
Pål Sætrom

Hardware accelerated genetic
programming for pattern mining

in strings

Dr.philos. thesis 2005:197

Faculty of Information Technology, Mathematics and
Electrical Engineering

Department of Computer and Information Science

Hardware accelerated genetic programming for pattern mining in strings
Pål Sætrom

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

Dr.philos. thesis 2005:197

ISBN 82-471-7289-5 (printed version)
ISBN 82-471-7288-7 (electronic version)
ISSN 1503-8181

TO GERD INGER,
BJØRN MAGNUS,

AND LARS GUNNAR

Abstract

This thesis considers the problem of mining patterns in strings. Infor-
mally, this is the problem of extracting information (patterns) that charac-
terizes parts of, or even the complete, string. The thesis describes a high
performance hardware for string searching, which together with genetic
programming, forms the basis for the thesis’ pattern mining algorithms.

This work considers two different pattern mining problems and devel-
ops several different algorithms to solve different variants of these prob-
lems. Common to all algorithms is that they use genetic programming to
evolve patterns that can be evaluated by the special purpose search hard-
ware.

The first pattern mining problem considered is unsupervised mining of
prediction rules in discretized time series. Such prediction rules describe
relations between consecutive patterns in the discretized time series; that
is, the prediction rules state that if the first pattern occurs, the second pat-
tern will, with high probability, follow within a fixed number of symbols.
The goal is to automatically extract prediction rules that are accurate, com-
prehensible, and interesting.

The second pattern mining problem considered is supervised learning
of classifiers that predict whether or not a given string belongs to a specific
class of strings. This binary classification problem is very general, but this
thesis focuses on two recent problems from molecular biology: i) predict-
ing the efficacy of short interfering RNAs and antisense oligonucleotides;
and ii) predicting whether or not a given DNA sequence is a non-coding
RNA gene. The thesis describes a genetic programming-based mining al-
gorithm that produce state-of-the-art classifiers on both problems.

Preface

This dissertation is submitted to the Norwegian University of Science and
Technology (NTNU) in partial fulfillment of the requirements for the de-
gree of Doctor philosophiae.

The main contributions of this dissertation are the seven research pa-
pers that have been, or will be published in peer-reviewed scientific con-
ference proceedings and journals. These papers are collected in the disser-
tation’s second part, and throughout this work, I will refer to the papers as
Paper I through Paper VII (see the List of Papers).

The first part of the dissertation introduces the topics covered in the pa-
pers and provides a context for the reader. The introduction focuses mostly
on the papers’ pattern mining aspects, but also gives a brief introduction
to the application areas covered by the papers. These are i) unsupervised
mining of prediction rules in time series; ii) predicting non-coding RNA
genes in DNA sequences; and iii) predicting the efficacy of short inter-
fering RNAs and antisense oligonucleotides. The papers give additional
references.

Background

This dissertation is the result of several decades of research on special
purpose search hardware. The search hardware described here—the pat-
tern matching chip (PMC)—is the third generation design and was con-
ceived by Arne Halaas, Børge Svingen, and Olaf René Birkeland in the mid
nineties. I was introduced to the architecture while working on my mas-
ter degree. Then, through Børge Svingen’s simple idea of using genetic
programming to evolve search patterns for the PMC, I was introduced to
genetic programming. After completing my master thesis on genetic pro-
gramming and the PMC in February 2001, I joined the PMC-team at Fast
Search & Transfer. On 18 January the following year, we established In-
teragon AS as a bioinformatics company that was to do complex pattern

viii Preface

analysis in biological data. Since then, we have used genetic programming
and the PMC in several commercial and academic research projects.

It is hard to put a date on when I started working on this thesis, as it has
very much been a continual process since I finished my master thesis. 17
June 2002 is, however, an important date in this respect, as this was when
Magnus Lie Hetland and I started our collaboration. This collaboration has
so far resulted in six research papers—five of which appeared in Magnus’
PhD-thesis and three of which appears in mine.

On joint authorships

Most of this thesis builds on work done in collaboration with others, but as
the thesis’ title suggests, my main contributions in this work have been sys-
tems for hardware accelerated pattern mining in strings. More specifically,
in Magnus Lie Hetland’s and my work, the solutions for supervised rule
mining were his main contributions; the solutions for unsupervised rule
mining were mine. Consequently, of the six papers from our collaboration,
the three papers included in this thesis focus mostly on unsupervised rule
mining. In Interagon, Olaf René Birkeland and Ola Snøve have focused
mostly on the search processor and biological applications, respectively; I
have focused on machine learning methods for string classification.

Acknowledgements

Most of this work was financed by Interagon AS, as I have been a full-time
employee while working on this dissertation. Parts of the work was also
supported by the Norwegian Research Council, grant 151899/150, and the
bioinformatics platform at NTNU.

I would like to thank all the people that have made this work possible
through your contributions, encouragement, help, and support. I would
like to thank my co-authors on the different papers; their contributions
have been invaluable. I would like to thank Finn Drabløs, Arne Halaas,
Magnus Lie Hetland, and Ola Snøve for reading and commenting on this
manuscript. I would like to thank Arne Halaas for introducing me to the
PMC, for steering me into the FAST milieu, and for his constant encourage-
ments throughout this work. I would like to thank Magnus Lie Hetland for
giving me the opportunity to contribute in a fruitful collaboration. I would
like to thank Hans E. Krokan for all his support. I would like to thank my
colleagues at Interagon, Olaf René Birkeland, Ståle H. Fjeldstad, Thomas

ix

Grünfeld, Håkon Humberset, Magnar Nedland, and Ola Snøve; this has in
many ways been a team effort. Finally, I would like to thank my family for
being there and for keeping up with me working the many odd hours—
without you it would not have been worth it.

Contents

1 Introduction 1
1.1 Thesis structure . 2
1.2 Paper abstracts . 3
1.3 Other publications . 6

2 Strings and string mining 7
2.1 Strings defined . 7
2.2 String searching . 8

2.2.1 String searching defined 8
2.2.2 String searching in software 8
2.2.3 String searching in hardware 9

2.3 String mining . 11
2.3.1 Mining rules in strings 11
2.3.2 Classifying strings . 12
2.3.3 Overfitting and accuracy 13
2.3.4 Estimating model accuracy 15

2.4 Problem domains . 16
2.4.1 Rule mining in time series 16
2.4.2 Classification of DNA sequences 17

3 Evolving string patterns 21
3.1 Evolutionary algorithms . 21
3.2 Genetic programming . 23

3.2.1 Solution representation 23
3.2.2 Variation operations 25

3.3 Fitness . 27
3.3.1 Fitness in rule mining 27
3.3.2 Fitness in classification 28

3.4 Selection . 30
3.4.1 Niching . 31
3.4.2 Fitness sharing . 31

xii Contents

3.4.3 Species selection . 32

4 Ensemble methods to increase classifier performance 35
4.1 Voting . 37
4.2 Boosting . 38

5 Contributions and further work 43
5.1 Contributions . 43
5.2 Further work . 44

Bibliography 47

Papers 57

List of figures

1.1 How the papers relate to one another 2

2.1 Basic PMC architecture . 9
2.2 Basic PMC configuration . 10
2.3 Training without restrictions 14
2.4 Noise in the training set . 14
2.5 The double stranded DNA . 18
2.6 Antisense oligonucleotides . 19

3.1 Evolutionary algorithm . 22
3.2 A simple syntax tree . 24
3.3 A simple language grammar 24
3.4 Standard subtree swapping crossover disrupts grammar . . 26
3.5 Constrained crossover conserves grammar 26
3.6 Confusion matrix . 28

4.1 Averaging reduces variance 38
4.2 General boosting algorithm 39
4.3 Maximizing the margin improves generalization 41

List of papers

Paper I Arne Halaas, Børge Svingen, Magnar Nedland, Pål Sætrom,
Ola Snøve Jr., and Olaf René Birkeland. A recursive MISD
architecture for pattern matching. IEEE Trans. on VLSI Syst.,
12(7):727–734, 2004.

Paper II Pål Sætrom and Magnus Lie Hetland. Unsupervised temporal
rule mining with genetic programming and specialized hard-
ware. In Proceedings of the International Conference on Machine
Learning and Applications (ICMLA’03), pages 145–151, 2003.

Paper III Pål Sætrom and Magnus Lie Hetland. Multiobjective evolution
of temporal rules. In Eight Scandinavian Conference on Artificial
Intelligence, 2003.

Paper IV Magnus Lie Hetland and Pål Sætrom. Evolutionary rule min-
ing in time series databases. Mach. Learn., 58(2–3):107–125,
2005.

Paper V Pål Sætrom. Predicting the efficacy of short oligonucleotides
in antisense and RNAi experiments with boosted genetic pro-
gramming. Bioinformatics, 20(17):3055–3063, 2004.

Paper VI Pål Sætrom and Ola Snøve Jr. A comparison of siRNA efficacy
predictors. Biochem. Biophys. Res. Commun., 321(1):247–253,
2004.

Paper VII Pål Sætrom, Ragnhild Sneve, Knut I. Kristiansen, Ola Snøve Jr.,
Thomas Grünfeld, Torbjørn Rognes, and Erling Seeberg. Pre-
dicting non-coding RNA genes in Escherichia coli with boosted
genetic programming. Nucleic Acids Res., 33(10):3263–3270,
2005.

Chapter 1

Introduction

INFORMATION retrieval in strings is a problem of increasing impor-
tance, as the number and size of electronic string collections is ever

increasing. This thesis considers two specific problems in two different
application domains: i) automatic extraction of prediction patterns in dis-
cretized time series, and ii) automatic classification of DNA sequences.
Both problems fall into the general bag labeled “pattern mining in strings”.

There are numerous methods for mining patterns in strings, including
patterns in time series and patterns in protein and DNA sequences, but
most of these methods use deterministic search and pruning techniques
to find all candidate patterns; see for example Das et al. (1998); Höppner
and Klawonn (2001); Mannila et al. (1997); Yang et al. (2003) (time series),
Jonassen et al. (1995) (proteins), and Vanet et al. (1999) (DNA). This simple
technique is optimal for simple rule formats, but more complex patterns
make the search intractable. To mine more complex patterns, one must
resort to heuristic search methods, such as evolutionary algorithms (Freitas
2002).

Genetic programming is an evolutionary algorithm that intuitively is
attractive in pattern mining because it evolves symbolic expressions (Koza
1992). Several groups have used genetic programming to mine patterns in
strings; see for example Hetland (2003) (time series), Heddad et al. (2004);
Koza et al. (1999) (proteins), and Howard and Benson (2003) (DNA). Like
other evolutionary algorithms, genetic programming uses evolution in a
population of candidate solutions to explore the search space. A part of
the evolution process is to test the quality of each candidate solution in
the current population, and in string pattern mining, this test typically
means scanning each candidate pattern against the string database. Conse-
quently, genetic programming can become impractical when the database
is too large or when the patterns are too complex.

2 Introduction

Paper I

Paper II Paper III Paper IV

Paper V Paper VI

Paper VII

Figure 1.1: How the papers relate to one another.

This work is based on a special purpose hardware—the pattern match-
ing chip (PMC)—which can search for complex patterns in large string da-
tabases. The PMC’s functionality, performance, and ease of use have been
key factors behind this work, as these factors made it possibile to explore
solutions that otherwise might have been impractical because of compu-
tational limitations. Hetland (2003); Hetland and Sætrom (2002, 2003a,b,
2004) used genetic programming and the PMC to mine patterns in dis-
cretized time series. This study further explores the use of genetic pro-
gramming for pattern mining in strings.

1.1 Thesis structure

This thesis has two main parts. The first part (chapters 1 to 5) gives an in-
troduction to the thesis’ main contributions: the papers in the second part.
Chapter 2 introduces the problem of mining patterns in strings; Chapter 3
discusses how genetic programming can be used to mine such string pat-
terns; Chapter 4 shows how combining several patterns can improve the
performance of the patterns mined by genetic programming; and Chap-
ter 5 summarizes the main contributions and outlines some possible fur-
ther work.

Each paper in the second part is self-contained. Nevertheless, the pa-
pers are related, as some papers build on the work of other papers. You
should therefore have Figure 1.1 in mind when reading the papers. Paper I
presents the specialized search hardware that forms the basis for the fol-
lowing papers on string mining; papers II, III, and IV develop algorithms
for unsupervised mining of prediction rules in strings; Paper V consid-
ers the problem of predicting how effective short oligonucleotides will be
when they are used in antisense and RNA interference experiments (ODNs
and siRNAs), and present a boosted genetic programming algorithm that

1.2 Paper abstracts 3

shows promising results; Paper VI compares the performance of the clas-
sifiers created by the boosted genetic programming algorithm with the
performance of other recently published siRNA efficacy prediction algo-
rithms; and Paper VII uses the boosted genetic programming algorithm to
predict non-coding RNA genes in the bacteria Escherichia coli. The follow-
ing section lists the paper abstracts.

1.2 Paper abstracts

Paper I A recursive MISD architecture for pattern matching. Many applica-
tions require searching for multiple patterns in large data streams for
which there is no preprocessed index to rely on for efficient lookups.
An MISD VLSI architecture that is based on a recursive divide and
conquer approach to pattern matching is proposed. This architec-
ture allows searching for multiple patterns simultaneously. The pat-
terns can be constructed much like regular expressions, and add fea-
tures such as requiring subpatterns to match in a specific order with
some fuzzy distance between them, and the ability to allow errors
according to prescribed thresholds, or ranges of such. The current
implementation permits up to 127 simultaneous patterns at a clock
frequency of 100 MHz, and does 1.024 × 1011 character comparisons
per second.

Paper II Unsupervised temporal rule mining with genetic programming and
specialized hardware. Rule mining is the practice of discovering in-
teresting and unexpected rules from large data sets. Depending on
the exact problem formulation, this may be a very complicated prob-
lem. Existing methods typically make strong simplifying assump-
tions about the form of the rules, and limit the measure of rule quality
to simple properties, such as confidence. Because confidence in itself
is not a good indicator of how interesting a rule is to the user, the
mined rules are typically sorted according to some secondary inter-
estingness measure. In this paper we present a rule mining method
that is based on genetic programming. Because we use specialized
pattern matching hardware to evaluate each rule, our method sup-
ports a very wide range of rule formats, and can use any reasonable
fitness measure. We develop a fitness measure that is well-suited for
our method, and give empirical results of applying the method to
synthetic and real-world data sets.

4 Introduction

Paper III Multiobjective evolution of temporal rules. In recent years, the
methods of evolutionary computation have proven themselves use-
ful in the area of data mining. For rule mining, several objective func-
tions have been used, relating to both accuracy and interestingness
in general. However, when searching for rules or patterns in a data
set, several conflicting objectives will often be present. As the ulti-
mate goal of data mining is to discover unexpected, useful knowl-
edge, it may not be feasible to prioritize these objectives a priori. In
this paper we propose an alternative to constructing an ad hoc ag-
gregate fitness function: using well-established multiobjective evolu-
tionary algorithms to evolve a Pareto optimal set of rules. We apply
the method to several real-world data sets and demonstrate how the
method is able to evolve a varied set of rules that explore different
aspects of the time series in question.

Paper IV Evolutionary rule mining in time series databases. Data mining in
the form of rule discovery is a growing field of investigation. A re-
cent addition to this field is the use of evolutionary algorithms in
the mining process. While this has been used extensively in the tra-
ditional mining of relational databases, it has hardly, if at all, been
used in mining sequences and time series. In this paper we describe
our method for evolutionary sequence mining, using a specialized
piece of hardware for rule evaluation, and show how the method
can be applied to several different mining tasks, such as supervised
sequence prediction, unsupervised mining of interesting rules, dis-
covering connections between separate time series, and investigating
tradeoffs between contradictory objectives by using multiobjective
evolution.

Paper V Predicting the efficacy of short oligonucleotides in antisense and RNAi
experiments with boosted genetic programming. Both small interfering
RNAs (siRNAs) and antisense oligonucleotides can selectively block
gene expression. Although the two methods rely on different cellu-
lar mechanisms, the methods share the common property that not all
oligonucleotides (oligos) are equally effective. That is, if mRNA tar-
get sites are picked at random, many of the antisense or siRNA oligos
will not be effective. Algorithms that can reliably predict the efficacy
of candidate oligos can greatly reduce the cost of knockdown exper-
iments, but previous attempts to predict the efficacy of antisense oli-
gos have had limited success. Machine learning has not previously
been used to predict siRNA efficacy.

1.2 Paper abstracts 5

We develop a genetic programming based prediction system that
shows promising results on both antisense and siRNA efficacy pre-
diction. We train and evaluate our system on a previously published
database of antisense efficacies and our own database of siRNA effi-
cacies collected from the literature. The best models gave an overall
correlation between predicted and observed efficacy of 0.46 on both
antisense and siRNA data. As a comparison, the best correlations of
support vector machine classifiers trained on the same data were 0.40
and 0.30, respectively.

The prediction system uses proprietary hardware and is available for
both commercial and strategic academic collaborations. The siRNA
database is available upon request.

Paper VI A comparison of siRNA efficacy predictors. Short interfering RNA
(siRNA) efficacy prediction algorithms aim to increase the probabil-
ity of selecting target sites that are applicable for gene silencing by
RNA interference. Many algorithms have been published recently,
and they base their predictions on different features such as duplex
stability, sequence characteristics, mRNA secondary structure, and
target site uniqueness.

We compare the performance of the algorithms on a collection of
publicly available siRNAs. First, we show that our regularized ge-
netic programming algorithm, the GPboost, appear to perform better
and more stable than do other algorithms on the collected datasets.
Second, several algorithms gave close to random classification on
unseen data, and only GPboost and three other algorithms have a
reasonably high and stable performance on all parts of the dataset.
Third, the results indicate that the siRNAs’s sequence is sufficient in-
put to siRNA efficacy algorithms, and that other features that have
been suggested to be important may be indirectly captured by the
sequence.

Paper VII Predicting non-coding RNA genes in Escherichia coli with boosted
genetic programming. Several methods exist for predicting non-coding
RNA (ncRNA) genes in Escherichia coli (E. coli). In addition to about
sixty known ncRNA genes excluding tRNAs and rRNAs, various
methods have predicted more than thousand ncRNA genes, but only
95 of these candidates were confirmed by more than one study. Here
we introduce a new method that uses automatic discovery of se-
quence patterns to predict ncRNA genes. The method predicts 135
novel candidates. In addition, the method predicts 152 genes that

6 Introduction

overlap with predictions in the literature. We test sixteen predic-
tions experimentally, and show that twelve of these are actual ncRNA
transcripts. Six of the twelve verified candidates were novel predic-
tions. The relatively high confirmation rate indicates that many of
the untested novel predictions are also ncRNAs, and we therefore
speculate that E. coli contains more ncRNA genes than previously es-
timated.

1.3 Other publications

Other publications co-authored while working on this thesis include the
papers listed in the bibliography as Hetland and Sætrom (2002, 2003a,b,
2004); and Snøve Jr. et al. (2004).

Chapter 2

Strings and string mining

WHETHER we consider written text, DNA, or daily finite precision
temperature measurements, a string is an ordered list of symbols

from a finite alphabet. Data collections of strings are ever increasing—
consider for example the ever growing World Wide Web (Lawrence and
Giles 1998; Risvik 2004) or the exponentially increasing number of avail-
able DNA sequences (NCBI News 2004). Consequently, effective methods
to query and retrieve information from strings are increasingly valuable.

This chapter considers the problems of searching strings and mining
strings. After formally defining what a string is, the chapter discusses
string searching in general and a high performance hardware solution in
particular. The chapter concludes by presenting two string mining prob-
lems—unsupervised mining of prediction rules in strings and classifying
strings—and outlining some potential application areas.

2.1 Strings defined

Def. 1 A string s is an ordered set of characters from a finite alphabet Σ, and |s|
is the length of the string. s[i] is the character at position i.

For example, in the DNA alphabet where Σ = {a, c, g, t}, s = “acgt” is a
string of length 4 and s[2] = c.

Def. 2 s[i . . . j] is the substring from position i to position j in s. In particular,
s[1 . . . i] is the i-th prefix of s and s[i . . . |s|] is the i-th suffix of s.

Thus, in “acgt”, “ac” is the second prefix and “cgt” is the second suffix.
We use S to denote a set of strings, and subscripts to enumerate the

strings in a set; that is, S = {s1, . . . , s|S|}.

8 Strings and string mining

2.2 String searching

Informally, string searching is the problem of finding the occurrences of
patterns in a string. The following sections will give some useful defi-
nitions of string searching, briefly discuss software-based solutions, and
introduce the string searching hardware that form the basis for this work.

2.2.1 String searching defined

Finding the abstracts that contain the word “siRNA” in a database of sci-
entific abstracts, or finding all English words that can be transformed to
“fun” by adding, removing, or substituting one letter, are both examples
of string searching problems. In the former problem, we search the string
of abstracts for all exact occurrences of the pattern siRNA; in the latter
problem, we search the string of all English words for all occurrences of
the approximate pattern fun that allows for one addition, removal, or re-
placement of a letter. These problems are also known as the exact and
approximate string matching problems (Gusfield 1997).

Formally, given a string s and a pattern p, the string search problem
is to find all occurrences of pattern p in string s. To determine whether
a given pattern matches a given string, we introduce the concept of hit
functions on the space of strings S and patterns P (Halaas et al. 2004):

Def. 3 The hit function H(s, p) : S × P → {0, 1} is a function returning 1 if
pattern p matches some suffix of s, and 0 otherwise. For example, if s = “regular”
and p =ar, then H(s, p) = 1.

Thus, a hit function formalizes the concept of matching a pattern against a
string.

2.2.2 String searching in software

There are several algorithms that solve the exact string matching prob-
lem and variants of the approximate string matching problem (for example
Gusfield (1997); Navarro (2004); Navarro and Raffinot (2002); Witten et al.
(1999)). These algorithms find pattern occurrences either by scanning the
string or by constructing and querying an index of the string. Index-based
algorithms are usually faster than are scanning algorithms and can handle
much larger strings than can scanning algorithms, but index-based solu-
tions i) are not available for all search types; ii) can have excessively large
space requirements; and iii) are inefficient on volatile data, as building the
index is costly (Navarro 2001).

2.2 String searching 9

Data distribution

PE PE PE PE. . .

R N A i a s c c e s s ,u

0 0 1 0 0 0 0 0 0

Result gathering

Figure 2.1: Basic PMC architecture (adapted from Hetland (2003)).

2.2.3 String searching in hardware

This work considers a specific class of patterns, namely the patterns that
can be handled by a special purpose search hardware called the pattern
matching chip (PMC). The patterns have several key properties, including
(Halaas et al. 2004)

1) concatenation of basic strings and patterns;
2) alphanumerical comparisons of basic strings;
3) boolean operations on subexpressions;
4) hamming distance filtering;
5) hit lingering (latency); and
6) limited regular expressions.

By combining these properties, we can construct patterns such as for ex-
ample {siRNA : p ≥ 4, d = 50}&{off target : p ≥ 9, d = 50}. This pat-
tern looks for occurrences of the strings “siRNA” and “off target” within
a distance of fifty bytes, where each string tolerates up to one mismatch.
Obviously, this pattern matches “siRNA off target” and “off target siRNA”,
but the pattern also matches “miRNA off-target” or “Is RNAi a success, or
do potential off-target effects threaten its status?”, for example. Nedland et al.
(2002) formalized the above pattern characteristics in the Interagon query
language (IQL).

Given an IQL pattern and a string, the PMC scans the string for all
occurrences of the pattern; that is, the PMC can be seen as a hit function
that solves the string searching problem for this specific pattern class. To

10 Strings and string mining

a) b)

=a =c

 2

=a =c

 1

Figure 2.2: Basic PMC configuration of the data distribution tree, processing elements,
and result gathering tree to match queries (a) ca (“c” followed by “a”) and (b) a | c (“a”
or “c”).

understand how the PMC works, consider Figure 2.1, which shows the
PMC’s basic architecture. The PMC receives the string as a stream of bytes
and, through a binary distribution tree, distributes this stream to a set of
basic processing elements (PEs). As the byte stream flows past, each PE
compares each byte with a preconfigured value and reports the Boolean
result of the comparison to the binary result gathering tree. At each posi-
tion in the byte stream, the result gathering tree collects the results from the
different PEs and, depending on how each node in the tree is configured,
reports either yes (1) or no (0) depending on whether the current pattern
configuration matches the current string prefix.

Figure 2.2 illustrates how the data distribution tree, PEs, and result
gathering tree can be configured to match two simple regular expressions.
To match the simple string “ca” (Panel (a)), the PMC sequentially sends
the data stream to two PEs that compare the bytes in the stream to the re-
spective characters. The node in the result gathering tree returns a match
if both PEs reports a match. To match either “a” or “c”, we change the data
flow so that the PEs receive the data stream in parallel, and change the
function in the result gathering tree to the OR function; that is, the result
gathering tree reports a match if at least one of the PEs reports a match.

The above examples illustrates the basic functionality of the PMC; Pa-
per I describes the PMC architecture in further detail and also gives exam-
ples of more advanced configurations.

2.3 String mining 11

2.3 String mining

The previous section considered the problem of finding the occurrences of
a given pattern in a string. The opposite problem is when you have a string
(or a set of strings) with some known properties, and you want to create a
pattern that characterizes parts of, or even the complete, string (set). The
latter problem is more commonly known as data mining.

This work considers two different data mining problems, namely rule
mining in strings and classification of strings. In the former problem, we
want to find patterns that describe parts of a string; in the latter problem,
we want to create patterns that recognize strings with a common property.
The following sections present these problems in more detail and consider
the problem of overfitting and how to estimate the pattern accuracy.

2.3.1 Mining rules in strings

Prediction rules are well known in the area of relational database mining
(for example, Freitas 2002) and generally have the form

IF antecedent THEN consequent. (2.1)

Here, the antecedent is some expression that relates the state of one or
more attributes to the state of a single goal attribute—the consequent. The
expression

IF age ≤ 10 THEN income ≤ $10.00 (2.2)

is one example of a simple prediction rule. This rule format can also be
used to describe prediction rules in sequences; for example, Das et al.
(1998) used the following rule format to mine prediction rules from dis-
cretized time series:

IF s[i] = a THEN s[j] = b, 0 < j − i ≤ t.

These rules state that symbol a will likely be followed by symbol b within
t symbols in the discretized time series string s. By using the concept of
hit functions (Def. 3), we can extend this rule format to include general
patterns:

IF H(s[1 . . . i], pa) THEN H(s[1 . . . j], pc), 0 < j − i ≤ t. (2.3)

That is, if the antecedent pattern pa hits at position i then it is likely that
the consequent pattern pc will hit some position within t symbols.

12 Strings and string mining

Given a string, our goal is to automatically extract high quality pre-
diction rules from that string. Freitas (2002) lists three key aspects of rule
quality: accuracy, comprehensibility, and interestingness. First, our rules
model predictive relations in the string, and we therefore want our rules to
be accurate; that is, the antecedent should have a high probability of pre-
dicting the occurrences of the consequent. Second, as we want our rules
to represent high level information about the strings, rules that nobody
can understand have little value beyond being simple prediction tools.
Third, even if a rule is both accurate and comprehensible, the rule may
not be interesting, as it may represent a very obvious relationship, such as
the rule in (2.2). As several measures of rule accuracy, comprehensibility,
and interestingness are known (see for example Baldi et al. (2000); Freitas
(2002); Hilderman and Hamilton (1999)), one can solve the rule extraction
problem by optimizing such quality measures within the space of possible
rules. We use this approach in this work.

The string prediction rule from equation (2.3) describes relationships
between patterns in the string. These rules can be used to model the com-
plete string; for example, by having rules that predict the possible conse-
quents in the string (for example, Hetland and Sætrom (2002, 2003b, 2004);
and Paper IV, Section 3.1). Here, the prediction rules are, however, used
to model parts of strings. Section 2.4.1 presents several variants of the rule
extraction problem in the context of time series mining.

Note that Freitas (2002) refers to the above rule mining problem as de-
pendence modeling. This problem can also be viewed as an unsupervised
data mining problem. That is, there is no previous knowledge about the
string and the goal is simply to extract useful information from the string.
In contrast, supervised string mining are problems where each string has
some associated property, and the goal is to create rules or models that
predict this property. This is the subject of the following section.

2.3.2 Classifying strings

In the previous section we considered the problem of extracting rules that
describe parts of a string. In string classification, each string belongs to
a conceptual class—for example, a string is either written in Norwegian
or not—and the task is to create a model that correctly predicts the class of
an unlabeled string. More specifically, from a training set of labeled strings
(s1, y1), . . . , (sn, yn) ∈ S×Y, we want to estimate a function f : S → Y such
that the error L(f) when classifying unseen examples is as small as possi-
ble (Meir and Rätsch 2003; Shawe-Taylor and Cristianini 2004). One typi-

2.3 String mining 13

cally assumes that the training set is generated independently and at ran-
dom from some underlying, but unknown, probability distribution P(s, y).

