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Abstract

The goal of this thesis is to investigate methods for computerized tutoring sup-
port that is adapted to the individual student. In particular, we are concerned
with providing such assistance to students solving exercises in domains where
a complete or accurate problem-solving model is infeasible. We propose to do
this by using concept maps as a means for students to model their own knowl-
edge. Combined with results from earlier exercises, the concept map can form a
student model that can be used in exercise selection, conceptualization support,
and exercise solving support.

The thesis presents a framework for comparing exercise-oriented intelligent
tutoring systems, and uses this framework to describe and analyze earlier sys-
tems, as well as our own system, CREEK-ILE. The CREEK-ILE system includes
a formalization of a knowledge representation designed to support reasoning
with concept maps, and methods for using case-based reasoning with concept
maps as student models. A partial implementation of CREEK-ILE designed to
support learning of basic Java computer programming is presented. This imple-
mentation is used in an experiment to test if students' concept maps, created
before an exercise, can be used to predict the students' level of competence on
the exercise tasks. The conclusion of these experiments is that although there
is a weak correlation, it is not strong enough to serve as a good basis for exer-
cise selection. However, concept maps in student modeling is useful for other
tutoring tasks, such as conceptualization support, vocabulary learning and as
basis for explanations.

An initial qualitative study on the e�ect of using inference on concept maps
is also performed. This study is done by using the concept maps drawn by stu-
dents in the experiment, and shows that inference can reveal implicit knowledge
in students' concept maps. We demonstrate how this implicit knowledge can
be used in various tutoring tasks supported by concept maps, for instance by
increasing the quality of concept map similarity measures.
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Chapter 1

Introduction

In the last decades, we have seen computers emerged to change how we work
and play. The ability of computers in a network to provide easy access to
information and information processing has left few occupations entirely the
same. In education, computers have been introduced as administrative tools, for
instance in maintaining student and employee records, and they have slowly been
taken up by teachers and students as tools to help �nd and organize information.
Students can, for instance, search for information for a school project on the
World Wide Web, or type a report in a word processor. The increasing reliance
on computers by society and employers has also led many to believe computer
literacy should be a subject for education in school in order to ensure that
everyone has the basic knowledge required to participate in tomorrow's work
environments and civil society. However, in most educational systems students
still get most of their exposure to computers through other venues than schools.
The reasons for this are many, among them that schools cannot a�ord enough
computers to give reasonable coverage to the student population, and that many
teachers lack the knowledge themselves to use the computers e�ectively. Even
if we imagine that a school had enough computers for everyone, and that the
teachers at this school were computer savvy, it still is not clear how computers
on every desk can help students to learn and teachers to teach. In language
classes, a word processor might serve as a writing tool for reports, but does it
help students to read and write better? In a math class, can they ease the task
of learning how to solve equations? Is history, geography or science easier to
teach somehow, with the help of a computer?

Many teachers are skeptical about the value of a computer on every stu-
dent's desk, and argue that the computer does not assist in the primary task
{ learning, and as a tool the computer is more distracting than valuable. We
might not entirely agree with this position, but recognize that there is an im-
portant point in this argument { in schools, computers are almost never used
as tools for learning, but used in lower-level subtasks that are sometimes re-
quired in the learning process, such as writing a report. To many teachers,
these subtasks are not seen as problematic areas in the �rst place, and they
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thus question the wisdom in investing heavily in computer equipment to solve
them . Problematic areas might be such things as classroom discipline, pacing
the curriculum and providing assistance to students with a wide range of ability
and prior knowledge.

It is certainly possible to create computer software that addresses the learn-
ing task directly { most computer software stores have a section dedicated to
things such as spelling- and math-games, and interactive environments designed
to help you learn a language. Such software is sometimes used in school as well,
although it seems it is usually used ad hoc as an addition to the regular cur-
riculum, and viewed almost as a break from the real learning. If computers can
be integrated in the pedagogical strategy of the teacher, and they usefully ad-
dress a problem of institutionalized learning, it seems their usefulness would be
much greater. It is not apparent to us how computers may help with classroom
discipline or social problems, and deciding the overall curriculum is probably
best left to the teahcer, but it seems computers may be useful in providing cus-
tomized support to students. While students di�er in their prior knowledge and
ability, teaching cannot be tailored to the ability of every single student as there
is usually only one teacher per class. Typically, students ahead of the class are
bored and the students lagging may be left behind.

The research on intelligent tutoring systems (ITS) attempts to make systems
that address this problem by having the computer program assist the student
in a way tailored to that student's ability. Teachers have always done this, but
because they have many students in a class, their time with each student is
limited. Intelligent tutoring systems attempt to be the student's own teaching
assistant, always there if the student needs help or is stuck. This is typically done
by using arti�cial intelligence techniques to actively model what the student
knows so that the system can, to some degree, understand how the student
thinks and where he might go wrong. Some ITSs even actively monitor problem-
solving by students and pro-actively take the initiative to correct mistakes and
clear up misconceptions.

In this research, we address intelligent tutoring systems that are used to aid
students in solving exercises. In particular, we would like to examine how this
may be accomplished in domains that are not well enough understood to make
it possible or feasible to model the problem solving activity completely. This
means that while the ITS itself may be unable to solve all problem in this area,
it is still expected to provide support customized to the individual student.

A classic approach to exercise support attempts to form a cognitive model on
how a student solves (and is supposed to solve) problems by using, for instance,
rules in a manner similar to rule-based expert systems. If an accurate model of
the student's as well as an expert's reasoning process is available, advice can be
formed by looking at how the student's thinking varies from the expert's. This is
generally known as student modeling. This knowledge about the student allows
the system to tailor the tutoring to the individual system { a capability that has
generally been seen as what separates ITS systems from other computer-assisted
education software.

In order to customize the experience for the individual student, the tutoring
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system must have some knowledge about the competence of the student even if
it is not complete. It is possible to avoid modeling the complete problems solving
process of an individual and still have some knowledge about the competence
of a student. Indeed, this is done extensively in education { for instance, most
standardized tests administered in schools (e.g. multiple choice tests) do not
consider the problem solving process, only the answer given by the student.
However, many ITS systems wish to diagnose faults in the student's reasoning
process, and for this purpose, answer evaluation is often insu�cient. On the
other hand, complete student modeling is either impractical or intractable in
many domains [71]. Indeed, many domains lack good models of expert behavior,
which is a prerequisite.

This thesis will examine if it is possible to support exercise solution with-
out a complete domain model by approaching the task both from above and
below in terms of abstraction. This means that instead of modeling accurately
how problems are solved, a more abstracted, conceptual model may be used to
support high-level tasks such as exercise selection and vocabulary formation.
On the lower level tasks, such as assisting a student while solving the exercise,
episodic knowledge such as concrete problem-solving traces may be used. While
none of these models contain a complete model of how problems are solved,
together they may assist the student in forming such a model, and customize
the tutoring experience while doing so. In many domains, these models are also
much easier to acquire.

On the conceptual level, this thesis suggests using concept maps [56] as an
approach to allow the student to model his own knowledge on a topic. Concept
maps (sometimes known as mind maps or topic maps) are graph-like structures
where concepts are represented by nodes, which are related by labeled links.
Concept maps have been shown to correlate highly with multiple choice tests
when used as assessment tools, but the use of the approach in ITS has been
limited, especially in student modeling. The reason for this may be that the use
of assessment tools such as concept maps or multiple choice tests does not focus
on the procedural level. This makes it harder to diagnose procedural problems
and clearly makes it harder to suggest procedural improvements. On the other
hand, the approach does not require a complete model of the domain, and allows
the student greater exibility in constructing his own model. We believe that
this means that while concept maps may be useful for higher level tasks such
as suggesting exercises or explaining the di�erence between two concepts, they
are likely of limited use in lower level tasks, such as helping a student that is
stuck while solving an exercise.

The lower level tasks are generally harder to support without a more com-
plete model of the domain, but we suggest that advice may be provided if the
system already knows one or more solutions to the concrete problem faced by
the student. If the problem is diagnostic in nature, the system may for instance
suggest important features or a set of possible diagnoses. If it is a planning
problem, the system may o�er partial plans that help the student. These mea-
sures of assistance can be o�ered even if the system does now know how to
solve the problem from basic principles, because it can reuse the cases where
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the problem has been solved before. This is not an unlikely scenario in tutoring,
as many students typically face the same problem, and there may also exist one
or more solutions made by teachers or experts. An obvious limitation of this
approach is that the system is not able to provide customized explanations for
the reasoning behind the advice it o�ers as it has not done this reasoning itself.

The goal of this thesis is to examine how to support learning tasks where
a procedural level cognitive model is unavailable. Speci�cally, we attempt to
model student conceptual knowledge in the form of concept maps, and episodical
knowledge in the form of cases, and see how these knowledge sources can form a
basis for providing tutoring support that is tailored to the student. This also has
the advantage of tying together exercises with the more theoretical conceptual
knowledge.

1-1 Background

1-1.1 AI in Education Software

The most straight-forward form of computer-aided instruction (CAI) may be as
simple as placing the contents of a textbook in a computer. This gives some
bene�ts in that the computer medium is less restricted in the kind of content
it can deliver than a standard book { for instance, a computer textbook may
contain sound and video that are not easily delivered by a book. The computer
also allows the experience to be more interactive and di�erently structured, as
for instance in hypertext. Quite sophisticated tools have been commercially
available for some time to make such "electronic textbooks". These tools assist
authors in creating what can be quite complex and impressive content, and they
may also assist teachers in selecting and composing smaller instructional units
into a whole course.

The "electronic textbook" approach to computer-assisted teaching can be
very useful, but these systems are still like textbooks in that they are static
tools that deliver a very similar experience to all students. There is usually
little di�erentiation between how material is presented to students with di�erent
aptitude or background knowledge.

In contrast, the goal of intelligent tutoring systems (ITS) is to provide tutor-
ing that is tailored to the speci�c student by specifying what to teach and how
to teach [89]. This is typically done by using some kind of model of the domain
of discourse (the domain or expert model), a model of the learning process (the
pedagogical model) and a model of what the system believes each individual
student currently knows (the student model). These models take many forms,
and in actual systems may not be so easy to separate or identify, but may be
seen as a knowledge level construct [54] of what kind of knowledge the system
should have in order to tailor the learning.

The teaching philosophy underlying the intelligent tutoring system approach
is in its purest form based on an idea of knowledge communication { that is,
the process of teaching is that the knowledge of the expert (represented by the
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expert model) should be transferred to the student through a communication
channel. However, the communication channel is not perfect, and as in all com-
munication, misunderstandings and miscommunication appears on both ends of
the channel. Because of this, it is important that the tutoring system attempts
to identify these misconceptions and correct them, something that can only be
done if the system actively tries to model what the student knows. This view
of learning is based on a pedagogical approach often called instructional design.
The name refers to how school subjects traditionally have been made through
explicit design of a curriculum and teaching methodology down to a low level
of detail, either by course material such as textbooks and exercise sets or by
teachers. This idea that the teacher or some other expert should decide what
should be learned is an essential property of this approach. Even the earliest
intelligent tutoring system follows this approach implicitly, but it is perhaps
clearest formulated in "Arti�cial Intelligence and Tutoring: Computational and
Cognitive Approaches to Knowledge Communication" by E. Wenger [89].

In the last decades, the instructional design approach has been critiqued by
proponents of constructivism. The constructivists reject the view that learning
is communication of knowledge, and claim that a better model of learning is
that the learner himself constructs a model of the world that is somehow useful
to him, for instance in solving tasks the learner is faced with. The constructivist
approach is fundamentally skeptical to the implicit claim of the universal "ex-
pert model" that can be learned and usefully applied by anyone. Constructivists
often suggest that learning should happen in an apprentice setting, where the
learner sees not only why something is useful to learn, but learns it in a context
of real problem solving. In institutional education, this critique has resulted in
less focus on rote learning and more on forms of learning such as project learning
that attempt to highlight the real world context and focus on problem solving
skills. In computer tutoring systems, this critique has also coincided with a
realization that highly accurate student modeling is intractable in many, if not
most, domains [71]. There has been some very impressive successes using the
traditional ITS approach (e.g. the PACT Cognitive Tutors [13] and ELM [86]
systems, both reviewed in Chapter 4), but these are limited to well understood
and rather limited domains with formalized languages, such as mathematics or
computer programming. Many, if not most tasks, are not naturally limited to
formal languages and have complete theories on how problems are solved. For
instance, many skills rely on natural language understanding and formalization.
This has lead many to a somewhat less ambitious approach to AI in education
software, allowing more room for the student to explore and learn in a learning
environment while providing some level of support. For instance, the CATO
system [7], operates in the domain of law, speci�cally arguing court cases. This
system does not even attempt to model the student's knowledge, but provide a
environment where the student can explore, and the system is able to dynami-
cally produce arguments that serves as examples for the student that illustrates
the structure of the argument. These systems do use arti�cial intelligence tech-
niques { CATO uses techniques based on case-based and model-based reasoning
to produce legal arguments { but they typically place more emphasis on provid-
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ing a learning environment than a knowledge transfer channel. Reecting this,
these systems often do not describe themselves as intelligent tutoring systems
(ITSs), but rather as interactive learning environments (ILEs). The approach
taken in this thesis is between these two. While we wish to address domains
where strong domain theories are not available, we believe that there is still
something to gain from using some level of student modeling to support learn-
ing tasks where possible. In the end, our approach is closer to the ILE appraoch,
but with aspirations of adopting some ITS strategies.

In the wake of the constructivist critiques of instructional design, the value
of learning by doing has been emphasized. This follows from the constructivist
belief in apprentice learning, where the student is faced with real problems
but assisted by an expert. This is often contrasted with the book learning of
instructional design. However, this is not an entirely fair duality. On some
level, learning by doing has always been present in school, such as by solving
exercises in mathematics and practicing language skills. There is however a
fundamental di�erence between the instructional design learning by doing and
constructivist learning by doing. The traditional exercises had as a goal to
test and operationalize pre-de�ned knowledge, while the constructivist learning
by doing is about allowing the student to form his own learning goals and
motivation by providing tutoring in a real-world context. Constructivists use
the term learning by doing strictly in this latter sense. However, the term has
been picked up and used by proponents of more traditional methods as well, and
in a broad sense, learning by doing can today be said to contain a spectrum from
traditional exercises to situated learning. This spectrum of learning by doing
approaches is also present in tutoring systems, and in Chapter 2, we survey the
tutoring systems that use AI techniques and operate within this broad view of
learning by doing.

1-1.2 Concept Maps

Concept maps (sometimes called topic maps or mind maps) were originally
designed as an educational aid to assist students in organizing the concepts in a
limited domain by connecting them with labeled links [56]. They have since been
widely used on many levels of education from elementary school to university
studies as an aid to help people conceptualize and organize their knowledge.
The concept maps looks similar to semantic networks (see Figure 1.1 for an
example), but while the goal of a knowledge representation in the AI sense is
to establish a common representation between human and computer [62], the
concept map is primarily meant as an aid in human learning, organization and
communication. Even when concept maps are represented through a computer
tool, the computer is not typically expected to understand the contents any more
than a word processor would understand a document. The word processor may
provide helpful tips (such as on spell checking in a word processor), but it is not
expected to reason over the contents.

Various styles of concept maps have been used and evaluated in a wide
variety of settings to present, organize and assess information. The technique
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Figure 1.1: A simple concept map: "Arrays in Java"

has also been used to support performance in business and government, for
instance in assisting knowledge management. For instance, Leake and Canas
et.al. [52, 47] have developed a case-based approach to use concept maps in
knowledge management. In this thesis, we will focus on using concept maps in
a tutoring context, but recommend [53] for a wider survey.

Concept Maps as Tools of Assessment

Concept maps were introduced by Novak as a way for students to organize their
knowledge about a particular topic in a free-form way [56]. Although some
simple rules is presented to limit the complexity and to help the student in
structuring the concepts, the student is essentially free to form any concepts
and links. Because a student's concept map is an expression of the student's
knowledge, Novak also suggested that the maps could be used to assess the
student's knowledge about a domain. The original proposal from Novak was
based on an expert (teacher) examining the concept map and awarding points
based on structure, inclusion of relevant concepts, relations and examples. This
and later point-based scoring techniques provide guidelines, but they depend
to some degree on the judgment of the evaluator and are hard to automate.
The completely free-form approach may well go some way towards supporting
the constructivist theory of education as it allows the student to form di�er-
ent conceptualizations of the domain, but it also means there are few ways of
constraining the student to the domain we wish to evaluate.

In order to guide the students towards modeling the intended topic, it is
normal for concept map based assessment tools to use a less free-form approach
to mapping. This may range from concept maps that are almost complete where
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Figure 1.2: Concept map techniques according to directedness of the mapping
task (adapted from [65, p.2])

the student's task is to �ll in missing links, link names or concept names, to
simply providing hints about the central concepts in the domain. Ruiz-Primo
[65] identi�es a scale from low to high directedness in the approach to concept
mapping (Figure 1.2).

The computational approaches to assessing concept maps tend to gravitate
towards the high directedness end of this scale. The most obvious reason for this
is that it is hard to automate the assessment of the concept map by computer
when the student is not constrained in some way. While constrained maps
do not necessarily make it possible to computationally "understand" the maps
on a semantic level, it makes it easier to compare concept maps syntactically.
This allows a computer system to compare concept maps created by students
to a teacher or expert map and thus grade it on the similarity to this map.
Researchers from CRESST (Center for Research on Evaluation, Standards and
Student Testing) have investigated computerized techniques using this approach
[58]. In their approach, the teacher will �rst draw a concept map for a topic,
and then the concepts and linking names are extracted from this map. The
students are then asked to form a map using the same concepts and link-names,
which greatly simpli�es computational scoring. This method corresponds to the
Construct-a-Map (Concepts & Linking Phrases Provided) on the middle of the
degree-of-directedness scale in Figure 1.2.

Concept Maps in ITS

Concept maps have been used and tested for many educational tasks, and there
exists quite a few computer tools to assist in building and maintaining concept
maps both for the individual and the organization. However, the uses of concept
maps in intelligent tutoring systems have been fairly limited. There has been a
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trend in ITS towards transparent student modeling, that is making the student
model accessible to the student. Some systems have used concept maps or
concept map inspired structures to help do this.

The ViSMod [93] system visualizes a student model based on Bayesian belief
networks as graph-like structure. However, in this system the student himself
does not create the graph, and as it is a visualization of a Bayesian belief net,
it has semantics tied to it that a concept map lacks. The same authors have
created the ConceptLab system [94], which is a computer-assisted educational
system for collaborative creation, browsing and learning concept maps. While
ViSMod is a tool for visualizing a student model in a more traditional intelligent
tutoring system, ConceptLab is more of a constructivist tool that underlies
the educational activity { it does not assist the student or teacher beyond the
activity of creating concept maps. In this regard, it is similar to the concept
map based knowledge management tool by Leake and Canas et.al. [52, 47], but
used in an educational context.

It has been shown that constrained concept maps may be used as assess-
ment tools for conceptual knowledge much in the same way as standard mul-
tiple choice tests. This suggests that it may also be possible for intelligent
tutoring systems to use student concept maps to assess the level of knowledge
of a student. Approaches reminiscent of multiple choice tests have been used
for this purpose for in computer-aided learning with the goal of seeding student
models, but concept maps have not been similarly used. We believe concept
maps should be possible to use to assess a student's conceptual knowledge in
an intelligent tutoring context, with the added bene�t that the concept maps
constrain the student's expression less than a multiple choice test. This has
both positive and negative sides. On the positive side is that this holds closer
to a constructivist ideal where the student is allowed greater freedom in express-
ing and modeling his beliefs. On the negative side, this extended freedom of
expression clearly makes it harder to interpret information that can be used by
the system. In order to use concept maps as student modeling tools, a balance
between expression and interpretability must be kept.

1-1.3 Case-Based Reasoning

In case-based reasoning (CBR), concrete, episodic experience from the past is
used to solve similar problems in the future. The reasoning process consists of
retrieving a set of similar cases to the current problem, reusing the solutions of
these cases and revising them to �t the current problem. The new problem can
the be retained in the case base as a new case, to be retrieved to solve future
problems [4].

A major advantage with CBR is that the method may be used in open
domains where problems cannot be solved through a well-described procedure
or algorithm in a computer. This may be because the domain theory is not
accurate enough for this kind of automation, or because the e�ort in knowledge
acquisition would be prohibitive. While CBR is presented by many as a way
to limit the knowledge acquisition e�ort, it does require a certain e�ort in this
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direction in order to �nd a good set of initial cases (case acquisition), a way
to compute the similarity between cases (similarity measure), how to represent
the problem well (case representation) and how to revise retrieved cases to a
slightly di�erent situation (case adaptation). However, the episodic nature of
cases allows them to capture tacit knowledge that has been harder to acquire
and capture in, for instance, rules.

An important distinction among CBR systems is the degree to witch the sys-
tem is knowledge-light or knowledge-intensive. In this distinction, knowledge
is meant to signify generalized knowledge, typically managed and stored by a
knowledge representation system such as description logic or a frame-based sys-
tem. Although the cases, similarity measure and adaptation procedure certainly
contain knowledge, the cases are typically limited to episodic knowledge and the
knowledge contained in the similarity measure and adaptation procedure are of-
ten embedded in program code. On one extreme end of the knowledge-light
scale, we �nd the instance-based methods such as the k-nearest neighbors al-
gorithms [5], and on the knowledge-intensive side we have systems that rely as
much on generalized knowledge as cases, such as SaxEx [17] and CREEK [3].

CBR in Tutoring

Case-based reasoning has been used in a wide variety of intelligent reasoning
systems. They are typically used as part of the student modeling process and
to assist the student in exercising some kind of operational skill. In some do-
mains, such as law and medicine, cases are an important part of the normal
problem-solving method. It makes sense to use a case-based approach to teach
these subjects, especially when assisting the student in solving exercises. The
CATO system [7, 8], helps the student form legal arguments by using a domain
model to �nd appropriate earlier cases to draw analogies from. The ELM sys-
tem [86] uses general knowledge about the domain (LISP programming) with
episodic knowledge about past student programs to identify errors and suggest
corrections. These systems are not only able to help the student �nd a solution
to the exercise he is trying to solve, but also help the student to identify par-
ticular problems he may have in solving the problem. While a knowledge-light
case-based reasoner also may be able to �nd a good solution to a problem, the
addition of a general domain model (e.g. the "Factor Hierarchy" in the CATO
system) increases the system's ability to help the learner understand why a past
case is relevant. These systems have a knowledge communication strategy that
allows the student to learn not only the particular solution to one problem, but
is also able to ground it in the theory of the domain.

Case-based reasoning can also be used in the student modeling part of an
ITS. The SARA system teaches a case-based reasoning approach by asking the
student to �nd and adapt similar problems, but also uses CBR in the student
modeling process. Typically, the approach in case-based student modeling is
to attempt to retrieve cases representing students that has already �nished the
course that are as similar to the current student as possible. This allows the
system to reuse experience from the earlier student, for instance by suggesting
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exercises the earlier student found challenging but not impossible [70].

Certainly, case-based tutoring seems a good �t to support problem-based
learning, where the idea is to expose the student to concrete problems in the
domain. Boylan et. al. [23] suggests that case-based tutoring systems also
come closer to supporting a more self-directed and constructivist approach to
learning than traditional ITS systems. Their BLITS system teaches business
letter composition through annotated examples instead of algorithmic rules.
While the system does its best to suggest (through examples and annotation)
that certain elements (such as a greeting phrase) should be present in such a
letter, it is up to the student to compose the letters. Case-based reasoners can
also make it possible to build intelligent tutoring systems in domains where it is
hard or impossible to build a model that can solve any problem in the domain.
This is also illustrated by BLITS, which itself is not able to create a business
letter, but its previous cases allows it to help the student by displaying similar
examples.

1-2 Research Goals

1-2.1 Student Modeling in Weak Theory Domains

The major motivation of the work in this thesis is to develop methods for ex-
ercise support in weak theory domains, where the method does not require a
complete cognitive model of how problems in the domain are solved. By com-
plete cognitive model, we mean that the computer can accurately solve new
problems within the problem space covered by the system and understand how
and why errors in reasoning from a student may arise. Successful systems that
rely on procedural-level cognitive modeling have been and are developed (see
e.g. the PACT Cognitive Tutors reviwed in chapter 4), but for many domains
cognitive models are infeasible or too expensive to create. Systems that rely
on a complete procedural-level mode are also typically very inexible in their
view of what to learn { there is really no room for the student to use di�erent
strategies or conceptualizations from what are contained in the system. Avoid-
ing the cognitive procedural model, the e�ort of building a tutoring system can
be much lower, and systems can be built for areas that are not covered today.

Our hypothesis is that this can be done by focusing the student modeling
e�ort on the conceptual and episodic levels instead of the procedural level.
This also serves the goal of connecting two learning tasks that too often are
learned seperatly. Case-based tutoring systems are usually learning by doing
systems, which focus on the operationalization of skills in the student. For
instance, in teaching programming language, the focus is on writing programs
to solve concrete problems instead of learning how a for-loop relates to a while-
loop. There seems to be a disconnect between the systems that focus on the
operational skill and those that focus on instruction of concepts. We aim to
bridge this gap by introducing concept maps as explicitly conceptual models,
but used in an exercise-oriented context.



12 Chapter 1. INTRODUCTION

In order to bridge this gap and be a successful student modeling tool, concept
mapping must be integrated in the pedagogical strategy and have a format that
serves speci�c goals. It is a goal of this research to develop such a methodology,
where concept mapping is a integral part of the system rather than an ad hoc
component.

1-2.2 Concept Maps as Student Models

The research in the use of concept maps as assessment tools show that they work
well in assessing a student's conceptual knowledge. We suggest that this means
that they may also be useful in student modeling in intelligent tutoring systems.
Using concept maps in this manner has the advantage that the student would
model his own knowledge, and can express his own conceptualizations of the
domain. However, if the concept map is to be useful as a student model for the
computer, the computer must also have some way of using the information in a
map. Traditionally, concept maps have been seen as tools for human expression
{ even when computer tools are used to create maps, it is not expected that the
computer understand the knowledge contents of the map. Some tools o�er some
utility for comparing maps and introducing concepts from other maps based on
syntax and structure. In our use of student maps, we will such syntactical
approach, for instance by calculating the similarity between a student's and
a teacher's concept maps, and using case-based reasoning or other machine-
learning methods to �nd similar students based on their concept maps.

In particular, we will examine if there are information in students' concept
maps that allow us to predict how well the students solve more practical ex-
ercises, such as programming tasks. Although concept maps may be used to
assess conceptual knowledge, it is currently an open question if concept maps
can be used to assess procedural skill. We have examined this by performing an
empirical experiment where �rst year Java-programming students were asked to
form concept maps and then solve programming tasks. We will present an anal-
ysis with statistical methods, and experiments using machine-learning methods
to see how well information from student concept maps can predict competence
on the practical tasks.

1-2.3 Concept Maps, Knowledge Representation and In-

ference

Concept maps are designed �rst and foremost as mediums of human expression
and communication. Knowledge representation languages are designed for this
purpose as well, but also seek to establish a common interpretation between
computer and human of the knowledge stored in the representation. The cost
of doing this is that human expression in a knowledge representation language
tends to be more di�cult, and require training

We will examine if it is possible and useful to provide some level of machine-
interpretable semantics for concept maps so that the system may do some infer-
ence over the contents of the maps. In particular, we will examine if path-based
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inference (such as inheritance) used in semantic networks may be used without
compromising the ease of use and naturalness of expression that is such im-
portant properties for concept maps. To do this, we will describe formally the
CREEK knowledge representation and inference mechanism, and how it may
be used as an inference mechanism for concept maps. The CREEK knowledge
representation is then used as the underlaying representation in an experiment.
Using the data from this experiment, we will study on the e�ects of inference
and how it can be used.

1-3 Method of Investigation

Several methodical approaches will be used in this thesis. In chapters 2, 3, 4 and
5, an analytical approach will be used in de�ning a framework for comparing
and describing intelligent tutoring systems for exercise support. This framework
will be used to analyze existing theories and systems (chapter 4) and describe
our own theory (chapter 5).

In chapter 5, we also present the CREEK knowledge representation and
inference mechanisms in a formal framework based on set theory, which we use
to show how concept maps can be represented in this knowledge representation,
and inference used on them.

In chapter 6, we describe a partial implementation of a tutoring system
to support solving Java programming exercises for �rst year computer science
and engineering students. Using this system, some quantitative and empirical
studies are done on how concept maps may be useful as student models. We also
use the data from these experiments to do a qualititative study on the e�ects
of inference on real-world concept maps.

1-4 Organization

In chapter 2, we review computer-assisted approaches to learning-by-doing,
as well as critiques of classical approaches to intelligent tutoring, both from
members within the research community, and from proponents of constructivist
learning. Chapter 3 presents a framework for analyzing and comparing learning-
by-doing intelligent tutoring systems. This framework will focus on case-based
tutoring (in the sense of exercise-oriented systems). In chapter 4, we use this
framework to describe and analyze existing learning-by-doing systems. In chap-
ter 5 we describe our own approach, the CREEK Intelligent Learning Environ-
ment (CREEK-ILE), and in chapter 6 a partial implementation of this system
as well a few experiments where we attempt to answer the questions posed in the
motivation section above. Chapter 7 contains a conclusion and some thoughts
of areas of future research.
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Chapter 2

Learning by doing in ITS

The learning by doing method has been used in intelligent tutoring systems
almost since the inception of the �eld, at least in the broad meaning of the term
encapsulating everything from exercise support to situated learning. In this
chapter, we will examine the history of learning by doing in intelligent tutoring
systems, and examine in what kinds of systems learning by doing is done today.
Last, the constructivist critique of traditional instructional design methods will
be reviewed briey with a view towards what this means for learning by doing,
especially in tutoring systems.

2-1 Early Systems

2-1.1 Simulation environments

The �rst learning by doing systems in ITS were based on simulation environ-
ments, where the system would provide an setting where the student could ma-
nipulate a simulation and get feedback on how the manipulation worked. These
systems are perhaps the closest to the constructivist ideal of situated learning,
as they typically provide an environment for the student to experiment in as a
basis for the tutoring.

The �rst such system was SOPHIE-I [27, 28], which simulated electric cir-
cuits. This system did not use a student model or pedagogical model, but simply
provided a simulated lab for the student to try di�erent tasks. In SOPHIE, the
student was typically faced with a circuit with some kind of problem, and his
task was to diagnose it. SOPHIE-I could answer both factual and hypothetical
questions about the circuit, and could help the student evaluate his hypothe-
sis. Later extensions of SOPHIE would also include a demonstrator system in
SOPHIE-II [26] and an attempt at modelling the physics of the electronic cir-
cuits in mental models closer to what is used in human reasoning in SOPHIE-III
[29]. One of the major challenges of this project has been to �nd the correct level
of describing the simulation expertise. The goal has been to �nd a level where
the simulation is accurate, but also remain close to the mental models used
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by humans. This is important both for explanation and in order to facilitate
student modelling. Another early e�ort in this direction was the STEAMER
system [43], which simulated steam plants on large ships. Unlike the SOPHIE
systems, STEAMER used a graphical view of the propulsion system, and al-
lowed the engineer student to manipulate various parameters and experience
abnormal situations. Like the SOPHIE-I system, STEAMER did not have a
qualitative model of the system it simulated { it was done as a mathematical
simulation. In that sense, neither of these two systems had an internal repre-
sentation of the model it was trying to teach. This means that neither of these
systems could provide explanations based on qualitative terms used by people,
such as causation. This lead to an e�ort from researchers working on both these
systems to create theories of the qualitative models used by humans to solve
such problems. The result of these e�orts are the Qualitative Process (QP)
theory [37] from the STEAMER group and ENVISION [36] from the SOPHIE
e�ort. These theories attempt to model causality on an abstraction level used
by humans in order to facilitate explanations (knowledge communication) and
student modelling.

The QUEST system [90] was based on the lessons of the SOPHIE and
STEAMER systems, and was based on mental models designed to be simi-
lar to those found in people. QUEST was also a system that simulated electric
circuits, but did so using a progression of qualitative mental models. QUEST
was based on a view that the full expert model should not be introduced to
novice students, but that a progression of mental models from basic to advanced
should form the basis of the instruction. This meant that the QUEST system
started with a very basic model that would only perform well on a subset of
the electric circuits, and as the student mastered a level, a more complex model
would be introduced. This would be repeated in steps until this model would
be expanded until the student had reached the full mental model. The goal of
the system was to enable these transitions by giving problems that would lead
the student to master the current level. However, since the system contained a
complete simulation of circuit physics, the student could also choose to explore
on his own by building circuits and receive feedback and explanations. All in
all, the qualitative model of QUEST allows it to be very exible and o�er both
exercise-oriented learning that is targeted at advancing the student's knowledge
and free-form exploration modes, both supported by feedback and explanation
capabilities at the causal level.

These early systems have lead to a wide range of simulation systems, us-
ing both quantitative and qualitative models. In Section 2-3 simulation envi-
ronments are listed as on the areas of activity that have reached the level of
multi-purpose authoring systems being available.

2-1.2 Exercise-Centric Tutoring

GUIDEON [34] is a tutoring system based on the MYCIN expert system [33],
which was designed to diagnose medical problems. In doing this, GUIDEON
uses a case method in the sense that the student is presented with a problem case
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{ a patient with some disease. Once the problem case is described by the system,
the student is asked to diagnose the patient. To do this, he can ask questions to
the system, which are answered by the MYCIN expert system. The student may
also o�er hypothesis and receive feedback on these from the GUIDEON. The
system may also intervene if it believes the questions asked by the student are
suboptimal or irrelevant. This kind of exercise-centric approach was also used in
the problem-based mode of the QUEST system, and many other systems that
use concrete problems as starting points. These systems are learning by doing
systems in the sense that they are bottom up { they start with problems, assume
the student has some basic knowledge on how to solve them, and o�er assistance
if they are not up to the task. This does not mean that the systems see the set of
problem cases as the knowledge content that they wish to transfer to the student.
Rather, they use the cases as vehicles to communicate more abstract knowledge.
In QUEST, this knowledge is the progressively complex mental models, and in
GUIDEON there are the (generalized) rules in the MYCIN rule-base.

In many ways, the PACT cognitive tutors follows in the tradition of these
systems in that they are exercise-centric and rule-based. However, just as the
simulation environment went from quantitative models that were accurate but
not good representations of the cognitive processes used by people to represen-
tations that are more based on the reasoning in humans, the PACT cognitive
tutors use models that are primarily cognitive representations of human reason-
ing. This contrasts with GUIDEON, which is based on the MYCIN knowledge
base, which is primarilly created to solve problems in the domain. This means
that case-based reasoning is not necessarily a model for reasoning in this kind of
exercise-centric tutoring. The example-centric tutoring approach is using cases
as a method of teaching, while case-based reasoning is using it as means to solve
the problem.

2-1.3 Student Modelling

Student modelling is not speci�c to learning by doing { it is used within the full
range of intelligent tutoring system, but it is an important component in many
learning by doing systems.

The original and still most common form of student model is the overlay
model, which for each student has an overlay over the expert model to record
what parts of the expert model a particular student is familiar with. This idea
was �rst introduced with the WUSOR-II system [31], although elements of this
goes back to the very beginning of intelligent tutoring systems starting with
SCHOLAR [30]. The overlay approach has the limitation that it only allows
the system to recognize what subset of the expert model a student knows. If the
student has misconceptions about the domain { "bugs" in his or her knowledge
{ this cannot be represented in an overlay model. To account for this, the expert
model is often extended with bug libraries of common misconceptions so that
the system may identify and record any misconceptions a particular student
may have. In this approach, the student overlay model covers both the correct
knowledge and the bugs so that the system may record both the units of knowl-



18 Chapter 2. LEARNING BY DOING IN ITS

edge the student is familiar with and the misconceptions (bugs) the student has.
This approach was introduced by the BUGGY project [25], which attempted to
model the task of place-value subtraction so that all misconceptions could be
identi�ed as variations of the correct procedure and represented explicitly.

These student models can be used both in learning by instruction and learn-
ing by doing systems. In learning by instruction they can for instance be used
to customize a lesson plan so that a student is introduced to subjects he is not
already familiar with. In learning by doing systems, the goal is often to have
an executable student model. This means that if the expert model is a set of
rules to perform some task, the student model may be the set of rules known
by the student (the overlay model). In addition, erroneous rules believed by the
student may be added (the bug model). If the student model is perfect, the ITS
system should be able to apply these rules to the problem and go through the
same steps to reach the same conclusions as the student modelled.

2-2 Case-Based Cognitive Modeling

In 1977, Schank and Abelson [67] published a theory on how human procedural
skill is represented internally in the form of scripts. For instance, someone with
experience with restaurants would have an internal representation that a visit
would involve waiting to be seated, then given a menu, expected to order, eat
and at last pay. These scripts allows people to predict and prepare for events
in the future, which among other things allow for planning how to reach goals.
This theory was later extended in "Dynamic Memory" [69], which breaks scripts
into smaller parts and organizes them in conceptual units called MOPs. This
allows for the reuse of partial scripts in di�erent settings, such as paying for
food in a restaurant and for clothes in a mall.

MOPs can represent concepts such as a restaurant visit, fancy restaurant
visit and fast-food restaurant visit, which can be organized hierarchically and
share some elements (such as eating food) while containing specializations or
di�erences (such as paying before the meal and seating yourself in fast-food
restaurants). In addition, speci�c episodes, or cases, would be stored whenever
they deviated unexpectedly from the script. For instance, Schank mentions
going to a restaurant that would not �t the category for fast-food restaurants
generally, but he was expected to pay before the meal was served. In these
cases we tend to remember the exceptions, and Schank suggested this is because
episodes are remembered when they do not con�rm to expectations. These cases
are initially stored as exceptions to well-known MOPs, but if there are repeated,
similar exceptions, they are generalized and new MOPs are formed.

In this theory, cases are not merely training examples that allow students to
operationalize what they have been taught through other means, but the main
vehicle for driving learning, not only of procedural skills, but the formation of
conceptual knowledge (MOPs). In this sense, this theory is a strong proponent of
learning by doing, because it suggests that learning is bottom up from episodes
(cases) to MOPs. One of the early systems based on this theory was Celia
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[63], which models case-based apprentice learning. The system takes the role
of the student, which attempts to follow the teacher's reasoning in solving a
problem, and storing new cases (which may form new MOPs eventually) if the
teacher does something unexpected during problem solving. Eventually, the
system learns to predict the problem solving steps taken by the teacher, and
thus learns to solve problems in the domain. Celia is not a tutoring system as
such, but it can (and has, in Ceclia [64]) been used as a component in case-based
tutoring systems.

Based on the dynamic memory theory, Schank has more recently developed
a theory for education and learning [68, 66]. He points out that in learning
by doing it is not always obvious what doing means. History, for instance, is
taught in school and learned in other ways, but it is not clear what it means
to do history. Even in subjects that clearly involve doing, such as in math-
ematics where students routinely train by solving exercises, one cannot really
talk of doing mathematics in the general sense. One can do addition or solve
algebra equations, and both these activities are contained in the greater �eld of
mathematics, but there is no single activity that can describe the whole �eld.

If we examine the meaning of the word skill, it is fairly vague in day-to-day
language. Knowing how to program the VCR can be a skill, but we also talk
about skills such as driving a car, human relations and mathematics. While
programming the VCR can conceivably be broken down into a set of steps
(a mini-script), skills at mathematics, driving and human relations are clearly
not of this type. Schank suggest that such skills are packages of related mini-
scripts that in themselves are not worth mentioning, but together are important
because they serve to achieve some goal. For instance, driving can be seen as a
combination of mini-scripts to break, start the engine, look in the mirror before
turning and so on. Individually, each of these mini-scripts can be described
by a set of concrete steps, but they do not really serve any goals unless they
are combined. In other words, mini-scripts (procedural skills) are arranged in
skill packages that are interesting because they serve some goal. In learning,
the overall goal serves as the motivation to acquire the set of mini-scripts that
allows the learner to perform the task. This, Schank argues, is how learning
happens in day-to-day situations, and could perhaps be described as natural
learning. It is acquired through repeated exposure to episodes (cases) that are
retained and generalized because they allow the learner to reach some goal.

However, in institutionalized learning, the focus tends to move away from
doing to a meta-level where the doing is discussed and organized. For instance,
physics is often taught by teaching students theories of, for instance, gravity by
explaining such concepts like force, mass and acceleration. After this is done,
experiments may be conducted, but they are typically described by the curricu-
lum and predetermined to illustrate the truth of the theory. The micro-script
level skills associated with conducting physics experiments and learning from
them are not the focus of the education { the theories of Newton, Einstein and
so forth are. This, claims Schank, robs the student of the motivation for learning
and also of the micro-script level skills associated with the subject. In contrast
to this, Schank holds how wine classes for adults begin with wine tasting. When



20 Chapter 2. LEARNING BY DOING IN ITS

students learn to enjoy particular wines, they naturally develop an interest in
identifying these wines, by district, grape, vintage or other properties. A course
that began by describing the wine regions and grapes would not similarly en-
gage students, and would not develop the crucial micro-script level skills that
allowed the student to practice. A similar approach to the physics education
could for instance be to ask students to predict whether a bowling ball would
fall to the ground faster than a golf ball dropped from the same height. To
answer this, students could design and perform experiments and come up with
a theory of how gravity works. At this point, Schank predicts that it is easier
to introduce Newtonian physics because the students already have developed
an interest through doing physics. These micro-script level skills are often hard
to measure in standardized tests, though, so what one tends to do is to make
tests that tests the measurable { which is the higher level conceptual knowledge.
Over time, this has the consequence that the focus of the education shifts from
learning the subject matter for practical reasons to learning the subject matter
of the test. The test becomes the doing. This results in people that are edu-
cated in, for instance psychology, and are expected to be able to handle work
in human resources departments. After all, they are supposed to know about
human relations and psyche. However, the psychology education may contain a
lot of information about history in the �eld, important �ndings, methods for do-
ing research and so on, but little of the applied skill required in human resource
departments. It is not easy to apply the knowledge from a psychology education
when tasked with �ring someone, or settling a manager-employee dispute. This
requires concrete experience from such tasks on the micro-script level that is
not addressed in education.

Schank does acknowledge that there is knowledge that is not tied to micro-
script level procedural skills. For instance, many �nd history interesting, and it
is hard to �nd micro-level scripts associated with the subject. However, these
skills can to some degree be traced back to the human curiosity for understand-
ing life and the world. For instance, history may help in explaining why certain
events (episodes) came to pass, and how to avoid them in the future. Curiosity
may also follow from learning an applied skill, for instance, Schank explains
how his interest in the geography and history of wine regions emerged from his
interest in the drink.

Unlike the radical constructivist critique, Schank does not discount the idea
of having a curriculum. However, he emphasizes that every curriculum should
contain packages of micro-script-level skills that serve some goal, and that the
focus of the curriculum should be to foster the ability to perform practical
tasks in the domain. Students should start out solving problems immediately,
and through exposure to problems, their interest in acquiring more theoretical
knowledge will emerge. In other words, he does not suggest that theoretical
knowledge should be dispensed with, but be available upon request to help
students solve their problems. The curriculum could be designed to give students
problems that would naturally lead them towards important theories and more
advanced internal models, but these models should not be taught directly, but
be available upon request. The problem with this approach is that it is not
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easily testable, at least not for all domains. The driver's test is an example of a
test of procedural skills, but even in this domain where it is possible to arrange,
it is far more expensive and subjective than a standardized test.

Schank's theory is a strong proponent for case-based tutoring. It suggests
that true learning can in fact only happen through cases, and that procedural
and even higher order conceptual knowledge emerge because of experience re-
ceived through cases. Other theories, like ACT-R reviewed in Chapter 4, also
place importance on exercises or cases as a way of operationalizing procedu-
ral skill, but suggest that conceptual and procedural instruction should predate
exercises, which then serve to encode the explicit knowledge as implicit procedu-
ral skill. Schank's case-based approach is more radical because it suggests that
conceptual and procedural instruction is not necessary and that the examples,
exercises and episodes themselves serve as the primary vehicle of learning, and
motivation for learning.

2-3 Intelligent Tutoring System Today

There exist a wide variety of systems that may be called intelligent tutoring
systems, and quite a few ways of categorizing these systems. Murray [50] iden-
ti�es seven categories of ITS where the development has gone to the stage that
authoring tools are available:

1. Curriculum Sequencing and Planning. The systems in the �rst group
focus on sequencing pre made instructional units such as text and pictures to
suit the individual student. The result may seem like an "electronic textbook"
to the student, but in reality it is a textbook that is structured to �t that
particular student.

2. Tutoring Strategies. While the systems in the �rst group focus on the
macro level of tutoring strategy the second group primarily deals in the micro
level. These systems focus on such issues as how and when to deliver explana-
tions, hints and summaries. Typically, these systems have very well de�ned ex-
plicit pedagogical models that allow a course author to codify di�erent tutoring
strategies and meta-strategies that the system may use to tailor the instructions
to the individual student.

