Knut Magne Risvik

Scaling Internet Search Engines :
Methods and Analysis

A DISSERTATION SUBMITTED TO THE DEPARTMENT OF
COMPUTER AND INFORMATION SCIENCE AT THE
NORWEGIAN UNIVERSITY OF SCIENCE AND
TECHNOLOGY FOR PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF DR. PHILOS.

TRONDHEIM, APRIL 29, 2004



ISBN 82-471-6318-7 (trykt utgave)
ISBN 82-471-6317-9 (elektronisk utgave)



Abstract

This thesis focuses on methods and analysis for building scalable
Internet Search Engines. In this work, we have developed a search
kernel, an architecture framework and applications that are being used
in industrial and commercial products. Furthermore, we present both
analysis and design of key elements.

Essential to building a large-scale search engine is to understand the
dynamics of the content in which we are searching. For the challenging
case of searching the web, there are multiple dimensions of dynamics
that should ideally be handled. In this thesis we start by examining
some of these dimensions and the implications they have on search
engine design.

When designing a search engine kernel, the focus has been on se-
lection of algorithms and datastructures in the general case. Also,
and even more important, we design worst-case characteristics into
the search kernel that are very decisive from a scaling standpoint. A
performance model to analyze the behavior of the kernel is also devel-
oped.

The designed search engine kernel was realized as a predecessor
of the current FAST Search kernel (the FMS Kernel), and practical
experiments and benchmarking demonstrate the correctness of the as-
sumptions from the design of the kernel.

Then a framework for scaling shared-nothing systems based upon
nodes working on separate portions of the data is introduced. The de-
sign of the framework is based on the general principles of replication
and distribution. A performance model and an algorithm for cluster
design are provided. This is in turn applied to construct a large-scale
web search engine and benchmarking of clusters indicate that the as-
sumptions and models for the distributed architecture hold.

The scaling aspect of search engine is further studied in the con-
text of the application itself. Query locality is explored and used to
create an architecture that is a generalized type of caching (through
partial replication) using the application behavior and a configurable
correctness trade-off to design super-linear scalable search engines.

Finally, a discussion of how linguistics are being used in web search
engines is provided, focusing on the constraints that apply to ensure
the desired scalability.






CONTENTS

Contents

1

Organization
1.1 Readers Guide . . . . . . . . . . . . . i

Introduction

2.1 Models for Information Retrieval . . . .. ... ... .. ...
2.1.1 The Boolean Model . . . ... ... ... ... ....
2.1.2 The Vector Space Model . . . . . .. ... ... ....
2.1.3 Hybrid solutions . . . . ... ... ... oL

2.2 IR and Search Engines - a brief history of time . . . .. ...
2.2.1 And then there was the Web . . . . .. ... ... ..

2.3 The Role of a Search Engine. . . . . ... ... ... .....

2.4 The FAST Web Search Engine . . . ... ... ........

The Web and its Scaling Dynamics

3.1 Growingin Size . . . . . . . ...
3.2 The Freshness . . . . . . . .. .. .. oL
3.3 Growing in Content Diversity . . . . . .. ... ... .. ...

Key Components of a Web Search Engine

4.1 Aggregation of Data — Crawling the Web . . . . .. ... ..
4.1.1 Scheduling . ... ... ... .
4.1.2 Document Downloading and Storage Systems . . . . .
4.1.3 Scaling and Distribution Framework . . ... ... ..

4.2 Building and Searching Indexes . . . . . ... ... ... ...

4.3 Query Frontend . . . . . . . ..o oo oo

The Quest for Scaling

5.1 Search Core Design and Performance . . . . . ... ... ...
5.1.1 Ensuring Scalability of Search Kernel . .. ... ...
5.1.2 Balancing I/O and Processing . . . . . . ... .....
5.1.3 Memory versus Disk . . . .. ... o000
5.1.4 Worst-case handling . . ... ... ... ........

5.2 Scaling in Size and Capacity . . . . . . . . ... ... .. ...
5.2.1 Scaling Dimensions . . . . . . . .. ... ... .....
5.2.2 Distribution Schemes . . . . . . .. ... ... ...
5.2.3 FAST Web Search Scaling . . . ... ..........

5.3 Caching and Tiering, Adaptive Scaling . . . . . ... .. ...

5.4 Linguistic Processes . . . . . . ... ... ... ... ...,

11
11

13
13
13
13
14
14
15
15
15

17
17
18
18

19
19
20
21
21
22
23



CONTENTS

6 Results and Future Work 37
6.1 Contributions . . . . . . ... Lo oL 37
6.2 Future Work . . . .. ... ... ... 38

6.2.1 Search Engine Kernel Development . . . . . . . .. .. 38
6.2.2 Scalable Architectures and Tiering . . . . . ... ... 38
6.2.3 The Freshness Dimension . . .. .. ... ....... 38

A Publications 49

B Patents 49

Search Engines and Web Dynamics 51

The FMS Search Kernel and its Performance Characteristics 77

The FAST DPA 111
Multi-tier Architecture for Web Search Engines 131
Linguistics in Large-scale Web Search Engines 153



LIST OF FIGURES

List of Figures

0~ O U W N

10

Hostnames, IP addresses and Computer count development
Domain name surveys . . . . . . . .. ..o
Search Engine reference model . . . .. ... ... ... ...
A Model for Crawler Systems . . . . . ... .. ... .....
Crawler with centralized URI managers and storage . . . . .
Fully distributed crawler . . . . . . .. .. ... L.
Document based distribution, assuming JX , D; =D . . . . .
Having duplicated nodes for indexing and serving, with a flip-
flop mode of switching . . . . . . ... oo o000
Layered query frontend model . . . . . . . ... ... .....
Mapping from a document space into tiers of search nodes . .






Acknowledgments

The development of the FAST Web Search system and the underlying tech-
nology has been a true team event. Being able to take part in the founding
of this company and its technology has been a remarkable experience.

First and foremost, I would like to thank professor Arne Halaas for his
passion,initiative and efforts to make both FAST and this thesis happen.

During the starting days at FAST, the teamwork with Tor Egge and
Bgrge Svingen was a real source of inspiration, and their efforts have been
essential to make this technology happen. 1 would also like to thank the
entire FAST team in Trondheim for their commitment and support the last
years and to making our technology a success.

During the short time we were part of Overture, I was very much inspired
by working with the excellent teams both in Palo Alto and in Pasadena. 1
would especially like to thank Jan Pedersen and John Ellis, whose experience
was inspiring and exciting.

Hugo Gunnarsen, Jeff Harlan and the entire FAST and Overture team in
Sacramento have been extremely helpful for discussions, testing and bench-
marking of both experimental and production systems.

I also appreciate the support from my colleagues in Yahoo (Qi Lu and
Phu Hoang), and for giving me the necessary time to finish this work.

I thank Tomasz Mikolajewski for all input on the Linguistics chapter.

My mother always deserves a lot of thanks, for her encouragement and
for believing in me.

Finally, thanks to my wife and daughter for their love and support —
making anything worthwhile.






1 ORGANIZATION

1 Organization

This thesis contains 3 published papers ([97], [93] and [44]), and two tech-
nical notes ([94] and [95]). [95] is further submitted for publication in IEEE
Transactions on Knowledge and Data Engineering. Each of the papers are
self-contained, discussing certain aspects around technology for web search
engines, focusing on scaling and performance. Furthermore, three patents
have been derived from the work found in this thesis ([91], [96] [92]).

The main section of this thesis is a thorough discussion of web search
engines, and the techniques required to scale every component of such an
engine, referring to the individual papers.

1.1 Readers Guide

Each of the papers included in the thesis are self-contained contributions,
and could be read individually. The goal of the main section of this thesis
is to connect the papers in the context of designing and building a scalable
Internet search engine. Thus, the papers should be read before the main
section.

11






2 INTRODUCTION

2 Introduction

The area of search engines has had a tremendous growth and evolution over
the last very few years with the increasing influence of the World Wide
Web|[11]. Search engines have grown from simple instantiations of early
Information Retrieval models into multi-billion dollarbusinesses taking on
enormous amount of traffic and becoming the single most important sources
for information access on the web.

2.1 Models for Information Retrieval

Information Retrieval (IR) is the process of identifying and retrieving rel-
evant documents based on a user’s query. An IR system consists of three
basic elements: a document representation, a query representation, and a
measure of similarity between queries and documents. The document rep-
resentation provides a formal description of the information contained in
the documents; the query representation provides a formal description of
user’s information need; and the similarity measure defines the rules and
procedures for matching the query and relevant documents.

These three elements collectively define a retrieval model. The most
common models include the Boolean Model [111], the vector space model
[99], the probabilistic model [111], and the inference network model [109].
We briefly outline the Boolean model and the vector space model below.
The interested reader is encouraged to look into [111] and [109] for detailed
studies of the models. A more detailed introduction to all models can be
found in [8].

2.1.1 The Boolean Model

In Boolean retrieval [111], a document is represented as a set of terms d; =
t1,...,t, where each t; is a term that appears in document d;. A query
is represented as a Boolean expression of terms using the standard Boolean
operators: and, or and not. A document matches the query if the set of terms
associated with the document satisfies the Boolean expression representing
the query. The result of the query is the set of matching documents.

2.1.2 The Vector Space Model

The vector space model [99] enhances the document representation of the
Boolean model by assigning a weight to each term that appears in a doc-
ument. A document is then represented as a vector of term weights. The

13



2.2 IR and Search Engines - a brief history of time

number of dimensions in the vector space is equal to the number of terms
used in the overall document collection. The weight of a term in a document
is calculated using a function of the form tf - idf, where ¢f (term frequency
weight) is a function of the number of occurrences of the term within the
document and idf (inverse document frequency weight) is an inverse function
of the total number of documents that contain the term.

A query in the vector space model is treated as if it were just another
document allowing the same vector representation to be used for the queries
as for documents. This representation naturally leads to the use of the
vector inner product as the measure of similarity between the query and a
document. This measure is typically normalized for vector length, such that
the similarity is equal to the cosine of the angle between the two vectors.
After all of the documents in the collection has been compared to the query,
the system sorts the documents by decreasing similarity measure and returns
a ranked listing of documents as the result of the query.

2.1.3 Hybrid solutions

Search engines typically use a hybrid mix of a boolean model and a vector
space model. The boolean model is used for optional (or required) query
syntax, while the rationale behind the vector space model is used for rele-
vance calculations.

2.2 IR and Search Engines - a brief history of time

Information Retrieval by the means of computers has been a known con-
cept since the beginning of the 1960’s. This makes the research community
centered around the problems of IR an experienced and advanced one.

The historical timeline of IR has been well documented several places,
like [8], [111], and [99].

The applications of IR was restricted to specialized information systems
where the setting was well controlled or at least controllable, i.e.:

e Content is homogeneous and known for the application. Coverage is
finite.

e Users are of a known and limited numbers, receiving training to effi-
ciently use the IR system.

e Content update rate is in many cases a known parameter of the appli-
cation.

14



2 INTRODUCTION

2.2.1 And then there was the Web

The introduction of the World Wide Web[11] created a totally different world
of needs for IR. As the web started to grow, we had :

e Heterogeneous content, and an infinite coverage problem.
e Huge numbers of users, untrained, queries highly indeterminate.

e Update rate of content unknown.

All of this imposed a huge challenge for search and IR technology. Search
engines grew from small but groundbreaking projects like WebCrawler [86],
Google [21] and AltaVista[90] into a multi-billion dollar industry, and the
second most popular application on the Internet (after email).

Along the path from the smaller projects, many challenges have emerged,
some of them even partially solved. Challenges representing the difference
between and standard IR system and a search engine for the web. A lot
of work has been done on the task of combing Hypertext with IR. In [30]
a model for retrieval taking the hypertext structure and links into account
was introduced. Kleinberg [57] and also Page[85] abandoned much of the old
retrieval model thinking, sorting retrieved documents by network analysis
models.

2.3 The Role of a Search Engine

The role of search engines has clearly matured from being research experi-
ments into being very important business engines for marketing and knowl-
edge discovery. Search engines have found their place in every persons daily
life on the Web, and is still growing into our desktop and workspaces.

In [76] am interesting perspective is taken, trying to evaluate the use-
fulness of a search engine response to a query. The results clearly indicate
that there still is a huge potential for improving the overall quality of search
engines. We certainly still are in the infancy of the Search Engine develop-
ment.

2.4 The FAST Web Search Engine

The FAST Web Search Engine system is a large scale search engine offering
OEM services to multiple customers. Currently, the engine holds more than
3 billion web pages in the index, with updates every two weeks. The system
is running on more than 1000 nodes, and is capable of handling more than

15



2.4 The FAST Web Search Engine

800 queries per second. The crawlers have a URL list of more than 5 billion
entries, and are currently touching more than 150 million pages every day.

Fast Search & Transfer (FAST) (http://www.fast.no/) is a Norwegian
company that has been operating in the web search and corporate search
segments since 1997. The web search division is probably most known for its
search engine AllTheWeb (http://www.alltheweb.com/), and for supplying
search results to portals in most parts of the world. After this thesis was
drafted, the web search product was sold to the American company Over-
ture. Overture has now been acquired by Yahoo, and the search technology
from FAST is a key part of the Yahoo search platform.

16



3 THE WEB AND ITS SCALING DYNAMICS

Total Hostnames, IP address and Computer counts

45 000,000 4 500,000
40 00 D00 —-""7‘ 4po0,000 §
o
38 000,000 M 3 500,000 3
"
= I
3 30,000,000 / / 2 000,000 é
= / /-I '

w 25000000 y / 2 £00,000
£ )
T 20000000 2000000
T / =
2 15 000,000 / 1,500,000 %
-
10,000 000 e | | 00 g0 g
K]

£000,000 M s

i — 7T — T o
ﬁﬁﬁ@fﬁ@fﬁﬁ&&ﬁ*&*ﬁ*
F o P P PP P
@ Metoratt 2003

|—I-b5tnames e P iddresses se—Compaters |

Figure 1. Hostnames, IP addresses and Computer count develop-
ment

3 The Web and its Scaling Dynamics

To be able to build a useful search engine for the web, it is crucial to un-
derstand the dynamic characteristics of the web. In [97] we shed light onto
some of the scaling issues for search engines on the web. Also in [10] there
is a very detailed discussion around modeling of the dynamics of the web.

In this chapter, we touch upon some of the challenges and aspects of
scaling that are mention in [97] and their recent development.

3.1 Growing in Size

The Web is reported to have had an exponential growth in every published
paper about the topic. Both ISC [51] and Netcraft [83] perform domain and
host surveys Figure 2, Figure 1, confirming the exponential growth. Giles
and Lawrence introduced an overlap-based method for estimating the size
of the web that seem to indicate the same in [63] and [64].

In [87] the concept of the Deep Web is introduced, suggesting that the

17



3.2 The Freshness

Internet Domain Survey Host Count

200.000.000 1
180.000.000 +
160.000.000 +
140.000.000 +
120.000.000 +
100.000.000 +
80,000,000 +
60,000,000 +
40,000,000 +
20000000 +

0

—a— Od

—a— Adjusted

—a— MNew

T
o Lo
i T

f
o
=

Jan-91
Jan-93
Jan-94

=
o
=

d

Source: Internet Software Consortium [www.isc_org]

Figure 2. Domain name surveys

web is decades of pages larger than what is ever touched by search engines.
The content referred to as the Deep Web is the content found behind e-
commerce sites, collaborative filtering systems and other database sources

that are not crawlable, but only accessible through a possibly personalized
interface.

3.2 The Freshness

A dimension of the web that is very interesting for search engines is the
freshness and update dynamics.

3.3 Growing in Content Diversity

This dimension of scaling is illustrated by the presence of other formats on
the web, and the growing use of the Web for B2B application date. The
Semantic Web [12] will also be a new dimension of the web.

18



4 KEY COMPONENTS OF A WEB SEARCH ENGINE

4 Key Components of a Web Search Engine

A Web Search engine is a complex software and hardware system consisting
of several components. In the papers in this thesis we have used a reference
model of a web search engine to illustrate key components and the flow
between these.

Definition 1 Crawler. A crawler is a module aggregating documents from
the World Wide Web in order to make them searchable. Several heuristics
and algorithms exist for crawling, most of them based upon following links
in hypertext documents.

Definition 2 Indexer. A module that takes a collection of documents or
data and builds a searchable index from them. Common methods are inverted
files, signature files, suffiz structures and hybrids of these. In this thesis we
will use the FMS Search kernel indexzer system.

Definition 3 Searcher. The searcher is working on the output files from
the indezer. The searcher accepts user queries from the dispatcher (defined
below), executes a query over its part of the index, and returns sorted search
results to the dispatcher with document ID and the relevance score.

Definition 4 Dispatcher. The dispatcher receives the query from the user,
compiles a list of searchers to execute the query, sends the query to the
searchers and receives a sorted list of results back from each searcher. For
each result it receives a unique document ID, and the relevance score. The
hits from the searchers are then merged to produce the list of results with the
highest relevance scores for presentation to the user.

In this thesis we will describe a search kernel along with its index struc-
ture [94] and a framework for scaling a search engine [95]. Together the mod-
ules cover the Indezer, Searcher and Dispatcher from the reference model
above. In [97] the crawler part of the FAST Web Search is also briefly
described.

4.1 Aggregation of Data — Crawling the Web

Crawling is still the dominant way of aggregating content for the main web
search engines. Crawling the web imposes a large set of serious challenges
to cope with the dynamics of web as outlined earlier in this thesis, and also
covered in [97]. All major search engines use a crawler to gather documents

19



4.1 Aggregation of Data — Crawling the Web

=
r'd
Search
Indexer m Searcher “@ <_ Clients
V\
Local Store

(W3 copy)

Crawler

Figure 3. Search Engine reference model

- ' _"__ Processing Node
Node

Document fetching ———— Push/Submit

URlIs

Documents
Scheduler

. A,
Node URIs Document Documents
processing »  Storage
and link extraction

Figure 4. A Model for Crawler Systems

Jake| uonnguisiqg

for indexing. The design of the crawlers for the commercial engines is not
revealed with a lot of details, but some of them are discussed in [21] and
[48].

A crawler system usually has multiple subcomponents, briefly touched
upon below, and illustrated in Figure 4.

4.1.1 Scheduling

Scheduling what documents to download is a key algorithm of a crawling
system. Performance in freshness, coverage and quality all depend on proper
scheduling of content. Furthermore, one wishes to maximize bandwidth con-
sumption of the crawler system. Ordering of pages are extensively discussed,
among others in [27, 32, 106]. The dynamics of web pages is also a topic

20



4 KEY COMPONENTS OF A WEB SEARCH ENGINE

URI manager

Download/fetch Download/fetch Download/fetch Download/fetch

Figure 5. Crawler with centralized URI managers and storage

highly related to scheduling, and discussion are found in [19, 25].

4.1.2 Document Downloading and Storage Systems

Once the sequence of downloading has been determined, there is a subsys-
tem to handle downloading of the content and usually storage for indexing
purposes. [31, 41].

4.1.3 Scaling and Distribution Framework

Given the scaling and growth of the web, it has become imperative to par-
allelize or distribute crawling and aggregation of web pages for a large-scale
search engine. Different crawlers seem to do that task in different ways. The
early description of the Google crawlers [21] outlines that they have a cen-
tralized URL distributor that distributes download/crawl tasks to multiple
slave nodes all working into a central storage. This is illustrated in Figure 5
However, the description of [41] shows a significantly more sophisticated
storage part of the system.

The UbiCrawler introduced in[13] uses a fully distributed schema. By
using consistent hashing[54] one avoids the issues of regular hashing, espe-
cially rehashing issues around adding buckets. The UbiCrawler schema has
no centralized tasks, and its architecture is fault-tolerant by design. This is
illustrated in Figure 6.

21



4.2 Building and Searching Indexes

Crawling Node

Crawling Node

P

Consistent
hashing
Interconnect

Crawling Node
Crawling Node

\ Crawling Node

4@

Figure 6. Fully distributed crawler

4.2 Building and Searching Indexes

Now, given a repository of web pages, the process of building a useful struc-
ture for searching is the next step (Figure 3). Many different indexing
structures are being used for searching, however variants of inverted files
[99, 113], suffix structures [71, 43] or signature files [37] are most common.

The amount of data to be indexed in a large-scale web search engine is
of such a vast amount [63, 87], and has such dynamic characteristics [19, 97]
that parallelization and distribution of the indexing and searching tasks is
imperative to handling the systems.

For inverted files, there are two possible ways of distributing the index
and the index building process:

e Local Inverted Files. Each node in the distributed systems holds an
inverted index of a subset of the documents to be searched, so parti-
tioning happens on the document identifiers.

o Global Inverted Files. Each node holds the inverted files for a subset
of the terms in the dictionary.

Using local inverted files requires a synchronization step to ensure that
dictionary statistics is normalized across the nodes, however on a system
with a large set of documents, it seems to be the preferred distribution
model. Also, suffix structures and signature files does not have the same
distribution flexibility as the inverted files because the dictionary part is
intertwined with the postings. FMS Search [94] uses a hybrid solution of
indexing structures where the document based distribution is considered to

22



4 KEY COMPONENTS OF A WEB SEARCH ENGINE

81 82 v SN

Figure 7. Document based distribution, assuming UZ-N:1 D;=D

be the best way, due to the intertwining of dictionary and postings. The
document based distribution schema is briefly illustrated in Figure 7.

Index construction can either be incremental [23] or based on rebuilding
the entire structure as most major search engines seems to be doing. In the
rebuilding mode, one could either build new indexes on the active search
nodes, or have offline search nodes for building the index, before swapping
into online mode. These two options are briefly illustrated in Figure 8.

Creating an index usually has multiple steps involving parsing docu-
ments, sorting and merging dictionaries and postings. In [75] pipelining of
these steps are discussed, and it is shown that this improves performance
significantly.

4.3 Query Frontend

In the distributed cases outlined above, a query frontend to handle dispatch-
ing of queries and merging of results is required. However, in recent web
search development there has also emerged technologies relying on prepro-
cessing and analyzing queries as well as postprocessing the results coming
back from the engine.

In [44] we outline some of the techniques that are often used on doc-
uments and queries, in some cases as a query preprocessing or a result
postprocessing. In [98] we discuss how certain analysis could be used for
dynamic relevance models.

A possible layer-model for the query frontend is shown in Figure 9, with

23



4.3 Query Frontend

=‘|
h ‘ ! | |
Offline (indexing) S, S, Sy
]
<
i
Online (serving) S1 Sz SN

Figure 8. Having duplicated nodes for indexing and serving, with a

flip-flop mode of switching

Presentation / Interaction

Result

Query
processing

Analysis

Distribution and Merging

Figure 9. Layered query frontend model

24



4 KEY COMPONENTS OF A WEB SEARCH ENGINE

3 layers:

e Presentation/Interaction. This layer holds the interaction and pre-
sentation parts of the engine. It can be from a simple HTML/XML
template engine into a full-blown interactive search application.

o Query and Result processing. These steps usually are pipelines, in
which queries are analyzed and possible rewritten or augmented with
metainformation (Q — (Q'; Mg)), and where results are analyzed and
also possible changed (R — R').

o Distribution and merging. This layer manages the distributed query
serving nodes, ensuring all nodes receive the query and results are
properly merged when creating the final search result.

25






5 THE QUEST FOR SCALING

5 The Quest for Scaling

Maintaining a web search engine requires studying the scaling properties of
the web. The growth, the existence of the “deep web” [87], and the dynamics
[19] are all challenging tasks to handle individually. A good search engine
needs to take on all the challenges in a balanced manner [18].

This thesis focuses on scaling issues for the query serving part of a search
engine system. This chapter will start by discussing design and performance
characteristics of a search kernel, then move on to discuss a general archi-
tecture for scaling in size and query capacity. Furthermore, we discuss a
new concept called tiering, and how that can improve the size and capacity
scaling properties. Finally, we discuss linguistic technologies in a large-scale
search engine, and what properties are required on those processes to work
in a large-scale setting.

The FMS Search kernel [94] and the FAST DPA [95] in the setting of the
FAST Web Search system is being used as the case throughout the papers
encapsulated in this thesis.

5.1 Search Core Design and Performance

The design of commercial search kernels has not been public information at
large, but in general it seems like most of the engines use inverted files or
variants including suffix structures. The Google kernel is partially discussed
in [21], and in this thesis (and [94]) we outline the basic structures and
algorithms for the FMS Search kernel, a predecessor of the FAST Search
system.

The search core is the foundation for building a scalable search engine
system. In this section we will outline some basic requirements for a search
core, and illustrate possible ways to meet those requirements using the FMS
Search kernel as an example.

5.1.1 Ensuring Scalability of Search Kernel

Building a search kernel exposes a series of design option and possibilities.
Everything from retrieval model to actual data structures and algorithms
and load handling are critical for ensuring the wanted scalability. In this
chapter we focus on three key challenges to ensure scalability:

e Balancing I/0 and processing. Ensuring that we are not saturated
in only processing or I/O is essential to ensure that the system is

27



5.1 Search Core Design and Performance

operating in a sweet-spot area. The goal of the design is to make this
area as wide as possible.

o Memory versus Disk. Disk and memory usage must be balanced in a
way that is optimal with regards to cost and performance.

o Worst-case handling. Different queries can have various processing
and I/O requirements. To avoid having queries interfere with other
queries, there must be some worst-case handling of queries.

5.1.2 Balancing I/O and Processing

The balance between I/O and processing depends on choices of preprocess-
ing and online processing, and also the selection of datastructures and algo-
rithms.

Inverted files have been thoroughly studied in the literature, and their
performance is well known both for querying and for building[116, 79, 113, 8].

The FMS search kernel deploys multiple structures, based on what query
operations it should support (single term or phrase query). For single term
queries (the mapping from a query term to a document, ¢ — {idgoc} , a
simple inverted file with a separate dictionary is being used (the mapping
from a query to a set of query terms, @ — {¢}. The inverted file does not
store position occurrences, just frequency information for relevance ranking
on each document-term pair.

A wide variety of compression schemes have been studied for inverted
files ([113, 115]). The indexing structure as described in [94] requires 56 bits
per posting in the basic implementation. Given the findings in [94] regarding
dictionary growth being close to linear (but with a very low constant factor),
the structure is relatively small (less than the corpus size). The processing
required for a ¢ — {idgoc} matching operation is very low, since it will be
a single iteration over the inverted list for the given query term, ¢, with an
aggregate relevance function to compute the relevance score for each entry,
then followed by a final sort for the entire result set.

The phrase matching operation of a search engine is heavily used (through
more advanced automatic query optimizations and relevance improvements)
and the performance of this operation is critical. While the inverted lists
for the single term matching operation is fairly small in size (since there is
maximum one entry per document for each term), the use of inverted post-
ings (with position information) for phrase matching could impose several
serious issues with regards to performance:

28



5 THE QUEST FOR SCALING

e I/0O load. The I/O load would be high for frequent terms (so-called
stop words). It could also require to do block-wise operations on the
inverted list, since it could possibly be too large to fit in memory.

e Processing load. The processing load for scanning very long posting
lists (for each term) doing the merge with proximity operations could
be heavy for certain cases where the individual terms in the phrase
are frequent.

The FMS Search kernel aims to handle these issues by using a slightly
different indexing structure for phrase matching (¢ — {idg4o.}). The datas-
tructure is based on the ideas of suffix structures, more specifically the Suffix
Array (discovered in parallel in [71] and [40]). Online construction of these
structures were explored in [110] and [42].

Based on the suffix tree, a more space-economical structure was created,
namely the sparse suffix tree [55].

The principle of the phrase matching structure of FMS Search is to have
a sparse suffix array, only indexing the entries starting at word boundaries.
(Since we only search for whole words in the query model). Furthermore,
instead of using the backlink method introduced in [71], we store entire
suffixes, with a cut-off at length 3. The relative position of the triple is also
stored. Thus, one would divide a query into triples and query for the triples
in parallel before intersecting to create the final resultset.

This method is a generalization of the nextword structures discussed in
[112] and [9].

The method sacrifices relatively large storage requirements (about 200%
of the raw data volume) for low I/O load and efficient processing. The
performance model in [94] suggests that the query algorithm over the struc-
ture is sub-linear, and the experiments with queries including phrase queries
seem to indicate the optimality of this model.

Furthermore, the bitvector mechanism, combined with the drilling sys-
tem ensures an upper I/O bound.

5.1.3 Memory versus Disk

The balancing act of memory usage and memory size in concordance with
disk I/O operations is also essential for scaling and performance of a search
kernel.

In the FMS Search kernel, this balancing is assisted by three mechanism,
namely caching, the use of bitvectors and drilling.

29



5.1 Search Core Design and Performance

Web Search query logs inherit a clear locality feature ([93, 114, 100,
73]. Given the datastructures used in FMS Search, there is a very direct
relationship between results and postings stored in the structure. Thus,
the locality observed on the queries will map directly onto locality on the
posting entries as well.

The FMS Search kernel [94] has both query caching as well as caching
of the posting entries and the dictionary entries. The cache hit ratios found
indicate the importance of this.

The bitvector structure enables us to do queries of stopwords without any
ranking information with very limited memory usage, and also enabling bit-
parallelism in boolean operations. Combined with the drilling mechanism,
FMS Search ensures that memory balancing with disk usage can always
be optimized. Bitvectors can be further optimized by using compression,
as outlined in [77]. Also in [116] a discussion of bitvectors and bitslice
signatures can be found, further optimizing the usage of bit-based structures.

