
Amund Tveit

Dr.ing.-thesis 2004:28

Customizing Cyberspace

Methods for User Representation
and Prediction

Fakultet for informasjonsteknologi, matematikk og
elektroteknikk
Institutt for datateknikk og informasjonsvitenskap

Amund Tveit

Customizing Cyberspace:
Methods for User

Representation and
Prediction

Department of Computer and Information Science
Norwegian University of Science and Technology

N-7491 Trondheim, Norway

Customizing Cyberspace: Methods for User Representation and Prediction
Amund Tveit
amund.tveit@idi.ntnu.no
http://www.idi.ntnu.no/˜amundt/

Norwegian University of Science and Technology (NTNU)
http://www.ntnu.no/
N-7491 Trondheim, Norway
Dr.ing.-thesis 2004:28
ISBN 82-471-6260-1 (printed)
ISBN 82-471-6259-8 (electronic)
ISSN: 0809-103X

Department of Computer and Information Science (IDI), NTNU
http://www.idi.ntnu.no/
Sem Sælands vei 7-9, N-7491 Trondheim, Norway
IDI Report 2004:02
ISSN 1503-416X

mailto:amund.tveit@idi.ntnu.no
http://www.idi.ntnu.no/~amundt/
http://www.ntnu.no/indexe.php
http://www.idi.ntnu.no/english/

Abstract

Cyberspace plays an increasingly important role in people’s life due to its plen-
tiful offering of services and information, e.g. the Word Wide Web, the Mobile
Web and Online Games. However, the usability of cyberspace services is fre-
quently reduced by its lack of customization according to individual needs and
preferences.

In this thesis we address the cyberspace customization issue by focusing on meth-
ods for user representation and prediction. Examples of cyberspace customiza-
tion include delegation of user data and tasks to software agents, automatic
pre-fetching, or pre-processing of service content based on predictions. The cy-
berspace service types primarily investigated are Mobile Commerce (e.g. news,
finance and games) and Massively Multiplayer Online Games (MMOGs).

First a conceptual software agent architecture for supporting users of mobile
commerce services will be presented, including a peer-to-peer based collaborative
filtering extension to support product and service recommendations.

In order to examine the scalability of the proposed conceptual software agent
architecture a simulator for MMOGs is developed. Due to their size and com-
plexity, MMOGs can provide an estimated “upper bound” for the performance
requirements of other cyberspace services using similar agent architectures.

Prediction of cyberspace user behaviour is considered to be a classification prob-
lem, and because of the large and continuously changing nature of cyberspace
services there is a need for scalable classifiers. This is handled by proposed clas-
sifiers that are incrementally trainable, support a large number of classes, and
supports efficient decremental untraining of outdated classification knowledge,
and are efficiently parallelized in order to scale well.

Finally the incremental classifier is empirically compared with existing classifiers
on: 1) general classification data sets, 2) user clickstreams from an actual web
usage log, and 3) a synthetic game usage log from the developed MMOG sim-
ulator. The proposed incremental classifier is shown to an order of magnitude
faster than the other classifiers, significantly more accurate than the naive bayes
classifier on the selected data sets, and with insignificantly different accuracy
from the other classifiers.

The papers leading to this thesis have combined been cited more than 50 times in
book, journal, magazine, conference, workshop, thesis, whitepaper and technical
report publications at research events and universities in 20 countries. 2 of the
papers have been applied in educational settings for university courses in Canada,
Finland, France, Germany, Norway, Sweden and USA.

Contents

Contents iii

List of Figures vii

List of Tables ix

Preface xi

I Context 1

1 Introduction 3
1.1 Introduction . 3
1.2 The ELCOMAG Project . 5
1.3 Research Questions . 7
1.4 Contributions . 8
1.5 Publications . 10
1.6 Thesis Outline . 10

2 Materials and Methods 13
2.1 Materials . 13
2.2 Methods . 14

3 Web Intelligence 15
3.1 Introduction . 15
3.2 Software Agents . 17

3.2.1 Agents for Mobile Commerce and Services 20
3.2.2 Agent-based Simulation of MMOGs 20

3.3 Classification . 22
3.3.1 Typology . 22
3.3.2 Training Methods . 23
3.3.3 Linear and Nonlinear Classifiers 23
3.3.4 Sequential and Parallel Classifier Algorithms 24

iv Contents

3.3.5 Important Theorems . 24
3.3.6 Classifiers for Web Intelligence 25
3.3.7 Incremental Proximal Support Vector Classifiers 26
3.3.8 Our work on incremental PSVM classifiers 27