The above problem is also known as supervised data mining, as each
data instance si has an associated label yi that has been assigned by some
supervisor (Vapnik 1998). Different feature spaces Y result in different
versions of the supervised mining problem (Shawe-Taylor and Cristianini
2004); for example, the problem where the labels are real numbers (Y = R)
is known as regression. Here, we only consider binary classification, where
Y = {−1, 1}; that is, the strings belong to one of two classes. Section 2.4.2
gives additional details on two binary classification problems where the
strings are DNA sequences.

2.3.3 Overfitting and accuracy

In general, the true performance or generalization error of a model f is

L(f) =
∫

λ(f (s), y)dP(s, y), (2.4)

where λ is some loss function, such as for example the 0/1-loss

λ(f (s), y) =
{

1 if y f (s) ≤ 0,
0 otherwise, (2.5)

which is often used in binary classification (Meir and Rätsch 2003). As
we do not know the generating probability distribution P(s, y), we can not
directly find the optimal hypothesis that minimizes equation (2.4). Instead,
we must use approximations based on the model’s performance on the
training set, such as for example the empirical risk

L̂(f) =
1
n

n

∑
i=1

λ(f (si), yi). (2.6)

Optimizing the empirical risk directly, however, typically leads to poor
results on unseen data. This is because most training sets are small, and
without restricting the class of hypotheses, one can find infinitely many
solutions that have zero empirical risk, as illustrated in Figure 2.3. Thus,
to solve the classification problem when faced with limited training sets,
one must limit the complexity of the candidate solutions (Meir and Rätsch
2003). This is called regularization.

Figure 2.4 illustrates another problem, which is related to the problem
of limited training sets. In this figure, one of the training instances has been

14 Strings and string mining

a) b)

Figure 2.3: Training without restrictions in small training sets can lead to poor results. (a)
Not only are there infinitely many linear functions that can perfectly separate the positive
and negative samples in the small training set. There are also infinitely many more com-
plex functions that can perfectly separate the samples. (b) Most of these solutions will,
however, have poor results on the unseen data.

a) b)

Figure 2.4: (a) Arbitrary complex functions can find perfect solutions in noisy training
sets, but (b) this can give poorer results on unseen data.

mislabeled, which is often the case in “real world” data sets; for example,
because of typing errors when the data set was collected. Mislabeled in-
stances are noise because they are not true samples from the generating
probability distribution P(s, y). Training with arbitrary complex functions
will, however, give zero empirical risk even on noisy training sets. Thus,
regularization is also necessary when one suspects that the training set
contains noise.

Certain machine learning algorithms, such as support vector machines
(Schölkopf et al. 2000; Vapnik 1995) and regularized boosting algorithms
(Meir and Rätsch 2003; Rätsch 2001; Rätsch et al. 2001, 2000), have regu-
larization as an integral part (Chapter 4 will discuss boosting algorithms
in more detail). For other algorithms, such as neural networks, there ex-

2.3 String mining 15

ist several pruning algorithms that limit the networks’ complexity (Reed
1993). Early stopping is a method that limits the model complexity by
choosing the model that has the best performance on a validation set,
which is a set of labeled data instances that are not used to generate the
models (Prechelt 1998). There are several issues with using this method,
such as for example how to identify the model having the best validation
performance, that the models become overfitted on the validation set, or
that using a validation set reduces the size of the training set and may
consequently reduce the performance of the generated models. Neverthe-
less, early stopping is useful because it is a general method that can be
used with any machine learning method that iteratively creates increas-
ingly complex models.

2.3.4 Estimating model accuracy

As outlined in the previous section, the goal in classification is to create
a model that generalize well to unseen samples. Although certain algo-
rithms, such as support vector machines (SVMs), provably can create mod-
els that generalize well, their performance varies depending on the prob-
lem and the kernel used to train the SVM (see for example, Müller et al.
(2001)). Thus, in general, one wants to estimate the generalization perfor-
mance of every model created by every machine learning method, to get
an idea of the risk involved in using the models in predictive settings. In
addition, estimating generalization performance is important when com-
paring the performance of different models on a given problem.

k-fold cross validation is a general method for estimating the perfor-
mance of models (Stone 1974). In k-fold cross validation the training set is
divided into k equal sized, non-overlapping subsets (or folds). Then, for
each fold i, i ∈ {1, . . . , k}, we train a model on the remaining k − 1 folds
and test its performance on the i-th fold. The average of these k test values
is known to be a good estimate of the models’ true generalization error for
k ≥ 10 (Martin and Hirschberg 1996).

Many machine learning algorithms have several parameters that in-
fluence their generalization performance—for example, the regularization
parameter in SVMs—and cross validation is often used to select the opti-
mal values of such parameters. As Salzberg (1997) notes, however, one
should be very careful when making conclusions based on the perfor-
mance of such optimized models. Testing multiple parameter settings and
choosing the setting that gives the highest cross validation estimated per-
formance is a form of training, as the user identifies the best parameter

16 Strings and string mining

setting for the current data set. This optimized performance does not, how-
ever, represent the true generalization performance of the model. Thus, us-
ing such optimized performance measures to compare different algorithms
or classifiers will, in general, lead to invalid conclusions about which algo-
rithm or classifier is the best.

Identifying optimal parameters can, however, be very important for
some machine learning algorithms. To solve this problem—that is, iden-
tifying optimal parameters while getting reliable estimates of the general-
ization performance—one must test the optimized models on test data not
used when training and optimizing the models. More specifically, k-fold
cross validation can again be used to estimate the generalization perfor-
mance. To do this, we use k-fold cross validation to identify the optimal
parameters on each of the k training sets, and test the optimized model on
the remaining test fold. As a result, the final generalization error estimate
is independent of both the model training and parameter optimization.

This double k-fold cross validation procedure is, however, very compu-
tationally expensive. Compared to using only k-fold cross validation with-
out optimizing parameters, the number of machine learning runs needed
increases with a factor of k · p, where p is the number of parameter set-
tings tested. Note, however, that any procedure that does not completely
separate the training data from the test data—both for model training and
parameter optimization—risks producing biased estimates of the general-
ization performance. Procedures that mix the training and test data do,
however, seem to be common (for example, Müller et al. (2001)).

2.4 Problem domains

2.4.1 Rule mining in time series

A time series is a chronologically ordered sequence of observations. Time
series are common, as many different events are continuously measured
through time; examples include daily closing prices of stocks, daily rain-
fall, monthly employment figures, or quarterly profits. Although the ob-
servations in general can be real-valued, there exist several methods that
transform real-valued time series into a sequence of symbols from a finite
alphabet; see for example Paper IV, Section 2.5 and the references therein.
Thus, we will here model time series as strings (in accordance with Def. 1).

Section 2.3.1 outlines the general problem of mining prediction rules
in strings, which is to automatically extract accurate, comprehensible, and
interesting rules. This can be formalized as follows (Paper IV):

2.4 Problem domains 17

Def. 4 (Unsupervised rule mining) Given a string s and a rule language L =

La
T⇒
w

Lc, where La and Lc are the antecedent and consequent languages, w is a
minimum distance, and T is a maximum distance, find rules R ∈ L that optimize
some objective function f (R).

Note that L represents the space of possible prediction patterns, as La and
Lc specify the legal antecedent and consequent patterns, and w and T spec-
ify the minimum and maximum distances between the antecedent and
consequent. Thus, any rule R ∈ L conforms to the general prediction rule
format in (2.3).

Def. 4 formulates the rule mining problem as an optimization problem.
This definition is the basis for Paper II, which solves the rule mining prob-
lem by optimizing different interestingness measures. Paper III extends
this work by simultaneously optimizing rule accuracy, comprehensibility,
and interestingness; that is (Paper IV):

Def. 5 (Multi-objective Rule Mining) Given a string s, a rule language L,
and a set F = { fi} of objective functions, find a diverse set of rules R = {ri}, ri ∈
L with high objective values fi(rj), such that no rule ri ∈ R dominates any other
rule rj ∈ R. One rule dominates another if it is as good or better in terms of all
objectives, and strictly better in terms of at least one objective.

The final problem we will be considering is to find rules that relate the
characteristics of two time series, or formally (Paper IV):

Def. 6 (Mining Multiple Series) Given a set S of m strings si (si ∈ S) and
a rule language L = Li

a
T⇒
w

Lj
c, i, j ∈ [1, m] and i �= j, find rules R ∈ L that

optimize some objective function f (R).

Here, the antecedent and consequent patterns occur in different strings si
and sj. Thus, if the antecedent pattern occurs in si the rule predicts that the
consequent pattern will occur in s j within a distance window of [w, T].

Papers II, III, and IV give further details on the three problems, includ-
ing the objective functions used and the results of several simulation ex-
periments.

2.4.2 Classification of DNA sequences

An organism’s genetic information is encoded in a large molecule called
deoxyribonucleic acid (DNA). DNA consists of two helical chains of four
smaller molecules called nucleotides, and these four nucleotides, adenine

18 Strings and string mining

5’ ACG T G T CG 3’
| | | | | | | |

3’ T GCACAGC 5’

Figure 2.5: The double stranded DNA. One strand uniquely determines the other strand.

(A), cytosine (C), guanine (G), and thymine (T) form the alphabet of the
genetic code. The two DNA chains are arranged in a double helix such
that A paires with T and C paires with G, as illustrated in Figure 2.5. Thus,
one strand uniquely determines the other DNA strand.

Ribonucleic acid (RNA) is a molecule similar to DNA in that it also
encode genetic information as a chain of nucleotides. In RNA, thymine
is, however, replaced with uracil (U), and the RNA molecule is (usually)
single stranded. Both DNA and RNA are uniquely read from the 5’ to the
3’ end. Thus, DNA can be considered a string from the alphabet ΣD =
{A, C, G, T}, and RNA a string from the alphabet ΣR = {A, C, G, U}.

A common definition of a gene is a subsequence of DNA that contains
the information for making one RNA (Lewin 2000). That is, the gene en-
codes a sequences that is transcribed to an RNA sequence by the cell. For
most genes the RNA sequence functions as a messenger (mRNA) that is
translated into a protein. Nevertheless, the RNA sequence of some genes
is not translated; the function of these non-coding RNA (ncRNA) genes
lies in the RNA sequence itself and not in a protein product. The protein
coding genes are, however, the more prevalent and best known gene class.
Indeed, the best know ncRNA genes are the transfer RNA and ribosomal
RNA that the cell uses to translate RNA into proteins.

There is, however, a growing recognition that ncRNA genes are more
diverse and more common than previously believed (Eddy 2001). For ex-
ample, microRNAs were unknown until Lee et al. (1993) and Wightman
et al. (1993) identified the first microRNA gene, and were not identified as
a large gene class until 2001 (Lagos-Quintana et al. 2001; Lau et al. 2001;
Lee and Ambros 2001). Recently, Lim et al. (2003) estimated microRNAs to
constitute about one percent of all predicted genes in the human genome.
Because of this growing interest, and because existing tools that predict
protein coding genes can not reliably predict ncRNA genes (Eddy 2001),
there is a growing need for tools that predict novel ncRNA genes. That
is, given a DNA string, one would like to predict whether or not the string
contains an ncRNA gene. This is essentially a binary classification problem
and Paper VII presents a possible solution.

Many ncRNAs regulate the expression of other genes. This is for ex-
ample the case for microRNAs, which regulate the expression of target

2.4 Problem domains 19

mRNA

ODN

AU C AA C UA C GAU C A G C AU GGG

T AG T T GA T G C T AG T C G T A C C C

AAG... AU G...

Figure 2.6: The antisense oligonucleotide base-pairs perfectly with its target mRNA.

genes through an antisense mechanism. That is, the ∼ 22 nucleotide (nt)
microRNA sequence regulates its target genes by base pairing to the tar-
get genes’ mRNA. Almost perfect base-pairing degrades the mRNA (Yekta
et al. 2004; Zeng et al. 2002); less perfect base pairing prevents the mRNA
from being translated into a protein (Moss et al. (1997); Olsen and Ambros
(1999); see Bartel (2004) for a review). MicroRNAs are a relatively recent
discovery, but sequence specific knockdown of genes through antisense
mechanisms have been used since the early 1980s (Scherer and Rossi 2003).
These synthetic constructs, such as the antisense oligonucleotides (ODNs)
and the more recent short interfering RNAs (siRNAs), are designed to ef-
fectively knock down the mRNAs of specific genes. That is, the ODNs and
siRNAs are designed to base-pair perfectly with their target mRNAs, but
not with any other mRNAs. Figure 2.6 illustrates the base-pairing between
an ODN and its target mRNA.

Not all ODNs and siRNAs are equally effective, however. For example,
if ODNs and siRNAs are designed against random mRNA positions, many
of the resulting constructs will not give detectable knockdown. Because
lab experiments are both costly and time consuming, one would like to
reduce the chance of failure by predicting whether or not a candidate ODN
or siRNA will be effective. This is a binary classification problem; that is,
given a DNA string, predict whether the resulting ODN or siRNA will give
effective knockdown (1) or not (-1). Paper V describes an algorithm that

20 Strings and string mining

solves this problem and Paper VI compares this algorithm to other recently
published algorithms for predicting siRNA efficacy.

Snøve Jr. (2005) discusses siRNAs and microRNAs and how they relate
in further detail.

Chapter 3

Evolving string patterns

IN many computer science problems one searches for some solution in
a large space of candidate solutions. Specifically, the rule mining and

classification problems from Chapter 2 are examples of such problems. A
common method to solve such search problems is to recast them as op-
timization problems; that is, one uses a function to measure how close a
candidate solution is to the desired solution. The goal is to find the solu-
tion that optimizes this function.

If the objective function is well behaved and its relationship to the
search space is well understood, there are methods that can efficiently give
exact solutions. More often, however, one must resort to heuristic search
methods that find approximate solutions. Although there are many differ-
ent heuristic search methods (see for example Blum and Roli (2003)), this
chapter will focus on one method in particular. The method, called genetic
programming, comes from a family of heuristic search algorithms called
evolutionary algorithms. The following sections introduce evolutionary
algorithms in general and move on to discuss genetic programming and
how it can be used to create string prediction rules and string classification
models.

3.1 Evolutionary algorithms

The term evolutionary algorithms refer to a family of heuristic search and
optimization algorithms inspired by Charles Darwin’s ideas of evolution
by natural selection. Figure 3.1 gives the pseudocode for the basic evolu-
tionary algorithm. As the pseudocode shows, there are four key elements
in evolutionary algorithms:

22 Evolving string patterns

create initial population of solutions
repeat

select individuals based on fitness
transform selected individuals
update population with transformed individuals

until stopping criterion is satisfied

Figure 3.1: Pseudocode for a general evolutionary algorithm.

1) Solution population. The algorithm operates on a set of candidate
solutions.

2) Fitness and selection. The algorithm measures the fitness of each can-
didate solution and uses the fitness to guide the search for candidate
solutions.

3) Variation. The algorithm introduce variation in the solution set by
using some method to modify the candidate solutions. Typical vari-
ation operations are:

a) crossover—selected solutions exchange random parts;
b) mutation—the selected solution is randomly modified; and
c) reproduction—the selected solution remains unchanged.

4) Repeated selection and variation. The algorithm repeats the fitness-
based selection and solution modification over several generations
of candidate solutions.

In short, evolutionary algorithms use simulated evolution in a population
of candidate solutions to optimize a fitness measure within some solution
space.

As mentioned previously, the term evolutionary algorithms encom-
passes several different algorithms. Freitas (2002) identifies four main vari-
ants: evolution strategies, evolutionary programming, genetic algorithms,
and genetic programming (see also Banzhaf et al. (1997)). Originally, these
methods were distinguished by how the solutions were represented and
which variation operations were preponderant. For example, the candi-
date solutions in genetic algorithms were originally fixed length strings
(Holland 1975), whereas the candidate solutions in genetic programming
were computer programs in the form of syntax trees (Koza 1992); and evo-
lution strategies and evolutionary programming mainly used mutation
for variation, whereas genetic algorithms and genetic programming em-
phasized crossover. This distinction has, however, become increasingly
blurred as the original algorithms have evolved; for example, O’Neill and
Ryan (2003) describe a method that uses variable length binary strings to
evolve computer programs.

3.2 Genetic programming 23

This thesis focuses on genetic programming, which here will mean
methods that use evolutionary computation to evolve symbolic expres-
sions in some solution language. Although this is a broad definition, which
for example also encompasses O’Neill and Ryan’s grammatical evolution
(O’Neill and Ryan 2003), this work is based on Koza’s syntax tree represen-
tation (Koza 1992). The following section discusses genetic programming
in more detail.

3.2 Genetic programming

Section 3.1 outlined four key elements of evolutionary algorithms: a solu-
tion population, a fitness measure and selection algorithm, variation oper-
ators, and repeated selection and variation. This section presents how the
solutions in the genetic programming population can be represented and
how the common variation operations—crossover and mutation—can be
implemented. The following two sections discuss fitness and selection.

3.2.1 Solution representation

In Koza’s genetic programming (Koza 1992, 1994; Koza et al. 1999, 2003),
the individuals in the population are syntax trees in some solution lan-
guage. Others have developed alternative solution representations, such
as linear strings or directed acyclic graphs; see for example Banzhaf et al.
(1997); O’Neill and Ryan (2003) and references therein.

The solution language defines the structure of the possible solutions,
and hence also the possible solution space. The question then is: how
can one specify the solution language? Koza (1992) uses the concepts of
function and terminal sets, where the terminal set T contains the possible
leaf nodes in the tree, and the function set F contains the possible internal
nodes in the tree. As each function in F can have a varying number of
arguments—represented as children in the tree—each function in F has an
associated argument count. For example, the language of Boolean logic
can be represented as F = {(∨, 2), (∧, 2), (¬, 1)} and T = {0, 1}. In this
representation, a random solution can be grown by randomly selecting
elements from the two sets.

In the function and terminal set representation, each function can have
any one of the other functions or terminals as children in the syntax tree.
Although this representation is attractive because of its simplicity, it has
one major drawback: it is impossible to specify languages where certain
functions can only take certain inputs. For example, consider the language

24 Evolving string patterns

.

a c |

g t

t

.

.

Figure 3.2: A syntax tree for the expression ac(g | t)t.

a) b)

(1) <con> ::= <con> · <con> F0 = {(·, 2), (|, 2)} T0 = {a,c,g,t}
(2) | <alt>
(3) <alt> ::= <alt> | <alt> F1 = {(|, 2)} T1 = {a,c,g,t}
(4) | <chr>
(5) <chr> ::= a F2 = ∅ T2 = {a,c,g,t}
(6) | c
(7) | g
(8) | t

Figure 3.3: (a) The grammar of a simple pattern language. The grammar is in Backus
Naur form. (b) The grammar implicitly defines a hierarchy of function and terminal sets.

that uses the regular expression functions union and concatenation to cre-
ate patterns that consists of concatenations of single characters or unions
of single characters, such as ac(g | t)t (syntax tree in Figure 3.2). Here,
the concatenation function (·) can have both itself, the union function (|)
and the terminals {a,c,g,t} as children, but the union function (|) can
only have itself and the terminals as children. As we want to create so-
lutions with an even more complex structure, such as the different string
rule languages in Section 2.4.1, we need an alternative to the function and
terminal set representation to specify the solution language.

A more general, and common, method to specify languages is to spec-
ify the language’s grammar in the form of production rules. For example,
Figure 3.3(a) shows the grammar for the previous regular expression lan-
guage in Backus Naur form (Knuth 1964). The grammar can however, also
be represented as a hierarchy of function and terminal sets, as illustrated
in Figure 3.3(b). The idea of representing the solution language as sev-
eral function and terminal sets is the key element in the strongly typed

3.2 Genetic programming 25

genetic programming of Montana (1995). Although initially developed
to solve the problem that certain functions take arguments of different
types—for example, an if-then-else function that takes one Boolean and
two integers as arguments—this method can also be used to create lan-
guages with complex grammars. (Koza et al. (2003) refer to strong typing
as a constrained syntactic structure.) In this representation, a random solu-
tion can be grown by randomly selecting elements from the function and
terminal set corresponding either to the grammar’s start production or to
each function’s different arguments.

3.2.2 Variation operations

The standard method of using one function and terminal set to specify le-
gal solutions can be used to solve problems where one desires a more com-
plex grammar such as the one in Figure 3.3. However, using the standard
method comes at the expense of a dramatically increased search space; for
example, Montana (1995) reports experiments where only one solution in
2500 was legal. Thus, the computational benefit of ensuring that all solu-
tions are legal should be obvious. To ensure this, the standard variation
operations in genetic programming, subtree swapping crossover and tree
generating mutation, must be changed to respect the grammatical restric-
tions.

Figure 3.4 illustrates how standard subtree swapping crossover dis-
rupts the grammar constraints. To ensure that the individuals modified
by crossover are legal solutions, the crossover operation must be modified
as follows:

1) select a random subtree in parent one—Figure 3.4(a);
2) determine the set of subtrees in parent two that can be replaced

with the selected subtree from parent one without creating an il-
legal expression—in Figure 3.4(b) all the subtrees can be replaced,
but in Figure 3.5(b) only the subtrees starting in the dark gray nodes
can be selected; and

3) create one offspring by randomly replacing one of the candidate
subtrees in parent two with the subtree from parent one—in other
words, only the offspring in Figure 3.4(d) is created.

The tree generating mutation operation is easily modified to produce
legal expressions. In the standard version, the mutation operation i) selects
a random subtree and ii) replaces this subtree with a randomly generated
subtree. In the modified version, the mutation operation uses the function
and terminal sets of the deleted subtree’s parent to ensure that the random

26 Evolving string patterns

a) b)

|

a c

t

|

.

a c

g

.

c) d)

t

|

.

a c

g

.

|

a c

Figure 3.4: Standard subtree swapping crossover disrupts grammar. Standard subtree
swapping crossover selects a subtree in each parent (a) and (b) at random and swaps the
subtrees to create two offspring (c) and (d). Although both parents are legal expressions
in the grammar from Figure 3.3, offspring (c) is not.

a) b)

.

a c

t

.

|

a c

g

.

Figure 3.5: Constrained crossover conserves grammar. The subtree selected in parent one
(a) can only replace one of the subtrees rooted in the dark gray nodes in parent two (b).
Otherwise, the resulting offspring will not be a legal expression in the grammar from
Figure 3.3.

3.3 Fitness 27

replacement is legal. To illustrate, consider the syntax tree in Figure 3.4(a).
If the mutation operation in the first step deletes the light gray subtree, it
can only create replacement subtrees consisting of the union function | and
terminal symbols a, c, g, and t.

Note that using multiple function and terminal sets is not the only
method to create solutions with specific grammars. O’Neill and Ryan
(2003) briefly review other tree-based methods and describe a string-based
method to create solutions with specific grammars.

3.3 Fitness

Evolutionary algorithms solve problems by optimizing a fitness function
f within the space of candidate solutions. In other words, evolutionary al-
gorithms in general, and genetic programming in particular, try to find the
solution that maximizes (or minimizes) f . Thus, both the solution space
and the fitness function are important for genetic programming to succeed
in solving a given problem. In particular, the fitness function should give
a continuous measure of how well the candidate solutions solve the given
problem so that (Banzhaf et al. 1997):

“. . . smaller improvements in how well a program has learned the
learning domain are related to smaller improvements in the measured
fitness of the program, and larger improvements in how well a pro-
gram has learned the learning domain are related to larger improve-
ments in its measured fitness.”

Section 2.4 presented the string rule mining and string classification
problems as optimization problems, but did not present the functions that
should be optimized to solve the problems. This section presents two fit-
ness measures that can be used by genetic programming to solve these two
problems. Common to both measures is that they use the hits of the pattern
to be evaluated as input. Thus, the largest part of the fitness calculation is
to search for the occurrences of the candidate solution in the the training
data. We use the pattern matching chip from Paper I to accelerate these
searches.

3.3.1 Fitness in rule mining

As stated in Section 2.3.1, the goal in rule mining is to find rules that are
accurate, comprehensible, and interesting. The J-measure J(R) evaluates
the rule R’s interestingness (Smyth and Goodman (1991); see Paper II for
a definition), but if the J-measure is used directly as the fitness function in

28 Evolving string patterns

y = 1 y = −1

f (s) = 1 TP FP

f (s) = −1 FN TN

Figure 3.6: Confusion matrix for classification model f . y is the string s’s actual class.

genetic programming, the resulting rules may suffer from a low confidence
(Paper II) (the confidence measures a rule’s accuracy; see Paper II for a
definition). Because of this, Paper II introduced the modified J-measure:

J′(R) = J(R) · F(c(R)), (3.1)

where R is a string rule in the solution language L = La
T⇒
w

Lc, c(R) is the
rule’s confidence, and F is a function ensuring that the rule’s confidence is
above some threshold.

As a sharp cutoff function such as

F′(c(R)) =
{

0 if c(R) < cmin,
1 otherwise, (3.2)

changes the J-measure to a discontinuous function, we instead used the
sigmoid cutoff function

F(c(R)) =
1

1 + e−(c(R)−cmin)·g . (3.3)

Here, cmin is the confidence cutoff and g is a parameter that adjusts the
sharpness of the cutoff. This function preserves the smoothness of the J-
measure and penalizes solutions with low confidence.

3.3.2 Fitness in classification

In classification, the empirical risk (2.6) is one possible candidate for a fit-
ness measure. In binary classification, with 0/1-loss (2.5), the empirical
risk reduces to the accuracy rate

Acc =
TP + TN

TP + TN + FP + FN
, (3.4)

3.3 Fitness 29

where TP, TN, FP, and FN are the number of true positive, true negative,
false positive, and false negative classifications (see Figure 3.6). As Freitas
(2002) points out, however, the accuracy rate is not a good measure of a
rule’s predictive accuracy on problems where the class distribution is very
unbalanced. To illustrate, consider a problem where the number of nega-
tive strings outnumber the positive strings nine to one. The naive classifier
that always predicts the negative class will here have an accuracy rate of
9/(9 + 1) = 0.9. This is also the case for a random classifier that takes the
class distribution into account.

Thus, not only does the accuracy rate depend on the class distribution,
which makes it very difficult to assess a classifier’s performance based on
the accuracy rate alone. The range of good accuracy rates—that is, rates
better than the naive classifier—gets more compressed the more skewed
the class distribution is. In practice, this results in that the evolutionary
algorithm will have more trouble finding solutions that are better than
the naive solution. Note that other machine learning algorithms such as
neural networks, decision tree induction algorithms, and support vector
machines have similar problems on skewed data sets; see for example Jap-
kowicz (2000) (neural networks), Weiss and Provost (2001) (decision trees),
and Akbani et al. (2004); Forman and Cohen (2004); Wu and Chang (2003)
(support vector machines).

Instead of the accuracy rate, one wants a fitness measure that always
gives the same score to the naive classifiers, independent of the training
set’s class distribution. One possible solution is to modify the accuracy
rate to account for the skewness of the class distribution:

AccNorm =
TP · wP + TN · wN

n
, (3.5)

where n = TP + TN + FP + FN, and wP and wN adjust the relative impor-
tance of the positive and negative classes. To ensure that AccNorm is inde-
pendent of the class distribution, wP and wN must satisfy

(TP + FN) · wP

n
=

1
2

(TN + FP) · wN

n
=

1
2

, (3.6)

which gives

AccNorm =
1
2

(
TP

TP + FN
+

TN

TN + FP

)
=

1
2

(Se + Sp) . (3.7)

Thus, by adjusting the accuracy rate for class skewness, the resulting accu-
racy measure is simply the average of the rate of correctly classified posi-
tives and correctly classified negatives. These rates are also known as the
sensitivity Se and specificity Sp.

30 Evolving string patterns

Note that alternatively, AccNorm is given by

AccNorm =
1
n

n

∑
i=1

di · λ(f (si), yi), (3.8)

where di = wP if si is in the set of positive sequences and di = wN other-
wise.

Although the normalized accuracy AccNorm is independent of the class
skewness, this measure may still not be optimal when used as a fitness
measure in evolutionary computation. The main problem is that AccNorm
depends linearly on the sensitivity and specificity. Hence, both small and
large deviations from perfect classification have the same weight. This
is not ideal, as the evolutionary algorithms can use error signals that are
differentially weighted to guide the learning process (Baldi et al. 2000;
Banzhaf et al. 1997). Because of this, the correlation score has been a more
popular fitness measure i binary classification problems (for example Het-
land and Sætrom (2004); Koza (1994); Koza et al. (1999)), as it is both in-
dependent of class skewness and a non-linear function of the sensitivity
and specificity (Baldi et al. 2000). Nevertheless, the normalized accuracy
AccNorm has its applications. Chapter 4 uses a a version of (3.8) where each
sequence si in the training set can have a different weight di.

3.4 Selection

Given a population of candidate solutions and a fitness measure to be opti-
mized by the evolutionary algorithm, the question then is how to select the
candidate solutions that will form the updated population (see Figure 3.1).
Selection algorithms in general select candidate solutions such that fitter
solutions have a higher chance of being selected than have less fit solu-
tions (although there are exceptions; see, for example, Hutter (2002)). For
example, in fitness-proportional selection, the probability of a candidate
solution being selected equals its fitness divided by the population’s to-
tal fitness. In comparison, tournament selection selects the fittest of t ran-
domly selected candidate solutions. Banzhaf et al. (1997) and Freitas (2002)
briefly discuss the advantages and disadvantages of fitness-proportional
and tournament selection and variants, and also describe two other com-
mon selection algorithms: truncation and ranking selection.

