
Peter Boros

Object Recognition

Modelling and the Interface to a Control Strategy for Matching

Peter Boros

Object Recognition

Modelling and the Interface to a Control Strategy for Matching

Thesis for the degree of doktor ingeniør

Trondheim, September 2007

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

I n n o v a t i o n a n d C r e a t i v i t y

NTNU
Norwegian University of Science and Technology

Thesis for the degree of doktor ingeniør

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

c©Peter Boros

ISBN 978-82-471-4364-3 (printed ver.)
ISBN 978-82-471-4378-0 (electronic ver.)
ISSN 1503-8181

Theses at NTNU, 2007:198

Printed by Tapir Uttrykk

To Thina, Emily and Fredrik

Abstract

A modelling system for object recognition and pose estimation is presented in this work, based

on approximating the aspect/appearance graph of arbitrary rigid objects for a spherical view-

ing surface using simulated image data. The approximation is achieved by adaptively subdi-

viding the viewing sphere starting with an icosahedral tessellation and iteratively decreasing

the patch size until the desired resolution is reached. The adaptive subdivision is controlled

by both the required resolution and object detail. The decision whether a patch should be

divided is based on a similarity measure, which is obtained from applying graph matching to

attributed relational graphs generated from image features.

Patches surrounded by similar views are grouped together and reference classes for the as-

pects are established. The reference classes are indexed by contour types encountered in the

views within the group, where the contour types are computed via unsupervised clustering

performed on the complete set of contours for all views of a given object.

Classification of an unknown pose is done efficiently via simple or weighted bipartite match-

ing of the contours extracted from the unknown pose to the equivalence classes. The best

suggestions are selected by a scoring scheme applied to the match results.

The modelling system is demonstrated by experimental results for a number of objects at vary-

ing levels of resolution. Pose estimation results from both synthetic and real images are also

presented.

i

Contents

1 Introduction 1

1.1 Motivation and objectives . 2

1.2 Major contributions . 3

1.3 Outline of the thesis . 4

2 Literature Survey 5

2.1 Modelling . 5

2.1.1 2D models . 5

2.1.2 21
2D models . 6

2.1.3 3D models . 6

2.1.4 Aspect graphs . 8

2.2 Recognition and pose estimation . 11

2.2.1 Model based recognition . 11

2.2.2 CAD based recognition . 12

2.2.3 Pose estimation based on point sets 13

2.2.4 Neural networks . 13

iii

iv CONTENTS

2.2.5 Genetic algorithm . 14

2.2.6 Structural models and relational descriptions 14

3 Approach & Implementation 17

3.1 Overview of the modelling system . 17

3.2 Use of ray tracing for model building . 18

3.2.1 From geometric models to images 18

3.2.2 High level features . 21

3.3 Viewing space tessellation . 23

3.3.1 Icosahedron method . 24

3.3.2 Adaptive subdivision . 28

3.4 Building reference classes . 30

3.4.1 Clustering the patches . 30

3.4.2 Consistent naming of contours 30

3.4.3 Contour types . 33

3.4.4 Description of reference classes 34

3.5 Pose estimation . 36

3.5.1 Matching reference classes . 37

3.5.2 Multiple object classes . 38

3.6 Interface to recognition system . 39

4 Results 41

4.1 The objects . 41

CONTENTS v

4.1.1 Virtual objects . 41

4.1.2 Real objects . 42

4.2 Model generation statistics . 45

4.2.1 Model generation time . 45

4.3 Details and evaluation of the model . 46

4.3.1 CUBE . 47

4.3.2 HOLEBLOCK . 49

4.3.3 DUMBBELL . 50

4.3.4 L_SHAPE . 52

4.3.5 BLOCKCYL . 55

4.3.6 PEGBLOCK . 56

4.3.7 TRUCK . 57

4.4 Pose estimation from simulated images 68

4.4.1 Single class pose estimation . 68

4.4.2 Multi-class pose estimation . 74

4.5 Pose estimation from real images . 75

5 Conclusions 79

5.1 Summary of work . 79

5.2 Evaluation of results . 80

5.3 Indication for further work . 81

APPENDIX 83

vi CONTENTS

A Implementation details 83

A.1 Software . 83

A.1.1 dyn . 83

A.1.2 bobd . 84

A.1.3 featserv . 84

A.1.4 graphserv . 85

A.1.5 part2details . 85

A.1.6 canon.pl . 85

A.1.7 det2attr . 86

A.1.8 km_nodes . 86

A.1.9 findclass, findclass_weighted.pl 86

A.2 File formats . 87

A.2.1 .b, .bo, .bc, .img, OBJECT_img.db 87

A.2.2 .sgm, OBJECT_sgm.db . 87

A.2.3 .red, .grn, .blu . 88

A.2.4 .cnt, .chn8, OBJECT_chn.db . 88

A.2.5 .vert . 88

A.2.6 .part . 89

A.2.7 .det . 89

A.2.8 .attr . 90

A.2.9 .means . 91

A.2.10 .class . 91

CONTENTS vii

A.2.11 .index . 92

A.3 Driving the modelling system . 93

Bibliography 97

Index 113

List of Figures

3.1 Overview of the modelling system . 19

3.2 Ray traced surfaces approximated by triangles 20

3.3 16-way direction codes . 23

3.4 Relational graph . 24

3.5 Textual representation of a relational graph 25

3.6 Icosahedron (regular, level-1, level-2 and level-5) 26

3.7 Triangle subdivision . 28

3.8 Result of patch clustering . 32

3.9 Renaming of the contours . 33

3.10 Bipartite matching . 37

4.1 CUBE object . 42

4.2 HOLEBLOCK object . 42

4.3 DUMBBELL object . 43

4.4 L_SHAPE object . 43

4.5 BLOCKCYL object . 44

ix

x LIST OF FIGURES

4.6 PEGBLOCK object . 44

4.7 TRUCK object . 44

4.8 Projections of the viewing sphere . 48

4.9 Viewing sphere partitions for the cube object 49

4.10 Viewing sphere partitions for the HOLEBLOCK object 51

4.11 Visual events for the DUMBBELL object 52

4.12 Viewing sphere partitions for the dumbbell object 53

4.13 Viewing sphere partitions for the L_SHAPE object 54

4.14 Differences in viewing sphere partitions 58

4.15 Viewing sphere partitions for the BLOCKCYL1 object 60

4.16 Viewing sphere partitions for the BLOCKCYL2 object 61

4.17 Viewing sphere partitions for the BLOCKCYL3 object 62

4.18 Viewing sphere partitions for the PEGBLOCK object 64

4.19 Area covered by the partitions . 65

4.20 Viewing sphere partitions for the TRUCK object 67

4.21 Distribution of the test views for the TRUCK object 68

4.22 Indistinguishable aspects . 70

4.23 Suggested poses for some test views of the BLOCKCYL1 object 72

4.24 Segmentation problems . 76

4.25 Results of pose estimation on real images 78

List of Tables

3.1 Node equivalences and costs . 33

3.2 View equivalence classes of the BLOCKCYL object 36

4.1 dyn model generation statistics . 46

4.2 dyn model generation statistics for the CUBE object 49

4.3 dyn model generation statistics for the HOLEBLOCK object 50

4.4 dyn model generation statistics for the DUMBBELL object 55

4.5 Partition sizes after 6 iterations of the L_SHAPE object 56

4.6 dyn model generation statistics for the L_SHAPE object 57

4.7 dyn model generation statistics for the BLOCKCYL3 object 58

4.8 dyn model generation statistics for the BLOCKCYL2 object 59

4.9 dyn model generation statistics for the BLOCKCYL3 object 59

4.10 dyn model generation statistics for the PEGBLOCK object 63

4.11 Surface area covered by the partitions . 63

4.12 dyn model generation statistics for the TRUCK object 66

4.13 Single class pose estimation results for the BLOCKCYL1 object 71

xi

xii LIST OF TABLES

4.14 Incorrect suggestions for poses of the BLOCKCYL1 object. 71

4.15 Single class pose estimation results for the BLOCKCYL2 object 71

4.16 Single class pose estimation results for the L_SHAPE object 73

4.17 Single class pose estimation results for the PEGBLOCK object 73

4.18 Single class pose estimation results for the TRUCK object 74

4.19 Multi-class pose estimation results . 75

List of Algorithms

3.1 Patch clustering . 31

xiii

Acknowledgements

I wish to thank my supervisor, professor Richard E Blake for his patience and guidance through-

out these years and for not giving up the hope that some day I really will make it to this point.

Thanks to the people at the Department of Computer and Information Science for all the

help and support I received since my very first day in Trondheim.

Last, but not least I owe a great deal of thanks to my wife, Thina, and my two children, Emily

and Fredrik for being there when I needed them, and for tolerating me so well when I was

grouchy after working many late night hours.

xv

Chapter 1

Introduction

Recognising objects is a task humans – and most animals – do all the time. Even small babies

are able to recognise such complex objects as the face of their mother. However, when it comes

to applying machine tools to this “simple” task, we are facing a number of challenges and far

from trivial problems.

First, we need an abstraction – a model – of the objects we are trying to recognise. The model

needs to fulfil several criteria – it should be exact, unambiguous and unique; it also needs to

be descriptive enough to be able to represent a wide range of objects [129]. In computer

vision applications, the choice of the model is often related to the acquisition device, as it is

naturally most important to appropriately model the features of the object which we are in

fact able to observe. Unfortunately, the features which are easy to model (such as an edge) are

not necessarily the ones which are easy to observe (for instance colour of the light reflected

from a point on the surface of the object). This requires a mapping from observed features

to model features – for example edge detection or contour tracing.

Another problem is raised by the transition between two and three dimensions. In most sit-

uations, the object (and the model) is three dimensional, while the observations are two di-

mensional projections, such as in case of a colour camera. In order to be able to match the

observed features to the model features, we need to predict which model features are visible

from a given position, and/or estimate the pose of the object based on the observed features.

Pose estimation, based on a reduced number of features or reduced detail is also useful for

limiting the search space where more precise matching may be performed using all available

features. This process can be assisted by the model, from which the most likely poses of the

1

2 CHAPTER 1. INTRODUCTION

object can be determined and tested in the order of decreasing probability. Heuristics such

as this play an important role since the matching process can be computationally intensive.

Inexact graph matching, for instance is proven to be NP-complete [1].

Partitioning the problem is another way to attack complexity. It is easier to solve two prob-

lems of size N
2 , than one problem of size N , for anything more difficult than O(N) (i.e. linear

complexity). If possible, we should rather split a scene into individual objects and recognise

the objects each in itself, than trying to treat the whole scene as a single unit. Separating the

object from the background is also a necessity of most recognition applications.

In addition to this, the model is often simplified compared to real life, or not 100% accurate.

Even if we manage to create a model which is a perfect description of the real objects, there will

be some inaccuracy resulting from limitations of the acquisition device. An RGB or a range

sensor is only able to measure the specific physical characteristics with a given finite precision.

The effect is further increased by environmental conditions such as noise or lighting effects. A

recognition system therefore needs to be able to cope with approximate matches and/or take

these external conditions into consideration.

For particular object recognition purposes, aspect graphs [93] have been introduced as a way of

providing a viewer-centric description of objects. Aspect graphs describe the object in terms of

stable views and transitions between them (the nodes and edges of the graph). A stable view of

the object is a view which is insensitive to small changes in viewing position concerning which

surfaces (faces for polygonal objects) are visible. Each stable view of the object determines a

viewing cell, which is a subset of the viewing space; and from each point within the viewing

cell the same surfaces are visible. There is a transition between two views if the corresponding

viewing cells share a common boundary.

Aspect graphs can be extended to include information about the object’s appearance under

particular conditions in addition to the pure geometric model. These appearance graphs [165]

can model coloured surfaces, non-uniform illumination, self-shadows, which can change the

object appearance without having any change in the aspect.

1.1 Motivation and objectives

Several different algorithms have been developed for computing the aspect graphs of objects

(summarised in Section 2.1.4). Many of these however are limited to certain types of objects

(polyhedra, solids of revolution, quadric surfaces) and/or are computationally intensive. Sev-

eral other concerns have been raised about aspect graphs, such as regarding the number of

1.2. MAJOR CONTRIBUTIONS 3

aspects and their importance, relations to real image features or indexing the aspects.

In this thesis I address some of these issues, building on the basis of former results by prof.

Richard E Blake within feature extraction and graph matching [18, 19, 20, 22, 23].

The main objectives for this work are threefold:

• Develop an approach for obtaining an approximation of the aspect/appearance graph

representation of arbitrary objects.

• Demonstrate a practical use of graph matching. Graph matching is often considered

inefficient for practical applications due to its complexity, however using proper heuris-

tics will lead to quick convergence in many cases.

• Present an application example for the aspect/appearance graph model.

That is, the goal is not to compute the exact aspect graph of the object, but to provide an

approximation of it which is practical both in terms of size and required computation, still it

has enough detail that it is useful for recognition and pose estimation purposes. Hence, the

approach is as follows:

1. Simulate the appearance of the object over a set of viewpoints, based on a model. It is

assumed that the model is descriptive enough to provide all the necessary information

for the simulation of sensory data, for example it contains the model geometry and

surface properties needed for generating RGB images using ray tracing.

2. Group similar views together. Similarity measure is determined via graph matching,

where attributed relational graphs describing the object as seen from a given viewpoint

are composed from both high and low level features extracted from the simulated data.

3. Refine the resolution and generate more views as needed. This refinement will enable

narrowing down on the boundaries between the areas of the viewing space correspond-

ing to different aspects.

1.2 Major contributions

The most important contribution of this thesis is the development of a generic framework

for estimating the aspect graph or the appearance graph of an arbitrary rigid object.

4 CHAPTER 1. INTRODUCTION

In addition, a simple recognition / pose estimation system based on this framework is pre-

sented, including pose estimation tests based on both simulated and real-world data.

1.3 Outline of the thesis

The rest of the thesis is organised as follows. Chapter 2 gives a brief summary of recent re-

search in computer vision, focusing on object modelling, object recognition and pose estima-

tion.

The details of the modelling approach and the actual implementation are presented in Chap-

ter 3.

Chapter 4 shows experimental results using both simulated and real data.

Finally, Chapter 5 gives a summary of the work, together with an evaluation of the results and

implications for further work.

Chapter 2

Literature Survey

Computer vision, and in particular object recognition and pose estimation has been an area

of intensive research in the past few decades, with a lot of published papers and numerous

textbooks [9, 43, 76, 84, 87, 109]. Systems for automatising tasks accomplished by human

(or other biological) vision [99, 71] are being developed and applied in various areas, from

industrial manufacturing and inspection to surveillance and even tasks of such complexity as

to guide a vehicle along a highway. In this chapter I present a survey of some of the underlying

results.

2.1 Modelling

2.1.1 2D models

2D models are used for description or recognition of 2D scenes, such as line drawings. These

models can also be useful in limited 3D recognition, where the viewing angle is given, or the

3D object has a limited number of possible viewpoints or stable configurations, and thus the

2D projection of the object can be predicted in advance. Examples of such applications are

industrial part recognition or interpretation of aerial or satellite photography.

Jagadish and Gorman [86] has developed a line based image model (Thin Line Code, TLC)

for 2D images, designed for image recognition applications. A line based recognition system

for engineering drawings is presented by Blake [18]

5

6 CHAPTER 2. LITERATURE SURVEY

Many of the techniques used for 2D recognition are also incorporated in methods for recog-

nising 3D objects from 2D images.

2.1.2 21
2
D models

21
2D models are 2D models extended with 3D object features, such as surface curvature or

planar coefficients. These models can be considered as an intermediate step in scene inter-

pretation, before an object centred model of the scene is constructed. 21
2D models can be

obtained by extracting depth information with the help of range sensors or by projecting a

known pattern on the image (Asada et al. [6, 5], Stockman et al. [154]). Tactile sensors can

also be used to obtain depth data (Allen [2]). Another example for 21
2D primitives is object

wings introduced by Chen and Stockman [39, 40, 153]. Object wings are composed of two

adjacent surface patches and a separating contour segment.

2.1.3 3D models

The desirable properties for a solid modelling scheme has been established by Requicha [129]:

• the domain of the representation should be large enough to be able to represent

a wide range of objects,

• the representation should be unambiguous, meaning that a particular represen-

tation can only represent one object,

• it should be unique, that is only one possible representation exists for each ob-

ject, and

• it should be accurate.

Many different solid modelling techniques have been developed in the last decades for various

domains including computer aided design and manufacturing, computer vision and visuali-

sation, just to name a few. The characteristics of these techniques are quite diverse, so not all

of them may be equally suitable for a particular type of application. The following sections

summarise some of the most commonly used 3D modelling techniques.

Constructive solid geometry

Constructive solid geometry (CSG) applies regularised Boolean set operators to combine sim-

ple object primitives. The primitives are generic, and their placement, orientation and scaling

2.1. MODELLING 7

is selected before they are instantiated. CSG representations are not unique in the sense that

a solid can be represented in several different ways using the same set of primitives. Since the

CSG primitives are volumetric, boundary information must be computed, which imposes

some difficulty on using these models in computer vision applications, particularly in edge

based recognition systems.

Boundary representations

Boundary representations (BREPs) represent the object in terms of its surface boundaries,

vertices, edges and faces. The modelled faces may be limited to polygons or triangles, or allow

various types of curved surfaces. Many boundary representations limit the range of solids to

2-manifolds.

BREPs are often used in computer vision, as it is the surface boundary of a solid which is di-

rectly observable by common sensing devices (cameras, range sensors, tactile sensors, etc.). In

addition, BREPs have the advantage of being unique, containing explicit information about

volume, surface, edges and vertices, and having the flexibility for describing a wide range of

objects [129, 14].

Wireframe models

Wireframe models consist of straight line segments which correspond to the edges of the solid.

From the definition it is obvious that only polyhedral objects can be represented, objects with

curved surfaces need to be approximated. As a result of the simplicity of this representation,

wireframe models are easy to construct and to display. On the other hand, it is not trivial

to verify if a wireframe model corresponds to a valid 3D object. Another drawback of this

method is the ambiguity which arises when the model is projected to 2D; in order to solve this

problem a hidden line removal algorithm can be applied. Wireframe models are often used

in edge-based recognition systems, since the direct relation between the edges of the object

and the model.

Sweep representations

The 3D object defined by a 2D area or 3D object moving along trajectory in 3D space is called

a sweep representation. Commonly used special cases are moving a 2D area along a linear path

(transitional sweep) or rotating it around an axis (rotational sweep). Generalised sweeps allow

8 CHAPTER 2. LITERATURE SURVEY

the generating area or volume change in size, shape and orientation while being swept along

an arbitrary curve. The generalised cylinders [17] in computer vision are generalised sweeps

of a 2D cross section, and are usually modelled as a parametrised shape moved at right angles

along a curve. Sweep representation by definition restricts the range of solids which can be

modelled, but it becomes much more versatile when embedded in CSG systems.

Space subdivision

Voxel representation, the 3D equivalent of the 2D raster based on a uniform space subdivi-

sion, with equally sized voxels in a 3D grid. Octrees (the 3D extension of quadtrees) define

a non uniform, hierarchical subdivision. Both representations suffer the difficulty of extract-

ing boundary information. In addition, voxel representations require large amount of storage.

Octrees improve on the storage requirements by not subdividing cells entirely on the inside

or outside of the object. However, octree representations are difficult to compare as a slight

change in the object or its orientation may result in a very different octree.

A more general approach is the binary space partition (BSP) tree, where the space is subdi-

vided by planes of arbitrary orientation. Thibault and Naylor [157] present a method apply-

ing the BSP tree to represent arbitrary polyhedra. An important application of BSP trees is

point classification (Tilove [158]).

Voxel and octree representations are commonly used in medical applications for visualisation

and analysis of sensory data from various 3D scanning devices (such as MRI, CT or ultra-

sound). [173, 89]

2.1.4 Aspect graphs

The aspect graph of an object is a viewer-centred representation in form of a graph in which

each node represents a topologically distinct view (aspect) of the object observed from some

maximal connected area of viewpoint space, and each arc represents a transition from one

region of viewpoint space to a neighbouring region (also called a visual event).

Aspect graphs have first been introduced by Koenderink and van Doorn [93] in 1979. Since

then extensive research has been done in this area, and several algorithms have been developed

for computing aspect graphs for different types of objects.

Polyhedral objects have received much of the attention (Castore [32, 33], Plantinga and Dyer

[123, 124], Stewman and Bowyer [150, 151, 152], Watts [164], Bowyer and Dyer [28],

2.1. MODELLING 9

Kameyama and Nagata [88], Zha et.al. [176]). Gigus and Malik [67, 68, 69] and Gigus,

Canny and Seidel [65, 66] discuss the computation of the aspect graph for line drawings of

polyhedral objects under orthographic projection. Their definition of the aspect is based on

the topological structure of the line drawing of the object, represented as an image structure

graph (ISG), which can be substantially different from the definition by the visible faces of

the object.

Laurentini [96] debates the usability of the ISG model for topological matching and proposes

purely topological definition which does not suffer from similar problems.

Methods for computing the orthographic and perspective projection aspect graphs for solids

of revolution have been proposed by Kriegman and Ponce [94, 95], Eggert and Bowyer [50,

54, 55, 51].

Chen and Freeman [37, 38] discuss the characteristic views of objects bounded by quadric

surfaces. The aspect graph of solids with algebraic surfaces is studied by Ponce and Kriegman

[125], Petitjean et.al. [121], Roy and Van Effelterre [132].

For arbitrary piecewise smooth opaque objects, Sripradisvarakul and Jain [144] present an

algorithm for computing the orthographic projection aspect graph based on a strategy com-

puting all accidental viewing directions that partition the viewing sphere from the shape de-

scriptions of an object in a CAD database.

Van Effelterre, Van Gool and Oosterlinck [49] apply real algebraic geometry to compute the

exact aspect graph of general CAD objects under perspective projection.

A medical image analysis application of the aspect graph is presented by Noble, Wilson and

Ponce [112] addressing the problem of computing the orthographic projection aspect graph

of smooth shapes from volumetric data.

A related viewer-centred approach for modelling the geometry of the occluding contour of a

polyhedron, the rim appearance representation is presented by Seales and Dyer [136].