3. Device Simulation and Equipment Training. Both of the previous
groups tend to use instructional strategies where the student is given a text or
other material to absorb and think about. In contrast, the third group uses
learning by doing by o�ering a simulated environment to the student that allow
him to experiment and see what the consequences of di�erent actions are. A
ight simulator is a well-known example of such an environment. In addition to
the simulation environment, these systems usually contain tasks, performance
monitoring and instructional feedback. Usually, there is no conceptual teaching



22 Chapter 2. LEARNING BY DOING IN ITS

in these systems, and the student it is assumed to have some introductory
knowledge in the domain.

4. Expert systems and cognitive tutors. These systems are often exten-
sions of rule-based expert systems that contain a complete system that is able to
solve problems in the problem domain by itself. The rules of these instructional
systems are designed to mimic the cognitive process used by humans to solve
problems in the domain, and as such the expert model may be very detailed.
The systems may also contain "bug rules" that encode common misconceptions
in the domain. This allows the tutor to reproduce mistakes and trace the rea-
soning process of the student, and even take over and continue the reasoning if
the student is stuck.

5. Multiple Knowledge Types. Instructional theories often suggest di�er-
ent methods for learning di�erent kinds of knowledge. For instance, facts may be
taught using reading and repetition, concepts by exposure to prototypical exam-
ples and procedures by step-wise instruction. The Intelligent Tutoring Systems
in this category are often based on a theory like this, with support for course
authors in designing instructional units for the di�erent types of knowledge.

6. Special Purpose Systems. There is a wide variety of tutoring systems
that are designed with a particular domain in mind, from the pedagogical the-
ory to the system design and implementation. These systems are often quite
specialized and build on speci�c instructional experience in the are for which
they are built.

7. Intelligent/Adaptive Hypermedia. Web-based tutors and other adap-
tive hypermedia systems adapt to each student by selecting the content pre-
sented on a topic as well as managing the hyperlinks in this content. This task
can be seen as similar to the main objective in the �rst group of systems in that
the hyperlinks provided to the student a�ect the sequencing of the content. The
di�erence lies in that the student has a greater control over the direction to take,
and that the contents are often built dynamically to avoid cognitive overload
by presenting the student with too many new concepts and hyperlinks.

One of the dimensions that separate these groups of systems is whether they
have a learning by doing approach where the student is exposed to problems,
and is asked to solve these problem with the assistance of the tutoring system.
In general, groups 3 and 4 in the categorization focus on this kind of tutoring.
This approach contrasts with the more theoretical, tutoring- or book-centric
tutoring, which we will call learning by instruction although certainly other
forms of mediums can be used for this than text. This approach is in general
used by systems in groups 1, 2 and 5 and 7.

These learning strategies are useful for di�erent kinds of instruction. The
theoretical instructional tutoring targets teaching methods and concepts, while
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exercises are used to train the students in methods and to help them opera-
tionalize the skills. For instance in primary schools, addition, subtraction and
other basic mathematical skills are usually taught by explaining the concept to
the pupils and demonstrating the procedure for class before asking the students
to solve exercises until they master the method.

Simulation training (group 3) requires that the topic matter can be simu-
lated accurately in a computer. In order to do this, an accurate model must
exist. In many areas there are models that are considered accurate enough {
ight simulation has already been mentioned as possibly the best known. As
discussed in Section 2-1.1, the simulation may be quantitative or qualitative in
the sense that it may or may not attempt to match the mental models of human
reasoning. If these systems do not adopt a simulation model that is based on
human reasoning, it may be hard to communicate for instance explanations to
the student as the model of the system does not match the level expected by the
student. On the other hand, the e�orts of SOPHIE and later systems illustrate
that accurate, qualitative models are by no means trivial to create.

The other group that primarily deals with learning by doing is the "Expert
Systems and Cognitive Tutor" group. These tutors attempt to approximate a
complete theory of the domain. Systems in this group are in many ways siblings
of the GUIDEON e�ort described in Section 2-1.2, but modern systems in this
category typically also reason about strategic knowledge, such as seen in the
PACT cognitive tutors [13] described in Chapter 4.

The most common practice in developing cognitive tutors is to use rules.
This is very useful in domains with a strong domain theory, such as the matem-
atical cognitive tutors. If the theory is more fragmented, many rules only apply
to a very limited area of the problem space, and as such they may require a
large number of conditions. As these rules get very speci�c, they may be better
captured by prototypical cases that represent actual problems. Cases are often
easier for people to relate to than very specialized rules, as they represent ac-
tual problem solving episodes, including the context the problem was solved in.
ELM [87] and CATO [7] are tutoring systems that uses cases. These systems
will be further reviewed in Chapter 4.

Law and medicine are examples of domains that can be categorized as open
or weak theory, which means that there exists no complete theory that describe
the problem area so that correct solutions can always be derived or proven. Even
most engineering disciplines interact in complex ways with the real world that
they are hard to describe accurately in a complete theory. In such situations, a
combination of general knowledge and cases are useful as an incomplete model
with veri�ed data points (the cases) in the problem space.

The case-based tutoring approach usually combines concrete cases and gen-
eral knowledge in order to support learning in weak theory domains. The focus
of these systems is often on the cases, which are usually carefully selected prob-
lems in the domain. These may be presented to the student as exercises, and
although the system may not have complete knowledge of how to solve any prob-
lem in the domain, the problem cases are typically solved problems for which
the system may o�er assistance. Although computer-assisted instructional sys-
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tems may also contain pre-solved exercises, the case-based tutoring systems are
di�erent because they still tailor the problem-solving activity to the student,
both in the selection of the exercise and in the o�ering of support during the
problem solving itself. Cases may also be used in other ways, for instance the
SARA [75] and Ambre-AWP [40] systems ask the student to retrieve and adapt
previous problem solutions (cases) to a similar problem. Although SARA is
applied to the domain of number theory, which could possibly be described by
a complete deductive model, the system relies on the �nding that people often
do not try to solve a problem from �rst principles, but by adapting a previous
experience. Still, SARA relies on having an accurate model of what adaptations
can be applied to a case as the system must be able to evaluate whether the
adaptations ful�ll the goals of the problem.

2-4 Critiques of ITS

2-4.1 Constructivist critiques

A fundamental di�erence in pedagogical philosophy exists between the instruc-
tional design and constructivist approaches to learning. The instructional design
approach views the process of learning as the transfer of knowledge from a source
(teacher, book or other educational aide) to the student through a communica-
tions channel, typically written or spoken language assisted by visual aides. The
constructivist approach tends to focus on acquiring knowledge through exposure
to real-world problem solving, arguing that each learner should be allowed to
create his own model of the domain. It should be said that both instructional
design and constructivism are terms associated with a great range of ideas and
theories and as such are hard to de�ne in detail, but a core di�erence lays in who
decides and constructs the knowledge. In the instructional design approach, an
expert or teacher decides on a curriculum and desired knowledge state that is
the goal of the learning, while constructivism holds that the student should be
free to form the knowledge required, although possibly with the assistance of a
teacher or expert.

In the instructional design approach, there are several challenges associated
with teaching. One is that the communication channel is not perfect { mes-
sages from a teacher are likely to be interpreted di�erently than expected by
the student, so there has to be an constant process of evaluation of the trans-
ferred information in order to minimize the errors and misconceptions. Another
challenge is that people are not passive machines that simply attempt to receive
some model and store it away { learned information are generalized and struc-
tured to �t with already existing knowledge, and people tend to hold on to these
early structures. This means that the knowledge transfer process should be tai-
lored pedagogically in such a way that early structures formed by the student
are as accurate as possible and helps the student in organizing later information.
This may mean starting with very typical examples, or introducing simpli�ed
(but complete) models �rst before gradually extending the model. There is also
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a challenge in tailoring this process to each individual student, as the students
have di�erent abilities and backgrounds. However, the goal of these tasks is to
establish a pre-determined model in the mind of the student as accurately as
possible.

In the knowledge transfer approach, exercises are seen as a way to test that
the knowledge has been received correctly, and assist the student in applying
the knowledge to problems in the domain. The assumption is that the student
already knows in theory how to solve an exercise before attempting it, but needs
to train in order to operationalize the skill and uncover misconceptions that may
be present in the student's model.

The constructivist approach is skeptical about the predictability of human
behavior and the ability to describe an objective world. These properties are
fundamental to the instructional design approach because if people's experience
of the world is signi�cantly di�erent from each other, it is dubious that an "ex-
pert model" may be created which reects anything other than the expert's
subjective view. Many radical constructivists even deny the existence of an
objective world, which makes it hard to claim any special signi�cance for an
expert's model over anything a student may form. This means that tutoring
systems and teachers can do little to a�ect student understanding, as no objec-
tive knowledge about the world is available. This view invalidates the need for
an expert model, and if one also holds, as many constructivists do, that human
behavior is fundamentally unpredictable, pedagogical and student models also
become useless because it is impossible to model the unpredictable. Although
this is a radical position, constructivists' critiques may also be appreciated at
a more moderate level. For instance, if a colorblind driver cannot see the dif-
ference between green and red tra�c lights, the textbook information that "red
means stop and green means go" is useless. Most drivers easily overcome this
little obstacle, for example by using the position of the lights, but typically do
not do so by reading a textbook, but by experience. This di�erence in how
people model and learn about the world extends beyond di�erences in sensory
capabilities. Clearly, intellectual abilities and prior knowledge also plays a role.
For instance, when learning a computer programming language, students with
a good grasp of algebra have an advantage in dealing with variables.

Winn [91] lists the major constructivist critiques against the assumptions of
instructional design:

Reductionism: Instructional design typically assume that the world may be
usefully broken down into chunks of knowledge (e.g. represented by the curricu-
lum of a school course) that may be learned separately, and that understanding
and mastery of the whole may be achieved by mastering the contents of all the
chunks separately. Constructivists claim that much of the di�culty of using
knowledge lies not in the individual chunks, but in the interaction and relations
between chunks, for instance how to use knowledge from both programming
and number theory in creating a program that produces prime numbers. They
suggest that knowledge has emergent properties that may not be captured by
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dividing it up into small chunks. Spiro [79, 80] claims that the student should be
encouraged to construct knowledge by "crisscrossing a landscape" many times
and in di�erent ways in order to capture relations and interactions, and present
the student with the same content in di�erent contexts.

Determinism: Instructional design assume that how a student learns can be
modeled and that this model can be used to predict to some degree how a stu-
dent will receive information and build knowledge structures. Constructivists
challenge this assumption on many fronts. First, instructional theory is incom-
plete in many (if not most) areas. Second, a complete instructional theory may
be impossible because humans learn in idiosyncratic ways. Instructional design
approaches may contain e�orts to tailor the instruction to each student's id-
iosyncrasies, but constructivists point out that these e�orts tend to focus on
one or two factors, while the number of factors that a�ect learning seems to be
much larger. This causes an exponential explosion both in the modeling e�ort
and in the uncertainty of the conclusions. Third, Winn claims people typically
do not use the academic logic taught in courses in solving real-world problems.
This suggests that the assumption of instructional design that people will use
the structures and approaches taught through formal training in solving real
world problems do not necessarily hold.

Replicability: When a tutoring system, educational textbook or course has
been built and proven itself e�ective on real students over time, the assump-
tion of instructional design is that this resource may be used again with other
students at a similar level with similar results. Constructivists question this as
educational contexts such as a di�erent teacher, a di�erent school or students
with a di�erent background may �nd the textbook, course or tutoring system
less useful because of assumptions made in its creation. This problem has been
reported with some intelligent tutoring systems. Payne and Squibb [60] found
there was found little overlap in bug libraries across three di�erent schools, and
that bugs were unstable and that the use of them by students is unstable. Con-
structivists explain this by referring to the fundamental di�culty in predicting
human behavior { even small di�erences in background and ability may inter-
act with the learning behavior in complex ways that is essentially impossible to
model.

2-4.2 Modelling Intractability

A central tentant in the knowledge communication theory is that the system
must contain a good model of the area to teach { if it does not, there is no
knowledge to communiacate. In addition to this, the ITS must have some
knowledge about how to teach this knowledge and the kinds of misconceptions
that may arise in students.

This means that the modeling requirements of ITS system supersedes the
requirements of an AI system that solves the problem because it also needs
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to model the space of potential errors students may develop [71]. In addition,
the set of errors produced by students does not seem to be easily captured.
For instance Payne and Squibb [60] showed that when the same system was
applied to three di�erent schools, the �ve top bug rules at each site overlapped
so such a low degree that combined they formed 13 di�erent rules. For error
rules to be feasible, a �rm idea of what a correct and erroneous rule means,
is required. This may be possible in formal domains, such as the geometry
or algebra domains, but it may limit the approach to these domains. These
and other critiques have opened the study of student modelling to many other
approaches, including probabilistic methods (e.g. [85]), fuzzy models (e.g. [41]),
case-based approaches (e.g. [75, 40]) and constraint-based modeling (e.g. [57]).

A more fundamental critique of the bug library approach to student modeling
has been seen from constructivist theories, as seen in the previous section. If the
constructivist critiques of instructional design is accepted, this means that it is
extremely hard, if not impossible, to model the knowledge of the student as the
system cannot know the experience and motivations that forms the individual
student's background. Further, many constructivists hold that it is unethical
to attempt to impose the computers conceptualisation on a student { he should
be able to form his own on his own terms. This suggests that the very idea of
student modelling should be abandoned. While few ITS researchers are willing
to go this far, there is a trend toward inspectable student models, where the
student himself is allowed to access and possibly change the student model. In
addition to the pure ethical view that the student should be allowed to know
the beliefs held about him by the system, it also gives the student a means
to correct mistakes. Although we can all have misconceptions about ourselves,
the idea is that we at least know ourselves better than the tutoring system {
intelligent or not.

2-5 Consequences for ITS

The critique of the intractability of modelling, and particularly student mod-
elling was addressed in a seminal paper by Self [71]. He recognizes that complete
student models that contain the complete mental state of students are close to
impossible. Students have models that operate on di�erent level of abstraction
at once { problem-solving strategies, analogies to other domains, analogies to
previously solved problems and so on. They will also have di�erent background
so that the analogies and strategies they use can not be assumed to be the same.
This means that a complete student model would seem to encompass almost all
of cognitive science, from plan recogniztion, episodic memories, representation
issues, mental models, individual di�erences and so on. However, Self suggests
that complete student models are not necessary, and proceeds to suggest four
slogans for constructing tractable student models:

1. Avoid guessing { get the student to tell you what you want to
know. By using good problem solving environments, Self suggests that it is
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possible to implicitly require the student to give the system the information it
requires. Instead of having the system infer intermediate problem solving steps
the student may normally do in their head, a good problem solving environment
can encourage students to do this explicitly. The environment can also require
the student to enter other kinds of information, for instance the goal currently
persued or the hypothesis tested.

2. Don't diagnose what you cannot treat. The ideal of creating the ul-
timate student model that accuratley represents everything relevant that the
student knows can sometimes obscure the fact that the student model by itself
does not accomplish anything. The knowledge must also be used somehow if
there is to be a practical bene�t to the exercise. Self suggests that the pedagogi-
cal strategy of the system should be considered in tandem with the requirements
of the student model, so that only the information that is actually useful in tai-
loring the tutoring is sought modeled.

3. Empathise with the student's beliefs, don't label them as bugs.
The general perception on student models is that they should be used to rem-
edy problems in the student's model. Self suggests that this arrogant "the tutor
knows best" style alienates teachers more than any technical shortcommings.
In addition, there is the philosophical problem of labeling the students' under-
stading as wrong. The QUEST system illustrates that learning often happens
through a sequencce of ever more complex models, and a particular belief that
may seem wrong from the expert's standpoint may serve as a useful simpli�-
cation at the level the student is at. It may also be that the student has a
conceptualization that di�ers somewhat from the expert, which does not neces-
sarily mean that it is incorrect.

4. Don't feign omniscience { adopt a "fallible collaborator" role.
This position is not based purely on philosophical grouns, but also on the fact
that many, if not most, domains are hard to model completely. If the model
is less than guaranteed correct, pretending to be omniscient is risky. However,
the ITS can provide assistance where it can, but in a manner that allows the
student to ignore the advice. The ideal should be for the student to see the
system as a peer or assistant as opposed to a infallible teacher.

The gist of these slogans are that the ITS should have use for the information
in the student model, and that it should as directly and naturally as possible
ask the student for this information. Further, it should take a humble role in
not assuming that the inferences it draws from this model is necessary correct.
If the system thinks that the student uses a rule that might cause trouble in
solving some problems, the system should present such a problem and ask, as a
collaborator might, if this rule might not cause problems here. The role of the
system should not be to correct the user's beliefs, but help him elaborate and
test them. This role of the student model allows for the possibility of a more
limited student model that needs not "simulate" the student's problem solving
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capability. This opens up the use of student modelling to less formal domains
than the earlier models.

In later papers [72, 6], Self and Akhras address the more fundamental con-
structivist critique of intelligent tutoring systems. At �rst it appears that if these
critiques are accepted at face value, the enterprise of creating intelligent tutor-
ing systems seems futile, as the learning process would be too unpredictable to
be analysed and modeled in advance. Self and Akhras suggest a learning model
that replaces the traditional expert/student/pedagogical models that is more
compatible with the constructivist critiques, while still maintaining many of the
properties of intelligent tutoring systems. This model is based on the modeling
of the interaction between the student and the system instead of modelling the
student himself. The basic idea is that by modeling the interactions, the sys-
tem may adapt in order to bring about interactions that are considered better
learning opportunities than others.

Another approach towards more constructivist learning is through the cre-
ation of learning environments that are closer to the real problem situations.
These systems can be seen as advanced simulation environments that attempt
to be as close as possible to the real thing in order to capture as much of the
context as possible. This can for instance take the form of "`virtual reality"' 3D
world such as [22] or [38].

The focus of this work, however, is on learning by doing systems that are
somewhat closer to the classical exercise-oriented approach. On this front, more
systems have appeared that operate in domains that cannot be completely mod-
eled, as we see for instance in the CATO system described in chapter 4. These
systems often do not use the term ITS to describe themselves, but rather inter-
active or intelligent learning environments.

2-6 Chapter Summary

In this chapter, we have examined intelligent tutoring systems quite broadly, by
briey reviewing classical systems and a classi�cation of how the ITS lanscape
looks today. Important venues of critiques to these approaches have come from
the constructivist community, which sees fundamental problems in the knowl-
edge transfer model of tutoring and learning, as well as from the researchers
pointing out the intractability of complete student modeling in many domains.
In the following chapter, the focus will be on developing a framework that is
more speci�cally tailored to the subtype of intelligent tutoring systems examined
in this thesis { exerciser-oriented systems.
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Chapter 3

Framework

In this chapter, a framework for intelligent tutoring systems in the area of exer-
cise support is presented. This framework contains a set of dimensions on which
exercise support systems can be usefully described and analyzed. In chapter 3
this framework will be used to analyze four existing exercise support systems,
and in chapter 4 it will be used to describe the CREEK-Tutor architecture.

Most implemented tutoring systems have a theoretical approach and archi-
tecture behind it. In many cases, the implemented system does not include all
the features of the underlying theory. Even if the implementation is close to
complete, it is usually limited to one or a few test domains where the theory
is tested. Although actual tests of the theory are performed through an imple-
mented program, it is also useful to be able to refer to the underlying theory,
for instance in gauging the likely limitations to the approach. We will use the
word theory to refer to the theoretical background speci�cally, and the word
system to refer to actual implemented computer programs based on the theory.

3-1 Focus and Requirements

The framework described in this chapter is designed as an analytical and de-
scriptive tool for intelligent tutoring systems for exercise support { an approach
often called case-based tutoring. This is by no means the only task an ITS
can support, but in order to limit the scope and focus the comparison, the
framework will be limited to these kinds of systems.

This framework is based on the classic three model of ITS design { the expert,
student and pedagogical models. In the previous chapters, this approach has
been critiques from several angels, but the appraoch to ITS represented by these
models is still the basis for discussion and comparison of intelligent tutoring
system today. Some attempts have been made at other kinds of framework
(such as the constructivist framework suggested by Akhras and Self [6]), but
these approaches are not yet in wide use.

While the framework is based on the classical instructional design philoso-



32 Chapter 3. FRAMEWORK

phy, the critiques of modeling tractability and constructivism are discussed for
each system analyzed by the framework. That said, the framework is probably
less useful for analysing radically constructivist approaches than systems that
operate close to the instructional design philosophy but perhaps adopt some
contructivist techniques.

3-1.1 Weak vs. Strong Theory

A stated goal of this research is to examine how exercise support may be done
in weak theory domains. This means that it is important to examine to what
degree a complete model is required. This may be di�erent between the di�erent
types of models in the system { for instance it may require a complete expert
model, but use a weak model of the student. This means that the weak vs.
strong domain model question will be discussed for each model type, as well as
discussed under other relevant dimensions of comparison. Typically, a strictly
instructional design approach will require strong models, while approaches using
constructivism will be based on weaker models.

3-2 Dimensions of comparison

In order to compare explanation support systems, the framework contains four
dimensions of comparison, which are then broken down into subcategories and
concrete issues. The dimensions examined are domain, cognitive theory, knowl-
edge models and tutoring capabilities. These dimensions are described in detail
in this section.

3-2.1 Domain

The domain is the problem area or the kind of problem area the system has been
developed to support. While some degree of generality of the theory underlying
a concrete system is typically claimed, the concrete system is only tested on a
limited number of problems, such as solving LISP program problems (such as in
ELM and LISP Cognitive Tutor) or solving a particular kind of mathematical
problems, such as geometry problems in mathematics (as in Geometry Cognitive
Tutor). This dimension describes the problem area the system was developed
for as well as how well the theory claims to generalize to other domains.

Description of the domain

In this subsection, the problem domain or domains the concrete system is de-
veloped for is presented. This includes an analysis of what tasks and properties
are important to support for learning an exercise support in this domain, and
how the system is presented to the user.
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1. Domain
1.1. Brief description of the domain
1.2. Scope
1.3. Generality

2. Cognitive Theory

3. Knowledge Models
3.1. Expert Model
3.2. Student Model
3.3. Pedagogical Model

4. Tutoring Capabilities
4.1. Goals
4.2. Exercise Selection
4.3. In-Exercise Support
4.4. Conceptualization Support
4.5. Explanation Ability
4.6. Learning

5. Evaluation

Table 3.1: An overview of the framework

Key Questions:

� What functionality must exist to support learning in this do-
main?

� What functionality is less important?

Presentation

The actual user interface is not a focus of this framework, but the degrees of
freedom the user has in solving the problem is often indicative of assumptions
made by the tutoring system. For instance, some programming tutors use special
expression editors that make it impossible for the student to make syntactical
errors (such as missing end brackets) in order to be able to parse the expression
and evaluate a partial solution.

Key Questions:

� How is the system presented to the user?

� What degrees of freedom does the user have in solving prob-
lems?
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Scope

Most intelligent tutoring systems have a limited scope, both in the kinds of
domains they support but also in the learning activities they support. This
should be clari�ed in this section. Examples of scope is that the system is
designed to work only on mathematical problems, or only assisting students
that have been given some introduction to the concepts and procedures already,
but may not be well trained in applying this knowledge on exercises.

Although speci�c systems typically cover a limited domain, the underlying
theory typically claims some kind of generality. For instance, a system may be
developed to support a speci�c branch of mathematics, such as geometry, but
the theory is claimed to be suitable for other branches of mathematics as well.

Key Questions:

� What kinds of problems do the system support?

� What tutoring tasks does the systems support?

� What parts of the system is domain speci�c?

� What range of domains does the theory claim to cover?

3-2.2 Cognitive Theory

Previously, we have discussed how the pedagogical philosophy, such as the di�er-
ence between the knowledge transfer and constructivism may impact intelligent
tutoring systems. However, many systems are based on a more detailed theory
of human cognition. For instance the PACT Cognitive Tutors [13] and ELM
[86] systems are based on an explicit theory of human cognition. These theories
may have been developed as part of the systems themselves, or the system may
be based on a cognitive theory developed in advance. Naturally, these theories
of how human cognition works have a great impact on tutoring strategies and
as such how intelligent tutoring systems are built.

Two cognitive theories used by intelligent tutoring systems are the ACT the-
ory of Anderson [16, 10] and the Dynamic Memory from Schank [69]. ACT uses
an approach similar to rule-based expert systems in modeling human problem
solving. This approach has been shown to even repeat some of the mistakes
done by humans in domains such as mathematics and computer programming.
By viewing human problem solving as a kind of rule-based expert system, teach-
ing becomes the task of helping the student to acquire the correct set of rules
to solve the problem. This theory can as such be claimed to lean towards the
knowledge transfer pedagogical philosophy, but it should be mentioned that it
does not underestimate the value of exercises to train, test and operationalize
knowledge.

The Dynamic Memory theory is more constructive in nature, in that the
memory structures are assumed to start as very speci�c episodic cases, and
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are formed into more generalized concepts only when many very similar cases
have been experienced and can usefully be abstracted to a prototypical case.
Further cases con�rming the structure are then typically not retained, although
cases that do not conform to the generalized structures known to the system are
retained and indexed by showing its di�erence to the closest generalized concept.
This approach is clearly more constructivist in nature than ACT-R, and suggest
that the conceptualization of a student is heavily inuenced not only by what
exercises (cases) he experiences, but also the ordering of these exercises and the
student's prior expectations. This theory suggests that exercises are not only
there to test or operationalize knowledge, but actively play a part in forming
the memory structures of the student.

These two theories each have a di�erent idea of why exercises are impor-
tant, and what they are meant to accomplish. Typically, this inuences the
capabilities of systems and the weight they place on di�erent tutoring tasks.

Not all systems are based on an extensive theory of human cognition, how-
ever, but these systems do tend to place themselves, explicitly or implicitly,
on the more fundamental dimensions such as the constructivist vs. knowledge
transfer scale. If the system examined is not explicitly based on a theory of
human cognition, we will attempt to answer these questions by analyzing the
capabilities and methods of the system.

Key Questions:

� Does the system have an explicit theory of human cognition?

� How does the theory place on the instructional design vs. con-
structivist scale?

� What is the role of exercises (problem cases) in learning ac-
cording to this theory?

� What is the relationship between conceptual (generalized)
knowledge and exercises (episodes, cases)?

3-2.3 Knowledge Models

The de�ning characteristic of intelligent tutoring systems, separating it from
other computer-aided learning systems, is the use of knowledge models to cus-
tomize the learning experience for the student. In this sense, the knowledge
models and representation play the same fundamental role in these systems as
they do in knowledge-based expert systems. Intelligent tutoring systems gener-
ally have three broad categories of knowledge; expert and domain knowledge,
knowledge about each student, and pedagogical knowledge. Within these cat-
egories, di�erent kinds of knowledge may exist. For instance, the expert and
domain knowledge may contain both general knowledge in the form of rules,
and episodic knowledge as pre-solved problem cases.
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The knowledge models also bounds the capabilities of the system in the sense
that the system cannot teach what it does not know, and it cannot customize
the experience for a student it knows nothing about. For instance, if a student
is faced with a concept he does not know, the system cannot present the student
with a de�nition unless such knowledge is contained in its models.

The contents and abilities of the knowledge models can be described on the
knowledge level [54], where the focus is on the knowledge content of the system
and the abilities this knowledge a�ord. The three main models of the ITS system
may usefully be analyzed on this level in order to show what kind of knowledge
is contained in the di�erent models and how they a�ect the performance of the
system. An analysis on this level may also cover how the knowledge is acquired.

For this framework, it is also useful to look at the knowledge representation
on the symbol level, which concerns itself with how the knowledge is stored,
data structures, inferences and algorithms. In particular, it is interesting to
see to what degree the representation assumes that a strong domain model is
possible and available.

Expert Model

The expert or domain model of an intelligent tutoring system contains the
knowledge the system has about the domain of discourse. From the earliest
intelligent tutoring systems, the goal has been to transfer the knowledge con-
tained in this model from the system to the student. As such, it also formed
the basis for the student model, which was seen as the subset of the expert
model currently known by the student. This view of the learning process may
be called the knowledge transfer model. An opposing view to this can be found
in constructivist theories, which claim that knowledge may only be formed by
the learning agent in interaction with the environment.

On the extreme end of the knowledge transfer end are systems that claim to
model the cognitive reasoning process of the domain completely. Perhaps the
best known of these are the Cognitive Tutors [11], where the expert model is
complete in the sense that it is able to solve problems in the domain on its own,
and do so in a way that should be similar to how a student does it, when he does
it correctly. On the other end of the spectrum, constructivist systems may not
have expert models as such at all, but Self [72] suggests that such systems may
employ situation models that contain knowledge about situations that should
facilitate and trigger learning in the student. These models may take a similar
role as expert models in an intelligent tutoring system.

Between these extremes are systems that do not have an executable model
or do not view this model as the learning target for each student directly, but
may use the expert model to form explanations when necessary, or to otherwise
assist the student. For example, an exercise support system may contain a
set of pre-solved exercises annotated by an expert, but without the complete
knowledge required to solve a new problem. This model certainly contains
expert knowledge about the domain and a�ords the system the ability to assist
the student on these pre-solved problems, but it does not contain a complete
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executable model of the problem domain. It would not be able to assist a
student solving a new problem, and could not assist a student that chooses an
unexpected strategy in solving a known problem. A way of generalizing this
theory is to add adaptation knowledge to the reasoner so that it may adapt
solutions from old problems to similar new problems, but unless the adaptation
knowledge was good enough to cover the complete problem space, it would still
not be a complete model. This also means that it would not subscribe fully
to the knowledge transfer view. Hopefully, the student would learn some more
general lessons than just the ability to solve the set of exercises known by the
system in this case. In e�ect the student would be expected to construct his
own generalized model. However, the system would still have more direction
and expert knowledge than the more extreme constructivist systems.

The example above also illustrates how expert knowledge can take many
forms. Rules, cases, adaptation knowledge and even knowledge about learning
situations may all serve as expert knowledge. In this section, the forms of expert
models used by the theory are described.

Relating to the completeness of the expert model is also the question of how
hard the knowledge is to acquire. It is for instance conceivable that a complete
executable domain model may be possible to create, but too costly or otherwise
too di�cult to make. An interesting question here how and how hard it is to
acquire the expert model required by the system.

Key Questions:

� In what form is the expert model (cases, rules, etc.)?

� Can the expert model be used directly (executed) to solve new
problems in the domain?

� To what degree is the goal of the system to transfer the expert
model to the student?

� How is the expert model acquired?

Student Model

Describing a student modeling approach may be broken down into three ques-
tions:

� What does the system model about the student?

� How does it acquire the knowledge?

� How is the knowledge used?

For the knowledge model content, Chapter 1 describes the development from
overlay models, which models the student as a subset of the expert knowledge, to
bug libraries which also models common misconceptions in the domain. Other



38 Chapter 3. FRAMEWORK

approaches, such as case-based student modeling are also briey discussed. In
concrete systems, however, it is important to examine the student model strat-
egy in light of exactly what kind of customization the system provides, and what
opportunities for learning about the student it has [71]. We will take such a
view when describing student models in this framework, asking how it is formed,
what is stored and how it is used to customize the experience.

Another important aspect is the degree to which the student himself can
access and inspect the model, or whether the model is internal to the system.
This is both a practical and ethical issue. It may be prudent to assume that
the student knows himself better than the system does, and as such give the
student the ability to correct mistakes in the model. It is also a goal in itself
to avoid secrecy about what information the computer has about each student.
This does of course mean that the model must not only be open, but also
understandable to the student. An accessible model that is incomprehensible
does little to alleviate practical or ethical concerns.

Key Questions:

� What is the general approach to student modeling (e.g. over-
lays, bug libraries, cases)?

� Is the student model limited to a subset of the expert model?

� Does the system attempt to recognize common misconceptions
(bugs)

� Can the student inspect and/or change the model?

� What kind of tutoring tasks is the model aimed at supporting?

Pedagogical Model

The pedagogical model is often o�ered the least attention in intelligent tutoring
systems, and in many systems is not explicitly represented, but hard-coded in
the program. However, almost all intelligent tutoring systems have some un-
derlying idea about pedagogical philosophy. For instance, the di�erence of ped-
agogical philosophy between the knowledge transfer and constructivist camps
results in very di�erent kinds of systems. The di�erence may also be less fun-
damental but still important. The choice of a rule-based expert and student
model may suggest that the pedagogical philosophy of the system is to teach
these rules to the student and then check if they are retained correctly by giving
him exercises using the rules. The case-based tutoring approach, however, is to
give the student problems and hope that in solving them, the student himself
will form generalized knowledge that may be used to solve never before seen
problems. This means that even though the pedagogical theory may be hard
coded in an analyzed system, it is still and important aspect to examine in order
to understand it.
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Key Questions:

� Does the system have an explicit pedagogical model?

� What kind of pedagogical strategic changes can be done by
the system?

3-2.4 Tutoring Capabilities

The third dimension of the framework focuses on the actual tutoring abilities
of the system. This ability is related to the knowledge models, but instead
of looking at the source models of the system, it focuses on what the system
is able to do with these models. As exercise support is of particular interest,
the exercise selection and in-exercise support are important support tasks. In
addition, we will examine how the exercise support system ties in with more
theoretical knowledge in the domain in the form of conceptualization support,
and what kind of explanations it is able to give to the student.

Goals

Few intelligent tutoring systems attempt to do everything, and even when lim-
iting the scope to exercise support systems, the system will seldomly cover all
the activities associated with exercises. Di�erent systems often have slightly
di�erent goals and emphasis, either because of research interest or pedagogical
philosophy. Before describing the detailed capabilities, this section will address
the goals of the system { what it is designed to teach and the tutoring methods
used.

Key Questions:

� What are the tutoring goals of the system?

� What and how does it seek to teach?

� How well may the goals be supported by the knowledge
sources?

Exercise Selection

An exercise support system typically has a set of exercise problems that may
be given to a student. The simplest way of choosing what exercise to present to
a student would perhaps be to order them in rising di�culty and present them
one after another to the student. However, there is an opportunity here to
select the exercises carefully in order to customize the experience to the current
student's ability. This may mean focusing on exercises that cover areas where
the student has problems, and customizing the di�culty level to make sure the
experience is neither too hard nor too easy.
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The task of exercise selection is in many ways similar to the curriculum
sequencing and planning, which itself is a well studied area of intelligent tutoring
[50]. The similarities is that given a set of units covering di�erent subsets of the
area, the task of the system is to select an ordering of the units that provide the
student with full coverage of the domain, but does so at the student's pace and
taking into account what the student already knows. However, the exercises are
often more numerous, and usually there may be many covering the same area.
Possibly because of this similarity, not all exercise support systems cover this
task.

Key Questions:

� How, and on what principles, are exercises selected?

� Can the student inuence exercise selection?

In-Exercise Support

When an exercise is selected, either by the system or the student, the student
may need further help in solving the problem represented by the exercise. This
may take the form of suggesting a step towards the solution of the problem if
the student is stuck, �nding and presenting examples on how similar problems
are solved, or explaining why a solution step suggested by the student will not
work.

For many exercise support systems, this is the main tutoring support activity,
and exactly how it is done varies with the knowledge model available and the
pedagogical philosophy. For instance, a case-based tutoring system containing
a wide array of pre-solved examples may use the strategy of �nding similar
examples, while a system with a complete executable model of the domain may
take the partial solution of the student, plan how it can most easily be extended
to solve the exercise problem, and suggest steps in this direction.

Key Questions:

� What kind of in-exercise support is o�ered by the system?

� To what degree can the system explain the reasoning behind
suggestions?

Conceptualization Support

An important aspect of learning is acquiring and understanding the vocabulary
of the domain. Some systems attempt to model what concepts the student is
familiar with in the student model and attempt to limit its explanations to using
these concepts. While this is a useful customization of the dialogue, it does not
as such assist in the formation of concepts.
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Key Questions:

� Does the system help the student in forming or learning con-
cepts?

Explanation Ability

Intelligent tutoring system can potentially have a very wide range of abilities
to explain. In selecting exercises, the system can be seen as acting as a form
of expert system, using the student model to choose an appropriate exercise for
the student. The student may (unless forced) refuse to accept such suggestions
if it lacks a better justi�cation than "because it is good for you," and as such
explanations are as important here as in most knowledge-based systems.

In assisting the student in solving the exercise, the opportunities and de-
mands for di�erent kinds of explanations may be quite varied indeed. When a
human tutor assists in solving exercises, explanations may range from a simple
request to explain an unknown concept in the exercise text ("what is a poly-
nomial function?") to clari�cations of the exercise text ("when it says that I
must use an iterative approach to solve the problem, does that mean I am not
allowed to use recursion?") or even fundamental questions about topics required
to solve certain kinds of tasks ("how do I use a for-loop?").

In some ways, the exercise support system may be thought of as a particular
kind of knowledge-based expert system, but with the di�erence that the focus
is shifted from providing the answer to the exercise (which it typically knows
well) towards explaining and teaching how this answer is found. However, this
explanation capability has also been given increased focus in the expert system
community, and indeed some of the work on explanation for early rule-based
systems such as MYCIN [33] resulted in some the early rule-based tutoring
systems like XPLAIN [82].

In this framework, we will categorize the explanation capabilities of the
tutoring systems by the goals each explanation capability is designed to address.
This is done by adapting a set of abstract explanation goals originally used
to describe explanation capabilities of case-based expert systems [78]. These
explanation goals are again adaptations of similar explanation categorization
e�orts from the knowledge-based systems community [39]. These �ve abstract
explanation goals are:

Explain How the System Reached the Answer (Transparency). The
goal of an explanation of this kind is to impart an understanding of how the
system found an answer. This allows the users to check the system by examining
the way it reasons and allows them to look for explanations for why the system
has reached a surprising or anomalous result. If transparency is the primary
goal, the system should not try to oversell a conclusion it is uncertain of. In
other words, �delity is the primary criterion, even though such explanations may
place a heavy cognitive load on the user. The original how and why explanations
of the MYCIN system would be good examples.
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Explain Why the Answer is a Good Answer (Justi�cation). This is
the goal of increasing the con�dence in the advice or solution o�ered by the
system by giving some kind of support for the conclusion suggested by the
system. This goal allows for a simpli�cation of the explanation compared to
the actual process the system goes through to �nd a solution. Potentially, this
kind of explanation can be completely decoupled from the reasoning process,
but it may also be achieved by using additional background knowledge (as in
XPLAIN) or reformulation and simpli�cation of knowledge that is used in the
reasoning process. In expert systems, empirical research suggests that this goal
is most prevalent in systems with novice users [48], but this may not be users
that are particularly interested in learning how to do this themselves and as
such they are (presumably) di�erent than students.

Explain Why a Question Asked is Relevant (Relevance). An expla-
nation of this type would have to justify the problem solving strategy pursued
by the system. This is in contrast to the previous two goals that focus on the
solution. The reasoning trace type of explanations may display the strategy
of the system implicitly, but it does not argue why it is a good strategy. In
other words, while the focus of these explanations are on the problem solving
procedure itself.

Clarify the Meaning of Concepts (Conceptualization). One of the lessons
learned after the �rst wave of expert systems had been analyzed was that the
users did not always understand the terms used by a system. This may be
because the user is a novice in the domain, but also because di�erent people
can use terms di�erently or organize the knowledge in di�erent ways. It may
not be clear, even to an expert, what the system means when using a speci�c
term, and he may want to get an explanation of what the system means when
using it. This requirement for providing explanations for the vocabulary was
�rst identi�ed by Swartout and Smoliar [83].

Teach the User About the Domain (Learning). All the previous expla-
nation goals involve learning { about the problem domain, about the system,
about the reasoning process or the vocabulary of the system. Educational sys-
tems, however, have learning as the primary goal of the whole system. In these
systems, we cannot assume that the user will understand even de�nitions of
terms, and may need to provide explanations at di�erent levels of expertise.
The goal of the system is typically not only to �nd a good solution to a prob-
lem, but to explain the solution process to the user in a way that will increase
his understanding of the domain.

Of these explanation goals, the justi�cation goal may seem relatively less
important, and the learning goal relatively more important than in expert sys-
tems. However, some situations may call for explanations of the justi�cation
type { for instance in the exercise selection task where the system may be asked
to justify the exercise it suggested to the student. In this situation, it is not
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necessarily important the student understands the details of how this selection
was performed, especially if the student model is very complex. A simpli�ed
explanation may be su�cient and even preferred.

Key Questions:

� What kinds of explanations are o�ered?

� What are the limits of explanation support possible from the
knowledge sources of the system?

Learning Capabilities

The learning dimension focus on the learning capabilities of the system itself. A
key questions here is whether the system is able to potentially learn something
for itself while performing its tutoring tasks. Such learning experiences could for
instance be to modify the di�culty level associated with a particular exercise if
it proves hard for many students to solve, or in more complex ways learn from
successful and not so successful student tutoring sessions.

Usually, tutoring systems rely on gaining their knowledge about the domain
and the pedagogical model in advance from experts. However, most if not all
systems learn something about the current student. An important question in
studying how intelligent tutoring system learn, then, is to study if and how it
is able to retain and use the knowledge from the individual student in teaching
later students.

Key Questions:

� What can the system learn to improve its performance during
operation?

3-2.5 Evaluation

While the theory and capability of the theory is interesting, it is important
to examine how the theory has been evaluated. Evaluation can be through
quantitative empirical tests that examine the system as a whole, for instance
compared to traditional teaching methods, or focus on a particular component
of the system. Other forms of evaluation can also have been done, for instance
in-depth qualitative analysis or case studies.

Key Questions:

� What forms of evaluation have been performed on the system?

� What were the results of the evaluations?
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3-3 Chapter Summary

We have presented a framework for describing and analyzing exercies-oriented
tutoring systems, where we focus on the domains the systems have been tested
on, the cognitive theory behind the system, the knowledge sources the sys-
tem draws on to provide tutoring capabilities, and the evaluation methods and
results. In the next chapter, we will use this framework to examine �ve exercise-
oriented tutoring systems.
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Chapter 4

Theories and Systems

This chapter uses the framework described in Chapter 3 to describe and analyze
state of the art intelligent tutoring systems for exercise support. While many
tutoring systems support exericses in various ways, the analysis in this chapter
is limited to systems with these properties:

Case-Based Tutoring: The systems provide exercise support, that is, sys-
tems that primarily present and assist students in solving exercises. This means
that they have a case-based approach to teaching.

Knowledge Based: The tutoring systems must, to some degree be intelligent
in the classic ITS sense { they must be able to provide some actual assistance
in solving problems. This excludes simulation environments that only allow the
student to explore without providing any guidance or help, and radical con-
structivist systems. This does not mean that the system must be able to assist
in any situation (i.e. assist the student in solving any problem, or recognizing
all possible misconceptions), but that it must have some knowledge about the
domain and capability to assist.

Theoretically Based: The system should be clear about its basis in cognitive
or pedagogical theory.

Evaluated: A wide variety of intelligent tutoring systems have been described,
however not all of these have been evaluated by exposure to students. This
requirement is not strict in the sense that there must exist strong quantitative
support for the theory, only that there exists some kind of evaluation of the
approach.

These criteria has led to a selection of three main systems for analysis {
the PACT Cognitive Tutors, the case-based student modeling system ELM and
CATO, which teaches case argumentation in law.
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In additional, features of the BLITS and Ambre-AWP systems will be briey
examined.

4-1 PACT Cognitive Tutors

At the Pittsburgh Advanced Cognitive Tutor (PACT) Center of Carnegie-Mellon
University, a number of tutoring systems have been created. The original goal
of this research was to evaluate the ACT-R cognitive theory [16], and its prede-
cessor ACT* [10], by modeling how people use and acquire skills. The systems
produced at CMU and other systems inspired by them created elsewhere are
commonly called cognitive tutors [13]. These tutors all focus on acquiring skills
through supporting the student when solving exercises.

Currently, the major cognitive tutor systems used at PACT are the LISP
Tutor [14, 12], which teaches basic LISP through a self-paced course given at
CMU, and a series of mathematical tutors in the geometry [46, 35] and algebra
domains [9]. These tutors now covers the curriculum of high school geometry
and algebra courses in the US, respectively. The mathematical tutors have been
deployed to about 150 high schools in the USA [35] and are in active use.

A great deal of research has gone into these systems, both in evaluating them,
formulating and reformulating particular theories of learning. They have been
subjected to a wide range of evaluations, e.g by comparing them to conventional
problem solving environments [13], but they have also served as platforms for
a wide range of experiments on particulars in tutoring, such as how di�erent
types of feedback a�ects the student's ability to correct a mistake [49]. This
extensive work makes the cognitive tutor systems the most studied approach to
exercise solution support, and is possibly the most well studied approach in all
of intelligent tutoring system. This analysis will not cover these e�orts in detail,
but focus on the more basic foundations of the cognitive tutor systems.

4-1.1 Domain

Description of the domain

The cognitive tutors developed at PACT have focused on either basic level pro-
gramming (initially LISP, later other languages such as Pascal) or mathematical
proof generation in algebra and geometry. The �rst versions of cognitive tutors
on these topics was introduced in the 1980s (LISP Tutor [14, 12] and Geometry
Tutor [15]), and has later been evaluated and revised extensively. Currently,
the focus of the mathematically oriented tutors are on adaptation to extensive
deployment in high schools, while the programming tutors are more tailored for
laboratory experiments.

