
The Circular Two-Phase Commit Protocol

Heine Kolltveit and Svein-Olaf Hvasshovd

Department of Computer and Information Science
Norwegian University of Science and Technology

Abstract. Distributed transactional systems require an atomic commitment pro-
tocol to preserve atomicity of the ACID properties. However, the industry leading
standard, 2PC, is slow and adds a significant overhead to transaction process-
ing. In this paper, a new atomic commitment protocol for main-memory primary-
backup systems, C2PC, is proposed. It exploits replicationto avoid disk-logging
and performs the commit processing in a circular fashion. The analysis shows
that C2PC has the same delay as 1PC, and reduces the total overhead compared
to 2PC.

1 Introduction

Main memory prices have dropped significantly over the last years, and the state of
many applications and databases can now be fitted entirely inmain memory. To make
the state both persistent and available, it can be replicated instead of written to disk.
For instance, a backup replica (backup for brevity) takes over the processing if a pri-
mary replica (primary for brevity) fails. A backup is kept upto date by receiving the
same operations as the primary (active replication [1]) or log records from the primary
(passive replication [2]). The backup can either apply the log records to its own state or
periodically receive checkpoints from the primary. Assuming that themean time to fail,
MTTF, is orders of magnitude larger than themean time to repair, MTTR, the system
only needs to be single fault tolerant to completely avoid the need for disk accesses.
MTTR can be made very short by employing on-line self-repairmechanisms [3]. In
addition, since disk accesses are slow compared to both RAM accesses and network
latencies, replication can result in an improvement in performance.

A transaction is a collection of operations that transfers asystem reliably from one
state to another, while providing the ACID properties [4]:Atomicity, consistency, isola-
tion anddurability. Commonly, transaction termination and atomicity is satisfied by an
atomic commitment protocol, ACP. The ACP has been showed to be an important factor
of total transaction processing time and, in particular, the current industry leading stan-
dard, the Two-Phase Commit protocol, 2PC [5], is slow [6–8].The delay caused by two
rounds of messages and multiple log records flushed to disk cause a significant over-
head. Also, a failure of the coordinator might block the participants from completing a
transaction [9, 10].

ACP performance and resilience to failures is a well established research field, but
optimizations that will have significant effect is still possible under a parallel and repli-
cated paradigm. Thus, this paper presents an ACP called Circular Two-Phase Commit

protocol, C2PC. It is an optimized version of 2PC for primary-backup systems. The pro-
tocol takes advantage of replication to trade costly flusheddisk writes for cheaper mes-
sage sends and RAM accesses. The idea is to send the vote and decision to the backup
instead of a disk. This provide availability for the transaction participants and coordi-
nator and renders 2PCnon-blocking [9, 11]. To give better performance, the vote and
decision are sent in a ring instead of back and forth between the primary and backup.
The protocol is always single fault-tolerant and these methods could be favorably ap-
plied in a shared-nothing, fault-tolerant DBMS like ClustRa [3].

The rest of the paper is organized as follows: Section 2 summarizes related work.
Section 3 presents the system model and Section 4 defines the non-blocking atomic
commitment problem. Section 5 gives an overview and a detailed description of C2PC,
proves the correctness of the protocol and outlines a one-phased version called C1PC.
Then, an evaluation of the protocols is given in Section 6. Finally, the conclusion and
further work are presented in Section 7.

2 Related Work

Several atomic commitment protocols and variations have been proposed over the years.
Many approaches have been concerned with either developinga non-blocking protocol
or the performance issues. However, only a few deal with both.

In a non-replicated environment, 2PC may block if the coordinator and a partici-
pant fail [9, 10]. 3PC [12] decreases the chance of blocking failures by adding an extra
round of messages, thus favoring resilience over performance. 3PC has been extended
to partitioned environments [13], and the number of communication steps has been re-
duced to the same as 2PC by using consensus [14], causing an increase in the number
of messages or requiring broadcast capabilities.

