusters, cluster objects, and cluster relations. There are also several search services



164 CHAPTER 7. CLUSTER LAYER

for searching for objects or relations with specific attributes. Note that search services operate on
single clusters. For instance, searching for a cluster object with a specific attribute can be done
only within a single cluster. This is done deliberately in order to emphasize the privacy of the
users. The contents of a cluster are meant to be accessed by the users of that cluster. Being able to
search all the contents of Cluster Layer for such local information is not desirable. Product Layer
services for querying the shared product space (shown in Table6.1on page129) are supported by
Cluster Layer and can be used for global search (see also Section7.3.3).

In addition, many of these services require the clients to to join a cluster (see Section7.3.2
for joining a cluster) before being able to query Cluster Layer for information about the cluster.
Joining a cluster will allow other users of the cluster to get notified about the new user. The users
will then know that the new user might access the information that is represented by the cluster.

Table 7.4: Cluster Layer’s query services

Service Semantics

Get attribute values for a
cluster

Return the current values of one or several attributes for a given
cluster. The client has to provide a valid cluster identifier and a
set of one or several attribute names.

Get all attribute-value pairs
for a cluster

Return the set of all attribute-value pairs for a given cluster. The
client has to provide a valid cluster identifier.

Search for clusters with a
specific attribute-value

Return cluster identifiers of all the existing clusters with a spe-
cific value for a specific attribute. The client has to provide an
attribute name and a value for that attribute.

Search for clusters with a
specific attribute

Return cluster identifiers of all the existing clusters that have a
specific attribute. The client has to provide an attribute name in
form of a string.

Get all existing clusters Return a list of the identifiers of all the existing clusters.
Get shallow attribute values
for a cluster object

Return the current values of one or several shallow attributes for
a given cluster object. The client has to provide a valid cluster
identifier, a valid cluster object identifier, and a set of one or
several attribute names.

Get deep attribute values for
a product object

Same as above for deep attributes.

Get all shallow attribute-
value pairs for a cluster ob-
ject

Return the set of all shallow attribute-value pairs for a given
cluster object. The client has to provide a valid cluster identifier
and a valid cluster object identifier.

Get all deep attribute-value
pairs for a cluster object

Same as above for deep attributes.

Get all attribute-value pairs
for a cluster object’s underly-
ing product object

Return all attribute-value pairs of a cluster object’s underlying
product object. The client has to provide a valid cluster identi-
fier and a valid cluster object identifier.

Continued on next page



7.3. SERVICES OF CLUSTER LAYER 165

Continued from previous page
Service Semantics
Search a cluster for cluster
objects with a specific shal-
low attribute-value

Return cluster object identifiers of all the existing cluster objects
in a cluster with a specific value for a specific shallow attribute.
The client has to provide a valid cluster identifier, a shallow
attribute name, and a value for that attribute.

Search a cluster for cluster
objects with a specific deep
attribute-value

Same as above for deep attributes.

Search a cluster for cluster
objects with a specific shal-
low attribute

Return cluster object identifiers of all the existing cluster objects
in a cluster that have a specific shallow attribute. The client has
to provide a valid cluster identifier and an attribute name.

Search a cluster for cluster
objects with a specific deep
attribute

Same as above for deep attributes.

Get all existing cluster ob-
jects in a cluster

Return a list of the identifiers of all the existing cluster objects
in a cluster. The client has to provide a valid cluster identifier.

Get shallow attribute values
for a cluster relation

Return the current values of one or several shallow attributes for
a given cluster relation. The client has to provide a valid cluster
identifier, a valid cluster relation identifier, and a set of one or
several attribute names.

Get deep attribute values for
a product relation

Same as above for deep attributes.

Get all shallow attribute-
value pairs for a cluster rela-
tion

Return the set of all shallow attribute-value pairs for a given
cluster relation. The client has to provide a valid cluster identi-
fier and a valid cluster relation identifier.

Get all deep attribute-value
pairs for a cluster relation

Same as above for deep attributes.

Get all attribute-value pairs
for a cluster relation’s under-
lying conceptual relation

Return all attribute-value pairs of a cluster relation’s underlying
conceltual relation. The client has to provide a valid cluster
identifier and a valid cluster relation identifier.

Get the source for a cluster
relations

Return the identifier of the source product object for a cluster
relation. The client has to provide a valid cluster identifier and
a valid cluster relation identifier.

Get the destination for a clus-
ter relations

Return the identifier of the destination product object for a clus-
ter relation. The client has to provide a valid cluster identifier
and a valid cluster relation identifier.

Search a cluster for cluster
relations with a specific shal-
low attribute-value

Return cluster relation identifiers of all the existing cluster re-
lations in a cluster with a specific value for a specific shallow
attribute. The client has to provide a valid cluster identifier, a
shallow attribute name, and a value for that attribute.

Search a cluster for cluster
relations with a specific deep
attribute-value

Same as above for deep attributes.

Continued on next page



166 CHAPTER 7. CLUSTER LAYER

Continued from previous page
Service Semantics
Search a cluster for cluster
relations with a specific shal-
low attribute

Return cluster relation identifiers of all the existing cluster re-
lations in a cluster that have a specific shallow attribute. The
client has to provide a valid cluster identifier and an attribute
name.

Search a cluster for cluster
relations with a specific deep
attribute

Same as above for deep attributes.

Get all existing cluster rela-
tions in a cluster

Return a list of the identifiers of all the existing cluster relations
in a cluster. The client has to provide a valid cluster identifier.

All cluster management and configuration services produce awareness information as they are
performed. This awareness information is in form ofawareness eventsthat are distributed to the
proper clients. In this sense, production and distribution of awareness information is similar to
that of Product Layer (see Section6.2). However, as opposed to Product Layer, where each client
has to precisely define an awareness subscription, distribution of awareness information to the
clients of Cluster Layer is mainly based on what clusters each client is using. A client will receive
awareness information related only to its joined clusters (see Section7.3.2for joining a cluster).
This makes unnecessary the need for awareness subscription services similar to those of Product
Layer; once a client joins a cluster, Cluster Layer provides for necessary awareness information.

Cluster management and configuration services may produce awareness information that be-
longs to one of two types:product awarenessandcluster awareness. Product awareness is gen-
erated as a result of access to the shared product space; as Cluster Layer’s clients access deep
attributes in cluster objects and cluster relations, Cluster Layer communicates these accesses to
Product Layer, which generates the necessary product awareness information as described in
Chapter6. Cluster Layer in turn receives product awareness information produced by Product
Layer and re-distributes this information to its own clients.

Cluster awareness information, on the other hand, is generated by Cluster Layer itself. As
Cluster Layer’s clients access shallow attributes of cluster objects and cluster relations in a cluster,
cluster awareness information is generated. This information is sent only to the other users of the
same cluster. In this way, product and cluster awareness support the cooperation within a cluster,
while product awareness is used to support the cooperation across clusters.

7.3.2 Communication services

Communication services support communication among the users of Cluster Layer. These ser-
vices are meant as a basic set of enabling services that can be used for building more advanced sup-
port for communication. A group of services are used for supportingparticipant awareness, i.e.
to let users know who is using Cluster Layer and its clusters. Joining/Leaving Cluster Layer and
Joining/Leaving a cluster results in participant awareness events sent to the other joined clients.
Each client can see at any time which other clients are using Cluster Layer, and which other
clients are using a particular cluster. In addition, a set of services allow clients to send instant text
messages to other clients.



7.3. SERVICES OF CLUSTER LAYER 167

Table 7.5: Cluster Layer’s communication support services

Service Semantics

Join Cluster Layer
Join Cluster Layer. The client has to provide a valid client iden-
tifier.

Leave Cluster Layer Leave Cluster Layer.
Get a list of all joined clients Get a list of the identifiers of all the clients that have currently

joined Cluster Layer.
Join a cluster Join a cluster and starts sharing it with other joined clients. The

client has to provide a valid cluster identifier.
Leave a cluster Leaves an already joined cluster. The client has to provide a

valid cluster identifier.
Get a list of the clients that
have joined a cluster

Get a list of the identifiers of all the clients that have currently
joined a cluster. The client has to provide a valid cluster identi-
fier.

Get activity level for a client Return an indicator of how active a client has been recently. The
indicator can be high, medium, low, or no activity.

Send instant message to all
the joined clients of a cluster

Send an instant text message to all the clients that have joined
a cluster. The client has to provide a valid cluster identifier.
Requires being already a joined client of the cluster.

Send instant message to a
joined client of a cluster

Send an instant text message to a client that has joined a cluster.
The client has to provide a valid cluster identifier and a valid
client identifier. Requires being already a joined client of the
cluster.

Send instant message to
clients that have joined
Cluster Layer

Send an instant text message to a client that has joined a cluster.
The client has to provide a valid cluster identifier and a valid
client identifier. Requires being already a joined client of the
cluster.

7.3.3 Product Layer services

The set of services provided by Cluster Layer has to be complete enough in order to allow an
application to integrate into an IGLOO network through Cluster Layer without having any knowl-
edge of Product Layer (see Figure5.8 on page120 and the discussion on IGLOO networks in
Section5.4). This means that Cluster Layer, in addition to providing its own advanced services,
must provide a mapping onto the services provided by Product Layer. For this reason, many of the
services that are provided by Product Layer are also supported by Cluster Layer. Cluster Layer
simply requests these services from Product Layer on behalf of its clients, and forwards the results
of the services to the clients that requested the services.

Accessing product objects and conceptual relations in the shared product space is possi-
ble through Cluster Layer’s cluster management and customization services discussed in Sec-
tion7.3.1. In addition, Cluster Layer supports shared product space query services of Product
Layer (these services are shown in Table6.1). These services allow the clients of Cluster Layer to



168 CHAPTER 7. CLUSTER LAYER

investigate the contents of the shared product space. This might be necessary for instance when
inserting objects and relations into a cluster.

We have already explained how product awareness information that is generated by Product
Layer is made available to the clients of Cluster Layer. In addition to providing product awareness
information to its clients, Cluster Layer gives access to the awareness configuration services of
Product Layer shown in Table6.2on page136.

Regarding subscription services of Product Layer (see Table6.3on page139), a watch list is
maintained automatically by Cluster Layer for each cluster. Cluster Layer’s clients only need to
defined a cluster’s contents. Cluster Layer automatically creates a watch list for the users of the
cluster (the watch list is obviously the same for all the users of the cluster). However, the clients
may update the operation lists and the subscribed awareness schemes for each cluster.

7.4 The Implementation of Cluster Layer: CoClust

CoClust is an implementation of Cluster Layer in the Java programming language4. CoClust
implements a sub-set of Cluster Layer services discussed in Section7.3. CoClust consists of a
stand-alone networkserverthat provides access to Cluster Layer services through a well-defined
client extension. CoClust client extension not only makes it easier to use the server (by provid-
ing a set of Java classes with easy-to-use interfaces), but also increases the performance of the
clients by allowing for increased local processing. Good performance is crucial for Cluster Layer
because cooperation in a center of interaction often has a high pace and require high feedback and
feedthrough speed. In this section we will first look at the overall architecture of CoClust, and will
then describe CoClust client extension and how it can be used by Cluster Layer clients.

7.4.1 An overall view of CoClust

Figure7.7 shows the overall architecture of CoClust.CoClust serveris where all the existing
clusters and their contents are stored. CoClust server is also the component of CoClust that is
responsible for communication with an underlying Gossip server in order to provide access to a
shared product space5.

There are two types of cluster in CoClust server.Activeclusters are those that have at least
one joined client, whileinactiveclusters are not being used by anyone. Inactive clusters are stored
in Cluster Database. Clients can ask CoClust server to join them to a cluster. Once a client joins
an inactive cluster, the cluster is moved from the Cluster database toactive cluster space. Active
clusters can be changed by both a number of clients and an underlying Gossip server. For instance,
clients might want to change shallow and deep attributes of a cluster’s contents, while Gossip will
need to change a cluster if other Gossip clients have made changes that affect that cluster’s deep
attributes. Therefore, active cluster space enforces consistency preservation policies on active
clusters. Each active cluster is subscribed to proper network channels, and updating the clusters
happens according to network traffic in these channels. This will be explained bellow.

4The initial version of CoClust is implemented byLie-Nielsen(2000), a diploma student at NTNU who was supervised
by this author, Terje Brasethvik, and Monica Divitini.

5CoClust will also work without a Gossip server, but will then function as a “cluster server,” i.e. the clients will only
have access to shallow properties of cluster objects and relations.



7.4. THE IMPLEMENTATION OF CLUSTER LAYER: COCLUST 169

CoClust server
Cluster manager

Active cluster space

Product synchronizer

Gossip server

CoClust client

Cluster synchronizer

Cluster
DB

CoClust client extention

Cluster manager
surrogate

Figure 7.7:The overall architecture of CoClust.

One important responsibility of CoClust is that of keeping the differentreplicasof an active
cluster identical to each other. For each active cluster, in addition to amaster replicaon the
server, alocal replicaexists at each of the joined clients (see Figure7.7). CoClust server contains
the master replica of all the active clusters. A master replica is where clients retrieve cluster
information when they want to join a cluster6. A master replica also functions as a “multiplexer”
between Cluster Layer clients and the underlying Gossip server. This means that all changes to
the deep attributes of a cluster’s contents (changes that are possibly done by several clients using
the cluster) are reported to Gossip by the master copy. In addition, changes in the shared product
space are first received by the master copy and then distributed to the clients of Cluster Layer.

6In this way CoClust does not implement a pure peer-to-peer architecture as for instance TeamWave (see Chapter3
for TeamWave). In TeamWave, a new client can ask any of the other clients for state information, while in CoClust this
information can only be retrieved from CoClust server that has the master replica.



170 CHAPTER 7. CLUSTER LAYER

Local replicas are implemented by CoClust client extension. CoClust allows the clients to
manipulate their local replicas as any other local data structure they might have, while synchro-
nizing the replicas is the responsibility of CoClust. Having a local replica means increased ease
of use (because clients do not need to operate “over the network” all the time) and increased local
processing (because the data is stored locally at each client’s network node). The replicas are auto-
matically synchronized with each other and with the master replica as the clients or the underlying
Gossip server make modifications to them. Note that synchronizing the replicas of a cluster is the
mainawareness supportmechanism in CoClust. Once a local replica of a cluster is changed by a
client’s user, the change is replicated to all the other users sharing that cluster. In this way all the
users can see how other users change a cluster. In addition, each cluster also provides its joined
clients with mediated notifications received from Gossip. More on how this is done later.

Cluster synchronizeris a network channel that is used for synchronizing local replicas of an
active cluster with each other and with the master replica. For each active cluster there is one
cluster synchronizer. For each active cluster, the master replica (on CoClust server) and each of
the local replicas (on each joined client) subscribe to this channel. When a local replica or the
master replica is changed, notifications about the change are broadcasted on this channel. These
notifications contain enough information to allow all the replicas update their state according to
the changes. Cluster synchronizer allows thus the real-time sharing of a cluster by a group of
clients.

When clients access a part of their local replica that involves the shared product space (i.e.
when they access deep attributes of cluster objects and relations), the access has to be propa-
gated to the underlying Gossip server. Updates can go downwards (in cases when CoClust has
to change the shared product space) and upwards (in cases when Gossip informs CoClust about
changes to the shared product space). These updates are synchronized through a network channel
calledproduct synchronizer. There is one product synchronizer for each active cluster. Only the
master replica of each active cluster subscribes to the product synchronizer. When a notification
from Gossip arrives through the product synchronizer, the master replica updates itself and broad-
casts the update onto the cluster’s cluster synchronizer, which allows each local replica to update
itself. When a local replica accesses a deep attribute of a cluster object, the master replica for that
cluster detects the modification and informs Gossip about it. The reason we have chosen to have
a separate network channel for updates related to the shared product space is that local updates
can be performed without worrying about the consistency of the underlying shared product space.
Having a separate channel for local updates makes it easier to optimize the performance of these
updates.

Cluster manager(see Figure7.7) is in charge of cluster management services. These services
include creating new clusters, deleting existing clusters, browsing existing clusters, merging clus-
ters, glancing into a cluster to see who is sharing it, and joining or leaving a cluster. Cluster
manager is also responsible for making an inactive cluster active and vice versa.

7.4.2 CoClust client extension

As we have seen, there are two types of cluster in CoClust, active and inactive. When a cluster
is active, i.e. is joined by one or several clients, it has two or more replicas, one master replica
at CoClust server and one local replica at each of the joined clients. This is shown in Figure7.8.
In this figure, cluster M is joined by clients A and B, and cluster N is joined by clients C and
D. Sharing a cluster in this way supports tight coupling among the members of a small group,



7.4. THE IMPLEMENTATION OF CLUSTER LAYER: COCLUST 171

Cluster layer

M

Product layer

X

N

Y

Client A

M
Client B

M
Client C

N
Client D

N

P

R

Figure 7.8:Overview of cluster sharing and product awareness in Cluster Layer.

meaning that any changes to cluster objects and relations in the cluster will be visible to all the
users of the cluster.CoClust client extensionis in charge of implementing the local replicas,
and providing an easy-to-use interface to CoClust. The client extension implements a set of java
classes that provide access to Cluster Layer services while hiding the complexities of network
connections and synchronization algorithms used in CoClust.

The main classes provided by the client extension areCluster, Cluster Object, Cluster Rela-
tion, andCluster Manager. A client connects to a CoClust server by initiating a Cluster Manager.
Cluster Manager will automatically set up a network connection to a server based on the infor-
mation provided by the client (i.e. server address, port number, user name, password, etc.). Once
connected to a CoClust server, Cluster Manager functions as a local surrogate for the server (see
Figure7.7). The client will have access to all the services of the server by simply calling meth-
ods on Cluster Manager. In particular, the client can ask Cluster Manager to create local replicas
of clusters by making new instances of the Cluster class. A new cluster can be created through
instantiating such a Cluster class by providing initialization information. An existing cluster in
the CoClust server can be accessed by instantiating a Cluster class using the identifier of the clus-
ter. Upon instantiation, the new local replica will set up all necessary network channels and start
communicating with its master replica and possibly other local replicas.

Once a Cluster is instantiated, it can be accessed by the client in the same way as a local data
structure, e.g. by calling methods on the Cluster and its Cluster Objects. The only difference
is that the methods can be executed only if the necessarytoken for the affected object can be
retrieved from the cluster server (see Section7.4.3for details). Once a method is called and the
local cluster is updated, all its replicas on the cluster server and other clients sharing the cluster
will be updated.

Once a local replica of a client is changed as a result of changes done by other clients or



172 CHAPTER 7. CLUSTER LAYER

Gossip, the changes have to be communicated to the client so that it can take the necessary ac-
tion (for instance animate other user’s actions for its own user). For making this possible, CoClust
requires its clients to provide a number ofcall-back functionsfor different types of notifications
that may arrive at the local replicas. One such function is called upon updates to a Cluster or its
contents (direct notification call-back). Another function is called when mediated notifications
arrive from Gossip (mediated notification call-back). Other functions are required for communi-
cation and system notifications. Each client can decide to implement these callback functions in
different ways.

As opposed to Gossip, CoClust does not have a public network protocol. Although the services
we have defined for Cluster Layer could have been implemented in form of a network protocol7,
we have decided to provide a client extension because of several reasons. First, clusters are higher
level abstractions. A linear network protocol would have been too complicated and difficult to
use. An object-oriented client extension is more intuitive than a network protocol with many pa-
rameters. Second, the client extension provides an API that can be implemented in different ways.
In particular it is highly probable that we will improve the concurrency control mechanisms used
in the current version of CoClust. These improvements will require changes in the protocol, while
the client extension can hide the changes. Third, and maybe most important, is that CoClust client
extension allows the clients to operate on local data structures (local replicas). This, combined
with an optimistic concurrency control mechanisms, can provide high performance. With a net-
work protocol the clients would not have access to local replicas, or would have had to implement
local replicas in an ad hoc manner.

7.4.3 CoClust’s internal consistency

Clients operate on their local replica when they want to update a shared cluster. Once a client mod-
ifies its local replica, the master replica and other local replicas have to be updated. Since a cluster
can be updated by many clients and possibly by a Gossip server, concurrency control is needed
in order to prevent inconsistencies in the shared state of the cluster. This problem is similar to
concurrently editing product objects in Gossip. We explained in Section6.3.4how tokens can be
used for controlling access to product objects. For CoClust we have an additional requirement that
was not as important for Gossip, e.g high performance. Since clusters are used in a small, tightly
coupled group, the users will make rapid and frequent changes to the clusters. The feedthrough
of changes has to be fast in order to allow group members constantly see the last updated picture.
This is in particular true for shallow attributes since they are the “working memory” of the group
and are changed more rapidly than deep attributes. As we implemented the first version of Multi-
CASE (see Section5.3on page110), we used a token-based mechanism combined withidentified
locks(Mariani and Prinz1993) for concurrent updating of clusters. Such a mechanism is useful in
that the user interfaces of all the clients show all the time which objects are locked and by whom.
This provides essential awareness information that may somehow outweigh the pessimistic nature
of locking because users are hinted about what is happening inside. However, users wishing to
modify a cluster still have to wait for the proper token to be retrieved through the network. In
this section we describe how this token-based mechanism works in CoClust. The implementation
of an optimistic algorithm is explained in (Lie-Nielsen2000) and will be integrated into future

7Of course the services are implemented as a network protocol, but this protocol is not meant to be public. See (Lie-
Nielsen2000) for the details of this protocol.



7.5. SUMMARY 173

versions of CoClust.
Consider a scenario where client A’s user (see Figure7.8) modifies a shallow attribute in cluster

object X as a result of user interaction. This type of modification is common when a small group
is working with the local information in a cluster. For this to happen, the local replica of M at A
has to acquire a token for the affected cluster object. When this is done, the local replica can be
changed safely. The change is broadcasted to all other replicas (including the master replica). In
this case client B (belonging to another member of the small group) contains a local replica of M.
This replica will receive a notification indicating what was changed by which client. The local
replica of M at B will update itself accordingly, and will then call the call-back function of B. B
can then update its screen image, possibly animating the action of the user of A.

Another scenario is when client A’s user changes a deep attribute of cluster object X. This
is a normal case when members of a small group wish to modify the shared product space. In
this case the cluster needs to acquire a token for product object P. Once this is done, updates to
X are propagated as above while product object P is also changed in the process. This change
is propagated to Gossip, and is further broadcasted by Gossip as a direct notification to all the
users of P, which also includes cluster N with cluster object Y. Y is updated accordingly, and the
update is communicated to clients C and D (members of another small group using cluster N). The
call-back function for direct notifications is called at C and D. C and D can then decide on how to
react to the notification.

A third scenario is when a product object not represented in any of the clusters M or N is
modified, and there exists an awareness relation from this object to an object in one of the clusters.
This is a typical case of peripheral awareness, where a small group monitors a part of the shared
product space for changes. In Figure7.8, if product object R is modified by a fifth client E (not
shown in the figure), product object P will be notified and a mediated notification will be sent (by
Gossip) to all the users of P. In this case this includes clusters M and N. This mediated notification
is communicated to all the local replicas of M and N, and each replica will call the mediated
notification call-back function of its client. Note that mediated notification does not change the
cluster’s shared state, and contains only peripheral information for the users of the cluster. As a
consequence there is no need for acquiring a token.

In none of these three scenarios we have made any assumptions about the clients except that
they should have a number of call-back functions. This was one of the initial intentions of having
the client extension, i.e. requiring minimum changes to the clients.

7.5 Summary

In this section we have described Cluster Layer, a component of IGLOO framework that is in
charge of supporting small groups of developers interacting with a large shared product space.
Cluster Layer works in close cooperation with Product Layer in order to allow groups of devel-
opers create their local view into the shared product space, share this view, and customize the
contents of the view according to their local needs. A set of services for Cluster Layer are de-
fined. Cluster Layer’s implementation in form of a stand-along network-based application called
CoClust is described.

Cluster Layer satisfies a part of the requirements we posed to a center of interaction in Chap-
ter2. Cluster Layer allows developers to create generic focus points that can be used for interact-
ing with a large shared product space. The cluster abstraction of Cluster Layer allows the users



174 CHAPTER 7. CLUSTER LAYER

to define such focus points in a flexible way. Cluster Layer does not make any assumptions about
what kind of information will exist in a cluster. Clusters may be created as the need for having
them emerge, or they may be created in a predefined way as steps in a formal workflow definition.
Clusters have boundaries in that only a sub-part of the shared product space is within a cluster. At
the same time, these boundaries are fluid. First, objects and relations can be added or removed
easily. Second, a cluster is not totally isolated from what is outside in that it provides peripheral
awareness of those parts of the shared product space that are not included within its boundaries.

Clusters also have fluid boundaries with respect to the users, i.e. users can easily join and leave
clusters and see who is working on different clusters. The contents of a cluster can be customized
in a variety of ways, and clusters can be specialized for supporting different domains (more on
this in Chapter9). Through sharing of clusters, users can get rich cluster awareness that will help
them in coordinating the work within a center of interaction.

Cluster Layer can be used by any application that needs to share data with other applications.
A cluster may contain any data. In MultiCASE we used clusters to share software modules. A
text editor may use clusters to share the contents of a document with other (possibly different)
text editors. Cluster Layer requires some re-implementation before an application can use it.
However, this re-implementation is minimum and can be limited to implementing a number of
call-back functions.

Cluster Layer implements only a part of a center of interaction. A center of interaction has a
view and a medium, while Cluster Layer implements only the view part. The medium of a center
of interaction is implemented in Workspace Layer of IGLOO framework, which is the topic of the
next chapter.



Chapter 8

Workspace Layer

8.1 Introduction

In the definition of a center of interaction in Chapter4 we distinguished between a center’sview
and itsmedium. A cluster, as defined in Chapter7, provides a center of interaction with a shared
customizable view into the shared product space. However, beside access to the product, there
are other elements in a center of interaction that are equally important for supporting the cooper-
ation within the center. Workspace Layer of IGLOO framework is concerned with some of these
other elements. In particular, Workspace Layer provides services for creating the medium through
which the developers within a center of interaction can cooperate with each other. Workspace
Layer combines the clusters provided by Cluster Layer with additional artifacts, awareness in-
formation, and interaction mechanisms, in order to create a richer picture of cooperation within
a center of interaction. This is done in Workspace Layer by providing theshared workspace
abstraction as the medium.

Figure8.1 shows a scenario of using shared workspaces. In this figure, all the clients share
a cluster that allows them to cooperatively modify a part of the underlying shared product space.
For clients A, B and C there are also other contextual elements that are shared in addition to the
cluster. The gray part at each of these clients is the additional shared context. It is the shared
workspace. The shared workspace includes people, their tools, documents and manuals they use
in their daily work, notes, social events, etc. The objects in a shared workspace are calledinformal
objects, i.e. objects that are not part of the shared product but are used as resources for supporting
cooperation in a center of interaction. The people in a shared workspace are theinhabitants, i.e.
the developers that are involved in an activity in a center of interaction. By allowing the sharing
of informal objects, these clients provide to their users a rather rich picture of shared interaction
as it happens in the center of interaction. In comparison, client D is another client application
that also has access to the same shared cluster, but is not sharing the shared workspace. D’s
picture of cooperation is limited to the information provided through the cluster it is sharing. As a
consequence, D’s user will see all the changes the others make to the shared cluster, but he or she
will not seehow these changes are done, e.g. what caused the changes, what other intermediate



176 CHAPTER 8. WORKSPACE LAYER

Client BClient A Client C Client D

shared product space

Figure 8.1: A shared workspace may contain much more than a cluster. The contents of the
workspace are used as resources for cooperation in the center of interaction.

activities (such as informal brainstorming, discussions, social activities, etc.) were performed
before the changes were done, etc. The goal of Workspace Layer is to allow the developers who
are involved in a center of interaction to have access to a shared context that is not necessarily
related to the shared product, but may contain other, completely informal elements.

Workspace Layer supports in this way two important aspects of product development. First, as
we saw in Chapter2, a product is developed through highly flexible interaction among developers
in a number of centers of interaction. Cluster Layer, through shallow attributes and customization
services, supports a flexible “interface” to the shared product space. Cluster Layer allows the
users of a cluster to gradually refine the shared product. Workspace Layer extends this flexibility
by allowing the developers make use of other artifacts than those that are a direct part of the
shared product. It is not always clear what makes up a product. Product objects and conceptual
relations are initially made as drafts and sketches, and discussed in small groups before they are
“published” as part of the product. This informal aspect of refining the product is often neglected
in existing development tools. For instance, the interfaces to conventional CASE tools are often
highly formalized and allow data entry only through predefined formal semantics (Jarzabek and
Huang1998). Proper configuration of a shared workspace will allow the client applications to
provide a higher degree of flexibility to the users. In this way, IGLOO can support virtual rooms
used for a variety of product development activities.

Second, as we also saw in Chapter2, increasing the visibility of work does not only imply
making visible the shared product and the changes to it. There are many other aspects of cooper-
ative product development that are invisible when product development teams are geographically
distributed. In particular, working in a center of interaction requires access to fine-grained aware-
ness information about the activities within the center. This is due to the highly interactive nature



8.2. SHARED WORKSPACES AND THEIR CONTENTS 177

Workspace Layer
services

Cluster container
services

Informal object
services

Inhabitant
services

Query servicesWorkspace
services

Figure 8.2:An overview of services provided by Workspace Layer.

of the focused cooperation that happens in a center of interaction, and the rich context information
that is necessary for letting this cooperation happen. Workspace Layer can provide this awareness
information in form ofshared workspace awareness(Gutwin et al.1996). Through services for
sharing this context information, Workspace Layer can be used to provide different degrees of
shared workspace awareness to developers involved in centers of interaction.

Workspace Layer is defined in terms of services for creating and managing shared workspaces
and their contents. These services are divided into five groups. An overview of Workspace Layer
services is shown in Figure8.2. There are service groups for managing workspaces, informal
objects within the workspaces, the inhabitants of the workspace (i.e. the developers that are within
each workspace), and the clusters within each workspace. Cluster services are mainly a mapping
of the services provided by Cluster Layer, and are used for inserting clusters in a shared workspace.
There is also a group of services for querying Workspace Layer for information about workspaces
and their contents.

The structure of this chapter is as follows. We will first explain the conceptual model of a
shared workspace in Workspace Layer. We will then describe in details the services provided by
Workspace Layer. The last part of this chapter outlines a detailed design for a shared workspace
server called SWAL.