II Synopsis 29

4 Results 31

5 Evaluation 35
5.1 Research Questions . 35
5.2 Contributions . 38
5.3 Contextual Description . 41
5.4 Citations of Our Papers . 41
5.5 Lessons Learned . 42

6 Conclusions and Future Work 43
6.1 Summary of Results and Contributions 43
6.2 Directions for Future Work . 44

III Papers 47

A Mobile Commerce Agents in WAP-based Services 49

B Peer-to-Peer based Recommendations for Mobile Commerce 73

C Scalable Agent-Based Simulation of Players in Massively Multi-
player Online Games 79

D Empirical Performance Evaluation of the Zereal Massively Mul-
tiplayer Online Game Simulator 91

E Game Usage Mining: Information Gathering for Knowledge Dis-
covery in Massive Multiplayer Games 99

F Multicategory Incremental Proximal Support Vector Classifiers107

G Incremental and Decremental Proximal Support Vector Classi-
fication using Decay Coefficients 115

H Parallelization of the Incremental Proximal Support Vector Ma-
chine Classifier using a Heap-based Tree Topology 125

I Empirical Comparison of Accuracy and Performance for the

Contents v

MIPSVM Classifier with Existing Classifiers 135

IV Appendices 149

A Software Tools 151
A.1 Zereal . 151
A.2 Incridge and pIncridge . 152
A.3 Other software developed . 152

A.3.1 Browsim . 152
A.3.2 jfipa . 152

B Statistical Analysis 153
B.1 Factorial Design for Zereal Performance 153

B.1.1 Factorial Design Experimental Data 153
B.1.2 Analysis of Variance (ANOVA) 154

B.2 Classification Accuracy - UCI Datasets 156
B.3 Computational Performance - UCI Datasets 156
B.4 Data for Computational Performance - Zereal and Web data . . . 156
B.5 Paired T-Tests for Classification Accuracy 157

B.5.1 Classification Data C4.5 and Naive Bayes 157
B.5.2 MIPSVM and C4.5 Comparison 157
B.5.3 MIPSVM and Naive Bayes Comparison 158
B.5.4 Classification Data Log. Regr. and Vot. Perc. 158
B.5.5 MIPSVM and Logistic Regression Comparison 159
B.5.6 MIPSVM and Voted Perceptron Comparison 159

Bibliography 161

Index 172

vi Contents

List of Figures

1.1 William Gibson’s Neuromancer . 3
1.2 Thesis Topic Relations . 5
1.3 The publications and their relations 11

3.1 Research Topics of Web Intelligence 16
3.2 The Animated Paper-clip Agent 18
3.3 A Nonlinear Classification Problem 24

viii List of Figures

List of Tables

1.1 Relation - Research Questions and Thesis Topics 8
1.2 Relation - Contributions and Thesis Topics 10
1.3 Relation - Papers and Thesis Topics 12

4.1 Relation - Research Questions and Papers 31
4.2 Papers and their topics . 34

5.1 Relation - Research Questions and Contributions 41

x List of Tables

Preface

This thesis is submitted to the Norwegian University of Science and Technology in
partial fulfillment of the requirements for the degree Doktor Ingeniør. This work
has been conducted at the Department of Computer and Information Sciences
(IDI), Trondheim, Norway.

Acknowledgments

The work presented in this thesis has been financed by the Norwegian University
of Science and Technology through the Electronic Commercial Agents (ElCo-
mAg) project funded by the Norwegian Research Council.

First, I would like to thank my supervisor Professor Mihhail Matskin for his con-
tinuous advice, coaching and support. Together with Professor Arne Sølvberg he
has made my work possible by getting funding for and managing the ElComAg
project.

I would like to thank all my students, in particular Espen, H̊avard, Jørgen,
Kristoffer and Øyvind. I would like to thank my colleague and friend Magnus
Lie Hetland for the interesting discussions, and our jointly published research in
particular. I would like to thank my co-entrepreneur and friend Thomas Brox
Røst for providing a fruitful link to the IT industry through our company Agen-
tus AS, and a thank to our investors Alexander Vik (Xcelera Inc.) and Hans
Eirik Olav (Juno Finans AS).