Several 2PC-based modifications where performance issues are handled exist [15].
Presumed commit and presumed abort [16] both avoid one flushed disk write, by assum-
ing that a non-existent log record means that the transaction has committed or aborted,
respectively. Transfer-of-commit, lazy commit and read-only commit [9], sharing the
log [16, 17] and group commit [18, 19] are other optimizations. An optimization of the
presumed commit protocol [7] reduces the number of messages, but requires the same
number of forced disk writes.

Optimistic commit protocols are designed to give better response time during nor-
mal processing, but will need extra recovery after failuresor aborts. They release locks
when the transaction is prepared, but must be able to handle cascading aborts by using
semantic knowledge [20]. PROMPT [8] uses optimistic locking in the sense that locks
can be lent to other transactions after the participant has voted yes. A transaction that
lends locks will not reply to the request until the locks are fully released by the previous
transaction, and only one transaction at a time can lend a lock. This approach avoids
cascading aborts while it may yield better performance because of increased concur-
rency.

One-phased commit protocols have also been proposed [17, 21–24]. These are based
on the early prepare or unsolicited vote method by Stonebraker [25] where the prepare
message is piggybacked on the last operation sent to a participant. In this way, the

voting phase is eliminated. However, these approaches inflicts strong assumptions and
restrictions on the transactional system [22]. For instance, it requires either the partic-
ipants to prepare the transaction for each request-reply interaction, or the coordinator
must be able to identify the last request for a transaction tobe able to piggyback a
prepare-request. Otherwise, the performance of 1PC degrades.

A few approaches that render 2PC non-blocking by replication have been proposed.
The first replicates the coordinator, but not the participants [11]. In addition to sending
log records to the backup, they are forced to disk, causing a decrease in performance.
Also, the backup only finishes transactions already started. No new transactions can be
initiated by the backup. This approach has also been adaptedto multiple backups [26].

The second combines optimistic commit and replication [27]. A replicated group
of commit servers is used to keep the log records not yet written to the log by the
participant available, thus ensuring resilience to failures. This approach uses multicast
and has the same latency as 2PC, but requires more messages tobe sent.

A third approach [28] is the most similar to the approach adopted in this paper. The
differences are that it incurs unnecessary overhead by sending the “start of prepare” and
the commit log records to the backup, and it forces log records to the disk even if both
the primary and the backup work correctly. The performance is thus degraded.

3 System Model

The system is composed of a number of processes or nodes connected through a com-
munication network. Each process has both a functional unit(application or database
server) and a transaction manager. A process executes two kinds of actions. (1) Change
state and (2) send or receive a message. When correct, they execute at arbitrary speeds,
but eventually make progress. Processes fail by crashing, causing them to lose state.
Such events are, however, rare. A failed process is recovered and brought up-to-date by
the system.

Communication isasynchronous andreliable. Thus, there are no bounds on com-
munication delays and messages are not corrupted or lost if both the receiving and the
sending process behaves correctly, i.e. do not crash.

In an asynchronous system, a failure detector is needed to make the system reliable
[29]. An eventually strong failure detector can solve the atomic commitment problem
[30]. However, to simplify the problem descriptions and explanations a perfect fail-
ure detector that eventually suspects every faulty processand never suspects a correct
process is assumed.

For the purpose of this paper no disks are used. State is stored entirely in main-
memory. Thus, to make the state persistent and the system highly available theprimary-
backup approach [2] is used. This approach assumes that MTTF is orders of magnitude
larger than MTTR, thus both the primary and backup do not failat the same time.

Following [16], the costs of execution in this system are twofold. (1) The computa-
tion cost is the total number of messages sent, and (2) the delay is serialized messages.
The main memory operations associated with the atomic commitment protocol are only
a small fraction of the load on the system, thus their costs are assumed to be negligible.
Also, as long as the processors are not fully utilized, thereare no queueing effects.