8.2 Shared Workspaces and Their Contents

Workspace Layer uses a conceptual model of shared workspace as shown in Figure8.3. This
model is based on theroom metaphor, in that a shared workspace is seen as a room containing dif-
ferent artifacts and people. A room in Workspace Layer is persistent. This means that a room, once
created, will continue to exist until a user explicitly deletes it. (Many groupware applications are
session-based, and a session exists as long as there are people in the session.) A shared workspace
can have different humaninhabitants, i.e. developers that are currently in the workspace. In ad-
dition, a shared workspace may contain a number ofinformal objects. An informal object is any
artifact that is not currently a part of the product. These can be early sketches of ideas, external
documents and manuals, notes left for others, etc. Human inhabitants and informal objects are
represented in form of attribute-value pairs. This means that any type of informal object can be
shared by the users, and for each human inhabitant the users can decide which properties of the



178 CHAPTER 8. WORKSPACE LAYER

Contains

Contains

Contains

Shared
workspace

Human
inhabitant

Informal
objectAttribute A

Attribute B
Attribute C
Attribute D
Attribute E
Attribute F

Attribute A
Attribute B
Attribute C
Attribute D
Attribute E
Attribute F

Cluster
container

Cluster Layer

Cluster

Figure 8.3:The conceptual model of a shared workspace and its contents, as defined by Workspace
Layer.

inhabitant to share in a shared workspace. In addition, a shared workspace may have one or sev-
eralcluster containers. A cluster container is used to insert clusters in a shared workspace, and in
this way connects the workspace to a shared product space.

One advantage of using a room metaphor is that that it supports a seamless transition from
single- to multi-user and from synchronous to asynchronous cooperation (Greenberg and Roseman
1998). The same room can be used by one or several people. When used by one person, a room
is a private workspace, while when used by many it becomes a shared workspace. Moreover, two
or more people can use a room to cooperate synchronously, i.e. by being in the same room at the
same time, or use the room for asynchronous cooperation by leaving work material for others who
may arrive later. Support for these two transitions is a powerful means for creating flexible shared
workspaces.

There are two other aspects of the room metaphor that are important for our purposes. First,
the room metaphor provides a suitable tool for realizing shared workspaces that make use of spa-
tial relations among objects. Although spatial relations are not central in structuring a shared
product space (see Chapter4), having a common spatial frame is very useful for developers work-
ing in a center of interaction. This is because developers make extensive use of gestures and
spatial relations among artifacts for conveying ideas and for communicating with each other. The
model shown in Figure8.3 can be easily made spatial by defining a spatial frame (i.e. a coor-
dinate system) for the shared workspace, and enriching the contents (i.e. inhabitants, informal



8.2. SHARED WORKSPACES AND THEIR CONTENTS 179

objects and cluster containers) with spatial information (coordinates). A client application can
then use these spatial measures to simulate a physical room. This can be used for instance to
create shared workspaces that are simulation of shared physical desktops, similar to rooms in
Teamwave1(Roseman and Greenberg1996).

Second, a room can be used as a resource for different kinds of activities. Physical rooms are
familiar concepts to all of us. We are familiar with using rooms for different purposes, and we
can in fact use the same room for completely different activities. As an example, a meeting room
in a department can be used for having a variety of meetings, ranging from the most formal to
the most informal. The same room can even host several activities at the same time.De Michelis
et al.(2000) observed how the same room in a design studio was containing several focus areas,
one for each design project. These areas, or what we have called centers of interaction, were
distinguished mainly by being in different corners of the room, and by conventions among the
designers about how to use each corner. So rooms can be used efficiently for supporting and
organizing the developers’ activities.

However, the same properties of a room that make it such a strong resource for cooperation
can also limit its value when developing cooperation support technology. Physical rooms have
rigid boundaries that isolate the inhabitants from the happenings outside the room. When the
properties of physical rooms are copied (without changes) to room-based collaboration technolo-
gies, the same isolation problems continue to exist. In fact, these technologies may even amplify
the problem. As stated byKaplan et al.: “. . . room-based systems provide rigid rooms with strong
boundaries. This makes it very difficult to work on ’several things at the same time’ or keep one’s
eye on activities in one situation while concentrating on another” (1997, pp.546). In TeamWave,
for instance, even though two rooms can be connected using doors, the participants in each room
do not have any idea of what is happening in a neighboring room unless explicitly entering that
room (Herlea1998). This limitation of space is also noticed byDe Michelis et al.(2000) in the
case of the design studio, by observing that when the same designers moved into a new building
and each got their own offices, the rich cooperation that was going on in the old design studio
disappeared.

For product developers this shortcoming is serious because of two reasons. First, product
development will typically involved a large number of developers. It is therefore not realistic
to put everybody in the same room. One will need a number of rooms for allowing everybody
to focus on their own tasks and get the work done. The problem of isolation can then occur
as it did for a large group of developers using TeamWave for requirements gathering inHerlea
and Greenberg’s (1998) study. Second, even though the work of developers within a center of
interaction is highly spatial, the overall structure of their work is not so spatial. As we saw in
Chapter2, organization of work in large development teams is likely to reflect the structure of the
product being developed. Software is characterized by “conceptual distances” than by physical
ones. So, even though rooms can be used as resources for supporting cooperation in a center of
interaction, cooperation among centers of interaction has to depend on other factors than spatial
relations.

Our approach for solving this problem in Workspace Layer has been to augment the shared
workspace with cluster containers. A cluster container in a shared workspace can be seen as a

1TeamWave has inspired the work reported in this chapter. TeamWave support a host of other group-oriented function-
ality, such as advanced shared workspace awareness and navigation tools, that we have not yet included in the design of
Workspace Layer (see Chapter3 for an overview of TeamWave).



180 CHAPTER 8. WORKSPACE LAYER

window into the shared product space. A cluster allows the inhabitants of the different workspaces
not only to focus on different parts of the shared product space, but also to monitor the shared
product space for other relevant product awareness (see Chapter7 for details on cluster). In this
way, a room can be regarded as a center of interaction with fluid boundaries, and the isolation
problem mentioned above can be eliminated to some degree.

8.3 Services of Workspace Layer

In this section we look closer at the services provided by Workspace Layer. These services are de-
fined to allow Workspace Layer’s clients manipulate workspaces and their contents in an easy and
flexible way. There are service groups for managing workspaces, informal objects, inhabitants,
and cluster containers.

8.3.1 Shared workspace services

Shared workspace services are concerned with creating and maintaining entire shared workspaces.
These services are shown in Table8.1. The users can create new workspaces or delete the existing
ones. Each workspace has a set of attribute-value pairs that can be used for sharing informa-
tion about the workspace. These attributes are user-defined and can be set and removed using
workspace services.

Table 8.1: The services defined by Workspace Layer for creating and
maintaining shared workspaces.

Service Semantics
Create a shared workspace Create a new shared workspace. The client may provide a

set of attribute-value pairs for initializing the workspace. A
workspace identifier is returned to the client.

Delete an existing shared
workspace

Delete an existing shared workspace. The client has to provide
a valid workspace identifier. This service will also delete all the
informal objects and all the inhabitants in the workspace, but
will not delete the clusters in the cluster holders.

Update an existing shared
workspace

Update one or several attribute-value pairs for an existing shared
workspace. The client has to provide a valid workspace iden-
tifier and a set of attribute-value pairs. Workspace Layer will:
a) if the attribute already exists, update its value with the pro-
vided value, b) if the attribute does not exist, create the attribute
and set its value to the provided value.

Remove attributes from an
existing shared workspace

Remove one or several attributes from an existing shared
workspace. The client has to provide a valid workspace identi-
fier and one or several valid attribute names.



8.3. SERVICES OF WORKSPACE LAYER 181

This set of services supports a number of typical workspace functionality found in conven-
tional groupware applications. For instance, an attribute of a workspace can be defined to be a
progress indicator. The indicator can be a discrete value (e.g. just started, in progress, finished,
deferred, etc.) or a continuous value (e.g. the percentage of finished work). It can be useful
for both project managers and developers who would like to know the status of a specific task.
An IGLOO client can combine this indicator with simple notifications in order to automatically
inform specific workspaces about the status of work progress in other workspaces.

The services in Table8.1, together with query services discussed later, can be used to imple-
ment a user-friendly “open door” session management policy similar to that in TeamWave and
CBE (Greenberg and Roseman1999). These tools show a list of all existing workspace. The users
can browse this list and get an overview of what cooperation sessions are going on at each time.
Defining an attribute for each workspace to indicate a “door status” can tell the developers if they
can enter a workspace. For instance, a half-closed door could mean that one can glance into the
workspace but cannot enter and participate in the session (Mackay1999). The status of the door
can also decide if the system should show a list of participants or not.

8.3.2 Informal object services

Informal objects implement objects that can be used to support informal cooperation within a
shared workspace. An informal object is similar to a product object, with the difference that it
is invisible to all but the inhabitants of the shared workspace containing the object. Services for
managing informal objects are shown in Table8.2.

Table 8.2: The services defined by Workspace Layer for creating and
maintaining informal objects.

Service Semantics
Create an informal object Create a new informal object in a shared workspace. The client

must provide a valid workspace identifier. The client may also
provide a set of attribute-value pairs for initializing the object.
The identifier of the object will be sent back to the client.

Delete an existing informal
object

Delete an existing informal object from a shared workspace.
The client has to provide a valid workspace identifier and a valid
informal object identifier.

Copy an existing informal
object

Make a new copy of an existing informal object. The client has
to provide a valid informal object identifier. The client may also
provide an optional workspace identifier where the new infor-
mal object will be placed. If no such identifier is provided the
copy will be placed in the same workspace as the original. The
identifier of the new object is returned to the client.

Continued on next page



182 CHAPTER 8. WORKSPACE LAYER

Continued from previous page
Service Semantics
Update attributes of an exist-
ing informal object

Update one or several attribute-value pairs for an informal ob-
ject. The client has to provide a valid workspace identifier,
a valid informal object identifier, and a set of one or several
attribute-value pairs. For each provided attribute-value pair,
Workspace Layer will: a) if the attribute already exists, update
its value with the provided value, b) if the attribute does not ex-
ist, create the attribute for the informal object and set its value
to the provided value.

Remove attributes from an
existing object

Remove one or several attributes from an existing informal ob-
ject. The client has to provide a valid workspace identifier and
an informal object identifier, and a set of one or several attribute
names. All the attributes will be removed from the given infor-
mal object.

Copy an informal object into
a cluster

Make an informal object public by copying it into a cluster. The
client has to provide valid identifiers for the workspace, infor-
mal object, and the cluster. The informal object and the cluster
have to be in the same workspace. The service creates a new
cluster object (using deep-create service of Cluster Layer) and
copies the contents of the informal object into the new cluster
object as shallow attributes. The identifier of the new cluster
object is returned to the client.

Copy a cluster object into a
new informal object

Copy the contents of a cluster object into a newly created in-
formal object. The client has to provide identifiers for the
workspace, the cluster, and the cluster object. The service will
create a new informal object in the same workspace, and copy
all deep and shallow attributes of the cluster object into the in-
formal object. The identifier of the informal object is returned
to the client.

Most of informal object services are similar to product and cluster object services (see Ta-
bles6.1and7.2). There are additional services for allowing the transfer of an informal object into
and out of a cluster. These two services can be used by a client to implement user-friendly mech-
anisms for manipulating a cluster in a shared workspace. For instance, a client may allow the user
to drag and drop an informal object “into the product.”

There are no explicit communication mechanisms in IGLOO’s model of shared workspace.
Explicit communication among the inhabitants of a shared workspace is an important part of the
cooperative activity. Informal objects can be used to implement simple communication mecha-
nisms. For instance,a chat tool can be implemented in form of an informal object. Instead of
sending message to each other, the inhabitants can append messages to an informal object. For
each message, the attribute name can be the time stamp of the message, and the value can be
the name of the sender and the contents of the message. This can be useful because latecomers
can have access to the history of the communication that has been going on in the room. In fact,
more complex communication can be supported by allowing messages to have different types.



8.3. SERVICES OF WORKSPACE LAYER 183

An example can be an informal object that implements an IBIS-like conversation, in this way
implementing support for design rationale2 (Moran and Carroll1996).

8.3.3 Inhabitant services

The services provided by Workspace Layer for managing inhabitants are shown in Table8.3. Each
inhabitant is represented as a user-defined set of attribute-value pairs. An inhabitant is created and
deleted from a shared workspace as users enter and leave the workspace. Note that each user can
be in several shared workspaces at the same time. In this case an inhabitant will be created for the
user in each shared workspace.

Table 8.3: The services defined by Workspace Layer for creating and
maintaining inhabitants.

Service Semantics
Enter a shared workspace Allow a client enter a shared workspace. A new inhabitant ob-

ject is created in the shared workspace. A valid workspace iden-
tifier has to be provided. The identifier of the inhabitant object is
sent to the client. A client can inhabit several shared workspace
at the same time.

Leave a shared workspace Allow a client to leave a shared workspace. This service will
delete the inhabitant object from the shared workspace. A valid
workspace identifier and a valid inhabitant identifier have to be
provided.

Update attributes for an exist-
ing inhabitant

Update one or several attribute-value pairs for an inhabitant
object. The client has to provide valid identifiers for shared
workspace and inhabitant object. For each provided attribute-
value pair that is provided, Product Layer will: a) if the attribute
already exists, update its value with the provided value, b) if the
attribute does not exist, create the attribute and set its value to
the provided value.

Remove attributes from an
existing inhabitant

Remove one or several attributes from an existing inhabitant
object. The client has to provide a valid inhabitant identifier, a
valid workspace identifer, and a set of attribute names.

Inhabitants are used to represent users in shared workspaces. This is important in order to
allow those already in the shared workspace to be aware of who else is there, but also to identify
who does what changes to which objects in the shared workspace. An inhabitant can be repre-
sented in different forms by defining different combinations of attributes. The simplest way is to
register each inhabitant with a global identifier. A more advanced representation may include bio-
graphical and contact information, a photo, location within the shared workspace, activity level, a
telepointer, etc. In this way a richer picture of the users can be provided, contributing to increased
awareness of what others are doing in the shared workspace.

2Audio communication within a shared workspace has been implemented in MultiCASE (Christensen and Karlsen
1999). See Chapter5



184 CHAPTER 8. WORKSPACE LAYER

Although arbitrary information about an inhabitant can be represented in a shared workspace,
in practice this information will be limited because of two reasons. First, most of this information
is highly dynamic and requires fast updating. This will require a high level of performance in
any implementation of Workspace Layer. Workspace Layer must guarantee that the inhabitant
is able to “catch up” with the real user’s activities. For instance, in a slow network it might not
be possible to provide a telepointer for each inhabitant because telepointer coordinates change
rapidly. Second, advanced devices and sensors might be needed to register user activities that
exceed simple keyboard and mouse input (Prinz1999). For instance, activity level of an inhabitant
is often not easy to measure because a user might be actively involved in a task without ever
touching the input devices of his computer.

By conceptually separating inhabitants from informal objects we allow for a more specialized
implementation of inhabitant objects in a future implementation of Product Layer. Such an imple-
mentation may choose to prioritize inhabitant objects during network communication because of
the high pace of changes in these objects as opposed to informal objects.

8.3.4 Cluster services

A cluster is an important part of a shared workspace in IGLOO framework. Clusters are in-
serted into shared workspaces in order to provide access to the shared product space that under-
lies the workspaces(see Figure8.1). The inclusion of clusters in shared workspaces distinguishes
Workspace Layer from other room-based shared workspace applications because it removes the
rigidity of the room boundaries.

A cluster is inserted into a shared workspace by first creating a cluster container. A cluster
container gives access to the services of Cluster Layer for manipulating clusters (these services
are discussed in Chapter7). Once a cluster container is created in a shared workspace, the clients
can request Cluster Layer services from the container. In this way Workspace Layer services do
not need have to also be Cluster Layer services. Cluster container services are shown in Table8.4.

Table 8.4: The services defined by Workspace Layer for creating and
maintaining cluster containers.

Service Semantics
Create a cluster container in
a shared workspace

Create a new cluster container in a shared workspace. The client
has to provide a valid workspace identifier. The client can also
provide an optional cluster identifier. If a cluster identifier is
provided, the container will be filled with the cluster. The iden-
tifier of the container is sent back to the client.

Delete an existing cluster
container from a shared
workspace

Delete an existing cluster container from a shared workspace.
The client has to provide valid workspace and container identi-
fiers. Note that this service does not delete the cluster that is in
the container.

Set cluster Set the cluster that is in the cluster container. The client has
to provide valid cluster, cluster container and workspace identi-
fiers. If the container already contains a cluster, it will change
its cluster with the new one.

Continued on next page



8.3. SERVICES OF WORKSPACE LAYER 185

Continued from previous page
Service Semantics
Get cluster Get the identifier of the cluster that is currently in a container.

The client has to provide valid container and workspace identi-
fiers.

Copy a cluster container Copy a cluster container. The client has to provide a valid
workspace and container identifier. The client can also pro-
vide an optional workspace identifier where the new copy
should reside. Otherwise the container is copied into the same
workspace. The new copy will contain the same cluster as the
original container. The identifier of the new container is re-
turned to the client.

A cluster container is in fact a small “applet” that is used by the inhabitants of a shared
workspace to create and maintain a cluster. The advantage of this solution is that a cluster con-
tainer can be specialized to provide tools for manipulating its cluster. For instance, in MultiCASE
a cluster (a graphical diagram) can be modified using easy direct manipulation operation that are
available in a context-sensitive menu upon clicking on its cluster container. In the same way,
different containers can be specialized for providing different visualization techniques.

8.3.5 Query services

Workspace Layer contains all the information regarding shared workspaces and their contents.
The services shown in Table8.5can be used to query Workspace Layer for such information.

Table 8.5: The services defined by Workspace Layer for creating and
maintaining shared workspaces.

Service Semantics
Get all shared workspaces
with a specific attribute-value

Return workspace identifiers for all shared workspaces that
have a specific attribute with a specific value. The client has
to provide an attribute name and a value.

Get all shared workspaces
with a specific attribute

Return workspace identifiers for all shared workspaces that
have a specific attribute. The client has to provide an attribute
name.

Get all existing shared
workspaces

Return workspace identifiers for all existing shared workspaces
in an installation of Workspace Layer.

Get attribute values for an in-
formal object

Return the current values of one or several attributes for a given
informal object. The client has to provide valid workspace and
informal object identifiers, and a set of one or several attribute
names.

Get all attribute-value pairs
for an informal object

Return the set of all attribute-value pairs for a given informal
object. The client has to provide valid workspace and informal
object identifiers.

Continued on next page



186 CHAPTER 8. WORKSPACE LAYER

Continued from previous page
Service Semantics
Search a shared workspace
for informal objects with a
specific attribute-value

Return informal object identifiers of all the existing informal
objects in a shared workspace with a specific value for a specific
attribute. The client has to provide the identifier of the shared
workspace, and the attribute-value pair.

Search a shared workspace
for informal objects with a
specific attribute

Return informal object identifiers of all the existing informal
objects in a shared workspace that have a specific attribute. The
client has to provide a valid workspace identifier and an attribute
name.

Get all existing informal ob-
jects in a shared workspace

Return a list of the identifiers of all the existing informal ob-
jects in a shared workspace. The client has to provide a valid
workspace identifier.

Get attribute values for an in-
habitant object

Return the current values of one or several attributes for a given
inhabitant object. The client has to provide a valid workspace
and inhabitant identifiers, and a set of attribute names.

Get all attribute-value pairs
for an inhabitant object

Return the set of all attribute-value pairs for a given inhabitant
object. The client has to provide valid workspace and inhabitant
identifiers.

Search a shared workspace
for inhabitant objects with a
specific attribute-value

Return object identifiers of all the existing inhabitant objects in
a shared workspace with a specific value for a specific attribute.
The client has to provide a valid workspace identifier, and an
attribute-value pair.

Search a shared workspace
for inhabitants with a specific
attribute

Return object identifiers of all the existing inhabitant objects in
a shared workspace that have a specific attribute. The client has
to provide a workspace identifier and an attribute name.

Get all existing inhabitants in
a shared workspace

Return a list of the identifiers of all the existing inhabitant ob-
jects in a shared workspace. The client has to provide a valid
workspace identifier.

8.4 The Implementation of Workspace Layer: SWAL

Workspace Layer is implemented in form of a shared workspace server called SWAL3. SWAL is
a generic shared workspace server that can be used by its own. In a stand-alone mode, SWAL
can be used by a group of clients to create shared workspaces based on a room metaphor, and
to populate these workspaces with inhabitants and informal objects. Used in combination with a
CoClust or Gossip server, SWAL also provides its clients with functionality for creating cluster
containers and accessing a shared product space. This is shown in Figure8.4. The gray parts in
the figure are the parts that are implemented by SWAL, while the white parts are implemented by
CoClust. This architecture is useful because it makes SWAL’s clients highly independent of the

3A first version of SWAL is implemented byRømma and Skjønhaug(2000) in their diploma work. This author has
been supervising their work.



8.4. THE IMPLEMENTATION OF WORKSPACE LAYER: SWAL 187

Client B

Shared workspace
server

CL server

PL server

Client A Client C Client D

Figure 8.4: SWAL can be used as a generic shared workspace server or in combination with
CoClust.

rest of IGLOO framework. A SWAL client does not need to know about the rest of IGLOO client
if it does not need to work with clusters.

This section describes the design of and implementation of SWAL. Technically, SWAL is quite
similar to CoClust. While CoClust’s main responsibility is to keep multiple replicas of clusters
synchronized as users change them, SWAL is in charge of providing access to synchronized shared
workspaces and their contents. In fact, SWAL is much simpler than CoClust because it does not
need to synchronize the shared workspaces with an underlying data structure.

8.4.1 An overall view of SWAL

Figure8.5shows the overall architecture of SWAL. Similar to CoClust, SWAL consists of aserver
and aclient extension. SWAL server contains the master copies of all the existing workspaces and
their contents in form of informal objects and cluster containers. SWAL server also implements
the services of Workspace Layer. SWAL client extension is an implementation of a set of classes
that give easy access to the services of Workspace Layer without worrying about network com-
munication and technical details of SWAL server.

An important part of SWAL server is theWorkspace Managerthat is the access point for all
the clients. Workspace Manager allows the clients to create and modify workspaces, to browse
through existing workspaces based on different criteria (for instance door status, work progress
status, inhabitants, etc.), to glance into workspaces, etc. Workspace Manager also allows users to
easily enter into different workspaces.

There are two types of shared workspaces in SWAL. If a workspace has at least one inhabitant
it is an activeworkspace and resides in theactive workspace space. Otherwise it is aninactive
workspace and is stored in aworkspace database. Each active workspace has amaster replicaon



188 CHAPTER 8. WORKSPACE LAYER

SWAL server
Workspace manager

Active workspace space

Workspace synchronizer

Work-
space DB

IGLOO client

SWAL client extention

Workspace
manager surrogate

Figure 8.5:The overall architecture of the SWS server.

the server and one or severallocal replicas residing at the clients whose users are the inhabitants
of the workspace. Aworkspace synchronizerexists for each active workspace, and is used to
synchronize all the replicas, including the master copy of the workspace. The synchronization
mechanisms are similar to those of CoClust (see Section7.4)

It is important to note that clusters are not stored on SWAL server. Instead, cluster contain-
ers are stored together with the identifier of the cluster they contain. When the first user enters
a workspace that contains a cluster container, the container is in charge of contacting CoClust
and setting up proper connections for initializing and synchronizing the cluster. In this way the
responsibility of synchronizing clusters is fully delegated to CoClust, while creating and deleting
cluster containers is the responsibility of SWAL.



8.5. SUMMARY 189

8.4.2 SWAL client extension

In order to allow user-friendly access to the SWAL server, a set of classes are implemented that
can be used by the clients. These classes are implemented in Java and Visual Basic, and enable
clients of a widely different range to be implemented for SWAL. SWAL client extension includes
aWorkspace Managerclass, aWorkspaceclass, anInformal Objectclass, anInhabitantclass, and
a Cluster Containerclass. The methods that are defined for these classes provide access to all
the services implemented by SWAL. A client creates a local replica of a workspace by creating
a new instance of a Workspace class. Once the Workspace class is instantiated, the client can
use the methods of the Workspace class to modify the new workspace. The workspace class is
responsible for synchronizing its state data with that if its master replica on the server and with
its other replicas. The mechanisms for doing this are similar to those of CoClust client extension
described in Section7.4.2. More details on SWAL can be found in (Rømma and Skjønhaug2000).

8.5 Summary

In this chapter we have described Workspace Layer of IGLOO framework. Workspace Layer is the
part of the framework that is mostly concerned with cooperation in small groups. It is defined in a
way to allow informal cooperation among a few developers within a shared workspace. Informal
objects are used to share information within a workspace, while cluster containers provide access
to an underlying shared product space. An implementation of Workspace Layer called SWAL is
described. SWAL is implemented in Java programming language, and includes client extensions
for both Java and Visual Basic programming languages.

Workspace Layer is the last layer of IGLOO framework. The three layers of the framework
are defined in a way that they can function by their own, but are more powerful when combined.
The framework can be used to set up different types of IGLOO networks. This is explained in the
next chapter.



190 CHAPTER 8. WORKSPACE LAYER



Chapter 9

Deploying IGLOO Framework

9.1 Introduction

In the last three chapters we have developed IGLOO framework as a generic platform for support-
ing shared interaction, and we have described in details the different components of the frame-
work. In this chapter we will discuss the issue of deploying these components for building a
specific environment for cooperation, i.e. anIGLOO network. The concept of an IGLOO network
was introduced in Chapter5 (see Section5.4 on page120) as a group ofIGLOO clientsthat use
IGLOO framework to communicate with each other, and support cooperation among their users.
IGLOO framework is developed as a generic platform. An IGLOO network uses aninstanceof
IGLOO framework to support a specific project group with specific needs. The process ofinstan-
tiating IGLOO framework, and building an IGLOO network based on the resulting instance, is
called thedeployment processand is the topic of this chapter.

The structure of this chapter is as follows. First, in this introduction we will revisit some
of the principles underlying IGLOO framework. The deployment process takes these principles
as its starting point, and specializes them into context-specific principles to underlie a particular
IGLOO network. The contents of an instance of IGLOO framework are described in Section9.2.
In Section9.3 we will give an overview of the deployment process, and we will describe the
necessary activities within this process. Section9.4 outlines some trade-offs in deploying the
framework, and describes how a deployment process can be done incrementally. In Section9.5
we will review some of the architectural features of IGLOO framework, and will describe how
these features can influence the deployment process by allowing the creation of an architecturally
high-quality and efficient IGLOO network.

Product development involves large groups of people and a high amount of cooperation. As
we have seen in Chapter2, cooperation among developers is highly unpredictable and situated.
Due to the vague nature of the product it is difficult to predict how a group of developers will
organize their daily product development activities, what kind of information they will need, who
they will talk to, etc. Developers’ needs in form of information they access and people they talk
to continuously change in the course of the same project and from one project to the other. In



192 CHAPTER 9. DEPLOYING IGLOO FRAMEWORK

addition, different groups working with different parts of the product or with different types of
tasks often have radically different needs. The value of the product as a resource for cooperation
was pointed out in Chapter2 because it provides a flexible means for externalizing knowledge, ne-
gotiating meaning, and coordinating action. In Chapter4 we developed the product-based shared
interaction model. This model emphasizes the importance of product as a resource for coopera-
tion. The model is based on a few principles that we have developed based on empirical data from
our analysis of ALPHA in Chapter2. These principles are:

• A large part of developers’ everyday activities involves different types of product objects.
Product objects are not only information containers, but are also used for supporting coop-
eration. Product objects embody the shared knowledge about the product. Product objects
are also used for coordinating the work in that they are used as resource for supporting
interactions among developers and for preventing breakdowns in coordination. The does
not presume any categorization of the possible range of product objects, and does not treat
differently the different product objects that are within a shared product space.

• A product often consists of a large number of product objects, and developers at any given
time only use a subset of these objects. This subset changes dynamically during the project.
Developers might like to have a customized view of the part of the product they work with.
The model does not assume any predefined patterns of usage or courses of interaction when
using product objects or groups of product objects.

• Developers might work in groups of different size, or might work individually. An important
part of the activities of individual or groups of developers will be to modify the product
objects. The model does not assume any specific configuration of groups, or any predefined
set of refinement or modification operations.

• Work within small groups is different from work within the large project team in that work
within small groups is more focused, more dynamic, more interactive, and makes use of
richer interaction media and more fine-grained context information. The model does not try
to predict the process of interaction within small groups, and provide only the basis for an
interaction medium (as part of a center of interaction).

• Product objects are related to each other, and as a result people working with them depen-
dent on each other in their work. The model does not assume what kind of relations and
dependencies these are, or which specific product objects will be dependent on which other
product objects.

• Developers do not wish to make public all the details of their work. Making public any
information about the work has to have some benefit for the publishers, for instance to help
them articulate the work they are doing. The model does not assume which details will be
available within the shared product space, but allows for different degrees of detail.

IGLOO framework was developed in Chapters5–8 in order to implement this shared inter-
action model. IGLOO framework is a formalization of these principles in form of ageneric
implementable framework. Gossip, CoClust and SWAL aregeneric implementationsof IGLOO
framework. They are generic because they use the above general principles without specializing
them in any way. It is assumed that different project groups will share the need for the services



9.2. THE INSTANCE 193

provided by IGLOO framework and its generic implementations, but will have additional needs
that also have to be supported. IGLOO framework therefore allows each project group to cre-
ate aninstanceof the framework that provides additional active support for that specific project
group. Each instance of IGLOO framework is still based on the initial principles above, but makes
new assumptions about how its particular users will work. An instance of IGLOO framework can
then be used to set up an IGLOO network that is better suited to the needs of the specific project
group. The process of creating such an instance and using it to build an IGLOO network is the
deployment process.

One obvious advantage of this approach isreuseof code. The generic implementations and
their API (Application Programming Interface) can be reused and improved further. Another more
crucial advantage is that ofinteroperability. New instances can co-exist with old ones, and new
tools can communicate with old tools. In this way, building an IGLOO network becomes an
iterative process ofincremental integration. This is in particular important because of the diverse
and changing needs of project groups. An IGLOO network, once created, is not a static construct
and can be tailored to the ever-changing needs of its users.

9.2 The Instance

The main goal of the IGLOO deployment process is to create aninstanceof the framework that
is suited to the needs of a specific project. An instance is a set of definitions of what objects and
relations will be shared in a project. An instance also defines the functionality of the clients that
have to be implemented or recoded. The different parts of an instance are shown in Figure9.1.
An instance consists of a number of specializedvocabularies, specializedawareness policies,
and specializedclients. The term vocabulary normally means an agreed-upon definition of the
meaning of information that is shared by a group (Chen1994). Here we use the term in a more
restricted form to denote a definition of the different object and relation types used by IGLOO.
The specialized vocabularies define the type of information (in term of objects and relations) that
will populatethe shared product space, the clusters and the workspaces in an IGLOO network.
The specialized clients are used tomanipulatethe resulting shared product space, clusters and
workspaces. The awareness policies govern awareness production and distribution in the resulting
IGLOO network.