I would like to thank the people I’ve been working with and for in educational set-
tings during the PhD scholarship time: Associate Professor Stig Frode Mjølsnes,
Associate Professor Øystein Nytrø, Torbjørn Krøvel, Professor Arne Halaas, As-
sociate Professor Pinar Ozturk, Per Kristian Lehre, and Professor Agnar Aamodt.

xii Preface

I would like to thank the people I’ve been sharing offices with during the PhD
scholarship time: Torgeir, Alf Inge, Alexander, Aleksander, and Jinghai.

I would like to thank all past and present department colleagues, in particu-
lar: The Lunch Bunch, Sobah, Reidar, Carl-Fredrik, Elisabeth, Erlend, Pauline,
Herindrasana, Terje, Roxana, Lasse, Staal, Herman, Anne, Norun, Berit, B̊ard,
Anders, Arne Dag, Ellen, Eli, Alf, Erik, Birgit, Lisbeth, Kjell, Kjetil, and Kris-
tianne.

I would like to thank Assistant Professor Brian Blake (Georgetown, USA), Se-
nior Researcher Lawrence Cavedon (Stanford, USA), Associate Professor Zakaria
Maamar (Zayed, UAE), Assistant Professor Anthony Scime (SUNY Brockport,
USA), Managing Editor Helen Zhang (Zhejiang, China) and Research Scientist
Steven Willmott (Catalunya, Spain) for allowing me to participate in the inter-
national research community by being a reviewer for journals, conferences and
workshops. I would like to thank Associate Professor Ruck Thawonmas (Rit-
sumeikan, Japan) and his research team for finding interest in Zereal.

I would like to thank all my friends and family, in particular Bjørn, Ingvar, Jorun,
Jørgen, Jørund, Kari, K̊are, Lisa, Marius, Marte, Nils Christian, and Åse.

My deepest thanks goes to my dearest Wenche for her great love and support,
and to our daughter Anneli for just being herself. I would especially like to thank
my father Halvard, my mother Inger and my brother Gisle for all the support.

I would also like to thank everyone I should have thanked that I’ve forgotten to
thank already!

Amund Tveit
March 18, 2004

Part I

Context

Chapter 1

Introduction

1.1 Introduction

Cyberspace was first presented in William Gibson’s classic book Neuromancer
in 1984. We choose to interpret cyberspace as being all systems, services and
underlying infrastructure known as the Internet. This view is shared in the dic-
tionary WordNet which considers cyberspace and the Internet to be synonymous
(Miller [1995]).

Figure 1.1: William Gibson’s Neuromancer

This thesis is titled Customizing Cyberspace because it describes approaches for
user representation and user prediction that can be used for the customization of
cyberspace services to individual users. Such customization is frequently called
personalization. Personalization of computer-based services is often studied in
the fields of marketing and human-computer interaction, but we choose to take
a (distributed) artificial intelligence approach with software agents and classifi-
cation due to scope of the Electronic Commercial Agents (ElComAg) project.

4 Introduction

Cyberspace Definitions

Definition 1.1 (Cyberspace, Gibson [1984]). A consen-
sual hallucination experienced daily by billions of legitimate op-
erators, in every nation, by children being taught mathematical
concepts...A graphical representation of data abstracted from the
banks of every computer in the human systems. Unthinkable com-
plexity. Lines of light ranged in the non-space of the mind, clusters
and constellations of data. Like city lights, receding...

Definition 1.2 (Cyberspace, Illingworth [1996]). An infor-
mal word first thought to have been used by the novelist William
Gibson to refer to the total data on all the computers on all the
networks in the world. The word has passed into common use
as a way of referring to any large collection of network-accessible
computer-based data.

Topic-Related Definitions

Definition 1.3 (Cyberspace Services). Commercial or non-
commercial (multi-)user application-level services offered through
a Cyberspace media such as the wireless or wired Internet. Exam-
ple services include Massively Multiplayer Online Games, Mobile
Commerce, Electronic Commerce, E-mail and the World Wide
Web.

Definition 1.4 (Cyberspace User Representation). Abstrac-
tions, software and (log) data representing actions and profiles for
users of cyberspace services.

Definition 1.5 (Cyberspace User Prediction). Algorithmic
prediction of a user’s (near) future action or preference based on
the user representation data describing the user itself, and other
users in the same or related cyberspace services. Applications in-
clude pre-fetching and personalization of digital content, and au-
tomatic recommendations of products and services. Examples of
methods enabling this are classification and collaborative filtering
.