4 The Non-Blocking Atomic Commitment Problem

An atomic commitment protocol ensures that the participants in a transaction agrees on
the outcome, i.e.ABORT or COMMIT. Each participant vote, YES or NO, on whether
they can guarantee the local ACID properties of the transaction. All participants has a
right to veto the transaction, thus causing it to abort. TheNon-Blocking Atomic Com-
mitment problem, NB-AC, has these properties [10, 30]:

NB-AC1 <uniform agreement> All processes that decide reach the same decision.
NB-AC2 <integrity> A process cannot reverse its decision after it has reached one.
NB-AC3 <uniform validity> COMMIT can only be reached ifall processes voted

YES.
NB-AC4 <non-triviality> If there are no failures and no processes voted NO, then

the decision will be to COMMIT .
NB-AC5 <termination> Every correct process eventually decides.

5 The Circular Two-Phase Commit Protocol

This section presents theCircular Two-Phase Commit protocol, C2PC, for main mem-
ory primary-backup systems.

Normally, 2PC requires both forced and non-forced disk writes [16, 9]. In a primary-
backup environment these disk writes can be replaced by, respectively, synchronous
(blocking) and asynchronous (non-blocking) logging to thebackup node. Figure 1(a)
illustrates this. The small arrows between each primary-backup pair is the logging.

2PC (Figure 1(a)) consists of two phases, a voting phase and adecision phase. In
the voting phase the votes are collected by a coordinator, and the coordinator makes

(a) Replicated 2PC (b) Replicated 1PC (c) C2PC

(d) C2PC with subordinate (e) Legend for Figure 1

Fig. 1. Execution of various atomic commitment protocols

a decision depending on the votes and persistently stores the decision. In the decision
phase, the outcome is sent to the participants which send an acknowledgement back
to the coordinator. Each participant must persistently store its vote and the outcome
before replying to the coordinator in, respectively, the voting and decision phase. After
the decision has been made persistent, the coordinator can give anearly answer [3] to
the client. Thus, the response time seen from the client is less than what it would be if
the second phase had to be completed before the reply.

1PC (Figure 1(b)) piggybacks the prepare-message on the last work request for the
transaction. Thus, the first phase of the voting is eliminated. However, each participant’s
vote must be persistently stored to the backups before replying to the coordinator.

The C2PC protocol is a modified version of 2PC for main memory primary-backup
systems. Similarly to 2PC, C2PC has two phases and logs the votes and decision to
the backups. However, it allows the backup to reply to the backup coordinator. This is
shown in Figure 1(c). Instead of sending votes and acknowledgments back and forth the
votes and decision are sent in a ring for each branch of the commit tree. This is a case
of the transfer-of-commit optimization [9] where the authority to commit is passed via
the participants to the backup root coordinator.

C2PC reduces both the number of messages in the critical pathand the total number
of messages to commit a transaction. The critical path is thedelay until the transaction
coordinator can give an early answer to the client. For instance, comparing Figure 1(a)
and 1(c), the added delay has been reduced from six to four messages and the added
number of messages from thirteen to nine. By comparison, 1PC(Figure 1(b)) has an
added delay of four, two within the transactional operations frame and two after, and a
total overhead of eleven messages.

During normal processing, the communication goes through each ring twice, one for
each phase as seen in Figure 1(c). In the first round, the primary coordinator,pc, votes
and piggybacks its own vote on the prepare message to the primary participant,pp.
Eachpp vote and sends its vote along with the vote of thepc to the backup participant,
bp. Bp adds its own vote and forwards it to the backup coordinator,bc. Bc makes a
decision based on the received votes and its own. The decision is then made persistent
by sending it to thepc, which gives an early answer to the client and initiate the second
phase.

The protocol also handles subcoordinators, orsubordinate processes [16]. A subor-
dinate acts as a participant to the coordinator and as a coordinator to the participants. A
subordinate can also act as a participant to another subordinate. During the first phase a
primary subordinate,ps, votes and forwards the vote to each of the subparticipants.The
backup subordinate,bs, collects the votes from all the subparticipants before it sends its
vote to thebc. During the second phase the decision is propagated in the same fashion.

If, during the first phase, one of the participants or subordinates votes NO, the vote
is propagated back to thebc, while each subordinate along the way makes the deci-
sion to abort. The decision is then sent out to all remaining undecided participants and
subordinates.