Weiss and Nawab [165] combine the aspect graph with the appearance model of the object

into a representation denoted as appearance graph. They also present a method of searching

the appearance graph at different levels of abstraction.

The aspect graph model has been generalised and extended to include objects with moving

parts (articulated assemblies and objects with translational connections) by Sallam et.al. [134]

and Bowyer et al. [27]. Kinoshita, Mutoh and Tanie [91, 92] describe the haptic aspect graph

of 3D objects, using a high definition tactile sensor.

10 CHAPTER 2. LITERATURE SURVEY

Faugeras et.al. [58] discuss a number of issues regarding the aspect graph representation.

Some of the most important concerns are:

• the number of aspect increases very fast with the object complexity, and the as-

pect graph model does not say anything about their importance

• indexing of different views belonging to the aspects may be problematic

• does not consider real image features or feature recovery

• geometric information may not be enough

• computationally complex, graph is large

• extraction of line drawings is difficult from noisy images

• mixing geometric and brightness contours

In order to deal with the large number of aspects, whereas many representing visual detail

which may never be seen by an observer in practise, Eggert et.al. [52, 53] introduced the

scale space aspect graph. Pae and Ponce [115] present an approach for constructing the scale

space aspect graph for solids of revolution.

Shimishoni and Ponce [140, 141] present an algorithm for computing the orthographic pro-

jection aspect graph of polyhedral objects observed by a camera of finite spatial resolution.

They show that under these circumstances, theoretically different views may become equiva-

lent and ’accidental’ views may occur over finite areas of the viewing space.

Roy et al. [133] study the problems related to the construction of approximate aspect graphs

(AAG) from noisy sensor data, and present an algorithm for constructing AAGs using an ap-

proach based on uniform partitioning. Seibert and Waxman [137] build aspect graph like

object representations from a sequence of images, by tracking the appearance of the object

over the sequence. The model is built up incrementally by matching new images to previ-

ously established aspects.

Aspect graph models have been applied to various problems in computer vision research.

Bowyer et al. [29] present several results including a simple object recognition system based

on aspect graphs. Ponce and Kriegman [126] use the exact aspect graph representation in

predicting and interpreting line drawings of 3D curved objects. Pampagnin and Devy [116]

present an object identification system capable of recognising a 3D object from a single im-

age, where the object is given by a region-edge-vertex model and an aspect graph. Stark et

al. [148, 149] apply aspect graphs for choosing the starting point and providing and guiding

strategy for nonlinear optimisation based object recognition. This specific approach is also

used in the ERRORS-2 recognition system by Bowyer et al. [26]. Dickinson, Pentland and

Rosenfeld [46, 47] decompose the aspect representation to a limited set of aspects of 3D ob-

2.2. RECOGNITION AND POSE ESTIMATION 11

ject parts in a finite dictionary. Cyr and Kimia [42] apply a shape similarity metric to group

similar views of an object into aspects.

Methods for motion tracking of objects using aspect graphs are presented by Dickinson et.

al. [45], Ravela et al. [128].

2.2 Recognition and pose estimation

2.2.1 Model based recognition

Many different approaches have been developed for model based recognition. Some of the

most popular paradigms are:

• constrained search: the search space is systematically reduced by testing predi-

cates

• automated programming: decision rules and procedures are automatically built

from model data

• evidence based techniques: evidence values (weights) are assigned to observed

features and object identification is based on accumulated evidence

• geometric hashing: an invariant quantity derived from the features is used for

indexing a hash table of identity/pose

• local feature set extraction: hypothesis of the identity and/or pose is obtained

from a small set of features, and the rest of the features are used for verification

An excellent survey of model based recognition is presented by Chin and Dyer in [41].

The hypothesis verification paradigm is exploited by Wong et al. [170] for recognition of

polyhedral objects.

The constrained search method is implemented in the BONSAI recognition system by Flynn

and Jain [61].

Wallack and Canny [162] present a new data structure for indexing model features, called a

tree grid, which provides a more compact representation than traditional hashing, and pre-

serves spatial ordering in addition.

Stahs and Wahl [145] combine hashing techniques and hypothesis generation/verification for

object recognition and pose estimation using a 3D robot sensor producing range images of

12 CHAPTER 2. LITERATURE SURVEY

the scene.

A combination of indexing and hypothesis verification based on local feature sets is used by

Beis and Lowe [11]. In their approach a learning indexing function is used to select best can-

didates given a set of features, and a final verification stage guarantees the reliability of the

recognition. A similar approach is described by Stanchev and Vutov [146], in which a data-

driven indexing scheme is used for hypothesis generation, while the verification is based on a

standard model driven technique.

The ACRONYM system by Brooks [30] compiles recognition instructions for the interpre-

tation algorithm from predictions of image features based on the model.

Forsyth et al. [63] study the applicability of invariant shape descriptors (which are unaffected

by the orientation of the object) in 3D recognition.

Global descriptors based on probability distributions of shape features is used by Osada et al.

[114]. The matching process is thus reduced to sampling the unknown object, normalisation

and comparing the results to the probability distributions of the models.

Murase, Nayar and Nene[103, 110, 104] present an approach for recognising objects from

visual appearance, where the appearance model (called parametric eigenspace representation) is

built from a large number of views obtained automatically under varying viewing and illu-

mination conditions. This model is also the basis of the Real-Time 100 recognition system

[111], which is capable of recognising 100 complex 3-D objects. Sengel et al. [138] combines

the parametric eigenspace model with statistical moments of image signatures. Automatic

construction of object models from images is also exploited by Dorai, Wang, Jain and Mer-

cer [48] (using surface depth data), Sullivan and Ponce [155, 156] (fitting triangular splines

to silhouette data), Park and Subbaro [117] (tangent plane matching), Ulupinar and Nevatia

[160] (observations on symmetries in figures).

2.2.2 CAD based recognition

Bhanu, Ho, Hansen and Henderson [15, 16, 73] make a connection between CAGD (Com-

puter Aided Geometric Design) models and vision systems. Recognition strategies are gen-

erated automatically based on 3D geometric properties.

Arman and Aggarwal [4] use CAD models to compile model features into a recognition tree,

which is used for systematically filtering out feature sets obtained from the segmented scene

during the recognition phase.

2.2. RECOGNITION AND POSE ESTIMATION 13

Hoffman et al. [80, 79] experiment with fully automatic CAD driven object recognition us-

ing different types of sensors (intensity and range images).

The 3DPO system by Bolles et al. [25, 24] uses CAD models and a hypothesis-verification

based strategy for estimating the position and orientation of 3D parts from range images.

2.2.3 Pose estimation based on point sets

Several techniques for pose estimation based on corresponding point sets are presented by

Haralick et al. [75, 74], DeMenthon and Davis [44], Wenli and Lihua [166], Quan and Lan

[127], Rosin [131], Hillenbrand and Hirzinger [78], Ansar and Daniilidis [3]. In addition

to points, Hanek, Navab and Appel [72] use line and cylindrical features (often present in

industrial environments) for estimating the camera position. Chang and Tsai [34] too use test

functions based on line features for hypothesis verification. The pose estimation and tracking

system by Yoon, DeSouza and Kak [174] uses circular-shape features instead of lines.

Nomura et al. [113, 113] use a fusion of shading and edge data in a pose estimation method

which is considerably more tolerant to sensing errors than pure geometry based techniques.

The method presented by Chen and Stockman [36, 35] is based on matching both object

silhouettes and internal edgemaps. Brightness information is also used in shape-from-shading

based approaches (e.g. Worthington and Hancock [171]).

Color information also proved to be useful for pose estimation and recognition tasks (Ekvall,

Hoffman and Kragic [56], Slater and Healey [142]).

2.2.4 Neural networks

Wright and Fallside [172] combine CAD models with a back propagation neural network

for estimating the object pose from wireframe images. Neural networks have been applied to

pose estimation and object recognition problems by Hogg et al. [81] (synergetic networks),

Khotanzad and Liou [90] (multilayer perceptron), Hati and Sengupta [77] (two-stage net-

work), Nakano and Watanabe [108] (multistage networks, where also aspect graphs are used

in one of the stages).

14 CHAPTER 2. LITERATURE SURVEY

2.2.5 Genetic algorithm

Toyama, Shoji and Miyamichi [159] propose a model-based pose estimation method based on

a genetic algorithm with the viewing coordinates and rotation angles encoded in the chromo-

some structure. They apply a fitness method using edge direction for evaluating candidates.

Bergevin and Levine [13] address the problem of recognising generic objects from single 2-D

images. They present a vision system which is not based on accurate object model, but coarse

description of object classes. The generic system developed by Stark and Bowyer [147] uses

an indexing scheme to recognise objects based on functional properties.

2.2.6 Structural models and relational descriptions

Matching structural descriptions represented by graphs is considered as one of the most diffi-

cult problems in computer vision. Complexity of exact graph matching in general remains to

be classified, however several special cases have proven to be NP-complete (Basin [10], Garey

and Johnson [64]). Inexact graph matching has also been proven to be NP-complete (Ab-

dulkader [1]). For some particular types of graphs the problem becomes polynomial, as for

planar graphs (Hopcroft and Wong [82]) or trees and forests (Matula [101], Reyner [130]),

but in the general case heuristics are required to be able to treat the problem in practise.

Luo and Hancock [98] treat inexact graph matching in the purely structural sense as a max-

imum likelihood problem, and present an efficient matching algorithm using on this frame-

work. Blake [22] proposes partitioning the problem into sub-problems based on a lattice of

constraints ([20, 21]). Messmer and Bunke [102] has developed an approach for error cor-

recting matching of an unknown graph to a set of model graphs, where the model graphs are

preprocessed and compiled into a compact representation. The influence of a cost function

on error correcting graph matching is studied by Bunke [31]. Van Wyk, Durrani and van

Wyk [161] apply a reproducing kernel Hilbert space interpolator based algorithm to various

graph matching problem and demonstrate the efficiency of this approach. An optimisation

technique using graduated assignment is introduced for graph matching by Gold and Ran-

garajan [70], with O(lm) complexity (where l, m are the number of links in the two graphs).

Shapiro and Haralick [139] propose a metric for comparing relational descriptions based on

comparing weighted primitives (weighted attributes and weighted relation tuples) using a

normalised distance for each primitive property that is inexactly matched.

Wilson and Hancock [167, 168] describe a Bayesian framework for matching relational graphs,

2.2. RECOGNITION AND POSE ESTIMATION 15

and a comparative study of different strategies for quantifying inexactness. According to their

findings, graph editing techniques show the best performance. Edit distance for graph match-

ing was introduced by Sanfeliu and Fu [135], and it is discussed in several papers (Myers, Wil-

son and Hancock [105, 106, 107], Petrakis, Faloutsos and Lin [122]). Llados, Marti and Vil-

lanueva [97] propose an error-tolerant algorithm for subgraph-isomorphism based on graph

editing. Finch et al. [59] present a mean field annealing based technique using the Bayesian

model.

Backer and Gebrands [7] apply inexact graph matching to structure graphs representing stereo

images, with the graph nodes corresponding to object vertices.

The structural descriptions used by Bennamoun and Boashash [12] represents the object in

terms decomposing it to convex parts obtained from the contour and modelled by superquadrics.

Fan, Medioni and Nevatia [57] describe a scene using relational graphs. Nodes of the graph

correspond to visible surfaces patches obtained from dense range images and edges describe

the relations between them. Recognition using graph matching is based on a set of descrip-

tions from different view angles.

A hierarchical graph representation of objects is proposed by De Floriani [60], based on con-

nectivity properties of the generalised edge-face graph (GEFG) and form features.

Flynn and Jain [62] describe a system for generating relational graph descriptions of objects

from CAD models, composed of both view-independent elements from IGES descriptions

and and view-dependent elements based on synthetic views.

Wong, Lu and Rioux [169] propose an object description scheme using attributed hypergraph

representation (AHR). Nodes of the AHR correspond to primitive blocks of the object which

too are represented by attributed graphs. AHR’s are constructed from single range images,

then combined to the so called complete AHR which is an orientation invariant description

of the object.

An indexing technique for models based on graph representation, graph hashing is presented

by Sossa and Horaud [143].

Chapter 3

Approach & Implementation

3.1 Overview of the modelling system

In this chapter we present the approach and implementation details of the modelling system

based on an approximation of the aspect/appearance graph of objects. The purpose of the

system is to convert the geometric model of an object, extended with additional information

such as surface properties and environmental (e.g. lighting) conditions, to a representation

which can be used in a computer vision system for pose estimation or object recognition.

An overview of the modelling system is presented in Figure 3.1. The geometric model of

the object is used as a starting point for the modelling. This model is extended with extra

information, related to the object (e.g. surface properties) or to the environment (e.g. lighting

conditions). The model building is based on the tessellation of a viewing sphere. The object

is placed in the centre of the sphere, and the views from different locations on the surface are

analysed. Ray tracing is used for image generation. The images are segmented, and a set of

high level features are extracted for each image region. Graph matching is applied to compare

adjacent views. The surface patches are then subdivided and the procedure is repeated until

the match between the adjacent views is good enough or a desired resolution is reached.

From the information gathered during the viewing sphere tessellation, equivalence classes of

views are extracted. This is done by merging the patches of the viewing sphere. Depending

on the model parameters and environmental conditions, these equivalence classes can approx-

imate the aspect and/or appearance graph of the object.

17

18 CHAPTER 3. APPROACH & IMPLEMENTATION

In order to give a description of the classes for use in recognition / pose estimation, contour

types are introduced. Classes are represented as sets of contours where the elements are dis-

junctions of contour types.

3.2 Use of ray tracing for model building

In model based object recognition, the aim is to find the relation between a description of

an object and the data we get from the acquisition device or devices. Different types of ac-

quisition devices perceive the same object in different ways. A camera gives a 2-D colour or

grey-scale image of the object seen from a given viewpoint, a range scanner measures the dis-

tance to the surface points, a thermal camera would give a map of thermal variations. The

data received from the acquisition device is preprocessed, and set of features which charac-

terise the objects are extracted. The observable features vary from one acquisition device to

the other, commonly used features include (but are not limited to) edges, corners, surface

properties (e.g. colour, orientation). It is not always obvious from an object model –for ex-

ample CAD models, or constructive solid geometry models–, what object features can be de-

tected by some acquisition device from a given viewpoint. In order to fill this gap, we need

to do some preprocessing of the object model.

The approach which is presented here is based on simulating the behaviour of the acquisition

device. The simulated data from a virtual acquisition device is processed by the same feature

extraction tools as the real image data. The extracted features will therefore have the same

properties as if they were extracted from real images, so they can be used for evaluating the

similarity between simulated and real data.

In the following, we will concentrate on an RGB camera as an acquisition device, since it was

used for conducting the experiments in Chapter 4. Nevertheless, no limitations are imposed

on the modelling system by this choice, only the set of observable features is influenced.

3.2.1 From geometric models to images

The interesting features for the RGB camera (and many other acquisition devices) are the

object boundaries –surfaces, edges and corners. Some geometric models describe the object

by defining its boundaries (BREP), others define the volume itself (CSG, voxels). The latter

needs to go through extra processing to produce the features observable for a camera.

The object models in this work are based on the simple boundary representation used by the

3.2. USE OF RAY TRACING FOR MODEL BUILDING 19

Figure 3.1: Overview of the modelling system

20 CHAPTER 3. APPROACH & IMPLEMENTATION

Bob ray tracer [163]. This representation supports polygonal faces, circular, spherical and

conic surfaces. Other, more complex surfaces are approximated with a polygonal (e.g. trian-

gular) tessellation (Figure 3.2). A conversion tool from AutoCAD DXF files has also been

developed.

(a) (b) (c)

Figure 3.2: Ray traced surfaces approximated by triangles

For the simulation of the images acquired by a camera, the geometric model has to be aug-

mented with additional data about the surfaces of the object. Each surface may have a number

of different properties, depending on the method for generating images from the model. For

ray tracing –the method used by the modelling system– these are the following:

• diffuse reflection (given by colour components r:g:b)

• specular reflection (r:g:b)

• transparency

• index of refraction

• optional surface texture

The decision to use ray tracing as a rendering method is explained by its flexibility while still

being relatively fast. However, ray tracing has its shortcomings too, and it is not unthinkable

that other methods produce better results in different environments. With the extensions of

simulating ambient light and soft shadows, ray tracing did perform well within the setting of

this thesis. Other types of sensors (range scanner, thermal camera) require a corresponding

simulation method. It is important to keep in mind that the modelling system is based on

generating a large number of views, so execution speed is an important factor to consider

when deciding on a method.

3.2. USE OF RAY TRACING FOR MODEL BUILDING 21

3.2.2 High level features

The high level features used in model building and recognition are collected in attributed

relational graphs, which are commonly used in model based recognition [23]. The extraction

of these features from images –whether they contain real image data or simulated data– is

done by the same pipeline of image processing tools. The image is segmented into connected

regions based on the uniformity of the colour ratio, r:g:b, while the intensity is above a given

threshold, and the required connectivity criterion is 4-connectedness [118]. The contours of

the image regions are traced, and high level features describing the contours and the relations

between the contours are computed. Finally all of these features are collected in an attributed

relational graph representing the image.

Image segmentation

Prior to image segmentation itself, some image enhancements are performed to improve the

image quality and thus make the segmentation more robust. These enhancement steps are

obviously more important for real data than for simulated images, nonetheless the pipeline is

executed the same way regardless of the source of the input.

The major steps of the image enhancement and segmentation are as follows:

1. smooth of the image without smearing edges

2. normalise colour values and reduce variance while keeping high variance boundaries

between regions

3. segment the image into regions based on colour separation, using 4-connectedness as

the connectivity criterion and the uniformity of the r:g:b colour ratio with total in-

tensity over a threshold as the common property (as in the standard definition of a

connected region1)

4. discard very small regions and filaments

5. trace the contour of each region, and compute the contour attributes: mean colour

components, centre of gravity, area, moments, shape classification

1Set of pixels that are connected under some definition and share a common property.

22 CHAPTER 3. APPROACH & IMPLEMENTATION

Contours and attributes: Nodes of the relational graphs

From the contours of each image region, a list of attributes is computed. Currently, this list

consists of the following:

Contour type ext/int: external or internal contour flag

Shape tri/sqr/
ir/unk: simple shape classification: triangular, square,

circular or unknown

Area aa(area): the area enclosed by the contour

Moments mm(I1,I2,I3,I4): the first four rotation invariant combina-

tions of normalised central moments [85]

I1 = η20 + η02

I2 = (η20 − η02)
2 + 4η2

11

I3 = (η30 − 3η12)
2 + (η03 − 3η21)

2

I3 = (η30 + η12)
2 + (η03 + η21)

2

Centre
g(x,y): coordinates of the centroid

Colour
r(r,g,b): mean colour values around the track of the contour

Planar pl(A,B,C,D): plane equation coefficients for the best fitting

plane (if range image data is available)

Ax + By + Cz + D = 0

Each contour is assigned a contour id (A, B, ...). The contour id is not related to the contour

attributes, but to the order in which contours are found in the image. A different orientation

of the image may therefore result in a different assignment of contour id’s (this problem will

be addressed later).

Relations between contours: Arcs of the relational graph

The edge attributes are computed from the spatial relation between the centres of the con-

tours. The relation is encoded in a 16-way direction code (Figure 3.3). The code letters s, i
and o are used in addition to specify that one contour is superimposed, laying inside or out-

side an other.

In order to reduce the size of the graph, the number of arcs included in the graph can be

limited. An easy way to do this is is to keep only the first n arcs sorted by the distance between

the centroids of the contours they connect. Using a function of the area or other contour

parameters as an importance factor is also possible, thus making connections between the

3.3. VIEWING SPACE TESSELLATION 23

0

3
2

1

4

5

6
789

a

b

c

d

e
f

Figure 3.3: 16-way direction
codes

contours of important (e.g. large) regions more likely to be considered. It is usually a good

idea to include enough arcs to keep the graph connected (although not required for the graph

matching). This could be achieved by increasing the maximum number of arcs allowed if

necessary, until the graph becomes connected. Another possibility is to find a spanning tree

(e.g. minimal spanning tree) of the graph, and then include additional edges by the above

criteria.

Figures 3.4 and 3.5 show an example segmented image with the graph drawn on top, and the

textual representation of the relational graph including the node and edge attributes.

3.3 Viewing space tessellation

Concerning the tessellation of the viewing space, a number of problems must be addressed.

One of them, and perhaps the most important is what resolution can be achieved. The op-

timal resolution depends on several factors. Choosing too low resolution results in a loss of

detail, while too high resolution means extra computation time which would otherwise be

unnecessary. On the modelling side, the image resolution could theoretically be increased to

infinity, while on the input side the acquisition devices have their hard limits. In practise,

the usable image size can be even smaller, depending on the computation costs involved in

preprocessing, feature extraction, and model generation.

There are several different ways of tessellating a spherical surface. Meshes based on cylindri-

cal or spherical coordinates are easy to compute, finding adjacent patches is trivial, and the

resolution can be increased arbitrarily. The drawback of these methods is the variation of the

shape and size of the patches over different areas of the sphere. Using regular polyhedra or

24 CHAPTER 3. APPROACH & IMPLEMENTATION

A

BC
D

F E

Figure 3.4: Segmented image and the corresponding rela-
tional graph

triangular symmetry groups [8] gives a uniform distribution of patches over the sphere, but

the number of these tessellations is limited (there are only five convex regular polyhedra2 and

four types of triangle groups3), and none of these provides an acceptable resolution.

3.3.1 Icosahedron method

This tessellation method is based on an icosahedron. The regular icosahedron (‘level 0 icosa-

hedron’) has 20 triangular faces.

The basic idea is to divide the faces of the solid into smaller facets. The triangular faces are

split into four triangles, using the mid-points of the edges as new corners. Each new triangle

thus covers one fourth of the area of the original. The new corners are then projected back

to the surface of the sphere. While the triangles we get from the subdivision are, except for

scaling and rotation, exact copies of the original, the projection of the corners distorts them so

2The regular polyhedra (Platonic solids) are the tetrahedron(4,4,6), cube(6,8,12), octahedron(8,6,12), dodec-
ahedron(12,20,30) and icosahedron(20,12,30). The number of faces, vertices and edges is indicated in parenthe-
ses.