5.1.4 Worst-case handling

Inverted files and the refined structures used in FMS Search has linear space
requirements to the data volume being indexed. Still, one must be efficient
on I/O, memory and CPU usage during query processing to reduce the
impact of “hard” queries on the overall system performance.

FMS Search has several mechanisms for handling worst-case queries, and
limiting their impact on system performance.

The bitvectors used for hit representation clearly limits the memory and
processing requirements for queries or query terms with high frequency.
However, the direct use of bitvectors would imply that no relevance ranking
would be available for these queries or query terms.

In order to allow for a more flexible schema for impact reduction, the
“drilling” system outlined in [94] allows us to define relative importance in
subsections of documents, and to use ranking information only for subsec-
tions when the frequency of the query or the query term is considered too
high. This allows for a more continuous reduction of ranking information
than the binary scheme would be for bitvectors.

Furthermore, the FMS Search kernel employs a somewhat simplified ¢ f -
idf ranking function that is cheaper to compute. There are other ways

of improving relevance ranking for worst case handling, also discussed in
[113, 78, 80].

30



5 THE QUEST FOR SCALING

5.2 Scaling in Size and Capacity

A Web Search engine faces challenges that requires very good scaling capa-
bilities in terms of size and capacity. In parallel computing, there are four
typical models for computing (SISD, SIMD, MISD, MIMD). There has been
a clear trend in parallel and cluster computing to move towards inexpensive
and commodity based systems.

In IR, the distributed system approach has been a well-known one [70,
108, 89]. A large-scale search engine was also well-known for using a dis-
tributed scheme, namely the Inktomi engine [39] and [17].

5.2.1 Scaling Dimensions

For a web search engine, we see the importance of scaling in many dimen-
sions. Here we focus on two dimensions:

1. Data volume scaling. Being able to handle a rapidly increasing amount
of data to search is critical. Linear scaling in data volume is an absolute
requirement.

2. Query capacity scaling. A publicly available search engine will often
have to handle many million queries per day, and there is a strict
requirement of interactivity.

Scaling in freshness is also a critical dimension, given the trends of the
web [19]. However, this is considered to be outside the scope of this thesis.

5.2.2 Distribution Schemes

Distribution in IR is tied into the selected data structures of the search
kernel. For inverted files, there have been two common ways of distribu-
tion, namely local inverted files and global inverted files. The first strategy
is to distribute documents across the available processing nodes, making
each node responsible for querying a subset of the documents. A merging
framework on top of the nodes will be required to merge the hit lists.

The other strategy is to distribute the inverted files such that each node
handles inverted lists for a subset of query terms. This also requires a merg-
ing framework on top, but with more complexity added to merge with proper
combination of results. Performance studies [108] suggest that local inverted
files in most cases have good performance and resource usage characteristics.

The datastructures used in FMS Search [94] are more complex than
just inverted files, and the data volumes for a web scale search engine are

31



5.3 Caching and Tiering, Adaptive Scaling

so large that one may assume that a uniform distribution of documents
would be possible. Thus, using an approach where distribution is based on
documents rather than terms is chosen.

5.2.3 FAST Web Search Scaling

In [95] a general framework for scaling in two dimensions, namely in size of
data and in capacity of processing. Furthermore, a performance model is
outlined and utilized to describe the FAST Web Search engine and to analyze
its performance. Also, the FAST DPA includes models for fault-tolerance
and ensuring desired levels of this.

The DPA scales in two dimensions using :

o Replication of processing capacity and data for increasing query ca-
pacity, and

o distribution of documents for handling data volume growth.

These are very basic methods for scaling [107].

The application of FAST DPA for Web Search illustrates the usefulness of
the framework and of the provided design algorithms.Various configurations
of nodes and clusters with the FMS Search kernel on each of the nodes was
tested. As expected the scaling in data volume does not have a noticeable
impact on the query capacity for the system. The latency in the system
is a logarithmic function of the query complexity, but the growth of this is
controllable through changing the fanout of the system. In our experiments
the latency was well within the limits of any service level that would be
required by an industrial application of a web search engine.

5.3 Caching and Tiering, Adaptive Scaling

[95] suggests an architecture that enables a search engine to scale linearly
in either size or query capacity. However, the architecture is very general,
and it applies to a large set of problems with shared-nothing characteristics
(not only searching).

Caching of search engines results has been studied in multiple papers[65,
4, 73] clearly showing high locality in queries. Caching is an obvious way
of improving scaling performance of search engine that benefits from high
query locality. The locality is also supported by query log analysis like the
ones found in [93] and [101]. In [107] a discussion of caching for IR system
is also found.

32



5 THE QUEST FOR SCALING

Dispatch

F[2]

F[1]

Figure 10. Mapping from a document space into tiers of search
nodes

The use of partial replication for IR system was introduced in [68] and
[67]. Partial replication means to replicate a smaller portion of the database
and query that smaller replica first. The selection of the replica was proposed
to be tied into a query log analysis, exploiting the locality. [69] analyzes
the partial replication solution compared to a caching solutions and shows
advantages of using partial replication.

In [93] we generalize the partial replication concept into a so-called tiered
architecture where a, collection of documents are grouped based on features
along many dimensions (locality of query hits could be one). The mapping
concept is illustrated in Figure 10 where documents are mapped from a
feature vector with multiple dimensions to a set of search nodes (or possibly
a sub-index on a set of search nodes). The sets of documents are disjoint,
SO Ufi 1 T; = D where T; is defined as a tier or a subset of documents. The
mapping from documents into tiers is done by a function, . Furthermore,
a custom fall-through algorithm, FTA is used to determine how many tiers
to search and when to fall through between them.

The tiering architecture can be configured in many ways by tuning the
mapping function and the fallthrough algorithm. In the paper [92], we
test three different alternatives based on three assumptions of relevance and
locality:

1. Overall ranking is highly correlated into static ranking of document
(PageRank, EigenRank etc).

33



5.4 Linguistic Processes

2. Query locality, called tier-locking in the paper.

3. Term Context boosting is highly correlated into ranking. (Title and
anchor hit boosting).

Studies in the paper clearly shows that the first assumption is incorrect,
at least for the ranking we employ. The error numbers between the 1D-tier
model and the reference model is very high.

By adding locality preferences, or tier-locking, the error rate drops sig-
nificantly, which is what would be expected from published query and cache
analysis papers [68, 4, 73, 65].

Furthermore, as suggested in [85] and [21] the anchor texts of links point-
ing a document have high importance when a match of the query is found
there. The same assumption seems to be valid for title matches in Web
Searches [46]. This is the foundation for the third assumption, we see from
the 2D tiering solution that the error rate has dropped significantly and is
approximating the reference system very well.

The performance improvements from the tiering architecture are superior
to what you would expect from caching solutions. Furthermore the dynam-
ics of the tiering architecture (the mapping and the fallthrough algorithm)
enables one to tune the accuracy versus performance freely.

5.4 Linguistic Processes

Linguistics has been identified to be one of the central elements of the IR
evolution [66, 103, 56]. One differentiates roughly between statistical (mostly
language independent) [20] and grammatical (language sensitive) approaches
to processing natural language. In the former branch, the popularly used
tf-idf relevance ranking function is utilizing a "‘general vs. specific’ linguistic
relation of index terms. The latter branch of linguistic methods may be
utilized in extracting ‘grammatically specified’ meaningful index terms.

More sophisticated linguistic techniques have entered the scene for infor-
mation retrieval systems, and web search engines in particular. Taking into
account the scale and scaling requirements of web search engines, there is a
clear need to ensure that all applicable computational linguistics methods
will have extreme scaling needs.

In [44] we describe the use of linguistic processing in the FAST Web
Search engine, including language detection, lemmatization, phrase detec-
tion, text categorization and clustering.

There are currently two main applications for text categorization: lan-
guage identification (i.e. categorizing the text as ’written in language X’)

34



5 THE QUEST FOR SCALING

and detection of offensive content. These both methods are dictionary based
i.e. each meaningful text sequence (word or phrase) is looked up in a dic-
tionary for its vector of (category,weight) pairs. High level of efficiency in
looking up a sequence is achieved by using finite state devices [81]. This
enables categorization to happen online during either crawling or indexing.

Lemmatization is a part of the normalization of index terms. The ap-
proach outlined in [44] is again based on finite state automata for high
enough performance to be part of the indexing process. Depending on how
many documents a language is represented in, some more time consuming
approaches may be used that improve the precision and recall e.g. de-
compounding for German and Scandinavian languages.

A very important linguistic technology used in the FAST Web Search
engine is the phrasing capability. Based on considerably huge dictionaries
of offline extracted phrases, we rewrite queries online into a multi-word
entities (e.g. new york — 'new york’). As discussed, the quality of phrasing
is coupled with the size of the phrase dictionary being used. The growing
use of phrases or automatic (weighted) phrasing [98] clearly indicates the
importance of efficient phrase matching structures in the search kernel. This
was a clear design objective when building the FMS Search kernel [94], and
also for the FAST Web Search system.

The technology for clustering of results described in the paper is an
experimental service. Its quality depends again on the quality of extracted
index terms with the techniques described above. From [95] the bandwidth
requirements of the dispatching network system will be a bottleneck when
sending large sets of data for each hit (e.g. the entire document, or possibly
improving it by sending its most characteristic extracted index terms). The
method can balance between precomputing feature vectors offline from the
search process or compute the features on the fly from the document itself or
from a summary of the document. Alternative document teasers that show
the most relevant index terms for a hit document (table of concepts) may also
be generated by using grammar based index term extraction. The quality
of the clusters and the usability of clustered results are tightly coupled into
how many documents of which we perform the clustering over and how good
the considered index terms are. Typical ranges are 50 — 200 documents and
most of the index term grammars are developed (precomputed) for the most
frequent languages.

35






6 RESULTS AND FUTURE WORK

6 Results and Future Work

This thesis is the results of many years of work by a group of people with
a desire to build a true scalable search engine. This thesis wraps up the
design and analysis of the key components we have built.

6.1

1.

Contributions

We have discussed in a broad setting how characteristics of the dy-
namic web impose constraints and challenges for a large-scale search
engine, touching on crawling, but focusing on indexing and searching.

. The FMS Search kernel (and its sucessors) has proven in industry to

be extremely scalable and to have excellent performance characteris-
tics. This theses outlines the design process and choices to build the
FMS Search kernel. Furthermore, a performance model is provided
and experiments clearly suggests the correctness of that model. The
FMS Search kernel has several mechanism that seem to be novel for
these kind off applications, like hybrid suffix structures and the drilling
mechanism to achieve the desired performance characteristics.

. The FAST DPA framework is a general framework for shared-nothing

parallel computing. Our contribution is to provide this along with a
performance model and an algorithm to construct the clusters. The
use of this model and algorithm on a large-scale web search engine
shows the usefulness of this work, and the flexibility of the framework.

. Even with linear scaling, we are approaching boundaries of technology

and financial power in order to build search engine solutions capable of
scaling with the web. The extreme locality found in query logs makes
caching a critical technology to scale more efficiently. In this thesis we
introduce tiering as a generalized version of partial replication. Tiering
allows for the same performance effects as caching, but tiering also
allows us to trade correctness for performance in a controlled manner.
This makes sense, since the relevance ranking scores are very much
approximations of relevance, and introduction of stochastic noise does
not seem to destroy the user experience.

. Linguistic technology is gaining importance for search engines. The

ultimate goal of true natural language processing might still be some
way ahead, but various linguistic processing has entered the search
engine arena. In this thesis we discuss some of these processes for

37



6.2 Future Work

a large-scale search engine, and present some constraints to ensure
proper scaling.

6.2 Future Work

Search engines have become a high-target on the web radar screen both from
a usefulness standpoint and from a financial standpoint. It is obvious that
the area will be a crowded one for future research. The good news is that a
huge set of research problems needs to be worked on further.

6.2.1 Search Engine Kernel Development

Development of search engine kernels will still be very important. A lot of
search engine applications are built upon legacy-class search kernels. Intro-
duction of incremental updates to a large index, much better support for
fielded or structured searching and a more flexible ranking framework are
some of the areas that could be brought together to realize a new search
kernel.

6.2.2 Scalable Architectures and Tiering

The scalability of search engines is based on general scaling principles. The
introduction of tiering takes application specific elements into account to
create a super-linear scaling. An interesting study would be to evaluate
tiering compared to caching, and also to study how much caching could
improve performance on an already tiered system.

In order to study more dimensions of possible tiering, machine learning
techniques should also be applied.

6.2.3 The Freshness Dimension

A dimension of the web dynamics that no search engine has taken fully into
its operation is the freshness aspect. Most engines does snapshot updates of
the index, and vast batch processing. A true incremental engine would be
required. However this would require much more online processing, different
technology for aggregation and a search engine kernel that allows for almost
real-time updates of the index.

38



REFERENCES

References

[1]
[2]
[3]
[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

AllTheWeb. http://www.alltheweb.com.
AltaVista. http://www.altavista.com.
Html engine. http://www.cs.colorado.edu/home/mcbryan/Home.html.

ApaLl, S., CaNDAN, K. S., PAPAKONSTANTINOU, Y., AND SUB-
RAHMANIAN, V. S. Query caching and optimization in distributed
mediator systems. In SIGMOD Conference (1996), pp. 137-148.

AMBROZIAK, J., AND WooDs, W. Natural language technology in
precision content retrieval. In Proceedings of the International Con-

ference on Natural Language Processing and INdustrial Applications
(NLP+1A’98) (1998).

ANDERSON, T. E., CULLER, D. E., AND PATTERSON, D. A. A case
for NOW (Networks of Workstations). IEEE Micro 15, 1 (Feb. 1995),
54-64.

ARON, M., SANDERS, D., DRUSCHEL, P., AND ZWAENEPOEL, W.
Scalable content-aware request distribution in cluster-based network
servers. In Proceedings of the USENIX 20 Annual Technical Confer-
ence (San Diego, CA, June 2000), pp. 323-33.

BAEZA-YATES, R., AND RIBEIRO-NETO, B. Modern Information
Retrieval. Addison-Wesley-Longman, May 1999.

BAHLE, D., WiLLIAMS, H. E., AND ZOBEL, J. Efficient phrase query-
ing with an auxiliary index. In Proceedings of the 25th annual in-

ternational ACM SIGIR conference on Research and development in
information retrieval (2002), ACM Press, pp. 215-221.

BaLpi, P., FrAScONI, P., AND SMYTH, P. Modeling the Internet
and the Web: Probabilstic Methods and Algorithms. Wiley, 2003.

BERNERS-LEE, T., CAILLIAU, R., LUOTONEN, A., NIELSEN, H. F.,
AND SECRET, A. The world-wide web. Communications of the ACM
37, 8 (1994), 76-82.

BERNERS-LEE, T., HENDLER, J., AND LASSILA, O. The semantic
web. Scientific American (may 2001).

39



REFERENCES

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

BoLbpi, P., CopENoTTI, B., SANTINI, M., AND VIGNA, S. Ubi-
crawler: A scalable fully distributed web crawler, 2002.

BowwmaAn, C. M., Danzig, P. B., HArRDY, D. R., MANBER, U.,
AND SCHWARTZ, M. F. The Harvest information discovery and access
system. Computer Networks and ISDN Systems 28, 1-2 (1995), 119-
125.

BowwmANn, C. M., DANzZIiG, P. B., MANBER, U., AND SCHWARTZ,
M. F. Scalable Internet resource discovery: research problems and
approaches. Communications of the ACM 37, 8 (1994), 98-107.

BRrAy, T. Measuring the web. In Proceedings of the Fifth International
World Wide Web Conference (WWW5) (1996).

BREWER, E. A. Delivering high availability for inktomi search en-
gines. In SIGMOD 1998, Proceedings ACM SIGMOD International
Conference on Management of Data, June 2-4, 1998, Seattle, Wash-
ington, USA (1998), L. M. Haas and A. Tiwary, Eds., ACM Press,
p- 538.

BREWINGTON, B., AND CYBENKO, G. Keeping up with the changing
web. IEEE Computer 33, 5 (May 2000), 52-58.

BREWINGTON, B. E., AND CYBENKO, G. How dynamic is the Web?
Computer Networks (Amsterdam, Netherlands: 1999) 33, 1-6 (2000),
257-276.

BRriLL, E. Processing natural language without natural language pro-
cessing. In Proceedings of CICLin 2003, 4th International Conference
on Computational Linguistics and Intelligent Text Processing (Mexico
City, Mexico, February 2003), Springer Verlag, Heidelberg, pp. 360
369.

Brin, S., AND PAGE, L. The anatomy of a large-scale hypertex-
tual web search engine. In Proceedings of the 7th WWW Conference
(http://decweb.ethz.ch/ WWW7/1921/com1921.htm, 1998).

BRODER, A., KuMAR, R., MAGHOUL, F., RAGHAVAN, P., RA-
JAGOPALAN, S., STATA, R., TOMKINS, A., AND WIENER, J. Graph
structure in the web. In Proceedings of the Ninth International World
Wide Web Conference (WWW9) (2000).

40



REFERENCES

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

BrowN, E., CALLAN, J., AND CROFT, W. Fast incremental indexing
for full-text information retrieval. In Proceedings of the 20th Interna-
tional Conference on Very Large Databases (VLDB) (Santiago, Chille,
September 1994), pp. 192 — 202.

CHoO, J., AND GARCIA-MOLINA, H. Estimating frequency of change.
Unpublished, 2000.

CHO, J., AND GARCIA-MOLINA, H. The evolution of the web and
implications for an incremental crawler. In Proceedings of the Twenty-
sizth International Conference on Very Large Databases (2000).

CHO, J., AND GARCIA-MOLINA, H. Syncronizing a database to im-
prove freshness. In Proceedings of the 2000 ACM International Con-
ference on Management of Data (SIGMOD) (2000).

CHo, J., GArciae-MoLriNA, H., AND PAGE, L. Efficient crawling
through URL ordering. In Proceedings of the Seventh International
World Wide Web Conference (WWW?7) (1998).

CoLE, R., MARIANI, J., USZKOREIT, H., ZAENEN, A., AND ZUE,
V. Survey of the state of the art in human language technology, 1995.

CRASWELL, N., HAWKING, D., AND GRIFFITHS, K. Which search
engine is best at finding airline site home pages?

CrorT, W. B., AND TURTLE, H. A retrieval model incorporating

hypertext links. In Proceedings of the second annual ACM conference
on Hypertext (1989), ACM Press, pp. 213-224.

DABEK, F., KAASHOEK, M. F., KARGER, D., MoORRIS, R., AND
StoicA, I. Wide-area cooperative storage with CFS. In Proceedings
of the 18th ACM Symposium on Operating Systems Principles (SOSP
’01) (Chateau Lake Louise, Banff, Canada, Oct. 2001).

DiuicenTi, M., COETZEE, F., LAWRENCE, S., GILES, C. L., AND
GoOR1, M. Focused crawling using context graphs. In 26th Inter-
national Conference on Very Large Databases, VLDB 2000 (Cairo,
Egypt, 10-14 September 2000), pp. 527-534.

DoucHERTY, E. R. Probability and statistics for the engineering,
computing, and physical sciences. Prentice Hall, 1990.

ECcONOMIST MAGAZINE. E-Entertainment survey, October 2000.

41



REFERENCES

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

EDWARDS, J., MCcCURLEY, K. S., AND ToOMLIN, J. A. An adaptive
model for optimizing performance of an incremental web crawler. In

World Wide Web (2001), pp. 106-113.

ETESTING LABS. Fast Search and Transfer, Inc. web search engine
evaluation. Tech. rep., 2001.

FArouTsos, C., AND CHRISTODOULAKIS, S. Signature files: An ac-
cess method for documents and its analytical performance evaluation.
ACM Transactions on Office Information Systems 2, 4 (October 1984),
267-288.

Frynn, M. J. Very high-speed computing systems. Proceedings of
the IEEE 54 (1966), 1901-1909.

Fox, A., GRIBBLE, S. D., CHAWATHE, Y., BREWER, E. A., AND
GAUTHIER, P. Cluster-based scalable network services. In Symposium
on Operating Systems Principles (1997), pp. 78-91.

G. GONNET, R. BAEZA-YATES, T. S. Lexiographical indicies for
text: Inverted files vs. pat trees, 1991.

GHEMAWAT, S., GOBIOFF, H., AND LEUNG, S.-T. The google file
system. In Proceedings of the nineteenth ACM symposium on Operat-
ing systems principles (2003), ACM Press, pp. 29-43.

GIEGERICH, R., AND KURTZ, S. From ukkonen to mccreight and

weiner: A unifying view of linear-time suffix tree construction. Algo-
rithmica 19, 3 (1997), 331-353.

GRrossi, R., AND VITTER, J. S. Compressed suffix arrays and suffix
trees with applications to text indexing and string matching (extended
abstract). pp. 397-406.

GuLLA, J. A., AuraN, P. G., AND Risvik, K. M. Linguistics in
large-scale web search. In Proceedings of the Natural Language Pro-
cessing and Information Systems, 6th International Conference on Ap-
plications of Natural Language to Information Systems, NLDB 2002,
Stockholm, Sweden, June 27-28, 2002, Revised Papers (2002), B. An-
dersson, M. Bergholtz, and P. Johannesson, Eds., vol. 2553 of Lecture
Notes in Computer Science, Springer.

HawkiNGg, D., CRASWELL, N., BAILEY, P., AND GRIFFIHS, K. Mea-
suring search engine quality. Information Retrieval 4, 1 (2001), 33-59.

42



REFERENCES

[46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

[57]

[58]

HawkinGg, D., CRASWELL, N., THISTLEWAITE, P., AND HARMAN,

D. Results and challenges in Web search evaluation. Computer Net-
works (Amsterdam, Netherlands: 1999) 81, 11-16 (1999), 1321-1330.

Heaprs, H. S. Information Retrieval: Computational and Theoretical
Aspects. Academic Press, 1978.

HEYDON, A., AND NAJORK, M. Mercator: A scalable, extensible web
crawler. World Wide Web 2, 4 (1999), 219-229.

HirAl, J., RAGHAVAN, S., GARCIA-MOLINA, H., AND PAEPCKE, A.

WebBase: a repository of Web pages. Computer Networks (Amster-
dam, Netherlands: 1999) 33, 1-6 (2000), 277-293.

HUBERMAN, B. A., AND ADAMIC, L. A. Evolutionary dynamics of
the World Wide Web. Tech. rep., Xerox Palo Alto Research Center,
1999.

INTERNET SOFTWARE CONSORTIUM. Internet Domain Survey.

JANSEN, B. J., SPINK, A., AND SARACEVIC, T. Real life, real users,

and real needs: a study and analysis of user queries on the web. In-
formation Processing and Management 36, 2 (2000), 207-227.

Jupson, T. W. Abstract Algebra. PWS Publishing Company, 1994.

KARGER, D., LEHMAN, E., LEIGHTON, T., LEVINE, M., LEWIN,
D., AND PANIGRAHY, R. Consistent hashing and random trees: Dis-
tributed caching protocols for relieving hot spots on the World Wide
Web. In ACM Symposium on Theory of Computing (May 1997),
pp. 654-663.

KARKKAINEN, J., AND UKKONEN, E. Sparse suffix trees. In Proceed-
ings of COCOON, HongKong, 1996 (1996).

KARLGREN, J. The basics of information retrieval: Statistics and
linguistics.

KLEINBERG, J. M. Authoritative sources in a hyperlinked environ-
ment. In Proceedings of the ACM-SIAM Symposium on Discrete Al-
gorithms (http://simon.cs.cornell.edu/home/kleinber/auth.ps, 1998).

KoBAYASHI, M., AND TAKEDA, K. Information retrieval on the web.
ACM Computing Surveys 32, 2 (2000), 144-173.

43



REFERENCES

[59]

[60]
[61]
[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

KONTZER, T. In search of business data. Information Week.com (Jan-
uary 2002).

KOSTER, M. A standard for robots exclusion.
LANGER, S. Natural languages and the World Wide Web.

LAWRENCE, S. Context in web search. IEEE Data Engineering Bul-
letin 23, 3 (2000), 25-32.

LAWRENCE, S., AND GILES, C. L. Searching the World Wide Web.
Science 280, 5360 (1998), 98-100.

LAWRENCE, S., AND GILES, C. L. Accessibility of information on the
web. Nature 400, 6740 (1999), 107-109.

LEMPEL, R., AND MORAN, S. Predictive caching and prefetching of
query results in search engines. In Proceedings of the Twelfth Interna-

tional World Wide Web Conference (WWW2003) (2003).

Lewis, D. D., AND JoNES, K. S. Natural language processing for
information retrieval. Communications of the ACM 39, 1 (1996), 92—
101.

Lu, Z. Scalable distributed architectures for information retrieval.
Tech. Rep. UM-CS-1999-049, , 1999.

Lu, Z., AND McCKINLEY, K. S. Searching a terabyte of text using
partial replication. Tech. Rep. UM-CS-1999-050, , 1999.

Lu, Z., AND McKINLEY, K. S. Partial collection replication versus

caching for information retrieval systems. In Research and Develop-
ment in Information Retrieval (2000), pp. 248-255.

MacLeoDp, I. A., MARTIN, P., AND NORDIN, B. A design of a
distributed full text retrieval system. In Proceedings of the 9th annual

international ACM SIGIR conference on Research and development in
information retrieval (1986), ACM Press, pp. 131-137.

MANBER, U., AND MYERS, G. Suffix arrays: a new method for on-
line string searches. SIAM Journal of Computing 22, 5 (Oct. 1993),
935-948.

MANNING, C., AND SCHTZE, H. Foundations of Statistical Natural
Language Processing. MIT Press, 1999.

44



REFERENCES

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

MARKATOS, E. P. On caching search engine query results. Computer
Communications 24, 2 (2001), 137-143.

McBRYAN, O. A. Genvl and wwww: Tools for taming the web. In
Proceedings of the First International World Wide Web Conference
(WWW1) (1994).

MELNIK, S., RAGHAVAN, S., YANG, B., AND GARCIA-MOLINA, H.
Building a distributed full-text index for the web. In World Wide Web
(2001), pp. 396-406.

MeNG, W., Liu, K.-L., Yu, C. T., Wu, W., AND RISHE, N. Esti-
mating the usefulness of search engines. In ICDE (1999), pp. 146-153.

MOFFAT, A., AND ZOBEL, J. Parameterised compression for sparse
bitmaps. In Research and Development in Information Retrieval
(1992), pp. 274-285.

MOFFAT, A., AND ZOBEL, J. Fast ranking in limited space. In ICDE
(1994), pp. 428-437.

MOFFAT, A., AND ZOBEL, J. Self-indexing inverted files for fast text
retrieval. ACM Transactions on Information Systems 14, 4 (1996),
349-379.

MOFFAT, A., ZOBEL, J., AND SACKS-DAviS, R. Memory efficient

ranking. Information Processing and Management 30, 6 (1994), 733
744.

Mo#RI, M. Minimization algorithms for sequential transducers. The-
oretical Computer Science 234, 1-2 (2000), 177-201.

NAVARRO, G., BAEZA-YATES, R. A., BARBOsA, E. F., Ziviani,
N., AND CuNTO, W. Binary searching with nonuniform costs and its
application to text retrieval. Algorithmica 27, 2 (2000), 145-169.

NETCRAFT. Netcraft web server survey.

ONLINE COMPUTER LIBRARY CENTER. Size and growth.
wcp.oclc.org/we/stats/size.html.

PAGE, L., BrIN, S.; MOTWANI, R., AND WINOGRAD, T. The pager-
ank citation ranking: Bringing order to the web. Tech. rep., Stanford
Digital Library Technologies Project, 1998.

45



REFERENCES

[86]

[87]

[83]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

PINKERTON, B. Webcrawler. finding what people want. Tech. rep.,
2000.

PLANET, B. The deep web: Surfacing hidden value. Tech. rep.,
Whitepaper, 2000.

RaDEV, D. R., AND McKEOWN, K. Generating natural language
summaries from multiple on-line sources. Computational Linguistics

2/, 3 (1998), 469-500.

RIBEIRO-NETO, B. A., AND BARBOSA, R. A. Query performance for
tightly coupled distributed digital libraries. In Proceedings of the third
ACM conference on Digital libraries (1998), ACM Press, pp. 182-190.

RICHARD SELTZER, ERIC J. RAY, D. S. R. The AltaVista Search
Revolution. Osborne McGraw-Hill, 1997.

Risvik, K. M. A search processor and method for retrieval of data and
the usage in a search engine. International Patent PCT/N099/00233,
1999.

Risvik, K. M., AAsSHEIM, Y., EGGE, T., AND PETTERSEN, H.
Search engine with hierarchically stored indices. International Patent
Pending, 2003.

Risvik, K. M., AASHEIM, Y., AND LIDAL, M. Multi-tier architecture
for web search engines. In Proceedings of the first Latin-american Web
Conference (Santiago, Chile, 2003), p. accepted.

Risvik, K. M., AND EGGE, T. The FAST search engine kernel and

its performance characteristics. Tech. rep., Fast Search & Transfer
ASA, 2002.

Risvik, K. M., EGGE, T., AND HALAAS, A. The FAST distributed
processing architecture (DPA). Tech. rep., Fast Search & Transfer
ASA, 2002.