The protocol handles failures of both the primary and the backup. These failure
scenarios might occur:

• If one of the primaries fails during the first phase, the transaction is aborted as the
backup cannot be sure that it has all the log records.

• If one of the backups fails during the first phase, the preceding node in the ring
sends the vote message to the primary instead.

• If one of the participating primaries (resp. backups) failsduring the second phase,
the preceding node in the ring sends the decision or acknowledgement message to
the backup (resp. primary) instead.

Rerouting the messages to the non-failed primary or backup in the last two scenarios
above works since the primary and backup is assumed never to fail at the same time.

First, a detailed explanation is given, second, the correctness of the protocol is
proven and, third, a one-phase version of C2PC, C1PC, is outlined.

5.1 Detailed Description

This section presents the C2PC protocol in detail. Listings1.1 to 1.6 present the protocol
in failure free scenarios for all types of nodes.

Each process has a Transaction Table (TT) which holds the state (active, prepared,
committed or aborted) and known participants of each transaction. Also, it is told which
processes have failed from the local failure detector. Log records marked with a Log
Sequence Number (LSN) [10] are shipped asynchronously to the backup. The backup
checks that it has received all LSNs and acknowledges the greatest LSN received so far.
The TT of the primary holds the greatest LSN acknowledged so far by the backup, and
the backup TT is updated as log records are received and acknowledged from the pri-
mary. When voting, any unacknowledged log records are piggybacked on aVoteMsg.
The TT can also be changed by receiving a vote message,VoteMsg, from a participant.

First, the protocols for the coordinator and the participants are presented. Then, the
protocols for the subordinates are given.

Coordinator and Participants As seen in Listing 1.1 thepc of the transaction initiates
the protocol by attaching its own vote to aVoteMsg and sending it to each of the
participants.

Some necessary information is included in all messages going down in the commit
tree: (1) The transaction identifier, (2) the address of the primary and backup of thepc
and (3) the address of the client. The first identifies the transaction to be committed,
while the second allowsbp to contactbc. The third allowsbc to contact the client
to complete the transaction shouldpc fail. Also, included in at least one of the vote
messages are (4) the unacknowledged log records of the transaction atpc and (5) a list
of the participants of the transaction. The fourth ensures thatbc has all the log records
generated bypc of the transaction before committing it. Finally, the fifth guarantees that
bc waits forVoteMsgs from all the participants before making a decision and enables
it to complete a transaction in casepc fails.

Eachpp (Listing 1.3) of the transaction receives aVoteMsg. If the received vote or
its own is NO, the decision is ABORT, and a newVoteMsgwith a NO-vote is sent to the
backup. If the vote is YES, pp adds its unacknowledged log records for the transaction
to the vote message and forwards it to the backup.

1atomic commitment:
if (myVote == NO){

decide(ABORT);
4voteMsg =new VoteMsg(txn,No);

send (voteMsg) to all participants;
} else {

7voteMsg =new VoteMsg(txn,Yes);
send (voteMsg) to all participants;
receive(DecisionMsg) from backup{

10if (decision is COMMIT) decide(COMMIT);
else decide(ABORT);
dMsg =new DecisionMsg(txn,decision);

13send reply to client;
send (dMsg) to all participants;
if (decision is COMMIT){

16receive (AckMsg) from backup;
on timeout{resend dMsg;}

} } }

Listing 1.1. Primary coordinator

atomic commitment:
20receive (voteMsg) from all partipants;

if (receivedVotes == NO|| myVote == NO){
decide(ABORT);

23dMsg =new DecisionMsg(txn,ABORT);
} else {

decide(COMMIT);
26dMsg =new DecisionMsg(txn,COMMIT);

}
send (dMsg) to primary;

29if (decision is COMMIT){
receive (DecisionMsg) from all;
receive ack from client;

32send (AckMsg) to primary;
}

Listing 1.2. Backup coordinator

atomic commitment:
receive(voteMsg);

35if (receivedVote == NO|| myVote == NO){
decide(ABORT);
vMsg =new VoteMsg(txn,NO);

