The Circular Two-Phase Commit Protocol

Heine Kolltveit and Svein-Olaf Hvasshovd

Department of Computer and Information Science
Norwegian University of Science and Technology

Abstract. Distributed transactional systems require an atomic camatit pro-

tocol to preserve atomicity of the ACID properties. Howevkee industry leading
standard, 2PC, is slow and adds a significant overhead tedttian process-
ing. In this paper, a new atomic commitment protocol for m@@mory primary-

backup systems, C2PC, is proposed. It exploits replicati@void disk-logging

and performs the commit processing in a circular fashiore @halysis shows
that C2PC has the same delay as 1PC, and reduces the totat@yerompared
to 2PC.

1 Introduction

Main memory prices have dropped significantly over the l&stryg, and the state of
many applications and databases can now be fitted entirehain memory. To make
the state both persistent and available, it can be reptidatgead of written to disk.
For instance, a backup replica (backup for brevity) takesr ¢hve processing if a pri-
mary replica (primary for brevity) fails. A backup is kept tpdate by receiving the
same operations as the primary (active replication [1]pgrrecords from the primary
(passive replication [2]). The backup can either apply tigerecords to its own state or
periodically receive checkpoints from the primary. Assngihat themean time to fail,
MTTF, is orders of magnitude larger than timean time to repair, MTTR, the system
only needs to be single fault tolerant to completely avol ieed for disk accesses.
MTTR can be made very short by employing on-line self-repagéchanisms [3]. In
addition, since disk accesses are slow compared to both Réddsaes and network
latencies, replication can result in an improvement inqranfince.

A transaction is a collection of operations that transfesgsiem reliably from one
state to another, while providing the ACID properties [&fomicity, consistency, isola-
tion anddurability. Commonly, transaction termination and atomicity is $igtisby an
atomic commitment protocol, ACP. The ACP has been showed to be an important factor
of total transaction processing time and, in particular,dbrrent industry leading stan-
dard, the Two-Phase Commit protocol, 2PC [5], is slow [6F8F delay caused by two
rounds of messages and multiple log records flushed to diseca significant over-
head. Also, a failure of the coordinator might block the jggvants from completing a
transaction [9, 10].

ACP performance and resilience to failures is a well esthblil research field, but
optimizations that will have significant effect is still gilsle under a parallel and repli-
cated paradigm. Thus, this paper presents an ACP calledl&irtwo-Phase Commit

protocol, C2PC. Itis an optimized version of 2PC for primaackup systems. The pro-
tocol takes advantage of replication to trade costly flustiskiwrites for cheaper mes-
sage sends and RAM accesses. The idea is to send the voteasidrd® the backup
instead of a disk. This provide availability for the tranawe participants and coordi-
nator and renders 2P@n-blocking [9, 11]. To give better performance, the vote and
decision are sent in a ring instead of back and forth betweemptimary and backup.
The protocol is always single fault-tolerant and these wdttcould be favorably ap-
plied in a shared-nothing, fault-tolerant DBMS like Cluatf3].

The rest of the paper is organized as follows: Section 2 sumesarelated work.
Section 3 presents the system model and Section 4 define®thblocking atomic
commitment problem. Section 5 gives an overview and a detaiéscription of C2PC,
proves the correctness of the protocol and outlines a oasqghversion called C1PC.
Then, an evaluation of the protocols is given in Section faly, the conclusion and
further work are presented in Section 7.

2 Redated Work

Several atomic commitment protocols and variations haee pbeoposed over the years.
Many approaches have been concerned with either develaging-blocking protocol
or the performance issues. However, only a few deal with.both

In a non-replicated environment, 2PC may block if the cauathr and a partici-
pant fail [9, 10]. 3PC [12] decreases the chance of blockailgries by adding an extra
round of messages, thus favoring resilience over perfocma@PC has been extended
to partitioned environments [13], and the number of commation steps has been re-
duced to the same as 2PC by using consensus [14], causingraase in the number
of messages or requiring broadcast capabilities.