3The valid configurations are (2, 2, n), (2, 3, 3), (2, 3, 4) and (2, 3, 5), where the numbers indicate the an-
gles of the spherical triangles composing the symmetry group: (π

p
,

π

q
,

π

r
)

3.3. VIEWING SPACE TESSELLATION 25A ext:
ir:aa(9941):mm(21243,43,41,1):
g(255,334):
r(255,167,139)A− 6 →B A− 8 →C A− 9 →D A− 8 →E A− 9 →FB ext:tri:aa(3772):mm(15848,10,278828,1144):
g(345,273):
r(210,245,227)B−
 →C B− b →D B− 9 →E B− b →F B− e →AC ext:tri:aa(10537):mm(16538,29,213276,1329):
g(255,264):
r(46,53,87)C− a →D C− 7 →E C− a →F C− 0 →A C− 4 →BD ext:tri:aa(7703):mm(14718,41,53949,1221):
g(187,214):
r(161,189,175)D− 5 →E D− a →F D− 1 →A D− 3 →B D− 2 →CE ext:sqr:aa(17692):mm(18114,194,9471,241):
g(286,169):
r(196,130,119)E−
 →F E− 0 →A E− 1 →B E− f →C E− d →DF ext:sqr:aa(4227):mm(18898,266,1343,213):
g(145,155):
r(33,38,62)F− 1 →A F− 3 →B F− 2 →C F− 2 →D F− 4 →E
Figure 3.5: Textual representation of the relational graph for the image on Figure 3.4

they are no longer exactly the same size and shape. For practical reasons, this is no problem,

as the difference is not too large (the relative difference from the average area is within ±15%
even after seven iterations).

The solids, which are generated this way are called ‘level n icosahedrons’, where n indicates

the number of iterations, i.e. how many times were the faces divided. Some examples are

shown on Figure 3.6.

For simplicity, all object models were defined (translated and scaled if necessary) in such way

that the object was centred at the origin, and the viewing sphere is the unit sphere (the Gaus-
sian sphere). The equations in (3.1) give the corners of the new patches under these conditions

(the corner vectors of the original patch were (~r1, ~r2, ~r3)).

~s11 = ~r1

~s12 = ~r1+~r2

‖~r1+~r2‖

~s13 = ~r1+~r3

‖~r1+~r3‖

~s21 = ~s12

~s22 = ~r2

~s23 = ~r2+~r3

‖~r2+~r3‖

~s31 = ~s13

~s32 = ~s23

~s33 = ~r3

~s41 = ~s23

~s42 = ~s13

~s43 = ~s12

(3.1)

As the ultimate goal of the viewing sphere tessellation is to end up with connected regions of

patches which represent the different aspects of the objects, we need to keep track of which

26 CHAPTER 3. APPROACH & IMPLEMENTATION

(a) (b)

(c) (d)

Figure 3.6: (a) Regular icosahedron, 20 faces; (b) level one icosahedron, 80 faces; (c)
level 2 icosahedron, 320 faces; (d) level 5 icosahedron, 20480 faces

3.3. VIEWING SPACE TESSELLATION 27

patches are adjacent to each other. This is relatively easy as long as the patches are all the

same size, but it soon becomes more complicated when patches of different sizes are present

– which is almost always the case, as the subdivision is done in an adaptive manner (see Section

3.3.2). For this purpose, a patch adjacency graph is built for the level-0 icosahedron, and it is

continuously updated each time a patch is divided. The adjacency graph is in fact represented

as a directed graph where edges for adjacent patches are added both ways. The reason for this

is that the ordering of the outgoing edges for a node is crucial for the graph update procedure

during patch subdivision.

To understand how the updates are performed, let us consider a patch P , with vertices v1,

v2 and v3, which will be divided to four new sub-patches P1, P2, P3 and P4 according to

(3.1). The list Q1, Q2, ..., Qn are the neighbours of P1, starting from vertex v1 along the

side (v1, v2), then further on along (v2, v3) and finally (v3, v1). When the subdivision is

performed, the new edges are introduced to the graph in such a manner that this property is

preserved for both the old and new patches.

Let us start with patch P1. P and P1 share the corner v1, which means that the fist neighbour

of P1 will be Q1 (which was the first neighbour of P). Now, consider the size of Q1 compared

to P (or rather the level of subdivision at which they were added, l(P) and l(Q1)).

If l(Q1) ≤ l(P) (Q1 is the same size or larger than P), that means that Q1 will be the only

neighbour of P1 on the first side, and Q1 will be the fist neighbour of P2 as well (and the only

one at P2’s first side). We therefore remove the edge (Q1, P), and replace it with (Q1, P2)
and (Q1, P1), at the same place on Q1’s adjacency list where (Q1, P) was located (note that

the order of P1 and P2 is reversed).

On the other hand if l(Q1) > l(P) (Q1 is smaller than P), that means that P1 will have one

or more neighbours along its first side, none of which are shared with P2. To determine how

many of P ’s neighbours will P1 get, we look at the subdivision levels of these. We know that

that side of a level (n+1) patch is half the length4 of the side a level n patch. This means that

we need to find k neighbours Q1, ..., Qk such that

k
∑

i=1

2−l(Qi) = 2−l(P1)
(3.2)

For the patches Q1, ..., Qk , P1 will simply replace P on the adjacency list. At the same time,

Q1, ..., Qk is added to P1’s adjacency list.

4This is not quite correct as the patch vertices are projected back to the surface of the Gaussian sphere; still
the argumentation based on patch levels is valid

28 CHAPTER 3. APPROACH & IMPLEMENTATION

The same procedure is then repeated for all three sides of patch P . In addition, the edges

(P1, P4), (P2, P4) and (P3, P4) are added when appropriate (for example, (P1, P4) is added

after (P1, Qk)). P4 is only adjacent to P1, P2 and P3, in this order. Finally, all edges to P

have been removed / replaced by edges to the new patches, so P can safely be removed.

(a) (b)

Figure 3.7: A segment of the graph of viewing sphere patches and neighbour relations
before(a) and after(b) the triangle subdivision

3.3.2 Adaptive subdivision

The issue of finding the appropriate tessellation resolution for a specific object is addressed

by adaptive subdivision. Patches which cover an area of the viewing sphere where the views

show acceptable similarity do not need to be subdivided. On the other hand, if there are large

differences between the views, the patch is subdivided.

In practise, the similarity check is done by applying graph matching [19] to the views from

the corners of each patch. For each corner, a synthetic image of the object is generated and

processed by the feature extraction tools, yielding a relational graph for that viewpoint. The

similarity is measured via calculating the cost of pairwise matching these graphs to each other.

A patch is accepted if all corner pairs have a match cost within a threshold, or subdivided

otherwise.

The process is controlled by a number of parameters. First, a minimum and maximum sub-

division level can be specified. The minimum level is used to enforce that a certain amount of

detail is achieved; all patches will be subdivided until the minimum level is reached, regard-

less of the graph matching results (which are not even computed in this case). The maximum

3.3. VIEWING SPACE TESSELLATION 29

level gives a stopping criterion for the subdivision: patches at this level will not be subdivided

anymore (whether these patches are accepted or not still depends on the match costs).

A second set of parameters controls the graph matching itself. The relative importance and

scale of the graph attributes can be adjusted by a set of weights, and the decision whether

the match is good enough is controlled by a threshold. Transforming the results of the graph

matching from a multi-dimensional parameter set to a single scalar cost (or distance) function

is not a trivial problem, and well worth dedicated research. However, for the purposes of

this thesis the graph matching tool has been applied as-is, and the cost functions will not be

discussed in detail.

Another parameter, which can also serve as stopping criterion, is the total area covered by the

accepted patches. As the subdivision level increases, and the patches become small enough to

have good similarity between the corners, the unaccepted patches will be concentrated along

boundaries between different areas of the viewing space which correspond to different aspects

of the object. By increasing the subdivision level, these boundaries get narrower and the un-

covered area is decreasing. In the ideal case, when all unaccepted patches are crossing the

boundary, the uncovered area will be reduced by one half with each level increase (the patch

size will be one fourth, but we need twice as many patches along the boundary). As an exam-

ple, this tendency can be observed for the CUBE test object in Section 4.3.1.

The number of patches grows exponentially with the level of subdivision, which puts a prac-

tical limit on how far the subdivision level can be increased. Nevertheless, the resolution is

also doubled for each level, so acceptable precision is reached after relatively few iterations.

In the worst case, when every patch needs to be subdivided, the number of patches will be

tl = 20 · 4l, where l is the level of subdivision (t1 = 80, t2 = 320, t3 = 1280, t4 = 5120,

t5 = 20480, t6 = 81920, t7 = 327680, etc.). At the same time, the distance between ad-

jacent views is halved: sl = s0 · 2−l. This means that the number of patches is quadratic

function of the resolution rl = s−1
l , that is tl = C1 · r

2
l . In the ideal case, when all patches

which do not cross boundaries are accepted, the number of patches remaining is approxi-

mately doubled, so the patch count in this case will be closer to a linear function of the res-

olution t′l ≈ C2 · rl. In practise the growth is quadratic in the beginning, and gets closer

to linear after a few iterations, when the resolution is high enough to yield good matches be-

tween adjacent views (see detailed results in Chapter 4). Note that the number of aspects for

the various objects are quite different, and so is the total length the boundaries between the

aspects and the constant C2.

30 CHAPTER 3. APPROACH & IMPLEMENTATION

3.4 Building reference classes

The result of the adaptive subdivision algorithm is a tessellation of the viewing sphere, repre-

sented by a graph where the nodes correspond to the triangular patches and the edges connect

the adjacent patches. The next step is to cluster the patches in order to obtain the reference

classes describing the different aspects of the object. The patch clusters are converted to clus-

ters of views using the corners of the patches. Then the image features extracted from these

views are used to build a class description for each cluster.

3.4.1 Clustering the patches

Clustering the patches (Algorithm 3.1) is performed in a region growing manner. The process

starts with an arbitrary patch, and if it is uniform all neighbouring patches are collected which

are also uniform and match the starting patch. Non-uniform patches are discarded. This step

is repeated for the newly collected patches, until no more patches are added to the cluster.

Then a new starting patch is picked for the next cluster, and so on until there are no patches

left. An example for the result of the patch clustering is shown on Figure 3.8, where each

cluster is assigned a random colour.

For each cluster, the list of patches is converted to a list of viewpoints using the corners of

the patches. As several (up to six) patches share the same corner, duplicates from this list are

removed. Optionally, a weight can be calculated for each viewpoint, which is defined by the

sum of the area of the patches in the cluster which that viewpoint is a corner of, divided by

three. These weight values give an indication of approximately how large area of the viewing

sphere a particular view can be associated with. In addition, the sum of the weights for all

views give the total area of the cluster.

3.4.2 Consistent naming of contours

For object recognition or pose estimation purposes a cluster of views is not the most efficient

way of representing the object, especially for large clusters. It is therefore desired to have a

simplified description of the classes combining the similarities of the views within the class

and thus allowing for quick decisions to which class an unknown view belongs to. One possi-

bility is to represent each class with one single view from a point at (or near) the cluster centre.

This approach –although it may seem simple and efficient– has a number of problems. First,

the shape of the clusters are often quite complex, so it is not always easy to define where the

3.4. BUILDING REFERENCE CLASSES 31

Algorithm 3.1 Patch clustering

Input: L1 contains a list of all patches

Output: PL contains a list of all clusters

PL ⇐ {}
while L1 6= {} do

L2 ⇐ {}
p ⇐ {}
append(L2,pop(L1))
while L2 6= {} do

n ⇐ pop(L2)
if uniform(n) then

append(p, n)
for all nn such that adjacent(nn, n) do

if nn ∈ L1 ∧ uniform(nn) ∧ match(n, nn) then

append(L2, nn)
delete(L1, nn)

end if

end for

end if

end while

if p 6= {} then

append(PL, p)
end if

end while

centre of a cluster is. Second, even if we manage to find a good algorithm for locating the

cluster centre (or we select it manually), a single view may not describe the whole class appro-

priately. These problems are addressed by collecting feature information from all views within

a cluster, and merging it into a compact representation, which describes the common prop-

erties of the cluster. The clusters of views described this way will be referred to as equivalence
classes in the following.

Most of the information about image features is carried by the node (contour) attributes. It is

therefore not unreasonable to use the contour information as input for the description of the

equivalence class. Earlier, each image contour has been assigned a contour id. It is however

not guaranteed that two contours having the same contour id in different images correspond

to the same surface of the object, since the contour id’s are assigned in the order the contours

are detected in the image. Even a small rotation of the image may be enough to change the

32 CHAPTER 3. APPROACH & IMPLEMENTATION

Figure 3.8: Result of patch clustering (BLOCKCYL object), with

random colours assigned to each cluster

detection order (see Figure 3.9). For this reason, the first step is to establish a consistent nam-

ing of contours throughout the whole cluster. This is where the graph matching results from

the adaptive subdivision (Section 3.3.2) will be used a second time. We know that all views

within the cluster come from corners of accepted patches, i.e. the match between the cor-

ners was good enough. Graph matching, in addition to the cost of the match between two

graphs, returns a list of node equivalences, that is a one-to-one mapping of the nodes of graph

G1 to the nodes of graph G2 which is associated with the lowest match cost. This mapping

can be used to systematically rename the contours of G2, so the corresponding contours have

the same contour id in both graphs. Table 3.1 shows an example, where the unknown and

reference graphs come from the images on Figure 3.9.

A consistent naming of the contours for all views within the cluster is achieved by picking an

arbitrary viewpoint from the cluster and remapping the contours of its neighbours according

to the results from graph matching; then propagating the mapping to the neighbours of the

neighbours, and so on until the whole cluster is processed.

3.4. BUILDING REFERENCE CLASSES 33

A

B
C

D

EF

(a)

A

B

CD
E

F

(b)

Figure 3.9: Renaming of the contours. (a)Reference view and a (b)view with different
contour naming

ref idx unk idx cost ref = unk

1 6 731 A = F

2 5 1121 B = E

3 4 1136 C = D

4 3 898 D = C

5 1 997 E = A

6 2 988 F = B

Table 3.1: Table of node equivalences and costs, from the output of graph matching

3.4.3 Contour types

Now that the consistent naming has been established, there is still a problem with the high

variation of feature properties over the cluster. Some contours of the image will change in area

and shape as we move along the viewing sphere, while others remain similar over large areas.

Keeping all the different views in a cluster result in an enormous search space, and makes the

pose estimation or recognition process inefficient. In order to reduce the size of the search

space, contour types are introduced. Instead of keeping all details of all contours, we try to

categorise the contours into a limited number of different types. The optimal number of the

contour types depends on the complexity of the object, in general it should be large enough

to cover the common variations of the contours which can be observed, but it shouldn’t be

too large either, since the whole idea is to reduce complexity. In practise, numbers between

34 CHAPTER 3. APPROACH & IMPLEMENTATION

30 and 100 give reasonably good results for the test objects, where the average number of

contours is between 5 and 20 for a single image and 106 to 107 in total for all images.

The purpose of the contour types is to describe the similarities of a set of contours in a sim-

plified manner. For example, we could say that one type is ’large red squares’ and an other is

’small green circles’. However, such types are not easily defined automatically. A well estab-

lished way to do such automatic categorisation is to apply an unsupervised clustering algo-

rithm to the data. For the contour data, we use k-means clustering, applied to vectors of the

appropriately scaled numerical contour attributes. Scaling was necessary as the range of the

different components is quite different, e.g. RGB colour components are within 0-255, while

the area can be up to 262144 pixels in theory (for a 512 by 512 image). The scaling param-

eters are determined from the mean and minimum/maximum values for each component,

then adjusted to reflect relative importance or robustness of the components (e.g. colour is

more important than area), similar to the graph matching parameters in Section 3.3.2.

The clustering is done on the parameter vectors of all external contours from all the views in

all clusters. The centres of the resulting k clusters (the mean of all vectors in that cluster, ~mi)

define k distinct contour types θ1, θ2, . . . , θk. A contour belongs to type θi, if the distance

from its property vector to ~mi is minimal.

3.4.4 Description of reference classes

Using the contour types, the equivalence classes for the views can now be described the fol-

lowing way:

For each cluster, label the contours for each view with the contour types. Then, using the

now consistent contour id’s, collect all possible types for contour A, then B, and so on. The

result is a set of types for each contour id (meaning: “for an arbitrary view within this class,

contour X can be one of these types”). A scoring scheme for the types is also possible, using

one of three alternatives:

• No scoring: each type counts the same.

• Scoring by the number of views: count the number of views where a contour is

of a particular type.

• Scoring by the weights of the views: use the weights assigned to the views during

clustering (Section 3.4.1), the score is the sum of the weights of the views where

the contour is of a particular type.

In the second and third case, the set of contour types is replaced by a set of pairs in the form

3.4. BUILDING REFERENCE CLASSES 35

(contour type:score).

As an example, let us look at a class consisting of four different views with the following type

assignments:

graph1 = {A : θ4, B : θ17, C : θ9,D : θ23, E : θ26}

graph2 = {A : θ11, B : θ20, C : θ4,D : θ6, E : θ26}

graph3 = {A : θ9, B : θ24, C : θ9,D : θ15, E : θ2}

graph4 = {A : θ4, B : θ24, C : θ9,D : θ23, E : θ26}

(3.3)

Furthermore, let us suppose that the views have the following weights: w1 = 0.3, w2 =
0.1, w3 = 0.1, w4 = 0.2. The description of the class using the first (no scoring) scheme

will then be:

class
(1)
1 =



























A : {θ4, θ9, θ11}
B : {θ17, θ20, θ24}
C : {θ4, θ9}
D : {θ6, θ15, θ23}
E : {θ2, θ26}



























(3.4)

The same class, using the second and third scoring schemes:

class
(2)
1 =



























A : {(θ4 : 2), (θ9 : 1), (θ11 : 1)}
B : {(θ17 : 1), (θ20 : 1), (θ24 : 2)}
C : {(θ4 : 1), (θ9 : 4)}
D : {(θ6 : 1), (θ15 : 1), (θ23 : 2)}
E : {(θ2 : 1), (θ26 : 3)}



























(3.5)

class
(3)
1 =



























A : {(θ4 : 0.5), (θ9 : 0.1), (θ11 : 0.1)}
B : {(θ17 : 0.3), (θ20 : 0.1), (θ24 : 0.3)}
C : {(θ4 : 0.1), (θ9 : 0.6)}
D : {(θ6 : 0.1), (θ15 : 0.1), (θ23 : 0.5)}
E : {(θ2 : 0.1), (θ26 : 0.6)}



























(3.6)

Table 3.2 shows a real life example of some equivalence classes of views of the BLOCKCYL

object, using the second (number of views) scoring scheme.

36 CHAPTER 3. APPROACH & IMPLEMENTATION

class1 A (θ23 : 110)
B (θ7 : 1), (θ22 : 42), (θ25 : 67)

class2 A (θ23 : 101))
B (θ3 : 2), (θ7 : 1), (θ22 : 34), (θ25 : 64)

class3 A (θ0 : 37), (θ10 : 65), (θ12 : 160), (θ17 : 1), (θ28 : 126)
B (θ16 : 389)

class4 A (θ10 : 76)
B (θ25 : 76)
C (θ15 : 76)

class5 A (θ10 : 248)
B (θ22 : 61), (θ25 : 187)
C (θ21 : 248)

class6 A (θ4 : 214), (θ5 : 263), (θ8 : 79), (θ11 : 175), (θ13 : 193), (θ14 : 2), (θ29 : 90)
B (θ18 : 593), (θ19 : 90), (θ29 : 333)
C (θ8 : 90), (θ19 : 926)
D (θ24 : 1016)
E (θ20 : 1016)

...

Table 3.2: Fragment from the list of node equivalence classes of the BLOCKCYL object

3.5 Pose estimation

The pose estimation problem is to determine the most probable pose –or the viewing coor-

dinates– of a 3D object from an unknown 2D image of the object. The process can be split

into two steps, first determining the aspect of the object and then refining the viewing pa-

rameters within the extents of the aspect until a satisfactory match is found. During the first

step, when the whole viewing space needs to be considered, a faster and simpler matching

is applied, while in the second step the range of possible viewing coordinates are limited to

a few small areas defined by the proposed aspect(s), which allows for more expensive –and

more accurate– matching algorithms.

The reference classes discussed in the previous chapter can be utilised to find candidates for

the aspect of the object, using a simple and efficient method described below. Determining

the precise viewing coordinates within the aspect has not been part of this research, but all

image, high level feature and graph matching data is kept throughout the model building

process. This data could be used for refining the viewing coordinates within the aspect.

3.5. POSE ESTIMATION 37

3.5.1 Matching reference classes

The image from the unknown pose is submitted to the same preprocessing and feature ex-

traction steps which is employed for building the model, and the image contours are assigned

contour types using the k-means classifier from the clustering. An image consisting of n con-

tours is thus converted to a list of n contour types:

unk = {θi1 , θi2 , . . . , θin} (3.7)

where 0 ≤ i1, . . . , in ≤ k − 1.

The unknown pose is then matched to all reference classes using simple or weighted bipartite

matching [83]. The details of the matching are best explained through an example. Consider

the class class1 from (3.4), and unknown pose defined by unk1 = {θ20, θ23, θ4, θ9, θ26}.

The graph for matching the unknown pose to the reference class is shown on Fig. 3.10. The

nodes 1 . . . 5 correspond to the contours of the unknown image, and the nodes A . . . E to

the contours of the reference class. There is an edge between the nodes i and X, if the type

of contour i is on the list for contour X in the reference class. The matching is either binary

(just requiring the existence of the edge), or weighted using one of the schemes from Section

3.4.4, in which case the sum of the weights is to be maximised in addition to match as many

nodes as possible. Figure 3.10b shows the bipartite graph with the weights from (3.6), where

the sum of the weights for the best match is 2.3.