The following subsections discuss niching—a more advanced form of
selection—and present two niching algorithms: fitness sharing and species
selection.

3.4 Selection 31

3.4.1 Niching

The above selection methods share the property that the probability of a
candidate solution being selected depends on its fitness relative to the fit-
ness of the other candidate solutions in the population (see for example
Banzhaf et al. (1997) and the comparison in Blickle and Thiele (1995)). Us-
ing any of these selection methods results in that the evolutionary algo-
rithm converges to a population of similar individuals. In practice this
convergence introduces two interrelated problems. First, the evolutionary
algorithm may have converged to a local minimum. The probability of this
happening depends on the parameter settings (Banzhaf et al. 1997; Freitas
2002) such that given suitable parameters, the evolutionary algorithm can
converge to the global optimum (for example, Schmitt (2001, 2004) dis-
cuss the asymptotic convergence of a genetic algorithm with a simulated
annealing-type selection method). Nevertheless, as for simulated anneal-
ing (Kirkpatrick et al. 1983; Metropolis et al. 1953), where asymptotic con-
vergence is guaranteed with a sufficiently slow annealing schedule (Ge-
man and Geman 1984), one often resorts to parameter settings that give
faster convergence, but that is not guaranteed to reach the global optimum.
Second, many problems have multiple global optima, and one often de-
sires that the evolutionary algorithm should converge on as many of these
optima as possible (Freitas 2002).

To prevent premature convergence and promote convergence to multi-
ple optima, one must ensure that the population stays as diverse as pos-
sible. This has lead to several different niching methods, where the prob-
ability of a candidate solution being selected depends on its similarity to
other candidate solutions in addition to its relative fitness. Note that the
fitness uniform selection scheme takes this idea to the extreme, as the prob-
ability of a candidate solution being selected only depends on the number
of similar individuals and the total number of groups of similar individu-
als (Hutter 2002). Mahfoud (1995) describes several niching methods; here
we will concentrate on one method, called fitness sharing (Goldberg and
Richardson 1987).

3.4.2 Fitness sharing

In fitness sharing, the fitness of each candidate solution is penalized based
on the number of similar individuals. That is, given a population of candi-
date solutions P and a fitness measure f (p), p ∈ P, the shared fitness fs(p)
is

fs(p) =
f (p)

∑p′∈P s(d(p, p′))
(3.9)

32 Evolving string patterns

where d(p, p′) measures the distance between individuals p and p′, and s
is the sharing function

s(d(p, p′)) =

{
1 −

(
d(p,p′)

δ

)a
if d(p, p′) < δ,

0 otherwise.
(3.10)

Here, a is a parameter that determines the shape of the sharing function
and δ is the maximum sharing distance. Any of the basic selection algo-
rithms, such as for example tournament selection, can then use the shared
fitness to select candidate solutions.

The distance function d can either measure the dissimilarity between
the candidate solutions’ encoding—the genotype—or the candidate solu-
tions’ behavior—the phenotype. One can, for example, use the tree edit
distance to measure the genotypic distance between tree encoded candi-
date solutions. A candidate solution’s fitness is a simple encoding of its
behavior, so a simple phenotypic distance measure is the difference be-
tween two candidate solutions’ fitness values. In the case of string classi-
fication (see Section 2.3.2), a more complex phenotypic distance measure
can, for example, use information about which strings the two candidate
solutions recognize.

Note that, strictly speaking, fitness sharing as defined in (3.9) is only a
transformation of the underlying fitness measure to penalize highly pop-
ulated areas of the search space. Thus, it can be argued that fitness shar-
ing is not a separate selection method in itself. Nevertheless, evolution-
ary algorithms that use fitness sharing still optimize the underlying fitness
measure f ; the fitness sharing is just a mechanism to cope with prema-
ture convergence and multiple optima. Because of this, it is constructive
to separate niching algorithms such as fitness sharing from the standard
selection algorithms.

3.4.3 Species selection

Fitness sharing, as outlined above, does not preserve the ordering of the
original fitness measure. That is, given two candidate solutions pi and pj
and a fitness measure f such that f (pi) < f (pj), it is not generally true
that after using (3.9), fs(pi) < fs(pj). The following section describes a
selection scheme that is similar to fitness sharing, but that preserves the
ordering of the original fitness function.

Species selection (Grotmol 2002), like fitness uniform selection, parti-
tions the population into groups of similar individuals. That is, given a
population P, a distance measure d, and a distance threshold δ, one groups

3.4 Selection 33

the population into m groups G where G = {G1, . . . , Gm} and
⋃m

i=1 Gi = P,
such that d(p, p′) ≤ δ for all p, p′ ∈ Gi and Gi ∈ G. In the simplest case,
δ = 0, the groups only consist of identical candidate solutions, candidate
solutions that have identical fitness, or, in the case of string classification,
candidate solutions that match the same strings. In addition, for δ = 0, a
simple hashing operation gives the groups in linear time.

Given a grouping of the population, species selection then selects indi-
viduals in a two step procedure:

1) use a standard selection scheme, such as for example tournament
selection, to choose one group of individuals; and

2) randomly select one individual from the chosen group.
Thus, as in fitness uniform selection and fitness sharing, the idea behind
species selection is to prevent premature convergence by reducing the in-
fluence of large groups of similar individuals. But unlike fitness uniform
selection, which selects a group with uniform probability, species selec-
tion uses the groups’ fitness to select a group. And, unlike fitness sharing,
species selection with δ = 0 preserves the ordering of the original fitness
measure.

Chapter 4

Ensemble methods to increase
classifier performance

F INDING the best classifier on a given problem is essentially a tradeoff
between two factors. First, the classifier’s performance on the training

set should be as high as possible; that is, the empirical risk (2.6) should
be as low as possible. Second, as mentioned in Section 2.3.3, given that
the classifier comes from a sufficiently complex function class, the classi-
fier’s performance in the training set will be perfect and have zero empir-
ical risk. Functions with unrestricted complexity might, however, actually
overfit the training data, such that the generalization error is much higher
compared to that of less complex functions.

The tradeoff between optimizing the empirical risk and limiting the
complexity of the classifier is known in many guises. Geman et al. (1992);
Wolpert (1997) presented it as the bias/variance dilemma; that is, the com-
plexity of the function class defines the classifier’s bias, such that more
complex function classes can better approximate the process that gener-
ates the data. These function classes will, however, have a higher variance
on different training sets. Correspondingly, function classes with a high
bias have low variance on different training sets. Statistical learning the-
ory formalizes this as a bound on the generalization error (2.4), which de-
pends on the empirical risk (2.6) and the complexity of the function class
as measured by the VC dimension:

Theorem 1 (Vapnik (1995, 1998)) Let h be the VC dimension of the function
class F and let L̂(f) be the empirical risk (2.6) with 0/1 loss (2.5). For all δ > 0
and f ∈ F the inequality

L(f) ≤ L̂(f) +

√
h(ln 2n

h + 1) − ln(δ/4)
n

(4.1)

36 Ensemble methods to increase classifier performance

bounds the generalization error with probability of at least 1 − δ for n > h, where
n is the size of the training set.

Thus, the generalization error is determined both by the empirical risk and
the complexity of the function class. Section 4.2 gives a version of this
theorem that uses a different complexity measure to give tighter bounds
on the generalization error; see also Meir and Rätsch (2003); Shawe-Taylor
and Cristianini (2004) and their references.

This thesis considers a restricted class of functions, namely the class of
patterns that can be evaluated by the pattern matching chip (PMC—see
Section 2.2.3). Although the PMC has a rich functionality, certain searches
are not possible (the PMC is not Turning complete). The PMC can not, for
example, handle general edit distances (see for example Gusfield (1997);
Navarro and Raffinot (2002) for a definition). Thus, in the string classifica-
tion problem where the positive set are all strings with edit distance less
than two to some string s, the PMC can only give an approximate solution.
Correspondingly, on other problems the solution may only need a subset
of the PMC’s functionality; for example, in the problem where the positive
set are strings having a common substring.

Imagine that we want to find PMC patterns that can solve the edit dis-
tance and substring problem. Given a representative training set from both
problems, we can, for example, use genetic programming to search for the
PMC patterns that have the lowest empirical risk on the training set, as
outlined in Chapter 3. This approach will, however, lead to two different
problems. In the edit distance problem, the PMC patterns will be biased,
as the PMC does not have the full functionality to solve the problem. In the
common substring problem, only a small fraction of the PMC’s functional-
ity is needed, so the PMC patterns may have a high variance—especially if
the training set is small, contains noise, or both. Another important factor
is that using genetic programming for pattern mining is in itself a source
of variance, as genetic programming is a stochastic search method. Conse-
quently, two independent runs of genetic programming on the same train-
ing set will generally not create identical solutions.

The following sections present methods that can be used to improve the
performance of the PMC patterns. These include voting to reduce the clas-
sifier variance, and boosting to reduce the classifier bias. Both approaches
achieve increased performance by combining several base classifiers h into
a joint classifier f of the form

f (s) =
T

∑
t=1

αt · ht(s) (4.2)

4.1 Voting 37

where T is the number of classifiers and αt is the weight of classifier ht
such that αt ≥ 0 and ∑T

t=1 αt = 1. We call this combined classifier an
ensemble and refer to the simple case where all classifiers have the same
weight αt = 1

T as voting.

4.1 Voting

The intuition behind using multiple classifiers in predictions is simple:
given that each of n classifiers have probability p of making an incorrect
classification, the probability that more than half of the classifiers make the
same mistake if the classifiers are independent is (Hansen and Salamon
1990)

n

∑
k> n

2

(
n
k

)
pk(1 − p)n−k. (4.3)

The sum (4.3) converges to zero if p < 0.5.
Although the above result requires that the classifiers are independent,

averaging a diverse set of classifiers reduces the error compared to that
of the best individual classifier, even when the classifiers are not indepen-
dent (for example, Breiman (1996a); Hansen and Salamon (1990); Perrone
(1993)). How much the error is reduced depends on how similar and accu-
rate the classifiers are. For example, combining classifiers that make a few
mistakes on different instances gives an increased performance; combin-
ing classifiers that make many and similar mistakes gives a poorer perfor-
mance compared to the best individual classifier (Breiman 1996a,b; Fried-
man 1997).

Breiman (1996a) describes an algorithm that constructs a diverse vot-
ing ensemble. The bootstrap aggregated (bagging) algorithm iteratively
creates base classifiers by presenting different versions of the training set
to the base algorithm. To construct the training sets used in each iteration,
bagging draws, with uniform probability and replacement, n random sam-
ples from the original training set (Efron and Tibshirani 1993). Here, n is
the size of the original training set. The final ensemble classifier is simply
the average of the base classifiers created at each iteration.

Figure 4.1 illustrates the effect of averaging a set of diverse and accurate
classifiers: the voting ensemble smoothes the predictions of the individ-
ual classifiers, reducing their variance. As Figure 4.1(b) shows, however,
averaging does not reduce the classifier bias. Bauer and Kohavi (1999);
Breiman (1996b); Dietterich (2000); Perrone (1993); Schapire et al. (1998)
give both theoretical and empirical evidence that the voting ensemble re-

38 Ensemble methods to increase classifier performance

a) b)

Figure 4.1: Averaging diverse and accurate classifiers reduces variance. In Panel (a) all
the decision boundaries are 100% accurate in the training set, but averaging the deci-
sion boundaries creates a more optimal solution (the heavy pattern) that will generalize
better to unseen examples. In Panel (b) none of the decision boundaries are 100% accu-
rate, but their average (heavy dotted line) will again generalize better than the individual
solutions. The average solution is, however, suboptimal, as the correct decision bound-
ary is the heavy, non-linear line. The linear decision lines can only give an approximate
solution—they are biased.

duces the variance but not the bias of the individual classifiers. In accor-
dance with these results, averaging classifiers with little variance, such as
nearest neighbor classifiers, does not create an improved voting ensemble
(Breiman 1996a). Thus, averaging the classifiers can be seen as a form of
regularization. Indeed, bagging can be seen as a form of fully regularized
boosting (Rätsch 2001).

4.2 Boosting

The previous section showed that although a voting ensemble can have an
increased performance compared to its best classifier, this increased perfor-
mance is because averaging reduces the individual classifiers’ variance. If
the classifiers are biased, voting does not help. Nevertheless, given enough
data, classifiers that each only perform slightly better than random, can be
combined to form an arbitrarily good ensemble hypothesis (Kearns and
Valiant 1994). In other words, biased classifiers that only have mediocre
accuracy on the training set can be boosted to have an arbitrary high accu-
racy on the training set. The idea is to iteratively construct the boosted en-
semble by letting the base algorithm that creates the base classifiers focus
its efforts on classifying the difficult examples in the training set (Schapire
1990).

4.2 Boosting 39

Input: B, S, T, G
f0 ← 0
g′ ← ∂

∂ f G

d(1)
i ← g′(0, yi) for all i ∈ {1, . . . , n}

t ← 1
repeat

ht ← B(S, d(t))
αt ← arg minα∈R G(ft−1 + αht, S)
ft ← ft−1 + αtht

d(t+1)
i ← g′(ft(si), yi) for all i ∈ {1, . . . , n}

t ← t + 1
until t > T

Figure 4.2: Pseudocode for a general boosting algorithm that takes as input a base algo-
rithm B, a training set S, the number of iterations T, and a loss function G(f , S).

Freund and Schapire’s adaptive boosting algorithm (AdaBoost) was
the first practical boosting algorithm (Freund and Schapire 1997). Given
a training set S = {(s1, y1), . . . , (sn, yn)}, AdaBoost assigns a weight di to
each example si and iteratively updates these weights based on the perfor-
mance of the ensemble constructed so far. At each iteration t, AdaBoost
requires that the base algorithm creates a classifier ht with a weighted em-
pirical error

ε =
n

∑
i=1

d(t)
i · |ht(si) − yi| , (4.4)

such that ε < 1
2 . If the base algorithm can not find such a classifier, Ada-

Boost terminates, as including a classifier with ε ≥ 1
2 would reduce the

overall performance of the ensemble. Given a classifier ht with a suitable
weighted empirical error, AdaBoost sets the classifier’s weight αt in the
ensemble such that the weight minimizes the loss function

G(fα, S) =
n

∑
i=1

e−yi(αht(si)+ ft−1(si)), (4.5)

where ft−1 is the ensemble constructed so far. Generally, other loss func-
tions can also be used, which leads to the general boosting algorithm in
Figure 4.2 (Meir and Rätsch 2003).

AdaBoost will always create an ensemble with arbitrary low empirical
risk (2.6), given that the base algorithm can find classifiers with a good

40 Ensemble methods to increase classifier performance

enough weighted empirical error (4.4) (Freund and Schapire 1997). As
this is also true for training sets with randomly assigned labels, one might
worry that boosted ensembles will generalize poorly; that is, AdaBoost
may create an ensemble with no bias but high variance. Empirical studies,
however, showed that AdaBoost can reduce both bias and variance (Bauer
and Kohavi 1999; Breiman 1996b; Schapire et al. 1998; Webb 2000). The
discovery of Schapire et al. (1998) that AdaBoost maximizes the minimal
margin ρi(f) = yi · f (si) in the training set and the following theorem and
corollary explain these counter-intuitive results.

Theorem 2 (Meir and Rätsch (2003)) Let Rn(F) be the Rademacher complex-
ity of the class F of real valued functions f : S → [−1, 1], f ∈ F, and let θ ∈
[0, 1]. Given a training set S = {(s1, y1), . . . , (sn, yn)} drawn independently and
at random from an underlying probability distribution P(s, y), then for any n,
δ > 0, and f ∈ F the inequality

L(f) ≤ L̂θ(f) +
4Rn(F)

θ
+

√
ln(2/δ)

2n
, (4.6)

bounds the generalization error with probability at least 1 − δ.

Corollary 1 (Meir and Rätsch (2003)) Let the conditions of Theorem 2 hold
and set F = coT(H), where

coT(H) =

{
f : f (s) =

T

∑
t=1

αtht(s) : αt ≥ 0,
T

∑
t=1

αt = 1, ht ∈ H

}
. (4.7)

Then, for any n, δ > 0, and f ∈ coT(H) the inequality

L(f) ≤ L̂θ(f) +
4Rn(H)

θ
+

√
ln(2/δ)

2n
, (4.8)

bounds the generalization error with probability at least 1 − δ.

The Rademacher complexity Rn(F), as the VC dimension in Theorem 1,
measures the complexity of the function class F and is related to the VC di-
mension such that Rn(F) = O(

√
VC/n) (see for example Meir and Rätsch

(2003) for a definition). L̂θ(f) is the empirical margin error

L̂θ(f) =
1
n

n

∑
i=1

ϕθ(yi f (si)), (4.9)

4.2 Boosting 41

a) b)

Figure 4.3: Maximizing the margin improves generalization. Panel (a) shows a finite train-
ing set where linear curves can perfectly separate the classes. There are infinitely many
linear curves that can perfectly separate the data, but only the heavy line of these has
the maximal margin (using a particular distance measure). Thus, maximizing the margin
limits the number of possible solutions and can therefore be seen as a form of regular-
ization. (b) Given that the training data are representative of the underlying probability
distribution, the maximal margin solution has the lowest generalization error.

where

ϕθ(z) =

1 if z ≤ 0,
1 − z/θ if 0 < z ≤ θ,
0 otherwise.

(4.10)

Theorem 2 and Corollary 1 have two important implications:
1) functions should have a small empirical margin error L̂θ(f) for a

large value of the margin parameter θ to generalize well; and
2) the complexity term for the boosting ensembles in (4.8) is indepen-

dent of the size of the ensemble; thus, a boosting ensemble is not
more complex than its individual classifiers.

These observations lead to the following conclusion: as long as the base
algorithm returns classifiers that are better than random and the empirical
margin error continues to drop for a fixed θ, adding new base classifiers to
the boosting ensemble will only improve its performance on unseen data.

As Schapire et al. explain, the margin measures the confidence of the
classification. Consequently, maximizing the margin is equivalent with
finding the classifier that gives the most confident predictions. Figure 4.3
gives an intuitive illustration of why maximizing the margin gives good
generalization.

From the above discussion, one can conclude that AdaBoost will cre-
ate ensembles that generalize well if the training set contains little or no
noise. When the training set contains noise, however, AdaBoost can create

42 Ensemble methods to increase classifier performance

ensembles that generalize worse than the base classifier (see for example
Bauer and Kohavi (1999); Dietterich (2000); Webb (2000)). The reason is
that AdaBoost concentrates all its efforts on classifying the most difficult
data points, which in noisy data sets tend to be the mislabeled or noisy
data points. AdaBoost maximizes the smallest margin in the training set,
but in noisy data sets this may increase the overall margin error. Thus,
to get optimal generalization one should accept that some instances are
misclassified and have a negative margin, as long as the overall margin is
large. In other words, one needs some form of regularization to account
for the noise in the training set.

Meir and Rätsch (2003) review regularized boosting algorithms in gen-
eral; here we will briefly discuss two algorithms: AdaBoostReg (Rätsch
et al. 2001) and ν-Arc (Rätsch et al. 2000; Rätsch et al. 2000). AdaBoostReg
reduces the influence of the most difficult data points in the data set, as one
expects that these may be noise in the data set. To do this, AdaBoostReg de-
fines the mistrust of each data point as

µ
(t)
i =

1

∑t
r=1 αr

t

∑
r=1

αrd(r)
i , (4.11)

which is the average weight of example i so far in the boosting process.
AdaBoostReg then uses a regularization constant C to adjust the impor-
tance of the example’s mistrust compared to its margin. This results in the
following loss function

G(f (t), S) =
n

∑
i=1

e
−(yi

f (t)(si)

∑t
j=1 αj

+Cµ
(t)
i) ∑t

j=1 αj
. (4.12)

Note that ignoring the mistrust—that is, setting C = 0—recovers Ada-
Boost’s loss function (4.5).

ν-Arc uses the regularization parameter ν ∈ [0, 1], which represents
an upper bound on the fraction of margin errors. As with AdaBoostReg,
setting ν = 0 gives similar results as AdaBoost; setting ν = 1, however,
gives the bagging algorithm (Rätsch 2001; Rätsch et al. 2000). Thus, the
averaging of diverse classifiers can be seen as a form of fully regularized
boosting. Webb (2000) uses this property in his MultiBoosting algorithm,
which uses bagging to create a diverse ensemble of AdaBoost classifiers.
Paper V shows that this regularization property increases the performance
of boosted, genetic programming classifiers.

Chapter 5

Contributions and further work

This thesis has investigated the use of genetic programming in string min-
ing. The driving force behind the work has been the specialized search
hardware described in Paper I. The query power and search speed of this
hardware gave our unsupervised string mining algorithm a flexibility in
the rule format that surpasses any other methods. The search hardware
does, however, have restricted functionality. Consequently, the search ex-
pressions produced by our genetic programming approach can have a
lower accuracy than those produced by other machine learning methods.
We see this both in Paper IV and Paper V. This motivated combining boost-
ing algorithms and genetic programming to create more accurate classi-
fiers. Papers V, VI, and VII show that this combination can create clas-
sifiers that are better than are the classifiers created by other approaches
such as support vector machines and neural networks.

The following section lists the main contributions of each paper; the
chapter concludes with a section describing possible further work.

5.1 Contributions

Paper I This paper describes the theoretical background, design, and ar-
chitecture of the specialized search hardware.

Paper II By directly optimizing a suitable measure of a rule’s interesting-
ness, we show that genetic programming can be used in unsuper-
vised mining of accurate and interesting prediction rules.

Paper III We use multi-objective genetic programming to mine sets of pre-
diction rules that represent a tradeoff between rule accuracy, compre-
hensibility, and interestingness.

44 Contributions and further work

Paper IV This paper summarizes and extends the work of Hetland and
Sætrom on both supervised and unsupervised mining of prediction
rules in time series (Hetland and Sætrom (2002, 2003a,b, 2004); Sæ-
trom and Hetland (2003a,b); see also Hetland (2003)). More specifi-
cally, we extend our unsupervised algorithm such that the new al-
gorithm can find prediction rules that relate the characteristics of
two time series. The algorithm discovers both the antecedent, con-
sequent, and the time series in which they occur.

Paper V The paper describes a boosted genetic programming algorithm
and shows that this algorithm can create classifiers that predict the
efficacy of short oligonucleotides used in antisense and RNA inter-
ference experiments. The classifiers’ accuracy are comparable and
slightly better than are the accuracy of classifiers created by other
machine learning algorithms such as neural networks and support
vector machines.

Paper VI We compare the accuracy of the short interfering RNA (siRNA)
efficacy predictors from Paper V to the accuracy of several other re-
cently published algorithms. This comparison shows that many of
these algorithms have close to random performance and that only
a few algorithms have a consistent high performance. More specif-
ically, our boosted genetic programming predictors had the highest
overall performance.

Paper VII Using a version of the boosted genetic programming algorithm
from Paper V, we develop classifiers that predict non-coding RNA
(ncRNA) genes in Escherichia coli. We experimentally test 16 of our
predictions and verify that 12 of these are new ncRNA genes. Six of
these new ncRNA genes have not previously been predicted by other
methods.

5.2 Further work

Although we have shown that the boosted genetic programming algo-
rithm can create very accurate classifiers, these classifiers are much more
complex than are the expressions created by genetic programming. In
other words, we have traded accuracy for comprehensibility. In some ap-
plications, where one is mainly interested in a highly accurate classifier,
this may be fine. In other applications, one may be just as concerned with
understanding the classifiers. An interesting continuation of this work

5.2 Further work 45

would therefore be to try to build comprehensible expressions from the
boosted genetic programming classifiers.

This work has described two approaches for mining strings and used
these approaches to solve problems in a few application areas. We have, for
example, only used the unsupervised rule mining algorithm to mine dis-
cretized time series, but it would also be interesting to investigate whether
the algorithm can be used to mine DNA strings; for example, to find reg-
ulatory elements in DNA. Likewise, it would be interesting to investi-
gate how well the boosted genetic programming approach can solve other
string classification problems, such as remote protein family recognition.

The boosted genetic programming algorithm used here combines ex-
plicit regularization (AdaBoostReg) with implicit regularization (averag-
ing). It would be interesting to investigate how this approach compares
to other regularized boosting algorithms; especially in the context of very
skewed data sets.

Naturally, further work also remains on the application areas we have
considered; for example, it would be interesting to investigate whether
ncRNA gene prediction could be improved by integrating our boosted ge-
netic programming classifiers with RNA secondary structure predictions
and predictions of transcription initiation and termination.

Bibliography

Akbani, R., Kwek, S., and Japkowicz, N. (2004). Applying support vector
machines to imbalanced datasets. In Boulicaut, J.-F., Esposito, F., Gian-
notti, F., and Pedreschi, D., editors, ECML, pages 39–50. Springer-Verlag.

Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A., and Nielsen, H. (2000).
Assessing the accuracy of prediction algorithms for classification: an
overview. Bioinformatics, 16(5):412–424.

Banzhaf, W., Nordin, P., Keller, R. E., and Francone, F. D. (1997). Genetic
Programming: An Introduction: On the Automatic Evolution of Computer
Programs and Its Applications. Morgan Kaufmann Publishers, San Fran-
cisco, CA.

Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and
function. Cell, 116(2):281–297.

Bauer, E. and Kohavi, R. (1999). An empirical comparison of voting classi-
fication algorithms: Bagging, boosting, and variants. Mach. Learn., 36(1–
2):105–139.

Blickle, T. and Thiele, L. (1995). A comparison of selection schemes used
in genetic algorithms. Technical Report 11, Computer Engineering and
Communication Networks Lab (TIK), Swiss Federal Institute of Technol-
ogy (ETH), Gloriastrasse 35, 8092 Zurich, Switzerland.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Comput. Surv., 35(3):268–
308.

Breiman, L. (1996a). Bagging predictors. Mach. Learn., 24(2):123–140.

Breiman, L. (1996b). Bias, variance, and arcing classifiers. Technical Report
460, Statistics Department, University of California, Berkeley, CA.

48 Bibliography

Das, G., Lin, K., Mannila, H., Renganathan, G., and Smyth, P. (1998). Rule
discovery from time series. In Knowledge Discovery and Data Mining,
pages 16–22.

Dietterich, T. G. (2000). An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and ran-
domization. Mach. Learn., 40(2):139–157.

Eddy, S. R. (2001). Non-coding RNA genes and the modern RNA world.
Nat. Rev. Genet., 2(12):919–929.

Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chap-
man & Hall, New York.

Forman, G. and Cohen, I. (2004). Learning from little: Comparison of clas-
sifiers given little training. In PKDD, pages 161–172.

Freitas, A. A. (2002). Data Mining and Knowledge Discovery with Evolutionary
Algorithms. Natural Computing Series. Springer-Verlag, Berlin.

Freund, Y. and Schapire, R. E. (1997). A decision-theoretic generalization
of on-line learning and an application to boosting. J. Comput. System Sci.,
55(1):119–139.

Friedman, J. H. (1997). On bias, variance, 0/1-loss, and the curse-of-
dimensionality. Data Mining Knowl. Discov., 1(1):55–77.

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and
the bias/variance dilemma. Neural Comput., 4(1):1–58.

Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images. IEEE Trans. Pattern Anal. Machine
Intell., 6(6):721–741.

Goldberg, D. E. and Richardson, J. (1987). Genetic algorithms with sharing
for multimodal function optimization. In Proceedings of the 2nd Interna-
tional Conference on Genetic Algorithms, pages 41–49.

Grotmol, Ø. (2002). Species selection. Algorithm developed when working
for Interagon AS.

Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences : Computer
science and computational biology. Cambridge University Press, Cam-
bridge, UK.

Bibliography 49

Halaas, A., Svingen, B., Nedland, M., Sætrom, P., Snøve Jr., O., and Birke-
land, O. R. (2004). A recursive MISD architecture for pattern matching.
IEEE Trans. on VLSI Syst., 12(7):727–734.

Hansen, L. K. and Salamon, P. (1990). Neural network ensembles. IEEE
Trans. Pattern Anal. Machine Intell., 12(10):993–1001.

Heddad, A., Brameier, M., and MacCallum, R. M. (2004). Evolving regu-
lar expression-based sequence classifiers for protein nuclear localisation.
In Raidl, G. R., Cagnoni, S., Branke, J., Corne, D., Drechsler, R., Jin, Y.,
Johnson, C. G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G. D.,
and Squillero, G., editors, EvoWorkshops, volume 3005 of Lecture Notes in
Computer Science, pages 31–40. Springer-Verlag.

Hetland, M. L. (2003). Evolving Sequence Rules. PhD thesis, Norwegian
University of Science and Technology.

Hetland, M. L. and Sætrom, P. (2002). Temporal rule discovery using ge-
netic programming and specialized hardware. In Proc. of the 4th Int. Conf.
on Recent Advances in Soft Computing.