User representation and user prediction are both considered because they are
closely related, i.e. you can’t perform algorithmic and (partially) automatic user
prediction in cyberspace without user representation data.

1.2 The ELCOMAG Project 5

User & User
Representation Prediction

Figure 1.2: Thesis Topic Relations

1.2 The ELCOMAG Project

This thesis is a result of the Electronic Commercial Agents (ElComAg)
project. The focus of the project was on facilities for trading of knowledge
through electronic commerce (e-commerce), including these topics:

1. Conceptual Modeling of Knowledge and Trading Process

2. The design of sale-sites (electronic marketplaces)

3. The design of agents for serving the trade process

4. Information system architecture for knowledge trade

The main objectives of this thesis are related to topic 3 and 4, in particular
with respect to agent-based information system architecture for e-commerce. We
consider e-commerce to be a part of cyberspace.

The word serving (part of topic 3) is a key issue in this thesis since the underlying
motivation for all the presented work is to better serve the cyberspace users.
Users in general prefer cyberspace services that have the following characteristics:

1. Are easy and flexible to use

2. Provide relevant and interesting information

3. Have a decent response time

Characteristic 1 is studied in the field of Human Computer Interaction (HCI),
and is considered outside the scope of this thesis. Amazon.com’s product rec-
ommendation system is an example on how to provide relevant and interesting
information (characteristic 2). Response time can be improved with predictive

6 Introduction

pre-fetching of content (characteristic 3). If these characteristics are in place the
cyberspace service might have a prosperous future if it is at the same time timed,
priced and marketed in the right way.

Example: Amazon.com’s product recommendation
Amazon.com provides an automatic product recommendation ser-
vice. The algorithms underneath use user representation data
from customer profiles together with logs of usage and similar
purchases by other customers to suggest products that might be
of interest to the user (user prediction). Details about the recom-
mender algorithms is described by Linden et al. [2003].

Application Areas of Interest

Instead of focusing on all every of the e-commerce field we’ve selected to primarily
investigate two of its novel subfields:

1. Mobile commerce (wireless e-commerce)

2. Massively multiplayer online games (subscription-based)

One of the key challenges in mobile commerce is how to efficiently deal with the
resource constraints a mobile client device imposes (e.g. bandwidth, processing
power and memory, energy and screen-size). Some of these constraints have in
recent years been relaxed, e.g. WiFi networks for increased bandwidth and fuel
cells for increased energy and uptime, but to a large extent they are still valid,
at least compared to their wired counterparts. Based on the ElComAg project’s
scope we selected to investigate how software agents can be of assistance to serve
users of mobile commerce.

One of the key challenges in massively multiplayer online games (MMOGs) is
to deal with the scale and complexity caused by the hundreds of thousands of
concurrent players operating in very large virtual worlds. In terms of the richness
and rapid frequency of actions performed by the players, massively multiplayer
online games are in the near future likely to dwarf the current large-scale Internet
and E-commerce systems such as Ebay, Amazon.com and Google.

Another key challenge of MMOGs is to ensure that players (i.e. subscribing
customers) have a good time and do not get bored. This issue has up till now
not been adressed from a data mining viewpoint, possibly because there still are
plenty of unsolved issues related to handling the scale and complexity of MMOGs.

1.3 Research Questions 7

Computer games, including MMOGs, have been considered as the killer applica-
tions of human-level AI, Laird and Kent [2001]. We share this view, but stress
that human-level AI in MMOGs is neither the goal nor the result of this thesis.

1.3 Research Questions

The corresponding main research question that this thesis attempts to answer is:

MRQ: How can we provide scalable and flexible user representation and predic-
tion methods for increased automatic customization of cyberspace services?

This question is important because if answered it can lead to what users con-
sider as better cyberspace services. And if users become more satisfied with the
cyberspace services they are likely to use them more hence providing increased
revenue for the cyberspace service providers. The reason the services become
better is because the user representation and prediction methods can provide
more targeted, interesting and relevant information for each individual user and
the performance can potentially be improved by the prediction methods

The set of more specific research questions are as follows:

RQ1: How can mobile commerce customers be supported by software agents?

1. How to handle resource constraints imposed by mobile devices?

2. How to represent the customer’s profile and interests?

3. Which types of customer services can be handled?

4. Can the approach be generalized to handle electronic commerce?

5. How can customers get product or service recommendations?

RQ2: How to test the proposed solution to RQ1, and extending it toward sup-
porting Massively Multiplayer Online Games?

