

The Impact of Software Reuse and
Incremental Development on the

Quality of Large Systems

Parastoo Mohagheghi

Doctoral Thesis

Submitted for the Partial Fulfillment of the Requirements for the Degree of

Philosophiae Doctor

Department of Computer and Information Science
Faculty of Information Technology, Mathematics and Electrical
Engineering
Norwegian University of Science and Technology

July 2004

Copyright © 2004 Parastoo Mohagheghi

ISBN printed 82-471-6408-6
ISBN electronic 82-471-6407-8
ISSN 1503-8181
NTNU 2004:95

Printed in Norway by NTNU Trykk, Trondheim

 ii

Abstract
Incremental development, software reuse, product families and component-based
development seem to be the potent technologies to achieve benefits in productivity,
quality and maintainability, and to reduce the risks of changes. These approaches have
multiple and crosscutting impacts on development practices and quality attributes.
Empirical studies in industry answer questions about why and when certain approaches
are chosen, how these are applied with impact on single instances and how to generalize
over classes or systems. Large, long-lived systems place more demands on software
engineering approaches. Complexity is increased, systems should have the correct
subset of functionality and be maintainable for several years to return the investment.

The research in this thesis is based on several empirical studies performed at
Ericsson in Grimstad, Norway and in the context of the Norwegian INCO project
(INcremental and COmponent-Based Software Development). A product family with
two large-scale products that have been developed incrementally is described. The work
aimed to assess the impact of development approaches on quality and improve the
practice in some aspects. The research has been a mixed-method design and the studies
use qualitative data collected from sources such as web pages, text documents and own
studies, as well as quantitative data from company’s data repositories for several
releases of one product. The thesis contains five main novel contributions:

C1. Empirical verification of reuse benefits. Quantitative analyses of defect reports,
change requests and component size showed reuse benefits in terms of lower defect-
density, higher stability between releases, and no significant difference in change-
proneness between reused and non-reused components.

C2. Increased understanding of the origin and type of changes in requirements in
each release and changes of software between releases. A quantitative analysis of
change requests showed that most changes are initiated by the organization. Perfective
changes to functionality and quality attributes are most common. Functionality is
enhanced and improved in each release, while quality attributes are mostly improved
and have fewer changes in form of new requirements.

C3. Developing an effort estimation method using use case specifications and the
distribution of effort in different phases of incremental software development. The
estimation method is tailored for complex use case specifications, incremental changes
in these and reuse of software from previous releases. Historical data on effort spent in
two releases are used to calibrate and validate the method.

C4. Identifying metrics for a combination of reuse of software components and
incremental development. Results of quantitative and qualitative studies are used to
relate quality attributes to development practices and approaches, and to identify metrics
for a combination of software reuse and incremental development.

C5. Developing a data mining method for exploring industrial data repositories
based on experience from the quantitative studies.

This thesis also proposes how to improve the software processes for incremental
development of product families. These are considered minor contributions:

C6a. Adaptation of the Rational Unified Process for reuse to improve consistency
between practice and the software process model.

C6b. Improving techniques for incremental inspection of UML models to improve the
quality of components. A controlled industrial experiment is performed.

 iii

 iv

Acknowledgements

This thesis is part of the INCO project (INcremental and COmponent-based
development) done jointly by the University of Oslo (UiO) and the Norwegian
University of Science and Technology (NTNU). The doctoral work is financed by
INCO via the UiO for two years, the Simula Research Laboratory in Oslo for one year
and NTNU for 6 months for duties as a research assistant. The fieldwork was done at
Ericsson in Grimstad, Norway.

First of all, I thank my supervisor, Reidar Conradi, for his continuous support and
advice during this doctoral work, and his comments on the papers and drafts of this
thesis. His engagement and knowledge has inspired me a lot. I also thank other
members of the INCO project and the software engineering group at the Department of
Computer and Information Science at NTNU for their support and comments on various
papers, especially Dag Sjøberg and Magne Jørgensen at the Simula Research
Laboratory, and Tor Stålhane and Letizia Jaccheri at NTNU.

I acknowledge the editing work by Stewart Clark at NTNU and the comments by
Magne Syrstad at NTNU on Part I of this thesis. I have collaborated with my supervisor,
other researchers and several students during the work on this thesis, as reflected in the
author list of the papers in Part II. I acknowledge their contributions and thank all of
them.

I have been a part-time employee at Ericsson during this work and the organization
has given me the privilege of performing empirical studies and sharing the results. I am
deeply grateful for this opportunity and thank all the former colleagues who have
supported me.

Finally, I thank my husband, Esmaeil, and our son, Arash, for their love and support.

 NTNU, July 7, 2004
 Parastoo Mohagheghi

 v

 vi

Contents

Abstract iii

Acknowledgements v

Abbreviations xi

PART I

1 Introduction 1

1.1 Problem Outline 1
1.2 Research Context 2
1.3 Research Questions 3
1.4 Research Design 4
1.5 Papers 5
1.6 Contributions 6
1.7 Thesis Structure 10

2 Software Reuse and Component-Based Development 13

2.1 Software Engineering Definitions and Challenges 13
2.2 Literature Overview 15
2.3 Software Reuse 16
2.4 Component-Based Development 18
2.5 Product Families 23
2.6 Alternatives to Component-Based Development 26
2.7 Summary and the Challenges of this Thesis 27

3 Incremental Development 29

3.1 Definitions 29
3.2 Variations in Incremental Approaches 30
3.3 Incremental Development and Quality 32
3.4 The Rational Unified Process (RUP) 33
3.5 Summary and the Challenges of this Thesis 36

4 Research Methods and Metrics 37

4.1 Research Strategies in Empirical Research 37
4.2 The Case Study Approach 41
4.3 Validity Threats 43
4.4 Measurement and Metrics 44
4.5 Summary and the Challenges of this Thesis 46

 vii

5 Research Context 49
5.1 The Ericsson Context 49
5.2 The INCO Context 59
5.3 Developing Large Systems 59
5.4 Research Design in this Thesis 63
5.5 An Overview of Studies 64

6 Results 67

6.1 Software Process - RQ1 and RQ3 67
6.2 Assessing Development Approaches - RQ2 72
6.3 Improving the Practice - RQ3 81
6.4 Summary 83

7 Evaluation and Discussion 85

7.1 Research Questions Revisited 85
7.2 Contributions, Development Approaches and the Context 88
7.3 Relations to INCO Goals 90
7.4 Evaluation of Validity Threats 90
7.5 Working in the Field 93

8 Conclusions and Directions for Future Work 95

References to Part I 99

PART II

9 Papers 109

P1. Experiences with Certification of Reusable Components 109
P2. Reuse in Theory and Practice 117
P3. MDA and Integration of Legacy Systems 133
P4. Object-Oriented Reading Techniques for Inspection of UML Models 141
P5. Using Empirical Studies to Assess Software Development Approaches 159
P6. Different Aspects of Product Family Adoption 171
P7. An Industrial Case Study of Product Family Development 177
P8. An Empirical Study of Software Reuse 185
P9. A Study of Developer Attitude to Component Reuse 203
P10. An Empirical Study of Software Change 219
P11. Exploring Industrial Data Repositories 237
P12. A Study of Effort Breakdown Profile 251
P13. Use Case Points for Effort Estimation 257

 viii

List of Figures

Figure 1-1 Studies and their contributions 4
Figure 1-2 The structure of Part I of this thesis 11
Figure 2-1 Basic arguments for software product lines 24
Figure 3-1 Best practices of RUP 33
Figure 3-2 Phases, workflows (disciplines) and iterations in RUP 34
Figure 5-1 The Ericsson GPRS solution in a GSM network 50
Figure 5-2 The initial software architecture of GPRS 51
Figure 5-3 The evolved software architecture of GPRS 52
Figure 5-4 Decomposition of logical entities 54
Figure 5-5 The start view of GSN RUP 55
Figure 6-1 The proposed Analysis and Design workflow with reuse 70
Figure 6-2 Different types of CRs 75
Figure 6-3 The impact of development approaches and practices on quality
 metrics 78

List of Tables

Table 1-1 The relations of contributions to the quality of process and single

components 10
Table 4-1 Alternative research approaches 38
Table 5-1 Examples of direct metrics defined at Ericsson 58
Table 5-2 Examples of indirect metrics defined at Ericsson 59
Table 5-3 Challenges facing large system development 61
Table 5-4 Type of studies and their relations to Research Questions (RQ),

papers and phases 65
Table 6-1 Adapting RUP for reuse 69
Table 6-2 No. of subsystems affected per CR, of 104 CRs 77
Table 6-3 Data from internal measures and the studies in this thesis 78
Table 6-4 The relations of development approaches to practices 79
Table 6-5 The impact of practices on the product and process quality metrics 80
Table 7-1 The relations of Contributions (C) to Research Questions (RQ) and

papers (P) 88
Table 7-2 The relations of Contributions (C) to development approaches and
 the context 89

 ix

 x

Abbreviations

AF Adaptation Factor (COCOMO)
AOP Aspect-Oriented Programming
ARS Application Requirement Specification (Ericsson)
CASE Computer-Aided Software Engineering
CBD Component-Based Development
CBSE Component-based Software Engineering
CCM CORBA Component Model
COCOMO Constructive Cost Model
CORBA Common Object Request Broker Architecture
COM Component Object Model (Microsoft)
COTS Commercial-Off-The-Shelf
CM Configuration Management
CR Change Request (Ericsson)
DCOM Distributed Component Object Model (Microsoft)
EJB Enterprise Java Beans (Sun)
FIS Feature Impact Study (Ericsson)
FODA Feature-Oriented Domain Analysis
GPSN Gateway GPRS Support Node
GPRS General Packet Radio Service
GQM Goal/Question/Metric
GSM Global System for Mobile communications
GSN GPRS Support Node
GUI Graphical User Interface
HiA Agder University College
IDL Interface Definition Language
IP Internet Protocol
KLOC Kilo Lines of Code
LOC Lines of Code
MDA Model Driven Architecture (OMG)
MS Mobile Station (Ericsson)
NTNU Norwegian University of Science and Technology
OMG Object Management Group
OORTs Object-Oriented Reading Techniques
ORB Object Request Broker
OS Operative System
OSS Open Source Software
PH Person-Hours
QoS Quality of Service
R&I Review & Inspections (Ericsson)
ROI Return On Investment
RUP Rational Unified Process
SEI The Software Engineering Institute (SEI) at Carnegie Mellon University
SGSN Serving GPRS Support Node

 xi

SPI Software Process Improvement
SoC Statement of Compliance (Ericsson)
SQL Structured Query Language
TG TollGate (Ericsson)
TR Trouble Report (Ericsson)
UCP Use Case Points
UCS Use Case Specification (Ericsson)
UiO University of Oslo
UML Unified Modeling Language
UMTS Universal Mobile Telecommunications System
W-CDMA Wideband Code Division Multiple Access
WPP Wireless Packet Platform (Ericsson)
XP eXtreme Programming

 xii

1 Introduction

In this chapter, the background to the research and the research context is briefly
presented. The chapter also describes research questions, research design and the
claimed contributions. Also, the list of papers and the thesis outline are presented.

1.1 Problem Outline

As a considerable portion of software projects miss schedules, exceed their budgets,
deliver software with poor quality and even wrong functionality, researchers and
industry are seeking methods to improve productivity and software quality. Software
reuse has been proposed as a remedy for decades. Reuse is an umbrella concept and the
reusable assets can take many forms: component libraries, free-standing COTS
(Commercial-Off-The-Shelf) or OSS (Open Source Software) components, modules in
a domain-specific framework, or entire software architectures and their components
forming a product family. Component-Based Development (CBD) provides techniques
for the decomposition of a system into independent parts conforming to a component
model, thereafter composition of systems from pre-built components (either COTS or
developed in-house). CBD advocates the acquisition and integration of reusable
components. Components are more coarse-grained than objects, which may be an
advantage in retrieving and assembly, and they conform to a component model, which
facilitates composition. Incremental development is chosen to reduce the risks of
changing requirements or environments. The basic idea is to allow the developers to
take advantage of what was being learned during the development of earlier, deliverable
versions of the system and to enhance the system in accordance with the demands of
users or the market.

While several technologies for software reuse, CBD and incremental development
have emerged in recent years, there are still many open questions. The impact of these
technologies on software quality, schedule or cost should be analyzed. The risks
associated with single technologies and their combinations should be identified. Case
studies in industry play an important role in all these steps, since technologies should be
studied in a real context, combined with industrial practices and tuned to fit the context.
Incremental development, CBD and product family engineering are especially relevant
for developing large, long-lived software systems. In these systems, the scope is
gradually covered (and discovered), complexity is handled by decomposition into
independent units and thereafter composition, and systems may share software

 1

Introduction

architecture and some core assets to reduce cost and increase productivity. Empirical
studies on large systems may answer questions on how certain technologies are applied
and adapted for large-scale development.

1.2 Research Context

The research in this thesis uses the results of quantitative and qualitative empirical
studies of a large-scale telecom system developed by Ericsson in Grimstad, Norway.
The General Packet Radio Service (GPRS) support nodes enable high-speed wireless
Internet and data communications using packet-based technology. The two main nodes
are the Serving GPRS Support Node (SGSN) and the Gateway GPRS Support Node
(GGSN). Ericsson has developed two products to deliver GPRS to the GSM (Global
System for Mobile communication) and UMTS (Universal Mobile Telecommunications
System) networks. The SGSN nodes in the two networks share software architecture, a
component framework, many other core assets and development environment in a
product family approach. The systems are developed incrementally and several releases
are delivered in over five years. The software process has been an adaptation of the
Rational Unified Process (RUP). Quantitative data from SGSN for GSM releases, as
well as qualitative data gathered from web sites, project documents and own studies of
the software process model and the practice of software development are used in the
analysis and interpretation phases. Some of the results are used to build a model of the
impact of development approaches on quality attributes.

I had over three years of experience working with software architecture, design,
programming and software process adaptation in the GPRS projects prior to this
doctoral work. Ericsson has supported us in collecting data and performing studies.
However, Ericsson stopped development in Grimstad in 2002, and the organizational
noise around reorganizations and outsourcing has influenced the study in the sense that
the original focus on software process improvement for reuse could not be followed.

Some characteristics of the development projects and the system in the telecom
domain are:

- Personnel turnover has traditionally been small and Ericsson has had access to
experienced staff with domain knowledge in the development phase. However,
Ericsson has reduced its staff by almost 60% in the last three years.

- Quality (or non-functional) requirements such as performance, reliability,
availability, maintainability and evolvability are of great importance for nodes in
a network. On the other hand, there are no direct user interfaces and no
requirements related to these. Other requirements such as safety and security are
defined differently in each domain.

- The system is decomposed at the highest level into subsystems of large
granularity. Subsystems are units of reuse. Each subsystem contains a number
of function blocks, which are tightly coupled inside and are mapped to
components. Components are mostly developed in-house.

Other characteristics of the system as a large-scale system are:
- Large systems face challenges in all phases of development that small systems

do not, such as difficulties in iteration planning, complexity of design,

 2

 Research Questions

integration and test in large, and maintenance costs. Therefore, development
technologies should be verified for development in large.

- Companies are increasingly using mainstream development methods, tools,
standards, programming languages and software processes.

- Outsourcing is a new trend in industry, but the success depends on the task and
the competence of the company taking over. Ericsson could outsource
maintenance of previous releases since after re-organizations, experienced
personnel were hired by another company based on an agreement with Ericsson.

- Large companies start joint projects for developing new standards, tools and
processes.

Outsourcing, joint projects and mainstream development environment lead to a more
standardized view of software development. Thus, assessing common development
approaches in case studies are interesting for a broader audience than before, both for
generalization and to understand variations and adaptations in single instances.

The work for the thesis is done in the context of the INCO (INcremental and
COmponent-based Software Development) project, which is a Norwegian research
project from 2001 to 2004. INCO defines the following four project goals:

G1. Advancing the state-of-the-art of software engineering, focusing on technologies
for incremental and component-based software development.

G2. Advancing the state-of-the-practice in software-intensive industry and for own
students, focusing on technologies for incremental and component-based
software development.

G3. Building up a national competence base around these themes.
G4. Disseminating and exchanging the knowledge gained.
The purpose of this thesis is:

Advancing the state-of-the-art of software engineering by assessing existing
theories, exploring aspects that are insufficiently empirically studied before and
generalizing the results when possible.

−

− Advancing the state-of-the-practice of software reuse in incremental
development of a large telecom system by proposing improvements to the
development processes.

1.3 Research Questions

The goal of the research is to explore the impact of software reuse and incremental
development on quality, where quality refers to both software process quality and
software product quality, for a large-scale (telecom) system, and to improve the practice
based on the gained knowledge. The research questions are defined to be:

RQ1. Why a reuse program is initiated and how is it implemented?
RQ2. What is the impact of software reuse, CBD and incremental development on

the quality? The impact of development approaches on product quality metrics
and on project attributes such as schedule or effort are sought.

RQ3. How to improve the practice of incremental development of product families in
some aspects?

 3

Introduction

1.4 Research Design

Empirical studies may be performed quantitatively, qualitatively or in combination. The
choice of approach affects data collection, data analysis and discussions of validity. This
study has been a combination of qualitative and quantitative studies. The first phase as
shown in Figure 1-1 is dominated by qualitative studies of the software process model
and the development practice. A controlled experiment on inspection techniques and a
survey on software reuse are also performed. The second phase is dominated by
quantitative studies of Trouble Reports (TRs), Change Requests (CRs), effort
distribution and Use Case Specifications (UCSs). In the third phase, the results of
qualitative and quantitative studies and internal measures gathered by the company are
integrated in three aspects: metrics, developing a data mining method for exploring
industrial data repositories and assessing development approaches. The mix of
quantitative and qualitative methods has several purposes:

Expanding our understanding when moving from one study to the other. −
−
−

−
−

Triangulation or confirming the results of one study by other studies.
Answering questions that are not possible to answer by a single-method design,
such as the impact of development approaches in several dimensions.
Performing studies that are both exploratory and confirmatory.
Taking benefit of all available data; both quantitative data such as TRs, as well
as qualitative data such as process descriptions and project reports.

Figure 1-1 shows the studies performed, their date and sequence, type of studies and
the relations to papers and contributions. The papers numbered from P1 to P13 are listed
in Section 1.5 and the contributions are described in Section 1.6.

Study of Software
Process & RUP

2001-2002

P9

P6

P2
Survey

2002

Study of
Reuse Practice

2002

P1

P7

Experiment on
Inspection

2002P4

Study of MDA
2003

Prototype

P3

Study of
Trouble Reports

2003

P8

Study of
Change Requests

2003

P10

Study of
Effort

2003-2004

P12

Phase 1 Phase 2

Developing Effort
Estimation Method

2003-2004P13

Developing Data
Mining Method

2004

P11

Assessing the Impact of
Dev. Approaches &
Identifying Metrics

2003-2004

P11

P5

Combining results in Phase 3

July 2004March 2001
Quantitative study
Qualitative study

P Paper Input
Contribution

C6b

C6a

C1

C3

C1 C2

C5

C4

C3

C

Figure 1-1 Studies and their contributions

 4

 Papers

The research methods for each research question have been:
RQ1 is answered by qualitative analysis of the practice and the software

development process, a small survey and other knowledge gained from
quantitative studies.

RQ2 is answered by mining and quantitative analysis of data stored in different
company data repositories, the company’s internal measures and reports, and
qualitative observations. A model has been developed of the impact of
development approaches on some quality attributes.

RQ3 is answered by combining results of RQ1 and RQ2, and by proposing
improvements in RUP, estimation method, inspection techniques and metrics.
A research method for mining industrial data repositories is also proposed.

1.5 Papers

[P1] Mohagheghi, P., Conradi, R.: Experiences with Certification of Reusable
Components in the GSN Project in Ericsson. In Judith Stafford et al. (Eds.): Proc.
4th ICSE Workshop on Component-Based Software Engineering: Component
Certification and System Prediction (ICSE'2001), Toronto, May 14-15, 2001, pp.
27-31. SU-report 6/2001. Main author.

[P2] Mohagheghi, P., Conradi, R., Naalsund, E., Walseth, O.A.: Reuse in Theory and
Practice: A Survey of Developer Attitudes at Ericsson. NTNU- Department of
Computer and Information Science (IDI) PhD Seminar, May 2003. Main author.

[P3] Mohagheghi, P., Nytun, J.P., Selo, Warsun Najib: MDA and Integration of Legacy
Systems: An Industrial Case Study. Proc. of the Workshop on Model Driven
Architecture: Foundations and Applications, June 26-27, 2003, University of
Twente, Enschede, The Netherlands (MDAFA’03). Mehmet Aksit (Ed.), 2003,
CTIT Technical Report TR-CTIT-03-27, University of Twente, pp. 85-90. Main
author.

[P4] Conradi, R., Mohagheghi, P., Arif, T., Hegde, L.C., Bunde, G.A., Pedersen, A.:
Object-Oriented Reading Techniques for Inspection of UML Models -- An
Industrial Experiment. In Luca Cardelli (Ed.): Proc. European Conference on
Object-Oriented Programming (ECOOP'03), Darmstadt, July 21-25, 2003, Springer
LNCS 2743, pp. 483-501, ISSN 0302-9743, ISBN 3-540-40531-3. Co-author.

[P5] Mohagheghi, P., Conradi, R.: Using Empirical Studies to Assess Software
Development Approaches and Measurement Programs. Proc. the ESEIW 2003
Workshop on Empirical Software Engineering (WSESE'03) - The Future of
Empirical Studies in Software Engineering. Rome, September 29, 2003, Andreas
Jedlitschka and Marcus Ciolkowski (Eds.), pp. 65-76. Main author.

[P6] Mohagheghi, P., Conradi, R.: Different Aspects of Product Family Adoption. Proc.
the 5th International Workshop on Product Family Engineering (PFE-5), Siena,
Italy, November 4-6, 2003, F. van der Linden (Ed.), Springer LNCS 3014, pp. 429-
434, 2004. Main author.

 5

http://www.idi.ntnu.no/grupper/su/publ/pdf/icse2001-10Apr2001.pdf
http://www.idi.ntnu.no/grupper/su/publ/pdf/ecoop03-oort-experiment-final.pdf

Introduction

[P7] Mohagheghi, P., Conradi, R.: An Industrial Case Study of Product Family
Development Using a Component Framework. Proc. the Sixteenth International
Conference on Software & Systems Engineering and their Applications
(ICSSEA'2003), December 2-4, 2003, Paris, Volume 2, Session 9: Reuse &
Components, ISSN: 1637-5033, 6 p. Main author.

[P8] Mohagheghi, P., Conradi, R., Killi, O.M., Schwarz, H.: An Empirical Study of
Software Reuse vs. Defect-Density and Stability. Proc. the 26th International
Conference on Software Engineering (ICSE’04), May 23-28, 2004, Edinburgh,
Scotland, pp. 282-292. IEEE Computer Society Order Number P2163. The paper
received one of the five Distinguished Paper Awards at the conference. Main
author.

[P9] Li, J., Conradi, R., Mohagheghi, P., Sæhle, O.A., Wang, Ø., Naalsund, E., Walseth,
O.A.: A Study of Developer Attitude to Component Reuse in Three IT Companies.
Proc. the 5th International Conference on Product Focused Software Process
Improvement (PROFES 2004), April 5-8, 2004, Kansai Science City, Japan,
Springer LNCS 3009, pp. 538-552. Co-author.

[P10] Mohagheghi, P., Conradi, R: An Empirical Study of Software Change: Origin,
Acceptance Rate, and Functionality vs. Quality Attributes. Accepted at the ACM-
IEEE International Symposium on Empirical Software Engineering (ISESE 2004),
August 19-20, 2004, Redondo Beach CA, USA, 10 p. Main author.

[P11] Mohagheghi, P., Conradi, R.: Exploring Industrial Data Repositories: Where
Software Development Approaches Meet. Proc. the 8th ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software Engineering (QAOOSE’04),
Olso, Norway, June 15, 2004, Coral Calero, Fernando Brito e Abreu, Geert Poels
and Houari A. Sahraoui (Eds.), pp. 61-77. Main author.

[P12] Mohagheghi, P., Conradi, R.: A Study of Effort Breakdown Profile in Incremental
Large-Scale Software Development. To be submitted to IEEE Computer. Main
author.

[P13] Mohagheghi, P., Anda, B., Conradi, R.: Use Case Points for Effort Estimation -
Adaptation for Incremental large-Scale Development and Reuse Using Historical
Data. To be submitted. Main author.

The published papers can be downloaded from the software engineering group’s
publication list at the Department of Computer and Information Science, NTNU [IDI-
SU04].

1.6 Contributions

The contributions are integrated in two observations:
Several aspects of software development must be revised when introducing a
development approach such as reuse or incremental development. This work
investigated the software process model, inspection techniques, estimation
method, effort distribution and metrics.

−

− The above aspects should also be analyzed and adapted for a combination of
development approaches and the context. Some other research has also

 6

 Contributions

identified this fact. Further evidence is provided and some improvements are
proposed.

In addition to a descriptive study of incremental development of a product family in
[P1], [P3] and [P7], this thesis contains five main novel contributions and two minor
contributions which will now be presented.

1.6.1 Contributions in Software Reuse
C1. Empirical verification of reuse benefits
This is the first empirical study of a large industrial system. The main contributions are:

C1-1. A quantitative analysis of TRs showed that reusable components have
significantly lower defect-density than non-reused ones. Reused components have,
however, more severe defects but fewer defects after delivery, which shows that defects
of these components are given higher priority to correct. The study did not show any
relation between component size and defect-density for all components. Only for non-
reused components, an increase in the number of defects with the component size was
observed.

C1-2. A quantitative analysis of the amount of modified code between releases
showed that reused components are more stable (are less modified) between successive
releases.

C1-3. A quantitative analysis of CRs did not show any difference in change-
proneness (the number of CRs/Component size) between reused and non-reused
components.

Some metrics are defined (and the related data is collected) at the level of blocks,
while others are defined at the level of subsystems. The statistical analysis is done at
both levels when possible and sometimes with only subsystems.

C6a. Adaptation of the Rational Unified Process (RUP) regarding reuse
The approach to initiating a product family was an extractive one. Software architecture
has evolved to support reuse, while the software process model (an adaptation of RUP)
has not adapted for reuse to the same degree. Adapting the process model beforehand
was not considered critical for initiating reuse or reuse success. However, it is likely
that the company will gain in the long term from adapting RUP explicitly regarding
reuse with proposed changes in workflows and activities, for both development for and
with reuse. No empirical studies have been found on evaluating or adapting RUP in this
aspect.

1.6.2 Contributions in Incremental Development
C2. Increased understanding of the origin and type of changes in requirements or
artifacts in incremental development
A quantitative analysis of CRs showed that perfective changes (enhancements and
optimizations) are most common. Of these, non-functional changes to improve “quality
attributes” are more frequent than are pure functional changes. The results also show
that earlier releases of the system are no longer evolved. Functionality is enhanced and
improved in each release, while quality attributes are mostly improved and have fewer
changes in forms of new requirements. The share of adaptive/preventive changes is
lower, but still not as low as reported in some previous studies. There is no previous

 7

Introduction

literature on the share of non-functional changes. Other literature claims that the origin
of changes is usually outside the organization, while this study showed that most
changes are initiated by the project organization itself. The results contribute to the
understanding of how software evolves in incremental development of large systems
and have generated hypotheses for future empirical studies in the same domain or other
domains.

C3. Developing an effort estimation method using use case specifications and effort
distribution in different phases of incremental software development
The Use Case Points (UCP) effort estimation method is adapted for complex use cases
(described in UCSs) with many main and alternative flows, incremental changes in
these and reuse of software from previous releases. The complex UCSs have been
broken down into smaller ones, points have been calculated for all the steps in UCSs
and the modified ones, and the method is simplified by assuming an average project
when it comes to assigning values to several factors. The study also contributed in
adding an Adaptation Factor (AF, set to 0.55) to count for reuse of software from a
previous release (contra developing from scratch), which is borrowed from COCOMO
2.0. The estimation method is calibrated by using historical data on effort from one
release and is verified by using data from the successive release. The UCP method was
earlier only tested on small projects and without incremental development.

A quantitative analysis of distribution of effort over activities using historical data
from two releases showed that approximately half the effort is spent on activities before
system test. The other half is spent on project management, system test, software
process development, Configuration Management (CM) and some minor effort-
consuming activities (documentation, inspections, travel etc.). No similar study on
effort consumption in new development approaches and for large systems has been
found. The results have been used in adapting the estimation method. They are also
useful in breaking down total effort between activities in a top-down estimation method.

C6b. Improving techniques for inspection of UML models
Data from 38 earlier inspections were used to develop a baseline for the cost-efficiency
of the company’s existing inspection technique. A controlled experiment with two
teams of developers was performed, comparing the company’s existing inspection
technique with a tailored version of the Object-Oriented Reading Techniques (OORTs)
developed by the University of Maryland. The results showed no significant difference
in the cost-efficiency of the two techniques, but there was a difference in the types of
detected defects. The OORTs have previously been the subject of several student
experiments and one industrial case study, but no controlled experiment with
incremental development of UML models and with models that sometimes cover entire
walls. The method fitted (unexpectedly) well into the development process, but needs
further improvements and adjustment to the context.

 8

 Contributions

1.6.3 Contributions in Software Reuse and Incremental
Development

C4. Metrics for a combination of reuse of software components and incremental
development
Results of qualitative and quantitative analysis are used to assess the company’s
measurement program and the relations between quality metrics and development
practices (and the underlying development approaches). Other literature discusses
metrics for CBD. However, these metrics should be adapted for incremental
development and for reuse. Metrics have been identified for a combination of reuse of
software components and incremental development, intended for assessing development
approaches and building more complex models.

1.6.4 Research Method
C5. A data mining method for exploring industrial data repositories
A data mining method is developed that is based on experience from the quantitative
studies. It shows steps in such studies, combines top-down theory search with bottom-
up hypotheses generation and uses the traditional data mining steps in the execution
phase. Challenges in performing data mining studies and integrating the results of
several studies with one another are classified into physical and conceptual ones.

1.6.5 Summary of Contributions
Table 1-1 shows benefits in terms of improved process quality or improved single
component quality. It also shows the papers that describe the contributions.

 9

Introduction

Table 1-1 The relations of contributions to the quality of process and single
components

Contribution Process quality Single component quality Paper

C1-1, C1-2,
C1-3. Reuse
benefits

Reused components are
more stable and have less
defect-density.
No relations between
defect-density or the
number of defects, and size
of components are observed.

P8
P10

C2.
Software
evolution

Generating theory on
evolution in incremental
development.

 P10

C3.
Effort
estimation
method

Improved effort estimations.
Generating theory on effort
distribution in large-scale
incremental development.

 P12
P13

C4.
Metrics

Assessing company’s
measurement program.
Useful in assessing
development approaches.

Useful in assessing quality
of single components.

P5
P11

C5.
Data mining
method

Developing research
method. P11

C6a.
Software
process model

More consistency between
practice and process model
is advised.
Developers use process web
pages and supplement them
with expert knowledge and
previous work.

Better documentation of
reused components is
needed.

P2
P6
P9

C6b.
Inspection
techniques

Consistency between UML
models, and between UML
models and requirements can
be improved.

Certification of components. P4

1.7 Thesis Structure

This thesis consists of two parts:
Part I aims to provide an introduction to the field, put the research into the
context, integrate the results, and evaluate the overall research design and the
results. It covers Chapters 1 to 8.

−

− Part II contains 13 papers that provide detailed results and discussions of the
individual studies. Part II covers Chapter 9.

Figure 1-2 shows the structure of Part I of this thesis.

 10

 Thesis Structure

Theoretical outline
Chapters 2 and 3

Research Methods
& Metrics
Chapter 4

Research Context
Chapter 5

Results
Chapter 6

Evaluation
Chapter 7

Research
questions

Conclusions
&

Future work
Chapter 8

Figure 1-2 The structure of Part I of this thesis

Chapters 2 and 3 are an introduction to the field and introduce challenges that are

faced in this thesis. Chapter 4 presents an overview of research methods and metrics,
and challenges in selecting research methods. The research context, describing the
company context, challenges in large-scale software development, relations to the INCO
goals and the research design in this study are subjects of Chapter 5. Research
questions, which are derived from previous work reported in the literature and the
research context, are already presented in Section 1.3. All the papers P1-P13 and their
contributions are presented in Chapter 6, in addition to some results and discussions that
are yet not published. The research questions are further answered in Chapter 7. The
relations between the research questions, papers, contributions and INCO goals are
presented, and the experience from working in the field is also discussed in Chapter 7.
The thesis is summarized in Chapter 8 and future work is proposed. All the papers are
given in Chapter 9.

In the both parts of this thesis, I have generally used the term “we” to present the
work, either my reflections in Part I or the studies done jointly as reported in Part II.
Research is a collaborative process and I have received valuable feedback on all the
parts, especially from my supervisor.

A second note is on the format of the papers in Part II that had to be changed to fit
the format of Part I. I have also provided more information on the context and the
results of some studies in Part I to justify the conclusions and facilitate interpretation.

 11

 12

2 Software Reuse and Component-Based
Development

This chapter describes the challenges in software engineering that are the motivation
behind reuse, incremental and Component-Based Development (CBD) approaches.
Then, there is a classification of literature related to software reuse, CBD and product
family engineering. The definitions of these subjects are discussed and research
challenges are described for each of them. Two side effects of CBD are briefly
presented that are reason behind proposing alternative approaches. Finally, the whole
chapter is summarized and the research challenges are described related to the studies in
this thesis.

2.1 Software Engineering Definitions and Challenges

Software engineering describes the collection of technologies that apply an engineering
approach to the construction and support of software products. Technology is used here
in a broad sense, meaning concepts, principles, development approaches, methods,
tools, techniques and even software processes. Endres et al. define a project as an
organizational effort over a limited period of time, staffed by people and equipped by
with the other resources required to produce a certain result [Endres03]. For a
development project, the result to be achieved is a product (same place). In this thesis, a
(software development) project refers to the effort required to develop one release of a
software product in incremental development as well.

A system according to Endres et al. consists of hardware and software that is used by
other people [Endres03]. This thesis uses the term “system” both when the software part
is in consideration (meaning a software product) and for the working system as a whole,
for instance the GPRS system. A software process is a set of activities and methods that
gives a software product. A software process tells which activities to do, in what order
and what to produce (artifacts) to have a software product. A software process model is
a representation of a software process.

Software engineering activities or phases include managing, estimation, planning,
modeling, analyzing, specifying, designing, implementing, testing and maintaining
[Fenton97]. Software organizations have always been looking for effective strategies to
develop software faster, cheaper and better. The term software crisis was first used in
1968 to describe the ever-increasing burden and frustration that software development
and maintenance placed on otherwise happy and productive organizations [Griss93].

 13

Software Reuse and Component-Based Development

Many different remedies have been proposed, such as object-oriented analysis,
Computer-Aided Software Engineering (CASE) tools, formal methods, Component-
Based Software Engineering (CBSE), automatic testing, and recently Model Driven
Architecture (MDA) and Aspect-Oriented Programming (AOP). After decades of
software development, the software industry has realized that there is no “silver bullet”;
despite arguments of promoters of new technologies that there is. There are several
factors that limit the success of technologies among these immature processes,
immature methods and tools, unsatisfactory training, organizational resistance to
change, immaturity of technologies and inappropriate use of them, ands the inherent
difficulty of developing software, especially for large and complex software products.

Philippe Kruchten discusses why software engineering differs from structural,
mechanical and electrical engineering due to the soft, but unkind nature of software. He
suggests four key differentiating characteristics [Kruchten01]:

Absence of fundamental theories or at least practically applicable theories makes
is difficult to reason about the software without building it.

−

−

−

−

−

−

−

Ease of change encourages changes the software, but it is hard to predict the
impact.
Rapid evolution of technologies does not allow proper assessment, and makes it
difficult to maintain and evolve legacy systems.
Very low manufacturing costs combined with ease of change have led the
software industry into a fairly complex mess. Kruchten refers to the continuous
bug-fixings, new updates and redesign.

It can also be added that:
Almost every software project is unique and collecting context-independent
knowledge is difficult.
Markets are in a constant state of flux, encouraging changes in requirements and
systems.
Software development is inherently complex, especially for large systems.

How have software engineers tried to solve the crisis in their discipline? Krutchen’s
answer is by iterative development and CBD. Iterative development seeks to find an
emergent solution to a problem that is discovered gradually. CBD seeks to reduce
complexity by offering high-level abstractions, separation of concerns, and
encapsulating complexity in components or hiding it. This thesis considers how these
solutions are combined and work in large system development.

The characteristics mentioned above have even become more extreme due to
Internet-speed development. Internet-speed development involves rapid requirement
changes and unpredictable product complexity [Baskerville03]. In this process, quality
becomes negotiable, while rapid development becomes more important. The strategy is
to acquire, integrate and assemble components. Companies developing products for
these markets have less time to develop for reuse, but maximize development with
reuse.

 14

 Literature Overview

2.2 Literature Overview

A classification of literature on software reuse and CBD is given in order to place this
thesis and related work in this landscape. The following groups are identified and
examples of literature are provided for each group:

1. Software reuse. In his book on the results of the ESPRIT Project REBOOT,
Karlsson gives a good overview of all aspects of software reuse (such as
organizational aspects, metrics for measuring reuse, development for and with
reuse, managing a reuse repository, the Cleanroom adaptation, object-oriented
design for reuse and documenting reuse) [Karlsson95]. Jacobson et al.’s book
describes the reuse-driven software engineering business to manage business,
architecture, process and organization for large-scale software reuse
[Jacobson97]. They focus on software architecture, and the three distinct
activities of component system engineering, application system engineering, and
application family engineering. Notations are UML-based, with use cases to
specify both the super-ordinate system and subordinate component systems.
Morisio et al. and Rine et al. summarize many reuse cases and discuss reuse
success factors [Morisio02] [Rine98]. One of the recent books on software reuse
is [Mili02], describing technological, organizational, and management or control
aspects.

2. CBD and CBSE. A classical book on this subject is written by Szyperski
[Szyperski97]. The second edition also discusses new approaches such as MDA
(Model Driven Architecture), .NET, EJB and others [Szyperski02]. SEI
published two reports on the state of CBSE in 2000, one on market assessment
[Bass00] and the other on technical aspects [Bachmann00]. Heineman and
Council are editors of a handbook on all aspects of CBSE [Heineman01].
Crnkovic and Larsson are editors of a similar book but with more focus on
reliable CBD [Crnkovic02]. Atkinson et al.’s book on the KobrA approach
supports a model-driven, UML-based representation of components and a
product family approach to software development using components
[Atkinson02]. Some of the best-known CBSE processes are Catalysis
([D’Souza98] and [Wills in Chapter 17, Heineman01]), Select [Allen98], UML
components [Cheesman00], the Rational Unified Process (RUP) [Kruchten00],
and OPEN (Object-oriented, Process, Environment and Notation) being a more
generic framework for development ([Graham97] [Henderson-Sellers in Chapter
18, Heineman01]). Atkinson et al. provide a brief overview of these processes in
[Atkinson02].

3. Product families/product lines/system family. Jan Bosch discusses software
architecture, quality attributes and software architecture for product families (or
product lines) in his book [Bosch00]. His article on maturity levels of software
product families gives a framework to discuss different cases [Bosch02].
Jazayeri et al.’s book also discusses software architecture for product families
[Jazayeri00]. Another book, which is often cited in relation with product
families, is Clements and Northrop’s book [Clements01]. Both authors have
many articles on the subject as well. Jacobson et al. discuss application family
engineering [Jacobson97], and Atkinson et al.’s KobrA process supports
product family engineering with components [Atkinson02]. One research actor

 15

Software Reuse and Component-Based Development

on product family development is the Software Engineering Institute (SEI) at
Carnegie Mellon University, which has published several technical reports on
the subject [SEI04a]. A good comparison of several domain analysis methods is
given in [Mili02].

4. COTS-related. Commercial-Off-The-Shelf (COTS) software is software that is
not developed inside the project, but acquired from a vendor and used “as-is”, or
with minor modifications. There is extensive literature on definitions of COTS
and COTS-based systems, selection of COTS products and processes (e.g.
[Torchiano04], [Vigder98a], [Ncube and Maiden in Chapter 25, Heineman01],
[Brownsword00], [Morisio03], [Wallnau98], [Carney00], [Basili01]), but less on
integration and certification of COTS software (e.g. [Voas98]).

5. Component technologies such as CORBA, .NET and EJB. These technologies
are best described by their providers, but are compared in various parts of the
literature. Longshow compares COM+, EJB and CCM [Heineman01, Chapter
35]. Estublier and Favre also compare Microsoft component technologies
(COM, DCOM, MTS, COM+ and .NET) with CCM, JavaBeans and EJB
[Crnkovic02, Chaper 4]. Szyperski classifies these technologies in 3 groups
[Szyperski02]: the OMG way (CORBA, CCM, OMA and MDA), the SUN way
(Java, JavaBeans, EJB and Java 2 editions) and the Microsoft way (COM,
OLE/ActiveX, COM+, .NET CLR), and gives an overview of each group and
compares them.

The rest of this chapter gives a brief overview on points 1 to 3 in the above list are
given and challenges relevant for this thesis are discussed. When considering software
reuse and CBD, there are general issues that are also relevant for COTS-based
development. However, the specific challenges for COTS-based development are not
discussed, since they are not relevant for this study.

2.3 Software Reuse

While literature on CBD is almost all written in recent years, discussion on reuse started
in 1969. Doug McIlroy first introduced the idea of systematic reuse as the planned
development and widespread use of software components in 1968 [McIlroy69]. Many
software organizations around the world have reported successful reuse programs such
as IBM, Hewlett-Packard, Hitachi and many others [Griss93]. The reports show that
reuse actually works and refer to improved productivity, decreased time-to-market
and/or decreased cost.

Reuse is an umbrella concept, encompassing a variety of approaches and situations
[Morisio02]. The reusable components or assets can take several forms: subroutines in
library, free-standing COTS (Commercial-Off-The-Shelf) or OSS (Open Source
Software) components, modules in a domain-specific framework (e.g. Smalltalk MVC
classes), or entire software architectures and their components forming a product line or
a product family.

Mili et al. define reusability as a combination of two characteristics [Mili02]:
1. Usefulness, which is the extent to which an asset is often needed
2. Usability, which is the extent to which an asset is packaged for reuse.

 16

 Software Reuse

They add that there is a trade-off between usefulness (generality) and immediate
usability (with no adaptation).

Morisio et al. define reuse as [Morisio02]:

Software reuse is the systematic practice of developing software from a
stock of building blocks, so that similarities in requirements and/or
architecture between applications can be exploited to achieve substantial
benefits in productivity, quality and business performance.

The benefits should be quantified and empirically assessed. The above definition

excludes ad-hoc reuse, reuse of knowledge, or internal reuse within a project. Frakes et
al. define software reuse as “The use of existing software knowledge or artifacts to build
new software artifacts”, a definition that includes reuse of software knowledge.
Morisio’s definition is closer to what is meant by “software reuse” in this thesis; i.e.
reuse of building blocks in more than one system. Reuse of software knowledge such as
domain knowledge, or patterns may happen without reuse of building blocks and is
captured in domain engineering.

Developing for reuse has its price, which is the reason for analyzing the success of
reuse programs to improve the chances of succeeding. Morisio et al. have performed
structured interviews of project managers of 32 Process Improvement Experiments
funded by the European Commission, in addition to collecting various data about the
projects [Morisio02]. These projects vary a lot in size, approach, type etc. and few of
them have defined reuse metrics. The study found that:

Top management commitment is the prerequisite for success. −
−

−

−

−

−
−

−

Product family practice, common architecture and domain engineering increase
reuse capability.
Size, development approach (object-oriented or not), rewards, repository and
reuse measurement are not decisive factors, while training is.
The other three factors that are considered to be success factors are reuse process
introduced, non-reuse process modified and human factors.
Successful cases tried to minimize change, to retain their existing development
approach, choosing reuse technology to fit that.

Morisio et al. concluded that reuse approaches vary and it is important that they fit
the context. However, this work emphasizes the reuse process. Griss writes that reuse
needs [Griss95]:

Management support, since reuse involves more than one project.
Common wisdom. There is no evidence that object technologies or libraries give
improvement in reuse. Some people also say that process understanding is
nothing or all. Introduce reuse to drive process improvements. Domain
stability and experience are often more important for successful reuse than
general process maturity.
Incremental adoption.

Frakes et al. have investigated 16 questions about software reuse using a survey in 29
organizations in 1991-1992 [Frakes95]. They report that most software engineers prefer

 17

Software Reuse and Component-Based Development

to reuse rather than to build from scratch. They also did not find any evidence that use
of certain programming languages, CASE tools or software repositories promote reuse.
On the other hand, reuse education and a software process that promotes reuse have
positive impact on reuse. They also found that the telecom industry has higher levels of
reuse than some other fields.

Some challenges in research on software reuse are:
Verifying Return On Investment (ROI) either in reduced time-to-market,
increased productivity or in improved quality.

−

−
−

Identifying the preconditions to start a reuse program.
Developing processes for software reuse, roles, steps and adapting existing
processes.

2.4 Component-Based Development

Component-Based Development (CBD) and Component-Based Software Engineering
(CBSE) are often used indistinguishably, but some literature distinguishes between
these two. Bass et al. write that CBD involves technical aspects for designing and
implementing software components, assembling systems from pre-built components and
deploying system into target environment. CBSE involves practices needed to perform
CBD in a repeatable way to build systems that have predictable properties [Bass00]. It
has been decided to use CBD in the remainder of this thesis to cover all the aspects of
engineering systems from pre-built components.

CBD is an approach to the old problem of handling the complexity of a system by
decomposing it. Already in 1972, David Parnas wrote about the benefits of
decomposing a system into modules, such as shorter development time since modules
can be developed by separate groups, increased product flexibility and ease of change,
and increased comprehensibility since modules can be studied one at a time [Parnas72].
He also wrote that the main criteria for modular decomposition should be information
hiding. Modules such as in Ada and procedural languages and objects in object-oriented
design are example of previous attempts at decomposition. Software reuse has also been
discussed for decades. So what is new in CBD? The answer is the focus on software
architecture as a guideline to put pieces together, viewing components as independent
units of development and deployment, and on component models. Developing
components so that they become reusable is called developing for reuse, while
developing systems of reusable components is called developing with reuse
[Karlsson95]. CBD facilitates reuse by providing logical units for assembly and makes
systematic reuse possible by demanding that components should adhere to a component
model.

There are two distinct activities in CBD [Ghosh02]:
1. Development of components for component-based development.
2. The component-based development process itself, which includes

assembly.

 18

 Component-Based Development

Bachman et al. list advantages of CBD as [Bachman00]:
Reduced time to market: even if component families are not available in the
application domain, the uniform component abstractions will reduce overall
development and maintenance costs.

−

−

−
−

−
−

−

−
−
−

Independent extensions: components are units of extension and component
models prescribe how extensions are made.
Component markets to acquire components.
Improved predictability: component frameworks can be designed to support the
quality attributes that are most important.

And advantages added by Bass et al. are [Bass00]:
Improved productivity, which can lead to shorter time-to-market.
Separation of skills: complexity is packaged into the component framework and
new roles are added such as developer, assembler and deployer.
Components provide a base for reuse, since components are a convenient way to
package value. They have direct usability (may be used to build systems
directly), while other approaches such as design patterns are more abstract.

Others mention that extended maintainability and evolvability and fast access to new
technology are reasons for choosing CBD for developing systems when the main
concern is change (see for instance [Cheesman00]). The growing use of OSS (Open
Source Software) is also a new trend to build systems rather fast and cheaply.

Use of components is a clear trend in industry even though the technologies are far
from mature. Bass et al. mention that today’s technology consumers have accepted
improved productivity and shorter time-to-market in exchange for a vague trust to
components and component frameworks [Bass00]. This picture may have changed.

 Components are a convenient way to package value: they provide a

flexible boundary for economy of scope and they can be easily
distributed. With economy of scope it is meant that a component
can be fine-grained or coarse-grained and the scope can be changed.
In contrast 4GL and object-oriented frameworks are more rigid.
Components are designed to be a unit of distribution [Bass00].

Components are defined and classified in multiple ways. Definitions vary based on

the life cycle phase for component identification (e.g. logical abstractions vs.
implementation units), origin (in-house, bought or free software), or roles a component
can play in a system (e.g. process components, data components etc.). A few of these
definitions are given here, before discussing what is important for reuse.

In the SEI’s report on technical aspects of CBSE, a component is defined as
[Bachmann00]:

An opaque implementation of functionality.
Subject to third-party composition.
Conformant to component model. This is mentioned as a difference with other
COTS software with no constraints on conformance to an architecture.

 19

Software Reuse and Component-Based Development

Heineman and Council define a software component as “A software element that
conforms to a component model, can be independently deployed and can be composed
without modification according to a composition standard” [Heineman01]. And finally:

A software component is an executable unit of independent
production, acquisition, and deployment that can be composed into
a functioning system. To enable composition, a software
component adheres to a particular component model, and targets a
particular component platform [Szyperski02].

What these three definitions have in common are:

Components are units of independent development and acquisition. −
−

−

−

−

Components adhere to a component model that enables composition of
components. Composition is the term used for components, instead of
integration.

None of these two aspects are to be found in object-oriented design. Some other
differences with object-oriented design are:

Instantiation: components may be instantiated or not, and if instantiated there are
usually not many instances of them [Atkinson02] [UML2.0].
Components may have state (e.g. KobrA) or not (in order to be replaceable they
should not have state).
Granularity: components are generally considerably larger than individual
classes [Bosch00].

Currently, CBD is mainly carried out using UML for modeling, object-oriented
languages for design, and component technologies such as EJB, .NET and CORBA for
implementation. All these component technologies are especially developed for
distributed systems, which shows that the complexity of these systems and the need for
autonomous units promote the use of components.

The terms component model and component framework are often intermixed.
However, it becomes more common to use component model for standards and
conventions, and component framework for an implementation of a component model
that also gives the infrastructure support [Heineman01] [Bachman00] [Crnkovic02].
The concept of frameworks was initially used for object-oriented frameworks,
consisting of a set of related classes with extension points. What is new with component
frameworks is that they provide run-time services for components and are part of the
final system [Bachman00]. Two aspects are important in component frameworks:

1. Component frameworks define how components interact and thus are part of the
software architecture.

2. Component frameworks affect quality attributes either by defining rules, or by
providing services. A component framework handles several quality
requirements either by [Bosch00]: specific component in the framework, or
design patterns for application developers, or a combination of both approaches
above.

 20

 Component-Based Development

Developing component frameworks is demanding. Some commercial component
frameworks (also called component technologies) are EJB and .NET, while an example
of a domain-specific component framework is described in Sections 5.1.3 and 5.1.5.
Domain-specific frameworks provide reusable design for a domain in addition to run-
time services and are developed for a set of products. They may be implemented on top
of other component frameworks.

CBD is about building composable components and building systems from these
components. Important aspects are therefore reuse, autonomy of components and
composition. Challenges or inhibitors are due to immaturity or lack of software
engineering methods, processes and tools in all these aspects. Bass et al. mention
inhibitors in CBD as lack of available components, lack of standards for component
technology, lack of certified components and lack of engineering methods [Bass00].
Crnkovic lists the challenges of CBSE as: specification, component models, life cycle,
composition, certification and tools [Crnkovic02]. The present focus is on software
engineering methods. Some challenges in each development phase and for a project as a
whole are discussed here, using [Crnkovic02], [Ghosh02], [Jacobson97] and other
various sources, and putting them together as:

1. Management: decision-making on build vs. reuse vs. buy, initiating product
families, ROI, vendor interactions for COTS and cost estimates. Although
component markets have grown in the recent years, there are few empirical
studies that can verify increased productivity or shorter time to market due to
acquiring components.

2. Requirement engineering:
−

−

−

−

Selection of components and evaluating these for functional, quality or
business requirements, and possible trade-offs between requirements and
selected components. Selection is mostly important for COTS components,
but also when a company has a reuse repository to choose components from.
Traceability between requirements and components.

3. Analysis and design:
Software architectures such as components and connectors, pipes and filters
[Zave98], agent-based [Zave98], blackboard style [Crnkovic02] [Bosch00]
and layering [Jacobson97] [Bosch00]. These architecture styles emphasize
components being developed independently of one another. Layering is on a
higher level of abstraction, applicable to different architecture styles.
Architectures for component-based systems should allow building systems
by composing components, allow plug-and-play style and allow reuse of
components across products. Bosch and Bruin et al. define a similar
approach to architecture design [Bosch00] [Bruin02]: derivation of an
architecture that meets functional requirements and optimizing it for quality
requirements step-wise.
Decomposing a system into components, modeling, understanding
components, various design decisions on handling concurrency, binding1 and
control (processes or threads).

1 Binding means that resources provided by one component become accessible to

another component or bound to the client. Component models talk of early or late
binding [Bachman00]: In early binding, the developer must make some decisions and is

 21

Software Reuse and Component-Based Development

−

−

−

−

−

−

Implementation: selecting component model or framework, developing glue
code or wrapper, component configuration or adaptation and composition.

4. Prediction and Verification:
Predicting and verifying functional and quality requirements. Components
and frameworks should have certified properties, and these certified
properties provide the basis for predicting the properties of systems built
from components [Bachman00].
Validating component assemblies (testing, modular reasoning) and checking
the correctness of compositions.
Testing: black-box testing without access to source code becomes frequent,
vendor’s response to trouble reports and isolating faults. Hissam et al. give
an overview of techniques for component and system observation
[Hissam98].
Quality assurance techniques such as inspections. Mark Vigder in
[Vigder98b] provides a list to check, for instance connectors, architecture
style, interfaces, tailoring and component substitution for evolution.
Metrics for component-based systems.

5. Configuration Management (CM): CM is the discipline of managing the
evolution of software systems. CM becomes more important because of possible
different versions at each site, history of updates, handling licenses and
compatibility issues.

6. Relations between CBD and other approaches such as incremental
development [Atkinson02].

7. Software processes that meet the above challenges for component-based
systems.

Services of a component are defined by its interfaces and are therefore easier to
verify. On the other hand, specification, implementation and assessment of quality
attributes are more demanding. Crnkovic et al. mention that CBSE faces two types of
problems when dealing with extra-functional properties (extra-functional properties,
quality requirements and non-functional requirements refer all to the same properties)
[Crnkovic02]:

a) The first problem is common to all software development and concerns
imprecise definition of these properties.

b) The second problem is specific to CBSE and concerns the difficulty of
relating overall system properties to individual component properties.

Voas further mentions the difficulty of composing quality attributes. Functional
composability, even if it were a solved problem (using formal methods, modern design
approaches, model checking etc.) is still not mature enough to compose itilities
[Voas01]. He mentions that the question is which itilities, if any, are easy to compose.

also called development time binding like in EJB. Late binding is run-time binding, e.g.
JavaBeans. Late binding requires early binding of design decisions on how components
will coordinate their activities. This is consistent with the overall philosophy of
component-based software engineering: architecture first and leads to prediction prior
to assembly.

 22

 Component-Based Development

He answers that none of itilities are easy to compose and some are much harder to
compose than others. A component model defines how components interact and hence
embraces aspects that have impact on many quality attributes such as scalability or
security. These quality attributes may thus be easier to predict, while others are still left
to application systems built on component models.

2.5 Product Families

Many organizations are using a product family engineering approach for software
development by exploiting commonalities between software systems, and by reusing
software architecture and a set of core assets. Product family engineering is reuse at the
largest level of granularity [Atkinson02]. The terms product family engineering,
product line engineering, system family engineering and application family engineering
are used for a wide range of approaches to develop a set of products with reuse. The
main idea is to increase the granularity of the reused parts and define a common
architecture for a family of systems. The use of terminology is sometimes confusing.
Frank van der Linden explains it as, “ Certain European companies use product line to
indicate a set of related, commercial products that have appear similar to users but often
are built with different technologies. For example, product lines in consumer electronics
include televisions, VCRs, DVD players, audio receivers, CD players, audio amplifiers
and so on. We use product family to describe a collection of products that are based on
the same technology- for instance a collection of TVs based on the same software
architecture. Often products in the same product line are in different product families
and vice versa” [Linden02]. The European community uses product family for software
products that are built using the same technology, which is the same as a product line in
USA. In this thesis, definitions are provided as they originally are in the references, but
the term product family is used for the Ericsson case study, in discussions, or when
indirectly referring to a paper.

Parnas wrote the first paper on development of systems with common properties in
1976. He wrote: ”We consider a set of programs to constitute a family, whenever it is
worthwhile to study programs from the set by first studying the common properties of
the set and then determining the special properties of the individual family members”
[Parnas76].

SEI has conducted research on product families for a few years and has published
several technical reports and notes, results of a survey and of several case studies in
companies having a product family (see [SEI04a]). SEI defines a software product
family/product line as:

A software product line is a set of software-intensive systems
sharing a common, managed set of features that satisfy the specific
needs of a particular market segment or mission, and that are
developed from a common set of core assets in a prescribed way.

 SEI’s Product Line Practices initiative [SEI04b]

 23

Software Reuse and Component-Based Development

The recent literature on CBD discusses developing components for product families,
e.g.:

With increasing frequency, components are not sold alone but rather as a family
of related and interacting components [Bass00].

−

− When combining software architecture with component-based development, the
result is the notion of software product lines [Bosch00].

Ommering and Bosch summarize the driving forces of proactive, systematic, planned
and organized approaches towards software reuse for sets of products, i.e. product lines,
as shown in Figure 2-1 [Crnkovic02]. The dashed line is added here: Size and
complexity of a problem promotes CBD.

Size and
complexity

Quality

Diversity

Lead time
reduction

Reuse Components

Architecture

Product lines

Figure 2-1 Basic arguments for software product lines [Ommering and Bosch in

Crnkovic02, Chapter 11]

Product families face the same challenges as other reuse-based approaches as
discussed in Section 2.3 such as:

1. How to initiate a product family?
2. How ROI can be assessed? What is the economical impact?
3. What are the organizational or quality impacts?

For product families, we also ask:
4. How is variability or diversity managed? What is the impact on software

architecture?
5. How the scope is defined?

Reviewing literature that handles these questions is outside the scope of this thesis.
This section discusses questions 1 and 5 that are relevant for the discussion of the
Ericsson case study. Quality impacts are later discussed in combination with reuse.

Each product in a product family is developed by taking applicable components from
a common asset base, tailoring them through preplanned variation mechanisms, adding

 24

 Product Families

new components as necessary and assembling the collection according to the rules of a
common, product-family-wide architecture [Northrop02].

A basic concept in this discussion is the concept of a domain. Mili et al. define a
domain as “An area of knowledge or activity characterized by a family of related
systems [Mili02]. A domain is characterized by a set of concepts and terminology
understood by practitioners in that specific area of knowledge”. Further, they
characterize a domain by one of the three criteria: common expertise (producer-
focused), common design (solution related), or common market (business related). It is
also usual to differ between problem domains and solution domains [Mili02] [Bosch00].
The core activity in domain engineering is domain analysis, which handles the process
of eliciting, classifying and modeling domain-related information. Sometimes domain
analysis is not performed as a distinct activity, for example when an organization has
solid knowledge of the domain [Northrop02].

SEI defines three essential product line activities [Northrop02]:
1. Domain engineering for developing the architecture and the

reusable assets (or development for reuse as called in
[Karlson95]).

2. Application engineering to build the individual products (or
development with reuse as called in [Karlson95]).

3. Management at the technical and organizational level.

McGregor et al. divide approaches for introducing a product family into heavyweight

and lightweight [McGregor02]. In the heavyweight approach, commonalities are
identified first by domain engineering and product variations are foreseen. In the
lightweight approach, a first product is developed and the organization then uses mining
efforts to extract commonalities. The choice of approach also affects cost and the
organization structure. Charles Krueger claims that the lightweight approach can reduce
the barrier to large-scale reuse, as it is a low-risk strategy with lower upfront cost
[Krueger02]. Johnson and Foote write that useful abstractions are usually designed from
the bottom up; i.e. they are discovered and not invented [Johnson98].

Krueger defines another classification of strategies or adoption models [Krueger02].
The three prominent adoption models are:

Proactive. When organizations can predict their product line requirements and
have time or resources, they can design all product variations up front. This is
like waterfall development approach to conventional software.

−

−

−

Reactive. This is more like spiral or extreme programming approaches to
software development. One or several product variations are developed on each
spiral. This approach is best suited when product line requirements are not
predictable, or there are not enough resources or time during transition.
Extractive. This approach reuses one or several products for the product line
initial baseline. This approach is effective for an organization that wants a quick
transition from single product development to a product line approach.

 25

Software Reuse and Component-Based Development

While being proactive can pay off [Clements02a], lightweight approaches have lower
risk when products cannot be foreseen. The discussion above on adoption models (or
initiation approaches) shows that organizations start and maintain product families in
multiple ways. Bosch identifies two factors in deciding which approach is best suited
for an organization when adopting a product line [Bosch02]:

a) Maturity of the organization in terms of domain understanding, project
organization, management and degree of geographical distribution (less
distribution promotes the product line approach in his view).

b) Maturity and stability of the domain. For stable domains it is easier to maximize
domain engineering.

Scoping is the selection of features that are to be included in the product family
architecture. Bosch answers this question by identifying two approaches [Bosch00]: the
minimalist approach that only incorporates those features in the product family that are
used by all products. The maximalist approach incorporates all and products should
exclude what they do not need. Commonalities and variations in product family
requirements and implementations are often defined by abstracting these in features.
Feature-Oriented Domain Analysis (FODA), first introduced by SEI in 1990 [Kang90],
appeals therefore to many organizations. FODA assumes forward engineering and a
dedicated product family organization. The KobrA process has also guidelines for
forward engineering in product family, and defines activities Framework Engineering
and Application Engineering in product family development [Atkinson02].

2.6 Alternatives to Component-Based Development

There are two special side effects in CBD that are tried to be answered by alternative
approaches:

Components are structural and not behavioral units. Therefore, there is only a
vague connection between requirements and the structure of the system (this
problem is not limited to CBD). The difficulty of traceability between
requirements and components is also important for composition and verification.
Decomposition into components has two well-known effects called tangling and
scattering [Tarr99]. Tangling means that a given component contains code
coming from implementation of several use cases (or any requirement in
general). Scattering means that a set of components is required to implement a
use case (crosscutting property).

−

− Traceability between requirements and components and assessment is even more
challenging for quality attributes or non-functional requirements. These
requirements are related to the whole system and not to a single component, and
cannot be specified by interfaces.

The alternative approaches propose either to remove the structural units, or to be
more precise with non-functional requirements and add these to a component
specification. Two alternative approaches are discussed here: Aspect-Oriented
Programming (AOP) that can be combined with CBD or be performed without
components, and generative techniques.

 26

 Summary and the Challenges of this Thesis

AOP is seen by some people as a way to overcome the above problems [Jacobson03]
[Pawlak04]. With AOP, partial implementations will be developed, each addressing one
single quality aspect of the component. These will be woven together by especially
designed aspect weavers to a complete component, complying with a certain contract.
AOP can be combined with CBD to support composition of components. Example is
Aspect-Oriented Component Engineering (AOCE), in which a component specifies
provided and required aspects in addition to business functions [Grundy00]. AOCE
avoids “code weaving” that makes it difficult to reuse components. Instead each
component inherits from special classes that provide functions to access and modify
aspects. Ivar Jacobson aims for use case modularity, and defines a use case module as a
module containing a use case realization and a set of slices of components participating
in realizing the use case [Jacobson03]. He also sees the possibility to remove
components totally and have two steps: specify each use case and code it. Pawlak et al.
also propose behavioral decomposition and composition of aspects [Pawlak04].

Atkinson et al. consider that the weaver-based approaches and the AOP community
have so far been unable to fully resolve the superimposition problems [Atkinson03]:
these approaches completely separate aspect code from the base code. This strength is
also a weakness: when several aspects and the base code interfere at some join points,
issues of priority, nesting and mutual execution arise. However AOP can lead to
develop domain-specific environments and domain-specific languages that can ease
software development and automatic generation of code.

Another approach to CBD is reflected in generation techniques; i.e. the specification
of a component in some component-specific language is taken to a generator that
translates the specification into code. For example, Bruin et al. propose generating
components from functional and non-functional requirements, instead of composing
these, close to aspect weaving in AOP [Bruin02].

One weakness of both AOP and generation techniques is the reuse difficulty.
Domain-specific solutions may reduce the complexity of these techniques, but also limit
the potential market. Both these techniques are still in early infancy stage, while
commercial component models have been in the market for a while and have achieved
some success.

2.7 Summary and the Challenges of this Thesis

This chapter has shown that software reuse is the systematic practice of developing
software from a stock of building blocks. When combining with CBD, these building
blocks are components developed according to a component model. Product family
development is reuse and CBD in the large; i.e. developing a set of products that reuse
some core assets, combined with a software architecture that can handle commonalities
and variabilities between these products. One common architectural solution is a layered
architecture to group pieces that have similar change characteristics; e.g. in FODA and
[Jacobson97].

Some challenges in software reuse, CBD and product family development were
discussed in the previous sections. This section describes which of these challenges are
the subjects of this thesis in the context of incremental development of a large system.
These Research Challenges (RCs) can be defined as:

 27

Software Reuse and Component-Based Development

RC1. Adaptation for reuse. Software processes, software architecture and
organizations should be adapted for reuse, CBD and product family development.
This adaptation can (and should preferably) happen gradually. The issue is how this
adaptation happens or should happen.
RC2. Combination of approaches. Software development approaches are seldom
used in isolation, but in combination with one another and existing practices in
companies. Incremental development is combined in this case with reuse, CBD and
product family development. Therefore, the attempt is made to provide a holistic
view of the system and the development approaches, combining the approaches and
seeking for their mutual impact.
RC3. Reuse benefits. The issue is whether we can quantify reuse benefits (if any
benefits are achieved) as far as data is available. If these benefits are not observed,
the case will be a falsifying case.
RC4. Exploring. There are few case studies on large-scale systems and most
empirical work is performed in form of surveys. Exploring case studies may provide
new insight or new research questions on the impact of complexity or scale on
software development methods. For some software engineering methods, the
question is whether these methods scale up. An example is the UCP estimation
method, which is the subject of [P13], and was earlier tested only on systems with
few use cases. On the other hand, software engineering methods for product families
are designed for large systems and several products, and the question is whether
these methods scale down when the number of products is low or they are of small
size.

 28

3 Incremental Development

This chapter begins by defining incremental development and the motivations behind
choosing it. Then, it describes variations in incremental approaches. It also reports
results of a few empirical studies on the impact of incremental development,
prototyping or incremental testing on product and project metrics. Since RUP is the
software process in Ericsson, a brief introduction to this is given. Finally, challenges
facing this study regarding incremental development are described.

3.1 Definitions

Incremental development is known as an alternative to the waterfall software
development method with its strict sequence of requirements, analysis, design and
development phases. However, incremental approaches vary in aspects such as the
recommended iteration length, the amount of up-front specification work, or emphasis
on feedback and adaptation-driven development. There is also a confusion of
terminology in this area and iterative development, incremental development, time
boxing, spiral development and versioned development are used inconsistently in the
literature.

Larman and Basili provide a brief history of iterative and incremental development
in [Larman03]. According to them, the history of incremental development goes back to
the 1930s when Walter Shewhart, a quality expert at Bell Labs, proposed a series of
Plan-Do-Study-Act cycles for quality improvement. In 1975, Basili and Turner defined
Iterative and Incremental Development (IID) as:

The basic idea behind iterative enhancement is to develop a software
system incrementally, allowing the developer to take advantage of what
was being learned during the development of earlier, incremental,
deliverable versions of the system…At each iteration, design
modifications are made along with adding new functional capabilities
[Basili75].

 29

Incremental Development

This definition emphasizes learning and feedback as the main motivation behind
iterative development and does not distinguish between incremental and iterative
development. And from RUP:

Iteration: A distinct sequence of activities with a base-lined plan and
valuation criteria resulting in a release (internal or external).
Increment: The difference (delta) between two releases at the end of
subsequent releases.

 [Bergström03]

Studying different sources have led to the conclusion that incremental development

is often used for delivering a subset of requirements (in a working system) in each
increment, while iterative development is used for recursive application of development
activities and recursive elaboration of artifacts. Time boxing is increments of fixed
length. What distinguishes incremental development from prototyping is that
increments are not thrown away, but are supposed to deliver a complete system, while
prototypes are usually thrown away. Incremental development is also used for
development methods with major up-front specification and pre-planned product
improvements, while in an evolutionary approach product improvements are not
preplanned and requirements are gradually discovered. An important fact about
increments is that they accumulate functionality; e.g. release 2.0 builds on release 1.0.

Other aspects of incremental or iterative development are:
User participation and user feedback [Mills76], −

−

−

−

The need to do risk assessment in each iteration (Gilb and others had previously
applied variations of this idea) [Boehm85],
Gilb emphasizes non-functional requirements in each increment and having
measurable goals (for example performance goals) [Gilb88],
Short iterations as in eXtreme Programming (XP) [Kent99].

The Cleanroom approach to software development also has incremental development
as one of its core practices. The others are recursive development (recursive application
of common abstraction techniques), non-zero defect software, rigorous specification and
design, and usage testing (testing expected system usage in terms of system states, their
transitions and dependencies) [Atkinson02]. In 1994, the Standish Group issued its
widely cited “CHAOS: Charting the Seas of Information Technology”, which is
followed by several reports after that. The Standish Group has analyzed several
thousand projects to determine success and failure factors [Standish04]. The top reason
for success is user involvement, while firm requirements is also a success factor that is
in contrast with incremental development.

3.2 Variations in Incremental Approaches

What increments mean in practice? Even-André Karlsson gives examples such as
[Karlsson02]:

a) Each product family release is an increment. These increments are delivered to
the customer.

 30

 Variations in Incremental Approaches

b) Within a project there can be several increments, each adding to the
functionality of the previous one.

c) Each sub-project or team can divide the work in increments that can be tested in
a simulated environment.

Karlsson asks several questions that should be answered when applying incremental
development. Three of these questions that are relevant for this study are presented and
answered by getting help from Karlsson and others.

QI. What is the functionality of an increment?
Increments can be:

Feature increments: distinct user functions or features are added in each
increment.

−

−

−

−

Normal/error increments: simple normal cases are developed first. More
complexity is added to normal cases in the successive iteration, for example
adding error handling.
Separate system function increments: for example, in the telecom domain start
and restart is developed first. Commands, traffic handling and other user
functionality are added later.
Component-oriented increments: KobrA assigns components and stubs of their
children to increments (in order to deliver an executable version) and gradually
goes in-depth in component realizations [Atkinson02].

The major difference is between feature-oriented and component-oriented
approaches. Both can be combined with normal/error increments. The system function
increments is considered as a variant of feature increments.

Atkinson et al. write that software architectures do not lend themselves to
incremental development [Atkinson02]. One reason is that architectures should be
bearer of non-functional requirements and thus a total view of the system should be
developed. As a remedy, they propose component-oriented increments. The
disadvantage of this is that the approach is even more dependent on excessive up-front
requirement and design work. Furthermore, not all non-functional requirements are
possible to assign to single components and no functionality is completely built in early
increments.

When developing an entire system from scratch, a sufficiently small first increment
is usually difficult to find. For example, in product family development some reusable
assets should be developed first, since all components rely on the services of a
component framework. In this case a combination of features and normal/error
increments may be useful. Feature increments have the advantage of testing all parts of
the system early, but the disadvantage of reopening some design items several times. It
increases the need for inspections and regression testing to ensure consistency and
compliance with earlier deliveries.

QII. How long are the increments and how are they scheduled?
The question has three aspects: the duration, whether the duration is fixed or variable,
and whether they are done sequentially with all personnel or in parallel:

 31

Incremental Development

Short increments keep up the focus, but can result in a focus on the code and
neglecting other documentation. Long increments become like the waterfall
model.

−

−

−

−

−

Fixed duration or time boxes make planning easier, but splitting the
functionality into increments of equal size may be difficult. Variable increments
require more planning.
Sequential increments need no coordination between increments, while parallel
increments allow better use of scarce resources e.g. test environments.

QIII. How is work allocated?
There are basically two different strategies:

Design item responsibility. People are assigned to design items and deliver the
functionality necessary for each increment. This is more natural for normal/error
increments or component-oriented increments.
Increment responsibility. People are assigned to increments and do the necessary
functionality in each item affected by an increment. This is more natural for
feature increments.