Several 2PC-based modifications where performance issedsmadled exist [15].
Presumed commit and presumed abort [16] both avoid one fludible write, by assum-
ing that a non-existent log record means that the trangabhis committed or aborted,
respectively. Transfer-of-commit, lazy commit and readlyacommit [9], sharing the
log [16, 17] and group commit [18, 19] are other optimizatioAn optimization of the
presumed commit protocol [7] reduces the number of messhgesequires the same
number of forced disk writes.

Optimistic commit protocols are designed to give bettepoase time during nor-
mal processing, but will need extra recovery after failleaborts. They release locks
when the transaction is prepared, but must be able to haadéading aborts by using
semantic knowledge [20]. PROMPT [8] uses optimistic logkim the sense that locks
can be lent to other transactions after the participant béedwes. A transaction that
lends locks will not reply to the request until the locks arllyfreleased by the previous
transaction, and only one transaction at a time can lendla Tdus approach avoids
cascading aborts while it may yield better performance bee®f increased concur-
rency.

One-phased commit protocols have also been proposed [2Z42These are based
on the early prepare or unsolicited vote method by Stone{@%] where the prepare
message is piggybacked on the last operation sent to aiparticIn this way, the

voting phase is eliminated. However, these approachestsfirong assumptions and
restrictions on the transactional system [22]. For ingaitaequires either the partic-
ipants to prepare the transaction for each request-refdyaction, or the coordinator
must be able to identify the last request for a transactiobet@ble to piggyback a
prepare-request. Otherwise, the performance of 1PC degirad

A few approaches that render 2PC non-blocking by replicdiave been proposed.
The first replicates the coordinator, but not the participéil]. In addition to sending
log records to the backup, they are forced to disk, causingceedse in performance.
Also, the backup only finishes transactions already staNechew transactions can be
initiated by the backup. This approach has also been ad&pteditiple backups [26].

The second combines optimistic commit and replication .[27teplicated group
of commit servers is used to keep the log records not yetemritb the log by the
participant available, thus ensuring resilience to f@urmhis approach uses multicast
and has the same latency as 2PC, but requires more messagesciat.

A third approach [28] is the most similar to the approach aeldin this paper. The
differences are that it incurs unnecessary overhead byrggtite “start of prepare” and
the commit log records to the backup, and it forces log rextwdhe disk even if both
the primary and the backup work correctly. The performaadkus degraded.

3 System Modd

The system is composed of a number of processes or nodesctedtierough a com-
munication network. Each process has both a functional(apiplication or database
server) and a transaction manager. A process executestas &f actions. (1) Change
state and (2) send or receive a message. When correct, teeytexat arbitrary speeds,
but eventually make progress. Processes fail by crashagsirtg them to lose state.
Such events are, however, rare. A failed process is rectase brought up-to-date by
the system.

Communication isasynchronous andreliable. Thus, there are no bounds on com-
munication delays and messages are not corrupted or losttifthe receiving and the
sending process behaves correctly, i.e. do not crash.

In an asynchronous system, a failure detector is neededke tha system reliable
[29]. An eventually strong failure detector can solve the atomic commitment problem
[30]. However, to simplify the problem descriptions and lexgations a perfect fail-
ure detector that eventually suspects every faulty proeedsnever suspects a correct
process is assumed.

For the purpose of this paper no disks are used. State igdstotéely in main-
memory. Thus, to make the state persistent and the systdily hignilable theorimary-
backup approach [2] is used. This approach assumes that MTTF is orders of imatm
larger than MTTR, thus both the primary and backup do notfaihe same time.

Following [16], the costs of execution in this system areftiah (1) The computa-
tion cost is the total number of messages sent, and (2) thg deserialized messages.
The main memory operations associated with the atomic cemmenit protocol are only
a small fraction of the load on the system, thus their cogtimasumed to be negligible.
Also, as long as the processors are not fully utilized, tlaeeeno queueing effects.

4 The Non-Blocking Atomic Commitment Problem

An atomic commitment protocol ensures that the participané transaction agrees on
the outcome, i.eABORT or COMMIT. Each participant vote, &s or NO, on whether
they can guarantee the local ACID properties of the traimachll participants has a
right to veto the transaction, thus causing it to abort. THan-Blocking Atomic Com-
mitment problem, NB-AC, has these properties [10, 30]:
NB-AC1 <uniformagreement> All processes that decide reach the same decision.
NB-AC2 <integrity> A process cannot reverse its decision after it has reached on
NB-AC3 <uniform validity> ComMIT can only be reached #ll processes voted
YES.
NB-AC4 <non-triviality> If there are no failures and no processes votey tiien
the decision will be to OMMIT.
NB-AC5 <termination> Every correct process eventually decides.