38send (vMsg) to backup;
} else {

txnLog = getLog(txn);
41vMsg =new VoteMsg(txn,vote,info);

send (vMsg) to backup;
receive(decisionMsg){

44decide(decisionMsg.decision);
send (decisionMsg) to backup;

} }

Listing 1.3. Primary participant

47atomic commitment:
receive (voteMsg);
if (receivedVote == NO|| myVote == NO){

50decide(ABORT);
vMsg =new VoteMsg(txn,NO);
send (vMsg) to parentBackup;

53} else {
vMsg =new VoteMsg(txn,YES);
send (vMsg) to parentBackup;

56receive (decisionMsg){
decide(decisionMsg.decision);
send (AckMsg) to parentBackup;

59} }

Listing 1.4. Backup participant

When a YES-vote is received by abp (Listing 1.4), the log records from thepp
are removed from theVoteMsg and applied to the local log. The local vote is then
collected and forwarded to the backup of the parent. If the local vote or the received
one is NO, the decision is ABORT and aVoteMsg containing aNo-vote is forwarded
to bc.

Listing 1.2 shows the algorithm forbc. Upon receiving aVoteMsg, it checks if the
message contains a list of participants. If so, it checks whether or not it has received
a VoteMsg from all of them. If a list is not included, it knows that thereare more
messages coming. Either way, it waits until all participants’ votes have been collected
(line 20), and then makes a decision: ABORT if any NO-votes have arrived or itself votes
NO, otherwise COMMIT . Any unacknowledged log records sent frompc are appended
to the local log and a decision message,DMsg, is then sent topc.

When thepc receives aDMsg, it decides the same and then forwards the decision
to the client and the participants. If the decision is COMMIT it waits to receive a confir-
mation frombc saying that all participants have committed before the transaction can
be removed from TT.

After voting, the participants waits for a decision. When received, the decision is
made, and the message is sent from thepp to thebp to thebc. Note that since thepc and

59atomic commitment:
receive(voteMsg);
if (receivedVote == NO|| myVote == NO){

62decide(ABORT);
vMsg =new VoteMsg(txn,NO);
send (vMsg) to participants;

65} else {
txnLog = getLog(txn);
voteMsg =new VoteMsg(txn,vote);

68send (voteMsg) to participants;
receive(decisionMsg){

decide(decisionMsg.decision);
71send (decisionMsg) to participants;

} }

Listing 1.5. Primary subordinate

atomic commitment:
74receive (voteMsg) from all subpartipants;

if (receivedVotes == NO|| myVote == NO){
decide(ABORT);

77vMsg =new VoteMsg(txn,NO);
send (vMsg) to parentBackup;

} else {
80vMsg =new VoteMsg(txn,YES);

send (vMsg) to parentBackup;
receive (decisionMsg){

83decide(decisionMsg.decision);
send (DecisionMsg) to parentBackup;

} }

Listing 1.6. Backup subordinate

thebc are assumed not to fail at the same time, a termination protocol is not needed for
the participants, because the coordinator ensures the liveness of the transaction.

Subordinate processes The previous subsection is necessary to make an atomic com-
mitment, but internal nodes in the commit tree can also exist. These nodes are called
subordinates [16] and are characterized by acting as a coordinator for some participants,
while being a participant itself for the coordinator or other subordinate.

The protocol for a primary subordinate,ps, is given in Listing 1.5. When aVoteMsg
is received, it decides ABORT if the received or its own vote is NO. Otherwise, the unac-
knowledged log records are appended to at least one of the outgoingVoteMsgs along
with a list of the participants. Either way, the address of the currentps andbs is sent to
the participants along with the vote and the information received in theVoteMsg.

A backup subordinate,bs, (Listing 1.6) waits, as thebc, until aVoteMsg is received
from all its participants and then makes a decision based on the received vote and, if
all votes are YES, the result of applying the log records received from the primary. The
information from the parent primary is added to theVoteMsg, and it is sent to the
parent backup.

In the same way as the participants, the subordinates waits for a decision after vot-
ing. When received, the decision is made, and the message is sent from theps to app
or anotherps. Thebs receives the decision from one or morebps orbss, and forwards
it to the bc. For the same reasons as for the participants, a terminationprotocol is not
needed here.