Design item responsibility is better for complex design items and has the advantage
of better knowledge about the item, no cost to open or understand the design, and better
consistency in design. Increment responsibility gives better system understanding and
no handover of intermediate results (less communication). It is possible to add the role
“design item coordinator” in connection with increment responsibility to get the
advantages of both approaches, as Ericsson does.

3.3 Incremental Development and Quality

Incremental development is chosen to reduce the risks of changing requirements and
environments, and to learn from experience or user feedback. Other risks associated
with the “big bang” approach are also reduced such as risks associated with new
technologies. It also allows companies to enter the market with an early version of a
system. However, the impact on cost, effort, organization and software quality should
be further assessed.

Jalote et al. suggest that development time may be reduced by time boxing and
parallel iterations [Jalote04]. Each time box is divided into stages of almost equal
duration. They argue that the total development time is not reduced in a sequential
approach and in fact it can take more time than a waterfall model if all requirements
were known. But fixed time boxes reduce the turnaround time and allow better
utilization of resources. The constraints are that the method needs a good feature
estimation method, tight CM as teams work in parallel and is best fitted to medium-
sized projects that have a lot of features to deliver. In other words, other aspects of
software development such as estimation method or CM are important for a software
development method to work.

Two papers that relate development practices to measurable attributes of product or
project are mentioned in [P5]. The first paper reports results of a survey in 17
organizations on correlation between defect-density and probability of on-time delivery,
and practices [Nuefelder00]. Incremental development is not among the practices

 32

 The Rational Unified Process (RUP)

mentioned. Incremental testing as opposed to big bang testing had strong negative
correlation with defect-density, meaning that quality is improved by incremental testing.
Having a life cycle model also decreases defect-density.

The second paper reports results of a survey among managers in Hewlett-Packard
[MacCormack03]. A total of 29 projects were analyzed, and quantitative data such as
size of projects and defect-density are also collected. The authors correlate 8 practices
with defect-density and productivity. The results show that different practices are
associated with multiple dimensions of performance. For example, the use of regression
tests has an impact on the defect rate, but not on productivity. Conversely, the use of
daily builds increases productivity, but does not affect the defect rate. The practice that
has an impact on multiple dimensions is early prototyping. They found a weak relation
between dividing the project in sub-cycles (delivering functionality in pieces) and the
defect rate, but little effect on productivity. They argue that early prototyping allows
getting feedback from customers and developing what they want. They conclude that
practices should be considered as coherent systems of practices, be chosen depending
on the attribute that should be optimized and may trade-off for other practices.

3.4 The Rational Unified Process (RUP)

This section provides a brief introduction to RUP, since Ericsson uses an adaptation of
it. This relies on [Arlow02] for the history of UP and RUP, [Kruchten00] for an
introduction to RUP and [Bergström03] for adopting RUP.

The history of the Unified Process (UP) goes back to 1967 when Ericsson (with
Jacobson working there) took the step of modeling a complex system as a set of
interconnected blocks and also defined traffic cases; i.e. how the system is used. Later
SDL (Specification Description Language) was defined and became a standard for
specifying telecom systems. Together with Booch and Rambaugh, Jacobson developed
Unified Modeling Language (UML), which has gradually replaced SDL. RUP is
introduced in 2001 and the version used by Ericsson at the time of this study was RUP
5.5.

RUP is a software engineering process and also a process product. RUP is the most
widely commercial variant of UP. It has added a lot of features to UP that both extends
and overwrites UP. RUP can and should be adapted (tailored) to suit the needs of an
organization and a concrete project. RUP is based on the six best practices as shown in
Figure 3-1.

Control Changes

Manage
Requirements

Use
Component

Architectures

Model
Visually

Verify
Quality

Develop Iteratively

Figure 3-1 Best practices of RUP

 33

Incremental Development

RUP is iterative, use-case-driven (creation of other models as well as test artifacts
will take off from the use case model) and architecture centric. One core practice in
RUP is developing a software architecture in early iterations.

Figure 3-2 shows the four phases and nine workflows or disciplines in RUP. The
phases and the goals for each phase are:

1. Inception - Define the scope of a project and identify all the actors and use cases.
Draft the most essential use cases (almost 20%) and allocate resources.

2. Elaboration - Plan project, specify features and develop a stable software
architecture. The focus is on two aspects: a good grasp of the requirements
(almost 90%) and establishing the architecture baseline.

3. Construction - Build the product in several iterations up to a beta release.
4. Transition - The product is delivered into end-user community. The focus is on

installation, training, support and maintenance.
Each phase may be executed in one or more iterations. There is a milestone at the

end of each phase. The milestone at the end of the elaboration phase is the architecture
milestone. Bergström et al. emphasize that this milestone is the most important one and
it can only be passed when the vision, architecture and requirements are stable, the
testing approach is proven and an executable prototype is built [Bergström03]. RUP
emphasizes:

Up-front requirement specification to assign requirements to increments, −
−
−

−

Early stable software architecture,
Variable length increments where final stages of an iteration can overlap with
initial stages of the next one,
Assignment of use cases to increments (a variation of feature increments).

The concepts of role, activity and artifact are central in RUP. A role performs an
activity to produce or update an artifact.

Figure 3-2 Phases, workflows (disciplines) and iterations in RUP

 34

 The Rational Unified Process (RUP)

Adapting RUP can be done by selecting parts, for example, workflows of it
(Bergström et al. discuss adopting RUP, which normally means selecting, but not
changing a method. This work talks of adapting RUP; i.e. selection and changing).
Many companies start with use cases when choosing RUP. However, each workflow is
very large and one should exactly decide what to choose. Probably the easiest approach
to adaptation is selecting artifacts, related activities and roles [Bergström03]. Some
changes are easier than others, e.g. adding templates or guidelines, while adding or
removing roles or artifacts may introduce inconsistencies. RUP also comes with a tool
called “RUP Builder” which allows the selection of three variants of RUP depending on
the size of the project: Small, Medium and Large (Classic). Bergström et al. emphasize
that the one practice that should not be excluded is the architecture-first approach (the
architecture milestone) [Bergström03]. Many consider RUP as a heavyweight process
(i.e. many rules, practices and documents), compared to lightweight processes with few
rules and practices. There are two points in this discussion:

a) The difference between RUP and processes such as XP is not only the amount of
produced artifacts, but also the stability of requirements, up-front requirement
specification and the architecture-centric approach of RUP.

b) RUP can also be used lightweight.
RUP is applicable for development of several types of systems such as component-

based or real-time systems. Components in RUP are defined in the implementation view
and are executable units.

RUP defines a component as a non-trivial, nearly independent, and replaceable
part of a system that fulfils a clear function in the context of a well-defined
architecture. A component conforms to and provides the physical realization of a
set of interfaces.

Although RUP is widely used, there is a lack of empirical studies on RUP. A study

of introducing RUP in a few Norwegian companies shows that although the motivation
was improving practices such as requirement specification, these improvements are not
later assessed [Holmen01]. One important advantage was, however, achieving a
uniform process in different units of an organization.

RUP is very rich in notation, contains best practices in software development, is
claimed to be appropriate for a wide range of systems and is continuously evolved.
However, being generic means that it lacks guidelines for specific domains or types of
projects. For example, RUP does not have guidelines for developing for and with reuse.
Rational has started a forum to develop RAS (the Reusable Asset Specification), which
is a set of concepts, notations and guidelines for describing reusable assets of business
systems, thus improving later search. In a project report at NTNU in 2002, the students
gathered a list of tools that supported RAS [Schwarz02]. RAS may be useful when a
company plans to start a searchable database for reusable assets; i.e. a reuse repository.
As discussed in Section 2.3, having a reuse repository is not proven to be a success
factor for reuse. On the other hand, introducing a reuse process or adapting a non-reuse
process is important for the success of reuse.

 35

Incremental Development

3.5 Summary and the Challenges of this Thesis

This chapter has discussed approaches to incremental development and the questions
that should be answered when selecting an approach. It has also briefly discussed how
RUP answers these questions. The research challenges related to incremental
development in this study are presented here. RC1 and RC2 are specific cases of RC1
and RC2 defined in Section 2.7. The numeration of research challenges is continued
from Section 2.7:

RC1. RUP Adaptation. Since RUP is the process of Ericsson, we ask whether and
how it may be adapted regarding reuse.
RC2. Combination. Incremental development is combined with a product family
approach. As in Section 2.7, the case is studied for understanding how these
approaches are combined and what the impact of this combination is.
RC5. Quality impact. The impact of incremental development on effort, product
quality or organization is not studied sufficiently. There is a lack of empirical studies,
especially case studies.
RC6. Software evolution and maintenance. There are empirical studies on
software maintenance, but maintenance and evolution in the context of incremental
development is not studied empirically in the literature. Evolution is an inherent
characteristic of incremental development. Software companies need to understand
how software evolves and have processes to manage it, such as CM and requirement
change handling. This work aims to empirically study the first aspect; i.e. how
software evolves in incremental development.

 36

4 Research Methods and Metrics

This chapter provides a brief introduction to research approaches and strategies. It also
discusses advantages and challenges in the case study approach as a research approach
used in several studies in this thesis. Validity threats for all types of studies and in
particular how to overcome these for case studies are further discussed. Goals and
criteria for defining metrics and types of metrics are described. Finally, the challenges
are discussed, facing empirical studies in general and in this thesis in particular in
selecting research methods.

Comprehensive introductions to this field can be found in [Wohlin00] [Creswell03]
[Cooper01] [Juristo01]. Kitchenham et al. also provide a first attempt to define explicit
guidelines for performing and reporting empirical software engineering research
[Kitchenham02].

4.1 Research Strategies in Empirical Research

Empirical research is research based on the scientific paradigm of observation,
reflection and experimentation as a vehicle for the advancement of knowledge
[Endres03]. Empirical studies may have different purposes, being exploratory
(investigating parameters or doing a pre-study to decide whether all parameters of a
study are foreseen), descriptive (finding distributions of a certain characteristics) or
explanatory (why certain methods are chosen and how they are applied).

There are three types of research paradigms that have different approaches to
empirical studies and may be used for all the above-mentioned purposes [Wohlin00]
[Creswell94] [Creswell03] [Seaman99]:

Quantitative approach is mainly concerned with quantifying a relationship or
comparing two or more groups. The aim is to identify a cause-effect
relationship, verify hypotheses or test theories.

−

− Qualitative approach is concerned with studying objects in their natural
environment. A qualitative researcher attempts to interpret a phenomenon based
on explanations that people bring to them. Developing software is a human
intensive activity and in the recent years the community has increasingly used
qualitative methods from the social sciences in empirical software engineering
research. The primary intent is to develop theory or make interpretations of data.
Qualitative data is usually subjective, unstructured and non-numeric.

 37

Research Methods and Metrics

The mixed-method approach is evolved to compensate for limitations and biases
in each of the above strategies, seeking convergence across other methods or
triangulation2 of data and combining advantages of both strategies. Both
quantitative and qualitative data are collected sequentially or in parallel, based
on the assumption that collecting diverse type of data provides a better
understanding of a research problem.

−

An overview of research approaches and examples of strategies used in each is
shown in Table 4-1, which relies on [Creswell03].

Table 4-1 Alternative research approaches

Approaches Quantitative Qualitative Mixed methods
Strategies - Experimental

design
- Non-experiment
designs such as
surveys
- Case studies

- Ethnographies
- Grounded theory
- Case studies
- Surveys

- Sequential
- Concurrent
- Transformative

Methods - Predetermined
- Instrument based
questions
- Numeric data
- Statistical analysis

- Emerging methods
- Open-ended
questions
- Interview data
- Observation data
- Document data
- Text and image
analysis

- Both predetermined
and emerging
methods
- Multiple forms of
data drawing on all
possibilities
- Statistical and text
analysis

Knowledge
claims

Postpositivism:
- Theory test or
verification
- Empirical
observation and
measurement

Constructivism:
- Theory generation
- Understanding
- Interpretations of
data

Pragmatism:
- Consequences of
action
- Problem-centered
- Pluralistic

Note that the boundaries between approaches are not sharp. For example, surveys

can be open-ended or explanatory, being considered as a qualitative study, and case
studies can combine quantitative and qualitative studies [Wohlin00]. Yin also warns
against considering case study equal to qualitative research [Yin03]. Flyvbjerg writes
that good research should be problem-driven, not methodology-driven [Flyvbjerg04].
More often, a mixed-method approach will provide the best answer.

A brief definition of some of the strategies that are used in the studies in this thesis is
given here:

2 Triangulation may be of data sources (data triangulation), among different evaluators

(investigator triangulation), of perspectives of the same data (theory triangulation), and of
methods (methodological triangulation) [Yin04]. The present discussion covers the first type; i.e.
collecting data from multiple sources to address the same fact or phenomenon.

 38

 Research Strategies in Empirical Research

−
•

•

•

−
•

•

−
•

•

•

Quantitative strategies:
Experiments include true experiments with random assignment of subjects to
treatments, as well as quasi-experiments with non-randomized design and
single-subject experiments. Experiments with students as subjects are more
common in universities, while industrial experiments or experiments with
professionals as subjects are very few. The Simula Research Laboratory in
Oslo has developed a web-based environment for conducting experiments
and surveys, which they have been used in several empirical studies
[Simula04]. An example of using professionals in laboratory experiments is
a controlled experiment to compare the effect of a delegated versus
centralized control style on the maintainability of object-oriented software. A
total of 99 junior, intermediate and senior professional consultants from
several international consultancy companies and 59 students participated in
the controlled experiment [Arisholm04].
Surveys include cross-sectional and longitudinal studies using questionnaires
or structured interviews, with the intent of generalizing from a sample to the
population. An example is a recent survey on the state of practice in CBSE
was performed by the CBSEnet project among 109 industrial organizations
[CBSEnet04] [Escalante03]. One problem of large-scale surveys is the low
response rate. SEI reports a response rate of 20% in their survey on the state
of practice in product family development [Cohen02]. Some other surveys
report even lower response rates.
Case studies as a quantitative strategy are conducted to investigate
quantitatively a single phenomenon within a specific time frame.

Qualitative strategies:
In grounded theory, the researcher attempts to derive a general, abstract
theory of a process grounded in empirical data. Two characteristics of this
design are the constant comparison of data with emerging categories and
theoretical sampling of different groups to maximize the similarities and the
differences of information.
Case studies as a qualitative strategy explore in depth a program, an activity
or process over a period of time. An example is a case study on product
family development in Salion, Inc. [Clements02b]. Clements et al. refer to
the case as unique in the sense that the company did not have substantial
experience in its application area. Salion pursued a reactive approach to its
product family.

Mixed-method strategies:
Sequential procedures, in which the researcher seeks to elaborate on or
expand the findings of one method with another method.
Concurrent procedures, in which the researcher converges quantitative and
qualitative data to provide a comprehensive analysis of the research problem.
Data is collected concurrently and results are integrated in the interpretation
phase.
Transformative procedures, in which the researcher uses a theoretical lens
within a design that contains both quantitative and qualitative data. Creswell
mentions a feministic or racial lens as examples.

 39

Research Methods and Metrics

The important question in research design is when to use each strategy. If the
problem is identifying factors that influence an outcome or test the effect of some
manipulation, quantitative approaches are chosen. If the problem is to understand why
the results are as they are or to identify causes, a qualitative approach is best. The mixed
method approach uses different methods in the various phases of a study.

Yin answers the question of choosing an approach by listing three conditions
[Yin03]:

a) The type of research question posed. How and why questions are explanatory,
and usually should be studied over time in replicated experiments or case
studies. What, who, where, how many or how much questions ask about the
frequency or describe the incidence of a phenomenon. What questions can also
be exploratory in which case any of the strategies may be used.

b) The extent of control an investigator has over actual behavioral events. Only in
experiments, can the researcher control treatments or behavioral events. In a
case study, the researcher cannot control treatment, but may control the
measures to be collected.

c) The degree of focus on contemporary as opposed to historical events.
Other factors distinguishing approaches from one another are:
d) The ease of replication: lowest in case study and highest in experiments

according to [Wohlin00].
e) The risk of intervening: highest for case studies and lowest for surveys.
f) Scale: experiments are “research-in-the-small”, case studies are “research-in-

the-typical” and surveys that try to capture a larger group are “research-in-the-
large” [Kitchenham95].

g) Cost: formal experiments are costly, have limited scope and are usually
performed in academic environments. Industry does not have time or money to
spend on experiments.

While each research strategy has limitations, most research strategies can be applied
for exploratory, descriptive or explanatory reasons. For example:

In grounded theory, cases are selected for their value to refine existing or
exploring new classifications.

−

−

−

−

A history or archival analysis may also be applied to answer which method or
tool is better in a given context.
Surveys measure people’s opinion about a phenomenon, which in cases may not
reflect the real distribution, or may be affected by contemporary events.
Case studies can be applied as a comparative research strategy, comparing the
results with a company baseline or a sister project [Wohlin00].

Two strategies are in general applicable for overcoming limitations of research
strategies:

a) Replication of studies over time and in multiple contexts.
b) Combination of strategies. For example surveys can be combined with open-

ended interviews, and case studies can include analysis of archival records,
quasi-experiments and interviews.

 40

 The Case Study Approach

Ramesh et al. analyzed a sample of 628 papers published in 13 major computer
science journals between 1995 and 1999 for topics, research methods, the level of
analysis (the object that is studied) and the theoretical foundation of the research
[Ramesh04]. They classify research approach as being

Formulative (formulating processes, methods, guidelines etc.), covering 79.15%
of papers,

−

−
−

−
−
−
−

Descriptive (describing development or a product), covering 9.88% of papers,
Evaluative, covering 10.98% of papers.

When it comes to research methods:
Over 88% use conceptual analysis (either mathematical or not).
Case study and field study represent 0.16% each.
Experiments represent 3.6% (either human subjects or software).
Research methods such as grounded theory, ethnography and
descriptive/exploratory surveys are not represented at all, as well as field
experiments.

Not surprisingly, Computer Science (CS) itself is the reference discipline in 89.33%
of papers, followed by mathematics (8.60%). The results show that CS research is
relatively focused when it comes to research approaches and seldom relies on work
outside the discipline for its theoretical foundation.

4.2 The Case Study Approach

Case studies are very suitable for industrial evaluation of software engineering methods
and tools because they can avoid scale-up problems observed in small experiments
[Kitchenham95]. The difference between case studies and experiments is that
experiments sample the variables that are being manipulated, while case studies sample
the variables representing the typical situation. Formal experiments also need
appropriate levels of replication, and random assignment of subjects and objects.

Yin identifies the situation when the case study has an advantage as [Yin03]:

Yin further define a case study as [Yin03]:

A ”how” or ”why” question is being asked about a contemporary set of
events, over which the investigator has little or no control.

A case study is an empirical inquiry that
−

−

Investigates a contemporary phenomenon within its real-life
context, especially when,
The boundaries between phenomenon and context are not clearly
evident.

 41

Research Methods and Metrics

During the performance of a case study, a variety of different data collection
procedures may be applied [Creswell94]. In fact, a case study relies on multiple sources
of evidence, with data needing to converge [Yin03].

Flyvbjerg summarizes the wide extent critical remarks against case studies to five
points [Flyvbjerg04]:

1. General theoretical (context independent) knowledge is more valuable than
concrete, practical, context-dependent knowledge.

2. One cannot generalize on the basis of an individual case (one data point).
Therefore, the case study cannot contribute to scientific development.

3. The case study is most useful for generating hypotheses; i.e. the first step of
research, while other methods are more suitable for hypotheses testing and
theory building.

4. The case study contains a bias towards verification; i.e. to support the
researcher’s pre-assumption.

5. It is often difficult to summarize and develop general propositions and theories
on the basis of specific case studies.

Flyvbjerg then argues against these same points:
1. In the areas of his interest (environment, policy and planning), context-

independent knowledge is not available. Context-independent theories are for
novices during learning, while professionals have intuitive approach based on
case knowledge and experience. This argument is also valid for software
engineering.

2. Generalization can often be done on the background of cases, but normally the
possibility of formal generalization is overestimated - even though case studies
are brilliant to falsification tests. Formal generalization is overvalued as a source
of scientific development, whereas the force of example is underestimated. Yin
comments that the analogy to samples and universes is incorrect in case studies
[Yin03]. Survey research relies on statistical generalization, whereas case
studies rely on analytical generalization. In analytical generalization, the
researcher strives to generalize a particular set of results to some broader theory
or to a broader application of a theory.

3. This misunderstanding derives from the previous one. Generalizability of case
studies can be increased by strategic selection of cases. For example atypical or
extreme cases (e.g. especially problematic or especially good projects) often
reveal more information than typical ones. Another example is that most likely
cases are suited for falsification of propositions, while least likely cases are
appropriate to test verification. Yin adds critical cases (see below), revelatory
cases (when an investigator has an opportunity to observe and analyze a
phenomenon inaccessible before) and longitudinal cases (study a case over
time) to the spectrum of valuable cases.

4. Typically case studies report that their pre-assumptions and concepts were
wrong and hypotheses must be revised. The case study contains no greater bias
than any other method of inquiry.

5. It is true that summarizing case studies is difficult, but the problem is more often
due to the properties of the studied reality than to case study as a research
approach. Many good studies should be read as narratives in their entirety.

 42

 Validity Threats

While choosing multiple cases increases the reliability and generalizability, a single
case study is interesting when the rationale is one of those mentioned in point 3 above:

A critical case is important in testing a well-formulated theory: if it is(not) valid
for this case, it is(not) valid for many cases (or any case). A case study can
challenge the theory, test it, or extend it. Critical cases allow logical deduction
[Flyvbjerg04].

−

−

−

−

−

−

−

−

A representative case can be a typical project that can be informative about the
average projects.

Most theories in software are developed based on studies in a defined context.
Formal experimentation is over-emphasized, often not possible, the results cannot scale-
up and are therefore not convincing for the industry. In software engineering, industrial
case studies are rare due to several reasons:

Companies do not allow outsiders to access critical information or publish the
results either due to the confidentiality of results or the risk of intervening with
the on-going project.
Performing a case study may need observation and collection of data over
months or even years.
Wohlin et al. write that case studies are easier to plan, but the results are difficult
to generalize and are harder to interpret [Wohlin00]. However, there are issues
that make planning difficult: it takes time to gain the necessary permissions,
overcome the communication barrier and understand the context. The results are
harder to interpret and generalize due to the impact of the context.
Finally, a case study may take another turn than planned; projects may be
stopped, or changes in personnel or environment may happen that affect data
collection.

On the other hand, good case studies are as rare as they are powerful and informative
[Kitchenham95].

4.3 Validity Threats

A fundamental discussion concerning results of a study is how valid they are. Empirical
research usually uses definitions of validity threats that originate from statistics and not
all the threats are relevant for all types of studies. Wohlin et al. define four categories of
validity threats [Wohlin00]:

Conclusion validity (for statistical analysis)- “right analysis”: this validity is
concerned with the relationship between the treatment (the independent variable
in a study) and outcome (the dependent variable). We want to make sure that
there is a statistical relationship of significance. Threats are related to choice of
statistical tests, sample sizes, reliability of measures etc.
Internal validity (for explanatory and causal studies, not for exploratory or
descriptive studies)- “right data”: we must make sure that there is a causal
relationship between treatment and outcome and that is not a result of factors
that are not measured. Threats are related to history, maturation, selection of
subjects, unpredicted events and interactions, ambiguity about the direction of
causal influence etc. Yin adds (Experimental) Reliability to this: demonstrating

 43

Research Methods and Metrics

that a study’s operations can be repeated with the same results such as data
collecting [Yin03].
Construct validity- “right metrics”: we must ensure that the treatment reflects
the cause and the outcome reflects the effect. Threats are mono-operation bias (a
single case may not reflect the constructs), mono-method bias (a single type of
measure may be misleading), hypotheses guessing etc.

−

−

−

−

−

−

External validity- “right context”: this validity is concerned with generalization
of results outside the scope of a study. Three types of interactions with the
treatment may happen: people (the subjects are not representative for the
population), place (the setting is not representative) and time (the experiment is
conducted in a special time for example right after a big software crash). Yin
terms this establishing the domain to which a study’s findings can be
generalized [Yin03].

Different threats have different priorities based on type of research. For example, in
theory testing, internal validity is most important, while generalization is not usually an
issue. For a case study, Yin identifies tactics to improve validity as:

Use multiple of sources in data collection and have key informants to review the
report in composition to improve construct validity.
Perform pattern matching (comparing en empirically based pattern with a
predicted one especially for explanatory studies) and address rival explanations
in data analysis to improve internal validity.
Use theory in research design in single case studies to improve external validity.

4.4 Measurement and Metrics

Measurement is central in any empirical study, especially for benchmarking (collecting
and analyzing data for comparison) and to evaluate the effectiveness of specific
software engineering methods, tools and technologies [Fenton00a]. Benchmarking can
also be used to calibrate tools such as estimation tools [Heires01].

Measurement is mapping from the empirical world to the formal, relational world.
Consequently, a measure is the number or symbol assigned to an entity by this
mapping, in order to characterize an attribute [Fenton97] [Wohlin00]. The term metrics
is used either to denote the field of measurement or to the measured attribute of an
entity and related data collection procedures. In this thesis, measurement is used for the
activity of measuring and metrics for an attribute that is measured such as software size.

The first dedicated book on software metrics is published in 1976 [Gilb76], while the
history of software metrics dates back to the mid-1960s when the Lines of Code (LOC)
metric was used as the basis for measuring programming productivity and effort
[Fenton00a]. Recent work emphasizes:

Building causal models that are more complex. To do so, Fenton et al. suggest
using Bayesian Belief Nets that can handle uncertainty, causality and combining
different (often subjective) evidence [Fenton00a]. Jørgensen et al. discuss the
fact that theory building is generally neglected in empirical studies
[Jørgensen04].

 44

 Measurement and Metrics

Combining results of different studies [Kitchenham01] and different methods.
For example, Briand et al. combine scenario-based and measurement-based
product assessment [Briand01].

−

Some attributes are directly measurable (e.g. size of a program in LOC), while others
are derived from other measurements and are called indirect measures (e.g. productivity
in LOC/effort). Measures can also be divided into objective and subjective measures: an
objective measure is a measure where there is no judgment in the measurement value,
such as LOC. A subjective measure depends on both the object and the viewpoint, such
as personal skill [Wohlin00].

In software engineering, entities we wish to measure are usually divided
into three classes [Fenton97]:

− Processes: such as effort or duration Sommerville calls these
metrics control metrics [Sommerville00].

− Products: artifacts that result from process activities. Sommerville
calls these metrics predictor metrics, such as LOC or number of
defects.

− Resources: entities needed by process activities, such as developers
or tools.

Sedigh-Ali et al. [Sedigh-Ali01b] mention the importance of quality metrics in the

early stages of software development. In contrast to quality attributes that are user-
oriented (such as reliability or Quality of Service), quality metrics are developer-
oriented, because developers can use them to estimate quality at a very early stage of
development (such as defect-density). Later in the development lifecycle, the purpose of
measurement is to assess whether a quality attribute is achieved and to predict the future
values or trends.

Measures are classified into five major types: nominal, ordinal, interval, ratio and
absolute scales. Definitions and proper types of statistics and statistical tests for each
type are described in [Wohlin00] [Cooper01] [Fenton97]. Usually qualitative research is
mostly concerned with measurement on the nominal and ordinal scales, while
quantitative research mostly treats measurement on the interval and ratio scales.
Hypotheses with nominal and ordinal data are tested with non-parametric tests, while
parametric tests are used for data derived from interval and ratio measurements and are
more powerful. The choice of test depends also on whether one sample or more than
one sample of data are available, and whether the distribution of variables are known
and is normal. Parametric tests are more powerful when the distribution of variables is
known. However, if the distribution is unknown, non-parametric tests are more
appropriate, which are also effective with small sample sizes [Kitchenham02].
Examples of parametric tests are Z test and t-test for one sample case or two
independent samples. Example of a non-parametric test is the chi-square one-sample
test. The chi-square test can also be used for ordinal data and with several samples.
Cooper et al. have useful examples on these tests [Cooper01].

When we measure something, we either want to assess something or to predict some
attribute that does not yet exist. The second goal is achieved by making a prediction

 45

Research Methods and Metrics

system; i.e. a mathematical model for determining unknown parameters from known
ones. A software metric should be validated to make sure that the metric is a proper
(numerical) characterization of the claimed attribute (i.e. assessing construct validity).
Prediction systems should be validated as well: the accuracy of the prediction system
should be studied by comparing model performance with known data. For example,
Boehm specifies that the COCOMO effort-prediction system will be accurate to within
20% under certain conditions [Boehm95].

Defining metrics and collecting related measures in an organization need resources
and is costly. Determining what to measure is not a trivial task.

 The Goal/Question/Metric (GQM) approach is based upon the

assumption that an organization must define goals for itself and its
projects and trace these goals to metrics by defining a set of questions
[Basili84]. GQM has gained much respect since it emphasizes the
role of metrics; i.e. metrics should be goal-driven and relevant.

Others emphasize that for researchers it is also important to relate goals to theories

and models. Kitchenham et al. write, “Although GQM ensures that measures are useful,
simple and direct, it cannot ensure that they are trustworthy (or repeatable) and timely
(since it is not concerned with how data collection maps to the software process in a
manner that it ensures timely extraction and analysis of measures)” [Kitchenham01].
Another approach to defining metrics is the process-oriented one, defining when data
should be collected (for example appropriate metrics for a workflow in RUP). It seems
that a measurement program should combine a goal-driven approach with a process-
driven one.

Pfleeger describes some lessons learned in building a corporate metrics program
[Pfleeger93]. The author writes:

Software engineers need tools and techniques to minimize their metrics duties. −
− Engineers would collect and analyze metrics thoroughly and accurately only

when the metrics met a specific need or answer an important question.
Paul writes that the selection criteria for metrics should include usefulness, clarity

and cost-effectiveness [Paul96].
One challenge in data analysis is combining data from multiple sources, either in

collection or analysis. A data set consists of data from all projects in a company or
different data within a product. Kitchenham et al. warn about combining all data that
happens to be available as it may result in invalid conclusions [Kitchenham01].

4.5 Summary and the Challenges of this Thesis

When planning a thesis like this, several questions should be answered. The numeration
of research challenges from Sections 2.7 and 3.5 is followed:

RC7. Defining research questions. What are the research questions and how well
are they formulated? Sometimes the research question is well defined, making it
easier to decide research method. In most cases, however, the research question is
emerging and so is the strategy. In this thesis, RQ1 was defined as a pre-study of

 46

 Summary and the Challenges of this Thesis

software process improvement work, RQ2 was derived from bottom-up analysis of
data, while RQ3 was originally defined to focus on improving GSN RUP, but was
gradually revised to focus on other aspects.
RC8. Choosing research strategies. What research strategy should be chosen to
answer the research question(s)? The quantitative, qualitative and mixed-method
strategies are discussed. Case studies are valuable in answering how development
approaches are implemented, what the results are and why the results are as they are.
A mixed-method research approach allows emerging research design and collecting
different types of data. Therefore, a mixed-method design is chosen that combines
results of surveys, experiments, quantitative analysis of industrial databases, and
qualitative study of software processes and development practices.
RC9. Collecting and analyzing data. How should data be collected and analyzed?
The selected metrics and statistical tests are described in the papers.
RC10. Interpretation. How useful, innovative and valid are the results? The validity
threats that are relevant for individual studies are discussed in the papers. In Section
7.4, validity threats for all the studies are also discussed. Usefulness and innovation
is addressed when discussing results.
Empirical research in software engineering meets several challenges in general:

As a field with a few decades of history, most research methods are borrowed
from other disciplines. It started with statistics, while in the recent years the
community has increasingly used methods from the social sciences in empirical
software engineering research. These methods should be adapted for software
engineering.

−

−

−

Data is scarce in software engineering, it is very context-dependent and therefore
is hard to analyze. Mcgarry emphasizes, “When it comes to measuring software,
every project is unique” [McGarry01].
Quick changes in technologies do not allow proper evaluations before use and
feedback after use.

Performing case studies in industry is useful to meet all these challenges; i.e. to
evaluate methods when facing the context, to gather useful data for researchers, and to
evaluate technologies for researchers and practitioners.

 47

 48

5 Research Context

In this chapter, the Ericsson context is presented with more details on the GPRS system,
GSN RUP, the component framework and the development environment than what is
presented in the papers in Part II of this thesis. Software engineering challenges in
developing large systems and some characteristics of the telecom domain are discussed.
Furthermore, the research in this thesis is described in the context of the INCO goals.
Finally, the research design is presented, which combines quantitative and qualitative
studies, and top-down confirmatory studies with bottom-up explorative approach.

5.1 The Ericsson Context

5.1.1 About the Company
Ericsson is an international telecom company with development and sales units all over
the world. It has approximately 40 000 employees at present. Ericsson has developed
software for many years. It has sound traditions and long experience in development,
quality assurance and how to launch complex networks. This study has used data from
the GPRS (General Packet Radio Service) system, which is developed and tested in
Ericsson organizations in Norway, Sweden, Germany and Canada. Currently 288
operators around the world have commercial GPRS services. Ericsson is the supplier to
over 110 of these. Having provided more GPRS networks worldwide than any
competitor, Ericsson is the world's leading GPRS supplier [Ericsson04a]. The
development organization in Grimstad has been involved in developing software for
GPRS from 1997 to 2003.

5.1.2 The GPRS System

Telecommunication and data communications are converging, and the introduction of
GPRS in the cellular networks is a step towards this convergence. GPRS is a new non-
voice value added service that allows information to be sent and received across a
mobile telephone network. It supplements today's circuit switched data and Short
Message Service (SMS) [GSM04]. GPRS provides a solution for end-to-end Internet
Protocol (IP) communication between a Mobile Station (MS) and an Internet Service
Provider (ISP) or a corporate Local Area Network (LAN). It is also expected that GPRS
combined with the Internet Protocol version 6 (IPv6) will initiate a large growth trend

 49

Research Context

within machine-to-machine (m2m) communication. Theoretical maximum speeds of up
to 171.2 kilobits per second (kbps) are achievable, but the actual speed is lower (115
kilobit per second). The information in this section on the GPRS system is from Ekeroth
et al. [Ekeroth00].

The GPRS Support Nodes (GSNs) are parts of the Ericsson cellular system core
network that switch packet data. The two main nodes are the Serving GPRS Support
Node (SGSN), and the Gateway GPRS Support Node (GGSN). The generic term GSNs
is applicable to both SGSN and GGSN, which pertain to the commonalties and strong
functional relation between the two nodes.

Figure 5-1 shows an example of the GPRS solution in a GSM network. GSNs are
also used for GPRS domains within a Universal Mobile Telecommunications System
(UMTS, using Wideband Code Division Multiple Access or W-CDMA) or Time
Division Multiple Access (TDMA) system. SGSNs can be delivered for a pure GSN
network, a pure UMTS network or combined for both.

Backbone
network

SGSN GGSN

BGW

IP
network

Other
networks

MSC/
VLR HLR

SMS-GMSC
SMS-IWMSC EIR

Other
SGSN

BSC/
RNC

Packet-switched
core network

Figure 5-1 The Ericsson GPRS solution in a GSM network

The SGSN node keeps track of the individual MS’s location and performs security
functions and access control. The SGSN is connected to the GSM base station system
through the Gb interface (and/or to the UMTS Radio Access Network through the Iu
interface). The SGSN also interfaces other nodes in the network as shown in Figure 5-1
and the GGSN node.

The GGSN node provides inter-working with external packet-switched network.
GGSN is connected with SGSNs via an IP-based backbone network. The other nodes in
Figure 5-1 are:

Home Location Register (HLR) that contains subscriber information. −

 50

 The Ericsson Context

SMS-GMSCs (Short Message Service Gateway MSC) and SMS-IWMSCs
(Short Message Service InterWorking MSC) supports transmission of SMS
towards the MS via the SGSN.

−

−
−

Mobile Service Switching Center/Visitor Location Register (MSC/VLR).
Equipment Identity Register (EIR) contains a list of e.g. stolen mobile phones.

Standards from European Telecommunications Standards Institute (ETSI) and Third
Generation Partnership Project (3GPP) specify interfaces between these nodes and the
GSNs. The Ericsson implementation of GPRS is compliant with the generic GPRS
architecture as specified by ETSI and 3GPP. Statement of Compliance documents
(SoC) gives information on which parts of the respective standards that are supported by
Ericsson and which parts that are not supported or just partly supported.

The GPRS system is required to be highly available, reliable and secure. It should
handle defined Quality of Service (QoS) classes and enable hardware and software
upgrades. It should also handle a high number of subscribers (several hundred
thousands) and offer them real-time services. Another important requirement is
scalability; i.e. to be configurable for different networks with high or low numbers of
subscribers. The system has a distributed architecture consisting of several processors to
meet the reliability and scalability requirements. The internal software bus is replicated
and so are several interfaces.

5.1.3 Software Architecture Definition and Evolution
Software architecture is described at different abstraction levels using several UML
models and views from RUP: logical view, dynamical view, implementation view,
process view, physical view and deployment view. Only a simplified model of the
logical view is presented here.

Software for the GSNs run on the Wireless Packet Platform (WPP), which is a
platform developed in parallel with the GSNs by Ericsson. WPP includes several
processors that the software is running on and also interface boards that connect the
nodes to other nodes in the network. Figure 5-2 shows an overview of the initial
software architecture of GSNs for the GSM network. The system is decomposed into a
number of subsystems based on a functional requirements and interfaces, as well as
optimization for non-functional requirements.

Wireless Packet Platform (WPP)

GGSNMobile
Station
(MS)

MSC/
VLR

control signals

payload
MW

Figure 5-2 The initial software architecture of GPRS

 51

Research Context

For example, a MS sends two types of traffic to a SGSN node: control signals (to set
up a connection, handling mobility etc.) and the actual payload traffic. These are
handled by different subsystems since these signals have different non-functional
requirements. Control signals require reliability and persistent storage of data, while
data packets need high throughput but can tolerate some loss of packets. Besides, there
are a number of subsystems for other functionality such as handling interfaces to other
nodes or charging. The middleware subsystem (MW) handles broking, resource
management, transaction handling and other middleware functionality on the top of
WPP.

With standardization of GPRS for the UMTS market, Ericsson decided to develop
the new SGSN using the same platform and components used for SGSN in the GSM
market. This was the result of one year of negotiations and re-engineering. The origin of
this decision was common requirements for these two systems. The method to initiate
software reuse between these two products were:

a) Identify commonalities between the two systems.
b) Analyze the existing solution for SGSN in the GSM market to identify reusable

parts.
c) Develop an architecture that has the potential to be reused and be evolvable for

the two systems.
The evolved architecture is shown in Figure 5-3. Old subsystems are inserted in the

layers based on the reuse factor, while some of these were split into two subsystems.
The MW subsystem is extended to a component framework to support all subsystems
with a lot of tasks, e.g. distribution, start and supervision of application logic, node
internal communication services, an extended ORB and resource handling. The
component framework consists of both run-time components and
design/implementation rules to be followed. All components within the component
framework are generic; i.e. not aware of 3GPP/ETSI defined concepts and behavior, and
thus are reusable in any packet handling application.

Common Services Layer
including the application

framework

Business-specific Layer

Application-specific Layer
ApplicationsApplications

WPP
System platform: OS, ORB,
Interfaces, run time
machines etc.

Figure 5-3 The evolved software architecture of GPRS

 52

 The Ericsson Context

On top of the component framework and WPP, the applications should provide all
3GPP/ETSI specified functionality. The functionality on the application level that is
shared between applications is grouped into a separate package, called for business-
specific functionality.

Applications using this common platform were initially GGSN and SGSN nodes, but
GGSN is now moved to another platform. There are now two SGSN nodes for GSM
and W-CDMA markets sharing this common platform. These are called applications in
this thesis, named SGSN-G and SGSN-W.

Applying design rules and design patterns reuses design, while the reused entities
(“components”) in the software architecture are subsystems. Identifying the reusable
entities was done by evaluating candidate subsystems and if necessary splitting these
into smaller ones with reuse potential (moving application-specific logic to other
subsystems).

5.1.4 Development Environment and Tools
The high-level requirements are written as plain text in the Application Requirement
Specification (ARS) and later stored in the Rational RequisitePro tool. UML is used for
modeling, using the Rational Rose tool. Programming languages are Erlang, C, Java
(mainly for GUIs), Perl and other script languages (for packaging and installation).
Communication between modules in different programming languages is done by using
CORBA IDL and an extended ORB. IDL files are compiled to generate skeletons and
stubs.

The Rational ClearCase tool is used for CM. All files making a delivery are
packaged and labeled with a release label. Scripts and makefiles define the contents of a
delivery. Various testing tools are used, both simulated environment and real test
environment.

To handle changes in requirements or implemented artifacts, Change Requests (CRs)
are written as plain text and are handled by a Change Control Board (CCB). Defects
detected in system test or later are handled by the trouble reporting process. These
processes are further described in [P8] and [P10].

5.1.5 Components and Component Models
Figure 5-4 shows the hierarchical decomposition in the design model. A subsystem is

modeled as a package in the Rational Rose tool, has formally defined interfaces in IDL
and is a collection of function blocks. A (function) block has formally defined interfaces
in IDL, is a collection of lower level (software) units and is also modeled as a package.
A block often implements the functionality represented by one or more analysis classes
in the analysis model. Using IDL for interface definition gives language independence.
Both subsystems and blocks are mapped to components in the implementation view, and
are termed high-level and low-level components. While blocks are tightly coupled
inside and provide a coherent set of functionality, subsystems are packaging of blocks
that belong together in the solution domain (for example middleware, or mobile
handling).

A (software) unit is a collection of (software) modules and is modeled as a package.
Two units within the same block may communicate without going through an interface,

 53

Research Context

but in case these are developed in different programming languages, a formal interface
has to be defined even within a block.

Subsystem

Block

Unit

*

*

Module
*

Interface Data Type
exports *

exports *

exports

exports

*

*

re
al

iz
ed

 in

*

Figure 5-4 Decomposition of logical entities

As described, components are logical entities that are realized as executable entities.

The number of subsystems is low and they represent large-grained packages of
functionality. Their interfaces are facades to lower level components; i.e. blocks.
Components have explicit provided interfaces, while required interfaces are shown as
dependencies in the design models. Typically, components have no configuration or test
interfaces either.

Components in the three upper layers are developed in-house and are not subject to
third-part acquisition. There is one instance of each component in a node and
components are stateless. Data for each subscriber is stored in different tables stored in
a database, which is part of the Erlang run-time environment. Neither Erlang nor C is
object-oriented. Although the initial modeling in the analysis view is done using objects
(for example an object is assumed to be instantiated for each MS), code for these objects
is later spread over software modules and data is stored in multiple databases. To keep
the data for each MS consistent, there are programming rules that define which software
module owns which part of data. This is an industrial example of combing object-
oriented design with non-object-oriented programming languages. The situation is
confusing for new staff, but may be unavoidable since new tools such as the Rational
Rose tool are developed for object-oriented design.

There are multiple component frameworks (models) in this case:
a) The CORBA component model, which is used for communication between

GUIs and other parts of a node. GUIs are used by operators or maintenance staff.
b) The GPRS component framework defines its own extended ORB and

middleware services for applications.
c) The component framework and applications use the application development

environment in WPP, i.e. a framework that is plugged into another framework.
This complexity has several reasons:

 54

 The Ericsson Context

Multiple programming languages. −
−

−

−
−
−

The component framework offers many services in addition to services offered
by WPP.

5.1.6 The Software Process Model
As mentioned, Ericsson uses a tailored or adapted version of RUP, called GSN RUP3. A
joint Ericsson team in Norway and Sweden has worked continuously with adapting and
maintaining RUP, as part of the Method & Tools workflow. Figure 5-5 shows the start
view of GSN RUP. Comparing Figure 5-5 with Figure 3-2 (standard RUP) shows the
following differences:

Ericsson Tollgates (TG) replace milestones in RUP. The main purpose of a TG
is to decide whether or not to continue into the next stage of a project.
Business modeling is excluded, since it is done in other parts of the organization.
A Conclusion phase is added, to summarize experience.
Method & Tools is the same as the Environment workflow.

Figure 5-5 The start view of GSN RUP

−

−

Test is divided in two workflows: Use Case Test for testing separate use cases
(may also be done in simulated environment) and System Test.
The Deployment workflow is removed, since it is done in other activities.

Each workflow is also adapted. Some examples are:

 55

3 There is another adaptation of RUP at Ericsson, called ERUP. The GPRS projects have

developed and used their own adaptation (GSN RUP), which is studied in this thesis.

Research Context

Because of the importance and complexity of non-functional requirements, the
role “non-functional specifier” is added. It should do the activity “detail non-
functional requirements”.

−

−

−
−

−

−

−

The role “database designer” is removed, since the system uses a database
included in the platform.
RUP roles are mapped to Ericsson positions.
Design and modeling guidelines, and various templates for coding,
documentation, CR handling etc. are linked to the related workflows
ARS replaces the RUP’s vision and stakeholder request document for the
product. Requirement workflow also includes SoC (Statement of Compliance)
artifacts, which point out the parts of the standards that are implemented, and the
Feature Impact Specification (FIS) documents.

The FIS documents have several roles in different phases:
1. Before TG0. Requirements may come from different sources such as ARS, SoC

or Change Requests (CRs). Information in these sources is complementary, or
sometimes conflicting and should be merged. Cost, impacts and risks for each
requirement should be clarified. A use case model does not measure the impact
of a requirement on the system. Furthermore, requirements in the ARS are
defined as features and it is not clear how to map features to use cases. The FIS
looks at the problems listed above and captures the requirements in the ARS,
SoC and CRs together to find what impact a requirement has on the system. The
responsible for FIS in this stage is the Product and System Management.

2. TG0-TG1. More information on requirements fulfillment and an estimate of the
impact on each system component is added. The responsible for FIS in this stage
is the Pre-study project.

3. TG1-TG2. Further breakdown of the implementation and an estimate of the
impact on each subsystem component are done. The responsible for FIS in this
stage is the Development project.

Ericsson has a tradition of defining requirements as features. Furthermore, product
lines or families often define requirements as features. Requirements are divided in two
major groups in most literature:

Functional requirements that are concerned with functionality of the system as
observed by end users (end users may also cover other systems, operators etc.)
and are specified in use cases or features.
Quality (or non-functional) requirements, including requirements that are
specific for some functionality (e.g. charging capacity) and all other
requirements that are not specified by use cases. Quality is the degree to which
software meets customer or user needs or expectations.

A feature may be a functional (e.g. multiple contexts for a MS) or a quality
requirement (e.g. interoperability with other nodes, number of users, or reliability
defined as continuity of service). Use case models and supplementary specification
documents defined by RUP are not sufficient for each situation and are therefore
combined with features. Classification of functional vs. quality requirement is not
absolute. For example, security may be a quality requirement in one case and a
functional requirement in another case (see for instance [Eeles01]).

 56

 The Ericsson Context

 While there is consensus on using the term functional requirements for

requirements concerning business goals, other types of requirements are
covered by different terms over time and classified differently in
literature. They are sometimes called for non-functional requirements (an
example is RUP), sometimes for extra-functional requirements
[Crnkovic02], and in some literature for quality requirements leading to
quality attribute of a system [Bosch00]. Sommerville uses the term
emergent properties [Sommerville01], and finally [Bachman00] calls
them for extra-functional properties or quality attributes or when
associated with a service, quality of service.

Experience from using RUP as discussed in [P2], [P3], [P5] and [P6] provides the

following advantages:
RUP is presented in web pages with the possibility to link other documents and
search for activities, artifacts and roles. These web pages are understandable and
easy to use. This is confirmed by internal assessment of GSN RUP and the small
survey reported in [P2]. The notation is also rich.

−

−

−
−

−

−

RUP comes with a set of tools, such as Rational ClearCase for CM and Rational
RequisitePro for requirement management. However, the degree of satisfaction
with these tools is varying and could be subject of future studies.
RUP is widely used in industry.
RUP is extensible by adding plug-ins or RUP’s extension mechanisms.

On the other hand, a generic process such as RUP is not suitable for every task:
Managing requirements for reusable parts is not easy with RUP. RUP is use-
case-driven and use cases are defined for observable functionality by a user or
an operator. The project tried to define use cases for middleware as proposed in
[Jacobson97], but it was not successful: the complexity grows in use case
models and most services offered by middleware are not suitable for use cases,
e.g. handling concurrency or distributed objects. Instead, textual documents
were used for these requirements.
Many tasks depend on domain-specific knowledge such as identifying
components, defining suitable interfaces or identifying objects. Internally
developed guidelines are therefore linked to RUP web pages. This means
adapting RUP for a domain.

More details on GSN RUP are found in student project reports [Naalsund02] and
[Schwarz02].

5.1.7 Data Collection and Metrics
The company has a dedicated team for measurement definition and for collecting and
analyzing data. Both direct and indirect metrics are defined. Table 5-1 shows examples
of direct measures. All the above metrics have a ratio or absolute scale.

 57

Research Context

Table 5-1 Examples of direct metrics defined at Ericsson
Name Description Purpose
Original Number of
High Level
Requirements

Total number of requirements,
listed in the ARS at TG2

Calculation of
Requirements Stability

New or Changed
High Level
Requirements

Total number of new or changed
requirements, listed in the ARS
between the TG2 baseline and the
delivery date

Calculation of
Requirements Stability

Size of Total
Product

Total amount of non-commented
lines of code in the product, this
also includes generated code.

Calculation of Defect-
Density

Size of New and
Changed Code

Total amount of non-commented
new and changed lines of code in
the product, including new
generated code.

Calculation of Defect-
Density

Defects identified
in Test

Number of valid trouble reports
(duplicates and cancelled trouble
reports excluded) written per test
phase and after the first six
months in operation

Calculation of Defect
Detection Percentage,
Defect Removal Rates
and Defect Densities

Other types of direct metrics that are not defined in the measurement program but are

used in various documents are:
Classification of changes to requirements: new, removed or modified
requirement.

−

−

−
−

−
−
−

−

Classification of modifications: modified solution, modified documentation etc.
Metrics of the above types will have the nominal scale. Table 5-2 shows examples of

indirect or derived metrics that are calculated by using direct ones and the relevant
quality attributes.

This work has collected and analyzed the following quantitative data for 5 releases of
SGSN-G (not all data was available for all the 5 releases):

Data on inspections used in defining a baseline in [P4].
Available direct and indirect measures as defined in Tables 5-1 and 5-2. These
measures are used in interpreting the results, assessing development approaches
[P5] [P11] and building a model as explained in Section 6.2.
TRs stored as plain text. TRs are analyzed in [P8].
CRs stored as plain text. CRs are analyzed in [P10].
Size of total products, components and modified code between releases in
KLOC. These measures are used in calculating defect-density and modification
rate in [P8] and change-proneness in [P10].
Data on effort, used for studying effort distribution in [P12] and calibrating the
UCP estimation method in [P13].

 58

 The INCO Context

Table 5-2 Examples of indirect metrics defined at Ericsson

Name Description Purpose Quality
Attribute(s)

Requirements
Stability
(Percent)

Percent of high level
requirements listed in
the ARS not changed
between TG2 and
delivery

To check the
stability of
requirements

Stability, need
for Extensibility

Defect-Density
(No. of
Defects/KLOC)

Defects identified/total
code and Defects
identified/new &
modified code

To check the
quality of
product and
work performed

Dependability/
Reliability

Productivity
(Person-
hours/LOC)

Total hours used in
project, divided with
total number of new
and modified lines of
code

To check project
productivity

Process
compliance

Planning
Precision
(Percent)

Absolute value of actual
minus planned lead
time (in number of
weeks) divided with
planned lead time
multiplied with 100

To check project
lead time

Scheduling
capability

5.2 The INCO Context

This thesis is part of the INCO project [INCO01] and the four project goals are
presented in Section 1.2. The focus of this thesis was initially defined to be on software
reuse, CBD and Software Process Improvement (SPI) to primarily advance the state of
the practice in industry and to learn from experience. This focus gradually changed in
two dimensions:

Due to reorganizations in Ericsson, the organization in Grimstad was put in a
transition phase. Thus, SPI initiatives were not feasible. Instead, empirical work
was started in the form of quantitative studies and combining these with
qualitative data.

−

− These studies showed that reuse and CBD should be considered together with
the incremental approach, e.g. in the study of CRs or effort.

5.3 Developing Large Systems

Data from several releases of one of the products in Figure 5-3 are used in the studies in
this thesis. The system is large; i.e. about 450 KLOC in multiple programming
languages or over 1 million KLOC in equivalent C code. It took 5 years to build a

 59

Research Context

system of this size. Large systems are complex and complexity leads to many
challenges in development and maintenance, in different dimensions. Large systems are
developed to be long-lived; i.e. systems should be evolvable and maintainable for
several years. Telecom systems may even be in use for decades. An example is the
Ericsson AXE switch, being the most widely used switching system in the world,
presented first in 1974 [Ericsson04b]. Ericsson writes, “From its inception, the AXE
system was designed to accommodate continuous change. Over the years, its array of
functions has grown and its hardware has been steadily updated”. AXE serves as a
platform for every type of public telephony application, which explains the reason for
its long live as a generic system. The GPRS system may also be used for many different
services and thus has the potential to be used for several years.

Challenges in engineering large systems are classified in three classes in Table 5-3
and examples are given of how these are handled at Ericsson. As shown in Table 5-3,
incremental development, software reuse, product family development and CBD are
used as means to handle some of these challenges. Large systems are developed in
multiple programming languages, since different parts should be optimized for different
quality attributes such as understandability, performance or memory usage. For the last
row, the duration of iterations represents a tradeoff between short iterations and the
extra resource needed to plan, integrate and validate increments. Each release usually
undergoes 5-7 iterations.

In an attempt to find reusable components by reverse engineering of large system,
James Neighbors described that the most successful method was to identify subsystems
that are tightly coupled inside in data and function and use these as domain-specific
reusable components [Neighbors96]. Identifying reusable components in the GPRS
system has also been done at the level of subsystems. Neighbors also refers to the
industrial experience of using naming conventions, and the fact that complex systems
have common problems such as poor documentation, deviation from standard design
and complex arrays of versions and features.

Some new trends in industry, especially relevant for large companies are:
Companies are increasingly using mainstream methods, tools and programming
languages instead of proprietary ones. For instance, RUP has replaced internal
processes and sometimes is combined with elements of these such as Ericsson
TGs. Most other tools for requirement management, test and CM are also
commercial, widespread ones.

−

− Outsourcing of tasks is a new trend in industry. Parts of a product or special
phases may be outsourced. However, outsourcing of critical parts is a risk that
few companies take. After organizational changes at Ericsson, several
experienced personnel were employed by another company based on a contract
with Ericsson to take over the maintenance of earlier releases. This outsourcing
was possible because of access to personnel with first-hand knowledge of the
system.

 60

 Developing Large Systems

Table 5-3 Challenges facing large system development
Challenge Description Handling challenges, Ericsson

Financial investments - Incremental development: it is
important to sell working releases
to provide cash flow.
- Reuse and product family
development: to develop faster,
cheaper and better.

Organizational
Human resources:
- Resources have to be
moved gradually from other
projects or hired in the
expansion phase.
- In the transition phase,
most resources are moved to
other projects, except for the
maintenance staff.

- Access to experienced personnel
with domain knowledge and
experience from the AXE systems.
- Ericsson has globally reduced
its number of staff drastically and
has outsourced many tasks.

Tools: it is important to
validate that tools can
handle development in the
large.

Lots of effort is used in developing
routines for CM (using the Rational
ClearCase tool).

Technical

Design:
- Decomposition of large
systems into units that can
be independently developed
and maintained.
- Composition of large
systems.
- Selection of
programming languages and
development environment.
- It is important to
validate that selected
methods do scale up for a
large project.
- Large systems are long-
lived and should be
maintainable and evolvable.

- Traditional decomposition into
subsystems, blocks etc. (with tight
coupling inside, but minimized
external coupling) and combined
with CBD.
- Multiple programming
languages.
- Strict naming conventions are
used at all levels, from models to
source code.
- Previous experience with
developing large systems (new
methods are usually combined with
industrial experience).
- The system is designed to allow
hardware and software updates.

Process

- Assigning functionality
of right size to iterations and
releases.
- Selection of a software
process model.

- Duration of iterations is 2-3
months. It is almost one year
between major releases.
- RUP is adapted for the context
(see Section 5.1.6).

 61

Research Context

Large companies start joint projects for developing new standards, tools and
processes; either with companies in the same domain or other domains. An
example of co-operation between telecom companies is the Bluetooth Special
Interest Group where Ericsson, Nokia, IBM, Agere, Intel, Microsoft, Motorola,
Toshiba and thousands of other member companies drive the development of the
Bluetooth wireless technology for short-range connection of mobile devices
[Bluetooth04]. An example of co-operation with companies in other domains is
Ericsson’s partnership with Rational, announced in 1999, under which Rational
provides Ericsson an integrated set of development tools, processes and services
[Ericsson99]. Another well-known co-operation example is developing different
standards such as CCM and UML standards in OMG [OMG04].

−

−

−

−

−

−

−

The main impact of the above trends for software engineering research is a more
standardized view of software development, although products vary a lot. Results of
empirical assessment of methods and tools get therefore more interesting for others
using the same methods and tools.

Some specific characteristics of the GPRS system (also applicable for other large
telecom systems) are:

Personnel turnover has traditionally been small. Telecom industry has not the
large turnover as typical IT companies. However, during the recent years,
telecom companies have also reduced their staff drastically, including Ericsson.
Non-functional requirements such as reliability, availability, performance and
evolvability or maintainability (see Section 5.1.2) are of great importance.
Network nodes should be available almost all the time, have high throughput,
and evolved and maintained for several years. The share of different types of
non-functional requirements is also reflected in the CRs [P10]. The importance
of these requirements led to a focus on quality metrics such as defect-density
and change-proneness in RQ2.
Software is developed for network nodes and there are no direct user interfaces,
except for operation and maintenance. Therefore, usability of these interfaces is
not as important as for instance for web applications. On the other hand,
usability and quality of documentation is important for system operators. This is
also reflected in the share of CRs related to documentation [P10].
Interfaces are protocol-based and governed by international standard
organizations. The system should comply with these standards to be used in
networks of different telecom operators.
Components are developed in-house, although in some cases by different
Ericsson organizations. Research challenges related to COTS software are
therefore excluded in the research questions and design.
Systems should undergo final test and tuning in a customer site, which may
explain relative high number of TRs in system test [P8].

The large product size justifies investments in adapting RUP, developing a
component framework, and effort spent on integration and testing. For research in this
thesis, the large product size explains why development methods are evaluated and
adapted for large systems in the development of an estimation method [P13] and
improving inspection techniques [P4]. When discussing the results, the external validity

 62

 Research Design in this Thesis

of the results and the possibility of generalization to other domains are discussed,
having the above characteristics in mind.

5.4 Research Design in this Thesis

The research has combined qualitative studies of the software process and the related
practice, with quantitative studies of archived data and experiments. It has further
combined the results to propose improvements in some areas. The rationale for
combining studies of different types has been:

The impact of introducing reuse or incremental development is widespread. −
−

−

−

−

−

Studying an industrial case from the inside gives the possibility to collect
different types of data. It is useful to take benefit of all available data.
The results of one study should be confirmed by other studies; i.e. triangulation
of data.

The system of this study has the following characteristics:
It is a large industrial system with characteristics described in Section 5.3. The
reused assets are used in two business critical systems.
The company initiated a reuse program across organizations and countries. The
approach required a lot of coordination between development organizations in
different countries (both technical and management issues). The approach was
an extractive one and involved high risks regarding cost, quality, training,
coordination and management support.
Several releases of an industrial system are studied. This is necessary to
understand incremental development and a product family approach, where
effects cannot be identified immediately.

During the period of this doctoral work, the telecom industry (or more generally IT
companies) met a crisis that resulted in deep cuts in resources and major changes in
their profiles. Ericsson has reduced its personnel from over 100 000 to 40 000 in 3 years
and centralized its research and development in a few countries. The GPRS
development organization in Grimstad was closed down in 2002. Some development
and maintenance is outsourced to a company in Grimstad, employing experienced
personnel from Ericsson for these tasks. The responsibility for future development was
moved to an Ericsson organization in Sweden. The research questions and design were
therefore revised between phase one and two of this doctoral work as described below.

Selecting research questions and research strategies has been both top-down and
bottom-up:

a) Some research questions and hypotheses were identified from earlier work on
software reuse, in the context of INCO and the product family approach. RQ1
aims to describe the decision on software reuse in the context of Ericsson. RQ2
aims to empirically assess some earlier claims on the benefits of reuse. The
questionnaire in [P2], Hypotheses in [P8] and some hypotheses in [P10] are
based on earlier work. The experiment on inspection methods reported in [P4] is
also based on earlier work on the OORTs.

b) Other questions and hypotheses are results of exploratory work on available data
and practices in the industry, in a bottom-up style. Some hypotheses in [P10],

 63

identifying metrics in [P11], the estimation method proposed in [P13],
observations related to effort distribution in [P12] and the data mining method in
[P11] present new ideas and hypotheses that are grounded in the data.

The results of studies in the first group can be more easily merged into the body of
existing knowledge. One general concern regarding the results of studies in the second
group is the generalizability of the results. This is later discussed in evaluating the
results.

There has been three phases in the course of this work, as shown in Figure 1-1 and
Table 5-4 (cf. Section 4.5, RC7- Defining research questions):

1. The first phase consists of qualitative studies of the software process and related
practices, and a survey to increase the understanding of practice. It also contains
an experiment with the goal of improving the practice of inspections. This phase
has impact of the top-down approach to the research design.

2. The second phase is identified by quantitative studies of TRs, CRs and effort,
with the goal of assessing the impact of development approaches and exploring
new knowledge. This phase starts with a top-down confirmatory approach and
continues with more bottom-up explorative studies.

3. In the third phase, the results of several studies are combined in a mixed-method
approach to reflect on the research method and interpret the results. An
estimation method is also developed and metrics for a combination of reuse and
incremental development are identified.

5.5 An Overview of Studies

The research questions and relations to the studies, together with type of studies and
phase are shown in Table 5-4.

 64

 Summary

Table 5-4 Type of studies and their relations to Research Questions (RQ), papers
and phases

No. Studies Type
R
Q
1

R
Q
2

R
Q
3

Paper Phase

1 Study of reuse
practice

Qualitative, descriptive
study of textual documents
and web pages and own
experience.

√

 P1
P7

2 Study of software
process and RUP

Qualitative, descriptive
study of textual documents
and web pages and own
experience.

√

√

P6

3

Survey of
developers’
attitude to reuse
and software
process

Exploratory (small) survey,
Quantitative.

√

 P2
P9

4 Study of MDA Qualitative and exploratory
study of MDA, prototyping.

√ P3

5 Experiment on
inspection

Experiment (quantitative)
on adapted inspection
technique in the context of
incremental development.

√ P4

1

6 Study of TRs

Quantitative study of data
repositories, confirming
existing theories in the
context of reuse.

√

P8

7 Study of CRs
Quantitative and exploratory
study of data repositories.
New hypotheses.

√

P10

8 Study of effort
distribution

Quantitative study of
databases, exploratory. New
hypotheses.

√

P12

2

9
Developing
estimation
method

Quantitative study.
Adapting existing method
for new context.

√

P13

10 Identifying
metrics

Qualitative, combining the
results of studies 6-9.

√ P11

11
Assessing
development
approaches

Qualitative, combining the
results of studies 2, 5, 6-9,
and internally gathered
measures.

√

P5

12
Developing a
data mining
method

Qualitative, combining the
results of studies 6-8.

√

P11

 3

 65

 66

6 Results

This chapter summarizes the results of the research in three sections on software
process, assessing development approaches and proposals for improving the practice.
Most results are reported in the papers, but this chapter presents some data that are not
yet published and discusses their impact on the results.

6.1 Software Process - RQ1 and RQ3

Six papers are presented in this section: P1, P2, P3, P6, P7 and P9. These papers
describe experience with the current software process (related to RQ1) and proposals for
adapting GSN RUP for reuse (related to RQ3).

P1. Experiences with Certification of Reusable Components in the
GSN Project in Ericsson
This paper describes the reusable artifacts across two telecom systems, where software
architecture, including design patterns and guidelines, has a major impact both on
functionality and quality. The two systems are developed in different Ericsson
organizations. A positive experience with reuse is that organizations have easier access
to skilled personnel and shorter training periods.

Certification by third party or a trusted authority can accelerate component
acquisition. For components developed in-house, the company itself does the
certification. While functional requirements may be mapped to specific components,
quality requirements depend on software architecture, several components or the whole
system and the software development process. The paper describes how the software
architecture and components are certified, especially for quality requirements and
reusability. Maintainability should be observed over time, but the software architecture
should initially be designed for maintainability. The paper suggests improving the reuse
practice in the form of a revised RUP process and a suitable reuse metrics.

Discussion. Bachman et al. write, “The value of certification is proportional with the
strength of prediction made about end-system (or strength of compositional reasoning)
[Bachman00]. Both components and compositions are subjects of prediction. However,
mathematical and formal prediction has not yet been possible (if it ever would be for
systems that are not developed by formal methods). Section 2.4 referred to Voas on the
difficulty of composing itilities [Voas01]. This paper confirms the role of software

 67

Results

architecture in implementing quality attributes, while prediction of the system behavior
is done by domain expertise, prototyping, simulations and early target testing
(especially the operational quality attributes).

P2. Reuse in Theory and Practice: A Survey of Developer Attitudes at
Ericsson
The paper describes the state of the software process model, which is an adaptation of
RUP. The existing process model is not, however, adapted for reuse. That is workflows
are described as if there is a single product development and there is no explicit
framework engineering. To provide the information needed by developers, artifacts such
as internally developed modeling guidelines and design rules are linked to the
workflows in RUP. But these artifacts are also far from mature regarding reuse. The
paper suggests that it is important to synchronize the software process model with the
development practice.

An internal survey was performed among 10 software developers (9 responses) to
explore their attitudes towards the existing process, and to identify and plan aspects that
can be improved. The results of the survey showed that design was considered as the
most important artifact to reuse, and that participants assumed reused components to be
more stable and causing fewer problems than a new one (which is later confirmed by
quantitative analysis in [P8]). Although the RUP web pages are frequently used, the
main source of information during analysis and design was previous work and
consulting in-house experts. The results also showed that the lack of explicit guidelines
on reuse might lead to insufficient documentation of reusable artifacts and difficulty in
assessing components for reuse. Developers did not consider a reuse repository as
critical, as confirmed by other studies [Frakes95]. Poulin discusses three phases of the
corporate reuse libraries as [Poulin95]:

1. Very few parts, empty.
2. Many parts of low or poor quality, not to be trusted.
3. Many parts of little or no use, irrelevant.

The paper proposes six major modifications to RUP. Table 6-1 shows these and other
minor proposals.

Another central document in GSN RUP is the FIS document (described in Section
5.1.6), which could be adjusted for reuse with small modifications. It is proposed that
requirement fulfillment of selected reused components should be discussed.

The questionnaire used in this survey and the improvement suggestions are part of a
master’s thesis by two NTNU students [Naalsund02]. Further analysis of the results is
done as reported in [P2].

Discussion. Bergström et al. suggest the following steps in adopting RUP
[Bergström03]: create awareness of RUP, assess the current situation, motivate with a
business case, set adoption goals, identify risks and opportunities, make a high-level
adoption plan and a communication plan, and identify software development projects to
be supported (pilot projects). This survey is an exploratory step in assessing the current
process and to set improvement goals.

To keep a consistent view of the process, relevant RUP web pages should be
updated. An example of updating the Analysis and Design workflow is shown in Figure
6-1, where the “Make versus Reuse versus Buy” decision is added as an alternative to

 68

 Software Process - RQ1 and RQ3

designing components in-house. The list of reuse-supporting proposals is not complete
and these proposals are not implemented due to the organizational changes in Ericsson.

Table 6-1 Adapting RUP for reuse

TG Purpose with the phase and proposals on adaptation for reuse

TG0 Purpose: This tollgate is performed prior to the first iteration. It
serves the purpose of deciding whether or not to initiate the project.

TG1-Prestudy/
Inception

Purpose: Establish the software scope and boundary of the project.
Discover the initial use-cases (primary scenarios of behavior).
Establish overall cost and schedule for the entire project and a
detailed estimate of the elaboration phase. Estimate risks.
Proposed Reuse Activities:
1.1. Plan reuse strategy and criteria for the evaluation strategy.

Decision Point 1: “make vs. buy vs. reuse” decision: are
we willing to depend on an outside vendor? Can we
renegotiate the requirements (development with reuse)?

1.2. Domain analysis (analyze who may reuse the components
we make in the future (development for reuse)).

TG2-
Feasibility/
Elaboration

Purpose: Analyze the problem domain. Define, validate and
baseline the architecture. Develop project plan. Eliminate high-risk
elements.
Proposed Reuse Activities:
2.1. Add the activities leading to the second “make vs. buy vs.

reuse” decision (development with reuse).
2.1.1. Component identification and selection.
2.1.2. Component familiarization.
2.1.3. Feasibility study of COTS. Decision Point 2: “make vs. buy

vs. reuse” decision
2.1.4. Renegotiation of requirements.
2.2. Update documentation (development for and with reuse).

TG3-TG4
Execution/
Construction

Purpose: Building the product and evolving the vision, the
architecture and the plans until the project is completed. Achieve
adequate quality within time limits
Proposed Reuse Activities: (In each iteration)
3.1. Possibly run “make vs. reuse vs. buy” decision for minor

parts (development with reuse).
TG5-
Execution/
Transition

Purpose: Provide user support. Train user community. Market,
distribute/sell product. Achieve user self-support.
Proposed Reuse Activities:
4.1. Update reuse related documentation (development for and

with reuse).
4.2. Update repository (development for reuse).

Conclusion Purpose: define and store experience from the current software
development project.
Proposed Reuse Activities (development for and with reuse):
5.1. Conclude documentation.
5.2. Record reuse experience.

 69

Results

System Architecture Analysis

Architecture
Refinement

Analysis
Architecture
Deployment

Design Input Analysis

Behavioral Analysis

System Behavioral
Design

Component SW
Design

Review and Baseline the Model

Design
Centric

Architecture
Centric

[There should exist a high level
architecture prior to the second

make versus reuse decision]

Make versus Reuse or
Buy Decision 2

Figure 6-1 The proposed Analysis and Design workflow with reuse

No other empirical study on RUP regarding reuse has been found and this paper

together with [P6] emphasizes the importance of assessing RUP in this aspect. The
survey was also important for generating hypotheses that are later assessed in [P8] and
[P9].

P3. MDA and Integration of Legacy Systems: An Industrial Case
Study
This paper compares model transformations in RUP with transformations in MDA
(Model Driven Architecture). Since moving from one model to another is done
manually in RUP, there are inconsistencies between models, between models are
requirements, and between models and code. Tools on the other hand, do
transformations in MDA, but MDA is so far used only for new development. The paper
explores how the legacy code could be transformed. Evaluating MDA tools and
developing a prototype for reverse engineering of Erlang code to UML models were
part of a master’s thesis at HiA in spring 2003 [Warsun03]. The results suggest that:

The concept of platforms is relative and so is a platform-independent model. −

 70

 Software Process - RQ1 and RQ3

It is hard to integrate legacy systems in the existing MDA tools and these tools
are only useful for new development.

−

−

−

MDA tools vary a lot in how much of the transformation and coding can be done
automatically. Few tools support full definition of a system in models (i.e. both
structure and behavior) and full code generation.
Organizations can nevertheless learn from the MDA approach and keep their
models synchronized with each other, with the requirements and with the code,
even without applying a full MDA approach.

A prototype was developed that reverse engineers code in Erlang and interface
descriptions in IDL, and builds structurally complete UML models, thus keeping UML
models synchronized with the code. The paper suggests that if a company wants to use
an MDA tool, it would be a better solution to wrap legacy software.

Discussion. Bennett et al. define a legacy system as “Software that is vital to our
organization, but we do not know what to do with it”, and “Re-engineering is a high
cost, high-risk activity with unclear business benefits” [Bennett00]. Sometimes it is the
code, but also the data may be important for organizations to integrate with new systems
and technologies.