5 TheCircular Two-Phase Commit Protocol

This section presents ti@&rcular Two-Phase Commit protocol, C2PC, for main mem-
ory primary-backup systems.

Normally, 2PC requires both forced and non-forced diskesrji6, 9]. In a primary-
backup environment these disk writes can be replaced byecésely, synchronous
(blocking) and asynchronous (non-blocking) logging to iaekup node. Figure 1(a)
illustrates this. The small arrows between each primagkbp pair is the logging.

2PC (Figure 1(a)) consists of two phases, a voting phase aediaion phase. In
the voting phase the votes are collected by a coordinatdrttam coordinator makes

\ f\ WORK_REQ f\ \
+PREP\ARE
N \\’ /NM > ¢ \Y /]FM \\’ /N.T c \\, f \\'w/‘T: c
% 7 O Vv Vv - 7 R Ol
(a) Replicated 2PC (b) Replicated 1PC (c) C2PC
\ /\X g client process =—»
~ primary replica
\ A\ 4 - C primary-backup pair
\‘ r \' T backup replica
\\' II \\]\, — ¢ messages &f coordinator €
transactional i i subordinate S
) v/ 5 P operations i participant p
(d) C2PC with subordinate (e) Legend for Figure 1

Fig. 1. Execution of various atomic commitment protocols

a decision depending on the votes and persistently stoeedetision. In the decision
phase, the outcome is sent to the participants which sendlarowledgement back
to the coordinator. Each participant must persistentlyesits vote and the outcome
before replying to the coordinator in, respectively, théngand decision phase. After
the decision has been made persistent, the coordinatoreaarmearly answer [3] to
the client. Thus, the response time seen from the cliensistlean what it would be if
the second phase had to be completed before the reply.

1PC (Figure 1(b)) piggybacks the prepare-message on thwdals request for the
transaction. Thus, the first phase of the voting is elimiddt®wever, each participant’s
vote must be persistently stored to the backups beforeirgply the coordinator.

The C2PC protocol is a modified version of 2PC for main memaoimary-backup
systems. Similarly to 2PC, C2PC has two phases and logs ties and decision to
the backups. However, it allows the backup to reply to th&kbpaoordinator. This is
shown in Figure 1(c). Instead of sending votes and acknayahexhts back and forth the
votes and decision are sent in a ring for each branch of theribtree. This is a case
of the transfer-of-commit optimization [9] where the auibpto commit is passed via
the participants to the backup root coordinator.

C2PC reduces both the number of messages in the criticahpditthe total number
of messages to commit a transaction. The critical path isiéhey until the transaction
coordinator can give an early answer to the client. For mstacomparing Figure 1(a)
and 1(c), the added delay has been reduced from six to fousages and the added
number of messages from thirteen to nine. By comparison, (HRflire 1(b)) has an
added delay of four, two within the transactional operatiframe and two after, and a
total overhead of eleven messages.

During normal processing, the communication goes throagh eéng twice, one for
each phase as seen in Figure 1(c). In the first round, the pricaardinatorpc, votes
and piggybacks its own vote on the prepare message to thariparticipantpp.
Eachpp vote and sends its vote along with the vote of ple¢o the backup participant,
bp. Bp adds its own vote and forwards it to the backup coordindtorBc makes a
decision based on the received votes and its own. The dedsstben made persistent
by sending it to thec, which gives an early answer to the client and initiate ttroed
phase.

The protocol also handles subcoordinatorsutaordinate processes [16]. A subor-
dinate acts as a participant to the coordinator and as a io@bod to the participants. A
subordinate can also act as a participant to another sutaediDuring the first phase a
primary subordinateys, votes and forwards the vote to each of the subparticip@hts.
backup subordinatés, collects the votes from all the subparticipants beforenids its
vote to thebc. During the second phase the decision is propagated in the feshion.