There are three types of vocabularies in an instance. Anorganizational vocabularyis a defi-
nition of product-related information that is shared globally among a project’s members (in terms
of product objects and conceptual relations), whilelocal vocabulariesare definitions of product-
related information that is shared by small groups that are part of a project (in terms of cluster
objects and cluster relations).Workspace vocabulariesdefine the kind of information that will be
available within the different workspaces (in terms of workspaces, informal objects, and inhabi-
tants). An instance can have only one organizational vocabulary, but may have several local and
workspace vocabularies.

Another part of an instance is specializedawareness policies. These policies govern the pro-
duction and distribution of awareness information in an IGLOO network. Awareness policies
consist of:

• A set of rules for how awareness relations will be created: One such rule can for instance be
that all the conceptual relations of a specific type (e.g. “dependency”) will also be awareness



194 CHAPTER 9. DEPLOYING IGLOO FRAMEWORK

Instance

Specialized
vocabularies

Consists of Consists of

Manipulate

Shared space

Populate

Specialized
awareness

policies

Consists
of

Govern

Specialized
clients

Refine

Figure 9.1:An instance of IGLOO framework.

relations. These rules will normally be programmed into the tools of the developers. E.g. in
a graphical editor creating a “dependency” relation might automatically create an awareness
relations.

• A set of global awareness schemes and rules for how these schemes will be maintained:
An awareness policy might decide what global awareness schemes will exist, who will be
responsible for creating and maintaining them, and who will have to subscribe to them. E.g.
it might be decided that the project manager will maintain a global awareness scheme, and
that all the developers have to subscribe to this scheme.

• A decision about what user operations should generate product awareness events: Product
Layer may be configured to produce awareness events for only a subset of user opera-
tions (see Chapter6 for awareness configuration services). An awareness policy may decide
what these operations are. E.g. it might be decided that events will only be generated for
modifications to the shared product space. In this case developers will not be notified if
someone reads a product object.

The third part of an instance is the specializedclients. Specialized clients are either already-
existing applications that are integrated into IGLOO, or are newly developed IGLOO clients. They
are used for manipulating the shared information in an IGLOO network. Specialized clients may
be developed to manipulate product objects and conceptual relations, cluster objects and cluster



9.3. ACTIVITIES IN THE DEPLOYMENT PROCESS 195

relations, and the contents of the shared workspaces. They may in addition provide communi-
cation tools (such as video and audio communication tools), workflow functionality, advanced
editing and other types of services. IGLOO framework already implements much of product-
based shared interaction support that will be needed by the specialized clients. This means that
developing specialized clients does not need to be a complex and time consuming process. Spe-
cialized clients may in many cases be the same single-user applications that the developers have
been using before the deployment of IGLOO framework. For instance, the cluster abstraction
described in Chapter7 already implements real-time sharing and collaboration functionality. A
single-user graphical editor can be modified to make use of such clusters for sharing its graphical
diagrams. In this way, the editor can be made “multi-user” through minimum effort.

9.3 Activities in the Deployment Process

There is a set of activities that have to be performed during a deployment process. These are
activities that are necessary for creating the three parts of an instance. Performing these activities
systematically assure that the necessary information is available, the necessary decisions are taken,
and the necessary results are produced. The activities may also be used as guidelines for estimating
the cost of deploying IGLOO framework for a specific setting. The activities are the following:

• Define the specialized vocabularies: In order to be able to use a large shared space for
cooperation, there must be an agreement about the meaning of its contents. For instance,
the clients should know what product objects or conceptual relations might exist in the
shared product space, and what attributes they should have. In addition, local and workspace
vocabularies might be developed for supporting cooperation in different specialist groups.

• Define the specialized awareness policies: It might be desirable to predefine how awareness
relations should be created among the product objects in the shared product space, what
awareness schemes will exist, what types of product awareness events should be generated,
etc. One might also decide to allow awareness configurations to be created in an ad hoc
manner, independently from the structure of the shared product space.

• Develop specialized clients and workspaces: In this step one might identify and integrate
already-existing tools into an IGLOO network, or develop specialized clients for manipulat-
ing the shared space. One might also develop specialized shared workspaces for supporting
specific group processes such as voting, brainstorming, etc. or specific tasks such as co-
authoring, graphical modeling, etc.

It is assumed that these activities are performed in conjunction with a parallel activity of iden-
tifying the cooperation needs of the specific project team. One should know about the type of
cooperative activities that exist, the cooperation needs of the developers, the kinds of development
tools and methods that are already in use and that may be used in the future, the maximum cost
allowed for the deployment process, etc.

It is important to note that the ordering of these activities is not predefined. One may also start
with one activity and incrementally perform the others later. In addition, one will normally need
a number of iterations through these activities in a typical deployment process. The rest of this
section describes these three activities in details.



196 CHAPTER 9. DEPLOYING IGLOO FRAMEWORK

Defining the different vocabularies– IGLOO framework provides a flexible set of services that
can be used to share any type of objects and relations with any combination of attributes. This
provides the developers with a high degree of flexibility but at the same time requires that the
developers define the type of objects and relations they will need to share. There are three groups
of objects and relations whose format and purpose have to be defined during this step:

• Organizational vocabulary: An instance of the framework has to define the different types
of product objects and conceptual relations, their purpose, what attributes they will have,
and how they will be distinguished from each other. This is the organizational vocabulary
for the specific instance. An organizational vocabulary may for instance be based on a
specific modeling language (such as UML), or it may be more informal and developed in
an ad hoc manner1.

• Local vocabularies: An instance of the framework has to define the different cluster, cluster
object, and cluster relation types that will be used by the different groups in the project.
These definitions include the different types, their purpose, their attributes, which attributes
are deep (and consequently based on the defined organizational vocabulary) and which are
shallow (i.e. are local to the clusters). These definitions will constitute the local vocabu-
laries for the instance. Note that local vocabularies are strictly based on the organizational
vocabulary. In particular each cluster object type has to correspond to a specific product
object type and each cluster relation type has to correspond to a conceptual relation type.
There might be several local vocabularies in each instance, e.g. one for each specialized
group.

• Workspace vocabularies: An instance of the framework has to define the different workspace,
informal object, and inhabitant types to be used by the project. An instance will have to de-
fine what kind of workspaces will exist in the IGLOO network and what attributes they
will have, what kinds of informal objects can be created in the workspaces and what at-
tributes they will have, and what information about the inhabitants should be shared in the
workspaces. This is the workspace vocabulary of the instance. A workspace vocabulary has
to be defined for each type of workspace that will exist in the IGLOO network.

In addition to the vocabularies, it might be necessary to define a set of user-defined operations
that need to be simulated by Product Layer. As we have seen in Chapter6, Product Layer allows
the clients to define a set of operations on their product objects and conceptual relations. Although
Product Layer does not understand the meaning of these operations, it will forward awareness
events about them as reported by the clients (i.e. Product Layer will simulate these user-defined
operations). The users can decide what operations will be needed, and what parameters the result-
ing awareness events should contain. Although these definitions are not part of the vocabularies,
it is a good ideas to define them in conjunction with the vocabularies. E.g. user-defined operations
can be defined for each object and relation defined in the vocabularies.

Not all of the vocabularies need to be defined if one plans to use only a subset of the services in
IGLOO framework. For instance, if only Product Layer is used, local and workspace vocabularies
are not needed. It is also important to note that the definitions of product objects, conceptual

1Note that each of the developers or groups of developers can still add their own product object and conceptual relations
to the shared product space, or augment the existing ones with additional attributes. However, only the definitions in the
organizational vocabulary will be recognized by all project members.



9.3. ACTIVITIES IN THE DEPLOYMENT PROCESS 197

relations, cluster objects, and cluster relations need not reflect all the details of these objects and
relations. The shared product space should be seen as a place to share information that is necessary
for cooperation, not as a repository. A lot of the information locally available to each developer,
or stored in a local repository, will consist of details that may not be necessary for cooperation. As
an example, a programming group may not need to share all the contents of their source code files.
It might be enough to share information such as file name, owner, last changed, version number,
and interface definitions.

Also note that these definitions do not require any coding activities. The result of this activity
is a set of definitions as described above. These definitions are then used to develop (i.e. code or
re-code) the specialized clients.

Defining awareness policies– IGLOO framework is responsible for generating awareness in-
formation about access to the contents of the shared product space, the clusters and their contents,
and the workspaces and their contents. For each IGLOO network specific awareness policies have
to be defined for how awareness information will be produced and distributed to the developers
in the network. A part of the deployment process is therefore to define these policies. Awareness
information production can be configured for the shared product space only (see Chapter62). The
policies are therefore based on the awareness configuration services of Product Layer:

• Rules for creation of awareness relations: Awareness relations overlap conceptual relations
in the shared product space. However, awareness relations are not automatically created
for each conceptual relation. It must be decided in advance whether creating a certain
type of conceptual relation should also create an awareness relation between the source
and destination product objects. This can be necessary in cases where the structure of the
product enforces strong dependencies among the developers working on the different parts
of the product (e.g. import relations among source code files). It can also be decided that
awareness relations are going to be created in an ad hoc manner. In this case, the developers
should decide who will be responsible for creating the awareness relations. Mandatory
awareness relations might be created automatically by the specialized clients.

• Rules for creating and subscribing to awareness schemes: Awareness schemes define what
mediated awareness each developer will receive. The developers might want to define what
standard schemes will exist, what global schemes will exist, who will be responsible for
creating them, and who will be expected to subscribe to them. If there are to be global
awareness schemes (e.g. one for all project members, one for all the programmers, etc.) the
name of these schemes have to be decided. It can also be decided to allow the developers to
create private or group schemes.

• Rules for what product awareness events will be generated: Awareness configuration ser-
vices of Product Layer allow for different amounts of direct product awareness events. An
awareness policy might decide if Product Layer should produce direct events for all kinds of
access to the shared product space, or only for updates. This decision can affect the amount
of produced awareness information, and should also be considered with respect to privacy.

2Future versions of IGLOO framework may also allow the users to customize the awareness information that is pro-
duced by Cluster Layer and Workspace Layer.



198 CHAPTER 9. DEPLOYING IGLOO FRAMEWORK

Again the definitions here do not require any coding activities. The different choices that are
made are all supported by the generic implementations of IGLOO framework. These decisions
however will have to be implemented by the specialized clients that are developed for the specific
IGLOO network.

Developing specialized clients and workspaces–This step is concerned with developing (i.e.
coding or recoding) the specialized clients that will be used by the developers for cooperation and
interaction with the shared product. These clients can be seen as tools that are used to manipulate
the contents of the shared space (see Figure9.1). Their behavior is partly predefined by the vocab-
ularies and awareness policies of the particular instance. This is a coding activity. Clients can be
developed using one of two approaches: creating new clients or integrating existing applications.

New clients should be capable of communicating with an IGLOO network through the ser-
vice interfaces provided by the generic implementations of IGLOO framework. Clients may use
the services directly, and communicate with the IGLOO network through the network protocols
provided by Gossip, CoClust and SWAL. Clients can also be developed by specializing the client
extensions provided by the generic implementations. These client extensions can be specialized in
an object-oriented manner. For instance, the Cluster class provided by CoClust can be specialized
to become an editor for specific kinds of clusters. The specialized cluster can provide visualization
and user interaction mechanisms, and can automate some of the manipulation activities (e.g. au-
tomatically creating awareness relations when a specific type of conceptual relation is created by
the user). The advantage of using the client extensions for creating specialized clients is that the
need to program complex network communication algorithms is eliminated, and one can instead
focus on implementing the functionality of the client.

The second approach to creating new clients, i.e. integrating existing applications, might be
necessary in cases where applications such as graphical editors and CASE tools are already in
widespread use among the developers. In most cases integration will happen through recoding the
existing application, and will therefore requires access to the application’s source code. Integration
might happen through different layers of the framework. Generally, integrating through Product
Layer will require little recoding (and in some cases no recoding at all), while integration through
Cluster Layer and Workspace Layer will require a considerable amount of recoding. Figure9.2
shows an example of integrating a single-user CASE tool into an IGLOO network. In this example
the integration is through Product Layer, i.e. through Gossip network protocol. The CASE tool
has to be modified in such a way that it can access the shared product space in Gossip, and receive
and use awareness information produced by Gossip. Integration in this case can be done in three
ways. These are shown in Figure9.2with corresponding numbers:

1. The editor of the CASE tool is changed into an IGLOO client. The editor can be recoded
so that all user interaction is analyzed for possible accesses to the shared product space.
If a user interaction requires access to the shared product space (e.g. if the user creates
a product object that is to be shared), the editor will not only do its normal duties (e.g.
update the local repository) but will in addition issue a service request to Gossip. Also the
awareness information arriving from Gossip (as a result of other users’ access to the shared
product space) has to be translated into local simulations of other users’ actions. (Note that
these local simulations may require changes to the contents of the local repository.)

2. An IGLOO agent(a special type of IGLOO client) is used. The agent is located between the



9.3. ACTIVITIES IN THE DEPLOYMENT PROCESS 199

Single-user CASE editor

Single-user CASE
repository

Gossip

G
o

ssip
 n

etw
o

rk p
ro

to
co

l

2

1

3

agent

Figure 9.2:An example of integrating single-user tools into an IGLOO network.

editor and the repository. This agent works as a repository seen by the editor, and as an editor
seen by the repository. All communication between the editor and the repository passes
through the agent. The agent issues service requests as the user of the CASE tool accesses
the shared product space. In addition, awareness information from Gossip is translated into
local actions on both the repository and the editor. This solution might be feasible without
any recoding if the communication between the editor and its local repository is through a
well-defined network protocol.

3. The repository of the CASE tool is changed into an IGLOO client. In this case the repository
is changed so that it can analyze all input from the editor and issue services requests to
Gossip if the editor accesses the shared product space. In addition, the repository will
receive awareness events from Gossip and change its own state and the state of the editor
accordingly. The editor will not need any modification if the communication between the
editor and the local repository is through a well-defined network protocol.

So far we have discussed IGLOO clients as tools for modifying shared information (i.e. dif-
ferent objects and relations) in an IGLOO network. Specialized clients may also be developed in
order to allow the developers to refine the instance that is used in the IGLOO network. This is
shown in Figure9.1 in form of a “Refine” link from specialized clients to the instance. This “re-
flective” way of operation can be interesting because an IGLOO network can now be turned into
a “specialization environment.” Developers can now build their own instance of IGLOO frame-
work while they use the IGLOO network. An IGLOO network can be defined and refined in an
incremental way, which leads us to the discussion of incremental deployment.



200 CHAPTER 9. DEPLOYING IGLOO FRAMEWORK

  Instantiation:
- Organizational vocabulary
- Local vocabularies
- Workspace vocabularies
- Awareness configurations
- Specialized clients
- Specialized workspaces

  Usage:
- Refined organizational vocabulary
- Refined local vocabularies
- Refined workspace vocabularies
- Awareness re-configurations
- Tailored clients and workspaces

  IGLOO framework development:
- Components (Layers)
- Service definitions
- Core implementations
- Client extentions

Feedback

Figure 9.3:An example of IGLOO framework deployment. Rectangles are typical phases with
their typical end-products. Gray rectangles denote phases that are a direct part of the deployment
process.

9.4 Incremental Deployment

Activities in a deployment process can be performed in different phases of a product development
project. Figure9.3 shows a possible organization of the deployment process and its relation to
the development of IGLOO framework. This example illustrates a common way of deploying
a framework: developing the framework, specializing it to a domain, and using the specializa-
tion (Codenie, De Hondt, Steyaert and Vercammen1997). In this example, the activities in the
deployment process happen in different phases (shown as rectangles in the figure). Each phase
produces a set of results. Typical results of each phase are shown inside the phase’s rectangle.
Thick arrows denote flow of results from one phase to the other, while thin arrows denote evalua-
tion and feedback information. Theinstantiationandusagephases are directly concerned with the
deployment process, while theIGLOO framework developmentphase is the process of developing
the core parts of IGLOO framework and is common to all the deployment processes.

The phase IGLOO framework development is described in Chapters5–8 of this thesis. The
outcome of this phase includes the definitions and the generic implementations of the three lay-
ers of the framework, plus the client extensions that are provided as a means of facilitating the
integration of external applications. The effort here is open-ended (as illustrated in Figure9.3by
feedback arrows from the other phases), meaning that the framework itself will be continuously
refined as more empirical data are collected from different deployment processes. (In some cases
developing the core framework might be seen as an integral part of the deployment process, e.g.
in open source development.)

The instantiation phase results in an initial instance of IGLOO framework. This instance is
used as the basis for building the IGLOO network that is used in the usage phase. The instance
itself might change during the usage phase. Refining the instance will change the properties of the
IGLOO network in order to adapt it to the emerging needs of the developers.

The deployment process can be doneincrementally. This can be necessary in order to adapt an
IGLOO network to its environment. Incremental deployment can be done in one of two ways: In-
cremental deployment of framework layers, and/or incremental definition of the instance. These
two approaches are calledvertically incremental deploymentandhorizontally incremental deploy-
mentrespectively.



9.4. INCREMENTAL DEPLOYMENT 201

Not all the layers in IGLOO framework need to be deployed in an IGLOO network. The
higher layers of the framework provide more advanced support for focused cooperation in a center
of interaction, but also require a more costly deployment process. One can build an IGLOO
network with only Product Layer. Deploying only Product Layer will allow a project to create a
shared product space, will provide a flexible interface for modifying this space, and will supply the
developers with awareness information about changes to the product. With only Product Layer the
costs related to the deployment process can be minimized since some of the deployment activities
can be delayed or eliminated totally. For instance, local and workspace vocabularies are not
required when using only Product Layer. Also developing specialized clients can become a less
costly process because it is easy to integrate existing tools into an IGLOO network through Product
Layer service interface. Such a minimal IGLOO network involves less risk in terms of cost and
radical changes to the existing development environment. Once the minimal network is in place,
is used for some time, and an organizational vocabulary is established and supported by a host of
tools, the network can be “upgraded.” Adding Cluster Layer and Workspace Layer to a minimal
network does not require abandoning the existing network. The existing tools and vocabularies
can still be used, and more importantly, cooperate with the new ones. IGLOO clients that are
integrated through a higher layer of the framework can communicate with those integrated through
a lower layer. For instance, clients that use Cluster Layer services can communicate with those
using Product Layer services because both of them share the same organizational vocabulary and
awareness policies.

The second approach, i.e. horizontally incremental deployment, is based on relaxing the dis-
tinction between instantiation and usage phases. Activities in the deployment process can be
performed either in the instantiation phase or in the usage phase. In a deployment process the
decision of which activity to perform in which phase will have great effect on the flexibility and
adaptability3 of the resulting IGLOO network. The less that is fixed in the instantiation phase,
the more the users of the instance will be able to adapt the resulting IGLOO network during the
usage phase. However, there are some trade-offs to consider. Some of these trade-offs are shown
in Table 9.1on page206.

In one extreme, all the components of the instance are defined and developed in the instantia-
tion phase. This means that during the instantiation phase all the vocabularies will be defined, and
all the policies and rules for awareness information production and distribution will be decided. In
addition, a set of specialized clients based on these definitions will be developed. Though this is
possible and in some cases advantageous (e.g. in the case of very large project groups using formal
methods and tools), it will result in minimum flexibility in the usage phase. The developers will
be forced to use specific types of product objects and conceptual relations to express their ideas,
and the awareness information that they will receive may result in information overload because
it is not tailored to their real needs.

The other extreme will leave all or most of the activities to the usage phase. Developers will
have to create all the vocabularies during the usage phase, they will have to define their own
awareness policies, and they will have to develop their own clients. This situation can be desirable
in cases where the developers have a high self-discipline and are capable of developing their
own specialized clients. It can also be useful in cases where there is no central decision-making
instance that can enforce vocabularies and tools.

It is obvious that a hybrid approach will be more desirable in the majority of cases. One such

3An adaptable system here is defined as a system that allows its users to adapt it to their needs.



202 CHAPTER 9. DEPLOYING IGLOO FRAMEWORK

hybrid approach can be the following:

• Define a core organizational vocabulary in the instantiation phase: This vocabulary will
define a minimum set of product object and conceptual relation types, and a minimum set
of attributes for each type.

• Define a global awareness policy in the instantiation phase: This policy can define a set of
awareness schemes that have to be subscribed to by all the developers, and a handful of
rules for creating mandatory awareness relations.

• Develop a set of flexible clients in the instantiation phase: This set of clients can be de-
veloped to allow the users define local and workspace vocabularies, and to add additional
attributes to the objects and relations in the organizational vocabulary.

• Define local and workspace vocabularies in the usage phase: The clients can support users
in defining new types of cluster objects and relations, and new types of informal objects.

• Allow for development of local awareness policies in the usage phase: In addition to the
global awareness policy defined in the instantiation phase (and enforced by the specialized
clients) each developer or group of developers can define their own awareness needs in the
usage phase.

The two approaches to incremental deployment are not mutually exclusive. For instance,
horizontally incremental deployment can also be desirable if only Product Layer is used.

9.4.1 The role of specialized clients in incremental deployment

As shown in Figure9.1on page194, specialized clients are mainly responsible for manipulating
the shared space in an IGLOO network. However, it is also possible to develop clients that are
capable ofrefining the instance of the network in the usage phase (also shown in Figure9.1 as a
“Refine” link from specialized clients to instance). A proper suite of such clients can facilitate the
horizontally incremental deployment process in that the instance itself can be defined incremen-
tally in the usage phase. A similar approach is for instance used in Information Lens (Malone,
Grant, Lai, Rao and Rosenblitt1989). Information Lens is a structured message system where the
users can incrementally develop new semi-structured message types. Information Lens provides
end-user tools for constructing message templates for new types of semi-structured messages. In
addition, the users have access to tools for creating rules that will process the different messages.
Information Lens in this way allows for an incremental deployment in that the users define mes-
sage and rule types in use. OVAL (Malone et al.1995) followed the same approach in allowing
the users to create any object type using similar editors.

In the same way, it is possible to develop specialized IGLOO clients that allow the users
not only to manipulate the shared space in an IGLOO network, but also to refine the instance
that the network is based on, i.e. to refine the vocabularies, the awareness policies, and even
the clients themselves. However, we have to be aware of one important difference: Information
Lens and OVAL are not heavily based on shared spaces as IGLOO is. Changing any vocabulary
or awareness policy in an instance of IGLOO will affect all the users of the IGLOO network
that is based on that instance. In Information Lens, changes to a message template or rule will
not necessarily affect all the users. The same is true for OVAL. An example will illustrate this



9.5. ARCHITECTURAL FEATURES 203

difference. A rule in Information Lens is created by a user, and is also used by that user initially.
A rule becomes shared only if the user who created it wishes to share it with others, and only
if the other users want to use that rule. It is the same for message templates; the shared space
will not automatically become more structured if an Information Lens user creates a new message
template because all templates have local effectinitially . In IGLOO, changes to the shared space
will affect, to different degrees, all the users of the IGLOO network.

Examples of clients that allow the developers change the instance of an IGLOO network are:

• Generic shared product space managers: These are mainly browsers that allow develop-
ers to create and view any type of product object and conceptual relation. They allow the
developers to browse the shared product space based on arbitrary attributes, to sort ob-
jects and relations differently, or to filter objects and relations based on arbitrary attributes.
These managers may also allow the users to change the objects and relations by adding or
removing arbitrary attributes, or to define completely new product or relation types. All
this functionality is provided by the services of Product Layer, and a generic shared prod-
uct space manager only needs to perform a mapping from these services into its own user
interface.

• Generic cluster managers: In the same way as for shared product space managers, generic
tools may be developed to allow the users to browse the existing clusters in an IGLOO net-
work based on arbitrary attributes, to change the contents of the clusters, to create arbitrary
cluster objects and relations, and to annotate the clusters by addition arbitrary shallow at-
tributes. The functionality of generic cluster managers will be directly based on the services
of Cluster Layer.

• Generic workspace managers: These are tools that allow users to browse existing workspaces,
to browse the contents of the workspaces based on arbitrary attributes, to create workspaces
with arbitrary informal objects, etc. The functionality of such clients will be based on the
services provided by Workspace Layer.

• Generic event monitors: These are applications that can be configured to monitor an ar-
bitrary part of the shared product space in an IGLOO network. Event monitors may also
allow their users to decide what part of the shared product space or which clusters and
shared workspaces to monitor. They may also allow for local configuration of awareness,
e.g. by allowing their users to decide what awareness information should be shown.

This set of generic tools may be used by a group of developers in early phases of requirements and
analysis in a product development project. For instance, being able to create any product object
and conceptual relations can facilitate idea generation activities, where the ideas can be grouped
into clusters, etc. Development of generic clients is an ongoing process (Garli and Lund2000,
Bhatnagar1999), and a suite of such clients is planned to be a part of the generic implementations
of IGLOO framework.

9.5 Architectural Features

Besides the conceptual issues involved in deploying IGLOO framework, architectural issues may
play an equally important role in the usability of the resulting IGLOO network. Project groups



204 CHAPTER 9. DEPLOYING IGLOO FRAMEWORK

Product Layer server 1

Cluster Layer server 1 Cluster Layer server 2 Cluster Layer server 4

Product Layer server 2

Cluster Layer server 3

Workspace Layer
server 1

Workspace Layer
server 2

Workspace Layer
server 3

Cluster Layer server 5

Mobile
 connectio

n

Client 1 Client 2 Client 3 Client 4 Client 5 Client 6

Client 7
Client 8

Client 9

Figure 9.4:A configuration of layer servers.

will vary not only in their needs for information and cooperation support, but also in the way
they are distributed geographically. Each IGLOO network will need a specific configuration of a
distributed architecture in order to guarantee acceptable performance to its users. This brings us to
the architectural flexibility of IGLOO framework that opens for different physical configurations
of an IGLOO network.

IGLOO framework is defined in form of layers. Each layer provides a standard service inter-
face to the IGLOO clients above it. This makes it possible (though not necessary) to implement
each layer as an stand-alone network server, what we term as alayer server. As we have seen in
Chapters6–8 each layer has an example implementation that demonstrates this possibility. Hav-
ing one stand-alone server for each layer has advantages in terms of performance and reliability.
Layer servers encourage large local computation at each layer, making it possible to minimize the
communication among the layers. For instance, when using CoClust, all the real time changes
to the shallow part of the clusters can be processed locally by CoClust, while changes to deep
attributes are communicated to an underlying Gossip server. This will result in increased perfor-
mance by for instance having Cluster Layer server located on a network node closer to the group
using it mostly. In this way we can achieve an architecture that is distributed, concurrent, and
replicated (Dewan1995).

In addition, the minimized communication among the layers makes it possible to use single
layer servers in isolation, without loosing all the functionality of an IGLOO network. For in-
stance, CoClust can be used in the absence of a Gossip server, and still allow its users to modify



9.6. SUMMARY 205

the shallow parts of the clusters. (Of course changes to the shared product space will not be pos-
sible unless the underlying Gossip server is connected.) This is useful in cases where a network
node running a layer server is not available due to network problems, or in cases where network
connections are so slow that one would prefer to loose the Product Layer services in favor of better
performance. A third important case is that of mobile computing, where network connections are
not available all the time.

Designing the framework as three layers also makes it possible to scale up the network.
Though we have not done much experimentation in this area, it is feasible to think of an IGLOO
network consisting of different combinations of layer servers. For instance, the same Gossip server
can serve several CoClust servers, each server located close to the group using Cluster Layer ser-
vices related to their local clusters. Figure9.4shows a rather complex IGLOO network consisting
of two Product Layer servers, five Cluster Layer servers, and three Workspace Layer servers. In
particular, each Workspace Layer server may access more than one shared product space. Cluster
Layer server 5 in the figure is connected to the shared product space through a mobile connec-
tion. Support for mobility is not existing in the current implementation of the framework, but can
be implemented through caching mechanisms similar to the ones proposed in (Signer, Erni and
Norrie2000).

Though not strictly related to the deployment process, deciding what combination of layer
servers to use can help to build an IGLOO network that is tailored to the specific needs of the
project team using the network.

9.6 Summary

In this chapter we have outlined a deployment process for IGLOO framework. This process is a
necessary step in specializing the generic services provided by IGLOO framework, and assures
that the resulting IGLOO network will fit to the needs of any product development project. There
are trade-offs in deploying IGLOO. At the same time there is also enough room for tailoring the
process. Incremental deployment guarantees that the cost of deploying IGLOO framework will
correspond to the gained cooperation support and technical quality. It is not necessary to deploy
the complete framework if only a subset of the services are needed. It is also possible to upgrade
a minimal IGLOO network to a more advanced network when this is needed.

The next chapter will described a detailed example of a deployment process. This example will
illustrate the different activities in a deployment process , and will demonstrate how horizontally
and vertically incremental deployment approaches can be combined in the same process.



206 CHAPTER 9. DEPLOYING IGLOO FRAMEWORK

Deployment process phase
Instantiation Usage

Pro Con Pro Con
Identifying
the settings

Can function
as a require-
ment phase
before starting
the whole
process.

Real require-
ments may not
be revealed
before the
usage phase.

Real require-
ments can
be collected
directly and
used as the
basis for the
process.

The overall
picture of
the project
and what
the IGLOO
network will
do can be lost.

Defining the
vocabularies

Can make it
easier to un-
derstand each
other in a large
project group.

Can impose
rigidity by
pre-defining
the types of
the objects
and relations.

Can provide
the developers
with more
flexibility and
freedom to
express their
ideas.

Will make
it difficult to
communicate.
Can introduce
a lot of ad hoc
“translation”
work.

Defining
awareness
distribution
policies

Can assure
that all the
developers
get the same
awareness
information.

Can make
individual
learning dif-
ficult. Can
result in in-
formation
overload.

Can allow
each devel-
oper or group
of devel-
opers tailor
their own
awareness
information
access. Allow
for individ-
ual or local
learning.

Can result
in overhead
work needed
for defining
local policies.
Can result in
divergence
in awareness
among the
developers.

D
ep

lo
ym

en
ta

ct
iv

iti
es

Developing
specialized
clients and
workspaces

Can secure the
consistency of
shared data.
Can enforce
a uniform
interface to
shared data.

Can result
in rigid tools
with little
tailoring
possibilities.

Can allow the
developers
create the
tools they
really need,
or tailor their
tools.

Requires that
all the de-
velopers can
develop their
own clients
and tools, or
that client and
tool builders
are available
all the time.