D

1

2

3

4

5

A

B

C

E

(a)

D

1

2

3

4

5

A

B

C

E
0.6

0.5

0.1

0.5

0.1

0.6

0.1

(b)

Figure 3.10: (a)Simple and (b)weighted bipartite

matching

The selection of the best candidate classes is based on a combination of a number of factors:

• the number of nodes matched

38 CHAPTER 3. APPROACH & IMPLEMENTATION

• the number of unmatched nodes in the unknown image

• the number of unmatched nodes in the reference class

• the weight of the best match

A simple scoring function, which is not using the weight so it is applicable together with the

simple bipartite matching is:

score = 10 · m − |nunk − nref | (3.8)

This scheme, which prefers classes with the most matched contours and slightly penalises

classes where the number of contours is different from the number of contours in the un-

known, can be extended to include the weights:

score = α · m − β · |nunk − nref | +
∑

∀i,j:Mij=1

wij
(3.9)

where m is the number of contours matched, nunk and nref is the number of contours in

the unknown image and the reference class, wij is the weight of the match between contour i

of the unknown image and contour j of the reference class, M is the matrix corresponding to

the best weighted bipartite match between the unknown image and the reference class, and

α, β are appropriate constants. If α and β satisfy α ≫ β ≫
∑

wij , the results will be similar

to using (3.8), but in case of two equally good candidates the largest one is preferred.

(Note that the weights do not indicate the goodness of a match, but how large area (or number

of views) of the viewing sphere a particular type of contour is visible within the class, and

therefore relates to the probability of a view belonging to a class given that some contour type

is observed.)

3.5.2 Multiple object classes

It is possible to extend the above procedure from a single object to multiple object classes. The

pose (aspect) of the unknown object is estimated using each of the reference models assuming

that it belongs to that object class. The scores for the best pose candidates are compared across

the objects classes. If the object indeed belongs to one of the reference object classes, it is more

likely that good pose estimates are found when the correct model is used, compared to using

the other models. The scores give therefore a good indication of the object class to which the

unknown object belongs to.

3.6. INTERFACE TO RECOGNITION SYSTEM 39

This method is simple and straightforward to implement based on the single class pose estima-

tion. However, the model for each reference object class needs to be built in advance, which

may be time consuming if there are a lot of object classes (though this is done only once).

Also, a single class pose estimation is computed for each reference model. This is probably

not a serious problem, as the pose estimation procedure is very fast once the model has been

built, but if necessary one could use some sort of indexing or hashing technique across the

different models to improve the performance.

Section 4.4.2 presents experimental results for multi-class pose estimation.

3.6 Interface to recognition system

The fast pose (aspect) estimation procedure makes the described model suitable for hypothesis

generation in a (real-time) recognition system, while the recognition system does the verifica-

tion of the correctness of the proposed candidates. The time consuming part of the process,

the model building is performed off-line, and only needs to be done once. The amount of

data produced by the model building may be very large, but for the aspect estimation uses

only a compact representation with negligible size (typically 10-100kiB). In case refinement

of the viewing coordinates within the aspect is implemented by the pose estimation, access

to all matching and feature data may be required. Another option is to provide access to this

data by the recognition system.

Chapter 4

Results

In the course of computing the results presented in this
chapter, 270667 ray tracing and feature extraction opera-
tions, and 728156 graph matching operations have been
performed.

4.1 The objects

The experiments have been performed using a number of different objects, seven of them

(CUBE, HOLEBLOCK, DUMBBELL, L_SHAPE, BLOCKCYL, PEGBLOCK, TRUCK)

presented here.

The complexity of the objects varies from a simple cube (boundary is given by six squares) to

the model of the TRUCK object with a boundary consisting of 65 polygons, 12 rings and 6

cylinders).

4.1.1 Virtual objects

Some of the objects only exist as 3D models, and there is no corresponding real item (CUBE,

Figure 4.1; HOLEBLOCK, Figure 4.2; DUMBBELL, Figure 4.3). These objects are in-

cluded here in order to demonstrate the features of the modelling method. The boundary

representation of these objects consists of:

41

42 CHAPTER 4. RESULTS

CUBE 6 polygons (squares)

HOLEBLOCK 13 polygons

DUMBBELL 4 rings and 3 cylindrical surfaces

(a) (b)

Figure 4.1: CUBE: Simple cube object, ray traced(a)
and segmented(b)

(a) (b)

Figure 4.2: HOLEBLOCK: Block object with a hole

through it. Ray traced(a) and segmented(b) image.

4.1.2 Real objects

The following objects (L_SHAPE, BLOCKCYL, PEGBLOCK, TRUCK) are real test objects

with 3D models based on actual measurements. The model of the TRUCK is somewhat

simplified, with some angles replaced by right angles and some surface detail left out. The

surface colours of all four objects have been obtained by averaging colour samples from images

taken with an RGB camera. The BLOCKCYL object has been modelled both with original

colours (BLOCKCYL1) and with unique colours for each face (BLOCKCYL2), the latter also

with a different (shorter) camera-to-object distance (BLOCKCYL3) (though with a wider lens

angle, so the object appears smaller on the ray traced images).

4.1. THE OBJECTS 43

(a) (b)

Figure 4.3: DUMBBELL: Dumbbell object, con-
structed from three cylinders, ray traced(a) and seg-

mented(b).

These objects have been used for pose estimation from both synthetic and real images. The

boundary characteristics are the following:

L_SHAPE 8 polygons

BLOCKCYL 6 polygons, 1 ring and 1 cylindrical surface

PEGBLOCK 6 polygons, 1 ring and 1 cylindrical surface

TRUCK 65 polygons, 12 rings and 6 cylindrical surfaces

(a) (b) (c)

Figure 4.4: L_SHAPE: Simple L-shaped object. Ray traced(a) and segmented(b)
images of the model and a colour image the real object(c).

44 CHAPTER 4. RESULTS

(a) (b) (c)

Figure 4.5: BLOCKCYL: A rectangular block with a cylinder mounted on top. Ray
traced(a) and segmented(b) images of the model and a colour image the real ob-

ject(c).

(a) (b) (c)

Figure 4.6: PEGBLOCK: A flat square block with a peg mounted on top. Ray
traced(a) and segmented(b) images of the model and a colour image the real ob-
ject(c).

(a) (b) (c)

Figure 4.7: TRUCK: Plastic childrens toy truck object by Spindler Toys, West Ger-

many. Ray traced(a) and segmented(b) images of the model and a colour image the
real object(c).

4.2. MODEL GENERATION STATISTICS 45

4.2 Model generation statistics

4.2.1 Model generation time

Table 4.1 summarises the model generation time for different objects. The column feature
shows the number of ray tracing and feature extraction calls, and the column graph shows the

number of graph matching calls (which is about 65% more than the actual graph matching

operations executed, since the result of a potential reverse match (match(B,A) instead of

match(A,B)) is reused1 if that has been computed earlier).

The hardware configuration of the computers used for building the models is indicated in the

hw column:

(a) Intel Pentium M 1.2GHz CPU, 640MB memory, Linux 2.6.4

(b) Intel Pentium 4 2.4GHz CPU, 1GB memory, Linux 2.6.4

(c) AMD Athlon XP 2400+ CPU, 1GB memory, Linux 2.6.4

(d) Dual Intel Xeon 3.06GHz CPU, 4GB memory, Linux 2.4.26 (using only

one of the CPUs for modelling)

The modelling system is CPU-bound, and it has only moderate memory and disk require-

ments (100-150 megabytes of memory and 4-700 megabytes of disk space for a typical level 6
model, although the data generated for the level 7 model of the truck consumes close to 5 gi-

gabytes). The performance could significantly be increased by distributing the task to several

processors – which is quite feasible as the different processors could work on separate areas

of the viewing space independently. The current implementation supports placing the ray

tracing, the feature extraction, the graph matching and the main control processes on four

different hosts.

All image, feature and matching data generated for a level n model is preserved in databases,

so it can be reused for building a level n+1 or higher model; also it is used for clustering and

computing the equivalence classes. Some of the models were built this way, in which case the

incremental time is indicated.

1Graph matching is only called if the two graphs have the same number of nodes, so the assumption that the

match cost is symmetric is reasonable. Otherwise, missing a node from the reference graph may have a different
cost than missing a node from the unknown graph.

46 CHAPTER 4. RESULTS

object level feature graph hw time

CUBE 2 162 402 (a) 00h 10m 42s
CUBE 3 642 2706 (a) 00h 26m 46s*

CUBE 4 2212 11094 (a) 01h 31m 29s*

CUBE 5 4941 21252 (a) 02h 43m 55s*

CUBE 6 9759 37119 (a) 04h 34m 10s*

CUBE 7 19587 69747 (a) 09h 32m 15s*

HOLEBLOCK 6 23708 103038 (b) 24h 15m 15s
DUMBBELL 6 17567 93243 (c) 13h 52m 51s

L_SHAPE 5 7624 38373 (a) 07h 25m 28s
L_SHAPE 6 15832 70227 (d) 10h 11m 27s
BLOCKCYL1 6 18510 91503 (c) 15h 39m 13s
BLOCKCYL2 6 18039 92463 (c) 15h 33m 28s

BLOCKCYL3 6 14863 66558 (c) 11h 56m 29s
PEGBLOCK 6 16400 76632 (c) 12h 38m 17s
TRUCK 6 38039 167964 (c) 137h 42m 56s
TRUCK 7 126161 569679 (c) 356h 21m 50s*

Table 4.1: dyn model generation statistics for different objects.
*Incremental, starting with data from previous level

4.3 Details and evaluation of the model

The highest level of subdivision was 6 for most objects. At this level over 90% of the viewing

sphere is covered by accepted patches for all test objects except the HOLEBLOCK (80%) and

the TRUCK, where the level 6 and 7 models cover 62% and 72% respectively. Considering

the complexity of the objects and the number of viewing sphere partitions discovered, this

coverage is very good.

Tables 4.2 to 4.4 and 4.6 to 4.12 show detailed statistics of the model building process for

the objects, at several levels of icosahedron subdivision (2–6 for most objects, up to level 7

for some), using different threshold values for graph matching. The columns contain the

following data (common for all tables):

object The name of the object.

level Level of icosahedron subdivision.

threshold Acceptance threshold for graph matching. In case two values are

given (e.g. 10000/100000), the first one was used for patch subdi-

vision, and the second for clustering the patches after the desired

resolution has been reached.

4.3. DETAILS AND EVALUATION OF THE MODEL 47

triangles Total number of triangles at completion. The number of triangles

in the worst case is tl = 20 · 4l, where l is the level of subdivision

(t1 = 80, t2 = 320, t3 = 1280, t4 = 5120, t5 = 20480, t6 = 81920,

t7 = 327680).

feature Number of ray tracing and feature extraction calls.

graph Number of graph matching calls. The number of graph match-

ing operations actually executed is shown in parentheses after the

highest level results with the lowest threshold – this is less then the

total number of graph matching calls, as the results for a reversed

match is used in case that has been computed earlier.

part Number of patch clusters.

area The area covered by all patch clusters relative to the entire surface

of the viewing sphere.

The result of the modelling at the highest level of subdivision is shown on Figures 4.9 to 4.20.

Each figure (except the first) contains six projections of the viewing sphere (Fig. 4.8):

• top-left: the z ≥ 0 hemisphere to the xy plane

• top-right: the z < 0 hemisphere to the xy plane

• middle-left: the x < 0 hemisphere to the yz plane

• middle-right: the x ≥ 0 hemisphere to the yz plane

• bottom-left: the y < 0 hemisphere to the zx plane

• bottom-right: the y ≥ 0 hemisphere to the zx plane

The small overlayed images show the object as seen from the middle point on the hemisphere

(coordinates (0, 0, 1), (0, 0,−1), (−1, 0, 0), (1, 0, 0), (0,−1, 0) and (0, 1, 0))).

4.3.1 CUBE

The CUBE object has 26 different aspects (6 from each side, when only one face is visible, 12

looking at the edges with two faces visible, and 8 from the corners with three visible faces. Ta-

ble 4.2 shows that the level 7 model, with graph matching threshold relaxed from 104 to 105

for the clustering phase gives exactly 26 clusters. Figure 4.9a shows how the viewing sphere

is partitioned into clusters seen from the positive z coordinate axis. Due to the symmetry of

the cube the other five views are very similar, though there is some variation along the bound-

aries, since the icosahedron based tessellation does not have the same symmetry as the cube.

Figure 4.9b, and an enlarged detail on Figure 4.9c shows the same side of the viewing sphere,

48 CHAPTER 4. RESULTS

y

z

x

z

y

x

z

y

x

z

y

x

x

z

y

x

y

z

Figure 4.8: Six projections of the viewing
sphere

with the accepted patches in red. The adaptive nature of the tessellation is clearly visible, the

accepted patches are larger near the centre of the clusters, and get smaller as one moves toward

the edges, pin-pointing the cluster boundaries with increasing precision.

At lower levels, the number of clusters is first smaller than the expected 26 (levels 2 and 3),

then it gets larger (levels 4-7). Even at level 7 there are 35 clusters, unless the graph matching

threshold is increased. The reason for this is that at low levels the resolution is just not enough

to give even a single accepted patch for each clusters. Large clusters show up relatively early,

but smaller ones obviously need more subdivisions. As the resolution increases, more clus-

ters are discovered. Some aspects of the object are represented by several clusters which are

separated by patches where the match is not accepted yet. These clusters will merge later at

higher resolutions (note the number of clusters decreasing from 44 at level 4 to 28 at level 5).

At the same time, new clusters may be introduced along the boundaries (29 and 35 clusters in

total at levels 6 and 7). These clusters are relatively small in size and are easily eliminated by

keeping only clusters larger than a threshold (which may be a percentage of the largest cluster

discovered), or by increasing the graph matching tolerance for the clustering phase.

The accumulated area of the clusters is increasing for each level, covering 97.2% of the surface

4.3. DETAILS AND EVALUATION OF THE MODEL 49

at level 7 with the matching threshold set to 105 for clustering. In the ideal case, when all

unaccepted patches cross the boundary between two aspects, the number of these patches is

roughly doubled, while the area of a single patch is about one fourth of the area of a patch

at the previous level. This means that the uncovered area would be halved for each iteration.

We can observe this tendency for the cube, where the uncovered area from level 4 to level 7

is 27.6%, 12.3%, 6.3% and 3.7%, respectively.

object level threshold triangles feature graph part area

CUBE 2 10000 320 162 402 0 0
CUBE 3 10000 1280 642 2706 20 0.250781

CUBE 4 10000 4157 2212 11094 44 0.723828
CUBE 5 10000 8399 4941 21252 28 0.877051
CUBE 6 10000 15953 9759 37119 29 0.937390

CUBE 7 10000 31340 19587 69747 35 0.962787
(45382)

CUBE 7 10k/100k 31340 19587 69747 26 0.972113

Table 4.2: dyn model generation statistics for the CUBE object

(a) (b) (c)

Figure 4.9: Viewing sphere partitions for the cube object, level=7, threshold=10000,100000.

(a)Partitions boundaries, (b)partition boundaries with accepted patches shown in red, (c)surface detail
showing the adaptive subdivision

4.3.2 HOLEBLOCK

The HOLEBLOCK object (Table 4.3) is clearly more complex than the CUBE. The area

covered by the clusters is only 81% at level 6 (vs. 93% for the CUBE at that level). The

number aspects (and so the number of clusters) is much higher, so total length of the bound-

aries is longer, which means more patches crossing boundaries – which is the main reason for

50 CHAPTER 4. RESULTS

covered area being smaller. Figure 4.10 shows that most clusters are quite clear, with narrow

boundaries, except a few narrow areas where two boundaries run near each other.

Unlike in the case of the CUBE, it is not at all trivial to see which aspects of the object are ob-

served from the different areas of the viewing sphere. Some visual events are easy to recognise,

but overall picture becomes quite complex in general, mainly due to self-occlusions.

object level threshold triangles feature graph part area

HOLEBLOCK 2 10000 320 162 252 0 0

HOLEBLOCK 3 10000 1280 642 1680 0 0
HOLEBLOCK 4 10000 5120 2562 10683 99 0.098632
HOLEBLOCK 5 10000 18965 9830 49656 182 0.617432

HOLEBLOCK 6 10000 42470 23708 103038 301 0.775403
(61722)

HOLEBLOCK 2 30000 320 162 252 0 0
HOLEBLOCK 3 30000 1280 642 1680 24 0.156250
HOLEBLOCK 4 30000 4520 2353 8310 98 0.542383

HOLEBLOCK 5 30000 11549 6511 20193 159 0.694482
HOLEBLOCK 6 30000 30320 17655 55539 286 0.800220

HOLEBLOCK 2 100000 317 162 240 10 0.215625
HOLEBLOCK 3 100000 1070 573 840 17 0.332813
HOLEBLOCK 4 100000 3632 1960 4758 100 0.557813

HOLEBLOCK 5 100000 10424 6001 15750 161 0.711865
HOLEBLOCK 6 100000 28127 16639 47184 280 0.818652

HOLEBLOCK 6 10k/100k 42470 23708 103038 295 0.812061

Table 4.3: dyn model generation statistics for the HOLEBLOCK object

4.3.3 DUMBBELL

The DUMBBELL object (Table 4.4) is a solid of revolution, so we expect the model to have

the same rotational symmetry – which is indeed the case on Figure 4.12. The cluster bound-

aries for the DUMBBELL form 14 circles with centre on the y-axis, dividing the viewing

sphere into 15 areas. This is 6 more than the theoretical 9 aspects (8 boundaries correspond-

ing to the visual events on Figure 4.11). The reason is that due to the limited resolution of

the camera (or the simulated camera, ray tracing) accidental views [140, 141] are visible over

finite areas of the viewing sphere. For example, when moving from the top region (region 1)

of the viewing sphere on Figure 4.11 to region 2, the surfaces B, E and F should become vis-

ible at the same time. In fact what happens is that these surfaces become visible one-by-one,

first E, then B and F at last. The image contours corresponding to these surfaces have dif-

ferent sizes, so it will be at different angles when the size of image contour (number of pixels

4.3. DETAILS AND EVALUATION OF THE MODEL 51

Figure 4.10: Viewing sphere partitions for the HOLEBLOCK object, level=6,
threshold=10000,100000

52 CHAPTER 4. RESULTS

enclosed) representing these surfaces will be large enough for the contour not to be discarded

by feature extraction.

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

G

Figure 4.11: Expected visual events for
the DUMBBEL object.

The clusters for the DUMBBELL at level 6 cover over 90% of the viewing surface. The num-

ber of clusters is 231, with many small clusters for the accidental views.

4.3.4 L_SHAPE

The complexity of the L_SHAPE object is somewhere between the CUBE and the HOLE-

BLOCK, and this is reflected in the modelling results (Figure 4.13 and Table 4.6). Some of

the faces of the object have similar colours (so the corresponding contours in the image are not

separable), and it influences the symmetry of the partitions. (The effect will be more obvious

for the BLOCKCYL and PEGBLOCK objects.)

At level 6, the model covers nearly 90% of the viewing sphere, and the number of partitions is

125, out of which 47 are relatively large, covering from 6.17% of the sphere to 0.27%, and the

rest (about 2/3) are rather small (all below 0.01%), many consisting of only one or two patches

(Table 4.5). The reason for the large number of small partitions is some “noise” near the

boundaries, and narrow partitions (possibly corresponding to accidental views) which haven’t

been merged together yet.

4.3. DETAILS AND EVALUATION OF THE MODEL 53

Figure 4.12: Viewing sphere partitions for the dumbbell object, level=6, thresh-
old=10000,100000

54 CHAPTER 4. RESULTS

Figure 4.13: Viewing sphere partitions for the L_SHAPE object, level=6, thresh-
old=10000,30000

4.3. DETAILS AND EVALUATION OF THE MODEL 55

object level threshold triangles feature graph part area

DUMBBELL 2 10000 320 162 780 0 0
DUMBBELL 3 10000 1280 642 3312 0 0
DUMBBELL 4 10000 5120 2562 15174 137 0.205859

DUMBBELL 5 10000 17318 9221 55395 61 0.763525
DUMBBELL 6 10000 31847 17567 93243 252 0.869910

(52842)

DUMBBELL 2 30000 320 162 780 0 0
DUMBBELL 3 30000 1280 642 3312 2 0.562500

DUMBBELL 4 30000 2960 1550 6534 88 0.751563
DUMBBELL 5 30000 6776 3863 13236 47 0.838281
DUMBBELL 6 30000 16712 9787 32994 329 0.891272

DUMBBELL 2 100000 224 130 396 2 0.512500
DUMBBELL 3 100000 692 398 960 2 0.634375

DUMBBELL 4 100000 2096 1162 3078 72 0.765625
DUMBBELL 5 100000 5696 3366 8925 46 0.851172
DUMBBELL 6 100000 14840 8953 25692 228 0.911316

DUMBBELL 6 10k/100k 31847 17567 93243 231 0.909338

Table 4.4: dyn model generation statistics for the DUMBBELL object

4.3.5 BLOCKCYL

The phenomenon of distinct contours not being separated during image segmentation due

to similar colour ratios, which has been mentioned for the L_SHAPE object, becomes even

more obvious if we look at the BLOCKCYL object. The original object (BLOCKCYL1) has

the same colour on the cylindrical surface as on the two small ends of the block, correspond-

ing to the real object. A second model of the object has been coloured using unique colours

for each surface. The difference between the viewing sphere partitioning results is easy to see

on Figures 4.15 and 4.16. Figure 4.14 shows one of the views with results from both objects,

common boundaries in black, BLOCKCYL1 boundaries in red and BLOCKCYL2 bound-

aries in blue.

The third set of results (BLOCKCYL3, Figure 4.17) comes from the same model as the sec-

ond, but with the camera-to-object distance decreased2. The result of the different perspec-

tive is some shifting of the partition boundaries, while the overall layout is still very similar.

The camera-to-object distance plays an important factor for the aspects of the object when

the camera is placed near the object. The closer the camera is to the object, the stronger the

effect of the perspective projection. At longer distances the perspective effect decreases as the

2Actually the camera is still placed on the surface of the Gaussian sphere, but the object has been scaled up so
it appears closer.