Hetland, M. L. and Sætrom, P. (2003a). A comparison of hardware and
software in sequence rule evolution. In Eight Scandinavian Conference on
Artificial Intelligence.

Hetland, M. L. and Sætrom, P. (2003b). The role of discretization parame-
ters in sequence rule evolution. In Proc. 7th Int. Conf. on Knowledge-Based
Intelligent Information & Engineering Systems, KES.

Hetland, M. L. and Sætrom, P. (2004). Temporal rule discovery using ge-
netic programming and specialized hardware. In Lotfi, A. and Garibaldi,
J. M., editors, Applications and Science in Soft Computing, Advances in Soft
Computing, pages 87–94. Springer-Verlag. Revised version of Hetland
and Sætrom (2002).

Hetland, M. L. and Sætrom, P. (2005). Evolutionary rule mining in time
series databases. Mach. Learn., 58(2–3):107–125.

Hilderman, R. J. and Hamilton, H. J. (1999). Knowledge discovery and
interestingness measures: A survey. Technical Report CS 99–04, De-
partment of Computer Science, University of Regina, Saskatchewan,
Canada.

50 Bibliography

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor, MI.

Höppner, F. and Klawonn, F. (2001). Finding informative rules in interval
sequences. In Hoffmann, F., Hand, D. J., Adams, N. M., Fisher, D. H., and
Guimarães, G., editors, IDA, volume 2189 of Lecture Notes in Computer
Science, pages 125–134. Springer-Verlag.

Howard, D. and Benson, K. (2003). Promoter prediction with a GP-
automaton. In Raidl, G. R., Meyer, J.-A., Middendorf, M., Cagnoni, S.,
Cardalda, J. J. R., Corne, D., Gottlieb, J., Guillot, A., Hart, E., Johnson,
C. G., and Marchiori, E., editors, EvoWorkshops, volume 2611 of Lecture
Notes in Computer Science, pages 44–53. Springer-Verlag.

Hutter, M. (2002). Fitness uniform selection to preserve genetic diversity.
In CEC-2002, volume 1, pages 783–788.

Japkowicz, N. (2000). The class imbalance problem: Significance and
strategies. In Proceedings of the 2000 International Conference on Artificial
Intelligence (IC-AI’2000), volume 1, pages 111–117.

Jonassen, I., Collins, J. F., and Higgins, D. G. (1995). Finding flexible pat-
terns in unaligned protein sequences. Protein Sci., 4(8):1587–1595.

Kearns, M. and Valiant, L. (1994). Cryptographic limitations on learning
boolean formulae and finite automata. J. ACM, 41(1):67–95.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by
simulated annealing. Science, 220(4598):671–680.

Knuth, D. E. (1964). Backus normal form vs. Backus Naur form. Commun.
ACM, 7(12):735–736.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers
by Natural Selection. MIT Press, Cambridge Massachusetts.

Koza, J. R. (1994). Genetic Programming II: Automatic Discovery of Reusable
Programs. MIT Press, Cambridge Massachusetts.

Koza, J. R., David Andre, Bennett III, F. H., and Keane, M. (1999). Genetic
Programming 3: Darwinian Invention and Problem Solving. Morgan Kauf-
mann Publishers, San Fransisco, CA.

Bibliography 51

Koza, J. R., Keane, M. A., Streeter, M. J., Mydlowec, W., Yu, J., and Lanza,
G. (2003). Genetic Programming IV: Routine Human-Competitive Machine
Intelligence. Kluwer Academic Publishers.

Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001).
Identification of novel genes coding for small expressed RNAs. Science,
294(5543):853–858.

Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001). An abun-
dant class of tiny RNAs with probable regulatory roles in Caenorhabditis
elegans. Science, 294(5543):858–862.

Lawrence, S. and Giles, C. L. (1998). Searching the World Wide Web. Sci-
ence, 280(5360):98–100.

Lee, R. C. and Ambros, V. (2001). An extensive class of small RNAs in
Caenorhabditis elegans. Science, 294(5543):862–864.

Lee, R. C., Feinbaum, R., and Ambros, V. (1993). The C. elegans hete-
rochronic gene lin-4 encodes small RNAs with antisense complemen-
tarity to lin-14. Cell, 75(5):843–854.

Lewin, B. (2000). Genes VII. Oxford University Press, Oxford, UK.

Lim, L. P., Glasner, M. E., Yekta, S., Burge, C. B., and Bartel, D. P. (2003).
Vertebrate microRNA genes. Science, 299(5612):1540.

Mahfoud, S. W. (1995). Niching methods for genetic algorithms. IlliGAL report
no. 95001, University of Illinois at Urbana-Champaign.

Mannila, H., Toivonen, H., and Verkamo, A. I. (1997). Discovery of fre-
quent episodes in event sequences. Data Mining and Knowledge Discovery,
1(3):259–289.

Martin, J. K. and Hirschberg, D. S. (1996). Small sample statistics for clas-
sification error rates I: Error rate measurements. Technical Report 96-21,
ICS Dept., UC Irvine.

Meir, R. and Rätsch, G. (2003). An introduction to boosting and leveraging.
In Mendelson, S. and Smola, A., editors, Advanced Lectures on Machine
Learning, volume 2600, pages 118–183. Springer-Verlag.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and
Teller, E. (1953). Equations of state calculations by fast computing ma-
chines. J. of Comp. Phys., 21(6):1087–1091.

52 Bibliography

Montana, D. J. (1995). Strongly typed genetic programming. Evol. Comput.,
3(2):199–230.

Moss, E. G., Lee, R. C., and Ambros, V. (1997). The cold shock domain pro-
tein LIN-28 controls developmental timing in C. elegans and is regulated
by the lin-4 RNA. Cell, 88(5):637–646.

Müller, K.-R., Mika, S., Rätsch, G., and Tsuda, K. (2001). An introduc-
tion to kernel-based learning algorithms. IEEE Trans. Neural Networks,
12(2):181–201.

Navarro, G. (2001). A guided tour to approximate string matching. ACM
Comput. Surv., 33(1):31–88.

Navarro, G. (2004). Pattern matching. J. Appl. Stat., 31(8):925–949.

Navarro, G. and Raffinot, M. (2002). Flexible pattern matching in strings:
practical on-line search algorithms for texts and biological sequences. Cam-
bridge University Press, Cambridge, UK.

NCBI News (2004). Exponential growth of GenBank continues with release
142. [Online]. Available at http://www.ncbi.nlm.nih.gov/Web/
Newsltr/Spring04/gbrel.html.

Nedland, M., Svingen, B., and Hetland, M. L. (2002). The Interagon Query
Language – a reference guide. Available on request: info@interagon.
com.

Olsen, P. H. and Ambros, V. (1999). The lin-4 regulatory RNA controls de-
velopmental timing in Caenorhabditis elegans by blocking LIN-14 protein
synthesis after the initiation of translation. Dev. Biol., 216(2):671–680.

O’Neill, M. and Ryan, C. (2003). Grammatical Evolution: Evolutionary Auto-
matic Programming in a Arbitrary Language, volume 4 of Genetic program-
ming. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Perrone, M. P. (1993). Improving Regression Estimation: Averaging Methods
for Variance Reduction with Extensions to General Convex Measure Optimiza-
tion. PhD thesis, Department of Physics, Brown University.

Prechelt, L. (1998). Automatic early stopping using cross validation: quan-
tifying the criteria. Neural Netw., 11(4):761–767.

Rätsch, G. (2001). Robust Boosting via Convex Optimization: Theory and Ap-
plications. PhD thesis, University of Potsdam. Chapter 4.

Bibliography 53

Rätsch, G., Onoda, T., and Müller, K.-R. (2001). Soft margins for AdaBoost.
Mach. Learn., 42(3):287–320.

Rätsch, G., Schökopf, B., Smola, A., Müller, K.-R., Onoda, T., and Mika, S.
(2000). ν-arc: Ensemble learning in the presence of outliers. In Kearns,
M. S., Solla, S. A., and Cohn, D. A., editors, Advances in Neural Information
Processing Systems 12: Proc. of NIPS’99. MIT Press.

Rätsch, G., Schölkopf, B., Smola, A. J., Mika, S., Onoda, T., and Müller,
K.-R. (2000). Robust ensemble learning. In Smola, A. J., Bartlett, P. L.,
Schölkopf, B., and Schuurmans, D., editors, Advances in Large Margin
Classifiers, pages 207–220. The MIT Press, Cambridge, Massachusetts.

Reed, R. (1993). Pruning algorithms—a survey. IEEE Trans. Neural Net-
works, 4(5):740–747.

Risvik, K. M. (2004). Scaling Internet Search Engines: Methods and Analysis.
PhD thesis, NTNU, Trondheim, Norway.

Sætrom, P. (2004). Predicting the efficacy of short oligonucleotides in anti-
sense and RNAi experiments with boosted genetic programming. Bioin-
formatics, 20(17):3055–3063.

Sætrom, P. and Hetland, M. L. (2003a). Multiobjective evolution of tempo-
ral rules. In Eight Scandinavian Conference on Artificial Intelligence.

Sætrom, P. and Hetland, M. L. (2003b). Unsupervised temporal rule min-
ing with genetic programming and specialized hardware. In Proceed-
ings of the International Conference on Machine Learning and Applications
(ICMLA’03), pages 145–151.

Sætrom, P., Sneve, R., Kristiansen, K. I., Snøve Jr., O., Grünfeld, T., Rognes,
T., and Seeberg, E. (2005). Predicting non-coding RNA genes in Es-
cherichia coli with boosted genetic programming. Nucleic Acids Res.,
33(10):3263–3270.

Sætrom, P. and Snøve Jr., O. (2004). A comparison of siRNA efficacy pre-
dictors. Biochem. Biophys. Res. Commun., 321(1):247–253.

Salzberg, S. (1997). On comparing classifiers: Pitfalls to avoid and a rec-
ommended approach. Data Mining Knowl. Discov., 1(3):317–328.

Schapire, R. E. (1990). The strength of weak learnability. Mach. Learn.,
5(2):197–227.

54 Bibliography

Schapire, R. E., Freund, Y., Bartlett, P., and Lee, W. S. (1998). Boosting the
margin: a new explanation for the effectiveness of voting methods. Ann.
Stat., 26(5):1651–1686.

Scherer, L. J. and Rossi, J. J. (2003). Approaches for the sequence-specific
knock-down of mRNA. Nat. Biotechnol., 21(12):1457–1465.

Schmitt, L. M. (2001). Theory of genetic algorithms. Theor. Comput. Sci.,
259(1–2):1–61.

Schmitt, L. M. (2004). Theory of genetic algorithms II: models for genetic
operators over the string-tensor representation of populations and con-
vergence to global optima for arbitrary fitness function under scaling.
Theor. Comput. Sci., 310(1–3):181–231.

Schölkopf, B., Smola, A. J., Williamson, R., and Bartlett, P. L. (2000). New
support vector algorithms. Neural Comput., 12(5):1207–1245.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel Methods for Pattern Anal-
ysis. Cambridge University Press, Cambridge, UK.

Smyth, P. and Goodman, R. M. (1991). Rule induction using information
theory. In Piatetsky-Shapiro, G. and Frawley, W. J., editors, Knowledge
Discovery in Databases, pages 159–176. MIT Press, Cambridge, MA.

Snøve Jr., O. (2005). Analysis of RNAi intermediates using the pattern matching
chip. PhD thesis, Norwegian University of Science and Technology.

Snøve Jr., O., Nedland, M., Fjeldstad, S. H., Humberset, H., Birkeland,
O. R., Grünfeld, T., and Sætrom, P. (2004). Designing effective siRNAs
with off-target control. Biochem. Biophys. Res. Commun., 325(3):769–773.

Stone, M. (1974). Cross-validatory choice and assessment of statistical pre-
dictions. Journal of the Royal Statistical Society. Series B (Methodological),
36(2):111–147.

Vanet, A., Marsan, L., and Sagot, M.-F. (1999). Promoter sequences and
algorithmical methods for identifying them. Res. Microbiol.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer-
Verlag, N.Y.

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-Interscience, New
York, NY, USA.

Bibliography 55

Webb, G. I. (2000). Multiboosting: A technique for combining boosting and
wagging. Mach. Learn., 40(2):159–196.

Weiss, G. M. and Provost, F. (2001). The effect of class distribution on clas-
sifier learning. Technical Report ML-TR 43, Department of Computer
Science, Rutgers University.

Wightman, B., Ha, I., and Ruvkun, G. (1993). Posttranscriptional regula-
tion of the heterochronic gene lin-14 by lin-4 mediates temporal pattern
formation in C. elegans. Cell, 75(5):855–862.

Witten, I. H., Moffat, A., and Bell, T. C. (1999). Managing Gigabytes: Com-
pressing and Indexing Documents and Images. Morgan Kaufmann Publish-
ers, Los Altos, CA 94022, USA, 2nd edition.

Wolpert, D. H. (1997). On bias plus variance. Neural Comput., 9(6):1211–
1243.

Wu, G. and Chang, E. Y. (2003). Adaptive feature-space conformal trans-
formation for imbalanced-data learning. In ICML, pages 816–823.

Yang, J., Wang, W., and Yu, P. S. (2003). Mining asynchronous periodic
patterns in time series data. IEEE Trans. Knowl. Data Eng.

Yekta, S., Shih, I., and Bartel, D. P. (2004). MicroRNA-directed cleavage of
HOXB8 mRNA. Science, 304(5670):594–596.

Zeng, Y., Wagner, E. J., and Cullen, B. R. (2002). Both natural and de-
signed micro RNAs can inhibit the expression of cognate mRNA when
expressed in human cells. Mol. Cell., 9(6):1327–1333.

Papers

Paper I is not included due to copyright.

Paper II

Unsupervised temporal rule
mining with genetic programming
and specialized hardware

Unsupervised Temporal Rule Mining with Genetic
Programming and Specialized Hardware

Pål Sætrom and Magnus Lie Hetland

Abstract— Rule mining is the practice of discovering interest-
ing and unexpected rules from large data sets. Depending on
the exact problem formulation, this may be a very complicated
problem. Existing methods typically make strong simplifying
assumptions about the form of the rules, and limit the measure
of rule quality to simple properties, such as confidence. Because
confidence in itself is not a good indicator of how interesting
a rule is to the user, the mined rules are typically sorted
according to some secondary interestingness measure. In this
paper we present a rule mining method that is based on genetic
programming. Because we use specialized pattern matching
hardware to evaluate each rule, our method supports a very
wide range of rule formats, and can use any reasonable fitness
measure. We develop a fitness measure that is well-suited for
our method, and give empirical results of applying the method
to synthetic and real-world data sets.

Index Terms— Data mining, rule discovery, time series, genetic
programming, pattern matching hardware.

I. INTRODUCTION

TEMPORAL sequence data are ubiquitous in many fields,
and lately there has been an increase in the interest

for methods that can extract useful information from large
sequence databases [1]. One specific problem is that of rule
mining: Extracting interesting and unexpected regularities, or
rules, from the data.

The rule mining problem consists of finding patterns that
satisfy certain criteria in a sequence database. These patterns
(or rules) may have a form such as “if we encounter element
x, then we will encounter element y within t time units.”
Here, x is the antecedent, and y is the consequent. The
quality of such rules may be measured by how frequently they
occur (support), their predictive power (confidence), and by
measures of how interesting they are, described numerically
by so-called interestingness measures.

The general approach taken by several authors (for example,
[2], [3]) is to scan the sequential data and to count every
occurrence of a legal rule, as well as the occurrences of
every legal antecedent and consequent. This counting makes it
possible to calculate the frequencies and confidences of each
rule.

However, this approach limits the format of the rules.
Even moderately complex rule formats will make the task of
counting all occurrences unfeasible. Also, existing methods

Pål Sætrom is employed at Interagon AS, Medisinsk-teknisk senter, Olav
Kyrres gt. 3, NO–7489 Trondheim, Norway (email: paalsat@interagon.com,
fax: +47 45594458).

Magnus Lie Hetland is at the Department of Computer and Information
Science, Norwegian University of Science and Technology, Sem Sælands vei
9, NO–7491 Trondheim, Norway (email: mlh@idi.ntnu.no).

(such as [4]) have focused on finding rules that are frequent
and have high confidence, and only subsequently have sorted
the resulting rules using an interestingness measure, which is
meant to measure the true quality of the rule.

The approach taken in this paper is based on the method
of [5]: with the aid of specialized pattern matching hardware
we find sequential rules using genetic programming. In [5]
the task was one of simple sequence learning and prediction.
In this paper we show that by using general interestingness
measures as fitness functions, our method can be used to mine
unknown rules of relatively high quality.

A. Related Work

Previous attempts at solving the problem of mining predic-
tive rules from time series can loosely be partitioned into two
types. In the first type, supervised methods, the rule target is
known and used as an input to the mining algorithm. Typically,
this can be specific events in (or possibly extrinsic to), the time
series. Thus the goal is to generate rules for predicting these
events based on the data available before the event occurred.
The papers [5], [6], [7], [8] fall in this category. All of these
use some form of evolutionary computation; [5] uses genetic
programming, while the others use genetic algorithms.

In the second type, unsupervised methods, the only input
to the rule mining algorithm is the time series itself. The
goal is to automatically extract informative rules from the
series. In most cases this means that the rules should have
some level of preciseness, be representative of the data, easy
to interpret, and interesting (that is, novel, surprising, useful,
and so on), to a human expert [9]. This is the approach we take
in this paper. Of the existing attempts to tackle this problem,
many rely on scanning the data and counting the occurrence of
every legal antecedent and consequent (for example, [2], [3],
[10]). The rules are then ranked according to some measure
of interestingness. This approach does, however, place some
limitations on the rule format in order to make the task of
counting all occurrences feasible. Others have focused on
specific mining problems, such as detecting unusual move-
ments [11], or finding unusual temporal patterns in market
basket data [12].

Unlike these approaches, we try to tackle the core problem
directly, that is, mining interesting rules. This is done by defin-
ing some formal interestingness measure and using genetic
programming to search the rule space for the most interesting
rules. Thus, unlike other methods, the interestingness measure
is used directly in the mining process and not as a post-
processing ranking function. This allows for a much more
flexible rule format than the existing method.

B. Structure of This Paper

The rest of this paper is structured as follows: Section II
describes the preprocessing scheme used to discretize the time
series data used in the experiments, Section III describes how
genetic programming is used to evolve temporal rules, Sec-
tion IV describes in detail how rules are evaluated, Section V
describes our experiments and empirical results, and finally
Section VI summarizes and concludes the paper.

II. PREPROCESSING

The rule mining strategy presented in this paper works on
discrete sequences of symbols. To transform the time series
data of our empirical application to such a symbolic sequence,
we use a simple method used, among other places, in [1]. It
extracts all windows of width w, and for each such window
a real-valued feature is calculated. This feature may be, for
example, the average value or signal to noise ratio. In our
experiments we have used the slope of a line fitted to the data
points of the window with linear regression.

After such a feature sequence has been constructed, a copy
is made, which is sorted and divided into a (approximately)
equal-sized intervals. Each interval is assigned an integer from
1 to a, and the limits of the intervals are used to classify
the values in the original feature-sequence. By following this
procedure, we are guaranteed that the symbols (that is, the
integers, which easily map to characters in some alphabet) all
have approximately the same frequency.

Our experiments require us to use both training sets, vali-
dation sets (for early stopping, or model selection), and test
sets. Since the discretization process uses information about
“the future” when classifying a single point, it cannot be used
directly on the validation and testing sets. Instead, the normal
procedure was used on the training set, and the limits found
there were used when classifying the features of the validation
and testing sets.

Note that by allowing the windows to overlap when classi-
fying the positions we avoid unneeded data reduction, but we
also introduce spurious correlations between adjacent symbols.
For most time series, two windows that overlap in w − 1
positions will be quite likely to have similar feature values,
which means they are more likely to be assigned the same
symbol. How we deal with this problem is described in
Section IV-A.

This discretization method is by no means unique. In [13]
a method is described, which uses the slope and signal to
noise ratio for segments of the series. Other usable methods
of discretization include those used to simplify time series for
indexing purposes. See [14] for a survey.

III. EVOLVING RULES

The evolutionary computation strategy used in this paper
is genetic programming, as described in [15]. The algorithm
uses subtree swapping crossover, tree generating mutation
and reproduction as genetic operators. Individuals are chosen
for participation in new generations using tournament selec-
tion. Each individual in the population is a program tree,
representing an expression in some formal language. In our

experiments, we use several such languages, each representing
a format for the rules we wish to discover. Expressions in the
chosen rule languages may be evaluated by the specialized
pattern matching hardware described in Section IV-B, and rule
fitness is calculated by searching the time series data for rule
occurrences.

A. Rule Languages

The basic rule format that will be used throughout this paper
is the simple and well known: “If antecedent then consequent
within T time units”. In its simplest form, as used in [4],
both the antecedent and consequent are single symbols in the
discretized alphabet, A, while T is a constant. This results in
a rule language of the form: x

T⇒ y for x, y ∈ A.
Several extensions to this simple language are possible and

have been investigated by others:

1) Sequential patterns [3]: If x1 and x2 and . . . and xn

occur in a window of width w, then y occurs within T
time units. Here xi, i ∈ {1, n} and y are symbols in A.

2) Regular expressions/episode rules [2]: If the sequence
x1, x2, . . . , xn can be found within in a window of
width w, then y occurs within T time units. Here,
xi, i ∈ 1 . . . n can either be a symbol in A, or a set
of symbols X ⊆ A for which any x ∈ X can be a legal
match; y is a symbol in A. These rules are a simple form
of regular expressions; for example, the antecedent in the
episode rule a, {c, d} t⇒ y can be written as a.∗(c|d),
with the added requirement that the maximum length of
the string matched is w.

Note that all of these rule languages share the same basic
format. What differs is how the antecedent is defined, that is,
the language used to generate the antecedent. In general, all
rules of this type can be described by the three parameters:
the antecedent language, La, the consequent language, Lc, and
the maximum temporal distance, T .

Most previously investigated rule languages make a distinc-
tion between La and Lc: La varies in complexity, while Lc

usually is a single character from A.1 In the following no such
limitation will be made: unless otherwise noted La = Lc.

B. Rule Representation

The mining algorithm works by using genetic programming
to search the space of possible rules defined by La, Lc and T .
More specifically, each individual in the population is a syntax
tree in the language La

T⇒ Lc. This is implemented by using
three separate branches; One branch for each of La, Lc, and
T .

In the antecedent and consequent branches, the internal
nodes in the parse tree are the syntactical nodes necessary for
representing expressions in the corresponding languages. If for
example, the considered language is regular expressions, the
syntactical nodes needed are union, concatenation and Kleene

1One notable exception is [16], which defines a rule language where both
La and Lc are sequences of characters separated by wildcards, that is, episode
rules without parallel episodes.

closure. The leaf nodes in these branches are the symbols from
the antecedent and consequent alphabets (Σa and Σc).

The maximum distance branch defines the maximum dis-
tance t of the rule. This branch is constructed by using
arithmetic functions (typically + and −) as internal nodes,
and random integer constants as leaf nodes. The final distance
t is found by computing the result of the arithmetic expression
rT , and using the residue of rT modulo T + 1.

C. Confidence, Support, and Interestingness

Given a rule R = Ra
t⇒ Rc in the rule language La

T⇒
Lc (such that t ≤ T) and a discretized sequence S =
(a1, a2, . . . , an), the frequency F (Ra) of the antecedent is the
number of occurrences of Ra in S. This can be formalized as

F (Ra) = |{i | H(Ra, S, i)}|, (1)

where H(Ra, S, i) is a hit predicate, which is true if Ra occurs
at position i in S and false otherwise. The relative frequency,
f(Ra), is simply F (Ra)/n, where n is the length of S.

The support of a rule is defined as:

F (Ra, Rc, t) = |{i | H(Ra, S, i)∧
H(Rc, S, j) ∧ i+1 ≤ j ≤ i+t}| (2)

This is the number of matches of Ra that are followed by at
least one match of Rc within t time units.

The confidence of a rule is defined as:

c(R) =
F (Ra, Rc, t)

F (Ra)
(3)

In most existing methods, candidate rules with high con-
fidence and support are selected. This approach usually gen-
erates a lot of rules, many of which may not be particularly
interesting. As an aid in investigating these rules, interesting-
ness measures have been developed (see [17] for a survey).
These measures may, for instance, be used to sort the rules in
descending order of interest.

One measure of interestingness that has proved to be robust
for identifying surprising rules is the J-measure ([18]). This
is defined as:

J(Rt
c, Ra) = p(Ra) ·

(
p(Rt

c|Ra) log2

p(Rt
c|Ra)

p(Rt
c)

+

(1 − p(Rt
c|Ra)) log2

1 − p(Rt
c|Ra)

1 − p(Rt
c)

)
(4)

Here, p(Ra) is the probability of H(Ra, S, i) being true
at a random location i in S. p(Rt

c) is the probability of
H(Rc, S, i) being true for at least one index i in a randomly
chosen window of width t. Finally, p(Rt

c|Ra) is the probability
of H(Rc, S, i) being true at for at least one index i in a
randomly chosen window of width t, given that H(Ra, S, j)
is true and that j is the position immediately before the
chosen window. The J-measure combines a bias toward more
frequently occurring rules (the first term, p(Ra)), with the
degree of surprise in going from a prior probability p(Rt

c) to a
posterior probability p(Rt

c|Ra) (the second term, also known
as the cross-entropy).

An alternative to the J-measure is the Piatetsky-Shapiro
rule-interest measure, RI, described in [19]. This measure
quantifies the degree of correlation between the antecedent
and consequent. Rules with high correlation are then seen as
more interesting. In the context of sequence rules, the rule
interest function can be defined as2

RI(Rt
c, Ra) = p(Rt

c|Ra) − p(Ra) · p(Rt
c), (5)

with the same definitions for the probabilities as for the
J-measure. As can be seen from (5), if Rt

c and Ra are
statistically independent then RI = 0. If H(Rc, S, i) is more
(less) frequently true in a window of length t when H(Ra, S, i)
is true and i is the position immediately to the left of the
window, then RI > 0 (RI < 0).

IV. RULE EVALUATION

Consider the problem of mining interesting rules from a
sequence S, given a rule language L, defined by (La, Lc, T),
and an interestingness function f . In order to use genetic
programming to perform this rule mining, we must be able
to compute the value of f for every possible rule in L. In
the case that f is one of either J or RI from Section III-
C, this amounts to estimating the probabilities p(Ra), p(Rt

c)
and p(Rt

c|Ra). In the interest of simplicity, we will use the
maximum likelihood estimates for these probabilities. That is,
for a given rule R = Ra

t⇒ Rc, the estimators are:

p̂(Ra) = f(Ra) (6)

p̂(Rt
c) = f(Rt

c) (7)

p̂(Rt
c|Ra) = c(R) (8)

This amounts to counting the following:

• The number of occurrences of Ra in S (from the defini-
tion of f(Ra).)

• The number of windows of length t where H(Rc, S, i)
is false at every position (as p(Rt

c) = 1− p(¬Rt
c), where

p(¬Rt
c) is the probability that H(Rc, S, i) is false for all

positions in a random window of length t in S.)
• The number of hits from Ra where H(Rc, S, i) is true at

least once within time t.

A. Handling Correlations Caused by the Discretization
Method

The discretization process described in Section II introduces
correlations between consecutive symbols in the discretized
sequence. This results in that rules with low distances t will
have high confidence. Since these rules are artifacts of the
discretization process, we do not consider them interesting.

To account for these induced correlations, the number of
occurrences of the rule R = Ra

t⇒ Rc in a sequence S,
discretized with a window length of w, is defined as ([4]):

F (Ra, Rc, t) = |{i | H(Ra, S, i)∧
H(Rc, S, j) ∧ i+w ≤ j ≤ i+w+t−1}| (9)

2Note that this is an adaptation of the definition in [19], where the function
is defined for simple classification rules where Ra and Rc are single symbols.

Thus, only occurrences of Ra that are followed by a hit from
Rc after w − 1 units of time are counted.3

B. Counting Hits

One important feature of our method is the relative lack
of restrictions placed on the allowed rule languages. To allow
for such flexibility, we cannot perform any general occurrence
counting—the probabilities of each rule must be estimated
individually, in the course of calculating their fitness. Each
such estimation requires a complete pass through the data.

To speed up these calculations to the level where they
are usable as components in a fitness function, we use a
specialized search chip ([20], [21]) for hit counting. This
pattern matching chip (PMC), is able to search 100 MB/s and
can handle from 1 to 64 parallel queries, depending on query
complexity.4 The queries are specified in a special-purpose
query language ([22]). This language supports such language
features as regular expressions, latency (distance), Boolean
combinations, and alpha-numerical comparisons.

As described in Section IV, the process of evaluating a rule
consists of counting the occurrences of three different patterns.
The PMC can be used for this purpose in the following way:

The number of occurrences of Ra in S: This amounts to
counting all hits of Ra in S.

The number of windows of length t where H(Rc, S, i) is
false at every position: This can be found by looping through
the hits Hc = {h1, . . . , hn} = {i | H(Rc, S, i)} of Rc in S
and incrementing a counter by hi − hi−1 − t if hi − hi−1 > t
(h0 = 0).