5.2 Correctness

This section proves the correctness of the C2PC protocol by proving each of the prop-
erties given in Section 4 in this order:NB-AC2, NB-AC3, NB-AC4, NB-AC1 andNB-
AC5.

Lemma 1. NB-AC2: A process cannot reverse its decision after it has reached one.

Proof. The algorithms for each of the processes use if-else statements to avoid deciding
more than once per process.

Lemma 2. NB-AC3: The COMMIT decision can only be reached if all processes voted
YES.

Proof. All processes can decide COMMIT during the second phase of the protocol.
However, they can only decide COMMIT if they receive a message with a COMMIT

decision. The only process that can decide COMMIT during the first phase isbc (line
25). This happens only if it has received YES-votes from all the participating processes
including itself.

Lemma 3. NB-AC4: If no process failed and no process voted NO, then the decision
will be to COMMIT .
Proof. If no process failed, and no process voted NO, then since the communication
system is reliable,bc receives YES from all participants and subordinates. Thus, COM-
MIT is reached (line 25).

Lemma 4. NB-AC1: All processes that decide reach the same decision.
Proof. A process can only decide ABORT during the second phase, if a process decided
ABORT during the first phase. Similarly, a process can only decide COMMIT during the
second phase, ifbc decided COMMIT during the first phase. As proved in Lemma 2,
COMMIT can be decided (line 25) only if all processes voted YES. A process can only
decide ABORT during the first phase if it votes NO. A process cannot both vote YES

and NO, so two processes cannot decide differently.

Lemma 5. NB-AC5: Every correct process eventually decides.
Proof. To enable a process to decide in the presence of failures, allfailure scenarios as
well as the scenario with no failures must be handled. These scenarios can occur:

1: Pc fails before sending the vote to all participants.
2: Pc fails after initiating the voting, but before sending the decision to all partici-

pants.
3: Pc fails after sending the decision to all participants, but before receiving anAckMsg

from bc.
4: Bc fails before sending the decision topc.
5: Bc fails after sending the decision topc, but before sendingAckMsg to pc.
6: A ps, bs, pp or bp fails before sending the vote.
7: A ps, bs, pp or bp fails after sending the vote, but before sending the decision.
8: No node fails.

Scenario (1): None has voted, each of the participants can independently abort the
transaction after a timeout has expired without causing inconsistencies in the system.

Scenario (2): Whenbc does not receive a decision from any of the participants and
pc fails, bc can complete the transaction with the decided outcome.

Scenario (3): TheAckMsg is sent topc to allow it to purge the transaction entry
from its TT. However, this is not needed ifpc fails, because it will have to update its TT
as part of the recovery process.

Scenarios (4) and (6): Ifpc does not receive a decision within a given time limit it
can send a message tobc and tell it about the timeout, thenbc can decide Abort. Ifbc
has failed,pc can safely abort the transaction.

Scenario (5): The transaction is completed, but if the decision is COMMIT the trans-
action entry will not be deleted from the TT ofpc until anAckMsg is received. How-
ever,pc resends the decision (line 17) with updated backup information until it receives
confirmation that all participants have decided.

(a) C1PC (b) C1PC with subordinate

Fig. 2. Examples of C1PC execution

Scenario (7): When a process fails during the second phase, the decision must be
sent via the backup on its way down the commit tree or via the primary on its way up
the tree.Pc resends the decision (line 17) until it receives an acknowledgement, and the
failed processes are bypassed.

Scenario (8): This is proven similarly to Lemma 3. Since no process failed and the
communication system is reliable,bc receives votes from all participants and subordi-
nates. Thus, it decides either COMMIT in line 25 or ABORT in line 22. By the same
argument each participant and subordinate eventually decides.

All scenarios are handled, thus, all correct processes eventually decides.

Theorem 1. C2PC is a valid non-blocking atomic commitment protocol.