Bennett et al. also write that although it seems obvious that having high-level
design/architectural knowledge with traceability to high and low level design helps
maintenance, there is little empirical evidence that this actually helps maintenance staff.
The practice is that only the source code is maintained, and other representations
become inconsistent and cannot no be trusted any longer. This problem may exist far
before the maintenance phase. The inconsistency between UML models, and between
UML models and code or requirements is not only a maintenance problem as a result of
loss of architecture, but also important during development, especially in incremental
development where each release builds on a previous release.

P6. Different Aspects of Product Family Adoption
The approach to initiating a product family in Ericsson has been a lightweight one and
many artifacts are evolved during product family adoption, although not to the same
degree. The paper describes the evolution of software architecture to support reuse and
handling of variations, while the software process model is not updated for product
family engineering and reuse. This paper discusses what works and what does not work
in the software process (also described in Section 5.1.6).

Discussion. Different approaches to product families are discussed in Section 2.5.
Johnson has emphasized that reusable components are not (pre)planned; they are
discovered (gradually later) [Johnson98]. Ericsson chose the extractive or lightweight
approach because of similarities in requirements between an emerging product and an
existing one, and to reduce time-to-market for the new product.

P7. An Industrial Case Study of Product Family Development Using a
Component Framework
The paper describes the role of an internally developed component framework in
promoting reuse and how it is developed it in parallel with applications using it. Unlike
component technologies like EJB or COM that are considered for implementation of

 71

Results

components, domain-specific component frameworks include reusable designs for a
specific domain. This knowledge should be integrated early into the development
process of applications.

Discussion. The paper and Section 2.3 discuss that four important factors for the
success of reuse are in place; i.e. top management commitment, commonality between
products, domain engineering and experienced people. Adapting software process can
be done gradually. As discussed in [P6], many aspects of software development should
be adapted for product family engineering such as estimation methods, CM routines and
metrics.

P9. A Study of Developer Attitude to Component Reuse in Three IT
Companies
The paper combines the results of [P2] with similar surveys performed in two other
Norwegian IT companies. It also studies the relations between the companies’ reuse
levels and satisfaction with documentation, efficiency of the requirements renegotiation
process and trust to components. The companies’ reuse levels are classified as large,
medium and small, and all companies use in-house developed components. The results
show that requirements re-negotiation may be necessary as for developing with COTS
components. Furthermore, component repositories are not considered important. These
two conclusions are independent of the reuse level. However, developers’ satisfaction
with the documentation of reusable components decreased with increasing reuse level
and informal communication between developers supplement for this weakness.

Discussion. The study was exploratory and the surveys were small-scale. The results
are used for generating hypotheses for future studies.

6.2 Assessing Development Approaches - RQ2

Four papers are discussed in this section: [P5], [P8], [P10] and [P12]. It also presents a
model of the impact of development approaches on quality attributes. In addition to the
referred literature in the papers, the excellent guidelines of the SPIQ project (Software
Process Improvement for better Quality) [SPIQ98], [Mendenhall95], [Cooper01] and
[Maxwell02] are used in statistical analyses and presentation of results. Statistical tests
are done using Microsoft Excel and Minitab tools.

P5. Using Empirical Studies to Assess Software Development
Approaches and Measurement Programs
Incremental development in Ericsson is described, with both features and use cases
assigned to increments, and additional artifacts to handle integration of these into a
release; i.e. an integration plan and an anatomy plan. It also discusses difficulties in
gathering data in incremental development with overlapping increments. The paper
combines some internally gathered measures, the results of the empirical studies in
Ericsson and qualitative feedbacks to assess approaches to software development and
the quality of the measurement program. Examples of metrics that are especially useful
for such studies are given, and improvements to the methods and tools for collecting
data in the company are suggested.

 72

 Assessing Development Approaches - RQ2

Discussion. Metrics that are proposed in this paper are further discussed in [P11].
The observations and quantitative results are used to propose a model of the impact of
development approaches described at the end of this section.

P8. An Empirical Study of Software Reuse vs. Defect-Density and
Stability
Four groups of hypotheses regarding the impact of reuse on defect-density and stability,
and the impact of component size on defects and defect-density in the context of reuse
are assessed. Historical data on defects (as reported in TRs) and component size are
used in the analysis. A quantitative analysis of TRs showed that reused components
have significantly lower defect-density than non-reused ones. Reused components have,
however, more severe defects than expected, but fewer defects after delivery. No
significant relation between the number of defects and component size for all the
components as a group or the reused ones was observed. On the other hand, the number
of defects increases with component size for non-reused components. Therefore, other
factors than size that may explain why certain components are more defect-prone, such
as type of functionality, reuse, or type of faults for different programming languages.
The results of the same study did not show any relation between defect-density and
component size.

Reused components were less modified (more stable) between successive releases
than non-reused ones, even if reused components must incorporate evolving
requirements from two products. The study also revealed inconsistencies and
weaknesses in the existing defect reporting system, by analyzing data that was hardly
treated systematically before.

Discussion. Collecting data and some analysis was part of a master’s thesis at NTNU
in spring 2003 [Schwarz03]. The students inserted data for over 13 000 TRs in a SQL
database. TRs were for several releases of SGSN and GGSN products, but data for four
releases of a SGSN product was used in the statistical analysis, where data on the size of
components were also available. However, this master’s thesis did not separate the last
two releases, since the third and fourth release were developed within one project and
release three was merely a reconfiguration of the nodes. These releases were separated
in the later analysis in [P8], and statistical analysis was repeated. Therefore, the
numerical results in [Schwarz03] and [P8] differ a bit. Nevertheless, the conclusions are
the same.

One important question is to discuss why reused components are less defect-prone
but have more severe defects than non-reused ones. Several factors may be important
and the significance of these factors should be further studied:

Reused components are designed more thoroughly and are better tested, since
defects in these components can affect two products. This is one of the
advantages of design for reuse; i.e. aiming for higher quality.

−

− Erlang is the dominant programming language for reused components, while C
is the dominant one for non-reused ones. Study of the type of defects in
[Schwarz03] showed that Erlang units had 20% more faults per KLOC than C-

 73

Results

units and therefore the impact of programming language should be reverse4!
However, software modules programmed in C showed to have more intra-
component defects (defects within a module) than those programmed in Erlang.
This can explain why the number of defects increases with component size for
non-reused components.

−

−

If a specific type of components dominates one group, this could be a
confounding factor. Reused components do not have user interfaces, except for
configuration and communication with the operator (these interfaces can be
complex as well). On the other hand, reused components handle complex
middleware functionality.
Probably, defects for reused components are given a higher priority to correct.
On the other hand, these components have fewer defects after delivery (which is
important for reliability [Fenton00b]).

P10. An Empirical Study of Software Change: Origin, Acceptance
Rate, and Functionality vs. Quality Attributes
In this paper, results of quantitative analysis of CRs in four releases of one system are
reported. The results showed that earlier releases of the system are no longer evolved.
Perfective changes to functionality and quality attributes are most common.
Functionality is enhanced and improved in each release, while quality attributes are
mostly improved and have fewer changes in the form of new requirements. The project
organization initiates most CRs itself, rather than customers or changing environments.
The releases showed an increasing tendency to accept CRs, which normally affects
project plans. Changes related to functionality and quality attributes seem to have
similar acceptance rates. While reused components could be expected to be more
change-prone, no statistical significant difference between the change-proneness of
reused and non-reused components was observed.

Discussion. In addition to discussing the results reported in this paper, some results
are presented here that are published in [P10].

The IEEE Standard 1219 on software maintenance defines software maintenance as
“The modification of a software product after delivery to correct faults, to improve
performance or other attributes, or to adapt the product to a modified environment”
[IEEE1219]. This definition is not suitable for incremental development, where change
is foreseen and delivery in increments is pre-planned (although the actual changes may
only be partly pre-planned). Sommerville divides maintenance in three categories
[Sommerville01]: fault repairing, adapting to new operative environment and adding or
modifying the system’s functionality. He mentions that different people give these types
of maintenance different names:

4 We have also assessed the hypotheses using size in Equivalent LOC, with the same

results. For calculating EKLOC, Erlang is multiplied by 3.2, Java with 2.4, and IDL with 2.35.
Other studies have used other equivalent factors (for example 1.4 for Erlang to C). This study
defined two hypotheses that Erlang and C modules include in average the same amount of
functionality (equal means for size) and are equally defect-prone. Assessing these two
hypotheses revealed a new equivalent factor for Erlang to C, being 2.3. This needs further
verification.

 74

 Assessing Development Approaches - RQ2

Corrective maintenance is universally used to refer to maintenance for fault
repair.

−

−

−

−

Adaptive maintenance sometimes means adapting to new environment and
sometimes means adapting to new requirements.
Perfective maintenance is both used for perfecting the software by implementing
new requirements, and for improving the system’s structure and performance.

Fenton et al. add preventive maintenance to this list as well [Fenton97]:
Preventive maintenance is combing the code to find faults before they become
failures.

While maintenance is often used in connection with corrective maintenance, the term
evolution is becoming more common to use for changing software for new requirements
or adapting to new environments, and is better suited for evolutionary or incremental
development. This paper uses maintenance to hold to known concepts, but corrective
maintenance is not in the scope of this paper and was earlier studied in [P8]. Figure 6-2
shows the origin and type of changes in each release of the system.

Change
Requests
(Stimuli) New or improved standard

New COTS version: OS, Platform

Interface to a new network element

Improvement request: functionality or quality

Problems reported

New hardware version

Adaptive

Perfective/Preventive

New requirement: functionality or quality

Figure 6-2 Different types of CRs

Methods for assessment of maintainability are:

Use of metrics such as number and impact of changes. Change requests per
component can be an indication of the volatility of component design.

−

−

−

Bosch recommends change scenarios which discuss changes that are most likely
to happen and their impact on the architecture [Bosch00]. Qualitative assessment
by ATAM uses scenarios and finding stimulus, responses and mechanisms to
guarantee maintainability [Barbacci00].
For COTS components, other techniques may be used such as fault injection or
monitoring [Vigder99].

 75

Results

This study has used the first method by quantitative analysis of CRs. In the current
practice of Ericsson, new requirements are either handled by:

a) The ARS for each release of a system.
b) The stream of CRs and that may add, delete or modify a requirement or an

implementation.
Larsson et al. suggest that the number of requirements of a common component

grows faster, but the paper does not give hard data for this claim [Larsson00]. Some
other studies claim that most changes originate from external factors. Bennett et al.
write that a request for change often originates from the users of the system
[Bennett00]. From this point of view, since non-reused components have more
application-specific functionality, they could be more change-prone. The results showed
that most CRs stem from the project organization to improve functionality or quality
attributes and the share of CRs related to quality attributes is higher. In other words, it
could be expected that reused components are more change-prone. Quantitative results
reported in [P8] and [P10] indicate the opposite conclusion: reused components are less
modified between releases and the difference in #CRs/Component size is not
significant5. The impact of CRs in LOC is not known. Therefore it is not possible to
answer how much modification of code is due to CRs or other new requirements. The
granularity of components is large in this study, since CRs give the impact at the
subsystem level, which has impact on the statistical conclusion validity.

It is important to ask whether similar results could be verified with COTS
components as well. Companies may think that COTS components change more often
than internally developed ones, while changes in COTS component may be more visible
and therefore be better remembered. The origin and type of changes in COTS
components is not empirically studied in the literature.

Bennett et al. have proposed a model of incremental evolution of systems
[Bennett00]. This paper compares this model with industrial data. One of the reviewers
of the paper asked whether earlier releases were ever used, since they are not evolved
any more. The earlier releases have in fact been installed and used. However, these are
no longer evolved (only maintained for a period), since requirements are forwarded to
the next release, as suggested by Bennett et al.

A study of the number of issued CRs over time and the date of requirement baseline
in different releases showed that an unexpectedly high number of CRs were issued
during a short time right after the requirement baseline. The question is whether the
organization takes the costly decision to baseline requirements too early, while the
product is still undergoing dramatic evolution. It also showed that in periods, the
organization has to deal with several releases, while after a while all effort will be
directed towards the new release and the old one enters the classic maintenance phase.

The impact of CRs on subsystems was also studied. Requirement changes may result
in local changes in a component, several components or even the architecture. Only 104
of 169 CRs had data on the affected subsystems (i.e. high-level components). Table 6-2
shows the results. The majority of CRs affect only one subsystem. However, the
granularity of subsystems is large and the impact within a subsystem is not known.

5 Whether reused or non-reused components have less #CRs/Component size depended on
which points are included in the analysis. The data has two outliers that affect the means.

 76

 Assessing Development Approaches - RQ2

Table 6-2 No. of subsystems affected per CR, of 104 CRs
No. of affected
subsystems

One Two Three Four More than
four

No. of CRs 57 31 5 4 7

There is a lack of empirical studies on software maintenance and evolution. Data that

is used in literature on maintenance categories, distributions, source of changes etc. are
either from studies performed many years ago, or built on surveys results. Bennett et al.
mention some challenges meeting empirical studies on software maintenance to be
[Bennett00]:

Very small programs do not have maintenance problems and research must scale
up to industrial applications for them to be useful.

−

−

−

−

More empirical information about the nature of software maintenance, in terms
of its effect on the software itself, on processes, on organizations and on people
is needed. What actually happens from release to release? For example
Cusumano and Selby reported that a feature set might change 30% during each
iteration, as a result of the team learning process during iteration [Cusumano97].
Recent technologies such as agents, components and GUIs need to be explored
from a maintenance perspective.
The conventional analysis of Lientz et al. on distribution of maintenance
categories is no longer useful for modern software development (or at least
should be verified for these approaches), since technologies have changed (see
the paper for more details or [Lientz78]). It does not help reasoning about
component-based systems, distributed systems etc.

The study has contributed to the state-of-the-art of evolution by suggesting new
classifications of changes (functionality vs. quality attributes and different categories in
each) and verifying an incremental model of software evolution.

P12. A Study of Effort Breakdown Profile in Incremental Large-Scale
Software Development
Effort breakdown profiles are important to study and such profiles should be updated
for major changes in development approaches or tools. Data from two latest releases
shows that half the effort is spent before system test on specification, analysis, design,
coding and unit testing. The other half is spent on system test (20-25%), project
management (10-11%), adapting and maintaining processes for software development
(2-5%) and CM (12-13%).

Discussion. Systematic use of CM has a crucial role in CBD and incremental
development. Functionality is delivered in chunks that must be integrated and
maintained. Increasing effort needed for CM and integration is predicted in literature for
CBD. Probably, the effort for CM and testing increases with incremental development
of large systems, which is a hypothesis that should be further verified by other studies.
Estimation methods that assume most of the effort is spent on analysis and design may
therefore need revision. This is also the first study that shows the cost of adapting and
maintaining RUP in a large industrial project.

 77

Results

Combining Results
The goal with data exploration is to increase the understanding of a phenomenon, to
generate hypotheses or theory, or to verify some known theories. A model based on the
results of the quantitative studies and qualitative observations (this thesis and others) is
developed here. It shows the impact of development approaches on practices and in turn
on dependent quality metrics. Other studies on the impact of development approaches
on quality attributes are reported in [Nuefelder00], [Zowghi02] and [MacCormack03].

Table 6-3 shows a summary of data already given in the papers in order to facilitate
this discussion. Although the data are not enough to perform statistical analysis, they are
still useful in developing a model that should be further verified. Note that release 1 has
a low number of CRs and TRs, since CR and TR handling processes have matured over
time. For instance, some changes of release 1 were handled informally.

Table 6-3 Data from internal measures and the studies in this thesis

Quality Metrics Release 1 Release 2 Release 3 Release 4
Requirement Stability 92% 75% 91% 69%
Number of CRs 10 37 4 118
Acceptance rate of CRs 40% 51% 75% 62%
Number of TRs 6 602 61 1953
Planning precision 91% 95% 91% 78%

Figure 6-3 and Table 6-4 summarize the observations. Development approaches are

independent variables that lead to practices as described in Table 6-4.

Requirement Modification Planning PrecisionIncremental &
Iterative

Development

Reusable Artifacts/
Components

Development Approaches Practices Product/process Quality

Needed Effort

Reduced Defect-Density

Changeability

Incremental Delivery
Success

Incremental Integration

Incremental Planning

Solution Modification

Software Reuse

Component-Based
Development

Component Stability

Leads to

+/-

+/-

+

+

+

Figure 6-3 The impact of development approaches and practices on quality

metrics

 78

 Assessing Development Approaches - RQ2

The software process in the company is an adaptation of RUP. When incremental or
iterative development is mentioned, this specific process is meant. “Software reuse and
product family development” and “CBD” are shown separately, since a reusable artifact
can be any type of artifact, including software processes, a component or a component
framework.

Table 6-5 describes the impact on product and process quality metrics. The last
column also shows whether qualitative or quantitative data can verify the impact.

Table 6-4 The relations of development approaches to practices

Development
approach

Development
practice

Description

Requirement
modification

Project scope is discovered and established
gradually and the project is open to change.
Incremental development may therefore lead to
increased requirement modification.

Solution
modification

Implemented solutions are modified; either to
improve and enhance them or to realize new
requirements.

Incremental
planning

Requirements are assigned to increments. It is
important to define iterations of suitable
duration and right functionality, and to solve
dependencies between requirements.

Incremental and
iterative
development

Incremental
integration

Solutions must be integrated in each iteration
and release, according to an integration plan,
and previous releases may need updates.

Increm
plan

ental
ning

Development for reuse: some reusable artifacts
should be developed first, e.g. the component
framework.
Development with reuse: reuse must be planned,
especially for COTS components or here the
WPP. A release may depend on reusable
artifacts from another project.

Software reuse
and product
family
development

Reusable
artifacts

Reusable artifacts (including components)
should be developed and certified.

Solution
modification

Components are modified in several releases
and iterations, unless components are defined in
a way that new requirements are assigned to
new components or new interfaces (the
disadvantage is perhaps poor structure due to
too fine granularity).

CBD

Incremental
integration

New versions of components should be
integrated into each release.

 79

Results

Table 6-5 The impact of practices on the product and process quality metrics
Development
practice

Quality
metrics

Description

Planning
precision

Modifications in requirements (measured in
requirement stability) affect planning precision. This
impact can be positive (some requirements may be
removed to deliver on time) or negative (new
requirements need more effort). Quantitative data in
Table 6-3 shows reduced planning precision with
reduced requirement stability. Two reasons are
identified: 1) the acceptance rate of CRs has increased;
2) only 5% of CRs ask to remove a requirement [P10]. Requirement

modification

Increment-
al delivery
success

Only planning precision reflects this at the moment,
but success of incremental delivery includes delivering
on time, delivery of increments of right size, and with
right and verified functionality. Requirement
modification changes the original delivery plan. The
effect can be positive if the original plans were too
optimistic, or negative if requirement modifications
reduce the product quality.

Needed
effort

Artifacts should be re-opened and understood before
modification. These artifacts should also be quality-
assured by inspections, reviews etc. Increased effort is
therefore suggested. The observed low inspection
coverage can be due to incremental modification of
solutions [P5].

Solution
modification

Component
stability

When components are iteratively modified, stability
between releases is reduced.

Incremental
planning

Increment-
al delivery
success

Qualitative feedbacks indicate that it is difficult to map
requirements into increments of right size and many
non-functional requirements could not be tested early,
leading to “big bang” testing [P5] [P7]. An
“integration plan” was therefore developed.

Incremental
integration

Needed
effort

Incremental integration will need more effort for CM
and regression testing [P12].

Needed
effort

Extra effort for developing for reuse will pay off in
total reduced effort and cost. There is no data to assess
ROI for reuse. Less defects after delivery reduces
maintenance cost [P8].

Component
stability

Reused components are more stable [P8].

Reduced
defect-
density

Reused components are less defect-prone [P8].

Reusable
components

Change-
ability

Most changes impact one or two subsystems, but the
granularity of subsystems is large in the study [P10].

 80

 Improving the Practice - RQ3

While software reuse has had a positive impact on changeability and component
quality (in terms of reduced defect-density), it has made incremental delivery success
more difficult. Incremental development has had a negative impact on project metrics
reflected in decreasing requirement stability, decreasing planning precision, and
increased integration and testing effort. Benediktsson et al. suggest reduction in effort
with incremental development and high number of iterations when the diseconomy of
scale is large, but their model is a theoretical one that needs empirical assessment
[Benediktsson03].

The positive impact of incremental development in reducing risks is not measured,
although some requirements that were originally planned were later removed. Increased
effort is not surprising as it would be cheaper to develop a system in a waterfall model,
if all the requirements were known in the beginning. Other disadvantages may be
reduced by for example combining design item responsibility and increment
responsibility, or integration-driven delivery as Ericsson has chosen. One reason for the
negative impact may be in being unprepared for the challenges, such as too early
requirement baseline.

6.3 Improving the Practice - RQ3

Three papers are presented in this section: [P4], [P11] and [P13]. These papers, together
with proposals for adapting RUP for reuse, are related to RQ3.

P4. Object-Oriented Reading Techniques for Inspection of UML
Models - An Industrial Experiment
This paper describes an experiment to evaluate the cost-efficiency of tailored Object-
Oriented Reading Techniques (OORTs) in a large-scale software project. The OORTs
were developed at the University of Maryland. The techniques have earlier been tested
on small projects where UML models are developed from scratch. This is the first
controlled experiment in industry on their applicability and with incremental
development. The results showed that the OORTs fit well into an incremental
development process and managed to detect defects not found by the existing reading
techniques. The study demonstrated the need for further development and empirical
assessment of these techniques and for better integration with industrial work practice.
As part of the study, data from several earlier inspections in Ericsson were collected and
analyzed to have a baseline for comparing.

Discussion. Two teams of a total of four students have been involved in tailoring the
techniques, collecting historical data and performing the experiment in their master’s
theses at NTNU and HiA [Arif02][Bunde02]. The study demonstrated that the
inspection techniques should be adapted for large system development and the context.
Here, UCSs describe steps in use cases, while UML models only show actors and
relations between use cases. Of the seven original OORTs, OORT-4 (Class Diagram vs.
Class Description Document) changed focus to Class Diagram for internal consistency
and OORT-5 (Class Description vs. Requirement Description) was removed, since it
was not applicable in Ericsson. The study revealed inconsistencies between models, as
also described in [P3].

 81

Results

P11. Exploring Industrial Data Repositories: Where Software
Development Approaches Meet
The paper presents a method for mining industrial data repositories in empirical
research, using studies described in [P8], [P10] and [P12]. The challenges of integration
are classified in two categories:

The physical challenge refers to the integration of data. It may be handled by
inserting all data in a common database, defining metadata or defining tools that
collect and analyze different sources of data, such as in the French railway
company SNCF [Beaurepaire04].

−

−

−
−
−
−

−
−

−

−
−

−

−
−

The conceptual challenge refers to integrating the results of separate studies
with one another and integrating the results into theories. In empirical studies at
Ericsson, it is observed when development approaches are combined, while
metrics and measurement programs are not. To develop advanced theories on the
relations between development approaches and their impact on quality
attributes, measurement programs should be updated to collect some basic data
for a combination of development approaches. Metrics for a combination of
incremental development, reuse and CBD are identified.

Discussion. For component-based systems developed in object-oriented languages,
metrics defined in various object-oriented literature are applicable, e.g. [Fenton97]
[Briand02] [Alshayeb03]. With modeling in UML, metrics defined for UML models are
also useful, e.g. [Lanza02] [Kim02]. Paulin outlines some metrics for component-based
systems (and any type of system) as [Heineman01-Chapter 23]:

Schedule: actual vs. planned.
Productivity: total development hours for the project/total number of LOC.
Quality: total number of defects and severity.
Product stability: number of open and implemented change requests that affect
the requirement baseline.
Reuse%: Reused LOC/Total LOC.
Cost per LOC.

For components, Paulin adds:
LOC per component. For COTS components or generally when the source code
is not available, LOC should be replaced with other metrics such as physical size
in Kbytes.
Labor: effort expended per component.
Classification of the component: new code, changed code, built for reuse or
reused code.
Change requests per component as indication of the volatility of component
design.
Defects per component as a measure of the reliability of the component.
Cost per component.

Sedigh-Ali et al. also propose use cases per component, but this may be difficult
because of scattering and tangling effects [Sedigh-Ali01a].

The studies in Ericsson revealed inconsistencies in the data collection system (e.g. in
granularity of data) and lack of some basic metrics that could be useful in assessing

 82

 Summary

development approaches. For example, effort spent on each component, requirement, or
modified solution is not recorded. Therefore, it is not possible to answer (quantitatively)
whether reuse is cost-beneficial, whether requirements were correctly assigned to
iterations regarding needed effort (schedule overruns may be because of poor estimation
or unrealistic planning of an iteration), or what is the impact of changes on lower level
components. Metrics for component-based systems that are developed incrementally are
proposed. Data should be collected automatically as far as possible and be stored in a
common database with query possibilities.

P13. Use Case Points for Effort Estimation - Adaptation for
Incremental Large-Scale Development and Reuse Using Historical
Data
The Use Case Point (UCP) estimation method is earlier used for estimating effort in
small systems, with a waterfall model of development. The paper describes calibrating
the method for Ericsson using historical data, with incremental changes in UCSs and
with reuse of software from a previous release (using the COCOMO 2.0 reuse formula).
Data on effort spent in one release are used to calibrate the method and the method is
verified using data from the successive release.

Discussion. Effort Estimation is a challenge every software project faces. Ericsson
has used an inside-out estimation method performed by experts. Studies show that
expert estimations tend to be too optimistic and large projects are usually under-
estimated. The UCP estimation method may be used in addition to expert estimates to
improve the accuracy of estimates. There is no standard for writing use cases and UCSs
in this study were much more complex than previous studies using the UCP estimation
method. These complex, incrementally developed UCSs were broken into smaller ones.
There are 13 technical factors (e.g. distributed system, reusable code and security) and
eight environmental factors (e.g. object-oriented experience and stable requirements) in
the original method. The technical factors have little impact on the estimation results
and some earlier studies have proposed to drop these. On the other hand, the
environmental factors can have large impact on the results. The projects were assumed
as average, setting the total weight of these factors to 1 to drop assigning values to these
factors that are highly subjective. Furthermore, effort to implement a use case point
(PH/UCP) varies in different studies and in this study, the maximum value used in
previous studies (36 PH/UCP) only counted for the effort needed before system test for
this system. This was explained by comparing effort breakdown profiles of these
studies. To account for reuse of software, a COCOMO 2.0 formula for reuse is applied
by calculating an Adaptation Factor (AF) equal to 0.55 (effort needed to reuse software
comparing to developing it from scratch).

Results of the study showed that the UCP estimation method could be calibrated for
a given context and produce relative accurate estimates. There are two factors that need
further study and possible adjustments: the PH/UCP and the AF.

6.4 Summary

The results and their relation to research questions were presented in Sections 6.1-6.3.
The studies cover several aspects of software development due to the emerging research

 83

Results

design, the type of available data, and the fact that there is a combination of
development approaches in the real context that should be studied as a whole. The
attempt has been made to use all the available data, but not to “overuse” them, and be
aware of the limitations of the results as discussed later in Chapter 7. Introducing
product family engineering and incremental development have benefits that are either
verified here or in other studies. There are also challenges in adaptation of software
processes that should be answered. For large-scale development, it is important to verify
that a method (such as the UCP estimation method) scales up.

 84

7 Evaluation and Discussion

This chapter answers the three research questions RQ1-RQ3 based on the results.
Further, the relations of contributions to the research questions, context, papers and
INCO goals are discussed. There is also a discussion of validity threats and the
experience from working in the field and how ethical issues are handled.

7.1 Research Questions Revisited

Answers to the three research questions are:
RQ1. Why a reuse program is initiated and how is it implemented? The question is

answered as:
a) A product family is initiated because of the similarity between requirements of

the emerging system (SGSN-W) and an existing system (SGSN-G), and because
of the possibility to reuse an internally developed platform and components.
Having a common base for the two products makes it possible to adapt the
product for different markets, with either GSM or W-CDMA (for UMTS
networks) or both. Shorter time-to-market and reduced cost are suggested, but
are not assessed in this thesis.

b) A lightweight or extractive approach to product family adoption was chosen.
Software architecture is evolved, a component framework is developed, and a
common software process and environment is defined. Management support,
common goals and common infrastructure, and experienced personnel have been
critical for the success of reuse. Other studies have also emphasized the
importance of management support and common wisdom in the success of reuse
programs [Morisio02] [Griss95].

c) The software process model (GSN RUP) is not adapted for design for and with
reuse: workflows are described as if there is a single product development, there
is no explicit framework engineering activity, and reuse is not included in
aspects such as the estimation method and metrics. Guidelines for modeling and
design are linked to the related activities in GSN RUP, but these should also be
improved regarding developing for and with reuse. Experienced staff and
domain knowledge compensate for these shortcomings to some degree.

 85

Evaluation and Discussion

RQ2. What is the impact of software reuse, CBD and incremental development on
the quality? Here, the impact of development approaches on product quality metrics and
on project attributes such as schedule or effort are sought. The answers are:

a) Reuse benefits have been observed in form of lower defect-density and higher
stability of reused components between releases by analyzing TRs and the size
of modified code. A study of CRs also showed no significant difference in
change-proneness between reuse and non-reused components. The studies
described in [P8] and [P10] are the first empirical studies on the quality impact
of reuse in a large-scale industrial system and are summarized in C1. The
confounding factors that affect validity of the results are discussed, but the
conclusion is that reuse has a positive impact on quality, since reused
components will be better designed, better tested and changed with more care.

b) The analysis of CRs suggests that functionality is both enhanced and improved,
while quality attributes are mostly improved in each release of the system. Most
CRs were related to quality attributes in terms of modified requirements. In
other words, incremental development leads to incremental perfection of these
attributes. A model of evolution as proposed by Bennett et al. was observed
[Bennett00]; i.e. earlier releases of the system are only maintained for a period
and would no longer be evolved [P10]. The project organization initiates most
change requests itself, rather than customers or changing environments, contrary
to what was expected and proposed by others (see [P10]). These observations
are summarized in C2.

c) Incremental development of large systems needs probably more integration and
testing effort, based on quantitative analysis of effort spent in two releases and
qualitative observations as explained in Table 6-5. Other studies have proposed
considering diseconomy of scale for large systems [Symons91] [COCOMO 2.0
in Boehm95]. Benediktsson et al. suggest compensating the diseconomy of scale
with a sufficient increase in the number of iterations [Benediktsson03]. Their
analysis did not consider other factors than scale. The effort needed for
integration and regression testing should be added as a factor when discussing
incremental development. The AF (Adaptation Factor) that is used to estimate
effort for reuse of software developed from a previous release contra developing
for the first time (the formula is borrowed from COCOMO 2.0) includes the
effort needed for modifications and integration, and was set to 0.55 [P13]. Even
higher AF factors may be proposed. These observations are part of C3.

d) Qualitative observations and quantitative data are combined to propose a model
of the impact of development approaches on some quality metrics. Some
impacts are verified by data, while others are not quantitatively assessed and
need metrics as explained in [P11]. A relation between increased requirement
volatility, increasing acceptance rate of CRs and reduced planning precision was
observed. Others have also proposed a relation between requirement volatility
and both schedule and cost performance, as described in [P10]. The factor of
increasing acceptance rate of changes is propose by this thesis, since adopting
incremental development makes the project more open to change, even for
requirements specified for a single iteration.

 86

 Research Questions Revisited

RQ3. How to combine the qualitative and quantitative results to improve the practice
in some aspects? Five contributions come from this work:

a) An effort estimation method is developed using complex UCSs, with
incremental changes in these and reuse of software from previous releases. This
estimation method, which is an adaptation of the UCP method, is a top-down
method that can be used in parallel with expert estimation to improve the
estimation results or used stand-alone. UCSs and effort spent in two releases are
used to calibrate and evaluate the method. A high PH/UCP was used compared
to earlier studies, which may be explained by the complexity of the project and
the fact that the environmental factors were set as an average project. The
technical factors were also set as an average project, since such factors are
highly subjective and difficult to compare with other studies. The study was the
first one on a large project and included a reuse factor for incremental
development, and is summarized in C3.

b) Metrics for a combination of development approaches are identified that can
help the conceptual integration of results [P5] [P11]. Although metrics are
extensively discussed in the literature and various metrics for CBD are
proposed, the combination with incremental development is not discussed
before. These metrics could be useful in assessing development approaches and
their impact, and are summarized in C4.

c) The experience from mining data repositories is analyzed to develop a research
method for future studies, as summarized in C5. This method combines
literature study with bottom-up pre-study of data to generate theories or
hypotheses. Steps in a data mining process as proposed in [Cooper01] will cover
the execution phase. Three cases of using such a method are reported in [P11].
Data used in these studies needed preparation and insertion in a database with
query possibilities (here SQL), since data was mainly stored as plain text. Two
types of challenges in collecting data and interpreting the results are observed:
the physical integration challenge and the conceptual one. The physical
challenge has been subject of earlier studies. Inserting all data in a common
database, defining metadata or using tools that collect and analyze different
sources of data may handle it. On the other hand, the conceptual challenge is
less discussed in other studies and this study has proposed defining metrics for a
combination of development approaches as discussed above.

d) There is agreement in other studies that having a software process for reuse has a
positive impact on reuse (see Section 2.4 and [Rine98]). This work proposes to
adapt GSN RUP for reuse by adding some activities in the existing process
model and modifying some others. These proposals are summarized in C6a.

e) Results of an experiment comparing inspection techniques may be used to
improve techniques for inspection of UML models [P4]. The new adapted
OORTs were more successful in detecting inconsistencies between models,
while the existing inspection technique in Ericsson detected more faults in the
design of use case realizations. More defects were detected in the individual
reading phase than in the meeting by using the OORTs; i.e. having more
structured techniques such as the OORTs will improve the individual reading
phase. On the other hand, these techniques should be adapted more for the

 87

Evaluation and Discussion

context and be combined with internal guidelines to increase their effectiveness
in detecting defects of all types. The results are summarized in C6b.

The above contributions were described in Section 1.6. Table 7-1 shows the relations
of contributions to the research questions and the papers. Two papers are not directly
connected to the contributions: [P3] and [P9]. [P3] presents the development process in
the context of MDA and investigates re-engineering of the system as a legacy system in
this context. It is a contribution to the state-of-the-art of MDA and no other studies on
legacy systems in this context were found. Results of [P9] were used in the generation
of hypotheses for a future survey on the state-of-the-practice of CBD.

Table 7-1 The relations of Contributions (C) to Research Questions (RQ) and
papers (P)

Research
questions

Papers

C R
Q
1

R
Q
2

R
Q
3

P1 P2 P3 P4 P5 P6 P7 P8 P9 P
1
0

P
1
1

P
1
2

P
1
3

C1 √ √ √

C2 √ √

C3 √ √ √

C4 √ √ √

C5 √ √

C6a √ √ √ √ (√) √ √ (√)

C6b √ √

7.2 Contributions, Development Approaches and the
Context

As discussed in Section 1.6, development approaches should be considered in
combination with one another. Section 5.3 discussed the impact of context in two
dimensions: scale (large-scale development) and the telecom domain. This section
discusses the relations of contributions to development approaches and the context. In
some cases, the results are influenced by the characteristics of the GPRS system as a
telecom system, which affects generalizability to other domains.

 88

 Contributions, Development Approaches and the Context

Table 7-2 The relations of Contributions (C) to development approaches and the
context

C Reuse CBD Incremental
development

Large
system
development

GPRS
(Telecom)

C1.
Reuse
benefits

Data from
several releases
is analyzed.

First
industrial
large-scale
study.

More reuse
in telecom
systems (?).

C2.
Software
evolution

The
granularity
of
subsystems
is large.

Increasing
acceptance rate.
Most CRs are
initiated
internally to
improve quality.
Earlier releases
are no longer
evolved.

Large
systems are
long-lived
and are
improved
incrementally.

Different
quality
require-
ments are
important in
different
types of
systems.

C3.
Effort
estimation
method

Reuse of
software
from a
previous
release.

Adapting for
incremental
changes in
UCSs. Large
CM and testing
effort.

Complex
UCSs.

Large
testing
effort.

C4.
Metrics

Adapted
for reuse.

Adapted for
CBD.

Adapted for
incremental
development.

Different
granularity of
components.

Traditional
Ericsson
decomposi
tion.

C5.
Data
mining
method

Conceptual
and physical
integration
challenges.

Data is
stored in
several
repositories.

C6a.
Software
process
model

Adapting
RUP for
reuse.

A reusable
internally
developed
component
framework
acts as a
platform.

Inconsistency
between UML
models, and
between UML
models and
requirements or
code is a
problem using
RUP.

Describing an
industrial
case of
product
family
development
and
adaptation of
RUP.

GSN RUP
adaptation.

C6b.
Inspection
tech-
niques

Adapting for
incremental
changes in
UCSs.

Complex
UML models
and UCSs.

 89

Evaluation and Discussion

A few notes on the contents of Table 7-2:
−

−

−

−

C2 and C3 are exploratory studies that generate hypotheses for future
assessment.
For C5, storing data in a common database or defining relations between metrics
are solutions that are proposed in other studies. This thesis contributes to
identify the conceptual challenge in the integration of the results due to metrics
that are defined for single approaches, and not a combination of them.
Although reuse adaptation proposals in C6b are for the Ericsson adaptation of
RUP (GSN RUP), they may be reusable in other contexts. These proposals
follow the notations of RUP and do not contain any product-specific details.

7.3 Relations to INCO Goals

The relations between the results and the INCO goals as defined in Sections 1.2 and 5.2
are now considered:

G1. Advancing the state-of-the-art of software engineering. It is thought that the
work reported in this thesis advances the state-of-the-art of software engineering as
defined by its contributions. Better understanding of approaches to product family
engineering, software reuse and incremental development is achieved, as reflected in the
contributions C1, C2 and C4.

G2. Advancing the state-of-the-practice in software-intensive industry and for
own students. Some feedback is given to Ericsson, but improvement activities stopped
due to organizational changes. However, C3 to C6 are reusable in other contexts.
Several students have participated in the studies.

G4. Disseminating and exchanging the knowledge gained. Most results are
published and presented at international and national conferences or workshops. During
this thesis work, five groups of master’s students of a total 11 students from NTNU and
HiA have performed their project works and master’s theses at Ericsson, which is an
example of university-industry co-operation. I have held presentations in courses at
NTNU and am a co-lecturer at HiA, where I teach software processes, CBD and
empirical studies. I have used empirical studies in this thesis as examples in these
courses. Furthermore, INCO plans to participate in an international seminar in Oslo on
SPI on 7-8 September 2004, where the results of this thesis will be presented.

7.4 Evaluation of Validity Threats

Four groups of validity threats in empirical research are considered in Section 4.3 and
validity threats of individual studies are discussed in the papers. In Section 4.1, two
possible remedies to improve the validity of studies are mentioned:

1. Replication over time and in multiple contexts. This work has assessed some
earlier theories in new contexts:

The relation between defect-density or the number of defects and component
size was earlier studied, but not in the context of reuse [P8].

 90

 Evaluation of Validity Threats

The origin and type of changes or maintenance activities were earlier
studied, but not in the context of incremental development of a large-scale
system [P10].

−

−

−

−

−

−

2. Combination of data and research strategies. The choice of research strategy (a
mixed-method design) increases the validity of results. In the interpretation of
the results, quantitative data are combined with each other and with qualitative
observations. Examples are:

Study of the impact of reuse both on defect-density [P8], modification
degree [P8] and change-proneness [P10].
Combining results of different studies in Section 6.2- Combining Results.

Combining data and research strategies needs a good grasp of the context, access to
multiple sources of information, and a time frame that allows collecting and interpreting
different types of data. However, it is powerful in the sense that it combines all the
evidence. Some common threats to the validity of results are further discussed here.

Quantitative studies. The collected data is considered to be reliable. It is gathered
from the company’s data repositories, in controlled experiments, or from the company’s
internal measures. Some threats to validity of quantitative studies and how these are
handled are as follows:

Conclusion validity. Some analysis could only be done on the subsystem level,
which gives too few data points for statistical analysis in [P8] and [P10]. A
second threat is due to the missing physical integration of data repositories (cf.
[P11]). For example, TRs report defects identified in system test and in later
phases, and not during inspections and unit testing. However, reliability is often
considered to be related to defects detected in later phases, especially after
delivery (which are costly to repair and have impact on the users’ perception of
quality). In the study of CRs, these were stored in several web pages and in
different formats [P10]. This threat is handled by inserting all available data in a
common SQL database.
Internal validity. Missing data is the greatest threat to the internal validity of the
studies on TRs and CRs [P8][P10]. This is due to the processes of reporting
troubles and changes, since these reports miss data about the faulty components
or affected components if this data were not known at the time of initiating a TR
or CR. Missing data of this type do not introduce systematic bias to the results.
The reasons for missing data were sought and the distributions were analyzed
when possible (e.g. [P8]). Missing data is not substituted and the statistical tests
are robust when the data size is large enough. The data is complete in the studies
on effort and the estimation method [P12] [P13], the inspection experiment [P4]
and the survey on developers’ attitude to reuse [P2] [P9].
Construct validity. The construct validity of the questionnaire used in the survey
on developers’ attitude to reuse is not addressed, since this was a pre-study and
had a small scale [P2]. It should be verified whether the quality metrics used in
quantitative studies (such as defect-density, stability and change-proneness) are
software quality indicators. These metrics are mostly taken from the literature.
The identified metrics for a combination of development approaches presented
in [P11] should be verified for construct validity, which may be the subject of
future studies.

 91

Evaluation and Discussion

External validity. In Section 5.3, challenges in developing large systems were
discussed and some characteristics of the GPRS system that may impact external
validity were presented. The external validity of the contributions is discussed
later in this section.

−

−

−

−

−

−

−

Qualitative studies. Again, the collected data is reliable, using internal reports,
feedbacks and own experience, but this data is subjective and can be subject to other
interpretations as well. Prior knowledge of the system and the organization, and
valuable feedback from colleagues improve the validity. Rival explanations are
addressed when interpreting the results and the conclusions are combined with
quantitative results as far as possible.

Case study research. Section 4.2 discussed rationales for performing a case study,
including the case being a critical, representative or revelatory one. The rationales for
justifying this research are:

Affiliation in the company provided the chance to access and analyze data that is
rarely accessible to empirical studies (revelatory case). In some cases, the
studies are the first ones on an industrial large-scale system [P4] [P8] [P10]
[P12] [P13].
The system in the study can represent a critical case for verifying theories.
Assessing the impact of reuse in a company with an extractive approach to reuse
(not pre-planned from the beginning), across multiple organizations and with
high risks of large-scale development can strengthen the theory on reuse benefits
in other cases (related to C1). The same is true for C3 and C6a: adapting the
UCP estimation for complex use cases and a large system and the experiment on
OORTs in incremental development with complex UML models verifies that the
methods are adaptable to the context and do scale up.
In some cases, the study is “an example” of industrial practice, such as the
software process model and the practice, being in different maturity levels
regarding reuse [P2] [P7].

External validity of contributions. This work has performed confirmatory,
descriptive and exploratory studies, with different degrees of generalizability:

C1. Results in C1 confirm existing theories and are therefore easier to be reused
in other contexts [P8].
C2. Section 4.2 discusses that a case study may show to be a falsifying case, in
which case the results are more interesting for the research community. Some
pre-assumptions were revised in this thesis, especially in [P10]. For example,
most changes stem from the project organization and not from external actors as
assumed in other studies; i.e. a falsifying case. Hypotheses regarding the share
of changes in software evolution are grounded in the available data and may at
least be generalized to similar systems in the company or in the same domain.
The system in study has high focus on some quality requirements. The share of
these requirements may be different in other domains. However, probably other
systems such as web-based ones have other quality requirements with the same
importance. Generalization to other domains needs further study.
C3. The adaptations in the effort estimation method (breaking down complex
use cases, assuming average project and using an adaptation factor for software
reuse) are reusable in other large systems with incremental development [P13].

 92

 Working in the Field

The distribution of effort over development phases is grounded in the data and
may be valid for large systems, but not for smaller ones that do not face the
same challenges for CM, integration and testing [P12].
C4. The identified metrics is reusable in other systems with the combination of
reuse and incremental development [P11]. As described in Section 5.3,
development methods are increasingly becoming common in software projects
across companies.

−

−
−

−

−

−

−

C5. The data mining method is reusable in the analysis of other systems [P11].
C6a. RUP must be adapted for the context and so are the adaptation proposals
for reuse. However, the proposals are generic and may be reused in other
adaptations of RUP.
C6b. Results of the experiment on inspection techniques may be of interest in
future improvement of the OORTs [P4].

7.5 Working in the Field

Two aspects are discussed here: ethical issues and being exposed to organizational
changes during a thesis work.

Being an employee of the company during this research has had several advantages. I
had first-hand knowledge about the routines for collecting data, it was “easy” to access
data (although in practice most of the data in quantitative studies was collected and
analyzed by mining several data repositories), and knowing the colleagues helped in
different stages of data collection, performing the survey and the experiment.
Nevertheless, in any study in the field, there are ethical issues that should be considered.

This work has followed a common principle: the company and the participants are
informed on the goal of each study and permission was gained to collect the data.
Another concern has been to avoid interrupting on-going work. Sometimes, a study was
delayed several times for the right moment to perform or even was cancelled. An
example is the experiment on inspection techniques in [P4] that was delayed to fit the
inspection plan. There are also specific issues for each study:

Several students have been involved in collecting and analyzing data. They have
all signed confidentiality statements according to the company’s rules.
In publishing some of the results, the data is aggregated and presented by means
or medians to avoid too detailed information. Data that may be considered as
confidential are not published.
Key personnel were asked to comment the results or read the draft of a paper.

As discussed by Singer et al., empirical research in software engineering needs some
rules regarding ethical issues [Singer02]. For example, should we report problematic
processes in a company? This work discusses problems in the measurement program
and processes for collecting data, e.g. reporting defects or effort. These problems are not
specific to this company and the literature reveals that most companies face similar
challenges. Lots of data were collected that were not properly analyzed; either no
metrics are defined or metrics are not connected to quality goals, or there is a lack of
resources to perform analyses. The overall feedback from conferences and workshops
has been positive, admiring the company’s willingness to allow empirical studies of on-
going projects.

 93

Evaluation and Discussion

During this work, Ericsson decided to centralize all development of the product in
study in a few centers and gradually closed down the GPRS development project in
Grimstad. As described before, this affected the course of this work. Nevertheless, the
research was re-designed and still performed in an industrial context, but with different
focus. This experience confirms that working in the field needs flexibility and
incremental, emerging research design.

 94

8 Conclusions and Directions for Future
Work

This thesis has presented the results of several empirical studies performed at Ericsson,
which is one of the world’s leading suppliers of mobile (and IT) systems. These studies
were sometimes the first performed in a real context of a large and long-lived system.
The studies combine literature study, collecting and analyzing quantitative data from
data repositories and qualitative data from different sources, experiments, statistical
hypotheses testing and case studies. A mixed-method research design was applied to
allow taking benefit of all available data, combining the results and answering questions
that are not possible to answer otherwise. The top-down confirmatory approach is
combined with the bottom-up explorative and descriptive approaches.

This work mainly analyzed data that the company itself had not analyzed at all or not
to the extent presented in this thesis. Prior knowledge of the product in the study and the
organization, and combining different types of data with one another and with previous
work improve the validity of the results.

Empirical research is performed to verify theories, develop new theories or extend
existing ones, and improve the practice. The thesis contributes to these aspects by:

1. Describing different aspects of software development; i.e. the power of
example:
1.a) The practice of software development in a large-scale product family has

been described. The product family consists of two products that is initiated
using a lightweight and extractive approach. A component framework is
developed that embraces many quality attributes and acts as a platform for
application developers. Management support, common goals and common
infrastructure, domain knowledge and experienced people are success
factors to reuse. Components are developed in-house or by other Ericsson
organizations. Although internally developed guidelines and design rules
are added to the software process model (an adaptation of RUP), software
reuse and product family approach is still not explicit in the internal process
model: workflows are explained as if there is a single product development
and there is no framework engineering activity.

1.b) This work identified aspects with improvement potential for the company
and proposed some improvements: a) reuse activities were proposed that
could be added to the software process model, b) results of an experiment

 95

Conclusions and Directions for Future Work

comparing the company’s inspections techniques with the adapted OORTs
showed that the new techniques detected inconsistency defects that were
not detected by the existing technique, c) an effort estimation method for
top-down estimation using UCSs is developed that can be used in addition
to expert estimates to improve the accuracy of early estimates, and d) the
quality of metrics, the measurement program, and the processes for
reporting defects, changes and effort were evaluated. It is suggested to
collect data automatically as far as possible and in a common database. It is
also suggested to analyze this data and use the results in evaluating product
and project goals, and development approaches.

2. Verifying existing theories and assessing existing methods in new contexts;
i.e. the power of replication:
2.a) Reuse benefits were quantitatively verified for a large system and with

components developed in-house. Reused components had actually lower
defect-density and were less modified between releases than non-reused
ones. No difference was observed in the change-proneness of reused and
non-reused components. Other studies claimed that reused components
change more, since these should meet requirements of several products.
Although some confounding factors were identified, the conclusion is that
reused components are designed and verified better, and are changed with
more care.

2.b) This work evaluated the UCP estimation method and adapted in the context
of incremental development of a large system. The method was earlier
tested only on small projects and with use cases developed from scratch.
The results of this study verified that the method scales up with certain
modifications, and works well without the technical and environmental
factors. For incremental development, steps were added to count
modifications in UCSs. Furthermore, the reuse of software from a previous
release is accounted for by adding an adaptation factor borrowed from
COCOMO 2.0.

2.c) This work evaluated the OORTs and adapted it in the context of
incremental development of a large system. Results of the first controlled
industrial experiment on the techniques showed that the OORTs and the
existing inspection technique detected different types of defects but had
almost the same cost-efficiency.

2.d) This work evaluated RUP in the context of product family development and
proposed adaptations for reuse. Although RUP is the most widespread
software development process, no other studies on the reuse aspect have
been found. Adaptation for reuse may be done by adding activities to
existing workflows, such as “Make vs. Reuse vs. Buy decision” and
“Record reuse experience”. Separating framework engineering and
application engineering may be the subject of future studies.

3. Generating new theories, hypotheses or methods by analyzing data from new
perspectives (as in grounded theory) or combining the results of several studies;
i.e. the power of generalization:
3.a) The origin of Change Requests and the distribution over functionality vs.

quality attributes was studied. The results showed that functionality is both

 96

 Conclusions and Directions for Future Work

enhanced and improved between releases, while quality attributes are
mostly improved. Most change requests were related to quality attributes
and were issued by the project itself. Although the share of maintenance
activities (corrective, perfective, adaptive or preventive) was earlier studied,
this was the first empirical study on functionality vs. quality attributes and
in the context of incremental development. The study covers activities
related to software evolution and corrective activities are not included in
this study.

3.b) The distribution of effort over development phases for incremental
development of a large system was studied. The results showed that only
half the effort is spent on development before system testing. It also
empirically showed the share of CM (12-13%), system test (20-25%), and
adapting and maintaining the software process model (2-5%). Incremental
development needs incremental integration of software and regression
testing, as reflected in the effort needed for CM and system testing.

3.c) The results of quantitative and qualitative studies have been combined in a
model of the impact of development approaches on quality metrics.
Development approaches should be studied in combination with one
another, since approaches have multiple and crosscutting impacts on
development practices and quality metrics. For example, software reuse
improves product quality, but creates challenges in incremental planning
and incremental delivery. Incremental and iterative development leads to
requirements modification, which may reduce planning precision by adding
more requirements or improve it by removing requirements. Software reuse
and CBD are proposed to reduce effort, but some extra effort is needed for
incremental integration, incremental changes in artifacts that are already
developed and verification.

3.d) This work has identified metrics for a combination of development
approaches. Metrics for reuse and CBD are defined in various parts of the
literature. However, these metrics should be combined with one another,
with metrics for incremental development and with industrial practice. It is
importance to define a proper granularity of components in metrics, collect
data at the end of each release, label components as reused or new, and
collect effort per component and requirement.

3.e) A data mining method for exploring industrial data repositories has been
developed based on the experience from quantitative analyses. The method
combines theory search with bottom-up pre-study of data for hypotheses
generation in the preparation phase. It uses steps of a data mining process in
the execution phase as proposed by Cooper et al. with modifications
[Cooper01]. The contributions described in C1, C2 and C3 are pragmatic
examples of the value of such repositories in empirical research.

This work covers multiple aspects of software development. Reuse, CBD and
incremental development have many advantages, but also require a systematic approach
in introducing each and in combining these. Possible directions for future work are:

Use cases for effort estimation. The effort estimation method (C3) should be
tested in other projects. There is no standard way of writing use cases.

−

 97

Conclusions and Directions for Future Work

“Usefulness for estimation” can be defined as a criterion to study practices from
this view.
Study of RUP adaptations. A comprehensive literature study on RUP
adaptations in other projects is necessary, identifying aspects for classifying and
evaluating these and comparing the results.

−

−

−

−

−

Empirical studies on software evolution. Some data on requirements as
defined in ARS for several releases is still not analyzed. Analyzing these data on
requirements evolution between releases will complete the picture of the origin
of changes as described in C2.
Study of effort distribution. More empirical studies on effort distribution in
different contexts and for different development approaches are necessary to
identify the parameters that have most impact on such distributions.
The impact of development approaches on product and project metrics. The
model presented in Section 6.2 can be extended for future assessment in
university or industrial environments. It was discussed that quick changes in
technologies do not allow proper evaluations of them. However, this is not the
only reason for poor empirical assessment. Other reasons are lack of guidelines
(describing what is important to assess) and lack of benchmarking data to
compare with.
Relevant metrics for incremental development of large systems. Validating
and extending the identified metrics described in C4 with focus on incremental
development of component-based systems can be the subject of future work.
These metrics are important to define a framework for future research on
software evolution and building more complex models on the relations between
development approaches and quality attributes.

 98

References to Part I
[Allen98] Allen, P., Frost, S.: Component-Based Development for Enterprise Systems,

Applying the SELECT Perspective. Cambridge University Press/SIGS, Cambridge,
1998.

[Alshayeb03] Alshayeb, M., Li, W.: An Empirical Evaluation of Object-Oriented
Metrics in Two Different Iterative Software Processes. IEEE Trans. Software
Engineering, 29(11), pp. 1043-1049, November 2003.

[Arif02] Arif, T., Hegde, L.C.: Inspection of Object-Oriented Construction. NTNU
master’s thesis spring 2002, 165 p. www.idi.ntnu.no/grupper/su/su-diploma-
2002/Arif-OORT_Thesis-external.pdf.

[Arisholm04] Arisholm, E., Sjøberg, D.: Evaluating the Effect of a Delegated versus
Centralized Control Style on the Maintainability of Object-Oriented Software. To
appear in IEEE Trans. Software Engineering, 30(7), July 2004.

[Arlow02] Arlow, J., Neustadt, I.: UML and The Unified Process. Practical Object-
Oriented Analysis and Design. Addison-Wesley, 2002.

[Atkinson02] Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua,
R., Muthig, D., Paech, B., Wüst, J., Zettel, J.: Component-based Product Line
Engineering with UML. Addison-Wesley, 2002.

[Atkinson03] Atkinson, C., Kuhne, T.: Aspect-Oriented Development with Stratified
Frameworks. IEEE Software, 20(1), pp. 81-89. January/February 2003.

[Bachmann00] Bachmann, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F.,
Robert, J., Seacord, R., Wallnau, K.: Volume II: Technical Concepts of Component-
Based Software Engineering. SEI Technical Report number CMU/SEI-2000-TR-
008. http://www.sei.cmu.edu/

[Barbacci00] Barbacci, M.R., Ellison, R.J., Weinstock, C.B., Wood, W.G.: Quality
Attribute Workshop, Participants Handbook. SEI Special Report, CMU/SEI-2000-
SR-001, 2000. http://www.sei.cmu.edu/publications/

[Basili75] Basili, V., Turner, J.: Iterative Enhancement: A Practical Technique for
Software Development. IEEE Trans. Software Engineering, 1(12), pp. 390-396,
December 1975.

[Basili84] Basili, V.R., Weiss, D.: A Methodology for Collecting Valid Software
Engineering Data. IEEE Trans. Software Engineering, 10(11), pp. 758-773,
November 1984.

[Basili01] Basili, V.R., Boehm, B.: COTS-Based Systems Top 10 List. IEEE Computer,
34(5), pp. 91-93, May 2001.

[Baskerville03] Baskerville, R., Ramesh, B., Levine, L., Pries-Heje, J., Slaughter, S.: Is
Internet-Speed Software Development Different? IEEE Software, 20(6), pp. 70-77,
November/December 2003.

[Bass00] Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord, R.,
Wallnau, K: Volume I: Market assessment of Component-based Software

 99

www.idi.ntnu.no/grupper/su/su-diploma-2002/Arif-OORT_Thesis-external.pdf
www.idi.ntnu.no/grupper/su/su-diploma-2002/Arif-OORT_Thesis-external.pdf
http://www.sei.cmu.edu/
http://www.sei.cmu.edu/publications/

References to Part I

Engineering. SEI Technical Report number CMU/SEI-2001-TN-007.
http://www.sei.cmu.edu/

[Beaurepaire04] Beaurepaire, O., Lecardeux, B., Havart, C.: Industrialization of
Software-Quality-Led Project Management Process at the SNCF (French
Railways). Proc. the 8th ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering (QAOOSE’04), Olso, Norway, June 15, 2004, pp.
47-59.

[Benediktsson03] Benediktsson, O., Dalcher, D.: Developing a new Understanding of
Effort Estimation in Incremental Software Development Projects. Proc. Intl. Conf.
Software & Systems Engineering and their Applications (ICSSEA’03), December 2-
4, 2003, Paris, France. Volume 3, Session 13, ISSN 1637-5033, 10 p.

[Bennett00] Bennett, K., Rajlich, V.: Software Maintenance and Evolution: A
Roadmap. Proc. The Conference on the Future of Software Engineering, June 04-
11, 2000, Limerick, Ireland, pp. 73-87. Anthony Finkelstein (Ed.), ACM Press
2000, Order number 592000-1, ISBN 1-58113-253-0.

[Bergström03] Bergström, S., Råberg, L.: Adopting the Rational Unified Process,
Success with the RUP. Addison-Wesley, 2003.

[Bluetooth04] The Official Bluetooth website, cited June 29, 2004. http://www.
Bluetooth.com

[Boehm85] Boehm, B.W.: A Spiral Model of Software Development and Enhancement.
Proc. Int’l Workshop Software Process and Software Environments. ACM Press,
1985, also in ACM Software Engineering Notes, August 1986, pp. 22-42.

[Boehm95] Boehm, B.W., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby,
R.: Cost Models for Future Software Life Cycle Processes: COCOMO 2.0. USC
center for software engineering, 1995.
http://sunset.usc.edu/publications/TECHRPTS/1995/index.html

[Bosch00] Bosch, J.: Design and Use of Software Architectures: Adpoting and Evolving
a Product-line Approach. Addison-Wesley, 2000.

[Bosch02] Bosch, J.: Maturity and Evolution in Software Product Lines: Approaches,
Artifacts and Organization. Proc. of the 2nd Software Product Line Conference-
SPLC2, LNCS 2379 Springer 2002, ISBN 3-540-43985-4, pp. 257-271.
http://www.cs.rug.nl/~bosch/

[Briand01] Briand, L., Wüst, J.: Integrating Scenario-based and Measurement-based
Software Product Assessment. Journal of Systems and Software, 59(1), pp. 3-22.
SEI Report No. 42.00/E, ISERN Report No. ISERN-00-04.
http://www.sce.carleton.ca/faculty/briand/isern-00-04.pdf,
http://www.sce.carleton.ca/Squall/pubs_journal.html#2001

[Briand02] Briand, L., Wüst, J.: Empirical Studies of Quality Models in Object-
Oriented Systems. Advances in Computers, Academic Press, Vol. 56, pp. 97-166,
updated 18 February 2002. http://www.harcourt-
international.com/serials/computers/

 100

http://www.sei.cmu.edu/
http://www. bluetooth.com/
http://www. bluetooth.com/
http://sunset.usc.edu/publications/TECHRPTS/1995/index.html
http://www.cs.rug.nl/~bosch/
http://www.sce.carleton.ca/faculty/briand/isern-00-04.pdf
http://www.sce.carleton.ca/Squall/pubs_journal.html
http://www.harcourt-international.com/serials/computers/
http://www.harcourt-international.com/serials/computers/

 References to Part I

[Brownsword00] Brownsword, L., Oberndorf, T., Sledge, C.: Developing New
Processes for COTS-Based Systems. IEEE Software, 17(4), pp. 48-55, July/August
2000.

[Bruin02] de Bruin, H., van Vliet, H.: The Future of Component-Based Development is
Generation, not Retrieval. Proc. CBSE Workshop in the 9th Annual IEEE
International Conference and Workshop on the Engineering of Computer-Based
Systems- ECBS02. http://www.idt.mdh.se/~icc/cbse-ecbs2002/

[Bunde02] Bunde, G.A., Pedersen, A.: Defect Reduction by Improving Inspection of
UML Diagrams in the GPRS Project. HiA master’s thesis spring 2002, 118 p.
http://siving.hia.no/ikt02/ikt6400/g08/

[Carney00] Carney, D., Long, F.: What Do you Mean by COTS? Finally, a Useful
Answer. IEEE Software, 17(2), pp. 83-86, March/April 2000.

[CBSEnet04] The CBSEnet project, July 5, 2004: http://www.cbsenet.org
[Cheesman00] Cheesman, J., Daniels, J.: UML Components: A Simple Process for

Specifying Component-Based Software. Addison-Wesley, 2000.
[Clements01] Clements, P., Northrop, L.: Software Product Lines- Practices and

Patterns. Pearson Education (Addison-Wesley), 2001.
[Clements02a] Clements, P.: Being Proactive Pays Off. IEEE Software, 19(4), pp. 28-

30, July/August 2002.
[Clements02b] Clements, P., Northrop, L.M.: Salion, Inc.: A Software Product Line

Case Study. SEI Technical Report number CMU/SEI-2002-TR-038, November
2002.

[Cohen02] Cohen, S.: Product Line State of the Practice Report. SEI Technical Note
number CMU/SEI-2002-TN-01, 2002.
http://www.sei.cmu.edu/publications/documents/02.reports/02tn017.html

[Cooper01] Cooper, D.R., Schindler, P.S.: Business Research Methods. McGraw-Hill
International edition. 7th Edition, 2001.

[Creswell94] Creswell, J.W.: Research Design, Qualitative and Quantitative
Approaches. Sage Publications, 1994.

[Creswell03] Creswell, J.W.: Research Design, Qualitative, Quantitative, and Mixed
Methods Approaches. Sage Publications, 2002.

[Crnkovic02] Crnkovic, I., Larsen, M.: Building Reliable Component-Based Software
Systems. Artech House Publishers, 2002.

[Cusumano97] Cusumano, M.A., Selby, R.W.: Microsoft Secrets: How the World’s
Most Powerful Software Company Creates Technology, Shapes Markets, and
Manages People. HarperCollins, 1997.

[D’Souza98] D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks with
UML: The Catalysis Approach. Addison-Wesley, 1998.

[Eeles01] Eeles, P.: Capturing Architectural Requirements. The Rational Edge,
November 2001.
http://www.therationaledge.com/nov_01/t_architecturalRequirements_pe.html

 101

http://www.idt.mdh.se/~icc/cbse-ecbs2002/
http://siving.hia.no/ikt02/ikt6400/g08/
http://www.cbsenet.org/
http://www.sei.cmu.edu/publications/documents/02.reports/02tn017.html
http://www.therationaledge.com/nov_01/t_architecturalRequirements_pe.html

References to Part I

[Ekeroth00] Ekeroth, L., Hedström, P.M.: GPRS Support Nodes. Ericsson Review,
2000:3, pp. 156-169.

[Endres03] Endres, A., Rombach, D.: A Handbook of Software and Systems
Engineering, Empirical Observations, Laws, and Theories. Person Education
Limited, 2003.

[Ericsson99] Ericsson Press Release, cited 29 June 2004.
http://www.ericsson.com/press/archive/1999q1/19990125-0025.html

[Ericsson04a] cited April 10, 2004.
http://www.ericsson.com/products/main/GSM_EDGE_WCDMA_hpaoi.shtml,

[Ericsson04b] AXE, cited June 26, 2004.
http://www.ericsson.com/technology/tech_articles/AXE.shtml

[Escalante03] Escalante, M., Gutierrez, P.: CBSE: State of the Practice. Proc. of the
Sixteenth International Conference on Software & Systems Engineering and their
Applications (ICSSEA'2003), 2-4 December 2003, Paris, Volume 2, Session 9:
Reuse & Components, ISSN: 1637-5033, 16 p.

[Fenton97] Fenton, N., Pfleeger, S.L.: Software metrics: A Rigorous and Practical
Approach. International Thomson Computer Press, 2nd edition, 1997.

[Fenton00a] Fenton, N.E., Neil, M.: Software Metrics: Roadmap. The Conference on
the Future of Software Engineering, 04-11 June 2000, Limerick, Ireland, pp. 357-
370. Anthony Finkelstein (Ed.), ACM Press 2000, Order number 592000-1, ISBN
1-58113-253-0.

[Fenton00b] Fenton, N.E., Ohlsson, N.: Quantitative Analysis of Faults and Failures in
a Complex Software System. IEEE Trans. Software Engineering, 26(8), pp. 797-
814, 2000.

[Flyvbjerg04] Flyvbjerg, B.: Five Misunderstandings about Case-Study Research. In
[Seale04], pp. 420-434.

[Frakes95] Frakes, W.B., Fox, C.J.: Sixteen Questions about Software Reuse.
Communications of the ACM, 38(6), pp. 75-87, June 1995.

[Ghosh02] Ghosh, S.: Improving Current Component-Based Development Techniques
for Successful component-Based Software Development. Proc. International
Conference on Software Reuse (ICSR7), Workshop on Component-based Software
Development Processes, 2002. http://www.idt.mdh.se/CBprocesses/

[Gilb76] Gilb, T.: Software Metrics. Chartwell-Bratt, 1976.
[Gilb88] Gilb, T.: The Principles of Software Engineering Management. Addison-

Wesley, 1988.
[Graham97] Graham, L., Henderson-Sellers, B., Younessi, H.: The OPEN Process

Specification. Addison-Wesley, 1997.
[Griss93] Griss, M.L.: Software Reuse: From Library to Factory. IBM Systems Journal,

November-December 1993, 32(4), pp. 548-566.
[Griss95] Griss, M.L., Wosser, M.: Making Reuse Work in Hewlett-Packard. IEEE

Software, 12(1), pp. 105-107, January 1995.

 102

http://www.ericsson.com/press/archive/1999q1/19990125-0025.html
http://www.ericsson.com/products/main/GSM_EDGE_WCDMA_hpaoi.shtml
http://www.ericsson.com/technology/tech_articles/AXE.shtml
http://www.idt.mdh.se/CBprocesses/

 References to Part I

[Grundy00] Grundy, J.C.: An Implementation Architecture for Aspect-Oriented
Component Engineering. Proc. 5th International Conference on Parallel and
Distributed Processing Techniques and Applications: Special Session on Aspect-
oriented Programming, CSREA Press. http://www.cs.auckland.ac.nz/~john-
g/aspects.html

[GSM04] The GSM Association, cited July 5, 2004:
http://www.gsmworld.com/technology/gprs/intro.shtml#8

[Heineman01] Heineman, G.T., Councill, W.T.: Component-Based Software
Engineering, Putting Pieces Together. Addison-Wesley, 2001.

[Heires01] Heires, J.T.: What I Did Last Summer: A Software Development
Benchmarking Case Study. IEEE Software, 18(5), pp. 33-39, September/October
2001.

[Hissam98] Hissam, S., Carney, D: Isolating Faults in Complex COTS-Based Systems.
SEI Monographs on the Use of Commercial Software in Government Systems, 1998.
http://www.sei.cmu.edu/cbs/papers/monographs/isolating-faults/isolating.faults.htm

[Holmen01] Holmen, U.E., Strand, P.: Selection of Software Development Process- A
Study of Changes in the Software Development Process of Five Norwegian
Companies. Project work report at NTNU, autumn 2001, 52 p.
http://www.idi.ntnu.no/grupper/su/sif8094-reports/2001/p10.pdf

[IDI-SU04] Software Engineering Group at the Department of Computer and
Information Science (IDI), NTNU, publications:
http://www.idi.ntnu.no/grupper/su/index.php3?file=publ/INT-PUBL.php3

[IEEE1219] IEEE Standard 1219: Standard for Software Maintenance. IEEE Computer
Society Press, 1993.

[INCO01] The INCO project: http://www.ifi.uio.no/~isu/INCO/
[Jacobson97] Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture,

Process and Organization for Business Success. Addison-Wesley, 1997.
[Jacobson03] Jacobson, I.: Use Cases and Aspects - Working Seamlessly Together.

Journal of Object Technology, 2(4), pp. 7-28, July/August 2003. http://www.jot.fm
[Jalote04] Jalote, P., Palit, A., Kurien, P., Peethamber, V.T.: Timeboxing: A Process

Model for Iterative Software Development. The Journal of Systems and Software,
2004:70, pp. 117-127.

[Jazayeri00] Jazayeri, M., Ran, A., van der Linden, F.: Software Architecture for
Product Families. Addison-Wesley, 2000.

[Johnson98] Johnson, R.E., Foote, B.: Designing Reusable Classes. Journal of Object-
Oriented Programming, 1(3), pp. 26-49, 1998.

[Juristo01] Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation.
Boston Kluwer Academic, 2001.

[Jørgensen04] Jørgensen, M., Sjøberg, D.: Generalization and Theory Building in
Software Engineering Research. Accepted at the 8th International Conference on
Empirical Assessment in Software Engineering (EASE2004), May 24-25, 2004,
Edinburgh, Scotland.

 103

http://www.cs.auckland.ac.nz/~john-g/aspects.html
http://www.cs.auckland.ac.nz/~john-g/aspects.html
http://www.gsmworld.com/technology/gprs/intro.shtml
http://www.sei.cmu.edu/cbs/papers/monographs/isolating-faults/isolating.faults.htm
http://www.idi.ntnu.no/grupper/su/sif8094-reports/2001/p10.pdf
http://www.idi.ntnu.no/grupper/su/index.php3?file=publ/INT-PUBL.php3
http://www.ifi.uio.no/~isu/INCO/
http://www.jot.fm/

References to Part I

[Kang90] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented
Domain Analysis (FODA) Feasibility Study. SEI Technical Report CMU/SEI-90-
TR-21, SEI, Carnegie Mellon University, Pittsburgh, 1990.

[Karlsson95] Karlsson, E.A. (Ed.): Software Reuse, a Holistic Approach. John Wiley &
Sons, 1995.

[Karlsson02] Karlsson, E.A.: Incremental Development- Terminology and Guidelines.
In Handbook of Software Engineering and Knowledge Engineering, Volume 1.
World Scientific, 2002, pp. 381-401

[Kent99] Kent, B.: Extreme Programming Explained: Embrace Change. Addison-
Wesley, 1999.

[Kim02] Kim, H., Boldyreff, C.: Dveloping Software Metrics Applicable to UML
Models. Proc. 6th ECOOP Workshop on Quantitative Approaches in Object-
Oriented Software Engineering (QAOOSE’02), June 11, 2002, University of
Málaga, Spain. http://alarcos.inf-cr.uclm.es/qaoose2002/

[Kitchenham95] Kitchenham, B.A., Pickard, L., Pfleeger, S.L.: Case studies for Method
and Tool Evaluation. IEEE Software 12(4), pp. 52-62, July 1995.

[Kitchenham01] Kitchenham, B.A., Hughes, R.T., Linkman, S.G.: Modeling Software
Measurement Data. IEEE Trans. Software Engineering, 27(9), pp. 788-804,
September 2001.

[Kitchenham02] Kitchenham, B.A., Pfleeger, S.L., Hoaglin, D.C., Rosenberg, J.:
Preliminary Guidelines for Empirical Research in Software Engineering. IEEE
Trans. Software Engineering, 28(8), pp. 721-734, August 2002.

[Kruchten00] Kruchten, P.: The Rational Unified Process. An Introduction. Addison-
Wesley, 2000.

[Kruchten01] Kruchten, P.: The Nature of Software: What’s so Special about Software
Engineering? The Rational Edge, October 2001. http://www.therationaledge.com/

[Krueger02] Krueger, C.: Eliminating the Adoption Barrier. IEEE Software, 19(4), pp.
29-31, July/August 2002.