56 CHAPTER 4. RESULTS

id △ area (%) id △ area (%) id △ area (%) id △ area (%) id △ area (%)

22 879 6.174316 13 145 1.462402 86 23 0.028076 78 2 0.002441 111 2 0.002441
17 845 6.074219 2 275 1.459961 61 13 0.015869 77 2 0.002441 110 2 0.002441
42 1800 5.914307 43 281 1.437988 70 12 0.014648 75 2 0.002441 107 2 0.002441
32 1542 5.756836 5 127 0.894775 84 11 0.013428 66 2 0.002441 106 2 0.002441
37 1654 5.651855 11 128 0.881348 116 10 0.012207 65 2 0.002441 105 2 0.002441

40 1617 5.599365 14 89 0.826416 89 8 0.009766 64 2 0.002441 104 2 0.002441
26 1094 4.213867 39 222 0.670166 79 8 0.009766 63 2 0.002441 103 2 0.002441
35 1050 3.958740 45 209 0.665283 52 8 0.009766 62 2 0.002441 102 2 0.002441

3 206 2.441406 27 187 0.660400 69 6 0.007324 60 2 0.002441 101 2 0.002441
8 240 2.420654 25 184 0.598145 51 6 0.007324 58 2 0.002441 100 2 0.002441
4 222 2.373047 10 95 0.474854 72 5 0.006104 57 2 0.002441 99 1 0.001221
6 284 2.229004 9 72 0.417480 71 5 0.006104 56 2 0.002441 98 1 0.001221

29 463 2.084961 7 68 0.379639 68 4 0.004883 55 2 0.002441 97 1 0.001221
12 244 2.044678 47 77 0.306396 67 4 0.004883 54 2 0.002441 93 1 0.001221

1 317 2.001953 23 85 0.294189 59 4 0.004883 125 2 0.002441 92 1 0.001221
41 433 1.949463 16 51 0.289307 50 4 0.004883 124 2 0.002441 91 1 0.001221
18 288 1.831055 30 80 0.288086 120 4 0.004883 123 2 0.002441 88 1 0.001221
33 364 1.806641 46 85 0.286865 117 4 0.004883 122 2 0.002441 83 1 0.001221
24 369 1.735840 36 87 0.285645 96 2 0.002441 121 2 0.002441 81 1 0.001221
34 323 1.730957 19 67 0.279541 95 2 0.002441 119 2 0.002441 76 1 0.001221
21 334 1.678467 20 89 0.269775 94 2 0.002441 118 2 0.002441 74 1 0.001221
38 344 1.639404 44 95 0.266113 90 2 0.002441 115 2 0.002441 73 1 0.001221
15 305 1.540527 48 56 0.097656 85 2 0.002441 114 2 0.002441 53 1 0.001221
28 228 1.516113 87 68 0.083008 82 2 0.002441 113 2 0.002441 109 1 0.001221
31 302 1.507568 49 31 0.041504 80 2 0.002441 112 2 0.002441 108 1 0.001221

Table 4.5: Partition sizes after 6 iterations of the L_SHAPE object

projection approaches the orthographic projection, and the visible aspects are less sensitive to

distance variation.

The model statistics are summarised on Tables 4.7 to 4.9. The number of partitions for the

BLOCKCYL1 object is about 50% larger then for the other two. The reason for this is that

segmentation errors are more likely to occur on the images of this object, since the colour

separation is not so good as for the other objects.

4.3.6 PEGBLOCK

Despite the geometrical symmetry of the PEGBLOCK object (Table 4.10), the resulting clus-

ters on Figure 4.18 are not completely symmetrical. This is caused by the same effect as we

have observed by the BLOCKCYL object: two surfaces of the object (the cylindrical surface

and one of the sides of the block) having similar colour, so these will not be separated during

image segmentation. The result of the two image segments merged together is some cluster

boundaries disappearing (as the clusters are merged), but also some new boundaries being

introduced (best seen on the top-right view, from (0, 0,−1)).

Apart from this the images of the PEGBLOCK object segment very well, the number of par-

titions is 67 at level 6 using 104 and 105 for the subdivision and clustering threshold. There

are only a few tiny clusters indicating noise or inappropriate resolution near the boundaries,

4.3. DETAILS AND EVALUATION OF THE MODEL 57

object level threshold triangles feature graph part area

L_SHAPE 2 10000 320 162 249 0 0
L_SHAPE 3 10000 1280 642 2112 28 0.097656
L_SHAPE 4 10000 4745 2451 11547 72 0.403516

L_SHAPE 5 10000 13907 7624 38373 62 0.781885
L_SHAPE 6 10000 27308 15832 70227 160 0.869727

(42376)

L_SHAPE 2 30000 320 162 249 3 0.009375
L_SHAPE 3 30000 1271 642 2076 55 0.450781

L_SHAPE 4 30000 3380 1924 6096 50 0.691211
L_SHAPE 5 30000 8123 4930 15264 55 0.812012
L_SHAPE 6 30000 19673 12100 39969 136 0.887756

L_SHAPE 2 100000 311 162 213 11 0.234375
L_SHAPE 3 100000 1046 566 1176 55 0.485156

L_SHAPE 4 100000 3023 1771 4668 49 0.700586
L_SHAPE 5 100000 7622 4705 13287 53 0.824561
L_SHAPE 6 100000 18401 11493 35040 125 0.899426

L_SHAPE 6 10k/100k 27308 15832 70227 125 0.897827

Table 4.6: dyn model generation statistics for the L_SHAPE object

the majority (56) are between 0.1% and 6.44% in area, containing at least 25 patches. (The

size of the remaining 11 partitions is below 0.05%).

4.3.7 TRUCK

As expected, the TRUCK shows much greater variation in the observations as the observer

moves along the viewing sphere (Fig. 4.20). The number of partitions is a magnitude larger

then for the other objects, 1051 at level 6 using (104, 3 · 105) threshold values, and 2706 at

level 7 with the same thresholds (Table 4.12). At level 6, the 1051 partitions cover 62.04%

of the viewing sphere, this increases to 72.28% at level 7. The size of the partitions decreases

very rapidly (Table 4.11 and Fig. 4.19), so the search space could be reduced significantly by

discarding the small partitions, without considerable loss in coverage. The vast majority of

over 1500 new partitions introduced at level 7 are tiny consisting of just one or a few patches.

This is confirmed by Table 4.11. At level 6, 31% of the partitions (328) is needed to provide

95% of the total coverage (which corresponds to 58.949% of the viewing sphere). At level 6,

only 17% of the partitons (458) gives 95% of the coverage (68.669% of the sphere).

58 CHAPTER 4. RESULTS

Figure 4.14: Differences between the viewing
sphere partitions of the BLOCKCYL1 and
BLOCKCYL2 objects due to unseparated

image contours. Common boundaries in black,
BLOCKCYL1 only in red and BLOCKCYL2
only in blue

object level threshold triangles feature graph part area

BLOCKCYL1 2 10000 320 162 312 0 0
BLOCKCYL1 3 10000 1280 642 2343 17 0.050000
BLOCKCYL1 4 10000 4928 2515 12780 49 0.305664

BLOCKCYL1 5 10000 15593 8258 45777 136 0.725244
BLOCKCYL1 6 10000 32474 18510 91503 157 0.869739

(53404)

BLOCKCYL1 2 30000 320 162 312 6 0.031250
BLOCKCYL1 3 30000 1250 638 2223 45 0.313281

BLOCKCYL1 4 30000 3887 2148 8616 43 0.695703
BLOCKCYL1 5 30000 8561 5019 17649 66 0.813672
BLOCKCYL1 6 30000 20009 12061 41769 115 0.889868

BLOCKCYL1 2 100000 305 160 312 17 0.337500
BLOCKCYL1 3 100000 941 535 1185 33 0.550000

BLOCKCYL1 4 100000 2669 1601 4239 39 0.725586
BLOCKCYL1 5 100000 6884 4197 12081 58 0.835645
BLOCKCYL1 6 100000 16982 10481 32166 116 0.904675

BLOCKCYL1 6 10k/100k 32474 18510 91503 120 0.898499

Table 4.7: dyn model generation statistics for the BLOCKCYL1 object

4.3. DETAILS AND EVALUATION OF THE MODEL 59

object level threshold triangles feature graph part area

BLOCKCYL2 2 10000 320 162 372 0 0
BLOCKCYL2 3 10000 1280 642 2544 17 0.035938

BLOCKCYL2 4 10000 4982 2533 13506 45 0.245117
BLOCKCYL2 5 10000 16577 8732 50814 105 0.751953
BLOCKCYL2 6 10000 31817 18039 92463 109 0.891431

(53239)

BLOCKCYL2 2 30000 320 162 372 2 0.006250

BLOCKCYL2 3 30000 1274 642 2520 35 0.340625
BLOCKCYL2 4 30000 3806 2084 8802 52 0.736914
BLOCKCYL2 5 30000 7847 4671 15993 54 0.842236

BLOCKCYL2 6 30000 17540 10766 35691 85 0.912415

BLOCKCYL2 2 100000 308 162 324 14 0.350000

BLOCKCYL2 3 100000 932 522 1152 26 0.550000
BLOCKCYL2 4 100000 2660 1573 4272 50 0.751563
BLOCKCYL2 5 100000 6476 4035 10665 56 0.852393

BLOCKCYL2 6 100000 15545 9814 28065 86 0.920166

BLOCKCYL2 6 10k/100k 31817 18039 92463 88 0.918323

Table 4.8: dyn model generation statistics for the BLOCKCYL2 object

object level threshold triangles feature graph part area

BLOCKCYL3 2 10000 320 162 324 0 0

BLOCKCYL3 3 10000 1280 642 2346 25 0.090625
BLOCKCYL3 4 10000 4772 2463 12171 95 0.400977
BLOCKCYL3 5 10000 13973 7631 39504 67 0.807715
BLOCKCYL3 6 10000 25787 14863 66558 92 0.892151

(39902)

BLOCKCYL3 2 30000 320 162 324 8 0.050000

BLOCKCYL3 3 30000 1232 634 2154 33 0.496875
BLOCKCYL3 4 30000 3164 1795 5766 48 0.725195
BLOCKCYL3 5 30000 7385 4464 13344 60 0.838965

BLOCKCYL3 6 30000 17279 10665 33054 80 0.907959

BLOCKCYL3 2 100000 314 162 300 16 0.306250

BLOCKCYL3 3 100000 980 546 1146 33 0.517969
BLOCKCYL3 4 100000 2831 1660 4434 50 0.730273
BLOCKCYL3 5 100000 6974 4292 11700 64 0.845947

BLOCKCYL3 6 100000 16439 10291 29721 78 0.916394

BLOCKCYL3 6 10k/100k 25787 14863 66558 78 0.914917

Table 4.9: dyn model generation statistics for the BLOCKCYL3 object

60 CHAPTER 4. RESULTS

Figure 4.15: Viewing sphere partitions for the BLOCKCYL1 object, level=6,
threshold=10000,100000

4.3. DETAILS AND EVALUATION OF THE MODEL 61

Figure 4.16: Viewing sphere partitions for the BLOCKCYL2 object, level=6,
threshold=10000,100000

62 CHAPTER 4. RESULTS

Figure 4.17: Viewing sphere partitions for the BLOCKCYL3 object, level=6,
threshold=10000,100000

4.3. DETAILS AND EVALUATION OF THE MODEL 63

object level threshold triangles feature graph part area

PEGBLOCK 2 10000 320 162 351 0 0
PEGBLOCK 3 10000 1280 642 2268 16 0.032812

PEGBLOCK 4 10000 4994 2535 12837 95 0.308789
PEGBLOCK 5 10000 15611 8427 45549 73 0.789160
PEGBLOCK 6 10000 28565 16400 76632 94 0.877393

(45629)

PEGBLOCK 2 30000 320 162 351 2 0.006250

PEGBLOCK 3 30000 1274 642 2244 41 0.454688
PEGBLOCK 4 30000 3368 1888 6333 55 0.689844
PEGBLOCK 5 30000 8132 4900 15633 64 0.812988

PEGBLOCK 6 30000 19622 12033 41019 69 0.891479

PEGBLOCK 2 100000 308 162 303 10 0.318750
PEGBLOCK 3 100000 962 532 1056 42 0.492188

PEGBLOCK 4 100000 2912 1704 4773 54 0.713477
PEGBLOCK 5 100000 7313 4522 13098 62 0.828906
PEGBLOCK 6 100000 17825 11122 35583 61 0.903833

PEGBLOCK 6 10k/100k 28565 16400 76632 67 0.899072

Table 4.10: dyn model generation statistics for the PEGBLOCK object

TRUCK, level 6

a b c d

10 105 47.736 78.703

20 210 55.452 89.379

30 315 58.693 94.603

40 420 60.165 96.976

50 525 60.874 98.119

60 630 61.300 98.806

70 735 61.556 99.219

80 840 61.783 99.585

90 945 61.912 99.791

100 1051 62.041 100.000

TRUCK, level 7

a b c d

10 271 64.267 88.915

20 542 69.568 96.250

30 812 70.915 98.113

40 1083 71.414 98.805

50 1353 71.697 99.195

60 1624 71.863 99.425

70 1895 72.028 99.654

80 2165 72.113 99.771

90 2436 72.196 99.886

100 2706 72.278 100.000

Table 4.11: Percentage of the surface area covered by the partitions, sorted partition size for level 6 and 7 mod-

els of the TRUCK. (a) percentage of partitions, (b) number of partitions, (c) percentage of viewing sphere, (d)
percentage of covered area

64 CHAPTER 4. RESULTS

Figure 4.18: Viewing sphere partitions for the PEGBLOCK object, level=6, thresh-
old=10000,30000

4.3. DETAILS AND EVALUATION OF THE MODEL 65

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200

ar
ea

 %

partitions

area in total
area of partition

Figure 4.19: Percentage of the surface area covered by the partitions, sorted by par-
tition size (TRUCK, level 6)

66 CHAPTER 4. RESULTS

object level threshold triangles feature graph part area

TRUCK 2 10000 320 162 132 0 0

TRUCK 3 10000 1280 642 1011 1 0.001563
TRUCK 4 10000 5114 2561 6393 25 0.024609
TRUCK 5 10000 20096 10130 36975 173 0.114941

TRUCK 6 10000 74474 38039 167964 1372 0.338013
(97661)

TRUCK 7 10000 237164 126161 569679 4104 0.541272

(333660)

TRUCK 2 30000 320 162 132 1 0.003125

TRUCK 3 30000 1277 642 999 4 0.051563
TRUCK 4 30000 4919 2480 5658 95 0.155859
TRUCK 5 30000 17885 9266 28572 408 0.366602

TRUCK 6 30000 56801 30805 102687 1117 0.538196
TRUCK 7 30000 170294 95355 331413 2749 0.665814

TRUCK 2 100000 317 162 120 5 0.046875
TRUCK 3 100000 1232 630 819 29 0.146094
TRUCK 4 100000 4511 2355 4260 149 0.294141

TRUCK 5 100000 15353 8343 20160 418 0.485010
TRUCK 6 100000 46994 26497 71127 964 0.640649
TRUCK 7 100000 135308 78278 221061 2253 0.747455

TRUCK 7 10k/100k 237164 126161 569679 2809 0.691595

TRUCK 6 10k/300k 74474 38039 167964 1051 0.620410
TRUCK 7 10k/300k 237164 126161 569679 2706 0.722787

Table 4.12: dyn model generation statistics for the TRUCK object

4.3. DETAILS AND EVALUATION OF THE MODEL 67

Figure 4.20: Viewing sphere partitions for the TRUCK object, level=7, thresh-
old=10000,300000

68 CHAPTER 4. RESULTS

4.4 Pose estimation from simulated images

For the first sequence of experiments, synthetic images were used as input. A set of n ran-

dom viewpoints were selected, where n = 100 unless stated otherwise. The location of the

viewpoints was uniformly distributed over the unit sphere3(Figure 4.21.). From each of these

viewpoints ray traced images of the object were generated and the high level features were ex-

tracted.

Figure 4.21: Distribution of the test views on the

viewing sphere (for the TRUCK object). The red
points are on the front (z > 0), and the blue
points are on the back (z ≤ 0).

4.4.1 Single class pose estimation

Using the high level features, the attribute vectors were computed for all contours of the un-

known images, and the contours were assigned a contour type using the same k-means classi-

fier which was also used for building the equivalence classes for the model (Section 3.4.3). The

3Using a method derived by Marsaglia [100], which consist of picking u and v from independent uni-
form distributions on (−1, 1) and rejecting points for which u

2 + v
2 ≥ 1. From the remaining points,

x = 2u
√

1 − u2 − v2

y = 2v
√

1 − u2 − v2

z = 1 − 2(u2 + v
2)

(4.1)

have a uniform distribution on the surface of a unit sphere.

4.4. POSE ESTIMATION FROM SIMULATED IMAGES 69

pose of the object was estimated for each of the unknown images, and a shortlist of ten sugges-

tions was built for the possible poses, using bipartite matching from the unknown contours

(contour types) to each reference class, with a scoring function based on the second scoring

scheme (number of views) described in Section 3.4.4 on page 34.

score = 106 · m − 105 · f(nunk, nref) +
∑

∀i,j:Mij=1

wij
(4.2)

where

f(x, y) = {
y − x if y > x

0 otherwise (4.3)

This scoring function is very similar to (3.8), with the constants α = 106 and β = 105

selected such that the most important contribution to the score comes from the number of

contours matched, then from the penalty of the unknown image and reference class having

different number of contours (only applied here if the reference class has more contours), and

finally from the weights of the reference class (α ≫ β ≫
∑

wij).

For the verification of the results, the correct pose was determined by computing the distance

between the viewing coordinates of the unknown pose and each of the reference classes (de-

fined as the minimum distance between the unknown and the views belonging to the class).

The reference class with the smallest distance to the unknown was considered correct, al-

though if the unknown viewpoint lies on the boundary between two classes, the nearest one

may not necessarily be the correct one. (On the other hand, correct pose estimation results

may be considered as a failures due to the same reason.) The results are evaluated based on

the rank of the correct pose on the shortlist.

BLOCKCYL

At first sight the pose estimation results do not look very convincing, with only 22% correct

first hit (Table 4.13). The reason for this is the symmetry of the object, which in addition to

the geometric symmetry has been coloured such that the opposite faces have the same colour.

The result is that several aspects will be indistinguishable from each other based on the avail-

able observations (Fig. 4.22). In addition, the pose estimation method is using only the con-

tour parameters from the unknown images, and not the relations between the contours. This

makes it insensitive to rotations, but also to mirroring. A closer study of the results where the

70 CHAPTER 4. RESULTS

correct pose is at the 2nd to 5th position reveals that in all these cases the first suggested pose

is from one of the “mirrored” aspects.

(a) (b)

(c) (d)

Figure 4.22: Indistinguishable aspects of the
BLOCKCYL object. The viewing coordi-
nates are a:(x, y, z) b:(−x, y, z) c:(x,−y, z)
d:(−x,−y, z), where x = 0.541, y = 0.266, z =
0.798

In six of the hundred cases the correct class was not amongst the first ten suggestions, these

are listed in Table 4.14, and the corresponding images from the unknown pose together with

a sample image from the proposed aspects are shown on Fig. 4.23. Common for all six cases

that the unknown pose is very close to a boundary between two aspects, where one or more

image contour is just about to appear or disappear. The potential for errors due to finite image

resolution is also highest in these areas. Yet, even in these cases we find a relatively good match

from one of the mirrored aspects.

Disambiguating the aspects by assigning unique colours to the different faces of the object

(BLOCKCYL2) significantly improves the precision (Table 4.15).

Model parameters:

• level: 6

4.4. POSE ESTIMATION FROM SIMULATED IMAGES 71

• subdivision threshold: 10000

• clustering threshold: 100000

• number of clusters: 120 (BLOCKCYL1) / 88 (BLOCKCYL2)

• total area covered by the clusters: 89.85% / 91.83%

position of correct suggestion percentage of tests accumulated percentage

1 22% 22%

2 21% 43%

3 18% 61%

4-5 26% 87%

6-10 7% 94%

Table 4.13: Single class pose estimation results for the BLOCKCYL1 object from synthetic images

viewing coordinates correct class dist suggestions

(+0.914,+0.405,+0.023) 51 0.0301 14, 4, 6, 13, 115

(−0.402,+0.226,+0.887) 57 0.0067 30, 43, 37, 31, 36

(−0.561,+0.054,+0.826) 35 0.0153 17, 38, 43, 30, 31

(−0.817,+0.566,+0.109) 65 0.0093 55, 46, 45, 51, 29

(−0.856,−0.516,+0.018) 45 0.0262 14, 4, 6, 13, 115

(−0.957,+0.113,+0.267) 72 0.0064 36, 42, 37, 30, 31

Table 4.14: Incorrect suggestions for poses of the BLOCKCYL1 object. (dist is the distance between the unknown

viewpoint and the nearest viewpoint within the correct class of the model)

position of correct suggestion percentage of tests accumulated percentage

1 98% 98%

2 1% 99%

6 1% 100%

Table 4.15: Single class pose estimation results for the BLOCKCYL2 object from synthetic images

L_SHAPE and PEGBLOCK

The L_SHAPE and PEGBLOCK objects are also symmetric, but due the combination of

the shape and more varying colours the number of indistinguishable aspects is smaller. This

72 CHAPTER 4. RESULTS

Figure 4.23: Suggested poses for some test views of the BLOCKCYL1 object. The
unknown poses are on blue background, a random view from the correct class on

green, and random views from the first five suggested classes on yellow. The darker
circles indicate the suggestion which appears most similar.

4.4. POSE ESTIMATION FROM SIMULATED IMAGES 73

is reflected in the results (Tables 4.16 and 4.17), with a precision somewhere between the

BLOCKCYL1 and BLOCKCYL2 results.

Model parameters (L_SHAPE):

• level: 6

• subdivision threshold: 10000

• clustering threshold: 100000

• number of clusters: 125

• total area covered by the clusters: 89.78%

position of correct suggestion percentage of tests accumulated percentage

1 51% 51%

2 41% 92%

3 1% 93%

4 3% 96%

5 2% 98%

Table 4.16: Single class pose estimation results for the L_SHAPE object from synthetic images

Model parameters (PEGBLOCK):

• level: 6

• subdivision threshold: 10000

• clustering threshold: 100000

• number of clusters: 67

• total area covered by the clusters: 89.91%

position of correct suggestion percentage of tests accumulated percentage

1 45% 45%

2 47% 92%

3 3% 95%

4 2% 97%

5-9 3% 100%

Table 4.17: Single class pose estimation results for the PEGBLOCK object from synthetic images

74 CHAPTER 4. RESULTS

TRUCK

For the TRUCK experiments, the level 6 model of the object was used with 1051 clusters in

total. No clusters have been discarded even though over 60% consists of less than ten patches

(whereas the largest clusters consist of more than a thousand). Even the large number of pos-

sible clusters does not decrease the precision significantly, though it is slightly worse than for

the simple objects.