Table 9.1:The trade-offs when choosing to perform each deployment activity in a specific phase.



Chapter 10

Evaluating IGLOO Framework

10.1 Introduction

This chapter evaluates IGLOO framework. First, in Sections10.2and10.3we test the applicability
of IGLOO framework through a detailed example of a deployment process. ALPHA is used as
the settings for this example. The example will demonstrate how the various activities of the
deployment process are performed in order to create an operational IGLOO network. Second, in
Section10.4.1we evaluate the resulting IGLOO network against the requirements of Chapter2
in order to see which of the requirements are satisfied and which are not. (These requirements
are listed in Table2.5 on page43.) As part of the evaluation an estimate of the costs connected
to deploying IGLOO framework is given. We also compare the functionality of IGLOO to other
tools and environments.

The example used in this chapter is based on our understanding of ALPHA and similar projects,
and on the functionality provided by IGLOO framework. The example demonstrates the applica-
bility of the generic implementations, and IGLOO framework in general. ALPHA, which was
used as the initial scenario for this thesis, provides a rather complex and realistic scenarios. Using
ALPHA as an example will also make it easier to evaluate the intended functionality of IGLOO
as stated in the requirements of Chapter2. We have to emphasize that the described deployment
process is not performed in a real-world situation. A real world test has not been possible because
of the time frame connected to this thesis, but also because of the lack of access to a project similar
to ALPHA.

The example assumes that the generic implementations of IGLOO framework, i.e. Gossip,
CoClust and SWAL (described in Sections6.3, 7.4and8.4)), are used. During the chapter we will
demonstrate a number of IGLOO clients. Prototypes of most of these clients have been developed
in the course of this research, with identical or similar functionality. We also describe some
IGLOO clients that are not implemented yet or are in the process of being implemented. This is
necessary in order to demonstrate the full potential of IGLOO framework.

Figure10.1shows an overview of the deployment process for ALPHA, which is a mixture of
vertically and horizontally incremental deployment processes (see Chapter9 for an overview of



208 CHAPTER 10. EVALUATING IGLOO FRAMEWORK

- Install Gossip
- Define an initial organizational vocabulary
- Implement a Web-based interface to Gossip
- Implement or integrate Java-based shared
product space monitors and managers

Instantiation Usage

- Use the Web- and Java-based interfaces to
populate the shared product space.
- Collect suggested improvements to the
organizational vocabulary.

- Install CoClust and SWAL
- Refine the organizational vocabulary
- Define new local and workspace vocabularies
- Implement or integrate Web- and Java-based
clients for Cluster Layer and Workspace Layer.

- Use the Web- and Java-based interfaces to
populate the shared product space.
- Possibly collect suggested improvements to
all the vocabularies.

Step 1

Step 2

Figure 10.1:An overview of the deployment process for ALPHA.

incremental deployment). The process starts by deploying Product Layer in step 1 (described in
Section10.2), and upgrading to Cluster Layer and Workspace Layer later in step 2 (described in
Section10.3). An organizational vocabulary is defined in step 1. This vocabulary is refined in step
2 through a process of collecting suggestions for refinement during step 1. Step 2 also includes
the definition of a number of local and workspace vocabularies. As we saw in Chapter2, ALPHA
consisted of developers with highly diverse backgrounds. Some of them had very low level of
knowledge about computers and Internet. The advantage of starting only with Product Layer in
step 1 is that we guarantee a smooth transition from basic to advanced cooperation support. This
helps the developers with little knowledge about computers to gradually learn about IGLOO’s
services and the functionality of IGLOO clients. In addition, the possibility to gradually refine the
vocabularies allows ALPHA members to adapt the IGLOO network to their changing needs and
to the evolving product they are developing.

10.2 Step 1: Initial Deployment

In step 1 we create an initial instance of IGLOO framework for ALPHA. This step is concerned
with providing a simple cooperation infrastructure for the developers in ALPHA. We want to allow
the developers to set up an initial shared product space without much effort, and to start creating
and sharing a product. We make use of Product Layer (in form of a Gossip server) and a set of
IGLOO clients that will help the developers to set up and populate a shared product space. Most
of the clients are Web-based. This will facilitate the initial introduction of the clients because
most of the developers are already familiar with Web-based applications. In addition, a number of
simple Java-based clients will be developed to allow for more interactivity. We will also describe
how a number of familiar desktop tools can be integrated into the resulting IGLOO network.

As we saw in Chapter2, two major problems ALPHA was facing were the lack of continuous
and flexible access to the product. The assumption here is that the shared product space and



10.2. STEP 1: INITIAL DEPLOYMENT 209

the associated IGLOO clients that are created during step 1 will allow the developers to have
continuous and flexible access to the product. We do not consider centers of interaction in step 1,
and will return to this issue again in step 2.

10.2.1 Defining the organizational vocabulary

IGLOO framework allows the developers to share any type of product object and create any type
of conceptual relation among the objects. Therefore it is important to agree on a set of object and
relation types (i.e. the organizational vocabulary) so that it is known what will be shared and what
clients need to be developed to populate and maintain the shared product space. We start by defin-
ing an initial organizational vocabulary for ALPHA. As explained in Chapter9, an organizational
vocabulary consists of the definitions of product object and conceptual relation types, including
what attributes each type will have. We then allow the developers to use this vocabulary, and to
suggest improvements to it. Based on these suggestions, the initial vocabulary will be refined in
the beginning of step 2. This is a suitable approach for ALPHA because of the informal nature of
the product. We saw in Chapter2 that the product in ALPHA was mainly constituted by highly
informal product objects, and it was not always clear what objects and artifacts belonged to the
product. By allowing a gradual refinement of the organizational vocabulary the developers will be
able to “discover” in situ what objects they want to share as part of the product. This approach
takes advantage of IGLOO’s flexibility and can result in a vocabulary that fits to the needs of the
project. In other cases it might be feasible to have a completely predefined organizational vocab-
ulary. This can be the case for projects using standard methods and formalisms. In such projects,
the organizational vocabulary used to define the product will be a standard predefined language.

The initial organizational vocabulary for ALPHA is shown in Table10.1. The first six product
object types are the ones that were already shared to some extent by ALPHA developers through
WWW and mailing lists. The last three product object types (i.e. virtual napkin, whiteboard and
discussion) are object types that represent some of the artifacts that were often used locally in
face-to-face group meetings but were hardly shared across geographical sites. It is also possible
to define user-defined operations to be simulated by Product Layer, but we omit this part here for
briefness.

Two conceptual relation types are defined in the organizational vocabulary. A “Dependency”
relation will be used for relating any two product objects that are somehow dependent on each
other. Most “Dependency” relations will be created manually by the developers. This is necessary
because in the beginning of the project a large part of the product is in form of informal product
objects (e.g. natural language documents). For stronger dependencies among product objects we
define another conceptual relation type called “Import.” This type of relation is used whenever
the structure of the product strictly enforces dependencies, e.g. dependencies among source code
files because they import each other. “Import” relations may be created automatically by the tools
that the developers are using. E.g. many compilers can detect import relations among source code
files.



210 CHAPTER 10. EVALUATING IGLOO FRAMEWORK

Table 10.1: An initial organizational vocabulary for ALPHA

Object/relation
type

Purpose Attributes

Natural
language
documents
(product
object)

These are various kinds of docu-
ments that are written by the de-
velopers. They can be notes, de-
liverables, design documents, etc.

Product object type, name, owner,
document type, last changed, version,
URL, title, abstract, format

Visual doc-
uments
(product
object)

These include diagrams that are
used to visualize some aspects of
the product

Product object type, name, owner, last
changed, version, URL, title, abstract,
format

Notes (prod-
uct object)

Thes are short text messages that
are left in the shared product space
for others to read

Product object type, name, owner, last
changed, URL, title

Prototypes
(product
object)

These are executable prototypes
of the different parts of the end-
product

Product object type, name, owner, last
changed, version, URL, operative sys-
tem

User-interface
mock-ups
(product
object)

These are animations that show
the functionality of those parts of
the end-product that do not yet ex-
ist in form of executable proto-
types

Product object type, name, owner, last
changed, version, URL, helper pro-
gram, helper program URL

Source code
files (product
object)

Files including source code of var-
ious kinds

Product object type, name, owner, last
changed, version, URL, programming
language

Virtual nap-
kin (product
object)

An image of an artifact that is used
in a local meeting. This can be a
scan of a piece of paper (or a nap-
kin) with sketches or drawings, a
photo of a situation or scenario
that was used to explain an issue,
a photo of a blackboard with writ-
ings on it, etc.

Product object type, name, owner, last
changed, version, URL, title, com-
ment, format

Whiteboard
(product
object)

This is a bitmap file that every-
body can draw on. It is in a format
that can be modified by common
image editors found in Windows
and other operating systems (e.g.
the Paint program in Windows can
be used for editing). The object
will be used for freehand drawing
and annotations

Product object type, name, owner, last
changed, version, URL, title, com-
ment, format

Continued on next page



10.2. STEP 1: INITIAL DEPLOYMENT 211

Continued from previous page
Object/relation
type

Purpose Attributes

Discussion
(product
object)

A text file that the developers
can use for discussing different is-
sues. Each developer can append
a paragraph with his own signa-
ture to the end of the file

Product object type, name, owner, last
changed, version, URL, title

Dependency
(conceptual
relation)

This is a relation that is created
from object A to B if B depends
on A in some way. It indicates a
need for informing B if A is mod-
ified

Conceptual relation type, name

Import (rela-
tion)

This is a strong dependency re-
lation from an object to another.
It is used for representing de-
pendencies that can be derived
based on the structure of the prod-
uct, e.g. import relations among
source code files

Conceptual relation type, name

This list of object and relation types can be extended. IGLOO framework allows new types to
be created as the project proceeds and the need for new types arises. For ALPHA we choose to
have a “semi-controlled” process for refining the organizational vocabulary, where the developers
will not be able to add new types directly. However, we allow them to make suggestions for new
types or modifications to the existing types. These suggestions will be collected automatically by
the clients, and will be used in step 2 for refining the vocabulary. Note that this specific process
is not imposed by IGLOO. IGLOO also supports decentralized and ad hoc refinements, i.e. each
developer adding new types and attributes without any control. We choose deliberately to have a
more controlled process for ALPHA in order to prevent inconsistencies among the sites, and to
simplify the implementation of future clients.

The organizational vocabulary defined here is a convention that ALPHA agrees to follow. It is
not “hard-coded” in any form. This means that all the developers agree to (initially) share object
and relation types of the ones defined in Table10.1, and to develop their IGLOO clients in a way
that they will respect the definitions.

Since step 1 does not make use of Cluster Layer or Workspace Layer, there is no need for
defining any local or workspace vocabularies.

10.2.2 Defining the awareness policies

Once an initial organizational vocabulary is in place, the next step in creating the instance is
to define its awareness policies. Awareness policies consist of rules for choosing the scope of
direct awareness, for creating awareness relations, and for creating and subscribing to awareness
schemes.

We can configure Product Layer to generate direct awareness events for any access to the



212 CHAPTER 10. EVALUATING IGLOO FRAMEWORK

shared product space (including read access) or only for accesses that result in modifications to
the shared product space (see Chapter6 for details). The latter configuration will result in far
less awareness information because most access types (e.g. read, search, view) will not result in
any notifications. Note that choosing one option does not exclude the other. We can change the
configuration any time.

We start by letting Product Layer generate awareness events for all kinds of access to the
shared product space. This can be useful in the beginning in order to allow the developers to
become familiar with the different types of events that are generated. This does not need to result
in information overload because the developers will use the Web-based interface initially (Web
pages are not affected by real-time notifications). For those developers using Java-based clients
this configuration may result in too many awareness events. However, the Java-based clients
use most of the events for implicit synchronization of screens, and do not impose information
overload problems. In addition, these clients can be developed in such a way that the developers
can configure them locally for filtering out certain types of event.

For the two conceptual relation types “Dependency” and “Import” we define two different
rules. We decide that conceptual relations of type “Dependency” will not by default have aware-
ness mediation property, e.g. they will not be awareness relations by default. A developer has to
explicitly “switch on” each relation if he wants it to mediate awareness. For conceptual relations
of type “Import” we decide that they will be awareness relations by default. We make this dis-
tinction because relations of type “Import” are stronger and more subjective (e.g. imposed by the
structure of the product), while relations of type “Dependency” are weaker and are made because
an individual developer found it necessary.

We also define one global awareness scheme for ALPHA called “project,” and require all
developers to subscribe to it. We allow the daily management team be responsible for maintaining
this awareness scheme. This awareness scheme can for instance be used by the daily management
team to make sure that the right awareness information is reaching the right groups. For instance,
dependency relations belonging to the “project” scheme can be made from some central product
objects (e.g. a requirements document) to local product objects at each site in order to assure that
all the local sites are informed when these central objects are modified.

10.2.3 Developing specialized clients

Once an organizational vocabulary is defined, it is necessary to develop a set of clients in order
to allow the developers to populate the shared product space with objects and relations based on
the vocabulary. We start by describing a set of Web-based clients for ALPHA. This interface is
easy to implement, is low-cost, and will give access to most of the functionality of Product Layer.
In addition, Web-based interfaces are intuitive and do not need any installation of local software.
Therefore they are natural “first choice” clients for ALPHA. Later we will describe a set of more
advanced Java-based direct manipulation clients.

The Web-based clients

All the Web-based clients explained here implement a mapping of the services of Product Layer on
to HTML pages. They provide access to most of the functionality of Product Layer, in particular
the shared product space services shown in Table6.1on page129.



10.2. STEP 1: INITIAL DEPLOYMENT 213

Web browserWeb server

Web-based
IGLOO client

Gossip
Gossip network

protocol

HTTP

CGI

Web browser

HTTP

Figure 10.2:The architecture of Web-based IGLOO clients.

Web-based clients are implemented as simple Web server extensions. Communication with a
Gossip server is performed through the architecture shown in Figure10.2. A Web-based IGLOO
client is invoked by a user requesting the URL of the client from the project Web server. Commu-
nication between the user’s browser and the Web server happens through standard WWW protocol
HTTP. This means that the user does not need to install any software in addition to his standard
Web browser. Upon the arrival of the request, the Web server invokes the IGLOO client through
the standard CGI protocol. CGI communication means that any standard Web server can be used.
The IGLOO client uses Gossip network protocol to issue a service request to Gossip. The result of
the request is received by the client and is communicated to the Web server in form of an HTML
Web page This Web page is in turn sent to the user’s browser. Examples of such Web-based clients
were implemented for interfacing with ICE (see AppendixA, andFarshchian and Divitini1997).
In (Bhatnagar1999) other examples based on Java servlets are proposed that are also capable of
communicating with Gossip and a Java-based Web server.

The Web-based interface for ALPHA can be implemented in form of a collection of Web-
based IGLOO clients1. All these Web-based clients are generic. Once implemented, they can be
used in other settings and by other projects. In fact, they can be developed as part of the future
version of IGLOO’s generic implementations:

• Generic product space manager: Reads the contents of any shared product space and dis-
plays it in form of a list in an HTML page. Allows the user to invoke other Web-based
clients for creating, viewing, modifying, or deleting product objects. Gives also access to
other connected users, and allows the user to invoke an instant messenger for sending text
messages to these users.

• Generic object creator: Allows the user to create a new object of a specific type. It provides
fields for filling in the values of the object’s attributes, and a file holder for uploading a
content file for the object.

• Generic object modifier: Displays information about an arbitrary product object on a Web

1These clients can also be implemented in form of one large client. However, our experience shows that having a
collection of smaller CGI programs provides higher reliability and performance than having one large CGI program.



214 CHAPTER 10. EVALUATING IGLOO FRAMEWORK

page, including the object’s attribute-value pairs. Allows the user to modify the object’s
attributes, or upload and download its content file.

• Generic object viewer: Allows the user to view the attribute-value pairs of an arbitrary
product object, and to download the object’s content file.

• Generic instant messenger: Allows the user to send a text message to a single user or a
group of users. (This is not a pure HTML-based client, but makes use of a Java applet
inside a HTML page.)

• New product object type application: Allows the user to describe a new product object type
by specifying a set of attributes and a purpose for the new type. It then sends an email to
the administrator of the system, informing about the object application. The application is
saved for step 2, where it is possibly used for refining the organizational vocabulary.

• New conceptual relation type application: Similar to the above, but for conceptual relations.

The Web-based interface does not support the creation of relations because WWW and HTML
pages are tedious for performing such interactive tasks. Relations are created using the Java-based
direct manipulation clients explained later.

All the Web-based clients provide links to product object and conceptual relation applications.
This is important for enabling an efficient process for refining the organizational vocabulary. Mak-
ing it easy to specify what objects and relations are used by the different developers will make it
easier to provide the possibility for sharing those objects and relations in the future versions of the
vocabularies and clients.

A screen shot of a Web-based generic product space manager is shown in Figure10.3. Through
this IGLOO client a developer in ALPHA can view the shared product space, and he can invoke
the other Web-based clients for creating, viewing, and modifying various product objects. The
contents of the shared product space is shown in form of a table in the lower part of the screen,
while the upper part provides a range of functionalities for modifying the contents of the space. A
drop-down list of defined product object types is available (above-left corner in Figure10.3). The
developer can choose one of these object types as the basis for creating a new product object. To
the left of this list there is another drop-down list showing currently connected ALPHA developers.
The developer can choose the name of another developer from the list, and send an instant text
message to that developer (or a message to all currently connected developers). The above-right
corner shows two “Apply” buttons that allow the developer to apply for new product object or
conceptual relation types.

The view of the shared product space (the lower part of the screen in Figure10.3) shows a list
of currently existing product objects in the shared product space. By pushing “View” or “Modify”
buttons for each object the developer can invoke an object viewer or modifier on that object. By
marking an object using a check mark and pushing the “Delete” button the developer can delete
any object from the space. The developer can also filter the view of the shared product space by
limiting the view to objects with a specific attribute-value pair. In order to allow the developer
to see at a glance which objects are changed recently, the left-most column in the table gives an
indication of when the object was changed last time. A “New” object is created newly, while a
“Changed” object has been changed recently, and an “Old” object has not been changed for the



10.2. STEP 1: INITIAL DEPLOYMENT 215

Figure 10.3:ALPHA’s Web-based generic product space manager.

last N days2.
By clicking on the “Modify” button of a product object in Figure10.3the user will invoke an

object modifier. Figure10.4shows a Web-based generic object modifier. This client gives access
to the attribute-value pairs and the content file of the product object. The developer can modify
any attribute, upload a new content file, or add/delete attributes. Note that we decided to have
a semi-controlled process for refining the organizational vocabulary. This means that adding or
deleting an attribute will not change the organizational vocabulary directly. Adding or deleting
attributes through the object modifier of Figure10.4will not actually add or delete the attribute,
but will result in a message (a suggestion) being sent to the administrator. The suggestion will be
used in step 2 for refining the organizational vocabulary.

The generic object modifier of Figure10.4 can be used for modifying any product object.
However, for some object types it will be necessary to provide a more tailored modifier. An exam-

2A more advanced awareness mechanism based on Java applets could have been used here instead of discrete values
such as “New,” “Changed” or “Old.” Such a mechanism is implemented as an extension to ICE (Knudsen and Solheim
1999). The idea is to allow the developers see, in real time, all accesses to product objects shown in a Web page. This
is done by having a small Java applet (a “product object monitor”) attached to each product object in the Web page. The
attached Java applet changes color when other developers access the product object.



216 CHAPTER 10. EVALUATING IGLOO FRAMEWORK

Figure 10.4:ALPHA’s Web-based product object modifier.

ple of a tailored modifier for the “Discussion” product object type is shown in Figure10.5. This
modifier provides an easy interface to the developers to append messages to a discussion object
and to read the messages sent to a discussion. The above part has as usual buttons for applying
for new product object and conceptual relation types. The middle part allows the developer to
create a new message to be sent to the discussion by specifying a subject, a body, and a message
type (according to an IBIS-like categorization of messages). The lower part of the screen contains
a list of already posted messages.

The above collection of Web-based clients provides a flexible interface to an initial shared
product space for ALPHA. All developers can share their product objects through a few simple
steps using an intuitive interface. The interface is flexible and allows the developers to modify the
contents of the shared product space in a decentralized manner. New object types can be added
as needed, and the attribute set of each object type can be changed through a refinement process.
Explicit communication is supported through instant messages (for opportunistic communication)
and discussion objects (for more structured and focused discussions).



10.2. STEP 1: INITIAL DEPLOYMENT 217

Figure 10.5:A Web-based client for interacting with a discussion object.

Awareness information related to the activities of the developers is available to some extent
through this Web-based interface. In particular, a list of connected developers is available all the
time, and can be used for knowing who is available. Changes to product objects are also visible
through a “last-changed.” However, more advanced awareness will only be available through the
Java-based interface to the shared product space.



218 CHAPTER 10. EVALUATING IGLOO FRAMEWORK

Java-based clients

In addition to the Web-based interface, a set of Java-based clients can be useful for ALPHA3. The
first essential Java-based client is a shared product space monitor (an example of such a monitor,
called Eskimo, is implemented as part of MultiCASE, see Figure5.3on page111andChristensen
and Karlsen1999). This client can monitor the shared product space for any access type. It also
allows the developers to specify the part of the shared product space they want to monitor. It is
started every time a developer logs on to his computer. It remains in the background, and generates
sound signals when something happens in the shared product space. As we saw in the previous
section, the Web-based clients provide limited (delayed) awareness support regarding changes
to the product objects. The Java-based shared product space monitor can solve this problem by
providing real-time awareness of accesses to the product objects.

Another useful Java-based client is a generic shared product space manager shown in Fig-
ure10.6. This client is very similar to the familiar file managers used in conventional operative
systems. The large white area shows a view of the product objects in the shared product space.
A developer can browse the contents of the shared product space, and can delete or modify any
product object. He can add any file from his own local hard drive to the shared product space as
product object. Adding product objects can be done either through a menu, or by dragging and
dropping the local file into the view area of the client (in which case a dialog box will open and
asks for object type and attribute values). Conceptual and awareness relations among any two
product objects can be created by highlighting the source object (by a mouse click), highlight-
ing the destination object, and selecting a menu item. Relations are not shown in the view area.
Deleting and modifying existing relations happens through a dialogue box.

The view area can be configured (filtered) to show all the product objects in the shared product
space, or only the product objects belonging to a specific type. The view is filtered by specifying
a product object type in the drop-down list with the title “Show object type:”. (It may also be
possible to select multiple object types. This functionality will require an additional dialogue box
containing a check box for each object type.) All visible objects are visualized and sorted by one
specific attribute-value (specified in the text fields “Filter” and “equal to” in the lower-left corner).
The titles of the product objects in the view area show the values of the specified attribute for each
object. The other attributes of the objects can be viewed or modified by double-clicking on each
object.

Other developers’ accesses to the contents of the shared product space are visualized by prod-
uct objects changing color from white to gray when they are accessed. For instance, in Figure10.6
product object “Note on DB connection” has a gray color indicating that some other user is ac-
cessing it. Moving the mouse pointer on to the object will show a text describing which user is
accessing the object and what kind of access it is. Additional awareness support can be to use
sound icons for different events in the shared product space.

The continuous awareness of who is accessing the product objects (i.e. being able to see the
objects change color) provides occasions for opportunistic communication. The client supports
instant message exchange among connected users. A user can send instant messages to other
connected users, and receive messages from them. A message is sent by choosing the name of
the receiver from a drop-down list of all connected users (or choosing to send a message to all

3Note that all these Java-based clients can in principle be used as applets inside HTML-based Web-pages. We have
found it however more convenient to focus on developing them as stand-alone applications. This is mainly because most
Internet browsers do not yet support Java’s full functionality (or are incompatible with other browsers).



10.2. STEP 1: INITIAL DEPLOYMENT 219

   Shared product space manager - ALPHA (Babak)

Meeting minute 12.12.00

Requirements ver. 3.5

Design ver. 4.5

Product object          View            Sort            Attribute                   Help
?

Note on DB connection
Anders is modifying this object

Readme.Gossip

Readme.CoClust

Java tutorial

Web interface.doc

ALPHA consortium

Newcomer.doc

Anders:  I have put a new version of this
document on the web. If

Show object type:

Filter:

Send message to:

Natural language document

All connected users

Chat area:

SPS

Send

name equal to * Filter

Figure 10.6:A direct manipulation product space browser with a Windows graphical user inter-
face.

connected users). An initial version of this shared product space manager is described and partly
implemented byGarli and Lund(2000).

Additional clients can be implemented in order to make the interaction with the product even
easier. Gossip network protocol can be used directly to integrate the conventional tools of the
developers into ALPHA’s IGLOO network. An example can be to implement a Visual Basic
extension for Microsoft Word. The extension can be made available as a “share” menu item that
allows the developers to upload documents into the shared product space directly from Microsoft
Word. A similar extension in Elisp programming language can be implemented for emacs.



220 CHAPTER 10. EVALUATING IGLOO FRAMEWORK

10.3 Step 2: Enhancing the Cooperation Support

Using Product Layer services with a set of generic Web- and Java-based clients allows the devel-
opers in ALPHA to create and maintain a shared product space. Product Layer and the IGLOO
clients developed in step 1 allow ALPHA developers to interact with the shared product space
in a highly flexible and active way, and continuously keep updated about changes to this space
using the Java-based clients. The solution also supports collecting feedback on the organizational
vocabulary so that the real needs of the developers regarding their interaction with the product are
registered.

When the solution implemented in phase 1 is used for a while we can expect a number of
things to happen. First, the ease of interacting with the shared product space (in particular using
the Web-based clients), and the decentralized control over its contents, will most probably result
in a growth in the size of the shared product space. This expectation is based on our observation of
ALPHA using ICE. ICE provided a similar interface for uploading and modifying objects, and was
extensively used by a group of developers for sharing objects. (This is explained in Chapter2.)
As more product objects and conceptual relations are added to the shared product space, more
advanced mechanisms for viewing the product in different ways will be needed. Second, groups
of developers will start working in a more focused manner on different parts of the product. These
two expectations require more support for centers of interaction.

In addition, the product will become more detailed. The more the developers know about each
product object the more they will need to add details to it, and the more the developers know the
product the easier it will be to create conceptual relations among the product objects. This will
require a refinement to the organizational vocabulary in order to make it more detailed, possibly
adding more conceptual relation and product object types.

The main goal of step 2 in ALPHA’s deployment process is therefore to upgrade the already
existing IGLOO network with functionality for creating centers of interactions. For this we will
use Cluster Layer (for creating clusters) and Workspace Layer (for creating workspaces). In addi-
tion, an equally important task during step 2 will be to refine the organizational vocabulary based
on the suggestions of the developers in step 1.

Note that these changes to the existing IGLOO network do not imply that the already existing
shared product space and its contents will become superfluous. Step 2 performs an upgrade of
ALPHA’s IGLOO network. Existing product objects and conceptual relations will still be fully
available in the upgraded network. In addition, the clients developed in step 1 will still work as
they did, and will be able to communicate with the clients that are going to be developed during
step 2.

10.3.1 Refining the vocabularies

This activity consists of two parts. First, the initial organizational vocabulary will be refined based
on the suggestions provided during step 1. Second, local and workspace vocabularies will be
defined for the new clusters and shared workspaces that are going to be created.

Applications for new product object and conceptual relation types, and suggestions for changes
to the attributes of the existing object and relation types are collected during step 1. These appli-
cations and suggestions are used in step 2 to refine the organizational vocabulary. Some of the
suggested additions to the original organizational vocabulary are shown in Table10.1. The basis



10.3. STEP 2: ENHANCING THE COOPERATION SUPPORT 221

for this table is that we assume more relations will be needed as the product is developed concep-
tually, and that additional support for programming some parts of the product will be in demand.
A number of conceptual relations are added in order to allow the creation of more specific rela-
tions among product objects. Additional object types for facilitating Java programming are also
added. All the new conceptual relation types will be created manually. The “Import” relation from
step 1 is still the only relation that can be derived based on the structure of the product. However,
“Import” relations can now be used also among product objects of type “Package.”

Table 10.2: A refined organizational vocabulary for ALPHA. These def-
initions come in addition to those in Table10.1.

Object/relation
type

Purpose Attributes

Java source code
file (object)

This is a specialization of the
already existing source code
file object type. Each such
object contains one Java class
definition and implementa-
tion

Product object type, class name, owner,
last changed, version, URL, program-
ming language, comment

Package (object) This is an object type for cre-
ating groups of objects. It al-
lows the users to create col-
lections of object, but does
not enforce any name space

Product object type, package name,
owner, last changed, version, comment

Generalization (re-
lation)

A relation from A to B if B
is a generalization of A. This
is the same relation that is
used in object-oriented anal-
ysis and design

Conceptual relation type, name

Association (rela-
tion)

A relation between A and B
if there is an association of
some type between the ob-
jects

Conceptual relation type, name, source
role, destination role, source cardinal-
ity, destination cardinality, association
type

Part of (relations) This is a relation from a prod-
uct object to another product
object or to a package. It de-
fines the contents of a pack-
age or parts of a product ob-
ject. It is a special type of as-
sociation

Conceptual relation type, name

The increase in the size of the shared product space necessitates the use of clusters. It is
no longer feasible to only rely on shared product space managers such as the ones shown in
Figures10.3and 10.6to interact with the shared product space, in particular because they do not
provide much support for centers of interaction. E.g. they do not support organizing the space



222 CHAPTER 10. EVALUATING IGLOO FRAMEWORK

into groups of product objects, real-time sharing of views, annotating or customizing local views,
or any shared workspace functionality. These shared product space managers can still be used for
browsing the space, but additional tools for managing clusters and shared workspaces are needed.
Clusters and shared workspaces are used in IGLOO for providing this type of functionality. For
using clusters and shared workspaces we need to define local and workspace vocabularies. For
ALPHA we will define two local vocabulary and one workspace vocabulary in order to illustrate
the process.

We want to define abasic clustertype for allowing developer groups in ALPHA to share parts
of the product using a graphical editor similar to MultiCASE (see Chapter5 for MultiCASE). The
local vocabulary for this basic cluster consists of one cluster object type and one cluster relation
type, and is shown in Table10.3. The vocabulary provides direct access to all product object and
conceptual relation types in the shared product space (including all the attributes of each object and
relation). The vocabulary defines an additional set of shallow attributes. These shallow attributed
are used by the multi-user graphical editor to visualize the cluster objects and relations, and to
support annotating objects and relation in a cluster. Two shallow attributes X and Y are defined to
denote the position of a cluster object on the two-dimensional surface of a cluster. We also define
an attribute for each cluster object to denote a graphical image or icon for visualizing the object.
For cluster relations we define attributes for line style and thickness, and for arrow shape.