[Lanza02] Lanza, M., Ducasse, S.: Beyond Language Independent Object-Oriented
Metrics: Model Independent Metrics. Proc. 6th ECOOP workshop on Quantitative
Approaches in Object-Oriented Software Engineering (QAOOSE’02), 2002.
http://alarcos.inf-cr.uclm.es/qaoose2002/QAOOSE2002AccPapers.htm

[Larman03] Larman, C., Basili, V.R.: Iterative and Incremental Development: A Brief
History. IEEE Computer, 36(6), pp. 47-56, June 2003.

[Larsson00] Larsson, M., Crnkovic, I.: Development Experiences of Component-Based
System. Proc. 7th Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, Edinburgh, Scotland, April 2000, pp. 246-
254.

[Lientz78] Lientz, B.P., Swanson, E.B., Tompkins, G.E.: Characteristics of Application
Software Maintenance. Communications of the ACM, 21(6), pp. 466-471, June
1978.

 104

http://alarcos.inf-cr.uclm.es/qaoose2002/
http://www.therationaledge.com/
http://alarcos.inf-cr.uclm.es/qaoose2002/QAOOSE2002AccPapers.htm

 References to Part I

[Linden02] van der Linden, F.: Software Product Families in Europe: The Esaps and
Café Projects. IEEE Software, 19(4), pp. 41-49, July/August 2002.

[MacCormack03] MacCormack, A., Kemerer, C.F., Cusumano, M., Crandall, B.:
Trade-offs between Productivity and Quality in Selecting Software Development
Practices. IEEE Software, 20(5), pp. 78-85, September/October 2003.

[Maxwell02] Maxwell, K.D.: Applied Statistics for Software Managers. Prentice Hall
PTR, 2002.

[MacCormack03] MacCormack, A., Kemerer, C.F., Cusumano, M., Crandall, B.:
Trade-offs between Productivity and Quality in Selecting Software Development
Practices. IEEE Software, 20(5), pp. 78-85, September/October 2003.

[McGarry01] McGarry, J.: When it Comes to Measuring Software, Every Project is
Unique. IEEE Software, 18(5), pp. 19-20, September/October 2001.

[McGregor02] McGregor, J.D., Northrop, L.M., Jarred, S., Pohl, K.: Initiating Software
Product Lines. IEEE Software, 19(4), pp. 24-27, July/August 2002.

[McIlroy69] McIlroy, D.: Mass-produced Software Components. Proc. Software
Engineering Concepts and Techniques, 1968 NATO Conference on Software
Engineering, Buxton, J.M., Naur, P., Randell, B. (eds.), January 1969, pp. 138-155,
available through Petroceli/Charter, New York, 1969.

[Mendenhall95] Mendenhall, W., Sincich, T.: Statistics for Engineering and the
Sciences. Prentice Hall International Editions, 1995.

[Mili02] Mili, H., Mili, A., Yacoub, S., Addy, E.: Reuse-based Software Engineering.
Techniques, Organizations, and Controls. John-Wiley & Sons, 2002.

[Mills76] Mills, H.: Software Development. IEEE Trans. Software Engineering,
December 1976, pp. 265-273.

[Morisio00] Morisio, M., Seaman, S., Parra, A., Basili, V., Kraft, S., Condon, S.:
Investigating and Improving a COTS-Based Software Development Process, Proc.
22nd International Conference on Software Engineering ICSE'2000, Limerick,
Ireland, 2000, IEEE Computer Society Press, pp. 31-40.

[Morisio02] Morisio, M., Ezran, M., Tully, C.: Success and Failures in Software Reuse.
IEEE Trans. Software Engineering, 28(4), pp. 340-357, April 2002.

[Morisio03] Morisio, M., Torchiano, M.: Definition and Classification of COTS: A
Proposal. Proc. The International Conference on COTS-Based Software Systems
ICCBSS’03, LNCS 2255, pp. 165-175, 2003.

[Naalsund01] Naalsund, E., Walseth, O.A.: Component-Based Development, Models
for COTS/ Software Reuse. NTNU project work report, autumn 2001, 69 p.
http://www.idi.ntnu.no/grupper/su/sif8094-reports/2001/p4.pdf.

[Naalsund02] Naalsund, E., Walseth, O.A.: Decision making in component-based
development. NTNU master’s thesis, spring 2002, 92 p.
http://www.idi.ntnu.no/grupper/su/su-diploma-2002/naalsund_-
CBD(GSN_Public_Version).pdf

 105

http://www.idi.ntnu.no/grupper/su/sif8094-reports/2001/p4.pdf
http://www.idi.ntnu.no/grupper/su/su-diploma-2002/naalsund_-_CBD_(GSN_Public_Version).pdf
http://www.idi.ntnu.no/grupper/su/su-diploma-2002/naalsund_-_CBD_(GSN_Public_Version).pdf

References to Part I

[Neighbors96] Neighbors, J.M.: Finding Reusable Software Components in Large
Systems. Proc. the 3rd Working Conference on Reverse Engineering (WCRE’96),
November 8-10, 1996, Monterey CA, USA, pp. 2-10.

[Nuefelder00] Neufelder, A.M.: How to Measure the Impact of Specific Development
Practices on Fielded Defect Density. Proc. 11th International Symposium on
Software Reliability Engineering (ISSRE’00), 2000, pp. 148-160.

[Noppen02] Noppen, J., Tekinerdogan, B., Aksit, M., Glandrup, M., Nicola, V.:
Optimizing Software Development Policies for Evolutionary System Requirements.
Proc. ECOOP2002 Workshop Reader, Springer Verlag LNCS 2548, 2002.
http://www.joint.org/use/2002/sub/

[Northrop02] Northrop, L.M.: SEI’s Software Product Line Tenets. IEEE Software,
19(4), pp. 32-40, July/August 2002.

[OMG04] The Object Management Group: http://www.omg.org
[Parnas72] Parnas, D.L.: On the Criteria to be Used in Decomposing Systems into

Modules. Communications of the ACM, 15(12), pp. 1053-1058, December 1972.
[Parnas76] Parnas, D.L.: On the Design and Development of Program Families. IEEE

Trans. Software Engineering, 2(1), pp.1-9, 1976.
[Paul96] Paul, R.A.: Metrics-Guided Reuse. International Journal on Artificial

Intelligence Tools, 5(1 and 2), pp. 155-166, 1996.
[Pawlak04] Pawlak, R., Younessi, H.: On Getting Use Cases and Aspects to Work

Together. Journal of Object Technology, 3(1), pp. 15-26, January/February 2004.
http://www.jot.fm/issues/issue_2004_01/column2

[Pfleeger93] Pfleeger, S.L.: Lessons Learned in Building a Corporate Metrics Program.
IEEE Software, 10(3), pp. 67-74, May/June 1993.

[Poulin95] Poulin, J.S.: Populating Software Repositories: Incentives and Domain-
Specific Software. Journal of System and Software, 1995:30, pp. 187-199.

[Ramesh04] Ramesh, V., Glass, R.L., Vessey, I.: Research in Computer Science: An
Empirical Study. Journal of Systems and Software, 70(2004), pp. 165-176.

[Rine98] Rine, D.C., Sonnemann, R.M: Investments in Reusable Software: A Study of
Software Reuse Investment Success Factors. The Journal of Systems and Software,
1998:41, pp. 17-32.

[Saeki02] Saeki, M.: Attribute Methods: Embedding Quantification Techniques to
Development Methods. 6th ECOOP workshop on Quantitative Approaches in
Object-Oriented Software Engineering (QAOOSE’02), 2002. http://alarcos.inf-
cr.uclm.es/qaoose2002/QAOOSE2002AccPapers.htm

[Schwarz02] Schwarz, H., Killi, O.M., Skånhaug, S.R.: A Study of Industrial
Component-Based Development, Ericsson. NTNU project work report, autumn
2002, 105 p. http://www.idi.ntnu.no/grupper/su/sif8094-reports/2002/p2.pdf

[Schwarz03] Schwarz, H., Killi, O.M.: An Empirical Study of the Quality Attributes of
the GSN System at Ericsson. NTNU master’s thesis, spring 2003, 109 p.
http://www.idi.ntnu.no/grupper/su/su-diploma-2003/killi_schwarz-
empirical_study_ericsson_external-v1.pdf

 106

http://www.joint.org/use/2002/sub/
http://www.omg.org/
http://www.jot.fm/issues/issue_2004_01/column2
http://alarcos.inf-cr.uclm.es/qaoose2002/QAOOSE2002AccPapers.htm
http://alarcos.inf-cr.uclm.es/qaoose2002/QAOOSE2002AccPapers.htm
http://www.idi.ntnu.no/grupper/su/sif8094-reports/2002/p2.pdf
http://www.idi.ntnu.no/grupper/su/su-diploma-2003/killi_schwarz-empirical_study_ericsson_external-v1.pdf
http://www.idi.ntnu.no/grupper/su/su-diploma-2003/killi_schwarz-empirical_study_ericsson_external-v1.pdf

 References to Part I

[Seale04] Seale, C., Gobo, G., Gubrium, J.F., Silverman, D.: Qualitative Research
Practice. Sage Publications, 2004.

[Seaman99] Seaman, C.B.: Qualitative Methods in Empirical Studies of Software
Engineering. IEEE Trans. Software Engineering, 25(4), pp. 557-572, 1999.

[Sedigh-Ali01a] Sedigh-Ali S., Ghafoor, A., Paul, R. A.: Metrics-Guided Quality
Management for Component-Based Systems. Proc. 25th Annual International
Computer Software and Applications Conference (COMPSAC’01), Chicago,
October 8-12, 2001, IEEE CS Press, pp. 303-310.

[Sedigh-Ali01b] Sedigh-Ali, S., Ghafoor, A.: Software Engineering Metrics for COTS-
Based Systems. IEEE Computer, 34(5), pp. 44-50, May 2001.

[SEI04a] The Software Engineering Institute at the Carnegie Mellon University:
http://www.sei.cmu.edu/plp/plp_publications.html

[SEI04b] Product Line Approach to Software Development at SEI, cited July 5, 2004:
http://www.sei.cmu.edu/plp/plp_init.html

[Simula04] The Simula Research Laboratory, July 5, 2004, http://www.simula.no/
[Singer02] Singer, J., Vinson, N.G.: Ethical Issues in Empirical Studies of Software

Engineering. IEEE Trans. Software Engineering, 28(12), pp. 1171-1180, December
2002.

[Sommerville01] Sommerville, I.: Software Engineering. 6th edition, Addison-Wesley,
2001.

[SPIQ98] The SPIQ project: http://www.idi.ntnu.no/~spiq/
[Standish04] The Standish Group: http://www.standishgroup.com/
[Symons91] Symons, P.R.: Software Sizing and Estimating MK II FPA (Function Point

Analysis), John Wiley & Sons, 1991.
[Szyperski97] Szyperski, C.: Component Software- Beyond Object-Oriented

Programming. Addison-Wesley, 1997.
[Szyperski02] Szyperski, C., (with Gruntz, D., Murer, S.): Component Software, Beyond

Object-Oriented Programming. Addison Wesley, 2nd edition, 2002.
[Tarr99] Tarr, P., Ossher, H., Harrison, W., Sutton, S.: N Degrees of Separation: Multi-

Dimensional Separation of Concerns. Proc. The Int’l Conference on Software
Engineering (ICSE’99), IEEE CS Press, pp.107-119, 1999.

[Torchiano04] Torchiano, M., Morisio, M.: Overlooked Facts on COTS-Based
Development. IEEE Software, 21(2), pp. 88-93, March/April 2004.

[UML2.0] UML 2.0 Specifications: http://www.uml.org/
[Voas98] Voas, J.M.: Certifying Off-the-Shelf Software Components. IEEE Computer,

31(6), pp. 53-59, June 1998.
[Vigder98a] Vigder, M.R., Gentleman, W.M., Dean, J.: COTS Software Integration:

State of the art. NRC Report No. 39198, 1998, 22 p.
http://wwwsel.iit.nrc.ca/abstracts/NRC39198.abs

 107

http://www.sei.cmu.edu/plp/plp_publications.html
http://www.sei.cmu.edu/plp/plp_init.html
http://www.simula.no/
http://www.idi.ntnu.no/~spiq/
http://www.standishgroup.com/
http://www.uml.org/
http://wwwsel.iit.nrc.ca/abstracts/NRC39198.abs

References to Part I

[Vigder98b] Vigder, M.: Inspecting COTS Based Software Systems, Verifying an
Architecture to Support Management of Long-Lived Systems, NRC Report No.
41604, 1998. http://wwwsel.iit.nrc.ca/projects/cots/COTSpg.html.

[Vigder99] Vigder, M.: Building Maintainable Component-Based Systems. Proc. 1999
International Workshop on Component-Based Software Engineering, pp. 17-18
May 1999. http://www.sei.cmu.edu/cbs/icse99/papers/38/38.pdf

[Voas01] Voas, J.: Composing Software Component “itilities”. IEEE Software, 18(4),
pp. 16-17, July/August 2001.

[Wallnau98] Wallnau, K.C., Carney, D., Pollak, B.: How COTS Software Affects the
Design of COTS-Intensive Systems. Spotlight, 1(1), June 1998.

http://interactive.sei.cmu.edu/Features/1998/June/cots_software/Cots_Software.htm
[Warsun03] Warsun Najib, Selo: MDA and Integration of Legacy Systems. HiA

master’s thesis, spring 2003, 85 p.
http://fag.grm.hia.no/ikt6400/hovedoppgave/lister/tidl_pro/prosjekter.aspx?db=200
3

[Wohlin00] Wohlin, C., Runeseon, P., M. Höst, Ohlsson, M.C., Regnell, B., Wesslén,
A.: Experimentation in Software Engineering. Kluwer Academic Publications,
2000.

[Yin03] Yin, R.K.: Case Study Research, Design and Methods. Sage Publications,
2003.

[Zave98] Zave, P., Jackson, M.: A Component-Based Approach to Telecommunication
Software. IEEE Software, 15(5), pp. 70-78, September/October 1998.

[Zowghi02] Zowghi, D., Nurmuliani, N.: A Study of the Impact of Requirements
Volatility on Software Project Performance. Proc. 9th International Asia-Pacific
Software Engineering Conference (APSEC’02), 2002, pp. 3-11.

 108

http://wwwsel.iit.nrc.ca/projects/cots/COTSpg.html
http://www.sei.cmu.edu/cbs/icse99/papers/38/38.pdf
http://interactive.sei.cmu.edu/Features/1998/June/cots_software/Cots_Software.htm
http://fag.grm.hia.no/ikt6400/hovedoppgave/lister/tidl_pro/prosjekter.aspx?db=2003
http://fag.grm.hia.no/ikt6400/hovedoppgave/lister/tidl_pro/prosjekter.aspx?db=2003

9 Papers

This chapter contains the papers in the order given in Section 1.5.

P1. Experiences with Certification of Reusable Components
in the GSN Project in Ericsson, Norway

Parastoo Mohagheghi Reidar Conradi
 Ericsson AS, Grimstad, Dept. Computer and Information Science,

 Norway NTNU, NO-7491 Trondheim, Norway
 Tel + 47 37.293069, Fax +47 37.043098 Tel +47 73.593444, Fax +47 73.594466

etopam@eto.ericsson.se conradi@idi.ntnu.no

Abstract
Software reuse, or component-based development is regarded as one of the most potent
software technologies in order to reduce lead times, increase functionality, and reduce
costs. The Norwegian INCO R&D project (INcremental and COmponent-based
development) aims at developing and evaluating better methods in this area [9]. It
involves the University of Oslo and NTNU in Trondheim, with Ericsson as one of the
cooperating industrial companies.

In this paper we discuss the experiences with the process to identify, develop and
verify the reusable components at Ericsson in Grimstad, Norway. We present and assess
the existing methods for internal reuse across two development projects.

Keywords
Software reuse, Components, Layered system architecture, Software quality, Quality
requirements.

1. Introduction
Companies in the telecommunication industry face tremendous commercial and
technical challenges characterized by very short time to market, high demands on new
features, and pressure on development costs to obtain highest market penetration. For

 109

mailto:etopam@eto.ericsson.se
mailto:conradi@idi.ntnu.no

P1. Experiences with Certification of Reusable Components

instance, Ericsson has worldwide adopted the following priorities: faster, better,
cheaper – in that order. Software reuse, or component-based development, seems to be
the most potent development strategy to meet these challenges [2][8]. However, reuse is
no panacea either [4].

When software components are developed and reused internally, adequate quality
control can be achieved, but the lead-time will increase. Newer development models,
such as incremental development, are promoting reuse of ready-made, external
components in order to slash lead times. However, external COTS (Components-Off-
The-Shelf) introduce new concerns of certification and risk assessment [1]. Both
internal and external reuse involves intricate (re)negotiation and prioritization of
requirements, delicate compromises between top-down and bottom-up architectural
design, and planning with not-yet-released components (e.g. middleware).

The present work is a pre-study of reuse in the GSN (GPRS Support Node, where
GPRS stands for General Packet Radio Service) project [6], and where Ericsson in
Grimstad, Norway is one of the main participants. We present and assess the existing
methods for component identification and certification at Ericsson in Grimstad for reuse
across several projects.
In the following, Section 2 presents the local setting. Section 3 introduces the reusable
components while Section 4, 5 and 6 discuss the quality schemes for reusable
components and certification. Section 7 summarizes experiences and aspects for further
study.

2. The Local Setting at Ericsson AS
Ericsson is one of the world’s leading suppliers of third generation mobile systems. The
aim of software development at Ericsson in Grimstad is to build robust, highly available
and distributed systems for real-time applications, such as GPRS and UMTS networks.
Both COTS and internal development are considered in the development process. The
GSN project at Ericsson has successfully developed a set of components that are reused
for applications serving UMTS networks. To support such reuse, the GSN project has
defined a common software architecture based on layering of functionality and an
overall reuse process for developing the software.

Figure 1 shows the four GSN architectural layers: the top-most application-specific
layer, the two common layers of business-specific and middleware reusable
components, and the bottom system layer. Each layer contains both internally developed
components and COTS.

Application systems use components in the common part. Applications address
functional requirements, configuration of the total system and share components in the
business-specific layer. The middleware layer addresses middleware functionality, non-
functional requirements and what is called system functionality (to bring the system in
an operational state and keep it stable). It also implements a framework for application
development.

Application systems sharing this reusable architecture are nodes in the GPRS or
UMTS network, both developed by Ericsson AS, the former in Norway and the latter in
Sweden. However, the process of identifying reusable components up to the point that
they are verified and integrated in a final product, still has shortcomings. Focus in this
article is on certification of reusable components in the middleware and business
specific layers in Figure 1, what we have called for “common parts” in short.

 110

 P1. Experiences with Certification of Reusable Components

ApplicationsApplication
systems

Common
parts

Application-specific layer

Business-specific layer

Middle-ware layer

System layer

Figure 1 GSN application architecture with four layers

The most important reusable artifact is the software architecture. By (software)

architecture we mean a description/specification of the high-level system structure, its
components, their relations, and the principles (strategies) and guidelines that govern
the design and evolution of the system. The system architecture description is therefore
an artifact, being the result of the system design activity.

Middleware is also an artifact that is reused across applications. It addresses
requirements from several applications regarding non-functional requirements and
traditional middleware functionality. Several business-specific components are also
reusable.

3. The Reusable Artifacts
Because of shared functional requirements, use cases and design artifacts (e.g. patterns)
may be reused as well. The development process consists of an adaptation of RUP [7], a
quality scheme, and configuration management (CM) routines. This process (model) is
also a reusable artifact.

We can summarize the reusable artifacts as:
A layered architecture, its generic components and general guidelines. −

−

−
−
−

Reusable components are either in the business-specific or middleware layers
(both internally developed, and called common parts in Fig. 1), or in the basic
system layer. Components in the business-specific or middleware layers are
mostly written in the proprietary Erlang language, a real-time version of Lisp,
and contain almost half part of the total amount of code written in Erlang. The
system layer is a platform targeted towards wireless packet data networks
containing hardware, operative systems and software for added features.
Architectural (i.e. design) patterns and more specific guidelines.
Partly shared requirements and use cases across applications.
Common process, based on an adaptation of RUP and including a quality
scheme and CM routines -see below.

 111

P1. Experiences with Certification of Reusable Components

A development environment based on UML. −
−

−

−

Tools as test tools, debugging tools, simulators, and quality assurance schemes.
The adaptation of the RUP process is a joint effort between the GPRS and UMTS

organizations in Ericsson. It covers tailoring of subprocesses (for requirement
specification, analysis and design, implementation, test, deployment and CM),
guidelines for incremental planning, what artifacts should be exchanged and produced,
and which tools that should be used and how.

To give a measure of the software complexity, we can mention that the GPRS project
has almost 150 KLOC (1000 lines of code excluding comments) written in Erlang, 100
KLOC written in C and 4 KLOC written in Java. No figures are available for the
number of reusable components but the applications share more than 60% of the code.

4. The Quality Scheme for the Architecture
The architecture was originally developed to answer the requirements for a specific
application (GPRS). Having reuse in mind (between different teams in different
organizations), the approach has later been to develop and evolve architectural patterns
and guidelines that are reusable also to UMTS applications.

With requirements we mean both functional requirements and non-functional
requirements. The latter are called quality requirements in [3], and are either
development requirements (e.g. maintainability and reusability) or operational
requirements (e.g. performance and fault-tolerance). While it is possible to map
functional requirements to specific components, quality requirements depend on
architecture, development process, software quality and so on. The architecture should
meet all these requirements.

The process of identifying the building blocks of the architecture has partly been a
top-down approach with focus on functionality, as well as performance, fault-tolerance,
and scalability. A later recognition of shared requirements in the extended domain (here
UMTS) has lead to a bottom-up, reverse engineering of the developed architecture to
identify reusable parts across applications. This implies a joint development effort
across teams and organizations. However, we do not yet have a full-fledged product-line
architecture.

Some important questions to verify reuse of the architecture are:
How well can the architecture and components for a specific product meet the
requirements for other products? The answer may lie in the degree of shared
requirements. The project has succeeded to reuse the architecture, generic
components and patterns in such a wide degree that it justifies investments
considering development with reuse.
How well are the components documented? How much information is available
on interfaces and internal implementations? As mentioned initially, this is easier
to co-ordinate when components are developed inside Ericsson and the source
code is available. Nevertheless one of the most critical issues in reuse is the
quality of the documentation, which should be improved. The Rational UML
tool is used in the development environment and all interfaces, data types and
packages are documented in the model. In addition guidelines, APIs
(Application Programming Interfaces) and other documentation are available.

 112

 P1. Experiences with Certification of Reusable Components

How well the developed architecture meets the operational requirements in the
domain? This has been based on knowledge of the domain and the individual
components, overall prototyping, traffic model estimations, intensive testing,
and architectural improvements.

−

−

−

−

How well the developed architecture meets the development requirements? It is
not easy to answer as measuring the maintainability or flexibility of an
architecture needs observations over a time. But we mean that the developed
architecture has the potential to address these aspects. This is discussed more in
the coming chapter.

As mentioned, design patterns and guidelines are also considered part of the
architecture. A design pattern is a solution to a common problem. Hence when
similarities between problems are recognized, a verified solution is a candidate for
generalization to a pattern. This solution must however have characteristics of a
reusable solution regarding flexibility, design quality, performance etc. A large number
of patterns are identified and documented for modeling, design, implementation,
documentation or test. Based on the type of pattern, different teams of experts should
approve the pattern.

5. Certification of the Architecture Regarding Quality Requirements
The architecture is designed to address both functional and quality (non-functional)
requirements. While the functional requirements are defined as use cases, quality
requirements are documented as the Supplementary Specifications for the system. One
of the main challenges in the projects is the task of breaking down the quality
requirements to requirements towards architecture, components in different layers or
different execution environments. For instance a node should be available for more than
99.995% of the time. How can we break down this requirement to possible
unavailability of the infrastructure, the platform, the middleware or the applications?
This is an issue that needs more discussion and is not much answered by RUP either.

All components should be optimized be certified by performing inspections and unit
testing. When the components are integrated, integration testing and finally target
testing are done. The project however recognized that the architecture and the
functionality encapsulated in the middleware layer (including the framework) address
most of the quality requirements. The first step is then to capture the requirements
towards architecture and the middleware layer:

In some cases, a quality requirement may be converted to a use case. If such a
conversion is possible, the use case may be tested and verified as functional use
cases. For example the framework should be able to restart a single thread of
execution in case it crashes.
Other requirements are described in a Supplementary Specification for the
middleware. This contains the result of breaking down the quality requirements
towards the node when it was possible to do so, requirement on documentation,
testability etc.

Discussion on how to best capture quality requirements is still going on.
Quality requirements as performance and availability are certified by development of

scenarios for traffic model and measuring the behavior, simulation, and target testing.

 113

P1. Experiences with Certification of Reusable Components

The results should be analyzed for architectural improvements. Inspections, a database
of trouble reports and check lists are used for other requirements as maintainability and
documentation.

The architecture defines requirements to applications to adopt a design pattern or
design rule to fulfill quality requirements as well.

The final question is how to predict the behavior of the system for quality
requirements? Domain expertise, prototyping, simulations and early target testing are
used to answer this. Especially it is important to develop incrementally and test as soon
as possible to do adjustments, also for the architecture.

6. The Quality Scheme for Developing New Components
The process for software reuse is still not fully organized and formalized. When the
decision for reuse is taken, the development process (RUP) should be modified to
enhance the potential for reuse. The current process is summarized in the following
steps:

a) The first question when facing a new component is how generic this component
will be. The component may be placed in the application-specific layer, the
business-specific layer (reusable for applications in the same domain), or the
middleware layer (the most generic part).

b) If the component is recognized to be a reusable one:
Identify the degree of reusability. −

−

−

Identify the cost of development to make the component reusable (compared
to the alternative of developing a solution specified and optimized for a
specific product).
Identify the cost of optimization, specialization and integration, if the
component is developed to be more generic.

c) Develop a plan for verifying the component. This depends on the kind of
component and covers inspections, prototyping, unit testing and system testing,
before making it available as a reusable part by running extra test cases. A
complete verification plan may cover all these steps.

When the reuse is across products and organizations in Ericsson, a joint team of
experts (called the Software Technical Board, SW TB) takes the decision regarding
shared artifacts. The SW TB should address identification to verification of the reusable
component and together with the involved organizations decide which organization
owns this artifact (should handle the development and maintenance). Teams in different
product areas support the SW TB.

7. Experiences and Suggestions for Further Improvements
As mentioned, an adaptation of RUP has been chosen to be the development process.
The development is incremental where the product owners and the software technical
board jointly set priorities. Reuse is recognized to be one of the most important
technologies to achieve reduced lead-time, increased quality, and reduced cost of
development. Another positive experience with reusable process, architecture and tools
is that organizations have easier access to skilled persons and shorter training periods in
case of replacements.

 114

 P1. Experiences with Certification of Reusable Components

Some aspects for further consideration regarding reuse are:
1. Improving the process for identifying the common components. This is mainly

based on expertise of domain experts rather than defined characteristics for these
components.

2. Coupling the development of common parts to the development plan of products
using them.

3. Finding, adopting, improving or developing tools that makes the reuse process
easier. An example is use of the multi-site ClearCase tool for configuration
management of files.

4. Improving and formalizing the RUP-based, incremental development process
and teaching the organization to use the process. This is not always easy when
development teams in different products should take requirements from other
products into consideration during planning. Conflicts between short-time
interests and long-term benefits from developing reusable parts must be solved,
see e.g. [5].

5. Developing techniques to search the developed products for reusable parts and
improving the reuse repository.

6. Define a suitable reuse metrics, collect data according to this, and use the data
to improve the overall reuse process.

The topic of certifying the architecture and the system regarding quality requirements
should be more investigated and formalized. Some aspects are:

1. Improve the process of breaking down the quality requirements.
2. Improve the development process (an adaptation of RUP) on how to capture

these requirements in the model or specifications.
3. Improve planning for certification of quality requirements. While functional

requirements are tested early, test of quality requirements has a tendency to be
delayed to later phases of development, when it is costly to change the
architecture.

8. Conclusions
Implementing software reuse combined with incremental development is considered to
be the technology that allows Ericsson to develop faster, better and cheaper products.
However, future improvement of the technology, process, and tools is necessary to
achieve even better results. The INCO project aims to help Ericsson in measuring,
analyzing, understanding, and improving their reuse process, and thereby the software
products.

9. References
1. Barry W. Boehm and Chris Abts: "COTS Integration: Plug and Pray?", IEEE

Computer, January 1999, p. 135-138.
2. Barry W. Boehm et al.: "Software Cost Estimation with Cocomo II (with CD-

ROM)", August 2000, ISBN 0-130-26692-2, Prentice Hall, 502 p. See also slides
from the FEAST2000 workshop in 10-12 July, 2000, Imperial College, London,
htpp://www-dse.doc.ic.ac.uk/~mml/f2000/pdf/Boehm_keynote.pdf.

 115

P1. Experiences with Certification of Reusable Components

3. Jan Bosch: "Design & Use of Software Architectures: Adopting and evolving a
product line approach", Addison-Wesley, May 2000, ISBN 0-201-67494-7.

4. Dave Card and Ed Comer: "Why Do So Many Reuse Programs Fail", IEEE
Software, Sept. 1994, p. 114-115.

5. John Favaro: "A Comparison of Approaches to Reuse Investment Analysis", Proc.
Fourth International Conference on Software Reuse, 1996, IEEE CS Press, p. 136-
145.

6. GPRS project at Ericsson: http://www.ericsson.com/3g/how/gprs.html
7. Ivar Jacobson, Grady Booch, and James Rumbaugh: "The Unified Software

Development Process", Addison-Wesley Object Technology Series, 1999, 512 p.,
ISBN 0-201-57169-2 (on the Rational Unified Process, RUP).

8. Guttorm Sindre, Reidar Conradi, and Even-André Karlsson: "The REBOOT
Approach to Software Reuse", Journal of Systems and Software (Special Issue on
Software Reuse), Vol. 30, No. 3, (Sept. 1995), p. 201-212,
http://www.idi.ntnu.no/grupper/su/publ/pdf/jss.df.

9. Dag Sjøberg / Reidar Conradi: "INCO proposal for NFR's IKT-2010 program”, 15
June 2000, Oslo/Trondheim, 52 p., http://www.idi.ntnu.no/grupper/su/inco.html.

 116

http://www.ericsson.com/3g/how/gprs.html
http://www.idi.ntnu.no/grupper/su/publ/pdf/jss.df
http://www.idi.ntnu.no/grupper/su/inco.html

 P2. Reuse in Theory and Practice

P2. Reuse in Theory and Practice:
A Survey of Developer Attitudes at Ericsson

Parastoo Mohagheghi, Reidar Conradi, Erlend Naalsund, Ole Anders Walseth

Ericsson Norway-Grimstad, Postuttak, NO-4898 Grimstad, Norway
Department of Computer and Information Science, NTNU, NO-7491 Trondheim,

Norway
 parastoo.mohagheghi@eto.ericsson.se, conradi@idi.ntnu.no

Abstract
The goal of software process models is to help developers to decide what to do and
when to do it. However, it is often a gap between the process model and the actual
process. Ericsson has successfully developed two large-scale telecommunication
systems based on reusing the same architecture, framework, and many other core assets.
However, the software process model is not updated for reuse. We performed a survey
in the organization to evaluate developer attitudes regarding reuse and the software
process model, and to study the effect of the gap between the process model and the
practice of reuse. The results showed that the developers are aware of the importance of
reuse and are motivated for it. It also showed that lack of explicit guidelines on reuse
has impact on the reuse practice, such as insufficient documentation and testing of
reusable components. Although a reuse repository was not considered important, the
participants answered that introducing explicit activities related to reuse would improve
the process model.

Keywords
Reuse, product line engineering, software process improvement, survey.

1. Introduction
Many organizations are using a product line approach for software development by
exploiting commonalities between software systems and thus reusing a set of core
assets. The approach to start a product line or system family can be either heavyweight
or lightweight, depending on the context. The main difference between these two
approaches is the degree to which some reusable assets are identified before the first
product [15, 16].

Developing families of systems include activities for identifying commonalities and
differences, developing reusable core assets such as a common software architecture
and framework, developing applications based on the reusable assets, and planning and
managing product lines. Software processes for reuse-based or product line engineering
[1, 4, 5, 11, 13, 14] provide concepts and guidelines to plan for reuse, and to create and
evolve systems that are based on large-scale reuse. The assumption is that organizations
that design for families of systems, rather than a single system, should do this
consciously and reflect their practice in their software process model.

 117

P2. Reuse in Theory and Practice

Ericsson has developed two products to deliver GPRS (General Packet Radio
Service) to the GSM and UMTS networks using a lightweight approach. These products
share a common software process, an adaptation of the Rational Unified Process or
RUP [21], software architecture, and core assets. Although the adaptation of RUP has
been done in parallel with initiating the system family, it has not been adapted for this
aspect of development and thus lacks explicit guidelines for reuse and system family
engineering. I.e. there is a gap between the process model (the adapted RUP process)
and the actual process (the practice of software development). We wanted to study the
developer attitudes regarding reuse, and to decide whether to initiate a software process
improvement activity to improve the process model.

We performed a survey in the organization with questions on reuse and the process
model. Results of the survey are used to evaluate four null hypotheses, and to explore
the improvement areas. Our results confirm that developers are aware of the importance
of reuse, perceive reused components as more stable and reliable, and are motivated for
changes in the process model to promote reuse. It also shows the importance of the
existing knowledge and expertise in the software development process. We finally
introduce a set of improvement suggestions to the process model.

The study was done as part of a MSc diploma thesis at the Norwegian University of
Science and Technology (NTNU) and in the scope of the INCO project. INCO
(INcremental and COmponent-based engineering) is a cooperative project between
NTNU and the University of Oslo (the latter as coordinator), funded by the Norwegian
Research Council.

The remainder of the paper is structured as follows: Section 2 describes some state of
the art. Section 3 describes the Ericsson context and Section 4 is on the research
problem. Section 5 describes the questionnaire used in the survey, the defined null
hypotheses, and the main results. The null hypotheses are evaluated in Section 6.
Section 7 discusses the validity threats, further results, and improvement suggestions to
the process model. The paper is concluded in Section 8.

2. System families and reuse
Parnas wrote the first paper on development of systems with common properties in
1976. He wrote:” We consider a set of programs to constitute a family, whenever it is
worthwhile to study programs from the set by first studying the common properties of
the set and then determining the special properties of the individual family members”
[20]. He called these systems program families, while the most recent terms are system
families, application families or product lines. The Software Engineering Institute’s
(SEI) Product Line Practices initiative has used the definition of a software product line
as “a set of software-intensive systems sharing a common, managed set of features that
satisfy the specific needs of a particular market segment or mission, and that are
developed from a common set of core assets in a prescribed way” [5]. Hence system
families are built around reuse: reuse of requirements, reuse of software architecture
and design, and reuse of implementation. Especially important is reuse of software
architecture, being defined as: “Structure or structures of the system, which
compromise software components, the externally visible properties of those
components, and the relationships among them” [3].

 118

 P2. Reuse in Theory and Practice

2.1. Role of the component frameworks in promoting reuse and developing system
families

Object-oriented frameworks have been proposed as a reusable software architecture that
embodies an abstract design and which is extended mainly using specialization [4, 14].
With increasing use of component-based approaches, component models and
component frameworks are introduced. Sometimes these two terms are used
interchangeably, while Bachman and some others separate these two: “A component
model defines the standards and conventions imposed on developers of components. A
component framework is implementation of services that support or enforce a
component model” [2, 10]. A well-known component model (and partially framework)
is the Object Management Group’s (OMG’s) CORBA (Common Object Request
Broker Architecture). A component framework serves several purposes:

Like operating systems, frameworks are active and act directly on components
to manage its lifecycle or resources [2].

−

−

−

−

They capture design decisions and define standards for component developers,
where the goal is to satisfy certain performance specifications (or quality
attributes).
They define a software architecture for a particular domain [1] and hence can be
part of the reference architecture.
They capture commonalities in the application domain, and define mechanisms
to handle variability.

Customized frameworks are developed for a specific domain, and serve the same role
as standard component frameworks.

2.2. How to initiate a system family?

We distinguish between two main approaches for introducing a system family:
heavyweight and lightweight. In the heavyweight approach, commonalities are
identified first by domain engineering and product variations are foreseen. In the
lightweight approach, a first product is developed and the organization then uses mining
efforts to extract commonalities [16]. The choice of approach also affects cost and the
organization structure. With a heavyweight approach, the initial cost of a product line is
significantly higher than for a single product. But after a few products, the product line
is assumed to have lower cumulative costs. A heavyweight approach also needs a two-
tiered organization for development of reusable assets and development of products.
With a lightweight approach, the organization can delay the organizational changes to
after the first product.

Krueger claims that the lightweight approach can reduce the adoption barrier to
large-scale reuse, as it is a low-risk strategy with lower upfront cost [15]. Often an
organization does not have time or resources to initiate a product line from the start, or
wants to explore the market first, or initiate a family from products currently in
production. Johnson and Foote write in [12] that useful abstractions are usually
designed from the bottom up; i.e. they are discovered not invented. Hence the chosen
approach and the degree to which some assets are delivered before the first product
varies, and there is no single approach for all circumstances.

2.3. Software processes for engineering system families

 119

P2. Reuse in Theory and Practice

Several software development processes support product line engineering and reuse.
Examples are Jacobson, Griss and Jonsson’s approach [11], the REBOOT method
(REuse Based on Object-Oriented Techniques) with it’s emphasize on development for
and with reuse [14], Feature-Oriented Domain Analysis (FODA) [13], and the more
recent KobrA approach [1]. SEI defines three essential product line activities [19]:

1. Core asset development or domain engineering for developing the architecture
and the reusable assets (development for reuse)

2. Application engineering to build the individual products (development with
reuse)

3. Management at the technical and organizational level.
When developing several systems based on some reusable assets, the focus is on

identifying commonalities and planning for variations. Therefore software processes
will include activities to handle these two aspects in all phases of software development;
from requirement engineering to deployment and configuration management. With
increasing use of component-based approaches, activities for component development,
utilizing COTS (Commercial-Off-The-Shelf) components and developing systems
based on components are also included in software processes.

3. The Ericsson context
Telecommunication and data communication are converging disciplines, and packet-
switched services open for a new era of applications. The General Packet Radio Service
(GPRS) system provides a solution for end-to-end Internet Protocol (IP) communication
between a mobile entity and an Internet Service Provider (ISP). The GPRS Support
Nodes (GSNs) constitute the parts of the Ericsson cellular system core network that
switch packet data. The two main nodes are the Serving GPRS Support Node (SGSN)
and the Gateway GPRS Support Node (GGSN) [8].

3.1. The system family for GSM and UMTS

The GSNs were first developed to provide packet data capability to the GSM (Global
System for Mobile communication) cellular network. A later recognition of shared
requirements with the forthcoming UMTS system (Universal Mobile
Telecommunication System) lead to reverse engineering of the developed architecture
to identify reusable parts across applications and to evolve the architecture to an
architecture that can support both products. This was a joint development effort across
teams and organizations for several months, with negotiations and renegotiations. The
enhanced, hierarchical reuse-based GSN architecture is shown in Figure 1. Both
systems are using the same platform (WPP), which is a high-performance packet
switching platform developed by Ericsson. They also share components in the business
specific layer and the middleware layer (called Common parts in Figure 1). The
business-specific components offer services for the packet switching networks. The
middleware provides a customized component framework for building robust, real-time
applications for processing transactions in a distributed multiprocessor environment that
use CORBA and its Interface Definition Language (IDL) [17]. The organization has
also been adapted to this view: an organization unit is assigned to develop common

 120

 P2. Reuse in Theory and Practice

parts, while other units develop the applications. The reusable assets are evolved in
parallel with the products, taking into account requirements from both products.

Figure 1 is one view of the system architecture, where the hierarchical structure is
based on what is common and what is application specific. Other views of the
architecture reveal that all components in the application and business-specific layers
use the framework in the middleware layer, and all components in the three upper layers
use the services offered by WPP.

Wireless Packet Platform (WPP)

Middleware

Business- Specific

GSN Applications

Common parts

Figure 1 The GSN architecture

The reused components in the common parts stand for 60% of the code in an

application, where an application in this context is a product based on WPP and
consisting of the three upper layers. Size of each application (not including WPP) is
over 600 NKLOC (Non-Commented Lines Of Code measured in equivalent C code).
Software components are mostly developed internally, but COTS components are also
used. Software modules are written in C, Java and Erlang (a programming language for
programming concurrent, real-time, distributed fault-tolerant systems). Several Ericsson
organizations in Sweden, Norway and Germany have cooperated in developing the
GSNs, but recently the development is moved to Sweden.

GSN’s approach to develop a system family has been a lightweight approach: The
first product was initially developed and released, and the commonalities between the
developed system, and the requirements for the new product lead to the decision on
reuse. The organization used mining efforts to extract the reusable assets and enhanced
the architecture as a baseline for developing new products. The approach gave much
shorter time-to-market for the second product, while the first one could still meet its
hard schedules for delivery.

3.2. State of the GSN software process
The software process has been developed in parallel with the products. The first
products were using a simple, internally developed software process, describing the
main phases of the lifecycle and the related artifacts. After the first release, the

 121

P2. Reuse in Theory and Practice

organization decided to adapt the RUP. The adaptation is done by adding, removing or
modifying phases, activities, roles and artifacts in the standard RUP process. The
adapted process is defined and maintained for the GSN projects by an internal unit in
the organization, with people from two organizations in Norway and Sweden. The
products are developed incrementally, and new features are added to each version of the
products.

RUP is an architecture-centric process, which is an advantage when dealing with
families of systems using the same reference architecture. But RUP in its original form
is not a process for system families. As explained in Section 2.3, software processes for
building system families include reuse-related activities. Although the adaptation of
RUP has been done in parallel with initiating the system family, it has not been adapted
for this aspect of development. The main workflows (requirement, analysis and design,
implementation and testing) are described as if there is a single product development,
while configuration management activities handle several versions and several products.
There is no framework engineering in the adapted RUP, and developing framework
components is an indistinguishable part of application engineering. To provide the
information needed for software developers, artifacts such as internally developed
modeling guidelines and design rules are linked to the workflows in RUP, and play a
complementary role to the process model. At this stage, the process looks like an ad-
hoc approach to reuse and system family development, where pieces are added to the
software process without realizing the affect of this patching.

4. The research problem
Bridging the gap between the process model and the actual process can be subject of a
software process improvement activity. But why to start an improvement activity aimed
at the process model, when the organization already has successfully designed and
evolved a system family with extensive reuse, using a “reuse-free” software process
model? Many studies show that software is not developed according to the process
model anyway. For example in [6], Parnas and Clements show a graph of a software
designer’s activities over time, where activities (requirement, design etc.) are performed
at seemingly random times. So why define an ideal process model when no one follows
it in practice? The authors answer that the organization should attempt to produce the
ideal process for different reasons. Below are some of their reasons and some reasons
added by us:

“Designers need guidance”. A well-documented process model describes what
to do first and how to proceed.

−

−

−

−

“We will come closer to a rational design if we try to follow the process (model)
rather than proceed on an ad-hoc basis”. If the process is adapted for reuse and
system family engineering, it will promote reuse and design for change; i.e. to
foresee future variability and evolution.
“If we have agreed on an ideal process, it becomes much easier to measure the
progress”.
The process model shows the outsiders how the products are developed, and
therefore should reflect the practice.

 122

 P2. Reuse in Theory and Practice

Software process assessment is central in any improvement activity, where the goal
is to understand the current process and to identify and plan areas that can be improved.
The research questions we posed in our research were:

RQ1: Does the lack of explicit reuse-related activities in the process model affect the
reuse practice?
RQ2: How the developers experience the current process model?
RQ3: Are the developers motivated for change?
To answer the above questions, we developed a set of hypotheses. Verification of the

hypotheses was done based on the results of a survey in the organization.

5. Survey: Hypotheses and questions
The following four null hypotheses were defined:

H01: Reuse in software development gives no significant advantages.
H02: It is easy for a given design/code component to choose between reuse “as-is”,
reuse “with modification”, or developing from scratch.
H03: The current process model works well.
H04: Criteria for compliance with existing architecture are clearly defined.
Participants in the survey were 10 developers of the same development team, and

included 8 designers and 2 testers. We got 9 filled-in questionnaires back. The team was
selected because their work was ready for inspection (which was object for another
experiment on inspection of UML models), and they could assign time to participate in
the survey (designed to take less than one hour for each). This is non-probability
sampling, based on convenience [23]. The range of their experience in Ericsson was
varying: 1 person with only 9 months of experience, 7 persons with experience from 2-5
years, and one person with 13 years of experience. The sample size is 5%, and the
participants had different roles in the team and different years of experience in the
organization. The conclusion is that the sample is representative for the organization in
Grimstad. The participants were unaware of our hypotheses, and they have answered the
questionnaires separately.

Table 1 shows an overview of the questions, their relation to the null hypotheses
(some questions are not related to any hypothesis), results for most of the questions, and
references to the figures containing other results. The abbreviations in Table 1 are CBD
for Component-Based Development, OO for Object-Oriented, CM for Configuration
Management, RM for Requirement Management, A&D for Analysis & Design, NFR
for Non-Functional Requirements, and GSN RUP for the adapted RUP process.
Answers are either Yes, No, or Sometimes/To some degree (shown as Other). Q6 and
Q18 are shown separately for two reasons: They had other alternatives than Yes/No, and
3 participants had (wrongly) selected more than one answer. More details on some of
the results are given below.

Q1a-e: As shown in Figure 2, the participants consider shorter development time as
the most important advantage of reuse, followed by lower development costs and a
more standardized architecture.

Q3a-e: Requirements for the system are specified first in text and stored in a
database. The functional requirements are later specified in use cases, while the non-
functional requirements (NFR) are specified in Supplementary Specifications. As

 123

P2. Reuse in Theory and Practice

shown in Figure 4, Design was considered the artifact being most important to be reused
(8 participants rated it as very high to high). Test data/documentation is of secondary
importance.

Q22: The question was: “GSN RUP does not include reuse activities such as
activities for comparing candidate components, evaluating existing components and
deciding whether to reuse or not. Will introducing such activities have positive effect on
the development process/have no effect or have negative effect?”. Here 8 participants
answered that it will have positive effect, and one meant that it wouldn’t have any
impact.

6. Evaluation of hypotheses
Evaluation of H01: H01 states that reuse gives no significant advantage. 8 questions
were related to H01: Q1a-e, Q2a, Q9 and Q10. As shown in Figure 1, the participants
answered that reuse give advantages such as shorter time-to-market and lower
development costs. In Q2a, 8 participants answered that reuse and component-based
technologies are of very high or high importance. In Q9, 6 participants mean that a
reused component is more stable and causes fewer problems than a new one. The only
result in favor of the null hypotheses is the result of Q10, where the participants mean
that integration of reused components might cause problems. Hence H01 is rejected.

Evaluation of H02: H02 states that it is easy to decide between reusing a
component as it is, reusing with modifications or developing a new component from
scratch. 2 questions were directly related to H02: Q5 and Q6. 5 participants meant that
the existing process for finding, assessing and reuse of components does not work well
and 6 answered that they consult experts when taking this decision, in addition to using
the process and guidelines. Several questions give indications that taking such decision
is not easy and the reason may be insufficient documentation of the framework and
reusable assets (Q7a-b, Q17), or unclear criteria regarding compliance with architecture
(Q23a-b). Hence H02 is rejected.

Evaluation of H03: H03 states that the current process model works well. We
discussed the reuse aspect in H02. 4 questions are related to the adapted RUP process:
Q18-Q21. Most participants always or often refer to GSN RUP during requirement
management, or analysis and design. However Q18 shows that the main source of
information during analysis and design is previous work, and not the process model. All
9 participants said that the GSN RUP web pages are understandable. Our interpretation
of the results is that although GSN RUP is frequently used, experts and experience plays
an important role. All in all, we can’t reject H03.

Evaluation of H04: H04 states that criteria for architectural compliance are clearly
defined. 3 questions were related to this. In Q23a, 7 participants meant that the criteria
are defined to some degree but are rather fuzzy, and in Q23b, 8 participants answered
that this is often or sometimes a problem. In Q24, 5 participants said that criteria for
design regarding non-functional requirements are not clearly defined. Hence H04 is
rejected.

 124

 P2. Reuse in Theory and Practice

Table 1 Survey questions, relation to null hypotheses, and results
 Null

Hypotheses
Answers

Questions H
0
1

H
0
2

H
0
3

H
0
4

Yes Othe
r

No Blan
k

General on reuse
Q1a-e: Benefits of reuse: Lower
development costs, shorter development
time, higher product quality, standard
architecture and lower maintenance costs.

x See Figure 2.

Q2a-f: Importance of approaches/activities:
Reuse/CBD, OO development, testing,
inspections, formal methods and CM.

x
(2
a)

 See Figure 3.

Q3a-e: What is important to be reused:
Requirements, use cases, design, code, test
data/documentation.

 See Figure 4.

Reuse in the project
Q4: Reuse is as high as possible. 4 1 3 1
Q5: Is the process of finding, assessing and
reusing existing code/design components
functioning?

 x 4 5

Q6: How do you decide whether to reuse a
code/design component “as-is”, reuse “with
modification”, or make a new component
from scratch?

 x See below.

Q7a: Are the existing code/design
components sufficiently documented?

 x 3 5 1

Q7b: If ‘Sometimes’ or ‘No’: Is this a
problem?

 x 7 1 1

Q8: Would the construction of a reuse
repository be worthwhile?

 3 4 2

Reused components
Q9: A reused component is usually more
stable/reliable.

x 6 2 1

Q10: Integration when reusing components
works usually well.

 1 7 1

Q11: Is any extra effort put into
testing/documenting potentially reusable
components?

 4 5

Q12: Do you test a component for non-
functional properties before integration with
other components?

 2 4 2 1

 125

P2. Reuse in Theory and Practice

Table 1 (Cont.) Survey questions, relation to null hypotheses, and results
 Null

Hypotheses
Answers

Questions H
0
1

H
0
2

H
0
3

H
0
4

Yes Othe
r

No Blan
k

Requirements
Q13: Is the requirements renegotiation
process working efficiently?

 4 4 1

Q14: In a typical project, requirements are
usually flexible.

 3 4 1 1

Q15: Are requirements often changed /
renegotiated during a project?

 6 2 1

Component Framework
Q16a: Do you know components of the
component framework well?

4 5

Q16b: Do you know interfaces of the
component framework well?

4 5

Q16c: Do you know design rules of the
component framework well?

6 3

Q17: Is the component framework
sufficiently documented?

x 2 6 1

GSN RUP

Q18: What is your main source of guideline
information during A&D?

x See below.

Q19: Do you always/often refer to GSN RUP
workflows during RM?

x 6 1 2

Q20: Do you always/often refer to GSN RUP
workflows during A&D?

x 8 1

Q21: Is the information in the GSN RUP
web pages understandable?

x 9

Q22: Will introducing reuse activities in
GSN RUP have positive effect?

8 1

Architecture compliance

Q23a: Are criteria for compliance with
architecture clearly defined?

x 1 7 1

Q23b: If not ‘Yes’, does these shortcomings
often lead to problems?

x 2 6 1

Q24: Are criteria for design regarding NFR
well defined?

x 3 5 1

Q6: How do you decide whether to reuse a code
/design component “as-is”, reuse “with
modification”, or make a new component ?

Guidelines Experts GSN
RUP

Not
defined

 3 6 4 2

Q18: What is your main source of guideline information
during A&D?

Other
developers

Previous
work

GSN
RUP

 3 7 4

 126

 P2. Reuse in Theory and Practice

How important do you consider reuse in
achieving the following benefits

0
1
2
3
4
5
6
7

Very
 H

igh High

Med
ium Lit

tle No

For achieving lower
development costs, reuse is
of ______ importance:

For achieving shorter
development time, reuse is
of ______ importance:

For achieving higher product
quality, reuse is of ______
importance:

For achieving a more
standardized architecture,
reuse is of ______
importance:
For achieving lower
maintenance costs (including
technology updates), reuse is
of ______ importance:

Figure 2 Results of Q1a-e. Columns are in the same sequence as in the description

field.

How useful / important do
you find the following

0

1

2

3

4

5

6

7

Very
High

High Medium Little No Don’t
Know

Reuse / Component-Based
technologies are of ______
importance
OO technologies (java, UML,
CORBA) are of ______
importance
Testing is of ______
importance

Inspections are of ______
importance

Formal specifications /
methods are of ______
importance
Configuration Management
is of ______ importance

Figure 3 Results of Q2a-f. Columns are in the same sequence as in the
description field.

 127

P2. Reuse in Theory and Practice

How useful / important do you consider the following
artifacts with respect to reuse

0

1

2

3

4

5

6

Very
High

High Medium Little No Don’t
Know

Requirements are of
______ importance with
respect to reuse
Use Cases are of ______
importance with respect to
reuse
Design is of ______
importance with respect to
reuse
Code is of ______
importance with respect to
reuse
Test data/documentation is
of ______ importance with
respect to reuse

Figure 4 Results of Q3a-e. Columns are in the same sequence as in the
description field.

7. Discussion
We discuss the validity threats of our study, discuss other results from the survey, and
introduce our improvement suggestions.

7.1.Validity discussion
Threats to experimental validity are classified and elaborated in [23]. Threats to validity
of this survey are:

Internal validity: the participants’ previous knowledge and experience on some
approaches to software development can have impact on their answers for Q1-Q3. For
example formal methods are not used in the project and may therefore be rated as less
important.

External validity: It is difficult to generalize the results of the survey to other
organizations as the participants were from the same organization. However we find
examples of similar surveys performed in several organizations (such as in [9]) and
studies on reuse and SPI (such as theses defined in [7], which we compare our results
with to evaluate external validity.

Construct validity: No threats are identified.
Conclusion validity: We have not performed statistical analysis on the results when

we evaluated the hypotheses. The questionnaire had few participants.

7.2. Further interpretation of the results
We asked the participants on the importance of testing, inspections and configuration
management. The interesting result is that all of them are rated as very highly important

 128

 P2. Reuse in Theory and Practice

in Figure 3. Testing and configuration management are areas supported by
computerized tools. Thesis 3 in [7] suggests that only these areas with stable processes
are well suited for computerized tools, while the creativity factor is more important in
other areas such as modeling.

The GSNs do not have any reuse repository and the participants rely on the
collaborative work, internal experts and the existing architecture to take reuse-related
decisions or find reusable assets. The result of Q8 is not in favor of reuse repositories
either. The impact of CASE tools and reuse repositories on promoting reuse is also
studied by in [9], and the conclusion was that neither of them has been effective in
promoting reuse.

When it comes to requirements, 3 participants said that the requirements are usually
flexible and 4 answered that they sometimes are (Q14), and 6 participants meant that
requirements often change (Q15). Data from the projects show indeed that the
requirement stability has been decreasing, and that 20-30% of the requirements change
during lifetime of a project.

We had two questions regarding non-functional requirements. In Q12 we asked
whether developers test components for non-functional (often called quality) properties
before integration. 2 participants answered yes, 4 participants answered sometimes and
2 answered no. In Q24, 5 participants said that criteria for design regarding non-
functional requirements are not well defined (which may be the reason for not testing
for these requirements), while only 3 said that they are well defined. The adapted RUP
process has activities for specification of such requirements, but our results show need
for improving specification and verification of non-functional requirements as well.

In RQ1 we asked whether the lack of explicit reuse-related activities in the process
model affect the reuse practice. We notice symptoms that can support such conclusion:

Reused components are not sufficiently documented. −
−
−
−

Assessing components for reuse is not easy.
Criteria for architectural compliance are not clearly defined.
Components are not sufficiently tested for non-functional requirements.

RQ2 is related to H02-H04 and is already discussed.
In RQ3, we asked whether developers are motivated for change. 8 participants

answered that introducing reuse-related activities would improve the process model, and
thus they are motivated for change. This is in line with Conradi and Fuggetta’s thesis in
[7] that developers are motivated for change and many SPI initiatives should therefore
be started bottom-up.

The survey in [9] concludes that most developers prefer to reuse than to build from
scratch. We got the same conclusion in Q9 where the participants meant that a reused
component is more stable and reliable than a new one.

Our results in Q6 and Q18 show the high importance of expertise and experience,
and having examples from previous work (shall we call it for three ex-es?) in software
development. These factors compensate for the shortcomings in the process model.

7.3. Improvement suggestions
Ericsson has already performed several process audits and larger surveys on the GSN
RUP process. The goal with a process audit is to assess the process conformance; i.e. to
assess consistency between the process model and the execution. We had questions that

 129

P2. Reuse in Theory and Practice

are relevant for a process audit (Q18-22) but our study was mostly focused on attitudes
regarding reuse and reuse in practice. As the process model does not have guidelines on
reuse-related activities and system family engineering, the scope of our study is beyond
process conformance. We think that the process model should get consistent with the
actual process. We have presented suggestions on reuse activities that can be added to
the adapted RUP in [18] and [22]. Some of these are listed shortly below. Our further
work on this issue is stopped at the moment due to the organizational changes in
Ericsson in Norway.

Based on the survey results and similar studies, we concluded that a process
improvement activity should not focus on building a reuse repository or change of tools,
but provide better guidelines for reuse and system family development. Our baseline is
the existing process model with 4 phases defined in RUP (Inception, Elaboration,
Construction and Transition) and a fifth phase added by Ericsson (Conclusion), with
several workflows in each of them (requirement management, analysis and design, etc).
We suggest these modifications to the process model:

1. Adding the activity Additional requirement fulfillment analysis to the
requirement workflow. The goal is to find whether a reused component has
additional functionally that is value-adding or should be disabled.

2. Adding these activities to the Inception Phase: a) Plan reuse strategy with a
decision point on Make vs. Reuse vs. Buy. b) Domain analysis.

3. Adding the activities Feasibility study of COTS and Renegotiation of
requirements to the Elaboration Phase. It should also have a second decision
point on Make vs. Reuse vs. Buy.

4. Adding the activity Updating of documentation to the Elaboration, Construction
and Transition Phases, especially for reusable components.

5. Adding the activity Record reuse experience to the Conclusion phase.
6. Distinguishing framework engineering and application engineering in line with

processes such as KobrA [1].
Some of the suggestions are easier to introduce than others. For example introducing

framework engineering or domain analysis will have impact on many workflows, while
suggestions 1, 4 and 5 have less impact. Priority of the improvement suggestions should
be decided as well.

SPI initiatives should be coherent with business goals and strategies. Improving the
process model into a process for large-scale reuse and system family development is
definitely coherent with Ericsson’s business goals.

8. Conclusions
The GSN applications have a high degree of reuse and share a common architecture and
process model. The lightweight approach to reuse has been successful in achieving
shorter time-to-market and lower development costs. However the process model does
not reflect software development in practice. We posed several questions in the
beginning of this study: Does lack of explicit reuse-related activities have impact on the
reuse practice? What are developers attitudes regarding reuse? Can we defend initiating
software process improvement activities to bridge the gap between theory and practice?

We concluded that developers are aware of the importance of reuse, perceive reused
components as more stable and reliable, and are motivated for changes in the process

 130

 P2. Reuse in Theory and Practice

model to promote reuse. We also mentioned that insufficient documentation of reusable
assets or difficulties in assessment of components for reuse can be related to the lack of
explicit guidelines in the process model. As the software is developed incrementally and
the project has been running for 5 years, the existing knowledge and the internally
developed guidelines compensate for shortcomings in the process model. In Section 4
we discussed why it is necessary to improve the process model, and in Section 7.3 we
introduced some improvement suggestions that may be integrated into the adapted RUP
process.

We think that a gap between the process model and the actual process is fairly
common. Process conformance studies focus on consistency between these two.
However, we usually assume that the process model is more mature than the actual
process, which is not the case here. We think that this study provided us valuable insight
into the practice of reuse and we believe that improving the software process model will
promote reuse and improve the reuse practice. Our improvement suggestions to the
adapted process may be reused in other adaptation works as well.

9. Acknowledgements
We thank Ericsson in Grimstad for the opportunity to perform the survey.

10. References
[1] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D.

Muthig, B. Paech, J. Wust, J. Zettel, “Component-based Product Line Engineering
with UML”, Addison-Wesley, 2002.

[2] F. Bachman, L. Bass, C. Buhman, S. Comella-Dorda, F. Long, J. Robert, R.
Seacord, K. Wallnau, “Volume II: Technical concepts of Component-based
Software Engineering”, SEI technical report number CMU/SEI-2000-TR-008.
http://www.sei.cmu.edu/

[3] L. Bass, P. Clements, R. Kazman, “Software Architecture in Practice”, Addison-
Wesley, 1998.

[4] J. Bosch, “Design and Use of Software Architecture: Adpoting and Evolving a
Product-Line Approach”, Addison-Wesley, 2000.

[5] P. Clements, L.M. Northrop, “Software Product Lines: Practices and Patterns”,
Addison-Wesley, 2001.

[6] P.C. Clements, D.L. Parnas ”A Rational Design Process, How and Why to Fake it”,
IEEE Trans. Software Eng., SE-12(2):251-257, Feb. 1986.

[7] R. Conradi, A. Fuggetta, ”Improving Software Process Improvement”, IEEE
Software, 19(4):92-99, July-Aug. 2002.

[8] L. Ekeroth, P.M. Hedstrom, “GPRS Support Nodes”, Ericsson Review, No. 3, 2000,
156-169.

[9] W.B. Frakes, C.J. Fox, “Sixteen Questions about Software Reuse”, Comm. ACM,
38(6):75-87, 1995.

 131

http://www.sei.cmu.edu/

P2. Reuse in Theory and Practice

[10] G.T. Heineman, W.T. Councill, ”Computer-Based Software Engineering, Putting
the Pieces Together”, Addison-Wesley, 2001.

[11] I. Jacobson, M. Griss, P. Jonsson, “Software Reuse: Architecture, Process and
Organization for Business Success”, ACM Press, 1997.

[12] R.E. Johnson, B. Foote, "Designing Reusable Classes", Journal of Object-Oriented
Programming, 1(3):26-49, July-Aug. 1988.

[13] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, “Feature-Oriented Domain
Analysis (FODA) Feasibility Study (CMU/SEI-90-TR-21, ADA 235785).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 1990.

[14] E.-A. Karlsson (Ed.), “Software Reuse, a Holistic Approach”, John Wiley & Sons,
1995.

[15] C. Krueger, “Eliminating the Adoption Barrier”, IEEE Software, 19(4):29-31, July-
Aug. 2002.

[16] J.D. McGregor, L.M. Northrop, S. Jarred, K. Pohl, “Initiating Software Product
Lines”, IEEE Software, 19(4):24-27, July-Aug. 2002.

[17] P. Mohagheghi, R. Conradi, “Experiences with Certification of Reusable
Components in the GSN Project in Ericsson, Norway”, Proc. 4th ICSE Workshop on
Component-Based Software Engineering: Component certification and System
Prediction, ICSE’2001, Toronto, Canada, May 14-15, 2001, 27-31.

[18] E. Naalsund, O.A. Walseth, “Decision Making in Component-Based
Development”, NTNU diploma thesis, 14 June 2002, 92 p.,
http://www.idi.ntnu.no/grupper/su/su-diploma-2002/naalsund_-
CBD(GSN_Public_Version).pdf

[19] L.M. Northrop, “SEI’s Software Product Line Tenets”, IEEE Software, 19(4):32-
40, July-Aug. 2002.

[20] D.L. Parnas, “On the Design and Development of Program Families”, IEEE Trans.
Software Eng., SE-2(1):1-9, March 1976.

[21] Rational Unified Process, Rational Home Page, http://www.rational.com
[22] H. Schwarz, O.M. Killi, S.R. Skånhaug, “Study of Industrial Component-Based

Development”, NTNU pre-diploma thesis, 22 Nov. 2002, 105 p.
http://www.idi.ntnu.no/grupper/su/sif8094-reports/2002/p2.pdf

[23] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,
“Experimentation in Software Engineering, an Introduction”, Kluwer Academic
Publishers,2000.

 132

http://www.idi.ntnu.no/grupper/su/su-diploma-2002/naalsund_-_CBD_(GSN_Public_Version).pdf
http://www.idi.ntnu.no/grupper/su/su-diploma-2002/naalsund_-_CBD_(GSN_Public_Version).pdf
http://www.rational.com/
http://www.idi.ntnu.no/grupper/su/sif8094-reports/2002/p2.pdf

 P3. MDA and Integration of Legacy Systems

P3. MDA and Integration of Legacy Systems:
An Industrial Case Study

Parastoo Mohagheghi1, Jan Pettersen Nytun2, Selo2, Warsun Najib2

1Ericson Norway-Grimstad, Postuttak, N-4898, Grimstad, Norway
1Department of Computer and Information Science, NTNU, N-7491 Trondheim, Norway

1Simula Research Laboratory, P.O.BOX 134, N-1325 Lysaker, Norway
2Agder University College, N-4876 Grimstad, Norway

parastoo.mohagheghi@eto.ericsson.se, jan.p.nytun@hia.no

Abstract
The Object Management Group's (OMG) Model Driven Architecture (MDA) addresses
the complete life cycle of designing, implementing, integrating, and managing
applications. There is a need to integrate existing legacy systems with new systems and
technologies in the context of MDA. This paper presents a case study at Ericsson in
Grimstad on the relationship between the existing models and MDA concepts, and the
possibility of model transformations to develop models that are platform and technology
independent. A tool is also developed that uses the code developed in Erlang, and
CORBA IDL files to produce a structurally complete design model in UML.

1. Introduction

The success of MDA highly depends on integration of legacy systems in the MDA
context, where a legacy system is any system that is already developed and is
operational. Legacy systems have been developed by using a variety of software
development processes, platforms and programming languages. Ericsson has developed
two large-scale telecommunication systems based on reusing the same platforms and
development environment. We started a research process (as part of the INCO project
[3]) to understand the development process in the context of MDA, and to study the
possibility to transform from a PSM to a PSM at a higher level of abstraction, or to a
PIM. Part of the study is done during a MSc thesis written in the Agder University
College in spring 2003 [8]. We studied what a platform is in our context, which
software artifacts are platform independent or dependent, and developed a tool for
model transformation, which may be part of an environment for round-trip engineering.

The remainder of the paper is structured as follows: Section 2 describes some state of
the art. Section 3 presents the Ericsson context, and Section 4 describes platforms in this
context and transformations. Section 5 describes a tool for transformation, and the paper
is concluded in Section 6.

2. Model-Driven Architecture
The Model-Driven Architecture (MDA) starts with the well-known and long established
idea of separating the specification of the operation of a system from the details of the

 133

mailto:parastoo.mohagheghi@eto.ericsson.se
mailto:jan.p.nytun@hia.no

P3. MDA and Integration of Legacy Systems

way that the system uses the capabilities of its platform [5]. The requirements for the
system are modeled in a Computation Independent Model (CIM) describing the
situation in which the system will be used. It is also common to have an information
model (similar to the ODP information viewpoint [4]) that is computation independent.
The other two core model concepts in MDA are the Platform Independent Model (PIM)
and the Platform Specific Model (PSM). A PIM describes the system but does not show
details of how its platform is being used. A PIM may be transformed into one or more
PSMs. In an MDA specification of a system, CIM requirements should be traceable to
the PIM and PSM constructs that implement them, and vice versa [5]. Models are
defined in the Unified Modeling Language (UML) as the OMG’s standard modeling
language. UML meta-models and models may be exchanged between tools by using
another OMG standard, the XML Metadata Interchange (XMI).

Model transformation is the process of converting one model to another model of the
same system [5]. An MDA mapping provides specifications for transformation of a PIM
into a PSM for a particular platform. Mapping may be between a PIM to another PIM
(model refinement for example to build a bridge between analysis and design), PIM to
PSM (when the platform is selected), PSM to PSM (model refinement during realization
and deployment), or PSM to PIM (reverse engineering and extracting core abstractions).

Like most qualities, platform independence is a matter of degree [5]. When a model
abstracts some technical details on realization of functionality, it is a PIM. However it
may be committed to a platform and hence be a PSM.

3. The Ericsson Context
GPRS (General Packet Radio Services) provides a solution for end-to-end Internet
Protocol (IP) communication between a mobile entity and an Internet Service Provider
(ISP). Ericsson has developed two products to deliver GPRS to the GSM (Global
System for Mobile communication) and W-CDMA (Wideband Code Division Multiple
Access) networks [1].

Wireless Packet Platform (WPP)

Common Services Layer
(including component framework)

GPRS for GSM

Business -specific layer

Application-
specific

layer
GPRS for GSM

GPRS for WCDMA

An application in this
context consists of
components in the
three upper layers.

Figure 1 The GPRS Nodes software architecture

 134

 P3. MDA and Integration of Legacy Systems

Figure 1 is one view of the software architecture, where the hierarchical structure is
based on what is common and what is application specific. Other views of the
architecture reveal that all components in the application-specific and business-specific
layers use a component framework in the common services layer, and all components in
the three upper layers use the services offered by WPP [6]. Size of each application is
over 600 NKLOC (Non-commented Kilo Lines Of Code measured in equivalent C
code). Software components are mostly developed internally, but COTS components
are also used. Software modules are written in C, Erlang (a functional language for
programming concurrent, real-time, and distributed systems [2]), and Java (only for user
interfaces). The software development process is an adaptation of the Rational Unified
Process (RUP) [7]. UML modeling is done by using the Rational Rose tool.

4. Platforms and Transformations
Figure 2 shows the software process from requirements to the executables, several
models representing the system, and the relationships between these models and the
MDA concepts.

The use case model, domain object model, use case specifications and supplementary
specifications (textual documents) are developed in the Requirement workflow.
Requirements of the system are then transformed to classes and behavior (as described
in sequence diagrams) in the Analysis workflow. Design is a refinement of analysis,
adding new classes, interfaces and subsystems, and assigning them to components.
Elements in the design model are subsystems, blocks (each subsystem consists of a
number of blocks), units (each block consists of a number of units) and software
modules (each unit is realized in one or several modules). IDL files are either generated
from the component model, or written by hand. From these IDL files, skeletons and
stubs are generated, and finally realization is done manually.

Some subsystems in the design model make a component framework for real-time
distributed systems that uses CORBA and its Interface Definition Language (IDL), and
Erlang/OTP for its realization (OTP stands for Open Telecommunication Platform,
which offers services for programmers in Erlang [2]). In the design phase, it may be seen as
a technology-neutral virtual machine as described by MDA (a virtual machine is defined as
a set of parts and services, which are defined independently of any specific platform and
which are realized in platform-specific ways on different platforms. A virtual machine
is a platform, and such a model is specific to that platform [5]).

RUP calls moving from one model to another one for translation, transformation or
refinement. Hence software development in the adapted RUP process may also be seen
as a series of transformations. However a transformation in RUP is different from a
transformation in MDA, since a transformation in MDA starts from a complete model
and have a record of transformation. UML models and other artifacts developed in the
requirement workflow describe the system in the problem domain (as required by the
GPRS specifications), and not in the solution domain. These are part of a PIM that is
not computationally complete. Models in the analysis workflow describe the system in
the solution domain and are also part of a PIM. It is first in the design workflow that we
could have a computationally complete PIM (that contains all the information necessary
for generating code), but it is dependent on the component framework with its
realization in CORBA and OTP. On the other hand, each PSM at a higher level of
abstraction is a PIM relative to the PSM at the lower level (less technology dependent).

 135

P3. MDA and Integration of Legacy Systems

The curved gray arrow in Figure 2 shows a tool called Translator, which is described in
Section 5.

Use-Case Model

Use Case
Specifications

Supplementary
Specifications

Domain Object
Model

Analysis Classes

Use Case Realization
Diagrams

Design Elements
(Subsystems/Blocks/
Units/Modules)

Design Realization
Diagrams

Components

IDL files
Source Code
(Erlang/C/Java)

Executable
Packages

CIM/PIM
PIM

PIM/PSM
(Component
framework

Specific)

PSM
(CORBA
Specific)

Manual Transformation

Automatic Transformation

UML Models

PSM
(Operating system

& Language
Specific)

Translator

Analysis Design
Requirement

Figure 2 From requirements to executables

We notice that most transformations are done manually and therefore:

There is a risk for inconsistencies between textual requirements and the UML
models, between different UML models, and between UML models and the
code. Inspections and testing are performed to discover such inconsistencies,
which are costly.