Risvik, K. M., EGGE, T., SVINGEN, B., AND HALAAS, A. Search

engine with two-dimensional linear scalable parallel architecture. In-
ternational Patent PCT/N099/00155, 2000.

Risvik, K. M., AND MICHELSEN, R. Search engines and web dy-
namics. Computer Networks (Amsterdam, Netherlands: 1999) 39, 3
(2002), 289-302.

46



REFERENCES

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]
106]

[107]

[108]

Risvik, K. M., MIKOLAJEWSKI, T., AND BOROS, P. Query seg-
mentation for web search. In Proceedings of the Twelfth International

World Wide Web Conference (WWW2003) (2003).

SALTON, G. Automatic Text Processing: The Transformational, Anal-
ysis, and Retrieval of Information by Computer. Addison-Wesley,
Reading, Massachusetts, U.S.A., 1989.

SILVERSTEIN, C., HENZINGER, M., MARAIS, H., AND MORICZ, M.
Analysis of a very large altavista query log. Tech. Rep. 1998-014, Digi-
tal SRC, 1998. http://gatekeeper.dec.com/pub/DEC/SRC/technical-
notes/abstracts/src-tn-1998-014.html.

SILVERSTEIN, C., HENZINGER, M., MARAIS, J., AND MORICZ, M.
Analysis of a very large altavista query log. Tech. rep., SRC Technical
Note, 1998.

SPINK, A., OzmuTLyu, H., OZMUTLU, S., AND JANSEN, B. U.s.
versus european web searching trends. In Proceedings of SIGIR-02,
25th ACM International Conference on Research and Development in
Information Retrieval (2002).

STRZALKOWSKI, T. Natural Language Information Retrieval. Kluwer
Academic Publishers, 1999.

SueL, T., MATHUR, C., WU, J., ZHANG, J., DELIS, A., KHARRAZI,
M., LoNg, X., AND SHANMUGASUNDERAM, K. Odissea: A peer-to-
peer architecture for scalable web search and information retrieval,

2003.
SULLIVAN, D. Avoiding the search gap.

TALM, J., Liu, Z., NAIN, P., AND Jr., E. G. C. Controlling the
robots of web search engines. In SIGMETRICS/Performance (2001),
pPp. 236-244.

Towmasic, A., AND GARCIA-MOLINA, H. Caching and database scal-
ing in distributed shared-nothing information retrieval systems. In
Proceedings of the 1993 ACM SIGMOD international conference on
Management of data (1993), ACM Press, pp. 129-138.

Towmasic, A., AND GARCIA-MOLINA, H. Query processing and in-

verted indices in shared: nothing text document information retrieval
systems. The VLDB Journal 2, 3 (1993), 243-276.

47



REFERENCES

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

TurTLE, H., AND CrROFT, W. B. Inference networks for docu-
ment retrieval. Technical Report UM-CS-1990-007, University of Mas-
sachusetts, Amherst, Computer Science, Mar. 31, 1990.

UKKONEN, E. On-line construction of suffix trees. Algorithmica 14, 3
(1995), 249-260.

VAN RIJSBERGEN, C. J. Information Retrieval. Butterworths, 1979.

WirLiams, H. E.; ZOBEL, J., AND ANDERSON, P. What’s next? -
index structures for efficient phrase querying. In Proceedings of the
Tenth Australasian Database Conference (1999).

WITTEN, I. H., MOFFAT, A., AND BELL, T. C. Managing Gigabytes:
Compressing and Indezxing Documents and Images. Morgan Kaufmann
Publishers, San Francisco, CA, 1999.

XiE, Y., AND O’'HALLARON, D. Locality in search engine queries and
its implications for caching, 2002.

ZOBEL, J., AND MOFFAT, A. Adding compression to a full-text re-
trieval system. Software — Practice and Ezperiment 25, 8 (1995), 891
903.

ZOBEL, J., MOFFAT, A., AND RAMAMOHANARAO, K. Inverted files

versus signature files for text indexing. ACM Trans. Database Syst.
23, 4 (1998), 453-490.

48



B PATENTS

A

Note:

Publications

Search Engines and Web Dynamics. Knut Magne Risvik and
Rolf Michelsen, In Computer Networks, Volume 39, Number 3, 2002.

The FMS Search kernel and its performance characteristics.
Knut Magne Risvik and Tor Egge, Technical Note, 2002.

The FAST DPA. Knut Magne Risvik, Bgrge Svingen, Arne Halaas
and Tor Egge, Technical note, 2002. Also submitted to IEEE Trans-
action of Knowledge and Information Systems.

Multi-tier Architecture for Web Search Engines. Knut Magne
Risvik, Yngve Aasheim and Mathias Lidal, In Proceedings of the first
Latin-American Web Conference, LA-WEB 2003, Santiago, Chile.

Linguistics in Large-scale Web Search Engines. Jon Atle Gulla,
Per Gunnar Auran and Knut Magne Risvik, In Proceedings of the
Natural Language Processing and Information Systems, 6th Interna-
tional Conference on Applications of Natural Language to Information
Systems, NLDB 2002, Stockholm, Sweden.

Patents

These patents are not enclosed in this print of the thesis

A Search processor and method for retrieval of data and the
usage in a search engine, Knut Magne Risvik, International Patent
PCT/N099/00233, 1999.

Search Engine with two-dimensional linear scalable parallel
architecture. Knut Magne Risvik, Tor Egge, Bgrge Svingen and
Arne Halaas, International Patent PCT/N099/00155, 2000.

Search Engine with Hierarchically Stored Indices. Knut Magne
Risvik, Yngve Aasheim, Tor Egge and Havard Pettersen. International
Patent pending, 2003.

49



50



Search Engines and Web Dynamics

Knut Magne Risvik Rolf Michelsen
QOverture Services AS Fast Search € Transfer ASA
P.0O.Box 4452 Hospitalslgkkan P.O.Bozx 4452 Hospitalslgkkan
NO-7418 Trondheim, Norway NO-7418 Trondheim, Norway
knut.risvik@overture.com rolf.michelsen@fast.no

Abstract

In this paper we study several dimensions of web dynamics in the
context of large-scale Internet search engines. Both growth and update
dynamics clearly represent big challenges for search engines. We show
how the problems arise in all components of a reference search engine
model.

Furthermore, we use the FAST Search Engine architecture as a case
study for showing some possible solutions for web dynamics and search
engines. The focus is to demonstrate solutions that work in practice for
real systems. The service is running live at www.alltheweb.com and
major portals worldwide with more than 30 million queries a day, about
2.1 billion documents, a crawl base of more than 5 billion documents,
updated every 11 days, at a rate of 400 documents/second.

We discuss future evolution of the web, and some important issues
for search engines will be scheduled and query execution as well as
increasingly heterogeneous architectures to handle the dynamic web.

1 Introduction

Search Engines have grown into by far the most popular way for navigating
the web. The evolution of search engines started with the static web and
relatively simple tools such as WWW [17]. In 1995 AltaVista launched and
created a bigger focus on search engines [19]. The marketplace for search
engines is still dynamic, and actors like FAST (www.alltheweb.com), Google,
Inktomi and AltaVista are still working on different technical solutions and
business models in order to make a viable business, including paid inclusion,
paid positioning, advertisements, OEM searching, etc.

A large number of analysis have been made on the structure and dynam-
ics of the web itself. Conclusions are drawn that the web is still growing at a
high pace, and the dynamics of the web is shifting. More and more dynamic

51



SEARCH ENGINES AND WEB DYNAMICS

and real-time information is made available on the web. The dynamics of
the web creates a set of tough challenges for all search engines.

In Section 2 we define a reference model for Internet search engines. In
Section 3 we survey some of the existing studies on the dynamics of the web.
Our focus is on the growth of the web and the update dynamics of individual
documents on the web. In Section 4 we provide an overview of the FAST
Crawler and describe how its design meets the challenges of web growth and
update dynamics. We continue in Section 5 with a similar description of the
indexing and search engines. Finally, we outline some future challenges and
provide some benchmarking figures in Section 6 and Section 7, respectively.

The FAST Search Engine technology is used as a case study throughout
the paper. The focus of the paper is on how web dynamics pose key chal-
lenges to large-scale Internet search engines and how these challenges can
be addressed in a practical, working system. The main contribution of this
paper is to offer some insight into how a large-scale, commercially operated
Internet search engine is actually designed and implemented.

2 A Search Engine Reference Model

Most practical and commercially operated Internet search engines are based
on a centralized architecture that relies on a set of key components, namely
Crawler, Indexer and Searcher. This architecture can be seen in systems
including WWW [2], Google[5], and the FAST Search Engine [1], and can
be illustrated in Figure 1.

Definition 5 Crawler. A crawler is a module aggregating documents from
the World Wide Web in order to make them searchable. Several heuristics
and algorithms exist for crawling, most of them based upon following links
in hypertext documents.

Definition 6 Indexer. A module that takes a collection of documents or
data and builds a searchable index from them. Common methods are inverted
files, vector spaces, suffix structures and hybrids of these.

Definition 7 Searcher. The searcher is working on the output files from
the indexer. The searcher accepts user queries from the dispatcher (defined
below), executes the query over its part of the index, and returns sorted
search results back to the dispatcher with document ID and the relevance
score (defined below).

52



SEARCH ENGINES AND WEB DYNAMICS

g _.
Indexer m Searcher “@ <4
1]
Local Store
=N

(W3 copy)

Crawler

Figure 1. Search Engine reference model

Definition 8 Dispatcher. The dispatcher receives the query from the user,
compiles a list of searchers to execute the query, sends the query to the
searchers and receives a sorted list of results back from each searcher. For
each result it receives a unique document 1D, and the relevance score. The
hits from the searchers are then merged to produce the list of results with the
highest relevance scores for presentation to the user.

Some systems also keep a local store copy of the crawled data.

Definition 9 Local Store A local store copy is a snapshot of the web at
the given crawling time for each document.

Systems usually run the crawler, indexer, and searcher sequentially in
cycles. First the crawler retrieves the content, then the indexer generates the
searchable index, and finally, the searcher provides functionality for search-
ing the indexed data. To refresh the search engine, this indexing cycle is
run again.

In real systems, the different phases of the indexing cycle may overlap,
be split into different sub-phases, and so on. For instance, it is unacceptable
to stop the searcher while running the crawler or indexer. However, in
most search systems these fundamental steps of the indexing cycle are easily
discernible.

The literature often distinguishes between batch and incremental crawlers.

(Different papers use different terms and definitions. This paper uses the def-
initions by Cho and Garcia-Molina [7].) A batch crawler starts from scratch
with an empty local store in every indexing cycle, and it never fetches the
same document twice in that cycle. An incremental crawler never erases its
local store. When it has retrieved a sufficient number of documents, it con-
tinues by re-fetching documents and updating the local store copies. When

93

Search
Clients



SEARCH ENGINES AND WEB DYNAMICS

a new indexing cycle starts, an incremental crawler continues where it left
off when the last indexing phase started.

3 The Dynamics of the Web

In this section we outline the nature of web dynamics. We define the different
aspects of web dynamics, and we review the literature on the topic. We do
not attempt to provide a complete review of the published studies but rather
focus on a number of representative and significant works.

3.1 Dimensions of Web Dynamics

The concept of web dynamics has several dimensions and all are important
for large-scale Internet search engines. First, the web grows in size, and
most studies agree that it grows at an exponential rate. This poses a serious
challenge of scalability for search engines that aspire to cover a large part
of the web.

Second, the content of existing web documents is updated. A search
engine must not only have good coverage, but perhaps even more important,
the local store copy must be fresh. A search engine must not only scale
to a large volume of documents, but it must also be able to refresh these
documents in a timely manner.

This requirement will only grow more important as people start turning
to search engines for breaking news and other dynamic content.

Furthermore, the link structure of the web is in constant flux. Links
between documents are constantly being established and removed. The
dynamics of the link structure is important for search engines as long as
link structure is an important component in ranking of search results. It
is likely that using link structure in ranking creates a slow-working positive
feedback loop in the entire web to make popular sites even more popular at
the expense of less known or new sites.

A number of studies of link structure have been made, for instance the
recent study by Broder et.al [10]. However, none of these studies cover the
dynamics of the link structure. We do not consider dynamics of the link
structure in this paper.

Yet another dimension of web dynamics is introduced with structure.
XML is evolving rapidly in inter-service systems, and the ability for a search
engine to get under the hood of a presentation engine to understand the
structure and semantics of the data is a key feature for the next generation
engines.

54



SEARCH ENGINES AND WEB DYNAMICS

3.2 Web Growth Dynamics

The web has grown at an incredible rate since the very inception about
ten years ago. The web started out with a one-to-one connection between
the data to be made available and the HTML page used to present the
information. The web has been the driving factor for establishing a new
era for storage and retrieval of information, and we are seeing the beginning
of yet another. The web took storage from the application era into the
information era, and the web is actually a huge storage and retrieval network.

HTML is a format description for documents. The combination of URIs
and HTML made a connection between a file system object and an URI
obvious, and web servers are today most commonly applications that serve
HTML files directly from a file system upon requests. However, the enor-
mous growth in information that we want to publish on the web has created
the need and space for more advanced publication systems tying business
applications to web servers.

The web being the platform for a new information era has caused the
web to evolve into an application and transactional space as well. E-trading
is becoming a major application on the web.

These two evolutionary trends on the web have erased the connection
between HTML documents, URIs, and the actual content being presented.
This has furthermore limited the percentage of the web that is actually in-
dexable by a search engine. E-trading and advanced information systems
introduce personalized or transaction-dependent content that is not nor-
mally accessible by standard web aggregation methods.

Several studies of the size of the web have been conducted. OpenText
conducted a very early study in late 1995 [3]. It showed about 223,000 unique
web servers, and the number of documents estimated to be 11.4 million.

In 1998 and 1999, Lee Giles and Steve Lawrence conducted well-known
tests to estimate the size of the web[15], and to explore the accessibility of
the indexable web[16].

In [15] the study is based upon multivariate analysis of the search engine
coverage and overlap to estimate the size of the web. Six search engines
were used, and the lower bound estimate for the size of the web was 320
million pages. Since the study is based on search engines and the result
sets overlap, the measure is clearly on the indexable web, not taking into
account the percentage of the web that is not touched by any search engine.
Looking at the estimated coverage of each search engine with respect to the
combined coverage, HotBot was the most comprehensive at the time of that
measure (approximately 57% coverage).

95



SEARCH ENGINES AND WEB DYNAMICS

The test was repeated and extended in Nature in 1999 [16]. The 11
months that had passed showed a significant increase in the number of in-
dexable documents found. The lower bound of size was estimated to 800
million documents, and the search engines had significant less coverage of
the indexable web. The maximum coverage estimated was 16

In [13], a theory for the growth dynamics of the World Wide Web is
presented. Two stochastic classes are considered, namely the growth rates
of pages per site, and the growth of new sites. A universal power law is
predicted for the distribution of the number of pages per site. The paper
brings theories that enable us to determine the expected number of sites of
any given size without extensive crawling.

These three papers discuss the growth in what is referred to as the
”indexable” web, but no study was performed of the percentage of pages
”indexable” versus "non-indexable”. A study by Bright Planet LLC [18]
introduced the concept of the ”Deep Web”.

The deep web is easily identified as the subset of the web not discussed
in [15] and [16], the "non-indexable” web. The percentage of web pages
belonging to the non-indexable category is growing at a much higher rate
than the indexable pages. This is a natural cause of the web moving from
a simple document share space into an information sharing space and even
into an application sharing space.

Key findings are in the study by Bright Planet are:

e 7500 terabytes of information (19 terabytes assumed to be the surface
web).

e Approximately 550 billion documents.
e Largest growing category of web information.

e Highly relevant content found in the deep web.

3.3 Document Update Dynamics

A number of challenges must be faced to handle document update dynamics
in a large-scale Internet search engine. First, we must develop a model for
how documents are updated. Then, we must develop a crawling strategy
that maximizes the freshness of the local store given this document update
model. To evaluate the performance of various update strategies, we need
mechanisms for measuring the freshness of the local store.

These challenges have been studied in the existing literature. Cho and
Garcia-Molina have published several studies both on how web documents

56



SEARCH ENGINES AND WEB DYNAMICS

are updated and on crawling strategies [8] [7] [6]. Their models and experi-
ments indicate that web document updates can be modeled as independent
Poisson processes. That is, each document d; is updated according to a
Poisson process with change rate [;, and the change rates are independent.
Their experiments on the web indicate that an average document is changed
once every ten days and that 50% of all documents are changed after 50 days
[7]-

Cho and Garcia-Molina have also developed statistical estimators for the
Poisson parameters under various assumptions. They have derived estima-
tors for uniform and random observation of the web documents, and for
known and unknown time of last document update. The new estimators
are much better than the naive estimator: the number of document updates
observed divided by the observation time[6].

Finally, they have also presented an optimal crawling strategy given
their model of a crawler and local store. They also propose a framework
for measuring how up-to-date the local store is through their concepts of
freshness and age. They define the freshness of a document d; at time t as
the probability that the document is up-to-date at the given time. Age is
defined to be the 0 for documents that are up-to-date and the time since
the last document update in the real world for others. For both freshness
and age, the interesting measure is the average freshness or age both over all
documents and over time[8]. In this paper we will use the term ”freshness”
in a more informal manner.

Based on their models for document change and freshness measures, they
present some optimal scheduling policies for an incremental crawler. They
make the following observations:

e Refreshing document using uniform update frequencies is always better
than using document update frequencies that are proportional to the
estimated document change frequencies [;.

e The scheduling policy optimizing freshness penalizes documents that
are changed too often. Intuitively, these documents are likely to change
again very soon and hence do not contribute much to the overall fresh-
ness of the local store.

e The scheduling policy optimizing age favors documents that are changed
very often, but the actual change is small.

Brewington and Cybenko[4] also performed a number of experiments to
discover how web documents are updated. They also conclude that web

o7



SEARCH ENGINES AND WEB DYNAMICS

documents are updated according to a Poisson process. Brewington and
Cybenko also propose a novel measure of freshness, termed (a, b)-currency.
A document d; is (a,b)-current if it were up-to-date b time units ago with
probability a. This measure captures both the aspirations and the actual
achievements regarding freshness. A daily newspaper may be (0,95, 1 day)-
current, meaning that 95% of all articles in the paper was up-to-date one
day ago. They estimate that an Internet search engine containing 800 mil-
lion documents must refresh 45 million documents every day to be able to
maintain (0,95, 1 week)-currency.

Edwards, McCurley, and Tomlin [9] present a crawler that minimizes
the number of obsolete documents in the repository without making any a
priori assumptions about how documents are updated. They use measured
document change rates and divide their crawling resources on documents
according to their change rate. They solved a vast optimization problem to
find the optimal distribution of crawling resources.

3.4 Search Engines and Search Technology

There is not a rich body of literature describing practical large-scale crawling
and searching systems, and in particular, very few address issues relating
to the dynamic web. Brin and Page have described an early version of the
Google system [5]. They address issues relating to growth of the web and
scaling of the document volume, but they do not address refreshing of the
local store.

Heydon and Najork describe their scalable web crawler [11]. Their
crawler is scalable in the sense that the required machine resources are
bounded and do not depend on the number of retrieved documents. Their
crawler reportedly runs on a single, large machine, but it can probably quite
easily be implemented in a crawler cluster to scale with even larger docu-
ment volumes or processing load in a manner similar to our FAST Crawler as
discussed later in this paper. Heydon and Najork do not discuss refreshing
the crawled documents.

Edwards, McCurley, and Tomlin[9] provide some design details about
their crawler. This crawler runs incrementally, constantly refreshing docu-
ments to ensure freshness over time, as described in the previous section.
They also provide some details about their scheduling algorithm. Each doc-
ument is classified according to its measured update frequency, and crawling
resources are then divided among these classes. They formulated and solved
a vast optimization problem for computing how to allocate the crawling
resources among the different document update classes.

58



SEARCH ENGINES AND WEB DYNAMICS

The web

Content
retrieval

Figure 2. FAST Crawler deployment overview

4 Aggregation of Dynamic Content

In this section, we use the FAST Crawler as a case study to illustrate how
we have addressed the challenges of scaling with the size of the web and
ensuring the freshness of our local store.

4.1 Overview of the FAST Crawler

The FAST Crawler consists of a cluster of interconnected machines as de-
picted in Figure 2. Each machine in this cluster is assigned a partition of web
space for crawling. All crawler machines communicate with all other ma-
chines in a star network. However, the machines work relatively independent
of each other, only exchanging information about discovered hyperlinks.

Figure 3 depicts the main components of a single crawler machine in
our system. The solid arrows indicate flow of document content, and the
dotted arrows indicate flow of document URIs, possibly with associated
meta-information.

The Document Scheduler is responsible for figuring out which document

99



SEARCH ENGINES AND WEB DYNAMICS

The web

:

Document | g p Document | . Document
Scheduler Processor Local Store

v

Distributor

¢

Other crawler machines

Figure 3. Components and data flow in a single crawler machine

to crawl next. Conceptually, this means maintaining a huge prioritized queue
of URIs to be crawled while also observing the informal ”social code” of web
robots such as the robots exclusion protocol [14] and various constraints on
the access pattern to individual web servers imposed to avoid overloading
servers with crawler requests. The Document Scheduler sends a stream of
URIs to the Document Processor.

The Document Processor is responsible for retrieving documents from
web servers and performing any processing on them. This component con-
sists of a manager module that provides a plug-in interface used by a set of
processing modules. The manager routes documents through a pipeline of
processing modules based on configuration information, the document con-
tent type, etc. This architecture provides the necessary flexibility to quickly
support new document processing functionality in the crawler. We currently
have processing modules for parsing HTML documents and various multi-
media formats, classification of language, classification of offensive content,
etc. It is the HIT'ML parser that discovers hyperlinks to other documents
and passes these back to the scheduler.

After processing, the crawler stores relevant document content and meta-
information in the Local Store. Document content represents the bulk of
the data, and we have optimized our storage system for efficiently writing

60



SEARCH ENGINES AND WEB DYNAMICS

or updating individual documents and for streaming the entire document
collection to the indexing step. There is no need for efficient random access
reading of document content. We use a hybrid of a hashing and logging
storage system. Hirai et al describe the WebBase system, a system that is
very similar to our storage system[12]. Some document meta-information is
kept in a high-performance, random access database.

The Distributor exchanges hyperlink information with other machines in
the crawler cluster. There is a static mapping from the relevant hyperlink
information to a crawler machine.

The crawler architecture also contains two important components for
duplicate detection and link-based ranking, respectively. These modules are
relatively complex and outside the scope of this paper.

The FAST Crawler is an incremental crawler. That is, when the docu-
ment repository has reached its target size, the crawler continues by refresh-
ing existing documents to detect changes. It fetches new documents only to
replace documents that are deleted from the repository because the crawler
discovers that they have been deleted from the web or for other reasons.
The crawler is never stopped. It is temporarily suspended during a part of
the indexing process, but when indexing is completed the crawler resumes
operation where it left off.

4.2 Scalability

A large-scale crawler must be scalable both with respect to document storage
capacity and document retrieval capacity. In our architecture, each crawler
machine is responsible for all retrieval, processing, and storage for a partition
of the document space. The different machines constituting a crawler cluster
work independently except for exchanging discovered URIs. Hence, the
storage capacity, Cs, and the processing capacity, Cp, of the crawler cluster
is the sum of the capacity of each individual machine:

Cs = ZCSJ (1)
J

Cp = Zcp,,- (2)

An additional constraint on the crawler retrieval and processing capacity
is the capacity defined by the total network bandwidth available to the
crawler cluster, C'y. Hence, the total retrieval capacity of the crawler cluster
is:

61



SEARCH ENGINES AND WEB DYNAMICS

CR = min(C’p,CN) (3)

Usually, network bandwidth represents the highest cost for running a
large-scale crawler and hence it makes sense to dimension the system so
that C'y < Cp. Note that the bandwidth used for communicating internally
in the crawler cluster is proportional to the inbound bandwidth used for
retrieving content from the web. The internal bandwidth is only used for
exchanging hyperlink information, and the number of hyperlinks is propor-
tional to the number of retrieved documents.

We can easily increase the document storage capacity, C's, by adding
new machines to the crawler cluster and redefine the workload partitioning
in the distributor accordingly. This will also give us some extra processing
power, Cp, "for free”. Increasing only the document storage capacity does
not require more network bandwidth, Cy, between the crawler and the web
or internally between the individual crawler nodes comprising the cluster.
As a result, the crawler scales linearly with document storage capacity.

We also scale linearly with document retrieval capacity, Cr. Retrieving,
processing, and storing more documents per unit of time requires a linear
increase in inbound network bandwidth from the web and also a linear in-
crease in network bandwidth between the machines comprising the crawler
cluster, Cy.

Scaling document retrieval capacity by increasing network capacity as-
sumes that each machine in the crawler cluster has enough spare processing
capacity to handle the increased load, that is . If this is not the case, then
additional machines must be added to the cluster to achieve the required
processing power. This will also increase the document storage capacity.
Hence, the total system scales linearly with both storage and retrieval ca-
pacity as long as there is a reasonable balance between the two. In practice,
this is usually the case, as we do not want the ratio of retrieved documents
per unit of time to the total number of documents to drop as we scale the
system, as this will eventually impact our freshness. For a crawler to main-
tain a given freshness, F', the following ratio must be kept constant while
scaling (let k& be any constant):

k— =F (4)
A system that scales to many components must also be robust with re-

gards to failure of any of these components or otherwise the probability of
having a working system will drop with the number of components. Our

62



SEARCH ENGINES AND WEB DYNAMICS

crawler is robust against failure of any machine in the crawler cluster. Each
machine works independently on scheduling, retrieving, processing, and stor-
ing documents. The only dependency between machines is the exchange of
information about new hyperlinks. Hyperlink information for an unavail-
able crawler machine is simply queued on the sending machine until the
designated receiver again becomes available.

4.3 Freshness through Scheduling

The FAST Crawler provides fresh data to the search engine through its very
high document retrieval capacity and its scheduling algorithm prioritizing
retrieval of documents most likely to have been updated on the web. A
good scheduling algorithm increases the constant factor £ in the freshness
equation in the previous section.

In normal operation, the crawler is refreshing a local store of approxi-
mately a constant number of documents limited by the capacity of the search
engine and the crawler itself. In this state, the crawler will only retrieve new
documents when old documents are removed from the local store either be-
cause the crawler attempted a refresh but the document does not exist on
the web anymore or for other reasons. When the document storage capacity
is increased, we normally relatively quickly retrieve enough documents to
again reach this steady state.

Providing fresh search results to users implies short indexing cycles, and
we do not have the capacity to refresh all documents in our local store
between each indexing cycle. In this situation the scheduling algorithm is a
key element in ensuring a fresh local store. To maximize freshness, we must
spend as much as possible of our crawler network capacity on refreshing
documents that have actually changed.

The FAST Crawler currently uses a relatively simple algorithm for adap-
tively computing an estimate of the refresh frequency for a given document.
Basically, this algorithm decreases the refresh interval if the document was
changed between two retrievals and increases it if the document has not
changed. This is used as input to the scheduler, which prioritizes between
the different documents and decides when to refresh each document. In addi-
tion, the scheduler is configured with global minimum and maximum refresh
intervals to keep the refresh rate for a document within sensible bounds, e.g.
to allow refreshing of documents for which we have never observed a change.

Cho and Garcia-Molina observe that it is not always optimal to refresh
documents that are updated very frequently ”as often as possible [8] [6].
Intuitively, these documents will always be obsolete anyway when the repos-

63



SEARCH ENGINES AND WEB DYNAMICS

itory is indexed. In fact, they conclude that a uniform refresh policy where
all documents are updated equally often is always superior to such a pro-
portional refresh policy. In practice, this is not a big problem. With a
repository of the size required for a large-scale search engine, there are al-
ways enough documents waiting to be refreshed to diminish the effect of the
relatively few documents that are updated very often. Also, we configure
the scheduler to avoid rescheduling any document more than once for each
indexing cycle.

4.4 Freshness through Heterogeneity

When optimizing freshness through scheduling, we assume that all docu-
ments have the same freshness requirements. Having a fresh copy of one
document in the repository is just as valuable as having a fresh copy of any
other document. This is not always the situation in the real world. Consider
the following two examples:

e There is an industry trend to offer a ” pay for inclusion” service to con-
tent providers. This offer usually comes with service level guarantees
covering refresh and indexing intervals.

e There is a trend towards searching in increasingly dynamic content,
e.g. news. This content must be refreshed and indexed very often to
be of any value to users.

The above two scenarios cannot be supported in a large-scale crawler
using a relatively simple scheduling algorithm alone. In the FAST Crawler,
we have solved this problem by permitting heterogeneity in the cluster of
crawler machines. This means that the different machines can be config-
ured with very different storage and processing capacity, Cs; and Cp;. A
relatively small number of machines are dedicated to special purposes, such
as crawling of content from paid inclusion programs or news sites. These
machines can be configured specially with the service requirements of these
services in mind, and we can control the load on these machines without
sacrificing the high capacity and efficiency of the main bulk of the machines
in the crawler cluster.

We still keep these dedicated machines as a part of the cluster just as all
the other machines so that all machines can efficiently share link information,
computed link ranks, etc. The cost is relatively small - only a small increase
in the complexity of the distributor.