If, during the first phase, one of the participants or subrattis votes N, the vote
is propagated back to thHec, while each subordinate along the way makes the deci-
sion to abort. The decision is then sent out to all remainimdeeided participants and
subordinates.

The protocol handles failures of both the primary and thekbpcThese failure
scenarios might occur:

o If one of the primaries fails during the first phase, the teation is aborted as the
backup cannot be sure that it has all the log records.
o If one of the backups fails during the first phase, the prewedobde in the ring
sends the vote message to the primary instead.
¢ If one of the participating primaries (resp. backups) fdiising the second phase,
the preceding node in the ring sends the decision or ackig@taent message to
the backup (resp. primary) instead.
Rerouting the messages to the non-failed primary or baakthilast two scenarios
above works since the primary and backup is assumed nevait & the same time.
First, a detailed explanation is given, second, the camess of the protocol is
proven and, third, a one-phase version of C2PC, C1PC, imedtl

5.1 Detailed Description

This section presents the C2PC protocol in detail. Listihdgo 1.6 present the protocol
in failure free scenarios for all types of nodes.

Each process has a Transaction Table (TT) which holds the (stdive, prepared,
committed or aborted) and known participants of each transaction. Also, itid tehich
processes have failed from the local failure detector. lesgprds marked with a Log
Sequence Number (LSN) [10] are shipped asynchronouslyetbdlckup. The backup
checks that it has received all LSNs and acknowledges ttadagtl SN received so far.
The TT of the primary holds the greatest LSN acknowledge@sby the backup, and
the backup TT is updated as log records are received and atdahged from the pri-
mary. When voting, any unacknowledged log records are (iggiged on &ot eMsg.
The TT can also be changed by receiving a vote mes¥agesMs g, from a participant.

First, the protocols for the coordinator and the partictpame presented. Then, the
protocols for the subordinates are given.

Coordinator and Participants As seen in Listing 1.1 thpc of the transaction initiates
the protocol by attaching its own vote toMt eMsg and sending it to each of the
participants.

Some necessary information is included in all messageggmwn in the commit
tree: (1) The transaction identifier, (2) the address of tiragry and backup of thpc
and (3) the address of the client. The first identifies thestation to be committed,
while the second allowbp to contactbc. The third allowsbc to contact the client
to complete the transaction shoyid fail. Also, included in at least one of the vote
messages are (4) the unacknowledged log records of thettams atpc and (5) a list
of the participants of the transaction. The fourth ensurasc has all the log records
generated bpc of the transaction before committing it. Finally, the fifthagantees that
bc waits forVot eMsgs from all the participants before making a decision and kxsab
it to complete a transaction in cagefails.

Eachpp (Listing 1.3) of the transaction receive¥at eMsg. If the received vote or
its own is No, the decision is 8ORT, and a newot eMs g with a No-vote is sent to the
backup. If the vote is ¥s, pp adds its unacknowledged log records for the transaction
to the vote message and forwards it to the backup.

atomiccommitment: 1
if (myVote == NO){

atomiccommitment:

decide(ABORT); . B
_ . receive (voteMsg) from all partipants; 20
voteMsg =new VoteMsg(txn,No); 4 h : —_ —_
send (voteMsg) to all participants; it (recg ivedvotes - NQ| myVote == NO){
}else{ decide(ABORT);
voteMsg =new VoteMsg(txn, Yes): 7 dMsg =new DecisionMsg(txn,ABORT); 23
send (voteMsg) to all participants; ¥ 3:ii;{je(COMMIT)'
receive(DecisionMsg) from backup dMsg =new DecisionMsg(txn,COMMIT); 26

if (decision is COMMIT) decide(COMMIT); 10

else decide(ABORT): } o

~ - L send (dMsg) to primary;
dMsg =new DeqspnMsg(txn,deC|S|on), if (decision is COMMIT) 29
send reply to client; 13

receive (DecisionMsg) from all;
receive ack from client;
send (AckMsg) to primary; 32

send (dMsg) to all participants;
if (decision is COMMIT){
receive (AckMsg) from backup; 16
on timeout{resend dMsg; ¥