Model parameters:

• level: 6

• subdivision threshold: 10000

• clustering threshold: 300000

• number of clusters: 1051

• total area covered by the clusters: 62.04%

position of correct suggestion percentage of tests accumulated percentage

1 49% 49%

2 22% 71%

3 9% 80%

4-5 8% 88%

6-10 7% 95%

Table 4.18: Single class pose estimation results for the TRUCK object from synthetic images

4.4.2 Multi-class pose estimation

Single class pose estimation can be extended to multiple object classes. In this case, a single

class pose estimation is conducted for each of the object classes, which gives a list of proposed

poses for each class. The scores which are used to select the best candidates within each class

can be compared across the classes, thus giving an indication to which class the unknown

object is likely to belong to. The rationale is that we are more likely to find a matching set of

views of the correct object class than of an incorrect one.

For the multi-class pose estimation tests, four objects were used (TRUCK, BLOCKCYL,

PEGBLOCK, L_SHAPE), and 25 images were generated from random viewpoints for each

of the objects. These 100 test images were submitted to single class pose estimation against

4.5. POSE ESTIMATION FROM REAL IMAGES 75

each of the object using the models from Section 4.4.1. From each pose estimation the score

of the single best pose was kept, and the highest score for an unknown image was used to

propose an object class for that image.

Table 4.19 shows part of the results of the experiment. The tendency is that the highest best

is significantly higher then the rest of the scores. In fact the proposed object class was correct

in all 100 cases, which is not so surprising considering the accuracy of the single class pose

estimation from synthetic images.

index l_shape pegblock blockcyl truck proposal

+0.068+0.511-0.857 1000140 2000294 1000092 1700006 pegblock
+0.078+0.992+0.100 3000700 4001726 3000006 8002004 truck
+0.107+0.653+0.750 4001189 1000126 2800934 2600008 l_shape
+0.141-0.914-0.382 2000528 4001726 3000006 9000452 truck
+0.163-0.969+0.188 3000700 4001726 3000006 8002149 truck

+0.193-0.634+0.749 4000910 5004399 2000002 2900143 pegblock
+0.204+0.961+0.187 3000700 4001726 3000006 8002536 truck
+0.238-0.152+0.959 2000528 4001726 3000006 7000191 truck
+0.249-0.754+0.609 2000597 2000072 6006905 4700065 blockcyl
+0.255-0.702-0.664 2000780 4002648 2000136 2800124 pegblock

+0.270+0.040-0.962 1000284 2000286 1700005 1600002 pegblock
+0.305-0.321+0.897 4000910 5004207 2000002 2900143 pegblock
+0.313+0.364-0.877 5004988 2001158 3000187 2900287 l_shape
+0.332-0.021-0.943 1000282 900036 2000208 1300002 blockcyl
+0.366+0.731+0.575 5004988 2001158 3000517 2900287 l_shape

+0.406-0.319+0.856 4002854 2000332 1000012 2500004 l_shape
+0.427+0.662-0.616 5004988 2001158 3000187 2900287 l_shape
+0.446+0.791-0.419 1000728 2000122 4003477 3500021 blockcyl
+0.447+0.631-0.634 2000528 4001726 3000964 10000674 truck
+0.452-0.877+0.163 3000700 3001615 3000006 7000333 truck

Table 4.19: Multi-class pose estimation results

4.5 Pose estimation from real images

Pose estimation from real image data is much more of a challenge than from synthetic data.

Even in a controlled environment, imperfections of the camera, the lighting or the object it-

self impose increased difficulties for feature extraction. Separating the object from the back-

ground is not so trivial as in ray traced images with perfect black background. Also, parame-

76 CHAPTER 4. RESULTS

ters for image segmentation must be chosen carefully so over-, or under-segmentation do not

occur.

In the test setup the objects were placed on a black background and the images were taken

with an RGB camera in 640x480 pixels resolution, the light source aligned with the camera

angle and placed as close to the lens as possible. The images were padded with black stripes to

640x640 and scaled to 512x512 to match the dimension of the synthetic images. No further

scaling, rotation or other adjustments were applied. The high level features were extracted

using the same set of tools as for ray traced data, although with a different set of parameters

tuned for optimal segmentation of these images.

(a)

A

B

C

D
E

(b)

(c)

A

B

C

D

E

F

G

H

(d)

Figure 4.24: Correct segmentation (top row, (a)input image and
(b)contours) and incorrect segmentation (bottom row, (c)input im-

age and (d)contours), where several contours are split, (A+C and
E+G+H).

The lack of exact viewing coordinates made automated judgements of the results less feasible,

so the evaluations were done manually based on visual similarity. Figure 4.25 shows a set of

4.5. POSE ESTIMATION FROM REAL IMAGES 77

test images and the first five suggested poses of the PEGBLOCK(a) and the TRUCK(b). As

expected the precision is not quite as good as for synthetic images, yet if we disregard rota-

tion and mirroring, many of the shortlists contain at least one fairly good candidate. A closer

study of the test images which did not have an acceptable candidate on the shortlist indicates

that these were likely to have segmentation errors resulting in bogus regions. Figure 4.24

shows such an image ((c) and (d)), compared to a correctly segmented image ((a) and (b)).

The overall assessment of the results is that the method performs reasonably well on correctly

segmented images, but it is sensitive to the errors in feature extraction.

78 CHAPTER 4. RESULTS

(a) (b)

Figure 4.25: Results of pose estimation on real images of the PEGBLOCK(a) and the

TRUCK(b). For each unknown pose (blue background) the first five suggestions are
shown.

Chapter 5

Conclusions

5.1 Summary of work

A method for approximating the aspect or appearance graph model of rigid objects, and an

application of this model for pose estimation is presented in this thesis. Section 3.3 describes

the method for tessellating the viewing sphere with adaptive resolution control. The acqui-

sition device or devices are simulated in order to obtain synthetic observations of the object

from different viewing coordinates. The observations are converted to an attributed graph

representation and compared to each other using graph matching. The patches of the viewing

sphere (initially the 20 faces of a regular icosahedron) are subdivided until the match between

the observations from the corners is accepted, or a desired resolution is reached.

In Section 3.4 the aspects of the objects are determined by grouping together the patches with

similar observations. The clustering process uses the graph matching data available from the

previous stage. The views belonging to each cluster are indexed into reference classes using

the feature data extracted from the images, which is also carried on from the first stage.

The resulting model is applied in a pose estimation algorithm (Section 3.5) using the accu-

mulated and indexed information from the collected views of the object over the different

aspects. Weighted or simple bipartite matching is applied for matching the unknown pose to

the reference classes. The pose estimation algorithm has been tested on various objects using

both simulated and real image data.

All the algorithms and tools presented in the thesis have been implemented and integrated

79

80 CHAPTER 5. CONCLUSIONS

into a recognition system. Chapter 4 gives experimental results of model construction and

pose estimation for a range of objects.

5.2 Evaluation of results

Based on the experiments in Chapter 4 we can conclude that generating the aspect graph

model has been successful for the selected set of objects. The correctness of the algorithm is

also verified by comparing the generated model to the theoretical expectations based on the

geometric model.

Execution time for the model generation process varied from a few hours (CUBE, L_SHAPE)

to several days (TRUCK) for level 6 models, depending on the complexity of the object (Ta-

ble 4.1). As this process is executed only once for each object, and not as part of a real-time

recognition system, execution times of this magnitude should not pose major issues for the

application. In addition, the model generation algorithm is easily parallelisable (partly sup-

ported by the current implementation already), which opens for reducing the execution time

by using more than one machine (or CPU). Since the overhead of the algorithm in a dis-

tributed setup is small, the execution time is expected to be close to inversely proportional to

the number of CPU’s (within reasonable limits).

The results also demonstrate that despite its complexity, it is possible to use graph matching

in practical applications. In the vast majority of cases the heuristics gave fast convergence,

although a small percentage of total matching calls did not give acceptable results within the

allowed time frame. It is important that the application is prepared to deal with these cases;

in the experiments presented in this work they were treated as an unacceptable match with a

particularly high cost. Further refinement of the model in these areas will lead to increasing

similarity between the images/graphs and matching will be more likely to complete within

the time allowed. Also, in most cases when a good match is found at the end, the matching

process finishes in much less time.

Once the model is ready, it can efficiently be applied to recognition and pose estimation tasks.

The time spent on matching an unknown image to the model classes was comparable to the

time spent on preprocessing and extracting features from a single image, typically much less

than that (being in the sub-second range). Sorting the reference classes by the percentage of

viewing area covered also helps increasing the probability of an early match.

As far as the precision and reliability of the pose estimation algorithm is concerned, we can

conclude that it performs well on synthetic images. For most objects the correct pose was

5.3. INDICATION FOR FURTHER WORK 81

amongst the top five suggestions in over 90-95% of the cases. Even for the model of the truck

which is the most complex of the objects, precision at five was over 88%. For real life data,

the performance is not quite as good, but still acceptable judged by visual similarity between

the image of the unknown pose and the suggestions. (Due to the lack of reliable viewing

coordinates for the real images, performing automated tests on real images was not possible.)

Test results show that the algorithm is highly dependent on image segmentation and feature

extraction, and errors during this process are likely to propagate and jeopardise the success of

the pose estimation. The main focus of this thesis being on the model building part, these

issues have not been investigated further.

5.3 Indication for further work

A natural step forward is to extend the set of features used for clustering patches and generat-

ing reference classes. Currently only contour (region) attributes were used, while the relations

between these were ignored. More features would increase the reliability of the matching;

however it would also make the process more complex. There is also room for improvement

in handling rotational symmetries and scaling.

Applying rough set theory (Pawlak et al. [119], Pawlak [120]) or fuzzy sets (Zadeh [175])

seems to be another plausible approach to describing reference classes and performing match-

ing as presented in Sections 3.4.4 and. 3.5. Due to the variation in the features over different

views in the reference classes, it is impossible (or at least very difficult) to define exact bound-

aries in feature space; hence the indication to use rough sets or fuzzy sets, which are invented

to deal with this kind of problems.

Due to the generic nature of the surface subdivision algorithm the underlying object/image

features can be replaced by any other set of features. The only requirement is a cost function to

be defined which measures the similarity between the different views. The algorithm performs

well if the match cost between views belonging to different aspects stays high while between

views within the same aspect it decreases as the viewing coordinates are getting closer.

For the current subdivision algorithm, the viewing space is been restricted to the surface of a

viewing sphere. This is not considered as a serious limitation, as the camera to object distance

is usually many times larger than the extent of the object, so the aspects do not change sig-

nificantly with variations in the distance except for scaling. However, for approximating the

3D aspect graph or for dealing with situations when the camera may be placed very near the

object, the possibilities of extending the algorithm to three dimensions could be investigated.

Appendix A

Implementation details

A.1 Software

In the following a brief overview of some the main components of the modelling system is

given. The intention is not to provide a complete users manual for the software as that would

exceed the limits of this work, but to give an insight into various parts of the system and how

these are connected to each other.

This list is limited to the key components, and the description of the most important param-

eters and options.

A.1.1 dyn

usage:dyn -l n [-g℄ [-t thresh1℄ [-u thresh2℄ obje
t_nameoptions: -l i
osahedron subdivision level-t graph mat
her threshold-u graph mat
her threshold, if di�erent (higher) for partitioning phase-g stop after graph generation (no partitioning)
description:

Generates the view sphere partitioning from the object geometry and surface properties. In-

put is the description of the object which is used by the ray tracer, and a parameter file for the

83

84 APPENDIX A. IMPLEMENTATION DETAILS

graph matcher.

The object is centred in [0, 0, 0], scaling and camera angle are set corresponding to real test

environment, or selected such that the object is entirely visible from the unit sphere. Image

resolution is at 512x512.

Prior to starting dyn, the ray tracer, feature extractor and graph matcher servers (bobd, featserv
and graphserv) must be started. (These may be running on separate machines on the net-

work).

implementation:

C++, uses the LEDA libraries and Berkeley DB

A.1.2 bobd

usage:bobd -S port obje
t_nameoptions: -S port where the server listens
description:

An extended version of the Bob ray tracer [163], with support for client/server operation. In

server mode, bobd reads the object description, then accepts connection from client, which

send studio parameters (viewing coordinates, camera angle, etc.) and receive the ray traced

image.

implementation:

C

A.1.3 featserv

usage:featserv portoptions: none
description:

A client/server wrapper for the image processing and feature extraction pipeline [23].

implementation:

C (tools: C, Pascal, Fortran, Perl, shell script).

A.1. SOFTWARE 85

A.1.4 graphserv

usage:graphserv portoptions: none
description:

A client/server wrapper for the graph matcher [19].

implementation:

C (graph matcher: Pascal).

A.1.5 part2details

usage:part2details sgm_db partfile [detfile℄options: none
description:

Fill region details from SGM (attributed relational graph) database into the partition file gen-

erated by dyn.

implementation:

Perl script

A.1.6 canon.pl

usage:
anon.pl m
h_db <det_input >
anoni
al_det_outputoptions: none
description:

Canonical renaming of the regions, based on graph matching results (from the MCH database).

implementation:

Perl script

86 APPENDIX A. IMPLEMENTATION DETAILS

A.1.7 det2attr

usage:det2attr [detfile [attrfile℄℄options: none
description:

Extracts the list of attribute vectors for all regions.

implementation:

Perl script

A.1.8 km_nodes

usage:km_nodes nodes #
lust means [[
lass℄ weights℄options: -h help
description:

Build k-means clusters based on the attribute vectors. Reads the vectors from nodes file, and

builds #clust clusters. The mean vectors for each cluster are written to the means file, and the

class file – if specified – gives a classification of each vector (with optional weights).

implementation:

C++, uses LEDA.

A.1.9 findclass, findclass_weighted.pl

usage:find
lass unknown referen
e num_
andidates >indexoptions: none
description:

For a list of unknown poses and a list of reference classes finds the best match for each pose.

num_candidates it the number of possible poses to propose, using binary or weighted scoring.

implementation:

C++ (uses LEDA), and Perl script.

A.2. FILE FORMATS 87

A.2 File formats

A.2.1 .b, .bo, .bc, .img, OBJECT_img.db

Scene, object, colour and image Files for the bob ray tracer. Detailed format of these files can

be found in [163]. The .img files generated during model building are stored in a database.

blockcyl.bo#define COLOR1 0.237 0.105 0.878#define COLOR2 0.653 0.392 0.572...surfa
e {diffuse COLOR1}polygon {points 4vertex -2.000000 1.000000 1.000000vertex -2.000000 1.000000 -1.000000vertex -2.000000 -1.000000 -1.000000vertex -2.000000 -1.000000 1.000000}...
A.2.2 .sgm, OBJECT_sgm.db

Attributed relational graph description format, and database containing the graphs generated

for the model.

blockcyl+0.222-0.842+0.491.sgm1 1 1[A[�id=
ftsrv;ext:sqr:aa(5770):mm(19501,153,16,0):
g(255,377): \
r(63,158,255)℄℄[[8i℄[�rep= 1 1℄℄[B[�id=
ftsrv;ext:tri:aa(17180): \mm(18086,0,128109,3523):
g(255,299):
r(158,63,255)℄℄1 2 1[A[�id=
ftsrv;ext:sqr:aa(5770):mm(19501,153,16,0):
g(255,377): \
r(63,158,255)℄℄[[a℄[�rep= 1 ℄℄[C[�id=
ftsrv;ext:tri:aa(3812): \mm(15987,6,191882,1771):
g(162,255):
r(255,63,255)℄℄1 3 1[A[�id=
ftsrv;ext:sqr:aa(5770):mm(19501,153,16,0):
g(255,377): \
r(63,158,255)℄℄[[7℄[�rep= 1 ℄℄[D[�id=
ftsrv;ext:tri:aa(5022): \mm(15547,53,64298,144):
g(339,235):
r(255,63,255)℄℄...

88 APPENDIX A. IMPLEMENTATION DETAILS

A.2.3 .red, .grn, .blu

The three colour channels of an image, in REB image format (raw 8-bit data with a header).

A.2.4 .cnt, .chn8, OBJECT_chn.db

Contour and chain code files. The .cnt file is a list of contour points of the format <con-

tour_number x y 16-way_direction_code>. <0 0 0> marks the end of the list. .chn8 files

conatain 8-way chain codes, one line per contour. The format is <start_x start_y chain code>.

The chain code is a list of <[rep]dir> elements, where dir is one of the A-H direction code let-

ters and rep is and optional number specifying how many times the code is repeated. <-1 -1>

marks the end of the list. The .chn8 format contours are stored in a database.

blockcyl+0.222-0.842+0.491.chn8253 404 5AH15AH6AH5AH4AH3AH2AH2AH2AH3AHAHA3HA2HA3HG2H2GH3GFGFG5FE2FE2FEF \2EFEF2EF2EF2EF3EF3EF4EF6EF10EF21ED10ED6ED4ED3ED3ED2ED2ED2EDED2ED \E2DE2DE5DCDCD3CB2C2BC3BA2BA3BABAB3AB2AB2AB2AB3AB4AB5AB6AB15A185 368 A4HA2HA2HAH2AHAH2AH2AH2AH3AH3AH4AH6AH10AH25AB10AB6AB4AB3AB3AB2AB \2AB2ABAB2ABA2BA2BA4BAGF24GF24GF25GF24GF15GF2GFGFG7FE3FEFEFEFEFEF \2EF2EF2EF3EF3EF5EF7EF21ED7ED5ED3ED3ED2ED2ED2EDEDEDEDEDE3DE7DCDCD \2CD15CD24CD25CD24CD24CD...-1 -1
A.2.5 .vertdyn stores the vertex data in these files. The first line of the file gives the number of vertices

listed, then there is one line for each vertex, in the format <3 x y z id nr>. 3 is the number

of coordinates (dimensions), x,y,z are the vertex coordinates, id is a unique ID, and nr is

the number of regions in the image generated form the viewpoint.

blockcyl.6.vert180393 -1.0000000000 0.0000000000 0.0000000000 82 23 -0.9998072406 -0.0196336858 -0.0000000713 12743 23 -0.9998072406 0.0196336858 -0.0000000713 12805 23 -0.9997919713 -0.0103355404 0.0175838161 12744 23 -0.9997919713 0.0103355404 0.0175838161 12804 23 -0.9993814181 0.0000000000 0.0351678988 12891 4...

A.2. FILE FORMATS 89

A.2.6 .part

Partition file generated by dyn. The format is:Partition 1<pat
h><pat
h>...Partition 2<pat
h>......
Each <patch> specifies a triangular patch, and has the following elements: <vect id nr vect

id nr vect id nr level>. <vect> is a vector determining a point on the viewing sphere in the

format <3(=number of coordinates) x y z>, <id> is a vertex ID, <nr> is the number of regions

visible from that vertex. <level> is the level of subdivision at which the triangle was generated.

blockcyl.6.partPartition 13 -0.951 -0.309 -0.000 23 3 3 -0.988 -0.156 -0.000 307 3 \3 -0.964 -0.237 -0.117 308 3 33 -0.951 -0.309 -0.000 23 3 3 -0.954 -0.301 0.018 12434 3 \3 -0.957 -0.290 -0.000 1 2675 3 63 -0.957 -0.290 -0.000 12675 3 3 -0.959 -0.282 0.018 12676 3 \3 -0.962 -0.271 -0.000 4688 3 63 -0.962 -0.271 -0.000 4688 3 3 -0.965 -0.263 0.018 12679 3 \3 -0.968 -0.252 -0.000 12680 3 6...
A.2.7 .det

The partition details, extracted from the .part files with part2det. This format is used byremintdet,
anon and det2attr. The file structure is the following:<total number of groups><number of graphs in this group><serial number of this group>uniq_id uniq_id theta phi<number of nodes for graph> <view index><graph node in .sgm format><graph node in .sgm format>

90 APPENDIX A. IMPLEMENTATION DETAILS...uniq_id uniq_id theta phi<number of nodes for graph> <view index><graph node in .sgm format>...<number of graphs in this group><serial number of this group>......
blockcyl.6.det8823811 1 -155 -793 -0.163-0.984-0.074[A[�id=na;ext:sqr:aa(17959):mm(21021,0,11183,777):
g(255,326):
r(158,63,255)℄℄[B[�id=na;ext:sqr:aa(40367):mm(20618,96,4008,92):
g(262,187):
r(255,63,63)℄℄[C[�id=na;ext:sqr:aa(151):mm(20649,426,0,0):
g(119,195):
r(42,42,255)℄℄2 2 -164 -803 -0.164-0.985-0.044[A[�id=na;ext:sqr:aa(18212):mm(21027,0,6073,592):
g(255,325):
r(158,63,255)℄℄[B[�id=na;ext:sqr:aa(40180):mm(20612,96,3563,51):
g(262,185):
r(255,63,63)℄℄[C[�id=na;ext:sqr:aa(88):mm(20854,431,0,0):
g(120,229):
r(63,63,255)℄℄3 3 173 -803 -0.165-0.986+0.018[A[�id=na;ext:sqr:aa(18493):mm(20989,0,1717,152):
g(255,323):
r(158,63,255)℄℄[B[�id=na;ext:sqr:aa(160):mm(20840,433,0,0):
g(120,212):
r(63,63,255)℄℄[C[�id=na;ext:sqr:aa(39705):mm(20643,97,3356,76):
g(262,181):
r(255,63,63)℄℄...

A.2.8 .attr

Attribute vectors extracted from the partition details (.det) files.<number of regions> <number of graphs><partition id> <graph id> <region id> <attribute ve
tor><partition id> <graph id> <region id> <attribute ve
tor>...