These domains were chosen because they catch the student at the very begin-
ning of learning a topic. They are also fairly constrained and well known, which
makes them easier to model. This does not mean that they are easy to model.
The approach rests on an assumption that both the cognitive performance and
learning models for the domain are well described. However, the domains chosen
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are easier for the approach to handle than domains with weaker domain theories
or more advanced classes on the same topics that for instance deals with more
complex abstractions. On the other hand, solving problems in these domains
require more than mere reproduction { they require genuinely new solutions,
although the strategies for producing the solutions may be reused. This is in
contrast to domains such as learning the multiplication tables and the spelling
of words.

Presentation

The cognitive tutor user interface typically consists of a window de�ning the
problem to be solved, and an area where the student can work on composing a
solution to the problem. This is typically not a completely free form solution
space. For instance in the LISP tutor, the working area is not a completely
free form text editor area, but a lisp expression editor that forces the student to
maintain a syntactically correct (although possibly incomplete) LISP expression
at all times. This makes it possible for the system to continuously analyze the
expression and compare it to expected behavior. In addition to this, some
cognitive tutors have hint-windows, general help windows (e.g. a manual of
LISP expressions in the LISP Tutor) and some indication on how the system
believes the student's skill is on di�erent aspects (see Figure 4.1).

Scope

The systems developed so far have focused on mathematical problems and pro-
gramming. Although the underlying ACT-R theory claims to be a theory for
any problem solving activity, and as such is very general, it is probably not
possible to construct cognitive tutors for any problem solving domains. Two
issues stand out in this regard.

First, programming and mathematical proofs have in common a very formal
representation and a limited set of operations, which make it possible for the
cognitive tutor to monitor the student's work. To enforce this, the cognitive
tutors use editors that force the student to keep within the boundaries of the
formal representation. In the LISP Tutor, this can be done by using custom
editors that enforce syntacical correct statement. This is even clearer in the
algebra tutor, where the student is restricted to inserting pre-made boxes that
represent problem solving steps and then �lling out values for these boxes (see
Figure 4.2).

Areas that lack this formal representation are harder to teach with a cogni-
tive tutor. For instance, it may be possible to make a cognitive model in the
ACT-R style for how to write business letters to a certain level of abstraction.
The letter should, for instance, have a sender, recipient, title, body and signa-
ture, and the body should contain certain elements depending on the purpose
of the letter. This breakdown of elements could go from goal to subgoal much
like in computer programming, but the �nal product must consists of a natural
language text, which is very hard to interpret computationally. One can argue
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Figure 4.1: The PACT Lisp Tutor Interface (from [35, p.83])

Figure 4.2: Representing the tree-structure of problem solving with a box no-
tation in the PACT Algebra I Tutor, from [13, Figure 3, p.178]

.
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that natural language too, may be a (large) set of production rules on how to
form and interpret sentences that is present in everyone's mind, but it is likely
that the variations between people in this capability make them hard to model
in a computer. This can be seen as a special case of the general problem in
AI to operate in domains where generating or interpreting a problem depends
on "general" or "common sense" knowledge, so this is not a particular prob-
lem associated with the ACT-R theory or cognitive tutor systems, but it does
highlight the approach's dependency on quite accurate models of the knowledge
required to solve a problem in the domain.

Second, the cognitive tutor approach requires good general models both on
performance and learning. In many domains, such models are not available and
may be very hard to create. As discussed in Chapter 1, these are weak theory
domains, and for instance medical diagnosis as well as many engineering tasks,
fall into this category. To this, it can be argued that although it is not currently
possible to create a complete model of e.g. medical diagnosis, it is possible to
create a cognitive model on how people solve problems, imperfectly. Indeed, this
has been done, e.g. in MYCIN and other expert systems. However, creating
such models is can be very time-consuming, and experience from expert systems
suggests that it is hard to create competent models covering more than a narrow
�eld.

4-1.2 Cognitive Model

The ACT Theories

The cognitive tutor systems are based on the ACT theories of skill acquisition.
This was initially known as the ACT* theory [10], while the current revision
is known as ACT-R [16], or Atomic Components of Thought. This theory is
related to the production rule approach to building expert systems, for instance
as used in the MYCIN system [33], but it goes further in that the production
system is seen as a cognitive model for how people actually solve problems. It
also contains a theory of how learning occurs through the formation of rules.
Annderson [13] describes the three central concepts of the theory as:

Procedural-declarative distinction. The ACT theories divide knowledge
into declarative knowledge, which is general, conceptual and goal-directed knowl-
edge about the domain, and procedural knowledge, which is to know how to act
or solve a type of problem. Declarative knowledge can for instance be to know
the side-angle-side theorem in geometry, while procedural knowledge is to know
how to apply the theorem in constructing a proof. The assumption is that while
declarative knowledge can be learned through observation or direct instruction,
procedural skills can only be learned by converting declarative knowledge into
applied knowledge such as rules.

Knowledge compilation. Because procedural knowledge cannot be learned
directly, there must be a mechanism for converting declarative knowledge into
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rules. The theory claims that this can only happen in the context of a problem
solving activity. When solving a problem or examining an example, a student
can use interpretive strategies such as analogy to generalize from examples by
associating declarative knowledge with task goals.

Strengthening. The theory assumes that accurate encoding of knowledge
requires repetition and practice, and that practice even after successful encoding
leads to faster, smoother and less error-prone reasoning. On the other hand,
the use of "weak" knowledge, that is knowledge that is not well practiced, can
result in slips and errors.

This theory led to an approach to tutoring where the students are given
initial lectures in order to learn the declarative knowledge, before going through
guided problem-solving sessions. The goals of these sessions are to allow the
students to form the procedural skills required to solve problems, and then
foster the practice of the skills until they reach a level where they can be applied
without slips and errors.

In a computer-aided tutoring context, the focus of the approach is on the
formation and strengthening of procedural knowledge. The assumption is that
acquiring declarative knowledge is relatively straightforward, but that declara-
tive knowledge alone is inert and cannot be actively used. The challenge then is
to operationalize the knowledge by forming procedural rules. These rules can-
not be learned simply by being told what they are; they must be acquired by
actively solving problems. The goal of the cognitive tutor systems is to create
environments where these skills can be trained while the student is monitored
and appropriate feedback is given to check the students' acquisition.

Principles for Cognitive Tutor Design

From the ACT* theory, eight principles for the design of cognitive tutors [13]
was formed:

Represent student competence as a production set. The ACT-R theory
claims that procedural skills can be represented as production rules, and as an
intelligent tutoring system must be able to analyze a student's reasoning process,
it must also contain an accurate model of the student.

Communicate the goal structure underlying the problem solving. An
assumption of the ACT theories is that problem-solving consists of a process
of breaking down goals into subgoals, which can themselves be further broken
down until the problem can be solved directly. In order to break down goals
to subgoals, the student will need to know the goal structure well, but many
students had problems in mastering this structure. It was found that this goal
structure was not communicated clearly. This led to the adoption of visualiza-
tion techniques in the mathematics tutors, whicdisplayed the goal breakdown
of particular problems in trees, in order to highlight the goal structure and how
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to break down a problem. Figure 4.2 illustrates how this is done by a box no-
tation for the Algebra I tutor, while the Geometry tutor used a graphical tree
structure.

Provide instruction in the problem-solving context. Research on sit-
uated learning suggests that learning is dependent on context [11]. Although
ACT does not provide a detailed theoretical interpretation of this, experimen-
tation has led to the adoption of providing instruction before a new section of
the tutor is introduced.

Promote an abstract understanding of the problem-solving knowl-
edge. When observing students, it was found that they tended to retain learn-
ing from problem-solving sessions as very speci�c examples. In the language of
ACT, they would form production rules that �t the speci�c example, but not
generalize these productions well. The cognitive tutor should support the for-
mation of correct abstractions.

Minimize working memory load. For a rule to be learned, ACT requires
that all information relevant to the goal and action of the rule must be present
in working memory. Because of the limited capabilities of working memory, the
theory suggest learning can be hindered by placing additional requirements on
the working memory. A consequence of this is that the approach advocates
learning one or a few things at a time in order to minimize working memory
load. They acknowledge that this is at odds with the constructivist "apprentice
learning" model, which stresses the importance of learning while being exposed
to the complex interactions between di�erent areas.

Provide immediate feedback on errors. The original ACT* theory claimed
that new production rules are formed from problem-solving traces, and that the
longer one wait before an error was corrected the longer a problem-solving trace
must be involved in �xing the error. The conclusion from this was that errors
should be repaired as early as possible. In practice interrupting the student
at the very moment an error is made. This has been revised somewhat in the
ACT-R revision, which claims that learning occurs from the product of prob-
lem solving. This means that although the student may have followed incorrect
paths for a while when producing a solution, if the correct path was found in
the end, the incorrect paths would not be associated with producing the correct
solution. This allows for less immediate error correction. In practice, immediate
error correction is still often provided in order to cut down the time spent in
error states as well as to facilitate interpretation of students' solutions.

Adjust the grain size of instruction while learning. The idea of this
principle is that when the student learns, the granularity of problem solving
steps will increase. The tutor should be able to follow the development of the
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student when these larger steps are formed, and be able to analyze these larger
single steps.

Facilitate successive approximations to the target skill. Often, a novice
student is not able to perform all the steps required to perform a skill. Instead
of trying to force the student to do this, the cognitive tutor approach suggests
that the tutor should be able to �ll in remaining steps for the student in the
beginning, and slowly decrease this support until the student is able to solve
the problem completely on his own.

Cognitive Tutors and Constructivism

The ACT view of learning and skill acquisition rests on many of the assumptions
of the instructional design approach. The strong dependency, both on problem
solving (expert) models and learner models rests on the assumptions that these
models are su�ciently universal to be useful across wide populations of students.
Further, it is assumed that these models can be accurately used to determine
how the students will perform and what "bugs" are present and how to �x
them. However, the approach also rests heavily on learning-by-doing, and even
goes as far as to claim that procedural knowledge cannot be learned through
instruction alone. This is also a constructivist view, although it should be
said that the problem solving tasks in the cognitive tutors are very limited in
scope compared to what constructivists usually have in mind. For instance, the
LISP tutors tend to focus on single-function programs, and the Geometry Tutor
limits problems to the mathematical domain without embedding the problem in
a larger task where such calculations are needed. As such, the exercises might
seem arti�cial and not teach the student how and when to apply these skills
in more realistic contexts. The authors does acknowledge this dependency on
reductionism, but also claim that their evaluations show that at least in their
domains, this assumption is warranted [13].

The PACT Center has done several evaluation measuring how students do
in solving problems outside the cognitive tutor environment. They have done
this by administering tests to the students after they have passed through the
course, and comparing cognitive tutor-assisted students to control groups. This
has shown a signi�cant positive e�ect of the tutors, as long as the teachers are
familiar with the approach and the system [13]. The wide deployment in as
many as 150 di�erent high schools also suggest that the cognitive models used
have a certain universal applicability, although it may be that the choice of do-
mains help in this regard. The formal nature of mathematics and programming,
as well as the relative low level of knowledge students have on these topics in ad-
vance, may be helpful in reducing any unforeseen interactions with pre-existing
knowledge. All in all, the success of this approach does suggest that the more
radical constructivist critiques are less of factor in these domains. This said, the
authors do recognize the value of for example "apprentice learning" and actively
supports the idea that instruction should happen in the problem-solving context
(principle 3, above).
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IF the goal is to merge the elements of list1 and list2

into a list

THEN APPEND and set as subgoals to code list1 and list2

Figure 4.3: Sample rule from the LISP tutor, translated to English [11, p.9]

4-1.3 Knowledge Models

The cognitive tutor approach contains all the three typical models of an intelli-
gent tutoring system. The expert, or target model is the set of production rules
that the instructor wishes the student to learn. This is explicitly represented.
In addition to this, some of the cognitive tutors have a set of "buggy" rules,
which represents misconceptions and faulty rules the students may have formed.

The ACT theories stipulate a di�erence between procedural and descrip-
tive knowledge. The declarative knowledge contains theoretical and conceptual
knowledge, as well as examples and goal structures. The procedural knowledge
is tied to problem solving activities and is represented as production rules.

Expert Model

The ACT-R theory claims that skill competence is a product of learning declar-
ative knowledge and applying this knowledge to problems until a set of pro-
duction rules are learned. After su�cient practice, this can be applied to any
problems within the scope of the model. This view of human problem solving is
replicated directly in the cognitive tutor expert models in a fashion that is close
to rule-based expert systems. Because ACT-R predicts that skill competence is
a function of how well the procedural rules have been learned, the focus when
creating a cognitive tutor expert model is on designing a set of production rules
that covers all the correct ways of solving the problems. The redundancy in
problem solving approachs is important because the cognitive tutors analyze
students' problem solving by a process of model tracing, where the assumption
is that any correct step the student takes in solving a problem must be repre-
sented as a rule in the expert model. In addition, the expert model contains
rules that represent common misconceptions in the domain. If the student per-
forms a problem-solving step that matches one of these misconcepttions, he may
be corrected by using speci�c information associated with this rule.

This makes the expert model in a cognitive tutoring system an extremely
important component, and also places restriction on how the rules in order for
them to match human problem solving strategies. For instance, the importance
of goal structures in the ACT-R theory means that the rules in cognitive tutor
systems tend to be organized around the goal-subgoal hierarchy, and the rules
often have among the conditions that a certain goal must be active for them to
�re (see e.g. table 4.3).



54 Chapter 4. THEORIES AND SYSTEMS

Student Model

The student model in modern cognitive tutors consist of a kind of probabilistic
overlay model called knowledge tracing. For each student, every rule has a value
associated with it between 0 and 1, which represents the system's belief on how
well the student knows the rule. When a rule is successfully applied by the
student, this value is increased, while the failure to apply a rule in a situation
where it should be applied decreases the value. The exact mechanisms for this
is based on conditional probability and is presented in [35].

The goal of the student model is to monitor when a student master the full
set of rules. At this point, the cognitive tutor will suggest that the student has
mastered the part and may move on to other topics. It may also be used to
select problems that require rules that the student has not already mastered
and as such tailor the experience to the student.

The interface screenshot of the LISP Tutor in Figure 4.1 shows that the
information gathered by the knowledge tracing is compiled into more abstract
categories, and that the value for these categories are displayed to the student.
This provides some level of inspectability of the student model, although on an
abstract level.

Pedagogical Model

The whole ACT-R theory is concerned with skill acquisition, and as such it can
be called a pedagogical model in itself. The ACT-R theory is used to guide the
process of creating the cognitive tutor interface and how to construct rules. The
kinds of decisions inuenced by this learning theory is quite wide ranging and
includes such choices as:

� Limiting the amount of windows in the work area to minimize working
memory load.

� Explicitly representing the goal structure, e.g. by including tree graphs of
the solutions in the geometry tutor.

� Limiting the freedom for students when solving problems, e.g. by including
an expression editor in the LISP tutor.

This is not the same as having an explicit pedagogical model, where the system
can reason over tutoring strategies and decide what is best in a given situation.
Such a pedagogical model is indeed described as a part of the cognitive tutor
architecture (e.g. in [11]), but it has not been a part of the classic implemen-
tations. The wide range of evaluations and testing done on the cognitive tutor
systems, means that the theoretical fundament behind them has been tuned to
include a wealth of information on speci�cs, such as how explanations should be
formulated in order to facilitate understanding beyond the tutoring environment
[49] and detecting if students are "gaming" the tutoring system [21].
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4-1.4 Tutoring Capabilities

Goals

The main goal of the cognitive tutors is to assist the student in forming opera-
tional skills by helping them solve exercises. The ACT-R theory states that the
important knowledge structures involved in actual problem solving can only be
constructed and reinforced through practice, so the focus is on assisting in this
process.

Based on this goal, the cognitive tutors are designed to support the op-
erationalization process, which means that it excludes for instance conceptual
learning or exploration of the domain. The goal is to help the student in ac-
quiring the exact rules represented in the expert model as well as possible.

Towards this goal, the model tracing approach e�ectively limits the "moves"
a student can take on a solution path to those represented explicitly by a pre-
made rule in the expert model. Although later revisions of the ACT-R theory
places less of an importance of correcting a perceived error immediately as long
as the student eventually �nds the solution, this "correct early" approach is
often preferred for pragmatic reasons. When the student venture into unknown
territory, tracking the student becomes much more computationally expensive.
This means that it is hard for the student to venture away from a path that
leads to the correct solution, but this does not mean that the process is linear
for the student. Often, a goal is broken down into several subgoals, and in the
newer cognitive tutors, the student is allowed to go back and forth between
branches in the tree and expand on them as he sees �t.

Exercise Selection

The knowledge tracing approach of student modeling allows the cognitive tutors
to keep a model of how well the student knows each rule in the expert model.
When combined with a set of problems and the rules required to solve these
problems, this allows the tutor to select problems for the student that requires
rules for which the student has not yet demonstrated mastery. This is combined
with rules into self-contained sets of increasing di�culty, where the student must
demonstrate a su�cient level of mastery on one level in order to advance to the
next. This is done to limit the learning load of the student, so that he will not
face too many new rules at once.

In-Exercise Support

The main mechanism for in-exercise support in the cognitive tutor systems is
the model tracing of the problem solving process. This is not a process that is
tailored to the speci�c student in any way, but interprets each problem solving
step and attempt to match it to an existing correct or buggy rule in the expert
model. If the input from the student is insu�cient to determine what the
student attempts to do, the system asks disambiguation questions until it has
determined a matching rule. If this rule is correct, the problem solving activity
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is allowed to continue uninterrupted, although if it matches a buggy rule, an
error message is given along with an explanation as to why this step is not
correct.

The model tracing technique allows for a very tight coaching of the problem
solving process, but it also constrains it heavily. The student is not allowed to
experience on his own why a strategy pursued will fail, but is instead o�ered
an explanation after the very �rst step down the path. However, this does help
the student stay on the correct path to the solution, and given that the ACT-R
theory is correct, enforces the rules used in the production of correct solutions.

Conceptual Support

The focus of the cognitive tutors is not on the language, terminology and con-
cepts of the domain. In fact, the use of the tutors assumes that this is taught
in an instructional setting in advance. The reason for this is that it is assumed
that declarative knowledge can be taught well through textbook reading or
classroom instruction, and as such is not the focus of these systems. However,
the newer implementations of the LISP Tutor does have a window dedicated to
manual-like information on LISP functions, as reference material.

Explanation Ability

The major explanation capability of the cognitive tutors, is the misconception
explanations associated with the buggy rules identi�ed during model tracing.
When the system �nds that a problem-solving step taken by the student matches
a misconception rule, the information stored in this rule is presented to the
student in an attempt to clear up the misconception. This information may
take the form of preformed text, as the misconception rules tend to be quite
speci�c. The goal of these explanations is to improve learning by invalidating
buggy rules for the student.

If the student is stuck when solving a problem, the system may also provide
hints. This can (initially) take the form of suggesting a goal to pursue, and if
that fails, to suggest a problem solving step. This can be done by searching the
expert model rule set to �nd a rule that can be applied to the current problem
state. The result of applying this rule can then be presented to the student,
along with a premade text associated with the rule, explaining why it is a good
choice. This ful�lls both the justi�cation and transparency goals.

Other kinds of explanations are not the focus of the cognitive tutor systems,
although they do have the knowledge sources to produce relevance explanations
in order to justify why the system selects a given problem for the student to
solve.

Learning Capabilities

In [11], the authors write that they typically manage to capture about 80%
of the buggy rules encountered in the expert model. If a student tries to do
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something that may not be captured by any of the existing rules, this action
may be the basis of a new buggy rule. However, the explanations associated
with these rules cannot be created automatically, so the process of de�ning these
is partially a manual process. Beyond this, the cognitive tutors do not learn or
acquire knowledge automatically during operation.

4-1.5 Evaluation

The cognitive tutor systems have been subjected to numerous evaluations not
only of the total system, but particular elements and new theories. Only some
will be covered here, but see [13, 11] for more extensive overviews.

The �rst Geometry Tutor was used in a pilot in the school year 1986-1987,
and the results showed that access to the tutor program increased the grade
signi�cantly, by more than one standard deviation (which works out to more
than one letter grade) [13]. A newer iteration of the geometry tutor was also
tested in [44], which concluded that the tutor resulted in a signi�cant positive
result, but only if the teacher was integrated in the project.

A similar evaluation of the �rst Algebra Tutor showed no di�erence between
the experiment classes using the algebra tutor and the control classes using
traditional methods [13]. The authors suggest that two reasons for this may
be that the notation used in the algebra tutor was di�erent from what used
in the classroom, and social factors (such as class attendance and motivation)
that seemed a large factor in the school tested. A newer iteration of the algebra
tutor was tested on over 500 students in three schools, and showed an increase
in standardized test scores of 15% compared to control groups. On tests that
targeted the objectives of the tutor, the experimental groups performed 100%
better [45].

The LISP Tutor has also been evaluated multiple times through its history.
For instance, an evaluation on a self-paced LISP course, the students using the
tutor solved the exercises 64% faster and scored 30% higher on a post-test than
students using a standard LISP environment [13].

4-2 Episodic Learner Model (ELM)

The Episodic Learner Model [86] is an approach to student modeling that uses
the concrete previous learning episodes of a student. This was �rst explored in
the ELM-PE system [86], which is an interactive environment where students
can solve LISP exercises, and later in the ELM-ART systems [87], which com-
bined exercise solution support with the contents of an adaptive, interactive
online textbook1.

Although there are di�erences, the exercise support in ELM-PE can be
thought of as an extension of the model-tracing approach in the cognitive tutor

1ELM-ART can be accessed through the web at http://apsymac33.uni-trier.de:8080/Lisp-
Course (last access 25.03.05)
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systems. Like these systems, the solution (a LISP program) is diagnosed in or-
der to provide a tree of rules that was used to produce the output. However, the
ELM systems attempts to use concerete prior knowledge from problems solved
earlier by the same student. The assumption is that the student will attempt to
reuse an earlier problem-solving trace as much as possible as much as possible
and only adapt the solution where the new problem does not �t the old.

In ELM-ART, the student model is extended to also cover theoretical knowl-
edge and how the student has been exposed to di�erent parts of the curriculum.
Combined with a model of dependencies in the curriculum, this allows the sys-
tem can o�er advice on what the student should address next, and anticipate
which exercises are appropriate.

Empirical evaluation has been carried out where ELM-PE and ELM-ART is
compared to test groups where these systems are not used, and they have also
been compared to each other. These studies are described under Section 4-2.5.

4-2.1 Domain

Brief description of the domain

The domain of both the ELM-PE and the ELM-ART systems are introduc-
tory programming classes in LISP, with particular focus on recursion. Because
both these systems are designed to give in-exercise support on programming
tasks, they require a fairly deep understanding of the programming problems to
support as well as the programming language itself.

Presentation

The ELM-PE system was designed to work as a standalone application environ-
ment on Macintosh computers. As this system only provided exercise support,
it's user interface is similar to the LISP Tutors in that it has a text editor
area where the student can form the lisp expression, as well as the problem
description.

In creating the ELM-ART, the authors decided to create a purely web-based
interface that would serve as a complete course. This means that unlike ELM-
PE, it contains both the more theoretical background knowledge traditionally
found in textbooks and an environment for solving exercises. The course appli-
cation is organized so that exercises of di�erent kinds (such as multiple-choice
or more free-form programming exercises, as for instance illustrated in Figure
4.4) are integrated in the theoretical curriculum.

Although ELM-ART contains a default path through the curriculum for
beginners, it also allows the student to access any part of the course at any
time. The course is arranged in a tree-structure, with abstract lessons at the
top and speci�c text pages and exercises further down. All of these pages
are tied to concepts in a domain model, which also contains information on
dependencies between the concepts. Because the system's student model keep
tracks of what concepts the current student is familiar with, it can infer what
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Figure 4.4: Solving a LISP exercise in ELM-ART
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Figure 4.5: Inspecting and modifying the student model in ELM-ART

concepts (and thereby pages) the student would be ready to address. However,
the student model may not be accurate, so the student model is only used as
advice. Through color codes, the di�erent pages are marked as "assumed to
know", "assumed not ready for" and "assumed ready for". The student can
also manually inspect and update the student model in order to inform the
system about what is already known (see Figure 4.5).

In addition to these core features, ELM-ART also has discussion forums, a
chat interface, an online LISP manual and a free-form LISP evaluation engine.

In the ELM-PE system, the student solves LISP exercises in a special ex-
pression editor similar to the one used in the PACT LISP Tutor, which hinders
the student from making syntactical errors such as missing right or left paren-
thesis. These types of errors make the program impossible to parse as a tree
structure, which the ELM program diagnosis requires. The ELM-ART system
does not limit the student in this way, but does a preliminary syntactical check
of the expression and will issue an error message if there is a syntactical error.
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If it does not �nd any syntactical errors, it will proceed to diagnose the program
using its domain knowledge of LISP programming and the task at hand. If the
program fails to solve the goal of the exercise, advice is o�ered on what the
student should do, �rst through a hint and if that is not enough, by provid-
ing an adaptation of the program that solves the problem. A major di�erence
between the PACT LISP Tutor and ELM-ART is that the ELM-ART system
does not perform diagnosis continuously, but allows the student to work until
diagnosis is requested by the system. This increases the freedom of the user,
but also means that the tutor cannot take initiative to correct errors in the way
the PACT LISP Tutor does.

Scope

The current ELM systems have only been used on LISP programming tasks.
However, to some degree, other courses could be made based on the same system.
The part of ELM-ART that relates to course management, textbook knowledge
and multiple-choice tests are clearly usable in a wide range of domains, and a
commercial course authoring system called NetCoach2. NetCoach can be found
at [88]. However, the parts of the system concerned with in-exercise support
for LISP programming tasks might not be as widely relevant. This does not
mean that it is only useable in LISP or other programming domains { like the
cognitive tutor systems, the idea behind the LISP programming diagnosis may
be applied in other domains. However, as this part shares the goal-oriented rule-
based approach with the cognitive tutor systems, it is likely that it is most useful
in domains with a formal syntax (i.e. formal languages) and strong domain
theory.

4-2.2 Cognitive Theory

Episodic Learner Model

The theoretical basis for skill acquisition and problem solving in the ELM sys-
tems are similar to that of the cognitive tutors systems in that both systems
distinguish between the declarative and procedural knowledge, and that pro-
cedural knowledge can be well represented by production rules. ELM uses a
somewhat more elaborate language for storing declarative knowledge, where
concepts (such as LISP expressions, problem solving goals and schemas) are
stored as frames with slots relating them to other frames (representing other
concepts). Initially, when there is no speci�c knowledge about a student, the
in-exercise support o�ered by ELM is very similar to model tracing in the cog-
nitive tutors. The goal of the exercise is broken down into sub-goals and then
programming patterns, which is then matched to the code produced by the
student.

A problem in the PACT LISP Tutor was that the model tracing approach
found several di�erent paths that could explain a reasoning step taken by the

2Available at http://www.net-coach.de (last access 10.03.06)
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student. In these situations, the PACT LISP Tutor would ask discrimination
questions in order to understand what the student was doing. This was done in
order to reduce the number of parallel traces the system would have to track so
that the speed of the system would be acceptable. ELM has another solution
to this problem, based on the observation that students, when solving exercises,
adapt solutions from earlier, similar problems when solving a new problem [86].
This observation means that when faced with two di�erent interpretations of
what a student is attempting to do, the path this student has followed when
solving another problem, or the student has seen in an example, should be pre-
ferred. The ELM system creates a student model based on episodic information
{ the previous programs created and examined by the student. This is used by
ELM as en heuristic in the model trace search, but also in providing hints and
tips to a student during exercise solving. By reminding the stuck student of
similar examples he is familiar with, or even created himself, the student may
see structures that can be useful in solving the current problem.

ELM-ART and Constructivism

The ELM-ART environment is clearly built over an instructional design frame-
work. An expert in the domain predetermines all the goals of the course, the
contents and the evaluations. While the system has a default path that is de-
signed for the complete novice, it does have quite sophisticated techniques for
allowing more advanced users to enter the course at their skill level. It does
this by asking some initial questions to new users (such as computer literacy
and pasts programming experience), and by allowing them to inspect and edit
parts of the student model. ELM-ART can also infer that a student has knowl-
edge about basic concepts if the student jumps to more advanced sections of
the course and successfully solves exercises. This suggests that the ELM-ART
system rely less on total replicability than a system where the progression is not
as adaptive. However, it still assumes that its expert model is universal, even
for students with prior knowledge that is not obtained through ELM-ART. For
instance, ELM-ART supposes that knowing about LISP atoms is a prerequisite
to solve list-processing problems, such as removing the last element of a list. If
a student solves this problem, ELM-ART concludes that the student most likely
also knows about LISP atoms. The assumption of universalism also extends to
the conceptualization used to describe the course. If the student is to usefully
inspect and edit his student model, he must have a shared idea about what the
relatively short descriptions of the di�erent knowledge units are.

The ELM system also shares with the cognitive tutor systems a requirement
for a strong domain model in order to provide in-exercise support. Although
ELM collects concrete episodes (cases) from students, it can only do so if the
program traces already matches a model trace through its expert model. This
means that it can only interpret student cases through its expert model, and
is not able to learn from cases that go beyond its existing model { it can only
mark what parts of its existing model was used in this particular case. Since
the programming tasks in ELM-ART are fairly limited (single-function without
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iteration), it is possible to describe the domain well enough that this may not
be a problem here, but it may very well be a problem in larger programming
tasks.

The assumption that programming can be learned through very many small
task illustrates a dependency on reductionism { the assumption is that once
the student learns to create recursive functions, he can create larger programs
by putting these together. However, no exercises or tests of this capability are
provided by the system.

Conceptual and Procedural Knowledge

The ELM theory separates between conceptual and procedural knowledge in
the same way as the cognitive tutor systems. However, the ELM-ART tutor in-
tegrates the teaching of conceptual and procedural knowledge much closer than
the cognitive tutor systems, where instruction and skill practice are separated
into di�erent lessons. The ACT principles for tutor design does state that in-
struction should happen in the context of procedural training, but in practice
it has not been as integrated as what is done in the ELM-ART tutor. However,
this tight integration means that an exercise will typically be set to follow a
particular instruction page, and after solving this, the student would go on to
the next topic even if he was unable to solve it and had to ask the computer for
a solution. This is in contrast to the PACT LISP Tutor, which assigns new ex-
ercises until it deems the student skilled enough in that area. Dividing the time
between instruction and exercise solving allows the system to more dynamically
choose appropriate exercises. If the student is used to be provided with exer-
cises that is very tailored to the instructional topic at hand, it might be hard
for the system to then introduce exercises that addresses misconceptions from
other parts of the curriculum. In other words, while ACT recommends that
instruction should happen in a problem-solving context, ELM-ART provides
problem-solving in an instructional context.

4-2.3 Knowledge Models

The three main forms of domain knowledge in the ELM system are concepts,
rules and task descriptions. The concepts and rules roughly correspond to the
declarative and procedural units in the cognitive tutor system, while the task
descriptions are machine-interpretable representations of exercise tasks.

The ELM systems also have a conceptual separation between the expert and
student models, although they have a common representation.

Expert Model

The expert model in the ELM system may be separated into the online text-
book and the diagnostic model. The online textbook knowledge is used to teach
the student the concepts and problem-solving strategies theoretically, and helps
the system analyze what parts of the curriculum should be presented to the
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Figure 4.6: Part of the ELM frame representation for the concept nil-test,
from [86, Table 1, p.202].

student, while the diagnostic model is used to interpret student program solu-
tions in a way similar to the strategy in the PACT LISP Tutor. However, both
these models include references to basic concepts in the domain, such as LISP
functions. This means that they are not completely separate models, which is
interesting in light of student modeling as it open the potential for the system
to know if a concept is just read about or actually actively practiced.

In ELM-PE, which only contains the diagnostic model, the concepts are
declarative units of knowledge and in the LISP systems they represent concrete
LISP functions (e.g. first or rest), more generalized semantic concepts (e.g.
List operator), schemata for common algorithms or problem solving strate-
gies, or diagnostic meta-information. ELM uses a frame-based language, which
means that each concept has a number of slots with every concept. All concepts
contain slots for the name, type, abstractions and specializations of the concept.
The two last slots are used to form a taxonomy of concepts with more general,
abstract concepts as superclasses for speci�c concepts. In addition to these,
there are type-speci�c slots, such as the parameter and sorted-rules slots in the
nil-test concept shown in Figure 4.6.

With the addition of the online textbook in ELM-ART, the conceptual model
has been extended to include information about lessons, sections, subsections
and pages. A page can contain information on a subject, a test, example or
an exercise. In addition to what is presented to the student, the concept also
has information on how it relates to other concepts, which includes dependency
information. Combined with a student model, this allows the system to infer if a
student is likely to be able to understand a concept based on what other concepts
the student is familiar with. The rules represent the procedural knowledge.
These rules are designed to be used in diagnosing student programs, where the
initial state of the problem (containing the goal) is transformed to a solution by
going through iterations where the initial state is broken down into a sub-goal
hierarchy, and where the leaf nodes are matched to actual LISP expressions.

Rules are also stored as frames, although with a di�erent set of slots than
the concepts. Rules also have an abstraction/specialization hierarchy, but also
contain information about the preconditions for them to be applied and the con-
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Figure 4.7: Part of the ELM frame representation for the rule
equal-NIL-test-rule, from [86, Table 2, p.203].

sequence of applying them. In addition to this, information about the quality,
recency, activation and priority is used to prioritize rules (see Figure 4.7. The
rules may represent both correct and incorrect transformation.

While the correct rules may be on the path to a correct solution to the
problem, incorrect rules represents mistakes students may make when trying to
solve the problem. Just like the PACT LISP Tutor, the ELM systems contain
both a correct and "buggy" model of the domain. Lik in the PACT LISP Tutor,
the buggy rules allows the tutor to recognize errors and present explanations
tied to that particular buggy rule. To this end, the rule frames also have various
slots for storing such textual explanations.

Last, the actual problems presented to the students are also stored in the
frame-based system. The frames representing tasks contain both a textual de-
scription that may be presented to the student, a reference solution, several
test-cases with expected result, and a high-level plan, which is the initial state
to be uses by the diagnostic process when analyzing a student's proposed so-
lution. An example of a task-description frame from ELM-PA can be seen in
Figure 4.8.

The diagnostic model in ELM must be strong in the sense that it has to be
able to solve all the tasks and do so in all possible ways a student might imagine
if it is to succeed in the diagnostic process. This does not mean, however, that
it must be a complete model of programming LISP or even of the limited set
of LISP programming tasks covered by the curriculum. In principle, the model
needs only be able to solve the speci�c tasks given to the student throughout
the course. Because the tasks the student is given is known in advance, the
model can be tailored and checked against the actual tasks. This makes the
process of forming the expert model considerably easier than the model had to
be able to solve any conceivable problem.
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Figure 4.8: Part of the ELM frame representation for the Simple-And task
description, from [86, Table 3, p.204].

Student Model

The student model in the diagnostic model { the Episodic Learner Model { is
based on problem solution traces from all the problems seen by the student.
These are not stored as a unit, but broken down so that all concepts involved
in the trace are described in separate frames. For instance, if the problem
trace contains a nil-test (Figure 4.7), a specialization of the general nil-test
is created, and the rule identi�ed as used by the student to implement the
nil-test is associated with the new frame. This frame is then generalized
using a type of explanation-based generalization, where the concrete code is
abstracted away, so that for instance a concrete variable name is replaced by a
<variable> pattern that can be matched to any variable.

There are three goals of student modeling in ELM. First, previous prob-
lem solutions can be used as examples to remind students of problem solving
strategies when he is solving other problems. Second, it can be used to assist in
selecting appropriate exercises for the student. The third goal is to increase the
e�ciency of the diagnostic process. Because the diagnostic process is search-
ing through a possibly quite large search tree of rule transformations, a good
heuristic can be very useful in cutting down on search time. In ELM-PE, the
student model is used as a heuristic in that the system tries to match rules that
have been used by the student before. An evaluation study of the e�ciency gain
using this heuristic, shows that the heuristic improved the speed of diagnosis
from a median of 7.1 seconds to 2.1 seconds [86].

With the ELM-ART electronic textbook, the student model was extended
with information about concepts on a higher level of abstraction. For each con-
cept, ELM-ART records if the student has visited (if he has examined the page
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describing the concept), learned (completed tests on this concept successfully),
known (manually marked it as known) and inferred (the system has inferred
that the student knows it). As such, the ELM-ART student model is a type
of overlay model, which contains information not only if the concept is known
to the student, but also why the system believes the student knows it. The
electronic textbook student model is used to adapt the electronic textbook in
various ways, such as marking the part of the course for which the student has all
the requisite knowledge. For instance, the user interface of ELM-ART displays
this by marking solved exercises and visited text pages with a white ball, pages
that the system has inferred that the student knows with an orange ball, pages
that the student is not yet ready to address (because of lacking prerequisites)
with a red ball, and a green ball means that the student is ready to address that
page but has not yet done so. The system also suggests prerequisite topics if
a student that attempts to address a "red ball" page despite the advice of the
system.

Pedagogical Model

The pedagogical model of the ELM systems is mostly implicit. The ELM-ART
system's knowledge about dependencies between the di�erent concepts in the
domain may be characterized as a partial pedagogical model. These dependen-
cies are primarily an encoding of the assumptions about prior knowledge made
when authoring the pages describing the concept, as opposed to underlying de-
pendencies in the domain itself (although there is clearly an overlap here). T he
dependency model a�ects the order in which lessons are taken, which is clearly
a pedagogical decision, and it is a decision the system can take based on the
knowledge about the system, the domain and how the domain should be taught.
For instance, if a student has told ELM-ART that he knows about Lisp atoms,
but not the rest and reverse list processing functions, he will be advised to
read the pages about these functions before attempting to write a function that
removes the �rst element of a list. The system can do this because it knows that
the knowledge of Lisp atoms, the rest and reverse functions are prerequisites
to solving that particular problem, and that the student does not know rest

and reverse.

4-2.4 Tutoring Capabilities

Goals

In ELM-PE the goals of the system was to perform e�cient in-exercise support,
much like the PACT LISP Tutor. This goal was extended in ELM-ART, which
attempts to be a complete tutoring environment for distance learning over the
web, with instruction, exercises, tests and communication tools such as forums
and chat. This di�erence in emphasis is reected in the knowledge sources,
as the expert model from ELM-PE was extended to include more knowledge
required for instruction.
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Exercise Selection

The ELM-PA system does not perform exercise selection or advice on that level,
although the authors recognize that this could be done in a similar way as done
by the PACT LISP Tutor. The ELM-ART system does provide some advice on
exercise selection, but does so based on the electronic textbook level of student
modeling. This means that ELM-ART will mark a page containing an exercise as
green if the student has learned all the required materials to solve that exercise,
or red if he has not. However, the �ner grained information about what rules
a student knows well and less well is not used in here. The focus in ELM-ART
may have shifted from exercises to overall course design, and in shifting from a
Cognitive Tutor-like model of separated instruction and exercises; the priority
is on providing exercises that correspond to exactly what is instructed in that
lesson. While this allows the system to provide pinpoint examples and exercises
to the topic at hand, it is also more targeted than the PACT LISP Tutor. By
suggesting exercises that touch on di�erent parts of the curriculum, the PACT
LISP Tutor may provide more opportunity for the student to "criss cross" the
di�erent topics of the course so that interactions between them can be exercised.
The PACT LISP Tutors can also give further exercises in a speci�c skill area
if the student has problems, whereas the ELM-ART approach seems less able
to adapt by giving more exercises in problem areas. Once an exercise has been
solved, be it with the computer's help or not, the student is assumed to have
learned that topic. This comes at an advantage { the incredibly tight connection
between examples, problem solving and instruction. The student gets almost
immediate feedback on his understanding of a topic, and misconceptions can be
corrected early.

In-Exercise Support

The in-exercise support of the ELM systems is quite sophisticated. Not only can
it determine a correct solution from an erroneous one, it can also diagnose in-
complete solutions and erroneous solutions and provide assistance in correcting
or �nishing them. It does this by a mechanism that is in principle similar to the
model tracing of the PACT LISP Tutor, although the mechanisms for doing so is
di�erent. While the PACT LISP Tutor has a rule-based system inspired by the
ACT theories, ELM uses a conceptual network, where the concepts are matched
to goals or partial expressions. The rules indexed by these concepts represent
di�erent possible correct or buggy solution paths. Although the mechanism is
di�erent, both systems can be seen as searching a space of di�erent possible ex-
pansions of a code tree, attempting to re-create or trace the code produced by
the student. When a match is found, the student's code tree can be compared
to a correct solution, and hints provides as to where the student is wrong or
missing code. Figure 4.9 contains an example of an ELM code derivation tree.

In an example exercise from the ELM-ART system, the student is asked
to create a function that removes the last element of a list. This can be done
by using the rest function, which removes the �rst element of a list and the
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Figure 4.9: The ELM derivation tree for the LISP code (equal (car li) nil),
from [86, Figure 2, p.209]. ITALICS CAPITALS: plans, CAPITALS: concepts,
italics: rules and bold: LISP code.

reverse function, which reverses the order of the elements in a list. By �rst
reversing the order, removing the �rst item, and then re-reversing the list, the
last element is e�ectively removed. The LISP code for this can look like this:

(defun remove-last (my-list)

(reverse (rest (reverse my-list)))

)

There are numerous mistakes a student can do in this exercise. ELM-ART
contains no constraints on the text that can be typed in the area where the
function is de�ned. This means that the student can make syntactical errors,
such as missing a right parenthesis. However, in order for the diagnosis to work,
the system must be able to parse the program, which requires that the syntax
is right. In order to ensure this, ELM-ART �rst does a syntactical check, which
can inform that a parenthesis is missing (for instance), although it does not
suggest where it might be missing. Further, a student may make a mistake, for
instance by forgetting to re-reverse the list after removing the �rst element:

defun remove-last (my-list)

(rest (reverse my-list))

)

Here, an analysis of the code tree compared with the closes solution will show
that the student's solution lacks a reverse-step. This will result in ELM-ART
suggesting that the student apply the reverse function (although in our test
it did not suggest where or how). Further help can result in transforming
the program into a functioning solution. The authors suggest that this is an
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important capability in a distance learning system, as it makes sure that all
exercises can be solved even without a human tutor.

A last important capability of ELM is to suggest relevant example the stu-
dent may wish to look at. In doing this, ELM prefers examples that the student
is already familiar with, or solutions created by the student himself in earlier
exercises.

Conceptualization Support

While the ELM-PA system does not provide conceptualization support, this is
a major focus of the electronic textbook in ELM-ART. However, it is based
on a knowledge transfer pedagogical view, where the goal is to transfer the
conceptualization of the domain represented in the expert model as accurately
as possible to the student. The student is taught (and tested on) understanding
of concepts according to the material in the electronic textbook. The assumption
is that the conceptualization is universal, which may be a useful assumption in a
formal domain like LISP, where functions and syntax are precisely de�ned. This
is particularly visible in the inspectable student model, where the student can
mark di�erent concepts as previously known so as to skip over these subjects.
These concepts tend to be somewhat abstract so they do not overwhelm the
student, but the very abstract nature of these concepts may make the computer's
semantic interpretation of them hard to understand.

Explanation Ability

The many knowledge sources in ELM-ART makes it possible for the system to
provide explanations on many levels. On the electronic textbook level, some
explanations are provided in order to justify why the system does not think
the student is ready for a particular subject. This is done by applying the
dependency model, and referring to subjects that are prerequisites to the subject
at hand but not yet mastered by the student.

On the exercise-support level, explanations are provided in the form of hints
about missing structures, explanations about misconceptions (in the form of
"canned" text attached to triggered misconception rules), as well as illustration
through targeted examples. The examples may not seem like an explanation,
but in principle it is similar to what is done in case-based reasoning in general {
presenting a similar case with some solution as justi�cation for a adapting that
solution to the current problem. The implicit suggestion in presenting similar
examples is to adopt the problem solving strategy seen in that example, with
the justi�cation that it worked in an earlier case.

However, it seems hard for these systems to provide explanations on a strate-
gic level. For instance, in the "remove last element of list" example, no expla-
nation on the level of "no exact function for this exists in LISP, but there is a
function, rest that removes the �rst element of the list, and by reversing the list
using reverse, this can be solved" seems possible. In an example, the student
may produce this solution:
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(defun remove-last (my-list)

(rest my-list)

)

Given this code, the ELM-ART tutor may suggest that the student take a look
at reverse, which is a good hint, but it does not suggest why this is necessary.
ELM does have some capability to attach strategic explanations to task frames,
which addresses this goal, but this means that they are to a degree pre-made
hints speci�c to the task at hand, and not generated dynamically.

Learning Capabilities

The ELM systems are generally not designed to learn about the domain, al-
though if a student does come up with a solution to a programming problem
that cannot be (completely) matched to any existing structures, the structure
of this solution is stored and can be used in the future.

The major learning capability in ELM is its ability to learn about the stu-
dent. This is used to give better advice on what parts of the curriculum the
student is ready to address. This serves as a heuristic to speed up the program
diagnosis and to remind the student of familiar examples that may be relevant
to a task.