T}

Listing 1.2. Backup coordinator

Listing 1.1. Primary coordinator

atomic commitment:

receive(voteMsg); atomiccommitment: 47
.) s . receive (voteMsg);
if gsgsjlgl(es\slgg;)_- NQ| myVote == NO){ 35 if (receivedVote == NQ| myVote == NO){
vMsg =new VoteMsg(txn,NO); d;\aﬁmde_(ABO\le);M NO): 50
send (vMsg) to backup; 38 vMsg =new VoteMsg(txn,NO);
}else{ ’ send (vMsg) to parentBackup;
e oty || 2 o Vs) ”
send (vMsg) to backup; ! ! ! senq (vMsg)l tq parentBackup;
receive(decisionMsgj ’ receive (deC|§|ansg§ - 56
decide(decisionMsg.decision); 44 decge)gdekﬁ/llsmnMsg.decglonk), .
send (decisionMsg) to backup; send (AckMsg) to parentBackup;
1 1} 59

Listing 1.3. Primary participant Listing 1.4. Backup participant

When a YEs-vote is received by &p (Listing 1.4), the log records from thgp
are removed from th&ot eMsg and applied to the local log. The local vote is then
collected and forwarded to the backup of the parent. If tlalloote or the received
one is Nb, the decision is 8ORT and aVot eMsg containing aNo-vote is forwarded
to bc.

Listing 1.2 shows the algorithm fdac. Upon receiving &/ot eMs g, it checks if the
message contains a list of participants. If so, it checkstidreor not it has received
a Vot eMsg from all of them. If a list is not included, it knows that thesee more
messages coming. Either way, it waits until all particigambtes have been collected
(line 20), and then makes a decisiorB@RT if any No-votes have arrived or itself votes
No, otherwise @MMIT. Any unacknowledged log records sent frpmare appended
to the local log and a decision messabis g, is then sent tc.

When thepc receives eDMVs g, it decides the same and then forwards the decision
to the client and the participants. If the decision iSNDVIT it waits to receive a confir-
mation frombc saying that all participants have committed before thestation can
be removed from TT.

After voting, the participants waits for a decision. Wheneiged, the decision is
made, and the message is sent frompo thebp to thebc. Note that since thpc and

atomiccommitment: 59 : : -
atomiccommitment:

receive(voteMsg); .) .
; : o __ receive (voteMsg) from all subpartipants; 74
if g:gsjlg(eﬁ\slgg;)—l NQ| myVote == NOX 62 if (receivedVotes == NQ| myVote == NO){
vMsg =new VoteMsg(ixn,NO); Sr?/lcslde—(/:;? \ljgt)e;Ms (txn,NO); 77
send (vMsg) to participants; 9= glxn, !
}else { 65 send (vMsg) to parentBackup;
- . }else{
txnLog = getLog(txn); vMsg =new VoteMsg(txn,YES); 80

voteMsg =new VoteMsg(txn,vote); send (VMsg) to parentBackup:

d teM t tici ts; 68 X -
f:cnei\ggjgci;%)n&gg icipants receive (decisionMsg}
decide(decisionMsg.decision); decide(decisionMsgdecision); 8
send (decisionMsg) to participants; 71 send (DecisionMsg) to parentBackup;
1 1}
Listing 1.5. Primary subordinate Listing 1.6. Backup subordinate

thebc are assumed not to fail at the same time, a termination psbi®oot needed for
the participants, because the coordinator ensures theekgeof the transaction.

Subordinate processes The previous subsection is necessary to make an atomic com-

mitment, but internal nodes in the commit tree can also eXisése nodes are called
subordinates[16] and are characterized by acting as a coordinator foequarticipants,
while being a participant itself for the coordinator or ateabordinate.

The protocol for a primary subordinafss, is given in Listing 1.5. When Yot eMsg
is received, it decides BORT if the received or its own vote is ® Otherwise, the unac-
knowledged log records are appended to at least one of tgeiog/ot eMsgs along
with a list of the participants. Either way, the address ef¢hrrenfps andbsis sent to
the participants along with the vote and the informatioreiesd in theVot eMsg.

A backup subordinatés, (Listing 1.6) waits, as thic, until aVot eMs g is received
from all its participants and then makes a decision basedh@meceived vote and, if
all votes are ¥s, the result of applying the log records received from thenpriy. The
information from the parent primary is added to tiet eMsg, and it is sent to the
parent backup.