Table 10.3: A basic local vocabulary for creating simple clusters using a
multi-user graphical editor.

Object/relation
type

Deep attributes Shallow attributes

All product object
types from the or-
ganizational vocab-
ulary

All attributes defined for
the underlying product object
type

Cluster object type, X and Y attributes,
graphical icon, font type, font size, an-
notation

All relations from
the organizational
vocabulary

All attributes defined for the
underlying conceptual rela-
tion type

Cluster relation type, line type, line
thickness, arrow type, annotation

We define an additional local vocabulary for creating a more specialized type of cluster, i.e. a
UML cluster. This vocabulary will be used by a modified version of MultiCASE, which we call
MultiUML. MultiUML allows the developers to formalize parts of the shared product space in
form of UML class diagrams (Booch, Rumbaugh and Jacobson1999). Table10.4shows the UML
cluster vocabulary for ALPHA. UML-specific object and relation types are based on already exist-
ing product object and conceptual relation types from the organizational vocabulary, but additional
shallow attributes are defined. In particular, the cluster object type “Class” is based on product
object type “Java source code file” from the organizational vocabulary, and cluster object type
“Stereotype” is based on any product object type, while cluster object type “Package” is based on
the product object type “Package.” (UML cluster supports a very small subset of UML language,
and is used here solely as a demonstrator of how a typical conceptual modeling language can be
used in combination with a shared product space in an IGLOO network.)



10.3. STEP 2: ENHANCING THE COOPERATION SUPPORT 223

Table 10.4: A local vocabulary for making UML class diagrams in AL-
PHA.

Object/relation
type

Deep attributes Shallow attributes

Class (based on
product object type
“Java source code
file”)

All the attributes from the un-
derlying product object type

Cluster object type, data, methods, X
and Y attributes, graphical icon, font
type, font size, comment

Stereotype (based
on any of the ob-
jects in the shared
product space)

All the attributes from the un-
derlying product object type

Cluster object type, X and Y attributes,
graphical icon, font type, font size,
comment

Package (based on
product object type
“package”)

All the attributes from the un-
derlying product object type

Cluster object type, X and Y attributes,
graphical icon, font type, font size,
comment

Dependency
(based on concep-
tual relation type
“dependency”)

name Cluster relation type, line type, line
thickness, arrow type, comment

Import (based on
conceptual relation
type “import”)

name Cluster relation type, line type, line
thickness, arrow type, comment

Generalization
(based on concep-
tual relation type
“generalization”)

name Cluster relation type, line type, line
thickness, arrow type, comment

Association (based
on conceptual rela-
tion type “associa-
tion”)

name, source role, destina-
tion role, source cardinality,
destination cardinality, asso-
ciation type

Cluster relation type, line type, line
thickness, arrow type, comment

Part of (based on
conceptual relation
type “part of”)

name Cluster relation type, line type, line
thickness, arrow type, comment

The clusters that are created based on the above local vocabularies can be used by special-
ized “cluster editors,” or they can be used as elements in shared workspaces (see Figure8.1
on page176, and Chapter8 in general for details on workspaces and how clusters are used in
workspaces). We choose to create a basic workspace type for ALPHA. Shared workspaces are
useful for ALPHA because they provide integrated support for creating centers of interaction. A
shared workspace can contain both clusters and other informal objects. In addition, workspaces
support explicit communication and cooperation within a center of interaction.

We define a shared workspace vocabulary for abasic workspace. This vocabulary will be used
for creating shared workspaces similar to those in MultiCASE. A basic workspace will allow the
users to create product objects within the workspace. The idea is to allow developers to create



224 CHAPTER 10. EVALUATING IGLOO FRAMEWORK

any product object informally in their workspace without registering it as part of the product. For
instance, a natural language document can be created in a shared workspace, and moved into the
shared product space later. In addition, basic workspace will have a richer representation of its
inhabitants than what is provided by the shared product space managers developed in step 1. The
workspace vocabulary for basic workspace is shown in Table10.5.

Table 10.5: A workspace vocabulary for basic shared workspaces in AL-
PHA.

Object type Purpose Attributes
All product

object types
from the or-
ganizational
vocabulary

Allow the developers within a
shared workspace to create prod-
uct objects for local use, without
having to insert them in the shared
product space

Informal object type, X and Y at-
tributes, graphical icon, font type, font
size, annotation

Inhabitant A representation of a workspace
inhabitant

Inhabitant name, email address, image,
location X and Y, color

10.3.2 Refining the awareness policies

In step 1 we decided to allow Product Layer generate awareness events for all accesses to the
shared product space. As the size of this spaces grows, and as the objects and relations become
more detailed, the number of awareness events produced by Product Layer will grow. The original
configuration may now result in information overload, and we decide therefore to change the
configuration so that Product Layer generates events only if the users make modifications to the
shared product space.

The refinement of the organizational vocabulary in step 2 has resulted in a number of concep-
tual relation types. For each of these relation types we can define whether the relation type by
default will mediate awareness, i.e. whether it will be both conceptual and awareness relation. For
the new conceptual relation types that are defined in step 2, i.e. “Generalization,” “Association,”
and “Part of” we decide not to require them to be awareness relations by default. For each of these
three relation types, the users have to explicitly “switch on” the relation if they want it to mediate
awareness. This of course requires that the clients provide the right dialogue boxes to the users
for changing the behavior of each relation.

10.3.3 Developing specialized clients

This activity consists of two separate sub-activities. The first one is to refine the Product Layer
clients developed in step 1, so that they will support the new organizational vocabulary. The
second sub-activity is to develop new clients for Cluster Layer and Workspace Layer. At this step,
both MultiCASE and ICE will be integrated into the existing IGLOO network. MultiCASE is an
IGLOO client (a client of Workspace Layer) but ICE was originally developed as a stand-alone
application and has to be integrated into IGLOO.



10.3. STEP 2: ENHANCING THE COOPERATION SUPPORT 225

Modifying the existing Product Layer clients

This activity is optional, and depends on how the original Product Layer clients were implemented.
It is fully possible to implement these clients so that they can use a set of product object and
conceptual relation “templates” to configure themselves. For instance, the shared product space
manager shown in Figure10.3 can be implemented to initialize itself using a set of templates.
In this case, adding new templates or changing the existing ones will be enough to upgrade the
client. Otherwise the clients have to be recoded to include the refinements to the organizational
vocabulary.

Web-based Cluster Layer clients

We implement a Web-based interface for Cluster Layer. This interface consists of a set of CGI-
based IGLOO clients similar to those developed in step 1 (see Figure10.2on page213). Here, the
clients will communicate with CoClust instead of Gossip. The developed clients are:

• Generic cluster manager: Lists all the existing clusters. The user can view a list of all clus-
ters, and can invoke other Web-based clients for creating, deleting, modifying or viewing
each of the clusters. The user can filter the existing clusters based on different attributes,
and see who else is using Cluster Layer.

• Generic cluster creator: Allow the user to create a new cluster. The user can create a cluster
based on one of the defined cluster types.

• Generic cluster modifier: Allows the user to modify an arbitrary cluster. The client is used
to add or remove cluster objects from the cluster, or to modify cluster attributes.

• Generic cluster viewer: Allows the user to view the contents of an arbitrary cluster.

Note that these clients provide only access to a small subset of Cluster Layer services due to
the limitations in the interactivity of a Web-based interface. The Web-based interface gives easy
access to some necessary services, such as creating and modifying clusters, and can be useful for
some of the users who do not want to install new software. More interactivity is provided by the
Java-based clients described later.

We describe here only the generic cluster manager. Figure10.7 shows the interface of this
client. The lower part of the window is a list of existing clusters. The upper part of the window is
used for creating new clusters, and for communicating with Cluster Layer users. A developer can
create a new cluster based on the existing cluster types. In addition, instant text messages can be
sent to individual developers or all the currently connected developers. The client also allows the
developers to apply for new types of product object, conceptual relation, and cluster. This can be
useful for further refinements of the vocabularies.

The Web-based clients described above provide functionality that is similar to that of ICE. In
ICE, users are provided a Web page that gives access to the existing workspaces (see FigureA.2
on page2494) and additional Web pages for adding and modifying single objects. ICE’s interface
can be used for interacting with Cluster Layer. The work required for doing this is mainly related
to creating the right communication procedures for allowing ICE to communicate with Cluster

4Workspaces in ICE are much more limited than IGLOO workspaces, and are simply collections of objects. They
resemble IGLOO workspaces without clusters and inhabitants.



226 CHAPTER 10. EVALUATING IGLOO FRAMEWORK

Figure 10.7:A Web-based IGLOO client for managing clusters in ALPHA.

Layer. ICE is written in Perl programming language, and cannot use the provided client extension
of Cluster Layer (these extensions are currently written in Java). Therefore, the communication
between ICE and Cluster Layer has to be done through Cluster Layer’s network protocol. After
ICE is integrated into IGLOO, most of its reported limitations (see Chapter1) will be eliminated.
In particular, the workspaces in ICE will no longer be isolated from each other because they now
contain objects from a global shared product space.

The Java-based clients

Two groups of Java-based clients will be developed for ALPHA. A set of event monitors will be
used to allow the developers to monitor clusters or shared workspaces. A typical monitor will stay
in the background while the user is working with other things, and will generate sound signals or
similar effects when something is changed in a cluster or a workspace. This kind of monitors were
demonstrated in Chapter5 as part of MultiCASE (see Figure5.3on page111andChristensen and
Karlsen1999).

The second kind of client are shared workspace clients similar to MultiCASE. These clients
allow the developers to create and manage workspaces, to create clusters within their workspaces,
to meet other developers and to cooperate with them, to create informal objects, etc. MultiCASE is



10.3. STEP 2: ENHANCING THE COOPERATION SUPPORT 227

   MultiCASE - ALPHA (Babak) ?

Show object type:

Fi l ter:

All

name equal to *ICE* Filter

Show relation type:

Fi l ter:

Dependency

* equal to * Filter

Objects    Relations       Attributes      View         Sort                   Help

Filter Chat area

Send message to: All inhabitants

Send

Anders: I have not changed the file

ICE
Requirements

ver. 3.5

Java package
OSICE

Prototype ICE 1.5

Java package
RMIICE

Java package
ServletICE

User manual
ICE 1.5

View options

Object type: Package

Change icon Change font

Relation type: Dependency

Change line Change arrow

User manual
ICE 2.0

Requirements
ICE 2.0

Babak (active)

Anders (active)

Terje (active)

Figure 10.8:A shared workspace manager with functionality for creating clusters.

one such client. Figure10.8shows a modified version of MultiCASE. This is a client that is based
on the basic cluster and workspace vocabularies defined in Section10.3.1. The client is mainly a
cluster editor, but support also simple shared workspace functionality. The large white area is the
surface of a two-dimensional basic cluster. The objects and relations in this white area are cluster
objects and cluster relations. The cluster shows a subset of the underlying shared product space.
The location of the objects, and the graphical representation of the objects and relations are all
shallow properties of the cluster and are visible only to the users of this cluster. The gray area
on the cluster area is the informal area of the shared workspace. All the objects in this area are
informal and are not part of the underlying shared product space. The informal area can be moved
around and hidden.

The client provides simple participant awareness by showing a list of current inhabitants (the
gray area with a list of names to the upper-left corner of the cluster area) and multiple telepoint-
ers showing where each inhabitant points at. The list of inhabitants shows whether each of the
inhabitants has been active in the last period of time. The distinctive color of each inhabitant’s
telepointer allows the users to distinguish each inhabitant’s telepointer. In addition, a chat tool
supports text-based communication among the inhabitants.

The lower-left part of the window provides a set of services for modifying the cluster’s visual
appearance. The user can filter the objects and relations that are shown, change the graphical icon



228 CHAPTER 10. EVALUATING IGLOO FRAMEWORK

   MultiUML - ALPHA (Babak) ?

Show object type:

Fi l ter:

All

name equal to *Object* Filter

Show relation type:

Fi l ter:

Dependency

* equal to * Filter

Objects      Relations        Attributes      View         Sort          UML         Help

Filter Chat area

Send message to: All inhabitants

Send

Babak :ObjectStore is too expensive

View options

Object type: Package

Change icon Change font

Relation type: Dependency

Change line Change arrow

Babak's notes

Babak (active)

Anders (active)

Terje (active)

Note

Package

Class

«type»
Type

OSHashtable

Is ObjectStore good enough?

ObjectStoreInterface

ObjectStore

Figure 10.9:A simple UML editor that makes use of the services of Cluster Layer.

used for visualizing each cluster object type, or change the appearance of a specific cluster relation
type.

Mediated awareness events, which were shown in MultiCASE in form of simple text messages
in an awareness window, are integrated into the graphical representation of cluster objects in the
client in Figure10.8. Once mediated awareness events related to a specific cluster object arrive at
the cluster, the specific cluster object starts blinking. In this way, the inhabitants will know where
within the cluster the particular change to the product can be connected to. In this way, while
within a shared workspace the inhabitants are also in the context of the larger product, and are
aware of the changes that other developers do to it.

A second shared workspace client is shown in Figure10.9. This client is used for creating
UML class diagrams within a shared workspace. The functionality of the client is identical to
the previous one, except that the cluster that is created by the inhabitants is a UML class diagram
instead of a basic cluster.



10.4. EVALUATION 229

10.4 Evaluation

In the preceding sections we have seen an example of deploying IGLOO framework in a dis-
tributed product development project. The deployment was incremental. The project started with
an IGLOO network based on Product Layer only, and upgraded the network to include both Clus-
ter Layer and Workspace Layer. An overview of the resulting IGLOO network is shown in Fig-
ure10.10. In this figure, the gray parts are the clients. Some of the clients had to be developed
specifically for ALPHA, while others were generic enough to be used by any similar project. The
white part in Figure10.10shows the generic implementations of IGLOO framework. A large
part of the functionality of the clients, i.e. all the functionality that is related to product-based
shared interaction, is provided by these generic implementations. These generic implementations
have provided a shared product space that is adaptable to the changing needs of ALPHA, and
that can be accessed through virtually any type of interface. They have also provided ALPHA
with shared customizable views into the shared product space, and with functionality for building
shared workspaces.

In this section we will first see how the requirements of Chapter2 (see Table2.5on page43)
are met by ALPHA’s IGLOO network. We will then compare IGLOO framework to the tools and
environments that were included in our state-of-the-art survey in Chapter3. Finally we will give
some estimates of the costs related to the deployment of IGLOO framework in a project.

10.4.1 Meeting the requirements

The example has revealed a number of the properties of IGLOO framework. What has been cen-
tral is the creation of a shared product space (REQ.1 of Chapter2, see Table10.6). Cooperation in
ALPHA has been based on this space since the start of the deployment process. The same shared
product space and its contents were used throughout ALPHA, and the contents were gradually
refined and detailed as more information about the product became available (REQ.5). Also, we
have seen that new product object and conceptual relation types have been added to the vocabu-
laries of the IGLOO network in different points of time during the process (REQ.3, REQ.4). The
shared product space has been available through a Web-based and a Java-based interface. Due
to IGLOO’s well-defined network protocols, any other type of client could have been added. In
particular, many conventional CASE and SE tools have predefined interfaces for interacting with
external tools. These interfaces can be explored further in order to integrated these tools into the
IGLOO network (REQ.15). In addition, the shared product space has provided a flexible interface
where all the developers can add objects and relations and modify the space using the developed
clients (REQ.2). Continuous awareness of modifications to the product has been delivered to
the developers through various event monitors (REQ.7). The fact that these event monitors can
continuously monitor user-defined areas of the shared product space also allows for opportunis-
tic communication. This is because the developers are all the time exposed to communication
opportunities by being available and being aware of these opportunities (REQ.17).

Step 2 of the deployment process introduced Cluster Layer and Workspace Layer into the
existing IGLOO network. These layers and the associated clients allow the developers to create
centers of interaction with the same ease that graphical diagrams are created and modified in con-
ventional graphical CASE editors (REQ.10, REQ.11). These centers of interaction allow several
developers to meet and perform different tasks. The developers can change the contents of the
centers in an ad hoc manner by adding or removing product objects and relations (REQ.11). Inter-



230 CHAPTER 10. EVALUATING IGLOO FRAMEWORK

ALPHA shared product space (based on Gossip)

Set of basic Web-
based clients

Gossip network protocol

Set of Jave-based
browsers and

event monitors

ICE and other
Web-based

clients

ALPHA clusters (based on CoClust)

CoClust network protocol

ALPHA workspaces (based
on SWAL)

SWAL network protocol

MultiCASE and
other Java-based
workspaces and

monitors

Web-based
clients

Figure 10.10:The resulting IGLOO network as deployed for ALPHA.

action within a center of interaction is supported to some degree by using chat tools, telepointers,
and dynamic inhabitant information (REQ.13). More advanced cooperation tools within a shared
workspace (such as video and audio communication) can be provided by more enhanced clients.

Customization of the contents through clusters and workspaces (REQ.14) and tailored func-
tionality by choosing which clients to use (REQ.16) are central properties of the resulting IGLOO
network. Another important property of IGLOO framework is that the different clients (regardless
of which service layer they communicate with) can be used by different developers simultane-
ously for supporting their cooperation. A summary of the requirements that are met by ALPHA’s
IGLOO network is shown in Table10.6.



10.4. EVALUATION 231

Table 10.6: Meeting ALPHA’s requirements by an IGLOO network.

Req.
ID

Requirement descrip-
tion

How the requirement is met

REQ.1 Shared product space High support. Central to IGLOO. All interaction with the
product happens within the shared product space and is vis-
ible to all the developers.

REQ.2 Flexible access to the
product

High support. The product can be changed easily by all
the developers. The structure of the space can be changed
dynamically. New object and relation types can be added
dynamically.

REQ.3 Unrestricted product
object types

High support. There is no restrictions on what objects
are stored. The only restriction is imposed by the clients.
Generic clients provide full freedom for having any prod-
uct object types.

REQ.4 Unrestricted relation
types

High support. The same as above.

REQ.5 Incremental product
refinement

High support. New object and relation types can be added.
New details to the existing objects and relations can be
added. Objects and relations can be annotated.

REQ.6 Support for boundary
objects

High support. An object can be viewed in many
ways. Each community of practice can add their own at-
tributes. Clusters provide additional local customization.
Workspaces provide additional level of local customization
for informal cooperation. At the same time the underlying
product and its structure is shared among all the communi-
ties of practice.

REQ.7 Active delivery of in-
formation

High support. Basic awareness mechanisms are integrated
into the resulting IGLOO network and can be utilized by
all the clients. Active delivery in form of notifications is
the basis for the IGLOO network.

REQ.8 User-defined infor-
mation delivery

Medium support. The mechanisms are provided in form
of awareness subscription services of Product Layer. The
specific client has to utilize these services in order to give
the user full control over his information needs.

REQ.9 Representation of de-
velopers

Medium support. The basic mechanism for connecting all
the events to individual users. Again the specific client is
responsible to use this basic information in order to provide
a richer representation of the users.

REQ.10Centers of interaction High support. Clusters and shared workspaces are shared
views. The basic mechanisms of sharing are provided by
the framework. The clients do not need to put too much
effort on implementing shared views.

Continued on next page



232 CHAPTER 10. EVALUATING IGLOO FRAMEWORK

Continued from previous page
Req.
ID

Requirement descrip-
tion

How the requirement is met

REQ.11Emergent creation of
centers of interaction

Medium support. This is highly determined by the clients.
The services of Cluster Layer are flexible enough but have
to be utilized by a client that is also flexible enough.

REQ.12Emergent boundaries
for centers of interac-
tion

High support. The awareness mediation property of the
shared product space eliminates rigid boundaries and al-
lows the boundaries of centers of interaction change dy-
namically.

REQ.13Dynamic and rich in-
teraction in centers of
interaction

Medium support. This is highly dependent on the kind of
client. IGLOO does not provide services for rich commu-
nication (such as audio or video) or other kind of specific
interaction techniques such as direct manipulation. The
clients have to implement these mechanisms.

REQ.14Local customization
of contents

High support. Customization of contents can happen in
many levels and freely.

REQ.15Multiple user inter-
faces

High support. The well-defined network protocols allow
any kind of interface to be connected to an IGLOO network
as long as they adhere to the service definitions.

REQ.16Tailored functionality High support. The services are defined in a modular way,
and not all the services need to be used by all the clients.
In addition, the three layers of the framework provide an-
other tailoring possibility by using different combination
of layers.

REQ.17Support for oppor-
tunistic communica-
tion

High support. Continuous awareness of changes to the
shared product space, and the fact that the changes are con-
nected to individual users. In addition, each layer has its
own community services that allows for cheap and sponta-
neous communication among the users.

10.4.2 A comparison to other systems

Compared to the other systems reviewed in Chapter3, IGLOO framework offers a number of
improvements:

• The services of both product development tools and shared workspace applications are in-
tegrated by IGLOO framework within the same IGLOO network. The developers have
access to both a shared product space (similar to central repositories in ClearCase, TDE
and MetaEdit+) and centers of interaction (similar to shared workspaces in BSCW, CBE,
TeamWave and Orbit).

• The shared product space provides higher support for shared interaction than what is pro-
vided by the repositories in ClearCase, TDE and MetaEdit+. All changes to the contents
of the space are visible to others through active delivery of awareness information. In ad-
dition, awareness information is integrated with participant awareness in that all product



10.4. EVALUATION 233

awareness is connected to individual developers. This opens for opportunistic cooperation
among geographically distributed developers.

• The shared workspaces in an IGLOO network are an integral part of the underlying shared
product space. In this way, they are connected to each other through the relations that
exist among the different parts of the product. This is a strong improvement of all the
reviewed shared workspace applications, where the single shared workspaces are almost
totally disconnected from each other.

• Interaction with an IGLOO network can happen through different interfaces. All the clients,
no matter which interface they use to interact with the IGLOO network, can communicate
with each other. This is an improvement to the other tools we have reviewed in that an
IGLOO network can be integrated into the desktop of a developer in various ways, ideally
through the tools already used by the developer.

• The vocabularies used in an IGLOO network are defined according to the real needs of the
supported project. In addition, the same organizational vocabulary can be the basis for a
number of more specialized local vocabularies. Customization of the product to support
different communities of practice is a distinct feature of IGLOO framework compared to
the other tools we have seen.

On the other hand, ALPHA’s IGLOO network does not provide a number of more specialized
services provided by the other tools. For instant, the IGLOO network does not provide any of the
advanced repository services provide by ClearCase and MetaEdit+, e.g. version control or access
control. In addition, compared to advanced shared workspace applications such as TeamWave,
ALPHA’s IGLOO network has a more limited support for cooperation inside a shared workspace.
Although more support for cooperation can be added inside an IGLOO shared workspace, such as
more advanced awareness widgets similar to those used by TeamWave, this support will require
more advanced IGLOO clients.

10.4.3 The cost of deploying IGLOO

The cost of having the level of flexibility provided by IGLOO framework is that one has to imple-
ment a deployment process for each project that will use IGLOO framework. There are different
costs related to the different activities in the deployment process, i.e. defining vocabularies, defin-
ing awareness policies, and implementing specialized clients. In this section we will give some
estimates of what these costs will be. The estimates are based on our own experience developing
the different parts of IGLOO framework.

Deploying IGLOO for the first time will most probably require a considerable amount of work
related to developing clients. The Web-based clients are least costly. Our experience shows that
one undergraduate student would spend 4 months full time for developing, testing, and debugging
all the Web-based clients discussed in this chapter5. These clients, once implemented, can be
made part of the core IGLOO framework. This is possible because most of these clients are
generic clients and can handle any organizational or local vocabularies.

5This estimate is based on our development of ICE. The basic functionality of ICE was implemented by two under-
graduate students, each spending 4 months of work. However, the task was not well-defined at that time, so a lot of time
was spent in defining the functionality of ICE. In addition, a large part of the functionality of ICE is now implemented by
the generic implementations of IGLOO framework.



234 CHAPTER 10. EVALUATING IGLOO FRAMEWORK

The Java-based clients are normally more costly, but can be developed in form of generic
clients and be reused in several projects. Our experience shows that the set of 5 Java-based
clients discussed in this chapter (i.e. the generic product space manager shown in Figure10.6,
the modified MultiCASE shown in Figure10.8, MultiUML shown in Figure10.9, a generic prod-
uct monitor, and a generic cluster monitor) can be developed within six work-months by a Java
programmer6. Again all these clients are generic. In fact, MultiUML’s functionality is largely
supported by the enhanced version of MultiCASE because the shapes of the cluster objects in
MultiCASE can be UML-specific shapes.

However, it is obvious that more advanced tools will be needed for any serious modeling work
to be supported by IGLOO framework. At this end one should focus on integrating existing clients
as much as possible. A set of possible tools to integrate would be Rational Rose UML-based
CASE tools, Visual Cafe Java programming environment, Emacs, and Microsoft Word. All these
tools have functionality that allows them to invoke external programs in an easy and user-friendly
way7.

Subsequent deployment processes can make use of generic clients developed during the first
deployment, and can add their own clients. In this way, the mandatory cost of developing clients
will be much lower than first time deployment. What will be a more or less constant cost is the cost
of developing and refining the vocabularies. Here, standard formal vocabularies (such as a UML
vocabulary) can be reused because they do not change much from one project to another. However,
informal vocabularies have to be defined and refined for each project. The cost of defining informal
vocabularies depends on how complex they are. The cost of refining vocabularies involves also
the possible cost of refining the clients. If the clients are generic enough they will not need
modifications even when the vocabularies are changed8

There are two relate factors that are important to consider when discussing the cost of de-
ploying IGLOO framework. First, the issue of who will do which part of the deployment is a
determinant factor for the distribution of the costs. The generic clients we have discussed in this
chapter can in fact be developed as a part of the core IGLOO framework. Together with a set of
tools and methods for managing the evolution of the vocabularies, these clients can reduce the
costs for the end-users of an IGLOO network. This is because a larger part of the IGLOO net-
work can be delivered in form of a software product, possibly implemented by specialist “IGLOO
developers.” Second, the desired level of flexibility can determine the costs. In general, more flex-
ibility in defining the vocabularies will increase the cost of the deployment process both because
the clients have to be made equally flexible, and because additional steps have to be taken in order
to control the evolution of the vocabularies.

In short, first time deployment of IGLOO will have a rather large cost related to the develop-
ment of clients. Subsequent deployment processes will have a much reduced cost related to client
development, but may have a constant cost related to defining and refining informal vocabularies.

6This estimate is based on our experience implementing MultiCASE. MultiCASE’s user interface was developed by
one student (new to Java programming) within three months. This was done at the time when the generic implementations
of IGLOO were not defined, so a lot of time was actually spent on negotiating an interface towards the lower layers in
MultiCASE.

7Gossip currently supports a “plug-in” interface that allows the addition of new tools and interfaces.Garli and Lund
(2000) describe how an ICQ plug-in is developed.

8One possible way of making clients generic enough for dynamic vocabularies is to base them on object and relation
templates similar to Information Lens (Malone et al.1989).



10.5. SUMMARY 235

10.5 Summary

In this chapter we have described a detailed example of deploying IGLOO framework in ALPHA.
We have seen that the resulting IGLOO network supports most of the requirements we posed to
product development environments that will be used for supporting cooperation. The resulting
IGLOO network also offers a number of additional features compared to the other tools we have
reviewed in Chapter3.

Whether the resulting IGLOO network will support ALPHA in a satisfactory way is an open
question and will need empirical evidence. We believe that the IGLOO network described in this
chapter will indeed solve some of the major problems that ALPHA was originally facing. The
IGLOO network provides a flexible interface to a shared product space through a number of in-
terfaces. Adding and modifying the product will be much easier than what was possible using
traditional Web servers with central control. This flexibility will hopefully encourage the devel-
opers to share more product objects, as they did using ICE. In addition, the IGLOO network with
associated event monitors will place the developers in a shared context where they will continu-
ously be exposed to awareness information about each other’s interactions with the product. This
can enhance the coordinative effect of the product and result in improved learning processes on
the long run.

The real value of an IGLOO network will be revealed using a suitable set of clients. Clients
that are integrated into the daily activities of the developers will increase the possibility of a use-
ful deployment of IGLOO framework. Web-based clients, light-weight event monitors, desktop
tools integrated into IGLOO, and advanced shared workspaces are crucial for successful usage of
IGLOO.



236 CHAPTER 10. EVALUATING IGLOO FRAMEWORK



Chapter 11

Conclusions and Future Research
Directions

11.1 Introduction

This chapter concludes the thesis and suggests directions for future research. We start by reviewing
the research questions for the thesis. We will describe how each question is answered in the course
of the reported research. We then review the major contributions of the thesis. A number of
proposals for future research are given at the end.

11.2 Answering the Research Questions

The main research question as stated in Chapter1:

How can we support, through computer-based tools and environments, cooperation
among developers in geographically distributed product development projects?

has been answered through an analysis of the problem, a conceptualization of the needs, sev-
eral cycles of prototyping and evaluation, and a proposal for a computerized cooperation support
framework. We have based our analysis of the problem on an empirical investigation of ALPHA (a
real-world distributed product development project from which we had first hand experience) and
several other empirical studies of product development projects published in the literature. More-
over, several cycles of prototyping and evaluation have been performed during this research. Two
large prototyping efforts have resulted in a Web-based cooperation support system called ICE, and
a Java-based cooperative product development tool called MultiCASE. Each of these prototypes
have been used and evaluated. ICE has been used by the members of ALPHA, while MultiCASE
has been used for a short time internally in our research group. In addition a number of smaller
prototypes, both Web-based and Java-based, have been developed. Each cycle of prototyping and



238 CHAPTER 11. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

evaluation has been analyzed and used for further prototyping and evaluation. IGLOO frame-
work for product-based shared interaction, as presented in this thesis, is the final result of this
bootstrapping process.

The related research questions as stated in Chapter1 have been answered in the following way:

RQ1: What is the nature of cooperation in product development groups, i.e. what is
the meaning of “cooperative product development”?

This thesis has provided an understanding of the meaning of “cooperative product develop-
ment” through an analysis of empirical investigations of product development teams published in
the literature. Moreover, an investigation of existing computer support for product development
has been done in order to gain an understanding of what aspects of cooperative product develop-
ment are essential, and what aspects can be supported by available technological means. These
analyses have revealed the importance of the product in supporting knowledge creation, coopera-
tive learning, and coordination.

RQ2: What is the effect of geographical distribution on cooperative product develop-
ment?

An analysis of a real-world distributed product development project, i.e. ALPHA, is presented.
This analysis is used to point out the specific problems that arise as a result of geographical distri-
bution. The analysis has shown that the product plays a central role as a resource for cooperation in
distributed projects. At the same time, it is shown that geographical distribution makes it difficult
to utilize the product as a resource for cooperation. The majority of the problems that ALPHA was
facing were related to the fact that the members in ALPHA were not able to use the product for
externalizing their knowledge, for resolving misunderstandings, and for coordination their daily
activities.