4-2.5 Evaluation

Studies have been carried out to compare how ELM-PA and ELM-ART per-
forms. In one study, 22 student using ELM-ART was compared to 28 students
using ELM-PA [87]. On a �nal test identical to both groups, both groups did
equally well on the two simpler problems, while a more complex problem showed
that 54% of the ELM-PA students solved this, compared to 87% for ELM-ART.
The study also showed that the students without programming experience ben-
e�ted signi�cantly more from the ELM-ART system than the ELM-PA system.
However, because the ELM-PA system is an on-site system developed for Mac-
intosh computers, the computer resources was limited { each student had two
hours a week reserved on the computer. This is in contrast to the ELM-ART
system, which is web based and could be accessed from any computer. The au-
thors acknowledge that this di�erence in accessibility may explain the di�erence
in performance.

4-3 CATO

The CATO system is a tutoring system for teaching law students how to argue
court cases. In the United States, the courts use a common law system where
earlier cases are binding precedents for similar cases in the future. Lawyers
arguing court cases depend on comparing the current case to earlier cases, by
arguing how the current situation is similar and di�erent to them. However,
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many cases are not clear-cut by being obvious analogies of previous cases. This
make it possible to construct arguments for both sides in a conict, where each
try to �nd positive analogies to cases supporting their side, and negative analo-
gies to cases that do not. This is not a straightforward process { some facets
of cases are more important than others, and often, speci�c sets of conditions
must be present. In order to argue a case, a law student must know both the
conditions required by law and be familiar with previous case history. Arguing
the case draws upon both of these sources of knowledge.

This kind of argumentation is traditionally taught in a Socratic dialogue
between the class and the teacher. While the Socratic dialogue has been used
as a basis for early systems such as SCHOLAR [30] and WHY [81], the authors
of CATO felt that the complexity of legal reasoning is too great to attempt such
an approach [7].

Instead, CATO explicitly represents the structure of law arguments and the
normative, middle-level knowledge facets, called factors identi�ed in and argued
about in the cases. It teaches argumentation through generating, displaying and
explaining structured arguments, and assisting the students in generating their
own.

In some ways, CATO is less ambitious than the PACT cognitive tutors or
the ELM systems { it does not attempt to model the student, evaluate solutions
or correct mistakes directly. This is at least partially because it more ambitious
in that it attempt to tackle a less structured, less formalized natural-language
domain. In many ways, it lacks the complete set of capabilities traditionally
required by an intelligent tutoring system, and reecting this, Aleven also refers
to CATO as an intelligent learning environment { a term that seems to imply
a larger degree of initiative and control given to the student.

4-3.1 Domain

Description of the Domain

CATO is designed speci�cally to teach argumentation skills in law, and the
current domain is trade secret law, which aims to protect the owners of com-
mercially valuable information from competitors that have somehow managed
to acquire this information through improper means.

Argumentation is not an easily modeled skill. Unlike mathematics and pro-
gramming, it is not expressed in a formalized language and there is no absolute
method of judging the quality of an argument. Instead of attempting to work
with English natural-language text, the creators of CATO created a formaliza-
tion of the law argumentation called the Factor Hierarchy. On the bottom of
this hierarchy are features used to represent cases, which again are organized
into Intermediate Legal Concerns, which again are linked to Legal Issues at
the top of the hierarchy. A part of the CATO factor hierarchy can be seen in
Figure 4.11. Each high-level factor has conclusions associated with it to sup-
port each side. For instance, the "F102 E�orts-to-maintain-secrecy" factor can
be concluded for the plainti� if the plainti� did take measures to protect its
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information, or for the defendant if the plainti� did not maintain secrecy.
The students work with the CATO system on two tasks; theory testing

and argumentation guided by examples. In the theory testing task, students
are faced with a general problem and are asked to form a hypothesis. This
hypothesis is tested against the cases in the CATO database, and the student
is asked to resolve inconsistencies, either by explaining them away or modifying
the theory. Although this is not an argumentation task, such generalizations
are useful when arguing that a case belong, or does not belong to a certain class,
while also illustrating that the generalizations that exists in this domain tend
to have exceptions.

The argumentation task is designed to support students in forming written
arguments about a situation, and support it with references to cases in the
CATO database. To support his process, CATO dynamically generates exam-
ples, an example of which can be seen in Figure 4.10.

Presentation

The CATO system consists of six tools that the student can use [7, Figure 18,
p. 220]:

� CATO database. Contains a set of legal cases. The cases contain both
a short textual description (a squib) and a set of factors, which apply to
that case. The tool allows the student to search for cases using boolean
expressions of these factors. The trade law database has 147 cases.

� Factor Browser. Contains the Factor Hierarchy, including a textual de-
scription with more detailed information about the meaning of each factor.
The trade law database has 26 factors.

� Case Analyzer. Allows student to compile a list of factors that apply to a
given case, and compares the result with the list of factors stored for that
case in the CATO database.

� Argument Maker. Shows examples of argumentation that is relevant to
the students' present work, and conducts mini-dialogs to help students
practice identifying distinctions between cases.

� Issue-based Argument Window. Presents arguments, organized over issues,
for any case in the CATO database.

� Squib Reader. Text display window for the case squibs (short textual
descriptions).

The Argument Maker and the Case Database is shown in Figure 4.10, and
shows how the structure of the argument is annotated.

In general, CATO does not restrict the freedom of the student in expressing
the solution, as the solution is a written argument in natural language English.
The knowledge CATO has about argument formation is used primarily to form
examples as a form of assistance to the student, and in helping the student by
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Figure 4.10: The CATO Argument Maker, from [7, �gure 19, p. 221]
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making the structure of the argument explicit. This means that CATO does not
try to evaluate the solution of the student directly, but provide an environment
to support the formation of the solution.

Scope

CATO is speci�cally designed to support tutoring in law, and is limited to the
case-based common law approach. The current system contains a model for
learning in trade law domains, but it is a stated goal to support other areas of
law where cases are an important component of argumentation.

Although CATO is a specialized approach designed to address law argumen-
tation, it can also be seen as a way of creating interactive learning environment
from decision support systems based on knowledge-intensive case-based reason-
ers in general. In many ways, CATO is a decision support system, but a decision
support system for students. The goal is for the student to learn the cases and
to use the general domain knowledge to qualitatively measure the similarity be-
tween cases. Many weak-theory domains have this mix of using cases while still
maintaining some rules that structure and a�ect how the similarity of cases are
measured. In this sense, the general approach can be useful in other domains
as well.

4-3.2 Cognitive Model

The CATO developers begun by looking at the practical requirements and con-
siderations for tutoring in the law domain, with the goal of providing a low-cost
learning environment in a complex domain. This contrast with the PACT cog-
nitive tutors, which was developed from a theoretical point of view as a way of
testing the ACT theories. This di�erence in origin means that the authors of
CATO are less concerned with discussing a theory of human cognition, but they
do discuss some issues tied to the approach.

A crucial element of CATO is recognizing and de�ning the structural ele-
ments of case law argumentation. This allows the system to approach argu-
mentation as a goal-task hierarchy. However, this is not only important in the
sense that it forms a strategy for the system, but it also helps the student to
understand the underlying goal structure of the problem, which is a principle of
the PACT cognitive tutors as well (principle 2, Section 4-1.2). This argument
structure is, according to the authors, not typically explained in law classes and
textbooks.

The tutoring capability of CATO is based on providing examples. In the
hypothesis testing, examples that do not match the current hypothesis is pre-
sented as a form of counter-evidence of the correctness of the current theory,
while in the argumentation maker, examples are used both to demonstrate prob-
lem solving strategies and as a way for the student to self-evaluate their own
solutions.



76 Chapter 4. THEORIES AND SYSTEMS

CATO and Constructivism

The CATO system has many instructional design elements. For instance, the
area of study is very clearly de�ned. The system is used with a workbook,
which rigidly de�nes how the students should use the system. Further, the
factor hierarchy is pre-de�ned and may not be changed by the student.

On the other hand, there are several aspects of the approach that are less
stringently designed that for instance the ELM and PACT cognitive tutor sys-
tems. While the CATO system has represented each case as a set of factors
it believes to apply to that case, the system's approach is that this is just one
possible view of what factors should be identi�ed in that case. When students
are asked to identify the factors they think apply, the system accepts their
judgment, and uses the student-identi�ed factors in the reasoning process. The
system also does not attempt to evaluate the �nal argument, as the student is
asked to form the argument in a natural language form. Finally, CATO does not
attempt to model the student's knowledge. Any hints are based on examples,
and the retrieval of them is based only on the current state of the problem solv-
ing. The system is also built as a problem-solving environment �rst, and a kind
of a decision support system second. Although the workbook lies down a very
speci�c path the student should follow, the system is built as an open learning
environment that �rst and foremost provide tools to make the task { learning
{ easy. In this sense, it is not certain that CATO is an intelligent tutoring sys-
tem, and the authors prefer the term intelligent learning environment. There
are certainly AI techniques used, but the system does not attempt to model
the student, which is one of the requirements often seen for ITSs. However, the
ability CATO has to create examples relevant to the current problem, allows
it to be very speci�c in tailoring the support to the problem at hand. The
problem-solving method used in CATO is also designed to mimic the strategy
used by the professionals in the domain. The examples produced by CATO not
only contain solutions to problems, but problem solving traces in a language
that is accessible to the practitioner. At least some of the tasks CATO has been
evaluated for, such as predicting the outcome of legal cases, can be performed
by standard machine-learning techniques such as Bayesian methods, neural net-
works or ID3 (see Section 4-3.5), but these techniques lack this inherent ability
to explain the reasoning in terms accessible and used by the students. CATO is
not simply a decision-support system that focuses on �nding correct solutions,
but a system built from the start to support domain-speci�c explanation of its
reasoning.

4-3.3 Knowledge Models

The CATO system has two main knowledge sources { the annotated court cases
and the factor hierarchy (Figure 4.11). It does not use a student model.

In addition to the system itself, the evaluation of CATO as a pedagogical tool
has employed a workbook designed to guide the students in using the system.
This workbook contains tasks (exercises) for the student that uses CATO, and
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Figure 4.11: Excerpts of the CATO factor hierarchy, from [7, �gure 3, p. 192]

explains background knowledge, such as CATO's approach of breaking down
the argumentation task in a hierarchical manner. Although external to the
computer program, the workbook can be said to be a part of the total system,
or at least the evaluation of the system.

Expert Model

In CATO, both the court cases and factor hierarchy can be said to be a part
of the expert model that the system wishes the student to learn. In order to
solve problems in the domain, both of these knowledge sources are required.
In addition to these, CATO contains implicitly the knowledge on how prob-
lems (arguments) should be approached in order to be solved. This task-goal
hierarchy is chiey presented to the student through the workbook associated
with the system, and examples generated by it. The exercises or tasks given to
the students are not stored in the computer system, but presented through the
workbook.

The factor hierarchy (Figure 4.11) is a representation of middle-level nor-
mative background knowledge of the area of law covered by CATO, and is based
on earlier work on the HYPO system [18, 19]. In the current study, this is the
trade law domain.

The factor hierarchy is divided into three levels of abstraction, where the
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lowest level is used to represent features of the legal cases. Each factor in the
factor hierarchy is favored by one side in the litigation process (the plainti� or
the defendant). For instance, the F19 No-Security Measures is a pro-defendant
conclusion (see Figure 4.11). These lower level factors are linked to the mid-
level intermediate legal concerns, which are again part of legal issues on the
top of the hierarchy. These two higher-level types of factors are called abstract
factors, and associated with each is two conclusions { one for the plainti� and
one of the defendant. The links from lower-level factors can support either side,
depending on if they are pro-plainti� or pro-defendant. The strength of this
support also varies. For instance, F19 No Security Measures is linked strongly
to the F102 E�orts to maintain secrecy, which means that the former is strong
evidence against the presence of the latter (as it a pro-plainti� conclusion). This
means that the support propagates to suggest a pro-defendant conclusion on the
F101 Info-Trade-Secret issue, which attempts to establish if the information was
really a trade secret. However, in many court cases factors are present that can
support both side (such as e.g. F15 Unique Product and F19 No-Security-
Measures), which allows for the construction of arguments that support both
defendant and plainti�.

The database of legal cases is useful in these situations where factors point in
di�erent directions. If, for instance, all cases that contain both F15 Unique Prod-
uct and F19 No-Security-Measures) favored one side, this is a strong precedent
to counter an argument based solely on the factor hierarchy. In more complex
cases, the cases have di�erent conclusions, and each side's legal arguments are
designed to explain how the present case is more similar to the set of cases that
favors them.

In CATO, the combination of cases and the factor hierarchy is essential in
order to mimic the strategy for argumentation used by real practitioners, and it
is able to dynamically generate arguments for any case that can be represented
by its factor hierarchy, even cases it has not seen before. These arguments
are not de�nitive for the decision of the case, but the relative strengths of the
arguments can give an indication of what the ruling of the case will be (see
Section 4-3.5.

The current system is used within trade law, but the system is designed to
be used in other areas of law as well. In order to acquire the expert model,
the legal issues of the area must be identi�ed and the factor hierarchy de�ned.
When this is done, a set of cases must be identi�ed and annotated with the
factors that apply to each case. A domain expert does this manually.

Student Model

The CATO system does not attempt to model the student. One can imagine
that the an overlay model over the factor hierarchy and cases may be a possible,
and that this knowledge could somehow be used in generating examples that
used cases and factors familiar to the student, but this is not currently done.
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Pedagogical Model

The CATO software itself is a collection of tools with little guidance on how to
use them. It does not even include exercises. The guidance and exercises comes
in the form of a workbook associated with the software. This workbook can
be said to implicitly represent the pedagogical strategy of CATO. The strategy
based on learning-by-doing (constructing arguments), providing examples, and
allowing the students to compare their solutions to problem solving traces pro-
duced by CATO. Because the pedagogical model is represented externally to
the system, CATO cannot change or adapt the strategy, however this loose tie
to the pedagogical strategy also means that the system can support the student
that decides to forego the workbook and explore on his own.

4-3.4 Tutoring Capabilities

Goals

The goal of CATO is to be an environment where students can learn argumen-
tation skills, by giving easy access to information used in arguments (normative
middle-level knowledge and cases), hypothesis testing, and demonstrating how
arguments can be formed through dynamically generated examples. The com-
puter system does not seek to enforce a particular learning strategy, or to tailor
to the particular student, so it does not include models for these tasks (pedga-
gogical and student models, respectively).

Exercise Selection

CATO does not perform exercise selection, nor does it actually contain exercises.
There does not seem to be a problem in extending the system in this direction
{ it has simply not been the focus of the system.

In-Exercise Support

Although CATO does not represent exercises explicitly, it is designed to support
exercises given through the workbook. Two main types of tasks are given and
supported by the system:

Theory Testing The �rst kind of task is formulated as a kind of hypothesis
testing, where the student is given a general statement such as this example
from [7, p. 222, �g. 20]

Suppose a defendant to whom con�dential information was disclosed
knew that the information was con�dential, but there was no written
nondisclosure agreement. Is the defendant under an obligation not
to use or disclose the information?

The task of the student is to translate the text to factors, and use the CATO
case database to search for cases that contain the factors. If the search results
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is not conclusive in the sense that all cases are in favor of one of the sides, then
he must examine the conicting cases to see if they are outside the scope of
the theory or otherwise be explained. This does not look like an argumentation
task, but it teaches the student to view the case in terms of abstract factors,
and to identify cases that have important similarities.

Argumentation guided by examples. In this second type of task, the stu-
dent is given a problem situation and asked to write arguments for both the
plainti� and defendant. To do this, the student must use both the factor hi-
erarchy and references to the cases in the CATO database. CATO supports
this e�ort mainly through the issue-based argumentation tool, which produces
examples of arguments, including the structure they are built on. This is pos-
sible because CATO has explicitly represented the reasoning structure behind
the argumentation. Much of the e�ort of CATO has been in identifying the
argumentation structure, and creating algorithms for solving the di�erent ar-
gumentation tasks. This allows CATO to visualize and explain the reasoning
process well, in a process and language that are known to the students. How-
ever, it does not mean that CATO is able to "trace" the problem solving of the
student in the same way as the PACT cognitive tutors or ELM. This is partially
because the medium for expressing the solution is entirely in natural-language
text, but it also seems to be a choice to present CATO as a more hands-o�
problem-solving tool.

Conceptualization support

A great strength of CATO is in its ability to assist students in acquiring the
vocabulary and concepts of the particular domain of law. By explicitly recogniz-
ing not only case features, but also more abstract terms and how they interact
in a model like the factor hierarchy, students can access an overview they pre-
sumably did not have before (as the factor hierarchy was formed through the
CATO e�ort). Since these terms are also directly associated with cases, and one
of the tasks CATO supports is recognizing factors in cases, students should also
learn how to use these factors on real cases. This ability is limited to teaching
students the pre-existing model { it does not allow students to experiment with
their own conceptualizations.

Explanation Ability

The major explanation capability of CATO is to provide transparency into a
reasoning process (argumentation), with the intention of having the student
adopt the technique by observation of enough examples.

On another level, the argumentation itself is a series of explanations, for
examples of why a case decided for the opposite side is not relevant. As such,
CATO is for instance able to explain why two cases that do not match completely
have important or irrelevant di�erences by using the factor hierarchy (and even
cite other cases). In a tutoring context however, this is the subject matter, and
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explanation on a meta-level may be expected. For instance, if a student wish
to know if a particular argument is good or not, and why, this is not something
CATO can answer explicitly. The knowledge may be implicit in the factor
hierarchy, case base and argumentation technique, but this cannot be reasoned
over or explained on a meta-level.

Learning Capabilities

CATO does not learn through normal operation. Neither is it clear if the system
could gain from such learning, since it do not use student models, and the factor
hierarchy and case base is �xed in advance.

4-3.5 Evaluation

CATO has been evaluated with regards to its ability to predict the outcomes of
court cases, and in a comparative study that sought to compare learning with
CATO to traditional learning methods. These evaluations are both described
in greater detail in [7].

Predictive accuracy

The �rst evaluation study was performed to evaluate the predictive accuracy
of CATO's legal arguments. The reasoning behind this kind of evaluation is
that arguments with good predictive power for the outcomes of the cases would
be a good indication of the quality of the arguments. CATO was compared
to k-nearest neighbours (kNN), Na�'ive Bayes and ID3. It was also a goal to
examine if the general background knowledge encoded in the factor hierarchy
had an e�ect on the predictive power.

The results of the evaluation showed that Na�'ive Bayse predicted 90% of the
outcomes correctly; k-NN was 84% correct and ID3 81% correct. CATO had the
additional option of abstaining if it was uncertain on the conclusion. The best
CATO method using the background knowledge made predictions on 89% of
the cases, and was able to predict 88% of the solutions, which was signi�cantly
better than the baseline method that did not use background knowledge. This
method only classi�ed 62% of the cases, although with a 92% accuracy when it
did predict.

The result showed that Na�'ive Bayes was signi�cantly better than the best
CATO method at predicting the outcome of the cases, but also that the best
method using background knowledge performed signi�cantly better than any
CBR method that did not use background knowledge. The fact that Na�'ive
Bayes performed better than CATO at the classi�cation task is not necessarily
a problem for the system, as CATO's primary role is to produce normative
arguments for deciding the case { a task that cannot be performed by statistical
methods alone.
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Figure 4.12: Results of the CATO basic argumentation and memo-writing tests,
from [7, Table 2, p.227].

Instructional e�ectiveness

The second evaluation was performed to measure the instructional e�ectiveness
of CATO compared to traditional teaching methods, and was carried out in the
context of a second-semester legal writing course at the University of Pittburgh
School of Law. The participant volunteered for the experiment, and was divided
into a 14 person control group and a 16 person experiment group.

The experiment group recieved basic instruction in the use of CATO and
worked in pair using a specially made workbook in nine 50-minutes sessions.
The control group was instructed on the same content, but in a traditional
setting. This consisted of four classroom sessions where an instructor would
use a Socratic method to present the topics and engage the students, and two
pretend court sessions led by the instructor (playing "judge" as well as teacher).
Students had to prepare for at least 75 minutes before these sessions.

Before and after these sessions, the students were given tests on basic argu-
mentation skills, and in addition they were tested on writing a legal memo. This
second test was meant to measure how well the argumentation skills transferred
to a related, more complex, task. In addition to the two groups of students, a
set of answers from the CATO system itself was also included in the tests, and
was graded in a blind test by the legal writing instructor.

The results of the evaluation showed that there was no signi�cant di�erence
between the gain of the control and experiment groups on the basic argumenta-
tion test (see Figure 4.12), and in addition that CATO performed very well (it
was the third best of all answers even in the post-test). However, on the memo-
writing task, the control group scored signi�cantly better than the experiment
group, and CATO itself did not receive a high grade.

Matching the result of engaging classroom teaching by experienced instruc-
tors is well done by CATO. However, the authors draw the interesting conclu-
sion that the more "holistic" technique used in classroom teaching improved
the student's ability to perform a transfer task (legal memo writing) in a way
that CATO failed to do. This may imply that the more targeted, task-oriented
technique taught by CATO is too speci�c to induce enough deep learning to be
as useful in transfer tasks. The authors speci�cally mention students running
out of time before reaching the more complex parts of the exercises, the rei�ca-
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tion of the argumentation structure not �tting the legal memo-writing task as
(partial) other sources.

4-4 Other systems

There exist many other systems that use a case-based tutoring approach, but
for various reasons do not ful�ll all the criteria set out in the introduction to this
chapter. Typically, these systems may have interesting ideas or illustrate some
aspect of case-based tutoring, but are works in progress or there is otherwise
only one or a few publications about the project. In this section, some such
systems are more briey examined.

4-4.1 Ambre-AWP

The goal of the AMBRE project [40, 55] is to create an intelligent tutoring
system that teaches problem solving methods. Speci�cally, the current system
is designed to teach 8-year olds to reformulate a mathematical questions posed
in natural language. This project is interesting because its approach to case-
based tutoring is to use the steps associated with case-based reasoning as a
learning strategy for people. In the AMBRE project, the steps identi�ed are
elaborate, retrieve, adapt, revise and store, and these steps, except revise, are
explicitly presented as problem solving steps that the student should follow.

Domain

The Ambre-AWP is designed to help 8-year olds understand and reformulate
simple arithmetic problems represented as natural language text. The text
formulation can for instance look like this [55]:

Julia had 18 cookies in her bag. She ate some of them during the
break. Now, she has 9 left. How many cookies did Julia eat during
the break?

These questions should be reformulated to an equation, in the above example
to 18 - 9 = ?. Although the actual system is designed towards this domain, the
project's aim is to test how the case-based reasoning cycle fares as a tutoring
method. The authors suggest that this method is appropriate in many domains
where there are few good rules what problem solving method should be used.

Cognitive Theory

The case-based reasoning framework is itself the main cognitive theory of Ambre-
AWP. The authors argue that people often solve problems by analogy, and that
as such, the approach used by case-based reasoners can reasonably be expected
to be a natural model for problem solving.

The adaptation of the CBR cycle for tutoring in Ambre-AWP (summed up
in Figure 4.13) is four steps:
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Figure 4.13: The CBR cycle adapted to the AMBRE project, from [55, Figure
2, p. 3]

Reformulation of the problem. The student is asked to identify important
characteristics of the problem. In the concrete domain of the current system,
the student was asked to identify diagrams representing the class of problems
the text was about (subtraction, addition, comparison, etc.).

Retrieval of a typical problem. In the second step, the student is asked to
browse a list of similar problems in order to �nd similar problems. The stored
problems are presented with both the original and the reformulated representa-
tion.

Adaptation of the typical problem solution to the current problem.
After a similar problem is found, the student is asked to adapt it to the new
situation by using the strategy of the retrieved problem on the new problem.

Storing the new problem. After solving the problem, it is stored and can
be retrieved when solving later problems.

Knowledge Models

The Ambre-AWP system is designed to teach problem-solving methods, and to
do this the system requires an explicit taxonomy of the problem classes and the
methods used to solve these. This hierarchy is not necessarily presented to the
user, but is used internally to help the system to solve problems. The reason
for this is that the problem hierarchy is not necessarily explicitly identi�ed
when teaching or discussing the domain. This is similar to the situation in
CATO system, where the factor hierarchy and the reasoning process were not
explicitly taught, but rather identi�ed by the system's creators. However, where
the authors of CATO (and the ACT theories) found this explication to be of
value in itself, the authors of Ambre-AWP is less certain about the value of
presenting this to the user, and argues it can cause confusion. Instead, they
argue that the student should naturally build his own internal representation,
assisted through prototypical examples presented by the system.

In addition to the problem class taxonomy, the Ambre-AWP has a case base
of problems that serves both as exercises and examples for students. Initially, a
few examples are presented to the students to "initialize" their case-base before
they are asked to solve problems.

The student model of Ambre-AWP can be seen as an overlay over the cases
in the problem case base, representing the set of cases known by a particular
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student. However, it is not clear if this information is currently used to tailor
the tutoring session in any way.

Tutoring Capabilities

The last published implementation of Ambre-AWP was designed to test the case-
based methodology for learning, and does not include assistance as such, except
to structure the problem-solving session according to the case-based principles
already discussed. However, the approach suggests that the capability of their
case-based reasoner to solve these problems can o�er the student in-exercise as-
sistance. For instance, in the task of reformulation, mistakes can be pointed out
and the reasoner can construct explanations using the problem class taxonomy
to illustrate why or why not certain features should or should not be present.

Evaluation

Currently, the complete system has not been evaluated, but a study was per-
formed to measure the impact of the case-based tutoring method used in Ambre-
AWP [55]. This was performed on 64 students, who were divided into two
groups. Both groups used a similar computer-assisted learning environment,
but only one used the case-based approach. A post-test of the two groups
did not reveal signi�cant di�erences in problem-solving capability between the
groups, however a study of the problem-solving traces of the students using the
case-based approach seemed to suggest that many had trouble with the retrieve
step. Although many succeeded in the reformulation of the problem, matching
this to similar problems proved to be di�cult. In response to this, the author's
plan to include more support for this step in the future.

4-4.2 BLITS

The BLITS system is designed to help its users write business letters in a work-
place setting, for instance by assisting secretaries writing such letters in a foreign
language [23, 59]. The method of the BLITS approach is interesting because it
is explicitly designed to work as an unobtrusive tool to solve the task at hand
(letter composition) as opposed to an active agent in trying to "push" knowl-
edge at the student. This is the result of an explicit design philosophy based on
constructivism and self-directed learning that suggests learning should be situ-
ated, i.e. in a setting of actual problem solving. The result of this is that the
system cannot and will not attempt to set the agenda by suggesting exercises,
but instead provides assistance when the user3 is in the task of composing a real
business letter. In many ways, the BLITS system can be perceived as a word
processor aid similar to grammar and spell checking.

3it makes less sense to call the BLITS user a student than in other systems we have reviewed
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Figure 4.14: Screenshot of the "Move Selection" in BLITS, from [23, �gure 6,
p.4]

Domain

Although BLITS is designed to help users compose business letters, the authors
point out that what constitutes an e�ective business letter varies. There are for
instance di�erent writing styles in the US and in Great Britain, and business
English in Asia is di�erent still. There are also di�erences between industries
and companies. In other words, teaching a single correct way of writing such
letters is not possible, and that the users must discover what e�ective business
communication means in their particular area.

The application itself is web-based and presented through a browser, where
the user goes through steps to choose what kind of letter he is writing, as
well as characteristics of the letter (such as the level of familiarity between
sender and recipient). Then, the user is presented with a Move Selection Page
(Figure 4.14), which assists the user in deciding what content elements (such as
Acknowledge Receipt or Apologize) should be included in the letter. The �nal
page is the composition of the letter through realizing these moves by writing
out each content element. Here, the system can assist by showing examples of
such elements from previous letters.
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Cognitive Model

The authors of BLITS rely on a constructivist philosophy in their design of
BLITS, and indeed the system contains many elements of constructivist. For
instance, the system is completely situated in that it does not operate in an
arti�cial educational environment, but as a tool in actual problem-solving. This
separates it from the other systems reviewed here. The author's also argue that
it allows the user to decide what an e�cient writing style is in the given context.
This suggests that BLITS it somewhat relativistic and rely less on the universal
expert models traditionally found in intelligent tutoring systems. The authors
do suggest that they would like the system to be able to evaluate a written letter
and compare it to other letters in its case-base to judge the e�ectiveness. The
argument is that because the user have authored the case based and provided
feedback on how well these letters were received, it reects the user's idea of
e�ectiveness, not the expert's. However, the cases are not only represented
as text, but in a tree-like structured representation of the contents (Moves).
No detail on who formulated this structure is present in the description, but
this is presumably done by a domain expert of some sort { creating explicit
abstractions of letters are likely hard for a novice. BLITS does in other words,
have some expert knowledge { the knowledge of how to represent the structure
of the document. This kind of knowledge is conceptually very similar to the
factor hierarchy in CATO and the ACT theories idea of explicit problem-solving
schema { they all seek to break down the problem-solving process into abstract
chunks that can be organized in a tree-like structure to form a whole.

Knowledge Models

The two main knowledge models in BLITS are the case-base and the document
structure hierarchy (the Moves). BLITS does not provide a student model in
the classical sense, but since the case-base is user- or context-speci�c, it serves
as a way of tailoring what is considered good and bad writing. The situated
nature of BLITS also makes many of the ITS tasks that rely on student modeling
impractical or inapplicable. For instance, the documents written in BLITS are
suppose to be real business letters, so exercise selection is not a task the system
is going to perform.

Tutoring Capabilities

The tutoring capabilities of BLITS are intentionally low-key, in the sense that
it does not seek to appear as a tutor at all, but rather a help system that
fosters learning. As already mentioned, the situated nature of the system makes
exercise selection a non-issue, but it does attempt to give in-exercise support {
or rather problem-solving support. In principle, the way it does this is similar
to the other case-based tutoring systems reviewed here { it forces the student
to analyze the problem through a pre-de�ned structure (Moves), and provides
pointers to cases with similar structure. The di�erence lies in the fact that the
case-base is not authored by an expert, but by the user himself.
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In providing advice, the system separates the working environment of the
system where the user has full control, and the giving of advice, which is done in
a separate windows featuring an advice agent similar to the "O�ce Assistant"
found in Microsoft O�ce products. This agent is visible in the screenshot in
Figure 4.14.

Evaluation

There has not yet been published an evaluation study of the BLITS system.

4-5 Chapter Summary

The �ve systems we have examined in this chapter, can be seen as belonging to
two di�erent groups. On the one hand, the PACT cogntitive tutors and ELM
goes to great lengths to accurately model a student's procedural skill, includ-
ing possible misconceptions and "buggy rules" a student may posess. On the
other hand, CATO, BLITS and Ambre-AWP focus on providing an environment
conductive to learning. In many ways, these groups mirror the divide between
instructional design and constructivist approach, where the PACT Cognitive
Tutors and ELM represents instructional design, and the others systems a con-
structivist approach.

In the next chapter, we present our CREEK-ILE theory, but in presenting
this theory, we will also draw on and compare it to the theories and systems
discussed in this chapter. In particular, Section 5-2, discusses these system's
cognitive models and pedagogical theory.
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Chapter 5

CREEK-ILE

In this chapter, we present the CREEK Intelligent Learning Environment (CREEK-
ILE), using the framework presented in Chapter 3. The implementation and
evaluation are separate chapters following this chapter.

5-1 Domain

The CREEK-ILE theory is designed to work across multiple domains. However,
the CREEK case-based reasoning engine is primarily designed to work with
diagnostic domains, which can be described by a combination of cases (problem
solving episodes) and a general domain model. Here, the general domain model
is typically in the form of a causal or associative model that links symptoms
with underlying problems and diagnoses in a kind of qualitative models (e.g
as found in QUEST { see Section 2-1.1). Unlike these system CREEK relies
on cases in addition to the model-based reasoning. This allows us to relax the
demands on the general domain model, as it is used to support and explain the
reasoning process but does not need to be as complete in solving problems.

The tests of the CREEK-ILE approach so far have been carried out in the
domain of computer programming (the Java programming language). Computer
programming is not a typical diagnostic task. It certainly contains sub-tasks
that are diagnostic in nature, such as debugging, but overall it is constructive.
However, computer programming has been a favorite topic for learning-by-doing
tutoring systems, and as such developing for this domain facilitaes comparison.
It is also a practical choice, as it is a class attended by many students and taught
in our own department, which makes access to the course as well as students and
experts easier. Last, it is a topic we are ourselves familiar with, which reduces
the risk of us underestimating the di�culty of teaching the topic. This domain
is not chosen because the problem solutions are expressed in a formal language
{ the CREEK-ILE approach is speci�cally designed to support domains that
lack computational methods of interpreting the data, although this does have
trade-o� in that CREEK-ILE is unable to provide as much tutoring support.
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In this chapter, we will use both a simple computer programming model
and a diagnostic model for car start failures to illustrate the CREEK-ILE ap-
proach. The car failure diagnostic domain is an arti�cially constructed domain
used to test and demonstrate various features of the CREEK case-based reason-
ing engine. The reason for including this domain in addition to the computer
programming domain is that it allows us to illustrate how various degrees of
support for explanation and reasoning by the problem-solving engine a�ect the
approach.

The next chapter (Chapter 6), has more information on how the actual
system was designed and implemented. In this chapter, we will focus on the
theoretical foundations.

5-1.1 Computer Programming Domain

The computer programming domain is based on our experiments with CREEK-
ILE in introductory Java programming classes. The example used in this chap-
ter is for one of the �rst exercise sets of this class dealing with loops (speci�-
cally while and for statements). The general domain models are in the form
of concept map-like structures containing a taxonomi of statements and ab-
stract classes of statements (e.g. for-loop is a kind of loop that is a kind of
statement). Speci�c statements (such as the for-loop) also have syntactically
correct and incorrect examples that can be associated with them.

Obviously, this general domain model cannot be used to solve programming
tasks. It contains some information on the structure of Java programs, but it is
too shallow to be used to parse student programs. It is on the conceptual level,
and is used only as a basis for student concept maps, and as a guide to how
concepts should be organized. At the surface, this can seem like an odd type
of model to include in an exercise-oriented system, but conceptual knowledge
seems to interact with procedural and episodic knowledge in many ways { it
may for instance be useful in interpreting examples and problems, such as how
the factor hierarchy is used in CATO.

The exercises associated with this model are simple tasks that ask the stu-
dent to, for instance, write a program that lists all the numbers from 1 to an
integer given by the user, or to take a pre-written program that uses a for-loop
and transform it so that it does the same with a while-loop. The exercises
used for illustration in this chapter are shorter and easier than the actual exer-
cises used in the Java programming courses we have done our experiments on,
as they are designed primarily to illustrate the approach. The actual exercises
used are presented in chapters 6 and 7.

5-1.2 Car Failure Domain

The car failure domain is an arti�cial diagnostics domain. It is in principle
similar to many of the machine learning classi�cation problems in that it con-
tains a set of instances. These cases each have a set of known features (we call
them �ndings), and the task is to identify the problem class. In addition to the



Domain 91

Figure 5.1: Example expert concept map for the computer programming do-
main.
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Figure 5.2: Example expert concept map for the car failure domain.

instances and problem classes, the CREEK model also has a high-level, loose
causal model of how some �ndings can cause or be caused by various prob-
lem states. These again can be tied to problem classes. Taken alone, the set of
cases or the causal model can to some degree solve problems in the domain. The
cases can use an instance-based method to identify problem classes by matching
a new problem to similar cases in the case base, and the causal model can chain
causal relationships from symptoms to underlying causes (problem classes) and
by this solve problems. The CREEK knowledge-intensive case-based reasoner
uses both these knowledge sources to improve what either of them can do on its
own.

In the car failure domain, the general domain model is similar to the com-
puter programming domain in that it is conceptual in nature. It deals with car
parts and problem states and how they are related. However, in addition to
the taxonomical relations, the general domain model in the car failure domain
contains causal relations that make it possible to link surface �ndings with prob-
lem classes. As in the computer programming domain, the expert conceptual
models are used as a basis for student concept maps, but they may also be
used to interpret problem cases, if well designed. The "if well designed" caveat
is important here. Typically, concept maps are not well designed knowledge
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models. The method is designed to be easy to access and use even for young
school-children, and lacks the computational semantics required by knowledge
representations. The car failure domain highlights this, as two types of models
(student concept map and expert causal model) on essentially the same level
have di�erent requirements.

5-2 Cognitive Model

The previous chapters briey introduced the ACT and Dynamic Memory the-
ories of procedural skill acquisition, as well as critiques of intelligent tutoring
systems from constructivist philosophers. Before discussing these in relation
to our own approach, it may be useful to examine the commonalities these
approaches have.

5-2.1 Kinds of Memory

A useful abstraction is the separation of human memory into three di�erent
types of knowledge.

Conceptual Knowledge is general knowledge about things and ideas. Of-
ten, the knowledge is hierarchically arranged such as in an animal taxonomy,
but it may also have other kinds of relations. An example is the dictionary,
where each word is de�ned in terms of other words. De�nitions and symbols
are conceptual knowledge; the factor hierarchy of CATO and the document
structure information in BLITS are other examples. This kind of knowledge is
consciously available to people, and we can talk about it, explain it and learn
it through studying.

Procedural Knowledge is knowledge on how to do things in practice. For
instance, the various abilities involved in driving a car, how to order food in
a restaurant and how to program the VCR. This kind of knowledge contains
Schank's micro-scripts and the rules in the ACT theories. Much of the proce-
dural knowledge is tacit { that is, not available to conscious thought the way
conceptual knowledge is. For instance, it is hard to explain to oneself or others
the processes involved in catching a ball. It is certainly possible to discuss how
to be a good driver, but there are elements of it that can much easier be shown
than told. Even in purely intellectual skills, research has shown that experts of-
ten have trouble explaining how they solved a problem, and o�er explanations
that are formed after the fact that does not necessarily reect the reasoning
process [51]. This does not mean that the expert does not know what she is
doing, but rather that there are parts of the expert's experience and knowledge
that cannot easily be communicated through language.

Episodic Knowledge is the memory of concrete episodes. While procedural
and conceptual knowledge are generalizations, it is obvious that people also
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doing systems in the wide sense (from exercise support to constructivist learn-
ing) is to assist the student in acquiring procedural knowledge in the form of
applied skill, and there is generally an agreement that such knowledge is not
fully available to conscious thought, and may not be taught through instruction
alone. However, conceptual and episodic knowledge may be communicated and
experienced, and through these forms of knowledge, procedural knowledge is
formed (Figure 5.3).

5-2.2 Conceptual Knowledge and Interpretation

In the systems that has been examined, conceptual knowledge have been seen
in the form of vocabulary ("What is a trade secret?"), structure ("A business
letter contain a greeting, the body proper and a signature") and problem-solving
strategy ("To solve a recursion problem, test on the �rst element and call the
same function on the rest of the list if it is not empty."' ) All the systems exam-
ined in the previous chapter have some kind of conceptual knowledge, and it is
typically stored in a class-subclass hierarchy, as a task-goal-hierarchy or both.

Representing the procedural level is essential for the systems based on the
ACT theories. The goal of these systems are typically to help construct speci�c
procedural knowledge in the learner by following the reasoning and intervening
when evidence suggests that the student is missing a rule or has a buggy rule.
However, many case-based tutoring systems do not try to represent procedural
knowledge. With the BLITS system, the authors do not wish to be normative
in what procedural knowledge is considered correct, and thereby have no need
to represent it. AMBRE-AWP and CATO are to various degrees able to reason
about their domains in the sense that they can construct solutions, but the
authors do not claim to do so in an entirely cognitively plausible way. The
arguments produced by CATO are designed to be similar in structure and form
to those made by experts, but they do not claim that their program create
these arguments in the same way as people, and they do not use the program's
problem solving strategy as a mold for human reasoning. Rather, these systems
leave it to the natural processes of students to form procedural structures as
they are given examples, exercises and conceptual information.

The episodic knowledge is in the form of exercises and examples, represented
internally in the systems as cases. However, for this representation to be useful
in the sense that the program can reason symbolically over them, they must
be represented at a higher level of interpretation than raw data. For instance,
the CATO system is unable to deal with the raw text of law cases, and BLITS
cannot interpret business letters. The ELM system and the PACT cognitive
tutors are able to deal with the low level representation in the form of program
code because it follows a strict syntax that can be computationally parsed. At
�rst glance, it is remarkable that all these di�erent systems contain knowledge
on the conceptual level, even though they stress their case-oriented approach,
and in the case of BLITS, claim to follow constructivist approaches to learning
where the system should avoid normative expert models. However, it is not so
strange if we recognize that in order to allow these higher-level representations of
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interpreted cases, the systems must de�ne vocabularies to represent them. This
illustrates a use of conceptual knowledge also found in humans { we use it to
form higher-level representations, to interpret data and to recognize important
and spurious distinctions between episodes.

In many domains, we are currently unable to produce systems that genuinely
interpret data (e.g. natural language text) into structures (e.g. cases), and
when designing a case-based tutoring system, it is tempting to pre-de�ne the
conceptual knowledge required to encode the cases. Using this vocabulary, the
cases can be interpreted and encoded in advance using the vocabulary and
structure already decided. However, this means that the student is not allowed
to form his own conceptual knowledge, and often leads to the temptation of
teaching the conceptual knowledge �rst, because that is required to understand
the case representation and thereby the examples and problems of the system.
This is acceptable in the ACT theory, but it is strongly criticized by those
inspired by even moderate constructivism, and by learning by doing proponents
such as Schank. As we have seen, Schank argues that when learning conceptual
knowledge �rst, the value of the knowledge is not clear to the student, and it
becomes detached from goals and micro-script level skills.

The CREEK-ILE approach to case-based tutoring is closer to Schank's idea
of learning by doing and case-based tutoring than the ACT theories. We agree
with Self [71] and others that the complete cognitive model of procedural knowl-
edge is intractable in many domains, and while we �nd it very interesting to
study and form such cognitive models, we think that good learning environ-
ments can be created even where there are no such complete cognitive models.
Instead, the CREEK-ILE system focuses on episodic and conceptual knowledge
models, and as the BLITS, AMBRE-AWP and CATO systems depend on the
natural ability of people to form procedural skills through exposure to primarily
episodic, but also conceptual knowledge. This has some disadvantages, however.
If the system is not able to simulate the cognitive abilities of a learner, it lim-
its the ability to explain and diagnose. The PACT cognitive tutor is able to
diagnose reasoning errors even if the solution is correct, and to point out ex-
actly what the errors were. This level of diagnostics may only be possible in a
complete cognitive simulation of the human problem solving process { assuming
that there is even a canonical model of this for the domain at hand. However,
a learning environment can o�er support on various tasks without such a ca-
pability. For instance, it may o�er examples similar to the problem at hand
(as BLITS and CATO does in various forms). It may assist in identifying dis-
criminating features (AMBRE-AWP) and it may suggest interesting problems
by providing exercise selection support.

CREEK-ILE supports these tasks by relying on the conceptual and episodic
knowledge. Acquiring this kind of knowledge from an expert is much easier
than procedural knowledge, because it is consciously available, and it can be
communicated much more easily both by students and teachers. In this sense,
CREEK-ILE is a system in the same class as CATO, BLITS and Ambre-AWP.
These systems also primarily rely on the conceptual and episodic knowledge
to help students to acquire procedural skill. However, CREEK-ILE is di�erent
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from these systems in that we wish to allow the student some ability to form
his own conceptual knowledge.

5-2.3 Modelling Conceptual Knowledge in Concept Maps

A practical property of conceptual knowledge is that it is generally available
to conscious thought, and can often be communicated fairly easily, as opposed
to procedural knowledge. This means that if we wish to model the student, it
is possible to simply ask the student to tell the system what he thinks. This
follows the advice of Self reviewed in Chapter 2, but also a trend in intelligent
tutoring systems towards inspectable student models in general. The conceptual
knowledge representations in the tutoring systems we have reviewed has either
been very complex (in the case of the rule-based cognitive tutors and ELM) or
domain-speci�c (in the case of CATO). These representation languages are not
made to be easily accessible to students, but for experts to accurately express
their knowledge in a way that can be used by the computer. In Chapter 1,
concept maps were introduced as an accessible way for students to represent
conceptual knowledge. There, we reviewed how certain forms of concept maps
can even be used to evaluate the student, with results that correlate highly with
more classical evaluation tools such as multiple-choice tests. This suggests that
using concept maps is a natural solution to the problem of allowing students to
form and explicitly represent their conceptual knowledge in a learning-by-doing
system. However, this does not solve the practical problem that there must be
a vocabulary to represent the cases in. To solve this problem, the CREEK-ILE
system does not use completely free-form concept maps, but rather a variant
where the concepts (nodes) and relation-names (link labels) are pre-de�ned, but
the student is given complete freedom in how they should be related and linked,
as well as how many of them to use. One can argue that this is not really the
freedom to de�ne the vocabulary, as all the words are already de�ned. On the
other hand, if meaning of symbols is de�ned through how they are related, the
student has complete freedom of expression. We think that our approach is
a reasonable and practical compromise that allows the student some freedom
of expression while still ensuring that he uses common terms and stay within
the boundaries of the system's competence. It also allows us to form higher-
level representation of cases. CREEK-ILE is tested in the domain of computer
programming, so concepts such as for, while and loop may exist in the word
list. This makes it possible to pre-tag program cases as containing for and
loop.