−

−

−

Developers may update the code, IDL files, or the design model without
updating other models.

Not all models are developed completely. The analysis model (consisting of analysis
classes and sequence diagrams describing the behavior) is only developed for a fraction
of use cases. The reason is simply the cost. Another example is the design model where
not all the units are completely modeled. If the platform changes, there is not a complete
PIM for generation of a PSM in another platform.

5. The Translator
We studied the possibility of reverse engineering the code in order to develop a
complete PIM or PSM. We restricted our study to the Erlang environment in the first
phase. Our method is based on:

Filtering out parts of the code that is platform specific, where a platform in this
context is the Erlang/OTP platform and CORBA. Among these aspects were
operations for starting and restarting the applications and processes, consistency
check, transaction handling (a set of signaling messages interchanged between

 136

 P3. MDA and Integration of Legacy Systems

software modules aiming at completion of a common task), and communication
mechanisms during message passing.
Combing the code with IDL files: Erlang is a dynamically typed language, and
the programmer does not declare data types. Therefore we had to use the IDL
files to extract data types.

−

− Using XMI for model exchange.
We studied several commercial tools but ended with making our own tool, the

Erlang to XMI Translator. The reason was that none of the tools supported reverse
engineering from Erlang code or from the sequence diagrams in the design model
(although these diagrams are neither complete nor always synchronized with changes in
the code).

Erlang
Code

IDL
CORBA

Parser
UML model

In XMI

Translator

IDL
Parser

Erlang
Parser XMI

Writer &
Mixer

Figure 3 The Erlang to XMI Translator

The resulting UML model is in XMI, which may be opened by other tools such as

Rational Rose (the Rose plug-in for XMI must be installed). As we recognized the need
to be able to separately parse single subsystems (parsing the total system takes too long
time and a subsystem may be updated at any time), we have developed an XMI mixer
that combines separate XMI files (from the translator or other tools that export UML
models in XMI) and generates a complete model. The tool is developed in Java. The
resulting model has the following characteristics:

It is still dependent on the internally developed component framework and uses
its services. However, it is independent of CORBA, the Erlang language and
OTP.

−

−

−

It is a structurally complete model, and shows the complete structure of the
design model. However it does not have information on the behavior. We have
not extracted the behavior of the system that is described in the code. To do so,
we would need an action semantics language.
It is using XMI version 1.0 and UML version 1.4.

 137

P3. MDA and Integration of Legacy Systems

Some characteristics of Erlang make the transformation more complex than for other
programming languages. In Erlang, data types are not specified, and therefore we used
the IDL files for identifying data types. Another problem was that Erlang allows
defining methods with the same name, but different number of parameters in a single
software module. Although internal coding guidelines recommends using different
method names, sometimes programmers have kept these methods to keep the code
backward compatible. In these cases we chose the method with higher number of
parameters, and recognize that the code should be manually updated.

As mentioned in Section 4, the component framework may be seen as a virtual
machine, realized in CORBA and Erlang/OTP. It also includes design rules for
application developers that describe how to use its services, and templates for
programmers that include operations for using these services in Erlang (and C as well).
We mapped each Erlang file to a UML class, and the exported methods in an Erlang file
were mapped to public operations in the UML class. However we removed methods
that depend on the OTP platform. This removal makes the model platform independent,
but the virtual machine looses some of the services that were not described in a
technology-neutral way; e.g. services for starting the system and transaction handling.

We recognized the following advantages of raising the level of abstraction by
transforming a PSM to another PSM:

The model is synchronized with the code. Any changes in the code can be
automatically mirrored in the model by using the developed tool.

−

−

−
−

The UML model may be used to develop the system on other platforms than
CORBA or other languages than Erlang. It may also be integrated with other
models or be used for future development of applications.
The model is exchangeable to by using XMI.
The new UML model may be used during inspections or for developing test
cases.

6. Discussion and Conclusions
Ericsson uses Erlang for its good performance and characteristics suitable for
concurrent, distributed applications. But Erlang is not in the list of languages supported
by commercial MDA tools. However our study confirmed the possibility and low cost
of developing a tool that helps to keep the UML models synchronized with the code.

Reverse engineering is a complex task. We described some challenges we met during
transforming a PSM to another PSM. Some of them are specific to the Erlang
programming language, while an interesting issue was the difficulty to distinguish
between aspects of the component framework that are platform-independent (and hence
may be realized in other platforms without further changes) and those that are platform
dependent, where a platform in this context is OTP. The Translator gives a PSM that is
structurally complete, but transformation to a structurally complete PIM should be done
manually by developing a model for the component framework that is platform
independent.

Another important issue is the difficulty to extract behavior and constraints
automatically from the code. We could draw sequence diagrams manually by using the
code, but they can’t be used by Rose (or any other tool) to generate code in other

 138

 P3. MDA and Integration of Legacy Systems

programming languages. Therefore we can’t develop a computationally complete PIM
or PSM.

The next steps in the study may be:
1. Study the possibility to develop a platform independent model for the

component framework, and a Platform Description Model (PDM) that describes
the framework realization.

2. Study the possibility to extract objects from the developed PIM (in the design
model) to have a complete object-oriented class diagram. Neither Erlang nor C
is object-oriented languages, while future development may be object-oriented.

3. Develop a similar translator for the C language.
Developing legacy wrappers is another approach when integrating legacy systems,

which is not evaluated in this case and may be subject of future studies.
The study helped us to better understand the MDA approach to software

development and to identify the problems and opportunities with the approach.
Although organizations may find it difficult to use the MDA approach for their legacy
systems, some aspects of the approach may already be integrated into their current
practice.

Acknowledgement
We thank Ericsson in Grimstad for the opportunity to perform the case study.

References

[1] L. Ekeroth, P.M. Hedstrom, “GPRS Support Nodes”, Ericsson Review, No. 3,

2000, pp. 156-169.
[2] For more details on Erlang and OTP, see www.erlang.se
[3] The INCO (INcremental and COmponent-based development) project is a

Norwegian R&D project in 2001-2004: http://www.ifi.uio.no/~isu/INCO/
[4] ISO, RM-ODP [X.900] http://www.community-ML.org/RM-ODP/
[5] MDA Guide V1.0: http://www.omg.org/docs/omg/03-05-01.pdf
[6] P. Mohagheghi, R. Conradi, “Experiences with Certification of Reusable

Components in the GSN Project in Ericsson, Norway”, Proc. 4th ICSE Workshop
on Component-Based Software Engineering: Component certification and
System Prediction, ICSE’2001, Toronto, Canada, May 14-15, 2001, 27-31.

[7] Rational Unified Process: www.rational.com
[8] Selo, Warsun Najib, “MDA and Integration of Legacy Systems”, MSc thesis,

Agder University College, Norway, 2003.

 139

http://www.erlang.se/
http://www.ifi.uio.no/~isu/INCO/
www.rational.com

 140

 P4. Object-Oriented Reading Techniques for Inspection of UML Models

P4. Object-Oriented Reading Techniques for Inspection of
UML Models –

An Industrial Experiment

Reidar Conradi1, Parastoo Mohagheghi2, Tayyaba Arif1, Lars Christian Hegde1, Geir Arne
Bunde3, and Anders Pedersen3

1 Department of Computer and Information Science, NTNU, NO-7491 Trondheim, Norway
2 Ericsson Norway - Grimstad, Postuttak, NO-4898 Grimstad, Norway

3 Agder University College, NO-4876 Grimstad, Norway
conradi@idi.ntnu.no, parastoo.mohagheghi@eto.ericsson.se

Abstract
Object-oriented design and modeling with UML has become a central part of software
development in industry. Software inspections are used to cost-efficiently increase the
quality of the developed software by early defect detection and correction. Several
models presenting the total system need to be inspected for consistency with each other
and with external documents such as requirement specifications. Special Object
Oriented Reading Techniques (OORTs) have been developed to help inspectors in the
individual reading step of inspection of UML models. The paper describes an
experiment performed at Ericsson in Norway to evaluate the cost-efficiency of tailored
OORTs in a large-scale software project. The results showed that the OORTs fit well
into an incremental development process, and managed to detect defects not found by
the existing reading techniques. The study demonstrated the need for further
development and empirical assessment of these techniques, and for better integration
with industrial work practice.

1. Introduction
The Unified Modeling Language (UML) provides visualization and modeling support,
and has its roots in object-oriented concepts and notations [4]. Using UML implies a
need for methods targeted at inspecting object-oriented models, e.g. to check
consistency within a single model, between different models of a system, and between
models and external requirement documents. Detected defects may be inconsistencies,
omissions or ambiguities; i.e. any fault or lack that degrades the quality of the model.

Typically software inspections include an individual reading step, where several
inspectors read the artifacts alone and record the detected defects. An inspection
meeting for discussing, classification and recording defects follows this step. Individual
reading of artifacts (the target of this paper) strongly relies on the reader’s experience
and concentration. To improve the output of the individual reading step, checklists and
special reading guidelines are provided. Special Object-Oriented Reading Techniques
(OORTs) have been developed at the University of Maryland, USA, consisting of seven
individual reading techniques (Sec. 2.2). In each technique, either two UML diagrams
are compared, or a diagram is read against a Requirements Description.

 141

mailto:conradi@idi.ntnu.no
mailto:parastoo.mohagheghi@eto.ericsson.se

P4. Object-Oriented Reading Techniques for Inspection of UML Models

Modeling in UML is a central part of software development at Ericsson in Grimstad.
With increased use of UML, review and inspection of UML models are done in all
development phases. While reviews are performed to evaluate project status and secure
design quality by discussing broader design issues, formal inspections are part of the
exit criteria for development phases. In the inspection process in Ericsson, individual
inspectors read UML diagrams using different views, with checklists and guidelines
provided for each type of view or focus.

Ericsson primarily wants to increase the cost-efficiency (number of detected defects
per person-hour) of the individual reading step of UML diagrams, since inspection
meetings are expensive and require participation of already overloaded staff. Ericsson
further wants to see if there is any correlation between developer experience and
number of defects caught during individual reading. Lastly, Ericsson wants to improve
the relevant reading techniques (old or new) for UML diagrams, and to find out whether
the new reading techniques fit into their incremental development process.

Before introducing the OORTs in industry, systematic empirical assessments are
needed to evaluate the cost-efficiency and practical utility of the techniques. Following
a set of student experiments for assessment and improvement of the techniques at The
University of Maryland and NTNU [17][6], we conducted a small controlled
experiment at Ericsson. The experiment was performed as part of two diploma (MSc)
theses written in spring 2002 at the Agder University College (AUC) and The
Norwegian University of Science and Technology (NTNU) [5][1]. The original set of
OORTs from The University of Maryland were revised twice by NTNU for
understandability, evaluated and re-evaluated on two sample systems, and then tailored
to the industrial context.

The Ericsson unit in Norway develops software for large, real-time systems. The
Requirements Descriptions and the UML models are big and complex. Besides, the
UML models are developed and inspected incrementally; i.e. a single diagram may be
inspected several times following successive modifications. The size of the inspected
artifacts and the incremental nature of the software development process distinguish this
industrial experiment from previous student experiments. The cost-efficiency of
inspections and the types of detected defects were used as measures of the well-
suitedness of the techniques. Other steps of the inspection process, such as the
inspection meeting, remained unchanged.

Results of the experiment and qualitative feedback showed that the OORTs fit well
into the overall inspection process. Although the OORTs were new for the inspectors,
they contributed to finding more defects than the existing reading techniques, while
their cost-efficiency was almost the same. However, the new techniques ought to be
simplified, and questions or special guidelines should be added.

The remainder of the paper is structured as follows: Section 2 describes some state of
the art and the new OORTs. Section 3 outlines the overall empirical approach to assess
the OORTs. Section 4 summarizes the existing practice of reviews and inspections at
Ericsson and some baseline data. Section 5 describes the experimental steps and results,
analyzes the main results, and discusses possible ways to improve the new OORTs and
their usage. The paper is concluded in Section 6.

 142

 P4. Object-Oriented Reading Techniques for Inspection of UML Models

2. The Object-Oriented Reading Techniques (OORTs)

2.1 A Quick State of the Art
Inspection is a technique for early defect detection in software artifacts [8]. It has
proved to be effective (finding relatively many defects), efficient (relatively low cost
per defect), and practical (easy to carry out). Inspection cannot replace later testing, but
many severe defects can be found more cost-efficiently by inspection. A common
reading technique is to let inspectors apply complimentary perspectives or views [2][3].
There are over 150 published studies, and some main findings are:

It is reported a net productivity increase of 30% to 50%, and a net timescale
reduction of 10% to 30% [9, p.24].

−

−

−

−
−
−

Code inspection reduces costs by 39%, and design inspection reduces rework by
44% [11].
Ericsson in Oslo, Norway has previously calculated a net saving of 20% of the
total development effort by inspection of design documents in SDL [7].

As software development becomes increasingly model-based e.g. by using UML,
techniques for inspection of models for completeness, correctness and consistency
should be developed. Multiple models are developed for complex software systems.
These models represent the same system from different views and different levels of
abstraction.

However, there exist no documented, industrial-proven reading techniques for UML-
based models [16]. The closest is a reported case study from Oracle in Brazil [13]. Its
aim was to test the practical feasibility of the OORTs, but there was no company
baseline on inspections to compare with. The study showed that the OORTs did work in
an industrial setting. Five inspectors found 79 distinct defects (many serious ones), with
2.7 defects/person-hour (totally 29 person-hours, but excluding a final inspection
meeting). Few qualitative observations were collected on how the OORTs behaved.

2.2. The OORTs

As mentioned, one effort in adapting reading techniques for the individual reading step
of inspections to object-oriented design was made by the OORT-team at University of
Maryland, USA [17]. The principal team members were:

Victor R. Basili and Jeffrey Carver (The University of Maryland),
Forrest Shull (The Fraunhofer Center – Maryland),
Guilherme H. Travassos (COPPE/Federal University of Rio de Janeiro).

Special object-oriented reading techniques have been developed since 1998 to
inspect (“compare”) UML diagrams with each other and with Requirements
Descriptions in order to find defects. Horizontal reading techniques are for comparing
artifacts from the same development phase such as class diagrams and state diagrams
developed in the design phase. Consistency among artifacts is the most important focus
here. Vertical reading techniques are for comparing artifacts developed in different
development phases such as requirements and design. Completeness (traceability of
requirements into design) is the focus. UML diagrams may capture either static or
dynamic aspects of the modeled system. The original set of OORTs has seven
techniques, as in Figure 1:

 143

P4. Object-Oriented Reading Techniques for Inspection of UML Models

OORT-1: Sequence Diagrams vs. Class Diagrams (horizontal, static)
OORT-2: State Diagrams vs. Class Descriptions1 (horizontal, dynamic)
OORT-3: Sequence Diagrams vs. State Diagrams (horizontal, dynamic)
OORT-4: Class Diagrams vs. Class Descriptions (horizontal, static)
OORT-5: Class Descriptions vs. Requirements Descriptions (vertical, static)
OORT-6: Sequence Diagrams vs. Use Case Diagrams (vertical, static/dynamic)
OORT-7: State Diagrams vs. (Reqmt. Descr.s / Use Cases) (vertical, dynamic)

Requirements
Descriptions

Requirement Artifacts

Design Artifacts
Class
Diagrams

Class
Descriptions

State
Diagrams

Sequence
Diagrams

Vertical reading
Horizontal reading

Use-Cases

OORT-4 OORT-2 OORT-3

OORT-1

OORT-6OORT-7OORT-5

Figure 1 The seven OORTs and their related artifacts, taken from [18]

The techniques cover most diagrams when modeling a system with UML. In

addition, Requirements Descriptions are used to verify that the system complies with
the prerequisites. Each technique compares at least two artifacts to identify defects in
them (but requirements and use cases are assumed to be defect-free here). The
techniques consist of several steps with associated questions. Each technique focus the
reader on different design aspects related to consistency and completeness, but not on
e.g. maintainability and testability. In student experiments, each reader either did four
“dynamic” OORTs or four “static” ones, and with OORT-6 in common. That is, we had
two complementary views, a dynamic and a static one.

Defects detected by the techniques are classified either as Omission (missing item),
Extraneous information (should not be in the design), Incorrect fact (misrepresentation
of a concept), Ambiguity (unclear concept), Inconsistency (disagreement between
representations of a concept), or Miscellaneous (any other defects). In [18], severity of
defects may be either Serious (It is not possible to continue reading. It needs redesign),
Invalidates (the defects invalidates this part of the document) or Not serious (needs to
be checked).

1 Class Descriptions include textual descriptions of goals and responsibilities of a class, list

of functions with descriptions of each function, attributes, cardinalities, inheritance, and
relations.

 144

 P4. Object-Oriented Reading Techniques for Inspection of UML Models

To get more familiar with the techniques, a short description of OORT-1 is given in
the following: The goal of this technique is to verify that the Class Diagram for the
system describes classes and their relationships consistently with the behaviors
specified in the Sequence Diagrams. The first step is to identify all objects, services and
conditions in the Sequence Diagram and underline them in different colors. The second
step is to read the related Class Diagram and see whether all objects are covered,
messages and services found, and constraints fulfilled. To help the reader, a set of
questions is developed for each step.

3. The Overall Empirical Method
Developing a method solid enough to be used in the industry takes time and effort
through various experiments and verification of results. A set of empirical studies at
University of Maryland and NTNU has used the empirical method presented in [14] for
improving a development process from the conceptual phase to industry. The method is
divided into four studies where each study step has some questions that need to be
answered before the next level can be reached:

1. Feasibility study -- Did the process provide usable and cost-effective results?
2. Observational study -- Did the steps of the process make sense?
3. Case study: Use in real life cycle -- Did process fit into the lifecycle?
4. Case study: Use in industry -- Did process fit into industrial setting?

Previous studies at The University of Maryland have emphasized steps 1-3, using
students. There is also an undocumented student study from University of Southern
California, where the OORTs were tailored to the Spiral Model, i.e. step 3. Previous
student experiments at NTNU [6] have applied steps 1 and 2.

The mentioned case study at Oracle in Brazil was the first industrial study,
emphasizing step 4 and feasibility. It applied more or less the original version of the
OORTs, i.e. with no tailoring to the industrial context. Regrettably, we were not aware
of this study before our experiment.

 The study at Ericsson was the second industrial study, with emphasis on step 4 and
with a direct comparison of Ericsson’s existing inspection techniques. It used a revised
and tailored version of the OORTs. We will call it an experiment and not a case study,
as it was very close to a controlled experiment.

4. The Company Context
The goal of the software development unit at Ericsson in Grimstad, Norway is to build
robust, highly available and distributed systems for large, real-time applications, such as
GPRS and UMTS networks. SDL and the proprietary PLEX languages have recently
been replaced by UML and e.g. Java or C++. UML models are developed to help
understanding the structure and behavior of the system, for communicating decisions
among stakeholders, and finally to generate code to some extent [10].

The Ericsson inspectors are team members working on the same software system.
They have extensive experience with and good motivation for inspections. The artifacts
in the student experiments represented complete, although small systems. In contrast,
Ericsson’s UML models are developed incrementally and updated in each delivery with

 145

P4. Object-Oriented Reading Techniques for Inspection of UML Models

new or changed requirements. I.e., diagrams are inspected in increments when any
complete revision is done. The artifacts at Ericsson are also of industrial caliber:

The Requirements Descriptions are in many cases large and complex, including
external telecommunication standards, internal requirement specifications,
and/or change requests.

−

− The inspected UML diagrams are often huge, containing many classes,
relationships or messages - indeed covering entire walls!

4.1. State of the Practice of Reviews and Inspections
Ericsson has a long history in inspecting their software artifacts; both design documents
and source code. The inspection method at Ericsson is based on techniques originally
developed by Fagan [8], later refined by Gilb [9], adapted for Ericsson with Gilb’s
cooperation, and finally tailored by the local development department. Below, we
describe the existing Ericsson review and inspection process for UML diagrams.

A review is a team activity to evaluate software artifacts or project status. Reviews
can have different degrees of formality; i.e. from informal meetings (to present the
artifacts) and walkthroughs (to discuss design issues and whether the design meets the
requirements) to frequent reviews (more formal intermediate checks for completeness
and correctness). Reviews act as internal milestones in a development phase, while
formal inspections are performed at the end of an activity and act as exit criteria.

Each inspection has an associated team. The team consists of a moderator, several
inspectors, at least one author, and possibly a secretary. For optimal performance,
Ericsson guidelines state that a team should consist of 5 to 7 persons. The moderator is
in charge of planning and initiating the inspection process. He chooses the artifacts to be
inspected (with incremental development also their versions), and assigns inspectors to
different views (see below). Before the inspection meeting, inspectors individually read
the artifacts and mark the defects, usually directly in the inspected artifact.
Requirements Descriptions, UML diagrams and source code are usually printed out for
easy mark-up. If a diagram is too large to be printed out, the inspector takes separate
notes on the defects and related questions.

Ericsson uses views during inspections, where a view means to look at the inspected
artifact with a special focus in mind. Examples are requirement (whether a design
artifact is consistent with requirements), modeling guideline (consistency with such
guidelines), or testability (is the modeled information testable?). For each view, the
inspectors apply checklists or design rules to help discovering defects.

An example of a modelling guideline is: The interface class will be shown as an icon
(the so-called "lollipop") and the connection to the corresponding subsystem, block or
unit proxy class shall be "realize" and not “generalize”. An example of a design rule is:
A call back interface (inherited from an abstract interface) shall be defined on the block
or subsystem level (visibility of the interface). Such guidelines and rules enforce that
the design model will contain correct interfaces to generate IDL files.

Only two different classifications for severity of defects are used, Major and Minor.
A Major defect (most common) will cause implementation error, and its correction cost
will increase in later development phases. Examples include incorrect specifications or
wrong function input. A Minor defect does not lead to implementation error, and is

 146

 P4. Object-Oriented Reading Techniques for Inspection of UML Models

assumed to have the same correction cost throughout the whole process. Examples are
misspelling, comments, or too much detail.

In spite of a well-defined inspection process and motivated developers, Ericsson
acknowledges that the individual reading step needs improvement. For instance, UML
orientation is poor, and inspectors spend too little time in preparatory reading - i.e. poor
process conformance, see below.

4.2. Inspection Baseline at Ericsson
A post-mortem study of data from inspections and testing was done at the Ericsson
development unit outside Oslo, Norway in 1998 [7]. The historical data used in this
study is from the period from 1993 to 1998, and also covered data for code reviews and
different test activities (unit test, function test, and system test). The results confirm that
individual design reading and code reviews are the most cost-efficient (economical)
techniques to detect defects, while system tests are the least cost-efficient.

While the cost-efficiency of inspections is reported in many studies, there is no solid
historical data on inspection of UML diagrams, neither in the literature nor at Ericsson.
As part of a diploma thesis at AUC, data from 38 design and code inspections between
May 2001 and March 2002 were analyzed; but note that:

Design (UML) and code inspections were not distinguished in the recorded data. •
• In the first 32 inspections logs, only the total number of defects was reported,

covering both individual reading and inspection meetings. Only the last 6
inspections had distinct data here.

Table 1 Ericsson baseline results, combined for design and code inspections

%Effort
Individual
Reading

%Effort
Meeting

Overall
Efficien

cy
(def./ph)

Individual
Reading

Efficiency
(def./ph)

Meeting
Efficien

cy
(def./ph)

All 38
inspections

32 68 0.53 - -

6 last
inspections

24 76 1.4 4.7 0.4

The data showed that most of the effort is spent in inspection meetings, while

individual reading is more cost-efficient. For the 6 last inspections:
24% of the effort is spent in individual reading, finding 80% of the defects.
Inspection meetings took 76% of the effort but detected 20% of defects. Thus,
individual reading is 12 times more cost-efficient than inspection meetings.

−

− Two of these inspections had an extra high number of defects found in
individual reading. Even when this data is excluded, the cost-efficiency is 1.9
defects/person-hour for individual reading and 0.6 defects/person-hour for
meetings, or a factor 3.

 147

P4. Object-Oriented Reading Techniques for Inspection of UML Models

There has been much debate on the effect of inspection meetings. Votta reports that
only 8% of the defects were found in such meetings [19]. The data set in this study is
too small to draw conclusions, but is otherwise in line with the cited finding.

5. Ericsson Experiment and Results
The experiment was executed in the context of a large, real software project and with
professional staff. Conducting an experiment in industry involves risks such as:

The experiment might be assumed as time-consuming for the project, causing
delay and hence being rejected. Good planning and preparation was necessary to
minimize the effort spent by Ericsson staff. However, the industrial reality at
Ericsson is very hectic, and pre-planning of all details was not feasible.

−

−

−

−

The time schedule for the experiment had to be coordinated with the internal
inspection plan. In fact, the experiment was delayed for almost one month.
Selecting the object of study: The inspected diagrams should not be too complex
or too trivial for running the experiment. The inspected artifacts should also
contain most of the diagrams covered by the techniques.

PROFIT - PROcess improvement For IT industry – is a cooperative, Norwegian
software process improvement project in 2000-2002 where NTNU participates. This
project is interfaced with international networks on empirical software engineering such
as ESERNET and ISERN. For the experiment at Ericsson, PROFIT was the funding
backbone.

The OORTs had to be modified and verified before they could be used at Ericsson.
Therefore the NTNU-team revised the techniques in two steps:

1. Comments were added and questions rephrased and simplified to improve
understandability by making them more concise. The results in [1] contain
concrete defect reports, as well as qualitative comments and observations.

2. The set of improved techniques were further modified to fit the company
context. These changes are described in Section 5.2.

Students experienced that the OORTs were cost-efficient in detecting design defects
for two sample systems, as the OORTs are very structured and offer a step-by-step
process. On the other hand, the techniques were quite time-consuming to perform.
Frustration and de-motivation can easily be the result of extensive methods. In addition,
they experienced some redundancy between the techniques. Particularly OORT-5 and
OORT-6 were not motivating to use. A lot of issues in OORT-5 and OORT-6 were also
covered by OORT-1 and OORT-4. OORTs-6/7 were not very productive either.

The experiment was otherwise according to Wohlin’s book [20], except that we do
not negate the null hypotheses. The rest of this section describes planning and operation,
results, and final analysis and comments.

5.1. Planning
Objectives: The inspection experiment had four industrial objectives, named O1-O4:

O1 – analyze cost-efficiency and number of detected defects, with null
hypothesis H0a: The new reading techniques are as cost-efficient and help to
find at least as many defects as the old R&I techniques. (“Effectiveness”, or

 148

 P4. Object-Oriented Reading Techniques for Inspection of UML Models

fraction of defects found in inspections compared to all reported defects, was not
investigated.).
O2 – analyze the effect of developer experience, with null hypothesis H0b:
Developer experience will positively impact the number of detected defects in
individual reading.

−

−

−

−

−

−

O3 – help to improve old and new reading techniques for UML, since
Ericsson’s inspection guidelines had not been properly updated after the shift in
design language from SDL to UML. No formal hypothesis was stated here, and
results and arguments are mostly qualitative.
O4 – investigate if the new reading techniques fit the incremental
development process at Ericsson. Again, qualitative arguments were applied.

 Relevant inspection data: To test the two null hypotheses H0a and H0b, the
independent variable was the individual reading technique with two treatments: either
the existing review and inspection techniques (R&I) or the OORTs modified for the
experiment. The dependent variables were the effort spent, and the number and type of
detected defects in the individual reading step and in the inspection meetings (see below
on defect logs). Data in a questionnaire (from the OORT-team at Maryland) over
developer experience was used as a context variable. To help to evaluate objectives O3
and O4, all these variables were supplemented with qualitative data from defect logs
(e.g. comments on how the OORTs behaved), as well as data from observation and
interviews.

Subjects and grouping: Subjects were the staff of the development team working
with the selected use case. They were comprised of 10 developers divided in two
groups, the R&I-group applying the previous techniques and the OORT-group applying
the new ones. A common moderator assigned the developers to each group. A slight
bias was given to implementation experience in this assignment, since Ericsson wanted
all the needed views covered in the R&I-group (see however Figure 2 in 5.2). The R&I-
group then consisted of three very experienced designers and programmers, one
newcomer, and one with average experience. The OORT-group consisted of one team
leader with good general knowledge, two senior system architects, and two with average
implementation knowledge. Inspection meetings were held as usual, chaired by the
same moderator. Since both groups had 5 individuals, the experimental design was
balanced. Both groups had access to the same artifacts.

Changes to the OORTs: As mentioned, the OORTs were modified to fit Ericsson’s
models and documents, but only so that the techniques were comparable to the original
ones and had the same goals. The main changes were:

Use Case Specifications: Each use case has a large textual document attached to
it, called a Use Case Specification (UCS), including Use Case Diagrams and the
main and alternative flows. This UCS was used instead of the graphical Use
Case Diagram in OORT-6 and OORT-7.
Class Descriptions: There is no explicit Class Description document, but such
descriptions are written directly in the Class Diagrams. In OORT-2, OORT-4
and OORT-5, these textual class descriptions in the Class Diagrams are used.
OORT-4: Class Diagram (CD) vs. Class Description (CDe). The main focus of
this technique is the consistency between CD and CDe. As Class Descriptions
are written in the same Class Diagram, this technique seems unnecessary.

 149

P4. Object-Oriented Reading Techniques for Inspection of UML Models

However, the questions make the reader focus on internal consistency in the CD.
Therefore all aspects concerning Class Descriptions were removed and the
technique was renamed to “Class Diagram for internal consistency”.
OORT-5: Class Description (CDe) vs. Requirements Descriptions (RD). Here,
the RD is used to identify classes, their behaviors and necessary attributes. That
is, the RD nouns are candidates for classes, the RD verbs for behaviors, and so
on. The technique was not applicable in Ericsson, due to the large amount of text
that should be read. But Ericsson has an iterative development process, where
they inspect a small part of the system at one time. The UCS could substitute the
RD for a particular part of the system, but the focus of the specification and the
level of abstraction demanded major changes in the technique, which would
make the technique unrecognizable. Therefore a decision was made to remove
OORT-5. Thus, we had six OORTs to try out.

−

−

−
−
−

Defect Logging: To log defects in a consistent and orderly manner, one template
was made for the R&I-group and a similar one for the OORT-group – both
implemented by spreadsheets. For all defects, the inspectors registered an explanatory
name, the associated artifact, the defect type (Omission, Extraneous etc.), and some
detailed comments. The OORT-group also registered the technique that helped them to
find the defect. Ericsson’s categorization of Major and Minor was not applied (we
regretted this during later analysis). These changes in defect reporting were the only
process modification for the R&I-group. The amount of effort spent by each inspector,
in individual reading and inspection meetings, was also recorded for both groups. We
also asked for qualitative comments on how the techniques behaved.

5.2. Operation, Quantitative Results, and Short Comments
It was decided to run the experiment in April or May 2002, during an already planned
inspection of UML diagrams for a certain use case, representing the next release of a
software system. The inspected artifacts were:

Use Case Specification (UCS) of 43 pages, including large, referenced
standards.
Class Diagram (CD), with 5 classes and 20 interfaces.
Two Sequence Diagrams (SqD), each with ca. 20 classes and 50 messages.
One State Diagram (StD), with 6 states including start and stop, cf. below.

Problem note 1: When the actual use case and its design artifacts were being
prepared for the experiment, a small but urgent problem occurred: For this concrete use
case (system) there was no State Diagram (StD)! Such diagrams are normally made, but
not emphasized since no code is generated from these. Luckily, the UCS contained an
Activity Diagram that was a hybrid of a StD and a data flow chart. Thus, to be able to
use the OORTs in their proposed form, a StD was hastily extracted from this Activity
Diagram. However, the StD was now made in the analysis and not in the design phase,
so the reading in OORT-7 changed focus. The alternative would have been to drop the
three OORTs involving State Diagrams, leaving us with only three OORTs. The R&I-
group had access to, but did not inspect this StD.

The experiment was executed over two days. In the beginning of the first day, the
NTNU students gave a presentation of the experimental context and setup. For the
OORT-group, a short introduction to the techniques was given as well. Since we had

 150

 P4. Object-Oriented Reading Techniques for Inspection of UML Models

few inspectors, they were told to use all the available six OORTs (excluding OORT-5),
not just four “dynamic” ones or four “static” ones as in previous experiments (again, we
regretted this later).

Each participant filled out a questionnaire about his/her background (e.g. number of
projects and experience with UML). The R&I-group was not given any information on
the OORTs. The 10 participants in this experiment were the team assigned to the use
case, so they had thorough knowledge of the domain and the UML models at hand.

When all participants had finished their individual reading, they met in their assigned
teams for normal inspection meetings. During these meetings, each defect was
discussed and categorized, and the moderator logged possible new defects found in the
meetings as well. At the end of the meetings, a short discussion was held on the
usability of the techniques and to generally comment on the experiment.

Problem note 2: One inspector in the OORT-group did only deliver his
questionnaire, not his defect log. Thus the OORT-data represents 4, not 5 persons. The
number of defects from the OORT group is therefore lower than expected (but still
high), while the OORT effort and cost-efficiency data reflect the reduced person-hours.

Table 2 Summary of collected data on defects from the Ericsson experiment

 Indiv.
read.

defects

Meet.
defects

Over
-laps

%
Indiv.
read.

defects

% Meet.
defects

Person
-hours
Indiv.
read.

Person-
hours
Meet.

R&I-
group

17 8 0 68 32 10 8.25

OORT-
group

38 1 8 97 3 21.5 9

Table 2 shows the number of distinctive defects found in individual reading and

inspection meetings, both as absolute numbers and relative frequencies. It also shows
the effort in person-hours for individual reading and meetings. Defects reported in more
than one defect log are called overlaps (in column four), and 8 “overlap defects” were
reported for the OORT-group.

The cost-efficiency (defects/person-hours) of the individual reading step, the
inspection meetings and the average for both groups is shown in Table 3 below.

Table 3 Cost-efficiency of inspections as no. of detected defects per person-
hour

 Cost-eff.
Indiv.read.
(defects/ph)

Cost-eff.
Meeting

(defects/ph)

Cost-eff.
Average.

(defects/ph)
R&I-group 1.70 0.97 1.37

OORT-
group

1.76 0.11 1.28

 151

P4. Object-Oriented Reading Techniques for Inspection of UML Models

Defects logs were used to make a summary of the distribution of defects over the
defined defect types. Table 4 shows that the R&I-group registered most Incorrect fact,
while the OORT-group found most Omission and Inconsistency.

Table 4 Defect Distribution on defect types

Defect Type R&I-
group

Indiv.read.

R&I-
group

Meeting

OORT-
group

Indiv.read.

OORT-
group

Meeting
Omission 3 2 12 1
Extraneous - 3 6 -
Incorrect fact 10 3 1 -
Ambiguity - - 5 -
Inconsistency 2 - 12 -
Miscellaneous 2 - 2 -
Total 17 8 38 1

Short comment: Incorrect facts reported by the R&I-group were mostly detected in

the two Sequence Diagrams showing the interactions to realize the use case behavior.
These defects were misuse of a class or interface, such as wrong order of operation calls
or calling the wrong operation in an interface (Incorrect fact was originally defined as
misrepresentation of a concept). The group argued that the interface is misrepresented in
the Sequence Diagram, and thus the defects are of type Incorrect fact.

For the OORT-group the defects were also classified based on the question leading to
find them. OORT-1 and OORT-2 helped finding most defects. OORT-7 did not lead to
detection of any defects whatsoever.

Problem note 3: The inspectors mentioned that some defects were detected by more
than one technique and only registered the first technique that lead to them. However,
the techniques were time-consuming, and one of the developers did not do OORT-6 and
OORT-7, while others used little time on these latter two.

As mentioned, the participants filled in a questionnaire where they evaluated their
experience on different areas of software development on an ordinal scale from 0 to 5,
where 5 was best. A total score was coarsely calculated for each participant by simply
adding these numbers. The maximum score for 20 questions was 100. Figure 2 shows
the number of defects reported by each participant and their personal score for 9
participants (data from the “misbehaving” fifth participant in the OORT-group was not
included). The median and mean of these scores were very similar within and between
the two groups, so the groups seem well balanced when it comes to experience. For the
R&I-group, the number of reported defects increases with their personal score, while
there is no clear trend for the OORT- group!

 152

 P4. Object-Oriented Reading Techniques for Inspection of UML Models

0
2
4
6
8

10
12
14
16
18
20

0 20 40 60 80 100

Personal score

D
ef

ec
t

Current R&I
OORT

Figure 2 Relationship between numbers of defects reported in individual

reading and personal scores (“experience”) for 9 participants

5.3. Further comments, Interpretation and Analysis

Here, we first comment deeper on some of the results, also using qualitative feedbacks.
Then we assess the objectives and hypotheses, and lastly analyze the validity threats. A
general reminder is that the data material is very meager, so any conclusion or
observation must be drawn with great care.

Comments on old vs. new reading techniques: All in all, the R&I-group only
found 68% of their defects in individual reading. This is considerably less then the 98%
of the defects found by the OORT-group in this step. The meeting was less prosperous
for the latter group, which is the expected result. The R&I-group inversely detected
32% of their defects in the inspection meeting, which is high but not cost-efficient.
However, the OORT-group spent twice the effort on individual reading, and therefore
the cost-efficiency is almost the same. Furthermore, the OORTs were new for the
inspectors, and this may hurt cost-efficiency.

The OORT-group found much more Omissions and Inconsistencies than the R&I-
group. The OORTs are based on comparing UML diagrams with each other and with
requirements, and this may result in finding many more Omissions and Inconsistencies.
In contrast, the R&I techniques do not guide inspectors to find “defects”, which do not
degrade the behavior of the system. An example is possible Inconsistencies between a
Class Diagram and a Sequence Diagram (in OORT-1), since no code is generated from
a Sequence Diagram during design. However, Inconsistencies in other artifacts related
to the State Diagram (as in OORT-2 and OORT-3) are important also for
implementation.

The R&I-group detected 10 defects of type Incorrect fact, all being important for
implementation, while the OORT-group detected only one such defect. The registered
defects included both misrepresentation of concepts and misuse of them, such as
interface misuse being commented for Figure 4. Finding Incorrect facts may be based
on previous knowledge of the system, and inspectors in the R&I-group had better
insight in implementation details. Another reason is, that for the inspected system,
internal design guidelines and Class Descriptions contain information on the use of
interfaces. Comparing these with the Sequence Diagrams may have helped finding
violations to interface specifications, such as wrong order of operation calls. This

 153

P4. Object-Oriented Reading Techniques for Inspection of UML Models

technique is not currently in the set of OORTs, while the R&I techniques ask for
conformance to such design guidelines.

One interesting result of the experiment was the total lack of overlap between defects
found by the two groups. The N-fold inspection method [12] is based on the hypothesis
that inspection by a single team is hardly effective and N independent teams should
inspect an artifact. The value of N depends on many factors such as cost of additional
inspections and the potential expense of letting a defect slip by undetected. Our results
showed that each team only detected a fraction of defects as anticipated by the above
method. This result is possibly affected by a compound effect of the two elements
discussed earlier as well: slightly different background of inspectors and different focus
of reading techniques. The latter meant, that the OORTs focused on consistency
between UML diagrams and completeness versus requirements, while the R&I
techniques focused on conformance to the internal guidelines. The experiment therefore
suggests concrete improvements in the existing R&I techniques.

Lastly, defect severity (e.g. Major, Minor, and possibly Comment or as defined by
the OORTs) should be included for both techniques. Defect types might also be made
more precise – e.g. to distinguish Interface error, Sequencing error etc.

Comments on the new reading techniques: Some OORTs helped to detect more
defects than others. The inspectors mentioned that some defects were found by more
than one technique, and were therefore registered only once for the first OORT. Such
redundancies should be removed.

Some UML diagrams of the inspected system contain “more” information than
others. Modeling is also done differently than assumed in the original set of OORTs -
cf. the “Ericsson” changes to OORT-4 and removal of OORT-5.

As mentioned, for the inspected system we had to improvise a State Diagram from an
Activity Diagram already standing in the Use Case Specification. But again, making an
explicit and separate State Diagram proved that the new OORTs really work: 16(!)
defects were totally identified using OORT-2 and OORT-3, comparing the State
Diagram with, respectively, Class Descriptions and Sequence Diagrams.

The participants in the OORT-group said it was too time-consuming for each to cover
all the OORTs, and some (often the last) techniques will suffer from lack of attention. A
possible solution is to assign only a subset of the techniques to each participant,
similarly to Ericsson’s views and to what was done in earlier student experiments. A
more advanced UML editor might also catch many trivial inconsistencies, e.g.
undefined or misspelled names, thus relieving human inspectors from lengthy and
boring checks.

Finally, we should tailor the reading techniques to the context, i.e. project. For
instance, the OORTs were successful in detecting Omissions and Inconsistencies by
comparing UML diagrams with each other and with the requirements. But they did not
detect e.g. misuse of interfaces and inconsistencies between the models and the internal
guidelines. A natural solution is to include questions related to internal guidelines and
design rules, and then e.g. compare Sequence Diagrams with class and interface
descriptions as part of a revised OORT-1.

Evaluation of O1/H0a – cost-efficiency and number of defects: Our small sample
prevents use of standard statistical tests, but we can anyhow assess H0a (and H0b
below). The cost-efficiency of the old and new techniques seems rather similar, and in
line with that of the baseline. The OORTs seem to help finding more defects in the

 154

 P4. Object-Oriented Reading Techniques for Inspection of UML Models

individual reading step than the R&I techniques, respectively 38 and 17 defects. Even
without defects (indirectly) related to the new State Diagram, 22 defects were reported
using the OORTs. Thus the null hypothesis H0a should be accepted.

Evaluation of O2/H0b – effect of developer experience on number of defects:
From Figure 2 we see that the number of reported defects from the individual reading
step increases with the personal score for the R&I-group. This may indicate that the
R&I techniques rely on the experience of the participants. But there is no clear
relationship for the OORT-group. Thus the null hypothesis H0b should be accepted for
the R&I-group, but we cannot say anything for the OORT-group. The effect for the
OORT-group is surprising, but consistent with data from The University of Maryland
and NTNU [6], and will be documented in Jeffrey Carver’s forthcoming PhD thesis.

Evaluation of O3 – improvement of reading techniques for UML: The new
OORTs helped Ericsson to detect many defects not found by their existing R&I
techniques. However, both the old and new reading techniques varied a lot in their
effectiveness to detect defects among different diagrams and diagram types. This
information should be used to improve both sets of reading techniques. Actually, there
were many comments on how to improve the OORTs, suggesting that they should be
shortened and simplified, have mutual redundancies removed, or include references to
internal design guidelines and rules. Thus, although the original set of OORTs had been
revised by NTNU in several steps and then tailored for Ericsson, the experiment
suggests further simplification, refinement, and tailoring.

Evaluation of O4 – will fit in the incremental development process: Although the
OORTs were originally created to inspect entire systems, they work well for an
incremental development process too. The techniques helped to systematically find
inconsistencies between new or updated UML diagrams and between these diagrams
and possibly changed requirements. That is, they helped inspectors to see the revised
design model as a whole.

Validity Evaluation: Threats to experimental validity are classified and elaborated
in [15] [20]. Threats to validity in this experiment were identified to be:

Internal validity: There could be some compensatory rivalry; i.e. the R&I-group
could put some extra effort in the inspection because of the experiment.
Inversely, the OORT-group may do similar in a “Hawthorne” effect. Due to
time/scheduling constraints, some participants in the OORT-group did not cover
all the techniques properly, e.g. OORT-6 and OORT-7.

−

−

−

−

External validity: It is difficult to generalize the results of the experiment to
other projects or even to other companies, as the experiment was done on a
single use case. Another threat was that the OORTs were adapted for Ericsson,
but we tried to keep the techniques as close to the original set as possible.
Construct validity: The OORT-group had knowledge of the R&I techniques and
the result for them could be a mix of using both techniques.
Conclusion validity: The experiment is done on a single use case and it is
difficult to conclude a statistical relationship between treatment and outcome. To
be able to utilize all the techniques, a simple State Diagram was extracted the
day before the experiment. The R&I-group did not look at this particular
diagram, while the OORT-group reported 16 defects related to this diagram and
to indirectly related artifacts. The inspectors were assigned “semi-randomly” to
the two groups, which roughly possessed similar experience. The adding of

 155

P4. Object-Oriented Reading Techniques for Inspection of UML Models

ordinal scores to represent overall inspector experience is dubious, but this total
score was only used qualitatively (i.e. is there a trend? - not how large it is).

6. Conclusions
The studied Ericsson unit incrementally develops software for large-scale real-time
system. The inspected artifacts, i.e. Requirements Descriptions and UML models, are
substantially larger and more complex than those used in previous academic
experiments. For Ericsson it is interesting to see if these techniques could be tailored to
their inspection needs in the individual reading step.

Below we sum up the objectives of the experiment and how they have been reached:
O1 and H0a – cost-efficiency and detected defects: The cost-efficiency of the
old R&I techniques and the new OORTs seems very similar. The new ones
helped to find more than twice as many defects as the old ones, but with no
overlaps with the defects found by the old techniques.

−

−

−

−

O2 and H0b – effect of developer experience on detected defects: There is
probably a positive trend for the old R&I techniques, but we do not know for the
new ones. The result may term “expected”, but the reasons are not quite
understood.
O3 - improvement of old and new reading techniques: Although the new
OORTs have shown promising results, the experiment suggests further
modifications of both general and specific issues. We have for both the old and
the new reading techniques identified parts that could be included in the other.
O4 – fit into an incremental process: To our surprise this went very well for
the OORTs, although little attention and minimal effort was spent on this.

To conclude: In spite of very sparse data, the experiment showed a need for several
concrete improvements, and provided many unforeseen and valuable insights. We also
should expect a learning effect, both for the reading techniques and for Ericsson’s
inspection process and developers, as a result of more OORT trials. We further think
that the evaluation process and many of the experimental results can be reused in future
studies of inspections of object-oriented design artifacts in UML.

Some final challenges: First, how to utilize inspection data actively in a company to
improve their inspection process? Second, how to convince the object-oriented
community at large, with its strong emphasis on prototyping and short cycle time, to
adopt more classic quality techniques such as inspections?

Acknowledgements
We thank Ericsson in Grimstad for the opportunity and help to perform the experiment
with ten of their designers and several managers, who all were highly motivated. We
also thank the original OORT-team in USA for inspiration and comments. The study
was partially funded by two public Norwegian research projects, namely PROFIT (Sec.
5) and INCO (INcremental and COmponent-based development, done jointly by
University of Oslo and NTNU). Thanks also goes to local colleagues at NTNU.

 156

 P4. Object-Oriented Reading Techniques for Inspection of UML Models

References

1. Arif, T., Hegde, L.C.: Inspection of Object-Oriented Construction. Diploma (MSc)

thesis at NTNU, June 2002. See http://www.idi.ntnu.no/grupper/su/su-diploma-
2002/Arif-OORT_Thesis-external.pdf.

2. Basili, V.R., Caldiera, G., Lanubile, F., and Shull, F.: Studies on reading
techniques. Proc. Twenty-First Annual Software Engineering Workshop, NASA-SEL-
96-002, pp. 59-65, Greenbelt, MD, Dec. 1996.

3. Basili, V.R., Green S., Laitenberger, O., Lanubile, F., Shull, F., Sørumgård, S.,
Zelkowitz, M. V.: The Empirical Investigation of Perspective-Based Reading,
Empirical Software Engineering Journal, 1(2):133-164, 1996.

4. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User
Guide. Addison-Wesley, 1999.

5. Bunde, G.A., Pedersen, A.: Defect Reduction by Improving Inspection of UML
Diagrams in the GPRS Project. Diploma (MSc) thesis at Agder University College,
June 2002. See http://siving.hia.no/ikt02/ikt6400/g08/.

6. Conradi, R.: Preliminary NTNU Report of the OO Reading Techniques (OORT)
exercise in course 7038 on Programming Quality and Process Improvement, spring
2000, v1.12. Oct. 2001, 80 p.

7. Conradi, R., Marjara, A., Hantho, Ø., Frotveit, T., Skåtevik, B.: A study of
inspections and testing at Ericsson, Norway. Proc. PROFES’99, 22-24 June 1999, pp.
263-284, published by VTT.

8. Fagan, M. E.: Design and Code Inspection to Reduce Errors in Program
Development. IBM Systems Journal, 15 (3):182-211, 1976.

9. Gilb, T., Graham, D.: Software Inspection. Addison-Wesley, 1993.
10. Jacobson, I., Christerson, M., Jonsson, P., Övergaard, G.: Object-Oriented Software

Engineering: A Use Case Driven Approach. Addison-Wesley, revised printing, 1995.
11. Laitenberger, O., Atkinson, C.: Generalized Perspective-Based Inspection to handle

Object-Oriented Development Artifacts. Proc. ICSE’99, Aug. 1999, IEEE CS-Press,
pp. 494-503.

12. Martin, J., Tsai, W.T.: N-fold Inspection: A Requirements Analysis Technique.
Communications of the ACM, 33(2): 225-232, 1990.

13. Melo, W., Shull, F., Travassos, G.H.: Software Review Guidelines, Technical
Report ES-556/01, Aug. 2001, 22 p. Systems Engineering and Computer Science
Department, COPPE/UFRJ, http://www.cos.ufrj.br (shortly reporting OORT case
study at Oracle in Brazil).

14. Shull, F., Carver, J., Travassos, G.H.: An Empirical Method for Introducing
Software Process. Proc. European Software Engineering Conference 2001
(ESEC'2001), Vienna, 10-14 Sept. 2001, ACM/IEEE CS Press, ACM Order no.
594010, ISBN 1-58113-390-1, pp. 288-296.

15. Sommerville, I.: Software Engineering. Addison-Wesley, 6th ed., 2001.

 157

http://www.idi.ntnu.no/grupper/su/su-diploma-2002/Arif-OORT_Thesis-external.pdf
http://www.idi.ntnu.no/grupper/su/su-diploma-2002/Arif-OORT_Thesis-external.pdf
http://siving.hia.no/ikt02/ikt6400/g08/
http://www.cos.ufrj.br/

P4. Object-Oriented Reading Techniques for Inspection of UML Models

16. Travassos, G.H., Shull F., Carver J., Basili V.R.: Reading Techniques for OO
Design Inspections, Proc. Twenty-Forth Annual Software Engineering Workshop,
NASA-SEL, Greenbelt, MD, Dec. 1999,
http://sel.gsfc.nasa.gov/website/sew/1999/program.html.

17. Travassos, G.H., Shull, F., Fredericks, M., Basili, V.R.: Detecting Defects in
Object-Oriented Designs: Using Reading Techniques to Increase Software Quality.
Proc. OOPSLA’99, p. 47-56, Denver, 1-5 Nov. 1999. In ACM SIGPLAN Notices
34(10), Oct. 1999.

18. Travassos, G.H., Shull, F., Carver, J., Basili, V.R.: Reading Techniques for OO
Design Inspections. University of Maryland Technical Report CS-TR-4353. April
2002 (OORT version 3), http://www.cs.umd.edu/Library/TRs/CS-TR-4353/CS-TR-
4353.pdf.

19. Votta, L.G.: Does Every Inspection Need a Meeting? Proc. ACM SIGSOFT’93
Symposium on Foundation of Software Engineering (FSE’93), p 107-114, ACM
Press, 1993.

20. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.:
Experimentation in Software Engineering, an Introduction. Kluwer Academic
Publishers, 2000.

 158

http://sel.gsfc.nasa.gov/website/sew/1999/program.html
http://www.cs.umd.edu/Library/TRs/CS-TR-4353/CS-TR-4353.pdf
http://www.cs.umd.edu/Library/TRs/CS-TR-4353/CS-TR-4353.pdf

 P5. Using Empirical Studies to Assess Software Development Approaches

P5. Using Empirical Studies to Assess Software Development
Approaches

and Measurement Programs

Parastoo Mohagheghi1,2,3, Reidar Conradi2,3

1Ericsson Norway-Grimstad, Postuttak, NO-4898 Grimstad, Norway
2 Department of Computer and Information Science, NTNU, NO-7491 Trondheim, Norway

3 Simula Research Laboratory, P.O.BOX 134, NO-1325 Lysaker, Norway
parastoo.mohagheghi@ericsson.com

conradi@idi.ntnu.no

Abstract
In recent years, incremental and component-based software development approaches,
and reuse have been proposed to reduce development time and effort, and to increase
software quality. The activities in each increment of an incremental approach, and the
interaction between incremental and component-based development is presented in the
paper using an industrial example of a large-scale telecommunication system. The paper
discusses difficulties in gathering data, since data from increments flow into each other,
and the degree of change is high. Empirical studies can be useful to assess the approach
to software development, and the quality of measurement programs. Establishing
relationships between the development approach (incremental, component-based and
reuse) and variables such as planning precision, modification rate, or reliability is the
goal of our empirical study. The paper presents examples of metrics that are especially
useful for such studies, and proposes improvements to the methods and tools for
collecting data.

1. Introduction
The main reason for performing empirical studies in software engineering is to gather
useful and valid results in order to understand, control, predict, and improve software
development. A spectrum of empirical techniques is available, e.g. formal experiments,
case studies, interviews, and retrospective analysis, even literature studies. In recent
years, incremental and component-based software development, and reuse have been
proposed to reduce development time and effort, and to increase software quality
(especially usability and reliability). These approaches can be used separately or
combined. However, we need empirical evidence in terms of e.g. increased productivity,
higher reliability, or lower modification rate to accept the benefits of these approaches.

Ericsson in Grimstad-Norway started using the Rational Unified Process (RUP), an
incremental, use-case driven software process, adaptable to different contexts, for
developing two large-scale telecommunication systems in 2000. The developed systems
are component-based, using an internally developed component framework, and have a
high degree of reuse. We have performed several studies at Ericsson in 2001-2003. In

 159

mailto:parastoo.mohagheghi@ericsson.com
mailto:conradi@idi.ntnu.no

P5. Using Empirical Studies to Assess Software Development Approaches

this paper we use results of these studies to discuss how empirical studies can be useful
to assess development approaches and measurement programs. We give examples on
how development approaches have affected quality attributes, and what metrics are
especially useful for assessing these approaches.

The remainder of this paper is organized as follows. Section 2 is a brief state of the
art. Section 3 presents the Ericsson context and studies. We describe how empirical
studies are useful in assessing development approaches in Section 4, and Section 5
discusses the impact of development approaches on measurement programs. The paper
is concluded in Section 6.

2. A Brief State-of-the-Art
Iterative and Incremental development has been proposed as an efficient and pragmatic
way to reduce risks from new technology, and from imprecise or changing requirements
[4]. An increment contains all the elements of a normal software development project,
and delivers a (possibly pre-planned) partially complete version of the final system.
There is a confusion of terminology in this area (iterative, time-boxing, short interval
scheduling etc.), or as we call it in the paper-incremental development.

Component-based Software Engineering (CBSE) involves designing and
implementing software components, and assembling systems from pre-built
components. Components are often developed based on a component model, which
defines the standards and conventions for component developers [9]. Implementation of
such a component model for providing run-time services for components is usually
called a component framework. CBSE seems to be an effective way to reuse, since
components are designed to be units of distribution. However, reuse covers almost any
artifact developed in a software life cycle, including the software development process
itself. Product lines are especially built around reuse of software architecture.

The basic idea with components is that the user only needs to know the component
interface, and not the internal design. This property allows separating component
interface design, and component internal design. Karlsson describes two alternatives for
assigning functionality to increments in [11]: Features (or user functionality), and
system functionality (like start, restart, traffic handling, etc). With CBSE a third
alternative would be to have a component-oriented approach; i.e. either assigning
components to increments, or designing interfaces of some components in an increment,
and implementing them in another increment. KobrA [2] is an example of such process.
The component-oriented approach can be combined with the other two, e.g. it can be
combined with feature increments if functionality of a feature is too large for an
increment.

Incremental development, CBSE, reuse and product-line development have all been
in use for a while, and there are increasing number of studies that assess these
development approaches by correlating the specific approach to attributes of software
quality, such as reliability (e.g. in terms of defect-density), maintainability (e.g. in terms
of maintenance effort), productivity (e.g. in terms of line of code per person-hour),
delivery precision etc. See for example [12, 13, 15, 17]. However, generalizing the
results of single studies is difficult because of the differences in contexts (type of the
developed software, the organizational competence, scale etc.). For example,
MacCormack et al. [12] have analyzed a sample of 29 Hewlett-Packards projects, and

 160

 P5. Using Empirical Studies to Assess Software Development Approaches

concluded that releasing an early prototype contributes to both lower defect-density, and
higher productivity. Neufelder [15] has studied 17 organizations and correlated more
than 100 parameters with defect-density. In her study, early prototyping does not
correlate strongly with defect-density. On the other hand, both studies report that daily
tests, incremental testing, and having test beds contribute strongly to lower defect-
density. Results of these studies indicate that different development approaches may be
associated with different quality attributes, and the impact of development approaches
may vary in different contexts.

In order to assess development approaches and software quality attributes associated
with those, we need valid data from measurement programs. Measurement is defined in
[8] as the process by which numbers or symbols are assigned to attributes of entities in
the real world in such a way to describe them according to clearly defined rules.
Measures are the actual numbers or symbols being assigned to such attributes. The
word metrics is both used to denote the field of measurement, and the schema that
describes the measures.

3. The Ericsson Context
Ericsson in Grimstad-Norway has developed software for several releases of two large-
scale telecommunication systems. The first system was originally developed to provide
packet data capability to the GSM (Global System for Mobile communication) cellular
network. A later recognition of common requirements with the forthcoming W-CDMA
system (Wide-band Code Division Multiple Access) lead to reverse engineering of the
developed architecture to identify reusable parts across applications [14], and to evolve
the initial software architecture to an architecture that can support both systems.

The development process has evolved as well: The initial development process was a
simple, internally developed one, describing the main phases of the lifecycle and the
related roles and artifacts. After the first release, the organization decided to adapt RUP
[16]. The two products (systems) are developed incrementally, using a component-
based approach, and many artifacts are shared between these two products. New
functionality is added to each release of the products, and each release goes through 5-7
increments. The size of each system (not including the system platform) is over 1000
NKLOC (Non-Commented Kilo Lines Of Code measured in equivalent C), and several
hundred developers in different Ericsson organizations (up to 200 in Grimstad) have
been involved in developing, and testing the releases.

3.1. Incremental and Component-Based Development in Practice
Karlsson describes some alternatives for defining increments and work allocation in
[11]. We use his terminology to present our example. Figure 1 shows a view of
activities during increments in a project, leading to a product release. Milestones (MS)
are points in time when the project progress is evaluated. Ericsson has defined its own
milestones that slightly differ from the standard RUP. At MS2, the project should have
an approved requirement baseline. Any changes to requirements are afterwards handled
by initiating a Change Request. The initial increment plan is made based on assigning
use cases or features to increments (called for feature increments in [11], and in fact
use-case and feature increments in our case). The duration of increments varies, but it is
in the order of 6-12 weeks. For each increment:

 161

P5. Using Empirical Studies to Assess Software Development Approaches

1. It will be activities of requirements elicitation or refinement, analysis and
design, implementation, integration and system testing for the current increment.

2. While software developed in increment i is being tested, increment i+1 has
started. Therefore each increment includes fault removal activities for previous
increment(s). Faults should be removed both from the previous increments or
releases, and the current one, and fault correction may introduce new faults.

3. Changes to the requirement baseline in form of Change Requests, may lead to
deviation from the original increment plan, when it comes to effort and time-
plan.

4. Several development teams work in parallel for implementing use cases and
features assigned to the increment. Some of these teams may finish their work
before others and start working on the next increment.

5. Several teams may update a component in an increment, since a component may
be involved in several use cases or features, and work allocation is a
combination of increment responsibility (a team is responsible for a use case in
an increment) and item responsibility (each high-level component has a design
coordinator that is responsible for following the item). These activities should be
synchronized with each other and dependencies should be resolved.

R AD I T

R AD I T

R AD I T

R AD I T C

R AD I T

0 1 2 3 4
Milestones

5

M

Maintenance
of previous
releases

CR

CR

New or
modified
requirements

Abbreviations
R Requirements
AD Analysis&Design
I Implementation
T Test
C Conclusion
M Maintenance
CR Change Requests
FR Fault Removal

CR
FR

FR

FR

FR

Figure 1 Increments and activities in each increment

What is specific to RUP is its use-case driven approach for requirement definition,

design and test. But Ericsson had to combine use cases with features. A feature may be
a non-functional requirement or a constraint that identifies two releases from each other,
e.g. compliance to an interface or a standard.

The initial increment plan is based on effort estimated for implementing use cases or
features defined in the requirement baseline at MS2. However, it is difficult to proceed
according to the original increment plan, because of the stream of fault reports and
change requests. It is also difficult to measure the actual effort used in each increment or
on each requirement because of: (1) the effort used on fault removal for previous

 162

 P5. Using Empirical Studies to Assess Software Development Approaches

releases, and (2) in cases parallel increments (refer to point 5). A confounding factor is
the system used to record effort. It collects effort used on delivered artifacts without
recording the increment.

Although the idea behind incremental development is to deliver the final system in
smaller parts, it was soon realized that too much functionality is delivered at the end of
each increment, and each release, and many corrections should also be tested, which
made integration and testing difficult. Therefore the project management developed an
integration plan that described which features and corrections should be tested, and in
which order. It is based on an anatomy plan that describes interconnections and
dependencies of different functionalities. The integration plan turned out to be an
effective mean to control the progress of both design and test.

3.2. Collected Data
The organization collects data according to a measurement program that covers both
direct measures (such as measures of effort, duration of releases in calendar-weeks,
software size, person-hours used in different activities, and number of faults or failures
reported during a week) and indirect measures (calculated from direct measures, such as
fault-density). The results are used to evaluate progress relative to project plans, and to
assess software quality by measures such as inspection rate or the number of faults
detected in each test phase. We argue that the measurement program is not updated for
the incremental approach. For example it is not easy to find the effort spent in each
increment or on each requirement.

There are also lots of data in different databases that are not linked to any specific
metrics, and are not systematically analyzed. For example, the number of CRs during a
project is followed up, but it is not analyzed which components are more change-prone
(or less unstable). Parts of the system that are more change-prone should be designed in
order to reduce maintenance effort. We analyzed some of these data (see S3 in Section
3.3) and observed weaknesses in the fault reporting and the change management system,
so that presentation and analysis of data was not easy. For example, not all the fault
reports include the name of faulty module, or have defined the type of fault.

3.3. Ericsson Experiments and Case Studies
The results of the following studies performed in 2001-2003 are used in this paper:

S1- Experiment on inspection of UML diagrams: The goal was to compare
two inspection techniques for inspection of UML diagrams; the Ericsson current
technique and the new Object-Oriented Reading Techniques. The quality
attribute was effectiveness in terms of the number of detected defects per
person-hours used in the individual reading phase of UML diagrams [7]. The
results showed that the two techniques were almost equally effective, but
detected different type of defects.

−

− S2- Estimation of effort based on use cases: The goal is to extend an effort
estimation technique based on use cases [1] in the context of reuse, and compare
the results with experts estimations. The quality focus is the estimation
precision. We used the technique on actual data from one release, with good
results. We plan to assess the method using data from a second release during
this year.

 163

P5. Using Empirical Studies to Assess Software Development Approaches

−

−

−

−

S3- Empirical assessment of quality attributes: We have collected and
analyzed historical data of three releases of the GPRS for GSM system. The
quality focus is reliability and stability (or modification rate). We assessed some
hypotheses using the available data, and will publish the results soon. For
example, our results show that reused components are more reliable and stable
than non-reused ones.
S4- Qualitative studies of the software process model (RUP) and the
practice of reuse: We studied RUP in the context of reuse and performed an
internal survey on developers’ attitude to reuse and RUP. We concluded that
RUP does not have guidelines for product line engineering, and development for
and with reuse. Results of the survey showed that developers are motivated for
reuse, and consider reusable components to be more reliable and stable than
non-reused ones (which is also proved by the results in S3).

Case studies (S2, S3 and S4) have the advantage of being performed in a real
context, and the possibility to give feedbacks on collected data and results. Yet validity
of case study results is difficult to assess: The researcher has little or no control over the
confounding factors, he/she may have a researcher bias, and it may be difficult to
generalize the results to other organizations [5].

4. Assessment of Development Approaches
There are methods such as Goal-Question-Metric (GQM) [3] and GQM/MEDEA [6]
that are useful when a measurement process is about to be started, in order to determine
which metrics to define. In our case, we have extensive data available from three
releases of one of the products, but no explicit link between this data and the
organizational goals. We therefore had to choose a bottom-up approach by collecting
measures and analyzing these, and defining a set of hypothesis that could be assessed
based on the available data. We don’t present the hypotheses or the results in this paper,
but present what kind of data may typically be the basis for such analyses.

Some observations and quantitative results that may be related to the development
approaches (incremental, component-based and reuse) are:

1. Planning precision decreased from 91% to 78% over the three releases. The
planning precision is defined as the absolute value of the actual time minus
planned time (in number of weeks), divided by the planned time, and multiplied
by 100, for each release. What observations could explain this?

Requirement stability (percentage of requirements that are not changed
between MS2 and MS5 in Figure 1) decreased from 92% to 69% over the
three releases. The incremental approach is chosen when the project
foresees changing requirements or changing environment. But the remedy
may reduce the threshold for accepting changes; i.e. managers are more
willing to accept changes, in contrast to development approaches with rather
frozen requirements.
Weber says that although change is part of the daily project life, change
proposals occur more often than actual project changes [18]. In S3 we found
the opposite: 68% of change requests are in fact accepted and implemented.
The code is modified about 50% between two releases.

 164

 P5. Using Empirical Studies to Assess Software Development Approaches

In S2, we realized the effect of reuse on effort-estimation. Many use cases
are reused “as-is” or modified in a release, and effort-estimation methods
must be able to account for this.

−

−

−

−

−

−

Assessing the effort-estimation model is difficult: Management estimated
based on features or use cases assigned to increments, while the actual effort
is recorded for components or other artifacts. This is the combination of
feature increments (see Section 3.1), and component or item-oriented way
of thinking from the time before incremental development.

2. Too much functionality is delivered at the end of each increment, and each
release, which caused integration-bangs:

Qualitative feedbacks indicate that it is sometimes difficult to map
requirements into increments of the right size, and many non-functional
requirements could not be tested in the early increments. This is associated
with the incremental approach.
Components use a component framework that should be developed early.
Although design of the application components started in parallel with
developing the framework, the functionality could not be tested in the test
environment before the framework was ready.

3. The projects never reached the goal regarding Appraisal-to-Failure-Rate (AFR),
which is defined as person-hours used for reviews and inspections, rework
included, divided by person-hours used for test and rework. It is assumed that a
higher AFR indicates focus on early fault detection:

In S1, we realized that many artifacts are modified in several increments,
and it is not possible to inspect these every time something is modified. This
is associated with the feature increments approach.

Empirical studies such as S3 could be useful in understanding and identification of
relationships between variables, in order to assess development approaches.
Establishing a relationship between the development approach and planning precision,
modification rate, defect-density, productivity (in increments and totally) etc. can be
subject of empirical studies in our case. Another goal is to adapt development
approaches to the industrial context, and answer questions regarding increments’
functionality, work allocation, and adaptation of verification techniques such as
inspections or testing to development approaches.

5. Assessment of Measurement Programs and Data Collection Methods
Performing empirical studies early in the life cycle of a project would help the
organization to assess the quality of the measurement program and the collected data,
and to improve it. The key is to find to what metrics could be related to the organization
goals, what is not useful to measure, or what other metrics should be defined. Examples
of such observations during our studies are:

We realized that assessing the effort-estimation model is difficult, and the
collected data on effort used on each artifact or component is useless unless the
effort estimation model is changed. With the current estimation model, the
useful data is the total effort for each release and the size of the delivered code
(which were also used in our effort estimation model based on use cases in S2).

 165

P5. Using Empirical Studies to Assess Software Development Approaches

Ericsson decomposes the system into subsystems, and each subsystem consists
of several blocks (which in turn consists of units and software modules). Both
subsystems and blocks have interfaces defined in the Interface Definition
Language (IDL) and may be defined as components. During statistical analysis
of the results in S3, we found that subsystems are too coarse-grained to be used
as components, and give us too few data points to establish any relationship of
statistical significance between size of them and quality attributes such as
stability or reliability. On the other hand, we could show such relationships if
blocks were chosen as components. Our empirical study has therefore been
useful to decide the granularity of components for data collection.

−

−

−

−

When a problem is first detected, the developer or tester fills a fault report using
a web interface, and writes the name of the faulty component (or software
module), if it is known. In many cases this information is not known when the
fault report is initiated. As the field for the name of the faulty module is not
updated later, tracing faults to software modules become impossible without
parsing the entire version control system to find this information in the source
code (where it is written every time the code is updated). The same is true for
change requests, which originally include an estimate over the impact of the
change request, and are not updated later with the actual effort used and the
name of modified components. If the fault report or change management
systems asked developers to insert data on the modified components when
closing the reports, tracing between these two and the modified code would be
much easier. In S3, we found that 22% of fault reports for a release did not give
any subsystem name for the origin of the fault, only half of them had
information on the block name, and very few on the software module name. We
therefore could not use many of the fault reports in assessing hypotheses
regarding reliability of components.

Some suggestions for improving the Ericsson’s measurement program, fault
reporting and change management systems, associated with the development
approaches are:

Incremental development: To have better control on increment and release plans, it
is important to have control over three factors: (a) functionality delivered in an
increment or release, (b) parts of the system that have changed, and (c) the link between
a) and b); i.e. traceability between requirements and deliveries. Our observations are:

The development environment (Rational Rose associated with RUP for
requirement definition and modeling, and mostly manually written code) does
not have tools that provide traceability automatically. But there are tools that can
find differences between files in the version control system. One possible
solution would be to gather data on the modified model, and code at some pre-
planned intervals, like on delivery dates, or before code for a use case or feature
is merged into the final delivery.
Measures of change such as percentage of modified code, percentage of
modified requirements, change requests etc. are important to assess quality
attributes such as productivity or defect-density. Unlike the waterfall model of
development, it is not enough to measure these quality attributes once at the end
of the project, but they should be measured for increments.

 166

 P5. Using Empirical Studies to Assess Software Development Approaches

The effort recording system should be updated so that we can measure person-
hours used in each increment, and on each requirement to assess productivity
and planning precision.

−

−

−

−

−

−

−
−
−

−

−

−

−

−

CBSE: It is important to define and measure quality attributes for components. We
need metrics such as:

Defect-density per component: Update fault reports with the name of the faulty
component after correcting it.
Component size and size of modified code in Lines of Code (LOC) to assess
stability and reliability. LOC is a good measure of component size, which is
easy to gather by automated tools.
Change requests per component to assess stability or volatility. Update change
requests with information on the modified components (and the actual effort).

Reuse: Metrics would be:
Reuse percentage between releases to assess reuse gain (in productivity,
stability, etc).
Classification of components as reused, new, or modified.

Some general observations regarding the measurement programs and project plans
are:

Don’t over-measure and don’t gather data that you won’t analyze.
Project plans should have room for changing requirements.
To assess the effectiveness of inspections and testing phases, record all faults in
a single database with information on the detection phase (inspections, unit
testing, etc). Today, these data are recorded using different tools. A single web
interface that stores the data in a database would ease presentation and analysis
of the data.
Use data to improve software quality. As an example, data on number of faults
for each component could be used to identify the most fault-prone ones early in
the project and take action.
Have realistic goals and modify them if necessary. Unachievable goals (such as
for AFR) do not motivate.
Establish a plan for benchmarking (comparing the measures with peer
organizations) for future projects.
Too many changes have negative impact on quality and planning precision. Use
metrics such as requirement stability and modified lines of code to assess
volatility.
Be aware of the impact of the chosen development approaches. Learn from your
own experiences and the results of other studies (although there are few
published results from large-scale industrial projects).

We would also like to ask whether organizations are too afraid to draw conclusions
based on their own experiences. Usually there are many confounding factors that make
this difficult, and it is always easier to blame management or developers when a goal is
not reached, than modifying the development approach or the goal. Reorganizations
(and other organizational “noise”) are also reasons why improvement works are not
followed up.