RQ3: What kind of computer-based tools and environments are needed for supporting
cooperative product development?

Based on the results from the empirical investigations related toRQ1 andRQ2, and from our
own prototyping activities, a set of requirements for computer-based support tools is proposed. A
survey of relevant computer-based systems is presented. Based on the requirements and the state-
of-the-art survey, a framework and associated tools are proposed for supporting shared interaction
in distributed product development projects.

11.3 Major Contributions

The contributions of this thesis are the following:

• An analysis of cooperative product development in geographically distributed projects. The
analysis has revealed the importance of the product being developed as a resource for coop-
eration. The results of this analysis confirm the importance of shared artifacts as cooperation
support mechanisms. Although prior research has focused on the small scale use of shared
artifacts (often within small shared workspaces) our results show the usefulness of large and
composite artifacts (i.e. software products) for supporting cooperation in large groups.



11.4. DIRECTIONS FOR FUTURE RESEARCH 239

• A model of product-based shared interaction. This model is a generalization of the em-
pirical evidence. The model extends the notion of shared artifact to cover large composite
artifacts. The model consists of a shared product space. This space is used for supporting
shared interaction among developers working with a large product. The interaction with the
shared product space happens through a number of centers of interaction, where groups of
developers can meet and perform specific tasks.

• A framework for product-based shared interaction. The model of product-based shared
interaction is further formalized into a framework for supporting shared interaction. A
detailed description of the framework in form of three service layers is provided.

• Generic implementations of the framework. The defined framework is partly implemented
in form of three interconnected network servers. The implementations together realize a
network-based platform for product-based shared interaction. This platform can be used for
creating a variety of product development environments with cooperation support function-
ality.

• A deployment process for the framework. A companion deployment process is outlined for
the resulting framework. The process defines the different activities that are necessary for
tailoring the proposed framework to a specific project.

• Example clients. A number of applications have been developed to demonstrate the func-
tionality of the resulting framework. These applications are implemented in form of special
client applications for the cooperation framework and its generic implementations.

11.4 Directions for Future Research

We suggest four interconnected directions for future research activities. First, a complete set of
client applications has to be implemented to support the creation of an IGLOO network. Second,
the generic implementations have to be improved. Third, resulting IGLOO networks have to be
tested empirically in real-world or student projects. A fourth direction is related to the integration
of the proposed framework with existing CASE tools.

11.4.1 Implementing a suite of IGLOO clients

IGLOO framework is designed and implemented in form of a set of services. For utilizing the
functionality of IGLOO framework a number of IGLOO clients are needed. The clients that are
developed during this research are not completely integrated with each other. The IGLOO network
described in Chapter10 shows a number of clients that should be implemented as part of future
research. Suggestions for activities in this direction are:

• The implementation should be focused on developing generic clients. It is important that
the developed clients can demonstrate the generality of the underlying IGLOO framework.
Examples here are generic shared product space managers, cluster managers, and workspace
managers.



240 CHAPTER 11. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

• Clients supporting multiple interface (e.g. Java, WWW) should be implemented. This is
important in order to test the interoperability of IGLOO framework with respect to different
computing environments. Having multiple interface clients also facilitates the integration
of IGLOO framework into the desktop of the developers using it.

• Clients should be developed for testing different mixtures of formal and informal develop-
ment methods. In this way, IGLOO framework can be used for involving domain experts
with limited knowledge of formal product development methods.

• Specialized clients for managing the structure of the product should be developed. Main-
taining the structure of a large product can become a tedious task. Specialized clients can
help automate parts of this process. Examples here are clients for visualizing the product
in different forms, for searching and replacing objects, relations and attributes in the shared
product space, etc.

11.4.2 Improving the generic implementations

The generic implementations of IGLOO framework, i.e. the layer servers that implement each ser-
vice layer, can be improved in a number of ways. Suggestions for improvements or enhancements
are:

• Support for repository-like services can be added to all the three layer servers, in particular
to Product Layer and Cluster Layer. One such enhancement can be the addition of version
control mechanisms together with corresponding services. Another enhancement can be to
add access control mechanisms. Access control mechanisms can be valuable if they can be
applied at the same granularity level as the existing product objects and conceptual relations.
For instance, access restrictions can be put on some attributes of a product object and not
the whole object.

• Support for name spaces and hierarchical structures can be added to Product Layer in order
to control the visibility of the product. Combining name spaces with the existing awareness
support mechanisms can result in enhanced awareness support and the production of more
meaningful awareness information.

• Client extensions for each layer server have to be made more user-friendly, and client exten-
sions for multiple programming languages have to be developed. Client extensions should
be promoted as the main mechanism of interaction with an IGLOO network.

• Support for access logs can be implemented through some form for event logging. This
can be useful for registering accesses to the shared product space or the clusters and shared
workspaces. Event logging functionality can either be implemented in form of specialized
clients, or be integrated into the layer servers.

11.4.3 Empirical testing of example IGLOO networks

IGLOO framework as presented in this thesis is the result of empirical investigations of one real-
world project (i.e. ALPHA), investigation of other theoretical and empirical studies of product



11.4. DIRECTIONS FOR FUTURE RESEARCH 241

development groups, analysis of existing product development tools and environments, and eval-
uation of a number of prototypes that were developed and used during this research. However,
an empirical evaluation of the whole framework has not been performed due to the limitations in
time.

An immediate future research activity should therefore be to evaluate IGLOO framework em-
pirically in a number of student projects. In our institute there is already an established culture for
organizing student projects, and a number of subjects that are currently run are based on project
work. These subjects provide an ideal setting for testing IGLOO. A minimal IGLOO network
should be adapted to the settings of one of these subjects, and several empirical studies should
be performed. The goal of these studies should be to clarify how IGLOO framework will be
integrated into the cooperative activities of the students, and how it will improve cooperation in
these student projects. By giving credit to the students for their usage one can encourage valuable
feedback from such studies.

A more ambitious goal in this direction would of course be to test the framework in a project
similar to ALPHA, e.g. a geographically distributed product development project involving par-
ticipants with diverse backgrounds and a high level of local autonomy.

11.4.4 Integration with existing CASE tools and methods

IGLOO framework has been developed with CASE integration in mind. The focus on the product
as a resource for cooperation and the existence of a shared product space is already in line with
how the majority of CASE tools are designed. From this perspective, IGLOO framework and its
generic implementations are much more suited for being integrated in CASE environment than
the other cooperation technologies we have investigated. Further activities in this direction can be
envisioned in form of two sub-activities.

First, integration into specific CASE tools should be investigated in more details. The starting
point for this is the already existing network protocols defined by all the three service layers
of IGLOO framework. More work here is needed to take into account existing standards such
as XML (Standard Markup Language) and specific CASE standards such as CDIF (CASE data
interchange format). Second, integration with existing CASE methods should be investigated.
The existing deployment process should be further developed in order to support conventional
methods such as structured analysis and object-oriented analysis and design.



242 CHAPTER 11. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS



Appendix A

ICE: An Object–oriented Toolkit for
Tailoring Collaborative Web
Applications1

A.1 Introduction

It is widely recognized that user involvement is an important aspect of IS development (Keil and
Carmel1995, Greenbaum and Kyng1991, Kendall and Kendall1988). It is also a well–known fact
that there are many different user groups in an IS organization, which makes the task of involving
users in IS development intricate. The problem is partly due to the fact that the various involved
user groups have conflicting mental models, expectations, and experiences (Wastell1993). The
process of IS development is to a large extent that of resolving these conflicts and reaching to an
agreement about what the IS will be. The larger the number and the variety of the users affected
by the IS, the more difficult it is to reach to this agreement.

User involvement can be realized in different ways in an IS organization. In its simplest form
a few user groups, such as the management and the development team, will take most of the de-
cisions related to IS development. This is however not realistic in many knowledge–intensive
organizations, where the expertise is distributed among all the workers (Drucker1988). Another
approach is to consult the different user groups or their representatives, and to take their points of
view into consideration when making IS–related decisions. This consultation is normally realized
by interviews and surveys of the users’ desires (Kendall and Kendall1988). A more active user
involvement is when all affected user groups, or their representatives, participate in the IS devel-
opment. Prototypes are frequently used in the latter case to provide early feedback to the design
of the IS. Prototypes are often in form of user interface mock–ups. They are used because they
are easy to understand for most of the user groups, and because they uncover requirements that

1The material in this chapter was presented at IFIP WG 8.1 Working Conference on Information Systems in the WWW
Environment, Beijing, China, July 1998. The conference proceedings are published in (Rolland, Chen and Fang1998).



244 APPENDIX A. A DESCRIPTION OF ICE

may not surface outside their related work context (Ehn and Kyng1991). A step further is radical
tailorability, where the users are in charge of building their own prototypes using simple building
blocks (Malone et al.1995).

We see a potential in using the Web as an environment for promoting user involvement. The
Web as a multi–user interface to a large amount of information has become popular in the last
years. This popularity is due to the underlying prerequisites of simplicity and accessibility that
have been with us since the first days of the Web (Berners-Lee et al.1994). Lately, the Web has
also been used to develop more interactive applications with information processing capabilities.
In this paper we show how the Web can also be used for encouraging user involvement. This
is because of two reasons. First, the Web provides a user interface that is comprehendible for
most of the user groups involved in a typical IS development process. Second, the underlying
communication infrastructure is so well–established that collaboration among the various user
groups in the development process becomes feasible.

In this paper we describe a system for supporting collaborative IS development using tai-
lorability. The system is called ICE (Internet Collaboration Environment) and is based on Web
technology. ICE consists of a set of building blocks that can be manipulated directly by the
users with little or no programming knowledge. These building blocks are used for tailoring Web
applications with different functionalities. ICE is in this way intended as a simple application
development environment. The applications that are tailored using ICE are distributed Web–based
groupware applications (Ellis et al.1991) with focus on information sharing.

In addition to being used for building Web applications, ICE also supports the development
process by providing support for collaboration among different user groups and capturing the
design rationale. A group of users can use ICE to tailor their initial prototypes collaboratively.
These prototypes can then be used as such, as input to the development process, or they can be
refined for further use. Usability of prototypes built using ICE is dependent on the background
knowledge of the users involved in the development process and the complexity of the intended
application.

The rest of this paper is organized as follows. In sectionA.2 we will introduce the main
ICE building blocks used for tailoring Web applications. In sectionA.3 we discuss how these
building blocks can be used for both building collaborative Web applications and supporting the
development process. An example is provided in sectionA.3.3. SectionA.4 gives an overview of
the ICE architecture. In sectionA.5 we present some related research. Our conclusions and future
work are presented in sectionA.6.

A.2 ICE building blocks

The building blocks are the main elements in ICE. All ICE applications are built as a composi-
tion of these elements. During the design of the building blocks we have taken into consideration
two important criteria. First, the building blocks should be user–friendly in such a way that users
without much programming knowledge will be able to use them for tailoring their own applica-
tions. Second, the building blocks should have enough functionality so that their composition will
result in the desired applications. The first criteria is met by the fact that the building blocks are
Web–enabled and provide an easy user interface to the users. The second criteria is met by taking
into consideration other experiences in the field of radical tailorability (Malone et al.1995) and
groupware modeling (Ellis and Wainer1994b). The building blocks areInformation Objects, Col-



A.2. ICE BUILDING BLOCKS 245

laboration Objects, andUser Interface Objects. Information objects are used to build data models
for the applications. Collaboration objects provide basic support for collaboration and coordina-
tion. User interface objects provide user interaction mechanisms to other objects. Information
and collaboration objects are accessed through the user interface objects, which are mainly imple-
mented for Web–based access. In this section we will take a closer look at these building blocks.
For more details on the building blocks see (Farshchian and Divitini1997).

A.2.1 Information objects

It is highly recognized that information understandability is important for collaborative work set-
tings where the members of the group are distributed in space or time (Schmidt and Bannon1992).
Understanding information is not only dependent on the information itself, but also on the context
within which that information was created, such as the problem solving strategies of the creator,
the decisions made while creating the information, and the identity of the creator. ICE attempts to
support information understandability for the users of a distributed application. Our approach to
increase understandability is based on providing support for whatBannon and Bødker(1997) call
closureandmalleabilityof information spaces. Closure refers to the way information is packaged
for an audience. A closed piece of information provides, and even enforces, an interpretation to its
user. Malleability, on the other hand, is concerned with changes, different understandings, argu-
mentation, and knowledge creation. The Web with its support for packaging of information into
“files” does not support the malleability of the information. In addition, even though the informa-
tion on the Web is packaged to some degree, this packaging is often not suited for propagating the
intended meaning of the information (Dix 1997).

The main building block for information sharing and supporting understandability in ICE is
the Information Object. An information object is used to store information in an ICE application,
and consists of anInformation Content File(ICF) and its attachedmeta–data. ICF is the actual
information content. It is uploaded by the user as a file and is stored in ICE in its native file format.
The meta–data is added to the ICF by the user to provide ICE with extra information about the
ICF. This extra information includes bibliographical data, keywords, different summaries of the
content, access rights, and type–specific data. Each information object can also be subject to
cooperation. For supporting cooperation connected to an object two mailing lists are attached to
the object. These mailing lists are explained in detail in sectionA.2.2.

Information objects can be presented to an audience in different ways. The objects use their
meta–data to provide several possibleviewsof themselves, each view supporting some specific
understanding for an audience. This property of “packaging” information for different audience
corresponds to the closure property noticed byBannon and Bødker(ibid.).

Information objects are also open for changes in the sense that once they are created and
inserted into an ICE application, they can be changed by a group of users during a collaborative
process. An information object can be accessed by authorized users who want to consume, edit,
comment, or discuss the object. The contents of an information object can be accessed (and
consumed) through its user interface object (see sectionA.2.3 for a description of user interface
objects). Editing of the content is done by the user’s desktop applications, such as a diagram editor
or a word processor. Commenting is done by creating new fields in the meta–data schema for the
object type. Discussions are realized by the mailing lists connected to each object. FigureA.1
shows an information object in use.



246 APPENDIX A. A DESCRIPTION OF ICE

Collaboration
Information object

View A

View B

View C

Figure A.1: Information objects in use. Each information object provides a user interface to a
group of users (to the left). This interface supports collaboration among the group members with
the aim of changing the information object. Collaboration here is supported using email lists. The
closed part of the object (to the right) provides different views of the updated information content
in order to support different understandings.

The basic information object can be specialized in an object–oriented fashion. This special-
ization will result in a set of information object types that will constitute the data model of the
applications built using ICE.

A.2.2 Collaboration objects

For complicated work settings, involving several people and a large amount of information, there
is a need for active collaboration support. We borrow a definition of active support fromBogia
et al.(1996): “active [support] means that the environment can have some knowledge of ongoing
collaboration and can use that knowledge to assist users in various ways.”Though the Web can
handle information sharing in an acceptable way, it does not actively support collaboration (Dix
1997). For this purpose, we provideCollaboration Objectsas building blocks for incorporating
collaboration mechanisms in applications built using ICE. These objects areusers, groups, object
awareness lists, object discussion lists, andshared workspaces.

The basic collaboration objects are user and group objects. Each user of the system is regis-
tered with information about herself including biographical information, user preferences, group
membership, and other temporal information such as where the user is at each time and when she
was logged in last time. The group object is used in combination with the user object to connect
several users in the context of a task or a practice.



A.2. ICE BUILDING BLOCKS 247

Communication among the users is supported by object discussion lists. Each information
object has a discussion list attached to it. Messages to this discussion list are sent by the users of
the object through their email client, and are received by other users subscribing to the list in form
of normal email messages.

Awareness is an important factor in increasing the performance of group members (Gutwin and
Greenberg1998). ICE supports awareness of changes done to information objects. Awareness in
ICE is realized by attaching an awareness email list to each information object. The users of
an information object can subscribe to its awareness list and receive various messages connected
to that object. Messages to the awareness list are sent by the object itself. These messages are
normally notifications of the changes done to the object, with information about the type of the
changes, the user responsible for the changes, the time the changes were done, etc.

Another important step in providing active support for cooperation is to provide the users with
a place to work. Shared workspaces are used by various groupware applications in order to pro-
vide a place for cooperation (Spellman, Moiser, Deus and Carlson1997). In a shared workspace
the users can coordinate their activities, be aware of what others are doing, and access relevant
information easily. ICE shared workspace objects are used as interfaces to tasks, where the in-
terface provides easy access to the information needed to fulfill the task, and access to the other
users involved in the task. A shared workspace object can contain several user and group objects.
A shared workspace provides in addition easy methods for inserting information objects and other
workspaces, and methods for manipulating these objects in various ways. Workspaces can be used
as building blocks in simple process models for ICE applications. However, more sophisticated
coordination mechanisms for connecting shared workspaces are absent in the current version of
ICE.

A.2.3 User interface objects

User interface objects are used by other ICE objects for visualization and user interaction purposes.
Objects in an ICE application have one or more user interface objects. Each user interface object
implements an interface towards a specific environment. In the case of the Web environment,
user interface objects are responsible for generating HTML translations of other objects. These
translations contain both visualizations of the object meta–data, and interaction mechanisms such
as buttons and forms for changing the meta–data. User interface objects cannot exist as stand–
alone objects, but they must be connected to already existing objects. In this way it is possible to
have different user interfaces connected to the same ICE application.

User interface objects have one other important role, that of providing support for dialogue
with the users. One main problem with Web–based application development is that the Web is
stateless. This means that the Web server cannot know what the clients are doing, and therefore
cannot control the dialogue with the users. ICE provides standard objects for constructing simple
user interface dialogues for the applications built using ICE. These objects implement an HTML
frame–based user interface where the different frames provide various standard functions to the
users. This frame is shown in figureA.2. For details on dialogue handling in ICE see (Damskog
1997).



248 APPENDIX A. A DESCRIPTION OF ICE

A.3 ICE functionality

In this section we will explain how ICE can be used for collaborative application development.
The basic idea is that the users will use ICE building blocks in combination with concepts from
their work domain to tailor the desired applications. In doing so, they will probably need to
combine their expertise from different domains. The collaboration support provided in ICE will
connect users with different expertise and help them build the application. ICE will also capture
the design rationale and the history behind the development process. This history can be used
as input to a further process of refining the application. At the end of this section we provide an
example that illustrates this process.

A.3.1 Tailorability in ICE

The main user interface to ICE is towards the Web. Tailoring applications in ICE starts normally
by a user creating a shared workspace. A newly created workspace is a blank Web page with a
simple user interface including a frame with some default buttons for generic functions such as
login, home, and search. The user then inserts some user objects into the workspace. This is done
by giving these users access to the workspace. The group of users can then start building their
Web–based application in this workspace. All the authorized users can insert building blocks into
the workspace. The first building block they will insert is normally an information object. This
object is used as a design document for the application (See sectionA.3.2). At the same time the
users can subscribe to the discussion list of the object and use it as a communication medium.

Each application domain will have a set of specialized information object types. These object
types are available to the users through a list box in every shared workspace. The users can
create and manipulate instances of these object types using HTML–based forms. Information
objects can also be put together using inter–object communication to build composite information
objects (See sectionA.4.2). One such object type implemented in the current version of ICE
is theCOURSEobject that consists of severalMODULE objects, severalEXERCISE objects, and
oneEXAM object (Sivesind and Grimstad1997). FigureA.2 shows a shared workspace with its
Web–based user interface.

Collaboration and information objects can be used in this way to build larger distributed ap-
plications. Workspaces can be used to build simple process models in form of (currently) discon-
nected workspaces, and information objects can be used to build the data model of the applications.

A.3.2 Support for development process

ICE promotes an iterative design methodology where the users and their applications are in con-
stant contact, and where the users actually use the applications while they are building them. We
can think of two modes in an ICE application; use mode and development mode. The use mode
is when the users are using the application for its intended purpose. Development mode is when
the users, confronted with a breakdown in their work, start to refine the application. Unlike what
is common for most development environments, there is no visible distinction between these two
modes in ICE. Instead, we provide support for cooperation and capturing design rationale. In this
way not only the prototype itself, but also the history behind its development can be stored and
analyzed in further development.



A.3. ICE FUNCTIONALITY 249

Figure A.2:A Web–based interface to a workspace. The white area in the middle is used to insert
objects. The frame around the white area provides some generic functions that are available in all
the workspaces. A list of available object types is accessible in every workspace.

We believe that ICE can be used to support such a process of iterative system development.
Many studies point to the fact that system development is a collaborative and knowledge–intensive
process, where the necessary knowledge has to be acquired from domain experts during a collabo-
rative process (Walz et al.1993, Marmolin, Sundblad and Pehrson1991, Curtis et al.1988). There
are also numerous studies of the process of tailoring that point at the same direction (Trigg and
Bødker1994, Mackay1990). ICE supports this process by providing a medium for different users
to meet and cooperate, and by capturing the design rationale during this process.

The fact that ICE is based on email and WWW makes it more accessible to most of the users,
which we believe is important for promoting user involvement. Cooperation and information–



250 APPENDIX A. A DESCRIPTION OF ICE

sharing mechanisms in ICE can also be used to support the development process. As an example
consider the object discussion lists. Several properties of these lists make them suited for the
development process. First, it is an easy task to subscribe and unsubscribe from these lists. This
makes it feasible for external domain experts to subscribe to a list, give their contribution, and
unsubscribe. In this way the development group can have undisrupted access to experts of different
kinds, provided that the experts are available by email and are willing to contribute.

Second, each object keeps an archive of the messages sent to its lists. This archive is always
accessible through the object’s Web interface. In this way, not only the discussions among the
more permanent team members are stored, but also contributions from temporary expert members
are registered and kept for later references. Overlooking past discussions in development teams is
a problem that is pointed out by bothCurtis et al.(ibid.), andPotts and Catledge(1996).

Third, all the messages are stored connected to their information object and the workspace
the information object resides in. This provide a context for the discussions and makes it easier to
understand the discussions in a later point of time. It also makes it possible to use the contributions
to the discussion list in refining the information object into a design document for the application.

There are numerous other possibilities for using ICE to support the development process. But
the main points are that ICE: 1) makes it easier to bring together experts from different domains,
2) provides the development process with input in form of a prototype and its design rationale,
3) imposes not a process but a set of tools for both developing applications and supporting the
process of developing them.

A.3.3 An example of using ICE

We will now consider a simple scenario where two teachers develop a Web–based application for
supporting the creation of new courses. The teachers start by creating a simple prototype of their
course application. They start by creating a main workspace. This workspace will contain their
final prototype and a record of the process of building the prototype. For recording, and later
documenting the process, they create a new information object of typeDOCUMENT and insert
it in the main workspace. This document opens for email communication between the teachers.
They continue to create new workspaces for the various tasks they believe they will perform when
creating the course. For each workspace they also create aDOCUMENT that will register the
discussions in that workspace. Workspaces and information objects are created by choosing the
proper object from an HTML list, and filling the necessary information in an HTML form. They
choose to have workspaces for creating syllabus, exercises, and exam. They decide to close the
exam workspace. They do this by setting proper access rights for the exam workspace using an
HTML form. They start then to create information objects in the syllabus workspace. During
the process, they use the email lists in each workspace to discuss different aspect of the course
application.

At one point, the teachers find out that they need some mechanism for registering and contact-
ing the students. Since they don’t know how to do this using ICE, they decide to find an expert to
ask. They search among the user objects to find somebody from the ICE development team who
is available at that time. They find a developer and invite her to join them in their workspace. The
developer subscribes to the discussion list for the course application and starts receiving questions
from the teachers. The developer suggests that they could make an information object with some
information about the course, and then subscribe all the students to this object. In this way they
can both provide updated course information to the students, and contact the students by sending



A.4. ICE ARCHITECTURE 251

email messages to this object’s discussion list. The teachers do as the developer suggests. When
the teachers are finished with their application, they start using it for creating a new course. Using
the application results in new changes that are again done by the teachers in collaboration with the
developers, and possibly some students.

ICE provides in this way a true prototype of the application and the reasoning behind it. The
application itself can be improved and used as the final application. The developers can also read
and analyze the discussions between the two teachers, and investigate the changes done to the
application during the development. One possibility for improvement that the developer in this
scenario notices is the need for aCOURSEobject that the teachers can use to register students. The
developer implements this object by specializing another more general object, and provides it for
future use in the ICE environment. Following this process, the resulting application will hopefully
not be a surprise to any of the users.

A.4 ICE architecture

ICE implementation details are explained in (Olsrød and Isaksen1996). In this section we present
the main features of the ICE objects and system architecture. All the building blocks in ICE are
implemented as objects in an object–oriented manner. First we will describe how these objects are
implemented and used as building blocks in ICE applications. Then we will explain inter–object
communication that is the basic mechanism for building composite objects. At the end of this
section we will explain briefly some generic features of the architecture, such as access control
mechanisms and email services.

A.4.1 ICE objects

All the objects in ICE, except for the user interface objects, are implemented in a similar way,
and are here calledICE objects. Each ICE object is stored as anObject Description File(ODF),
together with a pointer to the location of anInformation Content File(ICF). ODF contains all the
semantic information about the ICE object, including meta–data and access rights. The ICF is a
file uploaded by the user, and is stored in its native format. ICF can possibly be located outside
the ICE database, but it has to be available to ICE through a standard protocol, such as HTTP.

ODF is a text file in form of an SGML/XML document type description (DTD) and provides
a uniform representation of all ICE object types in the system. ODFs consist of two groups of
attributes:

• Primary attributes: These are the meta–data for the ICE object type. Meta–data give ad-
ditional information about the ICF stored in the database. In the current implementation
meta–data consists of title, abstract, author name, location, and date of creation.

• Secondary attributes: These attributes are normally used by the system for manipulating
the ICE objects. Attributes here are access right scheme, email notification and discussion
subscribers, keywords, and language specifications.

ICE objects are created and manipulated directly by the users of the system. Assistance for this
manipulation is given byObject Manipulation Agents(OMAs). Each OMA has full knowledge of



252 APPENDIX A. A DESCRIPTION OF ICE

Web server
Object Manipulation

Agent (OMA)

U
se

r 
In

te
rfa

ce
 O

bj
ec

t

CGI

ICE WWW

Other Servers
(e.g.e-mail)

User Interface Object

Object
Description
Files (ODF)

Information
Content Files

(ICF)

ICE

Other environments

O
th

er
 p

ro
to

co
ls

H
T

M
L 

P
ag

e

HTTP

User

Pointer to
ICF

Figure A.3: Object Manipulation Agents (OMA) are used to interact with the objects in the
database. User Interface Objects (UIO) are responsible for translating from network protocols
to the internal language understood by the OMA. Various UIOs can be connected to an OMA to
let the OMA communicate with the users via other interfaces than the Web.

an ICE object type and all the valid operations on that type. OMAs are implemented as object–
oriented classes with inheritance. Different views to ICE objects are implemented as methods in
OMAs. For each method in an OMA a user interface object (UIO) is implemented that handles
the communication between the OMA and a specific protocol (See figureA.3). The only protocol
implemented in the current version of ICE is CGI (Common Gateway Interface) for Web server
communication.

HTTP requests from a Web server are sent to a proper OMA through its UIO. The job of an
OMA is to receive requests from the Web server and return HTML code containing the result of
the requests. An HTTP call to an OMA contains the name of an ODF, and a list of operations to be
executed on the ODF and its related ICF. By delegating the interpretation and HTML generation
from the Web server to UIOs and DMAs we open for flexibility and the possibility of implement-
ing unlimited object types in the system without recompiling the server program for each new ICE
object type.

Each view to an ICE object is implemented as a method. An HTTP request to the OMA
contains a parameter to let the OMA know which method is to be executed. The generic methods
implemented for OMAs are:

• Viewing methods: These methods are used for visualizing various parts of the ICE objects.
Some of the methods implemented in the base OMA are: NORMAL (shows some important
meta–data with an icon for downloading the ICF), THUMBNAIL (shows a small version of



A.4. ICE ARCHITECTURE 253

an image), SUMMARY (shows brief information about the object, such as name, type and
owner), and INFO (shows all the meta–data, plus discussion and awareness lists).

• Editing methods: An OMA can receive data from the user, and can use that data to update
an existing ICE object. An editing method will present the user with an HTML form where
the user can change the meta–data and submit the changes to the OMA, possibly with a
newer version of the ICF. The OMA will then update the current ODF and ICF (ICE does
not currently support version control).

FigureA.3 shows an overview of how ICE objects are manipulated by the users. The users
will interact with the OMA through an HTML page that is generated by a UIO and sent to them
by the Web server. This page provides a view of an ICE object and a set of HTML interaction
elements in order to let the user manipulate the object. The Web server transmits all the user
requests back to the UIO through a CGI interface. The gray area in figureA.3 indicates that new
UIOs can be implemented in order to interact with other environments than the Web. An example
that is implemented partly in the current version of ICE is an email interface where the users can
interact with the objects through an email server. Object discussion lists use this interface for
communicating with the users.

A.4.2 Inter–object communication

FigureA.3 shows the simplest case where each OMA is responsible for one ICE object in the
database. For composite ICE objects, such as shared workspaces consisting of several information
objects, the OMAs will have to communicate with each other in order to generate an integral
presentation to the users. For this we have chosen a simple hierarchical structure, letting the
parent OMA (such as the workspace OMA) interact with the child OMAs to generate the final
output to the server. This is shown in figureA.4. In this figure, OMA1 can request an HTML
presentation from OMA2–4. These presentations are then composed by OMA1 to a final HTML
page and sent to the server.

The advantage of this communication scheme is its simplicity in that OMA1 does not need
to know anything about the internal logics of the other OMAs. OMA1 receives one HTML file
from each of the OMA2–4, and generates a result by appending these files without analyzing their
content. A specialized inter–object communication language will obviously provide us with more
flexibility. This is a planned extension to a new version of ICE.

A.4.3 Access control in ICE

Access control in ICE is at method level, meaning that the users can put access restrictions for
different methods in an OMA. As an example, a user can decide to give some users access to the
SUMMARY method of an object. This is how users can construct different views of their objects
(FigureA.1). For instance, the users can decide to hide the details of aDOCUMENT object while
they are writing the document by removing the NORMAL and INFO methods from the object’s
access list. They can still provide a SUMMARY method that shows the abstract, the deadline, and
the status of the document.



254 APPENDIX A. A DESCRIPTION OF ICE

CGI

CGI

CGI W
eb

 s
er

ve
r

OMA2
U

IO

OMA3

U
IO

OMA4

U
IO

OMA1

U
IO CGI

H
T

M
L 

pa
ge

HTTP

Figure A.4:Communication among objects is done through the user interface objects. The parent
object plays the role of a server when communicating with child objects. The final output is sent
to the user through the actual server.