In the same way as the participants, the subordinates vesitsdecision after vot-
ing. When received, the decision is made, and the messagatifrem thepsto app
or anothemps. Thebsreceives the decision from one or mdugs orbss, and forwards
it to the bc. For the same reasons as for the participants, a terminataiocol is not
needed here.

5.2 Correctness

This section proves the correctness of the C2PC protocotdying each of the prop-
erties given in Section 4 in this ordétB-AC2, NB-AC3, NB-AC4, NB-AC1 andNB-
ACS.

Lemma 1. NB-AC2: A process cannot reverse its decision after it has reached one.

Proof. The algorithms for each of the processes use if-else statsrweavoid deciding
more than once per process.

Lemma 2. NB-AC3: The ComMIT decision can only be reached if all processes voted
YES.

Proof. All processes can decided®™mMIT during the second phase of the protocol.
However, they can only decidedmmiT if they receive a message with s0@mIT
decision. The only process that can decideM™IT during the first phase isc (line
25). This happens only if it has received ¥votes from all the participating processes
including itself.

Lemma 3. NB-AC4: If no process failed and no process voted NoO, then the decision
will beto COMMIT.

Proof. If no process failed, and no process voted,khen since the communication
system is reliablehc receives ¥sfrom all participants and subordinates. ThughG
MIT is reached (line 25).

Lemma 4. NB-AC1: All processes that decide reach the same decision.

Proof. A process can only decideB®RT during the second phase, if a process decided
ABORT during the first phase. Similarly, a process can only decide@ T during the
second phase, lic decided @MMmIT during the first phase. As proved in Lemma 2,
ComMIT can be decided (line 25) only if all processes voteekYA process can only
decide ABORT during the first phase if it votes® A process cannot both votees

and No, so two processes cannot decide differently.

Lemma5. NB-AC5: Every correct process eventually decides.
Proof. To enable a process to decide in the presence of failuregjlalle scenarios as
well as the scenario with no failures must be handled. Thesgssios can occur:
1: Pcfails before sending the vote to all participants.
2: Pc fails after initiating the voting, but before sending thecideon to all partici-
pants.
3: Pcfails after sending the decision to all participants, bdibbereceiving amckMsg
from bc.
. Bcfails before sending the decisionpo.
. Bcfails after sending the decision po, but before sendingckMsg to pc.
A ps, bs, pp or bp fails before sending the vote.
A ps, bs, pp or bp fails after sending the vote, but before sending the datisio
: No node fails.
Scenario (1): None has voted, each of the participants acapendently abort the
transaction after a timeout has expired without causingrisistencies in the system.

Scenario (2): Whebc does not receive a decision from any of the participants and
pc fails, bc can complete the transaction with the decided outcome.

Scenario (3): TheAckMsg is sent topc to allow it to purge the transaction entry
from its TT. However, this is not neededat fails, because it will have to update its TT
as part of the recovery process.

Scenarios (4) and (6): [ic does not receive a decision within a given time limit it
can send a messagelioand tell it about the timeout, thést can decide Abort. Ibc
has failed pc can safely abort the transaction.

Scenario (5): The transaction is completed, but if the detis ComMIT the trans-
action entry will not be deleted from the TT p€ until anAckMsg is received. How-
ever,pc resends the decision (line 17) with updated backup infaonaintil it receives
confirmation that all participants have decided.

R \K"‘éiésiiﬁ]\]
X‘fgiéﬁiig f\ \) l‘ 2N ¥ 40 ¢
__\?\%lﬁf_; ; -
: oo\
| A

A/ v/ P Y P

(a) C1PC (b) C1PC with subordinate
Fig. 2. Examples of C1PC execution

Scenario (7): When a process fails during the second phas@leicision must be
sent via the backup on its way down the commit tree or via tiagy on its way up
the treePc resends the decision (line 17) until it receives an ackndgéenent, and the
failed processes are bypassed.

Scenario (8): This is proven similarly to Lemma 3. Since nocpss failed and the
communication system is reliable; receives votes from all participants and subordi-
nates. Thus, it decides eitheo@mIT in line 25 or ABORT in line 22. By the same
argument each participant and subordinate eventuallyldsci

All scenarios are handled, thus, all correct processeseatyndecides.