The number of hits from Ra where H(Rc, S, i) is true at
least once within time t: This proved difficult to calculate as
this expression cannot be directly evaluated by the PMC. The
PMC is, however, capable of finding all occurrences where
H(Rc, S, i) is true and is preceded by a hit from Ra at a max-
imum distance of t. This process can be summarized by the
pattern before operator, with the syntax Ra PBEFORE(t) Rc.

As long as the length of the substring matched by Ra and
Rc is 1, F (Ra, Rc, t) can be evaluated by using the PBEFORE
operator in the following way: Construct from S the reverse
sequence Sr. F (Ra, Rc, t) is given by counting the number
of hits from the expression Rr

c PBEFORE(t) Rr
a in Sr. If,

however, this is not the case (that is, either Ra or Rc does not
match a single symbol), this procedure cannot be used. There
are several reasons why it fails, but the most important reason
is that the distances are distorted.

Consider, for instance, the rule where Ra = ab, Rc = c
and t = 1, and the sequence S = (a, b, c). In order for Ra

to match the same sub-sequences in Sr as in S, it must be
reversed. It should be evident that in this case the reverse of
Ra is Rr

a = ba. Searching for Rr
a in the reverse sequence,

Sr = {c, b, a}, will result in a hit at position 3, while Rc will
report a hit at position 1. So while the distance between hits

3Note that this differs from the definition in [4], where the lower range was
defined as i + w + 1. However, in the limiting case, where w = 1 (that is,
a single time point), this formula should be equal to the original frequency
definition in (2).

4The prototype used in these experiments searches 33 MB/s and handles 1
to 4 parallel queries.

from the antecedent and consequent is 1 in S, it has increased
to 2 in Sr. Although in this case it is trivial to account for the
distance distortion, this is not so in the general case (consider,
for instance, Ra = (a|bc)).

These problems can be solved by using another method
for evaluating F (Ra, Rc, t): Store the hit locations from Ra

and Rc in two arrays sorted by the hit position (this is trivial
when using the PMC, as hits are reported sequentially in an
array). Iterate through the antecedent array and increment a
counter whenever a hit in this array has a hit in the consequent
array that is within the desired distance. This can be done in
O(na + nc) time, where na and nc is the number of hits
from the antecedent and consequent, respectively (or, in other
words, in O(n) time, where n is the number of symbols in S,
that is, the worst case when Ra matches every position in S.)

Note that both methods can be used for evaluating the
modified frequency function from Section IV-A. The only
added requirement when evaluating this function is that there
must be least w − 1 symbols between hits from Ra and Rc.
The PBEFORE method solves this by adding w−1 wild-cards
(that is, symbols matching any symbol) at the start of Rr

a or
at the end of Rr

c . For the hit processing method, this amounts
to only considering hits from the consequent that have at least
a distance of w − 1 symbols from a hit from the antecedent.

V. EXPERIMENTAL RESULTS

In our experiments we used the following five rule lan-
guages:
L1 Single symbols.
L2 Single symbols and concatenations of single symbols.
L3 Sequential patterns.
L4 Regular expressions with the limitation that skips and

repetitions cannot be recursive (for example, expressions
of the type: a(b∗c)∗d, a(b?c)?d and a(b?c)∗d are not
allowed.)

L5 L4 with the addition of alpha-numerical comparisons and
Boolean operations (for example, rules like ≥ alpha & ≤
beta, matching all strings that are alpha-numerically be-
tween alpha and beta.)

As can be seen from the description, only rules generated
from L1 can be evaluated using the PBEFORE method. (Recall
that this method can only be used when the antecedent and
consequent both match only a single symbol.)

The system was first tested on two different synthetic
datasets with known rules embedded in the sequence. Then it
was tested on a data set containing ECG measurements, taken
from the UCR Time Series Data Mining Archive [23]. All our
results were generated by running the genetic programming
system with a population size 5000 for a maximum of 20
generations. Crossover, mutation, and reproduction were used
with probabilities 0.9, 0.01, and 0.09, respectively, while the
tournament size was 5.

For each data set, the genetic programming algorithm was
run several times, with different rule languages and interest-
ingness measures. In addition to the J-measure and the rule
interest function RI, confidence (c(R)) and confidence times
support (c(R) · F (Ra, Rc, t)) were used as interestingness
measures.

A. Synthetic Data

The synthetic data were constructed by repeatedly drawing
symbols from a subset of the lowercase Latin alphabet (a−y)
with uniform probability. The symbol z, used for representing
the consequent, was inserted into the sequence when some
predefined antecedent pattern was found.

Two different antecedent types were used:

1) The regular expression o[∧o∧n]∗n.
2) The symbols a, b, c, d and e occurring in any order

within a window of width 10.

The two sets consisted of 100 kB sequence data with
about 2000 and 160 occurrences of antecedent type 1 and 2,
respectively.

Table I summarizes some typical results produced by the
J-measure and RI function on the synthetic datasets. In
addition, the table presents some typical results from using
the confidence and confidence times support as interesting
measures. The rule notation is explained in the appendix. Note
that the languages L5

1⇒ L2 and L3
1⇒ L1 were used for

generating the rules from dataset 1 and 2, respectively.
As can be seen from this table, both the confidence and

rule interest measures produce rules having high confidence
but minimal support. Thus neither of these measures are
particularly useful as a fitness function for mining interesting
rules (unless spurious or “rare” rules are desired). Using
confidence times support as a fitness measure rectifies some
of these problems. The system is able to partially recover the
embedded pattern from set 1. It is, however, unable to recover
the pattern from set 2, as its combined support and confidence
(0.0012 · 0.62 = 0.000744) is lower than that of the random
pattern detected (0.041 · 0.041 = 0.001681). Another serious
shortcoming with this fitness measure may be observed in
sets having an uneven symbol distribution. There the rules
generated most often involve the most frequently occurring
antecedent, as this determines the frequency of the rule, and
thus the rule support (data not shown).

B. Modifying the J-measure

Some of the initial results generated by mining the different
datasets using the J-measure had a confidence far below 50%
(data not shown). This inspired the following modification to
the fitness measure: Multiply the J-measure with a confidence
correcting function F (c(R)). Recall that c(R) is the rule
confidence. F (c(R)) should be a monotonically increasing
function that is close to 1 for values of c(R) larger than some
limit cmin and close to 0 for values below cmin. One function
that satisfies these requirements is the sigmoid function:

F (c(R)) =
1

1 + e−(c(R)−cmin)·g (10)

Here g is a parameter regulating how sharp the cutoff at cmin

should be. In the following sections, the value g = 20 was
used.

Using the modified J-measure as fitness function, the sys-
tem was able to fully recover the rule embedded in set 2. With
this setup, however, the system was unable to fully recover
the rule from set 1. Instead, an approximation was found,

TABLE II

SUMMARY OF RESULTS ON SYNTHETIC DATASET USING THE MODIFIED

J -MEASURE.

Type Language Rule

1 L5
1⇒ L2 o

27←− n
1⇒ z

2 L3
1⇒ L1 {a ∧ b ∧ c ∧ d ∧ e : 9} 1⇒ z

using the IQL PBEFORE(t) operator. Table II lists two of
the expressions generated, along with the rule languages used
in the generation process.

C. Real-World Data

The system was tested on the ECG dataset from the UCR
Time Series Data Mining Archive [23]. The series was split
into 10 partially overlapping folds, and each fold was then
further divided into a training set, and smaller validation
and test sets. The validation set was used for early stopping
(model selection). Each training set was then discretized using
the procedure from Section II with a window size of 2 and
alphabet size of 15. The corresponding validation and test set
were then discretized using the limits and symbols from the
training set. The 10 folds were then mined using 4 different
rule languages. Some of the results are presented in Table III.
Note that the results listed in this table are the results produced
by using early stopping, that is, those among the “best of
generation” results having the highest fitness when applied to
the validation set. Also note that the modified support from
Section IV-A with w = 2 was used.

As can be seen from this table, some rules generated by
the system were both highly complex and had an accuracy
close to 1, in both the training and test set. Further analysis
revealed that these rules actually exploited a feature in the
underlying pattern matching hardware: When occurring, both
antecedent and consequent match the same pattern, but the
hardware reports that the antecedent occurs one or two bytes
earlier than what is the actual case.

As a comparison, the other rules generated were fairly
simple. This is probably due to the highly regular pattern in
the sequence. Thus, to circumvent the problem of complex
but invalid rules, and to test the system on a more difficult
problem, the system was run on the ECG data with the
minimum distance parameter w set to 10. Table IV lists two
of the rules generated from the L5

10⇒ L2 language.
Figure 1 shows a plot of a subsequence of the ECG set. The

figure also shows the hits for the antecedent of the second rule
from Table IV in the sequence.

As can be seen, the system has successfully generated a rule
for identifying the highly regular pattern in the ECG signal.

D. Random Data

The rule generation method was also tested on a random
set without any embedded rules. In this set all characters
from the a− z alphabet were drawn with uniform probability.
Thus no patterns should be prevalent in the data. For mining
this set, the four fitness measures from Table I were again
used, in addition to the modified J-measure. The results from

TABLE I

TYPICAL RESULTS PRODUCED BY DIFFERENT INTERESTING MEASURES ON THE SYNTHETIC DATASETS.

Set Fitness measure Rule Supp. Conf. J-mea. RI

1 J-measure g
184←− n

1⇒ z 0.019 0.51 0.072 0.51

1 Rule interest ywvh | wvhy
1⇒ n 10−5 1.0 4.7 · 10−5 1.0

1 Confidence fieg | egif
1⇒ k 10−5 1.0 4.7 · 10−5 1.0

1 Conf. · Supp. n
1⇒ z 0.019 0.51 0.072 0.50

2 J-measure {a ∧ b ∧ c ∧ d ∧ e : 9} 1⇒ z 0.0012 0.62 0.0099 0.63

2 Rule interest {z ∧ k ∧ m ∧ s : 4} 1⇒ x 10−5 1.0 4.7 · 10−5 1.0

2 Confidence {s ∧ m ∧ z : 3} 1⇒ k 10−5 1.0 4.6 · 10−5 1.0

2 Conf. · Supp. {h ∧ g : 151} 1⇒ r 0.041 0.041 0.00 2.0 · 10−4

TABLE III

EARLY STOPPING RESULTS ON ECG DATA SET EVALUATED ON THE TEST SET.

Language Rule Supp. Conf. J-mea. RI

L2
10⇒ L2 b

1⇒ b 0.042 0.68 0.12 0.68

L4
10⇒ L2 n+fhjjcg+jc | n+fhjng+jc | n+fhng+jc | ac | oc | o

1⇒ o 0.074 1.0 0.28 0.99

L3
10⇒ L1 {o ∧ c ∧ g ∧ i ∧ e : 57} 9⇒ o 0.065 0.93 0.18 0.92

L5
10⇒ L2 o

1⇒ o 0.061 0.84 0.19 0.84

L5
10⇒ L2 a

1⇒ a 0.031 0.83 0.12 0.83

TABLE IV

RESULTS FROM THE ECG SET WITH w = 10 EVALUATED ON THE TEST SET.

Rule Supp. Conf. J-mea. RI

e
88←− (≥ lkkl) 9⇒ m 0.11 0.64 0.10 0.60

(≥ klhjlj)((a 52←− (≥ lf)) | cnf | bnf) | ((a 52←− (≥ lf)) | cnf | bnf)(≥ klhjlj) 9⇒ m 0.12 0.86 0.19 0.83

Fig. 1. Hit locations of antecedent in ECG sequence.

these tests confirm the observations from the runs on the
synthetic data (see Section V-A), concerning the different
fitness measures (data not shown). In addition, the same effect
as observed on the ECG data concerning the hardware feature
exploitation was again observed in this data set (data not
shown).

Several rule languages were tried. This showed that certain
language combinations for the antecedent and consequent may

result in spurious rules that fit the random data (including
the separate test set) well. For example, the language L5

10⇒
L5 (with w = 10), generated the following rule: !(e(≤
i)yk | kye(≤ i)) 1⇒!((≤ i)(> i)). This rule had support
and confidence of ≈ 1.0, and J-measure and Rule Interest
measure of 0.37 and 0.23, respectively, when tested on a
random set different from the training set. The intuition behind
this is that by letting both the antecedent and the consequent
be sufficiently general, it is possible to achieve 100% in
both confidence and support. In general, however, fixing the
consequent (that is, restricting it to be generated from either
L1 or L2), prevents this from occurring.

VI. SUMMARY AND CONCLUSIONS

In this paper we have examined a novel method for unsu-
pervised mining of rules in time series data. Unlike previous
methods, the method places few constraints on the rule repre-
sentation and the quality measure that is being optimized.

The method works by evolving rules through genetic pro-
gramming, and uses specialized hardware to calculate the
fitness (interestingness) of each candidate rule.

For our experiments, we used synthetic data, a discretized
real-world dataset (ECG), and a random data set. We ran
experiments using several different rule languages of differing

complexity, including support for regular expressions. To our
knowledge, no existing methods can accommodate similarly
flexible rule formats. The method was able to recover or
approximate the rules embedded in the synthetic sequence.
In addition, it was able to produce rules recognizing the
periodicity in the ECG sequence.

The method described in this paper is still new, and there
is still much research to be done in examining various rule
formats and interestingness measures. The primary fitness
measure used in our experiments is based on the J-measure,
which has been found to be robust and useful in ranking rules,
but several other interestingness measures exist, and many of
these may be useful as fitness measures when evolving rules.

APPENDIX

RULE LANGUAGE SYNTAX

This appendix describes the notation used in the rules
presented in Section V.

R∗: The Kleene closure operator. Signifies that the R is
repeated 0 or more times.

R?: The optional operator: The R is optional and can be
skipped.

{x1 ∧ . . . ∧ xn : w}: Sequential patterns. Signifies that char-
acters x1 to xn will be found in a window consisting
of w characters.

Ri | Rj : This is the alternative operator, meaning that either
sub-expression Ri or Rj should match.

!R: The expression gives a match whenever R does not
(that is, the negation of R).

Ri
t←− Rj : Shorthand for the PBEFORE(t) operator. Re-

ports a match whenever Rj reports a match and Ri

reported a match at most t symbols before.
≥ R: Reports a match whenever the current substring is

alpha-numerically (lexically) greater or equal to R
(R must be a string.)

≤ R: Reports a match whenever the current substring is
alpha-numerically (lexically) less than or equal to R
(R must be a string.)

Ri&Rj : The conjunction operator: Both Ri and Rj must
match at the same location.

REFERENCES

[1] E. J. Keogh, S. Lonardi, and B. Chiu, “Finding surprising patterns in
a time series database in linear time and space,” in Proc. KDD, 2002,
pp. 550–556.

[2] H. Mannila, H. Toivonen, and A. I. Verkamo, “Discovery of frequent
episodes in event sequences,” Data Mining and Knowledge Discovery,
vol. 1, num. 3, pp. 259–289, Jan. 1997.

[3] R. Agrawal and R. Srikant, “Mining sequential patterns,” in Proc. ICDE,
1995, pp. 3–14.

[4] G. Das, K. Lin, H. Mannila, G. Renganathan, and P. Smyth, “Rule
discovery from time series,” in Proc. KDD, 1998, pp. 16–22.

[5] M. L. Hetland and P. Sætrom, “Temporal Rule Discovery using Genetic
Programming and Specialized Hardware,” in Proc. 4th Int. Conf. on
Recent Advances in Soft Computing Nottingham, 2002.

[6] G. M. Weiss and H. Hirsh, “Learning to predict rare events in event
sequences,” in Fourth International Conference on Knowledge Discovery
and Data Mining (KDD’98) R. Agrawal, P. Stolorz and G. Piatetsky-
Shapiro, Eds. publisher = ”Menlo Park, CA: AAAI Press, ”, 1998,
pp. 359–363.

[7] S. Zemke, “Nonlinear Index Prediction,” in Proceedings of the Inter-
national Workshop on Econophysics and Statistical Finance Palermo,
Italy, September 1998, Physica A Vol. 269, no. 1, Elsevier Science,
R. N. Mantegna, Ed., pp. 177–183.

[8] R. J. Povinelli, “Using Genetic Algorithms to Find Temporal Patterns
Indicative of Time Series Events,” in GECCO 2000 Workshop: Data
Mining with Evolutionary Algorithms, pp. 80–84, 2000.

[9] A. A Freitas, Data Mining and Knowledge Discovery with Evolutionary
Algorithms, Berlin: Spinger-Verlag, 2002.

[10] F. Höppner and F. Klawonn, “Finding Informative Rules in Interval
Sequences,” in Lecture Notes in Computer Science, 2189, 125–??,
2001.

[11] R. D. Martin and V. Yohai, “Data Mining for Unusual Movements in
Temporal Data,” in KDD Workshop on Temporal Data Mining, 2001.

[12] S. Chakrabarti, S. Sarawagi and B. Dom, “Mining surprising patterns
using temporal description length,” in Twenty-Fourth International
Conference on Very Large databases VLDB’98, New York, NY: Morgan
Kaufmann, A. Gupta, O. Shmueli, and J. Widom, Eds., pp. 606–617,
1998.

[13] M. Last, Y. Klein, and A. Kandel, “Knowledge Discovery in Time Series
Databases,” IEEE Trans. on Systems, Man, and Cybernetics vol. 31B,
no. 1, pp. 160–169, Feb. 2001.

[14] M. L. Hetland, “A Survey of Recent Methods for Efficient Retrieval of
Similar Time Sequences,” in Data Mining in Time Series Databases,
M. Last, A. Kandel, and H. Bunke, Eds. Singapore: World Scientific,
to be published.

[15] J. R. Koza, Genetic Programming: On the programming of Computers
by Means of Natural Selection. Cambridge, MA: The MIT Press, 1992.

[16] M. Spiliopoulou, “Managing Interesting Rules in Sequence Mining,” in
Proc. PKDD, 1999, pp. 554–560.

[17] R. J. Hilderman and H. J. Hamilton, “Knowledge discovery and
interestingness measures: A survey,” Department of Computer Science,
University of Regina, Saskatchewan, Canada, Tech. Rep. CS 99-04,
Oct. 1999.

[18] P. Smyth and R. M. Goodman, “Rule induction using information
theory,” in Knowledge Discovery in Databases, G. Piatetsky-Shapiro,
W. J. Frawley, Eds. Cambridge, MA: MIT Press, 1991, pp. 159–176.

[19] G. Piatetsky-Shapiro, “Discovery, analysis and presentation of strong
rules,” in Knowledge Discovery in Databases G. Piatetsky-Shapiro,
W. J. Frawley, Eds. Cambridge, MA: MIT Press, 1991, pp. 229–248.

[20] Fast Search & Transfer ASA, “Digital processing device,” European
patent specification EP1125216B1, deriving from international published
patent application WO 00/22545.

[21] Fast Search & Transfer ASA, “Søkeprosessor,” Norwegian patent
309169, also filed as international published patent application WO
00/29981 titled “A processing circuit and a search circuit.”

[22] Interagon AS. (2002, Aug.). The IQL Language. In-
teragon AS. Trondheim, Norway. [Online]. Available:
http://www.interagon.com/pub/whitepapers/IQL.reference-latest.pdf

[23] E. Keogh and T. Folias, “The UCR Time Series Data Mining Archive,”
[Online] Available from http://www.cs.ucr.edu/˜eamonn/
TSDMA/index.html, Riverside CA. University of California, Com-
puter Science & Engineering Department, 2002.

Paper III

Multiobjective evolution of
temporal rules

Multiobjective Evolution of Temporal Rules
Pål SÆTROM1 and Magnus LIE HETLAND2

1Interagon AS, Medisinsk-teknisk senter,
NO–7489 Trondheim, Norway

paalsat@interagon.com
2Norwegian University of Science and Technology,

Dept. of Computer and Information Science,
Sem Sælands vei 9, NO–7491 Trondheim, Norway

magnus@hetland.org

Abstract. In recent years, the methods of evolutionary computation have proven them-
selves useful in the area of data mining. For rule mining, several objective functions
have been used, relating to both accuracy and interestingness in general. However,
when searching for rules or patterns in a data set, several conflicting objectives will
often be present. As the ultimate goal of data mining is to discover unexpected, useful
knowledge, it may not be feasible to prioritize these objectives a priori. In this paper
we propose an alternative to constructing an ad hoc aggregate fitness function: using
well-established multiobjective evolutionary algorithms to evolve a Pareto optimal set
of rules. We apply the method to several real-world data sets and demonstrate how the
method is able to evolve a varied set of rules that explore different aspects of the time
series in question.

1 Introduction

In recent years, the methods of evolutionary computation have proven themselves useful in
the area of data mining. For the problem of rule mining, several objective functions have been
used, relating to both accuracy and interestingness in general [1, 2]. However, when searching
for rules or patterns in a data set, several conflicting objectives will often be present. Such
objectives might include measures of accuracy and interestingness, as well as readability or
parsimony. As the ultimate goal of data mining is to discover unexpected, useful knowledge,
it may not be feasible to prioritize these objectives a priori. Simply constructing an aggregate
fitness function in these cases could be seen as a more or less ad hoc solution. In this paper we
propose an alternative: using well-established multiobjective evolutionary algorithms. These
produce an approximation of the Pareto front in the multiobjective search space. An expert
user may then inspect the resulting rule set to decide which rules are of potential use. We
demonstrate the idea using the SPEA2 algorithm [3], combined with the temporal rule mining
approach described in [2].

2 Method

In [2] a method for doing unsupervised data mining in time series is presented. The method is
based on genetic programming and generates rules from a prespecified rule language by opti-

mizing a function that measures the (perceived) interestingness of a rule. This is an aggregate
function, which combines several aspects of rule quality into a single measure.

In the following sections, a multi objective genetic programming (MOGP) algorithm
based on the ideas of [2] and [3] will be outlined. In Sect. 2.1 we give a brief description
of our time series preprocessing. Following that, in Sect. 2.2 the rule format and internal rule
representation used by the algorithm is described. Section 2.3 gives a brief outline of mul-
tiobjective optimization and the SPEA2 algorithm. In addition, some small modifications in
the SPEA2 algorithm, used in the MOGP algorithm, are presented. Section 2.4 describes the
objective functions used by the MOGP algorithm. Finally, Sect. 2.5 briefly outlines how the
objective functions are evaluated.

2.1 Discretization

The time series data are discretized by sequentially extracting a real-valued feature from a
sliding window, in this case the slope of a line fitted to the points in the window through
linear regression. Following this feature extraction, discretization limits are found for a set of
symbols in an alphabet Σ (see Sect. 2.2) in a manner that ensures a uniform distribution of
the symbols in the resulting data set. For more information about the discretization process,
see [2].

2.2 Rule Representation

The basic rule format that will be used throughout this paper is the simple and well known: “If
antecedent then consequent within T time units.” In general, the rule format can be formal-
ized by defining the respective languages La and Lc that the antecedent and consequent can
belong to. Several different languages have been used in the literature, ranging from single
symbols from a fixed alphabet Σ [4] to relatively complex pattern languages [2].

The mining algorithm works by using genetic programming to search the space of pos-
sible rules defined by La, Lc and T . More specifically, each individual in the population is a

syntax tree in the language La
T⇒ Lc. This is implemented by using three separate branches;

One branch for each of La, Lc, and T .
In the antecedent and consequent branches, the internal nodes in the parse tree are the

syntactical nodes necessary for representing expressions in the corresponding languages. If
for example, the considered language is regular expressions, the syntactical nodes needed are
union, concatenation and Kleene closure. The leaf nodes in these branches are the symbols
from the antecedent and consequent alphabets (Σa and Σc).

The function of the maximum distance branch, T , is to set the maximum distance of the
rule. Hence, the branch is constructed by using arithmetic functions (typically + and −) as
internal nodes, and random integer constants as leaf nodes. The final distance is found by
computing the result of the arithmetic expression rT , and using the residue of rT mod T + 1.

The syntax of the sample rules in Sect. 3 is based on the IQL language [5] (see Sect. 3),
with certain minor extensions for typographical convenience. The specifics of this syntax is
not essential for this paper; details may be found in [2].

2.3 Multiobjective Evolution

Multiobjective optimization is the problem of simultaneously optimizing a set F of two or
more objective functions. The objective functions typically measure or describe different fea-
tures of a desired solution. Often these objectives are conflicting in that there is no single
solution that simultaneously optimize all functions. Instead one has a set of optimal solu-
tions. This set can be defined using the notion of Pareto optimality and is commonly referred
to as the Pareto optimal set [6].

Assuming that the functions in F should be maximized, then a solution x is Pareto optimal
if no other solution x′ exists such that f(x′) ≥ f(x) for all f ∈ F and f(x′) > f(x)
for at least one f ∈ F . Informally, this means that x is Pareto optimal if and only if there
does not exist a feasible solution x′ which would increase some objective function without
simultaneously decreasing at least one other objective function.

The solutions in the Pareto optimal set are called non-dominated. Given 2 solutions, x′

and x, x′ dominates x if f(x′) ≥ f(x) for all f ∈ F and f(x′) > f(x) for at least one f ∈ F .
In other words, x′ is at least as good as x with respect to all objectives and better than x with
respect to at least one objective.

The goal in multiobjective optimization is to find a diverse set of Pareto optimal solutions.
In evolutionary multiobjective optimization this is typically found by producing a set of solu-
tions from a single evolutionary algorithm run. Several different algorithms for evolutionary
multiobjective optimization exist (see [6] for an introduction and [7] for a survey).

The algorithm used here is based on the SPEA2 [3], which uses a fixed size population
and archive. The population forms the current base of possible solutions, while the archive
contains the current solutions. The archive is constructed and updated by copying all non-
dominated individuals in both archive and population into a temporary archive. If the size of
this temporary archive differs from the desired archive size, individuals are either removed or
added as necessary. Individuals are added by selecting the best dominated individuals, while
the removal process uses a heuristic clustering routine in objective space. The motivation
for this is that one would like to try to ensure that the archive contents represent distinct
parts of the objective space. The fitness of an individual is based on both the strength of
its dominators (if dominated) and the distance to its k-nearest neighbor (in objective space).
See [3] for further details.

In this work the SPEA2 algorithm has been modified as follows. When selecting individ-
uals for participation in the next generation, both the archive and the main population were
used. The SPEA2 approach of only selecting from the archive was tried, but this resulted in
premature convergence, and the results in the final generation were simple variations of the
first archive contents. In addition, to prevent further convergence of the archive contents, only
individuals having differing objective values were selected in the initial archive filling proce-
dure. If two or more individuals shared the same objective values, one of these was randomly
selected to participate in the archive.

In our experiments, the population size was typically 100 times larger than the archive
size. Subtree swapping crossover was used 99% of the time, while tree generating mutation
was used 1% of the time.

2.4 Objective Functions

Rules generated by an automatic data mining algorithm should often satisfy several require-
ments. For example, the rules should be accurate, interesting and comprehensible [1]. In the
following, formalizations of these notions in the form of real-valued functions are presented.
These formalisms are then used as objective measures in the multiobjective evolution.

2.4.1 Accuracy

Given a rule R = Ra
t⇒ Rc in the rule language La

T⇒ Lc (such that t ≤ T – see Sect. 2.2),
and a discretized sequence S = (a1, a2, . . . , an), the frequency FS(Ra) of the antecedent is
the number of occurrences of Ra in S. This can be formalized as

FS(Ra) = |{i | H(Ra, S, i)}|, (1)

where H(Ra, S, i) is a hit predicate, which is true if Ra occurs at position i in S and false
otherwise. The relative frequency, fS(Ra), is simply FS(Ra)/n, where n is the length of S.

The support of a rule is defined as:

FS(Ra, Rc, t) = |{i | H(Ra, S, i) ∧ H(Rc, S, j) ∧ i+1 ≤ j ≤ i+t}| (2)

This is the number of matches of Ra that are followed by at least one match of Rc within t
time units.

The confidence of a rule is defined as:

cS(R) =
FS(Ra, Rc, t)

FS(Ra)
(3)

The confidence measures the accuracy of the antecedent at predicting the consequent,
while the support gives a measure of how well the rule represents the data. A rule having
very low support, typically reflects freak incidents or noise in the data and thus is neither
particularly accurate nor interesting.

2.4.2 Interestingness

The term interestingness is one commonly used in the field of data mining to denote the
degree of surprise associated with the discovery of a rule. Several different interestingness
measures have been developed (see [8] for a survey). The J-measure ([9]), is one particular
measure which has already been proven useful in mining time series. This is defined as

J(Rt
c, Ra) = p(Ra) ·

(
p(Rt

c|Ra) log2

p(Rt
c|Ra)

p(Rt
c)

+ (1− p(Rt
c|Ra)) log2

1 − p(Rt
c|Ra)

1 − p(Rt
c)

)
. (4)

Here, p(Ra) is the probability of H(Ra, S, i) being true at a random location i in S. p(Rt
c)

is the probability of H(Rc, S, i) being true for at least one index i in a randomly chosen
window of width t. Finally, p(Rt

c|Ra) is the probability of H(Rc, S, i) being true at for at
least one index i in a randomly chosen window of width t, given that H(Ra, S, j) is true and
that j is the position immediately before the chosen window. The J-measure combines a bias
toward more frequently occurring rules (the first term, p(Ra)), with the degree of surprise in
going from a prior probability p(Rt

c) to a posterior probability p(Rt
c|Ra) (the second term,

also known as the cross-entropy).