64



SEARCH ENGINES AND WEB DYNAMICS

i [EAL . .
it Multimedia
Crawler
Large-scale
Web crawler []
News
Crawler

Figure 4. Example of heterogeneous crawler deployment with sub-
clusters for different crawling

Figure 4 shows an example of a heterogeneous crawler cluster. This figure
depicts a crawler cluster with a few dedicated machines for crawling news
content in addition to the large-scale web crawler. We have also included a
few machines comprising a multimedia crawler to illustrate the flexibility of
the architecture. In this example, the large-scale web crawler will typically
be configured with a large Cs but a relatively low F. The news crawler
will be configured with a lower Cg to maintain a high F'. The multimedia
crawler will have high Cg and low F just as the large-scale web crawler, but
operating this crawler as a separate part of the cluster allows control over
resources used for different media types.

4.5 Cooperation with Providers

Another approach, that we are experimenting with, is cooperating with
content providers to further improve freshness. There are different models
for cooperating with content providers, and in this section we outline the
different options.

InfoSeek once proposed a standard for a web server meta-file named site-
info.tzt to complement the more established robots.txt de facto standard.
The purpose of the siteinfo.txt file was to provide information to crawlers
about which documents had changed, mirrors of the server, etc. The site-
info.txt standard was never able to establish itself and our own crawling
indicates that today no server is using it. Today, a number of content
providers use proprietary meta-files to publish information about their sites

65



SEARCH ENGINES AND WEB DYNAMICS

—
< !-meta o

= 2. content —=
Web server Crawler

Figure 5. Meta-information pull model

— .
S | 1-metay, %

= =

2. content
Web server Crawler

Figure 6. Meta-information push model

and how they are updated.

This is a pull model that permits the crawler to perform efficient per-
site scheduling. In this model, the crawler periodically fetches some meta-
information from the web server. It uses this information to influence its
own scheduler with hints about new or changed documents. This model
is illustrated in Figure 5. (The arrowheads indicate the direction of the
requests.) However, building a crawler that supports all these proprietary
meta-information formats is a daunting task.

A more elaborate approach is to push content or meta-information di-
rectly from the content provider to the crawler. In this model the content
provider sends a notification to the crawler whenever a document is added,
modified, or deleted on a site. In its simplest form, the content provider
just submits the URI of the document. This method can be enhanced by
also submitting various meta-information, or even the entire content of the
documents. However, care must be taken to avoid opening the crawler and
search systems to spamming and other abuse so such a service can only be
offered to partners. This model is illustrated in Figure 6 with the dotted
arrow indicating an optional request.

A third approach is a hybrid between the two above. There are many ob-
stacles to having push technology deployed at a large set of content providers.
For instance, site operators may be reluctant to increase the complexity of
their systems by installing additional software components. The hybrid ap-

66



SEARCH ENGINES AND WEB DYNAMICS

Web server Crawler

. o3:cOntent i

Figure 7. Hybrid meta-information pull-push model

proach involves developing and deploying special proxy systems that read
site meta-information files, act according to the instructions in those files,
and then use push technology to update the crawler. These systems use a
single interface to the crawler but are otherwise independent of the crawler,
and hence these proxies can be developed and deployed independently. This
is illustrated in Figure 7.

The hybrid model is quite powerful. The proxy may not limit itself
to obtaining meta-information from only the server or set of servers being
crawled. For instance, it can also fetch meta-information from other sources
to discover "hot spots” in the web and then direct the crawlers to these
spots.

After establishing the communication pipeline with the providers, a nat-
ural next step lies within better understanding the content of the provider.
XML could be a significant player for describing both semantics and dynam-
ics of the content.

5 Searching Dynamic Content

The second and third components in the reference search engine model, the
Indexer and the Searcher, need also to handle the different dimensions of
web dynamics. Traditionally, search engines have been based upon batch-
oriented processes to update and build indexes. To handle the growth in size
of the Web and the update dynamics, most traditional designs fall short. In
this section, we will study several aspects and solutions for an indexer and

67



SEARCH ENGINES AND WEB DYNAMICS

Dispatch

Si(l) Se(k) Sy(l3) Su(l4) S(i)

Figure 8. Linear Scaling with data size

a searcher to handle a dynamic web.

5.1 Scalability with Size and Traffic

Being able to handle the web growth calls for architectural solutions. Given
traditional solutions with inverted files or equivalent, the cost of building,
maintaining and searching an index is worse than linear.

One possible architecture for a Web search engine is the FAST Search
Engine Architecture. It handles scalability in two dimensions, namely size
and traffic volume. The architecture is a distributed architecture, and has
two classes of nodes:

e Search Nodes: A Search node Si holds a portion of the index, Ii.
The total index is I = |J; I; Each of the search nodes is a separate
entity than holds a search kernel (searcher) that searches the index Ti
and returns search results. The search nodes have no interconnection
between them.

e Dispatch Nodes: A dispatch node does not hold any searchable
data. The dispatcher is a routing, distribution, and collection/merging
mechanism. A dispatch node receives queries and routes them to a set
of underlying search nodes, S;...S;. The results are collected and
merged before they are sent to the issuing client.

A search node has two capacities, namely the number of documents on
each node, |D;|, and the query rate or traffic capacity, Ci. A dispatcher has
one capacity, namely the dispatching capacity, Cyi. The Cyi depends on the
number of search nodes the query is sent to.

Now, by using the two components described above, we can build a sim-
ple architecture to allow linear scaling with the data size. The architecture

68



SEARCH ENGINES AND WEB DYNAMICS

Dispatch
Si'(1) S2' (k) Ss'(Is) Si' (k) SN'(IN)
SiA(1) SP(k) S2(Is) Si2 (k) | SK(IN)
S1™(1) S2"(I2) Ss"(I3) S4"(14) SN(IN)

Figure 9. Scaling in size and capacity

is shown in Figure 8. Each box S;(I;), is a search node holding the index
partition I;. The entire dataset, I, is partitioned out on the search nodes.
The dispatch node is broadcasting queries to all search nodes in parallel and
merging results from the search nodes to build the final result set.

Now, assuming that each search node handles the query individually of
the other search nodes, we see that a linear scale up for increasing the overall
size |D| is achieved.

At the same time, to scale with the query rate, replication will provide
the capacity mC};. The dispatch node will know all search nodes in a column,
and a round-robin algorithm can be used to rotate between the different
columns. This extended architecture is illustrated in Figure 9. Here S;; is a
search node j handling partition ¢. As illustrated, the dispatcher knows all
search nodes in each column, and can load-balance between them, achieving
a linear performance scale up.

So, the number of search nodes required for a dataset I of size |I| is
derived as %', where p denotes the optimal size of a search node partition.
This number is of course dependent on actual hardware configurations and
costs. Furthermore, the number of search nodes to handle a given query
rate (Q, is derived as 5:

The limitation of this architecture clearly lies within the dispatching

69



SEARCH ENGINES AND WEB DYNAMICS

D21

D1

De2

D23

Si'(1)

S2'(k)

S2"(I2)

Se™(ls) | | | Sa™(la)

.........................

..............................

70



SEARCH ENGINES AND WEB DYNAMICS

system. A dispatcher has a capacity of merging results. Optimal merging
algorithms are in order of O(rlogm), where r denotes the number of sources
and m the number of entries. Thus, the merge performance is limited by
the number of search nodes that receive the query in parallel.

To ensure linear scalability, a multi-level dispatch system can be config-
ured. By letting a dispatcher dispatch to a part of each row, and the letting
a super-dispatcher dispatch to those dispatch nodes, we can use a tree-like
architecture, as shown in Figure 10.

Any number of levels can be built to accommodate for the scale in the
two dimensions. In the worst case, this will be a binary tree, where the
number of nodes is O(2N — 1), and still linear to the size of the data being
searched.

An immediate observation from the description above is that the archi-
tecture also has implicit fault-tolerance. By having multiple nodes with the
same index partition, I;, dispatchers can be fault-tolerant by detecting time-
outs or non-replies. To ensure fault-tolerance on any level, the transparency
of dispatcher/searcher can be utilized to have redundant dispatcher.

5.2 Handling Update Dynamics

The second dimension of web dynamics, the update dynamics, is also a
problem facing search engines. Traditionally, structures used for indexing
are based upon offline building, and in many cases this is a highly time
consuming process.

There are two ways to make indexing processes more dynamic:

1. Identifying new inverse structures that allow for online updates.

2. Utilizing a heterogeneous architecture to allow for dynamic changes to
the dataset.

For 1) there are several proposed solutions in the IR community, but
none that has gotten big acceptance in the industry.

The FAST Search engine uses the second approach to cope with dynamic
updates. Looking at the distributed architecture described above, the index-
ing is an easy goal for parallelization. Indexing D can be done by indexing
I, I, ... Iy individually. Since separate search nodes handle each partition,
indexing can be done individually.

This solution still does not make indexing possible online on each search
node, but by having slight overcapacity of search nodes, we can easily switch
nodes on and off line to update parts of the dataset. Still, the system is

71



SEARCH ENGINES AND WEB DYNAMICS

Query Router
(0a] (D]
(svta] [os0a] el foccd”  Bdod! (o]
12 hours :
fowa) o] BBl . Bl (o ] =] [ow |
2 days I [ s ] [si ] [su |1
o] [eew ] (s |[ort | - [s]]

10 days

Figure 11. Multi-tier cluster

batch-oriented and the time from detecting a document update until it is
pushed live will still be 20 hours or above.

By using a crawling system that allows heterogeneous clusters of crawler
nodes, it is easy to identify sources with different update rates. Taking the
architecture described in 5.1 and using that as a building block, we can
have a cluster of search clusters where each cluster has a different update
frequency.

A possible cluster solution is shown in Figure 11. In this example, we
deploy three different clusters, each receiving a data feed from a different
crawler cluster. The update frequencies of the clusters can then be different,
but in general update cost (in either time or required hardware) is linear to
the data size.

6 Future Challenges

The evolution of the dynamic web raises several significant challenges for
search engines. First, the increasing dynamics and size makes intelligent
scheduling increasingly important. Being able to update the most impor-
tant parts of an index at a timely rate will be crucial in order to bring
relevant search results to the users. Intelligent scheduling, heterogeneous
crawling and push technology will be crucial to building aggregation and
search systems capable of scaling with the web at a reasonable price.

The size of the web is clearly a big challenge, and one important question
is arising: Do we actually need to search several billion documents for every
query? Being able to intelligently classify and predict a probable subset of

72



SEARCH ENGINES AND WEB DYNAMICS

the data set to search for given queries will enable us to build much more
efficient and cost-effective.

At the same time, the "Deep Web” is most likely growing at a rate
much higher than the current ”indexable” web. There is no unified and
practical solution to aggregate the deep web on a large scale, but push
based technology and perhaps tight integration into publication and content
management systems will evolve to address this challenge.

The explosive growth of the web also calls for more specific search en-
gines. The introduction of focused crawling and document classification
enables both crawlers and search engines to operate very efficiently within a
topically limited document space. The Scientific search engines scirus.com
and www.researchindez.com are good examples of engines that uses both
focused crawling along with document classification. The dynamics also has
a more homogeneous character within such a vertical, enabling a fresher
search experience.

7 Conclusions

We have discussed several dimensions of web dynamics. Both growth and
update dynamics clearly represent big challenges for search engines. We
have shown how the problems arise in all components of a reference search
engine model.

The FAST Search Engine architecture copes with several of these prob-
lems by its key properties. The overall architecture that we have described
in this paper is quite simple and does not represent very novel ideas. The
system architecture is relatively simple, and this makes it manageable even
when it grows. In a real-life system with service level requirements, sim-
plicity is crucial to operating the system and to being able to develop it
further.

Being heterogeneous and containing intelligence with regards to schedul-
ing and query processing makes this a real-life example of dealing with web
dynamics issues today. The service running at www.alltheweb.com and ma-
jor portals worldwide currently handle more than 30 million queries per
day. Indexing happens every 11 days, and the full index size is currently
about 700 million full-text documents. These documents were selected from
a crawled base of 1.8 billion full-text documents. The crawler architecture
enables us to crawl at rate of 400 documents/second and beyond.

The system is based on inexpensive off-the-shelf PCs running FreeBSD
and our custom search software. We currently use approximately 500 PCs

73



SEARCH ENGINES AND WEB DYNAMICS

for our production systems. Most of these machines are search nodes. We
currently use 32 machines for crawling. The hardware configuration differs
depending on the role the machine has in the architecture and the time
of acquisition. Most machines are typically dual-Pentium machines with
between 512 and 1024 Mbytes of memory.

Future evolution of web dynamics raises clear needs for even more intel-
ligent scheduling to aggregate web content as well as technology for push-
based aggregation. By doing more intelligent query analysis and processing,
we will be able to do a sub-linear scaling with the growth of the web based
on the ideas from Figure 11. It is possible to create a multi-tier system
where one tier with few columns and many rows handles a relatively large
part of the most popular queries. Another tier with more columns but fewer
rows can then handle the remaining queries.

References
[1] Alltheweb. http://www.alltheweb.com.
[2] Html engine. http://www.cs.colorado.edu/home/mcbryan/Home.html.

[3] T. Bray. Measuring the web. In Proceedings of the Fifth International
World Wide Web Conference (WWW$5), 1996.

[4] B. E. Brewington and G. Cybenko. How dynamic is the Web? Com-
puter Networks (Amsterdam, Netherlands: 1999), 33(1-6):257-276,
2000.

[6] S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. In Proceedings of the 7th WWW Conference,
http://decweb.ethz.ch/ WWW7/1921 /com1921.htm, 1998.

[6] J. Cho and H. Garcia-Molina. Estimating frequency of change. Unpub-
lished, 2000.

[7] J. Cho and H. Garcia-Molina. The evolution of the web and implica-
tions for an incremental crawler. In Proceedings of the Twenty-sizth
International Conference on Very Large Databases, 2000.

[8] J. Cho and H. Garcia-Molina. Syncronizing a database to improve
freshness. In Proceedings of the 2000 ACM International Conference
on Management of Data (SIGMOD), 2000.

74



SEARCH ENGINES AND WEB DYNAMICS

[9]

[14]
[15]

[16]

J. Edwards, K. S. McCurley, and J. A. Tomlin. An adaptive model for
optimizing performance of an incremental web crawler. In World Wide
Web, pages 106-113, 2001.

A. B. et. al. Graph structure in the web. In Proceedings of the Ninth
International World Wide Web Conference (WWW9), 2000.

A. Heydon and M. Najork. Mercator: A scalable, extensible web
crawler. World Wide Web, 2(4):219-229, 1999.

J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke. WebBase:
a repository of Web pages. Computer Networks (Amsterdam, Nether-
lands: 1999), 33(1-6):277-293, 2000.

B. A. Huberman and L. A. Adamic. Evolutionary dynamics of the
world wide web. Technical report, Xerox Palo Alto Research Center,
1999.

M. Koster. A standard for robots exclusion.

S. Lawrence and C. L. Giles. Searching the World Wide Web. Science,
280(5360):98-100, 1998.

S. Lawrence and C. L. Giles. Accessibility of information on the web.
Nature, 400(6740):107-109, 1999.

O. A. McBryan. Genvl and wwww: Tools for taming the web. In
Proceedings of the First International World Wide Web Conference
(WWW1), 1994.

B. Planet. The deep web: Surfacing hidden value. Technical report,
Whitepaper, 2000.

D. S. R. Richard Seltzer, Eric J. Ray. The AltaVista Search Revolution.
Osborne McGraw-Hill, 1997.

75






The FMS Search Kernel and its
Performance Characteristics

Knut Magne Risvik Tor Egge
Yahoo! Yahoo!
P.O. Box 4452 Hospitalslgkkan P.O. Box 4452 Hospitalslgkkan
NO-7418 Trondheim, Norway NO-7/18 Trondheim, Norway
kmr@yahoo-inc.com tegge@yahoo-inc.com

Abstract

This paper describes the anatomy of the FMS Search engine, outlin-
ing data structures and algorithms. Key data structures are described
in detail to show the novel elements for high-end performance. The
search kernel is then analyzed to derive a performance model for the
different aspects of searching, and to create a joint performance model
which can be used for performance planning of large-scale engines. A
sample document collection from the FAST Web Search service, and
a real query log is then used to experimentally verify the performance
model. We show that our search kernel will behave linear in document
collection size given a certain set of constraints.

1 Introduction

A search engine kernel is a key part in all search engines and IR systems.
The FMS Search Engine kernel (FMS Search) is the research variant of the
search kernel component in all search products and services from FAST. A
typical search engine installation consists of the following major modules:

e Data aggregation and processing. For a web search installation,
this typically consists of a crawler and a chain of data processing (pars-
ing, link extraction, deduping, etc). Enterprise-alike application typi-
cally use adapters into databases or CRM/ERP systems.

e Search kernel and scalable architecture. Large scale search en-
gines are usually distributed onto several physical machines. The
search kernel must be fit for this, and a framework for distribution,
fault-tolerance and scaling are built on top of it.

7



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

e Query frontend. In front of the kernel and its distributed architec-
ture, a query handling and result presentation frontend is placed. In
its simplest form it is merely an HTML or XML template engine, but
more sophisticated query preprocessing is often also included here.

Various methods have been developed to support efficient search and
retrieval of text collections. Examples are suffiz arrays[5][3], inverted files
or inverted indezes[8][10], and signature files[2].

The performance of a search kernel is of critical importance when it
comes to scaling of a search engine. The primary goal of FMS Search is to
build a lean and flexible search engine kernel that is optimized to be part
of very large scale search systems. This paper outlines the structures and
algorithms of such a system along with a theoretical performance model.
Furthermore, we provide empirical studies of the search kernel to verify the
correctness of the performance model.

There are several other issues on designing a search kernel related to
network handling, traffic, thread and process scheduling that are beside the
discussions in this paper.

2 Preliminaries

The FMS Search Engine[7] searches a set of documents ,D. These documents
are preprocessed and a catalog, C, is built. A catalog may contain different
indexes, I. Each index may hold a different portion of each document (we
might have a separate index for summaries, locations, body text, etc.). Each
document may also have meta information (which may or may not be part
in any index). This meta information will be denoted M.

Searching is done by parsing and executing queries, (). A query consists
of a set of query terms, {¢}. Query terms, g;, can either be independent
words, or several query terms may be grouped to a phrase query term. A
phrase query term is a sequence of single terms, qi,q2,..., g, that should
be matched in the sequence given by the phrase term.

3 Overview
The overall FMS Search overall is shown in Figure 1.

A search engine consists of several domain mappings, enabling mapping
from a query @ to a resultset R, i.e. :

78



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

Result Metadata

Query Metadata request

Sorted results

Query
Parsing

gry
Result
Computation

Document
Metadata
Lookup

Dictionary
Lookup

Boolean
Occurence
Lookup

Occurrence
Lookup

Figure 1. FMS Search overall anatomy

79



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

Q—R (1)

During this process, several substeps are performed by mapping between
different domains. FMS Search currently uses the following domains:

* Query, @

e Query term, q

Term id, 7d,
e Document id, idg,.

e Document metadata, Mg,

The mappings between the different domains will be described in more
detail.

3.1 Query parsing and dictionary lookup

The first step of query processing is a combined parsing of the query and
dictionary lookup of the query terms. Thus, we have a mapping from query
to the set of query terms,

Q— {q} (2)

Also, by doing a dictionary lookup the query terms are mapped into
their respective term ids by the mapping :

q — idg (3)

A program, P, is also extracted based on the semantic found in the
query, Q.

After this step of query processing the query consists of a set of term
ids, {id4} and a program P describing how to compute the final result set.

3.2 Result Computation

After mapping query terms to query term ids, the next step is to do the
real searching. That is, map from a term id to a set of documents in which
the query term occur. From the set of documents for all the query terms, a
final resultset, R, is computed based on the program P extracted from the

query.

80



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

Depending on the nature of the query term, two different mappings can
be performed in the index:

e Single term mapping If the query term is a singular term, then the
mapping :

q — {idaoc} (4)

will be performed. A reverse index occurrence file is used to perform
the mapping. The structure of the file will be described in detail later
in this paper.

e Phrase term mapping When the query term is a phrase, a different
mapping must occur. The phrase is defined as a set of terms {q}.
Thus, the mapping :

{a} = {idaoc} (5)

gives the set of documents where the phrase {¢} are found. The struc-
tures and algorithms used for this mapping are described later.

3.3 Document information

A document D, that is indexed in the catalog may have some meta data
that can be made available in the search engine. Examples of such metadata
can be location (URL), size, date, title, etc.

Thus, FMS Search supports mapping from a given document id to the
corresponding block of metadata for the document, idgoc — Myoc.

4 Data structures

This section describes the data structures used in the search engine, as well
as the algorithms used to perform the searching.

4.1 Dictionary

During query parsing, each query term, ¢, is mapped to its corresponding
term id,id, .

As shown in Figure 2, the dictionary is consists of records containing
holding the word as a string, the accumulated number of occurrences of the
word, and the accumulated number of documents for the term. The reason
for holding the accumulated numbers instead of the separate numbers is

81



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

Word (string) \ Acc. #occs (32 bit) \ Acc. #docs (32 bit) \ Offset (32 bit)
Sparse data file Main data file
=] > 0Oat———

14—

24—
3

1022
1023
1024
1025

2046

3 2047
2048
2050

Figure 2. Dictionary structures

Index file

82



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

allow direct access in the term matching and the phrase matching phase
of the search. This will come more apparent when we discuss the lookup
algorithms later.

Since the length of the records are variable, a separate index file is used
to get the position of the dictionary entry for a given word number. The
word number is thus implicitly defined.

Using the index file and the data file for the dictionary, a simple binary
searching algorithm can be used to lookup query terms. Letting Dict de-
note the dictionary, | Dict| denotes the number of records in the dictionary.
Binary searching is a O(log|Dict|) algorithm. Since the dictionary system is
based on the data stored on disk files, the algorithm requires O(log|Dict|)
disk accesses.

The dictionary system of the FMS Search Engine kernel utilizes a binary
search algorithm with two optimizations to reduce the number of disk ac-
cesses to O(1) instead of O(log|Dict|). A more detailed discussion around
general optimization of binary search with variable access costs can be found
in [6].

e Sparse data. By storing each 512th entry of the dictionary data and
each corresponding dictionary index entry in main memory, and then
ensuring that the initial delta value of the binary search algorithm is
a power of 512, all comparisons required for the binary search will
use the data available in main memory. This optimization requires

| Dict| .
O('573-) main memory usage.

e Buffering small deltas.

When using the sparse data as described above, the first phase of the
binary search algorithm can determine two 512 entry areas of the dic-
tionary where the record searched for may reside. Since the overhead
of positioning the disk heads for a read operation is high relative to
the time for a disk data transfer, it will pay off to buffer these 1023
entries when the delta gets below the value of 512.

The complete binary search algorithm can then be described with the

pseudo-code shown in Figure 4.1.

4.2 Term matching

For matching a single term, it is required with a mapping from a term id
to the set of documents containing the term. Also, some extra parameters
may be required to perform ranking (i.e term frequency, term context, etc).

83



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

while (delta < |Dict|)
delta < delta << 1
delta + delta >>1
pos = delta — 1
while(delta > 0)
if (pos&511) = 511)
cmpres < Compare(term, sparse[pos >> 9])
elseif (delta == 512)
ReadBuf fer(pos — 512, pos + 512)
if (empres = 1)
pos < pos + delta
else
pos < pos — delta
delta < delta <<'1

Figure 3. Binary search algorithm for dictionary lookup

The FMS Search Engine Kernel uses a format as shown in figure Figure 4
to store the required data. The fields of the records in the data file are
described in Table 4.2.

The semantic interpretation of the Context field is independent of the
search engine anatomy, and the interpretation during ranking is described
in FMS Search Engine kernel configuration.

The entries are sorted in the file based on the document id. However,
no term id entry is present in the record. This information is thus required
to be determined before accessing this structure. As shown in Figure 4, this
file contains the list of entries for each term id, sorted by document id within
the list of each term.

Also, since the lists of document ids appear in the same order as the
corresponding term ids (implicitly), the accumulated number of documents
found in the dictionary structure can now be used to directly access the
proper document id list in the term index. The length of the term list
is easily determined by subtracting the accumulated number of documents
from the next accumulated number (next entry in the dictionary file).

Since the format described in Table 4.2 does not contain a field describing
the position within a document, we have no way of distinguishing between
the different occurrences that may exist for a term in a document. Thus, we

84



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

‘ Docid ‘ Firstocc | Numoccs | Spread Context

Boolean Occurrence File

Dictionary accumulate #docs

/\:

—-
[o]
o
&
S
g
&
3
Q' Index of terms
in bitvectors Bitvectors
120 » 111010101011010110101010101111010100
230 » 100101011010101101010001011010011101
943 » 101101011011010110101100011011010010
999 » 100000010010111101100010110100011111
1001 » 000101001010111010111101010000110110
1029 » 010110111110101111110010101011111011
2400 » 100001101110000101011101011111011111
9320 » 111111111111111111001110000110101010
9902 » 111110101000000000000000100110000111
10001 »| 001000000000000010011111110011110101
12301 » 010011001010101111011101011011111110
16%03 »| 001000111111101110000010111111000101

Figure 4. Boolean occurrence structures

85



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

Name Sorting | Length (bits) | Description
Docid Ascending 32 The id of the document
Firstocc N/A 8 Position of the first occur-

rence of the term in the docu-
ment (logarithmic scaled)
Numoccs N/A 8 Number of occurrences of the
term in the document (loga-
rithmic scale)

Spread N/A 5 A number indicating the
spread of the term in the
document

Context N/A 3 3 bits that are used to de-

scribe the context of the term
in the document (e.g. title,
heading or body).

Table 1. Term index field descriptions

compress the occurrence information into the fields describing some statistics
for the term within the given document.

4.3 Term bitmaps

Some terms tend to be very common in large document corpi. As shown in
Table 4.2 each entry in the term file occupies 7 bytes. Furthermore, the very
common terms should have less influence of the ranking than more seldom
terms.

The FMS Search Engine kernel stores the document id lists of the more
common terms in a different manner than the structure described in Sec-
tion 4.2. Instead of storing a single entry per document, a vector of N bits
is stored for each term, where bit ¢ is set if the term is present in document
1. This removes any context and ranking information found in the structure
described in Section 4.2, thus we will have no way of distinguishing rank
values of terms found in a bitvector. This might sound alarming, but the
drilling mechanism described later solves most cases of this problem.

In Figure 4 the bitvector structure is shown along with the other struc-
tures used for terms.

The bitvector structure is also discussed in [11] with optimizations and
generalization into bitslices.

86



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

Name Sorting Length (bits) | Description

Nextword Ascending 1 32 The term id of the next
consecutive word

Nextnextword Ascending 2 32 The term id of second
next consecutive word

Docid Ascending 3 32 The id of the document

Position Ascending 4 26 The position of the term
within the document

First Context N/A 2 Context information of
first term

Second Context N/A 2 Context information for
the next term

Third Context N/A 2 Context information for

the second next term

Table 2. Phrase index field descriptions

4.4 Phrase matching

Recalling from Section 3.2 and in particular Equation 5, matching of phrases
is matching of consecutive terms within a document.

The term matching format described in Section 4.2 does not contain
entries for all the occurrences of a term within a document. Thus, being
able to match phrases requires a more extensive index structure.

The FMS Search kernel employs a special version of Suffix Arrays [5].
In [9] and [1] the 'nextword’ structure is introduced and discussed. The
structure used in this paper is a generalization of this. An overview of the
structures used is shown in Figure 5.

Let T be the text containing the terms %y, t1, :., tny. Now, let 7; denote
the term suffix ¢;, t;41,:.,t 5. Furthermore, let Tik denote the k-prefix of the
term suffix T‘i, ti+1, ti+2a:-7ti—|—k-

Now, let Pos be the lexicographically sorted array of all suffix of the
text T. Pos is then the suffix array of T'. Let Posy be the lexicographically
sorted array of all k prefixes of T', T, that is Pos[i] <je; Posli + 1] for all
1 < N, letting <j., denote an lexicographical ordering.

In FMS Search, we choose to use k = 3 in the phrase structure. The
joint structure can then be summarized as in Table 4.4. The actual imple-
mentation uses multiple tables to avoid redundancy. This is illustrated in
Figure 5.

Lookup of any given triple of terms, [¢1,%2,t3], can now be done by a

87



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

Dictionary accumulated #o

CCS

Nextword ‘ Nextnextword ‘ Offset ‘

| Docid |

Position ‘ Context ‘

Phrase triple file

'

Phrase occurrence file

common triple index

ZAN

(common triples)

74

common triple index

Boolean Occurrence File
(common triples)

!