Allowing the student to form his own conceptual knowledge is a goal in it-
self, but when the student does this explicitly through a representation in the
system, it can is also used to tailor the learning experience. Concept maps have
been used in tools that seek to support collaboration by helping people rep-
resent and assimilate di�erent models to form a common vocabulary, and this
approach could also be taken with a group of students. Closer to the traditional
intelligent tutoring approach, concept maps can also serve as representation of
the student knowledge and be treated as part of the student model. By com-
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paring it to an expert's representation (the expert model), it may be possible
to evaluate for which areas of the curriculum the student has a correct or in-
correct conceptualization (according to the expert's representation). This use
may on the surface appear to be similar to using concept maps as evaluation
tools in the same vein as traditional multiple choice tests. If one, for instance,
de�ne that when the student has produced the same conceptualization as the
teacher, he was ready to advance to the next subject, then it would have the
same problems Schank criticizes traditional institutional learning for having.
The goal for the student would no longer be the procedural skills, but rather to
form the right conceptualization as soon as possible in order to be done with
the task, thus making reproducing the conceptual knowledge the primary focus.
However, the conceptual knowledge can be used in other ways that support pro-
cedural skill acquisition. First, encouraging the student to explicitly represent
conceptual knowledge is likely to force some reection on abstraction, which is
good in itself. Second, Schank suggests that a student that has formed his own
theories may be more receptive to improvements of the theory in the form of
expert knowledge. This may take the form of suggestions if the student is un-
able to reconcile seemingly conicting partial models, or simply displaying how
the expert represented the part of the model the student is currently involved
in.

5-2.4 Uses of Student Concept Maps in Exercise-Oriented

ILEs

Our �rst idea for using the conceptual knowledge in a concept map was to use
it in support of exercise selection. While episodic knowledge of the student
(what examples he has reviewed, what former problems he has solved) can be
helpful in identifying what parts of the curriculum he has covered (e.g. the
student has solved problems involving the for-loop but not problems with the
while-loop), it may be hard to identify structural misconceptions (e.g. the
student may believe the while-loop to be a test statement similar to if). Such
information allows the learning environment to select or recommend exercises
that challenges the student's preconceptions and forces him to reconsider his
current model. This is an ability that is not easily formed by analyzing the
episodic knowledge alone, as the conceptual knowledge is an indicator on how
the student has generalized his knowledge. Simply knowing that the student
has solved some exercises using for-loop, does not tell the system how well the
student knows loops in general, for instance. The PACT cognitive tutors uses
procedural reasoning traces to identify such problems, but in CREEK-ILE the
choice not to model procedural reasoning limits this capability, but some of the
same information can be found through analysis of the conceptual structures.

In the initial evaluations we did on this, the students were asked to make a
concept map for an area covering a set of exercises (e.g. for- and while-loops),
before the students were asked to solve these exercises. The, perhaps somewhat
na��ve, hypothesis was that students showing a greater knowledge of the concep-
tual knowledge would also fare better on the exercises. This hypothesis did not
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prove to be entirely correct. Although many students had studied the subject
before starting the exercise, there were also a number of students that appar-
ently had not, but still did well on the exercises. It may be that these students
have a learning strategy closer to what Schank describes { they start with the
exercise problems and only then go looking for the knowledge they need. This
would mean that at the time they were asked to form the concept map, they had
not yet studied the topic enough to do the task well. However, not all students
seemed to have followed that approach { some had clearly studied in advance.
Our results also do not contradict the insight from ACT that conceptual knowl-
edge is in fact required to solve problems, because this knowledge was actively
sought once an exercise was given.

The result of these experiments was a revision to the approach of when and
how students should be asked to create concept maps. It is possible to give
this task after the exercise set is �nished, but this would mean that the knowl-
edge from the concept maps could not be used to support exercise selection.
Instead, we suggest attaching a small concept map to each exercise, either right
after presenting the problem (assisting the student in interpreting the problem
description) or after the task is �nished. This also allows us to support the
student in generalizing the knowledge gained from each task, taking it from the
task-speci�c map to a generalized map. As knowledge is gathered after each
task, the student model can be used during the exercise session.

5-3 Knowledge Models

The CREEK-ILE system is designed to work with the CREEK knowledge rep-
resentation, which is in the tradition of frame-based and semantic network rep-
resentations. These types of representations use abductive and inductive rea-
soning, which contrasts with deductive-based representations such as KL-ONE
[24], Description Logic [20].

First, the CREEK representation will be presented and formally de�ned and
the extensions made to the representation in order to support CREEK-ILE will
be presented. The expert, student and pedagogical models of CREEK-ILE then
follow.

5-3.1 Representation Language

The CREEK representation has gone through several iterations, and was orig-
inally known as the CreekL representation [1, 2]. The current version is de-
veloped on the basis of the representation presented in [76], which de�nes it
in a formalization inspired by the semantic network formalizations de�ned by
Shastri [74] and Touretzky [84]. The basic representation formalism includ-
ing concepts, relationships (except relationship strengths), relation-types and
inverse relationships was developed in [76], while the extensions relating to rela-
tionship strength, partial preference ordering of the relationships, defaults and
submodels are developed as a part of this work.



100 Chapter 5. CREEK-ILE

Concepts and Relationships

The CREEK representation is syntactically a graph-based representation and
can be presented as a directed, labeled graph. In this graph, the nodes repre-
sents concepts and the edges relationships between the conepts. CREEK does
not distinguish syntactically between di�erent types of concepts, and they may
represent general, abstract classes as well as individuals. When referring to a
variable representing a single concept, we will use the letter c, while the capital
letter C refers to a set of concepts.

The relationship is the CREEK equivalent to graph edges { it ties together
two concepts with an arc of a particular type. The variables representing single
relationships are denoted by the letter r, while sets of relationships use the
capital letter R. Formally, a relationship is an ordered set of triplets of concepts
and a relationship strength between 0 and 1 (co; t; cv; x) 2 (C � T �C � [0::1]),
where co represents the origin of the relationship (the concept it is "from"), cv
represents the value (the concept it is "to") and t represents the type of the
relationship. The value x is the strength of the relationship. The relation-type
�lls the role of the relationships label, but is more than a text string { they are
actually represented as concepts of their own. This provides a meta-level that
allows the representation to contain information about the labels themselves. In
CREEK, the concepts representing relation labels are known as relation-types,
with the letter t representing a single relation-type and the capital letter T
representing a set of relation-types. Because all relation-types are also concepts,
T is a subset of C. The strength of a relationship can be interpreted as a
measure of how frequently the relationship is expected to hold. For instance, in
a basic weather prediction domain, a causal relationship between hurricane
and rain can be very strong (i.e. close to 1.0), while a causal relationship
between clouds and rain would be less strong (perhaps 0.5), as observing
clouds need not necessarily mean it will be rain.

De�nition 5-3.1 (CREEK Semantic Network) A CREEK semantic net-
work is an ordered set � = (C;R; T; �;  ;�; S; �), where

C is a �nite set of concepts,

R � (C � T � C � [0::1]) is the set of the relationships in the network.

T � C is the set of relation-types,

� : T ! T is a symetric function giving the inverse relation-type for each
relation-type in T ,

 : R! R is a symetric function representing the inverse relationship for
each relationship in

R, so that for all r = (co; t; cv; x1) 2 R, it holds that  (r) = (cv; �(t); co; x2),
where x1 and x2 can be any strength value, and need not be the same,

�� (R�R) is a partial ordering of relationships that represents explicitly
which relationships override other relationships,
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S � S� is the set of submodels of this model, where S� = (P(C)� P(R))
is the set of all possible submodels of �, and

� : C ! S is a function associating a submodel with a concept.

We use P(A) to denote the power-set of A, i.e. the set of all subsets of A.

The CREEK representation enforces the constraint on the representation
that every relationship must have an inverse relationship. The reason for this is
the idea that if the concept co has a relationship with cv, then there is also some
kind of relationship between cv and co. This needs not be the same kind of rela-
tionship, for instance in our previous example, if hurricane causes rain, then
this implies an inverse relationship of a di�erent kind between rain and causes,
speci�cally that rain is caused by hurricane. This is in practice a constraint
that is automatically upheld by the implementation, as the inverse relation-
ship (except the strength) is implied by the original relationship. Basically, the
inverse relationship has just inversed the origin and target concepts, and the
relation type is given by the � function. However, the relationship strengths
may be (and often are) di�erent between original and inverse relationships. In
the weather example, it is certainly the case that most hurricanes are caused by
rain, but although rain may be caused by hurricanes, it is normally the result
of more mundane weather. For an example of a basic CREEK model, presented
both visually and in the formal syntax, see Figure 5.4

A CREEK model also contains a partial ordering of the relationships, �.
We will say that if relationship (r1; r2) 2�, then r1 overrides r2, and we will
denote this r1 � r2. This feature is required when applying inference to the
representation, and is speci�cally designed to resolve multiple inheritance con-
icts. The basic idea is that if two relationships r1 and r2 are both inferred to be
present at the same concept, but r1 � r2, r2 should be removed from the list of
inferred relationships. This is important because CREEK does not assume that
there can be only one of each relation-type from a particular concept. In classi-
cal discussions of inheritance in semantic networks, it is often assumed that for
instance royal elephant has color white implicitly overrides elephant has
color grey when royal elephant is a subclass of elephant. The assump-
tion here is that there can only be one has color value for a given concept. In
this example, it may seem natural that an elephant should only have one color,
but this is not generally the case. When modeling cause and e�ect, for instance,
there may be many possible causes for a single phenomenon. This means that
there must be some mechanism for identifying when a relationship is meant to
override a default as opposed to creating an additional relationship.

Last, a CREEK model may contain a number of submodels (S). These
contain subsets of the concepts and relationships in the total model. This allows
the representation to model some second-order properties, such as the beliefs of
a person, and separate those from the beliefs of the system. Each submodel must
also be associated with a concept that represents the submodel. This allows for
representing meta-information about the submodel itself, such as whose beliefs it
represents. This is particularly important for student modeling and representing
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has subclass subclass of

has inverse

Entity

Thing

Relation

has inverse

has subclass

subclass of

BasicModel = (C;R; T; �;  ;�; S; �), where
C = fThing,Entity,Relation,has subclass,subclass of,has inverseg
R = f r1; r2; :::; r13 g, where

r1 = (Thing,has subclass,Relation,1.0)
r2 = (Thing,has subclass,Entity,1.0)
r3 = (Entity,subclass of ,Thing,1.0)
r4 = (Relation,subclass of ,Thing,1.0)
r5 = (Relation,has subclass,subclass of,1.0)
r6 =(Relation,has subclass,has subclass,1.0)
r7 =(Relation,has subclass,inverse of,1.0)
r8 = (subclass of,subclass of ,Relation,1.0)
r9 = (subclass of,inverse of ,has subclass,1.0),
r10 = (has subclass,subclass of ,Relation,1.0)
r11 = (has subclass,inverse of ,subclass of,1.0),
r12 = (inverse of,subclass of ,Relation,1.0)
r13 = (inverse of,inverse of ,inverse of,1.0)

T = fsubclass of,has subclass,inverse of g
� = f subclass of ! has subclass,

has subclass ! subclass of ,
has inverse ! has inverse g

 = f r1 ! r4, r2 ! r3,
r3 ! r2, r4 ! r1,
r5 ! r8, r6 ! r10,
r7 ! r12, r8 ! r5,
r9 ! r11, r10 ! r6,
r11 ! r9, r12 ! r7,
r13 ! r13 g

� = ;
S = ;
� = ;

Figure 5.4: A basic CREEK model
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concept maps. While this is a new feature of the CREEK representation, it was
introduced by Hendrix [42] as Partioned Networks.

Frames

The de�nition of a CREEK model is centered on nodes (concepts) and edges
(relations), but we often refer to frames, which we take to be the concept and
all the relationships in the model from that concept. A formal de�nition of the
frame function for a CREEK model is given by De�nition 5-3.2.

De�nition 5-3.2 (Frame Function) A function F : C ! P(R) is the frame
function for a CREEK model � = (C;R; T; �;  ;�; S; �) i� for all c 2 C, the
relationship r 2 F (c) i� the origin of r is c.

The basic inference mechanisms of CREEK are centered on the frame. The
�rst of these are inferring additional relationships to the frame, forming what
we call the extended frame. The second mechanism is frame matching, that is,
searching for frames that are similar to the current frame. CREEK does not
implement general frame matching, but its case-based reasoning engine performs
a particular type of frame matching.

Subclass Inheritance

The �rst of these mechanisms, inferring additional relationships, is an extension
of the traditional subclass inheritance mechanism in the tradition of path-based
inference, as de�ned in [84]. An important feature of path-based inference is
that each relationship ri = (co; t; cv; x) that is inferred to be a member of an
extended frame for the concept co must be justi�ed by a path from co to cv.

De�nition 5-3.3 (Paths) A path p from c1 to cn is an ordered, loop-free set
of chained relationships, i.e. so that

p = ((c1; t1; c2; x1); (c2; t2; c3; x2); (c3; t3; c4; x3); :::; (cn�1; tn�1; cn; xx�1).

De�nition 5-3.4 (Path Strength) We de�ne the strength of a
path p = ((c1; t1; c2; x1); (c2; t2; c3; x2):::; (cn�1; tn�1; cn; xx�1) as xp = x1 � x2 �
::: � xn�1.

De�nition 5-3.5 (Path-Set) P� � P(R) is the path-set for � i� it contains
all possible paths in �, i.e. p 2 P� i� p is a path, and for all r 2 p, r 2 R.

If we assume that each path can at most justify a single inferred relationship,
and the set of possible paths P� for any CREEK model � is �nite, the set of
possible inferred relationships for any model is also �nite.
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subclass of

has inverse

color of

Mike

Elephant

Clyde

Grey

White

has colorhas subclass

Relation
Entity

has inverse

has subclass

has color

overrides

submodel

Thing

Model = (C;R; T; �;  ;�; S; �), where
C = f Thing,Entity,Relation,has subclass,subclass of,

has inverse,has color,color of,Mike,elephant,Clyde,white,greyg
R = fr1; r2; :::; r23g, where

r1 = (Thing,has subclass,Relation,1.0)
r2 = (Thing,has subclass,Entity,1.0)
r3 = (Entity,subclass of ,Thing,1.0)
r4 = (Relation,subclass of ,Thing,1.0)
r5 = (Relation,has subclass,subclass of,1.0)
r6 =(Relation,has subclass,has subclass,1.0)
r7 =(Relation,has subclass,inverse of,1.0)
r8 = (subclass of,subclass of ,Relation,1.0)
r9 = (subclass of,inverse of ,has subclass,1.0)
r10 = (has subclass,subclass of ,Relation,1.0)
r11 = (has subclass,inverse of ,subclass of,1.0)
r12 = (inverse of,subclass of ,Relation,1.0)
r13 = (inverse of,inverse of ,inverse of,1.0)
r14 = (Entity,has subclass,Mike,1.0)
r15 = (Mike,subclass of ,Entity,1.0)
r16 = (Entity,has subclass,elephant,1.0)
r17 = (elephant,subclass of ,Entity,1.0)
r18 = (elephant,has color ,grey,0.7)
r19 = (grey,color of ,elephant,0.7)
r20 = (elephant,has subclass,Clyde,1.0)
r21 = (Clyde,subclass of ,elephant,1.0)
r22 = (Clyde,has color ,white,1.0)
r23 = (white,color of ,Clyde,1.0)

T = fsubclass of,has subclass,inverse of,has color,color of g
� = f subclass of ! has subclass, has subclass ! subclass of ,

has color ! color of , color of ! has color ,
has inverse ! has inverse g

 : For all r = (co; t; cv; x) 2 R,  (r) = (co; �(t); cv; x).
� = f (r22; r18),(r23; r19) g
S = f s1 g, where

s1 = felephant,grey,Clyde,white,r18; r20; r22 g
� = f Mike! s1 g

Figure 5.5: A CREEK model with overrides and a submodel. Inverse relations
are not drawn.



Knowledge Models 105

De�nition 5-3.6 (Justi�ed Inferred Relationships) A justi�ed relationship
j for the CREEK model � = (C;R; T; �;  ;�; S; �) is an ordered tuple (r; p) 2
(R� � P�) where

R� = (C � T � C � [0::1])

r = (co; t; cv; x) is a relationship,

p is a path from co to ct, and

the strength of p equals the the strength of r (i.e. x).

A set of justi�ed relationships is denoted J , and the set of all possible justi-
�ed relationships in � is denoted J�.

This means that a path-based inference method can be de�ned as a function
that given a CREEK model � will identify the subset of all possible justi�ed
relationships J� for this model supported by that method. However, in practical
use it is more common to extend the frame of a single concept at a time, �nding
all justi�ed relationships originating from a given concept in the model. We
will use the form given in De�nition 5-3.7 when de�ning path-based inference
functions.

De�nition 5-3.7 (Path-Based Inference Function) The function I : C ! P(J�)
is a path-based inference function for � i� for all (c! J) 2 I, all justi�ed rela-
tionships (r; p) 2 J has c as the origin concept for r.

This de�nition of a path-based inference function allows for a multitude of
di�erent inference mechanism, one of which is the classic subclass inheritance
method. The inference function for the classic inheritance method would require
that all relation-types in the path that justi�es an inherited relationship must
be of the type subclass of , and that the type of the inferred relationship equals
the last relationship in the path:

De�nition 5-3.8 (Subclass-Inheritance Function) The subclass inheritance
function for CREEK model � = (C;R; T; �;  ;�; S; �) is a path-based inference
function Isubclass : C ! P(J�) where

for all c 2 C, Isubclass(c) contains (r; p) i�,

given p = (r1; r2; :::; rn�1; rn), the relation-type of all relationships
r1:::rn�1 is "subclass of ", and

r = (c; t; cv; x), where t is the relation-type of rn, cv is the value
concept of rn and x is the strength of path p.

An example of the subclass inheritance function applied to the Clyde con-
cept from the extended CREEK model (Figure 5.5) is found in Figure 5.6.
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Clyde

subclass of

has color

inferred 
relationship

White

Elephant Grey

The frame function applied to Clyde:
F (Clyde)! f(Clyde,subclass of ,elephant,0.95),

(Clyde,has color ,white,0.7) g

The subclass inheritance function applied to Clyde:
Isubclass(Clyde)! f
( (Clyde,has color ,white,0.63),
((Clyde,subclass of ,elephant,0.9),(elephant,has color ,white,0.7)) ),

( (Clyde,subclass of ,elephant,0.95),
((Clyde,subclass of ,elephant,0.95)) ),

( (Clyde,has color ,white,0.7),
((Clyde,has color ,white,0.7)) ) g

g

In this example, the relationship (Clyde,has color ,white,0.63) was
inferred by the subclass inheritance function, justi�ed by the path
((Clyde,subclass of ,elephant,0.9),(elephant,has color ,white,0.7)) .
Note that the strength of the inherited relationship (0.63) is the prod-
uct of the strengths of the relationships in the path (0.7 � 0.9). Note
that the inheritance function will also give the local relationships, which
are trivially justi�ed by a one-step path containing only the relationship
itself.

Figure 5.6: The subclass inheritance function applied to Clyde.
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Plausible Inheritance

In CREEK, the default path-based inference mechanism is an extension of basic
inheritance we call plausible inheritance [76]. This mechanism allows for inher-
itance over any relation-type, as dictated by a set of rules saying for instance
that causes and has color may be inherited over subclass of , while causes may
also be inherited over other causes relationships. This last rule, for instance,
makes the causes relation-type transitive. Each CREEK model may have a set
of such plausible inheritance rules.

De�nition 5-3.9 (Plausible Inheritance Rule-Set) A plausible inheritance
rule-set for a CREEK model � = (C;R; T; �;  ;�; S; �) is a mapping � � (T�T )
from relation-types to relation-types. If (t1; t2) 2 �, this means that all relation-
ships of the type t2 may be transferred over any relationships of type t1. Here,
t1 is said to transfer t2. We can also say that if relationship r1 is of type t1 and
r2 is of type t2, r1 transfers r2.

This allows us to formulate a more general inheritance mechanism than sub-
class inheritance { plausible inheritance. In plausible inheritance, each inferred
relationship r must be justi�ed by a path of the same origin and value as r,
and in this path, all relationships except the last must transfer r. The last
relationship in the path must be of the same type as r.

De�nition 5-3.10 (Plausible Inheritance Function) The plausible inher-
itance function for CREEK model � = (C;R; T; �;  ;�; S; �) is a path-based
inference function Iplausible : C ! P(J�) where

for all c 2 C, Iplausible(c) contains (r; p) i�,

given p = (r1; r2; ::; rn�1; rn), it holds that all relationships r1:::rn�1

transfers rn, and

r = (c; t; cv; x), where t is the relation-type of rn, cv is the value
concept of rn and x is the strength of path p.

These rules allow the modeler to create domain-speci�c inference rules. For
example, the simple example in Figure 5.7 has a rule saying that contains trans-
fers causes. This may make sense in a domain reasoning about liquids, but
makes less sense in a car domain, for instance. Just because a car contains fuel
does not necessarily make it a �re bomb, at least outside Hollywood movies.

The algorithm implementing this mechanism is slightly more computation-
ally complex than classical subclass inheritance, although still in polynomial
time. It is based on a basic spreading activation scheme, where the set of
relation-types that can be inherited to the origin concept (c) is propagated
through the concepts of the model. The initial transfer set of types is the com-
plete set of relation-types, or the set of relation-types we are interested in. Then,
relationships are traversed in a breadth-�rst search, where the target concept
of each relationship is assigned the transfer set of relation-types at the origin
intersected with the set of relation-types the relationship transfers. If there are
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Cough-Syrup

contains

causes

inferred 
relationship

Alcohol Intoxication

The frame function applied to Cough-Syrup:
F (Cough-Syrup)! f(Cough-Syrup,contains,alcohol,0.4),

The plausible inheritance rule set is � = f (contains,causes) g.
The plausible inheritance function applied to Cough-Syrup:
Iplausible(Cough-Syrup)! f
( (Cough-Syrup,causes,Intoxication,0.2),
((Cough-Syrup,contains,Alcohol,0.4),(Alcohol,causes,Intoxication,0.5)) ),

( (Cough-Syrup,contains,Alcohol,0.4),
((Cough-Syrup,contains,Alcohol,0.4)) ) g

This CREEK model fragment illustrates how plausible inheritance can be
used to infer the relationship Cough-Syrup causes Intoxicaction. This
requires that the rule (contains,causes) is in the plausible inheritance
rule set.

Figure 5.7: A simple example of plausible inheritance.
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more than one path between any given concept and the origin, the concept may
�rst be assigned a transfer set from path one, and then another from the second
path. Since the transfer set represents the set of relation-types that can be
transferred from this concept to the origin, these sets are then combined, and
spreading activation from this concept must be redone. This re-spreading is the
cause of the increased complexity, but it is bounded by the number of relation-
types in the model. Since the transfer set at a concept can only increase, and at
worst by one at a time, the complexity of the plausible inheritance is O(jT j�jRj).
For a more in-debt presentation of the algorithm, see [76]. An example of the
plausible inheritance with several types of relationships inherited along di�erent
paths are shown in Figure 5.8.

Default Inheritance

One problem with the above methods of inference is that they do not address
default reasoning. The de�nition of the CREEK model contains a partial pref-
erence ordering of the relationships�. The semantics of this partial ordering is
that no inference should result in an extended frame that contain any relation-
ships justi�ed by conicting paths. By conicting paths, we mean two paths p1
and p2 that contain respectively relationships r1 and r2 where r1 overrides r2
(r1 � r2). For example, the model in Figure 5.9 may on the surface look quite
simple. Royal Elphant is a kind of Elephant that is White instead of the
normal Grey. Clyde is a Royal Elephant, but is not White. In deter-
mining the color of Clyde, the subclass inheritance function Isubclass described
earlier would infer that Clyde is both white and grey, as it does not consider
overrides at all. A version of this function that considered overrides according
to the semantics of � would not be able to include the relationship saying that
Clyde is white, as the path supporting this conclution contains a relationship
(Royal Elephant has color White) that is overriden by another relationship
(Clyde subclass of Royal Elephant). Consider then if the default subclass
inheritance function may infer that Claude is grey instead. This is compati-
ble with the de�nition of�, because the relationship stating that elephants are
grey was only overridden by a relationship that was itself overriden and removed.
This means that when the Royal Elephant has color White was removed
from the extended frame, there is no longer any relationship used locally that
overrides the Elephant has color Grey relationship. The conclusion here is
that we can infer that Clyde is grey because the more speci�c relationship (that
he is white) is overriden by an even more speci�c relationship.

This can be further complicated, because it is possible to model situations
where two paths that override each other can be used to justify relationships
inherited to the same concept. In this situation, there is not necessarily enough
information to know which path to prefer. For instance, Figure 5.10 illustrates
such a situation, where Clyde can not both be white and grey1. In this example,

1This example is not strictly speaking entirely syntactically correct as partial orderings
may not contain loops. Currently, the implementation of this is a basic mapping that does
not enforce this constraint. It is possible to generate syntactically correct examples with the
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Epidemic Case #27

associated with

caused by

Clean Water 

Bad Hygene

subclass of

has solution

Dirty WaterBacterial epidemic

PlausibleEx = (C;R; T; �;  ;�; S; �), where
C � f Epidemic Case #27,Bacterial Epidemic,Dirty Water,

Clean Water,Bad Hygiene g
T � f caused by,associated with,subclass of,has solution g
R � f r1; r2; :::; r5 g

r1 = (Epidemic Case #27,subclass of ,Bacterial Epidemic,0.8)
r2= (Epidemic Case #27,caused by ,Dirty Water,0.9)
r3= (Bacterial Epidemic,associated with,Dirty Water,0.6)
r4= (Dirty Water,has solution,Clean Water,0.9)
r5= (Dirty Water,associated with,Bad Hygiene,0.7)

The plausible inheritance rule-set � =
f (subclass of,associated with),

(subclass of,has solution),
(subclass of,caused by),
(associated with,associated with),
(caused by,caused by),
(caused by,has solution) g

The plausible inheritance function applied to Epidemic Case #27:
Iplausible(Epidemic Case #27)!f

( (Epidemic Case #27,has solution,Clean Water Supply,0.81),
(r2,r4) ),

( (Epidemic Case #27,associated with,Dirty Water,0.48),
(r1,r3) ),

( (Epidemic Case #27,associated with,Bad Hygiene,0.336),
(r1,r3,r5) ),

( (Epidemic Case #27,caused by ,Dirty Water,0.9),
(r2) ),

( (Epidemic Case #27,subclass of ,Bacterial Epidemic,0.8),
(r1) ) g

This plausible inheritance example illustrates how one relationship (the
has solution) is inherited through the caused by relationship, and two oth-
ers (the associated with relationships) are inherited through the subclass

of relationship. In the interest of brevity, the model described above is
a partial CREEK model, with only subsets of R, C and T de�ned. This
�gure is adapted from [76, �g. 4.11,p 58].

Figure 5.8: A larger example of the plausible inheritance method.
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Elephant

Royal Elephant

Grey

White

has subclass

has color

overrides

Clyde

DefaultEx = (C;R; T; �;  ;�; S; �), where
C � f Clyde,Royal Elephant,Elephant,Grey,White g
T � f subclass of,has color g
R � f r1 =(Clyde,subclass of ,Royal Elephant,0.9),

r2 =(Royal Elephant,subclass of ,Elephant,0.9),
r3 =(Elephant,has color ,Grey,0.7),
r4 =(Royal Elephant,has color ,White,0.7) g

�� f (r4; r3),
(r1; r4) g

Figure 5.9: An example of default reasoning in the CREEK representation.
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there can be said to be two conicting internally consistent models that can be
inferred. The �rst is that Clyde is a grey, royal, Indian elephant, and the
second that he is a white, royal, Indian elephant. Touretzky suggests a skeptical
approach to path-based inference, which allows the inference of relationship if
and only if it is contained in all models. Touretzky suggests that a relationship
should not be inferred if there is active evidence against it.

A study of the complexity of this problem by Selman [73] shows that there are
variations of this task that is possible to do in polynomial time, although Touret-
zky's formulation is unfortunately NP-hard. Currently, the CREEK system does
not incorporate these results completely. The current CREEK approach is to
remove any path from the set of inferred paths that has a relationship that is
overridden by a relationship that is in any other path in the set. This approach
only infers relationships that are correct with regards to Touretzky's skeptical
inference, but it is not complete { it may omit relationships that are actually
consistent with all models. For example, in Figure 5.9, CREEK is unable to con-
clude that Clyde is grey (although it will not conclude Clyde is white either). In
practical modeling, this has not been a major problem, although it certainly is a
topic for further research. The de�nition of CREEK's default-aware inheritance
functions can be formally de�ned as:

De�nition 5-3.11 (Default-Aware Subclass Inheritance Function) The
default-aware subclass inheritance function for the CREEK model � = (C;R; T; �;  ;�
; S; �) is a path-based inference function Ida�subclass : C ! P(J�) where (r; p) 2
Ida�subclass i�

(r; p) 2 Isubclass(c), and

there is no (r0; p0) 2 Isubclass(c) where

there is a rp 2 p and rp0 2 p0 so that rp0 � rp.

De�nition 5-3.12 (Default-Aware Plausible Inheritance Function) The
default-aware plausible inheritance function for the CREEK model � = (C;R; T; �;  ;�
; S; �) is a path-based inference function Ida�plausible : C ! P(J�) where (r; p) 2
Ida�plausible i�

(r; p) 2 Iplausible(c), and

there is no (r0; p0) 2 Iplausible(c) where,

there is a rp 2 p and rp0 2 p0 so that rp0 � rp.

same problem, for instance by adding another step in each path and having the middle step
of each path overriding the last step of the other path.
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Clyde

Royal ElephantIndian Elephant

has subclass

has color

overrides

WhiteGrey

DefaultEx = (C;R; T; �;  ;�; S; �), where
C � f Clyde,Royal Elephant,African Elephant,Elephant g
T � f subclass of,has color g
R � f r1; r2; :::; r5 g, where

r1 =(Clyde,subclass of ,Royal Elephant,0.9)
r2 =(Royal Elephant,subclass of ,Elephant,0.9)
r3 =(Clyde,subclass of ,African Elephant,0.9)
r4 =(Royal Elephant,has color ,White,0.9)
r5 =(African Elephant,has color ,Grey,0.9)

�� f (r4; r5),
(r5; r4) g

Figure 5.10: A problematic default-reasoning model.



114 Chapter 5. CREEK-ILE

Semantics in Path-Based Inference

The semantics of path-based inference is markedly di�erent from that of deduc-
tive systems, such as �rst-order predicate calculus. The most obvious di�erence
is that path-based inference is not sound. This is consistent with the view of
knowledge representation often represented by frame-based systems that models
should represent prototypicality. In this view, a frame is not a hard de�nition
of a concept, but a collection of properties that typically hold for a concept
or type of object. This means that if a given instance is recognized as being
of a particular frame, it is not necessarily true that all the properties of the
identi�ed frame hold for the instance. This suggests that inference should also
be geared towards providing conclusions that are typically true, as opposed to
conclusions that are always true. The central tenant of the CREEK knowledge
representation is that only what is observed directly is taken to be true and
represented explicitly, while inferences are treated as uncertain knowledge.

It is interesting to contrast the CREEK knowledge representation with de-
scription logics [20], which is similar in that both representations are created
to support representations of taxonomic information, inference along subclass/
superclass relations and recognition of instances. In description logics, knowl-
edge is de�nitional in nature, and it uses sound inference. This means that
it is able to reach stronger conclusions than CREEK, but only at the expense
of requiring a priori correct and consistent taxonomic knowledge. Description
logics also have a separate instance level, which CREEK lacks.

Although CREEK and path-based inference systems in general are not sound,
model-based semantics can be useful. Touretzky adopts such an approach in
formulating his goal for default path-based inference, for instance by requiring
that a skeptical method should only accept the inference of relations that exists
in all models. In this case, this does not mean that the relation must always
be true, but rather that there is no opposing evidence represented. Because
CREEK uses a measure of strength on each relationship to represent the degree
of belief, we could in theory extend this approach to calculate model strength
and accept the stronger model, but at this time the details and computational
complexity of such an approach has not been investigated.

At this time, the submodel feature is only used to limit inference, for instance
by using a special version of the plausible inheritance method that only considers
the concepts and relationships in a submodel. Beyond this, the submodel feature
has no machine-interpretable meaning.

Concept and Epistemological Level Semantics

It has been a goal for our representation to allow the modeler to work with a
visual 2-dimensional graph as much as possible. Clearly, the set of concepts, C,
in a CREEK model may be represented as nodes, the set of relationships (R) as
labeled edges (with weights), but a CREEK model also contains other elements
that have no obvious analogue in a graph. In order to solve this, we use a variant
of the CREEK representation where special meaning has been assigned by the
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system to a set of required elements so that these constructs can be identi�ed
when using a visual graph tool.

Already, the subclass of relation-type has been identi�ed as having special
meaning for the subclass inheritance method, and in the �rst example of a
CREEK model, the has inverse relation-type was used to illustrate the � func-
tion in Figure 5.4. This relation-type can actually be used to represent the �
function, as long as any relation-type has only one of them and the relation-type
is its own inverse (the inverse relationship requirement forces a relationship of
the same type in the opposite direction in this case, enforcing the symetricity
of �).

The de�nition of the CREEK model requires that the set of relation-types,
T , is a subset of the concepts. In these CREEK models, the presence of a
concept with the name Relation is required, and all concepts that have a
direct or indirect subclass of relationship from this concept is a member of the
set of relation-types R.

Neither the set of submodels (S), the function associating each submodel
with a concept (�) nor the partial ordering of the relationships (�) can be dealt
with by de�ning them in terms of other constructs, as there is no way to store
relationships from or to other relationships. These constructs must for that
reason remain outside graph form. However, it seems a natural extension to a
graph manipulation tool to select parts of the graphs as members of submodels,
and the relationship overrides may also be illustrated as special relationship-to-
relationship arcs in a tool.

A particularly useful property of these CREEK models is that is possible
to represent the plausible inheritance rules directly as part of the model. Since
relationships are from concepts to concepts, and all relation-types are stored
as concepts in the model, the mapping may be stored as a subset of the set
of relationships, using a particular kind of relation-type called transfers. Using
this relation, we can say that:

De�nition 5-3.13 Plausible Inheritace Rule-Set] Given a CREEK model � =
(C;R; T; �;  ;�; S; �), the default plausible inheritance rule-set �� contains (t1; t2)
i�,

t1; t2 2 C,

(t2; �("transfers"); t1; x) 2 Ida�subclass(t2).

In order to allow for instance the subclass of relation-type to inherit all other
relation-types without making a rule for all relation-types, we use the subclass
inheritance method to inherit rules along the subclass of relation-type. An ex-
ample of a CREEK model where this is done is found in Figure 5.8. Obviously,
the plausible inheritance method itself cannot be used for this, as the result of
the operation (the plausible inheritance rule set) is required to run the plausible
inheritance method. This "bootstrapping" of inheritance methods may seem
cumbersome in formalization, but it presents a fairly uni�ed method of expres-
sion for the knowledge modeler. In practice, modelers working with CREEK
have used only subclass of relationships to form the relation-type hierarchy.
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subclass of

has inverse

color of

Elephant

Clyde

Grey

White

has color

has subclass

Relation
Entity

has inverse

subclass of

has color

overrides

Thing

transfers

caused by

causes

inherits over
transfers

This example illustrates how relation-types (T ), inverse relation-types
(�) and the default plausible inheritance rules (�) are represented as part
of the model. The plausible inheritance rules may not be obvious at �rst.
The transfer relationship from subclass of to Relation means that
the inverse relationship is inherited to all subclasses of Relation. In
e�ect, this means that subclass of transfers all relation-types, except
has subclass and has inverse, which has relationships overriding the
transfer relationship.

In this model, T; � and � have the following values:

T =f has subclass,subclass of,has inverse,has color ,
color of,causes,caused by,transfers, inherited over g

� =f has subclass ! subclass of , subclass of ! has subclass,
has inverse ! has inverse,
transfers ! inherited over , inherited over ! transfers,
has color ! color of , color of ! has color ,
causes ! caused by , caused by ! causes g

� = f (subclass of, subclass of ),
(subclass of, has color),
(subclass of, color of ),
(subclass of, transfers),
(subclass of, inherits over),
(subclass of, causes),
(subclass of, caused by),
(causes, causes),
(caused by, caused by) g

Figure 5.11: A basic CREEK graph model.
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In this section, only a few concepts and relation-types have been given spe-
ci�c semantics by the system. These identi�ed here are used to re-represent
formal constructs, but in implementation, the CREEK representation contains
more such special concepts and relation-types. The latter do not directly a�ect
the formalization here, but are used for conveniences such as providing default
relationship strength values. For this reason, there is a common base for new
CREEK models containing all the concepts and relationships imbued with spe-
cial semantics by the system. This common base, along with some illustrative
concepts, is presented in Figure 5.11.

5-3.2 Expert Model

The CREEK-ILE approach uses two major sources of expert knowledge { teacher
concept maps and problem cases.

Teacher Concept Maps

In CREEK-ILE, students are not given complete freedom to form their own
maps, but are limited to using concepts and link labels de�ned by the teacher
as appropriate for the area at hand. In practice, this task is performed by the
teacher or expert creating a map from which the concept and link labels are
extracted. It is also possible to use the teacher map in other ways, which will
be discussed in Section 5-4.

Concept maps follow the basic syntactical structure of labeled graphs. While
there are typically also other considerations when creating concept maps, these
are usually not absolute rules and thus harder to encode explicitly in the syntax.
For instance, many mapping methods require that the map should be hierar-
chical with general concepts generally positioned higher on the surface used to
draw the map. This means that when storing conceptual maps, it is important
to store the position of nodes on the surface in order to be able to reproduce
them exactly as drawn. However, when multiple persons are asked to draw the
same map, the positions of the nodes will vary between di�erent maps even if
the graphs are the same. Because of this we do not currently use the node's
position when computationally comparing concept maps and below we use def-
initions that do not include positional information. This allows us to represent
a single map using a directed, labeled graph.

De�nition 5-3.14 (Concept Map) A concept map is an ordered set M =
(V; L;A), where

V is a �nite set of vertices (concepts),

L is a �nite set of link labels,

A � V � L� V de�nes the labeled arcs (relations).

A mapping between this representation and the CREEK representation is
fairly straightforward. The idea is to use a submodel to store the vertices
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(concepts) and arcs (relationships) of the map, and create each labeled arc
as a relation-type.

De�nition 5-3.15 (Concept Maps in a CREEK Model) The concept map
M = (V;L;A) can be said to be represented as submodel s = (Cs; Rs) in the
CREEK Model � = (C;R; T; �;  ;�; S; �), i�

s 2 S,

L � T ,

Cs = V , and

there is a relation (co; t; ct; 1:0) 2 Rs, i� there is an arc (co; t; ct) 2 A.

The CREEK representation forces each relationship to have an inverse, and
all labels to be represented as concepts, which are not normal requirements of
concept maps. However, these constraints need not be upheld internally in a
submodel { it can contain a relationship without including the inverse, and use
relation-types de�ned outside the submodel.

In Section 5-1, two example domains were introduced, and the general do-
main models introduced in �gures 5.1 and 5.2 also represent the teacher's con-
cept maps for these two domains.

Problem cases

Exercises represent the problem cases that can be presented to the student. It
is important that these exercises also have solutions attached to them, since
CREEK-ILE generally will not have the capability of solving the cases (except
in certain diagnostic domains, see Section 5-4.2). The solution is important, not
necessarily as a way of testing the student's solution, but in the case the student
is unable to solve the problem. However, it may be possible to test the student's
solution without comparing it directly to a canned solution. A good test of an
axe is if it can be used to cut down a tree. In our Java programming domain, we
used test against the text of the code as well as a set of unit tests that simulated
input to the program and compared output with the expected result in a set
of scenarios. For instance, if a student was asked to write a program that used
the for-loop to count from 1 to a number given by the user, the tests on the
student's code would check that there was a for-loop in there, and try a handful
of scenarios { for instance inputting 7, and checking that the output matched
"1,2,3,4,5,6,7".

The requirements for exercise representation and solution testing obviously
vary widely from domain to domain. If the task is to solve equations, such
as in the math cognitive tutors from Chapter 4, the answer to the problem
is enough to evaluate the student's solution. There may be several ways of
reaching an answer to the equation 2x = x+9, but in the end, the only correct
answer is x = 9. However, in many domains, such as the business letter writing
in BLITS, there is no single correct answer. Even in the simple programming
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example above, students produce a surprisingly large variety of solutions. Thus,
in some of these domains, it may be easier to produce tests than an exhaustive
list of accepted solutions.
A problem case contains:

� Textual problem description. The presentation of the exercise to the stu-
dent. This is the only information actually presented to the student.

� Identi�ed features. A subset of the concepts in the teacher's concept map
covering this area.

� Solution. A solution to the problem.

� Tests. Tests to check if the student's solution is correct (if possible).

5-3.3 Student Model

The student model in CREEK-ILE is divided into student concept map and
solved cases. The solved cases part is simply an overlay model of the cases
already solved by the student. The student concept maps, however, are less
straightforward.

In chapter 1, we briey reviewed how concept maps can be used with dif-
ferent degree of directedness (Figure 1.2). The approach to concept mapping
in CREEK-ILE is similar to that of the CRESST research, where the student
is presented with a pre-made list of concepts and link labels. This is primar-
ily motivated by pragmatic concerns in allowing the comparisons of maps to
be automated, but it also serves the goal of ensuring that the maps produced
by students are constrained within the topic decided by the teacher, while also
allowing the student some degree of freedom of expression.

De�nition 5-3.16 (Student Concept Map) A concept mapMs = (Vs; Ls; As)
is a student concept map for the teacher concept map Mt = (Vt; Lt; At) i�

Vs � Vt and

Ls � Lt.

At the onset, it may seem like this approach limits the student too much,
but if we examine a given teacher concept map Mt = (Vt; Lt; At), there is
vast, although �nite, number of student maps that can be created over it. The
greatest degree of freedom is granted in the arc { the student may form arcs that
do not exist in the teacher map, as long as they are between two existing concepts
and uses existing labels. This means that there are jVtj � (jVtj�1)� jLtj possible
arcs that can be drawn, forming 2jVtj�(jVtj�1)�jLtj possible student concept maps.
The relatively small computer programming teacher map in Figure 5.1, has 13
concepts and 4 arc labels, which means there are 624 possible arcs to draw in
a student map, and over 10187 possible combination of arcs. Arguably, most of
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Description
Write a program that uses a for-loop to print all
numbers from 1 to 10, except the number 4.

Features
for
if

Solution

public class ForTask

{

public static void main(String argv[])

{

for(int i=1;i<=10;i++)

{

if(i != 4)

{

System.out.prinlnt("Count is "+i);

}

}

}

}

Tests

Program source pattern:

.*for[\s\n]*\([\s\n]*int[\s\n]+([\w\d]+);.*?\).*

println[\s\n]\(.*?)\1(.*?)\).*

Program output pattern:

.*1.*2.*3.*5.*6.*7.*8.*9.*10.*

The task above is an example of a simple Java programming task. The
tests are regular expressions that are tested against the program source
and output to see if the student has successfully solved the problem.
The student need not reproduce the suggested solution { it is there for
reference if the student fails to �nd a solution on his own.

Figure 5.12: Example of a simple Java programming exercise.
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Description

My car will not start! When I turn the key, there is no sound
from the starter motor, and the main engine certainly will
not turn. Even the headlights will not come on. I've just
�lled it up with gas, so that cannot be the problem.

Features

engine does not turn
no lights
starter motor does not turn

Solution empty battery

Tests Check if solution equals "`empty battery"'.

In this task, the student is asked to �nd the cause of the car problem. The
task contains a set of �ndings from the expert. These are not presented
to the student, at least initially, but should be identi�ed from the text.
In this domain, the task is to identify the root problem from a given set
of possible classes, thus no advanced tests are required.

Figure 5.13: Example of a car problem exercise.

the possible arcs make little sense and can be immediately dismissed, but the
possibility space here is so large that it seems to suggest that the student needs
to have a clear idea of how concepts relate to each other in order to form a map.

Similarity of Concept Maps

Comparing concept maps is important in many of the CREEK-ILE tutoring
tasks. For instance, concept maps created by di�rent students can be compared
in order to see if their conceptualization is similar, or a student's map can be
compared to the teacher's in an attempt to judge the quality of the student's
map.