 167

P5. Using Empirical Studies to Assess Software Development Approaches

6. Conclusions
Many organizations gather a lot of data on their software process and products. This
data is not useful if it is not related to defined goals, not adapted to the development
approach, or not analyzed at all. The incremental nature of development makes
gathering data more difficult than earlier since data from increments flow into each
other, and each increment is dealing with the past, the present and the future. We gave
an example of activities in each increment in an industrial context, and presented some
measurement results and project experiences that may be related to the incremental and
component-based development approaches. Establishing a causal relationship between
development approaches and variables such as stability and reliability could be subject
of empirical studies, in order to assess these approaches. We discussed that methods for
effort estimation, fault reporting or change control, and tools associated with them,
should also be updated for the development approach. We also discussed why empirical
studies are useful to assess measurement programs and gave examples of metrics that
are useful based on the development approach. We think that organizations should put
more effort in defining goals for measurement programs, assessing the quality and
usefulness of the collected data, and assessing the development approaches based on
empirical studies.

Acknowledgements
The work is done in the context of the INCO project (INcremental and COmponent-
based Software Development [10]) a Norwegian R&D project in 2001-2004, and as part
of the first author’s PhD study. We thank Ericsson in Grimstad for the opportunity to
perform the studies.

References

1. Anda, B.: Comparing Effort Estimates Based on Use Case Points with Expert
Estimates. Proc. The Empirical Assessment in Software Engineering (EASE 2002),
Keele, UK, April 8-10, 2002.

2. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig,
D., Paech, B., Wust, J., Zettel, J.: Component-Based Product Line Engineering with
UML. Addison-Wesley, 2002.

3. Basili, V.R., Caldiera, G., Rombach, H.D.: Goal Question Metrics Paradigm.
Encyclopedia of Software Engineering, Wiley, I (1994) 469-476

4. Boehm, B., Abst, C.: A Spiral Model of Software Development and Enhancement.
IEEE Computer, 31(5):61-72, 1998.

5. Bratthall, L., Jørgensen. M.: Can you Trust a Single Data Source Exploratory
Software Engineering Case Study? The Journal of Empirical Software Engineering,
7(2002):9-26.

6. Briand, L.C., Morasca, S., Basili, V.R.: An Operational Process for Goal-Driven
Definition of Measures. IEEE Trans. Software Engineering, 28(12):1106-1125, 2002.

 168

 P5. Using Empirical Studies to Assess Software Development Approaches

7. Conradi, R., Mohagheghi, P., Arif, T., Hegde, L.C, Bunde, G.A., Pedersen, A.:
Object-Oriented Reading Techniques for Inspection of UML Models- An Industrial
Experiment. Proc. of the 17th European Conference on Object Oriented
Programming- ECOOP2003, Springer-Verlag Berlin Heidelberg, 2003, pp.483-501.

8. Fenton, N., Pfleeger, S.L.: Software metrics: A Rigorous & Practical Approach. 2nd
ed, International Thomson Computer Press, 1997.

9. Heineman, G.T., Councill, W.T.: Component-Based Software Engineering, Putting
the Pieces Together. Addison-Wesley, 2001.

10. INCO (INcremental and COmponent-based Software Development):
http://www.ifi.uio.no/~isu/INCO/

11. Karlsson, E.A.: Incremental Development- Terminology and Guidelines. In
Handbook of Software Engineering and Knowledge Engineering, Volume 1. World
Scientific, 2002, pp.381-401.

12. MacCormack, A., Kemerer, C.F., Cusumano, M., Crandall, B.: Trade-offs between
Productivity and Quality in Selecting Software Development Practices. IEEE
Software, 20(5):78-85, 2003.

13. Malaiya, Y.K., Denton, J.: Requirements Volatility and Defect Density. Proc. The
International Symposium on Software Reliability Engineering (ISSRE’99), 1999, pp.
285-294.

14. Mohagheghi, P., Conradi, R.: Experiences with Certification of Reusable
Components in the GSN Project in Ericsson, Norway. In Judith Stafford et al. (Eds.):
Proc. 4th ICSE Workshop on Component-Based Software Engineering: Component
Certification and System Prediction (ICSE'2001), Toronto, May 14-15, 2001, pp. 27-
31. SU-report 6/2001, 5 p.15.

15. Neufelder, A.M.: How to Measure the Impact of Specific Development Practices on
Fielded Defect Density. Proc. The 11th International Symposium on Software
Reliability Engineering (ISSRE’00), 2000, pp.148-160.

16. Rational Unified Process: www.rational.com
17. Slaughter, S.A., Banker, R.D.: A Study of Effects of Software Development

Practices on Software Maintenance Effort. Proc. The International Conference on
Software Maintenance (ICSM’96), 1996, pp.197-205.

18. Weber, M., Weisbrod, J.: Requirements Engineering in Automative Development:
Experiences and Challenges. IEEE Software, 20(1):16-24, 2003.

19. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.:
Experimentation in Software Engineering: An Introduction. Kluwer Academic
Publishers, 2000.

 169

http://www.ifi.uio.no/~isu/INCO/
http://www.rational.com/

 170

 P6. Different Aspects of Product Family Adoption

P6. Different Aspects of Product Family Adoption
Parastoo Mohagheghi1,2,3, Reidar Conradi2,3

1 Ericsson Norway-Grimstad, Postuttak, NO-4898 Grimstad, Norway
2 Department of Computer and Information Science, NTNU, NO-7491 Trondheim, Norway

3 Simula Research Laboratory, P.O.BOX 134, NO-1325 Lysaker, Norway
parastoo.mohagheghi@ericsson.com

conradi@idi.ntnu.no

Abstract
Ericsson has successfully developed two large-scale telecommunication systems based
on reusing the same software architecture, software process, and many other core assets.
The approach to initiating a product family has been a lightweight approach, and many
artifacts are evolved during product family adoption, although not to the same degree.
The software architecture has evolved to support reuse and handling of variations, while
the software process model is not updated for product family engineering and reuse. We
discuss what works and doesn’t work in the current process model, and why it is
important to synchronize it with the practice of software development. Product family
adoption has raised challenges in many aspects of software development such as
requirement management, and measurement. These processes should also be evolved to
fit the software development approach.

1. Introduction
Many organizations are using a product family engineering approach for software
development by exploiting commonalities between software systems, reusing software
architecture, and a set of core assets. The approach to start a product family and evolve
it varies, depending on the context, and the term product family is used for a wide range
of approaches to develop software with reuse. For example, the degree to which some
reusable assets are identified before the first product is used to distinguish between
heavyweight, and lightweight approaches to initiate a product family.

Ericsson has developed two large-scale telecommunication systems that share
software architecture, software process model, and other core assets using a lightweight
approach. The software architecture has evolved to an architecture that promotes reuse,
and product family engineering. Although the software process model is evolved in
parallel with product family adoption, it has not been adapted for this aspect of
development, and lacks explicit guidelines for domain engineering and reuse. I.e. there
is a gap between the software process model, the adapted Rational Unified Process
(RUP), and the actual process (the practice of software development). The internally
developed guidelines, existing knowledge, and expertise compensate to some degree for
shortcomings in the process model. Adopting product family engineering has impact on
many aspects of software development. If these aspects are not evolved harmoniously,
conflicts may appear in areas such as requirement engineering where a product family

 171

mailto:parastoo.mohagheghi@ericsson.com
mailto:conradi@idi.ntnu.no

P6. Different Aspects of Product Family Adoption

approach is more feature-oriented, while RUP is use-case driven. Resolving these
conflicts is part of the adoption process, and analyzing experiences is important for
learning feedbacks.

The remainder of the paper is structured as follows. Section 2 describes some state of
the art. Section 3 describes the Ericsson context, and Section 4 discusses the strengths,
and weaknesses of the current process model. The paper is concluded in Section 5.

2. A Brief State-of-the-Art
Parnas wrote the first paper on development of systems with common properties in
1976. He wrote:” We consider a set of programs to constitute a family, whenever it is
worthwhile to study programs from the set by first studying the common properties of
the set, and then determining the special properties of the individual family members”
[14]. He called these systems program families, while other terms are system families,
product lines, or, as we prefer to call it-product families. Product families are built
around reuse: reuse of requirements, software architecture and design, and
implementation. Bosch writes, “the software product line approach can be considered to
be the first intra-organizational software reuse approach that has proven successful” [3].

Several software development processes support product family engineering, see for
example [1, 2, 5, 7, 8]. The Software Engineering Institute (SEI) defines three essential
product family activities [13]:

1. Domain engineering for developing the architecture and the reusable assets (or
development for reuse as called in [8]).

2. Application engineering to build the individual products (or development with
reuse as called in [8]).

3. Management at the technical and organizational level.
In [10] approaches for introducing a product family are divided into heavyweight, and

lightweight. In the heavyweight approach, commonalities are identified first by domain
engineering, and product variations are foreseen. In the lightweight approach, a first
product is developed, and the organization then uses mining efforts to extract
commonalities. The choice of approach also affects cost and the organization structure.
Krueger claims that the lightweight approach can reduce the adoption barrier to large-
scale reuse, as it is a low-risk strategy with lower upfront cost [9]. Johnson and Foote
write in [6] that useful abstractions are usually designed from the bottom up; i.e. they
are discovered not invented.

If the approach to initiate a product family is a lightweight approach, the shared
artifacts such as the software process should evolve in order to be reusable. By a
software process we mean all activities, roles and artifacts that produce a software
product, and a software process model is a representation of it. These artifacts are not
always evolved harmoniously and synchronously, and some of them are more critical
for the success of the product family. The process of change is a composition of
organizational, business, and technical factors.

3. An Industrial Example of Product Family Adoption
The General Packet Radio Service (GPRS) system provides a solution to send packet
data over the cellular networks. GPRS was first developed to provide packet data

 172

 P6. Different Aspects of Product Family Adoption

capability to the GSM (Global System for Mobile communication) cellular network. A
later recognition of common requirements with the forthcoming W-CDMA system
(Wide-band Code Division Multiple Access) lead to reverse engineering of the
developed architecture to identify reusable parts across applications, and to evolve the
software architecture to an architecture that can support both products. This was a joint
development effort across organizations for almost one year, with negotiations and
renegotiations.

The initial software architecture is shown in the left part of Figure 1. Components are
tightly coupled, and all use services of the platform (WPP), and a component that
provides additional middleware functionality. Evolution of the software architecture
was mainly done in two steps:

Extracting the reusable components, and evolving the architecture into the one
shown in the right part of Figure 1. Old components are inserted in the layers
based on their reuse potential, and some are split into several new components in
different layers.

−

− Removing coupling between components that break down the layered
architecture. These removed couplings are shown with red dashed arrows in the
left part of Figure 1. Components in the lower layers should be independent of
components in the higher layers.

The reused components in the business-specific layer (that offers services for the
packet switching networks), and the common services layer (includes a customized
component framework for building robust real-time applications, and other services)
stand for 60% of the code in an application, where an application in this context consists
of components in the three upper layers. The size of each application is over 1000
NKLOC (Non-Commented Kilo Lines Of Code measured in equivalent C code).

Wireless Packet Platform (WPP)

4

1 3

65

2

Rev. &
Re-eng.

Wireless Packet Platform (WPP)

GPRS for GSM
GPRS for GSM

3’

6’

5’

1’

2

4

7

8

The original architecture The hierarchical architecture

GPRS for GSM

GPRS for WCDMA

Adaptation of RUP

Initial Process Adapted RUP

Reused

Application-specific
layer

Business-specific
layer
Common services
Layer (including
component framework)

Figure 1 Evolution of the GSN software architecture and the software process

model

 173

P6. Different Aspects of Product Family Adoption

The approach to product line adoption has been a lightweight approach. The first
product was initially developed and released, and the commonalities between it, and the
requirements for the new product lead to the decision on reuse. The products are
developed incrementally, and new features are added to each release of the products.
Several Ericsson organizations have been involved in development and testing.

The software process has been developed in parallel with the products. The first
release of the GPRS for GSM product used a simple, internally developed software
process, describing the main phases of the lifecycle and the related roles and artifacts.
After the first release, the organization decided to adapt the Rational Unified Process
(RUP) [15]. The adaptation is done by adding, removing or modifying phases,
activities, roles, and artifacts in the standard RUP process. RUP is an architecture-
centric process, which is an advantage when dealing with products using the same
reference architecture. But RUP in its original form is not a process for product families,
and we argue that it has not been adapted for this aspect of development:

The main workflows (requirement, analysis and design, implementation and
testing) are described as if there is a single product development, while
configuration management activities handle several versions and several
products.

−

− There is no framework engineering in the adapted RUP, and developing
framework components (or in general reusable components) is an
indistinguishable part of application engineering.

To provide the information needed for software developers, artifacts such as
internally developed modeling guidelines, and design rules are linked to the workflows
in RUP. We mean that there is a gap between the process model (the adapted RUP), and
the practice of software development (the actual process).

4. What Works and Does not Work in the Software Process?
We have studied the software process, and performed a small survey in the Ericsson
organization in Grimstad-Norway to understand developers’ attitude towards reuse, and
the software process model. We present some results of our study in this paper.

The adapted RUP has been in use for almost four years, and have some benefits:
1. RUP is architecture-centric, as mentioned. Software architecture plays the key

role in engineering product families.
2. RUP is adaptable.
3. Rational delivers RUP together with a whole range of other tools for

requirement management, configuration management etc.
4. The developed web pages for RUP are understandable.

We asked whether the lack of explicit reuse-related activities in the process model
affects the reuse practice. The survey results indicate such impact. For example,
developers mean that the reused components are not sufficiently documented, and
assessing components for reuse is not easy.

Some suggestions for improving the process model for reuse are given in [12], and
[16]. Some of the suggestions are easier to introduce than others. Example is adding the
activity Record reuse experience to the Conclusion Phase (Ericsson has added the
Conclusion Phase to the adapted RUP as the last phase of a project). On the other hand,

 174

 P6. Different Aspects of Product Family Adoption

distinguishing domain, and application engineering has impact on several workflows,
and is more difficult to carry out.

Product family adoption has impact on all aspects of the software process and raises
challenges that should be solved. Some of our observations are:

1. Requirement management for reusable components is difficult. The attempts to
specify requirements in terms of use cases that should be included or extended in
the application use cases (as proposed in [5]) was not successful as complexity
grows, and dependencies become unmanageable. Use cases were therefore
dropped for reusable parts, and replaced by textual documents that describe
functionality and variation points.

2. There is a measurement program in the organization, but specific metrics for
reuse, and product family engineering should be more stressed.

3. Requirements to each release of the systems are defined in terms of features, and
it is features that distinguish releases, and products from each other, while RUP
is use-case driven. Tracing from features to use cases, and later design, and
deliveries is difficult.

We have started working on some of these issues like metrics. We have collected
trouble reports and requirement changes from several releases, and defined hypotheses
that can be verified based on the available data. Results of this study can be used to
assess the development approach, and to improve the measurement program, as
described in [11].

5. Conclusions
We described an industrial example of product family adoption, where the products
have a high degree of reuse, and share a common software architecture and software
process. The lightweight approach to adoption has been successful in achieving shorter
time-to-market and lower development costs. The role of the software architecture in
product family adoption has been critical. The software architecture distinguishes
reusable components from application-specific components, and promotes reuse. The
software process model has not evolved to the same degree, and does not reflect the
practice. As the software is developed incrementally, and the development projects have
been running for 5 years, the existing knowledge, and the internally developed
guidelines compensate to some degree for shortcomings in the process model. We
discussed strengths and shortcomings in the adapted RUP, and described some aspects
of software development that are affected in adopting product family engineering. The
inadequate adaptation of the software process model has impact on the reuse practice
(such as insufficient documentation of reusable parts, and lack of metrics to evaluate
reuse gains), and we think that the organization can benefit through more adapting it to
product family engineering.

6. Acknowledgements
The work is done in the context of the INCO project (INcremental and COmponent-
based Software Development [4]), a Norwegian R&D project in 2001-2004, and as part
of the first author’s PhD study. The survey on developers’ attitude to reuse, and some

 175

P6. Different Aspects of Product Family Adoption

improvement suggestions regarding reuse are part of two MSc diploma theses [12, 16].
We thank Ericsson in Grimstad for the opportunity to perform the studies.

References

1. Atkinson, C, Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig,

D., Paech, B., Wüst, J., Zettel, J.: Component-based Product Line Engineering with
UML. Addison-Wesley (2002)

2. Bosch, J.: Design and Use of Software Architecture: Adpoting and Evolving a
Product-Line Approach. Addison-Wesley (2000)

3. Bosch, J.: Maturity and Evolution in Software Product Lines: Approaches, Artifacts
and Organization. In Proc. of the Second Software Product Line Conference- SPLC2
(2002). Available at http://www.cs.rug.nl/~bosch/

4. INCO project: http://www.ifi.uio.no/~isu/INCO/
5. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process and

Organization for Business Success. ACM Press (1997)
6. Johnson, R.E., Foote, B.: Designing Reusable Classes. Journal of Object-Oriented

Programming, 1(3): 26-49 (1998)
7. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain

Analysis (FODA) Feasibility Study. Software Engineering Institute Technical Report
CMU/SEI-90-TR-21, ADA 235785 (1990)

8. Karlsson, E.A. (Ed.): Software Reuse, a Holistic Approach. John Wiley & Sons
(1995)

9. Krueger, C.: Eliminating the Adoption Barrier. IEEE Software, 19(4): 29-31 (2002)
10. McGregor, J.D., Northrop, L.M., Jarred, S., Pohl, K.: Initiating Software Product

Lines. IEEE Software, 19(4): 24-27 (2002)
11. Mohagheghi, P., Conradi, R.: Using Empirical Studies to Assess Software

Develoment Approaches and Measurement Programs. Forthcoming at the 2nd
Workshop in Workshop Series on Empirical Software Engineering (WSESE’03),
Rome-Italy (2003)

12. Naalsund, E., Walseth, O.A.: Decision Making in Component-Based Development.
NTNU diploma thesis, 92 p. (2002) http://www.idi.ntnu.no/grupper/su/su-diploma-
2002/naalsund_-_CBD_(GSN_Public_Version).pdf

13. Northrop, L.M.: SEI’s Software Product Line Tenets. IEEE Software, 19(4):32-40
(2002)

14. Parnas, D.L.: On the Design and Development of Program Families. IEEE Trans.
Software Eng., SE-2(1):1-9 (1976)

15. Rational Unified Process, http://www.rational.com
16. Schwarz, H., Killi, O.M., Skånhaug, S.R.: Study of Industrial Component-Based

Development. NTNU pre-diploma thesis, 105 p. (2002)
http://www.idi.ntnu.no/grupper/su/sif8094-reports/2002/p2.pdf

 176

http://www.cs.rug.nl/~bosch/
http://www.ifi.uio.no/~isu/INCO/
http://www.idi.ntnu.no/grupper/su/su-diploma-2002/naalsund_-_CBD_(GSN_Public_Version).pdf
http://www.idi.ntnu.no/grupper/su/su-diploma-2002/naalsund_-_CBD_(GSN_Public_Version).pdf
http://www.rational.com/
http://www.idi.ntnu.no/grupper/su/sif8094-reports/2002/p2.pdf

 P7. An Industrial Case Study of Product Family Development

P7. An Industrial Case Study of Product Family Development
Using a Component Framework

Parastoo Mohagheghi

Ericsson Norway-Grimstad, Postuttak, NO-4898 Grimstad, Norway
Department of Computer and Information Science, NTNU, NO-7491 Trondheim, Norway

Simula Research Laboratory, P.O.BOX 134, NO-1325 Lysaker, Norway
Phone: (+47) 37 293069, fax: (+47) 37 293501, e-mail: parastoo.mohagheghi@ericsson.com

Reidar Conradi

Department of Computer and Information Science, NTNU, NO-7491 Trondheim, Norway
Simula Research Laboratory, P.O.BOX 134, NO-1325 Lysaker, Norway

Phone: (+47) 73 593444, fax: (+47) 73 594466, e-mail: conradi@idi.ntnu.no

Abstract
Component-based software engineering, product family engineering, and reuse are
increasingly used by software development organizations in order to achieve higher
productivity, better software quality and shorter time-to-market. The paper describes a
case study where two large-scale telecommunication systems are developed using a
lightweight approach to product family adoption, and based on reusing a software
architecture, a software process, a component framework and many other assets. The
software architecture has evolved to a layered one that promotes reuse, and product
family development. The internally developed component framework is part of the
software architecture by defining rules and conventions for architecture and design. It is
also part of the final product by providing run-time services for components. The
component framework embraces many quality requirements either by implementing
mechanisms that affect a quality requirement, or by taking design decisions for
application developers, or a combination of both. The framework is realized as a
package containing several subsystems, and is documented in UML models, textual
descriptions, design rules, and programming guidelines. Developing a component
framework is both similar to, and different from application engineering. The difference
is usually mentioned to be requirement gathering from several applications, and
handling of variability between products. Organizations should also put extra effort in
documenting, and testing a component framework to make it reusable and reliable. If a
component framework is developed in parallel with the applications using it,
requirements of the framework are gradually discovered during design of applications,
and the framework developers should solve the dilemma between early and late decision
taking, and between being restrictive or flexible. Using a component framework will
impact application engineering in many ways. Unlike component technologies like EJB
or COM that are considered for realization, and implementation of components,

 177

mailto:parastoo.mohagheghi@ericsson.com

P7. An Industrial Case Study of Product Family Development

component frameworks include reusable designs for a specific domain, and should be
integrated early into the development process of applications. For the success of
development with reuse, and in this case based on a component framework, it is crucial
to evaluate the impacts early, and to adapt the development process.
Keywords. Product family, component framework, reuse, quality requirements,
software architecture, software process.

1. Introduction
Many organizations are using a product family approach for software development by
exploiting commonalities between software systems, and thus reusing a common
software architecture, and a set of core assets. In this context, component frameworks
are large-scale components that may be shared between applications. Ericsson has
developed two products to deliver GPRS (General Packet Radio Service) to the GSM,
and W-CDMA networks using a lightweight approach to product family adoption. The
software architecture has evolved to a layered one that promotes reuse, and product
family development. It includes an internally developed component framework that
captures many of the quality requirements. Evolution to a product family has impact on
many artifacts, and analyzing experiences is important for learning feedbacks.

The remainder of the paper is structured as follows: Section 2 describes some state of
the art, and Section 3 describes the Ericsson context. Section 4 discusses why software
processes should be adapted for development with a component framework, and some
experiences from developing a component framework. The paper is concluded in
Section 5.

2. Component Frameworks and Product Families
Components are another way to answer the challenge of modularity or decomposition of
a system to smaller parts. Some other ways are modules (e.g. in Ada and procedural
languages), and objects in object-oriented design. A component is an independently
deliverable piece of functionality, providing access to its services through interfaces.
Component-Based Software Engineering (CBSE) is concerned with assembly of
systems from pre-built components, where components conform to a component model
that defines rules, and conventions on how components interact [3,9]. Implementation
of such a component model to offer run-time services for components is usually called a
component framework. CBSE approaches are yet far from mature, but nevertheless, use
of components is a clear trend in industry. One main reason is that CBSE offers an
opportunity to increase productivity by reuse. Product family engineering is exploiting
top-down reuse (reusing software architecture, and domain-specific frameworks),
combined with bottom-up design to reuse existing components [4]. It is therefore
considered as “the first intra-organizational software reuse approach that has proven
successful” [5]. Several software development processes support product family
engineering, and reuse, e.g. [2, 4, 7, 11, 13]. SEI defines the following three essential
product family activities [17]:

1. Core asset development or domain engineering for developing the architecture,
and the reusable assets (or development for reuse [13]).

 178

 P7. An Industrial Case Study of Product Family Development

2. Application engineering to build the individual products (or development with
reuse [13]).

3. Management at the technical, and organizational level.
In practice the amount of domain engineering vs. application engineering varies,

depending on the stability of the application domain, and maturity of the organization
[5]. In [15], approaches for introducing a product family are divided into heavyweight,
and lightweight. In the heavyweight approach, commonalities are identified first by
domain engineering, and product variations are foreseen. In the lightweight approach, a
first product is developed, and the organization then uses mining efforts to extract
commonalities. The choice of approach also affects cost, and the organization structure.
Krueger claims that the lightweight approach can reduce the adoption barrier to large-
scale reuse, as it is a low-risk strategy with lower upfront cost [14]. Johnson and Foote
write in [12] that useful abstractions are usually designed from the bottom up; i.e. they
are discovered not invented.

Developing a component framework is both similar to, and different from application
engineering. The difference is usually mentioned to be requirement gathering from
several applications, handling of variability between products (e.g. in KobrA[2] by
decision trees), and documentation of the framework for application developers.
However, using a component framework (or in general frameworks; which covers
earlier object-oriented frameworks as well) will impact application engineering.
Frameworks include reusable designs for a specific domain (as mentioned by Gamma et
al. [8]). Unlike component technologies like EJB or COM that are considered for
realization, and implementation of components, frameworks define rules for
architecture and design, and should be integrated early into the development process of
applications.

3. The Ericsson Context
The GPRS system provides a solution to send packet data over the cellular networks.
GPRS was first developed to provide packet data capability to the GSM (Global System
for Mobile communication) cellular network. A later recognition of common
requirements with the forthcoming W-CDMA system (Wide-band Code Division
Multiple Access) lead to reverse engineering of the developed software architecture to
identify reusable parts across applications, and to evolve the software architecture to
one that can support both products. This was a joint development effort across
organizations for almost one year, with negotiations, and renegotiations. We describe
two aspects of product family adoption: Developing a reusable software architecture,
and developing a reusable component framework as part of it.

3.1. Evolution of the Software Architecture
The left part of Figure 1 shows the initial software architecture. Components are tightly
coupled, and use services of the platform (WPP, which is a high-performance packet
switching platform developed by Ericsson in parallel with the products), and a central
component, the Network Control Subsystem or NCS, that provides additional
middleware functionality. Components have interfaces defined in the Interface
Definition Language (IDL), and the broking mechanism of CORBA is extended for

 179

P7. An Industrial Case Study of Product Family Development

communication. Product family adoption was based on outlining a strategy for
development with reuse by:

Extracting the reusable components, and evolving the software architecture into
the one shown in the right part of Figure 1. Old components are inserted in the
layers based on their reuse potential, and some are split into several new
components in different layers. Variation points are identified.

−

−

−

Removing coupling between components that break down the layered software
architecture (shown with red dashed arrows in the left part of Figure 1). Instead,
components in the higher layers register a callback interface whenever they
should be called by the lower layer components, for example when they should
be notified on special events.
Developing a component framework based on NCS. The whole component
framework is reused as a component.

Three layers are defined on the top of the platform: 1) the application-specific layer
contains components that are specific for application systems (GPRS for GSM, and
GPRS for W-CDMA), 2) the business-specific layer contains components that offer
services for packet switching cellular networks, and are shared between the two
applications, 3) the common services layer includes the component framework, and
components that may be reused in other contexts as well.

Wireless Packet Platform (WPP)

4

1 3

5NCS

2 Rev. &
Re-eng.

Original software
architecture

Layered software architecture

GPRS for GSM

Wireless Packet Platform (WPP)

Common services

Business-specific

Application-specific GPRS for GSM

3’

6’

NCS’

1’

2

4

9

GPRS for WCDMA

7
8

Component framework

Figure 1 Evolution of the GSN software architecture

The original software architecture had one dimension based on the functionality of

the components. The evolved software architecture has another dimension as well: the
reuse dimension or generality. The common software architecture captures not only
commonalities, but also variations between products, and has shown to be stable, and at
the same time highly adaptable to new requirements. The reused components in the
business-specific, and common services layers stand for 60% of the code in an
application, where an application in this context consists of components in the three

 180

 P7. An Industrial Case Study of Product Family Development

upper layers. The size of each application (not including WPP) is over 1000 NKLOC
(Non-Commented Kilo Lines Of Code measured in equivalent C code). Software
components are mostly developed internally. Software modules are written in C, Java,
and Erlang (a functional language for programming concurrent, real-time, and
distributed fault-tolerant systems).

GSN’s approach to product family adoption has been a lightweight one: The first
product was initially developed and released, and the commonalities between the
developed product, and the requirements for the new product lead to the decision on
reuse. The approach gave much shorter time-to-market for the second product, while the
first one could still meet its hard schedules for delivery.

The software development process is an adaptation of the Rational Unified Process
(RUP) [18]. In [16], we describe that the organization has developed several additional
guidelines that assist developers to develop with reuse, but we mean that the software
process model should be adapted more for reuse.

3.2. Component Framework and Quality Requirements
The component framework has several functionalities: It offers abstractions for
hardware, and the underlying platform (WPP) for system functionality such as start or
software upgrades, it offers run-time services such as transaction handling and broking,
and it includes guidelines for building robust, real-time applications in a distributed
multiprocessor environment. The framework is realized as a package containing several
subsystems (components), and is documented in UML models, textual descriptions,
design rules, and programming guidelines. It is part of the software architecture by
defining rules and conventions for design. By providing run-time services for
applications, it is part of deployment, and the delivered product as well.

Component frameworks are designed to ensure that systems using these will satisfy
some quality requirements [9]. A quality requirement specifies an attribute of software
that contributes to its quality where software quality is defined to be “the degree to
which software possesses a desired combination of attributes”, e.g. reliability, or
interoperability [IEEE-1061]. The internally developed component framework embraces
quality requirements either by implementing mechanisms that affect a quality
requirement, or by taking design decisions for application developers, or a combination
of both. For example, the reliability of a system improves by increased fault-tolerance,
where the goal is to isolate faults, and preventing system failures in the presence of
active faults, and also the subsequent system recovery. The component framework has
mechanisms for both software and hardware fault-tolerance. Software fault-tolerance is
handled by means such as starting separate threads for each user in order to isolate
faults, replication of data, and persistent data storage. Hardware fault-tolerance is
handled by hardware redundancy combined with reconfiguration of the system.
Applications should register their desired hardware, and redundancy options in the
component framework at start, which in turn handles reconfiguration in case of any
hardware failure.

 181

P7. An Industrial Case Study of Product Family Development

4. Discussion
A layered software architecture is discussed in the literature as an architectural style that
increases maintainability by reduced coupling between components [4, 11]. It also
classifies components for both component developers, and component assemblers. In
addition to the software architecture, the internally developed component framework is
shared between applications. The advantage is enhanced quality since the component
framework is tested in more than one application. The disadvantage is the growing
complexity of the framework, and possible trade-offs if requirements from several
applications are in mutual conflict with each other.

What we observe in practice is that any software process should be adapted for
development based on a component framework or even a component technology; either
developed in-house or a commercial one. Cheesman et al. [6] describe such adaptation
of a software process based on UML, Advisor [1], and RUP, and with a realization in
EJB. However, domain-specific component frameworks should be integrated into the
earlier phases of the development process; i.e. from requirement definition, and to
analysis & design, testing, deployment, and documentation.

Developing a component framework is a complex task, and we list some challenges
and experiences here. Some of these are especially related to the fact that the component
framework was developed in parallel with applications using it:

Requirements of the component framework were discovered gradually during
design of the application components, rather than being explicitly specified in
the beginning. The lightweight approach to reuse let to discover the main
requirements to the component framework during developing the first product.
But variation points are identified when requirements for several products are
considered. Therefore, it is important to have a software architecture that is
maintainable, i.e. changeable.

−

−

−

−

−

If most of the design decisions are taken first, and captured in the framework,
the risk is to have a software architecture that is not suitable for the problem. If
the decisions are left to later phases, application developers may develop
diverting solutions to the same problem, which is in conflict with the philosophy
of the product family approach. I.e. there is a dilemma between early and late
decision taking, and between being restrictive (enforcing many rules on
application developers), and flexible.
Some quality requirements cannot be assessed until the system is fully built. The
developed component framework had to be optimized in several iterations for
requirements such as performance.
The software process was adapted in parallel with developing the products, and
the software process model could occasionally not keep pace with development
[16].
Special testing and simulation tools had to be developed in order to improve
testability of the applications based on the component framework.

We performed a small survey in the organization in spring 2002 with 9 developers,
and asked their opinion on reuse, and the adapted RUP process. The results showed that
design was considered as the most important artifact to reuse (other alternatives were
requirements, code, test data, and documentation), and reused components were
considered to be more stable and reliable (is also confirmed by an empirical study of

 182

 P7. An Industrial Case Study of Product Family Development

defects). On the other hand, the developers wanted better documentation of the reused
components and the component framework.

5. Conclusions
Rothenberger et al. [19] have analyzed several earlier reuse studies, and performed a
principle component analysis to find the so-called “reuse success factors”, where
success measures are defined in terms of reuse benefits (e.g. reduction in cost or
development time), strategic impact (reaching new markets), and software quality
(reduction in defects). They concluded that software quality could be achieved based on
project similarity, and common architecture. To gain high reuse benefits and strategic
impact, three other dimensions must also be added, which are management support,
formalized process, and planning & improvement. In our case study, many of these
success factors are in place; i.e. management support, common architecture, and project
similarity. The other two factors (formalized process, and planning & improvement)
have medium degree of achievement, and could be subjects of improvement to achieve
higher reuse benefits.

We discussed that software processes should be adapted for reuse, and for
development based on a component framework, and presented some experiences related
to developing a component framework. Adoption to a product family, and developing
component frameworks are beneficial if the domain and projects have high reuse
potential. However, a holistic approach is required since the adoption impacts all the
aspects of software development.

6. Acknowledgements
The work is done in the context of the INCO project (INcremental and COmponent-
based Software Development [10]), a Norwegian R&D project in 2001-2004, and as
part of the first author’s PhD study. We thank Ericsson in Grimstad for the opportunity
to perform the study.

References
[1] Advisor, Sterling Software Component-Based Development Method,

http://www.sterling.com/cool
[2] Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R.,

Muthig, D., Paech, B., Wüst, J., Zettel, J.: Component-based Product Line
Engineering with UML. Addison-Wesley, 2002.

[3] Bachman, F., Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J.,
Seacord, R., Wallnau, K.: Volume II: Technical concepts of Component-based
Software Engineering. SEI technical report CMU/SEI-2000-TR-008.
http://www.sei.cmu.edu/

[4] Bosch, J.: Design and Use of Software Architecture: Adpoting and Evolving a
Product-Line Approach. Addison-Wesley, 2000.

[5] Bosch, J.: Maturity and Evolution in Software Product Lines: Approaches, Artifacts
and Organization. Proc. of the Second Software Product Line Conference- SPLC2,
2002. Available at http://www.cs.rug.nl/~bosch/

 183

http://www.sterling.com/cool
http://www.sei.cmu.edu/
http://www.cs.rug.nl/~bosch/

P7. An Industrial Case Study of Product Family Development

[6] Cheesman, J., Daniels, J.: UML Components, A Simple Process for Specifying
Component-Based Software. Addison Wesley, 2001.

[7] Clements, P., Northrop, L.M.: Software Product Lines: Practices and Patterns.
Addison-Wesley, 2001.

[8] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, Elements of
Reusable Object-Oriented Software. Addison-Wesley, 22nd printing, 2001.

[9] Heineman, G.T., Councill, W.T.: Component-Based Software Engineering, Putting
the Pieces Together. Addison-Wesley, 2001.

[10] INCO project (INcremental and COmponent-based engineering),
http://www.ifi.uio.no/~isu/INCO/

[11] Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process and
Organization for Business Success. ACM Press, 1997.

[12] Johnson, R.E., Foote, B.: Designing Reusable Classes. Journal of Object-Oriented
Programming, 1(3): 26-49, 1988.

[13] Karlsson, E.-A. (Ed.): Software Reuse, a Holistic Approach. John Wiley & Sons,
1995.

[14] Krueger, C.: Eliminating the Adoption Barrier. IEEE Software, 19(4): 29-31, 2002.
[15] McGregor, J.D., Northrop, L.M., Jarred, S., Pohl, K.: Initiating Software Product

Lines. IEEE Software, 19(4):24-27, 2002.
[16] Mohagheghi, P., Conradi, R.: Different Aspects of Product family Adoption.

Forthcoming at the 5th International Workshop on Product Family Engineering, PFE-
5, Siena-Italy, November 4-6, 2003.

[17] Northrop, L.M.: SEI’s Software Product Line Tenets”, IEEE Software, 19(4):32-
40, July-August 2002.

[18] Rational Unified Process, http://www.rational.com
[19] Rothenberger, M.A., Dooley, K.J., Kulkarni, U.R., Nada, N.: Strategies for

Software Reuse: A Principal Component Analysis of Reuse Practices. IEEE Trans.
Software Eng., 29(9): 825-837, September 2003.

 184

http://www.ifi.uio.no/~isu/INCO/
http://www.rational.com/

 P8. An Empirical Study of Software Reuse

P8. An Empirical Study of Software Reuse
vs. Defect-Density and Stability

Parastoo Mohagheghi1,2,3, Reidar Conradi2,3, Ole M. Killi2, Henrik Schwarz2

1Ericsson Norway-Grimstad, Postuttak, NO-4898 Grimstad, Norway
2Department of Computer and Information Science, NTNU, NO-7491 Trondheim, Norway

3Simula Research Laboratory, P.O.Box 134, NO-1325 Lysaker, Norway
parastoo.mohagheghi@ericsson.com, conradi@idi.ntnu.no, henrik@schwarz.no

Abstract
The paper describes results of an empirical study, where some hypotheses about the
impact of reuse on defect-density and stability, and about the impact of component size
on defects and defect-density in the context of reuse are assessed, using historical data
(“data mining”) on defects, modification rate, and software size of a large-scale telecom
system developed by Ericsson. The analysis showed that reused components have lower
defect-density than non-reused ones. Reused components have more defects with
highest severity than the total distribution, but less defects after delivery, which shows
that that these are given higher priority to fix. There are an increasing number of defects
with component size for non-reused components, but not for reused components.
Reused components were less modified (more stable) than non-reused ones between
successive releases, even if reused components must incorporate evolving requirements
from several application products. The study furthermore revealed inconsistencies and
weaknesses in the existing defect reporting system, by analyzing data that was hardly
treated systematically before.

1. Introduction
There is a lack of published, empirical studies on large industrial systems. Many
organizations gather a lot of data on their software processes and products, but either the
data are not analyzed properly, or the results are kept inside the organization. This paper
presents results of an empirical study in a large-scale telecom system, where particularly
defect-density, and stability are investigated in a reuse context. Software reuse has been
proposed e.g. to reduce time-to-market, and to achieve better software quality.
However, we need empirical evidence in terms of e.g. increased productivity, higher
reliability, or lower modification rate to accept the benefits of reuse.

Ericsson has developed two telecom systems that share software architecture,
components in reusable layers, and many other core assets. Characteristics of these
systems are high availability, reliability, and scalability. During the lifetime of the
projects, lots of data are gathered on defects, changes, duration time, effort, etc. Some of
these data are analyzed, and results are used in the improvement activities, while some
others remain unused. Either there is no time to spend on data analysis, or the results are

 185

mailto:parastoo.mohagheghi@ericsson.com

P8. An Empirical Study of Software Reuse

not considered important or linked to any specific improvement goals. We analyzed the
contents of the defect reporting system (containing all reported defects for 12 product
releases), and the contents of the change management system. For three of these
releases, we obtained detailed data on the size of components, and the size of modified
code. We have assessed four hypotheses on reuse, and reused components using data
from these releases. We present detailed results from one of these releases here. The
quality focus is defect-density (as the number of defects divided by lines of code), and
stability (as the degree of modification). The goal has been to evaluate parameters that
are earlier studied in traditional reliability models (such as module size and size of
modified code) in the context of reuse, and to assess the impact of reuse on software
quality attributes.

Results of the analysis show that reused components have lower defect-density than
non-reused ones, and these defects are given higher priority to solve. Thus reuse may be
considered as a factor that improves software quality. We did not observe any relation
between defect-density or the number of defects as dependent variables, and component
size as the independent variable for all components. However, we observed that non-
reused components are more defect-prone, and there is a significant correlation between
the size of non-reused components, and their number of defects. This must be further
investigated. The study also showed that reused components are less modified (more
stable) than non-reused ones, although they should meet evolving requirements from
several products.

Empirical evidence for the benefits of reuse in terms of lower defect-density, and
higher stability is interesting for both the organization, and the research community. As
the data was not collected for assessing concrete hypotheses, the study revealed
weaknesses in the defect reporting system, and identified improvements areas.

This paper is organized as follows. Section 2 presents some general concepts, and
related work. Section 3 gives an overview of the studied product, and the defect
reporting system. Section 4 the research method, and hypotheses. Hypotheses are
assessed in Section 5. Section 6 contains a discussion, and summary of the results. The
paper is concluded in Section 7.

2. Related work
Component-Based Software Engineering (CBSE) involves designing and implementing
software components, assembling systems from pre-built components, and deploying
systems into their target environment. The reusable components or assets can take
several forms: subroutines in library, free-standing COTS (Commercial-Off-The-Shelf)
or OSS (Open Source Software) components, modules in a domain-specific framework
(e.g. Smalltalk MVC classes), or entire software architectures, and their components
forming a product line or system family (the case here). CBSE, and reuse promise many
advantages to system developers and users such as:

Shortened development time, and reduced total cost, since systems are not
developed from scratch.

−

−

−

Facilitation of more standard, and reusable architectures, with a potential for
learning.
Separation of skills, since much complexity is packaged into specific
frameworks.

 186

 P8. An Empirical Study of Software Reuse

Fast access to new technology, since we can acquire components instead of
developing them in-house.

−

− Improved reliability by shared components – etc.
These advantages are achieved in exchange for dependence on component providers,

vague trust to new technology, and trade-offs for both functional requirements, and
quality attributes.

Testing is the key method for dynamic verification (and validation) of a system. A
system undergoes testing in different stages (unit testing, integration testing, system
testing etc), and of different kinds (reliability testing, efficiency testing etc). Any
deviation from the system’s expected function is usually called for a failure. Failures
observed by test groups or users are communicated to the developers by means of
failure reports. A fault is a potential "flaw" in a hardware/software system that causes a
failure. The term error is used both for execution of a “passive” fault leading to
erroneous (vs. requirements) behavior or system state [6], or for any fault or failure that
is a consequence of human activity [2]. Sometimes, the term defect is used instead of
faults, errors or failures, not distinguishing between active or passive faults or
human/machine origin of these. Defect-density or fault-density is then defined as the
number of defects or faults divided by the size of a software module.

There are studies on the relation between fault-density and parameters such as
software size, complexity, requirement volatility, software change history, or software
development practices – see e.g. [1, 3, 5, 9, 13, 14]. Some studies report a relation
between fault-density and component size, while others not. The possible relation can
also be decreasing or increasing fault-density with growing size. Fenton et al. [3] have
studied a large Ericsson telecom system, and did not observe any relation between fault-
density and module size. When it comes to relation between the number of faults and
module size, they report that size weakly correlates with the number of pre-release
faults, but do not correlate with post-release faults. Ostrand et al. [14] have studied
faults of 13 releases of an inventory tracking system at AT&T. In their study, fault-
density slowly decreases with size, and files including high number of faults in one
release, remain high-fault in later releases. They also observed higher fault-density for
new files than for older files.

Malaiya and Denton [9] have analyzed several studies, and present interesting
results. They assume that there are two mechanisms that give rise to faults. The first is
how the project is partitioned into modules, and these faults decline as module size
grows (because communication overhead, and interface faults are reduced). The other
mechanism is related to how the modules are implemented, and here the number of
faults increases with the module size. They combine these two models, and conclude
that there is an “optimal” module size. For larger modules than the optimal size, fault-
density increases with module size, while for smaller modules, fault-density decreases
with module size (the economy of scale).

Graves et al. [5] have studied the history of change of 80 modules of a legacy system
developed in C, and some application-specific languages to build a prediction model for
future faults. The model that best fitted to their observations included the change history
of modules (number of changes, length of changes, time elapsed since changes), while
size and complexity metrics were not useful in such prediction. They also conclude that
recent changes contributed the most to the fault potential.

 187

P8. An Empirical Study of Software Reuse

There are few empirical studies on fault-density in the context of reuse. Melo et al.
[10] describe a student experiment to assess the impact of reuse on software quality (and
productivity) using eight medium-sized projects, and concluded that fault-density is
reduced with reuse. In this experiment, reused artifacts are libraries such as C++ and
GNU libraries; i.e. COTS and OSS artifacts. Another experiment that shows
improvement in reliability with reuse of a domain-specific library is presented in [15].

High fault-density before delivery may be a good indicator of extensive testing rather
than poor quality [3]. Therefore, fault-density cannot be used as a de-facto measure of
quality, but remaining faults after testing will impact reliability. Thus it is equally
important to assess the effectiveness of the testing phases, and build prediction models.
Probably such a model includes different variables for different types of systems. Case
studies are useful to identify the variables for such models, and to some extent to
generalize the results.

3. The Ericsson context

3.1. System description
Our study covers components of a large-scale, distributed telecom system developed by
Ericsson. We have assessed several hypotheses using historical data on defects, and
changes of these systems that are either published by us, or will be published. This
paper presents some of the results that are especially concerned with software reuse.

Figure 1 shows the high-level software architecture of the systems. This architecture
is gradually developed to allow building systems in the same system family. This was a
joint development effort across teams and organizations in Norway and Sweden for over
a year, with much discussion and negotiation [12]. The systems are developed
incrementally, and new features are added to each release of them. The two systems A
and B in Figure 1 share the system platform, which is considered as a COTS component
developed by another Ericsson organization. Components in the middleware, and
business specific layers are shared between the systems, and are hereby called for
reused components (reused in two distinct products and organizations, and not only
across releases). Components in the application-specific layer are specific to
applications, and are called for non-reused components.

WPP Platform

Middleware
(& Component Framework)

Business Specific

Application A

Reused components
in our study

Reused, but considered
as COTS here

Application B
Application specific-
components

Figure 1 High-level architecture of systems

 188

 P8. An Empirical Study of Software Reuse

The architecture is component-based, and all components in our study are built in-

house. Several Ericsson organizations in different countries have been involved in
development, integration, and testing of the systems. But what a component is in this
discussion?

Each system is decomposed hierarchically into subsystems, blocks, units, and
modules (source files). A subsystem presents the highest level of encapsulation used,
and has formally defined (provided) interfaces in IDL (Interface Definition Language).
It is a collection of blocks. A block has also formally defined (provided) interfaces in
IDL, and is a collection of lower level (software) units. Subsystems, and blocks are
considered as components in this study; i.e. high-level (subsystems) and lower-level
(blocks) components. Since communication inside blocks are more informal, and may
happen without going through an external interface, blocks are considered as the lowest-
level components.

The systems’ GUIs are programmed in Java, while business functionality is
programmed in Erlang and C. Erlang is a functional language for programming
concurrent, real-time, distributed fault-tolerant systems. We have data on defects and
component size of 6 releases of one system (and several releases of other systems in the
same system family releases). We present a detailed study of one of these releases in
this paper. We obtained the same results with data from 2 other releases as well, but the
data for this special release is more complete, and this release is the latest version of the
system on the time of the study. The release in our study consisted of 470 KLOC (Kilo
Lines of non-commented Code), where 64% is in Erlang, 26% in C, and the rest in other
programming languages (Java, Perl, etc). Sometimes the term equivalent code is used
for the size of systems developed in multiple programming languages. To calculate the
“equivalent” size in C, we multiplied the software size in Erlang with 3.2, Java with 2.4,
and IDL with 2.35, as the practice is in the organization. However, we found that other
studies use other numbers. For example, Doug implemented 21 identical programs in C
and Erlang, and reported an equivalent factor of 1.46 [16]. Based on the results of this
study, we came to another factor (2.3) that must be further assessed. However, the
results did not show any significant difference using pure LOC or equivalent ones.

All source code (including IDL files) is stored in a configuration management system
(ClearCase). A product release contains a set of files with a specific label for the release
in this system.

3.2. Trouble reports

When a defect is detected during integration testing, system testing or later in
maintenance, a Trouble Report (TR) is written, and stored in a TR database using a web
interface. Besides, if requirement engineering, or analysis and design of iteration n find
defects in software delivered in iteration n-1, a TR will also be written. If a defect is
reported multiple times, it reports problems observed due to the same fault, and is
considered as a duplicate.

A TR contains the following fields: header with a number as identifier, date, product
(system name), release, when the defect is detected (analysis and design, system test
etc), severity, a defect code (coding, documentation, wrong design rule applied etc),
assumed origin of the defect, estimated number of person-hours needed to correct the
defect, identifier of another TR that this one is a duplicate of (if known), and a

 189

P8. An Empirical Study of Software Reuse

description. Three different severities are defined: A (most serious defects with highest
priority that brings the system down or affects many users), B (affects a group of users
or restarts some processes), and C (all other defects that do not cause any system
outage). TRs are written for all types of defects (software, hardware, toolbox, and
documentation), and there should be only one problem per TR.

All registered TRs are available as plain text files. We created a tool in C# that
traversed all the text files, extracted all the existing fields, and created a summary text
file. The summary was used to get an overview of the raw data set, and to decide which
fields are relevant for the study. The exploration revealed a lot of inconsistencies in the
TR database, e.g. fields are renamed several times, apparently from one release to the
other. For example, a subsystem is stored as ‘ABC’ or ‘abc’ or ‘ABC_101-27’. Another
major weakness of the current defect reporting system is the difficulty to track defects to
software modules without reading all the attached files (failure reports, notes from the
testers, etc) or parsing the source code. Each TR has a field for software module, but
this is only filled if the faulty module is known when the TR is initiated, and is not
updated later. These inconsistencies show that data had hardly been systematically
analyzed or used to a large extent before.

After selecting the fields of interest, another tool in C# read each TR text file, looked
for the specified fields, and created a SQL insert statement. We verified the process by
randomly selecting data entries, and cross checking them with the source data.

We inserted data from 13 000 TRs in a SQL database for 12 releases of systems.
Around 3000 TRs were either duplicated or deleted. The release of system A in this
study had 1953 TRs in the database, which are used for assessment of hypotheses in this
paper. This release was in the maintenance phase on the date of this study (almost 8
months after delivery). TRs report both pre-delivery and post-delivery defects (from
maintenance). 1539 TRs in our study were initiated pre-delivery (79%), while 414 TRs
(21%) were post-delivery defects.

4. Research method and hypotheses
The overall research question in our study is the impact of reuse on software quality. To
address this research question, we have to choose some attributes of software quality.
Based on the literature search, and a pre-study of the available data, we chose to focus
on defect-density, and stability of software components in the case study. There are
inherently two limitations in this design:

1. Are defect-density and stability good indicators of software quality?
2. Can we generalize the results?

To answer the first question, we must assess whether defect-prone components stay
defect-prone after release, and in several releases, and build a prediction model. This is
not yet done.

The second limitation has two aspects: definition of the population, and limitations of
case study research. Our data consists of non-random samples of components, and
defect reports of a single product. Formal generalization is impossible without random
sampling of a well-defined population. However, there are arguments for generalization
on the background of cases [4]. The results may at least be generalized to other releases
of the product under study, and products developed by the same company when the case
is a probable one. On the other hand, if we find evidence that there is no co-variation

 190

 P8. An Empirical Study of Software Reuse

between reuse, and quality attributes, the results could be a good example of a
falsification case, which could be of interest when considering reuse in similar cases.

We chose to refine the research question in a number of hypotheses. A hypothesis is
a statement believed to be true about the relation between one or more attributes of the
object of study, and the quality focus. Choosing hypotheses has been both a top-down,
and a bottom-up process. Some goal-oriented hypotheses and related metrics were
chosen from the literature (top-down), to the extent that we had relevant data. In other
cases, we pre-analyzed the available data to find tentative relations between data and
possible research questions (bottom-up).

Table 1 presents 4 groups of hypotheses regarding reuse vs. defect-density and
modification rate, and the alternative hypotheses for two of them; i.e. H1, and H4. For
the other two groups of hypotheses, the null hypotheses state that there is no relation
between the number of defects or defect-density, and component size. The alternative
hypotheses are that there is a relation between the number of defects or defect-density
with component size. Table 1 also shows an overview of the results. Section 5 presents
the details of data analysis, and other observations.

Table 1 Research Hypotheses and results

HypId Hypothesis Text Result
H1 H01: Reused components have the same defect-density as

non-reused ones.
HA1: Reused components have lower defect-density than
non-reused ones.

Rejected

Accepted

H2 H02-1: There is no relation between number of defects and
component size for all components.
H02-2: There is no relation between number of defects and
component size for reused components.
H02-3: There is no relation between number of defects and
component size for non-reused components.

Not rejected

Not rejected

Rejected

H3 H03-1: There is no relation between defect-density and
component size for all components.
H03-2: There is no relation between defect-density and
component size for reused components.
H03-3: There is no relation between defect-density and
component size for non-reused components.

Not rejected

Not rejected

Not rejected

H4 H04: Reused and non-reused components are equally
modified.
HA4: Reused components are modified more than non-
reused ones.

Rejected

Rejected

5. Data analysis
We used Microsoft Excel and Minitab for data visualization, and statistical analysis.
Statistical tests were selected based on the type of data (mostly on ratio scale). For more
description of tests, see [11] and [17].

Most statistical tests return a P-value (the observed significance level), which gives
the probability that the sample value is as large as the actually observed value if the null

 191

P8. An Empirical Study of Software Reuse

hypothesis (H0) is true. Usually, H0 is rejected if the P-value is less than a significance
level (α) chosen by the observer. Historically, significance levels of 0.01, 0.05 and 0.1
are used because the statistical values related to them are found in tables. We present the
P-values of the tests to let the reader decide whether to reject the null hypotheses, and
give our conclusions as well.

The t-test is used to test the difference between two population means with small
samples (typically less than 30). It assumes normal frequency distributions, but is
resistant to deviations from normality, especially if the samples are of equal size.
Variances can be equal or not. If the data departs greatly from normality, non-
parametric tests such as Wilcoxon test, and Mann-Whitney test should be applied. Mann-
Whitney test is the non-parametric alternative to the two-sample t-test, and tests the
equality of two populations’ medians (assumes independent samples, and almost equal
variances).

Regression analysis helps to determine the extent to which the dependent variable
varies as a function of one or more independent variables. The regression tool in Excel
offers many options such as residual plots, results of an ANOVA test (Analysis of
Variance), R2, the adjusted R2 (adjusted for the number of parameters in the model),
and the significance of the observed regression line (P-value). R2 and the adjusted R2

show how much of the variation of the independent variable is explained with the
variation of the dependent variable. Again it is up to the observer to interpret the results.
We consider the correlation as low if the adjusted R2 is less than 0.7.

Chi-square test is used to test whether the sample outcomes results from a given
probability model. The inputs are the actual distribution of samples, and the expected
distribution. Using Excel, the test returns a P-value that indicates the significance level
of the difference between the actual, and expected distributions. The test is quite robust
if the number of observations in each group is over 5.

5.1. H1: Reuse and defect-density

The quality focus is defect-density. We study the relation between component type
(reused vs. non-reused), and defect-density.

H01: Reused components have the same defect-density as non-reused ones.
HA1: Reused components have lower defect-density than non-reused ones.
Results: Size of the release is almost 470 KLOC, where 240 KLOC is modified or

new code (MKLOC= Modified KLOC). 61% of the code is from the reused
components. Only 1519 TRs (from 1953 TRs) have registered a valid subsystem name,
and 1063 TRs have registered a valid block name. We calculated defect-density using
KLOC and MKLOC, and also using equivalent C-code. We do not present the results
for equivalent C-code, but the conclusions were the same.

To compare the mean values of the two samples (reused, and non-reused
components), we performed one-tail t-tests assuming zero difference in the means.
However, the number of subsystems is low, which gave too few data points, and
relatively high P-values. For example P(T<t) one-tail=0.36 for #TRs/KLOC, which
means that there is a probability of 36% that the observed difference is just
coincidental. The same analysis on the block level gives results of statistical
significance.

 192

 P8. An Empirical Study of Software Reuse

Table 2 No. of TRs for subsystems and blocks
Component #TRs

all
No. of

Reused
Comp.

%TRs
Reused

No. of
Non-reused

Comp.

%TRs
Non-reused

Subsystems 1519 9 44% 3 56%
Blocks 1063 29 41% 20 59%

Table 3 shows means, medians, and variances of defect-density. We tested the

samples for normality, and the assumption of equal variances. The assumption of
normality is violated for reused components and #TRs/KLOC, and the variances are
unequal. For defect-density of modified code, distributions are not normal, but have
almost equal variances. Table 4 shows results of the statistical tests. The t-test is applied
since it is robust to the violation of normality, but a non-parametric test is also applied
which has no assumption on distribution.

Table 3 Descriptive statistics for defect-density of blocks

Defect-density Mean Median Variance
#TRs/KLOC, Reused 1.32 0.76 1.70
#TRs/KLOC, Non-Reused 3.01 2.44 4.39
#TRs/MKLOC, Reused 3.50 1.78 21.26
#TRs/MKLOC, Non-Reused 5.69 3.73 21.76

Table 4 Summary of the results of t-tests

P-values t-test Mann-Whitney
P(T<=t) one-tail [#TR/KLOC] 0.002 0.000
P(T<=t) one-tail [#TR/MKLOC] 0.055 0.020

The P-values in Table 4 are low (lower than 0.1), which means that the reused blocks

have in average lower defect-density than the non-reused ones. We add that 46% of
TRs have not registered any block name. Therefore the values for defect-density are not
absolute, and they would be higher if all TRs had a valid subsystem or block name.

Table 5 shows the distribution of TRs over severity for blocks (2 of the blocks did
not register the severity). The expected values may be calculated by multiplying ‘% of
all’ with the actual number; e.g. we can expect that 0.31*435=134.85 of TRs for reused
blocks to be of severity A. As shown in Table 5, reused blocks have higher number of
severity A defects than expected, while non-reused ones have lower number (167
compared with 190 expected). We performed a Chi-square test to evaluate whether the
observed distribution is significantly different from the expected one. The returned P-
value is 0.001; i.e. reused blocks have more defects with severity A (the highest priority
defects) than expected from the total distribution. The same result is obtained if we
perform the test with subsystems.

 193

P8. An Empirical Study of Software Reuse

Table 5 TRs and severity classes for blocks
Severity Reused Non-Reused % of all
A 160 16 31%
B 226 361 55%
C 49 98 14%
Sum 435 626 1

We also tested whether the distribution of TRs is different for pre- and post-delivery

defects. The result is in the favor of reused blocks; i.e. they have significantly fewer
defects after delivery than expected, with P-values equal to 0.003 and 0.002 for
subsystems, and blocks.

5.2. H2 and H3: Reuse vs. component size and defects/defect-density
In this section, we study whether the number of defects or defect-density is correlated
with the component size, and whether the result is different for reused, and non-reused
components. We defined six null hypotheses in two groups in Table 1. The alternative
hypotheses state that there is a relation between the variables of study.

Results: We first examine the relations graphically, and then perform regression
analysis. A scatter plots with KLOC on the x-axis, and #TRs on the y-axis for blocks is
shown in Figure 2, showing also regression lines, and polynomial functions of order 2
for reused and non-reused blocks. We have similar plots for MKLOC. The gradient of
the regression line is higher for non-reused subsystems and blocks, indicating that non-
reused blocks are more defect-prone. Table 6 shows a summary of the regression
results.

Table 6 Regression results for #TRs and component size

 Subsystem Block
Adjusted R–Square [KLOC] 0.631 0.491
Regression line, P-value [KLOC] 0.001 0.000
Adjusted R–Square [MKLOC] 0.643 0.590
Regression line, P-value[MKLOC] 0.001 0.000

A study of residual plots confirmed that points are evenly distributed on the both

sides of the regression line, and thus the regression analysis is valuable. The P-values
for the regression lines are low, meaning that the probability for a random correlation is
very low. However, the adjusted R2 values are also low (between 49-64%), which
indicate a weak correlation.

We performed the same analysis, but this time with reused and non-reused
components separately. The adjusted R2 was low for reused components (less than
0.70). However, the regression analysis for non-reused components had higher adjusted
R2, as shown in Table 7. Results in Table 7 indicate that there is a relation between the
size of the non-reused components, and #TRs. Plots also indicate that #TRs grow with
the component size for this group.

 194

 P8. An Empirical Study of Software Reuse

Table 7 Regression results for #TRs and the component size, non-reused blocks

Adjusted R–Square [KLOC] 0.715
Adjusted R–Square [MKLOC] 0.633

The conclusion is that we don’t reject H02-1, and H02-2. For non-reused

components, we observe a relation between the number of TRs and the component size,
and H02-3 is therefore rejected. The same results are achieved using one-way ANOVA
tests.

Referring to [9], we could explain the rejection of H02-3 if non-reused blocks were
larger than reused ones, but this is not true in our case. Reused blocks are in fact larger
(as shown in Figure 2, and verified by statistical tests), and the result should be
explained by other factors such as type of functionality or programming language. For
reused blocks, Erlang is the dominant programming language, while C is dominant for
non-reused blocks. We have studied the type of defects in Erlang and C units, and found
that C units have more intra-component defects (defects within a component) than
Erlang units, Therefore the number of defects can increase with component size. This
needs further study.

Figure 3 shows a plot of defect-density, and component size for blocks. When we
plot with defect-density instead of the number of defects, the points are scattered more,
and there is no obvious relation between component size, and defect-density. Results for
regression analysis between #TRs/KLOC, and size in KLOC for blocks and subsystems
is shown in Table 8.

Table 8 Regression results for #TRs/KLOC and component size in KLOC

 Subsystem Block
Adjusted R–Square [KLOC] 0.036 0.000
Regression line, P-value [KLOC] 0.553 0.455

The P-values for the regression lines are high, while the adjusted R2 values are low,

indicating no relation. Similar results were obtained when we performed the analysis for
reused, and non-reused components separately. We conclude that there is no relation
between defect-density and component size, and H03-1, H03-2, and H03-3 are not
rejected.

5.3. H4: Reuse and stability
Each release of the system adds some features to the previous release, and some bugs
are fixed, and therefore the code is modified between releases. As reused components
must fulfill requirements for two products, we may assume that they are modified more
than non-reused components, and therefore are more fragile.

H04: Reused and non-reused components are equally modified.
HA4: Reused components are modified more than non-reused ones.
Results: We define MOD = Size of new or modified code/Total Size of the

component. We calculated MOD, visualized the results in a scatter plot, and performed

 195

P8. An Empirical Study of Software Reuse

t-tests, and ANOVA to evaluate whether there is a significant difference between means
of reused and non-reused components. Table 9 shows means, medians, and variances.

Table 9 Descriptive statistics for MOD of blocks
Defect-density Mean Median Variance
MOD, Reused 0.43 0.43 1.87E-2
MOD, Non-Reused 0.57 0.60 2.04E-2

Our study showed that blocks are 49% modified totally; 43% for reused, and 57% for

non-reused ones (with KLOC). The distribution is not normal for reused blocks, but
variances are not significantly different. A scatter plot with KLOC on the x-axis, and
MKLOC on the y-axis for blocks is shown in Figure 4. The gradient of the regression
line is larger for non-reused blocks, indicating that they are modified more than reused
ones. A two-tail t-test confirms that the difference in means is not zero, with P-
value=0.001. A one-tail t-test for blocks assuming equal variances (we test for the
hypothesis that reused blocks are modified more than non-reused ones), gives a P-value
equal to 0.999. Results show that we can reject both H04 and HA4, and conclude that
non-reused components are more modified than reused ones, despite these being
specific to one system. One explanation could be that non-reused components have
more external interfaces than the reused ones. This must be further studied. We have
data for MOD in earlier releases of the product, and it seems to be relative stable
between releases.

R2 = 0.7213

R2 = 0.573
R2 = 0.5876

R2 = 0.7698

0

20

40

60

80

100

120

140

160

180

0 10000 20000 30000 40000 50000
LOC

#TR

Reused

Non-reused Blocks

Linear (Non-reused Blocks)

Linear (Reused)

Poly. (Reused)

Poly. (Non-reused Blocks)

Figure 2 Relation between #TR and LOC for blocks

 196

 P8. An Empirical Study of Software Reuse

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40 45 KLOC

#TRs/KLOC

Reused

Non-
reused

Figure 3 Relation between #TRs/KLOC and KLOC for blocks

R2 = 0.9576
R2 = 0.9657

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35 40 45
KLOC

MKLOC

Reused

Non-reused

Linear
(Reused)
Linear (Non-
reused)

Figure 4 Relation between size of components and size of modified code for blocks

6. Summary and discussion of results
Wohlin et al. [17] describe four types of validity threats in empirical studies. In our
study, these threats are:

Conclusion validity: A threat, or more a confounding factor, would be if reused and
non-reused components had very different functionality and constraints. For example,
non-reused components have user interfaces while some reused components handle
other interfaces with complex protocols. Another threat would be if more experienced
developers worked with one type of the components. This is not considered as a threat,

 197

P8. An Empirical Study of Software Reuse

since the components under study are developed within the same development unit, and
by almost homogenous teams. A third threat is that TRs report defects mainly
discovered during integration testing, system testing, and maintenance. We don’t
include data from inspections, and unit testing because this data is not in the same
database.

Internal validity: Missing, inconsistent, or wrong data is a threat to internal validity-
but mostly missing data. Sometimes gaps in data are systematically related to the
behavior to be modeled, or to the nature of the problem. In our case, missing data is
because of the process of reporting defects, which does not ask the tester to fill in the
missing fields in the reports. This is not considered to be related to the nature of the
problem or to introduce a systematic bias. Ways to handle missing data are e.g. mean
substitution, regression substitution, or just trying with the existing data, and be aware
of the lost efficiency of tests. We chose the last strategy because of two reasons. In
some cases we could verify that the distribution of data is not significantly different if
all or fractions of data are used. For example, the distribution of defects over severity
classes for all data was almost the same as data for subsystems or blocks (which have
missing points). The second reason is that our dataset is not too small for comparing the
means or correlations. Some other statistical tests are more sensitive to missing data.

Construct validity: We use defect-density and stability as software quality
indicators. The weaknesses of this assumption are discussed in Sections 2, and 4.
Nevertheless these measures are used broadly in studies.

External validity: The external validity of all hypotheses is threatened by the fact
that the entire data set is taken from one company. Our dataset consists of a non-random
sample of defect reports (1953 from almost 10,000), and all components of a single
release of one product. Two other releases are assessed with similar results. In Section
4, we discussed the possibility to generalize the results to other releases of the same
product, to other products in the same company, and possibly to other companies in the
same domain, where the case can be considered as a probable one. There are few
published results from such large-scale products to compare with the results.

The remainder of this section discusses the results. Rejection of a null hypothesis
does not mean that the inverse is accepted automatically, but we discuss when evidence
for such conclusion exists.

H1: Reuse and defect-density. Our results showed that reused components have
lower defect-density than non-reused ones (almost 50% less). The difference was less
for modified code. Melo et al. [10] report fault-densities from 0.06 for components that
are reused verbatim, 1.50 for slightly modified components, and 6.11 for completely
new components in their experiment. They concluded also that reused components have
lower fault-density. We observed that reused components had more severity A defects
than expected from the total distribution, but fewer post-delivery defects. This could
mean that defects of these components are given higher priority to fix.

H2: Number of defects and component size. We did not observe any significant
relation between the number of defects, and component size for all the components as a
group. We conclude there are other factors than size that may explain why certain
components are more defect-prone. One factor may be whether the component is reused
or not. When reused and non-reused components were analyzed separately, we did not
observe any relation between size and the number of defects for reused components,
while larger non-reused components had significantly higher number of defects, which

 198

 P8. An Empirical Study of Software Reuse

may indicate that it is better to break these components down to smaller ones. Factors
such as type of functionality or programming language may explain the result.

H3: Defect-density and component size. The plots, and regression analysis showed
no relation between these two factors. The result is the same for all components, and for
reused, and non-reused ones.

H4: Reuse and stability. Our results showed that reused components are in fact
modified less than non-reused ones; i.e. when components are reused across several
products, they don’t get more fragile, although they should meet requirements from
several systems. Stability is important in systems that are developed incrementally, and
over several releases.

Based on H1 and H4, we observe that packaging shared functionality into reusable
components reduces defect-proneness and improves stability (thus decreasing the need
for modifications). An internal survey of 9 developers in the same organization by us in
spring 2002 indicated that developers consider reused components to be more reliable,
and stable, in line with the quantitative results. These attributes may be interdependent
as other studies show that modified code has more defects than old code [5, 10, 14]. The
results of hypothesis testing cannot be used to build causal models, but rather be
combined with other types of studies to discuss causes.

We did not observe a significant relation between defect-density, and component
size. That is, defect-density cannot be used to predict the number of defects in a
component, so other parameters should be studied.

The study also showed the weaknesses of the defect reporting system that has lead to
inconsistencies and difficulties in analyzing, and presenting data. A better solution for
quality managers (and researchers) would be if the defect reports had automatically
been stored in a SQL database from the existing web interface. We may wonder if it is
possible to develop a “standard”, minimal metrics (TR schema), which all projects at
Ericsson could use. Many interesting hypotheses on reuse, and various software
properties were impossible to answer due to the lack of sufficient, and/or relevant data.
On the other hand, amassing empirical data without any specific goals or with no post-
processing is almost worse than not collecting any data!

7. Conclusions and future work
This study has “data-mined” defect reports, and associated data that had hardly been
analyzed or used to a large extent before. We don’t claim that the results are surprising.
However, there are few published results on the impact of reuse on quality attributes in
large industrial projects, so this study is a contribution in that context.

The hypotheses could be used to make a prediction model for future systems in the
same environment or for maintaining the current system. For Ericsson, the results of this
empirical study may be used to achieve better quality by identifying more defect-prone
components (we have not presented the detailed results here), and by taking actions
such as inspections or restructuring the components (e.g. split or merge to exploit
economy of scale). Higher stability, and lower defect-density of reused components
clearly show the industrial advantage of reuse. All these insights represent explicit
knowledge based on own data, and thus important for deciding future approaches
around reuse. Results can also be used as a baseline for comparison in future studies on
software reuse.

 199

P8. An Empirical Study of Software Reuse

8. Acknowledgements
The work is done in the context of the INCO project (INcremental and COmponent-
based Software Development [7], a Norwegian R&D project in 2001-2004), as part of
the first author’s PhD study, and the MSc thesis of Killi and Schwarz [8] in spring 2003.
We thank Ericsson for the opportunity to perform the study, and help to collect the data.

9. References

[1] Banker, R.D., Kemerer, C.F., ”Scale Economics in New Software Development”,

IEEE Trans. Software Engineering, 15(10), 1989, pp. 1199-1205.
[2] Endres, A., Rombach, D., A Handbook of Software and Systems Engineering;

Empirical Observations, Laws and Theories, Pearson Addison-Wesley, 2004.
[3] Fenton, N.E., Ohlsson, N., “Quantitative Analysis of Faults and Failures in a

Complex Software System”, IEEE Trans. Software Engineering, 26(8), 2000, pp.
797-814.

[4] Flyvbjerg, B., Rationalitet og Magt I- det konkretes videnskab, Akademisk Forlag,
Odense, Denmark, 1991.

[5] Graves, T.L., Karr, A.F., Marron, J.S., Siy, H., Predicting Fault Incidence using
Software Change History. IEEE Trans. Software Engineering, 26(7): 653-661, July
2000.

[6] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12,
1990.

[7] INCO project (INcremental and COmponent-based Software Development),
http://www.ifi.uio.no/~isu/INCO/

[8] Killi, O.M., Schwarz, H., ”An Empirical Study of Quality Attributes of the GSN
System at Ericsson”, MSc thesis, 109 pages, NTNU, June 2003, available
on:http://www.idi.ntnu.no/grupper/su/su-diploma-2003/index.html

[9] Malaiya, K.Y., Denton, J., “Module Size Distribution and Defect Density”, Proc.
11th International Symposium on Software Reliability Engineering- ISSRE’00, 2000,
pp. 62-71.

[10] Melo, W.L., Briand, L.C., Basili, V.R., “Measuring the Impact of Reuse on Quality
and Productivity on Object-Oriented Systems”, Technical Report CS-TR-3395,
University of Maryland, 1995, 16 pages.

[11] Mendenhall, W., Sincich, T., Statistics for Engineering and the Sciences, Prentice
Hall, 1995.

[12] Mohagheghi, P., Conradi, R., “Experiences and Challenges in Evolution to a
Product line”, Proc. 5th International Workshop on Product Line Development- PFE
5, 2003, Springer LNCS 3014, pp. 459-464,.

[13] Neufelder, A.M., “How to Measure the Impact of Specific Development Practices
on Fielded Defect Density”, Proc. 11th International Symposium on Software
Reliability Engineering (ISSRE’00), 2000, pp. 148-160.