2.4.3 Comprehensibility

One of the most important principles of mining comprehensible rules is using a rule represen-
tation that in itself is intelligible. In addition, one often tries to limit the size of the rules. This
is motivated by the fact that larger rules usually are harder to interpret. When using genetic
programming (GP) as the rule induction method this becomes even more important. This is
because GP tends to create large programs that contain semantically irrelevant parts. This
tendency toward large programs is known as bloat.

Equation (5) gives a definition of rule complexity, which is used in the following experi-
ments.

complexity(R) = (nodeCount(R) + maxDepth(R))−1 (5)

Here the functions nodeCount(R) and maxDepth(R) return the number of nodes and the
maximum depth of R, respectively.

2.5 Rule Evaluation

As in [2], a special purpose search chip [10, 11] is used for finding the support and confidence
of each rule. It is also used for estimating the probabilities needed for calculating the J-
measure. Spurious correlations introduced by the discretization process are circumvented by
setting a minimum distance dw between the antecedent and consequent in all rules generated
for a sequence discretized with window size w. The comprehensibility is computed by a
simple traversal of each branch in the rule tree (see Sec. 2.2).

3 Experiments

The MOGP algorithm was tested on four data sets from the UCR Time Series Data Mining
Archive [12]: ECG measurements from several subjects, concatenated; Earthquake-related
seismic data; Monthly mean sunspot numbers from 1749 until 1990; and Network traffic as
measured by packet round trip time delays. Figure 1 shows plots of sub-sequences of the
different time series analyzed.

Earthquake

ECG

Network

Sunspots

Figure 1: The time series analyzed.

Table 1: Typical archive contents at algorithm termination for the ECG dataset

Rule J-mea. Conf. Supp. Compl.

t
5⇒ s 0.057 0.67 0.033 0.20

b
9⇒ c 0.050 0.75 0.038 0.20

t
6⇒ s 0.053 0.67 0.033 0.20

!(≥ rnokoussrfisehznh) 9⇒ g 0.020 0.48 0.41 0.020

!((≥ o)(≥ nokoussrfisehznh)) 9⇒ g 0.037 0.52 0.39 0.019

≤ rnokoussrfisehznhdgv
9⇒ g 0.021 0.48 0.41 0.017

≤ rnokoussrfisehznhv
9⇒ g 0.020 0.48 0.41 0.019

≤ rrnouonequsehznhv
9⇒ g 0.017 0.47 0.41 0.020

≤ rnoononequsehznhv
9⇒ g 0.020 0.48 0.41 0.020

≤ rnouonequssrfisehznhv
9⇒ g 0.021 0.48 0.41 0.017

We performed four sets of experiments. First, the four time series were mined using the
four objective functions from section 2.4: support (2), confidence (3), J-measure (4), and
rule complexity (5). Second, the time series were again mined, but now only the confidence,
J-measure, and rule complexity were optimized. This was motivated by the fact that the J-
measure implicitly rewards frequently occurring rules via the p(Ra) factor (see (4)). Thus, in
theory, there should be no need to optimize the support explicitly. Third, the MOGP algorithm
was modified so that the final rule set would contain rules having differing consequents and
the time series were again mined. Fourth, we performed a set of experiments to determine how
the window size in the discretization algorithm influenced the results of the mining algorithm.

The following sections outline the results of the four sets of experiments. All results were
generated by running the MOGP algorithm with a population size of 1000 and archive size
of 10 for a maximum of 100 generations. We used the IQL language [5] as a template for
generating rules. The antecedents were IQL expressions, while the consequents were single
characters or concatenations thereof.

3.1 Using Support, Confidence, J-measure, and Rule Complexity

Table 1 lists the results from a run on the ECG data set discretized with a window size of 2.
The hits of the first, second and fifth rules in a subsequence of the ECG series are plotted in
Figure 2.

Table 1 and Figure 2 are representative of the solutions obtained on the ECG set. Two
observations can be made from these results. First, the archive apparently has converged, as
many of the rules are simply minor variations of other rules. Second, the results illustrate an
effect observed in runs on the other data sets. The archive typically contains two groups of
rules: One group with rules having confidence � support, and another group having confi-
dence < 0.5 and confidence ≈ support. As the plot of the fifth rule from Table 1 in Figure 2
shows, the antecedents in the latter group typically match almost every position in the se-
quence. Because of this, these rules are of little or no value to a human user.1

1Note, however, that the positions where the antecedent of the fifth rule in Table 1 does not match correspond
to the peaks of the ECG sequence. In other words, the inverse of an antecedent may also reveal interesting aspects
of a sequence.

t
5⇒s b

9⇒c
A
C

RH

A
C

RH

!((≥ o)(≥ nokoussrfisehznh))
9⇒g

A
C

RH

Figure 2: Hit locations in a subsequence of the ECG series of selected rules from Table 1. The dots following
the A and C labels on the y-axis indicate the hit locations of the antecedent and consequent, respectively. The
dots following the RH label indicate the positions where the rule hits, that is where the consequent follows the
antecedent within the desired distance.

Table 2: Selected archive contents at algorithm termination for the ECG dataset when not optimizing the support

Rule J-mea. Conf. Supp. Compl.

b
2⇒ c 0.058 0.58 0.029 0.20

qq(≥ n ≥ n ≥ n)q 4⇒ r 0.017 0.92 0.0063 0.042

≥ n(t 49←− (≥ q
83←−≥ n ≥ c ≥ n ≥ n)) ≥ c |

≥ c(t 49←− (≥ q
83←−≥ n ≥ c ≥ n ≥ n)) ≥ n

9⇒ q 0.18 0.77 0.13 0.028

qb | bq
1⇒ c 0.000059 1.0 0.000014 0.13

To conclude this section, Figure 3 presents some of the rules mined from the different
time series. As these plots show, the MOGP algorithm was able to generate rules that rec-
ognize and predict the significant features of the different time series. These include a rule
for recognizing the increased oscillations occurring during an earthquake, rules that recog-
nize the major peaks in the sunspot and ECG data, and a rule that is partly able to detect the
periods of increased network activity.

3.2 Using Confidence, J-measure, and Rule Complexity

Table 2 lists a subset of the results of the reanalysis of the ECG data discretized with window
size 2. In addition, the archive contained 3 versions of the first rule having differing maximum
distance, and 3 versions of the third rule having small variations in the antecedent. The hits
of the rules from Table 2 in a subsequence of the ECG series are plotted in Figure 4.

As can be seen, removing the explicit support optimization did not adversely affect the
support of the generated rules. Some of the generated rules did have very low support and
J-measure values (typically corresponding to a single occurrence of the rule in the data set).

Earthquake w = 8 : t
6⇒a Sunspot w = 8 : b

9⇒s
A
C

RH

A
C

RH

Network w = 2 : t
9⇒a ECG w = 8 : q

9⇒r
A
C

RH

A
C

RH

Figure 3: Hit locations of selected results on different sequences (see Figure 2 for the definitions of A, C, and
RH).

b
2⇒ c qq(≥ n ≥ n ≥ n)q

4⇒ r
A
C

RH

A
C

RH

≥ n(t
49←− (≥ q

83←− . . .
9⇒ q qb | bq

1⇒ c
A
C

RH

A
C

RH

Figure 4: Hit locations in a subsequence of the ECG series of the rules from Table 2 (see Figure 2 for the
definitions of A, C, and RH).

w = 2 : t
8⇒ b w = 4 : t

2⇒ b
A
C

RH

A
C

RH

w = 8 : t
6⇒ a w = 16 : s

16←− (r
88←−!((≤ qj)c))∗ 9⇒ s

A
C

RH

A
C

RH

Figure 5: Rules generated from the earthquake series with increasing window sizes (see Figure 2 for the defini-
tions of A, C, and RH).

Rules like these were, however, also generated when the support was optimized directly (data
not shown).

3.3 Promoting Differing Consequents

To further stimulate the discovery of rules exploring different properties of the time series,
the domination relation in the MOGP was modified slightly: One rule could only dominate
another rule if both rules shared the same consequent. In addition, all rules with no support
were automatically dominated.

This approach did not however have the intended effect. Even though the resulting rules
did have differing consequents, most of the rules produced were either highly specialized
(having confidence ≈ 1 and low support and J-measure), or had very low confidence (data
not shown). Thus it seemed that instead of the multiple almost identical rules produced ear-
lier, the system now produced a few relevant rules and several unwanted and uninteresting
rules. These results suggest that the MOGP algorithm can find rules involving the most inter-
esting consequents, without using the modification described in this section. As a result, this
approach was abandoned.

3.4 Investigating the Window Size Effect

We performed several analyses of the four time series discretized with different window sizes.
This revealed that by increasing the window size, the MOGP algorithm was better able to gen-
erate rules for recognizing the characteristic features in some of the series. This is illustrated
in Figure 5, which shows a plot of different rules generated from the earthquake sequence dis-
cretized with window sizes 2, 4, 8, and 16. This figure shows that by increasing the window
size, the generated rules zoom in on the part of the sequence representing an earthquake.

We observed the same effect in the sunspot set, but it was not as apparent in the ECG
series (data not shown). This is most likely because the ECG sequence contains far less
noise than the earthquake and sunspot sequences. To test this hypothesis, several versions
of the ECG series with increasing noise levels were constructed. These sequences were
constructed by adding Gaussian noise with mean zero and a the standard deviations set to
0.1%, 0.5%, 1%, 5%, 10% and 20% of the original value range.

The system was able to generate good rules recognizing the characteristic feature of the
ECG series for all window sizes for the two lowest noise levels. For 1% error level, the system
only generated good rules for sequences discretized with window sizes of 4 or more. For the
other series, the minimum window size required for generating good rules was 8, 16 and 32,
respectively (in order of increasing noise levels).

When analyzing the network series with increasing window sizes, the same effect was not
observed (data not shown). A possible explanation is that the significant feature in the network
series is short bursts of increased network activity, represented by isolated series of spikes.
Increasing the window size increases the minimum distance between the antecedent and con-
sequent (see section 2.5). In addition, large window sizes represent more long term trends
in the data (see section 2.1). Thus one should expect that rules produced from large window
sizes will focus on more long term trends than rules produced from small window sizes. As
shown above, when the window size is increased, the long term trends in the sunspot, earth-
quake, and noisy ECG data are more easily detected, while the short bursts in the network
series are not. Thus the results support this proposition.

4 Summary and Conclusion

An algorithm for unsupervised data mining in time series has been presented. The algorithm
works by optimizing several, often conflicting, measures of rule quality. As a result, it is able
to generate a set of rules exploring different aspects of the time series analyzed. This has
been demonstrated by analyzing several different sequences, and extracting rules detecting
the significant features in each sequence. The robustness to noise has also been demonstrated.

The algorithm presented here is an extension of a method presented in [2], where a single
ad hoc rule goodness measure was used. This work follows the more natural approach when
dealing with multiple, conflicting objectives, using multiobjective optimization to generate
several possible solutions instead of a single result. This avoids diversity reduction, and leaves
the task of evaluating the trade-offs between the different objectives to the human user.

References

[1] A. A Freitas. Data Mining and Knowledge Discovery with Evolutionary Algorithms. Spinger-Verlag,
Berlin, 2002.

[2] Pål Sætrom and Magnus Lie Hetland. Unsupervised temporal rule mining with genetic programming
and specialized hardware. In Proceedings of the International Conference on Machine Learning and
Applications (ICMLA’03), pages 145–151, 2003.

[3] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving the strength pareto evolutionary
algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal
Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland, May 2001.

[4] G. Das, K. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule discovery from time series. In Knowledge
Discovery and Data Mining, pages 16–22, 1998.

[5] Interagon AS. The Interagon query language : a reference guide. http://www.interagon.com/
pub/whitepapers/IQL.reference-latest.pdf, sep 2002.

[6] Carlos A. Coello Coello. A short tutorial on evolutionary multiobjective optimization. In First Interna-
tional Conference on Evolutionary Multi-Criterion Optimization, pages 21–40. Springer-Verlag. Lecture
Notes in Computer Science No. 1993, 2001.

[7] Carlos A. Coello. An updated survey of GA-based multiobjective optimization techniques. ACM Com-
puting Surveys, 32(2):109–143, 2000.

[8] R. J. Hilderman and H. J. Hamilton. Knowledge discovery and interestingness measures: A survey. Tech-
nical Report CS 99–04, Department of Computer Science, University of Regina, Saskatchewan, Canada,
October 1999.

[9] P. Smyth and R. M. Goodman. Rule induction using information theory. In G. Piatetsky-Shapiro and W. J.
Frawley, editors, Knowledge Discovery in Databases, pages 159–176. MIT Press, Cambridge, MA, 1991.

[10] Fast Search & Transfer ASA. Digital processing device. PCT/NO99/00308, Apr 2000.

[11] Fast Search & Transfer ASA. Søkeprosessor. Norwegian patent 309169, also filed as published interna-
tional patent application WO 00/29981 titled “A processing circuit and a search circuit”.

[12] E. Keogh and T. Folias. The UCR time series data mining archive. http://www.cs.ucr.edu/
˜eamonn/TSDMA, sep 2002.

Paper IV and V are not included due to copyright

Paper VI

A comparison of siRNA efficacy
predictors

A comparison of siRNA efficacy predictors

Pål Sætrom, Ola Snøve Jr. *

Interagon AS, Medisinsk teknisk senter, NO-7489 Trondheim, Norway

Received 18 June 2004

Abstract

Short interfering RNA (siRNA) efficacy prediction algorithms aim to increase the probability of selecting target sites that are

applicable for gene silencing by RNA interference. Many algorithms have been published recently, and they base their predictions

on such different features as duplex stability, sequence characteristics, mRNA secondary structure, and target site uniqueness. We

compare the performance of the algorithms on a collection of publicly available siRNAs. First, we show that our regularized genetic

programming algorithm GPboost appears to have a higher and more stable performance than other algorithms on the collected

datasets. Second, several algorithms gave close to random classification on unseen data, and only GPboost and three other algo-

rithms have a reasonably high and stable performance on all parts of the dataset. Third, the results indicate that the siRNAs� se-
quence is sufficient input to siRNA efficacy algorithms, and that other features that have been suggested to be important may be

indirectly captured by the sequence.

� 2004 Elsevier Inc. All rights reserved.

Keywords: siRNA; RNA interference; Efficacy prediction

RNA interference (RNAi) is a cellular process for se-

quence-specific depletion of mRNA [1]. Long double-

stranded RNA duplexes or hairpin precursors are

cleaved into short fragments by a ribonuclease III en-

zyme called Dicer. The resulting short interfering RNAs

(siRNAs) are 21–23 nucleotides (nt) long and have char-
acteristic 2nt 3 0 overhangs [2]. A ribonucleoprotein com-

plex named RNA induced silencing complex (RISC)

incorporates one of the siRNA strands, and cleaves

mRNA with complementarity to the RNA component

in an ATP-independent reaction [3]. Long RNA duplex-

es trigger the interferon response and yield non-specific

degradation of mRNA when introduced into mammali-

an cells. The interferon response can, however, be cir-
cumvented by transfecting moderate concentrations of

synthetic siRNAs into mammalian cells [4]. The knock-

down effect is transient and diminishes after a few cell

cycles [5]. A lasting knockdown effect can be obtained

by endogenous transcription of hairpin precursors from

vector [6] or virus-based [7] systems.

Several excellent reviews describe siRNA and RNAi

[8–11].

The siRNAs must be optimized with respect to toxic-

ity, specificity, and efficacy. First, both synthetic and en-
dogenously transcribed siRNAs have been shown to

induce the interferon response in a concentration-depen-

dent manner [12–14]. Second, there is a risk that the

siRNA may guide RISC to cleave mRNAs with se-

quence similarity to the target (shown indirectly in

[15]) or that the siRNA may function as a microRNA

and suppress protein translation [16]. Third, only a

fraction of all siRNAs are effective at reducing the
expression of their target genes, and two siRNAs that

target mRNA sites that are separated by only a few

nucleotides may have very different efficacies [5].

Genomewide specificity studies on the mRNA level

have been published but the results are conflicting

[14,17–19] and siRNAs� mismatch tolerance remains

an open question. It seems clear, however, that central

mismatches between the siRNA and the target mRNA

0006-291X/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.bbrc.2004.06.116

* Corresponding author. Fax: +47-23-01-12-35.

E-mail addresses: paal.saetrom@interagon.com (P. Sætrom), ola.

snove@interagon.com (O. Snøve Jr.).

www.elsevier.com/locate/ybbrc

Biochemical and Biophysical Research Communications 321 (2004) 247–253

BBRC

are more likely to abolish silencing than mismatches at

the ends, and that the tolerance for mismatches is higher

at the 5 0 end than at the 3 0 end of the siRNA [15,20].

Very specific target sites are available for most genes

but many published siRNAs have a flawed design and

therefore risk off-target effects [21].
Algorithms that predict siRNA efficacy increase the

probability for obtaining an siRNA that induces effec-

tive silencing of the desired gene. The Tuschl rules [22]

were the only criteria available until Reynolds et al.

[23] published their algorithm for rational design of ef-

fective siRNAs. Several other algorithms have emerged

since [24–30]. We recently used a hardware accelerated

[31] regularized genetic programming algorithm to de-
velop siRNA efficacy classifiers [32]. We aim to provide

a comparison of the algorithms� performance on a large

collection of publicly available functionally validated

siRNAs.

Materials and methods

Sequence data

We collected a non-redundant database of functionally validated

siRNAs from seven publications [20,23–25,27,33,34]. The database

contains 581 siRNAs that target 40 genes. Detailed information about

the siRNAs, target genes, and the assays that were used when the

siRNAs were validated is in Supplementary Table ST1. Note that the

database is biased in that the selection of target genes and siRNAs has

not been random in the works in which they were published. For ex-

ample, Hsieh et al. [27] select siRNAs that comply with the Tuschl

rules in addition to other criteria. Note also that the database contains

fewer siRNAs with intermediate efficacies than would be expected if

the selection was random. Moreover, one has to expect that there is

considerable noise in the data due to (i) a variety of assays for mea-

surement of siRNA efficacy; (ii) very different concentrations of siR-

NAs; and (iii) sub-optimal time intervals between transfection and

down-regulation measurement. We aimed to limit the heterogeneity of

the siRNA database; therefore, we included only datasets of a certain

size with respect to either targets or siRNAs.

Algorithms

Both strands of the siRNA can potentially be absorbed by RISC to

guide mRNA cleavage. The findings of Schwarz et al. [35] and

Khvorova et al. [34] that RISC prefers the uptake of one strand based

on the thermodynamic stability of an siRNA duplex provided a new

criterion for design of effective siRNAs: The siRNA�s thermodynamic

properties must be such that the RISC prefers the incorporation of the

strand that is complementary to the intended target site.

For the most part, siRNA efficacy prediction algorithms have been

constructed by investigating single-base frequencies in relatively small

datasets containing effective and ineffective siRNAs. Any statistically

significant single-base correlations with efficacy, either positive or

negative, are used to construct scoring algorithms [23–25,27,30]. (Note

that Ui-Tei et al. [25] and Hsieh et al. [27] do not explicitly construct

scoring algorithms in their papers. The sequence criteria that they do

suggest, however, can easily be used to construct such an algorithm.)

Many authors have hypothesized that the accessibility of the

mRNA target site determines siRNA efficacy as is the case for anti-

sense DNA technologies. There are conflicting reports on whether

target accessibility is a determinant for siRNA efficacy [26,36]. The

differing results may be due to unreliable in silico secondary structure

predictions or small and biased datasets. Luo and Chang [26] recently

proposed an algorithm that predicts siRNA efficacy based on the

target site�s secondary structure.

Pancoska et al. [28] speculate that a sequence segment�s uniqueness
compared with the rest of the targeted mRNA and the duplex melting

temperature determines the efficacy of an siRNA targeting that par-

ticular site. Unfortunately, it was not possible to reproduce their al-

gorithm from the original publication, and we therefore decided to

omit the algorithm from our comparisons.

We recently used a regularized genetic programming approach to

obtain patterns that discriminated between effective and ineffective

siRNAs [32]. We hypothesized that complex sequence patterns can

capture all the information necessary to predict the efficacy of siRNAs

and constructed classifiers whose score is a weighted sum of many

patterns (see [32] for details).

Table 1 shows an overview of the features that the design algo-

rithms rely on to make an efficacy prediction. Note that the thermo-

dynamic stability of an RNA duplex is calculated from its sequence

composition [37]. Table 2 shows how various algorithms score an

siRNA based on individual nucleotides. For example, Reynolds 1+2

adds one to the score if the second sense strand nucleotide is adenine,

whereas they subtract one if the fifteenth nucleotide is guanine. Note

that many of the algorithms that are based on sequence characteristics

prefer certain bases at the ends of the siRNA, which is probably be-

cause it yields the right difference between the 5 0 and 3 0 thermodynamic

duplex stability. Reynolds 1+2 also adds one to the score if the

siRNA�s GC-content is between 30% and 50%. In addition to the

single-base scores in Table 2, Ui-Tei counts the number of AU- and

GC-pairs in positions 13–19, and adds one, respectively, subtracts one

from the score if there are five or more AU- or five or more GC-pairs.

Moreover, stretches of nine or more GC-pairs are considered negative

and one is subtracted from the score, whereas one is added to the score

if no such stretches are present.

Implementation details

Reynolds 1. We use the mfold web server [38] instead of the Oligo

6.0 software to predict the siRNA antisense melting temperature. We

use a cutoff of 57�C, as this both best mirrors previous results [23] and

gives the highest absolute correlation on the Reynolds training data

(r = �0.14).

Reynolds 2. This is the algorithm of Reynolds et al. [23] without the

hairpin melting temperature scoring.

Table 1

There are important differences between the siRNA design algorithms

Algorithm Citation Description

GPboost [32] Weighted sum of sequence motifs/patterns

Ui-Tei [25] Sequence features

Amarzguioui [24] Sequence features

Hsieh [27] Sequence features

Takasaki [30] Sequence features

Reynolds 1 [23] Hairpin potential, sequence features

Reynolds 2 [23] Sequence features

Schwarz [35] Difference between 3 0 and 50 stability
Khvorova [34] Duplex stability profile

Stockholm 1 [29] Energy features

Stockholm 2 [29] Energy features

Tree [29] Sequence features in decision tree

Luo [26] mRNA secondary structure features

See Implementation details for additional information on the different

algorithms.

248 P. Sætrom, O. Snøve Jr. / Biochemical and Biophysical Research Communications 321 (2004) 247–253

Schwarz. We compute the duplex stability [37] for the four first

nucleotides in the antisense and sense strands and use the difference as

the classification score.

Khvorova. This algorithm creates two average internal stability

profiles from a set of training sequences—one for effective siRNAs and

another for ineffective siRNAs. Then, a siRNA�s score is the difference
of the correlation between its internal stability profile and the average

effective and average ineffective siRNA profiles. The internal stability

profile is found by computing the duplex stability [34] for each pen-

tamer in the sequence.

Stockholm 1. This is our implementation of the Stockholm rules as

described in [29]. We use the mfold web server [38] to predict the total

hairpin energy and the nearest neighbor parameters of Xia et al. [37]

for duplex stability calculations.

Stockholm 2. This is the modified Stockholm rules from the web

server of Chalk et al. [29] (http://sisearch.cgb.ki.se/). In our experiments,

we ran the prediction server with as few restrictions as possible, but some

of the siRNAs in our database were still not evaluated. The web server

missed about the same percentage of effective and ineffective siRNAs.

Tree. This is the decision tree score from theweb server ofChalk et al.

[29], with the low, moderate, and high categories mapped to 0, 1, and 2.

Comparing algorithms

We use the correlation between classifier output and siRNA effi-

cacy, and ROC analysis to measure the performance of the different

classifiers (see [39] for a review). The correlation R measures the

classifier�s overall performance: R2 represents the proportion of vari-

ation in the observed efficacy that can be explained by the classifier. A

Student�s t test gives the statistical significance of a given correlation.

ROC analysis requires that all siRNAs are classified as either ef-

fective or ineffective, typically by using a cutoff on the measured siR-

NA efficacy. Given such a classification, a prediction made by a

classifier can be either a true positive, a false positive, a true negative,

or a false negative. That is, an effective siRNA will either be a true

positive or a false negative prediction depending on what cutoff the

classifier uses to signal positive predictions.

A ROC-curve is constructed by varying the classifier�s positive

cutoff and plotting the relative number of true positives and false

positives identified by the classifier at each cutoff. This shows the

classifier�s sensitivity Se for varying levels of specificity Sp, as the rel-

ative number of false positives is 1 � Sp. The ROC-score is the area

under the ROC-curve and can be used to characterize a classifier�s
performance. Perfect classifiers identify all true positives before re-

turning the false positives and have a ROC-score of 1.0; random

classifiers return relatively as many false as true positives at each cutoff

and have a ROC-score of 0.5.

We use the ROCKIT software [40] for statistical ROC analysis.

Results

The GPboost classifier is significantly better than the

energy-based classifiers

We trained the GPboost and Khvorova classifiers on
the training sets used to train the Ui-Tei, Amarzguioui,

Hsieh, and Reynolds algorithms. The training set also

included the 14 SEAP siRNAs from Khvorova et al.

[34], for a total of 453 unique siRNA sequences. We

classified all siRNAs that gave a remaining mRNA level

of 620% as effective and the other siRNAs as ineffective.

This gave 141 effective and 252 ineffective siRNAs.

T
a
b
le

2

S
eq
u
en
ce

ch
a
ra
ct
er
is
ti
cs

u
se
d
b
y
d
iff
er
en
t
a
lg
o
ri
th
m
s

A
lg
o
ri
th
m

si
R
N
A

se
n
se

st
ra
n
d
p
o
si
ti
o
n

1
2

3
6

7
8

9
1
0

1
1

1
3

1
5

1
6

1
7

1
8

1
9

A
C

G
U

A
U

A
U

A
C

G
U

A
G

G
U

U
C

G
A

G
A

U
A

G
U

A
U

A
U

A
C

G
U

R
ey
n
o
ld
s

1
a
n
d
2

1
1

�1
1

1
1

1
1

1
1

1
2

�1
�1

1

U
i-
T
ei

�1
1

1
�1

1
�1

�1
1

A
m
a
rz
g
u
io
u
i

�1
1

1
�2

�1
�1

�1
�1

1
1

1
1

1
2

�1
2

H
si
eh

�1
1

1
1

1
�1

1

T
a
k
a
sa
k
i

�3
.9
7

7
.4

�3
.7
5

2
.3
3

2
.4

�2
.5
9

3
.0
2

�2
.3
5

�2
.3
5

2
.3

2
.7

�2

P. Sætrom, O. Snøve Jr. / Biochemical and Biophysical Research Communications 321 (2004) 247–253 249

We used 10-fold cross-validation to get an estimate of

the algorithms� predictive accuracy, and measured the

total ROC-score and correlation between algorithm out-

put and siRNA efficacy in the 10 cross-validation test

sets. This resulted in correlations �0.47, �0.39, and

�0.23, and ROC-scores of 0.77, 0.69, and 0.63 for the
GPboost, Schwarz, and Khvorova algorithms on the

complete training set.

As the ROC-curves in Fig. 1 show, the GPboost clas-

sifier has higher sensitivity than the other two classifiers

for all specificity levels. Indeed, the GPboost classifier�s
ROC-area is significantly greater than the ROC-areas

of the other two classifiers (p = 0.002 and p < 10�4 for

the Schwarz and Khvorova classifiers). We also tested
whether the GPboost classifier had a significantly higher

sensitivity compared to the other two algorithms, in the

important high specificity region (specificities 95%, 90%,

85%, and 80%). The GPboost classifier was better than

that of Schwarz on 95% specificity (p = 0.07), and was

significantly better (95% confidence level) than both

classifiers on all other specificities.

The GPboost classifier has the best performance

It is often reasonable to expect that algorithms will be

positively biased on their own training data as compared

to independent test data. Indeed, when we tested the al-

gorithms on their corresponding training data, the per-

formance in terms of ROC-area and correlation was

higher than the performance on the rest of the database

(data not shown). The only exception was the Reynolds

algorithms, which had a higher correlation on the rest of
the database than on their training set. All the algo-

rithms had a higher performance on their training sets

than algorithms that were trained on other datasets

(data not shown).

Table 3 shows the performance of the different classi-

fiers when tested on the subsets of the database that did

not include their corresponding training sets. Each clas-

sifier�s performance is compared to the GPboost classifi-
er�s performance on the same data. Fig. 2 shows the

Amarzguioui and Reynolds algorithms� ROC-curves

compared to those of the GPboost classifiers. The

ROC-curves for the other algorithms are in Supplemen-

tary figure SF1.

A closer inspection of the ROC-curves in Figs. 1 and

2 shows that the GPboost classifier generally has the

best performance. It has the highest sensitivity for all
specificity levels when compared to all the other algo-

rithms. The ROC-curves and ROC-scores also show

that some of the classifiers perform only slightly better

than random. This is the case for the Luo classifier

[26] and the modified Stockholm rules and decision tree

of [29] from http://sisearch.cgb.ki.se/.