In order to measure the similarity of two graphs with di�erent sets of ver-
tices, it is necessary to create a mapping function between the sets of vertices
and then measure the similarity between each di�erent possible mapping. In
general, searching this space for the maximum similarity of the two graphs is
combinatorial { Champin and Solnon [32] point out, the problem is more general
than the graph isomorphism problem. If the task is to compare the similarity
of any two concept maps, a greedy approach such as that proposed by Champin
and Solnon may be required. Fortunately, the constraints we have introduced
on the concept maps simplify the comparison. Although we allow the teacher
to �rst model the domain freely by creating any labeled graph, the student may
use only the concepts and arc labels used in the teacher's map. This means
that given a teacher map Mt = (Vt; Lt; At), we can compare two student maps
M 0 = (V 0; L0; A0), andM 00 = (V 00; L00; A00). Because both V 0 and V 00 are subsets
of Vt, and L

0 and L00 are subsets of Lt, the A
0, A00 and At relations are all de-

�ned over the same set of vertices and labels. In essence, the teacher de�nes the
mapping ahead of time, and guarantees a one-to-one correspondence between
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Figure 5.14: Student concept maps from the computer programming domain
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vertices and labels used in the student maps. This means that the degree of
overlap between the graphs can be measured by measuring the intersection on
the vertices and edges. Because the major computational complexity associated
with graph comparisons is �nding this mapping, computing the similarity of
this kind of concept maps becomes trivial.

Sometimes, it is useful to quantify the similarity of two student maps, for
instance if they are used in student modeling, and the tutoring system needs to
identify other students similar to the current student. In these situations, we
use a similarity measure that is an adaptation of the Jaccard Coe�cient (also
used in [32]), which measure the di�erence between the union and intersection
of the two graphs.

Through testing we have found that some students like to place all the avail-
able concepts on the drawing surface before drawing relations between them.
This may leave them with several concepts that are not connected to the graph,
and if they are included in the similarity measure they may introduce inaccu-
racies when compared to another student that places concepts on the drawing
surface on demand. The presence or non-presence of concepts in the graphs is
thus not really indicative of similarity. Because of this, we only use the relations
to measure the similarity.

The similarity between two student concept maps M 0 = (V 0; L0; A0), and
M 00 = (V 00; L00; A00), over the same teacher concept map Mt = (Vt; Lt; At) is
calculated with equation 5.1.

sim(M 0;M 00) =
jA0 \A00j

jA0 [A00j
(5.1)

If we look at the student concept maps in Figure 5.14, we see that the
two student maps have three arcs in common (for correct example for(int
i=0;i<10;i++), if type of Decision Statement and Decision Statement
type of Control Structure), and there is a total of 11 di�erent arcs between
the two maps combined. This means that the similarity of the two maps is
3=10 = 0:3 or 30%. Teacher maps can also be compared to student maps in the
same way, by treating the teacher map as student map of itself.

Inference on Concept Maps

Because concept maps in CREEK-ILE are actually stored as submodels in the
CREEK representation, it is possible to apply CREEKs inference to the concept
maps. This may be interesting if it is possible to fairly accurately describe some
of the semantics of the relation-types in for instance plausible inheritance rules.
In the example of the two student maps from Figure 5.14, the relation-type
type of is naturally interpreted as transitive { if a is a type of b, and b is
a type of c, it seems fair to describe a as a type of c. These semantics seem
implicit in the name of the relation-type to people, but obviously do not for
computers. However, this particular property of the type of relation-type
may be described as a plausible inheritance rule in CREEK. Applying this rule
to the two maps infers the existence of an additional relationship (if type of
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Control Structure) in the left map, and three additional relationships (if
type of Control Structure, while type of Control Structure, for type
of Control Structure). If these relationships are included in the similarity
measure of the graphs, we �nd that they now share 6 out of a total of 12
relationships, for a total similarity of 50%.

To our knowledge, inference has not been applied to concept maps in this
manner before, and perhaps for good reason. As has been previously stated,
concept maps are primarily a medium for human communication, and it is not
a requirement that the computer should be able to understand the contents.
However, in the CREEK-ILE use of concept maps, terms are de�ned in advance,
and this also allows us to de�ne some semantics for these terms. Second, the
path-based inference system does not place di�cult constraints on the user as
for instance deductive systems often do. This means that this particular use of
inference need not change the modelling task from the perspective of the user,
but may allow the system to perform some reasoning over the contents.

5-3.4 Pedagogical Model

There is no explicit pedagogical model (yet) in CREEK-ILE. As in many of the
other approaches we have reviewed, the pedagogical approach is implicit in the
theory, and is not explicitly modeled. It is likely that pedagogical modeling be-
comes more relevant once the approach has been tested further and meaningful
di�erences in strategies have been identi�ed.

5-4 Tutoring Capabilities

5-4.1 Exercise Selection

It is possible to provide advice on exercise selection with criteria based purely
on the record of what exercises and examples the student has experienced. For
instance, the system could encourage the student to try exercises that deals
with new topics, so that the total set of exercises covers all the topics in the
curriculum. This would be analogous to providing good case coverage in case-
based reasoning systems. In the CREEK-ILE representation of exercises, this
can be done by suggesting exercises that introduce new features (concepts from
the teacher map). Because the student model contains the set of exercises
already solved by the student, and each problem has a set of features associated
with it, it is fairly trivial to combine the set of features from all solved exercises in
the student model. From this combined set the system can recommend exercises
that introduce new concepts which have not yet been encountered. Variants of
this approach are used by many intelligent tutoring systems, and may also be
combined with pre-assigned di�culty ratings and other measures.

This approach can be viewed as a kind of knowledge transfer, where the
system attempts to give knowledge to the student in the form of exercises. The
assumption here is that any exercise that exposes the student to a concept will
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leave the student with an accurate understanding of it. There is no feedback
mechanism to allow the system to learn about the student's beliefs, beyond
recognizing whether the student was able to solve the exercise or not. The PACT
cognitive tutors and the ELM systems solves this by using a more �ne-grained
student model that attempts to model the procedural steps taken by the student
in solving the problem. This makes it much easier to pin-point problem areas
("buggy rules"). By keeping the student model on the case level, where each
case may cover several concepts, it is not easy to pin-point what the source of the
problem is even if the system is able to detect that a student �nds a particular
exercise hard. For instance, if the student is unable to solve the for-to-while
loop problem in Figure 5.12, is this because the student does not know the for-
loop, the while-loop or a fundamental issue with the understanding of looping
statements? It may also be that a student has solved an exercise successfully, but
over-generalized or developed some misconception. This would be impossible to
track on a purely episodic level of student modeling. A possible solution might
be to expose the student to so many exercises covering the same area that one
can reasonably hope that the correct lesson is learned. Presumably, this is idea
behind the pre-printed sets of similar exercises in traditional school instruction.

In Section 5-2, we suggest that there is an interaction e�ect between con-
ceptual, procedural and episodic knowledge. In particular, conceptual models
may be used to get some information on how students generalize the knowledge
gained from solving exercises, which can be very valuable in exercise selection.
Rhere is a number of ways on how concept maps may be used in this regard.

Concept Maps as Gatekeepers. A simple and tempting method for using
concept maps in exercise selection support, is to view the teacher's map as the
correct solution, and ask the student to solve exercises covering areas of the
student's map that does not yet match what the teacher modeled in that area.
The assumption is that as the student increases in procedural capability, he will
re�ne his conceptual model until it matches the teacher's, at which point the
student is considered to have mastered the area. There are two major problems
with this approach. First, it requires that the teacher's conceptualization is the
only correct one. This seems unlikely. For instance, the teacher's map in Figure
5.1 says that the for and while concepts contains Condition. It would be
entirely reasonable to generalize this property to the Loop statement and it
is not reasonable to expect a student to know the preference of the teacher
here. This can possibly be alleviated to some degree by applying inference to
the concept maps, but even then it is likely that conceptualizations that can
be considered correct are recognized. The second problem is that using the
concept map as a gatekeeper changes the goal from learning the subject matter
to reproducing the model of the teacher. While learning the subject matter
and the procedural skill associated with this may be a way of achieving this,
it is unlikely to be the most e�cient. If the conceptual knowledge serves as
the gatekeeper, it is likely more e�cient for the student to study conceptual
knowledge exclusively, for instance by careful reading of a textbook. Obviously,
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this will have a rather limited e�ect on the student's procedural skill. For
this reason, we suggest that although concept maps may be used to evaluate
conceptual skill in ways similar to multiple choice tests, they should not be used
as gatekeepers in systems focusing on teaching procedural skill.

Conceptual Models' Relation to Procedural Skill. Related to the above
issue is how well any conceptual model relates to procedural skill. As already
mentioned, it is possible to acquire conceptual knowledge about procedural skill
without practicing the skill. On the other hand both more traditional instruction
by design approaches (for instance the ACT-R theory) and learning-by-doing
approaches closer to constructivism (for instance Schank's theories), agree that
learning conceptual knowledge is tied to learning procedural skill, at least for
tasks that are cognitive in nature. The strategy in the PACT cognitive tutors is
to teach conceptual knowledge and problem solving strategy knowledge before
exercises are given, as the view is that these are required to solve the problems.
Schank would suggest that this is exactly backwards, because the exercises pro-
vide the goals for acquiring this knowledge. In both cases, however, conceptual
understanding is related to procedural skill, either as a prerequisite or an in-
dication of interest in that area. To our knowledge, research on using concept
maps as evaluation tools have focused on conceptual knowledge and has not
addressed how they may correlate with procedural skill. In Chapter 7, we de-
scribe empirical experiments within the CREEK-ILE framework that examines
this question. The idea here is that if concept maps created within the context
of a problem-solving environment do not correlate with problem solving skill
measures, they are likely di�cult to use in exercise selection { although they
may still be useful in conceptualization and explanation support.

Methods for using Concept Maps in Exercise Selection

Although student concept maps should not be used as gatekeepers, they may
still be useful in exercise selection. If the system requires a test to see if the
student has mastered an area, this can be in the form of a particularly hard task
or set of tasks that must be solved. The system can then present itself as an
accomplice to the student in learning the skill required to solve the gatekeeper
task, and help him to assess his own knowledge to determine when he is ready to
face it. This has the advantage of de�ning a "real" goal for the exercise session,
providing motivation and goal for the student, and removing the incentive to
game the tutoring system.

The two �rst methods described here are partially tested through empirical
experiments described in Chapter 7, and the latter methods take on re�nements
of our approach taking into account the results of these experiments.

Method 1: Model First, Compare to Teacher. This method asks the
student to form a concept map of the problem area before solving any problems.
This map is then compared to the teacher's map. In its most basic form, a higher
degree of similarity to the teacher map can be interpreted as a higher degree
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of competence. If there is a strong link between conceptual and procedural
skill, a student with a map that is very similar to the teacher's can be assumed
to also be good at solving procedual problems. In Section 7-3, we test this
hypothesis by measuring the correlation between the similarity of student maps
to the teacher map and various measures of competence.

A more �ne-grained approach is to assign a value representing the assumed
level of competence for each concept to each student model. This can be cal-
culated by comparing the similarity of the submodel-speci�c frame from the
teacher's map to the submodel-speci�c frame from the student's map. The sim-
ilarity of submodel-speci�c frames is de�ned in the same manner as the similarity
of concept maps { by comparing the relative size of the union and intersection
of the sets:

De�nition 5-4.1 (Submodel-Speci�c Frame Function) A function Fs : C !
P(R) is the submodel-speci�c frame function for the submodel s = (Cs; Rs) of
the CREEK Model � = (C;R; T; �;  ;�; S; �) i� for all c 2 C, the relationship
r 2 Fs(c) i�

r = (c; t; cv; x), i.e. the origin of r is c, and

r 2 Rs, i.e. the relationship r is a member of the submodel s.

The similarity of two submodel-speci�c frames f 0 and f 0 is de�ned by equation
5.2

sim(f 0; f 00) =
jf 0 \ f 00j

jf 0 [ f 00j
(5.2)

For instance, the submodel-speci�c frame for the for concept would be
di�erent in the teacher's map in Figure 5.1 and the bottom student's map in
Figure 5.14. If one imagines that the teacher's map here is stored in the sub-
model teacher and the student's in the submodel student, the similarity of
the two concepts would be as calculated in Figure 5-4.1.

This method can be extended to use inference to extend the frames of both
the student and teacher models by using inference methods like plausible inher-
itance to infer additional relationships for each concept in the submodel. As
an example, we can use a similar variation to the plausible inheritance function
which only considers entities and relations that are members of a given sub-
model. We call this function Isubmodel�plausible. In Figure 5-4.1 we apply this
inheritance to the for concept in the teacher map from Figure 5.1 and one of
the student map in Figure 5.14.

The similarity between a concept as expressed by the teacher and the student
may be interpreted as the system's belief in how well the student knows that
concept. If the similarity is close to 100%, the student's view of that concept
is similar to the teacher and can be assumed to be valid. Because the expert
model representation of a problem case contains a list of features addressed by
that problem, the system can prioritize those exercises that address concepts
that have a low similarity score.
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Fteacher(for) = f (for,type of,Loop Statement,1),
(for,contains,Condition,1),
(for,correct example,for(int i=0;i<10;i++),1)

g

Fstudent(for) = f (for,type of,Control Structure,1),
(for,correct example,for(int i=0;i<10;i++),1)

g

sim(Fstudent(for); Fteacher(for)) = 1=3

Figure 5.15: The similarity of the for concept, as modeled by teacher and
student.

The plausible inheritance rule-set is � = (typeof; typeof).

Isubmodel�plausible(for; teacher) =
f ( (for,type of,Loop Statement,1),

( (for,type of,Loop Statement,1) ) ),
( (for,contains,Condition,1),
( (for,contains,Condition,1) ) ),

( (for,correct example,for(int i=0;i<10;i++)),
( (for,correct example,for(int i=0;i<10;i++)) ) ),

( ( (for,type of,Control Structure,1) ) ),
( (for,type of,Loop Statement,1),
(Loop Statement,type of,Control Structure,1) ) )

g

Isubmodel�plausible(for; student) =
f ( (for,type of,Control Structure,1),

( (for,type of,Control Structure,1) ) ),
( (for,correct example,for(int i=0;i<10;i++)),
( (for,correct example,for(int i=0;i<10;i++)) ) )

g

sim(Isubmodel�plausible(for; student); Isubmodel�plausible(for; teacher)) = 2=4

Figure 5.16: The similarity of the for concept, as modeled by teacher and
student, using plausible inheritance.
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This approach is conceptually similar to seeding a conceptual student model
with information gained through a pre-test, which is a method that has been
used for a long time in intelligent tutoring system. Using this approach in giving
advice is less problematic than in evaluation, since the student may choose to
ignore advice and overrule the exercise selections suggested by the system, but
it is obviously still a problem if the system gives bad advice.

Another potential problem is that this method initially uses a purely concep-
tual model to assign beliefs about student competence in procedural skill, and
this means that it is dependent on conceptual knowledge actually reecting pro-
cedural skill. This may be partially alleviated by combining the approach with
updates of the belief-value for each concept as exercises are solved, for instance
by increasing the value of concepts that are used in successfully solved tasks and
decreasing the values of concepts featured in exercises that the student failed to
solve.

Method 2: Model First, Compare to Students Method 1 relies on ex-
plicitly modeled expert knowledge in the form of a teacher's map and a list of
features attached to each exercise. However, it is also possible to use experi-
ence from students that have previously gone through the exercise set. Using
machine learning methods, it may be possible to predict the di�culty of the
di�erent tasks. A simple way of doing this based on case-based reasoning would
be to �rst ask each student to create a concept map, and then use this map to
�nd students with similar maps that have already completed the set. The as-
sumption is that students with similar maps would have similar competence in
solving problems. For instance, a student with misconceptions about the while-
loop, may be matched to a previous student with the same misconceptions that
also had trouble solving while-tasks. Again, this is a controversial assumption
and is unlikely to hold in all cases. For instance, some students may have little
or no conceptual knowledge before starting the exercise set, and learn it during
problem solving. Such students might form random or very sparse concept maps
that say very little about their actual ability once they start solving problems.
On the other hand, students that have studied in advance may form concept
maps that are in line with what they have studied, and may as such be useful.

This approach has the advantage that it does not rely on the teacher's map
as the only known correct solution. The system can retrieve di�erent conceptual
maps that indicate pro�ciency, instead of the single correct solution, and it can
continuously learn more.

The machine learning approach can be used to predict how the student
will do on exercises directly. For instance, a case-based reasoning method can
�nd the most similar student that has already gone through the exercise by
comparing the new student's concept map to the set of previous students' maps.
If the system keeps track of how previous students do in solving procedural tasks,
the system could simply adopt the previous student's procedural competence
measures for the new student. For instance, if the previous student had trouble
with two tasks, but solved the others well, the system may adopt the hypothesis
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that this new student, too, will have trouble on those two tasks. This hypothesis
{ that it is possible to predict student competence based on earlier student's
competence measures, is tested in Section 7-4.

As in method 1, it is possible to assign a value about the degree of knowledge
on each concept. Exercise pro�ciency may be predicted by treating each student
as an instance or case, using the concept maps as the features. Using the
similarity measure described in Section 5-3.3, the students that have completed
the exercise set with the most similar concept map can be identi�ed, and the
system can adopt the results of this student on the di�erent problems as the
default assumption for how the new student will perform. A problem here
is that the former student may not have attempted to solve all exercises (if
this is not required), and as such the system will have no information about
these problems. It is also not clear how information about a student's assumed
ability at di�erent exercises can be used. If the system thinks that a student
will have trouble with a certain exercise, should it avoid suggesting this task to
the student? It might perhaps be better to suggest an easier problem in the
same area, but this requires that the system has knowledge about di�culty and
features of each exercise. If knowledge about features present in each exercise
exists, it is also possible to use the most similar student to gain a measure of
the assumed competence on each concept, as in the teacher's map method, but
without using the teacher map as the only correct solution.

First, we de�ne an exercise e as the set of concepts associated with it, and
a student model s as the concept map of the student and the set of solved and
unsuccessfully solved exercises:

De�nition 5-4.2 (Exercise Set) Given the teacher map Mt = (Vt; Rt; Lt),
an exercise e � P(Vt) contains the set of concepts associated with it. A set of
exercises is denoted by E.

De�nition 5-4.3 (Student Model) A student model is an ordered set s =
(Ms; Es; Eu) for an exercise-set E, where

Ms is the student concept map,

Es � E is the set of exercises solved by the student,

Eu � E is the set of exercises unsuccessfully attempted by the student,
and

Eu and Es are disjunct.

By calculating the ratio of solved and unsolved exercises that address each
concept, the system can calculate a normalized value that represents the sys-
tem's belief in how well the student knows this concept.

De�nition 5-4.4 (Relevant Exercise Function) Given the set of exercises
E and the set of teacher concepts Vt, the function RE : (P(E)� Vt)! P(E) is
the relevant exercise function if it identi�es the subset of the input exercise set
that contains the given concept, i.e i� for all RE(E0; c)! E00,
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E00 � E0,

for all e 2 E00, c 2 e,

there is no e 2 (E0 \ E00) so that c 2 e.

De�nition 5-4.5 (Assumed Conceptual Competence) For the student sr =
(Ms; Es; Eu), the assumed conceptual competence B of the student sr on the
concept c is the ratio between the solved and the unsolved exercises using this
concept:

B(sr; c) =
jRE(Es; c)j+ jRE(Eu; c)j

jRE(Es; c)j
(5.3)

Now, if a particular new student sn creates a concept map, the previous
student (sr) with the most similar concept map may be retrieved, and the
system's belief about the new system can be seeded with the values of the
previous student.

A problem with this approach is that the student model does not represent
a snapshot of the student's competence at a particular point in time, but ag-
gregates over the entire set of exercises. It is probably not reasonable to adopt
the conceptual competence values of a student that has already worked through
the exercise set to the new student. The approach ignores that the student has
learned during the exercise session, and that while the student was able to solve
an exercise at the end of the session, he may not have been able to do it at the
beginning. It is not reasonable to expect a new student to, at once, be able to
solve the last exercise solved by a previous student, just because they initially
formed similar concept maps.

Method 3: Model Repeatedly The two previous methods have two major
problems in that they assume students had studied the topic of the exercise
before it was given, and that a concept map formed before problem solving had
begun would be an indicatiion of problem solving capability. Even before em-
pirical tests, there were doubts about this assumption, and informal observation
of students during the empirical tests seemed to con�rm that many (although
far from all) arrived at exercise session with little pre-existing knowledge on the
topic. These students relied on looking up conceptual knowledge and examples
when faced with a problem. This means that the initial concept map did not
capture their conceptual knowledge at all. There are likely to be re�nements of
this knowledge during the exercise even for those students that had studied in
advance. One way to capture this, is to ask the student to re-do or re�ne the
concept map between each task. This is a particularly useful re�nement of the
strategy in method 2, as this allows us to break up each student's exercise ses-
sion into multiple cases, so that a case is formed, for instance, for each concept
map created. Each case would then contain the exercise immediately before
and after the map was formed, as the map would presumably be fairly accurate
in representing the student's conceptual knowledge at the time of solving these
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exercises. Although each case would contain information on only two exercises,
many more cases would exist as each student would produce as many cases as
they produced concept maps. This would make it more reasonable to retrieve
multiple cases and form a combined conceptual belief value.

From a student modeling viewpoint, there are strong arguments for this
method over the previous two, but from a practical point of view, it is infeasible
to ask the students to perform what is essentially the same task between each
problem solving exercise. If they are given their own concept map from the
previous iteration to re�ne, they may perhaps �nd something to improve the
�rst few times, but if facing eight or ten problem solving tasks in an exercise set,
connecting the same concepts with the same relation-types would soon become
very repetitive, and not necessarily invite reection. Although the idea is that
students should incorporate new knowledge gained through solving exercises, it
is unlikely to appear convincing to students.

This may perhaps be solved by triggering the student through challenging
some part of their concept map. For instance, after solving an exercise involving
the for-loop, the system may highlight the relationships from the for concept in
the student's map and point out parts that may be wrong, or suggest changes.
For instance, this same area of the teacher's map may be revealed, and the
student asked to compare his own map to the teacher's in light of the exercise
just solved. This is not technically di�cult if the exercise is annotated with the
concepts it contains, and these same concepts are used both in the teacher and
student maps.

Method 4: Exercise-Speci�c Models, Explicit Generalization A more
ambitious approach to the problem of concept model re�nements is to attach
a smaller, exercise-speci�c concept modeling task to each problem. This task
could be presented as a tool to assist the student in identifying features of the
presented problem, similar to how BLITS and CATO have feature identi�cation
steps in their problem solving. This could even be used as in BLITS and ELM
to help the student to �nd relevant examples containing similar features, and
as such it may provide a more immediate assistance to the student. A problem
here is that it is not immediately clear how these maps can be useful in stu-
dent modeling for exercise selection. Because these mapping tasks are attached
to exercises, the exercise must be selected before the task has begun. Poten-
tially, maps from earlier exercises may help the system in forming beliefs about
the student's conceptual knowledge, but the case-based approach here is more
limited because it can only match maps of the same type.

It might be possible to include an explicit generalization step after the prob-
lem solving session, where the student is asked to take parts of the exercise-
speci�c concept map and generalize them into a kind of master map that is a
higher level representation of his conceptual knowledge. At the present, it is not
clear how the system may assist in such a task, but it would provide a concept
map that would be more useful for exercise selection advice, and also provide
explicit support for generalization from individual exercises.
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5-4.2 In-Exercise Support

While the exercise selection task may be described on a generalized level, assis-
tance within the context of the exercise tends to be more domain-speci�c, or tied
to classes of domains such as diagnostics. The tutoring systems reviewed earlier
revealed some shared elements of strategy, such as breaking down the goal of
the exercise into sub-goals and in this way dividing the problem into smaller
sub-problems. In BLITS, the system provided the structure and only o�ered
support in the form of examples in solving the leaf-nodes of the goal-subgoal
tree, while ELM and the PACT cognitive tutors could use their procedural
knowledge to provide support in more detail.

In CREEK-ILE, there is no procedural model of how the student is assumed
to solve the problem, and the conceptual model we have used have not contained
information on problem-solving strategies or problem structuring. While it may
be possible to use an approach such as concept maps to express goal-subgoal
trees or similar structures, concept maps usually do not enforce constraints
associated with such structures (such as a lack of cycles in goal-subgoal trees).
This means that CREEK-ILE has neither the cognitive procedural model of
ELM and the PACT cognitive tutors, nor the structural model used in BLITS.
We do not discount these approaches, and structural model that contain the
goal-subgoal hierarchy of the problem are likely good extensions to the approach.
However, the di�erent structural constraints of such models mean that it likely
requires a di�erent approach than how CREEK-ILE uses concept maps.

The question then remain { how can a system with no model on how to break
down the problem, and no model to simulate the student's problem solving pro-
cedure assist in solving the exercise? The approach taken in CREEK-ILE is to
include a limited ability by the system to solve the problem in whole or in part
without regard to its cognitive plausibility. For instance, in the car diagnostics
domain introduced earlier, the case-based reasoning engine in CREEK can be
used to �nd the most likely cause of a problem. Usually, case-based reasoning
employs a strategy of �nding the n most similar earlier cases matching a new
case, and then adapting or adopting the solutions from these cases as its own.
This strategy has some cognitive plausibility when the number of earlier experi-
ences is low, but as cases are accrued, people naturally generalize the individual
experiences to generalized concepts and procedures. This step is not usually
taken in modern case-based reasoning systems2. With this approach, CREEK-
ILE is able to provide some support for the student in that it can provide whole
or partial solutions, but since the mechanism for �nding these solutions is likely
very di�erent from the student's, the reasoning trace of the system is unlikely to
provide a good source of explanation as to how the (partial) solution was found.
If the student himself fails to understand how the solution was found, the sys-
tem is unable to back it up with explanations referring the problem-solving
strategy (relevance explanations) or explanations that use the problem-solving
trace of the system (transparency explanations). For some domains, CREEK

2In this regard, earlier systems based on Schank's Dynamic Memory did generalize indi-
vidual episodes and formed conceptual structures.
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is able to provide justi�cation explanations. These are explanations that sup-
port the solution but is not grounded in the problem-solving strategy. The car
failure diagnostics domain is such a domain where CREEK can provide justi-
�cation explanations, while the computer programming domain is not. Below,
we will describe how in-exercise support can be provided in CREEK-ILE for
these domains.

Exercise Support in Computer Programming

The ELM and PACT LISP tutors both provide very good and detailed capabili-
ties for basic computer programming. On the surface, it may seem like adopting
this approach is a good solution for all computer programming-related tutoring
systems. However, in addition to our expressed wish in not using a procedural
model, there are several ways the tasks in our system di�er from the ELM and
PACT LISP exercises. First, these systems were created to support fairly small
exercises. Usually, ELM and PACT LISP exercises are solved by a single func-
tion. Where possible, we have tried to adopt the exercises already in use in the
programming courses, which tends to have fewer and larger (although not nec-
essarily more di�cult) tasks. Second, ELM and PACT LISP were constructed
to support a limited type of problems. This is tied to the procedural model,
which requires di�erent set of rules to break down, e.g. recursion tasks than
iterative tasks. CREEK-ILE has been tested with exercises that range from sim-
ple if-then problems to more advanced issues spanning multiple classes, such
as constructing data-structures (e.g. linked lists). Third, the Java program-
ming language has a syntactical structure that is harder to parse, and seems
to o�er the programmer more degrees of freedom in structuring the program,
e.g in ordering expressions. The increased size of the programs increase the
depth of the branching tree, the syntactical di�erences increase the number of
possible branches at each level, and the increases scope means that to follow
a model-tracing approach, the procedural model must be larger. These factors
taken together, suggests that it may be infeasible, or at least very labor and
computationally intensive, to use the model tracing approach.

At this time, we do not have a complete solution to provide in-exercise
support for the programming domain. One possible solution that has been
examined, is to continuously store all changes done to a program by a student,
so that each student's program begins at a state s1, which is either an empty
program, or the program given as a starting point by CREEK-ILE. Each time
a change is done to the program, the state is recorded, until the student has
reached a state sn that satis�es the tests for the program. A similar trace would
be recorded of the teacher's proposed solution. This would in theory allow the
system to help a student in trouble by matching this student's state s0 to the
set of states by earlier students, and if these are su�ciently similar to state
sm, present steps sm+1 to sm+k as an aid to the stuck student. In educational
settings, there are many students attempting to solve the exact same problem,
so the chance that there exists a similar state is much greater than in "free-form"
programming.
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There are several challenges associated with this approach. First, a sensible
representation of states must be identi�ed. For instance, an ideal representation
of a series of states may be going from a syntactically correct state to another
syntactically correct state, with a minimal change, such as the addition of a
single statement. This is of course not the situation in reality. Often, syntacti-
cal errors such as missing end-brackets signaling the end of a block persist all
through the initial creation of the program, and are only identi�ed when it is
compiled.

Second, a similarity measure must be found that is not confused by trivi-
alities, e.g. di�erences in variable, function or class names. This can be done
by using a Java parser that interprets the raw text of the source code into a
tree structure, where di�erent types of elements are identi�ed. This would allow
the similarity measure to ignore names and such, and focus on the structural
elements. It would also allow the formation of rules about which types of state-
ments can be replaced by others. However, the only obvious similarity measures
for two such program-trees are based on the edit-distance between them, and
this su�ers from the same computational problems as the model-tracing ap-
proach { the task branches exponentially.

It is possible that these challenges may be overcome and a solution close to
the sketched above may be found. Similar strategies have been used in other
tutoring systems. The JV2M [38] system stores Java programs in tree structures
that represents a subset of the Java syntax, and is able to measure similarity
and even adapt these programs. However, all of their programs are complete
and syntactically correct in advance (they are used as examples, as opposed to
attempting to parse student's programs), and they are much smaller than the
exercises in CREEK-ILE.

It may be interesting to note that even if the above solution was implemented
and found to work well, it would still su�er from the inability to explain any
suggestions. If a student is stuck in a state, the system would be able to suggest
what to do next, but if this suggestion failed to communicate the idea behind
the move, the system would be unable to explain why. It could only say that
another student did this, and he was able to solve the exercise. For instance,
if the task was to change a for loop to a while loop, the system may suggest
that the student declares an integer variable before the loop, but cannot explain
the reason for doing so { that the while loop does not contain a declaration of
a counter, so this must be done in advanced if required by the loop.

In practical testing, it was found that the program tests were surprisingly
popular, and could also be used as a kind of in-exercise support. For the com-
puter programming domain, three kinds of tests were designed:

� Source tests. A regular expression that checked if the source code matched
some kind of pattern. For instance, made sure the code contained a while-
loop, if the task was to change a for-loop to a while-loop.

� Output tests. For programs that have no input from the user, test that the
output produced by the program is correct. For instance, a program that
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counts from 1 to 10 must have all these integers in the correct sequence.
This is also expressed as a regular expression.

� Input Scenarios. Programs that require user input could have tests associ-
ated with them that included di�erent sets of inputs and expected outputs
for those inputs. For instance, a program that should count from a to b,
where a and b is read from the user, can have these scenarios:
a:5 { b:8 { output:5,6,7,8
a:2 { b:12 { output:2,3,4,5,6,7,8,9,10,11,12
a:-5 { b:0 { output:-5,-4,-3,-2,-1,0

Each test contains canned text associated with it which was displayed if the
program failed the test, and the scenario tests typically go from simple tests
to tests that has more pathological cases. In these tests, the scenario is also
revealed to the student if the test fails.

Tests such as these can not by themselves be considered as par of an intel-
ligent tutoring system. They consist solely of pre-de�ned structures that are
applied without discretion or understanding by the system. This, however, does
not make them any less useful, and they are also potentially useful indicators
in student modeling. Although each exercise is associated with a fragment of
the expert model, it may be possible to associate each test for that exercise
again with a smaller subset. Depending on how a student's program performs
on the di�erent tasks, and how well the student is able to correct it afterwards,
knowledge about the student can be gained.

Exercise Support in Car Failure Diagnostics

The car failure domain is created speci�cally as a demonstration domain for
the CREEK case-based reasoning engine. This means that in contrast to the
computer programming domain, CREEK-ILE can use the existing case-base
reasoning engine to solve problems in the domain, and to provide explanations
for these solutions. However, while the CREEK case-based reasoning engine
uses both general domain knowledge in the form of an expert model as seen in
Figure 5.1, and episodic knowledge in the form of cases, it does not claim to be
an accurate cognitive model of human problem solving. The question is, then,
how this capability can be useful in a tutoring context, where the goal is to help
students develop problem solving skills.

To illustrate this and demonstrate how the explanation capability is useful
in tutoring, we will demonstrate how the CREEK case-based reasoning engine
solves a problem in the car-failure domain. Imagine that CREEK is asked to
solve the problem of the car failure in Figure 5.13. Here we have a case with
the �ndings engine does not turn, no lights and starter engine does
not turn. In CREEK, cases are stored as frames oriented around a concept
representing the case, for instance Case 3. The �ndings are associated with this
concept through a set of has �nding relationships from the concept representing
the case to the concept representing the �nding.
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Conceptually, the CREEK principle of case-based reasoning is to form a
submodel for each case that contains i) all the �ndings of that case, ii) all
the relationships in the extended frame for all �ndings of the case, and iii) all
relationships in all paths justifying the relationships in the �nding's extended
frames:

Figure 5.17 contains an example of two extended cases. An interesting prop-
erty of these extended cases, is that they contain paths that connects symptoms
and causes. For instance, the problem in case 1 in Figure 5.17 is that a weak bat-
tery caused the starter engine to turn slowly, which caused the engine to crank
too slow to �re. In case 1, the root cause of the problem is not established, but
both weak and empty battery can explain the observed �ndings.

The similarity of cases can then be calculated by measuring the degree of
overlap between the two extended cases3. For instance, case 1 and case 3 from
Figure 5.17 share no �ndings directly, but they do share parts of the extended
case. This is illustrated in Figure 5.18. These cases are not very similar, but if
the case base is small, one can imagine that Case 1 in the most similar case
for the new Case 3. In this situation, CREEK adopts the solution of Case
1 (weak battery). In order to justify this solution, CREEK creates a new
extended case which only contains those paths inferred by plausible inheritance
that connects a �nding with the proposed solution. In this situation, that would
be:

no lights can be caused by weak battery,
starter motor does not turn can be caused by weak battery,
engine does not turn can be caused by starter motor does not turn

can be caused by weak battery,

The question remains how this is useful in tutoring. First, CREEK-ILE
can assist in identifying �ndings of the problem case. This can also be done
for the computer programming domain, as �ndings are stored with the exercise.
However, in the car failure domain, CREEK-ILE may also assist during problem
solving, for instance by retrieving examples that are similar to this problem, if
the student is stuck. This includes the ability to �nd cases that are not similar
on surface, such as Case 1 and Case 3 above. However, this is dependent on
an expert model that explains the similarity between the cases (by extending
them). If the student does not have the same understanding of the domain as
the expert, he may not see how the retrieved examples are similar to the current
situation. A particularly interesting ability here is that CREEK-ILE may use
the students concept map instead of the expert model to extend the case, and
thus retrieve cases that the student would agree is similar to the current case.

3This is a conceptual view of the case-based reasoning matching in CREEK { the actual
algorithm in implementation does not operate on extended cases directly, but compares the
extended frames of the �ndings. This is necessary because feature weighting in CREEK is tied
to the individual �ndings, and as such the similarity must be calculated independently for each
�nding. The algorithm also considers the strength of the inferred relationship so that inferred
matches are weaker than direct matches. For more details on the actual implementation, see
[3].
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Figure 5.17: The extended cases for two car failure diagnostics cases.
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Figure 5.18: Comparison of the extended case for car case 1 and 3. The shared
parts of the cases are marked in red.
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This o�ers some unique opportunities:

� Student's view { suggest cases that are similar to the current problem
according to the student's model, and o�er explanations from the student's
own model.

� Teacher's view { suggest cases that are similar to the current problem
according to the teacher's model, and o�er explanations for this from the
teacher's model (or challenge the student to extend his own model).

� Other student's view { suggest cases that another student �nds to be
similar to the current problem, and o�er explanations from this student's
model (or challenge the student to extend his own model).

The major bene�t here is to tie the conceptual model tightly with the
episodic knowledge. An obvious problem is that while this is possible in the
quite simple car failure diagnostic domain on the level described here, it is not
feasible, for instance, in the computer programming domain. The reason for
this is not only that the computer programming domain is not a diagnostic do-
main { if we imagine a computer program debugging domain, where the task
is to �nd bugs in programs, it still is not possible to represent the problem
completely as a set of �ndings, and connect these with root causes in a simple
model. The simplicity of the representation language in concept maps limits us
to domains where a limited, unordered set of symbolic features can characterize
the problems, and where fairly small models are required to connect symptoms
and end causes. Although many classical machine-learning domains may be in
this space, we believe that few real-world domains for which tutoring support
is relevant can be represented within these constraints. Because of this, we
have not attempted to do any empirical tests of this approach, although as a
proof of concept it is easy to demonstrate with the existing case-based reasoning
capabilities of CREEK.

5-4.3 Conceptualization Support

A great strength in having explicit conceptual models is that it is possible for the
system to provide assistance in the conceptualization process. A student may
start o� with fairly simple conceptualizations, and while we have argued that
one should not view it as a goal to morph the student's map into the teacher's
map, it is possible to challenge the contents of the student's concept maps. For
instance, in the car failure domain, a student may be challenged by the system
if he solves an exercise, correctly identi�es the root cause, but his model fails to
explain how the root cause follows from the symptoms. CREEK-ILE then has
the opportunity to inform the student of this. CREEK-ILE can also identify
the part of the teacher's map that connects these two concepts, and display that
to the student if the student requires a hint. He can then choose to adopt the
teacher's map, or model it di�erently on his own.

In the programming domain, the concept maps do not contain explanations
of the same type as the car failure diagnostics, but it is still possible to provide
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conceptualization support. The mere presence of the concept mapping task
itself forces consideration on this issue, but more can also be done to challenge
the student's conceptualization. If CREEK-ILE �nds that the student's use of
these concepts in his concept map is di�erent from the teacher's, it can present
a small part of the teacher's map, and ask the student to reect on this in light
of the exercise just solved. For instance, if the student with bottom concept
map from Figure 5.14 solved the exercise in Figure 5.12, a question such as:

In the previous exercise, you dealt with the for-statement. The
teacher's thinks that "for type of Loop Statement", while your
concept map has "for type of Control Structure". Would you
like to review your concept map?

Technically, this can be done by comparing the relationships from the con-
cepts in the exercise in the teacher's and student's model, choosing one or a few
relationships that di�er on random, and �ll in a pre-generated text form (as the
one above). This can be visually represented, by cutting out the part of the
student's and teacher's maps that contain these relations and displaying them.

This approach has two main advantages. First, it actively challenges the
student to think about conceptualization. Second, it may solve the problem
identi�ed in Section 5-4.1, in that a student is likely to �nd repeated request
to solve the same conceptualization task repetitive and boring. This kind of
challenge after each exercise gives the concept mapping task a slightly di�erent
avor, as the "challenges" are di�erent each time, and related to the just-solved
exercise.

5-4.4 Explanation Support

Explanation has been discussed in the previous sections in conjunction with
the di�erent tutoring capabilities. One persistent limitation of CREEK-ILEs
explanation capability is that the lack of a cognitive procedural model makes
transparency explanations (explanations based on the reasoning trace of the
system) of little use. The closest CREEK-ILE gets to these explanations is the
in-exercise support of simple domains such as the car failure diagnostic domains.
Here, CREEK uses knowledge that is also used in the case-based reasoning
process in producing explanations in support of the solution, but the reasoning
leans heavier on the nearest neighbor approach of case-based reasoning than
the explanations suggest. These explanations ful�ll the justi�cation role { they
support the solution, but are only partly based on how the system found the
solution. For instance, in Section 5-4.2, explanations are provided in support of
the weak battery solution for a particular case. However, CREEK could also
supply equally convincing explanations to support the empty battery solution
if that solution was identi�ed by the case-based reasoning process. These were
ignored because the result of the case-based reasoning process did not arrive at
that conclusion. The role of these explanations, then, is not to impart a solid
understanding of the reasoning process, but rather to tell the story of the case {
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how the di�erent �ndings in the case relate to each other, and concept implied
by those �ndings. These explanations may help the student's conceptual model,
but is unlikely to directly inuence the procedural skill. This way of forming
explanations are also common in human communication. Because procedural
skill is often tacit, explanations are often formed after the solution is found and
does not take account of the complete reasoning process.

CREEK-ILE also has very limited ability to provide strategic explanation,
because of the lack of a model for how a problem can be broken down into sub-
problems. This is likely both more serious and easier to rectify than the lack of
procedural explanations. A separate conceptual level model for problem struc-
ture (such as the one used by BLITS) would likely provide a good knowledge
source for such explanations, and would be very useful in assisting the student
in structuring the problem solving.

5-4.5 Learning Capability

The methods that rely on comparisons to other students instead of the teacher's
map, can be seen as a way of learning. For instance, methods 3 and 4 in Section
5-4.1, suggests comparing the current student's map to previous students, and
use the most similar matches as predictions for how the student would proceed
with di�erent exercises, or what he knows about di�erent concepts. As more
students solve the exercise, the system will increase the case-based and hopefully
achieve better modeling quality.

Both the approach to in-exercise support for the computer programming do-
main and the car failure diagnostics domain use case-based reasoning, including
comparisons to earlier student's solutions. If implemented, these too would have
the capability to learn as more cases is retained in the case base.

5-5 Evaluation

The partial implementation and evaluation of CREEK-ILE is discussed in Chap-
ter 7.

5-6 Chapter Summary

In this chapter, we have presented the theory behind the CREEK-ILE system.
The approach is based on a combation of case-based reasoning and concept maps
to provide tutoring support in case-based tutoring, including exercise selection,
explanation and conceptualization. There is also some suggestions on how case-
based methods can be used to provide some in-exercise assistance. We have
presented the CREEK knowledge representation, and a method for using it to
represent concept maps. This knowledge representation can also be used to infer
implicit relationships in concept maps, which may be useful in tutoring tasks.
In the next chapter, we will examine implementation of a subset of this theory,
with the goal of supporting an evaluation study described in Chapter 7.
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Chapter 6

Implementation

The implementation of the CREEK Intelligent Learning Environment (CREEK-
ILE) as presented in this work is not designed to work as a fully functional
intelligent tutoring system, but as a basis for experiments. The system has been
designed to work as a useful environment for students to solve exercises in Java
programming, but does not contain any online capabilities for providing tutoring
support. However, concept maps has been integrated as parts of the exercises,
and data is collected through the students' use of the system so that data
analysis can be performed o�ine to see, for instance, how knowledge expressed
in concept maps correlates with how the students solve programming exercises.
These tests are easier to perform than full blown comparative studies of students
using the CREEK-ILE system and students using traditional exercise strategies.
Such comparative studies are very good for evaluating the overall e�ectiveness
of an approach once it has been well established, but it can often be hard to
pinpoint what elements of the approach contribute to the end result. Before this
step is taken, we felt that it was necessary to develop strategies and evaluate
how cognitive mapping could be usefully employed in an exercise environment.
Indeed, the experiments below have resulted in revisions to our methodology.

The Java programming domain was chosen because earlier exercise support
systems (such as ELM and the PACT Lisp Tutor described in Chapter 4) oper-
ates in programming domains, which makes it easier to compare the approaches.
In addition, practical concerns make programming classes attractive, as we have
ready access both to enough students to perform empirical tests, and domain
experts. In the previous chapter, we discussed how it in Java programming
is hard to give in-exercise assistance to particular questions that may come up
while solving an exercise, at least without modeling procedural knowledge to the
same level of detail as ELM and the PACT Lisp Tutor. Although we suggested
some means to provide some level of assistance there, the focus of our imple-
mentation and experiments have been on how cognitive maps can be used as
part of the student model. In particular, the ACT theories and classic instruc-
tional design principles suggest that conceptual knowledge is required before
solving exercises, while approaches leaning more on learning-by-doing suggest
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that conceptual knowledge is formed by the student as problems are solved. The
instructional design approaches on the other hand, suggest that concept maps
can be used as a kind of pre-test to show which exercises the student has the
prior knowledge required to solve. This has important implications for using
concept maps in student modeling.

In addition to the exercise environment presented to the students, the CREEK-
ILE system is based on the CREEK knowledge representation and case-based
reasoning engine, with extensions developed for this work. The CREEK knowl-
edge representation is used in the CREEK-ILE exercise environment whenever
the student forms concept maps, but the exercise environment currently do not
do on-line case-based reasoning on this data. The reason for this is not primarily
technological { the o�-line tests performed are e�cient enough that to adapt
them to online use is unlikely to pose a problem. However, the datasets collected
allowed us to test and compare the e�ectiveness of di�erent machine-learning
methods and methodologies.

6-1 Exercise Environment

The CREEK-ILE exercise environment consists of a client program written in
Java that may in principle be installed on any computer supporting the Java
Virtual Machine. In our �rst experiment, students were allowed to download
and install the client on their own computers, as well as use it on the university
computer labs, although the client must have internet access as it communicates
with a server when active. The server module is used to store and track the state
of the exercise, including the students' concept maps, program source code, et
cetra. The server also tracks how long the student works on each exercise and
to a certain extent the development of the source code for each programming
exercise, by saving the state at regular intervals.

After an initial login screen (see Figure 6.1), the student is presented with a
screen listing the tasks of the exercise on the left-hand side, and a pane dedicated
to the currently chosen task on the right. In the exercise environment, we call
these tasks panes pages. These pages can be navigated from beginning to end
using buttons on each page, but the student may also jump forward to a later
task.