Theorem 1. C2PC isa valid non-blocking atomic commitment protocol.
Proof. Since C2PC satisfies propertidB-AC1 - NB-AC5 it solves NB-AC. |

53 CI1PC

Circular One-Phase Commit protocol, C1PC, is a circular version of 1PC and can be
designed as shown in Figure 2. The main differences betwd®&CG&Gnd C2PC are:
During the first phase (I piggybacks/ot eMsg on the last request and (@) replies

to psor pc (instead ots or bc) because there might be results that are needed. During
the second phase, (B makes the decision to commit, and @treplies to the client
and sends thBVs g to the participants.

6 Evaluation

This section compares the performance of non-fault toteraplicated 2PC, replicated
1PC, C2PC and C1PC. We assume the normal operational mode nbgarticipat-
ing processes fails and all participants votesy The purpose is to evaluate the costs
associated with the various protocols.

The table in Figure 3 shows formulas for the added number afsages in the
critical path and the total overhead to complete a transactbmpared to the non-fault
tolerant case. The critical path is the delay until the taatisn coordinator can give an
early answer to the client. Parallel and linear executionssponds to a commit-tree of
heightl and N — 1 respectively.

Protocol Delay | Total B

Non-fault tolerant 0 0 o 207

Replicated 2PC, parallel 6 [8N +5 =

Replicated 2PC, linear|4N + 4[8N + 5 =

Replicated 1PC, parallel 4 [6N +5 Zf ,;,,:,‘ | |
Replicated 1PC, linear|2N + 2(6N + 5 1 2 3 :
C2PC, parallel 4 8N +1 wf— e

C2PC, linear 2N + 14N +5 gl C2pC, hybrid -
C2PC, hybrid 4 6N +1 g I C1PC, hybrid
C1PC, parallel 2 [AN +3 g - Ry
C1PC, linear N+1|[3N +4 e

C1PC, hybrid 2 [3N+4 ot — .

Fig. 3. Added delay until early answer to client and total overheadvarious ACPsN = #
servers invoked by transaction excluding the coordinator; 1

The non-fault tolerant case is non-replicated and has zelaydand overhead to
complete the request. It does not tolerate any failurestar@ tis no coordination of the
outcome.

For the transactional cases, the parallel versions of C2lIC4APC have the short-
est delay and the linear versions have the least overhe&lobservation leads to the
hybrid versions of C2PC and C1PC, where the voting phase is exeicupedallel and
the decision phase in linear. This minimize both the delalthe overhead.

The graphs in Figure 3 depicts the delay and overhead oftedli@cotocols. The
protocols with constant delay are not shown in the delay lgiaud in the overhead
graph the linear and parallel circular protocols are nowatbto avoid cluttering.

The delay of parallel and hybrid C2PC is equal to and twadthiof the delay of
1PC and 2PC, respectively. C1PC halves the delay and alnabstshthe overhead
compared to 1PC, but also inherits its restrictions andraptions [22]. The overhead
of the parallel and hybrid versions of C1PC is almost halfhaittof 1PC, and hybrid
C2PC has less overhead than 1PC.

7 Conclusion

This paper has presented an atomic commitment protoca@ll@ir Two-Phase Commit
(C2PC). It is an single fault-tolerant optimization of 2R& feplicated main-memory
primary-backup systems. C2PC does not require any chaoghe standard 2PC in-
terface, and can be implemented in an asynchronous systiémamwiunreliable failure
detector. The protocol is unique in the sense that it doesogoto disk and ensures
liveness for both data, processing and transaction conenitm

For further work the protocol should be implemented andgrerhnce measures
should be made to verify the analysis and evaluation in Sedi

References

1. Schneider, F.B.: Replication management using the statdine approach. In: Distributed
systems (2nd Ed.). ACM Press/Addison-Wesley Publishing(C293) 169-197

n

10.
11.

12.
13.

14.
15.
16.

17.
18.