Proof. Since C2PC satisfies propertiesNB-AC1 - NB-AC5 it solves NB-AC. �

5.3 C1PC

Circular One-Phase Commit protocol, C1PC, is a circular version of 1PC and can be
designed as shown in Figure 2. The main differences between C1PC and C2PC are:
During the first phase (1)pc piggybacksVoteMsg on the last request and (2)bp replies
to ps or pc (instead ofbs or bc) because there might be results that are needed. During
the second phase, (3)pc makes the decision to commit, and (4)bc replies to the client
and sends theDMsg to the participants.

6 Evaluation

This section compares the performance of non-fault tolerant, replicated 2PC, replicated
1PC, C2PC and C1PC. We assume the normal operational mode where no participat-
ing processes fails and all participants vote YES. The purpose is to evaluate the costs
associated with the various protocols.

The table in Figure 3 shows formulas for the added number of messages in the
critical path and the total overhead to complete a transaction compared to the non-fault
tolerant case. The critical path is the delay until the transaction coordinator can give an
early answer to the client. Parallel and linear execution corresponds to a commit-tree of
height1 andN − 1 respectively.

Protocol Delay Total
Non-fault tolerant 0 0

Replicated 2PC, parallel 6 8N + 5

Replicated 2PC, linear 4N + 4 8N + 5

Replicated 1PC, parallel 4 6N + 5

Replicated 1PC, linear 2N + 2 6N + 5

C2PC, parallel 4 8N + 1

C2PC, linear 2N + 1 4N + 5

C2PC, hybrid 4 6N + 1

C1PC, parallel 2 4N + 3

C1PC, linear N + 1 3N + 4

C1PC, hybrid 2 3N + 4

N1 2 3 4

de
la

y

0

5

10

15

20

25 2PC, linear
1PC, linear
C2PC, linear
C1PC, linear

N1 2 3 4

ov
er

he
ad

0

10

20

30

40 2PC
1PC
C2PC, hybrid
C1PC, hybrid

Fig. 3. Added delay until early answer to client and total overhead for various ACPs.N = #
servers invoked by transaction excluding the coordinator,N ≥ 1

The non-fault tolerant case is non-replicated and has zero delay and overhead to
complete the request. It does not tolerate any failures and there is no coordination of the
outcome.

For the transactional cases, the parallel versions of C2PC and C1PC have the short-
est delay and the linear versions have the least overhead. This observation leads to the
hybrid versions of C2PC and C1PC, where the voting phase is executedin parallel and
the decision phase in linear. This minimize both the delay and the overhead.

The graphs in Figure 3 depicts the delay and overhead of selected protocols. The
protocols with constant delay are not shown in the delay graph and in the overhead
graph the linear and parallel circular protocols are not showed to avoid cluttering.

The delay of parallel and hybrid C2PC is equal to and two-thirds of the delay of
1PC and 2PC, respectively. C1PC halves the delay and almost halves the overhead
compared to 1PC, but also inherits its restrictions and assumptions [22]. The overhead
of the parallel and hybrid versions of C1PC is almost half of that of 1PC, and hybrid
C2PC has less overhead than 1PC.

7 Conclusion

This paper has presented an atomic commitment protocol, Circular Two-Phase Commit
(C2PC). It is an single fault-tolerant optimization of 2PC for replicated main-memory
primary-backup systems. C2PC does not require any changes to the standard 2PC in-
terface, and can be implemented in an asynchronous system with an unreliable failure
detector. The protocol is unique in the sense that it does notlog to disk and ensures
liveness for both data, processing and transaction commitment.

For further work the protocol should be implemented and performance measures
should be made to verify the analysis and evaluation in Section 6.