 200

http://www.ifi.uio.no/~isu/INCO/
http://www.idi.ntnu.no/grupper/su/su-diploma-2003/index.html

 P8. An Empirical Study of Software Reuse

[14] Ostrand, T.J., Weyuker, E.J., “The Distribution of Faults in a Large Industrial
Software System”, Proc. The International Symposium on Software Testing and
Analysis (ISSTA’02), ACM SIGSOFT Software Engineering Notes, 27(4): 55 – 64,
2002.

[15] Succi, G., Benedicenti, L., Valerio, A., Vernazza, T., “Can Reuse Improve
Reliability?”, Fast abstract in International Symposium on Software Reliability
Engineering (ISSRE’98), 1998, available on
http://www.chillarege.com/fastabstracts/issre98/98420.html

[16] The Great Computer Language Shootout, 2003,
http://www.bagley.org/~doug/shootout

[17] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.,
Experimentation in Software Engineering: An Introduction, Kluwer Academic
Publishers, 2000.

 201

http://www.chillarege.com/fastabstracts/issre98/98420.html
http://www.bagley.org/~doug/shootout

 202

 P9. A Study of Developer Attitude to Component Reuse

P9. A Study of Developer Attitude to Component Reuse
in Three IT Companies

Jingyue Li1, Reidar Conradi1,3, Parastoo Mohagheghi1,2,3, Odd Are Sæhle1, Øivind Wang1,
Erlend Naalsund1, and Ole Anders Walseth1

1 Department of Computer and Information Science,
Norwegian University of Science and Technology (NTNU),

NO-7491 Trondheim, Norway
{jingyue, conradi}@idi.ntnu.no

2 Ericsson Norway-Grimstad, Postuttak, NO-4898 Grimstad, Norway
{parastoo.mohagheghi}@ericsson.com

3 Simula Research Laboratory, P.O.BOX 134, NO-1325 Lysker, Norway

Abstract
The paper describes an empirical study to investigate the state of practice and
challenges concerning some key factors in reusing of in-house built components. It also
studies the relationship between the companies’ reuse level and these factors. We have
collected research questions and hypotheses from a literature review and designed a
questionnaire. 26 developers from three Norwegian companies filled in the
questionnaire based on their experience and attitudes to component reuse and
component-based development. Most component-based software engineering articles
deal with COTS components, while components in our study are in-house built. The
results show that challenges are the same in component related requirements
(re)negotiation, component documentation and quality attributes specification. The
results also show that informal communications between developers are very helpful to
supplement the limitation of component documentation, and therefore should be given
more attention. The results confirm that component repositories are not a key factor to
successful component reuse.

1. Introduction
Systematic reuse is generally recognized as a key technology for improving software
productivity and quality [17]. With the maturity of component technologies, more and
more companies have reused their software (program) in the form of components.
Component reuse consists of two separate but related processes. The first deals with
analysis of the application domain and development of domain-related components, i.e.
development-for-reuse. The second process is concerned with assembling software
system from prefabricated components, i.e. development-with-reuse. These two
processes are tightly related, especially in reusing in-house built components. The
number of components and the ratio of reused components to total components will
determine the reuse benefits (e.g. improved productivity and quality) [11][23].

 203

P9. A Study of Developer Attitude to Component Reuse

To investigate the current state of practice and challenges for development-with-
reuse in the IT industry, and to investigate the relationship between companies’ reuse
level and some key factors in reusing of in-house components, an empirical study was
performed as part of two Norwegian R&D projects. These projects were SPIKE
(Software Process Improvement based on Knowledge and Experience) [29] and INCO
(INcremental and COmponent-based development) [30]. From the literature review, we
defined several research questions and hypotheses. A questionnaire was designed to
investigate these questions. Developers from three Norwegian IT companies filled in the
questionnaire based on their experience and attitudes to component reuse.

From the results of the survey, we found some new challenges in component reuse
and component-based development based on in-house built components. The results
support some commonly held beliefs and contradict others.

As the sample size of current research is still small, this study cannot provide
statistically significant tests on hypotheses, and is therefore a pre-study. Later studies
will be undertaken with refined hypotheses and on a larger sample.

The reminder of the paper is structured as follows: Section 2 presents some general
concepts. Section 3 describes the research approach. Section 4 presents the survey
results. Section 5 gives a detail discussion on the survey results. Conclusion and future
research are presented in Section 6.

2. Component reuse and component-based development
Software reuse can take many different forms, from ad-hoc to systematic [16]. In the
broad definition of reuse, it includes reusing everything associated with software
projects, such as procedures, knowledge, documentation, architecture, design and code.
In our research, we focus on systematic reuse of software code. The code reuse
literature has identified reuse practice and success factors through several case studies
and surveys. A major reuse effort is the REBOOT (Reuse Based on Object-Oriented
Techniques) consortium [25]. This effort was one of the early reuse programs that
recognized the importance of not only the technical, but also the organizational aspects
of reuse [18]. As more experience become available from industrial studies, non-
technical factors, such as organization, processes, business drivers and human
involvement, appeared to be at least as important as technological issues [15][19].

Following the success of the structured design and OO paradigms, component -based
software development has emerged as the next revolution in software development [27].
More and more IT companies have started to reuse code by encapsulating it into
components. Whitehead defines a component as: A software component is a separable
piece of executable software, which makes sense as a unit, and can interoperate with
other components, within some supporting environment. The component is accessible
only via its interface and is capable of use ‘as-is’, after any necessary installation and
configuration procedures have been carried out [28].

Component-based development is assumed to have many advantages. These include
more effective management of complexity, reduced time to market, increased
productivity, improved quality, a greater degree of consistency and a wider range of
usability [4][13]. It also brings many challenges, because it involves various
stakeholders and roles, such as component developers, application developers, and
customers. Different stakeholders and roles have different concerns [3], and face
different issues and risks [2][27].

 204

 P9. A Study of Developer Attitude to Component Reuse

Component-based development differs from traditional development, where the
usual approach is for stakeholders to agree upon a set of requirements and then build a
system that satisfies these requirements from scratch. Component-based development
builds application by reusing existing components. Available components may not be
able to satisfy all the requirements. Therefore, component-based projects must have
flexibility in requirements, and must be ready to (re)negotiate the requirements with the
customer. Moreover, components are intended to be used ‘as-is’. If some additional
functionality is required, ‘glue-code’ is needed to be built to meet the differences
between the requirement and component functionality. Another important feature of
component-based development is the strong focus on the quality attributes (such as
reliability, performance, and security etc.) and related testing. A major effort has to be
put into checking how components perform, how well they interact, and to make sure
that they are indeed compatible. Components may be developed in-house, acquired as
COTS (commercial-off-the-shelf) [3], or even as OSS (Open Source Software) [5].
Most current research on component-based software engineering focuses on COTS-
based development. Because COTS users cannot access the source code and must rely
on vendors to give technical support, COTS-based development is assumed to be more
challenging. Therefore, there is little research on the challenges based on in-house built
components.

3. Research approach
The difference between development based on in-house built components and
development based on COTS is that the former is related very tightly with development-
for-reuse. Component reuse is generally an incremental procedure. The company will
build some reusable components in the beginning. In case of successful reuse, more and
more code will be encapsulated into reusable components. The more reusable
components are developed, the more complex will the development process be, and
more support is required from the organization [8]. Our motivation is to investigate the
relationship between companies’ reuse level and some key factors in component-based
development so that company with low reuse level can make necessary software process
improvements when moving to a higher reuse level.

3.1 Research questions

To reuse in-house components successfully, developers must follow three basic steps
[19]:

Formulate the requirements in a way that supports retrieval of potentially useful
reusable components.

−

−
−

Understand the retrieved components.
If the retrieved components are sufficiently ‘close’ to the needs at hand and are
of sufficient quality, then adapt them.

From these steps, we selected several key factors. For step 1, we focus on the
efficiency of component related requirements (re)negotiation and the value of
component repository. For step 2, we study how knowledge about components can be
transferred from a component provider to a component user. For step 3, our study
focuses on definition and reasoning of quality attributes of components.

 205

P9. A Study of Developer Attitude to Component Reuse

There is little research on the need for requirements (re)negotiation when
components are built in-house. People assume that owning source code of in-house built
components allows them to do any changes to meet the customers’ requirements.
However, components are intended to be used ‘as-is’, even it is built in-house. So, our
first research question is:

RQ1. Does requirements (re)negotiation for in-house components really work as

efficiently as people assume?
Crnkovic et al. have proposed that to successfully perform the component-based

requirements (re)negotiation, a vast number of possible component candidates must be
available, as well as tools for finding them [9]. Companies with a higher reuse level
usually have more component candidates, more experience, and better experience than
companies with a lower reuse level. So, our second research question is:

RQ2. Does the efficiency of component related requirements (re)negotiation
increase with more in-house built components available?

To investigate this question, we formalized a null hypothesis H01 and an alternative
hypothesis HA1 as follows:

H01. There is no relationship between the companies’ reuse level and the efficiency
of component related requirements (re)negotiation.

HA1. There is a positive relationship between the companies’ reuse level and the
efficiency of component related requirements (re)negotiation.

Concerning a component repository, Frakes claimed that it should not be given much
attention, at least initially [12]. So, our third research question is:

RQ3. Does the value of component repository increase with more reusable
components available?

To investigate this opinion more deeply, a null hypothesis H02 and an alternative
hypothesis HA2 was proposed:

H02. There is no relationship between the companies’ reuse level and the value of
component repository.

HA2. There is a positive relationship between the companies’ reuse level and the
value of component repository.

A complete specification of a component should include its functional interface,
quality characteristics, use cases, tests, etc. While current component-based
technologies successfully manage functional interfaces, there is no satisfactory support
for expressing quality parts of a component [9]. So, our fourth research question is:

RQ4. How can a component user acquire sufficient information about relevant
components?

Berglund claimed that growing reusable software components will create a new
problem, i.e. the information-overload problem. Therefore, learning which component
to use and how to use them become the central part of software development [1].
Companies with a higher reuse level usually have more reusable components than
companies with lower reuse level. So, our fifth research question is:

RQ5. Does the difficulty of component documentation and component
knowledge management increase with increasing reuse level?

To study this question, we formalize null hypothesis H03 and alternative hypothesis
HA3:

 206

 P9. A Study of Developer Attitude to Component Reuse

H03. There is no relationship between the companies’ reuse level and developers’
satisfaction with component documentation.

HA3. There is a negative relationship between the companies’ reuse level and
developer’ satisfaction with component documentation.

One key issue in component-based development is trust, i.e. we want to build
trustworthy systems out of parts for which we have only partial knowledge [7]. Current
component technologies allow systems builders to plug components together, but
contribute little to ensure how well they will play together or to fulfill certain quality
properties. So, the sixth research question is:

RQ6. Do developers trust the quality specification of their in-house built
components? If the answer is no, how can they solve this problem?

3.2 The questionnaire

The questionnaire included five parts. The questions in the first part were used to
investigate the reuse level of the companies. The definition of reuse level in this study is
the number of reused components vs. the number of total components in the
organization. The other four parts were organized based on the four key factors. Each
question in the questionnaire was used to study one or more research questions. The
details of questions are showed in the following Table 1. The correspondences between
the questions in the questionnaire and research questions are showed in Table 2. To
increase the reliability of our survey, the questionnaire also included the definition of
concepts used in the questionnaire, and the questions about the respondents’ personal
information.

3.3 Data collection
The study was performed in three Norwegian IT companies. Data collection was carried
out by NTNU PhD and MSc students. Mohagheghi, Naalsund, and Walseth performed
the first survey in Ericsson in 2002. In 2003, Li, Sæhle and Wang performed the survey
reusing the core parts of the questionnaire in two other companies (i.e. EDB Business
Consulting and Mogul Technology). We selected those three companies because they
have experience on component reuse and would like to cooperate with NTNU in this
research. The respondents are developers in these three companies. They answered the
questionnaires separately. The questionnaires were filled in either by hand or
electronically (as a Word file). The MSc students provided support with possible
problems in answering the questionnaire.

 207

P9. A Study of Developer Attitude to Component Reuse

Table 1 Questions in the questionnaire
Reuse level
Q1. What is the reuse level in your organization?
Q2. To what extend do you feel affected by reuse in your work?
Component related requirements (re)negotiation
Q3. Are requirements often changed/ (re)negotiated in typical develop projects?
Q4. Are requirements usually flexible in typical projects?
Q5. Do the component related requirements (re)negotiation processes work
efficiently in typical projects?
Value of component repository
Q6. Would the construction of a reuse repository be worthwhile?
Component understanding
Q7. Do you know the architecture of the components well?
Q8. Do you know the interface of the components well?
Q9. Do you know the design rules of the components well?
Q10a. Is the existing design/code of reusable components sufficiently
documented?
Q10b. If the answer of Q10a is ‘sometimes’ or ‘no’, is this a problem?
Q10c. If the answer of Q10a is ‘sometimes’ or ‘no’, what are the problems with
the documentation?
Q10d. If the answer of Q10a is ‘sometimes’ or ‘no’, how would you prefer the
documentation?
Q10e. What is your main source of information about reusable components
during implementation?
Q10f. How do you decide whether to reuse a component ‘as-is’, ‘reuse with
modification’ or ‘make a new one from scratch’?
Quality attributes specification of components
Q11. Are specifications for components’ quality attributes well defined?
Q12. Do you test components after modification for their quality attributes before
integrating them with other components?

Table 2 Correspondence between Questions in the questionnaire and Research
Questions

 RQ1 RQ2 RQ3 RQ4 RQ5 RQ6
Q1-Q2 X X X
Q3-Q5 X X
Q6 X
Q7-Q10f X X
Q11-Q12 X

Below, we briefly characterize these three companies and respondents.

3.3.1 Companies
Ericsson Norway-Grimstad started a development project five years ago and has
successfully developed two large-scale telecommunication systems based on the same
architecture and many reusable components in cooperation with other Ericsson

 208

 P9. A Study of Developer Attitude to Component Reuse

organization. Their two main applications share more than 60% of ca. 1M lines of code
[22].

EDB Business Consulting in Trondheim (now Fundator) is an IT-consultant firm
which helps its customers to utilize new technology. It started to build reusable
components from 2001. They have built some reusable components based on the
Microsoft .Net in their eCportal framework (i.e. a web-application framework) 1.0 &
2.0. These components have been successfully reused in their new e-commence
applications.

Mogul Technology (now Kantega) in Trondheim has large customers in the
Norwegian finance- and bank sector. The main responsibilities are development and
maintenance of the customers’ Internet bank application. The application was originally
a monolithic system. After several years in production, the customer itself took initiative
to reengineer the old system to a component-based solution based on EJB component
model in 2002. At the time of the survey, some components have been created and
reused in their new Internet bank system.

3.3.2 Respondents
There were 200 developers at Ericsson in Grimstad, where we sent out 10
questionnaires to developers in one development team and got 9 filled-in questionnaires
back. There were 20 developers in EDB Business Consulting in Trondheim, and we
gathered 10 filled-in questionnaires back out of 10. We distributed 10 questionnaires to
22 developers at Mogul Technology in Trondheim and got 7 back. Those developers
were selected because their work was related to component reuse, and they could assign
effort to participate in the survey. This is non-probability sampling, which is based on
convenience. Most participants in this survey have a solid IT background. 6 of 26
respondents have MSc degree in computer science and all others have a bachelor degree
in computer science or telecommunication. More that 80% of them have more than 5
years of programming experience. The details of their position and their experience in
the current organization are summarized in the following Table 3.

4. Survey results

In this section, we summarize the result of the survey. All the following statistical
analyses are based on valid answers, i.e. Don’t Know answers are excluded. The
statistical analysis tool we used is SPSS Version 11.0.

4.1 Different reuse level in these companies
First, we wanted to know the reuse level in those three companies. Q1 and Q2 were
asked to get the answer based on developers’ subjective opinion on this issue. The result
of Q1 is showed in Fig. 1, and the result of Q2 is showed in Fig. 2. From Fig. 1 and Fig.
2, we can see that most developers in Ericsson think that the reuse level in their
company is very high or high. Most developers in EDB regard the reuse level in their
company is high or medium. Most developers in Mogul think that the reuse level in
their company is medium or little.

4.2 Component related requirements (re)negotiation

 209

P9. A Study of Developer Attitude to Component Reuse

Questions Q3-Q5 were asked to investigate RQ1.We can see that no respondents to Q3
believe that the requirements were never changed/ (re)negotiated. Only 8% of
respondents to Q4 think the requirements of their typical project are not flexible.
However, only 48% of respondents to Q5 think component related requirements
(re)negotiation works well. To study RQ2 and test the hypothesis H01, the correlation
between the reuse level and response to Q5 is studied. We assign ordinal values to
Ericsson, EDB and Mogul to represent their different reuse levels based on the
responses to Q1 and Q2 (Ericsson = 3, EDB = 2, Mogul = 1). We also assign ordinal
value to the answer of Q5 (Yes = 3, Sometimes = 2, No =1). The result of correlation
between them using one-tailed Spearman Rank Correlation Coefficient analysis is .112,
and the significance is .306. This shows that there is no significant statistical
relationship between the reuse level and the efficiency of component related
requirements (re)negotiation.

Table 3 Background of the respondents

Company Position and working experience in the
organization

Ericsson Norway-
Grimstad

2 system architects, 7 designers.
1 person has 13 years of experience
7 persons have experience from 2-5 years,
1 person has 9 months of experience,

EDB Business
Consulting in
Trondheim

1 project manager, 5 developers and 4 IT consultants.
1 person has 17 years of experience
8 persons have experience from 3-8 years,
1 person has 2 years of experience.

Mogul Technology in
Trondheim

6 developers and 1 maintainer (previous developer).
1 person has 10 years of experience,
6 persons have experience from 2-5 years.

4.3 Value of component repository
From the answer of Q6, we found that 71% of respondents in Mogul and EDB regard
constructing a component repository as worthwhile, against 57% in Ericsson. To study
RQ3 and test hypothesis H02, the relationship between the answer of Q6 and the reuse
level is studied. We use the same ordinal number mapping as previously. The result of
correlation between them using one-tailed Spearman Rank Correlation Coefficient
analysis is -.124, and significance is .297, which shows that there is no obvious
relationship between them.

4.4 Component understanding
Questions Q7-Q10f were used to investigate RQ4. For Q7, Q8 and Q9, the results show
that 67% of the respondents think the component structure is well understood, 61% say
that the component interfaces are understood, and 63% regard the design rules of
components are also well understood. But for the responses to question Q10a, no one

 210

 P9. A Study of Developer Attitude to Component Reuse

thinks that the design/code of components is well documented, 73% think that they are
sometimes well defined, and 27% believe that they are not well documented.

Furthermore, the answers to questions Q10b and Q10c indicate that 86% believe that
insufficient component documentation is a problem, e.g. documentation is not complete,
not updated, and difficult to understand, etc. From responses to Q10d and Q10f, we can
see that the preferable way of documentation is web pages. Some of the developers’
knowledge of how to use components comes from informal communication sources, for
example, previous experience, suggestions from local experts, etc. To study RQ5 and
test hypothesis H03, the association between reuse level and response to Q10a is
studied. We use the same ordinal number mapping as previously. The result of
correlation between them using one-tailed Spearman Rank Correlation Coefficient
analysis is -.469, and significance is .014, which shows that there is a weak negative
relationship between them. It means that the higher the companies’ reuse level, the less
satisfied a developer is with the component documentation.

4.5 Quality attributes of components

Question Q11 and Q12 were used to investigate RQ6. From the responses to these
questions, we see that 70% of the participants regard the design criteria for quality
requirements are not well defined, and 87% will test the quality attributes of
components after component modification, before integrating them into the system.

What is the reuse level in your company?

0%
10%
20%
30%
40%
50%
60%
70%
80%

Very high High Medium Little Don't know
Reuse Level

ERICSSON
EDB AS
MOGUL

Figure 1 Result of the question “What is the reuse level in your company?”

 211

P9. A Study of Developer Attitude to Component Reuse

To what extend do you feel affected by reuse in your?

0%

10%

20%

30%

40%

50%

60%

70%

80%

Very High Medium Little Don't
Effect

ERICSSON
EDB AS
MOGUL

Figure 2 Result of the question “To what extend do you feel affected by reuse

in your work?”

5. Discussions
Based on the result of the survey, we discuss our research questions and hypotheses, and
discuss the limitations and threats to validity.

5.1 Component related requirements (re)negotiation
Much research focus on how to improve the efficiency of component related
requirements (re)negotiation in COTS-based development [20][24][26]. The main
reason is that people think the challenges in requirements (re)negotiation are due to the
lack of access to source code, to timely vendor supports, or to the lack of engineering
expertise to modify the integrated components [26]. In our case, the components are
mostly built in-house. The above constrains on COTS components are not considered as
challenges with built in-house components. From the responses to question Q3-Q5, we
found that although 92% think that requirements of their typical projects are flexible,
less than half think the component related requirements (re)negotiation in their typical
projects works well.

Since components are intended to be used ‘as-is’, it is possible that an in-house
reusable component meeting all the requirements will not be found. So, even though the
components are built in-house, requirements (re)negotiation is necessary. For research
question RQ1, we do not want to claim that the requirements (re)negotiation based on
in-house components is more difficult than COTS-based components. We just want to
emphasize that requirements (re)negotiation based on in-house components is also
important but not efficient.

From the test result on H01, we cannot find a statistically significant relationship
between the reuse level and the efficiency of component related requirements

 212

 P9. A Study of Developer Attitude to Component Reuse

(re)negotiation. So, we cannot reject null hypothesis H01. Our conclusion to RQ2 is that
when IT companies change from a low reuse level to a higher reuse level, they probably
cannot expect that component-based requirements (re)negotiation becomes easier and
more efficient.

5.2 Component repository
Some researchers have claimed that repository is important, but not sufficient for
successful reuse [18][21]. Our data confirms that developers are positive, but not
strongly positive to the value of component repository. So, this result gives future
support to the previous conclusion.

From the test result on H02, we can see that there is no statistically significant
relationship between developers’ positive attitude to a component repository and reuse
level. So, we cannot reject null hypothesis H02. Our conclusion to RQ3 is that
companies are not expected to invest in a repository to increase reuse.

5.3 Component understanding
Transferring component knowledge from the component developer to the component
user is critical for successful component reuse. The answers of Q7-Q9 show that most
developers understand the components in detail. However, the answers of Q10a-Q10c
show that no one believes that the components are well documented because the
documents are either incomplete or not updated. So, our question is “How can
developers still understand the components without good documentation?” From the
answers to question Q10e and Q10f, we found that most developers got the knowledge
of components from informal channels, such as previous experience and local experts.
The most important feature of a component is the separation of its interface from its
implementation. The component implementation is only visible through its interface.
Moreover, current component documentation technologies cannot describe all the
information the developer required, such as performance, reliability, and security etc.
Therefore, informal knowledge transfer should be considered to supplement the
insufficiency of formal component documentation and specification. This point was
showed in other empirical studies as well [6][10]. For research question RQ4, we found
that informal knowledge transfer is especially important in the component reuse. One
possible solution is to have special interest groups or mailing lists for a components (or
group of similar components) so that component users can share knowledge and
experience of component usage.

From the test result on H03, we found a weak negative relationship between reuse
level and developers’ satisfaction with the documentation. We reject the null hypothesis
H03 and accept the alternative hypothesis HA3, It means the higher the companies’
reuse level, the less satisfied a developer is with components’ documentation. Marcus et
al. concluded that combine reuse education and training provided for staff with other
reuse activity can lead to all the success of reuse [18]. Our conclusion to RQ5 implies
that when a company moves from a low reuse level to high level, more effort should be
spent on the component documentation and component knowledge management.

5.4 Quality attributes of components

 213

P9. A Study of Developer Attitude to Component Reuse

Component-based development relies on the availability of high quality components to
fill roles in a new intended system. When components are created or changed, we must
ensure that they do not only fulfill the functional requirements, but also quality
requirements. For research question RQ6, we found that most developers are not
satisfied with the specification of components’ quality attributes and therefore cannot
use this information. Therefore, how can we model quality properties of both
components and systems, and reason about them, particularly in the early stage of
system development is still a key challenge in component-based development.

5.5 Threats to validity

We now discuss the possible validity threats in this study. We use the definition given
by Judd et al. [14].

Construct validity In our case, the main construct issue applies to the variables
chosen to characterize the data set. The independent variable, i.e. reuse level, is the most
sensible one. The results of questions Q1 and Q2 give a qualitative and consistent value
on this variable.

Internal validity A major threat to this validity is that we have not assessed the
reliability of our measurement. Most variables are measured on a subjective ordinal
scale. An important issue for future studies is to ensure the reliability and validity of all
measurement. In this survey, we gave clearly specified concepts in the questionnaire
and provided support to possible misunderstanding. These methods partly increased the
reliability.

External validity The small sample size and lack of randomness in the choice of
companies and respondents are threats to external validity. In general, most empirical
studies in industry suffer from non-representative participation, since companies that
voluntarily engage in systematic improvement activities must be assumed to be better-
than-average.

Conclusion validity This study is still a pre-study. Future studies will be
implemented to give more statistically significant results.

6. Conclusion and future work
This study has investigated challenges related to four key factors for development based
on in-house components, especially in development-with-reuse. These factors are
component related requirements (re)negotiation, component repository, component
understanding and components’ quality attribute specification. Another contribution is
that we compared three IT companies with different reuse levels to study the possible
trend and challenges in these factors when more and more code will be encapsulated as
reusable components inside a company.

For component-based requirements (re)negotiation, the results of research
questions RQ1 and RQ2 show that requirements (re)negotiation for in-house
built components is important but not efficient. The efficiency will probably not
increase with higher reuse level.

−

− For the component repository, the results of research question RQ3 confirm that
a component repository is not a key factor for successful reuse. Furthermore, the
potential value of a component repository will probably not increase with higher
reuse levels.

 214

 P9. A Study of Developer Attitude to Component Reuse

For component understanding, the results of research questions RQ4 and RQ5
show that most developers are not satisfied with the component documentation,
and developers’ satisfaction with component documentation will probably
decrease with higher reuse level. The results also show that informal
communication channels, which developers can get necessary information about
the components through, should be given more attention.

−

− For components’ quality attribute specification, the result of research question
RQ6 shows that developers still need to spend much effort on testing, as they
cannot get relevant information from component specifications.

The main limitation of our survey is that it depends on the subjective attitudes of
developers, and with few companies and participants involved. Later studies are
planned to be undertaken with more precise quantitative methods and on more
companies with more distinct reuse levels. Case studies will also be undertaken to
follow the change of companies from lower reuse level to higher reuse level to future
investigate our research questions.

7. Acknowledgements
This study is supported by the SPIKE and INCO projects. We thank the colleagues in
these projects, and all the participants in the survey.

References

1. Erik Berglund: Writing for Adaptable Documentation. Proceedings of IEEE
Professional Communication Society International Professional Communication
Conference and Proceedings of the 18th ACM International Conference on
Computer Documentation: Technology & Teamwork, Cambridge, Massachusetts,
September (2000) 497–508.

2. Pearl Brereton: Component-Based System: A Classification of Issues. IEEE
Computer, November (2000), 33(11): 54–62

3. Alan W. Brown: The Current State of CBSE. IEEE Software, September/October
(1998) 37–46.

4. 4. Alan W. Brown: Large-Scale Component-Based Development. Prentice Hall,
(2000).

5. Alan. W. Brown and Grady. Booch: Reusing Open-source Software and Practices:
The Impact of Open-source on Commercial Vendors. Proceedings: Seventh
International Conference on Software Reuse, Lecture Notes in Computer Science,
Vol. 2319. Springer, (2002) 123–136.

6. Reidar Conradi, Tore Dybå: An Empirical Study on the Utility of Formal Routines
to Transfer Knowledge and Experience. Proceedings of European Software
Engineering Conference, Vienna, September (2001) 268–276.

7. Bill Councill and George T. Heineman: Component-Base Software Engineering and
the Issue of Trust. Proceedings of the 22nd International Conference on Software
Engineering, Limerick, Ireland, June (2000) 661–664.

 215

P9. A Study of Developer Attitude to Component Reuse

8. Ivica Crnkovic and Magnus Larsson: A Case Study: Demands on Component-based
Development. Proceedings of the 22nd International Conference on Software
Engineering, Limerick, Ireland, June (2000) 21–31.

9. Ivica Crnkovic: Component-based Software Engineering - New Challenges in
Software Development. Proceedings of 25th International Conference on
Information Technology Interfaces, Cavtat, Croatia, June (2003) 9–18.

10. Torgeir Dingsøyr, Emil Røyrvik: An Empirical Study of an Informal Knowledge
Repository in a Medium-Sized Software Consulting Company. Proceedings of 25th
International Conference on Software Engineering, Portland, Oregon, USA, May
(2003) 84–92.

11. W. B. Frakes: An Empirical Framework for Software Reuse Research. Proceedings
of the Third Annual Reuse Workshop, Syracuse University, Syracuse, N.Y. (1990).

12. W. B. Frakes, C.J. Fox: Sixteen Questions about Software Reuse. Communication
of the ACM, June (1995), 38(6): 75–87.

13. Ivar, Jacobson, Martin Griss, Patrick Jonsson: Software Reuse-Architecture, Process
and Organization for Business Success. Addison Wesley Professional, (1997).

14. C.M. Judd, E.R. Smith, L.H. Kidder: Research Methods in Social Relations. Sixth
edition, Holt Rinehart and Winston, (1991).

15. Y. Kim and E.A. Stohr: Software Reuse: Survey and Research Directions. Journal of
Management Information System, (1998), 14(4): 113–147.

16. C. Kruger: Software Reuse. ACM Computing Surveys, (1992), 24(2): 131–183.
17. N. Y. Lee, C. R. Litecky: An Empirical Study on Software Reuse with Special

Attention to Ada. IEEE Transactions on Software Engineering, September (1997),
23(9): 537–549.

18. Marcus A. Rothenberger, Kevin J. Dooley and Uday R. Kulkarni: Strategies for
Software Reuse: A Principal Component Analysis of Reuse Practices. IEEE
Transactions on Software Engineering, September (2003), 29(9): 825–837.

19. H. Mili, F. Mili, A. Mili: Reusing Software: Issues and Research Directions. IEEE
Transactions on Software Engineering, June (1995), 21(6): 528–561.

20. M. Morisio, C.B. Seaman, A. T. Parra, V.R. Basili, S.E. Kraft, S.E. Condon:
Investigating and Improving a COTS-Based Software Development Process.
Proceeding of 22nd International Conference on Software Engineering, Limerick,
Ireland, June (2000) 31–40.

21. Maurizio Morisio, Michel Ezran, Colin Tully: Success and Failure Factors in
Software Reuse. IEEE Transactions on Software Engineering, April (2002), 28(4):
340–357.

22. Parastoo Mohagheghi and Reidar Conradi: Experiences with Certification of
Reusable Components in the GSN Project in Ericsson, Norway. Proceedings of the
4th ICSE Workshop on Component-Based Software Engineering: Component
Certification and System Prediction. Toronto, May (2001) 27–31.

23. Jeffrey S. Poulin: Measuring Software Reuse-Principles, Practices, and Economic
Models. Addison-Wesley, (1997).

 216

 P9. A Study of Developer Attitude to Component Reuse

24. Vijay Sai: COTS Acquisition Evaluation Process: The Preacher’s Practice.
Proceedings of 2nd International Conference on COTS-based software systems,
Lecture Notes in Computer Science, Vol. 2580. Springer, 2003, Ottawa, Canada,
February (2003) 196–206.

25. Guttorm Sindre, Reidar Conradi, and Even-Andre Karlsson: The REBOOT
Approach to Software Reuse. Journal of System Software, (1995), 30(3): 201–212.

26. Vu N. Tran, Dar-Biau Liu: Application of CBSE to Projects with Evolving
Requirements- A Lesson-learned. Proceeding of the 6th Asia-Pacific Software
Engineering Conference (APSEC’ 99) Takamatsu, Japan, December (1999) 28–37.

27. Padmal Vitharana: Risks and Challenges of Component-based Software
Development. Communications of the ACM, August (2003), 46(8): 67–72.

28. Katharine Whitehead: Component-Based Development: Principles and Planning for
Business Systems. Addison-Wesley, (2002).

29. http://www.idi.ntnu.no/grupper/su/spike.html
30. http://www.ifi.uio.no/~isu/INCO/

 217

http://www.idi.ntnu.no/grupper/su/spike.html
http://www.ifi.uio.no/~isu/INCO/

 218

 P10. An Empirical Study of Software Change

P10. An Empirical Study of Software Change:
Origin, Acceptance Rate, and Functionality vs. Quality

Attributes

Parastoo Mohagheghi1,2,3, Reidar Conradi2,3
1Ericsson Norway-Grimstad, Postuttak, NO-4898 Grimstad, Norway

2Department of Computer and Information Science, NTNU, NO-7491 Trondheim, Norway
3Simula Research Laboratory, P.O.Box 134, NO-1325 Lysaker, Norway

parastoo@idi.ntnu.no, conradi@idi.ntnu.no

Abstract
The paper presents results from an empirical study of change requests in four releases of
a large-scale telecom system that is developed incrementally. The results show that
earlier releases of the system are no longer evolved. Perfective changes to functionality
and quality attributes are most common. Functionality is enhanced and improved in
each release, while quality attributes are mostly improved, and have fewer changes in
forms of new requirements. The share of adaptive/preventive changes is lower, but still
not as low as reported in some previous studies. Data for corrective changes (defect
fixing) have been reported by us in other studies. The project organization initiates most
change requests, rather than customers or changing environments. The releases show an
increasing tendency to accept change requests, which normally impact project plans.
Changes related to functionality and quality attributes seem to have similar acceptance
rates. We did not identify any significant difference between the change-proneness of
reused and non-reused components.

1. Introduction
An important study object in empirical software engineering is software maintenance,
being prevalent and thus costly in most software systems. Earlier studies have tried to
study maintenance aspects, such as the ratio between different categories of
maintenance activities, the origin of changes, or the impact of changes. These questions
need updated answers given the emergence of new development approaches, such as
incremental and iterative development. While incremental means that the project scope
is (discovered and) covered in steps, iterative means that the developed assets are
improved gradually during iterations. As many software projects are developed
incrementally and iteratively, the subject of software change is relevant not only in the
maintenance phase, but also in evolution between releases. Another aspect is the
increasing use of component-based development (CBD) and software reuse, and the
question that whether maintainability have improved.

This article describes the results of analyzing change requests (CRs) from four
releases of a large telecom system developed by Ericsson over a three-years period. CRs
cover any change in the requirements or assets from the time of requirement baseline.

 219

mailto:parastoo@idi.ntnu.no
mailto:conradi@idi.ntnu.no

P10. An Empirical Study of Software Change

We study some related factors, and assess five hypotheses, concerning the category of
changes (perfective etc.), their origin, their acceptance rate, and their relation to reuse.
We look at perfective, adaptive and preventive changes that characterize evolution.
Corrective changes have been analyzed by us elsewhere [12].

The results show that earlier releases of the system are no longer evolved, and
functionality is enhanced and improved in each release. Quality attributes are mostly
improved, and have fewer changes in forms of new requirements. Most CRs are
initiated internally by the project organization, and the acceptance rate of CRs has been
increasing over time. When it comes to reuse, there was no significant difference
between the change-proneness (number of CRs per KLOC) of reused and non-reused
components. However, our earlier study of corrective changes shows that reused lower-
level components are more stable (less modified code), and have fewer defects than are
non-reused ones

The remainder of this paper is organized as follows. Section 2 includes a description
of some related work. Section 3 presents the Ericsson context, and the available data.
Section 4 describes the research method, and hypotheses. Section 5 presents the results,
which are discussed further in Section 6. Section 7 contains the conclusion.

2. Related work

2.1. Concepts for software change

Lehman’s first law of software evolution says that “an E-type program that is used must
be continuously adapted else it becomes progressively less satisfactory” [7]. An E-type
program is a software system that solves a problem in the real world. The growth of a
system may be observed (measured) in many ways, for example by the amount of
modified code between releases or per interval of time, the number of modules, the
volume of change-logs, or even the number of system releases per time unit [14]. In
other words, the granularity of change data varies. While lower level granularity
provides most detailed information, it is more difficult to gather.

When a software system is still under development, requirements of the system may
change, and requirement volatility may impact the project performance (e.g. schedule or
cost overruns) or the quality of the software product (e.g. increasing defect-density).
These impacts have been subject of empirical studies; see e.g. [5] [9] [18]. Other studies
investigate modifications to software after it has gone into production; i.e. the
maintenance phase, e.g. [10] [14]. The main challenge of empirical studies in this field
is to have access to consistent records of software changes over time due to the
longitudinal nature of the study.

Changes may be categorized as corrective, adaptive, perfective, or even preventive.
Corrective maintenance refers to defect repair. Adaptive maintenance means adapting to
a new environment or a new platform. Perfective maintenance is both used for
implementing new or changed requirements, and for improving system performance;
i.e. both functional enhancements and non-functional optimizations [16]. Preventive
maintenance is sometimes used about internal restructuring or reengineering in order to
ease later maintenance. Sometimes these terms are defined differently, making
comparison of studies difficult. For example, Mockus et al. used adaptive maintenance
to cover enhancements, and perfective to cover optimization [10]. Some others argue
that it is maintenance when we correct errors, but it is evolution when we respond to

 220

 P10. An Empirical Study of Software Change

other changes. Bennett and Rajlich distinguish between development, evolution and
maintenance [4]. In their terminology, development lasts until a system is delivered to
production. When a system is in production but still growing, it is in the evolution
phase. They also provide a model for incremental evolution called for the versioned
staged model shown in Figure 1, comparing to the simple staged model for evolution. In
this model, after release of a version it is no longer evolved, only serviced. All new
requirements will be placed on the new version.

Initial development

Evolution

Servicing

Phase-out

Close-down

first running version
evolution changes

loss of evolvability
servicing patches

servicing discontinued

switch-off

Initial development

Evolution Version 1

Evolution Version 2

Evolution Version n

first running version
evolution changes

evolution changes
Servicing Version 1

Servicing Version 2

Phase-out Version 1
Close-down Version 1

Phase-out Version 2

Close-down Version 2

servicing patches

Simple Staged Model Versioned Staged Model

Figure 1 The incremental (versioned staged model) of software evolution from [4]

2.2. Results of previous studies
Damian et al. [5] describe results of a survey on the impact of improving the pre-
delivery requirement engineering process on several factors. Zowghi and Nurmuliani
[18] have similarly performed a survey among 430 software-developing companies in
Australia on the impact of changing requirements on project performance regarding
schedule and cost. The survey results show a negative correlation between the degree of
requirement volatility, and both schedule and cost performance. Earlier work by Stark et
al. [17] confirms this result.

One of the first studies on the distribution of post-delivery maintenance activities is
reported in 1978 [8]. Based on the results of a survey among maintenance managers,
Lientz et al. reported that 17.4% of the maintenance effort was categorized as
corrective, 18.2% as adaptive, 60.3% as perfective, and 4.1% as other. Jørgensen [6] has
observed that if the amount of corrective work is calculated based on interviews, it will
be as twice as the actual work reported in such logs. I.e. the amount of corrective work
may be exaggerated in interviews.

Schach et al. [14] have analyzed detailed data from 3 software products on the level
of modules, and change-logs. The products were a 12 KLOC real-time product, a subset
of Linux consisting of 17 kernel modules and 6506 versions, and GCC (GNU Compiler

 221

P10. An Empirical Study of Software Change

Collection) consisting of nearly 850 KLOC. For these products, the distribution of
maintenance categories was over 50% for corrective, 36-39% for perfective, and 2-4%
for adaptive maintenance. In other words, the distribution is very different from the
results reported by Lientz et al.

Mockus et al. [10] have used historical data of change requests of a multi-million-
line telecom software system, and report the results both on the change-log level and on
LOC (Lines of Code) added, deleted or modified. They report that adding new features
(perfective changes) accounted for 45% of all changes, followed by corrective changes
that accounted for 34%, while restructuring of the code accounted for 4% of changes
(mostly preventive changes). Although comparisons of results are not easy between
these two studies because of different categorizations, both indicate a large portion of
corrective changes, as well as perfective changes for new requirements.

Algestam et al. [1] report a study in Ericsson of a large telecom system. Reusing
components and a framework resulted in increased maintainability evaluated in cost of
implementing change scenarios, improved testability, easier upgrades, and also
increased performance. The impact of software reuse, especially exploiting COTS
(Commercial-Off-The-Shelf) components, is studied e.g. in [2], and [3].

Organizations typically have a change management process to accommodate for
requirement or artifact changes. In incremental development, each release may have
changes in requirements or deliveries, and is undergoing an evolution phase. Evolution
of a system should therefore be studied in two phases: during a release, and between
successive releases. None of the studies above have taken the step to the versioned
staged model shown in Figure 1, or separated these two phases, that may have different
characteristics. The studies have also not separated functionality and quality attributes.

2.3. Research questions
Costs related to software evolution and maintenance activities can exceed development
cost. Changes influence project performance and product quality. The impact of
development approaches on software evolution and maintenance is also important to
assess. Incremental and CBD are new approaches with few empirical studies on their
impact on software evolution and maintenance. The following research questions are
identified for this study:

RQ1: Do the majority of changes originate from external factors or from the project
organization itself?

RQ2: Are changes mostly due to functional enhancements, or optimization of quality
attributes?

RQ3: What is the impact of changes in terms of effort, size of modified code, or type
of components?

RQ4: In which phase of the project are changes mainly introduced?

3. The Ericsson context
Ericsson in Grimstad-Norway has developed software for several releases of two large-
scale telecom systems. The systems are characterized by high performance, high
availability, scalability, frequent hardware and software upgrades, and distribution of
software over multiple processors.

 222

 P10. An Empirical Study of Software Change

3.1. Overview of the products and the development process
The first system was originally developed to provide packet data capability to the GSM
(Global System for Mobile communication) cellular network. A later recognition of
common requirements with the forthcoming W-CDMA system (Wide-band Code
Division Multiple Access) lead to reverse engineering of the original software
architecture to identify reusable parts across the two systems. The two systems (or
products) called for A and B in Figure 2, are developed incrementally, and new features
are added to each release of the systems. The architecture is component-based, and all
components in our study are built in-house. The higher-level components are
subsystems (consisting of blocks, which are the lower level components) with almost
90 KLOC on the average. Both systems A and B contain top-level components
respectively from Application A or B, as well as shared and reused components from the
business-specific and middleware layers. At the bottom, there is a Wireless Packet
Platform (WPP) serving as a pre-provided operating system.

The development process has evolved as well: The initial development process was a
simple, internally developed one, describing the main phases of the lifecycle and the
related roles and artifacts. After the first release, the organization decided to adapt the
Rational Unified Process (RUP) [13]. Each release goes through 5-7 iterations.
Multiple programming languages are used; Erlang and C are dominant, Java is used for
GUIs, and Perl and other languages are used for minor parts. The size of each system
(not including the system platform) is over 1000 NKLOC (Non-Commented Kilo Lines
Of Code measured in equivalent C, see [12] for more details) in the last releases.
Several hundred developers in different Ericsson organizations have been involved in
developing, and testing the releases. Our data covers 4 releases of system A, where
business-specific and middleware components are reused in two applications in release
4.

WPP Platform

Middleware
(& Component Framework)

Business Specific

Application A

Reused components
in our study

Reused, but considered
as COTS here

Application B
Application specific-
components

Figure 2 High-level architecture of systems A and B

3.2. Change Requests (CRs)
RUP is an incremental software process with four phases: Inception, Elaboration,
Construction, and Transition. Each phase concludes activities from several workflows;
i.e. Requirement Management (RM), Analysis and Design (A&D), Implementation and
Test, and may include one or several iterations. The original product, and project
requirements for each release are stated in a textual document called the ARS

 223

P10. An Empirical Study of Software Change

(Application Requirement Specification). Requirements in the ARS are refined
iteratively during the inception and elaboration phases, resulting in artifacts such as use
case models, use case specifications, supplementary specifications documents (for non-
functional requirements), and statement of compliances towards standards that the
system must fulfill. The ARS and the detailed set of the requirements are baselined at
the end of initial iterations, and again at the end of the elaboration phase. Changes after
this milestone are proposed through formalized CRs. Examples of proposed changes
are:

Add, change or delete functionality (perfective functional enhancements). −
−
−
−

Propose an improvement of a quality attribute (perfective quality optimizations).
Implement a cost reduction.
Solve an anticipated problem with major design impact (preventive).

CRs reflect coarse-grained changes that should be formally approved, and can
significantly impact the contents of a release, cost or schedule. Small changes in
implementation or documentation are done in each release by respective teams without
issuing a CR. Figure 3 shows the phases and states in the CR handling process. CCB
stands for the Change Control Board, who is responsible for taking decisions for
approval or rejection of a CR. While the organization keeps a statistics over the number
and states of the CRs, no systematic study of the CRs is done previous to this study.

CR
Author
Submit

CCB
Assign

Analyze
CCB

Approve Implement
CCB

Validate

CCB
Reject

CCB = Change Control Board

Submitted Assigned Analyzed Approved
Implemented

Closed

Rejected

Figure 3 Flow of a CR and its states

CRs were at the beginning written in FrameMaker. Recently, these are written in

MS-Word. The templates have changed several times, and not all fields are filled-in.
The current template includes the following information: Title, revision history, baseline
affected, documents/artifacts affected, description of the current situation and the
proposed change, consequences of acceptance or rejection, and an estimate of the
needed effort to implement the CR.

 224

 P10. An Empirical Study of Software Change

Note that CRs may be issued pre- or post-delivery. Our CRs fall in the category of
perfective (enhancements and optimizations), adaptive (towards the WPP platform or
standards), and preventive changes (reorganizations).

3.3. Change Request data
The first set of CRs was extracted from the version control system on January 2003 by a
team of two NTNU students. This set included 165 CRs, issued from June 2000 to June
2002. 15 of these CRs handled in fact deviations to the process, and were omitted from
the rest of this study. The status and a short summary of the CRs are given in html pages
controlled by the CCB. We created a tool in C# that parsed the html pages, and inserted
relevant fields in a Microsoft SQL database. For other fields that were not given in the
html pages, the students read the CRs and inserted the data manually in the database.
The first author checked these data later, and one or two fields in totally 24 CRs (of 150
such) were changed after this second check, being considered a small modification. A
second set of CRs was extracted in November 2003 by the first author, and included 19
CRs issued from October 2002 to November 2003. These CRs were inserted manually
in the database. Thus, we totally have 169 CRs for 4 releases of system A, as shown in
Table 1. Release 3 did not include any new functionality, but was a new configuration
in order to separate nodes in the system.

Table 1 Overview of all 169 CRs

 Rel. 1 Rel. 2 Rel.3 Rel. 4
Pre-delivery 10 37 4 99
Post-delivery 0 0 0 19
SUM 10 37 4 118

The number of CRs has increased dramatically as the product evolves from release 1

to 4. This increase is partly because the CR handling process has matured over time. For
instance, some changes of release 1 were handled informally. However, because of the
growing complexity of the releases, it is not unexpected that there would be more
changes to the requirements or products over time, and the time frame in which a
product is “under evolution” increases. We notice that evolution of releases 1-3 has
stopped. These releases were delivered to the market, put in the servicing phase, and
will be phased out after a while. Release 4 still evolved at the time of study as new CRs
were issued. We also studied the date of initiation of CRs, which showed that most CRs
in each release are initiated in a short time after requirement baselining.

Data on estimated cost or needed effort is not used in the study since we don’t have
data on actual cost or effort. Data on effected components is coarse-grained as discussed
later. Otherwise, the data set is considered to be reliable for the study.

We have described results of a study on corrective maintenance (Trouble Reports or
TRs) in [12]. The data for that study covered TRs for these 4 releases until January
2003. We mention that the number of TRs were 6 for release 1, 602 for release 2, 61 for
release 3, and 1953 for release 4. Again, not all TRs for release 1 were stored in this
database. We note the same increase in the number of TRs as for CRs as shown in Table
1.

 225

P10. An Empirical Study of Software Change

4. The research method and hypotheses

We tested five hypotheses on the available data. Choosing hypotheses has been both a
top-down, and a bottom-up process. Some goal-oriented hypotheses were chosen from
the literature (top-down), to the extent that we had relevant data. In other cases, we pre-
analyzed the available data to find tentative relations between data and possible research
questions (bottom-up) as in an exploratory research. Table 2 shows the hypotheses, their
relations to research questions (RQ) defined in Section 2.3, and their grouping.

Table 2 The five research hypotheses

Hyp. group Hyp.
Id

Hyp. Text RQ

H01

HA1

Pre-implementation, and post-implementation
CRs have equal proportions.
Most CRs are for post-implementation changes.

4

H02

HA2

Quality attributes, and functionality have equal
proportions of CRs.
Most CRs are due to quality attributes, rather
than to functionality.

2

Origin

H03

HA3

Customers and changing environments initiate as
many CRs as the project organization.
Customers and changing environments initiate
most changes.

1

Acceptance H04

HA4

CRs that are accepted, and CRs that are rejected
have equal proportions.
Most CRs are accepted.

3

Reuse-CBD H05

HA5

Reused and application components are equally
change-prone.
Application components are more change-prone
than are reused ones.

3

A short description of background for each hypothesis is given below. Apart from

assessing the five hypotheses, we will study some relationships between these, e.g. what
class of CRs are mostly accepted or rejected.

H01-HA1: CRs have a field that indicates whether a CR specifies a change in
requirements (new, modified, or removed requirement as stated in the ARS or other
requirement specification documents) before implementation, or a change to the product
or documentation after a requirement is first implemented and verified. Some CRs have
left this information out, and are instead classified by us. H01 states that the proportions
of CRs for requirement changes, and CRs for modifications of the product are equal.
The alternative hypothesis HA1 states that most changes are post-implementation
changes to the product. As the organization use much effort in the CR handling process,
it is important to assess whether this effort is because of unstable requirements, or
iterative improvement of solutions.

H02-HA2: CRs may also be categorized on whether they deal with functionality or
with quality (non-functional) attributes. This information is extracted from the
description and the consequences of approval or rejection. Earlier studies do not differ

 226

 P10. An Empirical Study of Software Change

properly between these two sub-categories of perfective changes. The practice is that
functional requirements are specified well, and thus changes in those would be more
obvious. H02 states equal proportion, while the alternative hypothesis HA2 states that
most changes are related to quality attributes, rather than to functionality, in line with
HA1.

H03-HA3: CRs may be initiated internally by the project organization in order to
improve or enhance the product, or externally by the customers or due to changing
environments (external factors). Damian et al. [5] write that changes in requirements
often arise from external events originating outside the organization, such as
unpredictable market conditions or customer demands. H03 states that there is no
difference between proportions of CRs in these two groups. HA3 states that the
Domain’s claim is true.

H04-HA4: Waterfall development requires stable requirements, while incremental
approaches are more open to changes. We want to assess the stability of requirements,
and the product. As we don’t have data on the actual impact of CRs in terms of
modified Lines of Code in some normalized form, it is difficult to assess the absolute
impact. Therefore we chose to study the share of CRs being accepted or rejected. H04
states that the proportions are equal, while HA4 states that most CRs are accepted. If
most CRs get accepted and implemented, the organization should be prepared to
account for additional resources to handle and implement these CRs.

H05-HA5: We define change-proneness as #CRs/KLOC. Components in the
business-specific and middleware layers were reused in two systems in release 4. H05
states that there is no difference in change-proneness of these components. The
alternative hypothesis would be that one component type is more change-prone than is
the other. As application components are “customer-close”, we may assume that these
are more change-prone, as stated in HA5.

5. Data analysis and assessment of hypotheses
Table 3 shows a summary of the assessment of hypotheses. Here NR stands for Not
Rejected, while R means Rejected. The remainder of this section describes the detailed
results.

Table 3 Assessments of hypotheses

Hyp.
Id

Result Conclusion

H01 NR The difference between proportions of CRs issued
before or after implementation is not significant.

H02 R Most perfective changes are due to quality attributes,
not functionality.

H03 NR Most CRs are originated inside the organization.
H04 R Most CRs are accepted and implemented.
H05 NR Reused and application components are equally

change-prone.

 227

P10. An Empirical Study of Software Change

We used Microsoft Excel and Minitab in statistical tests. The confidence level is 95%
in all tests, which means that we reject the null hypotheses if the observed significance
level (P-value) is less than 5%. The 5% significance level is the default value in most
tools, and in practice much higher P-values may be accepted. We therefore present the
distributions, and the P-values to let the reader decide, as well as presenting our
conclusions.

5.1. H01-H03: Origin of CRs
Table 4 below shows a classification of CRs for all four releases. We see that most
changes are optimizations of solutions, followed by new requirements after baseline.
We could also compare the share of requirement changes (47.3%) before
implementation, to the share of later modifications in solutions or documentation
(52.1%). We tested whether the proportions are equal vs. greater proportion of CRs for
modifications (one proportion test in Minitab for proportion=0.5 vs. proportion>0.5).
The P-value is 0.322; i.e., it is 32% possible that the observed difference is by chance.
The conclusion is that we cannot reject H01.

Table 4 Distribution of 169 CRs over pre- and post-implementation

changes
 New

Req.
Modified

Req.
Removed

Req.
Modified
Solution

Modified
Doc.

Other

No 46 25 9 70 18 1
% 27.2 14.8 5.3 41.4 10.7 0.6

Table 5 shows the distribution of CRs over evolution categories, and a more detailed

distribution over CR-focus or reason. Note in Table 5, that the sum of numbers is 187
(and the sum of percentages is over 100%), as 18 of 169 CRs have indicated two
reasons for requesting the change. Also note that preventive changes to improve file
structure or to reduce dependencies between software modules and components may
later impact quality attributes such as maintainability. For the systems in study, there is
great emphasis on quality attributes, reflected in the large number of CRs for this group.

For perfective CRs, the proportion of functional and quality attributes CRs are 35%
(40/114) and 65% (74/114). We performed a one proportion test in Minitab that gives a
P-value of 0.01, which means that we can be 99% sure that the difference is significant,
and may reject H02 in favor of HA2.

The contents of Tables 4, and 5 are combined in Figure 4. Perfective functional CRs
have almost equal distribution between new requirements, and modified solutions.
Perfective quality attributes and preventive CRs are mostly modified solutions.
Adaptive CRs are mostly new or modified requirements.

23 of 169 of the CRs are issued because of customer demands. If we exclude these
CRs, and the 35 CRs due to adaptive changes, the overwhelming group (111 of 169) is
still CRs that originate inside the project organization to enhance or optimize the
products. The one proportion test in Minitab shows that the proportion of CRs due to
external factors (customers and changing environments) is 34%, and the P-value is
1.000. Hence the proportion of CRs due to external factors is definitely lower than is the
other group, opposed to HA3.

 228

 P10. An Empirical Study of Software Change

0%

20%

40%

60%

80%

100%

Funct Qual Adap Prev Cost

Mod Doc
Mod Sol
Rem Req
Mod Req
New Req

Figure 4 Evolution categories vs. requirements or solutions

Table 5 Distribution of CRs over maintenance categories and CR-focus

Evolution
category

CR-focus
(reason)

No. Accepted Examples

Perfective/
Functional

Functionality 40 26 Business or middleware
functions

Performance 29 16 Storage, throughput
Documentation 21 13 Understandability,

customer documents
Availability 11 7 Increasing up-time
Testability/
Maintain-
ability

11 6 Remote testing,
monitoring alarms

Perfective/
Quality
Attributes

SUM = 74

Security 2 1 Protecting contents
Adaptive

SUM = 35

Standards 18 13 Compliance, new
standards

 Interfaces 2 1 External interfaces
 WPP-upgrades 13 7 Change the platform
 WPP-

adaptation
2 2 Adapting code to WPP

changes
Preventive System 19 7 Builds, configuration
SUM = 30 Re-structuring 11 7 Models, dependencies

between entities, file
structure

Other Cost 8 3 Saving money/effort
TOTAL
SUM

 187

 229

P10. An Empirical Study of Software Change

5.2. H04: Acceptance rates of CRs
Figure 5 shows the acceptance rates of the CRs as of November 2003. 99 CRs were
accepted (approved, implemented, or closed), while 68 CRs are rejected (including
those cancelled). Performing a one-proportion test gives a P-value of 0.015, which
means that the difference is significant. Hence, H04 is rejected in favor of HA4.

Figure 6 shows the distribution of CR classes and accepted vs. rejected states. All
CRs that requested to remove a requirement are accepted, while the group that has the
highest rejection rate is new requirements.

We performed Chi-Square tests to study whether there is any relation between CR
categories as defined in Table 5, and acceptance rates. The P-value of the test is 0.253
(DF=4), which indicated no relation. However, it is interesting to note that the
maximum acceptance rate is for those with CR-focus Standards (72%), while the
minimum rate is for those with System and Cost (38% both). The others vary between
50 and 60%. As our system should comply with international standards to be
competitive and to inter-work with systems from other telecom operators, it is not
surprising that changes due to Standards are mostly accepted. However, the low
acceptance rate for Cost is surprising. The number of associated CRs is only 8, although
many other CRs also impact cost (for example CRs that ask for removal of
requirements). We cannot conclude otherwise that (low) cost is not a strong enough
reason to accept a CR by itself.

Analyzed
1 %

Cancelled/
Rejected

40 %

Approved/
Impl./

Closed
59 %

Figure 5 Acceptance rate of 169 CRs

 230

 P10. An Empirical Study of Software Change

0%

20%

40%

60%

80%

100%

New Req. Mod Req Rem Req Mod Sol Mod Doc

Accepted CRs Rejected CRs

Figure 6 Acceptance rates and CR classes

Finally, we want to analyze whether the four releases vary significantly in acceptance

rates of the CRs. Release 3 only has four CRs and hence cannot contribute to any
significant conclusion. The overall results show that the acceptance rates of CRs have
been increasing over the lifetime of the product as shown in Figure 7.

The organization has already studied requirement volatility in high-level
requirements (those stated in the ARS), i.e. if they change after baseline. While this rate
is 10% for Release 1, it is almost 30% for Release 3. I.e. both results indicate that the
product is getting more change-prone over releases, or more changes are allowed.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Release
1

Release
2

Release
3

Release
4

Rejected CRs (%)
Accepted CRs (%)

Figure 7 Relative distribution of CR states over the product releases (total of

169 CRs)

5.3. H05: Software reuse and CBD
Reuse of these components started from release 4, when development of system B
started. Regrettably, only 81 of 118 CRs of release 4 have registered athe affected

 231

P10. An Empirical Study of Software Change

component name in the CR. Besides, CRs only register higher-level components, i.e.
subsystems that consist of several related blocks.

System A consists of 3 application subsystems, 4 subsystems in the business-specific
later, and 6 subsystems in the middleware layer (thus 10 reusable subsystems) in this
release. Figure 8 shows the distribution of #CRs per KLOC for subsystems. We have
one outlier, which is a small subsystem, handling configuration and tools, and which is
left out from the statistical test. We performed a two-tailed t-test, which showed no
significant difference in means for reused vs. non-reused components; i.e. P(T<=t) two-
tail was 0.61, and H05 can not be rejected.

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14
Subsystems

#C
R

/K
LO

C

Figure 8 #CRs/KLOC for all 13 subsystems

6. Discussion
We comment each of the five hypotheses below.

H01: Most CRs are issued in order to optimize, and modify the product or
documentation, rather than changing the requirements, but the difference is not
significant. We need further analyses of the CRs to conclude whether the organization
could save some effort by better quality assurance of the solutions.

H02: Although CRs issued to change, enhance or remove functionality account for
the largest single group of CRs, quality attributes’ related CRs are the largest as a group.
This result highlights that that these attributes are optimized over time, and these
improvements will have great impact of the evolution of the products.

H03: The results show that the project organization initiates most CRs for enhancing
or optimizing the product.

H04: The results show that most CRs are accepted, especially those that request
modification of a requirement or documentation, or removal of a requirement. New
requirements need resources for implementation, and modification of previous solutions
may be considered as too time-consuming compared to the perceived benefits, and
therefore are more rejected. There was no significant difference in acceptance rates of
the functional vs. quality attributes CRs. One interesting result is that the acceptance
rate has been increasing in releases, and this may impact the precision of plans. The
organization has already realized that planning precision has been decreasing. In [11]

 232

 P10. An Empirical Study of Software Change

we described that incremental development opens for (more) changes in requirements,
and this study demonstrates this.

H05: We could not observe any significant difference between reused, and non-
reused components in number of CRs per KLOC. We have shown in [12] that reused
components (as blocks) are more stable in terms of volume of code modified between
releases, and more reliable in the terms of the number of Trouble Reports per KLOC.
Together, these results quantify the benefits of reuse.

The study raises some interesting questions as well: Does the organization take the
perhaps costly decision to baseline requirements too early, while the product still
undergoes dramatic evolution? Could the number of changes be predicted for future
releases using #CRs/KLOC from earlier releases?

Lastly, We have identified the following validity threats:
Construct validity: Most data categories are taken from the literature, and represent

well-known study concepts. We used maintenance categories for all changes during
development after requirement baseline. Previous works study changes post-delivery in
the maintenance phase.

Internal validity: The biggest threat is that we ignore many CRs with no subsystems
given in H5.

External validity: The study object is a large telecom system during three years of
development. The results should be relevant and valid for similar systems and
organizations, but not e.g. for web-based systems with very high change rates.

Conclusion validity: In H5, we have too little data caused by coarse-granular
subsystems, . Otherwise, the data material is sufficient to draw valid conclusions.

7. Conclusion and future work
We defined 5 research questions in Section 2.3, and related them to the research
hypotheses in Table 2. The results of the analyses are used to answer these:

RQ1 & RQ2 (origin): Most changes originate from the project organization in order
to improve quality, and enhance functionality. The share of the first group is higher. The
practice indicates iterative realization, and improvement of quality attributes, but
functionality is also improved in a lower degree.

RQ3 (impact): CRs are not supplied with the actual cost of implementing the
changes, only an estimate. However, we found that most CRs are accepted, and the
acceptance rate can have impact on the project plans in terms of decreasing planning
precision.

RQ4 (phase): Most CRs are issued pre-delivery, and especially in the short time
right after requirement baseline. CRs are issued both before and after implementation of
requirements.

The study gives insight into evolution as shown in Figure 1: Quality attributes and
functionality are iteratively improved between releases reflecting in the number of CRs
to modify solutions, in addition to corrective maintenance. Each release also undergoes
changes mostly in form of new or modified requirements that are adaptive, or
functional. It also shows that evolution of earlier releases has stopped as expected. The
organization should notice the increased number and acceptance rate of CRs, which
require extra resources to handle, and implement these.

The study’s contribution is in the empirical evaluation of the intention (categories
and goals), origin of changes, and of the distribution between functional and non-

 233

P10. An Empirical Study of Software Change

functional (quality) requirements/attributes in a large-scale project over time. It also
extends the concept of software change to the development and evolution phases when
the system is developed incrementally and iteratively.

We also have data on the original requirements in each release, and plan to analyze
these to increase our understanding on software change as reflected in requirement
evolution between releases.

Acknowledgements
The work was done in the context of INCO (INcremental and COmponent-based
Software Development), a Norwegian R&D project in 2001-2004 [15], and as part of
the first author’s PhD study. H. Schwarz and O.M. Killi gathered the first set of CRs
during their work on their joint master thesis in spring 2003. We thank them for the
effort. We also thank Ericsson in Grimstad for the opportunity to perform this study.

References

[1] Algestam, H., Offesson, M., Lundberg, L.: Using Components to Increase

Maintainability in a Large Telecommunication System. Proc. 9th International Asia-
Pacific Software Engineering Conference (APSEC’02), 2002, pp. 65-73.

[2] Baldassarre, M.T., Bianchi, A., Caivano, D., Visaggio, C.A., Stefanizzi, M.:
Towards a Maintenance Process that Reduces Software Quality Degradation Thanks
to Full Reuse. Proc. 8th IEEE Workshop on Empirical Studies of Software
Maintenance (WESS’02), 2002, 5 p.

[3] Basili, V.R: Viewing Maintenance as Reuse-Oriented Software Development. IEEE
Software, 7(1): 19-25, Jan. 1990.

[4] Bennett, K.H., Rajlich, V.: Software Maintenance and Evolution: a Roadmap. In
ICSE’2000 - Future of Software Engineering, Limerick, 2000, pp. 73-87.

[5] Damian, D., Chisan, J., Vaidyanathasamy, L., Pal, Y.: An Industrial Case Study of
the Impact of Requirements Engineering on Downstream Development. Proc. IEEE
International Symposium on Empirical Software Engineering (ISESE’03), 2003, pp.
40-49.

[6] Jørgensen, M.: The Quality of Questionnaire Based Software Maintenance Studies,
ACM SIGSOFT - Software Engineering Notes, 1995, 20(1): 71-73.

[7] Lehman, M.M.: Laws of Software Evolution Revisited. In Carlo Montangero (Ed.):
Proc. European Workshop on Software Process Technology (EWSPT96), Springer
LNCS 1149, 1996, pp. 108-124.

[8] Lientz, B.P., Swanson, E.B., Tompkins, G.E.: Characteristics of Application
Software Maintenance. Communications of the ACM, 21(6): 466-471, June 1978.

[9] Malaiya, Y., Denton, J.: Requirements Volatility and Defect Density. Proc. 10th
IEEE International Symposium on Software Reliability Engineering (ISSRE’99),
1999, pp. 285-294.

 234

 P10. An Empirical Study of Software Change

[10] Mockus, A., Votta, L.G.: Identifying Reasons for Software Changes Using
Historical Databases. Proc. IEEE Int. Conference on Software Maintenance
(ICSM’00), 2000, pp. 120-130.

[11] Mohagheghi, P., Conradi, R.: Using Empirical Studies to Assess Software
Development Approaches and Measurement Programs. Proc. 2nd Workshop in
Workshop Series on Empirical Software Engineering (WSESE’03), 2003, pp. 65-
76.

[12] Mohagheghi P., Conradi R., Killi, O.M., Schwarz, H.: An Empirical Study of
Software Reuse vs. Defect-Density and Stability, Accepted for ICSE’2004, 10 p.

[13] Rational Inc. www.rational.com
[14] Schach, S.R., Jin, B., Yu, L., Heller, G.Z., Offutt, J.: Determining the Distribution

of Maintenance Categories: Survey versus Measurement. Empirical Software
Engineering: An International Journal, 8(4): 351-365, Dec. 2003.

[15] INCO project: http://www.ifi.uio.no/~isu/INCO/
[16] Sommerville, I.: Software Engineering. 6th Ed., Addison-Wesley, 2001.
[17] Stark, G., Skillicorn, A., Ameele, R.: An Examination of the Effects of

Requirement Changes on Software Releases. CROSSTALK - The Journal of Defence
Software Engineering, Dec. 1998, pp. 11-16.

[18] Zowghi, D., Nurmuliani, N.: A Study of the Impact of Requirements Volatility on
Software Project Performance. Proc. 9th International Asia-Pacific Software
Engineering Conference (APSEC’02), 2002, pp. 3-11.

 235

www.rational.com
http://www.ifi.uio.no/~isu/INCO/

 236

 P11. Exploring Industrial Data Repositories

P11. Exploring Industrial Data Repositories:
Where Software Development Approaches Meet

Parastoo Mohagheghi, Reidar Conradi
Department of Computer and Information Science, NTNU, NO-7491 Trondheim, Norway

parastoo@idi.ntnu.no, conradi@idi.ntnu.no

Abstract
Lots of data are gathered during the lifetime of a product or project in different data
repositories that may be part of a measurement program or not. Analyzing this data is
useful in exploring relations, verifying hypotheses or theories, and in evaluating and
improving companies’ data collection systems. The paper presents a method for
exploring industrial data repositories in empirical research and describes experiences
from three cases of exploring data repositories of a large-scale telecom system: A study
of defect reports, a study of change requests, and a study of effort. The system in study
is developed incrementally, software is reused in a product line approach, and the
architecture is component-based. One main challenge is the integration of the results of
studies with one another and with theory. We discuss that the challenges of integration
especially arise when development approaches meet one another, while metrics and
measurement programs do not. In order to develop advanced theories on the relations
between development approaches and their impacts, measurement programs should be
updated to collect some basic data that meets all the development approaches. A set of
metrics for incremental, reuse-, and component-based development is identified.

Keywords: Data repositories, data mining, metrics, component-based development,
incremental development, reuse.

1. Introduction
Exploring industrial data repositories for valuable information has been performed for
many decades and the fields of Data Mining and Exploratory Data Analysis (EDA)
have grown to become own branches of computer science. With the growing rate of
empirical studies in software engineering and the gained approval of such studies for
assessing development approaches and verifying theories, exploring data collected in
industrial data repositories is more often performed, standing alongside other empirical
methods. The goals of such studies can be exploratory (finding relations or
distributions), confirmatory (verifying relations or theories), or used in triangulation for
putting different sources of information against each other. Data repositories are also
used in searching for design patterns, user interaction patterns, or reengineering legacy
systems. For companies, the studies are useful to give insight into their collected data
and to assess internal measurement programs and data collection systems. The focus of

 237

mailto:parastoo@idi.ntnu.no

P11. Exploring Industrial Data Repositories

this paper is on data that can be used to assess quality of software or software
development processes.

We present three empirical studies of exploring data repositories of a large telecom
system developed by an Ericsson organization in Grimstad-Norway. These repositories
contained defect reports, change requests, and effort reports for several releases. We
also used data from the configuration management system on software size. Data for 3
years of development is collected in 2003 and 2004. The goals of the studies were to: a)
quantitatively assess hypotheses related to reuse and quality metrics such as defect-
density and stability of software components, b) explore the origin of software changes,
and c) adapt an estimation method for incremental development of software. We
describe steps in exploring data repositories, the role of literature search in the process,
and the importance of relating hypotheses to one another and to a theory or model. We
describe the challenges of integrating the results of these studies. The first challenge is
the physical challenge since data is stored in different data repositories and in multiple
formats. The second challenge is related to the conceptual integration of results for
comparing and combining these in order to build theories. We discuss that problems in
combining results especially arise when development approaches meet one another,
while metrics are not defined to do so. In this case, incremental, use-case driven, reuse,
product line, and component-based development approaches are used in parallel. We
propose therefore to define metrics in a way that we can collect data to assess each
approach, the combinations of these, and their impacts on one another.

The remainder of this paper is organized as follows. Section 2 discusses research
methods, the role of exploring industrial data repositories in empirical research, and
steps in such a study. Section 3 presents the studies performed in Ericsson, while
Section 4 summarizes the research challenges. Section 5 presents metrics for a
combination of development approaches. The paper is concluded in Section 6.

2. Exploring industrial data repositories in empirical research

2.1. Research classifications

Cooper et al. classify research design using 8 descriptors. One of the descriptors is the
degree to which the research question has been crystallized, which divides research into
exploratory and formal research [Coop01]. The objective of an exploratory study is to
develop research questions or hypotheses and is loosely structured. The goal of a formal
research is to test the hypotheses or answer the research questions.

Empirical research is research based on the scientific paradigm of observation,
reflection, and experimentation. Empirical studies may be exploratory or formal as any
other research. Empirical studies vary in scope, degree of control that the researcher has,
and the risk associated with such studies. Wohlin et al. classify empirical strategies in
three categories [Wohl00]: surveys, case studies, and experiments. Yin extends research
strategies to five, adding archival analysis and history to research strategies [Yin02]. He
does not provide further description of these strategies, except for defining archival
analysis most suitable for exploratory studies, while history analysis is proposed for
explanatory studies (answering how and why questions). Zelkowitz et al. classify
validation methods as observational, historical, and controlled, which can be referred as
research methods as well [Zelk98]. Wohlin et al. also divide empirical research into
being quantitative (quantifying a relation) or qualitative (handling other data than

 238

 P11. Exploring Industrial Data Repositories

numbers; i.e. texts, pictures, interview results, etc). A theory or even a hypothesis
should be studied by a combination of methods. For example, the Conjecture 9 in
[Endr04] says, “learning is best accelerated by a combination of controlled experiments
and case studies”.

Coop et al. define data mining as “the process of discovering knowledge from
databases stored in data marts or data warehouses [Coop01]. The purpose is to identify
valid, novel, useful, and ultimately understandable patterns in data. It is a step in the
evolution from business data to information”. They add, “data mining tools perform
exploratory and confirmatory statistical analyses to discover and validate relationships”.
When data is stored in repositories with little or no facilities for mining with data
mining tools, other research methods should be applied.