19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

Budhiraja, N., Marzullo, K., Schneider, F.B., Toueg, Bistributed systems. In Mullender,
S., ed.: Distributed Systems. ACM Press. second edn. Addigesley (1993) 199-216

. etal., S.0.H.: The ClustRa telecom database: High diti{a high throughput, and real-

time response. In: Proc. of VLDB. (1995)

. Harder, T., Reuter, A.: Principles of transaction-otéal database recovery. ACM Comput.

Surv.15 (1983) 287-317

. Gray, J.: Notes on data base operating systems. In: @ue&tstems, An Advanced Course,

London, UK, Springer-Verlag (1978) 393—-481

. Spiro, P.M., Joshi, A.M., Rengarajan, T.K.: Designingamtimized transaction commit

protocol. j-DEC-TECH-3 (1991) 70-78

. Lampson, B., Lomet, D.: A new presumed commit optimizafiar two phase commit. In:

Proc. of VLDB. (1993)

. Haritsa, J.R., Ramamritham, K., Gupta, R.: The promgttieee commit protocol. IEEE

Trans. Parallel Distrib. Sysil1 (2000) 160-181

. Gray, J., Reuter, A.: Transaction Processing: ConceputSachniques. Morgan Kaufmann

(1993)

Bernstein, P.A., Hadzilacos, V., Goodman, N.: Conawyeontrol and recovery in database
systems. Addison-Wesley Longman Publ. Co., Inc. (1986)

Reddy, P.K., Kitsuregawa, M.: Reducing the blockingvim-phase commit protocol em-
ploying backup sites. In: Proc. of CooplS. (1998)

Skeen, D.: Nonblocking commit protocols. In: Proc. d&BIOD. (1981)

Rabinovich, M., Lazowska, E.D.: A fault-tolerant conhmiotocol for replicated databases.
In: Proc. of PODS. (1992)

Guerraoui, R., Larrea, M., Schiper, A.: Reducing the &msnon-blocking in atomic com-
mitment. In: (ICDCS), Hong Kong (1996) 692697

Samaras, G., Britton, K., Citron, A., Mohan, C.: Two-ph@ommit optimizations and trade-
offs in the commercial environment. In: Proc. of ICDE. (1993

Mohan, C., Lindsay, B., Obermarck, R.: Transaction rgangent in the R* distributed
database management system. ACM Trans. Databasely0886) 378—396

Stamos, J.W.,, Cristian, F.: A low-cost atomic committpcol. In: Proc. of SRDS. (1990)
Gawlick, D., Kinkade, D.: Varieties of concurrency aohtin IMS/VS Fast Path. |IEEE
Database Eng. BulB (1985) 3—-10

Park, T., Yeom, H.Y.: A consistent group commit protdooldistributed database systems.
Proc. of PDCS (1999)

Levy, E., Korth, H.F., Silberschatz, A.: An optimisticramit protocol for distributed trans-
action management. In: Proc. of SIGMOD. (1991)

Abdallah, M., Pucheral, P.: A single-phase non-blogkatomic commitment protocol. In:
Proc. of DEXA. (1998)

Abdallah, M., Guerraoui, R., Pucheral, P.: One-phagentit: Does it make sense? In: Proc.
of ICPADS, Washington, DC, USA (1998)

Lee, I., Yeom, H.Y.: A single phase distributed commdtpcol for main memory database
systems (2002)

Stamos, J.W., Cristian, F.: Coordinator log transactivecution protocol. Distributed and
Parallel Databasels(1993) 383-408

Stonebraker, M.: Concurrency control and consisteriaputiple copies of data in dis-
tributed ingres. IEEE Trans. Software Efg1979) 188-194

Reddy, P.K., Kitsuregawa, M.: Blocking reduction in tplease commit protocol with mul-
tiple backup sites. In: DNIS. (2000)

Jiménez-Peris, R., Patifio-Martinez, M., Alonsq ABévalo, S.: A low-latency non-blocking
commit service. In: Proc. of DISC. (2001)

Mehrotra, S., Hu, K., Kaplan, S.: Dealing with partialfees in multiple processor primary-
backup systems. In: Proc. of CIKM. (1997)

Chandra, T.D., Toueg, S.: Unreliable failure detecforgeliable distributed systems. J.
ACM 43 (1996) 225-267

Guerraoui, R.: Revisiting the relationship between-blmtking atomic commitment and
consensus. In: WDAG. (1995)