A.4.4 Email interface to ICE

As mentioned before, the Web interface is the only interface fully implemented so far. There is
however work in progress for connecting ICE to an email interface. The first result of this effort
is the discussion lists (Asbjørnsen and Ellingsen1997). The email interface is implemented in
conjunction with a standard email list server software. Each object receives its own email account
on an email server. A discussion list for the object is also created on the list server. The object
subscribes to its own discussion list in order to receive the messages sent by the users. TheReply–
To field in all the messages are set to the email address of the discussion list, so that a copy of the
messages is always received by the object and archived for Web–based presentation and other use.

A.5 Related research

The building blocks in ICE correspond to the three complementary components of the groupware
model discussed byEllis and Wainer(1994b). These components are ontological model (cor-
responding to our information objects), coordination model (corresponding to our collaboration
objects), and user interface model (corresponding to our user interface objects). According to
Ellis and Wainermost of the available groupware applications consist more or less of these three
sub–models. These sub–models are also visible in systems for radical tailorability such as Oval
(Malone et al.1995) and Information Lens (Malone et al.1989). Information Lens is a system for
tailoring message–based applications. OVAL is an extension to Information Lens, and consists of
building blocks (called Objects, Views, Agents, and Links) similar to ICE, but with the exception



A.6. CONCLUSIONS AND FURTHER WORK 255

of agents. The most important difference between ICE and Oval is that Oval does not support
the process of building applications. Applications in Oval are built off–line without much support
from the system.

An example of a system supporting the collaborative process of customizing itself is men-
tioned byWulf (1995). In this system, a meta–function for negotiation is provided in form of a
voting mechanism. Whenever a user wishes to change the application in some way, other users
are confronted with a voting tool where they can choose to accept or reject the change. The limita-
tion of the system is that it only permits a predefined set of changes to an application (application
preferences). However, it is evident that ICE could enjoy such a negotiation functionality for
supporting the application development process.

ICE as a Web–based system is similar to BSCW (Bentley, Appelt, Busbach, Hinrichs, Kerr,
Sikkel, Trevor and Woetzel1997). BSCW is a shared workspace system that provides a small
group of people with mechanisms for sharing and co–authoring of documents (Horstmann and
Bentley1997). Awareness events are an important part of this process. BSCW provides only a
limited set of objects related to the co–authoring domain, which are documents and email mes-
sages. This makes BSCW best suited for co–authoring, but does not support system development
processes.

A.6 Conclusions and further work

There are three characteristics of ICE that we believe are important to highlight. First, ICE pro-
vides the users with a continuous prototyping environment with support for the process of pro-
totyping. This results in prototypes that are somehow self–contained, in that they also contain
information about the process of prototyping. This information can be used as input to further
development.

Second, ICE provides a medium where different users can cooperate during the development
process. System development teams are highly dynamic, with new members arriving and old
members leaving the project all the time. Easy,light–weightcommunication among the members
is crucial.

A third point, and maybe the most important one, is that these prototypes are developed di-
rectly in the work context. The users build the prototypes while they are working with them. The
prototypes include features from the actual work context that are found to be important. Later
on, the users build improved prototypes that are again placed in the work context and used. This
makes it possible to continuously refine the system while solving real world problems.

The relevance of these three points is confirmed by our experience in the development of ICE
itself. ICE was implemented in the context of an EU project called AQUARIUS (AQUARIUS
Consortium1998). The system itself is the result of a collaborative effort among a large group
of users distributed among three European countries. The process of developing ICE was two–
folded. The developers were mostly specializing the existing building blocks. These building
blocks were then used and tested by other users in their own work context. At the beginning, ICE
was not used for supporting the development process. This need evolved later in the project when
we became aware of the mediating effect of the prototypes, and we saw the need for storing an
archive of the development process within the prototypes.

Extensions to ICE are foreseen in three directions. First, we want to improve the existing
building blocks. We need to include more advanced coordination mechanisms in order to be able



256 APPENDIX A. A DESCRIPTION OF ICE

to create applications with more sophisticated process models. We also need mechanisms for
allowing the creation of new objects without the need for programming the system.

Second, it is also desirable to improve the existing support for development processes. Tai-
lorability is not scalable. With larger applications we will have to incorporate other methods for
user involvement, such as collaborative conceptual modeling and enterprise modeling methods.
This will again require change management.

Third, we want to fully exploit the possibilities offered by collaboration technologies to bring
different user groups together. This will result in extensions to the cooperation support currently
implemented in ICE in order to include mechanisms for decision–making, synchronous coopera-
tion, and video and audio support.

A.7 Acknowledgement

The first prototypes of ICE were implemented and tested in the context of the AQUARIUS project.
I thank the project members for cooperatively developing the ICE prototype. Specially, I thank
Stig Petter Olsrød and Trond Isaksen for coding the prototype, and Hendrik Klompmaker for
testing it under difficult conditions. I also thank Monica Divitini for shuffling my ideas about ICE,
and for constructive comments on earlier versions of this paper.



Bibliography

Ackerman, M. S. (ed.): 1996,Proceedings of the ACM 1996 Conference on Computer Supported Cooperative
Work, CSCW’96, Cambridge, Mass., USA, ACM Press, New York.

Agostini, A., De Michelis, G., Grasso, M. A., Prinz, W. and Syri, A.: 1996, Contexts, Work Processes,
and Workspaces,Computer Supported Cooperative Work: The Journal of Collaborative Computing
5(2–3), 223–250.

Allen, L., Fernandez, G., Kane, K., Leblang, D., Minard, D. and Posner, J.: 1995, ClearCase MultiSite:
Supporting Geographically–Distributed Software Development,in J. Estublier (ed.),Software Config-
uration Management: ICSE SCM–4 and SCM–5 Workshops Selected Papers, number 1005 inLNCS,
Springer, Berlin, pp. 194–214.

Andersen, R.: 1994,A Configuration Management Approach for Supporting Cooperative Information System
Development, PhD thesis, Norwegian Institute of Technology, IDT, Trondheim, Norway.

Andersen, R. and Sølvberg, A.: 1993, Conflict Management in Systems Development Groups,in N. Prakash,
C. Rolland and B. Pernici (eds),Proceedings of the IFIP WG8.1 Working Conference on Information
System Development Process, Como, Italy, North–Holland, pp. 207–227.

AQUARIUS Consortium: 1998, AQUARIUS Web site. http://aquarius.euro.org.

Asbjørnsen, K. E. and Ellingsen, B.: 1997, PAT – Mail Handling System In Aquarius,Technical report,
Norwegian University of Science and Technology.

Babich, W. A.: 1986,Software Configuration Management – Coordination for Team Productivity, Addison–
Wesley, Reading, Massachusetts.

Baecker, R. M. (ed.): 1993,Readings in Groupware and Computer–Supported Cooperative Work– Assisting
Human–Human Collaboration, Morgan Kaufmann.

Bannon, L. J. and Bødker, S.: 1997, Constructing Common Information Spaces,in Hughes, Prinz, Rodden
and Schmidt(1997), pp. 81–96.

Bannon, L. J., Robinson, M. and Schmidt, K. (eds): 1991,Proceedings of the Second European Confer-
ence on Computer Supported Cooperative Work, ECSCW’91, Amsterdam, The Nederlands, Kluwer
Academic Publishers.

Beaudouin-Lafon, M. (ed.): 1999,Computer Supported Co–operative Work, Trends in Software, John Wiley
& Sons, New York.

Benedikt, M. L.: 1992, Cyperspace: Some Proposals,in M. L. Benedikt (ed.),Cyberspace: First Steps, MIT
Press, Cambridge, Massachusetts, pp. 273–302.

Benford, S., Bowers, J., Fahlén, L. E., Greenhalgh, C. and Snowdon, D.: 1995, User Embodiment in Col-
laborative Virtual Environments,in I. R. Katz, R. Mack, L. Marks, M. B. Rosson and J. Nielsen (eds),
Proceedings of the CHI’95 Conference, Denver, Colorado, USA, ACM Press, pp. 242–249.



258 BIBLIOGRAPHY

Benford, S., Bowers, J., Fahlén, L., Mariani, J. and Rodden, T.: 1994, Supporting Cooperative Work in
Virtual Environments,Computer37(8), 653–668.

Benford, S. and Fahlén, L.: 1993, A Spatial Model of Interaction in Large Virtual Environments,in De
Michelis, Simone and Schmidt(1993), pp. 109–124.

Bentley, R., Appelt, W., Busbach, U., Hinrichs, E., Kerr, D., Sikkel, K., Trevor, J. and Woetzel, G.: 1997, Ba-
sic Support for Cooperative Work on the World Wide Web,International Journal of Human Computer
Studies46(6), 827–846.

Bentley, R., Busbach, U., Kerr, D. and Sikkel, K. (eds): 1997,Groupware and the World Wide Web, Kluwer
Academic Publisher, Dordrecht. Reprint from the Computer Supported Cooperative Work: The Journal
of Collaborative Computing, Volume 6, Nos. 2–3, 1997.

Bentley, R., Horstmann, T. and Trevor, J.: 1997, The World Wide Web as enabling technology for CSCW:
The case of BSCW,Computer Supported Cooperative Work: The Journal of Collaborative Computing
6(2–3), 111–134.

Bentley, R., Rodden, T., Sawyer, P. and Sommerville, I.: 1992, An architecture for tailoring cooperative
multi–user displays,in Turner and Kraut(1992), pp. 187–194.

Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H. F. and Secret, A.: 1994, The World Wide Web,
Communications of the ACM37(8), 76–82.

Bhatnagar, R.: 1999,Support for XML in IGLOO (tentative title), Master’s thesis, Norwegian University of
Science and Technology.

Bin, Y., Farshchian, B. A., Li, T., Rao, J. and Su, X.: 1999, MultiCASE implementation report,Techni-
cal report, Department of Computer and Information Science, Norwegian University of Science and
Technology, NTNU.

Bly, S. A.: 1988, A Use of Drawing Surfaces in Different Collaborative Settings,in CSCW’88 (1988),
pp. 250–256.

Bogia, D., Tolone, W., Bignoli, C. and Kaplan, S.: 1996, Issues in the Design of Collaborative Systems:
Lessons from ConversationBuilder,in Shapiro, Tauber and Traunmüller (1996), chapter 24, pp. 401–
422.

Booch, G., Rumbaugh, J. and Jacobson, I.: 1999,The Unified Modeling Language User Guide, Addison–
Wesley, Reading, Massachusetts.

Brooks Jr., F. P.: 1975,The Mythical Man–Month – Essays on Software Engineering, Addison–Wesley,
Reading, MA.

Brown, A. W., Earl, A. N. and McDermid, J. A.: 1992,Software Engineering Environments – Automated
Support for Software Engineering, McGraw-Hill, London.

Brown, J. S. and Duguid, P.: 1991, Organizational Learning and Communities–of–Practice: Towards a Uni-
fied View of Working, Learning, and Innovation,Organization Science2(1), 40–57.

Button, G. and Sharrock, W.: 1995, Practices in the work of ordering software development,in A. Firth
(ed.), The Discourse of Negotiation – Studies of Language in the Workplace, Pergamon, chapter 7,
pp. 159–180.

Button, G. and Sharrock, W.: 1996, Project Work: The Organisation of Collaborative Design and Develop-
ment in Software Engineering,Computer Supported Cooperative Work: The Journal of Collaborative
Computing5(4), 369–386.

Chen, H.: 1994, Collaborative Systems: Solving the Vocabulary Problem,IEEE Computer27(5), 58–66.

Christensen, P. O. and Karlsen, T. G.: 1999,Bevissthet i delte virtuelle rom (Awareness in shared virtual
spaces), Master’s thesis, Norwegian University of Science and Technology, Trondheim, Norway.



BIBLIOGRAPHY 259

Clark, H. H. and Brennan, S. E.: 1991, Grounding in communication,in L. B. Resnick, J. M. Levine and
S. D. Teasley (eds),Perspectives on Socially Shared Cognition, American Psychological Association,
Washington, DC, pp. 127–149. Reprinted in (Baecker1993).

Codenie, W., De Hondt, K., Steyaert, P. and Vercammen, A.: 1997, From Custom Applications to Domain–
Specific Frameworks,Communications of the ACM40(10), 71–77.

Conway, M. E.: 1968, How do committees invent?,Datamation14(4), 28–31.

Covi, L. M., Olson, J. S., Rocco, E., Miller, W. J. and Allie, P.: 1998, A Room of Your Own: What Do We
Learn about Support of Teamwork from Assessing Teams in Dedicated Project Rooms?,in N. A. Streitz,
S. Konomi and H.-J. Burkhardt (eds),Proceedings of the First International Workshop on Cooperative
Buildings, CoBuild’98, Darmstadt, Germany, number 1370 inLNCS, Springer, Berlin, pp. 53–65.

CSCW’88 (ed.): 1988,Proceedings of the Conference on Computer–Supported Cooperative Work,
CSCW’88, Portland, OR, USA, ACM.

CSCW’90 (ed.): 1990,Proceedings of the Conference on Computer–Supported Cooperative Work,
CSCW’90, Los Angeles, USA, ACM.

Curtis, B., Krasner, H. and Iscoe, N.: 1988, A Field Study of the Software Design Process for Large Systems,
Communications of the ACM31(11), 1268–1287.

Damskog, H. O.: 1997, AQUARIUS User Interface,Technical report, Norwegian University of Science and
Technology.

Day, M.: 1997, What Synchronous Groupware Needs: Notification Services,Proceedings of The Sixth Work-
shop on Hot Topics in Operating Systems, Cape Cod, Massachusetts, IEEE Computer Society Press,
Los Alamitos, California, pp. 118–122.

Day, M., Patterson, J., Kucan, J. and Chee, W. M.: 1996, Notification Service Transfer Protocol (NSTP)
version 1.0,Lotus Workgroup Technologies Technical Report 96-08, Lotus Research.
URL: ftp://ftp.lotus.com/pub/lotusweb/corp/research/nstp.ps

De Michelis, G., De Paoli, F., Pluchinotta, C. and Susani, M.: 2000, Weakly Augmented Reality: observ-
ing and designing the work-place of creative designers,Proceedings of the Conference on Designing
Augmented Reality Environments, DARE 2000, Helsinore, Denmark, pp. xx–yy.

De Michelis, G., Simone, C. and Schmidt, K. (eds): 1993,Proceedings of the Third European Conference
on Computer–Supported Cooperative Work, ECSCW’93, Milano, Italy, Kluwer Academic Publishers,
Dordrecht.

DeSanctis, G. and Gallupe, B. R.: 1987, A Foundation for the Study of Group Decision Support Systems,
Management Science33(5), 589–609.

Dewan, P.: 1995, Multiuser architectures,in L. J. Bass and C. Unger (eds),Proceedings of the IFIP
TC2/WG2.7 Working Conference on Engineering for Human Computer Interaction, Yellowstone Park,
U.S.A., Chapman & Hall, pp. 247–270.

Dijkstra, E. W.: 1968, Go to statement considered harmful,Communications of the ACM11(3), 147–148.

Dix, A.: 1997, Challenges for Cooperative Work on the Web: An Analytical Approach,Computer Supported
Cooperative Work: The Journal of Collaborative Computing6(2–3), 135–156. Reprinted in (Bentley,
Busbach, Kerr and Sikkel1997).

Dourish, P. and Bellotti, V.: 1992, Awareness and Coordination in Shared Workspaces,in Turner and Kraut
(1992), pp. 107–114.

Drucker, P. F.: 1988, The Coming of the New Organization,Harvard Business Review(January–
February), 45–53.



260 BIBLIOGRAPHY

Ehn, P. and Kyng, M.: 1991, Cardboard Computers: Mocking–it–up or Hands–on the Future,in Greenbaum
and Kyng(1991), chapter 9, pp. 169–195.

Ellis, C. A. and Wainer, J.: 1994a, Goal–based models of collaboration,Collaborative Computing1(1), 61–
86.

Ellis, C., Gibbs, S. and Rein, G.: 1991, Groupware – Some Issues and Experiences,Communications of the
ACM 34(1), 39–58.

Ellis, C. and Wainer, J.: 1994b, A Conceptual model of Groupware,in Furuta and Neuwirth(1994), pp. 79–
88.

Elmasri, R. and Navathe, S. B.: 1989,Fundamentals of Database Systems, Addison–Wesley, Redwood City,
California.

Endsley, M. R.: 1995, Toward a Theory of Situation Awareness in Dynamic Systems,Human Factors
37(1), 32–64.

Farshchian, B. A.: 1999, Shared workspace applications for collaboration in the large: A product–centric
approach,in T. Kindberg (ed.),Proceedings of Changing Places – A one–day workshop on workspace
models for collaboration, London, U.K., Department of Computer Science, Queen Mary & Westfield
College, University of London, pp. 1–7.

Farshchian, B. A.: 2000a, Gossip: An awareness engine for increasing product awareness in distributed
development projects,in Wangler and Bergman(2000), pp. 264–278.

Farshchian, B. A.: 2000b, IGLOO: A framework for developing product-oriented shared workspace applica-
tions, in R. Dieng, A. Giboin, L. Karsenty and G. De Michelis (eds),Proceedings of the 5th Interna-
tional Conference on the Design of Cooperative Systems, COOP’2000, Sophia Antipolis, France, IOS
Press, Amsterdam, pp. 337–350.

Farshchian, B. A. and Divitini, M.: 1997, ICE: A Highly Tailorable System for Building Collaboration
Spaces on the WWW,in A. Mørch, O. Stiemerling and V. Wulf (eds),Proceedings of the Workshop on
Tailorable Groupware: Issues, Methods, and Architectures, Phoenix, Arizona, U.S.A.
URL: http://www.ifi.uib.no/staff/anders/research/group97/

Faucheux, C.: 1997, How Virtual Organizing Is Transforming Management Science,Communications of the
ACM 40(9), 50–55.

Fitzpatrick, G., Mansfield, T. and Kaplan, S. M.: 1996, Locales Framework: Exploring foundations for
collaboration support,in J. Grundy and M. Apperley (eds),Proceedings of the Sixth Australian Con-
ference on Computer–Human Interaction, Hamilton, New Zealand, IEEE Computer Society Press, Los
Alamitos, California, pp. 34–41.

Fitzpatrick, G., Tolone, W. J. and Kaplan, S. M.: 1995, Work, Locales and Distributed Social Worlds,in
H. Marmolin, Y. Sundblad and K. Schmidt (eds),Proceedings of the Fourth European Conference
on Computer–Supported Cooperative Work, ECSCW’95, Stockholm, Sweden, Kluwer Academic Pub-
lisher, pp. 1–16.

Fogel, K.: 1999,Open Source Development with CVS, CoriolisOpen Press, Scottsdale, Arizona.

Forte, G. and Norman, R. J.: 1992, A Self–Assessment by the Software Engineering Community,Communi-
cations of the ACM35(4), 28–32.

Fuggetta, A.: 1993, A Classification of CASE Technology,IEEE Computerx(x), 25–38.

Furuta, R. and Neuwirth, C. (eds): 1994,Proceedings of the Conference on Computer–Supported Coopera-
tive Work, CSCW’94, Chapel Hill, North Carolina, USA, ACM Press.

Garli, N.-H. and Lund, A.: 2000,Gossip: An Integrated Shared Product Space and Awareness Engine for
the IGLOO Framework, Master’s thesis, Norwegian University of Science and Technology, Trondheim,
Norway.



BIBLIOGRAPHY 261

Gray, J. P. and Ryan, B.: 1997, Applying the CDIF standard in the construction of CASE design tools,in
P. Bailes (ed.),Proceedings of the Australian Software Engineering Conference, IEEE, pp. 88–97.

Greenbaum, J. and Kyng, M. (eds): 1991,Design at Work: Cooperative Design of Computer Systems,
Lawrence Erlbaum Associates.

Greenberg, S. and Roseman, M.: 1998, Using a Room Metaphor to Ease Transitions in Groupware,Technical
Report 98/611/02, Department of Computer Science, University of Calgary, Calgary, Alberta, Canada.

Greenberg, S. and Roseman, M.: 1999, Groupware Toolkits for Synchronous Work,in Beaudouin-Lafon
(1999), chapter 6, pp. 135–168.

Grinter, R. E.: 1995, Using a Configuration Management Tool to Coordination Software Development,in
N. Comstock and C. Ellis (eds),Proceedings of the Conference on Organizational Computing Systems,
COOCS’95, Milpitas, California, USA, ACM Press, pp. 168–177.

Grinter, R. E.: 1996, Supporting Articulation Work Using Software Configuration Management Systems,
Computer Supported Cooperative Work: The Journal of Collaborative Computing5(4), 447–465.

Grinter, R. E.: 2000, Workflow Systems: Occasions for Success and Failure,Computer Supported Coopera-
tive Work9(1?), 189–214.

Grinter, R. E., Herbsleb, J. D. and Perry, D. E.: 1999, The Geography of Coordination: Dealing with Distance
in R & D Work, in S. C. Hayne (ed.),Proceedings of the International ACM SIGGROUP Conference
on Supporting Group Work, Group’99, Phoenix, Arizona, ACM Press, pp. 306–315.

Grudin, J.: 1994a, Computer–Supported Cooperative Work: History and Focus,IEEE Computer27(5), 19–
26.

Grudin, J.: 1994b, Groupware and Social Dynamics: Eight Challenges for Developers,Communications of
the ACM37(1), 92–105.

Gutwin, C. and Greenberg, S.: 1998, Effects of Awareness Support on Groupware Usability,in CHI’98 (ed.),
Proceedings of the Conference on Human Factors in Computing Systems, CHI’98, Los Angeles, CA,
USA, ACM Press, New York, pp. 511–518.

Gutwin, C. and Greenberg, S.: 1999, A Framework of Awareness for Small Groups in Shared-Workspace
Groupware,Technical Report 99–1, Department of Computer Science, University of Saskatchewan,
Canada.

Gutwin, C., Greenberg, S. and Roseman, M.: 1996, Workspace Awareness in Real–Time Distributed Group-
ware: Framework, Widgets, and Evaluation,in R. Sasse, A. Cunningham and R. Winder (eds),Proceed-
ings of the HCI’96: People and Computers XI, London, U.K., Springer–Verlag, Berlin, pp. 281–298.

Harrison, S. and Dourish, P.: 1996, Re–Place the Space: the Roles of Place and Space in Collaborative
Systems,in Ackerman(1996), pp. 67–76.

Hayne, S. C. and Prinz, W. (eds): 1997,Proceedings of the International ACM SIGGROUP Conference on
Supporting Group Work, Group’97, Pheonix, USA, ACM Press, New York.

Henderson, Jr., D. A. and Card, S. K.: 1986, Rooms: The Use of Multiple Virtual Workspaces to Re-
duce Space Contention in a Window-Based Graphical User Interface,ACM Transactions on Graphics
5(3), 211–243.

Herbsleb, J. D. and Grinter, R. E.: 1999, Splitting the Organization and Integrating the Code: Conway’s Law
Revisited,in ICSE’99 (ed.),Proceedings of the 21th Conference on Software Engineering, Los Angeles,
California, USA, ACM Press, New York, pp. 85–95.

Herlea, D. E.: 1998, User Participation in Requirements Negotiation,in M. Divitini, B. A. Farshchian and
T. Tuikka (eds),Proceedings of the Workshop on Internet–Based Groupware for User Participation in
Product Development, number B 56 inWorking Paper Series, University of Oulu, INFOTECH Research
Center, pp. 25–29.



262 BIBLIOGRAPHY

Herlea, D. and Greenberg, S.: 1998, Using a Groupware Space for Distributed Requirements Engineering,
Proceedings of WET ICE ’98: IEEE Seventh International Workshops on Enabling Technologies: Coor-
dinating Distributed Software Development Projects, Stanford University, California, USA, pp. 57–62.

Horstmann, T. and Bentley, R.: 1997, Distributed authoring on the Web with the BSCW shared workspace
system,ACM Standards View5(1), 9–16.

Hu, C.-H. and Wang, F.-J.: 1998, A Multi–User Visual Object–Oriented Programming Environment,Pro-
ceedings of The Twenty-Second Annual International Computer Software and Applications Conference,
COMPSAC’98, Vienna, Austria, IEEE Computer Society Press, Los Alamitos, CA, pp. 262–268.

Hughes, J. A., Prinz, W., Rodden, T. and Schmidt, K. (eds): 1997,Proceedings of the Fifth European Con-
ference on Computer Supported Cooperative Work, ECSCW’97, Lancaster, UK, Kluwer Academic
Publishers, Dordrecht.

Iansiti, M. and MacCormack, A.: 1997, Developing Products on Internet Time,Harvard Business Review
(September–October), 108–117.

Iivari, J.: 1996, Why Are CASE Tools Not Used?,Communications of the ACM39(10), 94–103.

Jarke, M., Maltzahn, C. and Rose, T.: 1992, Sharing Processes: Team Coordination in Design Repositories,
International Journal of Intelligent and Cooperative Information Systems1(1), 145–167.

Jarzabek, S. and Huang, R.: 1998, The Case for User–Centered CASE Tools,Communications of the ACM
41(8), 93–99.

Johnson-Lenz, P. and Johnson-Lenz, T.: 1982, Groupware: The Process and Impacts of Design Choices,in
E. B. Kerr and S. R. Hiltz (eds),Computer–Mediated Communication Systems : Status and Evaluation,
Human communication research series, Academic Press, New York, chapter xx, pp. 45–55.

Kaplan, S. M., Fitzpatrick, G., Mansfield, T. and Tolone, W. J.: 1997, MUDdling Through,in HICSS’97
(ed.),Proceedings of the 30th Hawaii Int’l Conf. on System Sciences, Volume 2 – Collaboration Systems
and Technology, IEEE Computer Society Press, pp. 539–548.

Keil, M. and Carmel, E.: 1995, Customer–Developer Links in Software Development,Communications of
the ACM38(5), 33–44.

Keil-Slawik, R.: 1992, Artifacts in Software Design,in C. Floyd, H. Z̈ullighoven, R. Budde and R. Keil-
Slawik (eds),Software development and Reality Construction, Springer–Verlag, Berlin, chapter 4.4,
pp. 168–188.

Kelly, S.: 1998, CASE tools support for co-operative work in information systems design,in Rolland et al.
(1998), pp. 49–69.

Kelly, S. and Lyytinen, K.: 1996, MetaEdit+ – A Fully Configurable Multi–User and Multi–Tool CASE and
CAME Environment,in P. Constantopoulos, J. Mylopoulos and Y. Vassiliou (eds),Proceedings of the
8th International Conference on Advanced Information Systems Engineering, CAiSE’96, Heraklion,
Crete, Greece, number 1080 inLNCS, Springer, Berlin, pp. 1–21.

Kendall, K. E. and Kendall, J. E.: 1988,Systems Analysis and Design, Prentice Hall.

Knudsen, I. and Solheim, R.: 1999,Bringing Synchronous Collaboration into ICE, Master’s thesis, Norwe-
gian University of Science and Technology.

Krauss, R. M. and Fussell, S. R.: 1990, Mutual Knowledge and Communicative Effectiveness,in J. Galegher,
R. E. Kraut and C. Egido (eds),Intellectual Teamwork – Social and Technological Foundations of
Cooperative Work, Lawrence Erlbaum Associates, Publishers, Hillsdale, New Jersey, pp. 111–145.

Kraut, R. E. and Streeter, L.: 1995, Coordination in Software Development,Communications of the ACM
38(3), 69–81.



BIBLIOGRAPHY 263

Lauwers, J. C. and Lantz, K. A.: 1990, Collaboration awareness in support of collaboration transparency:
Requirements for the next generation of shared window systems,in J. C. Chew and J. Whiteside (eds),
Proceedings of the CHI’90 Conference, Seattle, Washington, USA, ACM Press, pp. 303–311.

Lee, J. H., Prakash, A., Jaeger, T. and Gwobaw, W.: 1996, Supporting Multi–User, Multi–Applet Workspaces
in CBE, in Ackerman(1996), pp. xx–yy.

Lie-Nielsen, J.: 2000,Design and Implementation of CoClust (tentative title), Master’s thesis, Norwegian
University of Science and Technology, Trondheim, Norway.

Lindland, O. I., Sindre, G. and Sølvberg, A.: 1994, Understanding Quality in Conceptual Modeling,IEEE
Software11(2), 42–49.

Mackay, W. E.: 1990, Patterns of Sharing Customizable Software,in CSCW’90(1990), pp. 209–221.

Mackay, W. E.: 1999, Media Spaces: Environments for Informal Multimedia Interaction,in Beaudouin-
Lafon (1999), chapter 3, pp. 55–82.

Malone, T. W., Grant, K. R., Lai, K.-Y., Rao, R. and Rosenblitt, D. A.: 1989, The Information Lens: An Intel-
ligent System for Information Sharing and Coordination,in M. H. Olson (ed.),Technological Support
for Work Group Collaboration, Lawrence Erlbaum Associates, pp. 65–88.

Malone, T. W., Lai, K.-Y. and Fry, C.: 1995, Experiments with Oval: A Radically Tailorable Tool for
Cooperative Work,ACM Transactions on Information Systems13(2), 177–205.

Mansfield, T., Kaplan, S., Fitzpatrick, G., Phelps, T., Fitzpatrick, M. and Taylor, R.: 1997, Evolving Orbit: a
progress report on building locales,in Hayne and Prinz(1997), pp. 241–250.

Mansfield, T., Kaplan, S., Fitzpatrick, G., Phelps, T., Fitzpatrick, M. and Taylor, R.: 1999, Towards locales
Supporting collaboration with Orbit,Information and Software Technology41(6), 367–382.

Mariani, J. A. and Prinz, W.: 1993, From Multi–User to Shared Object Systems: Awareness about Co–
Workers in Cooperation Support Object Databases,in H. Reichel (ed.),Proceedings of the 23. GI–
Jahrestagung: Informatik – Wirtschaft – Gesellschaft, Springer, Berlin Heidelberg, pp. 476–481.

Marmolin, H., Sundblad, Y. and Pehrson, B.: 1991, An Analysis of Design and Collaboration in a Distributed
Environment,in Bannon, Robinson and Schmidt(1991), pp. 147–162.

McGrath, J. E. and Hollingshead, A. B.: 1994,Groups Interacting with Technology – Ideas, Evidence, Issues,
and an Agenda, SAGE Publications, Thousand Oaks, California.

Moran, T. P. and Anderson, R. J.: 1990, The Workaday World As a Paradigm for CSCW Design,in CSCW’90
(1990), pp. 381–393.