2.2. Role of exploring industrial data repositories in empirical research
With industrial data repositories, we mean contents of defect reporting systems, source
control systems, or any other data repository containing information on a software
product or a software project. This is data that is gathered during the lifetime of a
product or project and may be part of a measurement program or not. Some of this data
is stored in databases that have facilities for search or mining, while others are not.

Zelkowitz et al. define examining data from completed projects as a type of
historical study [Zelk98]. Using Yin’s terminology, it is classified either as archival
analysis or history. We mean that this is a quantitative technique where the results
should be combined with other studies of both types in order to understand the practice
or to develop theories.

 As the fields of Software Process Improvement (SPI) and empirical research have
matured, these communities have increasingly focused on gathering data consciously,
according to defined goals. This is best reflected in the Goal-Question-Metric (GQM)
paradigm developed first by Basili [Basi94]. It states that data collection should proceed
in a top-down rather than a bottom-up fashion. However, some reasons why bottom-up
studies are useful are:

1. There is a gap between the state of the art (best theories) and the state of the
practice (current practices). Therefore, most data gathered in companies’
repositories are not collected following the GQM paradigm.

2. Many projects have been running for a while without having improvement
programs and may later want to start one. The projects want to assess the
usefulness of the data that is already collected and to relate data to goals (reverse
GQM).

3. Even if a company has a measurement program with defined goals and metrics,
these programs need improvements from bottom-up studies.

Exploring industrial data repositories can be part of an exploratory (identifying
relations or trends in data) or formal (confirmatory; validate theories on other data that
the theories were built on) empirical research; e.g. in order to study new tools,
techniques or development approaches. It may be used in triangulation as well; i.e.
setting different sources of information against each other.

Exploring industrial data repositories may be relatively cheap to perform since data
is already collected. It has no risks for the company for interfering with on-going
activities. Sometimes extra effort is needed to process the data and insert it in a

 239

P11. Exploring Industrial Data Repositories

powerful database. An important aspect is the ethical one; i.e. having the permission to
perform such studies in companies and publish the results. The limitations are that the
quality of the gathered data is sometimes questionable, data needs cleaning or
normalization and other types of preparation before it may be used, and the hypotheses
are limited to the available data. Limitations have impact on validity of the results. For
example:

Missing data can reduce the power of statistical tests in hypotheses testing. −
− Generalization of results from single studies needs a clear definition of

population. Some researchers mean that generalization based on single studies is
possible if the context is well packaged and the case is carefully selected
[Flyv91].

2.3. Steps in exploring industrial data repositories
Figure 1 shows the main steps in our research. A description of each step is given
below.

The theoretical phase of the study starts either with a defined hypothesis or theory to
assess, or some research or management question to answer. We emphasize the role of
literature research or other secondary data analysis in the process. With such a study,
possible results will be integrated into the total body of knowledge; i.e. not stay stand-
alone and without any connection to a model or theory.

The preparation phase consists of a pre-study of data and definition of hypotheses or
theory for the context (the particular product, project, and environment). The researcher
must decide whether to use the entire data or a sample of it. After the data set is
selected, it should be explored visually or numerically for trends or patterns. EDA
techniques are also used in the exploring. Most EDA techniques are graphical such as
plotting the raw data, with the means and standard deviations etc. Together with the pre-
study of data, tools and statistical techniques for the analysis should be selected. Results
of the preparation phase may invoke further need for literature search or refinement of
research questions.

The execution phase consists of steps of a data mining process as described in
[Coop01]. The data is formally sampled if necessary and fully explored. Data may need
modification, e.g. clustering, data reduction, or transformation. Cooper et al. call the
next step for modeling, which uses modeling techniques in data mining (neural
networks, decision trees etc.). In the last step of the execution phase, hypotheses or
theories should be assessed or research questions should be answered. Finally the results
and the context are packaged and reported in the conclusion phase.

Very much like GQM, there is a hierarchy of goals, questions and metrics in Figure
1. But there is also a feedback loop between preparation and theoretical phases, due to
the impact of the bottom-up approach. Questions may be redefined or hypotheses may
be dropped if we do not data to assess them. However, there is no control of treatments,
although the study may be applied to contemporary events as well.

There are several interesting examples of successful use of industrial databases for
developing theories; e.g. Lehman developed the laws of software evolution by studying
release-based evolution of a limited number of systems [Lehm96].

 240

 P11. Exploring Industrial Data Repositories

Theory or
Hypothesis

Pre-Study
of Data

Sampling
yes/no

Explore
Data

Modify
Data

Assess

Research
Question

Literature
Search

Select/Define
Theory or
Hypotheses

Package
Results

confirmatory
exploratory

preparation

execution

conclusion

theoretical

Model

Select
Methods &

tools

Figure 1 Steps in the process of exploring industrial data repositories in

empirical research

3. Empirical studies in Ericsson

3.1. The context
Ericsson has developed several releases of two large-scale telecom systems using
component-based development and a product line approach based on reusing software
architecture and software components. Systems are developed incrementally and new
features are added to each release of them.

WPP Platform

Middleware
(& Component Framework)

Business Specific

Application A

Reused components
in our study

Reused, but considered
as COTS here

Application B
Application specific-
components

Figure 2 High-level architecture of systems A & B

The high-level software architecture is shown in Figure 2. The first system (system
A) was originally developed to provide packet data capability to the GSM (Global

 241

P11. Exploring Industrial Data Repositories

System for Mobile communication) cellular network. A later recognition of common
requirements with the forthcoming W-CDMA system (Wide-band Code Division
Multiple Access) lead to reverse engineering of the original software architecture to
identify reusable parts across the two systems. The two systems A and B in Figure 2
share the system platform, which is considered here as a Commercial-Off-The-Shelf
(COTS) component developed by another Ericsson organization. Components in the
middleware and business specific layers are shared between the systems and are hereby
called for reused components (reused in two distinct products and organizations and not
only across releases). Components in the application-specific layer are specific to
applications and are called for non-reused components. All components in the
middleware, business specific, and application-specific layers are built in-house.

The term component is used on two levels: for subsystems at the highest level of
granularity and for blocks. The system is decomposed in a number of subsystems. Each
subsystem is a collection of blocks and blocks are decomposed in a number of units,
while each unit is a collection of software source code modules. Subsystems and blocks
have interfaces defined in IDL (Interface Definition Language) and communication
between blocks inside a subsystem or between subsystems happens through these
interfaces. Communication within a block or unit is more informal and may happen
without going through an external interface.

The systems’ GUIs are programmed in Java, while business functionality is
programmed in Erlang and C. Erlang is a functional language for programming
concurrent, real-time, distributed, and fault-tolerant systems. The size of systems
measured in equivalent C code is more that one million lines of non-commented source
code. The development process is an adaptation of the Rational Unified Process (RUP)
[RUP]. RUP is an incremental, use-case driven, and UML-based approach.

We collected and analyzed data gathered in the defect reporting, configuration
management, change management, and effort reporting systems for three years of
software development. Some results are described in [Moha04a] [Moha04b]. In
[Moha03], we discuss how the results can be used to assess development approaches
and measurement programs. We give a brief overview of three studies here. The
external validity of all studies is threatened by the fact that the entire data set is taken
from only one company. The results may be generalized to other systems within the
same company or in similar domains.

3.2. Study of defect-density and stability of software components in the context of
reuse

In order to quantitatively assess the impact of reuse on software quality, we decided to
analyze data that is collected in the defect reporting and the configuration management
systems. The defect reporting system included over 13 000 defect reports (corrective
maintenance activity) for several releases of the systems. For three releases of system A,
we had data on the components’ size in Lines of Code (LOC) from the configuration
management system.

Theory and preparation: Study of defects is usually reported connected to the
subject of reliability (the ability of a system to provide services as defined), which is
thoroughly studied in literature. However, reliability of component-based systems is a

 242

 P11. Exploring Industrial Data Repositories

new field with few reported empirical studies. Based on the literature search and a pre-
study of the available data, we found two groups of research goals:

1. Earlier theories or observations such as correlation between size of a component
and its defect-density or the number of defects. Some studies report such a
correlation while others not.

2. Studying relations between reuse and software quality metrics. Some results are
reported from case studies in industry or university experiments.

We defined 4 hypotheses for quantitative assessment. We decided to assess whether
reused components have less defect-density than non-reused ones have and are more
stable (less modified between releases). We also decided to assess whether there is a
relation between component size, and number of defects or defect-density, for all
components and reused vs. non-reused ones (combining group 1 and 2). We chose
Microsoft Excel and Minitab for performing statistical analysis.

Execution and results: We did not take a sample but used the whole dataset of some
releases. All data on defects and components’ size were inserted in a Microsoft SQL
database using a C# program. Data for two releases of system A were used to assess
hypotheses. Our results showed that size did not correlate with defect-density. Only for
non-reused components, size correlated with the number of defects. Reused components
had significantly less defect-density than non-reused ones and were less modified
between releases. We concluded that reused components are designed more thoroughly
and are changed with more care. One confounding factor is the type of functionality
since non-reused components have more external interfaces than the reused ones have.

Contributions and experiences: Besides answering the research questions, the
study was also useful for assessing the defect reporting system. The templates for
reporting a defect had changed several times, introducing inconsistencies. Many
Trouble reports had missing fields that reduced the internal validity of the results.

Research challenges: We met several challenges in the study:
1. The granularity of component definition: Some defect reports have registered

only the subsystem name, while others have registered block name, unit name,
or software module name. The main reason is that the origin of fault was not
known when the defect was reported and the defect reports are not updated later
for this information. We assessed our hypotheses both with subsystems and
blocks with similar results. However, the number of subsystems was too low (9-
10) for statistical tests.

2. The concept of reuse: Reuse may happen in the releases of the same product, or
in multiple products and across organizations. Some mean that the first type
cannot be classified as reuse. We defined a reused component to be a component
that is used in more than one product.

3. Incremental and component-based development: Ideally hypotheses on defect-
density should be assessed for both pre-release and post-release defects. As
mentioned by Fenton [Fent00a], the results may differ and those modules that
have most pre-release faults, may have least post-release faults. But this turned
out to be difficult, if not impossible with the current data of several reasons:
Only the whole system is labeled with a release date and not components, the
development of a new release is usually running in parallel with testing of the
previous one, a component is usually involved in several use cases and is

 243

P11. Exploring Industrial Data Repositories

therefore updated and tested by several teams etc. Thus, relating defects to
component releases or life-cycle phases was difficult.

3.3. Study of software change
We performed an exploratory study of the contents of the change management system.
The database consisted of 160 Change Requests or CRs of 4 releases of system A. CRs
are issued to add, delete, or modify a requirement after requirement baseline, or to add
or modify a solution or documentation. The quality attributes related to software change
are stability, evolvability or maintainability (or need for such).

Exploring the database: The variables that we had data on were size of components
in LOC, type of components (reused or non-reused), and CRs in different releases. CRs
are written in FrameMaker and Word using templates that have changed a few times
and contain information on reason for the request, consequences, affected components,
estimated effort etc.

Hypotheses selection based on literature and data: We found studies on
distribution of maintenance activities and one study on the improvement of
maintainability using a component-based architecture. Studies on requirement
engineering have assumed that most changes are due to external factors (changing
environment or customer needs). We found no study that on the origin of changes in
more details. We decided to assess the distribution of change requests in the categories
used in other studies (perfective, adaptive, preventive), over functional vs. non-
functional reasons, phase (pre-or post delivery, before or after implementation), and to
compare change-proneness in the number of CRs/size for reused vs. non-reused
components.

Selecting and normalizing data: Data from CRs were inserted in a Microsoft SQL
database using a C# program and partly manually. We noticed the same problems as
described in Section 3.2 with missing data.

Contributions of the study: Our study showed that most CRs are initiated by the
organization itself in order to improve a quality attribute (perfective and non-
functional). The shares of adaptive/preventive changes are lower, but still not as low as
reported in some previous studies. The study helped therefore to understand the origin
of changes. We did not identify any significant difference between the change-
proneness of reused and non-reused components. Most changes only affect one or two
subsystems (high-level components). The study also showed that the percentage of
accepted CRs is increasing over releases, which could be subject of further study.
Performing such a study early would be useful to improve the CR reporting system. On
some occasions, e.g. caused by coarse-granular components, we have too little data,
which impacts conclusion validity. Missing data in some CRs is the biggest threat to
internal validity.

Research challenges: We met again the challenge of the granularity of component
definition: Change-proneness and the impact of CRs on sub-components could not be
assessed since CRs only have information on affected subsystems and not blocks. We
used the delivery data of the whole system for differing pre- and post-release CRs.

3.4. Study of effort

 244

 P11. Exploring Industrial Data Repositories

We have collected and partly analyzed data on the effort spent in 2 releases of system A.
The goal of this study is to calibrate an estimation method based on use cases. This
study is still going on, but it gave us insight on how effort is spent in different activities
in several releases.

Selecting and normalizing data: Effort is registered using development phases such
as analysis, coding, unit testing etc. for each member of a team. Teams are organized in
different ways; i.e. around use cases, non-functional requirements such as performance,
features that cross use cases, or ‘just-in-time’ for an extra task such as reengineering or
re-factoring a solution or a component. There are also teams for handling methods and
tools, configuration management, and system test. We received some effort data in
printed form and some in Excel sheets. We had to parse the data, make consistent
categories, re-group the data, insert it into new Excel sheets, and summarize it.

Experiences: There are inconsistencies in categories used in different releases and
the effort reporting system has changed in the middle of one release.

Research challenges: We met the following challenges:
1. Organizational: We had data on effort spent by each team, but teams did not

record their tasks detailed enough to divide the total effort between use cases,
features, or non-functional requirements. Teams are also organized in different
ways, making it difficult to map teams to requirements.

2. Use-case driven approach and component-based development: Ivar Jacobson,
one of the pioneers of UML, the Unified Process (UP), and use cases writes that
“a component realizes pieces of many use cases and a use case is usually
realized by code in many components” [Jaco03]. These two decomposition
effects are known as tangling and scattering [Tarr99]. Although these effects are
well known and discussed both by Jacobson and others (recently especially by
the Aspect Oriented Programming community), the impacts on metrics programs
and effort reporting systems are not discussed. When effort is recorded per use
case, it is spread over components and vice versa.

3. Use case driven and product line development: Requirements are first defined in
features that are characteristics for product line development and later mapped to
use cases. Tangling and scattering effects are observed here as well.

4. Discussion of research challenges
We faced two major challenges in comparing and combining results of the studies,
which are discussed in other work as well (although with other labels), but not properly
solved yet. We refer to them as the challenges of integration in two dimensions:

Physical integration refers to integration of databases. The research method may be
shared, but the techniques used for exploration of data are very context dependent. In
our examples, data on defects and CRs are stored in separate data repositories without
having a common interface or analysis tool. One attempt to answer the challenge of
physical integration is described in [Kitc01]. The authors’ measurement model consists
of three layers: The generic domain, the development model domain, and the project
domain. The first two domains define the metadata for data sets. In this study, we
achieved physical integration by inserting all data extracted in the three studies in a SQL
database.

 245

P11. Exploring Industrial Data Repositories

Conceptual integration refers to integrating the results of separate studies and
integration of results into theories; either existing or new ones. This is not specific to
this type of research and empirical studies generally suffer from lack of theories that
bind several observations to one another. We observe that the conceptual challenges
listed in Sections 3.2, 3.3, and 3.4 are mostly introduced in the intersection between
development approaches:

The granularity problem arises when the old decomposition system in industry
meets the component-based development approach and when data is not
collected consistently. For example, we could only compare change-proneness
and defect-proneness of components in the highest level (subsystems) and did
not have data on change-proneness of blocks.

−

−

−

−

The reuse definition problem arises with the introduction of product line
development without having consensus on definitions.
Incremental and component-based development: metrics are either defined for
the one or other approach.
Use-case driven approach, product line development, and component-based
development: effort reporting system is neither suitable for finding effort per use
case or feature, nor per component.

We suggest two steps for solving these challenges and also integrating the results;
both physically and conceptually:

1. Using a common database for data collection with facilities for search and data
mining.

2. Defining metrics that are adapted for the combination of development
approaches.

Some commercial metrics tools are available, but we have not studied them
thoroughly enough to answer whether these are suitable for our purpose. The second
step is the subject of the next section.

5. Metrics for incremental, reuse, and component-based development
Fenton et al. write: “Most objectives can be met with a very simple set of metrics, many
of which should be in any case be available as part of a good configuration management
system. This includes notably: information about faults, failures and changes
discovered at different life-cycle phases; traceability of these to specific system
‘modules’ at an appropriate level of granularity; and ‘census’ information about such
modules (size, effort to code/test)” [Fent00b]. We can’t agree more, but also add that
metrics should be adapted for a mixture of development approaches.

We use experiences in the three above examples and other studies we have
performed in Ericsson to propose improvements and identify metrics as described:

1. Decide the granularity of ‘modules’ or ‘components’ and use it consistently in
metrics. Don’t define some metrics with one component granularity and others
with another, unless it is clear how to combine or compare such metrics.

2. The following data should be gathered for components:
2.1.Size (in Lines of Code if developed in-house or if source code is available,

or in other proper metrics) at the end of each release,
2.2.Size of modified code between releases,

 246

 P11. Exploring Industrial Data Repositories

2.3.Faults (or defects), with information on life-cycle phase, release and
product identity,

2.4.Effort spent on each component in each release,
2.5.Trace to requirement or use case (this is also useful for documentation and

debugging) that could be updated when the component is taken in use,
2.6.Type: new, reused-as-is or modified,
2.7.Change requests in each release,
2.8.Date of delivery in a release that can be set by a configuration

management system and be easily used later to decide whether a fault is
detected pre-or post-release, or whether a change request is issued pre- or
post-delivery.

3. The following data should be gathered for increments or releases:
3.1. Total size of the release,
3.2. Size of new and modified code,
3.3. Requirements or use cases implemented,
3.4. Effort spent in the release.

4. Effort should be recorded both per component and per use case or feature.
The list shows that it doesn’t help to define a set of metrics for a development

approach without considering the impact of other approaches. Having this data available
would make it possible to assess software quality in different dimensions and answer
questions such as: Are defect-density and change-proneness of components correlated?
Can we estimate effort based on the number or complexity of use cases, or changes in
components? Which components change most between releases? What is the impact of
reuse, component-based, incremental development, or a combination of these on needed
effort? Hence, we could build theories that combine development approaches.

6. Conclusions and future work
We presented three empirical studies performed by exploring industrial data
repositories. We could verify hypotheses on the benefits of reuse, explore the origin the
changes for future studies, and study effort distribution and adapt an estimation method,
empirically and quantitatively. As our examples show, quantitative techniques may be
used in different types of research. In many cases, exploring industrial data repositories
is the only possible way to assess a theory in the real world.

While some concrete results are already published, this paper has the following
contributions:

1. Promote the discussion on exploring industrial data repositories as an empirical
research method, its advantages and limitations, and presenting a simple method
to do so. The method described in Section 2.3 combines the theoretical and
preparation phases defined by us, with steps of a data-mining process as defined
in [Coop01].

2. Getting insight into the challenges of defining and collecting metrics when
development approaches are used in parallel.

3. Identifying a basic set of metrics for incremental, component-based, and reuse-
based development.

 247

P11. Exploring Industrial Data Repositories

The set of metrics proposed in Section 5 does not contain any new metrics, but
emphasizes that metrics should be adapted for a combination of development
approaches. This basic set should be collected before we can build advanced theories on
the relations between development approaches.

We plan to work further on the physical and conceptual challenges meeting
measurement programs, with focus on evolution of component-based systems in the
upcoming SEVO project (Software Evolution in Component-Based Software
Engineering) [SEVO04].

7. Acknowledgements
The work is done in the context of the INCO project (INcremental and COmponent-
based Software Development [INCO01]), a Norwegian R&D project in 2001-2004 and
as part of the first author’s PhD study. We thank Ericsson in Grimstad for the
opportunity to perform the studies.

8. References

[Basi94] Basili, V.R., Calidiera, G., Rombach, H.D., “Goal Question Metric Paradigm”,

In: Marciniak, J.J. (ed.): Encyclopaedia of Software Engineering. New York Wiley
1994, pp. 528-532.

[Coop01] Cooper, D.R., Schindler, P.S., Business Research Methods, McGraw-Hill
International edition, seventh edition, 2001.

[Fent00a] Fenton, N.E., Ohlsson, N., “Quantitative Analysis of Faults and Failures in a
Complex Software System”, IEEE Trans. Software Engineering, 26(8), 2000, pp.
797-814.

[Fent00b] Fenton, N.E., Neil, M., “Software Metrics: Roadmap”, Proc. of the
Conference on the Future of Software Engineering, June 04-11, 2000, Limerick,
Ireland, pp. 357-370.

[Flyv91] Flyvbjerg, B., Rationalitet og Magt I- det konkretes videnskab, Akademisk
Forlag, Odense, Denmark, 1991.

[Jaco03] Jacobson, I., ”Use Cases and Aspects- Working Seamlessly Together”, Journal
of Object Technology, 2(4): 7-28, July-August 2003, online at: http://www.jot.fm

[INCO01] The INCO Project: http://www.ifi.uio.no/~isu/INCO/
[Jørg04] Jørgensen, M., Sjøberg, D., “Generalization and Theory Building in Software

Engineering Research”, Accepted in the 8th International Conference on Empirical
Assessment in Software Engineering (EASE2004), 24-25 May 2004, Edinburgh,
Scotland.

[Lehm96] Lehman, M.M., “Laws of Software Evolution Revisited”, In Carlo
Montangero (Ed.), Proc. European Workshop on Software Process Technology
(EWSPT96), Nancy, France, 9-11 Oct. 1996, Springer LNCS 1149, pp. 108-124.

 248

http://www.jot.fm/
http://www.ifi.uio.no/~isu/INCO/

 P11. Exploring Industrial Data Repositories

[Kitc01] Kitchenham, B.A., Hughes, R.T., Linkman, S.G., “Modeling Software
Measurement Data”, IEEE Trans. Software Engineering, 27(9): 788-804, September
2001.

[Moha03] Mohagheghi, P., Conradi, R., “Using Empirical Studies to Assess Software
Development Approaches and Measurement Programs”, Proc. 2nd Workshop in
Workshop Series on Empirical Software Engineering - The Future of Empirical
Studies in Software Engineering (WSESE’03), Rome, 29 Sept. 2003, pp. 65-76.

[Moha04a] Mohagheghi, P., Conradi, R., Killi, O.M., Schwarz, H., “An Empirical
Study of Software Reuse vs. Defect-Density and Stability”, Proc. of the 26th
International Conference on Software Engineering (ICSE'04), IEEE Computer
Society Order Number P2163, pp.282-292.

[Moha04b] Mohagheghi, P., Conradi, R., “An Empirical Study of Software Change:
Origin, Acceptance Rate, and Functionality vs. Quality Attributes”, Accepted in the
2004 ACM- IEEE International Symposium on Empirical Software Engineering
(ISESE’04), 10 p.

[Tarr99] Tarr, P., Ossher, H., Harrison, W., Sutton, S., “N Degrees of Separation: Multi-
Dimensional Separation of Concerns”, Proc. of ICSE 1999, pp.107-119, 1999.

[RUP] www.rational.com
[SEVO04] The SEVO project: http://www.idi.ntnu.no/grupper/su/sevo.html
[Zelk98] Zelkowitz, M.V., Wallace, D.R., “Experimental Models for Validating

Technology”, IEEE Computer, Vol. 16, pp. 191-222.
[Wohl00] Wohlin, C., Runeseon, P., M. Höst, Ohlsson, M.C., Regnell, B., Wesslen, A.,

Experimentation in Software Engineering, Kluwer Academic Publications, 2000.
[Yin03] Yin, R.K., “Case Study Research, Design and Methods”, Sage Publications,

2002.

 249

http://www.rational.com/
http://www.idi.ntnu.no/grupper/su/sevo.html

 250

 P12. A Study of Effort Breakdown Profile

P12. A Study of Effort Breakdown Profile
in Incremental Large-Scale Software Development

Parastoo Mohagheghi, Reidar Conradi
Norwegian University of Science and Technology

Abstract
Software projects often exceed their budgets, schedules or usually both. Some reasons
are too optimistic estimations, poor knowledge about how to break down effort to
different activities in a top-down estimation or how to estimate the total effort based on
estimating some activities. Effort breakdown profiles are therefore important to study
and such profiles should be updated for major changes in development approaches or
tools. There is also a need for empirical assessment of profiles in organizations.

We gathered data on effort estimations and the actual effort spent in two releases of a
large telecom software system that is developed incrementally. The data on effort spent
in different activities show that only half the effort is spent before system test on
specification, analysis, design, coding and unit testing. The other half is spent on system
test, project management, software processes and Configuration Management (CM).
The contributions of the study are: 1) presenting an effort breakdown profile showing
the share of activities such as software process adapting, CM and system test for an
incrementally developed large-scale system with recent technologies, and 2) suggesting
that incremental development will increase the share of system testing and CM. When a
system is developed incrementally, software developed in different increments should
be integrated, and regression testing and other techniques such as inspections should
secure quality.

Keywords. Effort estimation, effort break down, incremental development, software
process

Introduction

We may have a look at some software estimation methods as an introduction to the
motivation behind this study. Estimation methods are roughly divided in two groups:
top-down and bottom-up. In a top-down method, total effort or elapsed time is estimated
based on some properties of the project as a whole and later is distributed over project
activities. Examples of top-down estimation methods are COCOMO 2.0 [3] and
regression analysis using historical databases. The bottom-up approach involves
breaking down the actual project into activities, estimating these and summing up to
arrive at the total required effort or time [7]. Magne Jørgensen suggests that expert

 251

P12. A Study of Effort Breakdown Profile

estimations are more accurate when performed bottom-up, unless the estimators have
experience from or access to very similar projects [4].

Although expert estimation is probably the most widely used method for estimation
of software projects, the properties of such estimation methods are not well known [4].
Even software companies have few explicit guidelines to help their experts in
estimating software projects in a given organizational context. In Norway, the Simula
Research Laboratory has started the BEST project (Better Estimation of Software
Tasks) to stimulate research on software estimation. Results of a recent survey on the
state of estimation among 52 project managers in 18 Norwegian companies published in
the BEST website [2] shows that average effort overruns are 41%, that expert estimation
is the dominating estimation method and the software estimation performance has not
changed much the last 10-20 years [6].

One way to increase the accuracy of estimations is to improve our understanding of
the share of different activities in software development or so-called effort breakdown
profiles. An example of a breakdown as “the industry average profile for a project that
uses traditional methods” is suggested by Charles R. Symons to be: Analysis 22%,
Design 15%, Coding and Unit Test 46%, System Test 12% and Implementation 5%
1[7]. As Symons mentions, the profile varies depending on several factors. For example,
if a project uses a powerful CASE tool to generate code, the share of Coding will
decline, and the share of Analysis and Design will increase. The profiles must therefore
be calibrated for different organizations, development methods or tools. Effort
breakdown profiles are important when estimating in a bottom-up style, when breaking
down the total effort between activities in a top-down method, or for evaluating and
calibrating estimation methods. Our study to calibrate a top-down estimation method for
an industrial project showed that the profile is important in calibrating. The original
method was tested on projects with a profile similar to Symons, while projects in our
study spent a lot of effort on activities that were either not predicted in the estimation
method (such as CM) or consumed much more effort than predicted.

Software Processes and Effort
There are two new factors in large-scale system development that need more attention
when discussing effort. The first factor is that software companies are increasingly
developing software using systematic software processes that should be developed or
adapted and be maintained. Some known examples are the Rational Unified Process
(RUP) or eXtreme Programming (XP). Introducing a software process needs training as
well, and the cost or effort of introducing or maintaining software processes should be
explicit in the total profile; i.e. not be buried down in other activities. The second factor
is that large-scale systems are developed incrementally. Although there is some
evidence that incremental development reduces the risks for schedule overruns [5], there
are no empirical studies on the relation between incremental development, and effort.
We may assume that:

−
−

Integration effort increases due to several increments that must be integrated.
There is an increasing need for CM systems and processes to handle iterations,
releases or upgrades of different releases. Mark Vigder in his position paper on

1 These activities are not defined in more details. It is reasonable to think that Specification is

included in Analysis, and Implementation covers also deployment and installation.

 252

 P12. A Study of Effort Breakdown Profile

maintainability of component-based systems suggests that we need flexible CM
to ease adding, removing, replacing and upgrading components [8]. This is true
also for incremental development of software.
System Test effort increases due to regression testing to assure that new
functionality complies with old one.

−

−

−

−

−
−
−
−

Effort spent on quality assurance techniques such as inspections may increase to
assure compliance with old deliveries and consistency among those. These
techniques also need adaptation to incremental development.

COCOMO 2.0 assumes an incremental model for development but the impact on
effort is unclear. COCOMO 2.0 includes also a factor for economy or diseconomy of
scale when the system size grows. Applying CASE tools or other tools that facilitate
software development and testing are some reasons for the economy of scale. Growing
communication overhead and increased dependencies are some reasons for the
diseconomy of scale. Benediktsson et al. analyzed a COCOMO-style effort framework
to explore the relation between effort and the number of increments [1]. In their model,
effort will decrease with allowing sufficiently high number of increments (around 20)
when the diseconomy of scale is large. However, their calculation only includes the
diseconomy of scale factor and not increased effort due to other factors in incremental
development.

Some Historical Data
We have analyzed data on effort spent in developing two releases of a large-scale
telecom software system. The software process is an adaptation of RUP. Each release is
developed in 5-7 iterations of 2-3 months duration, and the development environment
uses CM tools and routines for integration and testing of new increments and new
releases. The system is modeled in UML and coded mostly manually in multiple
programming languages. The system size is in equivalent C code is calculated to be
more than one million non-commented source lines of code. Data on effort spent in
different activities as reported by all staff in an effort-recording system is collected and
summed up in the following categories as shown in Table 1:

Development before System Test: Specification, Analysis and Design, Coding,
Module Test, Use Case Test, trouble fixing, reviews and inspections.
System Test: All testing done in simulated and real environment in the company,
but excluding final node test in customers’ site.
Project Management: Administration and project meetings.
Software Process: Adapting and maintaining RUP and related tools.
CM: Release management, build, and patching.
Other: Travels, documentation and unspecified.

Table 1 Percentages of effort spent in different activities

 Development
before

System Test

System
Test

Project
Management

Software
Process

CM Other

Rel. 1 49 25 10 2 11 3
Rel. 2 55 18 11 5 7 4

 253

P12. A Study of Effort Breakdown Profile

Note that Release 2 is not fully tested yet and the share of system test will slightly
increase for this release.

The company in the study used an inside-out estimation method; i.e. it estimated the
effort needed for Development before System Test and multiplied it by an overhead
factor to cover the rest. The overhead factor varied between 1.0 and 2.5 in different
estimations. Comparing estimations with the actual data suggests that expert estimations
were too optimistic (almost 50% less than the actual effort used in Development before
System Test). Data in the study shows that managing teams, processes and deliveries
counts for 23% of the total effort in both releases, with roughly half on Project
Management, and half on Software Process and CM. Besides, System Test takes 20-
25% of effort. In fact, System Test can run as long as the project schedule allows
(remember Parkinson’s law: Work expands to fill what time available), but empirical
data shows the above share. Other observations are:

Effort spent in Development before System Test must be multiplied
approximately by 2 to give the total effort. The empirical data allows finding an
overhead factor that may be used for future estimations.

−

− Symons predicts a reduction in effort when methods or tools are used for the
second time, and COCOMO’s precedentness factor has a similar effect. We
observe a reduction in CM effort, while a slight increase in Software Process,
which we relate it to more extensive work with software processes in the second
release.

Conclusions
An effort profile for incremental development of a large telecom system is presented,
but we have no data from similar studies to compare this with in this domain or other
dimains. It is reasonable to think that with incremental development more effort will be
needed in putting pieces together, reflected in more CM and system testing. One way to
handle this is to add a percentage to effort in some activities. We wonder whether the
profile has characteristics that may be generalized to other projects.

Such historical data may be useful for researchers to calibrate estimation methods
and study relations between development approaches and effort. The distribution of
effort over activities may vary with the type of systems and organizations. However, the
distribution seems to be relatively stable for releases of a single system and may be
generalized to similar systems in the same organization and is therefore worth to study
for practitioners. They may also use the results of such studies as rule-of-thumbs rules
for estimating total effort based on some activities or to distribute the estimated effort
by some top-down method over activities.

References

[1] Benediktsson, O., Dalcher, D.: Developing a new Understanding of Effort

Estimation in Incremental Software Development Projects. Proc. Intl. Conf.
Software & Systems Engineering and their Applications (ICSSEA’03), December 2-
4, 2003, Paris, France. Volume 3, Session 13, ISSN 1637-5033, 10 p.

 [2] The Best project: http://www.simula.no/~simula/se/bestweb/index.htm

 254

http://www.simula.no/~simula/se/bestweb/index.htm

 P12. A Study of Effort Breakdown Profile

[3] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R.: Cost
Models for Future Software Life Cycle Processes: COCOMO 2.0. USC center for
software engineering, 1995, online at: http://sunset.usc.edu/research/COCOMOII/

[4] Jørgensen, M.: Top-down and Bottom-up expert Estimation of Software
Development Effort. Information and Software Technology, vol.46 (2004), pp. 3-
16.

[5] Moløkken, K., Lien, A.C., Jørgensen, M., Tanilkan, S.S., Gallis, H., Hove, S.E.:
Does Use of Development Model Affect Estimation Accuracy and Bias? Proc.
Product Focused Software Process Improvement: 5th International Conference,
PROFES 2004, Kansai Science City, Japan, April 5-8, 2004. Springer-Verlag,
ISBN: 3-540-21421-6. pp. 17-29.

 [6] Moløkken, K., Jørgensen, M., Tanilkan, S.S., Gallis, H., Lien, A.C., Hove, S.E.: A
Survey on Software Estimation in Norwegian Industry”. Accepted for Metrics 2004.

[7] Symons, P.R., Software Sizing and Estimating MK II FPA (Function Point
Analysis), John Wiley & Sons, 1991.

[8] Vigder, M.: Building Maintainable Component-Based Systems. Proc. 1999
International Workshop on Component-Based Software Engineering, pp. 17-18
May 1999. http://www.sei.cmu.edu/cbs/icse99/papers/38/38.pdf

.

 255

http://sunset.usc.edu/research/COCOMOII/
http://www.sei.cmu.edu/cbs/icse99/papers/38/38.pdf

 256

 P13. Use Case Points for Effort Estimation

P13. Use Case Points for Effort Estimation –
Adaptation for Incremental Large-Scale Development and

Reuse Using Historical Data

Parastoo Mohagheghi1, Bente Anda2, Reidar Conradi1
1Department of Computer and Information Science, NTNU, NO-7491 Trondheim, Norway

2Simula Research Laboratory, P.O.Box 134, NO-1325 Lysaker, Norway
parastoo@idi.ntnu.no, bentea@simula.no, conradi@idi.ntnu.no

Abstract
In Incremental development, each release of a system is built on a previous release and
design modifications are made along with adding new capabilities. This paper describes
an empirical study, where an effort estimation method based on use cases, the Use Case
Points (UCP) method, is extended for incremental development with reuse of software
from a previous release and is calibrated for a large industrial telecom system using
historical data. The original method assumes that use cases are developed from scratch
and typically have few transactions. Use cases in this study as defined in use case
specifications, are complex, contain several main and alternative flows and are typically
modified between releases. The UCP method was adapted using data from one release
and the estimated result counted approximately for all the activities before system test.
The method was tested on the successive release and produced an estimation that was
17% lower than the actual effort. Results of the study show that although use cases vary
in complexity in different projects, the UCP estimation method can be calibrated for a
given context and produce relative accurate estimations.

1. Introduction
Effort Estimation is a challenge every software project face. The quality of estimation
will impact costs, expectations on schedule, and expectations on functionality and
quality. While expert estimations are widely used, they are difficult to analyze and the
estimation quality depends on the experience of experts. Consequently, rule-based
methods should be used in addition to expert estimates in order to improve estimates.
Since most software is developed incrementally, estimation methods should be updated
for iterative enhancement of systems. Evolutionary project management and iteration
planning needs an estimation method that can estimate the effort based on evolutionary
changes in requirements. There is also necessary to verify whether a proposed
estimation method scales up for large system development.

This paper presents a top-down effort estimation method based on use cases, called
the Use Case Points (UCP) method. The method was earlier used in some industrial
projects as well as in some student projects with success, although it is still not widely

 257

mailto:parastoo@idi.ntnu.no
mailto:bentea@simula.no
mailto:conradi@idi.ntnu.no

P13. Use Case Points for Effort Estimation

used. The goal of this study was to evaluate whether the method scales up for large
systems with incremental development.

We broke each Use Case Specification (UCS) down in several simple ones to
compensate for the size and complexity of the existing use cases, and calculated the
unadjusted use case points for complete UCSs and for modified steps in each to account
for incremental development. We also calculated effort needed to build on a previous
release of a system by applying a formula from COCOMO 2.0 for reuse of software.
The adapted UCP method was developed using data from one release and produced
good estimates for the successive release. We also found that our projects spent more
effort on system test and Configuration Management (CM) than earlier studies, which
impacts the estimation method in the sense that it is reasonable to estimate effort for
development before system test, as the practice is in the organization.

This paper is organized as follows. Section 2 presents some state-of-the-art of
estimation methods, the UCP method and challenges in estimating incrementally
developed projects. Section 3 introduces the context. The research questions are
formulated in Section 4. Section 5 presents how the UCP is adapted to the context and
Section 6 gives the estimation results. The results are further discussed in Section 7.
Section 8 summarizes the observations and answers the research questions. The paper is
concluded in Section 9.

2. Estimation Methods

2.1. A Brief Overview of Estimation Methods
Software estimation methods are roughly divided into expert estimations based on
previous experience, analog-based estimations (comparing a project to a previous one
being more formal than expert estimates), and formal cost models that estimate effort or
duration using properties such as size and various cost drivers. Each of these can be
performed top-down or bottom-up. In a top-down method, the total effort or elapsed
time is estimated based on some properties of the project as a whole and is later
distributed over project activities. The bottom-up approach involves breaking down the
actual project into activities, estimating these and summing up to arrive at the total
required effort or duration [Symons91]. There are variants as well, for example to
estimate effort for some activities and estimating the total effort based on these core
activities; i.e. the inside-out method.

Project success or failure is often viewed in terms of adhering to a budget and to
deliver on time. Good estimation is therefore important for a project to be considered as
successful [Verner03]. We focus on three estimation methods in this paper: a) expert
estimates that are relevant for the case study, b) COCOMO 2.0 that we partly use in our
method, and c) the UCP method that is adapted for the study and is presented in the next
section.

Although expert estimation is probably the most widely used method for estimation
of software projects, the properties of such estimation methods are not well known
[Jørgensen04]. Results of a recent survey on the state of estimation among 52 project
managers in 18 Norwegian companies shows that expert estimation is the dominating
estimation method and average effort overruns are 41% [BEST04]. It is therefore
recommended to balance expert-based and model-based estimations.

 258

 P13. Use Case Points for Effort Estimation

COCOMO (the Constructive Cost Model) is a well-known estimation method
developed originally by Barry Boehm in 1970s [Boehm95]. The 1981 COCOMO and
the 1987 Ada COCOMO update have been extended in COCOMO 2.0 for several
factors. These include a non-linear model for developing with reuse, non-sequential and
rapid development, and using Function Points (FP) and Object Points (OP) in addition
to Source Lines of Code (SLOC) for software sizing. COCOMO takes software size and
a set of factors as input, and estimates effort in person months. The basic equation in
COCOMO is:

E=A*(Size)B EQ.1
E is the estimated effort in Person-Months, A is a calibration coefficient, and B

counts for economy or diseconomy of scale. Economy of scale is observed if effort does
not increase as fast as the size (i.e. B<1.0), because of using CASE tools or project-
specific tools. Diseconomy of scale is observed because of growing communication
overhead and dependencies when the size increases. COCOMO 2.0 suggests a
diseconomy of scale by assuming B>1.0. COCOMO 2.0 also includes various cost
drivers that fall out of the scope of this paper.

Because of difficulties in estimating SLOC, FP or OP, and because modern systems
are often developed in UML and with use cases, estimation methods based on use cases
are proposed.

All estimation methods are imprecise, because the assumptions are imprecise.
Jørgensen et al. [Jørgensen03] suggest that large software projects are typically under-
estimated, while small projects are over-estimated.

2.2. The Use Case Points Estimation Method
A use case model defines the functional scope of the system to be developed. Attributes
of a use case model may therefore serve as measures of the size and complexity of the
functionality of a system. In 1993, Karner introduced an estimation method that derives
estimation parameters from a use case model, called the Use Case Points (UCP)
estimation method [Karner93]. The method is an extension of the Function Points
Analysis and MK II Function Points Analysis [Symons91]. The UCP method has been
evaluated in several industrial software development projects (small projects comparing
to this study) and student projects. There have been promising results
[Arnold98][Anda01][Anda02], being more accurate than expert estimates in industrial
trials.

We give a brief introduction of the six-step-UCP method in Table 1. Steps 2,4, and 6
are further explained below. In Table 1, WF stands for Weight Factor, UAW is the
Unadjusted Actor Weights, UUCW is the Unadjusted Use Case Weights, UUCP is the
Unadjusted Use Case Points, UCP is the adjusted Use Case Point, PH is Person-Hours,
and E is the estimated effort in PH.

Step 2. Karner proposed not counting so-called including and extending use cases,
but the reason is unclear. Ribu presents an industrial case, where use cases were
classified based on the extent of code reuse: a simple use case has extensive reuse of
code, while a complex one has no reuse of code [Ribu01].

Step 4. Various factors influencing productivity are associated to weights, and values
are assigned to each (0..5). There are 13 Technical Factors (e.g. distributed system,
reusable code and security) and eight Environmental Factors (e.g. Object-Oriented
experience and stable requirements). Each factor is given a value, multiplied by its

 259

P13. Use Case Points for Effort Estimation

weight (-1..2), and the TFactor and Efactor are weighted sums. The weights and the
formula for technical factors is borrowed form the Function Points method proposed by
Albrecht [Albrecht79]. Karner, based on some interviews of experienced personnel,
proposes the weights for environmental factors. The background of the formula for
environmental factors is unknown for us, but it seems to be calculated using some
estimation results.

Table 1 The UCP estimation method
Step Task Output

1 Classify use case actors:
a) Simple, WF = 1.
b) Average, WF = 2.
c) Complex, WF = 3.

UAW = ∑ (#Actors in each
group*WF)

2 Classify use cases:
a) Simple (3 or fewer transactions), WF =
5. b) Average (4 to 7 transactions), WF =
10. c) Complex (more
than 7 transactions), WF= 15.

UUCW = ∑ (#use cases in
each group*WF)

3 Calculate UUCP UUCP = UAW + UUCW
4 Assign values to the 13 technical, and 8

environmental factors.
TCF=0.6 + (0.01* TFactor),
EF=1.4 + (-0.03 * EFactor)

5 Calculate UCP. UCP = UUCP * TCF * EF
6 Calculate effort in PH. E = UCP*PH/UCP

Step 6. Karner proposed 20 PH/UCP (Person-Hours per UCP) using estimation

results of three projects in Objectory, while others have used between 15 and 36
[Ribu01][Anda01]. Karner proposed 20 PH/UCP based on three projects conducted in
Objectory. Schneider & Winters refined the original method and proposed 28 PH/UCP
if the values for the environmental factors indicate negatives with respect to the
experience level of the staff or the stability of the requirements [Schneider98]. The
method was extended by Robert Russell to use 36 PH per UCP when the values for
these factors indicate a particularly complex project [Russell04]. Previous evaluations
of the method have used 20 PH/UCP [Anda01]. Note that the method estimates effort in
PH, and not duration of a project.

Table 2 shows examples from [Anda01] where the method is applied to three
industrial projects in a company in Norway with 9-16 use cases each. The application
domain was banking.

Table 2 Some examples on PH/UCP

Project UCP Estimated
Effort

Actual Effort Actual
PH/UCP

A 138 2550 3670 26.6
B 155 2730 2860 18.5
C 130 2080 2740 21.1

The UCP method has some clear advantages:

 260

 P13. Use Case Points for Effort Estimation

It gives early estimation top-down. Non-technical estimators usually prefer a
top-down estimation strategy [Moløkken02].

−

−

−
−

−

−

−

−

−

−

It is suitable when guessing SLOC is difficult, such as in development with
COTS (Commercial Off-The-Shelf) software.
It is independent of the realization technologies, e.g. programming languages.
Expert estimation processes are non-explicit and are difficult to analyze and give
feedback. The UCP method is explicit, allows feedback and adaptation and
hence improvement.
The method eliminates biases in expert estimation.

We also see the disadvantages such as:
Use cases are not always updated before analysis starts. But if the project
decides to use the UCP method, this will promote developing a high quality and
stable use case model early.
The UCP method depends on up-front requirements work for the whole release.
Otherwise, the estimation should be repeated for each iteration, which is
possible using our adaptation of the method for incremental changes in use
cases.
The method only counts use cases that essentially express functional
requirements, not supplementary specifications. The influence of non-functional
requirements is reflected in technical factors, which has little influence on the
results.
The method depends on use cases that are well structured and with proper level
of details, but not too detailed [Ribu01]. There is no standard way of writing use
cases, and practices vary.
The method is not properly verified.

Two other methods have been proposed for estimation based on use cases [Fetcke98]
[Smith91]. These methods respectively make assumptions about the relationship
between use cases and function points, and between use cases and SLOC in the final
system. There are also commercially available tools for estimation that are based on the
UCP method, e.g. Enterprise Architect [Enterprise] and Estimate Easy UC [Estimate].

2.3. Estimation in Incremental Development
Modern software is developed incrementally or evolutionary. Incremental development
is usually used for development methods with major up-front specification, while in an
evolutionary approach product improvements are not preplanned and requirements are
gradually discovered. In both approaches, each iteration delivers a working system
being an increment to the previous delivery or release. Incremental methods such as the
Spiral method, the Rational Unified Process (RUP) and the recent agile methods like
eXtreme Programming (XP) emphasize user participation, risk-driven development and
incremental covering (or discovering) of requirements. RUP is a use-case driven
approach that allocates use cases to each iteration. However, in practice some new
requirements are defined in new use cases, while other modifications are done by
changes in existing use cases.

A challenge in estimation of incrementally developed projects is to count for reuse of
software delivered in previous releases. The cost of this reuse is not properly studied.
Boehm et al. refer to an earlier study by Parikh and Zvegintzov in 1983 that 47% of the

 261

P13. Use Case Points for Effort Estimation

effort in software maintenance involves understanding the software to be modified
[Boehm95]. They also write that there are non-linear effects involved in module
interface checking, which occurs during the design, code, integration and test of
modified code.

Benediktsson et al. analyzed the COCOMO 2.0 model to explore the relation
between effort and the number of increments [Benediktsson03]. They extended EQ.1
for incremental development where they assume an overhead factor between 0.05 and
0.30 for changing code, adding code to a previous release and learning between
releases. They calculated effort for incremental development, compared to a waterfall
model for different values of B in EQ.1 and different overhead factors. They concluded
that when B is small (e.g. 1.05), increasing the number of increments has little influence
on the effort. However, when B increases to 1.20, increasing the number of increments
from 2 to 20 reduces the effort by 60%. I.e. incremental development will need less
effort than the waterfall model when the diseconomy of scale is significant. Although
there is some evidence that incremental development reduces the risks for schedule
overruns [Moløkken04], we have not found any empirical studies on the relation
between incremental development and effort that can verify or falsify this claim.

3. The Company Context

3.1. Background and Motivation of the Study

The system in this study is a large telecom system developed by Ericsson. It is
characterized by large scale, multi-site development, development for reuse since some
software components are shared with another product and multi-programming
languages (mostly non Object-Oriented programming languages but also minor parts in
Java). The size calculated in equivalent C code exceeds 1000 KSLOC (Kilo SLOC).
The system is developed incrementally and the software process is an adaptation of
RUP. Each release has typically 5-7 iterations and the duration of iterations is 2-3
months. The architecture is component-based with components built in-house. Several
Ericsson organizations in different countries (in periods more than 200 developers) have
been involved in development, integration and testing of releases.

On the highest level, requirements are defined by use cases and supplementary
specifications (for non-functional requirements, e.g. availability, security, and
performance).

Expert estimations are used in different phases of every release (before inception and
during inception and elaboration phases), in a bottom-up or inside-out style. Expert
estimations done by technical staff tend to be over-optimistic and it is difficult to
calibrate these. We decided therefore to evaluate whether the UCP method can produce
better estimations as a method that may be applied by non-technical staff as well.

3.2. Use Case Specifications
The use case model in our study includes use case diagrams modeled in Rational Rose,
showing actors and relations between use cases, while flows are described in textual
documents (UCSs). Each UCS includes:

 262

 P13. Use Case Points for Effort Estimation

a) One or several main flows: Main flows are complex and have several steps with
several transactions in each step. There may be cases when several flows are
equally desired. In these cases there are several main flows.

b) One or several alternative flows: Each alternative flow has one or several steps.
c) Some UCSs also have exceptional flows: These describe events that could

happen at just any time and terminate a flow. Exceptional flows are described in
a table, which gives the event that triggers an exceptional flow, action, and the
result.

d) A list of parameters and constraints, such as counters or alarms.
Extending a use case means sometimes that the extended one is a pre-condition for

this one and sometimes extra behavior is added. Including another use case means that
the behavior of the included use case is added to this use case.

Each release may contain new use cases (and UCSs). Usually, behavior of previous
use cases is modified or extended, with new or modified steps, flows or parameters.
What is new in each use case is marked with bold and blue text in the UCS.

4. Research Questions
We have formulated the following research questions for this study:

RQ1: Does the UCP method scale up for a large industrial project?
RQ2: Is it possible to apply the UCP method to incremental changes in use cases?
RQ3: How to calculate effort needed to reuse software from a previous release?
RQ4. Evaluation of the UCP method: Does the method produce usable results? Does
it fit into the industrial settings and the development process? Do the steps of the
process make sense?
The UCP method in its original form estimates effort needed to develop use cases

from scratch. It is not clear which activities are covered and it is not tested on a large
system.

5. Adapting the Use Case Point Estimation Method
We started to count UUCW for release 1 using the method described in Section 2.2. All
use cases in this study would be classified as complex. Nevertheless, the total UUCP
would be still very low for all 23 use cases (23*15=345 UUCP). Comparing the
complexity of these use cases with previous projects convinced us that we have to break
use cases down into smaller ones. Since software is built on a previous release, we
should also find how to estimate effort for reuse. This section describes our choices to
adapt the UCP method and the reason behind each decision. The adaptation rules are
summarized in Table 3. Additional information on each step is given below.

Step 1. Actors. An actor may be a human, another system or a protocol. However,
the classification has little impact on the final estimation result. Modified actors are
counted and MUAW is the Modified UAW.

Step 2. Counting the UUCW and MUUCW (Modified UUCW). We broke each
use case down into smaller ones as described in Rules 2.1 to 2.4. Rewriting UCSs is too
time-consuming while counting flows and steps is an easy task.

The new use cases should be classified as simple, average or complex. A first
attempt to follow the rule described in Section 2.2 resulted in most use cases being

 263

P13. Use Case Points for Effort Estimation

classified as simple (66%) and very few as complex. But the complexity of transaction
does not justify such distribution.

Table 3 The adapted UCP estimation method

Step Rule/Task Output
1.1. Classify all actors as Average,
WF = 2.

UAW= #Actors*2 1

1.2. Count the number of new actors. MUAW= #New actors*2
2.1. Since each step in the main flow
contains several transactions, count each
step as a single use case.
2.2. Count each alternative flow as a
single use case.
2.3. Exceptional flows, parameters, and
events are given weight 2. Maximum
weighted sum is limited to 15 (a complex
use case).
2.4. Included and extended use cases are
handled as base use cases.
2.5. Classify use cases as:
a) Simple (2 or fewer steps), WF = 5.
b) Average (3 to 4 steps). WF = 10,
c) Complex (more than 4 steps),

WF= 15.

UUCW = ∑ (#use cases in
each group*WF) +
∑(Points for exceptional
flows and parameters)

2

2.6. Count points for modifications in use
cases according to rules 2.1-2.5.

MUUCW = ∑ (#New or
modified use cases in each
group*WF) + ∑(Points for
new or modified
exceptional flows and
parameters)

3.1. Calculate UUCP for all software. UUCP = UAW + UUCW 3
3.2. Calculate MUUCP for new software. MUUCP=MUAW +

MUUCW
4 Assume average project. TCF=EF=1

5.1. Calculate UCP. UCP = UUCP 5
5.2. Calculate MUCP. MUCP= MUUCP
6.1. Calculate effort for reuse of software. RE=(UCP-MUCP)

*0.55*PH/UCP
6.2. Calculate effort for new development. ME= MUCP*PH/UCP

6

6.3. Calculate total effort. E=ME+RE

An example of a use case called for Connect is given in Figure 1. In Figure 1, M1 is

described as one step, but it includes verifying that the received message is according to
the accepted protocols. M2 refers to an included use cases, while M3 has 4 steps, where
none of these is a single transaction and includes another use case as well. Therefore,

 264

 P13. Use Case Points for Effort Estimation

we chose to classify the use cases according to the Rule 2.5. M1 and M2 would be
classified as simple, while M3 would be an average use case.

The UUCW calculated above is for use cases developed from scratch. The use cases
in each release are typically modified ones. For modified use cases, the same rules are
applied, but for modified steps. The method is similar to the example given in Section
2.2- Step 2, where a simple rule-of-thumb was used (extensive reuse gives simple use
case etc). For example, two steps in M3 in Figure 1 are new or modified. These will be
counted as a new simple use case. Thus, the use case is 5/27=19% modified.

Steps 4 and 5. TF and EF. Assigning values to technical and environmental factors
are usually done by project experts or project leaders, based on their judgment and
without any reference [Anda01][Ribu01]. The authors of these papers conclude that the
technical factors can be omitted (or set to 1) without large consequences for the
estimate. The environmental factors may have a large impact on the estimate, but these
are also subjective, and the formula should be validated. We decided to simplify the
method by assuming an average project, which gives TCF and EF approximately equal
to 1.

Step 6. As discussed in Section 2.3, there is an overhead for changing software of the
previous release. The difference in functionality between two releases is large. The
model proposed in [Benediktsson03] suggests reduction in effort due to incremental
development only when the number of iterations is sufficiently high. There are no
generally accepted rules for the overhead factor. We decided to use the reuse model
proposed in COCOMO 2.0 as a first trial. COCOMO 2.0 has an equation for calculating
effort for modifying reused software. It calculates the equivalent new software ESLOC
(Equivalent SLOC) as:

ESLOC = ASLOC*AF EQ.2
AF = 0.01*(AA+SU+0.4*DM+0.3*CM+0.3*IM) EQ.3

The abbreviations in EQ.2 and EQ.3 stand for:
ASLOC = Adapted SLOC,
AF = Adaptation Factor,
AA = Assessment and Assimilation increment,
SU = Software understanding increment,
DM = percentage of design modification,
CM = percentage of code modification,
IM = percentage of the original integration effort required to integrate the reused
software.

Thus, if software is reused without modification, DM, CM, and IM are zero, but
there is cost related to assessment (AA) and understanding of reused software (SU). The
cost will increase with the modification degree. DM, CM and IM vary from 0 to
maximum 100. Note that AF can become larger than 1; i.e. reuse may cost more than
developing from scratch if the cost of assessment or understanding is high, or if the
reused software is highly modified. For our model, in the simplest form we propose:

AA = 0, we assume no search, test, and evaluation cost since reused software is
developed in-house,

−

−
−

SU = 30 for moderate understandable software,
Mean values for DM, CM and IM may be set to 25, which is the mean for
changes in the use cases in the two releases. I.e. we assume that the fraction of

 265

P13. Use Case Points for Effort Estimation

design and code modification and integration effort is equal to the fraction of
modification in use cases.

Thus, AF will be 0.55. We have not found any empirical studies that contain such a
factor.

In this project, we decided to compensate for not counting the environmental factors
and for the large number of complex use cases by using the maximum recommended
number of person hours pr use case point, which is 36.

Use case
Connect

Use case
XX

Use case
YY

include

include

Use case specification Connect
Main Flow:
M1- Request connection. A request message is received from the
user.
M2- The load of the node is checked. Use case XX is included.
M3- Validate the identity.

1.The user should use one of the allowed identification
numbers.
2. The identification number is analyzed.
3. Extra information is fetched from GGSN.
4. The user is authenticated. Use case YY is included

Alternative flow:
A1- Too high load. A reject message is sent to the user.

UUCP
Actor 1*2= 2
Main flow
#SimpleUC=2
Weight/SimpleUC=5

2*5= 10
#AverageUC=1
Weight/AverageUC=10

1*10= 10
Alternative flow
#SimpleUC=1
Weight/SimpleUC=5

1*5= 5
Sum 27

MUUCP
Main flow
#SimpleUC=1
Weight/SimpleUC=5

1*5= 5

Figure 1 Example of counting UUCP and MUUCP for a use case

6. Estimation Results
The method was adapted for use cases of one release and later used it in on use cases
from the successive release. Of 23 original use cases in release 1, seven use cases were
not modified, one use case was new, while 15 use cases were modified. Release 2 had
21 use cases: two use cases were not modified, one use case was new, while 20 were
modified. Note that 3 use cases are missing in release 2 (the sum should be 24). Two
use cases are merged in other use cases in release 2, while one use case is removed from
our analysis since development was done by another organization and we do not have
data on actual effort for this use case.

Table 4 shows the results of breaking use cases into smaller ones (288 use cases in
release 1, and 254 use cases in release 2). Columns in Table 4 present the number of use
cases in each class (Simple, Average, and Complex) and also modified ones. The
distribution has changed towards more average use cases after restructuring. According
to Cockburn most well-written use cases have between 3 and 8 steps [Cockburn00],
consequently most use cases will be of medium complexity, some are simple, and a few
are complex. Our results only verify this for release 2.

 266

 P13. Use Case Points for Effort Estimation

Table 4 No. of use cases in each class
Rel. Simple

UC
Average

UC
Complex

UC
Modified
Simple

UC

Modified
Average

UC

Modified
Complex

UC
1 170 83 35 57 18 2
2 95 100 59 81 16 11

We inserted the number of steps, actors, and exceptions and parameters for all use

cases in spread sheets in Excel, counted the UUCP and MUUCP, and estimated the
effort following the rules in Table 3. The estimation results with 36 PH/UCP were
almost half the effort spent in the releases for all activities. Therefore we compared our
releases with the examples discussed before in other aspects. In projects A and B in
Table 2, estimates have been compared with the total effort after the construction of the
use case model. The UCP method, however, does not specify exactly which phases of a
development project are estimated by the method. These projects’ effort distribution is
very different from our case, as shown in Tables 5 and 6. The Other column in Table 5
covers deployment and documentation, while in Table 6 it covers configuration
management, software process adaptation, documentation and travels.

Table 5 Percentages of actual effort spent in different phases in example

projects
Project Development before

System Test
System Test Other Project

Management
A 80% 2% 5% 13%
B 63% 7% 3% 27%

Table 6 Percentages of actual effort spent in different phases in two releases
Rel. Development before

System Test
System Test Other Project

Management
1 49% 25% 15% 10%
2 55% 18% 15% 11%

These profiles will vary depending on tools, environment and technologies. In our

case, development before system test (also including use case testing) only counts for
half the actual effort. The estimation method in the company estimates effort needed for
development before system test and multiplies this by a factor (between 1.0 and 2.5) to
cover all the activities. We concluded that the 36 PH/UCP covers for development
before system test. Based on data presented in Table 6, it should be multiplied
approximately by 2 to estimate the total effort.

For confidentiality reasons, we cannot give the exact figures for estimations.
However, our estimations were 20% lower for release 1 and 17% lower for release 2
than the actual effort with the assumptions described before. The expert estimations for
release 2 were 35% lower than the actual effort and thus the method has lower relative
error than expert estimations.

 267

P13. Use Case Points for Effort Estimation

7. Discussion of the Results
The results show that the adapted UCP method produced reasonable estimates with the
following assumptions:

We broke each use case down to several smaller ones, justified by the
complexity of use cases.

−

−

−

−
−

−

−

−

−
−
−
−
−

Classification of use cases is different from Table 1, justified by the complexity
of steps.
We assumed the technical and environmental factors to be 1 for an average
project. These factors are highly subjective.
The Adaptation Factor for reused software is 0.55.
The results with 36 PH/UCP estimate the effort for specification, design, coding,
module test and use case test.

We have done several assumptions and the method is only as good as the
assumptions are. The method was first tried on release 1, but it even gave better results
for release 2. Each estimate should also come with a range, starting with a wider range
for early estimations. Use cases are updated in the early design stage, which gives a
range 0.67E to 1.5E (E is the estimated effort) according to COCOMO 2.0 [Boehm95].
Thus, 20% underestimation is acceptable, but there are factors in our model that could
be optimized to provide more accurate estimates. These are essentially two factors:
PH/UCP and AF.

The impact of the reused software is large on the total effort. In addition to factors
described in Section 2.3, several other factors may also be influential:

We have performed a study of Change Requests that cover changes in
requirements or artifacts in each iteration and between releases [Mohagheghi04].
The results show that most change requests are initiated in order to improve
quality requirements (non-functional requirements), which are of high
importance but are not reflected in the use cases. Improving quality requirements
is by modifying software that is already implemented.
The above study shows that functionality is also improved between releases by
initiating change requests.
Some effort is spent on modifying software for bugs (corrective maintenance).

We could propose a higher AF to compensate for bug fixing of previous releases and
improvements that are not specified in use cases. We can also explain the high value of
PH/UCP by:

Complexity of the system,
Diseconomy of scale,
Importance of quality requirements as described above,
Effort spent on Change Requests,
Increased effort spent on configuration management and regression testing due
to incremental development, cf. the profile in Table 6.

The study has several factors that improve the validity: The data on the spent effort is
reliable, we did the estimation without involving the project members, and we have had
access to all the use cases. The following validity threats are identified (no threats are
identified for internal validity):

 268

 P13. Use Case Points for Effort Estimation

Conclusion validity: The method is tested on one release, in addition to the
release used for adaptation. Future updates may be necessary.

−

−

−

Construct validity: A single case study is not sufficient for calibrating all the
parameters that may influence the results.
External validity: Generalization of the concrete results is not possible without
testing the method on other data.

8. Summary
Already when the UCP method was introduced to the project leaders to get their
permission for the study, it was considered interesting. A project leader used it in
addition to expert estimates by considering the amount of changes in use cases
comparing to the previous release. We answer the research questions as:

RQ1: Does the UCP method scale up for a large industrial project? It did when
we broke down the use cases as reflected in Rules 2.1-2.5 in Table 3. The method
depends on the level of details in use cases and therefore should be adapted to the
context by comparing use cases to some examples. One alternative is to include
examples of typical use cases in the method, such as defined in [Cockburn00].

RQ2: Is it possible to apply the UCP method to incremental changes in use
cases? We did this by counting changes in use cases. The method is straightforward and
Rules 1.2, 2.6, 3.2 and 6.2 in Table 3 show how to calculate effort for new development.

RQ3: How to calculate effort needed to reuse software from the previous
release? We chose to account for reuse by applying the COCOMO 2.0 formula for
reused software, calculating AF and applying it on UUCP for reused steps in use cases.
The advantage is that the AF factor may be adapted to the context.

RQ4. Evaluation of the method: The adapted UCP method fitted well into the
adapted RUP process and produced reasonable results. The impact of technical and
environmental factors may be subject to future studies, for example by defining some
profiles.

We also observe the impact of size, complexity of the system and effort spent on
configuration management due to incremental development in the high value of
PH/UCP. The study also raises some interesting question: Does the value of PH/UCP
depend on the effort breakdown profile and should this factor be included in the model?
What is the cost of reusing software in incremental development?

9. Conclusions
The UCP method is adapted for a large industrial system with incremental changes in
use cases and with reuse of software. Contributions of the study are:

1. Verifying that the method scales up, with our assumptions and by applying the
proposed changes.

2. Adapting the UCP method to evolutionary development of software by
accounting for reuse of software from a previous release and changes in use
cases. We assume that the method is also applicable for reuse of software in a
product family approach, or when reusing COTS components.

3. Verifying that the method works well without technical and environmental
factors.

 269

P13. Use Case Points for Effort Estimation

The UCP method for estimation can be considered as a relative cheap, repeatable and
easy method to apply. It is not dependent on any tools and can promote high quality use
cases, which will pay off since use cases are also input to test cases, analysis and
documentation.

10. Acknowledgements
The studies are performed in the context of INCO (INcremental and COmponent-based
Software Development), a Norwegian R&D project in 2001-2004 [INCO01], and as
part of the first author’s PhD study. We thank Ericsson for the support.

References

[Albrecht79] Albrecht, A.J.: Measuring Application Development Productivity. Proc.

IBM Application Development Joint SHARE/GUIDE Symposium, Monterey, CA,
1979, pp. 83-92.

[Anda01] Anda, B., Dreiem, D., Sjøberg, D.I.K., and Jørgensen, M.: Estimating
Software Development Effort Based on Use Cases - Experiences from Industry. In
M. Gogolla, C. Kobryn (Eds.): UML 2001 - The Unified Modeling
Language.Modeling Languages, Concepts, and Tools, 4th International Conference,
2001, LNCS 2185, Springer-Verlag, pp. 487-502.

[Anda02] Anda, B.: Comparing Effort Estimates Based on Use Cases with Expert
Estimates. Proc. Empirical Assessment in Software Engineering (EASE 2002),
Keele, UK, April 8-10, 2002, 13p.

[Arnold98] Arnold, P. and Pedross, P.: Software Size Measurement and Productivity
Rating in a Large-Scale Software Development Department. Forging New Links.
IEEE Computer Soc, Los Alamitos, CA, USA, 1998, pp. 490-493.

[Benediktsson03] Benediktsson, O., Dalcher, D.: Developing a new Understanding of
Effort Estimation in Incremental Software Development Projects. Proc. Intl. Conf.
Software & Systems Engineering and their Applications (ICSSEA’03), December 2-
4, 2003, Paris, France. Volume 3, Session 13, ISSN 1637-5033, 10 p.

[BEST04] The Best project: http://www.simula.no/~simula/se/bestweb/index.htm
[Boehm95] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R.:

Cost Models for Future Software Life Cycle Processes: COCOMO 2.0. USC center
for software engineering, 1995.
http://sunset.usc.edu/publications/TECHRPTS/1995/index.html

[Cockburn00] Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, 2000.
[Enterprise] www.sparksystems.com.au
[Estimate] www.duvessa.com
[Fetcke98] Fetcke. T., Abran, A. and Nguyen, T.-H.: Mapping the OO-Jacobson

Approach into Function Point Analysis. International Conference on Technology of
Object-Oriented Languages and Systems (TOOLS-23). IEEE CS Press, Los
Alamitos, CA, USA, pp. 192-202, 1998.

 270

http://www.simula.no/~simula/se/bestweb/index.htm
http://sunset.usc.edu/publications/TECHRPTS/1995/index.html
http://www.sparksystems.com.au/

 P13. Use Case Points for Effort Estimation

[INCO01] The INCO project: http://www.ifi.uio.no/~isu/INCO/
[Jørgensen03] Jørgensen, M., Moløkken, K.: Situational and Task Characteristics

Systematically Associated With Accuracy of Software Development Effort
Estimates. Proc. Information Resources Management Association Conference
(IRMA 2003), pp. 824-826.

[Jørgensen04] Jørgensen, M.: Top-down and Bottom-up expert Estimation of Software
Development Effort. Information and Software Technology, vol.46 (2004), pp. 3-16.

[Karner93] Karner, G. Metrics for Objectory. Diploma thesis, University of Linköping,
Sweden. No. LiTH-IDA-Ex-9344:21, December 1993.

[Mohagheghi04] Mohagheghi, P., Conradi, R.: An Empirical Study of Software
Change: Origin, Impact, and Functional vs. Non-Functional Requirements.
Accepted for the ACM-IEEE International Symposium on Empirical Software
Engineering (ISESE 2004), 19-20 August 2004, Redondo Beach CA, USA, 10 p.

[Moløkken02] Moløkken, K.: Expert Estimation of Web-Development Effort:
Individual Biases and Group Processes. Master’s Thesis, University of Oslo, 2002.

[Moløkken04] Moløkken, K., Lien, A.C., Jørgensen, M., Tanilkan, S.S., Gallis, H.,
Hove, S.E.: Does Use of Development Model Affect Estimation Accuracy and Bias?
Proc. Product Focused Software Process Improvement: 5th International
Conference, PROFES 2004, Kansai Science City, Japan, April 5-8, 2004. Springer-
Verlag, ISBN: 3-540-21421-6. pp. 17-29.

[Ribu01] Ribu, K.: Estimating Object-Oriented Software Projects with Use Cases.
Master’s Thesis, University of Oslo, November 2001.

[Russell04] Rusell, R.: Project Estimation Method.
http://www.processwave.net/index.htm, cited July 1, 2004.

[Schneider98] Schneider, G., Winters, J.P.: Applying Use Cases a Practical Guide.
Addison-Wesley, 1998.

[Smith91] Smith, J.: The Estimation of Effort Based on Use Cases. Rational Software,
White paper, 1999.

[Symons91] Symons, P.R.: Software Sizing and Estimating MK II FPA (Function Point
Analysis). John Wiley & Sons, 1991.

[Verner03] Verner, J.M., Evanco, W.M.: State of the Practice: Effect of Effort
Estimation on Project Success. Proc. of the Intl. Conf. On Software & Systems
Engineering and their Applications (ICSSEA’03), Vol. 3, Session 13, 10 p.

 271

http://www.ifi.uio.no/~isu/INCO/
http://www.processwave.net/index.htm

 272

	Abstract
	Acknowledgements
	Abbreviations
	Introduction
	Problem Outline
	Research Context
	Research Questions
	Research Design
	Papers
	Contributions
	Contributions in Software Reuse
	Contributions in Incremental Development
	Contributions in Software Reuse and Incremental Development
	Research Method
	Summary of Contributions

	Thesis Structure

	Software Reuse and Component-Based Development
	Software Engineering Definitions and Challenges
	Literature Overview
	Software Reuse
	Component-Based Development
	Product Families
	Alternatives to Component-Based Development
	Summary and the Challenges of this Thesis

	Incremental Development
	Definitions
	Variations in Incremental Approaches
	
	QI. What is the functionality of an increment?
	QII. How long are the increments and how are they scheduled?
	QIII. How is work allocated?

	Incremental Development and Quality
	The Rational Unified Process (RUP)
	Summary and the Challenges of this Thesis

	Research Methods and Metrics
	Research Strategies in Empirical Research
	The Case Study Approach
	Validity Threats
	Measurement and Metrics
	Summary and the Challenges of this Thesis

	Research Context
	The Ericsson Context
	About the Company
	The GPRS System
	Software Architecture Definition and Evolution
	Development Environment and Tools
	Components and Component Models
	The Software Process Model
	Data Collection and Metrics

	The INCO Context
	Developing Large Systems
	Research Design in this Thesis
	An Overview of Studies

	Results
	Software Process - RQ1 and RQ3
	Assessing Development Approaches - RQ2
	Improving the Practice - RQ3
	Summary

	Evaluation and Discussion
	Research Questions Revisited
	Contributions, Development Approaches and the Context
	
	C

	Relations to INCO Goals
	Evaluation of Validity Threats
	Working in the Field

	Conclusions and Directions for Future Work
	References to Part I
	Papers
	P1. Experiences with Certification of Reusable Components
	P2. Reuse in Theory and Practice:
	
	Questions

	P3. MDA and Integration of Legacy Systems:
	P4. Object-Oriented Reading Techniques for Inspec
	P5. Using Empirical Studies to Assess Software Development Approaches
	P6. Different Aspects of Product Family Adoption
	P7. An Industrial Case Study of Product Family Development
	P8. An Empirical Study of Software Reuse
	P9. A Study of Developer Attitude to Component Reuse
	P10. An Empirical Study of Software Change:
	P11. Exploring Industrial Data Repositories:
	P12. A Study of Effort Breakdown Profile
	P13. Use Case Points for Effort Estimation –