Bitvectors
(common triples)

A 2 =™ t t2 13
. . . Bitvectors
common triple bitmap index (common triples) common triple bitmap index
t1 t2 1110101010110101101010110 t t2 13

1110101010110101101010110

1011010110110101101011000

1001010110101011010100011

-
—» 1001010110101011010100011
|
-

1000000100101111011000101

0001010010101110101111010
0101101111101011111100101
1000011011100001010111010
1111111111111111110011101

1011010110110101101011000

Yy

1000000100101111011000101

0001010010101110101111010

0101101111101011111100101

1000011011100001010111010

1111111111111111110011101

Figure 5. Phrase occurrence structure overview

88




THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

m < 1Q|
ifm = 2then
R < Lookup([q1, q2])
elseifrm = 3then
R + Lookup([q1, g2, q3])
else
start <1
delta <+ 3
whilestart < m — 2do
R ¢+ R Ngeita Lookup([gi, gi+1, Gi+2]
if start + delta > m — 2then
delta < (m — 2) — start
start < start + delta
returnR

Figure 6. Algorithm for merging phrases

binary search algorithm. In Figure 5 we observe that we have separate
tables for triples and their occurrence data. Thus, by performing a binary
search in the triple array, we can do a direct lookup into the occurrence
table for the triple.

When performing a phrase matching operation of a pair of terms, [¢1, t2],
the binary search in the triple array could result in a range, [L, R]. However,
since Pos[L] <ie, Pos|R] for all L > R, we can map directly into a larger
portion of the occurrence array.

Performing phrase matching of phrases [t1, 2, ..., t;;], where m > 3, re-
quires multiple lookups to be performed. Letting Mgy, denote the intersec-
tion of phraseoccurrences with distance delta, the pseudo-code for perform-
ing the lookup of a phrase @ of any length is shown in Figure 4.4.

4.5 Performance

The lookup of a triple or a pair requires a binary search (algorithm will
be almost identical to dictionary lookup). Thus, a O(logn) algorithm can
be used. As with the regular dictionary, we use sparse files to reduce the
number of disk accesses in the binary search. (Those files are omitted from
Figure 5 to enhance readability). Given the set of documents {D;} that
totally adds up to the text T, it is obvious that the maximum number of

89



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

entries in Pos is |T'| (letting |T'| denote the number of terms in 7'). Thus,
we have an upper bound for the number of triples. In most application, the
number of unique triples is significantly less than |T|.

After performing a lookup of the triple (or pair), intersection of two sets
R; and Rj can be done in O(R; + Ry)) time. However, for most practical
applications, the phrase occurrence table is stored on secondary storage, and
needs to be loaded into primary memory before performing the intersection.
Loading the data requires O(R) time, thus the intersection operations will
take ©(R; + Rp) time.

4.6 Common phrases

For very common triples, the number of occurrences can be quite large. To
avoid performance problems for these triples (or pairs), we build some extra
tables. By storing boolean occurrence tables (like the ones in Figure 4) for
the common triples and pairs, we only need to store one entry per document
the triple occurs in. Thus, this limits the memory requirement and disk load
to |D;| for a triple or pair, instead of |T'|, which is the case for the regular
structure.

Of course, this structure cannot be used for searches of phrases with
more than 3 terms.

4.7 Metadata lookup

Thus, FMS Search supports mapping from a given document id to the cor-
responding block of metadata for the document, idg,. — Mgoe-

The mapping idgo. — Mgo. happens through a very simple two part
datastructure:

e Binary blob file. Meta data for all documents in a big binary block
file.

e Memory mapped index. A memory mapped array holding the
offset for each idjoc into the blob file.

Thus, for a document 7, we we need to read from the blob file from offset
Mneta[t] through Mpetq[i + 1]. The interpretation of the blob object is left
to the client software (for instance a web server).

90



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

5 Catalog, Indexes and Contexts

The FMS Search Engine Kernel can operate on different subsets of the entire
dataset. Given a set of documents D; accumulating to the text 7. T consists
of the the term t1, 19, ..., ty. During indexing, each term has a context, C(t;).
For HTML documents this can be the visual context (title, heading, etc).
A vpartition of the data which shares the same set of possible contexts is
usually grouped in a catalog. A catalog holds a separate dictionary, and
separate boolean and phrase occurrence files. Multiple catalogs are often
used to create searchable indexes of disjoint parts of the documents (e.g. the
normal text as one catalog, and the address of the document as a different
one).

Within each catalog, multiple indexes can be constructed. All indexes
within a catalog shares the same dictionary, but has separate boolean and
phrase occurrence files. Indexes can be any bitwise combination of the con-
text. E.g. given a catalog normal having the contexts title and body.
Then it is possible to construct an index title only holding terms that are
found in the title context, and a different index all holding terms found in
either contexts (title or body).

Multiple indexes with a common dictionary is implemented by repeating
the accumulated fields for each entry in the dictionary for each index in the
catalog.

Aside from the searchable content, indexing also creates two other classes
of data:

e Document metadata is metadata about the document that are not
necessarily searchable. The metadata is forwarded to the dispatching
system, and is used for presentation of the search results.

e Document attributes. The attributes of a document can be mul-
tiple. Size, date, connectivity, and other qualitative measures can be
used here. The document attributes are used for static ranking pur-
poses.

The entity-relationship of the concepts used in the dataset is summarized
in Figure 7.

6 Query processing

A query is interpreted using a stack machine in the FMS Search engine ker-
nel. Thus, the query will be compiled down to a stack of query instructions

91



THE FMS SEARCH KERNEL AND ITS PERFORMANCE

CHARACTERISTICS

1 1 -,

—1 Document metadata — Dictionary
* *

Dataset Catalog Index
*

1 . *|

| ' Document attributes L Context

(ranking)

Figure 7. Entity-relationship between dataset components

before executing it.

The basic elements of the stack are:

e Term

e Phrase

Result

During execution of the stack, the stack is converted into the final search
result. Thus, letting S; denote a general stack element, and R denoting a
result stack item, the execution of a query can be denoted £ : S; — R. In
Table 6, the different operators are described along with their arity. Note
that the non-operator stack elements also can act as operators, thus they

Operator

have a default behavior.

7 Result handling

During processing of a query in the search pipeline, a search result set is
constructed. Thus, efficient datastructures and algorithms for result han-
dling is crucial for the overall performance of the search engine. This section
describes the datastructure used for result handling, and the algorithm used
to operate on it.

92




THE FMS SEARCH KERNEL AND ITS PERFORMANCE

Description

CHARACTERISTICS
Operator | Arity | Stack oper-
ations
OR n>2|-
AND n>2]-
NOT n>2]|-
RANK n>2]-
TERM 1 -
PHRASE | > 2 -
RESULT | 1 Nil

POP elements, compute the union
of the parameter elements, then
PUSH the OR’ed results.

POP elements, compute the inter-
section of the result of the pa-
rameter elements, then PUSH the
AND’ed results.

POP elements. Compute the differ-
ence between the result of the first
element and the remaining elements
of the operator. Then PUSH the fi-
nal result.

Ranks the result of the first param-
eter with the results of the 2...n
parameter elements.

Search for the term found in the ele-
ment. PUSH the result. A term can
be of the form catalog.index:term or
just term.

Search for the phrase consisting of
the parameter terms and PUSH the
result.

A result set. Execution leaves the
stack untouched.

93




THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

Overflow bitvector

Limted result set

Document id Rank value
Document id Rank value
Document id Rank value
Document id Rank value \
Document id Rank value
Document id Rank value
Document id Rank value

%1101010101101011010101100001001100011101010 ‘

Figure 8. Resultset structure overview

7.1 Datastructure for results

Storing the results requires a datastructure serving three purposes:

1. Performance. Operations on the result set datastructure must be
very efficient. For a high-performance search system hundreds of re-
sultsets can be computed per second.

2. Size The size of the result set should be as small as possible. Result
sets reside in main memory, which is a limited resource.

3. Quality The resultset datastructure needs to hold enough information
to provide high quality results.

For each query, @, the resultset, R, should be a set of tuples < idg,¢, rankgoe >
holding documents ids and rank values.

Since the size of a result set can grow very large, a mechanism must be
used to limit the space requirement for the structure. The ranking infor-
mation is only used to sort the results based on their rank order. In most
cases, there is no need to have the whole resultset sorted, since the user only
observes the difference in ranking among the best results.

94



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

Thus, a simple solution would be only hold the ¢ best results. This will
however require holding the entire resultset during computation to ensure
correct results.

Instead, we use a combined structure. An array of < idgoe, rankgoe >
tuples are combined with a bitvector with one bit per document in the
dataset D;.

Now, assuming that the query terms can be broken down in an array
[t1,t2,..tn], where t; <p ti+1, letting <, denote an ordering based the ex-
pected average rank value, E[r,t].

Thus, we have an ordering ensuring that we do the terms that are most
likely to give the highest rank values first.

Letting [ denote the maximum length to use for the array part of the
resultset, and letting |R(t;)| denote the size of the intermediate results for
term t;, we add each term to the result set with the following check:

if|[R|+|R(t;)| < lthen
AddResultToArray(R(t;))
AddResultToBitvector (R(t;))

7.2 Ranking

Given a query, Q, the result set R should be sorted according to the rank
value. Each document in the resultset has a rank value for the query. The
rank value have two main components, namely the static rank value and the
dynamic rank value. The static rank value is a value computed for the given
document D; independently of the query, while the static rank is the rank
for the document D; with regards to a query (). Each term in the query
contribute to the dynamic rank value. Since we have the option to have
boolean expression in the queries, there are two different types of terms in
the query:

e Positive terms. Terms that are either part of an OR or an AND
expression. These terms will have a positive effect on the ranking.

e Negative terms. Terms that are part of a NOT expression. These
terms should have no impact on the ranking.

Now, defining the following function:

1 if Q; is a positive term.
0 otherwise

w(@) = {

95



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

Then, we can define the rank value for a document D; and a query

Q=0Q1,Q2,...,Qn as:

j=n

r(Q,Di) =rs(Di) + > w(Q;)rp(Q;, Di) (7)

j=0

Where 7p(Qj,D;) is the dynamic rank value for the document D; for
the query term ;. The dynamic rank value for a document D; and a query
term Q; when @; is a single word term is defined as :

rp(Qj, Di) =
TFID|fq;4] + FOlpq;,pipl + CBlcg; pil
DTloga fqj]

where fgj, Di denotes the term frequency of of term ); within the doc-
ument D;, pgj pio denotes the position offset of the first occurrence of term
Q); within the document D;. cq; p; denotes the context(s) of the term Q;
in document D;, and fgj is the global frequency of the term Q).

When, the query term is a phrase term, the dynamic rank value is defined
as:

TD(Qja DZ) =
Bphrase + FO[ij,Di,O] + CB[CQjaDi]
DTTlogs fqi]

Bphrase denotes a possible rank boost value for phrases.

TFIB, FO, CB and DT are lookup tables to approximate the functions
used for ranking based on the different ranking factors.

After the final resultset R has been computed, a bin sorting algorithm
is applied over the array to produce the correctly ranked resultset.

7.3 Drilling

Recalling from Section 7.1, we have two parts in the result set datastructure,
the array and the bitvector. Obviously, the bitvector does not provide any
ranking information whatsoever. From the algorithm in Section 7.1, it is
obvious that the array will not hold all hits in the result set unless [ (the
limit of the array size) is sufficiently large.

96



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

We also observe that the algorithm for adding term results to the final
result work on entire subresults for terms. Thus, the array size can be
significantly lower than the limit /. Which results to put into the array and
which to put into the bitvector is now chosen based on the frequency of the
term, which is a good estimate on the expected average rank value for that
term, referring to 8.

By observing that within a catalog, there may be multiple indexes that
overlap eachother, as illustrated in Figure 9, we can improve the fillgrade
of the array, by performing a drilling operation. From Figure 9, we observe
that in Catalog B, 12 C I1 and I3 C I1. A typical example can be when
searching HTML documents. Then 11 could be the entire document, while
I2 could be the title of the document (which is more important), and I3
could be the headings in the document (which also are more important than
the general body). Then it should make sense to first try to fit all hits from
the largest index into the array, and if not, go to the second largest, and
so on. The assumption being placed here is that the ranking information
retrieved from the sub-indexes are a close enough approximation to the
ranking for the entire document, and thus we are able to get a much higher
fillgrade of the array, and thus more hits with ranking information for the
particular query.

By identifying which indexes can be used for this drilling algorithm, a
set of links should be made to determine the sequence of indexes that are
searched. For the example above, it would be : I1 — I3 — I2.

Then the result computation algorithm in Section 7.1 could be refined to
try multiple indexes. The new proposed algorithm is shown in Figure 7.3.

8 FMS Search performance model

In order to understand performance, bottlenecks and trade-offs of the FMS
Search system, a simple performance model will be useful. Recapping from
earlier in this paper, the following mappings take place in order to move
from a query, @ to a result set, R.

1. Q@ — {q}, from a query to a set of query terms.

2. ¢ — idg, from a query term to a term id.

3. ¢ = {idgoc }, from a term id to a set of document ids.

4. {q} — {idgoc}, from a set of term ids (phrase) to a set of document

ids.

97



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

Entire document

Catalog A, Index 10

f Catalog B
/ Index 11

Index 13

Index 12

Catalog C, Index 14

Figure 9. Catalog and Index set map

98



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

Iori_q «— 1

while (Drill(I) # NIL) and( |R|+ |R I| > do
I «+ Drill(I)

ifI # Iyrigthen
R <+ R + Bitvector(I,ig) + Array(I)

else
R < R+ Array(I)

returnR

Figure 10. Result computation with index drilling

In these models we will make the assumption that the relation between
number of hits for a given query and the number of documents searched is
following Heaps law [4]:

R = Kn” (8)

Where K and f are constants between 0 and 1.

8.1 Query Parsing and Dictionary Lookup

The first mapping happens through query parsing. Query parsing is not
thoroughly described in this paper, but there are no recursive constructs in
the grammar, so the parsing is done in linear space and time to the query
itself, O(|Q])-

In order to perform the second mapping, which must take place for ev-
ery term in the query, a dictionary lookup is required. The algorithm in
Figure 4.1, is a simple binary search, thus it takes O(log|Dict|) to run. The
algorithm is guaranteed to have O(1) access to the disk storage, given that
we use O(% memory space. A disk read will be for 1024 records of vari-
able size. Letting ¢ denote the average wordlength, the disk operations will
be 1 seek and then 1024 - (g + |ptr|) bytes to read, where |ptr| denotes the

size of the pointer in the dictionary. Summing up:

Processing O(log|Dict|)
Memory usage 0(1)

Disk transaction | 1

Bytes read 1024 - (g + |ptr|)

99



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

8.2 Boolean occurrence lookup

From the dictionary lookup, the offset and length of a boolean occurrence
list is implicit. Thus, this operation is a disk read operation only. Letting
hits(q) denote the number of hits for the query term ¢, we need to read
hits(q) bytes from disk in this operation. However, if hits(q) > % there
is only a bitvector that will be read for the first round, but in addition,
drilling might take place and result in the read of a boolean occurrence list
in addition.

Processing 0(1)

Memory usage O(hits(q)) + %
Disk transaction | 2

Bytes read hits(q) - 7+ &

8.3 Phrase occurrence lookup

The phrase matching part has a more complex operational model. As de-
scribed in Section 4.4, there is a binary search applied to get subresults for
tuples and triples. Letting |@Q| denote the length of the query (number of
terms), we will need to perform [|Q|] binary searches towards a disk struc-
ture of size O(N). The binary search is using a sparse index as described
earlier, resulting in ©(1) disk reads.

Letting hits(g; . .. g;) denote the number of occurrences of the the n-tuple
gi - - - g5, we will need to merge the retrieved subresults of the n-tuple with the
current result set using a linear-scan merge. Thus, merging will have to take
place [‘%] —1 times, where n is typically 3 with the datastructure used here.

Processing O(|Q|) - max;hits(g; . .. gj)
Memory usage 2 - max;hits(g; . . . qj)

Disk transaction | <% - O(1)

Bytes read (ZL‘:?'O‘” hits(qi...q +mn)) -7

8.4 Result Combination

For every query term, there will be a merging phase into building the main
result set. Simplified, we are merging two results sets for every term in the
query, and merging happens with a linear scan approach.

Given the use of result sets that have both an array with max [ elements,
and a bitvector - every merge step will take ©(maz(l, hits(¢:)) + &), where

hits(g;) denotes the number of hits for the term ¢; of the query, and N

100



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

denotes the total number of documents being searched. So, for a query @
there will be @(Zg'o_l(max(l, hits(g;)) + %)) which can be simplified into
0(1Q|- (1 + X)).

8.5 Overall Performance Model

In order to utilize the performance model in scaling and planning of search
engine installations, it is necessary to derive the model onto a few key pa-
rameters:

e Corpus Size. Number of documents in corpus of the engine.

e Query load characteristics. Average number of terms in query,
|Q| 4pe» aVerage number of hits in result set hitsqye, proportion of query
that is phrases (in average), Pphrase-

From [4] we derive that the size of a dictionary is related to the size of
the corpus in a sub-linear model, but due to having a simplistic tokenization,
the dictionary is for all practical purposes linear in growth to the corpus.
So thus we assume:

| Dict| ~ Ngoes (9)

Furthermore, assuming that the number of results returned for a query
is bound to the corpus by means of Heaps law we can state that hits(Q) =
O(a - Ngpes) where Ngoes denote the corpus size, and « is a scaling factor
dependent of the query mix.

Since there will be dictionary lookups for all query terms, there will
always be O(|Q|sve) disk transactions and using 9 we will have O(|Q|ave -
log(a - Ngoes)) processing.

For boolean occurrence lookups, using 8 we derive that there is O(a -
Ngocs) memory usage.

On phrase occurrence lookups, we can simplify the expressions to being
O(|Qlave - @+ Ngoes) processing, O(a - Ngoes) memory usage, and |Q|qe disk
transactions.

Letting the query having pphrase:|@|ave Phrase elements, and (1—pphrase)
|@Q|ave non-phrase elements, we can express the overall performance model
as shown in Table 8.5.

101



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

Processing O(|Q|ave) . lOg(Oszocs) ~+ Pphrase |Q|(we *aNgoes +1- lOg(l)
Memory usage | O(aNgoes)

Disk transaction O(|Q|ave) + O(pph,rase) + O((l - pphrase) i |Q|ave)

9 Performance evaluation

Several experiments have been conducted in order to determine the perfor-

mance curves of the FMS Search engine. The main goals is to determine the

service level for different document volumes, query loads and query sets.
Service Level includes the following metrics and constraints:

e Query capacity - number of queries per second the system can handle.

e Average responsetime - The average time from a query is submitted
till the response returned.

e Responsetime percentiles - Percentage of queries that return results
within a given timeframe.

For the benchmarks conducted in this study, we measure capacity and
performance by having at least 99.5% of the queries answered within 3 sec-
onds, and with average response time lower than 0.4 seconds. Thus:

Pogs = 38 (10)
tave = 0.4s (11)

Furthermore, we also measure CPU load and disk load to indicate that
the performance model outlined in this paper is approximating the real
behavior.

9.1 Benchmark configuration

We used a machine configuration identical to the one being used in the
FAST/Overture production environment, as follows:

CPU Dual 2.8Ghz Pentium Xeon
Memory | 1GB Main memory

Disk 12 x 18Gb (10K rpm)

Disk bus | 2xUW-SCSI channels

102



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

Documents | gqps | disk kb | disk tps | CPU idle
3M 900 | 25 2000 45
4M 557 | 34 1720 41
5M 434 | 40 1560 42
6M 352 | 50 1350 43
™ 365 | 58 1450 35
8M 311 | 66 1315 37
IM 292 | 73 1310 35

Furthermore, we use a large sample query log from the “www.alltheweb.com”
search destination site. The query log has 500K entries, randomly sampled
from the live query log. Characteristics of the query log are :

Number of queries 500,000
Unique queries 110,245
Average # terms in query | 2.643

ATl the queries performed in these studies have been conducted where the
default boolean operator between all terms was AND.

9.2 Performance for different data volumes

First, we indent to show the performance characteristic of the search kernel
with different number of documents indexed.

From the curves we observe a super-linear relationship between the doc-
ument size and the actual capacity. From the equations drawn above, one
would expect performance to be constrained by resource capacities (CPU,
disk, memory) and this is clearly observed in Figure 11. We see that trans-
action size and transaction rate has a -1 correlation which is expected, thus
the amount of data streamed from disk is close to constant. Furthermore,
we see a jagged, but still linear curve of CPU usage. Since we are relying
on SCSI drives with command tagging, the CPU load from disk operations
is fairly low.

We observe that the capacity is actually not linearly dropping of as we
increase the number of documents on the node. This is mainly due to the
mechanisms of drilling described in this paper. Thus, we limit processing
and memory usage by using bitvectors for parts of the result set we expect
to be large.

Observing the K B - T'PS relation to be fairly constant in the document
range, we draw the conclusion that the sweet spot of document size should

103



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

900 T T T T T 75
0
800
65
700 | 0
55
600
4 e
4 3
g 3 5
a
500
45
%0 40
35
300
30
200 25
3 4 5 6 7 8 9 3 4 5 6 7 8 9
Docs (M) Docs (M)
2000 T T T T T 6

1900 -

1800

1700

@
3
S ool

1500 -

1400

1300 : L L L 54

3 4 5 6 7 8 9 3 4 5 6 7 8 9
Docs (M) Docs (M)
(c) TPS (d) CPU

Figure 11. Performance metrics for different document sizes

104



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

1000 T T T T T

900 - B

800 1

700 1

600 - 1

500 - B

QPS

400 | .

300 1

200 y

100 | 1

0 I I I I I
0 2 4 6 8 10 12

Query terms

Figure 12. QPS as a function of number of terms

be expected to lie in the higher range of our test range.

9.3 Performance for different query complexity

The sample in 9.1 were now used to generate test sets with queries containing
1, 2, ..., 12 terms. The test was run applying a rate of queries as high
as possible and still maintaining the SLA as described in 10. The rate (as
queries per second) indicates the performance for the given subset of queries.
The rates are shown in Figure 12.

9.4 Performance for different #hits

To investigate the performance of the search engine for various ranges of
hits, we create a test query set as follows:

e Lower bound sets. Create subset for all queries with less than 1,
10, 100, ... hits.

105



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

Structure | Cache size (entries) | Hit ratio
Dictionary | 100,000 84 %
Booloce 200,000 64 %
Phraseocc | 1,000.000 43 %
Bitvector | 20,000 7 %
Docsum 10,000 53 %

e Upper bound sets. Create subsets for all queries more more than
1, 10, 100, ... hits.

Then, each of these querysets were used for performance testing, and the
curves are shown in Figure 13 and Figure 14. The curves are logarithmically
scaled. We observe the effect of drilling when the hitcounts are high (lower
boundaries), causing the scaling behavior to be very attractive. Also the
IO load support that. The Figure 14 shows that the drilling break-point is
around 1M hits.

9.5 Cache hit-ratios

Running the combined query set, we also measured the cache hit ratio of
the caches for the different structures with corresponding sizes of the cache.
The results are shown in Table 9.5. In the scope of this paper we did not
experiment with the cache sizes, since it would only make sense to do this
in the setting of larger system with caching at levels outside of the search
node as well.

10 Conclusive remarks

We have described the outline and main concepts of the FMS Search Engine
kernel. The combination of inverted files, suffix structures, drilling and
bitvectors we are able to build a search kernel with very good performance
characteristics. The theoretical model we derive suggest performance to be
linear in query terms and sub-linear in number of documents.

Empirical studies reveal a wide sweet-spot for a reasonable node config-
uration and performance characteristics that are in line with the theoretical
model.

The FMS Search kernel is an industrial search kernel that have been
proven to have performance and reliability for a wide variety of applications.
Since the design of the kernel that was described in this paper, there has

106



THE FMS SEARCH KERNEL AND ITS PERFORMANCE

CHARACTERISTICS

1000
@
a
<]
100 . . . . . .
1 10 100 1000 10000 100000 16+06 Te+
Min hits
10000
@
&
T 1000 /\j
a
100 . . . . . .
1 10 100 1000 10000 100000 1e+06 e

Min hits

(c) TPS

Disk KB

cPU

1000

100

S,

1 10 100 1000 10000 100000 10406 10407

Min hits

(b) KB

10 100 1000 10000 100000 16406 1407

Min hits

(d) CPU

Figure 13. Cumulative performance metrics for lower bound of

numbhits




THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

1000

100
o
@ <
4 1
S 2}
a
100 L L L L L L L 10 L L L L L L L
10 100 1000 10000 100000  fes06  1e+07  1es08  1e+09 10 100 1000 10000 100000  1e+06 16407 10408 1e+09
Max hits. Max hits
10000
@
£
£
g
1000 L L L L L L L 20 L L L L L L L
10 100 1000 10000 100000  1e+06  1e+07  1es08  1e+09 10 100 1000 10000 100000  1e+06 16407 16408 10409
Max hits Max hits

(c) TPS (d) CPU

Figure 14. Cumulative performance metrics for upper bound of
numbhits

108



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

been an enormous amount of development of the kernel, adding support
for compressed datafiles, proximity ranking operators, parallel evaluation of
query terms, and so on. Still the basic concepts described in this paper are
valid and key to the search kernel design and performance.

References

[1]

[2]

[7]

BAHLE, D., WiLLiaMS, H. E., AND ZOBEL, J. Efficient phrase query-
ing with an auxiliary index. In Proceedings of the 25th annual in-
ternational ACM SIGIR conference on Research and development in
information retrieval (2002), ACM Press, pp. 215-221.

FALouTsos, C., AND CHRISTODOULAKIS, S. Signature files: An access
method for documents and its analytical performance evaluation. ACM
Transactions on Office Information Systems 2, 4 (October 1984), 267—
288.

GRossI, R., AND VITTER, J. S. Compressed suffix arrays and suffix
trees with applications to text indexing and string matching (extended
abstract). pp. 397-406.

Heaps, H. S. Information Retrieval: Computational and Theoretical
Aspects. Academic Press, 1978.

MANBER, U., AND MYERS, G. Suffix arrays: a new method for on-
line string searches. SIAM Journal of Computing 22, 5 (Oct. 1993),
935-948.

NAVARRO, G., BAEZA-YATES, R. A., BARBOSA, E. F., Ziviani, N.,
AND CUNTO, W. Binary searching with nonuniform costs and its ap-
plication to text retrieval. Algorithmica 27, 2 (2000), 145-169.

Risvik, K. M. A search processor and method for retrieval of data and
the usage in a search engine. International Patent PCT/N099/00233,
1999.

SALTON, G. Automatic Text Processing: The Transformational, Analy-
sis, and Retrieval of Information by Computer. Addison-Wesley, Read-
ing, Massachusetts, U.S.A., 1989.

WiLriams, H. E., Z0OBEL, J., AND ANDERSON, P. What’s next? -

index structures for efficient phrase querying. In Proceedings of the
Tenth Australasian Database Conference (1999).

109



THE FMS SEARCH KERNEL AND ITS PERFORMANCE
CHARACTERISTICS

[10] WITTEN, I. H., MOFFAT, A., AND BELL, T. C. Managing Gigabytes:
Compressing and Indezxing Documents and Images. Morgan Kaufmann
Publishers, San Francisco, CA, 1999.

[11] ZOBEL, J., MOFFAT, A., AND RAMAMOHANARAO, K. Inverted files
versus signature files for text indexing. ACM Trans. Database Syst. 23,
4 (1998), 453-490.

110



The FAST Distributed Processing
Architecture (DPA) and its Application
for a Large-Scale Search Engine
Knut Magne Risvik Bgrge Svingen

Overture Services AS
P.O. Box 4452 Hospitalslgkkan

NO-7/18 Trondheim, Norway Trondheim, Norway
knut.risvik@overture.com * bsvingen@borkdal.com
Tor Egge

Querture Services AS
P.O. Box 4452 Hospitalslgkkan
NO-7418 Trondheim, Norway

tor.egge@overture.com

Arne Halaas
Department of Computer Science
Norwegian University of Science and Technology
Trondheim, Norway
halaas@idi.ntnu.no

Abstract

We design a general framework for shared-nothing parallel com-
puting. The framework is designed with an intention to be scalable of
processing capacity and data volume capacity. Furthermore, a perfor-
mance model for the architecture is derived, along with an algorithm
for construction of scalable clusters. The DPA system is deployed for
a large-scale web search engine, namely the FAST Web Search system.
We design the distribution and scheduling functions and evaluate the
performance of multiple configurations. The experiments show that the
DPA system possesses the given scaling parameters and the latency is
in concordance with the derived analytical model.

*Primary contact for this paper

111



THE FAST DPA

1 Introduction

A large class of problems can be described in such a way that the data to
be operated on can be distributed on a set of nodes, the problems can then
be partially solved on each node, and the results are then accumulated.

This paper describes an architecture for such a system, the FAST Dis-
tributed Processing Architecture, and proves that the architecture is linearly
scalable both with respect to the size of the data volume to be processed,
and with respect to the number of problems to be solved.

In [7] we are introduced to the terms SISD, SIMD, MISD and MIMD as
way of describing parallel systems. This architecture outlined in this paper
is clearly a MIMD based one.

We are focusing on how FAST DPA can be used as a scaling architec-
ture for search engine. Parallel Information Retrieval and search engines in
particular have been a subject for a lot of research.

The paper has two main parts. The first part outlines the framework for
DPA as a general architecture for solving problems with certain character-
istics. We derive expressions for scaling and performance properties in the
general sense.

The second part of the paper uses the framework as an architecture
for a scalable search engine. We use the findings in [13] to analyze the
performance and scaling of a search engine based on the FAST search kernel
and the FAST DPA framework for scaling.

2 Related Work

Distributed architectures for Information Retrieval has been introduced in
many settings. [10] is an example of an early one.