Statistical tests that compared theGPboost classifier to

the other algorithms showed that the GPboost classifier

Fig. 1. ROC graphs for the GPboost, Schwarz, and Khvorova

classifiers on the complete training set. The graphs are based on the

test results from the 10-fold cross-validation procedure. The GPboost

classifier has the highest sensitivity for all specificity levels.

Table 3

Algorithm performance compared to that of the GPboost classifier

Algorithm jsiRNAsj Algorithm GPboost

jPj jNj ROC R ROC R p

Ui-Tei 112 229 0.65 �0.34 0.74 �0.42 0.008

Amarzguioui 107 206 0.72 �0.47 0.79 �0.48 0.05

Hsieh 140 145 0.67 �0.34 0.77 �0.50 0.02

Takasaki 137 242 0.62 �0.25 0.78 �0.48 <10�4

Reynolds 1 53 161 0.64 �0.44 0.78 �0.46 0.0008

Reynolds 2 53 161 0.66 �0.46 0.78 �0.46 0.003

Stockholm 1 50 154 0.65 �0.31 0.78 �0.45 0.002

Stockholm 2 36 104 0.56 �0.21 0.78 �0.45 <10�4

Tree 36 104 0.51 �0.24 0.78 �0.45 <10�4

Luo 137 232 0.55 �0.14 0.78 �0.48 <10�4

The algorithm performance is measured on the subset of the large training database that was not used to train the respective algorithm. jPj and jNj
are the number of effective and ineffective siRNAs in the different sets; p is the p value for the test whether the GPboost classifier�s ROC-score is

significantly greater than that of the corresponding algorithm.

250 P. Sætrom, O. Snøve Jr. / Biochemical and Biophysical Research Communications 321 (2004) 247–253

had a significantly higher ROC-area than all the other al-

gorithms (95% confidence level; p values in Table 3). Tests

also showed that only the Amarzguioui and Reynolds al-

gorithms have a performance that is comparable (95%

confidence level) to that of the GPboost classifier in the

high specificity region (the Amarzguioui and Reynolds 2

classifiers had p values 0.2, 0.1, 0.09, and 0.07, and 0.5,
0.3, 0.1, and 0.04 on specificities 95%, 90%, 85%, and

80%). Based on these results, one would expect that the

GPboost classifier identifies more effective siRNAs.

Few classifiers have a stable and high performance

To further evaluate the classifiers� performance, we

tested the different classifiers on three other datasets:
the test set used by Reynolds et al. [23] to test their algo-

rithm, the dataset of Harborth et al. [20], and the dataset

of Vickers et al. [33]. To the best of our knowledge, none

of these datasets were used to train any of the algo-

rithms, except for the Vickers set, which was used to

train the classifiers of Chalk et al. [29]. Since these sets

are fairly large, come from three different sources, and

have been generated using three different methods, they
should give a fair estimate of the different classifiers� per-
formance on unknown data.

Because the datasets were generated using different

methods, and to get a representative number of effective

and ineffective siRNAs in each set, we used different cut-

offs for classifying the siRNAs as effective and ineffective.

That is, we used 20%, 50%, and 10% for the Reynolds,

Vickers, and Harborth data. This resulted in 17, 18, and
25 effective siRNAs, and 43, 58, and 19 ineffective siRNAs

in the respective sets. Because of limitations in the web

server of Chalk et al. [29], the Stockholm 2 and Tree clas-

sifiers were only tested on 13, 11, and 22 effective, and 32,

36, and 14 ineffective siRNAs.

Table 4 and Fig. 3 summarize the results on the three

test sets (ROC-curves for the Vickers and Harborth data

are in Supplementary figure SF2). The table and figure

show that (i) the GPboost algorithm has the highest

ROC-score on all datasets; (ii) only the GPboost,
Amarzguioui, Ui-Tei, and Reynolds classifiers have a

stable and high performance; and (iii) the performance

of the remaining algorithms varies from random classi-

fication to intermediate performance. The Schwarz and

Khvorova classifiers reach the performance of the best

classifiers, but only on two of the three test sets.

Effective siRNAs are identified by sequence alone

The results for the Luo algorithm deserve some discus-

sion. On most datasets, the algorithm has a ROC-score

that is close to random classification, but at the same time

the correlation between the algorithm�s output and the

siRNA efficacy can be well above random. Indeed,

all the reported correlations for the Luo algorithm are

Table 4

Results on the three independent test sets

Algorithm Reynolds [23] Vickers [33] Harborth [20]

ROC R ROC R ROC R

GPboost 0.84 �0.55 0.83 �0.35 0.82 �0.43

Ui-Tei 0.75 �0.47 0.77 �0.58 0.79 �0.31

Amarzguioui 0.75 �0.45 0.80 �0.47 0.76 �0.34

Hsieh 0.56 �0.03 0.51 �0.15 0.66 �0.17

Takasaki 0.49 �0.03 0.62 �0.25 0.51 0.01

Reynolds 1 0.70 �0.35 0.73 �0.47 0.79 �0.23

Reynolds 2 0.70 �0.37 0.71 �0.44 0.79 �0.23

Schwarz 0.71 �0.29 0.72 �0.35 0.51 0.01

Khvorova 0.68 �0.15 0.77 �0.19 0.60 �0.11

Stockholm 1 0.56 �0.05 0.58 �0.18 0.64 �0.28

Stockholm 2 0.63 0.00 0.56 �0.15 0.69 �0.41

Tree 0.50 �0.11 0.68 �0.43 0.54 0.06

Luo 0.50 �0.33 0.54 �0.27 0.71 �0.40

The GPboost algorithm has the highest ROC-score on all test sets and

only a few algorithms (outlined in gray) have a stable, high performance

on all sets.

Fig. 2. The ROC graphs for the GPboost classifiers compared to those of the Amarzguioui and Reynolds classifiers; the ROC-curves for the other

algorithms are in Supplementary Figure SF1. The GPboost classifier has the highest sensitivity for all specificity levels. The graphs were generated

from different subsets of the large training database; see Table 3 and the main text for details.

P. Sætrom, O. Snøve Jr. / Biochemical and Biophysical Research Communications 321 (2004) 247–253 251

significant at the 95% confidence level. One possible ex-

planation is that themRNAsecondary structure is impor-

tant for siRNA efficacy, but that it is only a secondary

effect compared to the siRNA sequence-based features,

such as the duplex differential 5 0/3 0 free energy or sequence
motifs. We tried to combine the Luo classifier with the

GPboost classifier, which gave a small but insignificant

improvement (the 10-fold cross-validation correlation
and ROC-score were increased by approximately 0.02

and 0.005). Thus, it seems that on the data we examined

here, highly effective siRNAs can be identified by the

siRNA sequence alone, and that the secondary structure

of the mRNA target sequence has limited influence on

siRNA efficacy.

Discussion

We have shown that our regularized genetic program-

ming approach (GPboost) [32] performs better than

other published siRNA efficacy algorithms on a large

collection of functionally validated siRNAs. We believe

that the GPboost algorithm has a higher performance

because (i) the algorithm was trained on a larger set of
siRNAs than the other algorithms; (ii) the algorithm

uses patterns that capture more complex characteristics

of effective siRNAs than do the simpler motif algorithms;

and (iii) the algorithm is very robust when it comes to

noise in the training data, as, for instance, siRNAs that

have been erroneously labeled as effective or ineffective.

Surprisingly, several algorithms gave close to random

classification, and only the GPboost, Reynolds, Amarz-
guioui, and Ui-Tei algorithms have a high and stable

performance on the whole dataset. This suggests that

over-fitting is a problem with many algorithms, and that

proper care needs to be taken when estimating the clas-

sification accuracy to avoid such effects.

The results suggest that it may not be critical to consid-

er the target site�s secondary structure, as the best algo-

rithms only consider the sequence alone. Our analysis

suggests that mRNA secondary structure has a minor

influence on siRNA efficacy, but that highly effective

siRNAs can be selected based on target sequence alone.

This fact has not been proven, however, so secondary

structure should still be investigated when analyzing

new data.

We expect that the dataset we used is biased, as the
siRNAs have not been randomly selected in the publica-

tions in which they appeared. Even so, we believe that

the results of our comparison will generalize to other

data as well, since all of the algorithms we investigated

were trained on subsets of this dataset.

The RNAi field is maturing rapidly, and new siRNA

efficacy prediction algorithms will emerge partly due to

larger and better datasets. We expect that the need for
a large publicly available set of randomly selected vali-

dated siRNAs will rise as more algorithms are pub-

lished, since it is difficult to objectively compare their

performance without an independent test set.

Acknowledgments

We thankA.Khvorova for providing details from [23],

and H.E. Krokan, T. Holen, T.B. Grünfeld, and O.R.

Birkeland for valuable comments on the manuscript.

Appendix A. Supplementary material

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.bbrc.2004.

06.116.

References

[1] A. Fire, S. Xu, M. Montgommery, S. Kostas, S. Driver, C. Mello,

Potent and specific genetic interference by double-strandedRNA in

Caenorhabditis elegans, Nature 391 (6593) (1998) 806–811.

Fig. 3. ROC graphs for the seven highest scoring algorithms [23–25,29,32,34,35] on the Reynolds test sets. The GPboost classifier has the highest

sensitivity for almost all specificity levels when compared to the other algorithms.

252 P. Sætrom, O. Snøve Jr. / Biochemical and Biophysical Research Communications 321 (2004) 247–253

[2] P. Zamore, T. Tuschl, P. Sharp, D. Bartel, RNAi: double-

stranded RNA directs the ATP-dependent cleavage of mRNA at

21 to 23 nucleotide intervals, Cell 101 (1) (2000) 25–33.

[3] A. Nykanen, B. Haley, P. Zamore, ATP requirements and small

interfering RNA structure in the RNA interference pathway, Cell

107 (3) (2001) 309–321.

[4] S. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, T.

Tuschl, Duplexes of 21-nucleotide RNAs mediate RNA interfer-

ence in cultured mammalian cells, Nature 411 (6836) (2001) 494–

498.

[5] T. Holen, M. Amarzguioui, M.T. Wiiger, E. Babaie, H. Prydz,

Positional effects of short interfering RNAs targeting the human

coagulation trigger tissue factor, Nucleic Acids Res. 30 (8) (2002)

1757–1766.

[6] T. Brummelkamp, R. Bernards, R. Agami, A system for stable

expression of short interfering RNAs in mammalian cells, Science

296 (5567) (2002) 550–553.

[7] D. Rubinson, C. Dillon, A. Kwiatkowski, C. Sievers, L. Yang, J.

Kopinja, M. Zhang, M. McManus, F. Gertler, M. Scott, L.

Parijs, A lentivirus-based system to functionally silence genes in

primary mammalian cells, stem cells and transgenic mice by RNA

interference, Nat. Genet. 33 (3) (2003) 401–406.

[8] D. Dykxhoorn, C. Novina, P. Sharp, Killing the messenger: short

RNAs that silence gene expression, Nat. Rev. Mol. Cell Biol. 4 (6)

(2003) 457–467.

[9] M. McManus, P. Sharp, Gene silencing in mammals by small

interfering RNAs, Nat. Rev. Genet. 3 (10) (2002) 737–747.

[10] P. Zamore, RNA interference: listening to the sound of silence,

Nat. Struct. Biol. 8 (9) (2001) 746–750.

[11] G. Hannon, RNA interference, Nature 418 (6894) (2002) 244–251.

[12] C. Sledz, M. Holko, M. de Veer, R. Silverman, B. Williams,

Activation of the interferon system by short-interfering RNAs,

Nat. Cell Biol. 5 (9) (2003) 834–839.

[13] A. Bridge, S. Pebernard, A. Ducraux, A.-L. Nicoulaz, R. Iggo,

Induction of an interferon response by RNAi vectors in mamma-

lian cells, Nat. Genet. 34 (3) (2003) 263–264.

[14] S. Persengiev, X. Zhu, M. Green, Nonspecific, concentration-

dependent stimulation and repression of mammalian gene expres-

sion by small interfering RNAs, RNA 10 (1) (2004) 12–18.

[15] M. Amarzguioui, T. Holen, E. Babaie, H. Prydz, Tolerance for

mutations and chemical modifications in a siRNA, Nucleic Acids

Res. 31 (2) (2003) 589–595.

[16] J. Doench, C. Petersen, P. Sharp, SiRNAs can function as

miRNAs, Genes Dev. 17 (4) (2003) 438–442.

[17] D. Semizarov, L. Frost, A. Sarthy, P. Kroeger, D. Halbert, S.

Fesik, Specificity of short interfering RNA determined through

gene expression signatures, Proc. Natl. Acad. Sci. USA 100 (11)

(2003) 6347–6352.

[18] J.-T. Chi, H. Chang, N. Wang, D. Chang, N. Dunphy, P.

Brown, Genomewide view of gene silencing by small interfer-

ing RNAs, Proc. Natl. Acad. Sci. USA 100 (11) (2003) 6343–

6346.

[19] A. Jackson, S. Bartz, J. Schelter, S. Kobayashi, J. Burchard, M.

Mao, B. Li, G. Cavet, P. Linsley, Expression profiling reveals off-

target gene regulation by RNAi, Nat. Biotechnol. 21 (6) (2003)

635–637.

[20] J. Harborth, S.M. Elbashir, K. Vandenburgh, H. Manninga, S.A.

Scaringe, K. Weber, T. Tuschl, Sequence, chemical, and structural

variation of small interfering RNAs and short hairpin RNAs and

the effect on mammalian gene silencing, Antisense Nucleic Acid

Drug Dev. 13 (2003) 83–106.

[21] O. Snøve, T. Holen, Many commonly used siRNAs risk off-target

activity, Biochem. Biophys. Res. Commun. 319 (1) (2004) 256–263.

[22] S. Elbashir, J. Harborth, K. Weber, T. Tuschl, Analysis of gene

function in somatic mammalian cells using small interfering

RNAs, Methods 26 (2) (2002) 199–213.

[23] A. Reynolds, D. Leake, Q. Boese, S. Scaringe, W.S. Marshall, A.

Khvorova, Rational siRNA design for RNA interference, Nat.

Biotechnol. 22 (3) (2004) 326–330.

[24] M. Amarzguioui, H. Prydz, An algorithm for selection of

functional siRNA sequences, Biochem. Biophys. Res. Commun.

316 (4) (2004) 1050–1058.

[25] K. Ui-Tei, Y. Naito, F. Takahashi, T. Haraguchi, H. Ohki-

Hamazaki, A. Juni, R. Ueda, K. Saigo, Guidelines for the selection

of highly effective siRNAsequences formammalian and chickRNA

interference, Nucleic Acids Res. 32 (3) (2004) 936–948.

[26] K. Luo, D. Chang, The gene-silencing efficiency of siRNA is

strongly dependent on the local structure of mRNA at the targeted

region, Biochem. Biophys. Res. Commun. 318 (1) (2004) 303–310.

[27] A. Hsieh, R. Bo, J. Manola, F. Vazquez, O. Bare, A. Khvorova,

S. Scaringe, W. Sellers, A library of siRNA duplexes targeting the

phosphoinositide 3-kinase pathway: determinants of gene silenc-

ing for use in cell-based screens, Nucleic Acids Res. 32 (3) (2004)

893–901.

[28] P. Pancoska, Z. Moravek, U. Moll, Efficient RNA interference

depends on global context of the target sequence: quantitative

analysis of silencing efficiency using Eulerian graph representation

of siRNA, Nucleic Acids Res. 32 (4) (2004) 1469–1479.

[29] A. Chalk, C. Wahlestedt, E. Sonnhammer, Improved and

automated prediction of effective siRNA, Biochem. Biophys.

Res. Commun. 319 (1) (2004) 264–274.

[30] S. Takasaki, S. Kotani, A. Konagaya, An effective method for

selecting siRNA target sequences in mammalian cells, Cell Cycle,

(2004) Epub ahead of print.

[31] A. Halaas, B. Svingen, M. Nedland, P. Sætrom, O. Snøve, O.R.

Birkeland, A recursive MISD architecture for pattern matching,

IEEE Trans. VLSI Syst. 12 (7) (2004) 727–734.

[32] P. Sætrom, Predicting the efficacy of short oligonucleotides in

antisense and RNAi experiments with boosted genetic program-

ming, Bioinformatics, (2004) Epub ahead of print.

[33] T.A. Vickers, S. Koo, C.F. Bennett, S.T. Crooke, N.M. Dean,

B.F. Baker, Efficient reduction of target RNAs by small interfer-

ing RNA and RNase H-dependent antisense agents. A compar-

ative analysis, J. Biol. Chem. 278 (9) (2003) 7108–7118.

[34] A. Khvorova, A. Reynolds, S.D. Jayasena, Functional siRNAs

and miRNAs exhibit strand bias, Cell 115 (2003) 209–216.

[35] D.S. Schwarz, G. Hutvágner, T. Du, Z. Xu, N. Aronin, P.D.

Zamore, Asymmetry in the assembly of the RNAi enzyme

complex, Cell 115 (2003) 199–208.

[36] K. Yoshinari, M. Miyagishi, K. Taira, Effects on RNAi of the

tight structure, sequence and position of the targeted region,

Nucleic Acids Res. 32 (2) (2004) 691–699.

[37] T. Xia, J. SantaLucia Jr., M.E. Burkard, R. Kierzek, S.J.

Schroeder, X. Jiao, C. Cox, D.H. Turner, Thermodynamic

parameters for an expanded nearest-neighbor model for forma-

tion of RNA duplexes with Watson–Crick base pairs, Biochem-

istry 37 (1998) 14719–14735.

[38] M. Zuker, Mfold web server for nucleic acid folding and

hybridization prediction, Nucleic Acids Res. 31 (13) (2003)

3406–3415.

[39] P. Baldi, S. Brunak, Y. Chauvin, C. Andersen, H. Nielsen,

Assessing the accuracy of prediction algorithms for classification:

an overview, Bioinformatics 16 (5) (2000) 412–424.

[40] C.E. Metz, B.A. Herman, C.A. Roe, Statistical comparison of

two ROC-curve estimates obtained from partially-paired datasets,

Med. Decis. Making 18 (1) (1998) 110–121.

P. Sætrom, O. Snøve Jr. / Biochemical and Biophysical Research Communications 321 (2004) 247–253 253

Paper VII

Predicting non-coding RNA genes
in Escherichia coli with boosted
genetic programming

Predicting non-coding RNA genes in Escherichia coli
with boosted genetic programming
Pål Sætrom*, Ragnhild Sneve1, Knut I. Kristiansen1, Ola Snøve Jr., Thomas Grünfeld,

Torbjørn Rognes1 and Erling Seeberg1

Interagon AS, Medisinsk teknisk senter, NO-7489 Trondheim, Norway and 1Centre for Molecular Biology and
Neuroscience, Institute of Medical Microbiology, Rikshospitalet University Hospital, NO-0027 Oslo, Norway

Received November 24, 2004; Revised February 22, 2005; Accepted May 20, 2005

ABSTRACT

Severalmethods exist for predicting non-codingRNA
(ncRNA) genes inEscherichia coli (E.coli). In addition
to about sixty known ncRNA genes excluding tRNAs
and rRNAs, various methods have predicted more
than thousand ncRNA genes, but only 95 of these
candidates were confirmed by more than one study.
Here, we introduce a newmethod that uses automatic
discovery of sequence patterns to predict ncRNA
genes. The method predicts 135 novel candidates.
In addition, the method predicts 152 genes that over-
lap with predictions in the literature. We test sixteen
predictions experimentally, and show that twelve of
these are actual ncRNA transcripts. Six of the twelve
verified candidates were novel predictions. The relat-
ively high confirmation rate indicates that many
of the untested novel predictions are also ncRNAs,
and we therefore speculate that E.coli contains more
ncRNA genes than previously estimated.

INTRODUCTION

Non-coding RNAs (ncRNA) are transcripts, whose function
lies in the RNA sequence itself and not as information carriers
for protein synthesis. Although long believed to be a minor
gene class, recent discoveries have revealed that ncRNA genes
are far more prevalent than previously believed and that they
have other important roles beyond protein synthesis (rRNA
and tRNA) (1–5).

In Escherichia coli, the number of experimentally verified
small RNA (sRNA) genes (ncRNA genes excluding rRNA
and tRNA) has increased rapidly. Only 10 sRNA genes
were known in 1999 (6), whereas a recent survey listed 55

known sRNA genes (7). Subsequent RNA cloning experiments
increased the number of known sRNA genes to 62 (8).

Most of these sRNA genes were identified in six studies
describing systematic searches for new sRNA genes (9–14).
All but one of these studies (14) used computational methods to
predict sRNA genes. The computational methods ranged from
analysis of sequence (9,10) and structure (11) conservation;
to promoter and terminator identification (9,13); and machine
learning based on sequence composition, known ncRNA
motifs and RNA secondary structure stability (12). Together,
these six studies have predicted �1000 non-redundant sRNA
candidates that are yet to be confirmed (7). Note, however, that
only 95 candidates were predicted by more than one study.

We describe a method that uses automatic discovery of
sequence patterns to predict ncRNA genes in E.coli’s inter-
genic regions. The main strengths of the method as compared
to other methods are that (i) it uses the DNA sequence directly
as input, which helps to reduce any potential bias from input
feature selection and encoding (12); (ii) it works well with a
much larger number of intergenic sequences (negative exam-
ples) than known ncRNA sequences (positive examples) (12);
(iii) it is very robust when it comes to noise in the training data,
as for instance intergenic regions that actually are ncRNAs;
and (iv) it does not rely on sequence conservation to predict
ncRNA genes.

The method predicts several hundred intergenic regions
to contain ncRNA genes, and over half of these overlap
with previous predictions. We test the 10 top-scoring candid-
ates and verify 9 of these by northern analysis. In addition, we
test six candidates of varying prediction confidence; three of
these are confirmed by northern analysis. Only 6 of these 12
new ncRNA genes have been predicted by previous methods.

Our results indicate that the number of ncRNA genes in
E.coli is larger than what has previously been estimated (15).
This is because the estimates of Zhang and colleagues were
partly based on the number of ncRNA genes predicted by more
than one method, which, until now, was 95. We have extended

*To whom correspondence should be addressed. Tel: +47 9820 3874; Fax: +47 4559 4458; Email: paal.saetrom@interagon.com

The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors

� The Author 2005. Published by Oxford University Press. All rights reserved.

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press
are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but
only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oupjournals.org

Nucleic Acids Research, 2005, Vol. 33, No. 10 3263–3270
doi:10.1093/nar/gki644

Published online June 7, 2005

this list by 44%, which is a significant increase. In addition,
we have shown that our method detects ncRNA genes that
have not been predicted by other methods.

MATERIALS AND METHODS

Sequence data

We downloaded the E.coli K-12 genome sequence (16)
(U00096.1) and its annotations (release 73) from EMBL’s FTP
server (http://www.ebi.ac.uk/genomes/bacteria.html). Based
on annotations and previous studies (9–11), we collected a
set of 154 experimentally verified ncRNA sequences. These
sequences consisted of 86 tRNAs, 22 rRNAs and 46 other
sRNA genes. Note that one of these sRNAs was the strain-
dependent uptR gene (17). The list of ncRNA sequences is
given in the Supplementary Material.

Based on the positions of known ncRNA genes and protein
coding sequences (CDS), we constructed a set of intergenic
sequences (INT) by removing all parts of the genome contain-
ing ncRNAs and CDSs, along with 100 nt on each side. This
resulted in 942 subsequences totaling 144 520 nt, which
increased to 1884 sequences of 289 040 nt when we added
the complement of each sequence.

Each ncRNA and INT sequence was then divided into 50 nt
sequence windows with 25 nt overlap. If the final window in a
sequence had <50 nt, we adjusted the overlap so that the final
window also had 50 nt. For example, 90 nt sequences were
divided into three 50 nt sequence windows consisting of nuc-
leotides 1–50, 26–75 and 41–90. The 50 nt window size was
chosen because the smallest ncRNA in our dataset was 53 nt
(dicF). This procedure gave 1795 ncRNA sequence windows
and 10 663 INT sequence windows; removing duplicates in the
form of identical sequences reduced the number of ncRNA and
INT sequence windows to 840 and 10 572. Of the 840 unique
ncRNA sequence windows, 53% were from rRNAs, 30% from
sRNAs and 17% from tRNAs.

Algorithms

We use a machine learning algorithm called GPboostReg to
create classifiers that predict whether or not a sequence is an
ncRNA gene. The algorithm has previously been used to pre-
dict the efficacy of short oligonucleotides in RNAi and anti-
sense experiments (18,19). In the following, we will only give
a basic description of the algorithm; interested readers should
consult Sætrom (18) and the references therein for a complete
description.

GPboostReg takes as input a set of positive and negative
sequences and creates a classifier that predicts whether or
not an unknown sequence belongs to the positive set. Here,
the positive and negative sequences are the ncRNA and INT
sequence windows described in the previous section. Thus, the
classifier created by GPboostReg can predict whether or not a
given sequence comes from an ncRNA.

To create the classifiers, GPboostReg combines genetic pro-
gramming (GP) (20) and boosting algorithms (21). GP uses
simulated evolution in a population of candidate solutions to
solve problems, and here, each individual in the population
is an expression in a formal query language (whitepaper avail-
able on request). GP evaluates how well each candidate solu-
tion separates between the positive and negative sequences

and uses this fitness information to guide the simulated evolu-
tion. That is, our GP solution iteratively (i) selects candidate
solutions based on fitness such that more fit solutions have a
higher chance of being selected; (ii) introduces random
changes in the selected solutions by exchanging subparts of
two candidate solutions (crossover) or randomly changing a
subpart of a candidate solution (mutation); and (iii) updates the
solution population by replacing the old population with the
randomly changed candidate solutions. We repeat this process
a fixed number of iterations and choose, as the final solution of
the GP run, the candidate solution that gave the best perform-
ance on the training set.

The classifiers created by our GP algorithm are sequence
patterns that can only give binary answers. That is, given a
sequence, each pattern answers either ‘yes’ (1) or ‘no’ (�1), as
to whether the pattern matches parts of the sequence or not.
To improve the confidence of our predictions, we combine the
GP algorithm with a boosting algorithm. Boosting algorithms
join several classifiers into a final weighted average of the
individual classifiers such that the performance of the final
classifier is increased compared to each of the single classi-
fiers. To do this, the boosting algorithm guides each GP run’s
search for good solutions by adjusting the relative importance
of each sequence in the training set. Then the boosting algo-
rithm assigns a weight to the best expression from the GP run.
This weight is based on the expression’s performance in the
corresponding training set and is assigned such that the output
of the final classifier ranges from �1 to 1. As a result, the
classifiers created by our algorithm are the weighted average
of several different sequence patterns. We will occasionally
refer to these classifiers as models. Note that GPboostReg uses
regularized boosting (22) to handle noise in the training set.

To reduce the time needed to evaluate each individual
expression in the GP population, we use a special purpose
search processor designed to provide orders of magnitude
higher performance than comparable regular expression
matchers (23). The increased performance becomes important
when the datasets are large, or when many expressions must be
evaluated, for instance, in cross-validation experiments or
when GP is used as the base learner in a boosting algorithm.

Quality measures

When a model is evaluated on a positive and negative set of
sequences, four statistics (counts) can be defined: the number
of true positives (TP), false positives (FP), true negatives (TN)
and false negatives (FN). These represent the positive hits
in the positive set, positive hits in the negative set, negative
hits in the negative set and negative hits in the positive set,
respectively. Several quality measures can be defined from
these counts (24). This study uses the Matthews correlation
M (Equation 1), false positive rate FPp (Equation 2) and
sensitivity Se (Equation 3):

M ¼ FP � TNþFP �FN
ffi
TNþFNð Þ � TNþFPð Þ � TPþFNð Þ � TPþFPð Þp 1

FPp ¼ FP

FPþ TN
2

Se ¼ TP

TPþ FN
3

3264 Nucleic Acids Research, 2005, Vol. 33, No. 10

Strain and growth conditions

Escherichia coli K-12 strain MG1655 cells (from overnight
cultures were diluted 1/50 in Luria–Bertani (LB) medium and
subsequently grown at 37�C) were grown in LB broth and used
for inoculation of liquid cultures. Cells were grown in 100-ml
batch cultures in 500-ml Erlenmeyer flasks at 37�C with aera-
tion by rotary shaking (250 r.p.m.). The culture media used
was LB as described elsewhere (25). Growth was monitored at
600 nm on a Shimadzu UV-1601 UV-visible spectrophoto-
meter. Cells were harvested in four different growth phases:
lag (OD600 < 0.2), log (0.2 < OD600 < 1.0), early stationary
(1.0 < OD600 < 2.0) and late stationary phase (OD600 > 2.0).