There are currently four types of task pages:

� The information page. A webpage with general information or an intro-
duction to the exercise.

� The concept mapping page. Asks the student to form a concept map over
a particular topic.

� The programming task page. Gives the student a Java programming task.
This page contains a simple program development environment.

� The question task page. Asks a question of the student that must be
answered in a text box. In this context, this usually means that the
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student is asked to interpret what a given Java program would print to
screen.

An exercise may contain any number of these pages, in any order, as de-
termined by the teacher or expert when designing the exercises. However, in
practice the exercises have typically been similarly structured in the experiments
so far. After the initial login screen, the �rst page has been a general informa-
tion page about the exercise environment, followed by a concept mapping page
for the topic covered by the exercise. After this, a series of programming and
question pages have followed.

The examples in the �gures below are screenshots from exercises used in the
experiments, except that user interface and exercises have been translated from
Norwegian to English.

6-1.1 Information Page

The information page is the simplest form of page. It does not contain any
interactive elements, but is simply a web page with some kind of information.
The other pages also include smaller information pages to describe the partic-
ular task they cover, but occasionally it is useful to have a separate page for
things such as general help or reference information. Figure 6.2 shows the initial
information page used to inform students about the exercise environment.

6-1.2 Concept Mapping Page

The concept mapping page consists of a central area for drawing the concept
map, and lists of relation labels and concepts available on the right-hand side.
The student can drag and drop concepts from the concept list to the central
drawing area. Concepts may only be used once, so those that are already in
use are shown with a grey background in the list. The concepts may be placed
or moved by holding down the left mouse button while the cursor is over a
blue dot, and dragging it. Relations are drawn by holding down the left mouse
button while move the mouse cursor from one blue dot to another. At any given
time, relations drawn in this way are given the label of the relation label marked
with a pink background in the list to the right. Concepts and relations may
be deleted by clicking on them, which marks them in pink, and then clicking
the Delete button. Deleted concepts are returned to the list and may be used
again later, while deleted relations may be re-drawn if the student wishes. An
example of the use of the concept mapping page can be seen in Figure 6.3.

On the top, a small information page area explains the task to the student.
There is also a Help button if the student requires further assistance in using
the tool. When the student feel his concept map is done, he may click the
Next-button to go to the next task. This freezes the concept map so that the
student may no longer edit it, but he may go back and refer to it at any time
by clicking on the page name in the list to the left. The freezing of the concept
map is done primarily for methodological reasons in order to make sure that all
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the student �nish the concept map before working on the programming tasks
and is not a technological constraint.

6-1.3 Programming Page

The programming page is a minimal Java development environment with a
syntax-highlighting text editor1. The editor may contain several �les, which
initially may be empty or contain code that should be extended or modi�ed
by the student. In Figure 6.4, there are two �les, only one of which may be
edited by the student. The student may not create or remove �les, and may not
change which �le the systems has designated the main program (i.e. the class
to execute).

The student may compile the program by clicking the Compile button, and
run it by clicking Run. Error messages and the output of the program are placed
in a text box below the text editor, which may be minimized when not in use
(it is minimized in Figure 6.4, but visible in Figure 6.5).

In addition to the standard Compile and Run buttons, the student must
test his program against the goals of the task before CREEK-ILE accepts the
task as solved. When clicking on the Test-button, CREEK-ILE uses a set of
automated tests speci�ed for the task, as described in Section 5-4.2.

These tests may be:

� Source tests. Attempts to match the source code the student has produced
against a regular expression pattern. If this fails, the test fails and the
student is given an error message. We may for instance test if the student
has used a for loop by using a source test like: .*for(.*).*.

� Output tests. Similar to the source code test, but tests a regular ex-
pression against the output of the program. This is mostly useful if the
student is asked to write a simple program that does not require any
input from the user. For instance, if the student is asked to write a pro-
gram that counts from 1 to 10, an output test pattern can look like this:
.*1.*2.*3.*4.*5.*6.*7.*8.*9.*10.* . If it fails to match the pattern,
an error message is given.

� Input Scenarios. This is an advanced output test that also provides input
scenarios, which means that the CREEK-ILE system is in the role of the
user providing input for the program and then comparing the output of
the program with what is expected. In Figure 6.5, such a test is used to
identify that the student has not successfully solved the task yet.

These tests are not "bullet proof" in the sense that they guarantee that
the student has solved the task properly. The most obvious ways of cheating
are removed { the source code is stripped for comments before a source test is
applied, for instance, but it is seldom possible to design tests that do not contain

1The text editor used in CREEK-ILE is a slightly modi�ed version of jEdit, an open source
Java editor available from http://www.jedit.org/.
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loopholes. The source test example given above, for instance, would match
successfully against a program for instance containing the method invocation
isfor() even if it did not contain a for loop. More stringent expressions are
certainly possible, but as they become more speci�c, the chance increases that
there is some legitimate way of solving the task that fails the test. Similarly, the
input scenario tests can all be "solved" by creating special cases for them, as
the input and expected output are given to the student whenever a test is failed.
We do not view this as problematic because the tests are primarily designed to
be a self-evaluation aid to the student, and not meant to play a serious role, for
instance in grading. The tests can also be useful in illustrating di�cult special
cases the program is expected to handle. For instance, can the program handle
a situation where the user enters a string when a number is expected? What if
the number is larger than what can be represented in a standard 32 bit integer?
By designing input scenario tests for such hard cases, students are forced to
think about situations they may otherwise not think about.

When all tests are successful, the student is congratulated, the task is marked
as successfully solved and the student is asked if he would like to go on to the
next task.

If all else fails, the student may give up a programming task by clicking the
"Abort Exercise" button. This takes him to the next task. If this task builds
on the previous task, the student will be presented with a working solution to
the previous task so that the student need not give up this task as well. This
solution is also always available to students that successfully solved the previous
task, but by default their own solution from the previous task is open in the
editor.

The automated tests also have a methodological advantage, in that they are
entirely mechanical and judge all students on exactly the same criteria. This
means that the subjectivity of teaching assistants or teachers in deciding if a
task is solved or not, is avoided. It is possible for the student to cheat these
tests on some of the tasks, but we have not observed obvious attempts at this
in the experiments so far.

6-1.4 Question pages

The question page is simply an information page posing some kind of questions
to the student, which must be answered by typing text in a text area below (see
Figure 6.6). The student's answer is matched to a regular expression to see if
it is correct. This means that this test is currently only useful when the answer
can be identi�ed in this way. The question page has speci�cally been created
for the programming domain, and is used to ask the students to evaluate the
output of a program. The program source is contained in the information page,
and the student must then type the output of the program into the text area.

This particular task has been used in early evaluations of the user interface,
but not in the data collection for the concept map experiments.
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6-2 Designing an Exercise

The CREEK-ILE system in its current incarnation is designed to support ex-
ercises that are fairly close to the exercises already given through traditional
means in our computer programming classes. There are several reasons for this.
First, it is practical in the sense that it allows greater reuse of existing exer-
cises. Second, it is advantageous to keep as many factors constant as possible
if we'd like to do comparative studies between CREEK-ILE and the traditional
non-computer aided method. Last, it has helped in building con�dence in the
course teachers that these alternative methods will not leave the students that
participate with a lower quality educational experience.

In practical terms, this means that the exercises currently o�ered through
CREEK-ILE has had fewer but larger tasks, and the tasks are often tied to-
gether, so that a subsequent task builds on and extends code developed in
an earlier task. Often, students can spend many hours on the same program
source. These few, large programs contrast with the more numerous but smaller
programs typically seen in the ELM and PACT Lisp Tutor systems. The ad-
vantages of these longer programs are that they tend to be closer to real-world
applications, and often reuse previously taught course material. This allows the
exercise to be closer to constructivist ideals of real-world relevance and teaching
the complexity in combining di�erent elements from the course material.

For instance, in the exercise on arrays in Java programming, the last set of
tasks asks the student to create a theater booking system. The theatre seats
are represented as a two-dimensional array, so it is related to arrays, but it also
requires �le access operations, integer calculation and interaction with the user.
It is obviously a task numerous real-world compute systems are designed for,
and as such relevant. The disadvantage of longer programs is that it is hard to
use methods such as model-tracing, as the complexity of the task increases ex-
ponentially with the length of the program, as the number of possible branches
multiplies at each step. These tasks also do not invite customization to the
individual student. When they are designed to follow each other, rearranging
and omitting some of them are not really possible. This is not really a practical
problem for the experiments in this work { our goals has been to see how concep-
tual knowledge expressed in concept maps relate to procedural skill and episodic
knowledge. It does however question our motivation for studying this question.
We are interested in using the concept maps in the student model speci�cally
for supporting task order customization. If student-speci�c task ordering is not
bene�cial, this places in doubt the bene�t of concept maps in student models.

These exercise sets often havea a few fairly large tasks that may be broken
down into subtasks. Typically, a student may be asked to create a simple
program �rst, for instance a program that asks the user for a number, and then
use a loop to count from 1 up to that number. The second task then often
builds on this program and asks the student to extend or change the program
in some way, for instance by asking the user for two numbers and then writing a
program that counts from the lower number to the higher number. This means
that the result of the previous task must be carried over to the next, and that
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it makes little sense to jump ahead before the �rst task is solved.

The teacher speci�es an exercise by creating a specially formatted text �le,
which specify general information about the exercise (such as the name of the
exercise), and the number, ordering and type of pages it contains. For each
page, a set of properties is speci�ed. A partial exercise de�nition �le is found
in Figure 6.7. This �le in this �gure de�nes the pages displayed in �gures 6.2
through Figure 6.5. Some additional resources are referred through URLs in the
de�nition �le. The information texts are stored as regular HTML-web pages,
while the teacher cognitive maps are CREEK .km �les. Java source �les are
plain text �les.

The de�nition �les are currently created by us, using the traditional exercises
as a basis. It is certainly possible for a teacher to design by herself by hand, if
some e�ort is spent in learning the formats, but with the limited trials so far
this has not been pursued.

6-3 Knowledge Representation

The concepts maps created in the CREEK-ILE Exercise environment is based
on a teacher map, represented in the CREEK Knowledge Representation. When
creating a concept map page, the teacher must �rst use the TrollCREEK Knowl-
edge Editor to create a teacher's map (see Figure 6.8). This editor is similar in
kind to the tool the student uses when creating concept maps, but it is designed
to manipulate the full range of knowledge representation capabilities, including
creating new concepts and relation-types. In order to make a teacher's map,
the teacher must create a new submodel (called Map View in the editor), and
build the model there. Once �nished, a name is given to the submodel, and
the model is saved as a .km �le. This �le is what is referenced in the exercise
de�nition �le. For instance, in Figure 6.7, map1.model refers to the CREEK
knowledge model that contains the teacher map for this concept map page, and
map1.partition refers to the name of the submodel that contains the teacher's
map. The concept map page then extracts the list of concepts and relation-
types used in that submodel, and these are then placed in the list of concepts
and relation-types available to the student. Once the student has �nished his
concept map, that concept map is also stored as a submodel (with the name
speci�ed in map1.solutionParititionName ). The model is then saved, and
sent to the server along with the other data. Currently, this means that there
is a separate knowledge model for each student and for each concept map page,
but technically, they are not hard to combine to a common knowledge model
that contains all the student maps in separate submodels as well as the teacher's.

The implementation of the CREEK Knowledge Representation is based on
the formalization from Chapter 5, but uses the Graph Model approach where
identifying the relation-type (T ) subset of the concepts (C) is done by checking if
the concept is a subclass of the special Relation concept, and the inverse type
(�) function is done by following has inverse relationships between concepts.
There are also semantics attached to various other concepts in the model. All
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## CREEK-ILE Exerciser Property File

name=IT1103 Exercise 5: Arrays

pages=about,map1,task1a,task1b,task1c,task2a,task2b,task2c,

task3a,task3b,task4a,task4b

finalPages=task1c,task2c,task3b,task4b

mindMapHelp.URL=http://www.idi.ntnu.no/~frodeso/

me/it1103/Hjelp_Tankekart.html

about.name=About Mind Exerciser

about.type=webpage

about.URL= http://www.idi.ntnu.no/~frodeso/me/

it1103/About_Exerciser.html

about.activates=map1

map1.name=Mind Map: Arrays

map1.type=concept map

map1.description=http://www.idi.ntnu.no/~frodeso/me/

it1103/Oving5/map1.html

map1.model= http://www.idi.ntnu.no/~frodeso/me/

it1103/Oving5/

OriginalOving5-english.km

map1.partition=it1103-oving5

map1.solutionPartitionName=it1103-oving5-solution

map1.active=yes

map1.activates=task3a,task4a,task2a,task1a

task1a.name=Task 1a: String to Array

task1a.type=programming exercise

task1a.description=file:///C:/projects/

CreekITS-it1103/Oving5/task1a-eng.html

task1a.files=UseStringConvert,StringConvert

task1a.UseStringConvert.url= http://www.idi.ntnu.no/~frodeso/me/

it1103/Oving5/task1a/UseStringConvert.java

task1a.UseStringConvert.editable=false

task1a.StringConvert.url=file:///C:/projects/CreekITS-it1103/

Oving5/task1a/StringConvert.java

task1a.StringConvert.editable=true

task1a.tests=s1

task1a.test.s1.type=inputScenario

task1a.test.s1.inputScenario=Test

task1a.test.s1.outputPattern=.*0:T.*1:e.*2:s.*3:t.*

task1a.test.s1.outputFailed=When I type in 'Test',

I do no get an array containg 'T', 'e', 's' and 't'.

task1a.active=no

task1a.activates=task1b

Figure 6.7: A partial CREEK-ILE exercise de�nition �le.
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instances of Case is assumed to be cases by the reasoning engine, and there
are also di�erent similarity measures associated with the concepts Symbol,
Number, String, and so on. This means that when creating a new model in
CREEK, these concepts must already be present. In Figure 6.9, the Top Level
Model view shows a part of the model that is created2.

The knowledge representation is implemented in Java using a set of classes in
the jcreek.representationand jcreek.representation.cbr packages. The
implementation of the CREEK knowledge representation predates this work,
but has been further developed, restructured and extended as part of this work.
The major classes of these packages are:

KnowledgeModel. The KnowledgeModel interface represents a complete model.
It is the implementation equivalent of the CREEK model (� = (C;R; T; �;  ;�
; S; �)) in Section 5-3.1. This is actually an interface in order to allow di�erent
implementations to store and access the underlying model in di�erent ways.
This interface contains methods for accessing the concepts (Entity instances),
relationships (Relation instances), submodels (Partition instances) and par-
ticular types of concepts, such as cases and relation-types.

LocalKnowledgeModel. The standard implementation of the Knowledge-
Model interface, which keeps the model in memory and saves the model to disk
in a binary format when asked.

Entity. For historical reason, the class representing the concept (a member of
C) is called Entity. Any concept in the model can be accessed as an Entity

object, but the class does not contain persistent data { it is merely an interface to
access it. Access methods include getting and setting the name of the concept
and accessing and adding relationships to the concept. There is a choice in
getting only the local relationships, or also including relationships found through
an inheritance method. In this implementation, every concept may also be
associated with a single Java object, which allows concept nodes to encapsulate
images, URLs, numbers and even references to Java classes. These are called
encapsulated entity objects.

Relation. An instance of the Relation class represents an individual rela-
tionship in the model (a member of R). Each relationship has an origin Entity

instance, a value Entity, a relation-type represented by an instance of the
RelationType class and a strength value from 0 to 1. Because each relationship
in a CREEK model has an inverse, the Relation instance also has a reference
to its inverse.

2This is part of a minimal model that contains the most necessary concepts to do case-based
reasoning. There is ongoing work to de�ne an ontology for top level models.
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Partition. The Partition class represents a submodel in the CREEK model
(a member of the S set). Each submodel has a name, and a list of concepts
(represented by Entity instances) and relationships (Relation instances) it
contains. These may be accessed and changed through an instance of the class.

EntityType. The EntityType class is an abstract subclass of Entity that
allows subclasses to specify criteria a concept must match in order to be rep-
resented by that class. For instance, the Case class is an EntityType that
speci�es that in order for a concept to be represented by it, the concept must be
a direct or indirect subclass of the Case concept in the model. These concepts
could also be accessed through an Entity instance, but the more speci�c class
contains methods that are useful when we know what type of concept it is. For
instance, the Case class has methods to access all �ndings. This does mean
that the same concept can be represented by multiple instances (e.g. both by
an Entity and a Case), but since the data is not stored in the class itself, this
is not a problem, and changes made in one instance is instantly updated in the
other.

RelationType. The RelationType class is a subclass of EntityType, which
requires that the concepts represented by it must be a direct or indirect subclass
of the Relation concept. This means that the RelationType class represents
the relation-types (T ) in the CREEK Model, as all the relation-types are rep-
resented by concepts. In addition to the normal Entity methods, this class
contain methods for accessing and changing the inverse of the relation-type.
The inverse of the relation-type cannot be stored directly in the RelationType
object as subclasses of EntityType may not store persistent information di-
rectly. However, a pointer to the inverse relation-type is stored in the model by
has inverse relationships. A similar technique is used to store a default strength
for the relation-type. Using a RelationType object, the default strength can
be set and read through normal Java methods, but is stored in the underly-
ing model through a has default explanation strength relationship. This means
the default strength can be changed by accessing this relationship through an
Entity object as well, but the RelationType object makes it easier to do from
Java code, and also makes it apparent what kind of concept this is.

Case. An EntityType subclass that represents a Case. In order for a concept
to be used as a case (and be a Case instance), the concept must be a direct or
indirect subclass of the Case concept. This class provides convenience methods
for accessing and changing a cases solution and status (although this information
is stored in the model through special relationships, as with the RelationType
class). In order for a concept to be submitted the case-based reasoning process,
it must be represented as a Case instance.

NumberEntity. An EntityType subclass that represents a concept encap-
sulating a number. This means that in order to be represented by a Number,
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the concept must have an encapsulated entity object that is a subclass of the
java.lang.Number class. This includes all object-encapsulated numeric data
types in the Java language (both integers and oating points values). The con-
cept must also be a direct or indirect instance of the Number concept. This
class has convenience methods for accessing and setting the numbers directly.

The packages also contain other classes, among them EntityType subclasses
for representing internet addresses in the form of Uniform Resource Locators
(URLEntity), strings (StringEntity), speci�c types of numbers, (DoubleEntity)
and so on. In addition there are classes that de�ne various levels of top-level
models. The BasicModel class creates a new model with only the bare mini-
mum to support the representation, while the CBRModel also contain concepts
such as Case and associates speci�c similarity measures with concepts such as
Symbol, Number and Partition.

The inference mechanisms are implemented in a separate package (jcreek.-
representation.inference). Currently, the available inference methods are
represented by the SubclassInheritanceMethod class, which implements the
CREEK default-aware subclass inheritance method de�ned as Ida�subclass in
Section 5-3.1, and the CREEK default-aware plausible inheritance method de-
�ned as Ida�plausible in Section 5-3.1. Appendix A contains an example of a
Java program creating a small CREEK model. For more details on algorithms
and details for implementing these, see [76].

6-4 Case-Based Reasoning

The case-based reasoning engine in CREEK is designed to operate on informa-
tion stored in the CREEK knowledge representation. The knowledge represen-
tation allows us to associate similarity measures (in the form of implementations
of a speci�c Java interface) to speci�c classes. This similarity measure is then
inherited to subclasses of the concept. For instance, the Case concept has
a similarity measure associated with it, which given two cases measures their
similarity examining the �ndings for each case. A case's �ndings are found by
following the has �nding relationship from the case. All the concepts that are
in such a relationship with the case are considered �ndings. For instance, in
Figure 6.9, the Toyota and Empty Battery concepts are �ndings of Car
Case #1. Given these sets of �ndings, the case similarity measure tries to
match the �ndings from the input case to the target case by trying all combi-
nations of �ndings and using the best match. The similarity measure used for
the �ndings depends on the similarity measure associated with that particular
�nding. For instance, the Toyota concept is an instance of Symbol, which
has a similarity measure using plausible inheritance associated with it. Other
�ndings may be instances of Number, String, or other concepts associated
with speci�c similarity measures. In this work, a new similarity measure was
introduced for comparing submodels, which is used to compare concept maps.
This similarity measure uses the similarity measure de�ned in Section 5-3.3. An
example of a CREEK model for case-based reasoning using submodels is found
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in Figure 6.10.

The case-based reasoning engine in CREEK can be invoked from the Troll-
CREEK editor directly (Figure 6.11).

The CREEK case-based reasoning engine is implemented in the jcreek.-

reasoning package, where the most important classes are:

EntityComparison. Abstract class that represents a similarity measure be-
tween two entities. In CREEK, similarity assessment is done in stages with
activate generally using a computationally cheap method, and explain using
more in-debt strategies to re�ne the similarity. However, the explain step may
only increase the matching strength { the activate similarity is taken as a lower
bound. This class also has class methods for identifying if two entities are
comparable (i.e. they have the same similarity measure represented by a sub-
class of EntityComparison), and creating an instance of the proper subclass of
EntityComparison to perform the similarity measure.

CaseComparison. Represents the similarity measure used to compare two
cases. This is done by identifying the set of �ndings for each case (concept to
which the case has a has �nding relationship). Once the sets of �ndings for each
case is identi�ed, each �nding from the input case is paired with each �nding
from the target case, and if they are comparable, a comparison object is created.
The similarity between the input and target case is based on an aggregation of
the similarity scores of the �ndings.

SymbolComparison. Similarity measure for symbols. In activate, this checks
if the two symbols are the same (they represent the same concept), but in ex-
plain, this method uses plausible inheritance to measure the degree of overlap
in the symbols' causal models (for details see [3]).

NumberComparison. Similarity measure for numbers. This measure exam-
ines the attribute the number is an instance of (e.g. 19 is an instance of Age),
�nds the highest and lowest value of this attribute and uses this to create a
linear, normalized scale from 0 to 1.

PartitionComparison. Similarity measure for submodels. This method com-
pares the overlap of relationships in the partitions to the size of the union of
the relationships in the submodels, as de�ned in Section 5-3.3.

RetrieveResult. Takes an (unsolved) input case and creates one CaseComparison
instance for each solved case in the model, comparing it to the input case. This
class has various parameters for threshold values for when the explain step
should be run and so on. When reasoning is done, the CaseComparison in-
stances are sorted according to similarity score.
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In this arti�cial model, two cases (Student Case #1 and Student Case #2) has
three �ndings each. One is the age of the student (a number), the gender (a symbol),
and a concept map (a submodel). The concept maps are shown in the separate windows
titled Concept Map #1 and Concept Map #2. The Case, Number, Symbol and
Partition concepts have special semantics in that similarity measures are associated
with them that is inherited down to subclasses and instances.

Figure 6.10: A model for case-based reasoning in CREEK.
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Figure 6.11: Case-based reasoning in CREEK.
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ReuseResult. Runs the reuse step, currently by doing a simple k-Nearest
Neighbor vote among the top k cases.

These classes have graphical user interface (GUI) classes that allow the user
to explore their contents in detail. For instance, the window in Figure 6.11 is
the GUI class for the RetrieveResult class. Here, the user may browse the
individual CaseComparison instances by clicking on a case on the bottom bar
graph to get detail information about that comparison (shown above). Appendix
B contains a sample Java program that executes the case-based reasoning on
the model creating in the program in Appendix A.

6-5 Chapter Summary

The partial implementation of the CREEK-ILE system contains a full implemen-
tation of the CREEK knowledge representation language, as well as a case-based
reasoner that includes the capability of retriving cases based on student concept
maps. With the exception of using the knowledge representation as a storage
medium for concept maps, these capabilities were not used in the online learn-
ing environment, which was primarilly designed to collect data for use in o�ine
analysis. In the next chapter, we describe the data collection methodology, and
evaluation of the datasets collected.
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Chapter 7

Evaluation

In evaluating the CREEK-ILE approach, we have focused on examining how
concept maps can be used as part of the student model. While it is clear that
they express a di�erent facet of knowledge than what is directly used to solve
exercises, there are theoretical di�erences in how and if the conceptual knowl-
edge represented in concept maps a�ect procedural skill. First, that conceptual
knowledge is required to solve problems, and as a prerequisite can be expected
to correlate with measures of procedural skill. This can be seen as an extreme
version of what is practiced by the ACT-based Cognitive Tutor courses, where
theoretical classroom sessions are followed by exercise sessions. Second, con-
ceptual knowledge can be seen as completely di�erent from procedural skill,
which would mean that measures of conceptual knowledge would not correlate
with measures of procedural skill. Third, learning conceptual knowledge and
procedural skill can be seen as an intertwined process, for instance as Schank
describes it, where exercises motivate theoretical learning.

In Chapter 5, we suggest that concept maps may contain information that
will help the system to select exercises appropriate for the individual student.
This rests on the assumption that it is possible to predict approximately how
hard each individual task is for a given student, using the information in the stu-
dent's concept map. In other words, this theory suggests a correlation between
the conceptual knowledge measure (the concept map) and the procedural skill
measure (competence at solving problem tasks). The �rst goal of our evaluation
has been to test this hypothesis, to see if and how concept map correlate with
procedural skill measures such as how many tasks a student can solve in a par-
ticular exercise, or how long he takes to solve it. To do this, we collected data
from two exercises in an introductory Java class. This was done by adopting
the standard exercise sets given in the class to the CREEK-ILE exercise envi-
ronment. In addition to the standard programming tasks, the students were
asked to form concept maps, and the resulting maps were stored along with
various measures of problem solving competence. After the second exercise, we
also asked the students to �ll in a small survey with some background data
(age, gender, previous experience) and to respond to some questions about the
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experience. The information was collected into two datasets, one for each ex-
ercise. Once collected, they were subjected to statistical analysis, and various
machine-learning methods were used to see if it was possible to predict the
problem solving competence based on the information from the concept maps.

7-1 Data Collection

The data collection was done during two exercises (number 3 and 5) of the
introductory course in Java course give to �rst-year students in the NTNU
open computer science program. This program is open in the sense that anyone
enrolled at the university may take the course, and it does not require previous
knowledge of computer science, nor any high school science specialization. This
means that there is a wide range of students attending the class, and it is normal
to see a fairly high drop-out rate. A consequence of this is that it is hard to
know exactly how many are following the course actively, but exercise approval
lists suggests that approximately 130 students were active in the course at the
time of the experiments.

The �rst data collection were done during exercise 3, which had tasks that
combined basic class structures (such as methods) and control structures (such
as if-statements and for-loops). Participation in the experiment was on a vol-
unteer basis, and students had to sign up to be a part of it. Before the exercise,
the CREEK-ILE environment was installed in the computer rooms available to
the students, and they could also download and install the client software on
their own computers, but with the additional requirement that they had to stay
connected to the internet while working on exercises. This e�ectively limited
participation to those that worked at school or with a broadband connection at
home. Although participation was encouraged by the course lecturer and our
research group, no further incentive to participate was o�ered. This does mean
that our group has a self-selection bias. Because the students had already done
exercises 1 and 2 using another programming environment (a text editor called
TextPad), it is likely that this self-selection bias prefers students that are willing
to try new things. This may mean that the group had a more positive outlook
on solving the concept map tasks, which for them is a new kind of task, than
a random sampling. Of the approximately 130 students, 28 signed up for and
completed the exercise using the CREEK-ILE environment. Of these, 4 skipped
the concept map exercises (de�ned as creating two or fewer relationships), and
for this reason were excluded from the dataset. The exercise contained two
concept map tasks, given at the very beginning of the exercise. One of these
were on the topic of Control Structures (the teacher map is shown in Figure
7.1), and the other on Classes and Methods (teacher map in Figure 7.2). These
had to be done in turn, and the student could not go back and alter the concept
maps when they were �nished, but they were allowed to go back and examine
them. This was done to control that the maps represented the knowledge of the
student before the exercise, as opposed to a mix of before, during and after.

The initial examination of the data from the �rst experiment showed that
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Figure 7.1: Teacher map for the Control Structures topic.
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Figure 7.2: Teacher map for the Classes and Methods topic.
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19 of the 24 had managed to solve at least 7 out of the 9 programming tasks
in that exercise. If a task was successfully solved or not were decided by using
the automated tests attached to each task. These tests were fairly stringent,
including input scenarios to handle atypical situations. In theory, students are
required to solve all the tasks to pass an exercise, but in practice, any real e�ort
spent towards this goal is accepted. That so many students managed to ful�ll
so many of the tasks also suggested that the group may have been more skilled
than a random group.

In the second round of data collection, we decided to use a more controlled
environment, in that all that participated had to be at a computer lab during
two three-hour sessions, and that the experiment would be time-limited to these
sessions. The students were divided into two approximately equally sized groups
with sessions at di�erent times. I was present at all times during both of these
groups, and served as their teaching assistant. The students were told before
signing up that anyone that was not �nished with the exercise after these six
hours would be approved as long as they showed up and worked at the exercise
the whole time. This was designed to equalize the time spent on the exercise so
that the number of tasks the students would have solved within the time limit
would be more indicative of their skill level. It also gave weaker students an
incentive to participate, and likely put a bias on the participating group towards
these students. In this second round, 48 people signed up, of whom 4 were
excluded from the dataset because they did not �ll in the concept map (again,
de�ned as creating two or fewer relationships). This exercise set contained
one concept map task, on the topic of Arrays (teacher map is in Figure 7.3).
This concept map was designed with fewer abstract concepts, and more code
examples than in the previous round. Again, the students were not allowed to
change the concept map once they deemed in �nished, but could go back and
examine it. There were 9 programming tasks in this exercise, of which the �rst
5 were available in the �rst session, and the 4 last tasks were added for the
second session.

After the second round of data collection, a small survey was sent to the
participants. This survey contained a number of background variables (gender,
age and previous experience in programming), as well as twelve statements the
students were asked to state if they agreed with or not, and a free-form feedback
textbox.

7-1.1 Error Sources

There are several possible errors sources in the data collection method described
above. Participation in both rounds was voluntarily, which introduces a possi-
ble selection bias. This could mean that conclusions drawn from the data may
only be applicable to a subset of the student population. In the main question
of study in this experiment { how knowledge expressed in concept maps relate
to exercise competency, there may be an e�ect where students volunteering for
experiments are more accepting of non-traditional exercise tasks (such as form-
ing concept maps). However, we have no reason to believe that the di�erence
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Figure 7.3: Teacher map for the Arrays topic.



Data Collection 173

between the experiment and the total population on this is a major factor.
There are various spurious variables that can a�ect the similarity of concept

maps and exercise competency. Most of these not problematic for what we wish
to study. For instance, students working together in groups before the exper-
iment may have formed similar conceptualizations, and also have more similar
exercise competency. Students attending lectures may likewise be more skilled
in programming tasks than the group of students not attending lectures, and
the students attending lectures may also have adopted similar conceptualiza-
tions based on the teacher's. These spurious relationships are not problematic
because they still allow us to use the correlation in a student model. Although
it would be interesting to determine causation in how conceptual and episodic
knowledge is formed, for use in for instance determining individual di�culty
of exercise tasks, this is not required. However, there are some spurious rela-
tionships that are problematic. In particular, we have identi�ed cheating and
cooperation.

Cheating is when a student does not solve a task himself. It may argued that
a cheating student would copy the concept map tasks as well as the programming
tasks and as such simply represent another (presumably more skilled) student.
However, since there is no evaluation criteria for the concept map tasks, the
incentive for copying it seems much less than copying the programming tasks.
There is also the factor that some of the programming tasks were quite hard to
solve for many, and it is fairly common for students to become time constrained
towards the end. This suggests that cheating would be far more common on the
harder tasks towards the end of the exercise than the easier tasks. We believe
the �rst dataset is more likely to be a�ected by cheating than the second. In
the second collection, students were approved based on the time put into the
exercise and not on actually completing all the tasks. This reduces the incentive
to cheat. They also did all their work in a computer lab attended by a teaching
assistant at all times, which would make cheating more di�cult.

Cooperation is the most serious error source we have identi�ed. This occurs
when two or more students work together to solve the exercise, and for this
reason may have very similar concept maps as well as exercise competency.
Depending on the degree of cooperation, this could range from some occasional
similarities to representing the same data instance twice. This is not a great
problem when searching for statistical correlations between variables, but it
is a serious problem when using machine-learning methods to predict student
behavior or competency. If the dataset contains an instance twice, a case-based
reasoner used in an o�ine leave-one-out cross validation would identify the twin
instance as the most similar case and use its (correct) solution as its prediction.
However, in an online system, cooperating students would have to work during
the same time periods, and as such they would not be available as previous
cases.

Cooperation was observed and allowed during the second data collection,
although the analysis suggested that there was little total cooperation. The
degree of cooperation in the �rst collection was not observed, so it is unknown.
We have considered several ideas for measuring the cooperation between stu-
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dents based on the tracking data collected. For instance, it might be possible
to judge the level of cooperation based on the similarity of programs submitted,
or the time spent on each task. However, such measures can be formed in many
ways, and the likelihood that one or more exists that would agree with the
hypothesis through chance alone is great, so in the end this approach was aban-
doned. Instead, the fact that the second data collection was conducted using
two independent groups in two di�erent timeslots was used to divide the second
data set into two groups corresponding to these timeslot groups. Because these
groups operated during di�erent times, we know that there was no cooperation
between members of these groups, and by using one as training data and one
as testing data, the inuence of cooperation could be removed in the analysis
of this dataset. The cost of doing this is that the size of the training data is
almost halved, a�ecting the precision of the prediction.

7-2 Dataset Variables

The data collected in the data collection phase was compiled into two datasets,
one for each round. These datasets are in WEKA [92]1 and comma-separated
�le format designed to be imported to such tools as SPSS or Excel, and is
available at http://www.idi.ntnu.no/�frodeso/creek-ile/datasets/.

The dataset contains data that are collected directly from the students as
well as some recoded and composite variables. This section contains a descrip-
tion of all the variables in the datasets.

7-2.1 Programming task variables

For each programming task in the exercise, there are three variables. The names
of these variables contains the name of the task, for instance the name of the
variable representing the time a student spent on the task Oppgave1a is called
eOppgave1aTime. Figure 7.4 contains a summary of the percentage of students
that completed each task as well as the average competency measure for each
task in the second dataset.

e<Taskname>Solved. This is a binary variable that represents if the task
was successfully solved or not. The 0 value means that the task was not solved,
the 1 value means that it was solved. A task is de�ned as solved if the program
passed all the automated tests for that task.

e<Taskname>Time. The time, in seconds, required by the student to solve
the task. Only time actively spent on that task is counted { if there was no
change in the program state for 60 seconds, the student was assumed to be idle
(not active) until the next change.

1WEKA is an open-source machine learning and data mining suite available from available
from the University of Waikato at http://www.cs.waikato.ac.nz/ml/weka/
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Figure 7.4: Student competency on programming tasks in dataset 2

e<Taskname>Competence. This is a composite variable intended to mea-
sure the competence displayed by the student on this task on a scale from 0
to 100. If the student failed to solve the task, an automatic 0 is given. If it
is successful, the competence is calculated using the formula in equation 7.1,
where averageTime is the average time spent on the task (i.e. the average of
e<Taskname>Time for all the students) and time is the time this student spent
on the exercise, i.e. e<Taskname>Time. This formula gives a value between 0
and 100, where 100 means the student solved the exercise in literally no time
at all, 50 means the student solved it on the average time. The value approach
0 asymptotically as the time spent to successfully solve the exercise approaches
in�nite.

e < Taskname > Competence =
100 � (averageT ime� 1)

time+ averageT ime� 1
(7.1)

7-2.2 Overall Competence Measures

In addition to the variables representing each programming exercise, the datasets
contains three variables aggregating these measures.

correctCount. The number of tasks correctly solved by the student. This is
essentially an aggregation of the values of the e<Taskname>Solved variables.
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Figure 7.5: Distribution of the correctCount variable for dataset 1 (left) and
dataset 2 (right)
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Figure 7.6: Distribution of the totalTime variable for dataset 1 (left) and
dataset 2 (right)

Figure 7.5 contains a distribution histogram of this variable.

totalTime. The active time spent on the programming exercises, which is an
aggregation of the e<Taskname>Time variables. Figure 7.6 contains a distri-
bution histogram of this variable.

averageCompetence. The average over the e<Taskname>Competence val-
ues for the student. This is designed to be a measure of the total skill of the
student taking both time and successfully solved tasks into account. The dis-
tribution of this variable is shown in Figure 7.7.

7-2.3 Concept Maps

Representing concept maps in a traditional machine-learning representation is
not straightforward, but because we relate all the student concept maps to a



Dataset Variables 177

100,080,060,040,020,00,0

averageCompetence

7

6

5

4

3

2

1

0

Fr
eq

ue
nc

y

Mean = 44,083
Std. Dev. = 20,6417
N = 24

100,080,060,040,020,00,0

averageCompetence

15

12

9

6

3

0

Fr
eq

ue
nc

y

Mean = 24,841
Std. Dev. = 14,6445
N = 44

Figure 7.7: Distribution of the averageCompetence variable for dataset 1 (left)
and dataset 2 (right)

speci�c teacher's map, there is a �nite set of possible concept maps that can
be constructed. This means that it is possible to encode any concept map, for
instance by using one binary variable to represent each possible arc in the con-
cept map. In practical terms, this is not possible because the number of possible
arcs in a concept map increases exponentially with the number of labels and
arcs in the teacher map (see Section 5-3.3). However, with a limited number of
students as in our experiments, the total number of di�erent arcs actually used
by students are far fewer. In the �rst data set, only 113 unique arcs (concept-
label-concept connections, such as for kind of Loop Statement) were formed
in the �rst map. The second map had 89 unique arcs, and in the second group,
the map had 255 unique relationships. This means that it was possible to
create a binary variable for each unique arc that was present in at least one
student map. This encoding allows us to use standard machine learning tools
such as WEKA on the datasets o�-line after the data is collected. It would not
be possible to use this encoding in online use, because we rely on the ability
to check which unique arcs are used by at least one student, and that is of
course not known until after all concept maps have been �nalized. The CREEK
representation does not have this problem, however, and it is likely that spe-
cialized implementations of the machine learning methods we examine can also
get around this problem.

x<Mapname>r<number>. A binary variable that represents the presence
(value 1) or absence (value 0) of a speci�c relationship in the student's concept
map. The <number> is counting number that identi�es a unique relationship
(concept-label-concept)

<mapname>Size. The number of arcs drawn by the student in that map.
This is essentially a count of the number of "1" values on the x<Mapname>r<number>
variables. Figure 7.8 displays the distribution of these variables for dataset 1,
and 7.9 show it for dataset 2.
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Figure 7.8: Distribution of the map1Size and map2Size variables for dataset 1
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Figure 7.9: Distribution of the map1Size variable for dataset 2
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Figure 7.10: Distribution of the map1TeacherMapSimilarity and
map2TeacherMapSimilarity variables for dataset 1
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Figure 7.11: Distribution of the map1TeacherMapSimilarity variable for
dataset 2

<mapname>TeacherMapSimilarity. The similarity between the student's
map and the teacher's map, calculated by CREEK using the similarity measure
described in Section 5-3.3. This is a numeric value from 0 (no similarity) to 100
(absolute similarity). Figure 7.10 displays the distribution of these variables for
dataset 1, and 7.11 show it for dataset 2.

7-2.4 Background Variables

These variables represent background information about the student. This data
(except the group variable) was collected in a separate survey that only went
out to the second group, and as such they are only present in the second dataset.

group. The group (1 or 2) of which the student were a member. This infor-
mation is only available in the second dataset.
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Figure 7.12: The distribution on the age variable

0 Never Programmed 81.8% N = 36
1 Programmed some 13.6% N = 6
2 Knew most of the curriculum 4.5% N = 2

Figure 7.13: The distribution on the exeperience variable

age. The age of the student, in years.

The age distribution of the selection in the second dataset ranges from 18
to 30, where the 30 is quite atypical (next highest value is 25). Figure 7.12
contains a histogram of the distribution. Although no statistics are available to
us on the total student population attending the programming course, informal
observations seems to suggest that this distribution is close to the population
distribution.

gender. The gender of the student. A value of 0 means male, a value of 1
means female.

In the second dataset, 13.6% (6) of the students are female.

experience. An ordinal variable representing the experience level of the stu-
dent. The question (translated from Norwegian) was "How much have you pro-
grammed before starting this class (IT1103)?". A 0 value represents choosing the
answer (again, translated) "Never programmed", a 1 represents "Programmed
some, but learned a lot during the class", and a 2 represents "Knew most of the
curriculum of the course already".

Figure 7.13 contains the frequency distributions of the experience variable
in the second dataset.
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0 0,5 1 1,5 2 2,5 3 3,5 4

S1: I was assisted well by the student assistant present at the
session.

S2: I usually receives better help from my usual student assistant
than the one present at the session.

S3: The program we worked in (CREEK-ILE) was hard to learn.

S5: I knew nothing about arrays when I arrived at the first exercise
session.

S6: The program we worked in (CREEK-ILE) supported solving
programming exercises well.

S7: It was better to program using CREEK-ILE than in TextPad,
which we usually use.

S8: I did not like this way of solving exercises.

S9: I like this way of solving exercises better than the one we usually
use.

S10: The tasks in exercise 5 was too hard.

S11: I had read about arrays, or been to a lecture on arrays, before
solving the concept map task.

S12: The first task were we drew concept maps was hard to
understand.

S13: I had few problems solving the tasks in exercise 5.

For each of the feedback questions, the average value (the blue bar) and
standard deviation (the black line) is shown. A value of 0 means that the
student disagrees strongly and a value of 4 means that he agrees strongly.

Figure 7.14: The feedback questions, with average response

7-2.5 Feedback Questions

These questions were also part of the survey sent only to the second group.
They are asked in the form of statements the student can strongly agree, agree,
be neutral, disagree or strongly disagree with. These answers are represented
as a value from 0 (strongly disagree) to 4 (strongly agree). The questions were
posed in Norwegian, but are translated as faithfully as possible here2. Figure
7.14 contains the questions and average response value for each question.

7-3 Statistical Analysis

In addition to using machine-learning methods such as case-based reasoning to
predict student competency, statistical tests of correlation as well as descriptive
statistics have o�ered some insights. In this section, we present the major
conclusions we have been able to draw.

Throughout this section, one-tailed Pearson's Correlation is used to measure
bivariate correlations, and only relationships are at least signi�cant on the 5%
level are reported, unless otherwise stated. When correlations are given, the
coe�cient is denoted r and the signi�cance level s. If the relationship is signif-

2The students knew the CREEK-ILE environment as Mind Exerciser at the time. Refer-
ences to Mind Exerciser are replaced with CREEK-ILE in the translation.
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icant on at least the 5% level, it is marked with a single star (*), and if it is
signi�cant on at least the 0.5% level, it is marked with a double star (**). For
instance (r = 0.4, s = 0.02*) means that there is a positive correlation with the
coe�cient 0.4 and signi�cance 0.02 (i.e. 2%).

7-3.1 Correlation of Competency Measures and Time

We have introduced a composite measure of competence, averageCompetence,
combining the time spent on a task and if the student managed to solve it. It is
interesting to see if this measure correlates well in the aggregate with the more
direct correctCount competence measure, and in dataset 2 it does correlate
very strongly (c = 0.967 s < 0.0005**). In dataset 1, the correlation is also
strong (r = 0.775, s < 0.0005**), but not as strong as in dataset 2. This is
likely because the students in dataset 1 were not time constrained in the same
way as the students were in the second data collection. This means that most
students would be able to solve all or most of the tasks, although they may
have used longer time. Figure 7.15 shows the relationship between totalTime

and averageCompetencein dataset 1, and we can see that in general, the better
students use less time on the exercise. In fact, the quickest student that managed
to solve all the programming tasks went through the exercise in just under an
hour, while the slowest used more than 10 hours, and only solved 5 of the 9
tasks. The two students with even lower competency than this (0 and 1 tasks
solved) used somewhat less time than that.

7-3.2 Student Contentment with CREEK-ILE

In general, the students seemed happy to work in the CREEK-ILE environment.
A majority of the students (84.1%) disagreed with the s3 proposition ("The pro-
gram we worked in (CREEK-ILE) was hard to learn."), and the majority even
disagreed strongly (52.3%). This is also reected in the s8 proposition ("I did
not like this way of solving exercises"), where 79.5% disagreed, although fewer
did so strongly (20.5%). CREEK-ILE was also viewed as a better alternative
than their regular way of solving exercises (79.5% agrees with proposition s9 {
"I like this way of solving exercises better than the one we usually use."), and
their regular programming environments (18.2% disagrees with s7 { "It was
better to program using CREEK-ILE than in TextPad, which we usually use.").

Interestingly, the more experienced students seemed to �nd the CREEK-
ILE environment harder to learn than the less experienced students { the
experience variable correlates with s3 (r = 0.445, s = 0.001**). This sug-
gests that the CREEK-ILE environment is particularly friendly to beginners.
In the free-form comments some users requested more advanced editor features
such as automated indentation. The lack of such features as compared to their
usual editors may explain why the more experienced users found the learning
curve steeper.
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Figure 7.15: Scatterplot on the totalTime and averageCompetence variables
in dataset 2

.

7-3.3 Young and Lazy?