A shared-nothing approach, quite similar to the one being described in
this paper was presented in [15]. Harvest was a resource discovery and
information retrieval system that also had a distributed approached [4, 3].
The NOW (Network of Workstations) was the foundation of the Inktomi
Search Engine, and has been presented and discussed in various settings
[1, 8, 5].

Different approaches has also been outlined in [12] (for digital libraries),
[14] (P2P based) and in [11].

112



THE FAST DPA

3 Definitions

A data collection D is given. On this collection an equivalence relation ~

is defined, and from this the equivalence classes form a partition P = {D;}.

Due to this, VDi,Dj(Di €eP,DjeP=D;ND;= @) and UDiEP =D.
Being an equivalence relation, ~ fulfills the following requirements ([9]) :

e (d,d) € ~ foralld € D (reflexiveness)
o (di,d2) €~ = (dg,d1) € ~ (symmetry)

o (di,dy) € ~ and(dy,d3) € ~ = (d1,d3) € ~ (transitivity)

On the subsets of D, a function o : P (D) — N gives a measure of the
actual data size.

A set of problems P is then given. Each p € P is of the form p =
{P;,P;,t}, where P; is a problem instance, P; is the subset of P, such that
UP; C D, that is of relevance to the problem, and ¢ is the time at which
the problem enters the system.

It is assumed that the set of problems P follow a Poisson distribution
([6]) characterized by the average A, so that the probability of k problems
arriving during a time unit is equal to

e—)\ k
Py =<2 (1)

The number of problems arriving in non-overlapping intervals are there-
fore considered independent.

4 The Main Components of the FAST DPA

A central concept in the FAST DPA is the node. A node is an abstract
processing unit; physically a node may consist of several workstations, or a
single workstation may constitute several nodes. The nodes may be grouped
into the following classes :

e Processing nodes.

The set of nodes Ny is used to solve the set of problems P — n is
here equal to the number of equivalence classes given by ~. A function
¢ : Nproc = P (P) specifies how the data set D is distributed to the
set of nodes.

113



THE FAST DPA

e Problem distribution nodes.

A set of nodes Ny distributes the problem p = {P;, P;, t} to the set
of processing nodes used to process the problem. This set is given by

the function 6 : P — P (Nproc), which is decided dynamically.

e Result accumulation nodes.

Upon completion of the problem processing, the results are accumu-

lated by the set of nodes Nycc.

e Data preprocessing nodes.

In some cases the data, D on which the problems will work need to be

preprocessed. A set of nodes N, will serve this task.

An illustration of this architecture is given in Figure 1.

Thus, to solve a problem p = {P;,P;,t} the following steps are per-

formed :

1. Distribute

The problem p = {P;, P;, t} is distributed to the subset 6 (p) of Nproc —
d is chosen so that Nproei€8(p) & (Nproc,i) € P;. Thus, each processing
node Nproc,j € 6 (p) will have an instance p; of the problem p at the
time t 4 t4, where t4 is an expression for the latency of distributing
the problem down to the problem solving node.

. Parallel solving

Each instance p; will be solved in parallel on the processing nodes
d (p)- Solving the instance p; on the processing node Np,o; will take
tproc,p,j time. Thus, the total solving time for all the problem instances

pj is

tp = mfx{tproc,p,j} (2)

. Result accumulation and merging

Upon completion of the parallel solving process, the results from the
processing nodes are accumulated and merged into the final result.

5 Architecture

This section will in detail describe the architecture of the FAST DPA, and,

as part of this, describe how the functions ¢ and § should be selected.

114



THE FAST DPA

Distribution nodes

Processing node arrayp

Accumulation nodes

Figure 1. The FAST DPA

115



THE FAST DPA

5.1 The Processing Node

Each processing node N € Npoc is assumed to have the following perfor-
mance specifications :

e An average of kp,. problems can be handled in a time unit.

e Up to a data amount of 0,4, can be handled. It is assumed that ~ is
decided so that maxp.cp 0 (D;) <€ Opmag-

e Problems take an average time #,.,. to solve.

5.2 The Problem Distribution Node

Each problem distribution node N € Ny, is assumed to be able to dis-
tribute problems to up to kg;s; other nodes.

5.3 The Result Accumulation Node

Each result accumulation node N € N, is assumed to be able to accumulate
results from up to k.. other nodes.

5.4 The Two-Dimensional Processing Node Array

As was described in the previous section, a single processing node can solve
a certain number of problems on a certain amount of data. If o (D) > oyaq
or kproe < A, then several data processing nodes must be used.

The data processing nodes are assumed to be arranged in an array, as
shown in Figure 2. Here each column Np,oc ; = {Nproc,1,55 Nproc,2,j> - - - s Nproc,r,j
, for j € [1, ¢], contains a complete copy of the data D, while each node within
the columns contains non-overlapping parts of D. The set N, is defined by

N, = {Nproc,jaj € [170]} (3)

The problem distribution now consists of two parts :

e First, each problem p = {P;,P;,t} is distributed to one of several
replicas of the data — these replicas are in Figure 2 represented by
columns.

e Second, the problem p is distributed to the nodes § (p).

116



THE FAST DPA

proc,1,1 Nproc,1,2 Nproc,1,c
Nproc,2,1 Nproc,2,2 Nproc,2,c
H E N
u u u
n n n
u u u
Nproc,r,1 Nproc,r,2 Nproc,r,c

Figure 2. The Processing Node Array

117



THE FAST DPA

In order to support the above points, the set of distribution nodes are
divided into two parts, Ngistr = Naistr, U Uje[l’c] Nyistrs,j, Where Ny,
distributes each problems to one of the columns, while Ny, ; distributes
the problems within column j.

It is now possible to specify the functions ¢ : Nproe — P (P) and 6 :
P — P (Nproc) in more detail. This is done is follows :

e The specification of ¢ is simplified by the fact that each column Ny, ;
contains identical data — a function ¢y : P — N is used to map each
D; € P to one of the rows i € [1,7] in Figure 2, and ¢ can then be
given by ¢ (Nproc,i,j) = ¢1§1 (7')

The function ¢y will be dealt with in Section 5.6.

e Since the distribution of problems take place in two separate oper-
ations, as stated above, the specification of the function § : P —
P (Nproc) can be facilitated by using a function é; : P — N, to spec-
ify the column Nj.o.; which should handle the problem. A function
02 : (P,N¢) = P (Nproc,j) can now specify the actual nodes within
that road. The function ¢ is thus given by

d (p) = b2 (p, 01 (p)) (4)

The definition of §; and J is application dependent, and will be defined
in description of application of this architecture.

5.5 Data Replication

If kyroc > A, then a single processing node cannot keep up with the problems
in P. It is therefore necessary to replicate the data, so that each of the replica
work on a separate, non-overlapping, subset of D.

Problem distribution nodes are used to distribute each problem p to
one of the columns — the decision of which column to use is made by the
function 41, as described in the previous section.

To do the actual distribution of the problems, the nodes Ny, are used.
Ngistr, are organized in the form of a graph, as shown in Figure 3 — the
dotted parts of the figure are not considered part of the DPA, and will
normally be provided in the form of a router. More specifically, Ny;ssy, is a
forest of k4;s¢r-ary trees — the reason for using a forest of trees instead of a
single tree will be explained in Section 5.8.

118



THE FAST DPA

[] [] []
Figure 3. An Example Distribution Tree

5.6 Data Distribution

If 0 (D) > 0pmaz, then the data D must be distributed to several nodes. The
function ¢y : P — N specifies how this is done. A simple function ¢y yniform
to distribute the data D is to uniformly distribute the data volume equally
on each processing node. More complicated functions can be utilized with
domain knowledge of the application. It can thus be viewed as a packing
problem, but this will not be dealt with here.

In order to distribute the problems to the set of nodes that contain data
relevant to the problem, a tree similar to the ones in Figure 3 is used.

5.7 Result accumulation architecture

As each of the processing nodes finish solving parts of the problems, the
results can be processed by the result accumulation nodes N,... The nodes
in Ngee are organized as a tree, as shown in Figure 4, where the arity of the
tree is given by

5.8 Fault Tolerance

There are basically two things that can go wrong given the architecture
described in the previous sections :

e One of the nodes may stop functioning.

e One of the network connections may become broken.

In both of these cases, it is important that the system handles the situa-
tion as gracefully as possible. The following two points are used as guidelines

119



THE FAST DPA

Figure 4. An Example Result Tree

in order to achieve this :

e It is not acceptable that some of the data in D is not available.

e It is acceptable that the performance is reduced until the error is cor-
rected.

The FAST DPA fault tolerance strategy adheres to this by implementing
the following points :

o If there is some kind of error inside one of the columns, then this
column is marked as being faulty (or fawlty).

o [f there is some kind of error in parts of the distribution of accumula-
tion trees, then the top nodes of these trees are marked as faulty.

e If all the nodes that a distribution node distributes problems to are
marked as faulty, then the distribution node is also marked as faulty.

e The distribution nodes will not distribute problems to faulty nodes.

The result of this is that when errors occur, the performance goes down,
but it will continue to function correctly. It is, however, important that the
top level problem distribution forest Ng;ss,, and the result accumulation
forest Ngceum, are in fact forests, and not a single tree, since in the latter
case the whole system would go down if the root of the tree became faulty.

The number of trees in the forest is given by kg;str,, in the figure kg;isir, =
3.

120



THE FAST DPA

6 Performance

In previous sections, we found expressions for the total time of solving a
problem p = {P;, P;,t}. Now, we have defined that the problem distribution
nodes are organized in a forest structure. The forest was divided into two
different sub-forests, Ngisy, and Nyjsir, ; for all 5 € [1,¢]. The top level
fanout was defined to be kg;s¢r,, while the fanout in the two sub-forests was
defined as kgjstr, and Kgiser,, respectively.

Thus, the depth of the different sub-forests of distribution nodes can be
expressed as:

r

depth(Ngistr, ) 108 i4tr, Kdistro
1SLT0

+1
c
depth(NdZStT2) = logkdist,«Q ; (5)
Thus, the total depth of the distribution forest is:

depth(Ngisty) = depth(Naistr,) + depth(Ngistr, )
lo — +lo Sy (6)
Bkaistr, Edistro Bkaistry r

Recalling that t;,; denotes the latency for a problem distribution node
Ngistr to distribute the problem p = {P;, P;,t} to the kgis nodes below it,
the total time for distributing a problem p to the subset d(p) of processing
nodes is:

tq = depth(Naistr )tiat distr (7)

The processing time for a problem instance p; on the problem solving
node Nproc; is denoted proc ;. For solving a problem p, the time spent by
the processing nodes can thus be expressed as:

t, = max t : 8
p = MAX troc, ®

The result accumulation nodes are also organized in a forest structure.
We assume that the fanout of the accumulation node forest is always kqccum-
Thus, the depth of that forest can be expressed as :

depth(Naceum) = logy, . (rc) (9)

The latency for a result accumulation node to accumulate the result from
kaceum nodes and merge those into a new result is dependent of the incoming

121



THE FAST DPA

result set size. Letting the function n({R;}) denote the latency for the result
accumulation and merging process, where {R;} denotes the set of incoming
result sets for the accumulation node Ny ;.

Since merging of the results requires synchronization on each level in
the accumulation result, we define a function ¢ : {Naccum} — {Naccum}
specifies how the accumulation nodes are distributed into levels in the result
structure. We can now define the total latency for accumulating the results
down the entire tree of accumulation nodes:

dePth(Naccum)
te = > mazn({R;})
k=0

Ingaccum (CT)

= Y. mazn{R;}) (10)

k=0

Assuming that |{R;}| is independent of cr, we get for the average case:
ta = O(log(cr)n(max(R; ) (1)

Summing the latencies, we get the following expression for the total
latency:

td,p,a = tg+ tp + t,
= logy,..,. (| Naistr|)tiat,distr +

max tproc,j +
7€8(p)

Ingaccum (C”l)

> mazin({R;}) (12)

k=0

Now recalling that N denotes the set of all nodes, and |N| is the cardi-
nality of that set, we can state that cr = O(|N|). Thus, the total time spent
for solving a problem can be expressed as:

tipa = O(log(IN|) + ¢+ log(|N]))
= O(log(|N]) (13)

Thus, the latency of problem solving is logarithmic in the number of
nodes in the architecture. This bound could be found to be even tighter.
However, the latency have no influence on the overall processing capacity as
long as the query rate A is lower than the system limit, kypocr.

122



THE FAST DPA

7 Two-Fold Linear Scalability

Given the architecture described in the previous section, it is easy to prove
the claims made in Section 1 :

e The number of nodes is scalable with respect to o (D).

e The number of nodes is scalable with respect to |{P;, P;,t} € P,a <
t < b}|, that is, the number of problems arrived in any time interval.

In order to do this, an algorithm will be described that shows how to
design a system that can handle a given D and P.
The algorithm consists of the following steps :

1. The actual number of processing nodes needed to handle the data D
depends on the equivalence relation ~ — due to the packing process de-
scribed in Section 5.6, the nodes will not necessarily take full advantage
of their processing capacity. However, this can be achieved by choosing
a sensible ~ — in the extreme case, the relation ~= {(d,d),d € D}
can be chosen. The number of processing nodes in each column will
then be given by

r= ["(D)w. (14)

Omax

2. The number of columns necessary to handle the problems in P depends
on the P; part of the problems p = {P;,P;,t}. In the worst case all
processing nodes need to deal with all problems, and in this case the
number of columns is given by

o= =] (15)

3. The total number of processing nodes is now given by

Wi =er = | 2| [ 22)] (16)

kp'r oc Omaz

4. The number of nodes in the problem distribution trees will depend on
the factor kg;s-. In the worst case, if kgisr = 2, then

|Ndistr| = Nproc - kdist'ro (17)

123



THE FAST DPA

The constant kg;ssr, should be chosen according to fault tolerance re-
quirements.

5. Similarly, in the worst case,

‘Nacc| = Nproc - kdistro (18)

The maximum number of nodes necessary to handle the specified re-
quirements is therefore given by

3 [%-‘ [@-‘ — 2Kaistro (19)

proc Omaz
The scalability claims are thus proven by showing a linear relationship
between both A characterizing the incoming request rate and o(D) charac-
terizing the data volume.

8 Using DPA for a Search Engine

The vast information volumes a search engine is determined to deal with
certainly requires the ability to scale a solution. We shall now employ the
FAST DPA framework for search engine applications.

8.1 Search engine characteristics

From [13] we learn the linear characteristics of the FAST Search engine. We
also see the constraints from hardware characteristics determines sweet-spots
for search engine price/performance. So, thus it is reasonable to assume the
following scaling and performance attributes of a search engine node:

kproc = O(IQ|D) (20)
tproc = O(|Q|D?) (21)

where |Q| denotes the length of the query. The processing time is linear
in query length and sub-linear (@« < 1). However, when in the role of
maintaining an SLA, one will assume that processing time is invariant by
letting |Q| = [Q|-

In a practical search engine setting, we will use the same physical nodes
to distribute queries (problems) and accumulate results. The collapsed dis-
tribution and accumulation nodes are called dispatchers. A possible system
is illustrated in Figure 5

124



THE FAST DPA

Doy D22 D2s

Si'(y) ||| S2'02) ||| Ss'(la) ||| Sa'le) RRHEN (Y

S™(l) ||| S2"() || | Ss"(a) || | S4"(la) <o | SN"(N)

Figure 5. Cluster overview

8.2 Scaling a Search Engine

Given the definitions above, we will now describe a possible search engine
configuration using DPA. Within the DPA framework, we will then need to
define the following:

e The function ¢ : Npyoc — P (P) mapping the dataset D onto process-
ing nodes.

e The function § : P — P (Nproc) mapping a query into a set of nodes
to answer the query.

® Lgistr, the fan-out grade of the dispatching system.

This paper will not focus around ¢, we are assuming that the number
of documents being searched is high, and that a uniform distribution of
documents is done in ¢ = ¢N yniform-

Assuming that Ny, is organized in a set of processing arrays, each array
holding a complete portion of the data, and the § function is defined as such:

e 01 = minie[1,,|7(INi)| where y(NN;) denotes the pending queries in col-
umn N;, and |y(NV;)| is the number of pending queries in that column.

125



THE FAST DPA

e 0o = N; — thus, select all nodes in a column to perform the search,
ensuring the search will cover all data D.

By following the algorithm outlined in the previous section, we construct
architecture for different document corpus sizes.

The § scheduling function could be further improved by utilizing the
knowledge about the performance characteristics of the search node. As-
suming that Equation 21 holds, the pending workload could be estimated
as proportional to the accumulated number of terms in pending queries for
a given node.

So, let v(IV;) denote the set of queries pending for a given column, N;
and let y(NN;); denote a single query in the set. Then we can define

[v(N;)]
8 =miniepiy Y (Nl (22)
j=0

And keep 02 as defined above. Then ¢ (p) = d2 (p,d] (p)) This is now
approaching a weighted round-robin scheduling algorithm [2].

8.3 Ewvaluation

To evaluate the performance and scaling characteristics of the DPA based
web search system, we construct multiple clusters from the algorithm out-
lined in Section 7.

We use the same nodes as in [13], namely:

CPU Dual 2.8Ghz Pentium Xeon
Memory | 1GB Main memory

Disk 12 x 18Gb (10K rpm)

Disk bus | 2xUW-SCSI channels

The number of documents per node for these experiments was fixed to be
5,2M randomly selected HTML pages. We wish to study two things, namely
the query capacity of the system as we increase the number of nodes, and
we wish to study the average responsetime as a function of the dispatching
and result accumulation structures. Furthermore, we choose a fanout of 8,
kaistr = 8.

So, we conduct two experiments on the different configurations:

1. Apply a sample query log, measure the maximum query capacity given
that the average response time must be lower than 300ms.

126



THE FAST DPA

Search nodes | max qps | ave searchtime, A = 400
1 419 0.073
2 420 0.081
3 420 0.086
4 420 0.096
5 419 0.101
6 420 0.115
8 420 0.129
12 (2x6) 419 0.125
16 (2x8) 420 0.138
20 (74+746) | 420 0.135
24 (3x8) 419 0.144
28 (4x7) 420 0.140
32 (4x8) 420 0.148
36 (6x6) 420 0.151

2. Apply a fixed rate of incoming queries, and measure the average la-
tency for different configurations.

The query logs are used in a simulation tool that issues queries charac-
terized by a Poisson distribution as defined in Equation 1 with a given X
(queries per second).

In Table 8.3 and Figure 6 the different configurations and the results of
the benchmarking is shown.

From Equation 13 we expect that capacity should remain unchanged as
we add nodes to the system, and that the latency should be a logarithmic
relation to the number of nodes. The graph in Figure 6 shows some steps
which are caused when adding levels of dispatching nodes, and having less
than 8 leaf nodes for each dispatcher.

9 Conclusions and Further Work

In this paper we have outlined a general architecture for shared-nothing
parallel systems that will scale linearly in processing capacity and data vol-
ume. We furthermore instantiate this architecture for the FAST Web Search
system, and the experiments show that the scaling characteristics are as ex-
pected.

There are a lot of points where this architecture can be improved. The
fault-tolerance discussed in this paper is very binary, and the need for proper

127



THE FAST DPA

900 T T T T T 75

800

700 - 1 60 |

600

aPs
Disk KB

500

300

200 . . . . . 25

(a) QPS (b) ST

Figure 6. Performance metrics for different number of searchnodes

service degradation algorithms as well as better scheduling algorithms and
experiments over there are apparent.

References

[1] ANDERSON, T. E., CULLER, D. E., AND PATTERSON, D. A. A case
for NOW (Networks of Workstations). IEEE Micro 15, 1 (Feb. 1995),
54-64.

[2] ARON, M., SANDERS, D., DRUSCHEL, P., AND ZWAENEPOEL, W.
Scalable content-aware request distribution in cluster-based network
servers. In Proceedings of the USENIX 20 Annual Technical Conference
(San Diego, CA, June 2000), pp. 323-33.

[3] BowMmaNn, C. M., Danzig, P. B., HArDY, D. R., MANBER, U.,
AND SCHWARTZ, M. F. The Harvest information discovery and access
system. Computer Networks and ISDN Systems 28, 1-2 (1995), 119
125.

[4] BowmMmaN, C. M., Danzig, P. B., MANBER, U., AND SCHWARTZ,

M. F. Scalable Internet resource discovery: research problems and
approaches. Communications of the ACM 37, 8 (1994), 98-107.

[5] BREWER, E. A. Delivering high availability for inktomi search engines.
In SIGMOD 1998, Proceedings ACM SIGMOD International Confer-

128



THE FAST DPA

ence on Management of Data, June 2-4, 1998, Seattle, Washington,
USA (1998), L. M. Haas and A. Tiwary, Eds., ACM Press, p. 538.

DouGHERTY, E. R. Probability and statistics for the engineering, com-
puting, and physical sciences. Prentice Hall, 1990.

Frynn, M. J. Very high-speed computing systems. Proceedings of the
IEEE 54 (1966), 1901-1909.

Fox, A., GRIBBLE, S. D., CHAWATHE, Y., BREWER, E. A., AND
GAUTHIER, P. Cluster-based scalable network services. In Symposium
on Operating Systems Principles (1997), pp. 78-91.

JupsonN, T. W. Abstract Algebra. PWS Publishing Company, 1994.

MacLEoD, I. A., MARTIN, P., AND NORDIN, B. A design of a dis-
tributed full text retrieval system. In Proceedings of the 9th annual
international ACM SIGIR conference on Research and development in
information retrieval (1986), ACM Press, pp. 131-137.

MELNIK, S., RAGHAVAN, S., YANG, B., AND GARCIA-MOLINA, H.
Building a distributed full-text index for the web. In World Wide Web
(2001), pp- 396-406.

RIBEIRO-NETO, B. A., AND BARBOSA, R. A. Query performance for
tightly coupled distributed digital libraries. In Proceedings of the third
ACM conference on Digital libraries (1998), ACM Press, pp. 182-190.

Risvik, K. M., AND EGGE, T. The fast search engine kernel and its
performance characteristics. Tech. rep., Fast Search & Transfer ASA,
2002.

SUEL, T., MATHUR, C., WU, J., ZHANG, J., DELIS, A., KHARRAZI,
M., LoNGg, X., AND SHANMUGASUNDERAM, K. Odissea: A peer-
to-peer architecture for scalable web search and information retrieval,
2003.

TomasIC, A., AND GARCIA-MOLINA, H. Query processing and in-
verted indices in shared: nothing text document information retrieval

systems. The VLDB Journal 2, 3 (1993), 243-276.

129






Multi-tier Architecture for Web Search
Engines

Knut Magne Risvik Yngve Aasheim
Overture Services AS Overture Services AS
P.O.Box 4452 Hospitalslgkkan P.0O.Box 4452 Hospitalslgkkan
NO-7418 Trondheim, Norway NO-7418 Trondheim, Norway

knut.risvik@overture.com ynguve.aasheim@overture.com

Mathias Lidal
Overture Services AS
P.O.Box 4452 Hospitalslgkkan
NO-7418 Trondheim, Norway
mathias.lidal@overture.com

Abstract

This paper describes a novel multi-tier architecture for a search
engine. Based on observations from query log analysis as well as prop-
erties of a ranking formula, we derive a method to tier documents in a
search engine. This allows for increased performance while keeping the
order of the results returned, and hence relevance, almost “untouched”.
The architecture and method have been tested large scale on a carrier-
class search engine with 1 billion documents. The architecture gives a
huge increase in capacity, and is today in use for a major search engine.

1 Introduction

Search engines are becoming a very important application for navigating the
web. Search engines face huge challenges trying to keep up with the web
dynamics. The web is growing exponentially, and it is becoming more and
more dynamic. Risvik and Michelsen[11] discusses the dynamics of the web,
and the challenges it imposes on the large search engines.

The ability to consistently deliver excellent result relevance is probably
the single most important factor for user satisfaction in a web size search
system.

When we disregard the fixed costs of maintaining a huge index, the
cost of search execution is close to linear to the size of the index searched;



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

doubling the amount of information in the index will generally double the
cost of query execution.

Search engines of this size are usually distributed applications, using
replication and partitioning to scale to the desired number of documents.
We intend to utilize properties of query distributions and ranking formula
contributions to optimize which nodes in the mesh to use for each query.

2 Preliminaries

Most practical and commercially operated Internet search engines are based
on a centralized architecture that relies on a set of key components, namely
Crawler, Indexer, Searcher and Dispatcher. This architecture can be seen
in systems including AltaVista [2], Google[3], and the FAST Search Engine
[1], and is illustrated in Figure 1.

Definition 10 Crawler. A crawler is a module aggregating documents
from the World Wide Web in order to make them searchable. Several heuris-
tics and algorithms exist for crawling, most of them based upon following
links in hypertext documents.

Definition 11 Indexer. A module that takes a collection of documents or
data and builds a searchable index from them. Common methods are inverted
files, vector spaces, suffix structures and hybrids of these.

Definition 12 Searcher. The searcher is working on the output files from
the indezer. The searcher accepts user queries from the dispatcher (defined
below), executes the query over its part of the index, and returns sorted
search results back to the dispatcher with document ID and the relevance

score (defined below).

Definition 13 Dispatcher. The dispatcher receives the query from the
user, compiles a list of searchers to execute the query, sends the query to the
searchers and receives a sorted list of results back from each searcher. For
each result it receives a unique document ID, and the relevance score. The
hits from the searchers are then merged to produce the list of results with the
highest relevance scores for presentation to the user.

Search engines generally operate by producing a result set for each query
(a set of documents that matches the query), and then ranks the documents
by using a formula to compute a relevance score for each entry in the result
set with respect to the query being executed and sorting the documents by
their relevance score.

132



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

g _.
Indexer m Searcher “@ <4
1]
Local Store
=N

(W3 copy)

Crawler

Figure 1. Search Engine reference model

Definition 14 Relevance score Upon a given query, q, the search engines
give back a sorted list of results. Each document in the result has a relevance
score Ry 4 (Relevance of document d with respect to query q). The relevance
score can be further broken down into a static component Rsq that is in-
dependent of the query, and a dynamic component Rdg, dependent on the
query. The total relevance score formula is then

Rd’q = Rsq + aRdd,q (1)

The constant « is used to balance the weight of the static and the dy-
namic relevance scores.

For a web search engine, utilizing link structure and HTML semantics,
the relevance score is usually derived from several different contributing
attributes:

Static relevance score for the document (link cardinality, page quality).

Superior parts of the document. (Titles, metadata, document headers)

Authority (external references, and the “level” of these).

Document statistics (by e.g. term frequency in the document, global
term frequency and term distances within the document).

3 Related Work

From several studies of query logs ([12], [5]) and also supported by our own
analysis presented in this paper, there is a highly skewed distribution of

133

Search
Clients



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

unique queries on a typical web search engine. Both [12] and [5] reports
that the top 25 queries count for more than 1% of the total query volume.

A vast amount of work has been conducted on cache algorithms for web
search engines, and for information retrieval systems in general. In [6] we
see a study of different cache-replacement schemes for web search engines,
testing both standard LRU, segmented LRU and a predictive system based
on session analysis named PDC (Probability Driven Cache).

The results are promising, one sees more than 50% hit ratio of the caches,
clearly being a very important optimization tool for any serious web search
engine.

On a different perspective, there has been several studies on how to
partition a large dataset in an information retrieval system and to provide
some sort of a broker algorithm to select a subset of these partitions for
searching with the intent of providing an approximation of the search results
from searching the entire collection.

In [7] and in particular [9] we see studies using locality analysis of the
query log to compute a partial replica of the entire collection and to use a
broker (to multiple InQuery servers) server to select the replica. In [8] we
see the same technique applied on a large dataset.

4 This Work

In this work we propose an architecture for a scalable web search engine
that uses multiple log and relevance analysis to build tiers of documents.
The architecture is novel to prior work in the sense that each tier is disjoint
from the others (as opposed to partial replication where the smaller sets are
subsets of the main index). Furthermore we deploy a fallthrough algorithm
to allow for queries to “fall” from one tier to another based on analysis of
the query and the results from the given tier.

We run experiments on 3 different architectures inspired by results from
partial replication and query cache analysis as well as the ranking function
itself. The experiments provide evidence that these architectures offer a
significant increase in query capacity over regular caching.

5 Target Architecture

The analysis described in this paper are all based on the same conceptual
architecture. We will describe the architecture in two levels, first the cluster
concept, then the tiering concept.

134



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

Documents | QPS | disk KB | disk TPS | CPU idle
3M 900 | 25 2000 45%
4M 557 | 34 1720 41%
5M 434 | 40 1560 42%
6M 352 | 50 1350 43%
™ 365 | 58 1450 35%
8M 311 66 1315 3%
IM 292 | 73 1310 35%

Table 1. Data volume performance

5.1 Basic Elements

The basic element in the target architecture is a search node. A search node
holds a partition, an index for a fraction of the entire database, and allows
for searches in that partition. Letting I denote the entire database, a search
node S; typically holds I;.

5.2 Performance for different data volumes

In this paper we will use the FAST Search engine kernel. This engine has per-
formance characteristics that, within certain boundaries, can be considered
linear with the number of documents indexed per node. Some performance
numbers are shown in Table 1, and illustrated in Figure 2, where QPS de-
notes the number of queries per second, disk KB denotes the number of
kilobytes read per query, disk TPS indicates the number of disk transac-
tions per second, and CPU idle is the percentage of CPU slices idle during
testing.