A.2. FILE FORMATS 91

blockcyl.attr80515 170601 1 0 17959 21021 0 11183 777 255 326 158 63 2551 1 1 151 20649 426 0 0 119 195 42 42 2551 1 2 40367 20618 96 4008 92 262 187 255 63 631 2 0 18212 21027 0 6073 592 255 325 158 63 2551 2 1 88 20854 431 0 0 120 229 63 63 2551 2 2 40180 20612 96 3563 51 262 185 255 63 631 3 0 18493 20989 0 1717 152 255 323 158 63 2551 3 1 160 20840 433 0 0 120 212 63 63 2551 3 2 39705 20643 97 3356 76 262 181 255 63 63...88 4 0 2322 18256 231 53088 4251 296 335 158 63 25588 4 1 11691 18197 98 9268 91 188 306 63 63 25588 4 2 208 18016 295 1779 413 231 374 158 63 25588 4 3 8946 18596 302 3173 369 315 237 255 63 6388 4 4 30903 18180 67 54713 1329 250 170 63 255 255
A.2.9 .means

Mean vectors of the clusters from k-means clustering.

blockcyl.means309853 19141 159 4508 193 253 189 62 254 639870 19144 158 4585 197 254 188 62 62 25517330 19018 204 15785 724 255 194 254 254 63121 19960 396 1 0 250 193 219 53 8995 19478 378 0 0 252 198 43 43 255176 18766 350 2 0 253 200 58 240 73...
A.2.10 .class

Description of the equivalence classes in terms of the region types. The format of the file is
the following:<
lass id> <number of regions><num region types> <total num graphs> <type id>:<num graphs> ...<num region types> <total num graphs> <type id>:<num graphs><
lass id> <number of regions>

92 APPENDIX A. IMPLEMENTATION DETAILS<num region types> <total num graphs> <type id>:<num graphs>
blockcyl.class1 3 2 238 22:222 29:162 238 1:237 4:11 238 16:2382 3 2 236 22:220 29:162 236 1:235 4:11 236 2:2363 2 1 92 22:921 92 2:924 3 1 261 22:2611 261 2:2611 261 0:261...

A.2.11 .index

Results of the pose estimation, generated by find
lass or find
lass_weighted.pl<unknown image name><proposed pose> <s
ore> <list of region mat
hes> ...<proposed pose> <s
ore> <list of region mat
hes><unknown image name>...
test1.index+0.015+0.442+0.89738 5001664 0-0(482) 2-2(207) 3-3(90) 1-1(237) 4-4(648)33 4902646 0-0(941) 2-3(71) 4-4(1390) 1-2(170) 3-1(74)39 4902154 0-0(909) 4-3(1046) 2-4(2) 1-2(119) 3-1(78)44 4000898 0-0(433) 3-2(54) 1-1(168) 2-3(243)36 3901220 0-0(933) 1-2(168) 2-4(42) 3-1(77)45 3901203 0-0(893) 2-3(67) 1-2(165) 3-1(78)...

A.3. DRIVING THE MODELLING SYSTEM 93

A.3 Driving the modelling system

1. Create the object model in .b format for the ray tracer. (The object should be centred

in [0, 0, 0], and scaling, view angle and projection should be set such that the whole

object is visible when the viewpoint is on the unit sphere. Thefrom x y z
element may be left out from the studio structure of the .b file, it will be overridden

each time ray tracing is called as dyn takes control over the viewpoints. The .b file

could look something like this:/* rl.b */#in
lude
olor.b
studio {at 0 0 0up 0 1 0.05angle 50resolution 128 128antialias nonethreshold 1aspe
t 1ambient 1 1 1}#in
lude rl.botransform {s
ale 0.2 } RL_N transform_pop
RL_N is the object definition itself, included from rl.bo:/* rl.bo *//*
olors */#de�ne C1 .682 .631 .345#de�ne C2 .682 .631 .345...#de�ne C8 .615 .588 .521/* verti
es */#de�ne V1 vertex -2.5 5.7 +1.85#de�ne V2 vertex -2.5 0 +1.85

94 APPENDIX A. IMPLEMENTATION DETAILS#de�ne V3 vertex +2.5 0 +1.85...#de�ne V12 vertex -0.6 5.7 -1.85/* surfa
es *//* RL L-shape obje
t, in real size (unit:
m) /*#de�ne RL \surfa
e { di�use C1 } polygon { points 6 V1 V2 V3 V4 V5 V6 } \surfa
e { di�use C2 } polygon { points 6 V12 V11 V10 V9 V8 V7 } \surfa
e { di�use C3 } polygon { points 4 V1 V6 V12 V7 } \surfa
e { di�use C4 } polygon { points 4 V1 V7 V8 V2 } \surfa
e { di�use C5 } polygon { points 4 V6 V5 V11 V12 } \surfa
e { di�use C6 } polygon { points 4 V5 V4 V10 V11 } \surfa
e { di�use C7 } polygon { points 4 V4 V3 V9 V10 } \surfa
e { di�use C8 } polygon { points 4 V2 V8 V9 V3 }/* RL_N L-shape obje
t normalized to �t in (±1,±1,±1)
ube */#de�ne RL_N \transform { translate 0 -2.85 0 s
ale 0.35088 } RL transform_pop
2. Create a directory for the object, and place the relevant files there (.b, .bo, .b
).

3. Start the ray tracing, feature extraction and graph matching servers (bobd, featserv
and graphserv) which dyn will connect to.

4. Run dyn with the name of the object file. This might take a while, depending on the

object, the required depth and the computing power the running time can be anything

from some minutes to several days. See Table 4.1 for some examples.

As dyn is computing the model, a large number of files will be created. For each view

position examined, there will be an image file (.img), a contour file (.
hn8) and an

attributed relational graph file (.sgm). These files have the view position encoded in

the file name. When dyn is finished, a vertex file (.vert), a graph file (.graph), a

partition file (.part), a postscript image of the partitions (.ps), a file containing the

number of regions for each view (.nr) and a match file (.m
h) is written. The files

are named with the object name and some are indexed with the depth. For detailed

description of these files see Appendix A.2.

For increased efficiency the files are not stored directly in the directory, but are collected

into databases instead, one for each file type, which allows for faster lookup and reduces

disk space consumption. dyn will access the databases directly, other applications can

use the dbxtr and dbdump tools to retrieve some or all files from a database.

A.3. DRIVING THE MODELLING SYSTEM 95

Using the sample files mentioned above, the command line invoking dyn in the back-

ground:sid% nohup dyn -l 3 -v -s rl >& rl.log &
5. The next step is to organise the information in the partition file. First,part2details is used to convert the extract the partition details. Then, internal con-

tours are removed with remintdet. The tool
anon.pl is applied for canonical re-

naming of the nodes and for generating a .map file which maps the partitions to a

representative view. The script
anon.s
ript will do all this.

6. For the pose estimation, run det2attr to extract the attributes from the .det file.

Then use km_nodes to find the clusters (k-means). The scriptknown.s
ript will do this.

7. Now we have the classes ready. If we then want to classify a set of unknown images,unknown.s
ript can be used. It extracts the attributes from a set of unknown files

(feat2det and det2attr), calls
l_unk to find the clusters for the regions, and runsfind
lass to find the most likely classes. The index file contains the suggested classes.

At last index2ps can be called to create the Postscript output for human reading.

Bibliography

[1] A. M. Abdulkader. Parallel Algorithms for Labelled Graph Matching. PhD thesis, Col-

orado School of Mines, 1998.

[2] Peter Allen. Surface descriptions from vision and touch. In Proceedings of the 1984
IEEE International Conference on Robotics and Automation, pages 394–397, March

1984.

[3] A. Ansar and K. Daniilidis. Linear pose estimation from points or lines. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 25(5):578–589, May 2003.

[4] F. Arman and J. K. Aggarwal. Automatic generation of recognition strategies using

CAD models. In Workshop on Directions in Automated CAD-Based Vision, pages 124–

133, June 1991.

[5] M. Asada, H. Ichikawa, and S. Tsuji. Determining surface orientation by project-

ing a stripe pattern. IEEE Transactions on Pattern Analysis and Machine Intelligence,
10(5):749–754, 1988.

[6] M. Asada and S. Tsuji. Shape from projecting a stripe pattern. In Proceedings of
the 1987 IEEE International Conference on Robotics and Automation, pages 787–792,

March 1987.

[7] Eric Backer and Jan J. Gerbrands. Inexact graph matching used in machine vision.

NATO ASI Series F, Pattern Recognition Theory and Applications, F30:347–356, 1987.

[8] W. W. R. Ball and H. S. M. Coxeter. Mathematical Recreations and Essays. New York:

Dover, 13th edition, 1987.

[9] Dana H. Ballard and Chritopher M. Brown. Computer Vision. Englewood Cliffs, New

Jersey, 1982.

97

98 BIBLIOGRAPHY

[10] D. A. Basin. A term equality problem equivalent to graph isomorphism. Information
Processing Letters, 54:61–66, 1994.

[11] Jeffrey S. Beis and David G. Lowe. Learning indexing functions for 3D model-based

object recognition. In Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 275–280, 1994.

[12] M. Bennamoun and B. Boashash. A vision system for automatic object recognition. In

Proceedings of the 1994 IEEE International Conference on Systems, Man, and Cybernetics
’Humans, Information and Technology’, pages 1369–1374, October 1994.

[13] Robert Bergevin and Mertin D. Levine. Generic object recognition: Building and

matching coarse descriptions from line drawings. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(1):19–36, January 1993.

[14] P. J. Besl and R. C. Jain. Three-dimensional object recognition. ACM Computing
Surveys, 17:75–145, 1985.

[15] Bir Bhanu and Thomas C. Henderson. CAGD based 3D vision. In Proceedings of the
IEEE International Conference Robotics and Automation, pages 411–417, 1985.

[16] Bir Bhanu and Chih-Cheng Ho. CAD-based 3D object representation for robot vi-

sion. IEEE Computer, 20(8):19–35, August 1987.

[17] T. Binford. Visual perception by computer. In Proceeding or the IEEE Conference on
Systems and Control, Miami, FL, December 1971.

[18] Richard E. Blake. A matching method for difficult shapes from engineering drawings.

In Proceedings of the 4th Scandinavian Conference on Image Analysis, pages 67–74, June

1985.

[19] Richard E. Blake. Development of an incremental graph matching device. In Pattern
Recognition Theory and Applications, volume F30 of NATO ASI Series, pages 357–366.

Springer-Verlag, 1987.

[20] Richard E. Blake. The use of scott’s lattice theory as a basis for combining items of

evidence. Pattern Recognition Letters, 7(3):151–155, March 1988.

[21] Richard E. Blake. A partial ordering for relational graphs applicable to varying levels

of detail. Pattern Recognition Letters, 11(5):305–312, May 1990.

[22] Richard E. Blake. Partitioning graph matching with constraints. Pattern Recognition,

27(3):439–446, March 1994.

BIBLIOGRAPHY 99

[23] Richard E. Blake and Peter Boros. The extraction of structural features for use in com-

puter vision. In Proceedings of the 2nd Asian Conference on Computer Vision, pages 583–

587, 1995.

[24] Robert C. Bolles and Patrice Horaud. 3DPO: A three dimensional part orientation

system. International Journal of Robotics Research, 5:3-26, 1986, (5):3–26, 1986.

[25] Robert C. Bolles, Patrice Horaud, and Marsha Jo Hannah. 3DPO: A three dimen-

sional part orientation system. In Proceedings IJCAI, pages 1116–1120, 1983.

[26] K. Bowyer, J. Stewman, L. Stark, and D. Eggert. ERRORS-2: a 3D object recognition

system using aspect graphs. In Proceedings of the 9th International Conference on Pattern
Recognition, pages 6–10, November 1988.

[27] Kevin Bowyer, Maha Sallam, David Eggert, and John Stewman. Computing the gen-

eralized aspect graph for objects with moving parts. IEEE Transaction on Pattern Anal-
ysis and Machine Intelligence, 15(6):605–610, June 1993.

[28] Kevin W. Bowyer and Charles R. Dyer. Aspect graphs: An introduction and survey of

recent results. Int’l Journal on Imaging Systems and Technology, 2:315–328, 1990.

[29] Kevin W. Bowyer, David Eggert, John Stewman, and Louise Stark. Developing the as-

pect graph representation for use in image understanding. In Hatem Nasr, editor, Se-
lected Papers on Model-Based Vision (Milestone Series # 72), pages 198–216. SPIE Press,

1993.

[30] Rodney A. Brooks. Model based three dimensional interpretation of two dimensional

images. In Proceedings of the International Joint Conference on Artificial Intelligence,
pages 360–370, August 1981.

[31] H. Bunke. Error correcting graph matching: on the influence of the underlying cost

function. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(9):917–

922, September 1999.

[32] G. Castore. Solid modeling, aspect graphs and robot vision. In Pickett and Boyse,

editors, Solid Modeling by Computer, pages 277–292. New York: Plenum Press, 1984.

[33] Glen Castore and Carol Crawford. From solid model to robot vision. In Proceedings
of the 1984 IEEE International Conference on Robotics and Automation, pages 90–92,

March 1984.

[34] Chin-Chun Chang and Wen-Hsiang Tsai. Reliable determination of object pose from

line features by hypothesis testing. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(11):1235–1241, November 1999.

100 BIBLIOGRAPHY

[35] J.-L. Chen and G. C. Stockman. Determining pose of 3D objects with curved surfaces.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(1):52–57, January

1996.

[36] J.-L. Chen and G. C. Stockman. Indexing to 3D model aspects using 2D contour

features. In Proceedings of the 1996 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 913–920, June 1996.

[37] S. Chen and H. Freeman. Computing characteristic views of quadric-surfaced solids.

In Proceedings of the 10th International Conference on Pattern Recognition, pages 77–82,

June 1990.

[38] S. Chen and H. Freeman. On the characteristic views of quadric-surfaced solids.

In IEEE Workshop on Directions in Automated CAD-Based Vision, pages 34–43, June

1991.

[39] S.-W. Chen and G. Stockman. Object wings-2 1/2 D primitives for 3D recognition.

In Proceedings of the 1989 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 535–540, June 1989.

[40] S.-W. Chen and G. Stockman. Wing representation for rigid 3d objects. In Proceedings
of the 10th International Conference on Pattern Recognition, pages 398–402, June 1990.

[41] Roland T. Chin and Charles R. Dyer. Model-based recognition in robot vision. In

Computing Surveys, pages 67–108, 1986.

[42] C. M. Cyr and B. B. Kimia. 3D object recognition using shape similiarity-based aspect

graph. In Proceedings of the 8th IEEE International Conference on Computer Vision, pages

254–261, July 2001.

[43] E. R. Davies. Machine Vision: Theory, Algorithm, Practicalities. Academic Press, San

Diego, 2nd edition, 1997.

[44] Daniel DeMenthon and Larry S. Davis. Exact and approximate solutions of the

perspective-three-point problem. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(11):1100–1105, November 1992.

[45] S. J. Dickinson, P. Jasiobedzki, G. Olofsson, and H. I. Christensen. Qualitative track-

ing of 3-d objects using active contour networks. In Proceedings of the 1994 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, pages 812–817,

June 1994.

BIBLIOGRAPHY 101

[46] S. J. Dickinson, A. P. Pentland, and A. Rosenfeld. Qualitative 3-D shape reconstruc-

tion using distributed aspect graph matching. In Proceedings of the Third International
Conference on Computer Vision, pages 257–262, December 1990.

[47] S. J. Dickinson, A. P. Pentland, and A. Rosenfeld. 3-D shape recovery using dis-

tributed aspect matching. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 14(2):174–198, February 1992.

[48] C. Dorai, G. Wang, A. K. Jain, and C. Mercer. From images to models: automatic 3D

object model construction from multiple views. In Proceedings of the 13th International
Conference on Pattern Recognition, pages 770–774, August 1996.

[49] T. Van Effelterre, L. Van Gool, and A. Oosterlinck. Visual recognition of CAD ob-

jects with aspect graphs. In Proceedings of the 1992 IEEE International Symposium on
Intelligent Control, pages 54–59, August 1992.

[50] David W. Eggert. Aspect Graphs of Solids of Revolution. PhD thesis, University of South

Florida, December 1991.

[51] David W. Eggert and Kevin Bowyer. Computing the perspective projection aspect

graphs of solids of revolution. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 15(2):109–128, February 1993.

[52] David W. Eggert, Kevin Bowyer, Charles R. Dyer, Henrik I. Christensen, and

Dmitry B. Goldgof. The scale space aspect grap. In Proceedings of the 1992 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pages 335–

340, June 1992.

[53] David W. Eggert, Kevin Bowyer, Charles R. Dyer, Henrik I. Christensen, and

Dmitry B. Goldgof. The scale space aspect graph. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(11):1114–1130, November 1993.

[54] David W. Eggert and Kevin W. Bowyer. Computing the orthographic projection as-

pect graph of solids of revolution. In Proceedings of IEEE Workshop on Interpretation of
3D Scenes, pages 102–108, November 1989.

[55] David W. Eggert and Kevin W. Bowyer. Perspective projection aspect graph of solids of

revolution: An implementation. In IEEE Workshop on Directions in Automated CAD-
Based Vision, pages 44–53, June 1991.

[56] S. Ekvall, F. Hoffmann, and D. Kragic. Object recognition and pose estimation for

robotic manipulation using color cooccurrence histograms. In Proceedings of the 2003

102 BIBLIOGRAPHY

IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 2, pages

1284–1289, October 2003.

[57] Ting-Jun Fan, Gerard Medioni, and Ramakant Nevatia. Recognizing 3D objects using

surface descriptions. IEEE Transactions on Pattern Analysis and Machine Intelligence,
11(11):1140–1157, November 1989.

[58] O. Faugeras, J. Mundy, N. Ahuja, C. Dyer, A. Pentland, R. Jain, K. Ikeuchi, and

K. Bowyer. Why aspect graphs are not (yet) practical for computer vision. In Workshop
on Directions in Automated CAD-Based Vision, pages 97–104, June 1991.

[59] A. M. Finch, R. C. Wilson, and E. R. Hancock. Relational matching with mean field

annealing. In Proceedings of the 13th International Conference on Pattern Recognition,

pages 359–363, August 1996.

[60] Leila De Floriani. Feature extraction from boundary models of three-dimensional ob-

jects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(8):785–798,

August 1989.

[61] P. J. Flynn and A. K. Jain. BONSAI: 3D object recognition using constrained search.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(10):1066–1075,

October 1991.

[62] Patrick J. Flynn and Anil K. Jain. CAD-based computer vision: From CAD models

to relational graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence,
13(2):114–132, February 1991.

[63] David Forsyth, Joseph L. Mundy, Andrew Zissermann, Chris Coelho, Aaron Heller,

and Charles Rothwell. Invariant descriptors for 3D object recognition and pose. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(10):971–991, October

1991.

[64] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New-York, 1979.

[65] Ziv Gigus, John Canny, and Raimund Seidel. Efficiently computing and representing

aspect graphs of polyhedral objects. In Proceedings of the 2nd International Conference
on Computer Vision, pages 30–39, 1988.

[66] Ziv Gigus, John Canny, and Raimund Seidel. Efficiently computing and representing

aspect graphs of polyhedral objects. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 13(6):542–551, June 1991.

BIBLIOGRAPHY 103

[67] Ziv Gigus and Jitendra Malik. Computing the aspect graph for line drawings of poly-

hedral objects. In Proceedings of the 1988 Computer Vision and Pattern Recognition Con-
ference, pages 654–661, 1988.

[68] Ziv Gigus and Jitendra Malik. Computing the aspect graph for line drawings of poly-

hedral objects. In Proceedings of the 1988 IEEE International Conference on Robotics
and Automation, pages 1560–1566, 1988.

[69] Ziv Gigus and Jitendra Malik. Computing the aspect graph for line drawings of

polyhedral objects. IEEE Transactons on Pattern Analysis and Machine Intelligence,
12(2):113–122, February 1990.

[70] Steven Gold and Anand Rangarajan. A graduated assignment algorithm for graph

matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(4):377–

388, April 1996.

[71] Ian E. Gordon. Theories of Visual Perception. John Wiley & Sons, 1989.

[72] R. Hanek, N. Navab, and M. Appel. Yet another method for pose estimation: A

probabilistic approach using points, lines, and cylinders. In Proceedings of the 1999
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, page

550, June 1999.

[73] Charles Hansen and Thomas C. Henderson. CAGD-based computer vision. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(11):1181–1193, Novem-

ber 1989.

[74] R. M. Haralick, H. Joo, C. Lee, X. Zhuang, V.G. Vaidya, and M. B. Kim. Pose esti-

mation from corresponding point data. IEEE Trans. on Systems, Man and Cybernetics,
19(6):1426–1446, 1989.

[75] R. M. Haralick and Hyonam Joo. 2D-3D pose estimation. In Proceedings of the 9th

International Conference on Pattern Recognition, pages 385–391, November 1988.

[76] Robert M. Haralick and Linda G. Shapiro. Computer and Robot Vision. Addison-

Wesley, Reading MA, 1993.

[77] S. Hati and S. Sengupta. Pose estimation in automated visual inspection using ANN.

In Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cyber-
netics, pages 1732–1737, October 1998.

[78] U. Hillenbrand and G. Hirzinger. Object recognition and pose estimation from 3D-

geometric relations. In Proceedings of the 4th International Conference on Knowledge-
Based Intelligent Engineering Systems and Allied Technologies, pages 113–116, 2000.

104 BIBLIOGRAPHY

[79] R. Hoffman and H. R. Keshavan. Evidence-based object recognition and pose esti-

mation. In Proceedings of the 1987 IEEE International Conference on Systems, Man and
Cybernetics, pages 173–178, November 1989.

[80] R. Hoffman, H. R. Keshavan, and F. Towfiq. CAD-driven machine vision. IEEE
Trans. on Systems, Man and Cybernetics, 19(6):1477–1488, 1989.

[81] T. Hogg, D. Rees, and H. Talhami. Three-dimensional pose from two-dimensional

images: a novel approach using synergetic networks. In Proceedings of the 1995 IEEE
International Conference on Neural Networks, pages 1140–1144, 1995.

[82] J. E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar

graphs. In Sixth ACM Symposium on Theory of Computing, 1974.