The young seems to spend less active time solving the exercises { there is a
positive correlation between age and totalTime (r = 0.373, s = 0.006*). Older
students were also better prepared (negative correlation with s5 "I knew nothing
about arrays when I arrived at the �rst exercise session" (r = -0.351, s = 0.010*)
). This did not mean that they were necessarily more experienced programmers
before starting the class as there is no correlation between age and experience.

The question, then { does the extra e�ort pay o� for the older students?
To some degree. Age has a weak positive correlation with the correctCount

competency measure, but this is not quite signi�cant (r = 0.245, s = 0.055*).
This seems to be an e�ect of the extra time and preparations, and not some
other e�ect of ages, as this e�ect disappears completely if we control for the
totalTime and s5 in a linear multivariate regression.

7-3.4 Gender Di�erences

The great disparity between the genders (only 6 females are present in dataset
2) suggests that we should be careful in drawing any conclusions on gender
di�erences from this dataset. That said, there is a fairly strong correlation sug-
gesting that the female students perceived the exercise as harder than the male
students (gender correlates with s13 with r = -0.418, s = 0.002**). However,
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there is not a signi�cant correlation between gender and the actual competence
measures (correctCount and averageCompetency), and there are di�erences
between the male and female population, such as lower levels of previous expe-
rience and slightly lower average age in the female selection that may explain
these �ndings. Still, it might be interesting in a larger experiment to test the
hypothesis that female students perceive the exercises as being harder.

Another interesting �nding is that the women have concept maps signi�-
cantly more similar to the teacher than the men (r = 0.432, c = 0.002**). This
�nding remains if we control for age, experience and the feedback questions {
gender remains the strongest indicator of teacher map similarity of all of these.
We do not have a good explanation for this, but it might be an interesting topic
for further research.

7-3.5 Does Experience Matter?

The students with higher experience has scored slightly higher on the com-
petency measures than less experiences students, but these di�erences are not
signi�cant. However, the experienced students did tend to agree more strongly
with proposition S13 ("I had few problems solving the tasks in exercise 5."),
resulting in a signi�cant correlation between experience and s13 (r = 0.489,
s < 0.0005**). This seems to suggest that the experience level reported by
the student a�ects perceived di�culty more than actual competence. However,
the number of students in the sample with any experience (value 1 or 2 on the
experience) variable is only 8, so like the gender di�erences, this conclusion is
tentative.

7-3.6 Similarity to Teacher Map

One of the major hypothesis we would like to test in this experiment is if the
degree of similarity between the student's and the teacher's concept map has
any predictive power of procedural tasks { in this case programming tasks.
This correspond to the Method 1 of using concept maps in exercise selection,
described in Section 5-4.1.

Throughout this subsection, we use two-tailed Pearson's Correlation.
In our datasets, the student-teacher concept map similarity are almost com-

pletely independent of the major programming competence measures (in dataset
2, map1TeacherMapSimilarity and correctCount has r = 0.059, s = 0.704).
This is also illustrated in a scatter diagram in Figure 7.16.

However, there is some correlation on a few individual task measures. In
dataset 2, map1TeacherMapSimilarity correlates with eOppgave1cCompetence

(r = 0.348, s = 0.021*), and eOppgave2bTime (r = 0.323, s = 0.032*).
Similar results were found for both concept maps in dataset 1. Neither corre-

late at all with any of the overall competence measures, but on a few variables for
speci�c tasks, there were correlations. Speci�cally on map2TeacherMapSimilarity,
which correlates with eOppgave2bCompetence (r = 0.464, s = 0.022*) and
eOppgave2bSolved (r = 0.526, s = 0.008**).



Statistical Analysis 185

1086420

correctCount

70,0

60,0

50,0

40,0

30,0

20,0

10,0

0,0

m
ap

1T
ea

ch
er

M
ap

Si
m

ila
rit

y

Figure 7.16: Scatterplot on the correctCount and map1TeacherMapSimilarity
variables in dataset 2

.

These relationships may seem somewhat suspicious. In light of the number
of sigin�cance tests done, a couple could very well show up by chance. The
positive correlation between the teacher map similarity and the time spent on
task 2b in dataset 2 is particularly strange. This means that the students with
a concept map more similar to the teacher were likely to spend longer time on
task 2b! On the other hand, this may just mean that fewer of these students
gave up. If we look to Section 7-4, the variables with correlations here matches
those found to have predictive e�ect there, so the consistency of results implies
that this is not mere chance.

A stronger relationship is found between the map1TeacherMapSimilarity

and map2TeacherMapSimilaritymeasures in dataset 1 (r = 0.737, s< 0.0005**).
This means that if a student forms a map that is similar to the teacher's on
the �rst task, he is more likely to form a concept map similar to the teacher's
in the second. This, at least, suggests that the concept maps contains some
measurable information about the student, presumably the conceptualization
given in lectures and the text book. In dataset 1, we also see a correlation
between the map size and the similarity to the teacher map (map1Size and
map1TeacherMapSimilarity at r = 0.404, s = 0.050*, map2Size and map2Teacher-
MapSimilarity at r = 0.538, s = 0.007*). This relationship is also present in
dataset 2 (r = 0.308, s = 0.042*).

The only other variables that correlates with the map1TeacherMapSimilarity
variable is, age (r = 0.291, s = 0.028*) and, as already mentioned, gender (r
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= 0.431, s = 0.002**). We currently have no explanation for this relationship.
One theory is that a student's conceptualization will grow closer to the teacher's
as he approaches the teacher's age, but the result on the gender variable would
seem to contradict this, as it was the men's maps who were less similar to the
teacher's map, which was also created by a man.

The lack of any signi�cant relationship to teacher map similarity also in-
cludes the propositions S11 ("I had read about arrays, or been to a lecture on
arrays, before solving the concept map task.") and S5 ("I knew nothing about
arrays when I arrived at the �rst exercise session."), which one might expect to
correlate with a measure of conceptual knowledge. This could again reect the
fact that the particular concept map in dataset 2 focused more on actual code
examples and less on organizing the terms, but we also observed that some stu-
dents spent time with their text books, looking up how di�erent terms related
while forming their concept maps. This suggests that the concept map tasks
formed the motivation to seek the conceptual knowledge they did not have in
advance.

7-4 Predicting Student Exercise Competence

In the previous subsection, we have shown that similarity to teacher maps did
not correlate with any of our measures of student exercise competence. This is
a fairly strong indication that Method 1 ("Model �rst, Compare to Teacher")
from Section 5-4.1 will not work. However, this does not necessarily mean
that there is no information content in the student concept maps that will help
predict student exercise competence. The teacher map, although presumably a
competent conceptualization, represents only one individual's conceptualization.
A comparison of the teacher's map with students' maps rests heavily on the
quality of the teacher's map. If her conceptualization is in some way unnatural
or too complex for the average student, similarity will be low and a possible
correlation between concept map and exercise competence hidden.

The alternative approach suggested in Method 2 ("Model �rst, Compare to
Students") is an alternative that relies less on the quality of the single concep-
tualization represented in the teacher map. The concepts and relation names
are still constrained by the teacher, but instead of comparing a student's map to
the teacher's, it is compared to the other student maps. Using machine learning
techniques, classi�ers and regressors may be trained on a subset of the student
maps to predict the competence of the students. The ability of the machine
learning methods can then be tested on the remaining student instances. In
this section, we will test the hypothesis that machine learning on concept maps
can predict student competence by applying standard and specialized machine
learning techniques to the datasets produced by the data collection e�orts de-
scribed in Section 7-1.

Our �rst attempt at using machine learning methods to predict student
exercise competence used the CREEK case-based reasoning mechanism with the
similarity measure from Section 5-3.3, and was reported in [77]. The CREEK
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This �gure shows how many of the ten tasks in this exercise each
classi�er predicted the correct result for. The baseline method pre-
dicts by always picking the majority class for each task. The thin
error lines represent a standard deviation.

Figure 7.17: Evaluation of CREEK's predictions on individual exercise tasks

case-based reasoner used the concept map of a new student and compared his
map to those of previous students. The previous student with the most similar
map was then used as a basis for predicting how the new student would fare on
the programming exercises. This experiment was performed o�ine on the data
collected from the second round of data collection (see Section 7-1)3

Throughout this section, the one-tailed Student's T-Test will be used for
testing signi�cance as the distribution of values that are approximates nor-
mal. When using other machine-learning methods than CREEK, the machine-
learning library Weka (version 3.4.8) [92] is used. Unless otherwise stated, the
default parameters for these methods are the defaults supplied by Weka.

7-4.1 Classi�cation Test

In the datasets we have collected, the e<task>Solved variables are binary vari-
ables (solved or not solved), which may be predicted using standard machine-
learning classi�ers. In addition to CREEK, we have used several methods from
the Weka machine-learning library on the two datasets. We have used Weka's

3There are some small di�erences in the numbers reported in [77] and this thesis. The
reason for this is that the experiment in the [77] paper included the four instances that was
excluded from the second dataset here. The di�erences are minor and only in one situation
does it impact a signi�cance test, but it does not impact the overalls results.
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instance-based nearest neighbor IBk classi�er (with k set to 1 and 3, called
IB1 and IB3 respectively), as well as the LogitBoost classi�er as an example of
a boosting method, NaiveBayes as a simple statistical method, and J484 as a
information entropy tree-based classi�er.

Using these classi�ers, we performed a leave-one-out cross validation test,
where all classi�ers were trained on the all but one of the instances in the
dataset. The classi�ers were then tested on the excluded instance by predicting
which tasks the student represented by that instance managed to solve. This
was repeated so that in turn, all instances were excluded from the training data
and used as a test. Figure 7.18 shows the correct prediction percentage for each
classi�er on every task in the second dataset. We compared this with a baseline
where for each task the majority class was chosen as the prediction. Although
almost all students were able to solve the easy tasks, very few solved the most
di�cult tasks. This caused the frequency of the majority class to vary widely
from one task to the next. In particular the very easy and very hard tasks
had a very high frequency for the majority class, but the middle di�culty tasks
discriminated better between the students, giving a baseline close to 50%. On
some of these, we see signi�cant improvement over the baseline on several of the
classi�ers, including CREEK. An aggregation of these results found in Figure
7.17, shows how many correct classi�cations each classi�er got, on average, for
each student. A perfect classi�er would get all ten predictions for each student
correct every time, giving an average of ten, while a random guess would give an
average of �ve. This shows that CREEK and NaiveBayes have higher rates of
prediction than the other methods, but only NaiveBayes is signi�cantly better
(t < 0.05).

The way the �rst dataset was collected means that it is harder to test using
the classi�ers. Here, the students were given unlimited time and no option to
be given credit for the exercise was given unless the student solved, or tried
hard to solve, all tasks. This means that we would expect that fewer tasks
would go unsolved, and a higher baseline on most tasks, which makes it harder
to distinguish the classi�ers from the baseline. In Figure 7.19, we see that
although most tasks have a high baseline, some tasks, like 2b, 3a, and 3b has
a low enough baseline that several classi�ers improve in the baseline (including
CREEK on tasks 2b and 3b, although it is lower than the baseline on 3a).
However, none of these di�erences are signi�cant for this dataset.

A curious result in these graphs is that CREEK seems to be doing better
than the instance-based methods. This may seem strange because CREEK is
not using any of its knowledge-intensive methods here { the cases are matched
based only on the concept maps using the simple similarity measure from Section
5-3.3. This means that one might think that CREEK should perform similarly
to IB1. This is not the situation, because of a subtle di�erence in the similarity
measures involved. IBk counts the number of matches in a pre-de�ned feature
vector, which means that if two maps have 12 relationships in common and 7
that are not in common, IBk will �nd these as similar as two maps that have 3

4J48 is Weka's implementation of the C4.5 algorithm
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This �gure shows how the percentage of correct classi�cations found for each classi�er
on each task for dataset 2. This is compared to the baseline for each programming
task given to the student. While the baseline for the very easy tasks (1a, 1b and
2a) and very hard tasks (3b, 4a and 4b) are high and hard to beat, several machine
learning methods (including CREEK) show an improvement over the baseline in the
more discriminate tasks (2b and 2c). On task 2b, IB1 (t = 0.042), CREEK (t = 0.007),
LogitBoost (t = 0.014), NaiveBayes (t = 0.003), and J48 (t = 0.002) was signi�cantly
better than the baseline. On task 2c, CREEK (t = 0.016), LogitBoost (t = 0.031),
NaiveBayes (t = 0.034) and J48 (t = 0.031) was signi�cantly better than the baseline.

Figure 7.18: Classi�cation on Tasks from Dataset 2
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This �gure shows how the percentage of correct classi�cations found for each classi�er
on each task for dataset 1. This is compared to the baseline for each programming task
given to the student. Only the LogitBoost classi�er on task 3b is showing a signi�cant
increase (t = 0.038) over the baseline here.

Figure 7.19: Classi�cation on Tasks from Dataset 1
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relationships in common and 7 that are not. This because IBk will include the
number of relationships that does not exists in both maps as matching features.
On the other hand, CREEK excludes the relationships that does not exists in
any of the maps and only uses the ratio of the number of relationships existing
in both maps and the number of relatioships that exist only in one. CREEK
would thus �nd the �rst two maps above much more similar than the second
set of maps.

In Section 7-1, we identify cooperation among students as a possible error
source when using machine-learning classi�ers to predict which tasks a student
would be able to solve. The problem is that if two students cooperate to the
degree that they e�ectively produce two instances that are the same, a case-
based reasoning in a leave-one-out cross validation methodology would always
identify the cooperating student as the most similar case. This would of course
give a case-based reasoner a perfect record on these cooperating students. Other
machine-learning methods might not be as vulnerable to this as instance-based
methods, but because our dataset has so many attributes, it is likely that gen-
eralizing methods would be inuenced by cooperation. For instance, there may
be attribute values unique to pairs of cooperating instances.

Unfortunately, we do not know which students cooperated, but we do know
that the data collection for dataset 2 was done in two separate groups, and we
know which students belong to what group. Because the students were limited
to working on the exercises during the group sessions, we know that no one
from group A cooperated with anyone from group B. This allows us to control
for cooperation by dividing the second dataset in two along the group lines. By
using the �rst the set representing group A as training data and then testing
on group B, and then repeating the same process in reverse, we know that any
e�ects here are not due to cooperation. Figure 7.20 shows the result of this
experiment. As in Figure 7.18, the greatest di�erences can be seen on the tasks
with the low baselines. CREEK is sign�cantly better than the baseline on task
1c (t = 0.050), 2b (t = 0.025) and 2c (t < 0.0003). Of the other classi�ers, on
task 2c, J48 (t = 0.026) and Na��ve Bayes (t = 0.026) is signi�cantly better than
the baseline.

It should be noted, however, that the the baseline for the 1c, 2b and 2c tasks
is very low. For instance, on task 1c, using the majority class from one group
to predict how the other group will do, gets a correct answer only 20% of the
time! This suggests that the populations of these groups are quite di�erent in
composition.

This result may give some indication that the e�ect observed in the leave-
one-out cross validation experiment in Figure 7.18 is not solely the e�ect of
cooperation, as for CREEK, the results in Figure 7.20 seem to mirror the ear-
lier results, although with lower signi�cance values. However, this is only an
indication, and it is even less robust for the other machine learning methods
we have tested. In particular, Naive Bayes, which did well on the leave-one-out
cross validation but did not on this test.
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This �gure shows how the percentage of correct classi�cations found for each classi�er
on each task for dataset 2. Unlike the result presented in Figure 7.18, this test does
not use a leave-one-out cross validation method, but divides the dataset in two so that
di�erent groups are used to train and test the classi�er.

Figure 7.20: Classi�cation on Tasks from Dataset 2, Divided by Group
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7-4.2 Regression Tests

While the discrete e<Task>Solved variables were possible to predict using clas-
si�ers, the variables measuring time spent on a task and the composite com-
petence measure requires regression methods. The competence measure was
introduced in part as a more �ne-grained measurement for the programming
skill of a student on a complete exercise, and in part to allow us to use machine
learning methods on tasks where a large majority of student succeeded in solving
the task. In the classi�cation tests, these are the tasks with very high baselines.
In particular, we assumed this would be relevant for dataset 1, as when collect-
ing this dataset, students were operating under the normal assumption that all
tasks should be solved. Presumably this would lead to many tasks with very
high baselines. The competence measure addresses this by using the active time
spent by the student on the task, with the assumption that lower time spent
before succeeding indicates a more skilled student. It might also be possible to
predict the time spent on a task or the complete exercise, however, as we have
shown, the time spent on the exercise is lowest at the extremes { i.e. the best
and the worst students spends the least amount of time on an exercise, with
the students in the middle spending more time. In order to form a more linear
variable, we created the competence measure. Because this measure assigns a
score of 0 on tasks that was not solved, the worst performing students would still
get a lower score than average students that spent more time but managed to
solve more tasks. This creates a more linear relationship between skill and the
competence measure, which should be easier to model with standard statistical
techniques.

Case-based reasoning and instance-based methods such as CREEK and IBk
are able to do both classi�cation and regression, but the other machine-learning
methods we used in the classi�cation tests were not able to handle regression
tasks. Instead, we used MP5 (the Weka implementation of the M5 algorithm
[61]), the REPTree fast decision tree learner, RegressionByDiscretization, Ad-
ditiveRegression and LinearRegression. All algorithms used the Weka defaults.
In addition, we used IB1, IB3 and CREEK.

In Figure 7.21, the set of regression methods were used to predict the total
time spent on the whole exercise in a leave-one-out cross validation method
similar to that used in the classi�cation test, while in Figure 7.22, the average
competence on the whole exercise is predicted. Both of these �gures are for
dataset 2. These �gures, as well as the other �gures in this section, show the
average error, so unlike the classi�cation tests, lower values are better. As a
baseline, the mean value for the training set was used as the prediction. In
Figure 7.21, the M5P method is signi�cantly better than the baseline (t =
0.027), with CREEK (t = 0.057) and RegressionByDiscretization (t = 0.076)
approaching signi�cantly better. However, no methods performs signi�cantly
di�erent than the baseline on the average competence prediction shown in Figure
7.22. However, when we break this down to the individual tasks (Figure 7.23),
we see signi�cantly lower errors on task 2b for CREEK (t = 0.028), REPTree
(t = 0.002), RegressionByDiscrtization (t = 0.003) and LinearRegression (t =
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Figure 7.21: Regression on total time spent on exercise (totalTime) in dataset
2
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Figure 7.22: Regression on average competence (averageCompetence) on dataset
2
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Figure 7.23: Regression on the competence variable on each task in dataset 2

0.013). On task 2c CREEK (t = 0.003), RegressionByDiscretization (t = 0.003),
and AdditiveRegression (t = 0.009) are signi�cantly better than the baseline,
and on task 3a, RegressionByDiscretization is signi�cantly better (t = 0.024).
On several tasks, the IB1 and IB3 methods are signi�cantly worse than the
baseline.

However, all signi�cant e�ects disappear when we instead of a leave-one-
out cross validation method, divides the dataset along the group lines so as
to control for cooperation. Figure 7.24 shows the regression on the total time
spent on the exercise using this method, and Figure 7.25 shows the same for the
competence measure on each task. As is apparent in these �gures, the predictive
e�ect observed in the earlier tests disappears completely. Where some of the
corresponding classi�cation tests showed e�ects that approached signi�cance on
the 5%-level in line with the e�ects we observed in the leave-one-out tests, these
regression tests show no similar trend. Neither are there any signi�cant e�ects
for total time, average competence or task-speci�c competence on dataset 1.

The results of these tests suggest that we are unable to predict the �ner-
grained measure of competence that contains time information. The only e�ects
observed are for those tasks with a low baseline where we also observed e�ects in
classi�cation, but the inclusion of the time component did not make it possible
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Figure 7.24: Regression on total time spent on exercise (totalTime) in dataset
2 divided by groups

to predict competence well on other tasks. To the contrary, inclusion of time
data may have added a source of noise so that even the e�ect on the low-baseline
tasks disappeared in the tests where the dataset were divided by group. While
this does not mean that the competence measure or time information cannot
be predicted on the basis of other student model components, it seems unlikely
that it can be predicted using concept map information.

7-5 The E�ect of Inference on Concept Maps

Of the three maps we have used in this experiment, the "Control Structure" map
is most relevant for examining the e�ect of inference. This map uses the type of
relation to structure concepts hierarchically and intuitively, this relation should
be interpreted transitively. This means that if a concept map contains "A type
of B", and "B type of C", it makes sense to interpret that "A type of C" as
well. As we examined in Section 5-3.3, inferred relationships allows us to match
the teacher map to students that for instance skipped the intermediate level
by modeling "A type of C" directly. Without inference, this would be entirely
dissimilar from the "A type of B type of C" model above. However, if inference
is applied, the students "A type of C" relationship would match the inferred
teacher relationship "A type of C", and the maps would match partially.

We would have liked to test this mechanism by repeating the experiments
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Figure 7.25: Regression on the competence variable on each task in dataset 2
divided by groups
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Figure 7.26: The teacher map for "Control Structures" from exercise 3, with
inference.
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Figure 7.27: Anne's student map.

above using inference and comparing them to the results where inference was not
used. However, these maps were not originally designed with this experiment in
mind, and as such the amount of inference that can be usefully applied is quite
limited. This means that the e�ect of the inference should be low as well, and
combined with the quite tenuous e�ects we have observed, we have concluded
that we do not have the data to do quantitative analysis on this.

However, we can see some indications through descriptive statistics and by
examining individual student maps. In order to do this, we applied the single
inheritance rule that type of is transitive (i.e. type of inherits over type of ).
Figure 7.26 shows the teacher map for "Control Structures" with the four in-
ferred relationships found by the inference mechanism (inferred relationships
are marked as dotted lines in the �gure).

The average similarity between student and teacher maps increased from
25,5% where no inference was used, to 31,0% after inference was applied. How-
ever, simply choosing a relationship at random and adding that relationship to
all student maps would also increase the average similarity, so this on its own
is not necessarily an indication of an interesting e�ect.

When we examine individual student maps we can see some nice examples
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Figure 7.28: Bill 's student map.

of how this works out in practice. In Figure 7.27 we can see how the inference
a�ects the map of "Anne"5. Her map is quite similar to the teacher map, and
the inference mechanism adds the same four relationships as for the teacher.
This does increase the similarity of the maps slightly, from 56% to 65%. This is
the most common type of inference seen in the student maps { inferring some
or all of the same relationships inferred in the teacher map.

In Bill's student map (7.28), the situation is di�erent. The similarity to
the teacher map is very low { only 4%. One of the things that lowers Bill's
similarity score is that he has drawn direct relationships from the for, while,
and switch-case concepts to the Control Structure concept, while the
teacher has an intermediate layer. Although the inference mechanism �nds no
additional relationships in Bill's map, the implicit type of relationships found in
the teacher map matches Bill's relationships. This increases the similarity of the
maps from 4% to 21%. Intuitively, this seems like a more accurate representation
of Bill's conceptual knowledge.

A common mistake in the student's map is that they reverse the direction
of the relationships. In Claire's student map (Figure 7.29), she has drawn a

5Although all student maps are real maps drawn by real students during the experiments,
the student names are �ctional and only used for ease of reference.
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Figure 7.29: Claire's student map.
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Figure 7.30: Daniel 's student map.

type of relationship from Control Structure to Loop Statement. Claire
seems to have been careful about the direction in which relationships are drawn
elsewhere in the map, so this is likely a mistake. A part from this mistake, the
map is quite similar to the teacher's { only a few contains relationships to the
Condition concept is missing. Without inference, Claire's similarity is in fact
63%, which is among the highest in the dataset. However, when inference is
applied, new relationships are inferred using the incorrect type of relationship,
and with inference the similarity to the teacher map drops to 52%. In other
words, the inference mechanism may magnify the e�ect of small mistakes. This
is not the only example of this, but probably the most extreme. If this single
relationship was inversed, Clarie would have seen an increase in similarity to
the teacher if inference was applied. Instead, the similarity is decreased by
11%-points.

Daniel's student map (Figure 7.30) also have a few examples of relationships
drawn in the wrong direction (the type of relationships from the Loop concept),
but in this map it does not a�ect the similarity as much. Curiously, it even
allows the inference mechanism to conclude that Loop is a type of Control
Structure { via for and Decision Statement! Another interesting feature
of Daniel's map is that while the teacher map has the contains Condition
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Figure 7.31: Ellen's student map.

relationship from concepts such as for, if andwhile, Daniel has instead chosen
to attach this to the superclass of these concepts { the Control Structure.
The reason this is not done in the teacher map is that it is not universially
true { the switch { case statement is an exception to this, but it is generally
true. However, it might be argued that this representation by Daniel is generally
correct, and that we should be able to infer that he meant this to be inherited
down to e.g. for. Using a plausible rule saying that contains is inherited over
type of , this would indeed have been possible, although we have not tried to
extend the set of plausible inheritance rules used in this analysis.

In addition to reversing relationships, a fairly common mistake in this con-
cept map task is that the students are not sure which relation types to use.
In particular, some are confused by the separation of type of and example of
relation types. One student created a nice map using only the type of relation
type, and no others. Others say that for is a correct example of Loop, or
that if(navn.equals("Arne")) is a type of if. This is understandable in that
while the type of relation type is a subclass relation, the example of relation
types can be said to be kinds of specialized instancing relations. What is a sub-
class and what is an instance can often be hard to identify. One lesson from this
seems to be that the relation types o�ered to the student should be as distinct
from each other as possible.

The student maps examined this far has ranged from decent to quite good,
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but we also see inference in maps that seem far more random. Ellen's map
(Figure 7.31) is an example of this. It contains all the concepts o�ered and
connects them all to an interconnected map, but seemingly in a random fashion.
This also introduces some inferred relationships (the dotted lines), but this does
not change that this map has a 0% similarity to the teacher map.

The use of inference seems to have both good and bad consequences, al-
though in this case we believe the net e�ect is positive. In many situations, the
same relationships were inferred in both student and teacher. However, in some
situations, relationships inferred either in the student or teacher map reveals
implicit relationships, which allows the inference mechanism to see similarity
beyond the purely syntactic.



205

Chapter 8

Conclusion

We have presented a framework for analyzing and comparing exercise-oriented
intelligent tutoring systems, which we have used to analyze six intelligent tu-
toring systems. These systems can be divided into two categories. In the �rst
category, the ELM and PACT Cognitive Tutors attempt to model the student's
procedural problem solving ability in order to identify and rectify "bugs". In
the second category are systems that we call intelligent learning environments
(ILEs); CATO, Ambre-AWP, and BLITS. These systems do not have a student
model in the same sense as ELM and the PACT Cognitive Tutors. Instead, they
seek to provide a problem-solving environment that is conductive to learning.
To do this, they use general AI methods such as case-based reasoning to assist
the student, as well as domain-speci�c measures.

The CREEK-ILE approach is closer to the second of these categories. It
does not seek to build a complete procedural cognitive model of problem solving,
but to create an intelligent learning environment. We suggest that some of the
bene�ts of student modeling can be achieved without modeling at the procedural
level. The CREEK-ILE system has knowledge of the student on the episodic
level, through storing which exercise tasks a student has attempted to solve,
and knowledge on the conceptual level, through student concept maps.

In the next sections, we will review the research goals presented in Section
1-2, and discuss how this work has contributed to these, and look at some future
avenues of research.

8-1 Contributions

8-1.1 Student Modeling in Weak Theory Domains

Strong student modeling, in the sense that it is a procedural, cognitive model
of the student's thought processes, is intractable for many, if not most domains.
The domains chosen for the ELM and PACT cognitive tutors are domains where
this seems to be possible, although with great e�ort. The idea that incomplete
student models may still provide useful information is not new { a particularly
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compelling technique is to use episodic knowledge in the form of earlier exercises
to get some notion of what the student knows.

We have presented a method that combines concept maps and reasoning
traces from earlier students to give partial support in in exercise selection, in-
exercise support, conceptualization and explanation. This method, while it
seeks to address weak theory domains similar to those addressed by CATO,
Ambre-AWP and BLITS, goes beyond providing a learning environment for
the student and include capabilities to assist the student actively and tailor
the experience to him. We call our system CREEK-ILE, where the three last
letters indicate that we view it as an intelligent learning environment, although
our interpretation of this is that it also has tutoring capabilities, and requires a
student model to achieve this.

8-1.2 Concept Maps as Student Models

Although concept maps and similar techniques have been used before in tutoring
systems, we have not found any work that uses it for student modeling purposes.

Computational tractability

We have demonstrated that although concept maps may seem like complex
structures, they need not be computationally expensive to compare, for in-
stance in a case-based reasoning process, as long as they relate to a common
teacher map that de�nes the concepts and relation labels. We claim that this
limitation is both pedagogically and computationally useful. Pedagogically, it
allows the student a large room of possibilities to form conceptualizations, but
it constraints them to a particular topic decided by the teacher. The example
student maps in Section 7-5 illustrate that this freedom does result in quite a
wide variation in conceptualizations { including some that di�er greatly from
the teacher's model but still seem to make sense. Computationally, the limita-
tion to concepts and relation types de�ned by the teacher allows us to avoid the
intractable task of deciding whether two graphs are isomorph. We avoid this
problem because the common list of concepts and relation labels create a direct
mapping between the nodes of the graph.

Concept Maps as Procedural Skill Indicators

In Section 5-4.1 we postulate four methods for how concept maps can be used to
predict competence on procedural skills. Of these, we have tested basic versions
of the �rst two methods in Chapter 7. Here we found that there is only very
weak correlation between a student map's similarity to the teacher map, and
how well that student performs on procedural skill. Such a correlation is only
found for some maps, and only on one or two measures of skill on speci�c tasks.
The conclusion of this is that we cannot support the hypothesis that is the
basis for Method 1 ("Model First, Compare to Teacher."). There may be some
correlation there, but certainly not anything strong enough for practical use.
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On method 2, however, the results ("Model First, Compare to Students.")
are more positive. There are signi�cant results that suggest that by comparing
a new student's concept map to previous students' maps, some information can
be gained about his procedural skill. These indications are not strong, in that
they only appear for one of two datasets, and only on those tasks that best
divide the student groups and are thus easier to improve over the baseline.
However, this e�ect is robust when we control for spurious factors that would
not be present in an online environment, such as cooperation. In the end,
we cannot rely entirely on the statistical signi�cance tests here. On the one
hand, we have performed hundreds of signi�cance tests on the datasets, and
with a 5% signi�cance threshold, which should yield some "signi�cant" results
by pure chance. While there are statistical techniques to compensate for this,
the consistency of where the results show up should not be ignored either. For
instance, both the classi�cation and regression tests show quite good results for
predicting competence on task 2b in the second dataset. This holds for many of
the classi�ers, and some level of e�ect remains even when we divide the dataset
by group to control for cooperation. This consistency of results, more than any
single signi�cance test, leads us to conclude that there is an e�ect.

An important question is if the e�ect we have observed is strong enough
for student modeling purposes. In fact the age of the students had almost as
large a predictive e�ect on the procedural skill as the concept map. It is, after
all, easier to ask for the student's age than to ask him to spend half an hour to
create a concept map, if the only goal is to have some measure of the procedural
skill. From this perspective, although we can �nd support for the hypothesis of
method 2 ("Model First, Compare to Students."), it is not a practical approach
to student modeling as it stands.

We have observed during these experiments that very few students seemed
to have good conceptual models when they arrived at the exercise session. This
is also reected in the students' answers on the feedback questions. Although
many had attended lectures, the students with good concept maps were gener-
ally those that took the time to study how the concepts were related by search-
ing their textbooks. In other words, our experience �ts well with how Schank
describes the learning process. A result of this is that the two last methods
("Method 3: Model Repeatedly" and "Method 4: Exercise-Speci�c Models,
Explicit Generalization") more tightly couple the concept mapping tasks with
the procedural tasks. This also blurs the lines between the exercise selection,
in-exercise, conceptualizations and explanation support tasks. For instance, we
have earlier pointed out the practical problem in method 3 of asking the student
to re�ne the same concept map between each task. To the student, this looks
like he is asked to solve the same task again and again. He might be better
equipped to solve it again after each task, but the boredom of revisiting a previ-
ously solved task will likely work against this approach. However, this might be
avoided if the system can provide hints or ask learning questions related to the
task just solved. A simple form of this, suggested in method 3, is that a part of
the teacher map related to that task can be revealed, and the student asked to
compare it to his own. A more complex variant of this is suggested in method



208 Chapter 8. CONCLUSION

4, where the student is asked to form a concept map for each individual task,
and is then given assistance to generalize the task-speci�c maps to a common
concept map. Both of these methods may perhaps give a closer coupling to
the procedural skill of the student, but they also assist in conceptualization,
explanation and in the case of method 4, in-exercise support.

The Practical Value of Exercise Selection

The practical value of exercise selection may be questionable. In our experiments
using programming exercises, we saw how the constructivist critique of the
reductionist approach applies in practice. In our exercises, we used the same
exercises as were given in the normal exercise groups. These exercises were
constructed so that the student would go through a series of tasks that built
on each other. Often, the result of the exercise would be one or two quite large
programs, where the tasks simply de�ned sub goals and served to guide the
student to the �nal destination. This is only possible if the path through the
tasks is e�ectively pre-de�ned. If the tutoring system has the option of skipping
tasks, or reordering them based on individual student needs, the tasks cannot
be dependant on each other. Further, with many students using several hours
to solve each task, tasks would likely have to be smaller in order to ensure
that the student went through a meaningful number of iterations of exercise
selection. It also seems that this is not the area where the student needs help
the most. The motivation of the student is to solve the gatekeeper problems,
and �nish the exercise. This makes it hard to motivate the student to solve extra
tasks, although the insight gained from solving this task may help in solving the
gatekeeper problem. Such assistance is likely more e�ciently done by o�ering
examples relevant to the task at hand, as is by ELM.

Similar conclusions to the question of exercise selection have been reached
by many of the other tutoring systems we have studied. Of the systems we have
examined, only the PACT Cognitive Tutors does some exercise selection, but
this is e�ectively limited to creating sets of exercises with increasing di�culty
and only allowing the student to progress to a harder set once the system is
satis�ed the student is su�ciently skilled at the level of the current set.

In conclusion, methods 3 and 4 represent our current views for how concept
maps should be used in exercise-oriented tutoring systems. We believe that
the goal of exercise selection should be de-emphasized in favor of providing
conceptualization, explanation and in-exercise support. In fact, we think that
methods 3 and 4, although listed under exercise selection, are at least as useful
for conceptualization, explanation and possibly in-exercise support, and can be
used even if the task order is �xed in advance.

8-1.3 Concept Maps, Knowledge Representation and In-

ference

Typically, knowledge representations have sacri�ced some ease of use in order
to get a higher degree of semantic agreement between human and computer in
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how the contents of the representation is interpreted. However, we suggest that
semantic-net based representations like our CREEK knowledge representation
may be used to store concept maps without compromising the ease of use. This
allows us to attach some semantics to concept maps terms, which allows the use
of inference to �nd implied knowledge. The inference mechanisms presented in
this work will never understand the contents of a map on the same level as a
human, but may be able to draw some of the same conclusions about implied
knowledge. We suggest that this is useful for instance in comparing concept
maps, where knowledge that is explicit in one map may be implicit in another.

In this work, we have provided a proof-of-concept that a knowledge repre-
sentation language with inference can be used to store concept maps created by
students with no prior training. In fact, the CREEK knowledge representation
did not impose any further constraints on the students' ability to form concept
maps. Because the CREEK plausible inheritance inference does not require
global consistency, can handle loops in the graphs and operates in polynomial
time, it may be used without placing strong requirements on student or teacher.

In Section 7-5 we illustrate how inference a�ects computational operation
on the concept maps, in particular measuring the similarity between them. Al-
though we were unable to do quantitative tests, qualitative analysis revealed
that:

Inference may reveal useful, implicit knowledge. This is illustrated
clearest in Bill's student map (Figure 7.28), where several relationships he mod-
els explicitly are found to match implicit relationships in the teacher's map,
found through inference.

Inference may magnify mistakes. Because a single relationship in the con-
cept map may allow multiple inferred relationships to be found, a single mistake
may have much larger consequences than if no inference is used. In Claire's stu-
dent map (Figure 7.29) a single reversed relationship causes the similarity of
her map to drop 11%-points.

Computational analysis of concept maps may place too great a weight
on minor mistakes. A generalization of the above �nding is that any com-
putational method that analyzes or uses concept map tends to be stricter in
interpretation than a human. This causes minor mistakes or di�erences of in-
terpretation to seem more important than a human normally would rate them.
In addition to the example from Claire's map above, we saw that a confusion
on when to use the type of and when to use the ... example of relation types
caused some students to be rated with lower similarity to the teacher. Here,
some additional inference may actually help, for instance by recognizing that
the type of and ... example of relation types can be used to mean the same
thing, or to recognize that sometimes a student may unintentionally draw a
relationship in the wrong direction. Although the inference methods described
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in this work do not support these particular kinds of conclusions, such methods
should not be hard to create.

Earlier, we claimed that our knowledge representation and inference meth-
ods do not place additional constraints on the student and teacher. While this
is true on a purely syntactical level, allowing the computer to �nd implicit rela-
tionships does have consequences, as we have seen above. This introduces issues
on the semantic level. In particular, we found that it is useful to avoid having
several relation types with overlapping semantics, in the sense that there may
be situations where it is not clear which one to use. For instance, the semantic
di�erence between contains and type of seemed clear to our students { we never
saw anyone use contains where the teacher used type of . However, the confu-
sion we saw between the type of and ... example of relations seems to suggest
that there is some semantic overlap between these relation types. The "reverse
relationship" issue is also a result of the additional semantic importance given
to the relationships, including their direction. This suggests that if inference is
used on concept maps, greater care should be given to semantic issues when the
concept mapping task is constructed. This can for instance mean that greater
care is taken to make sure that the set of relation types used in the teacher map
is semantically distinct.

The bene�t of using inference on concept maps extends well beyond similar-
ity comparisons, however. For instance, when the plausible inheritance mech-
anism is able to recognize that the direct for type of Control Structure
relationship in Bill's model matches the inferred relationship from the teacher's
map, it allows the system to suggest concrete improvements to Bill's map. In
this case, Bill's relationship represents a simpli�cation of the more complex
chain in the teacher's map (for type of Loop Statement and Loop State-
ment type of Control Structure). Since Bill's relationship may be inferred
from the teacher's relationship, the system can for instance suggest that Bill
adds the Loop Statement concept to his concept map as an intermediate
level. Alternatively, it can use the same knowledge to form a learning question
tailored to his map, such as "How would you say Loop Statement relates to
for and Control Structure?". Such concrete advice and learning questions
are exactly what is required for the "Model Repeatedly" and "Exercise-Speci�c
Models, Explicit Generalization" methods.

8-2 Future Directions

There are many questions that remain unanswered with regards to how and why
concept maps may be useful in case-based tutoring systems, and our research
has also identi�ed some additional venues.

First, it is necessary to extend the experiments already conducted to control
for such noise factors such as cooperation and cheating, and to develop our
experiment design to do so. The current datasets are also limited in that they
are based on only two exercises with only one or two teacher concept map
each. Doing more experiments with more maps is necessary before any strong
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conclusion can be drawn.
However, our experiments have also caused us to question, on a more fun-

damental level, how concept maps should be used in case-based tutoring. We
have used a single concept map at the beginning of the exercise, but as we have
seen, many students report that they do have little knowledge of the subject
matter of the exercise before attempting to solve it. This is consistent with
the theory that motivation for conceptual knowledge is found through solving
exercises and that many students approach learning in this way. In Section
5-4, we suggest two re�ned methods, where concept maps are attached to each
task in the exercise, and that the system provides support for generalizing these
task-oriented maps into more generalized, conceptual models. These methods
have not been tested yet, and represent a possible direction for future work.

Through our reported research, we have come to believe that the use of
inference on concept maps is a promising venue of research. While concept maps
should maintain their ease of use and focus on human expression, it is possible
and useful to use limited inference to interpret implicit knowledge in concept
maps. We have identi�ed some potential uses, such as improved similarity
measurement, and assistance in improving student concept maps gradually by
forming concrete hints or learning questions. This work contains a proof-of-
concept of inference on concept maps, and identi�es some issues related to using
inference on concept maps, but only dips its toes in the water when it comes to
how concept map inference can be of use to computer systems.
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Appendix A

Java Program Creating a

Simple CREEK model.

This appendix contains a sample Java programs using CREEK to create a mode
using the CREEK knowledge representation.

package jcreek.examples;

/**

* A simple CREEK knowldege model.

*

* @author Frode Srmo

*/

import jcreek.util.CreekException;

import jcreek.representation.*;

import jcreek.representation.cbr.*;

public class SimpleModel

{

public SimpleModel()

{

}

public static void main(String argv[])

{

try

{

// Create a new CREEK KnowledgeModel. By default, this

// is based on thebasic model created by the CBRModel class.

LocalKnowledgeModel model = new LocalKnowledgeModel();
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// Add concepts to represent types of findings. The age

// finding shouldbe a number.

Entity age = new Entity(model, "Age", "The age of the student");

age.addRelation("subclass of", "Number");

// Gender should be a symbol type, with male and

// female as possiblevalues.

Entity gender = new Entity(model, "Gender",

"The gender (male/female) of the student");

gender.addRelation("subclass of", "Symbol");

Entity male = new Entity(model, "Male", "The male gender");

male.addRelation("instance of",gender);

Entity female = new Entity(model, "Female",

"The female gender");

female.addRelation("instance of",gender);

// Create a few cases. These are also concepts in the

// model, and we coulduse the Entity class to make them,

// but it is more convinient to use the Case class. New

// cases made in this way are automaticallymade instances

// of the "Case" concept.

Case firstStudent = new Case(model, "Student Case #1",

"A male 19-year old");

firstStudent.addRelation("has finding", male);

NumberEntity firstStudentAge =

new NumberEntity(model, new Integer(19), age);

firstStudent.addRelation("has finding", firstStudentAge);

firstStudent.setStatus(Case.UNSOLVEDCASE);

Case secondStudent = new Case(model, "Student Case #3",

"A female 23-year old");

secondStudent.addRelation("has finding", female);

NumberEntity secondStudentAge =

new NumberEntity(model, new Integer(23), age);

secondStudent.addRelation("has finding", secondStudentAge);

secondStudent.setStatus(Case.SOLVEDCASE);

// Now, we print information about the firstStudent case

// to screen.

System.out.println("Concept name: "+firstStudent.getName());

// The basic getRelations() method uses the

// PlausibleInheritanceMethodto also find inherited

// relationships.
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Relation[] relationships = firstStudent.getRelations();

for(int i=0;i<relationships.length;i++)

{

if (relationships[i].isInherited())

System.out.println(" " + relationships[i].toString() +

" (inherited)");

else

System.out.println(" " + relationships[i].toString());

}

// The is saved as a binary .km file so it can be used later.

model.saveAs("simpleModel.km");

}

catch(CreekException e)

{

e.printStackTrace();

}

catch(java.io.IOException e)

{

e.printStackTrace();

}

}

}

Running this program, results in the output:

Concept name: Student Case #1

Student Case #1 has finding Male (strength 0.5)

Student Case #1 has finding NumberEntity#82 (strength 0.5)

Student Case #1 has case status Unsolved Case (strength 1.0)

Student Case #1 instance of Case (strength 0.9)

Student Case #1 has comparator CaseComparison (strength 0.9)

(inherited)
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Appendix B

Java Progam for Simple

Case-Based Reasoning

This appendix contains a sample Java programs using the CREEK model cre-
ated by the program in Appendix A to retrieve the best matching case for a
new problem.

package jcreek.examples;

/**

* A simple Case-Based Reasoning example, based on the SimpleModel.

*

* @author Frode Srmo

*/

import jcreek.util.CreekException;

import jcreek.representation.*;

import jcreek.representation.cbr.*;

import jcreek.reasoning.*;

public class SimpleCBR

{

public SimpleCBR()

{

}

public static void main(String argv[])

{

try

{

// Load the CREEK model created in the SimpleModel program.

LocalKnowledgeModel model =
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new LocalKnowledgeModel("simpleModel.km");

// Find the first student case in the model by name.

Entity inputEntity = model.getEntity("Student Case #1");

// We need it as a case instance, though. Below, we create

// a new case instance that refer to the same concept - it

// does not create a new concept.

Case inputCase = new Case(inputEntity);

// The RetrieveResult class runs retrieve by creating one

// CaseComparisonbetween the input case and any solved cases

// in the case base.

RetrieveResult retrieve = new RetrieveResult(inputCase);

// Print the number of comparisons that were made. In this

// model, itshould only be two, as there is only two solved

// cases - the "Student Case #2" and the "Student Case #3".

System.out.println("We compared against "+

retrieve.getAllComparisons().length+" cases.\n");

// Retrieve the CaseComparison for this match.

CaseComparison bestMatch = retrieve.getBestComparison();

// Printing information about this match to output.

System.out.println("Best match: "+bestMatch.getTarget());

System.out.println("Similarity: "+bestMatch.getStrength());

}

catch(Exception e)

{

e.printStackTrace();

}

}

}

Running this program, results in the output:

We compared against 2 cases.

Best match: Student Case #2

Similarity: 0.45
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