All these tests were conducted on a dual CPU (2x2.4Ghz) Pentium 4
with 1GB of main memory and 12 x 36 GB disk drives. The benchmarking
was done with 50 parallel clients, and maintaining average response time
of a query below 0.5 seconds, the standard customer SLA (service level
agreement).

Now, letting QPS(S;) denote the query capacity of search node S; in
queries per second, and furthermore assuming that the average length of
queries are constant, the following relation is given:

QPS(Sn) = O(|In]) (2)

The FAST Search kernel employs several types of performance optimiza-
tions that is required for this approximation to be applicable. See Figure 2

135



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

QpPs

Disk TPS

900

800 -

700

600

g
3 50
o
500
5
400 40
35
300 |
30
200 L 25 .
3 4 5 6 9 4 5 6 7 8
Docs (M) Docs (M)
(a) QPS (b) KB
2000 66
1900 -
1800 -
1700 -
5
5
1600
1500 -
1400 -
1300 . 54 .
3 4 5 6 9 3 5 6 7 8 9
Docs (M) Docs (M)
(c) TPS (d) % Free CPU-time

Figure 2. Performance metrics for different document sizes

136




MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

Dispatch
s s | s IS el iS00
s i i i o i
3 ISE)| s (S S| T eee ! S |
g | | | | | | |
« e | | | | |
s S| S0 L Se0) | ey S |
v e i — i L , e ,
Partitioning >

Figure 3. Cluster overview

(a) for an illustration of this correlation.

5.3 Basic Scalability

Now, let a cluster be a collection of search nodes that are grouped in rows
and columns. Partitioning and replication are then used to create linear
scalability in size and query rate. The basic principles of this architecture
is also covered by [10].

5.3.1 Data volume scaling by partitioning

Let each search node hold a partition of the index, I; of the entire index
I. Each search node queries its partition of the index upon a request from
a dispatcher. The dispatcher sends an incoming query to a set of search
nodes such that all partitions I ... I, are asked. The results are merged
and a complete result from the cluster is generated. We use the notion of a
row to name a set of search nodes making up for all partitions of the entire
index. Thus, by partitioning the data, we create scalability in data volume,
as illustrated in Figure 3. Given Equation 2, and assuming that we split the
data into n partitions, the search time on each node would be O(|I|/n). n
is selected based upon hardware and software criteria, but varies between
1M and 20M documents.

137



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

A limiting factor here is the merging of results that needs to take place in
the dispatcher. A heap-based algorithm typically gives O(mlogn) to merge
m results from n sources. m is typically low due to the interactive nature
of a search system.

5.3.2 Performance scaling by replication

By replicating each of the search nodes, we are able to increase the query
processing rate for a given partition of the index. Letting S} denote a search
node in an nxm cluster, all search nodes Sil ....S™ holds index partition I;.
Thus, the dispatcher can rotate between m nodes for each index partition
when selecting a set of search nodes to handle an incoming query.

The dispatcher handles this by a round-robin fashion algorithm. By
adding rows, performance will increase proportionally to the the capacity of
a single row.

The entire architecture in Figure 3 illustrates the organization into rows
and columns, and the role of the dispatcher.

5.4 Tiered Architecture

Based on the search node clusters described above, we now intend to build
a tiered architecture of search nodes.

Conceptually, the tiered architecture groups documents into tiers 77 ... Tj,.
Each query starts off in tier 1, and a fallthrough algorithm FTA selects
whether the query shall continue execution into consecutive tiers and how
results are to be merged.

Thus, there are three elements to the tiered architecture:

Definition 15 Tier mapping. Given a set of documents D, the function
F takes a document D; with a vector of properties, Pp, and maps it into a
given tier T;.

Furthermore, the algorithm to define the fallthrough needs to be defined:

Definition 16 Fallthrough - FTA. Fach query starts off in the lowest
tier. The fallthrough algorithm, FT A, determines the path of the query in
the set of tiers based on criteria such as relevance scores and number of hits
in the result set. The FTA is responsible for determining how many results
from each tier can be used before the next tier must be consulted.

138



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

Dispatch

F[2]

F[1]

Figure 4. Mapping from a document space into tiers of search nodes

When the FTA decides that a new tier must be consulted, the relevance
score for the new results will be considered when merging results to produce
the final list of results to be presented to the user.

In Figure 4 an example is illustrated. Given that the documents can be
viewed in a two dimensional feature space, we can illustrate the document
space as in the first figure. Then tiering takes place by applying F to map
each document to the desired tier. Then mapping can be done into search
nodes as shown.

Figure 4 also illustrates that documents can be divided into sections for
tiers. For instance, one could define tier 1 to be the superior context (titles
and anchors) of all documents, and tier 2 to be the body context of a small
selection of the documents. Thus, a search node will hold data for multiple
tiers, but without duplicating the data stored.

The tiered architecture has an impact on performance when the FT A
is able to reduce the number of search nodes involved in a query, and the
appearing results have little or no deviation from what you would get by
searching all nodes. Of course, this implies an interactive system, where the
top 10-100 results are the interesting ones.

6 Query locality

We aim to understand the locality of queries and to estimate the confidence
of these locality figures. By locality we mean to what degree the same
queries are received multiple times, both over short and long time-periods.

139



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

Query Distribution
0.9

——
—
P
0.8
0.7
g 08
[}
3
o
2 05
2 /
=
S 04
=
£
5
S}
0.2
0.1
0
0 5¢+06 1e+07  15e+07  2e+07  25e+07  3e+07  3.5e+07  4e+07

n most popular queries

Figure 5. Query frequency distribution

Provided a significant number of queries are duplicates, we can build a tiering
mechanism that would have a significant positive impact on performance of
the entire search system. The queries we examine are gathered from the
query log of AllTheWeb.com. The query log is a log showing the query-
string, along with the date and time of the query, and some more information
which we do not use at this time.

6.1 Query Distribution

First we study the query distribution. By folding the queries into unique
queries, and sorting the bins based on query frequency, we get a sorted
distribution of queries.

The queries we examine are collected from the queries executed by users
of AllTheWeb.com. We analyze five different query-sets, collected from the
following time-periods:

e 3. of January 2002

e 15. - 21. (3. week) of January 2002
e 1-31. of January 2002

11. of February 2002

11. of March 2002

140



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

0.8 -

0.6 -

Frequency

0.4 -

02

0

0

L L
5 10

L
15
Week number

L L
20 25

Figure 6. Frequency of top 1 mill. queries first half of 2002

Time period

Num. queries

unique queries

num. queries within top 1 million

3. Jan 2002
15.21. Jan 2002
Jan. 2002

11. Feb 2002
11. Mar 2002

19 846 936
132 741 183
573 394 981
20 062 879
20 714 809

4 560 172
22 590 276
81 721 575
4 300 090
4 311 001

15 239 298 (76.8%)
83 108 836 (62.6%)
307 434 094 (53.6%)
15 678 972 (78.14%)
16 518 754 (79.74%)

Table 2. Summary of querysets

141




MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

These query-sets enable us to analyze the queries from both overlapping
and disjoint time-periods, which should give a good indication of the level of
locality of the queries. These querysets are summarized in Table 2, showing
the total number of queries, the number of unique queries and the number
of queries made up of the 1 million most popular unique queries.

We now want to analyze how the most popular queries do in the overall
frequency picture. Here we used the largest query-set, from January 2002.
We collected the cumulative frequency of the n most popular queries. The
distribution of this frequency is shown in Figure 5.

We observe that the query distribution is strongly logarithmic, thus we
have an exponential growth in the number of queries to hold a given per-
centage of the total queries.

This distribution is fairly constant over time, as shown in Figure 6 which
shows the frequency of the 1 million most popular queries per week for the
first half of 2002.

Furthermore, we count the number of unique queries (i.e. queries that are
only asked once), and we find that 41,748,880 queries out of the 573,394,981
queries recorded in January only occur once. This is 7.28% of the queries.

6.2 Temporal overlap

Here we examine the overlap between queries from different time-periods,
focusing on the 1 million most popular queries.

Letting ()1 and Q2 denote the set of queries for each consecutive period,
the overlap is computed as:

(@1 Q2)]

0Qu@) =10, U

(3)

Now, letting O,, denote the overlap of the n most frequent queries from
1 and )2, we compute the overlap for different number of unique queries.

First we examine the overlap between the query-sets from January. This
will give an indication of how representative the results of a single day or
week is. Next we examine the overlap between the three different days, as
well as the overlap between the queries from January and those from one
day in February and March. This will give an indication of how much the
queries differ over time. Table 3 shows the overlap between the different
query-sets.

142



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

1 day (Jan) | 1 day (Feb) | 1 day (Mar) | 1 week | 1 month
1 day (Jan) 82.04% 80.70% 85.06% | 84.53%
1 month 86.65% 84.72% 84.53 92.54%

Table 3. Temporal overlap

6.3 Locality

These results show that there is a high degree of repetition in the queries,
with only 7.28% of the queries being asked just once. There is also a very
high temporal overlap, with 80 - 85% overlap on single days in different
months, when looking at the top 1 million queries. These queries account
for 75-79% of all queries these days.

7 Applications of the tiered architecture

We have evaluated three different architectures and document distribution
functions, F, and different fallthrough algorithms. For the different archi-
tectures, we compute the quality of the architecture as two numbers based
upon the difference between its search results compared with the search
results from a predefined reference system, typically a single-tier system.

The Fallthrough algorithm is basically equal for all three architectures,
and consist of 5 parameters:

e Hitlimit - Specifies the maximum number of hits to be used from a
tier before fallthrough to the next tier is forced.

e Percentlimit - The maximum percentage of the hits from this tier that
may be used before fallthrough to the next tier is forced.

o Ranklimit - Used together with the Termranklimit. See Termranklimit.

o Termranklimit - If the relevance score of the hit being considered is
less than the Ranklimit plus this value times the number of terms in
the query, then fallthrough to the next tier is forced.

o MinUsableHits - The number of hits that must pass the above criteria
for a given tier in order not to do an immediate fallthrough to the next
tier. This number is typically the number of results that is presented
to the user on a result page. The rationale for using this rule is that
if it is known that we will have to fall through in order to produce the

143



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

Tier jump | Hitlimit | Percentlimit | Ranklimit | Termranklimit | Minhits
1-2 1000 10 200 0 0
2-3 8100 30 0 0 100

Table 4. Basic FTA

number of hits most often requested, we should perform the fallthrough
immediately. We do not want to apply this rule on a non-constant
value (such as the number of hits really requested by the user), in
order to ensure that we produce consistent results.

boolean FallThrough(Results r,
FallthroughConfig c,

int hitNo,

int queryTerms) {

// Verify HitLimit rule
if (c.hitLimit < hitNo)

//
//
if

//
//
if

return true;

Verify PercentlLimit wrt. requested hit
and MinUsableHits parameter

(max (hitNo, c.minUsableHits) >
((r.numResults * c.PercentLimit) / 100))

return true;

Verify RankLimit and TermRankLimit wrt.
requested hit and MinUsableHits parameter
(r.Result [max(hitNo, c.minUsableHits)].
relevanceScore <
(c.rankLimit + c.termRankLimit *

queryTerms))
return true;

return false;

The parameter values for the basic F'T A is defined in Table 4.
For the multi-tier concept to work, we need to have higher performance
on tier 1, which is going to execute all queries, than on tier 2 which will

144




MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

only execute those queries that fall over from tier 1. Tier 3 will, in turn,
only execute queries that fall over from tier 2. The extra capacity on the
lower tiers may be achieved either by replicating the columns on this tier,
or by reducing the number of documents on each node, in order to achieve
higher throughput on each node. From an operations point of view, the
latest option is more flexible, hence this is the preferred approach.

As already stated in this paper, the performance of a node is considered
to be linearly dependent on the number of documents on the node. For the
tests runs being described in this paper, we had 1.5M documents indexed
on each tier 1 node, 6M documents on each tier 2 node and 10M documents
index on each tier 3 node.

7.1 Ewvaluation

To evaluate the different multi-tier configurations, we randomly select 100000
unique queries from the list of queries entered by users of FAST Web Search.
The selected queries are then executed twice, once towards the multi-tier
configuration we want to evaluate and once towards the reference system.
The results from the two runs are compared to extract information about
the quality of the multi-tier configuration.

We use two metrics to indicate the quality of search results in comparison
with the reference system:

e Different First hit. The percentage of queries that return a different
hit in the first position.

e Different Top 10. The percentage of queries for which there are one
or more differences within the first ten results.

With an ideal solution, those percentages are zero or close to zero.

Combined, those two numbers are believed to give good knowledge about
key attributes of the systems relevance penalty with respect to the reference
system.

Furthermore, we measure the total system query capacity to understand
the performance impact of the multi-tier architecture. This is done by exe-
cuting a standard query log (typically 100K to 1M queries) onto the search
cluster and measure the query production rate at the standard SLA. Then
the speedup ratio between the reference system and the candidate system is
computed.

145



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

Tier 1 | 30M documents
Tier 2 | 360M documents
Tier 3 | 610M documents

Table 5. 1D Multi-tier configuration

Dispatch
FTA

| | | | | | |
| . | | | | eee |
1 1 1 1 1 y
| | | | | | |
l l l l | l |
: : : : Ceee :
: : : : o :
| | | | | | |
e | | | | |
| [ ] | | | | | |
B I
| | | | | | |
| | | | | | |
| | | I | e e e@ ! !
3 . | j | : 3 :

Tier1 <—Tier2 > - Tier 3 >

Figure 7. 1-dimensional MT system

The experiments are conducted on a sample collection containing 1 bil-
lion documents. The number of documents to be index on each tier have
been predefined, and are the same for all three configurations to be tested.

7.2 1-dimensional multi-tier configuration

This is a plain three-level multi-tier configuration, with all documents being
distributed by the static relevance score. The 30M top documents are then
mapped to tier 1, the 360M next documents to tier 2, etc. The breakdown
of documents into tiers is shown in Table 5.

The system is illustrated in Figure 7, using the standard F'T'A as defined
in Table 4.

146



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

Tier 1 | 30M documents (5M tierlocked)
Tier 2 | 360M documents
Tier 3 | 610M documents

Table 6. 1.5D Multi-tier configuration

The reference system chosen is a plain single-tier configuration, thus
searching all nodes simultaneously.

One significant problem with this configuration is that static relevance
is only a part of the formula for determining the relevance score of a hit.
This means that a document with low static relevance score can still be a
good hit for certain queries. The next configuration is an attempt to reduce
this problem.

7.3 1.5-dimensional multi-tier configuration

Again, this is a plain three-level multi-tier configuration. Before doing tier
distribution, we run a query log with the 1M most common queries for a
period in time. To avoid delaying the indexing process in the production
system, this query log was executed towards the previous generation index
is executed on the previous index. The first 20 documents returned for those
queries will be indexed on the first tier.

The remaining documents are distributed according to the static rele-
vance score, so the tier breakdown is as shown in Table 6. The system is
illustrated in Figure 8, and was tested using the F'T'A as defined in Table 4.

Again, the reference system is a plain single-tier configuration.

7.4 2-dimensional multi-tier configuration

The tier distribution for this configuration is identical to the tier distribu-
tion for the 1.5-dimensional multi-tier configuration. The difference is the
way the information is searched. With this configuration, we search the in-
formation in the high-value contexts for all documents first. If we need more
hits, we continue to search the full index, using a multi-tier configuration,
removing duplicates from the returned results.

Obviously, searching the high-value contexts for all documents will con-
sume its fair share of resources available on the second and third tiers. This
mean that we have capacity for processing fewer queries on those tiers when
searching the full index on those nodes.

147



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

Dispatch
FTA

| | | | | | |
| | l | | eee |
| | | | | | |
| | | | | | |
i . i i i i i i
| | | | | | |
| | | | | o0 0 | |
l l | l | R S
| | | | | | |
L. | l l | l |
| [ ] | | | | | |
e : : o :
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
Lo e i —— i | L |

Tier1 <w— Tier2—p - Tier 3 >

with TL

Figure 8. 1.5-dimensional MT system with tierlocking

Tier 0 | 1B documents - superior context
Tier 1 | 30M documents - body context

Tier 2 | 360M documents - body context
Tier 3 | 610M documents - body context

Table 7. 2D Multi-tier configuration

148



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

Tier 1
- I
|:] Tier 2

[ | Tier3

L

Figure 9. 2-dimensional MT system

Tier jump | Hitlimit | Percentlimit | Ranklimit | Termranklimit | Minhits
(0+1)-2 8100 50 200 0 100
2-3 8100 70 200 0 100
34 8100 50 0 0 100

Table 8. 2D FTA (Note that 0 and 1 are searched in parallel.)

The system has tier distribution as shown in Table 7, and it is illustrated
in Figure 9. As shown, Tier 0 is introduced as the layer of superior contexts.

The FT A for this system is slightly modified from the original one (Ta-
ble 4). The modified FT A is shown in Table 8.

The reference system defined for the other multi-tier configurations can
not be used directly for this configuration, since this multi-tier configuration
not directly emulates a plain single-tier solution. We still want to use a
single-tier system, but we now need to search high-value contexts for all
nodes first, then merge in results from a search in the full-text index.

This change in the reference system naturally changes the order of the
results produced by the search engine. However, manual verification by
editors as well as theoretical studies indicate that, given the way we currently

149



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

System Different #1 | Different #10 | QPS ratio
1D Multi-tier 26.8% 62.1% 2.78
1.5D Multi-tier | 15.4% 45.8% 2.71
2D Multi-tier | 4.36% 17.7% 2.02

Table 9. Summary of results

compute the relevance score, this change more often improve the relevance
than reduce it.

7.5 Results

A summary of the experiments is shown in Table 9. The 1D Multi-tier
solution heavily relies upon high covariance between the rank of a search
result and the static relevance score of the documents in the search result.
This assumption is often wrong for web search queries are for most cases
wrong, thus we will see big deviations from the reference system. This is
mainly due to the nature of static relevance score, which is mostly based
upon link cardinality. In [4] the link structure of the web is discussed.

Moving on to the 1.5D architecture, we utilize the locality within query
logs to bias the creation of the first tier. This model will guarantee that
the most popular queries (which accounts for a very high total number
of queries) always gets the “correct” results compared with the reference
system. This is clearly indicated on the results. However, the queries falling
out of the “popular” group are still subjects for the same treatment” as with
the 1D system.

The key observation from the 2D system is that the usage of more docu-
ment properties, and another dimension in the tier space has a much higher
covariance with the actual ranking function. So by letting the relevance
score space be divided into static relevance score and the binary selection of
superior and non-superior context, the approach has a relevance that is very
appealing given the performance capabilities. Also, the use of a reference
system that has proved superior to the other reference systems by editorial
inspection is promoting this as a very promising architecture. The end re-
sult is more than a doubling of the performance without much sacrifice in
relevance

The performance of the different configurations, as stated in the QPS
ratio column of Table 9 have been measured by benchmarking the different
systems to extract information about the highest possible throughput that
can be achieved while complying with the standard SLA.

150



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

8 Capsule summary of FAST

Fast Search & Transfer (FAST) (http://www.fast.no/) is a Norwegian com-
pany that has been operating in the web search and corporate search seg-
ments for years. The web search division is probably most known for its
search engine AllTheWeb (http://www.alltheweb.com/), and for supplying
search results to portals in most parts of the world. After this paper was
drafted, the web search product was sold to the American company Over-
ture. Overture is currently in the process of being acquired by Yahoo.

9 Conclusive Remarks and Future Work

We have shown how multi-tier architecture can be used to achieve “super-
linear” scaling ofweb size search engines. Sample systems are able to achieve
more than double the capacity with a relatively small relevance penalty.

The testing has been restricted to a handful of configurations, but the
results are still very promising. Moving along, it will make sense to do much
more extensive analysis to determine the dimensions of the document space,
and possibly one could use mining techniques to derive the document to tier
mapping rules and fallthrough algorithms.

In order to efficiently design and tune a multi-tier search architecture,
we aim to build a simulation tool that can simulate different fallthrough
algorithms and different tier separation rules. Evaluation of possible per-
formance benefits and relevance penalties with different tier sizes is equally
interesting.

For a configuration being used for production purposes, one would want a
system that continuously monitor the number of queries that get a relevancy
penalty as described in this document.

References

[1] Alltheweb. http://www.alltheweb.com.
[2] Altavista. www.altavista.com.

[3] S. Brin and L. Page. The anatomy of a large-scale hypertextual
web search engine. 1In Proceedings of the 7th WWW Conference,
http://decweb.ethz.ch/WWW7/1921/com1921.htm, 1998.

[4] A. B. et. al. Graph structure in the web. In Proceedings of the Ninth
International World Wide Web Conference (WWW9), 2000.

151



MULTI-TIER ARCHITECTURE FOR WEB SEARCH ENGINES

[5]

[9]

[10]

[11]

[12]

B. J. Jansen, A. Spink, and T. Saracevic. Real life, real users, and real
needs: a study and analysis of user queries on the web. Information
Processing and Management, 36(2):207-227, 2000.

R. Lempel and S. Moran. Predictive caching and prefetching of query
results in search engines. In Proceedings of the Twelfth International
World Wide Web Conference (WWW2003), 2003.

7. Lu. Scalable distributed architectures for information retrieval. Tech-
nical Report UM-CS-1999-049, , 1999.

Z. Lu and K. S. McKinley. Searching a terabyte of text using partial
replication. Technical Report UM-CS-1999-050, , 1999.

7. Lu and K. S. McKinley. Partial collection replication versus caching
for information retrieval systems. In Research and Development in In-
formation Retrieval, pages 248-255, 2000.

K. M. Risvik, T. Egge, B. Svingen, and A. Halaas. Search engine
with two-dimensional linear scalable parallel architecture. International
Patent PCT/N099/00155, 2000.

K. M. Risvik and R. Michelsen. Search engines and web dynamics.
Computer Networks (Amsterdam, Netherlands: 1999), 39(3):289-302,
2002.

C. Silverstein, M. Henzinger, J. Marais, and M. Moricz. Analysis of a
very large altavista query log. Technical report, SRC Technical Note,
1998.

152



Linguistics in Large-Scale Web Search

Jon Atle Gulla Per Gunnar Auran
Fuast Search & Transfer ASA Fast Search & Transfer ASA
P.O. Box 4452 Hospitalslgkkan P.O. Box 4452 Hospitalslgkkan
NO-7/18 Trondheim, Norway NO-7/18 Trondheim, Norway
Jon. Atle. Gulla@fast.no

Knut Magne Risvik
Fast Search & Transfer ASA
P.O. Box 4452 Hospitalslgkkan
NO-7418 Trondheim, Norway

Abstract

In spite of intensive research on linguistic techniques in informa-
tion retrieval, there are still few large-scale search engines that have
taken full advantage of these techniques. This paper presents the in-
tegration of various linguistic techniques in one of the largest search
engines on the web. The techniques include language identification,
text categorization, offensive content filtering, normalization, phrasing
and anti-phrasing, and clustering. We go into some of the challenges of
dealing with huge amounts of data and discuss the compromises that
were needed to do this integration. Our results show that linguistics
has a great potential in web search, though it is also clear there are
many unsolved issues and challenges.

1 Introduction

Search engines are today important to any user retrieving information on
the Internet. The explosion of documents and the lack of inherent struc-
tures or directories on the Internet have made in increasingly difficult for
users to retrieve the desired documents. When they get confused by the
multitude of information available, they turn to large-scale search engines
like AllTheWeb, Google and AltaVista for help. 85% of Web users today
claim to be using search engines or some kind of search tools to find specific
information of interest [6]. According to Economist Magazine’s survey from
2000 [11], more than 70% of American households use search engines on a

153



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

weekly basis. In fact, almost a third of all web sessions these days involve
search engines [18].

The importance of search engines has also been noted by information
providers in the Internet market. When Forrester in September 2001 inter-
viewed IT managers in 49 Global 3500 companies that were planning or were
implementing portals, search was considered the most important feature of
their portal. Also, large companies increasingly need sophisticated search
technologies to handle their exhaustive content directories [7].

However, web search is faced with a number of challenges. Large vol-
umes of data are distributed over many computers and platforms [15]. There
are dead links, dynamic pages, and relocations disturbing the search, and a
large share of the documents are poorly structured or even redundant. The
proliferation of languages and alphabets on Internet also makes it hard to
introduce language-specific or culture-specific techniques to improve the sit-
uation. Still, there is usually enough information on Internet to answer even
the weirdest question. The problem is not primarily to find documents, but
to find documents that are relevant to the query and ranked in a meaningful
way.

Linguistic techniques in information retrieval systems address the rel-
evance of documents returned. They allow us to abstract away from the
exact words used in the documents and queries and put more emphasis on
the content of these representations. As such, they should help us close the
gap between the user’s expressed query and the representation of relevant
documents. Although the experiences with linguistic techniques in informa-
tion retrieval are somewhat divided, few doubt their potential for improving
the relevance of the documents retrieved ([1][10][2]).

Fast Search & Transfer (FAST) has one of the biggest search engines on
the market, and its engine is integrated in portals like Lycos and T-Online as
well as in enterprise solutions for IBM, eBay, and other large international
companies. FAST is offering their web search engine as an OEM service
to portals, as well as the showcase portal AllTheWeb (www.alltheweb.com).
The Search engine holds a number of innovative linguistic techniques in their
search engine on AllTheWeb (www.alltheweb.com). Offering search facilities
on a global basis, the company has opted for approaches that are cross-
lingual and allow continuous updates with new languages and improved
dictionaries.

This paper discusses the introduction of language identification, offensive
content filtering, normalization, and query transformation in FAST. Rather
than evaluating the effect of each technique, we look into the particular
problems that show up in large-scale search engines for the web. Whereas

154



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

esgeAgtional techniques
i b

Title-based Content-based
accgss acgess
Al kj
| 2

N o List of Presentation of
list

ransformational techniques
=P Transformed

Ma—_

@ Filégonzm techniques
. <n‘ne>””m"""> Search Keyword-based  Content-based

Dp\\‘\s sevw sevh
All Category-based @ Relevant b Transformed
sele‘ed selvmn o 4
>
>
o — s of

Increased semantics

»
»

Improved transparency

>
>
Reduced search space

Figure 1. Linguistic techniques in FAST

Section 2 briefly presents the rationale of these linguistic techniques, we
explain how these techniques were realized FAST in Section 3. The FAST
search engine is discussed in Section 4 and also compared to some other
large-scale search engines. Conclusions are found in Section 6.

2 Why Linguistics in Search Engines

A fundamental issue in information retrieval is the relationship between
queries and documents. From a linguistic perspective, it is useful to abstract
away from the exact words and focus on the information need expressed in
the query and the semantic content of the documents. The document’s
relevance with respect to a query is not necessarily decided on the basis of
words common to both query and document. The document is relevant to
the extent that its content satisfies the user’s need for information.

Linguistic techniques address the relevance of documents by exposing the
underlying content or semantics of documents and queries. From a search
perspective, the techniques fall into the following three categories (see Figure
Figure 1):

e Categorizing techniques.
e Transformational techniques.

e Presentational techniques.

Each category is briefly explained below and illustrated by some common
techniques.

155



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

One line of thought in linguistically motivated information retrieval is to
restrict the search space to only those documents that may be relevant to the
search context. This could be documents of a certain language, documents
on a certain topic, or documents of a certain quality. All this requires
linguistic analysis of documents before they are added to the search index.
When posting a query, the user may increase the precision of the results by
restricting the search space along these lines. In some cases it is appropriate
that the search engine includes these restrictions automatically, as when
offensive documents are filtered out of the result set. In other cases the
user may want to select manually which categories should be considered in
the search process. Using the Scirus.com library of scientific documents,
for example, the user may restrict his search to a selection of 21 scientific
categories. This search space reduction is achieved with a set of techniques
that allow us to categorize documents along any number of dimensions [12].

Another line of thought is to transform queries or documents to repre-
sentations that better facilitate document retrieval. Document indexes and
queries need to be optimized or normalized with respect to each other. As-
suming that the two queries car and cars denote the same information need,
the search engine needs to treat documents with only car, documents with
only cars and documents with both car and cars as equally relevant to both
queries. Dealing with this inflectional variation is the task of lemmatiza-
tion and stemming techniques. Lemmatization and stemming are part of
the normalization task, which also includes strategies for handling translit-
eration and spelling variation. A related problem is the interpretation of
phrasal queries. Even if the two queries Hotel Paris and Paris Hotel contain
the same words, they may express two rather different intentions. The first
query may request documents about the hotel called Hotel Paris, whereas
the other may request information about hotels in Paris in general. To
ensure that multiple-term queries are correctly interpreted, we need to rec-
ognize relevant phrases and make sure that the search engine takes this
information into account. There are also phrases in queries that are more
disturbing than useful. In the query give me information about search en-
gines, the search would probably be improved if everything except search
engines were deleted from the query. A necessary supplement to the trans-
formational techniques above is spell-checking, which enables approximate
search for misspelled search terms. In general, transformational techniques
expose semantic aspects of queries and documents that should be taken into
account in the search process.