Moran, T. P. and Carroll, J. M. (eds): 1996,Design Rationale: Concepts, Techniques, and Use, Laurence
Erlbaum Associates.

Ngwenyama, O. K. and Lyytinen, K. J.: 1997, Groupware Environments as Action Constitutive Resources:
A Social Action Framework for Analyzing Groupware Technologies,Computer Supported Cooperative
Work: The Journal of Collaborative Computing6(1), 71–93.

Nonaka, I. and Takeuchi, H.: 1995,The Knowledge–Creating Company, Oxford University Press.

Nunamaker, J. F., Dennis, A. R., Valacich, J. S., Vogel, D. R. and George, J. F.: 1991, Electronic meeting
systems to support group work,Communications of the ACM34(7), 40–61.

Olson, G. M., Atkins, D. E., Clauer, R., Finholt, T. A., Jahanian, F., Killeen, T. L., Prakash, A. and Weymouth,
T.: 1998, The Upper Atmospheric Research Collaboratory,ACM Interactions3(X), 48–55.

Olson, G. M. and Olson, J. S.: 1991, User–Centered Design of Collaboration Technology,Journal of Orga-
nizational Computing1(1), 61–83.



264 BIBLIOGRAPHY

Olson, G. M., Olson, J. S., Carter, M. R. and Storrøsten, M.: 1992, Small Group Design Meetings: An
Analysis of Collaboration,Human–Computer Interaction7(4), 347–374.

Olson, G. M., Olson, J. S., Storrøsten, M., Carter, M., Herbsleb, J. and Rueter, H.: 1996, The Structure of
Activity During Design Meetings,in Moran and Carroll(1996), chapter 7, pp. 217–239.

Olsrød, S. P. and Isaksen, T.: 1996,ICE – Aquarius Database, Aquarius project report, NTNU, Norwegian
University of Science and Technology, Department of Computer and Information Science, N–7034,
Trondheim, Norway.

Orlikowski, W. J.: 1992, Learning From Notes: Organizational Issues in Groupware Implementation,in
Turner and Kraut(1992), pp. 362–369.

Orlikowski, W. J.: 1993, CASE Tools as Organizational Change: Investigating Incremental and Radical
Changes in Systems Development,Management Information Systems Quarterly17(3), 309–340.

Ovum: 1999, Ovum Evaluates: Configuration Management,Evaluation report, Ovum.

Parnas, D. L.: 1972, On the Criteria To Be Used in Decomposing Systems into Modules,Communications
of the ACM15(12), 1053–1058.

Pendergast, M., Aytes, K. and Lee, J. D.: 1999, Supporting the group creation of formal and informal graphics
during business process modeling,Interacting with Computers11(4), 355–373.

Potts, C. and Catledge, L.: 1996, Collaborative Conceptual Design: A Large Software Project Case Study,
Computer Supported Cooperative Work: The Journal of Collaborative Computing5(4), 415–445.

Prakash, A.: 1999, Group Editors,in Beaudouin-Lafon(1999), chapter 5, pp. 103–133.

Prakash, A. and Shim, H.: 1994, DistView: support for building efficient collaborative applications using
replicated objects,in Furuta and Neuwirth(1994), pp. xx–yy.

Prakash, A., Shim, H. S. and Lee, J. H.: 1999, Data Management Issues and Tradeoffs in CSCW Systems,
IEEE Transactions on Knowledge and Data Engineering11(1), 213–227.

Prinz, W.: 1999, NESSIE: An Awareness Environment for Cooperative Settings,in S. Bødker, M. Kyng and
K. Schmidt (eds),Proceedings of The Sixth European Conference on Computer Supported Cooperative
Work, ECSCW’99, Copenhagen, Denmark, Kluwer Academic Publishers, Dordrecht, pp. 391–410.

Radding, A.: 1999, Join The Team,InformationWeek Online. October 4 [last visited July 7, 2000].
URL: http://www.informationweek.com/755/55adtea.htm

Ramampiaro, H. and Nygård, M.: 1999, Cooperative database systems: A constructive review of cooperative
transaction models,in Y. Kambayashi and H. Takakura (eds),Proceedings of the 1999 International
Symposium on Database Applications in Non–Traditional Environments, DANTE ’99, Kyoto, Japan,
IEEE Computer Society Press, Los Alamitos, California, pp. 315–324.

Ramduny, D., Dix, A. and Rodden, T.: 1998, Exploring the design space for notification servers,in CSCW’98
(ed.),Proceedings of the Conference on Computer Supported Cooperative Work, Seattle, Washington,
USA, ACM Press, New York, pp. 227–235.

Rein, G. L. and Ellis, C. A.: 1991, rIBIS: A Real–Time Groupware Hypertext System,International Journal
of Man Machine Studies34(3), 349–368.

Rittel, H.: 1972, Structure and Usefulness of Planning Information Systems,Bedriftsøkonomen34(8), 398–
401.

Robertson, T.: 1996, Embodied Actions in Time and Space: The Cooperative Design of a Multimedia,
Educational Computer Game,Computer Supported Cooperative Work: The Journal of Collaborative
Computing5(4), 341–367.

Robinson, M.: 1991, Double–Level Languages and Co–operative Working,AI & Society: The Journal of
Human and Machine Intelligence5(1), 34–60.



BIBLIOGRAPHY 265

Robinson, M.: 1993, Design for unanticipated use.....,in De Michelis et al.(1993), pp. 187–202.

Robinson, M. and Bannon, L.: 1991, Questioning Representations,in Bannon et al.(1991), pp. 219–233.

Rodden, T.: 1991, A survey of CSCW systems,Interacting with Computers3(3), 319–353.

Rodden, T.: 1996, Populating the Application: A Model of Awareness for Cooperative Applications,in
Ackerman(1996), pp. 87–96.

Rodden, T., Mariani, J. A. and Blair, G.: 1992, Supporting Cooperative Applications,Computer Supported
Cooperative Work: An International Journal1(1–2), 41–67.

Rogers, Y.: 1993, Coordinating Computer–Mediated Work,Computer Supported Cooperative Work – An
International Journal1(4), 295–315.

Rolland, C., Chen, Y. and Fang, M. (eds): 1998,Proceedings of the IFIP TC8/WG8.1 Working Conference
on Information Systems in the WWW Environment, Beijing, China, Chapman & Hall.

Rømma, F. and Skjønhaug, S. T.: 2000,Design and implementation of SWAL (tentative title), Master’s thesis,
Norwegian University of Science and Technology.

Roseman, M. and Greenberg, S.: 1996, TeamRooms: Network Places for Collaboration,in Ackerman(1996),
pp. 325–333.

Sande, A. M. T.: 1998,Support for collaborative design in contemporary CASE tools – framework and
evaluation, Master’s thesis, Norwegian University of Science and Technology, IDI, NTNU, Trondheim,
Norway.

Schmidt, K. and Bannon, L. J.: 1992, Taking CSCW Seriously – Supporting Articulation Work,Computer
Supported Cooperative Work – An International Journal1(1–2), 7–40.

Schmidt, K. and Rodden, T.: 1996, Putting it all Together: Requirements for a CSCW Platform,in Shapiro
et al.(1996), chapter 11, pp. 157–175.

Scḧon, D. A.: 1983,The Reflective Practitioner – How Professionals Think in Action, Basic Books, New
York.

Segall, B. and Arnold, D.: 1997, Elvin has left the building: A publish/subscribe notification service with
quenching,Proceedings AUUG97, Brisbane, Australia.
URL: http://www.dstc.edu.au/Elvin/doc/papers/auug97/AUUG97.html

Seltveit, A. H.: 1994,Complexity reduction in information systems modelling, PhD thesis, The Norwegian
Institute of Technology, Univ. Trondheim.

Shapiro, D., Tauber, M. and Traunmüller, R. (eds): 1996,The Design of Computer Supported Cooperative
Work and Groupware Systems, Elsevier Science.

Sharon, D. and Bell, R.: 1995, Tools that Bind: Creating Integrated Environments,IEEE Software12(2), 76–
85.

Sharples, M. (ed.): 1993,Computer Supported Collaborative Writing, Springer–Verlag.

Shim, H. S., Hall, R. W., Prakash, A. and Jahanian, F.: 1997, Providing Flexible Services for Managing
Shared State in Collaborative Systems,in Hughes et al.(1997), pp. 237–252.

Signer, B., Erni, A. and Norrie, M. C.: 2000, A Personal Assistant for Web Database Caching,in Wangler
and Bergman(2000), pp. 64–78.

Sikkel, K.: 1997, A Group–based Authorization Model for Cooperative Systems,in Hughes et al.(1997),
pp. 345–360.

Simone, C. and Bandini, S.: forthcoming, Integrating awareness in cooperative applications through the
reaction–diffusion metaphor. Unpublished article.



266 BIBLIOGRAPHY

Sivesind, L. E. and Grimstad, I.: 1997, Distance Education on the Internet – Courses in Aquarius,Technical
report, Norwegian University of Science and Technology.

Sølvberg, A.: 2000, Co-operative Concept Modeling,in S. Brinkkemper, E. Lindencrona and A. Sølvberg
(eds), Information Systems Engineering – State of the Art and Research Themes, Springer, Berlin,
pp. 305–317.

Sølvberg, A. and Kung, D. C.: 1993,Information Systems Engineering – An Introduction, Springer–Verlag.

Sommerville, I.: 1992,Software Engineering, Addison–Wesley, Reading, Mass.

Sommerville, I. and Rodden, T.: 1993, Environments for Cooperative Software Development,Conference X,
IEEE Computer Society Press, pp. 144–155.

Spellman, P. J., Moiser, J. N., Deus, L. M. and Carlson, J. A.: 1997, Collaborative Virtual Workspace,in
Hayne and Prinz(1997), pp. 197–203.

Star, S. L. and Griesemer, J. R.: 1989, Institutional Ecology: ’Translations’ and Boundary Objects: Amateurs
and Professionals in Berkeley’s Museum of Vertebrate Zoology,Social Studies of Science19, 387–420.

Suchman, L.: 1997, Centers of Coordination: A Case and Some Themes,in L. B. Resnick, R. S̈aljö, C. Pon-
tecorvo and B. Burge (eds),Discourse, Tools, and Reasoning – Essays in Situated Cognition, Springer,
Berlin, chapter 2, pp. 41–62.

Taivalsaari, A. and Vaaraniemi, S.: 1997, TDE: Supporting Geographically Distributed Software Design
with Shared, Collaborative Workspaces,in A. Olivé and J. A. Pastor (eds),Proceedings of the 9th
International Conference on Advanced Information Systems Engineering, CAiSE’97, Barcelona, Spain,
number 1250 inLecture Notes in Computer Science, Springer, pp. 389–408.

Tang, J. C.: 1991, Findings from observational studies of collaborative work,International Journal of Man–
Machine Studies34(2), 143–160.

Tang, J. C. and Leifer, L. J.: 1988, A Framework for Understanding Workspace Activity of Design Teams,
in CSCW’88(1988), pp. 244–249.

Tellioǧlu, H. and Wagner, I.: 1997, Negotiating Boundaries – Configuration Management in Software De-
velopment Teams,Computer Supported Cooperative Work: The Journal of Collaborative Computing
6(4), 251–274.

Tichy, W.: 1985, RCS: A System for Version Control,Software Practice and Experience15(7), 637–654.

Trevor, J., Koch, T. and Woetzel, G.: 1997, Meta Web: Bringing synchronous groupware to the World Wide
Web,in Hughes et al.(1997), pp. 65–80.

Trigg, R. H. and Bødker, S.: 1994, From Implementation to Design: Tailoring and the Emergence of Sys-
tematization in CSCW,in Furuta and Neuwirth(1994), pp. 45–54.

Turner, J. and Kraut, R. (eds): 1992,Proceedings of the Conference on Computer–Supported Cooperative
Work, CSCW’92, Toronto, Canada, ACM Press, New York.

Vessey, I. and Sravanapudi, A. P.: 1995, CASE Tools as Collaborative Support Technologies,Communica-
tions of the ACM38(1), 83–95.

Walz, D. B., Elam, J. J. and Curtis, B.: 1993, Inside a software design team: Knowledge acquisition, sharing,
and integration,Communications of ACM36(10), 63–77.

Wangler, B. and Bergman, L. (eds): 2000,Proceedings of the 12th International Conference on Advance
Information Systems Engineering, CAiSE’2000, Stockholm, Sweden, number 1789 inLNCS, Springer,
Berlin.

Wastell, D. G.: 1993, The Social Dynamics of Systems Development: Conflict, Change and Organizational
Politics, in S. Easterbrook (ed.),CSCW: Cooperation or Conflict, Springer–Verlag, chapter 2, pp. 69–
91.



BIBLIOGRAPHY 267

Waterson, P. E., Clegg, C. W. and Axtell, C. M.: 1997, The dynamics of work organization, knowl-
edge and technology during software development,International Journal of Human–Computer Studies
46(1), 79–101.

Winograd, T. and Flores, F.: 1986,Understanding Computers and Cognition – A New Foundation for Design,
Ablex Publishing Corporation, Norwood, NJ.

Wulf, V.: 1995, Negotiability: A Metafunction to Tailor Access to Data in Groupware,Behaviour & Infor-
mation Technology14(3), 143–151.



268 BIBLIOGRAPHY



List of Figures

1.1 Research contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Duality of systems specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 A product within a social environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Domain knowledge types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Knowledge creation in product development. . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 An overview of the end-product of ALPHA. . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.6 The creation of product structure in ALPHA.. . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1 Fuggetta’s CASE classification framework. . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2 ECMA reference model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3 Grudin’s time/space taxonomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4 Rodden’s application-level classification. . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Ellis et al.’s groupware classification dimensions. . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Parallel development in ClearCase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.7 MetaEdit+ user interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.8 TDE client user interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.9 BSCW WWW user interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.10 CBE user interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.11 TeamWave client user interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.12 Orbit Gold client user interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Spatial frames, embodiment and positions in a spatial model of interaction.. . . . . . . . . 85
4.2 Aura and focus in the spatial model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3 A comparison of awareness support in different systems.. . . . . . . . . . . . . . . . . . . 90
4.4 A comparison of shared interaction support. . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5 Product-based shared interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.6 An example shared product space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7 Views into the shared product space.. . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

5.1 The relations between concepts, specifications, and implementations underlying the IGLOO
framework.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

5.2 The three layers in the IGLOO framework. . . . . . . . . . . . . . . . . . . . . . . . . .107
5.3 Choosing between background monitoring mode and focused task mode in MultiCASE.. . 111
5.4 The user interface of the editor window in MultiCASE.. . . . . . . . . . . . . . . . . . . . 113
5.5 Changing the properties of a product object in MultiCASE.. . . . . . . . . . . . . . . . . . 115
5.6 Element-based locking in MultiCASE allows high degree of flexibility.. . . . . . . . . . . 116
5.7 Pop-up menus in MultiCASE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118



270 LIST OF FIGURES

5.8 An IGLOO network.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

6.1 A shared space can increase awareness and support opportunistic communication.. . . . . . 124
6.2 Overview of the services provided by the Product Layer.. . . . . . . . . . . . . . . . . . . 125
6.3 Creating a shared product space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
6.4 Different views of a product object. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
6.5 Relations in Product Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128
6.6 Product awareness mechanisms in Product Layer.. . . . . . . . . . . . . . . . . . . . . . .133
6.7 Subscribing to awareness schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
6.8 The different parts of an awareness subscription.. . . . . . . . . . . . . . . . . . . . . . .138
6.9 Using notification servers to support awareness.. . . . . . . . . . . . . . . . . . . . . . .142
6.10 The internal architecture of Gossip.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
6.11 The format of a Gossip event. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

7.1 Shared product space vs. centers of interaction. . . . . . . . . . . . . . . . . . . . . . . .152
7.2 Cluster Layer service overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
7.3 Clusters are views into a shared product space. . . . . . . . . . . . . . . . . . . . . . . .154
7.4 Relation between a cluster and the shared product space. . . . . . . . . . . . . . . . . . . 155
7.5 Details of the relation between clusters and the shared product space. . . . . . . . . . . . . 157
7.6 Customizing a cluster’s contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
7.7 The overall architecture of CoClust.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169
7.8 Overview of cluster sharing and product awareness in Cluster Layer.. . . . . . . . . . . . . 171

8.1 Clusters within workspaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176
8.2 Workspace Layer services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177
8.3 Shared workspaces in Workspace Layer. . . . . . . . . . . . . . . . . . . . . . . . . . . .178
8.4 SWAL as a generic shared workspace server. . . . . . . . . . . . . . . . . . . . . . . . .187
8.5 The overall architecture of the SWS server.. . . . . . . . . . . . . . . . . . . . . . . . . .188

9.1 An IGLOO instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194
9.2 Integrating existing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199
9.3 IGLOO deployment overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
9.4 A configuration of layer servers.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204

10.1 ALPHA’s deployment process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208
10.2 Web client architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213
10.3 ALPHA’s generic product space manager. . . . . . . . . . . . . . . . . . . . . . . . . . .215
10.4 ALPHA’s product object modifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216
10.5 A discussion Web client. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217
10.6 Product space browser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219
10.7 ALPHA Cluster browser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226
10.8 Advanced product space browser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
10.9 UML editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228
10.10ALPHA’s IGLOO network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230

A.1 Information objects in ICE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246
A.2 A Web–based interface to a workspace. . . . . . . . . . . . . . . . . . . . . . . . . . . .249
A.3 Object Manipulation Agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252
A.4 User interface objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254



List of Tables

1.1 Developed systems and their properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Three properties of products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Elements of workspace awareness. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 ALPHA mailing lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 ALPHA product objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5 Requirements for product development environments. . . . . . . . . . . . . . . . . . . . . 43

3.1 CASE product types for production process. . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Groupware equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Evaluation of systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 Product Layer’s shared product space services. . . . . . . . . . . . . . . . . . . . . . . .129
6.2 Product Layer services related to product awareness configuration. . . . . . . . . . . . . . 136
6.3 Product Layer subscription services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
6.4 Product Layer community services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140
6.5 Gossip event types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147

7.1 Cluster Layer’s cluster management services. . . . . . . . . . . . . . . . . . . . . . . . .159
7.2 Cluster Layer’s cluster object services. . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
7.3 Cluster Layer’s cluster relation services. . . . . . . . . . . . . . . . . . . . . . . . . . . .162
7.4 Cluster Layer’s query services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164
7.5 Cluster Layer’s communication services. . . . . . . . . . . . . . . . . . . . . . . . . . .167

8.1 Workspace Layer shared workspace services. . . . . . . . . . . . . . . . . . . . . . . . .180
8.2 Workspace Layer informal objects services. . . . . . . . . . . . . . . . . . . . . . . . . .181
8.3 Workspace Layer inhabitant services. . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
8.4 Workspace Layer cluster container services. . . . . . . . . . . . . . . . . . . . . . . . . .184
8.5 Workspace Layer shared workspace services. . . . . . . . . . . . . . . . . . . . . . . . .185

9.1 Incremental deployment trade–offs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .206

10.1 ALPHA’s organizational vocabulary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210
10.2 ALPHA’s refined organizational vocabulary. . . . . . . . . . . . . . . . . . . . . . . . . .221
10.3 ALPHA’s basic local vocabulary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222
10.4 ALPHA’s UML vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
10.5 ALPHA’s basic workspace vocabulary. . . . . . . . . . . . . . . . . . . . . . . . . . . .224
10.6 Meeting ALPHA’s requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231



272 LIST OF TABLES



Index

ALPHA, 1, 24–41
aquaculture,25

aquaculture,seeALPHA, aquaculture
awareness,87–89

aura,87
event,87
focus,88
organizational,89
peripheral,88
processes,87

consumption,87
distribution,87
production,87

awareness engine,141
awareness information,21, 42

Basic Support for Cooperative Work,seeBSCW
boundary object,seeproduct, as boundary object
BSCW,68–70, 91

CASE,41, 54, 48–56, 63, 93
MetaEdit+,seeMetaEdit+
TDE, seeTDE

CBE,70–73, 91
center of interaction,6, 23, 42, 94, 98, 151, 175

boundary,23
deep properties,99
medium,24, 99
periphery,23
shallow properties,99
view, 98

ClearCase,59, 93
ClearCase MultiSite,60
Cluster Layer,109, 151–174

cluster,109, 119, 151, 153, 195
cluster object,155
cluster object attribute,156
cluster relation,155
cluster relation attribute,156
deep attribute,156

services
Cluster management and customization

services,158–166
Communication services,166–167
Product Layer services,167–168

shallow attribute,156
CM, 59–63, 93

ClearCase,seeClearCase
CoClust,168–173, 192

active cluster,168
active cluster space,168
Cluster Database,168
Cluster manager,170
cluster replica,169

local,169
master,169

cluster synchronizer,170
CoClust client extension,170
CoClust server,168
inactive cluster,168
product synchronizer,170

Collaboratory Builder’s Environment,seeCBE
Computer Aided Software Engineering,seeCASE
Computer Aided Systems Engineering,seeCASE
Computer Assisted Software Engineering,seeCASE
configuration management,seeCM
consequential communication,20
control,1, 53
cooperation,1

control,1, 53
cooperation technologies,56–59
cooperative product development,12
coordination mechanism,seeproduct, as coordi-

nation mechanism

deployment,seeIGLOO deployment process
developer,12
domain knowledge,15
double-level language,21



274 INDEX

ECMA, 52
embodiment,83

in physical space,21
end-product,11
European Computer Manufacturers Association,

seeECMA
executable software,11
externalized knowledge,seeproduct, as external-

ized knowledge

Gossip,129, 141–149, 192
awareness agent,144
consumer client,142
Content Database,142
Gossip client extension,146
Gossip event,142–144
Gossip network protocol,143, 144
Gossip operation,142
Internal Notification Bus,144
notification,141
Notification Manager,144
producer client,142
Product Object Register,142
Receiver,143
Relation Register,142
request,143
Request Manager,143
Sender,144
Subscription Register,143

groupware,seecooperation technologies,47

IBIS, 22, 69
ICASE,51
ICE, 5, 30, 39, 243–256
identified locks,64
IGLOO, seeIGLOO framework
IGLOO deployment process,7, 121, 191–205

activities,195–199
defining awareness policies,197
defining the different vocabularies,195
developing specialized clients and workspaces,

198
architectural issues,203–205

layer server,204
generic clients,203
IGLOO client,191
IGLOO network,191

manipulating,193
populating,193
upgrading,201

incremental deployment,200–203
framework development phase,200
horizontal,200
instantiation phase,200
usage phase,200
vertical,200

incremental integration,193
instance,191, 193

awareness policy,193
client,194
refining,199, 202
vocabulary,193

IGLOO framework,3, 6, 105–121, 192
deployment process,seeIGLOO deployment

process
generic implementation,4, 105, 192, 200

CoClust,seeCoClust
Gossip,seeGossip
SWAL, seeSWAL

IGLOO client,106, 120
IGLOO network,6, 120
service layer,6, 105

Cluster Layer,seeCluster Layer
Product Layer,seeProduct Layer
Workspace Layer,seeWorkspace Layer

incremental integration,43
incremental refinement,41
Information Lens,202
Integrated CASE,seeICASE
Integrated Project Support Environment,seeIPSE
intentional communication,20
IPSE,51
Issue-Based Information System,seeIBIS

MASSIVE, 91
MetaEdit+,63–65, 93
MultiCASE, 110–119

notification server,141

opportunistic communication,43
Orbit, 75–78, 92
Orbit Gold,seeOrbit
OVAL, 202

participant awareness information,100
physical space,19
product,11, 192

as boundary object,17–18, 41
as coordination mechanism,18–19



INDEX 275

as externalized knowledge,14–17
product development project,12
product awareness,96, 100–102, 108

awareness event,100
direct,100
mediated,100

awareness relation,98
interaction types,101
strength factor,101

mediation,98, 134
mediated product awareness,101
mediation path,101, 134
recursive mediation,101

participant awareness,102
product awareness information,96, 100
product development activity,12
product development environment,12
product development group,12
product knowledge,15

externalized product knowledge,16
working product knowledge,16

Product Layer,108, 123–149
awareness subscription,132, 137

awareness scheme,135, 194
participant awareness,137
watch list,132, 137

instant message,140
participant awareness event,140
product awareness event,109, 131

direct,132
mediated,132

services,123, 125
community services,140–141
product awareness services,131–139
shared product space services,126–131

shared product space,123
product object attribute,126
operation-strength,134
product object,123, 126
product object content,128
relation,123
relation attribute,129

product object,12, 192
product-based shared interaction model,6, 95–

103, 192
awareness,seeproduct awareness
center of interaction,seecenter of interac-

tion
shared product space,seeshared product space

RCS (Revision Control System),60
relation,12, 192

SEE,48
shared interaction,81

awareness,seeawareness,82, 87–89
awareness information,82
shared space,82, 83–86

boundary,82
embodiment,83
position,83
size,82
structure,82

state information,82
support for cooperation,89

shared interaction model,82
heuristics,82
locale,92–93
product development environments,93–94
product-based,seeproduct-based shared in-

teraction model
room-based,91–92
spatial,84, 91

shared product space,6, 41, 94, 97–100, 108, 118
consumer,97
producer,97
product object,97, 108
relation,97, 108

awareness,seeproduct awareness
conceptual,98
destination,98
source,98

shared workspace application,67–78
BSCW,seeBSCW
CBE,seeCBE
MultiCASE, seeMultiCASE
Orbit, seeOrbit
TeamWave,seeTeamWave

social environment,12
Software Engineering Environments,seeSEE
SWAL, 186–189, 192

active workspace,187
active workspace space,187
inactive workspace,187
SWAL client extension,187, 189
SWAL server,187
workspace database,187
Workspace Manager,187
workspace replica,187

local,188



276 INDEX

master,187
workspace synchronizer,188

TDE, 65–67, 91, 93
TeamRooms,seeTeamWave
TeamWave,73–75, 91
tool integration,51–53

UARC, 70
Upper Atmospheric Research Collaboratory,see

UARC

version control,seeCM

Workspace Layer,109, 175–189
cluster container,178
informal object,109, 175, 177
inhabitant,109, 175, 177
services

Cluster services,184–185
Informal object services,181–183
Inhabitant services,183–184
Query services,185–186
Shared workspace services,180–181

shared workspace,109, 119, 175


	Introduction
	Research Questions
	Approach
	Background
	Contributions
	The Structure of the Thesis

	Cooperative Product Development
	Introduction
	Cooperative Product Development
	The properties of the product
	Product is externalized knowledge
	Product is boundary object
	Product is coordination mechanism

	Utilizing the properties in co-located settings
	Continuous access to product
	Flexible access to product
	Customized access to product


	Impact of Geographical Distribution: A Case Study
	Settings for the study
	Project participants
	Cooperation infrastructure
	The product
	The method of the study

	Observations
	Sharing product-related information
	Communication about the product
	Cooperation in performance of specific tasks
	Decentralized control and diversity of skills

	Discussion
	Lack of continuous access to the product
	Difficulty of flexible interaction with the product
	Difficulty of customized interaction with the product
	Advantages of using WWW and mailing lists


	Requirements for Support Environments
	Summary

	State of the Art
	Introduction
	Computer Aided Software Engineering: An Overview
	Integration in SEE and CASE
	Supporting vs. controlling cooperation
	Limited cooperation support in contemporary CASE tools

	Cooperation Technologies: An Overview
	Systems for Cooperative Product Development
	Configuration management tools
	CASE tools
	MetaEdit+
	TDE

	Shared workspace applications
	BSCW
	CBE
	TeamWave
	Orbit Gold

	A comparison of the studied systems

	Summary

	A Model for Shared Interaction
	Introduction
	Shared Interaction: A Definition
	Elements of a Shared Interaction Model
	The shared space
	Awareness
	Support for cooperation

	A Comparison of Some Existing Models
	The spatial model of interaction
	The room--based model of interaction
	The locale model of interaction
	Shared interaction in product development environments
	An evaluation of the models

	A Product--based Shared Interaction Model
	Support for shared space
	Support for awareness
	Support for cooperation

	Summary

	The IGLOO Framework
	Introduction
	The IGLOO Components
	An Example IGLOO Client: MultiCASE
	Meeting in a shared workspace
	Editing the product
	Interacting with composite products
	IGLOO functionality in MultiCASE

	Creating an IGLOO Network
	Summary

	Product Layer
	Introduction
	Services of Product Layer
	Shared product space services
	Product awareness services
	Awareness configuration services
	Awareness subscription services

	Community services

	The Implementation of Product Layer: Gossip
	An overall view of Gossip
	Gossip network protocol
	Gossip client extension
	Gossip's internal consistency
	The implementation of Gossip

	Summary

	Cluster Layer
	Introduction
	Clusters, Cluster Objects and Cluster Relations
	Services of Cluster Layer
	Cluster management and customization services
	Communication services
	Product Layer services

	The Implementation of Cluster Layer: CoClust
	An overall view of CoClust
	CoClust client extension
	CoClust's internal consistency

	Summary

	Workspace Layer
	Introduction
	Shared Workspaces and Their Contents
	Services of Workspace Layer
	Shared workspace services
	Informal object services
	Inhabitant services
	Cluster services
	Query services

	The Implementation of Workspace Layer: SWAL
	An overall view of SWAL
	SWAL client extension

	Summary

	Deploying IGLOO Framework
	Introduction
	The Instance
	Activities in the Deployment Process
	Incremental Deployment
	The role of specialized clients in incremental deployment

	Architectural Features
	Summary

	Evaluating IGLOO Framework
	Introduction
	Step 1: Initial Deployment
	Defining the organizational vocabulary
	Defining the awareness policies
	Developing specialized clients
	The Web-based clients
	Java-based clients


	Step 2: Enhancing the Cooperation Support
	Refining the vocabularies
	Refining the awareness policies
	Developing specialized clients
	Modifying the existing Product Layer clients
	Web-based Cluster Layer clients
	The Java-based clients


	Evaluation
	Meeting the requirements
	A comparison to other systems
	The cost of deploying IGLOO

	Summary

	Conclusions and Future Research Directions
	Introduction
	Answering the Research Questions
	Major Contributions
	Directions for Future Research
	Implementing a suite of IGLOO clients
	Improving the generic implementations
	Empirical testing of example IGLOO networks
	Integration with existing CASE tools and methods


	A Description of ICE
	Introduction
	ICE building blocks
	Information objects
	Collaboration objects
	User interface objects

	ICE functionality
	Tailorability in ICE
	Support for development process
	An example of using ICE

	ICE architecture
	ICE objects
	Inter--object communication
	Access control in ICE
	Email interface to ICE

	Related research
	Conclusions and further work
	Acknowledgement