RNA isolation

Total RNA was isolated from the cells using a procedure
based on trizol reagent combined with RNeasy microcolumns
(Qiagen). One milliliter of trizol was added per 106 cells and
stored at room temperature for 5 min; 0.2 ml chloroform was
added per ml of trizol and the sample was shaken for 15 s. The
sample rested before centrifugation for 15 min at 12000 g
and 4�C. The aqueous phase was slowly added 1:1 to 70%
EtOH to avoid precipitation. The sample was further loaded to
the RNeasy column and washed and DNase treated according
to the RNeasy protocol (Qiagen). Isolated RNA was resuspen-
ded in RNase-free water and quantitated using Eppendorf
BioPhotometer.

Oligonucleotides

The complete list of oligonucleotides used to generate probes
for northern analysis and primer extension experiments is
provided as Supplementary Material.

Northern analysis

RNA samples (�10 mg) were denatured for 10 min at 60�C
in a buffer containing 95% formamide, separated on urea–
polyacrylamide (8%) gels, and transferred to nylon membranes
by electroblotting. Radiolabeled strand-specific RNA probes
were synthesized using in vitro transcription according to
MAXIscript� (Ambion). Hybridization signals were visual-
ized on Typhoon 9410 (Amersham).

Primer extension assay

Primer extension assay was carried out with AMV reverse
transcriptase (Promega), on �10 mg total RNA and 50 end-
labeled primers. The primers were end-labeled by using
[g32-P]ATP and polynucleotide kinase. Products of the
extension reactions were separated on 8% polyacrylamide
sequencing gels alongside sequencing reactions performed
on the corresponding PCR products from the intergenic
regions. Sequencing reactions were carried out with a Thermo
Sequenase Radiolabeled Terminator Cycle Sequencing Kit
(USB, Amersham).

RESULTS

ncRNA gene predictions

We used a variant of 10-fold cross-validation to train and test
our machine learning algorithm (26,27). More specifically,
we randomly divided the sets of ncRNA and INT sequence

windows into 10 non-overlapping subsets. Then, we iteratively
trained classifiers on 8 of the subsets and tested the classifiers
on the remaining 2 subsets. We used one of these test subsets
to estimate the optimal value of the regularization parameter in
the GPboostReg algorithm and the other test subset as a com-
pletely independent test set. We ran this training and testing
procedure for 10 iterations such that all the 10 subsets had been
used as the independent test set.

To estimate the optimal regularization value, we tried
several different values and used the one with the highest
average correlation in the 10 ‘parameter estimation’ test sub-
sets. These optimal models had an average correlation of 0.58
on the complete test set, and predicted on average 22 false
positive sequence windows in the test subsets. This resulted in
an average false positive rate of 2.1%. The models’ average
sensitivity was 54%. The following sections will examine the
predictions in the original ncRNA set, the true positives and
false negatives, and the potential new ncRNA genes, the false
positives.

The algorithm identifies nearly 80% of the sRNAs in the
database. As we used two subsets to test the classifiers, there
was some overlap between each of the test sets (each unique
sequence was present in two different test sets for two different
models). The test set consisted of 840 unique sequences for a
total of 1680 sequences: 913 of these were predicted as true
positives and 767 were false negatives. When duplicates were
removed from these sets, 564 of 840 were positive predic-
tions and 491 of 840 were negative predictions. In other
words, 215 sequences were predicted as being both positive
and negative. This means that 42% of the sequences were
strongly predicted by two models, and 26% were weakly pre-
dicted by a single model.

Two of 46 sRNA sequences were completely matched by
the models and 10 were completely missed. The complete
matches were the partially overlapping rydB and tpe7 found
by Wassarman et al. (10) and Rivas et al. (11), and the misses
were micF, oxyS, rybB, ryeE, ryhA, spf, sraB and sraE, and
the overlapping ryhB and sraI found by Wassarman et al.(10)
and Argaman et al. (9).

306 potential new ncRNA genes of which 152 confirm
previous predictions. The models predicted a total of 438
false positive sequence windows; 57 of these were predicted
by two models. Several of the predicted sequence windows
overlapped or were located next to each other. When these
were joined and treated as one continuous sequence, a total of
306 sequences remained.

A cross-reference of the 306 candidate ncRNA sequences
with the list of predicted but unconfirmed ncRNA genes
presented in (7) identified that 171 of the sequences over-
lapped with previous predictions; 152 of these were predicted
to be on the same strand. Most of the predictions overlapped
with the predictions of Carter and colleagues (12). This was
expected, not only because their predictions were the most
abundant in our INT set, but also because they base their
predictions on the common sequence characteristics of
ncRNAs, which is also the essence of our method.

Accounting for the number of predictions made by other
methods that were significantly represented (>10 sequences)
in our INT set, our predictions support 35, 51, 28 and 41%
of the predictions of Rivas et al. (11), Carter et al. (12),

Nucleic Acids Research, 2005, Vol. 33, No. 10 3265

Chen et al. (13) and Tjaden et al. (14). Thus, there is relatively
good correspondence between our predictions and the predic-
tions of these four methods.

Our results confirm several previous predictions that were
not supported by other methods. In total, the intergenic regions
in our dataset contained 288 sequences that have been predicted
by only one previous method to be part of an ncRNA gene. Our
predictions overlapped 123 of these 288 sequences. Exclud-
ing the predictions that were unique to the Carter algorithm,
our predictions supported 42 of the remaining 166 sequences.
Thus, although our predictions increased the list of candidates
that are unique to a single study by 15%, we increased the
list of candidates predicted by more than one study from 95
to 218 (7). Even when excluding the Carter specific sequences,
we increased the list of candidates predicted by more than one
study by 44% (7). This is a significant increase.

Table 1 shows the 10 highest scoring intergenic sequence
windows (the complete list of predictions are available as
Supplementary Material). The table is sorted according to
the model output for the highest predicted window in the
sequence.

After we started our experiments, several new ncRNA genes
in E.coli have been identified. Table 2 lists the ncRNA genes
that were not included as known ncRNAs in our training set,
but that were included with at least 50 nt in our set of intergenic
sequences. That is, they were falsely included as negative
sequences in the training set. The genes were mainly collected
from the E.coli genome project’s (www.genome.wisc.edu)

ASAP database (28) (E.coliK-12 StrainMG1655 versionm54)
and from Refs (7,8).

Although, as Table 2 shows, our method only predicts 2 of
the 10 genes to be on the correct strand, the performance is not
poorer than that of other methods. For instance, the method
of Carter and colleagues (12), which is comparable to our
method, predicts only one gene (SroG) correctly. Thus, these
genes may be too different to be predictable without combin-
ing several of the available methods.

We also cross-referenced our predictions with the uncon-
firmed transcripts in the cDNA library of Vogel et al. (8).
Table 3 lists the transcripts that were included with at least
50 nt in our set of intergenic sequences. As the table shows,
we predict 5 of the 7 transcripts to be ncRNA genes with the
correct orientation. Again, our predictions are comparable to
or slightly better than other methods.

Finally, Kawano et al. (29) describes several new ncRNA
genes. Not all these new ncRNAs were present in our dataset;
of the three genes that were present, our predictions match one
(RyfB). The other two genes (SokE and SokX), like rdlA, rdlB,
rdlC and rdlD, may be involved in anti-sense regulation of
hok and ldr (29–31). As these ncRNAs’ function is closely
linked to their targets’ sequences, they may not share many
sequence characteristics with other ncRNAs. This can explain
why our method has problems predicting these hok/ldr-related
ncRNAs.

ncRNA gene validations

To test our predictions, we selected 16 predictions for experi-
mental validation. These included all the top 10 predictions
from Table 1 and 6 additional predictions with varying pre-
diction confidence (summarized in Table 4). We chose the 6

Table 1. Top ten predictions sorted by prediction confidence

ID Position Length Strand Score Annotation

I001 271879 100 + 0.22 271880–272035 + Carter et al.
I002 4230937 150 � 0.22 4230927–4231086 � Carter et al.
I003 719883 75 + 0.21 719854–719973 + Carter et al.
I004 3766615 50 + 0.21 Novel
I005 303544 50 � 0.19 Novel
I006 262270 82 � 0.18 Novel
I007 4626216 75 + 0.17 Novel
I008 1702671 75 + 0.16 1702604–1702818 + Tjaden et al.
I009 1859481 125 + 0.16 1859567–1859646 + Carter et al.
I010 4527911 50 + 0.15 4527862–4527941 + Carter et al.

The given position is the 50 end for predictions in the positive strand, and the
30 end for predictions in the negative strand. The score is the classifier output for
the highest scoring sequence window in a sequence.

Table 2. Known ncRNA genes included in the set of intergenic sequences

Gene Overlap Strand Prediction Previous
predictions (7)

C0067 (12) 60 of 124 + Not predicted n/a
rdlA (30) 66 of 66 + Predicted 50 nt (�) ?(11), � (12)
rdlB (30) 65 of 65 + Not predicted ? (11), � (12)
rdlC (30) 67 of 67 + Not predicted ? (11), � (12)
IS061 (13) 60 of 157 � Not predicted n/a
IS092 (13) 116 of 159 � Not predicted n/a
rygC (10) 76 of 150 + Predicted 50 nt (+ and �) + (13), � (12)
SroG (8) 110 of 147 � Predicted 89 nt (�) � (12)
rdlD (30) 63 of 63 + Not predicted � (14), � (12)
SroH (8) 61 of 159 � Not predicted + (13)

The overlap is the number of nucleotides from the ncRNA included as
an intergenic sequence. The last column lists the strand and the reference to
previous predictions overlapping the gene.

Table 3. Unconfirmed transcripts from (8) included in the set of intergenic

sequences

Contig Overlap Strand Prediction Previous
predictions (7)

Contig_440 68 of 105 + Predicted 50 nt (+)
and 50 nt (�)

+ (13), � (12)

Contig_68 76 of 157 + Predicted 49 nt (+) + (14), � (13)
Contig_606 83 of 103 + Predicted 63 nt (+)

and 50 nt (�)
+ (14), � (12)

Contig_223 80 of 141 � Predicted 50 nt (�) � (12)
Contig_496 73 of 73 + Predicted 61 nt (+)

and 49 nt (�)
� (14), – (12)

Contig_286 102 of 102 + Predicted 50 nt (�) + (14)
Contig_181 43 of 43 � Not predicted ? (11), + (13)

See Table 2 for header explanations.

Table 4. Six predictions with varying confidence experimentally tested in the

lab

ID Position Length Strand Score Annotation

I014 4373943 60 � 0.14 Novel
I016 1218274 50 � 0.14 Novel
I035 914278 100 + 0.1 914218–914571 – Rivas et al.

914259–914378 + Carter et al.
I044 4366175 50 + 0.1 Novel
I209 4006562 50 + 0.025 4006513–4006565 � Carter et al.
I211 214141 50 � 0.025 Novel

See Table 1 for details on the prediction position.

3266 Nucleic Acids Research, 2005, Vol. 33, No. 10

additional predictions to have both high and low prediction
confidence, and to be a mix of previously predicted and novel
candidates. These 6 additions represented a more varying
spectrum of predictions than did the top 10 predictions.

Figure 1 shows the results of northern hybridization with
strand-specific probes from 12 of the 16 predictions against
total RNA from the E.coli lag, log, and early and late
stationary phases (see Materials and Methods). Most of the
12 confirmed transcripts were differentially expressed in
the four phases, which is in agreement with previously
known ncRNAs in E.coli (8–10). We did not detect transcripts
from the four predictions not shown in Figure 1 (data not
shown). The absence of detectable transcripts do, however,
not imply that the predictions are wrong as some ncRNAs are
only expressed under certain conditions [see for example
(2,8,10)]. We also tried to map the 50 start of 4 of the 12

verified transcripts (I001, I002, I004 and I014, chosen because
these were a mix of high and low confidence, and previous
and novel predictions). We identified potential 50 start sites
for all four transcripts (see Supplementary Material). Based on
these results, we estimated the size of three of the transcripts;
see Table 5 for additional information.

As Figure 1 shows, we detected more than one band for six
of the predictions. These instances of multiple bands were
either (i) a large sequence with one or two additional smaller
sequences (I002, I003 and I006); (ii) two large sequences
(I014); or (iii) two small sequences (I007 and I044). One
possible explanation is that the multiple bands are processed
or degraded forms of a single transcript. This may be the
case for I002 and I014, as we saw only one 50 start point for
each region in the primer extension. These transcripts could
be specifically processed by catalytically active enzymes,

I001 I002 I003 I004 I005 I006

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

I007 I008 I010 I014 I044 I209

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1. LAG phase 2. LOG phase 3. Early stationary phase 4. Late stationary phase

~400
~300

~200

5s rRNA
~120

~100

~400

~300

~200

~100

5s rRNA
~120

Figure 1. Northern hybridizations of selected predictions against total RNA from lag, log, and early and late stationary phases confirm 12 of 16 selected transcripts.
The figure shows the complete northern blots after low stringency wash. The boxed bands indicate the bands that were still present after repeated washes of higher
stringency, but the resulting blots are excluded because of poor resolution and picture quality. The indicated sizes are only approximate sizes because these are
individual blots lined up together; see Supplementary Figure 2 for size estimates based on each individual blot. Note that most blots have a �120 nt band that
corresponds to 5s rRNA.

Nucleic Acids Research, 2005, Vol. 33, No. 10 3267

or unspecifically processed by ribonucleases. Several known
ncRNAs in E.coli are specifically processed (32), and our
results are similar to previously predicted and verified ncRNAs
thought to be specifically processed (9).

It is possible that some of the larger transcripts detected
could be processed 50 or 30 ends of neighboring mRNAs; e.g.
I002 overlaps the 50 CDS of lysC by 6 nt. The neighboring
genes that the other large transcripts can and do overlap with
(we did not establish the 50 ends of I003 and I006, but I014
overlaps 4 nt in the 50 CDS of efp) are on the opposite strand of
the verified transcripts. Thus, it is possible that these tran-
scripts can regulate their neighboring genes through an anti-
sense mechanism.

Because the transcripts we have tested have not previously
been detected, these transcripts may be unstable or of low
abundance and therefore difficult to detect. Such instability
may also explain some of the multiple bands. Another possible
explanation could be that the strand-specific probes bind to
other transcripts, but a Blast (33) search of the probes against
the complete E.coli genome did not give any matches with
E-values below 0.1, except for the intended target sites. Thus,
it is unlikely that the multiple bands in the northern blots are
caused by the probes hybridizing to other complementary
transcripts.

Excluding tRNAs and rRNAs improves specificity

Our initial database of ncRNA genes was slightly biased
towards rRNA and tRNA genes. As our main focus was to
identify other small RNA genes, we did a separate analysis
where we trained classifiers exclusively on the sRNA
sequences. In this analysis, we used the query language and
methodology from Saetrom (18), i.e. a classifier was the
average of 10 GPboost runs instead of a single run as in our
previous experiments.

Using this approach, we predicted 135 of 255 sRNA
sequence windows, which included sequence windows from
all but the micF and sraE genes. In addition, the approach
identified 140 potential ncRNAs, 69 of which were novel.

A cross-reference of the potential ncRNAs identified by this
method with the list of known genes (see Table 2) showed
that it had correctly identified the rygC, SroG and rdlD genes.
On the other hand, only Contig_496 of the sequences in
Table 3 was correctly identified; two other predictions over-
lapped Contig_440 and Contig_286, but these were on the
opposite strand.

As a comparison, we ran an experiment where we again
used the approach of Saetrom (18), but also included the
tRNAs and rRNAs. We now identified all the ncRNAs in
the training set except spf, sraB, sraD and micF, and predicted

401 potential ncRNAs; 168 of these were novel. Although this
approach identified slightly fewer of the sRNA genes in the
training set compared to the classifiers that were trained only
on the sRNA sequences, it identified all the tRNAs and rRNAs;
the sRNA-based classifiers only identified 15 of 22 rRNAs
and 21 of 86 tRNAs. Thus, as expected, when the rRNAs
and tRNAs are excluded from the training set, the resulting
classifiers become more specific. In accordance with this, the
classifiers trained on the complete ncRNA set identified four of
the known ncRNAs in our set of intergenic sequences (rdlA,
rygC, SroG and rdlD), and seven of the nine contigs from
Table 3 (Contig_440 and Contig_286 were identified on the
wrong strand).

DISCUSSION

We have described a novel method for finding non-coding
RNA genes and proved its applicability by analyzing E.coli
intergenic regions, and testing and experimentally confirming
9 of the top 10 scoring predictions and 3 other predictions with
lower score. Several groups have searched for new ncRNAs
in E.coli (8–14), which have resulted in a list of about �1000
non-redundant and untested candidates (7). Our predictions
mostly confirm the predictions of the other methods, but we
also predict several new ncRNA genes, and, as our experi-
mental verifications show, at least six of these new predictions
are genuine ncRNAs: 12 of the 16 tested candidates, includ-
ing 6 novel predictions, were verified. It would therefore be
surprising if none of the other candidates are ncRNAs.

Northern analysis and primer extension showed that our
method could not completely identify the true transcript of
the verified predictions. That is, the algorithm either only
predicted a portion of the transcript or misplaced its start
and stop site. There are three main reasons for these errors.
First, our data set consisted of 50 nt sequence windows with
25 nt overlap. Consequently, we could only predict the correct
start and stop site if these regions aligned with any of the
sequence windows in our data set. Here, we would expect
that only 1 of 25 start sites would align by chance. Second,
our algorithm did not recognize all the sequence windows of
the known ncRNAs in the training set. We would therefore be
surprised if it correctly predicted the complete sequence of
any new transcripts. Third, our algorithm is biased in the sense
that it will only detect regions that are similar to regions in the
known ncRNAs. Thus, the algorithm would have trouble
detecting the novel domains in the new transcripts.

Because of these three shortcomings, we did not expect
the algorithm to correctly identify the complete sequence of
any new transcripts. Rather, we developed the algorithm as

Table 5. Transcripts detected by primer extension

Transcript Strand 50 start Predicted distance Size 50 gene 30 gene

I001 + 271804 75 75 b0257 + ykfC +
I002 � 4231116 179 310 b4024 (‘lysC’) � b4025 (‘pgi’) +
I004 + 3766359 256 n/a o153 (‘yibG’) + yibH �
I014 � 4374139 196 300 o188 (‘efp’) + o155 (‘sugE’) +

The table lists the transcripts’ 50 ends; their orientation; the distance between the 50 ends and the predicted transcripts; the transcripts’ estimated size; and the name and
orientation of 50 and 30 flanking genes (relative to the + strand). Note that the I004 50 start point overlaps predictionHB_200 of Carter and colleagues (12), but we did
not detect any northern signal that corresponded to this 50 start (see Figure 1).

3268 Nucleic Acids Research, 2005, Vol. 33, No. 10

a complementary tool to the existing ncRNA prediction
algorithms, which use other features to predict ncRNAs.
As an analogy to standard protein coding gene prediction,
our algorithm can be considered a content analyzer (34). To
get more reliable predictions of complete ncRNAs, we can for
example combine our algorithm with algorithms that look
for signals such as transcription initiation and termination
(9,13). We are currently looking into this.

When comparing our predictions to those of other methods
and to the known ncRNAs included in our set of intergenic
sequences (see Table 2), we found that some of our predictions
were on the opposite strand. In addition, 47 of our predictions
overlapped predictions that our algorithm made on the oppos-
ite strand (see Supplementary Material). Thus, it appears that
the algorithm has problems identifying the correct strand for
some transcripts. These results are, however, related to the
above discussion on the algorithm’s bias: the algorithm will
only detect domains that have a similar sequence to those in
the known ncRNAs. An ncRNA’s function often lies in its
secondary structure, however, and in general, several different
sequences can fold into the same secondary structure. In par-
ticular, for certain sequences both the original and reverse
complementary sequence fold into similar secondary struc-
tures. Thus, if the reverse complementary of such sequences
more closely resembles the known ncRNAs than does the
original sequences, our algorithm will predict the reverse com-
plementary sequence to be an ncRNA domain. This is for
instance the case for rdlA in Table 2. Our algorithm incorrectly
predicted the reverse complementary sequence of rdlA to be an
ncRNA, but the secondary structures of the correct sequence
mirrors that of the reverse complementary (data not shown).

A recent study uses the sequence conservation of known
ncRNA genes and intergenic regions to estimate the number of
sRNAs (ncRNAs other than tRNA and rRNA) in E.coli to be
between 118 and 260 (15). The authors then argue that because
the number of sRNA genes that either have been experiment-
ally verified or predicted by at least two different studies in
E.coli were 150 (at that time), their estimates may be an upper
limit to the number of sRNA genes in E.coli (15). Following
their logic, our results indicate that the number of sRNA genes
in E.coli may be closer to their highest estimate than to their
lowest. This is because we have significantly extended the list
of ncRNAs predicted by more than one method, and because
we have shown that our method predicts new ncRNAs that
have remained undetected by other methods.

To summarize, we have shown that our approach for
ncRNA prediction is both accurate and complementary to
existing methods. That is, it identifies genuine ncRNA genes,
some of which have not been predicted by any other methods.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.

ACKNOWLEDGEMENTS

We thank K. Lagesen for providing the initial database of
E.coli ncRNA genes, Y. Esbensen for providing the RNA iso-
lation protocol, and H.E. Krokan and M. Bjørås for valuable
comments on the manuscript. The work was supported by
the Norwegian Research Council, grants 151899/150,

152020/310 and 152001/150, and the bioinformatics platform
at the Norwegian University of Science and Technology,
Trondheim, Norway. Funding to pay the Open Access publica-
tion charges for this article was provided by the Norwegian
Research Council.

Conflict of interest statement. None declared.

REFERENCES

1. Eddy,S.R. (2001) Non-coding RNA genes and the modern RNA world.
Nature Rev. Genet., 2, 919–929.

2. Wassarman,K.M. (2002) Small RNAs in bacteria: diverse regulators
of gene expression in response to environmental changes. Cell,
109, 141–144.

3. Storz,G. (2002) An expanding universe of noncoding RNAs. Science,
296, 1260–1263.

4. Cawley,S., Bekiranov,S., Ng,H.H., Kapranov,P., Sekinger,E.A.,
Kampa,D., Piccolboni,A., Sementchenko,V., Cheng,J., Williams,A.J.,
Wheeler,R., Wong,B., Drenkow,J., Yamanaka,M., Patel,S., Brubaker,S.,
Tammana,H., Helt,G., Struhl,K. and Gingeras,T.R. (2004) Unbiased
mapping of transcription factor binding sites along human chromosomes
21 and 22 points to widespread regulation of noncoding RNAs. Cell,
116, 499–509.

5. Mattick,J.S. (2004) RNA regulation: a new genetics?Nature Rev. Genet.,
5, 316–323.

6. Wassarman,K.M., Zhang,A. and Storz,G. (1999) Small RNAs in
Escherichia coli. Trends Microbiol., 7, 37–45.

7. Hershberg,R., Altuvia,S. and Margalit,H. (2003) A survey of small
RNA-encoding genes in Escherichia coli. Nucleic Acids Res., 31,
1813–1820.

8. Vogel,J., Bartels,V., Tang,T.H., Churakov,G., Slagter-Jager,J.G.,
Huttenhofer,A. and Wagner,E.G.H. (2003) RNomics in Escherichia coli
detects new sRNA species and indicates parallel transcriptional output in
bacteria. Nucleic Acids Res., 31, 6435–6443.

9. Argaman,L., Hershberg,R., Vogel,J., Bejerano,G., Wagner,E.G.H.,
Margalit,H. and Altuvia,S. (2001) Novel small RNA-encoding genes in
the intergenic regions of Escherichia coli. Curr. Biol., 11, 941–950.

10. Wassarman,K.M., Repoila,F., Rosenow,C., Storz,G. and Gottesman,S.
(2001) Identification of novel small RNAs using comparative genomics
and microarrays. Genes Dev., 15, 1637–1651.

11. Rivas,E., Klein,R.J., Jones,T.A. and Eddy,S.R. (2001) Computational
identification of noncoding RNAs in E. coli by comparative genomics.
Curr. Biol., 11, 1369–1373.

12. Carter,R.J., Dubchak,I. and Holbrook,S.R. (2001) A computational
approach to identify genes for functional RNAs in genomic sequences.
Nucleic Acids Res., 29, 3928–3938.

13. Chen,S., Lesnik,E.A., Hall,T.A., Sampath,R., Griffey,R.H., Ecker,D.J.
and Blyn,L.B. (2002) A bioinformatics based approach to discover small
RNA genes in the Escherichia coli genome. Biosystems, 65, 157–177.

14. Tjaden,B., Saxena,R.M., Stolyar,S., Haynor,D.R., Kolker,E. and
Rosenow,C. (2002) Transcriptome analysis of Escherichia coli using
high-density oligonucleotide probe arrays. Nucleic Acids Res.,
30, 3732–3738.

15. Zhang,Y., Zhang,Z., Ling,L., Shi,B. and Chen,R. (2004) Conservation
analysis of small RNA genes in Escherichia coli. Bioinformatics,
20, 599–603.

16. Blattner,F.R., Plunkett,G.,III, Bloch,C.A., Perna,N.T., Burland,V.,
Riley,M., Collado-Vides,J., Glasner,J.D., Rode,C.K., Mayhew,G.F.,
Gregor,J., Davis,N.W., Kirkpatrick,H.A., Goeden,M.A., Rose,D.J.,
Mau,B. and Shao,Y.S. (1997) The complete genome sequence of
Escherichia coli K-12. Science, 277, 1453–1474.

17. Guigueno,A., Dassa,J., Belin,P. and Boquet,P.L. (2001) Oversynthesis of
a new Escherichia coli small RNA suppresses export toxicity of DsbA’-
PhoA unfoldable periplasmic proteins. J. Bacteriol., 183, 1147–1158.

18. Sætrom,P. (2004) Predicting the efficacy of short oligonucleotides in
antisense and RNAi experiments with boosted genetic programming.
Bioinformatics, 20, 3055–3063.

19. Sætrom,P. and Snøve,Jr,O. (2004) A comparison of siRNA efficacy
predictors. Biochem. Biophys. Res. Commun., 321, 247–253.

20. Koza,J.R. (1992) Genetic Programming: On the Programming of
Computers by Natural Selection. MIT Press, Cambridge, MA.

Nucleic Acids Research, 2005, Vol. 33, No. 10 3269

21. Meir,R. andRätsch,G. (2003)An introduction to boosting and leveraging.
In Mendelson,S. and Smola,A. (eds), Advanced Lectures on Machine
Learning. Springer-Verlag, Vol. 2600, pp. 118–183.

22. Rätsch,G.,Onoda,T. andMüller,K.-R. (2001) Softmargins forAdaBoost.
Mach. Learn., 42, 287–320.

23. Halaas,A., Svingen,B., Nedland,M., Sætrom,P., Snøve,Jr,O. and
Birkeland,O.R. (2004) A recursive MISD architecture for pattern
matching. IEEE Trans. VLSI Syst., 12, 727–734.

24. Baldi,P., Brunak,S., Chauvin,Y., Andersen,C.A. and Nielsen,H. (2000)
Assessing the accuracy of prediction algorithms for classification:
an overview. Bioinformatics, 16, 412–424.

25. Sambrook,J., Fritsch,E.F. and Maniatis,T. (1989) Molecular Cloning:
A laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press,
Cold Spring Harbor, NY.

26. Stone,M. (1974) Cross-validatory choice and assessment of statistical
predictions. J. R. Stat. Soc. [Ser. B] (Methodological), 36, 111–147.

27. Kohavi,R. (1995) A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence.
Morgan Kaufmann, San Mateo, CA, 1137–1143.

28. Glasner,J.D., Liss,P., Plunkett,G.,III, Darling,A., Prasad,T., Rusch,M.,
Byrnes,A., Gilson,M., Biehl,B., Blattner,F.R. and Perna,N.T. (2003)

ASAP, a systematic annotation package for community analysis of
genomes. Nucleic Acids Res., 31, 147–151.

29. Kawano,M., Reynolds,A.A., Miranda-Rios,J. and Storz,G. (2005)
Detection of 50- and 30-UTR-derived small RNAs and cis-encoded
antisense RNAs in Escherichia coli. Nucleic Acids Res.,
33, 1040–1050.

30. Kawano,M., Oshima,T., Kasai,H. and Mori,H. (2002) Molecular
characterizationof longdirect repeat (LDR) sequences expressinga stable
mRNA encoding for a 35-amino-acid cell-killing peptide and a
cis-encoded small antisense RNA in Escherichia coli. Mol. Microbiol.,
45, 333.

31. Pedersen,K. andGerdes,K. (1999)Multiplehokgeneson the chromosome
of Escherichia coli. Mol. Microbiol., 32, 1090–1102.

32. Li,Z., Pandit,S. and Deutscher,M.P. (1998) 30 Exoribonucleolytic
trimming is a common feature of the maturation of small, stable
RNAs in Escherichia coli. Proc. Natl Acad. Sci. USA., 95,
2856–2861.

33. Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J. (1990)
Basic local alignment search tool. J. Mol. Biol., 215, 403–410.

34. Mathé,C., Sagot,M.-F., Schiex,T. and Rouzé,P. (2002) Current methods
of gene prediction, their strengths and weaknesses. Nucleic Acids Res.,
30, 4103–4117.

3270 Nucleic Acids Research, 2005, Vol. 33, No. 10