The last group of linguistic techniques comes into play when documents
are presented to the user. Since document titles and document names rarely

156



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

10000000
9000000 -
8000000 -

8,745,000 T e
64 ||

8
» 7000000 | g6y
£ 6000000 - 7,399,000 2 60 ‘msss
2 5000000 1 H 61 =
£ 4000000 4,882,000 LR
3000000 24 IH Tl—ﬂ—rl—rli
2000000 2,851,000 o L LI TN MMM NNl m e cm
1000000 1,570,000 s g 8 g 5 g 5§ ] -é % g
< £ e 3
0 Esgscgd®ezcgs
4
Year Language

Figure 2. a) Number of web sites on the Internet[13] b) Distribution
of languages on Internet[8]

give a good impression of the document content, it is often frustrating to
find the right document among all these documents listed on the result
page. Generating small document summaries that are shown on the result
page is one way of telling the user what these documents are about (see
for example [14]). Another technique, clustering, rearranges the result set
according to pre-defined or dynamically generated categories[17]. In this
way the user can choose the relevant categories after the search has been
carried out and browse from one category to another. These presentational
techniques improve the transparency of documents and speeds up the process
of selecting the desired document from the result set.

3 Introducing Linguistic Components in FAST

For a large-scale global search engine, there are several concerns that need
to be addressed. Due to the sheer size of the web, there are strict restric-
tions on memory consumption and response time. As seen from Figure
Figure 2(a), the number of web sites is growing rapidly.Dealing with an
increasing number of continuously changing documents, the search system
must be effective enough to allow frequent indexing and short response times
and efficient enough to run on the hardware available.

However, some of the most serious relevance problems in web search can
only be solved by data-intensive linguistic components. Although English
still accounts for more than 60% of the web pages, the share of non-English
pages is increasing and the web is turning into a multi-lingual information

157



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

highway (see Figure Figure 2(b)). Within a few years, the non-English pages
will probably outnumber the English ones. Solving linguistic problems in
web search, we need deep knowledge of a number of languages to deal with
the particularities of all these web pages.

The FAST approach to these linguistic problems is to use dictionary-
driven techniques based on finite-state technology. This allows us to take
full advantage of large lexical resources, while maintaining an acceptable re-
sponse time. Our linguistic algorithms are language-independent, and new
languages are introduced by plugging in new dictionaries. While most com-
ponents are initially developed for English, the other languages are grad-
ually added as lexical resources are built up and customers request these
languages. In the following, we go into the realization of our linguistic tech-
niques in the FAST search engine.

3.1 Language Identification

The language identifier of a search engine allows the user to select the lan-
guage of the documents to be returned. If no language is selected, documents
are retrieved and ranked independently of their language. As shown in Fig-
ure Figure 5, there is a language pull-down menu on AllTheWeb that lets
you select the desired language.

The FAST language identifier has a dictionary that contains the relevant
words in all relevant encodings of all languages to be recognized. For lan-
guages with no clear word boundaries, bigram lists are used instead of the
word dictionary. The identifier can process HTML and plain text documents
and identifies their language and encoding. Only the first part of the docu-
ments, like the first 100 words, is normally used in the identification process.
Different strategies are used for different types of encoding-language pairs:

1. Languages with clear word boundaries (e.g. European languages):
identify language and encoding by means of lookup in the dictionary
of words with their frequencies for all such languages.

2. Languages with no clear word boundaries (Chinese, Japanese, Korean
and Thai): identify language by checking the document against a fre-
quency list of byte-bigrams.

Since many web documents are very short, our dictionary also contains
words with medium frequencies and low frequencies. Another addition is
that we take the structure of HI'ML documents and the meta information
into consideration. In some cases, me may also use domain names like .DE

158



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

for Germany to find the most probable language of a web document. This
has to be done with caution, as some domain names are linked to several
languages (like .CH for Switzerland), some pages are written in languages
not linked to the corresponding domain name (like English pages on .DE
sites), and some pages are on domains with no fixed languages (like .ORG,
.COM, and .NET).

For the current language identifier, which supports 52 languages, both
recall and precision are above 99% for documents of more than 20 words.
However, there is a tremendous amount of documents with little or no text
at all on Internet. About 95-96% of the documents crawled are successfully
tagged for language during indexing.

3.2 Offensive Content Filtering

Many web pages today contain text and images that may offend or disturb
certain user groups. A particular concern is the abundance of pornographic
material that tends to clutter the result sets. FAST has an Offensive Content
Filter (OCF) that helps the users filter out documents that are sexually
offensive.

The OCF component employs standard text categorization techniques
and relies on a large dictionary of offensive words and phrases. These dic-
tionary entries are generated from large collections of offensive web pages
and are associated with weights that specify their influence in the filtering
process. The filtering strategy itself is as follows:

1. Keep multilingual OCF dictionary of weighted words and phrases
available in finite-state automaton during indexing.

2. Traverse first part of document and calculate score for offensive mate-
rial based on dictionary lookup

Also offensive documents are indexed and can later be retrieved by the
users. The documents are tagged as offensive and will not show up if the
FAST offensive content filter has been activated on the front-end. If the
filter is not activated, the documents will be retrieved just like any other
documents on the web.

The current filter works for pornographic content in English, German,
Ttalian, Spanish, and French. As many pornographic documents tend to
contain keywords from several languages, the filter works reasonably well
also for some other languages. The dictionary entries for each language
span from a few hundred to several thousand.

159



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

A fundamental problem with this approach is the identification of offen-
sive documents with little text. For documents that contain mostly images,
text categorization methods can only be a partial solution. A combination
of image recognition and text categorization may give better results, though
this has to be investigated further.

3.3 Text Categorization

Words and phrases are colored by the domain in which they are used and
should be interpreted within the context of this domain. A model in software
engineering is something quite different from a model in fashion shows. For
enterprise search solutions, it may make sense to group documents into
separate sub-domains, or categories. Selecting the relevant categories, the
user can make sure that the query is interpreted in the right context and
only topically interesting documents are considered. Text categorization is
the task of defining such categories in a domain and assigning documents
to them. Although most categories are semantically motivated, it is also
possible to categorize on the basis of document type, meta information,
usage, etc.

Text categorization requires extensive analysis of the documents to be
categorized and indexed. For each category, a dictionary defining the char-
acteristic words and phrases needs to be set up. Weight information for each
entry in this dictionary decides how these words and phrases together allow
us to classify documents correctly. In some cases, structural information
from the web documents may also be included in the categorization task.
For example, HTML tags highlighting phrases or defining section titles may
indicate which phrases are the prominent ones. Also, particular words like
“homepage” or “Abstract” may in combination with other clues indicate
that we are dealing with a homepage and an article, respectively.

The FAST text categorization module concentrates on content catego-
rization and type categorization. Whereas content categorization identifies
subject areas like Computer Science and Astronomy, the type categorization
part can tell us whether the document is for example a homepage, an article
or an abstract. The documents are categorized during indexing according
to the following scheme:

1. Keep dictionary of words and phrases with associated categories (sub-
ject areas) available as finite-state automaton during indexing.

2. Content categorization: Calculate score for each category by looking
up words and phrases in the dictionary.

160



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

/2 scirus - for scientific information - Microsoft Internet Explorer | |5 il
J File Edit Wew Favortes Tools Help ‘
| wpack v = ~ @ [4 23| @oearch GiFavorites BHstory | S B v w
-
for scientific information only
About Us Advisory Board | Submit Website | Search Tips Contact Us
Basic Search ‘ Advanced Search
|AH of the words LI |Eunceptua\ madels |Jnurna\ Title LI
AND ~
[all of the wards =] | [l -]
Search Within Search Tips
Information Types Information Sources
W 4 W nll Jaurnal sources ¥ 4l web sources
™ articles [™ Beilstein on Chemieb ™ Us Patent Office
™ Scientist homepages [~ MEDLIME on BioMedhet ™ HWeuroscion
I~ Patents I™ ScienceDirect ™ E-Print Arkiv
[ conferences ™ 1DEAL ™ other
™ Abstracts I™ BioMed Central
Subject Areas

Can ™ Environmiental Sciences I~ Medicine

™ Agricultural and Biological Sciences [T Earth and Planetary Sciences ™ Neuroscience

™ astronomy ™ Law ™ pharmacalogy

I Biosciences I Life sciences ™ physics

™ Chemistry and Chermical Engineering ¥ Languages and Linguistics ™ Psychalogy

W Cormputer Scisnce I Materials Scisnce ™ zacisl and Behaviorsl Sciencss
¥ Economics, Business and Managerment [ Mathematics I zociolagy

T Enigineering, Energy and Technology

=

Figure 3. Scirus library of scientific information (www.scirus.com)

3. Extract meta information from structural information in document.

4. Type categorization: Deduce document type using rules that analyze
the document’s meta information.

Text categorization is useful in structured domains, in which separate
subject areas can be defined by characteristic words and phrases. An ex-
ample is the Scirus.com library of scientific documents shown in Figure Fig-
ure 3. While posting the query, the user may choose to restrict the search
to a selection of the 21 scientific categories defined. In this particular case,
the user is looking for papers on conceptual models within the categories
Computer Sciences, Economics, Business and Management, and Languages
and Linguistics. The system, which makes use of FAST’s search technology,
currently has an index of about 69 million science-related web pages.

For a general web search engine like AllTheWeb, text categorization does

161



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

not show the same potential. The Internet does not constitute a structured
and well understood domain, and web pages are often of poor quality. Still,
it may be possible to define categories for particular aspects of web pages,
and we are now in fact looking into geographical categorization of documents
on Internet.

3.4 Normalization

Even though there may be standardized keywords added to documents, most
of the documents are just paragraphs of text in some language. Words are
inflected according to the rules of the language, and there is great variation
in word inflections, word selection and grammatical constructs. In many
languages, words may also be spelled or transcribed in various ways. Unless
we are able to treat inflections or spelling variants of a word as denotations
of the same word, successful retrieval of a document requires that there is
an exact match of the query terms and the words found in the document.
Clearly, many relevant documents are missed if this is required, and we need
ways of retrieving documents that contain other inflections or spellings of
the same words.

The goal of normalization is to map different but semantically equivalent
words and phrases onto one canonical representation. Without going into all
kinds of normalization (see Arampatzis et al 2000 for an overview), we will
here discuss the two types that are currently used in FAST: lemmatization
and transliteration.

Lemmatization is the process of reducing an inflected word to its lemma,
which is the abstract representation of the word independent of time, per-
son, case, etc. Whereas the infinitive form is usually taken as the lemma
form for verbs, the indefinite singular nominative form is used for nouns.
Adjectives and adverbs are often reduced to their absolute form in the in-
definite nominative masculine context. The following are some examples of
lemmas generated from inflected words:

writes —  write cars — car
written —  write better — good
was — be best — good

This lemmatization strategy is somewhat problematic in web search. If
we replace all words in documents and queries with their lemmas, we increase
recall by matching lemmas instead of inflected forms:

Actual text Lemmatized text
Query: Good cars good car
Document: The best car The good car

162



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

Russian, Polish

Query Document
Strategy car cars cars oblem areas
Expand with all  car cars Number of terms, ranking
fullforms = cars car

m
car cars A
;
—
n car car car car

Replace with basefor

Phrase identification

User intention Granularity of
Problem areas: ~ - Language search needs German, French
' - Proper names vs - syntactic search
common names - semantic search Japanese, Korean

Figure 4. Lemmatization strategies

However, this prevents us from being able to search for exact phrases in
documents and the query language must be known. A more conservative
approach is just to add the lemmas (base forms) to documents and queries.
This introduces some asymmetry, as the base forms are only added for the
words that are not originally in lemma-compatible forms. A third strategy is
to expand the document or the query with all inflected forms. The full form
document expansion enables phrase search and can be done without knowing
the language of the query, but increases the index size substantially and may
lead to unexpected ranking results. Full query expansion is an alternative,
if the query language is known, though also here there may be undesired
ranking effects.

In general, for a multi-lingual search engine like AllTheWeb, where the
query language is not always known, it is difficult to apply lemmatization on
queries. Due to the lack of context, query lemmatization may in languages
like German also lead to misinterpretation of common nouns as proper nouns
and vice versa. Full-form document expansion is for obvious reasons only
feasible for languages that are not too frequent on the web. For popular
languages like German and French (see frequencies in Figure Figure 2(b)),
baseform document expansion tends to be the most realistic strategy. Our
lemmatization strategy for German, French, Japanese, Korean, Russian and
Polish then looks as follows (see Figure Figure 4):

1. Identify language of document.
2. Keep lemmatization dictionary for identified language available as

finite-state automaton during indexing.

163



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

3. For German and English: Expand document with base forms for ad-
jectives and nouns.

4. For Polish and Russian: Expand document with all inflected forms for
adjectives, verbs, common nouns, and proper nouns.

5. For Korean and Japanese: Replace words with base forms for verbs
and adjectives in Japanese, and for verbs, adjectives and adverbs in
Korean.

Lemmatization requires that large full form dictionaries be available dur-
ing indexing. Our dictionary for German, for example, contains 1,016,492
full forms. For highly inflected languages, like Polish and Russian, we also
employ morphological models that infer the correct inflections of proper
names that are not in the dictionary. Japanese and Korean are special
cases, as lemmatization and tokenization are done in the same step.

As seen from the strategies above, we add all inflected forms to the
document for Russian and Polish. In practice this means that the indexes
for these two languages increase by 600-800%. The moderate lemmatization
strategy for German gives an index increase of only 5% and is therefore more
attractive for languages that are very frequent on the web.

Transliteration of special characters is another issue in many languages.
Take for example the word vnements (events) in French. Not only is it pos-
sible to spell this word in different ways, it is also quite common to misspell
it and use the wrong accents or no accents at all. On AllTheWeb, there
are 420,000 documents with vnements (old orthography), 35,000 documents
with evenements (unaccented), 95,000 documents with evnements (half ac-
cented), 22,000 documents with evnements (half accented), 9,000 documents
with venements (half accented), and 76,000 documents with the correct vne-
ments. For the search engine to be able to retrieve all these documents, we
need to normalize the spelling of words like vnements and map then onto
the same words in the index.

The FAST strategy with respect to transliteration is to map accented
characters onto unaccented characters where this does not impose any seri-
ous ambiguities. This is then done on both the document side and the query
side. The word vnements above is mapped onto evenements, as these two
accents in French does not lead to any change of semantics. Other accents
or special characters, like the umlaut (, , ) in German, discriminate between
semantically different words and are kept as they are in the documents and
the queries.

164



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

3.5 Phrasing and Anti-Phrasing

The query’ “mutual information” (explicit marking of phrase) gives us about
6,300 documents, and the top three documents are all about mutual informa-
tion. Without explicit phrasing, more than a million documents are returned
(AllTheWeb, March 2002). Since both mutual and information are used in
so many other contexts, we get far more documents and none of the top
ten documents are actually about mutual information. Some search engines
uses proximity in general to rank documents where the terms are close to
eachother higher than documents that have the terms further apart. This
approach is general, but not all multi-term queries have a nature for prox-
imity. Phrasing is important to restrict the number of documents found and
to boost the search in the right direction. It may be described as the process
of identifying and quoting consecutive terms that should be interpreted as
a whole rather than as independent search terms.

Before phrasing queries, the search engine needs to build up a phrase
dictionary from query logs and document collections. This list needs to be
updated as new phrases emerge or others are not used any more. It may
contain scientific expressions like the one above, but also person names, geo-
graphical names, book and song titles, names of organizations, slogans, etc.
Since the Internet is not restricted to certain topics and new documents are
continuously added, there are in principle an indefinite number of possible
phrases. Another issue is whether all phrases should be treated in the same
manner. Some phrases, like Albert Einstein, should always be interpreted
as a whole and are often referred to as hard phrases. For soft phrases like
data modeling, the individual terms may also be used independently of each
other with the same semantic content.

The phrasing strategy adopted in FAST looks as follows:

1. Keep phrase list available in finite state automaton during querying.

2. Identify and quote longest left-most phrases in query from list of
phrases.

3. Add bigrams of all consecutive query terms that are not part of a
phrase as optional phrases.

4. Send the transformed query to the search engine, but offer the original
query as an alternative on the result page.

For a query like New York Times sports, both New York and New York
Times are recognized as phrases. The longest phrase is preferred, and the

165



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

query “New York Times” sports is consequently sent to the search engine.
For a query like

New York art museum

the phrase New York is found in the phrase list. A bigram for the last
two terms are introduced as an optional phrase. The final query is written
in the ANY mode, which means that terms that need to be in the retrieved
documents are preceded by a +:

+”New York” +art +museum “art museum”

With this strategy, we make a distinction between hard phrases and
potential soft phrases in the query. Whereas the hard phrases are assumed
to be in the phrase list, soft phrasing is achieved by adding these bigrams at
the end of the query. An editorial board is then responsible for all updates
of the phrase list, and new lists may be put into production every time a
new index is generated (every 9-11 days).

In a similar vein, there are many queries that contain phrases that only
disturb the search. Posting a query like where can I find The Economist, for
example, the homepage of the magazine The Economist will not be found
at all. If we remove the first part of the query, where can I find, The
Economist shows up on top of the result list. The first part of the query
prevents us from retrieving the correct document, as it is interpreted as
equally important as The Economist by the search engine. These irrelevant
phrases in the beginning of the queries are referred to as anti-phrases and
should be removed before the documents are retrieved. Maintaining an
extensive list of common anti-phrases, FAST handles these queries as follows:

1. Keep anti-phrase list available in finite state automaton during query-
ing.

2. Phrase query.

3. Identify and remove longest left-most anti-phrase starting at position
1 in the query.

Consider the query

Where do I find New York?

The phrase New York is first identified from the phrase list. After the
anti-phrase Where do I find has been recognized and removed, the following
query is sent to the search engine:

“New York”

This strategy ensures that anti-phrasing does not remove parts of phrases.
If phrasing had not been done prior to anti-phrasing, the query Give me in-
formation about The The would have been reduced to The rather than’ “The

166



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

The” (both Give me information about the and Give me information about
are in the anti-phrase list). It is worth noting that most anti-phrases start
with a question word. However, we must be careful about which phrases to
remove, as some of these question-like queries are used in titles of documents,
like for example How to Tie a Tie.

Currently, we have several million phrases and thousands of anti-phrases
available in English and German. Preliminary tests show that about 6% of
the queries contain phrases, but only 0.2% contain anti-phrases.

3.6 Clustering

Traditional ranking of documents according to their relevancy to the query
produces a flat list of ranked results. If the list is long, having an additional
representation of the same result set in the form of a hierarchical tree instead
of a flat list is a useful way to view the same set of search results. The tree
nodes define groups of documents that have similar content, and give an
immediate bird’s-eye view of the topical distribution within the set of search
results. Tree nodes may or may not have child nodes, i.e., subtopics within
a topic can also be detected. The process of generating these hierarchical
presentations of result sets is referred to as clustering.

The groups of documents with similar content effectively form a table-
of-contents of the result set. Related to this grouping process, we may also
obtain sets of concepts that are related to each group or to the result set
as whole. For example, for a query like ”image compression”, we might de-
tect that the phrases ”fractal image compression” and ”wavelet techniques”
are descriptive of certain subsets of documents. This automatic grouping
enables the user to quickly zoom in on subsets of documents that he finds
interesting, while the sets of related concepts or phrases may provide ideas
for queries that aid the user in obtaining, e.g., a more focused result set.

The FAST server is capable of doing both supervised and unsupervised
learning, i.e., both classification and clustering. Some of the documents in
the result set may be known to belong to some taxonomy, and, if configured
to do so, the other documents in the result set can be attempted mapped
on-the-fly into this taxonomy. For those documents that do not fit well
into this hierarchy, an algorithm can be applied that tries to automatically
detect topical clusters and devises descriptive names of these clusters. The
clustering strategy is as follows:

1. Retrieve x highest ranked documents for the query posted.

2. For each document:

167



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

3 oo -pirse et S _ioix|
Fle Edt View Favories Toos Help i
“Back v = ~ @ [@ & | QSearch GiFavorites FHistory | S Bl ~ w
Liks || ddress [ &1 Ptp:/pwvww atheweb com/ : . A e = =lolx]
Fle Edt View Favorites Tools Help ‘-

“Back v = - @ [3) &} | Qsearch GiFavorites Bristory | S B ~ w

alltewed e

Search All The Web, All the Time: wws Helg | Customize | Advar

[Any language =] [sking Norway

Search

18

Search for: Web pages| News | Pictures| Videos| MP3 files

DISkiing Holidays, Ski Resorts, Trips Global

v FAST Solutions: AllTheWeh News:
fast site | |EEAST Enterprise Solutions| |F] Geta jump star | | = Special B5alf Lake i G;’““ o M
S power leaders in quick four and be cavel  C3Sking Vacation Desination, Actire Holda,
EAST PartnerSite eCommerce, Media and AllTheWeb searc
innovative search engine s ey

subrmission to market your

b [] Search Scirus: Scientific | | ) Press reviews: | Displaying results 1-10 of 61,693 web pages found

Information Only they'e saying ab
AlTheWeb 1. Norway Mountain Ski and Snowboard Resort, USA

Upper Peninsula ski and snowhoard resort offers snow reports.
trail maps, prices and contact information

it /v norwaymountain com/ (32

PRIVATE LIVES.
PUBLIC PROPERTY.

D
&

Submit Your Site | Advertise | Add AllTheWeb to Your Site | Contact FAST | Join FAST | Help ) ) )

Copyright © 2002 Fast Search & Transfer ASA | Terms of Use | Spam Policy 2. Incredible skilng snewboarding at Maribel
‘An encyclopaedia of awesome skilng, snowboarding & a resort

report of skiing 2t Meribel, France

@ more its from. hip:/best

SKing co ukisk_France_Meribel i (31,8 k)

& [ [ 3. cometonorway.com
: Sea kayaking, telemark skiing and mountaineering in Western

[ [ Internet

Figure 5. AllTheWeb search page and result page

(a) Extract words and phrases and assign a numeric measure of im-
portance to each of them.

(b) Construct document vector (or use precomputed vector).

(c) For clusters already known: Try to map document to existing
clusters.

(d) If mapping to existing clusters fail: Construct new cluster on the
fly and assign document to new cluster

he unsupervised classification is done without any special knowledge of
the semantics of words or phrases. Rather, the whole process is completely
syntactic and query-driven, and from the viewpoint of the server, the exam-
ple word ”dog” is just a three-letter sequence without any special meaning.
This means that the approach is largely language-independent, although
having identified the language will help. (For example, if we know which
language a document is in, we may exploit this in the vectorization pro-
cess to skip certain very frequent words that carry little or no information.
Example of such words in English are ”the”, ”a”, "to”, etc.).

A beta version of the FAST module for on-the-fly classification and clus-
tering of search results is deployed on AllTheWeb (see Figure Figure 5),
where it is configured to make use of a cleansed version of the taxonomy
from the Open Directory Project. The beta version works best for English
documents. Note that for performance reasons on a large web search engine

168



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

with hundreds of queries per second, only parts of the documents are used
for the classification.

Exact performance statistics for the FAST clustering server vary accord-
ing to available hardware and how the server is configured, but for certain
configurations over 100 queries/second may be processed on a typical PC.
The time to vectorize 100 document summaries and cluster these may lie
somewhere in the range of 5-30 milliseconds, depending on the chosen con-
figuration.

4 Discussion

The importance of returning relevant documents on top of the result list has
been highlighted by recent studies. As pointed out in Spink et al [16], the
average user views 2.2 pages on the result page of AllTheWeb. At the same
time, the average query length is only 2.4 terms and the total query session
typically consists of about 8 queries. Only about 10% of the users care to
use the additional search features provided by the Advanced Search mode.
There is not much information given to the search engine, yet the search
engine must be able to pick out the right documents among several billion
documents and put them right on the top of the result page. Internal studies
at FAST show that as much as 48% of the documents viewed by the users are
among the top three documents on the result page. Incorporating techniques
that increase the likelihood of finding relevant documents and make sure that
they are presented on top of the result page in an understandable way is
thus a top priority of any web search engine.

The linguistic techniques presented here serve different purposes, but
also complement each other in important ways. Whereas normalization and
anti-phrasing tend to increase the number of documents returned, language
identification, phrasing, offensive content filtering and text categorization
make the result set smaller and more focused. As shown in [9], many of
these techniques can be combined to form a more specialized web context.
For almost all techniques, there is a need to augment the standard approach
with Internet-specific features to take full advantage of their potential. A
thorough evaluation of each individual technique on Internet is very difficult,
though we are now looking into test procedures in line with what has been
presented in [3] and [5].

A rather delicate issue in web search is the balance between linguistic
sophistication and computational feasibility. As shown in this paper, the
techniques need to be adapted to the limitations of the rest of the search

169



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

engine. This does not only apply to the speed and memory requirements
discussed above. Equally important is the way linguistic techniques interact
with ranking algorithms and storing strategies.

The FAST search engine today has an index of about 625 million text
pages, about 115 million multimedia pictures and videos, and more than 2
million MP3 songs. The index is refreshed every 9-11 days, which is rather
extraordinary for an index of this size. In addition, there are more than
2,000 online news sources that are continuously crawled and updated. As of
today, AllTheWeb has about 7-8 million queries per day and about 150,000
unique visitors every week. Adding the queries coming from partner portals
like Lycos and T-Online, the FAST search engine has a total of about 30
million queries per day.

Other large search engines also employ linguistic techniques. Alta Vista
(www.altavista.com), for example, has a battery of techniques that include
language identification, spell-checking, stemming, phrase recognition, and
some thesaurus support. As in FAST, they have adopted an expansion
strategy for European languages and a reduction strategy for Asian lan-
guages in their lemmatization component. Language identification, spell-
checking, and text translation are incorporated in the Google search engine
(www.google.com). Autonomy uses linguistic techniques like stemming and
transliteration to infer more conceptual representations of document con-
tent (www.autonomy.com). Query transformation is the main strategy of
Ask Jeeves (www.askjeeves.com), which concentrates on natural language
queries. All these techniques are comparable to the techniques employed
by FAST, though it is hard to evaluate individual techniques without being
affected by other features of the search engine. In the relevance test carried
out by eTesting Labs in January 2001, AllTheWeb was ranked as the sec-
ond best among six large-scale search engines [4]. In [3] 20 search engines’s
ability to return the homepages for airline queries is evaluated. AllTheWeb
comes out on top of the list, ahead of Google and Microsoft.

5 Conclusions

This paper presented the linguistic techniques used in FAST’s search engine
and explored some of the technological challenges of integrating these tech-
niques in a large-scale search architecture. Most of the techniques are now in
production, and our initial results are indeed promising. It has to be added,
though, that several of the techniques had to be adapted or augmented by
additional strategies to be efficient in an Internet context. FAST is also

170



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

looking into other linguistic techniques that complement the ones already
in production.

A particular issue is web search is spam detection. A large number of

web pages on Internet are to be considered spam and should not be indexed
for later retrieval. Our spam detection software is still being developed and
shows how linguistics may be combined with other statistical and computa-
tional methods. In the future, we expect linguistic techniques to be tightly
integrated with other knowledge-based methods to further increase the se-
mantic focus of our search engine.

References

[1]

AMBROZIAK, J., AND WooDS, W. Natural language technology in
precision content retrieval. In Proceedings of the International Con-

ference on Natural Language Processing and INdustrial Applications
(NLP+IA’98) (1998).

CoLE, R., MARIANI, J., USZKOREIT, H., ZAENEN, A., AND ZUE, V.
Survey of the state of the art in human language technology, 1995.

CRASWELL, N., HAWKING, D., AND GRIFFITHS, K. Which search
engine is best at finding airline site home pages?

ETESTING LABS. Fast Search and Transfer, Inc. web search engine
evaluation. Tech. rep., 2001.

Hawking, D., CRASWELL, N., BAILEY, P., AND GRIFFIHS, K. Mea-
suring search engine quality. Information Retrieval 4, 1 (2001), 33-59.

KoBAYASHI, M., AND TAKEDA, K. Information retrieval on the web.
ACM Computing Surveys 32, 2 (2000), 144-173.

KONTZER, T. In search of business data. InformationWeek.com (Jan-
uary 2002).

LANGER, S. Natural languages and the World Wide Web.

LAWRENCE, S. Context in web search. IEEE Data Engineering Bulletin
23,3 (2000), 25-32.

Lewis, D. D., AND JonEs, K. S. Natural language processing for
information retrieval. Communications of the ACM 39, 1 (1996), 92—
101.

171



LINGUISTICS IN LARGE-SCALE WEB SEARCH ENGINES

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

MAGAZINE, E. E-entertainment survey, October 2000.

MANNING, C., AND SCHTZE, H. Foundations of Statistical Natural
Language Processing. MIT Press, 1999.

ONLINE COMPUTER LIBRARY CENTER. Size and growth.
wcp.oclc.org/wc/stats/size.html.

RADEV, D. R., AND MCKEOWN, K. Generating natural language
summaries from multiple on-line sources. Computational Linguistics

24, 3 (1998), 469-500.

Risvik, K. M., AND MICHELSEN, R. Search engines and web dynam-
ics. Computer Networks (Amsterdam, Netherlands: 1999) 39, 3 (2002),
289-302.

SpiNk, A., OzmuTLU, H., OZMUTLU, S., AND JANSEN, B. U.s. versus
european web searching trends. In Proceedings of SIGIR-02, 25th ACM
International Conference on Research and Development in Information
Retrieval (2002).

STRZALKOWSKI, T. Natural Language Information Retrieval. Kluwer
Academic Publishers, 1999.

SuLLIVAN, D. Avoiding the search gap.

172