[83] John E. Hopcroft and Richard M. Karp. An n
5

2 algorithm for maximum matchings

in bipartite graphs. SIAM Journal on Computing, 2(4):225–231, December 1973.

[84] Berthold K. P. Horn. Robot Vision. MIT Press, Cambridge MA, 1986.

[85] M. K. Hu. Visual pattern recognition by moment invariants. IRE Transactions on
Information Theory, IT-8:179–187, 1962.

[86] H. V. Jagadish and L. O’Gorman. An object model for image recognition. IEEE
Computer, 22(12):33–41, December 1989.

[87] Ramesh Jain, Rangachar Kasturi, and Brian G. Schunck. Machine Vision. McGraw-

Hill, New York, 1995.

[88] S. Kameyama and T. Nagata. Generating an aspect graph by set operations on sets of

viewpoints. In Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 1889–1896, July 1993.

[89] A. Kaufman, D. Cohen, and R. Yagel. Volume graphics. Computer, 26(7):51–64, July

1993.

[90] A. Khotanzad and J. J.-H. Liou. Recognition and pose estimation of unoccluded three-

dimensional objects from a two-dimensional perspective view by banks of neural net-

works. IEEE Transactions on Neural Networks, 7(4):897–906, July 1996.

[91] Gen-ichiro Kinoshita, Eiichi Mutoh, and Kazuo Tanie. Haptic aspect graph represen-

tation of 3D object shapes. In Proceedings of the 1992 IEEE International Conference
on Robotics and Automation, pages 1648–1653, May 1992.

BIBLIOGRAPHY 105

[92] Gen-ichiro Kinoshita, Eiichi Mutoh, and Kazuo Tanie. Haptic aspect graph represen-

tation of 3D solid object shapes by tactile sensing. In Proceedings of the 1992 lEEE/RSJ
International Conference on Intelligent Robots and Systems, volume 3, pages 1912–1917,

July 1992.

[93] J. J. Koenderink and A. J. van Doorn. The internal representation of solid shape with

respect to vision. Biological Cybernetics, 32:211–216, 1979.

[94] D. J. Kriegman and J. Ponce. Computing exact aspect graphs of curved objects: solids

of revolution. In Proc. of IEEE Workshop on Interpretation of 3D Scenes, pages 116–122,

1989.

[95] D. J. Kriegman and J. Ponce. Computing exact aspect graphs of curved objects: Solids

of revolution. Int’l. Journal on Computer Vision, 5(2):119–135, 1990.

[96] A. Laurentini. Comments on “efficiently computing and representing aspect graphs

of polyhedral objects”. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18:57–58, January 1996.

[97] J. Llados, E. Marti, and J. J. Villanueva. Symbol recognition by error-tolerant sub-

graph matching between region adjacency graphs. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 23(10):1137–1143, October 2001.

[98] Bin Luo and E. R. Hancock. Structural graph matching using the EM algorithm and

singular value decomposition. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 23(10):1120–1136, October 2001.

[99] David Marr. Vision. W. H. Freeman, 1982.

[100] G. Marsaglia. Choosing a point from the surface of a sphere. In Ann. Math. Stat.,
volume 43, pages 645–646. 1972.

[101] David W. Matula. Subtree isomorphism in O(n
5

2). Annals of Discrete Mathematics,
2:91–106, 1978. North-Holland Publishing Company.

[102] B. T. Messmer and H. Bunke. A new algorithm for error-tolerant subgraph iso-

morphism detection. IEEE Transactions on Pattern Analysis and Machine Intelligence,
20(5):493–504, May 1998.

[103] H. Murase and S. K. Nayar. Learning and recognition of 3D objects from appearance.

In Proceedings of IEEE Workshop on Qualitative Vision, pages 39–50, June 1993.

106 BIBLIOGRAPHY

[104] H. Murase and S. K. Nayar. Learning by a generation approach to appearance-based

object recognition. In Proceedings of the 13th International Conference on Pattern Recog-
nition, pages 24–29, August 1996.

[105] R. Myers, R. C. Wilson, and E. R. Hancock. Efficient relational matching with local

edit distance. In Proceedings of the 14th International Conference on Pattern Recognition,

pages 1711–1714, August 1998.

[106] R. Myers, R. C. Wilson, and E. R. Hancock. Bayesian graph edit distance. In Proceed-
ings of the 1999 International Conference on Image Analysis and Processin, pages 1166–

1171, September 1999.

[107] R. Myers, R. C. Wilson, and E. R. Hancock. Bayesian graph edit distance. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(6):628–635, June 2000.

[108] K. Nakano and Y. Watanabe. Robot vision system capable of recognizing machine

parts using multistage neural networks. In Proceedings of the 1992 IEEE International
Conference on Systems Engineering, pages 389–392, September 1992.

[109] Vishvjit Nalwa. A Guided Tour of Computer Vision. Addison-Wesley, Reading MA,

1993.

[110] S. K. Nayar, H. Murase, and S. A. Nene. Learning, positioning, and tracking visual

appearance. In Proceedings of the 1994 IEEE International Conference on Robotics and
Automation, pages 3237–3244, May 1994.

[111] S. K. Nayar, S. A. Nene, and H. Murase. Real-time 100 object recognition system.

In Proceedings of the 1996 IEEE International Conference on Robotics and Automation,

pages 2321–2325, April 1996.

[112] A. Noble, D. Wilson, and J. Ponce. On computing aspect graphs of smooth shapes

from volumetric data. In Proceedings of the Workshop on Mathematical Methods in
Biomedical Image Analysis, pages 299–308, June 1996.

[113] Y. Nomura, D. Zhang, Y. Sakaida, and S. Fujii. 3-D object pose estimation by shad-

ing and edge data fusion – simulating virtual manipulation on mental images. In Pro-
ceedings of the 1996 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 866–871, June 1996.

[114] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Matching 3D models with

shape distributions. In Proceedings of the SMI 2001 International Conference on Shape
Modeling and Applications, pages 154–166, May 2001.

BIBLIOGRAPHY 107

[115] Sung-Il Pae and Jean Ponce. Toward a scale-space aspect graph: solids of revolution.

In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

pages 196–201, June 1999.

[116] L. H. Pampagnin and M. Devy. 3D object identification based on matchings between

a single image and a model. In Proceedings of the 1991 IEEE International Conference
on Robotics and Automation, pages 1580–1587, April 1991.

[117] Soon-Yong Park and M. Subbarao. Pose estimation and integration for complete 3D

model reconstruction. In Proceedings of the 6th IEEE Workshop on Applications of Com-
puter Vision, pages 143–147, December 2002.

[118] T. Pavlidis. Algorithms for Graphics and Image Processing. Computer Science Press,

1982.

[119] Z. Pawlak, S. K. M. Wong, and W. Ziarko. Rough sets: Probabilistic versus deter-

ministic approach. In B. Gaines and J. Boose, editors, Machine Learning and Uncer-
tain Reasoning, volume 3 of Knowledge Based Systems, pages 227–241. Academic Press,

1990.

[120] Zdislaw Pawlak. Rough Sets – Theoretical Aspects of Reasoning About Data. Kluwer

Academic Press, 1991.

[121] S. Petitjean, J. Ponce, and D. J. Kriegman. Computing exact aspect graphs of curved

objects: Algebraic surfaces. Int’l. Journal on Computer Vision, 9(3):231–255, 1992.

[122] Euripides G. M. Petrakis, Christos Faloutsos, and King-Ip (David) Lin. Imagemap:

an image indexing method based on spatial similarity. IEEE Transactions on Knowledge
and Data Engineering, 14(5):979–987, 2002.

[123] Harry Plantinga and Charles R. Dyer. Visibility, occlusion and the aspect graph. Tech-

nical Report CS-TR-1987-736, University of Wisconsin-Madison, 1987.

[124] Harry Plantinga and Charles R. Dyer. Visibility, occlusion, and the aspect graph. Int’l.
Journal on Computer Vision, 5(2):137–160, 1990.

[125] J. Ponce and D. J. Kriegman. Computing exact aspect graphs of curved objects: para-

metric patches. In Proc. AAAI National Conference on Arificial Intelligence, July 1990.

[126] J. Ponce and D. J. Kriegman. New progress in prediction and interpretation of line-

drawings of curved 3D objects. In Proceedings of the 5th IEEE International Symposium
on Intelligent Control, pages 220–225, September 1990.

108 BIBLIOGRAPHY

[127] Long Quan and Zhongdan Lan. Linear N-point camera pose determination. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 21(8):774–780, August

1999.

[128] S. Ravela, B. Draper, J. Lim, and R. Weiss. Adaptive tracking and model registration

across distinct aspects. In Proceedings of the 1995 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 174–180, August 1995.

[129] Aristides A. G. Requicha. Representation for rigid solids: Theory, methods and sys-

tems. ACM Computing Surveys, 12(4):437–463, 1980.

[130] S. W. Reyner. An analysis of a good algorithm for the subtree problem. SIAM Journal
of Computing, 6(4):730–732, 1977.

[131] P. L. Rosin. Robust pose estimation. IEEE Transactions on Systems, Man and Cyber-
netics, 29(2):297–303, April 1999.

[132] Marie-Françoise Roy and Thierry Van Effelterre. Aspect graphs of algebraic surfaces.

In Proceedings of the 1993 International Symposium on Symbolic and Algebraic Compu-
tation, pages 135–143, 1993.

[133] S. D. Roy, S. Chaudhury, and S. Banerjee. Aspect graph construction with noisy fea-

ture detectors. IEEE Transactions on Systems, Man and Cybernetics, 33(2):340–351,

April 2003.

[134] M. Sallam, J. Stewman, and K. Bowyer. Computing the visual potential of an artic-

ulated assembly of parts. In Proceedings of the Third International Conference on Com-
puter Vision, pages 636–643, December 1990.

[135] A. Sanfeliu and K. S. Fu. A distance measure for attributed relational graphs for pattern

recognition. IEEE Transactions on Systems, Man, and Cybernetics, 13:353–362, 1983.

[136] W. B. Seales and C. R. Dyer. Modeling the rim appearance. In Proceedings of the 3rd

International Conference on Computer Vision, pages 698–701, December 1990.

[137] Michael Seibert and Allen M. Waxman. Adaptive 3D object recognition from multiple

views. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):107–124,

February 1992.

[138] M. Sengel, M. Berger, V. Kravtchenko-Berejnoi, and H. Bischof. Fast object recog-

nition and pose determination. In Proceedings of the 2002 International Conference on
Image Processing, volume 3, pages 349–352, June 2002.

BIBLIOGRAPHY 109

[139] L. Shapiro and R. M. Haralick. A metric for comparing relational descriptions. In

IEEE Transactions on Pattern Analysis and Machine Intelligence, volume 7, pages 90–

94, 1985.

[140] Ilan Shimshoni and Jean Ponce. Finite resolution aspect graphs of polyhedral objects.

In Proceedings of IEEE Workshop on Qualitative Vision, pages 140–150, June 1993.

[141] Ilan Shimshoni and Jean Ponce. Finite-resolution aspect graphs of polyhedral objects.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):315–327, April

1997.

[142] David Slater and Glenn Healey. The illumination-invariant recognition of 3D ob-

jects using local color invariants. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 18(2):206–210, February 1996.

[143] Humberto Sossa and Radu Horaud. Model indexing: The graph hashing approach.

In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 811–814, 1992.

[144] Thawach Sripradisvarakul and Ramesh Jain. Generating aspect graphs for curved ob-

jects. In Proceedings of IEEE Workshop on Interpretation of 3D Scenes, pages 109–115,

November 1989.

[145] T. Stahs and F. Wahl. Object recognition and pose estimation with a fast and versatile

3D robot sensor. In Proceedings of the 11th IAPR International Conference on Computer
Vision and Applications, pages 684–687, 1992.

[146] Peter L. Stanchev and Valery V. Vutov. A model-based technique with a new indexing

mechanism for industrial object recognition. In Proceedings of the 9th IEEE/CHMT
International Electronic Manufacturing Symposium, pages 56–60, 1990.

[147] Louise Stark and Kevin Bowyer. Indexing function-based categories for generic recog-

nition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 795–797, 1992.

[148] Louise Stark, David Eggert, and Kevin Bowyer. An aspect graph based control strat-

egy for 3D object recognition. In Proceedings of the 2nd International Conference on
Computer Vision, pages 697–703, 1988.

[149] Louise Stark, David Eggert, and Kevin Bowyer. Aspect graphs and nonlinear opti-

mization in 3D object recognition. In Proceedings of the 2nd International Conference
on Computer Vision, pages 501–507, 1988.

110 BIBLIOGRAPHY

[150] J. Stewman and K. W. Bowyer. Aspect graphs for planar-face convex objects. In Pro-
ceedings of the IEEE Workshop on Computer Vision, pages 123–130, Miami, FL, 1987.

[151] John Stewman and Kevin Bowyer. Constructing the perspective projection aspect

graph of polyhedral objects. In Proceedings of the 2nd International Conference on Com-
puter Vision, pages 494–500, 1988.

[152] John Stewman and Kevin Bowyer. Constructing the perspective projection aspect

graph of polyhedra defined using a solid modeler. In Proceedings of the 6th Scandi-
navian Conference on Image Analysis, pages 652–659, 1989.

[153] G. Stockman, G. Lee, and S.-W. Chen. Reconstructing line drawings from wings: the

polygonal case. In Proceedings of the 3rd International Conference on Computer Vision,

pages 526–529, December 1990.

[154] G. C. Stockman, S.-W. Chen, G. Hu, and N. Shrikhande. Sensing and recognition of

rigid objects using structured light. IEEE Control Systems Magazine, 8(3):14–22, June

1988.

[155] S. Sullivan and J. Ponce. Automatic model construction and pose estimation from

photographs using triangular splines. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 20(10):1091–1097, October 1998.

[156] S. Sullivan and J. Ponce. Automatic model construction, pose estimation, and object

recognition from photographs using triangular splines. In Proceedings of the 6th Inter-
national Conference on Computer Vision, pages 510–516, January 1998.

[157] W. C. Thibault and B. F. Naylor. Set operations on polyhedra using binary space par-

titionaing trees. In ACM SIGGRAPH 87, pages 153–162, 1987.

[158] R. B. Tilove. Set membership classification: A unified approach to geometric inter-

section problems. IEEE Transactions on Computers, pages 847–883, October 1980.

[159] F. Toyama, K. Shoji, and J. Miyamichi. Model-based pose estimation using genetic

algorithm. In Proceedings of the 14th International Conference on Pattern Recognition,

pages 198–201, August 1998.

[160] Fatih Ulupinar and Ramakant Nevatia. Perception of 3D surfaces from 2D contours.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(1):3–18, January

1993.

[161] M. A. van Wyk, T. S. Durrani, and B. J. van Wyk. A RKHS interpolator-based graph

matching algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(7):988–995, July 2002.

BIBLIOGRAPHY 111

[162] Aaron S. Wallack and John F. Canny. Efficient indexing techniques for model based

sensing. In Proceedings of the IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 259–266, 1994.

[163] C. D. Watkins, S. B. Coy, and M. Finlay. Photorealism and Ray Tracing in C. M&T

Publishing, 1992.

[164] Nancy A. Watts. Calculating the principal views of a polyhedron. In Proceedings of the
9th International Conference on Pattern Recognition, pages 316–322, 1988.

[165] A. Weiss and H. Nawab. A representation for the orientation-dependent appearance

of 3D objects. In Proceedings of the 1988 International Conference on Acoustics, Speech,
and Signal Processing, pages 956–959, April 1988.

[166] Xu Wenli and Zhang Lihua. Pose estimation problem in computer vision. In Proc.
1993 IEEE Region 10 Conference on Computer, Communication, Control and Power En-
gineering, pages 1138–1141, October 1993.

[167] R. C. Wilson, A. N. Evans, and E. R. Hancock. Relational matching by discrete re-

laxation. Image and Vision Computing, (13):411–421, 1995.

[168] R. C. Wilson and E. R. Hancock. Structural matching by discrete relaxation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(6):634–648, June 1997.

[169] Andrew K. C. Wong, Si W. Lu, and Marc Rioux. Recognition and shape synthesis of

3D objects based on attributed hypergraphs. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 11(3):279–290, March 1989.

[170] K. C. Wong, Y. Cheng, and J. Kittler. Recognition of polyhedral objects using triangle

pair features. In IEEE Proceedings on Communications, Speech and Vision, volume 140,

pages 72–85, February 1993.

[171] P. L. Worthington and E. R. Hancock. Object recognition using shape-from-shading.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(5):535–542, May

2001.

[172] M. W. Wright and F. Fallside. Object pose estimation by neural network. In Porceeding
of the 1992 International Conference on Image Processing and its Applications, pages 602–

603, April 1992.

[173] R. Yagel, D. Cohen, and A. Kaufman. Discrete ray tracing. IEEE Computer Graphics
and Applications, 12(5):19–28, September 1992.

112 BIBLIOGRAPHY

[174] Youngrock Yoon, G. N. DeSouza, and A. C. Kak. Real-time tracking and pose es-

timation for industrial objects using geometric features. In Proceedings of the 2003
IEEE International Conference on Robotics and Automation, pages 3473–3478, Septem-

ber 2003.

[175] L. A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

[176] H. Zha, T. Shibata, and T. Nagata. Recognition of polyhedral objects – aspect graph

generation based on a learning-by-showing approach. In Proc. IEEE International Con-
ference on Systems, Man, and Cybernetics, pages 713–718, October 1996.

Index

accidental view, 10, 50, 52

acquisition device, 1, 2, 18, 79

adaptive subdivision, 27, 28

appearance, 2

graph, 2, 3, 9, 17, 79

model, 9

area, 21, 22

covered, 29

aspect, 2, 3, 8, 25, 29, 30, 36, 38, 39, 47, 56

graph, 2, 3, 8–11, 13, 17, 79

graph, approximate, 10

haptic, 9

indistinguishable, 69

automated programming, 11

back propagation, 13

binary space partition, BSP, 8

bipartite

graph, 37

matching, 37, 38, 69, 79

boundary, 3, 7, 18, 29, 49, 50, 81

representation, BREP, 7, 18

camera, 18, 76

RGB, 18

thermal, 18, 20

camera-to-object distance, 55

centre of gravity, 21

centroid, 22

classifier, 37

clustering, 30

unsupervised, 34

colour

normalisation, 21

ratio, 21

separation, 21, 56

complexity, 2

computer aided design, CAD, 6

computer vision, 5, 6

constrained search, 11

constructive solid geometry, CSG, 6, 8, 18

contour, 6, 18, 22, 31, 50

attributes, 22, 81

id, 22

tracing, 1, 21

types, 33, 34, 37

coordinates

cylindrical, 23

spherical, 23

cost function, 29

coverage, 48, 57

viewing sphere, 46

depth, 6

direction code, 22

edge, 1, 7, 10, 18

attributes, 22

equivalence class, 17, 34

of views, 31

evidence, 11

face, 7, 9

113

114 INDEX

feature, 1, 3, 10, 18, 39

extraction, 3, 17, 21, 28, 45, 52

extraction errors, 77

high level, 21

set, 11, 12, 81

fuzzy set, 81

Gaussian sphere, 25

genetic algorithm, 14

graph

adjacency, 27

attributed, 15, 21, 79

edge-face, 15

hashing, 15

relational, 3, 15, 21

graph matching, 3, 14, 17, 28, 32, 45, 79, 80

Bayesian framework, 14

edit distance, 15

exact, 14

inexact, 2, 14

threshold, 46–48

hashing, 11

geometric, 11

hemisphere, 47

hidden line removal, 7

human vision, 5

icosahedron, 24, 46, 79

level n, 25

image

region, 22

segmentation, 21

smoothing, 21

image structure graph, ISG, 9

indexing, 3, 10, 11, 14, 15

k-means, 34, 37

lattice, 14

line drawing, 5, 9, 10

matching, 1, 39

mesh, 23

moment, 21

central, 22

multilayer perceptron, 13

neural network, 13

node equivalence, 32

object primitive, 6

object recognition, 5

object wings, 6

octree, 8

orientation, 6, 22

partitioning, 2, 14

patch subdivison, 27

planar coefficient, 22

point set, 13

polygon, 7

polyhedron, 2, 7–11, 23

pose, 36, 38, 69

estimation, 1, 3–5, 11, 13, 30, 36, 39,

43, 69, 74, 79, 80

unknown, 37

projection, 47

orthographic, 9, 10, 56

perspective, 9, 55

quadric surface, 2

quadtree, 8

ray tracing, 3, 17, 20, 45

recognition, 4, 30, 39, 80

aspect graph based, 10

CAD based, 12

edge based, 7

line based, 5

INDEX 115

model based, 11–12, 21

tree, 12

reference class, 30, 34, 36, 37, 69

reflection

diffuse, 20

specular, 20

refraction, 20

region, 8, 10, 17

connected, 21

growing, 30

rendering, 20

resolution, 23, 79

finite, 10

rigid object, 3

rim, 9

rough set, 81

scale space, 10

scaling, 6

scanner

range, 18, 20

scene, 6, 12

scoring

function, 38, 69

scheme, 34

segmentation, 21, 55

self-occlusion, 50

sensor

range, 6, 7, 11, 13

tactile, 6, 7, 9

shape, 21, 22

similarity, 3

solid modelling, 6

solid of revolution, 2, 9, 10

spanning tree, 23

stable view, 2

stereo image, 15

structural description, 14

subdivision, 46, 81

level, 28

subgraph-isomorphism, 15

surface, 7

algebraic, 9

patch, 6

quadric, 9

sweep

generalised, 7

representation, 7

rotational, 7

transitional, 7

symmetry, 47

rotational, 50

symmetry group

triangular, 24

synergetic network, 13

tessellation, 17, 23, 25, 30, 79

texture, 20

Thin Line Code, 5

transparency, 20

vertex, 7, 10

viewing

coordinates, 36, 39, 79

space, 3, 23, 36, 81

sphere, 9, 17, 25, 30, 38, 47, 50, 79, 81

viewpoint, 3, 8, 28

list, 30

visual event, 8, 50

visualisation, 6

medical, 8

volumetric, 7

voxel, 8

weighted primitives, 14

wireframe, 7, 13