References

1. Schneider, F.B.: Replication management using the statemachine approach. In: Distributed
systems (2nd Ed.). ACM Press/Addison-Wesley Publishing Co. (1993) 169–197

2. Budhiraja, N., Marzullo, K., Schneider, F.B., Toueg, S.:Distributed systems. In Mullender,
S., ed.: Distributed Systems. ACM Press. second edn. Addison-Wesley (1993) 199–216

3. et al., S.O.H.: The ClustRa telecom database: High availability, high throughput, and real-
time response. In: Proc. of VLDB. (1995)

4. Härder, T., Reuter, A.: Principles of transaction-oriented database recovery. ACM Comput.
Surv.15 (1983) 287–317

5. Gray, J.: Notes on data base operating systems. In: Operating Systems, An Advanced Course,
London, UK, Springer-Verlag (1978) 393–481

6. Spiro, P.M., Joshi, A.M., Rengarajan, T.K.: Designing anoptimized transaction commit
protocol. j-DEC-TECH-J3 (1991) 70–78

7. Lampson, B., Lomet, D.: A new presumed commit optimization for two phase commit. In:
Proc. of VLDB. (1993)

8. Haritsa, J.R., Ramamritham, K., Gupta, R.: The prompt real-time commit protocol. IEEE
Trans. Parallel Distrib. Syst.11 (2000) 160–181

9. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann
(1993)

10. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery in database
systems. Addison-Wesley Longman Publ. Co., Inc. (1986)

11. Reddy, P.K., Kitsuregawa, M.: Reducing the blocking in two-phase commit protocol em-
ploying backup sites. In: Proc. of CoopIS. (1998)

12. Skeen, D.: Nonblocking commit protocols. In: Proc. of SIGMOD. (1981)
13. Rabinovich, M., Lazowska, E.D.: A fault-tolerant commit protocol for replicated databases.

In: Proc. of PODS. (1992)
14. Guerraoui, R., Larrea, M., Schiper, A.: Reducing the cost for non-blocking in atomic com-

mitment. In: (ICDCS), Hong Kong (1996) 692–697
15. Samaras, G., Britton, K., Citron, A., Mohan, C.: Two-phase commit optimizations and trade-

offs in the commercial environment. In: Proc. of ICDE. (1993)
16. Mohan, C., Lindsay, B., Obermarck, R.: Transaction management in the R* distributed

database management system. ACM Trans. Database Syst.11 (1986) 378–396
17. Stamos, J.W., Cristian, F.: A low-cost atomic commit protocol. In: Proc. of SRDS. (1990)
18. Gawlick, D., Kinkade, D.: Varieties of concurrency control in IMS/VS Fast Path. IEEE

Database Eng. Bull.8 (1985) 3–10
19. Park, T., Yeom, H.Y.: A consistent group commit protocolfor distributed database systems.

Proc. of PDCS (1999)
20. Levy, E., Korth, H.F., Silberschatz, A.: An optimistic commit protocol for distributed trans-

action management. In: Proc. of SIGMOD. (1991)
21. Abdallah, M., Pucheral, P.: A single-phase non-blocking atomic commitment protocol. In:

Proc. of DEXA. (1998)
22. Abdallah, M., Guerraoui, R., Pucheral, P.: One-phase commit: Does it make sense? In: Proc.

of ICPADS, Washington, DC, USA (1998)
23. Lee, I., Yeom, H.Y.: A single phase distributed commit protocol for main memory database

systems (2002)
24. Stamos, J.W., Cristian, F.: Coordinator log transaction execution protocol. Distributed and

Parallel Databases1 (1993) 383–408
25. Stonebraker, M.: Concurrency control and consistency of multiple copies of data in dis-

tributed ingres. IEEE Trans. Software Eng.5 (1979) 188–194
26. Reddy, P.K., Kitsuregawa, M.: Blocking reduction in two-phase commit protocol with mul-

tiple backup sites. In: DNIS. (2000)
27. Jiménez-Peris, R., Patiño-Martı́nez, M., Alonso, G., Arévalo, S.: A low-latency non-blocking

commit service. In: Proc. of DISC. (2001)
28. Mehrotra, S., Hu, K., Kaplan, S.: Dealing with partial failures in multiple processor primary-

backup systems. In: Proc. of CIKM. (1997)
29. Chandra, T.D., Toueg, S.: Unreliable failure detectorsfor reliable distributed systems. J.

ACM 43 (1996) 225–267
30. Guerraoui, R.: Revisiting the relationship between non-blocking atomic commitment and

consensus. In: WDAG. (1995)