1. Why are Massively Multiplayer Online Games (MMOGs) a relevant
test case?

2. How can data for customer personalization be gathered in the MMOG
case?

3. How do customer data gathering in MMOGs compare to the existing
standard for Web Usage Logging?

4. How can customer data from MMOG services be used for customer
personalization?

8 Introduction

RQ3: How can classification algorithms be used for customization of cyberspace
services, e.g. mobile commerce and massively multiplayer online games?

1. Why is classification appropriate for customization of cyberspace ser-
vices?

2. How can classifier algorithms scale to handle a large amount of cus-
tomers and customer personalization types?

3. How can classifier algorithms handle changes in data over time?

4. How to evaluate classification performance of the proposed classifier(s)
compared to state-of-the-art classifiers, and what are the results?

Research Question User Rep. User Pred.
MRQ X X
RQ1 X
RQ2 X X
RQ3 X

Table 1.1: Relation - Research Questions and Thesis Topics

Research Field

Since the Electronic Commercial Agents project goal is about applying agent
technology in various e-commerce settings, the research field of study can be con-
sidered a part of the Web Intelligence (WI) field (Zhong et al. [2003, 2000]).
WI is interpreted as the application of Artificial Intelligence (AI) in an Internet
context. Software agents belongs to the Distributed AI field and classifier algo-
rithms belongs to the Machine Learning field, both considered subfields of AI
(Moulin and Draa [1996]; Mitchell [1997]). Web Intelligence and its subtopics
considered relevant for this thesis will be further described in chapter 3.

1.4 Contributions

The work in this thesis has been a combination of the design of software architec-
ture and algorithms, performing experiments, programming and developing and
running computer simulations. This work has been documented in the papers in
Part III.

1.4 Contributions 9

Methods for User Representation

User representation methods proposed are agent-based abstractions of users to-
gether with their corresponding profiles (paper A, B and C), usage logs for
MMOG services (paper E) and related empirical results (paper D).

Methods for User Prediction

User prediction methods proposed are classifier algorithms (paper F, G and H)
and related empirical results on user prediction with user representation data
in the form of usage logs from an actual web site and the simulated MMOG
setting from paper C (paper I). Note that the classifier algorithms proposed are
not limited to user prediction, but also as general incremental linear classifiers.

The main contributions of this thesis are:

C1: A conceptual solution and a supporting platform for implementing and
using personal software assistant agents in mobile commerce services. The
solution is aimed towards relaxing the restrictions of mobile devices and
wireless communications (Paper A).

C2: A conceptual peer-to-peer extension of the platform for supporting scalable
and distributed product and service recommendations for mobile commerce
customers (Paper B).

C3: A scalable platform for simulating customer user in particular kind of
mobile/electronic-commerce service - Massively Multiplayer Online Games
(Platform described in paper C and the related empirical performance eval-
uation in paper D).

C4: Investigation and proposition of requirements for doing customer person-
alization in Massively Multiplayer Online Game services. This includes the
creation of a definition of data mining types for MMOGs, a classification
of computer games from a data mining viewpoint, a comparison of infor-
mation gathering for web usage mining and game usage mining, and finally
a proposal for a common game log format to enable game usage mining
(Paper E).

C5: Investigation and proposition of algorithms that can be used in m/e-
commerce personalization, including developing classification algorithms
that: scale with a large number of classes (Paper F), utilizes parallelization
(Paper H), and handles changes in classification data over time (Paper G).

10 Introduction

Contribution User Rep. User Pred.
C1 X
C2 X X
C3 X
C4 X X
C5 X

Table 1.2: Relation - Contributions and Thesis Topics

1.5 Publications

The research leading to this thesis has resulted in the following publications:
1 refereed journal paper (Matskin and Tveit [2001]), 1 refereed book chapter
(Matskin and Tveit [2003]), 5 refereed papers at international conferences (Tveit
[2002a]; Elster et al. [2003]; Tveit et al. [2003b]; Tveit and Hetland [2003]; Tveit
et al. [2003a]), 3 refereed papers at international workshops and symposia (Tveit
[2001c]; Petersen et al. [2002]; Tveit [2002b]), 1 paper at a local university con-
ference (Tveit [2001a]), and 7 technical reports (Tveit [2001b, 2002c]; Tveit and
Matskin [2002]; Tveit and Engum [2003]; Tveit [2003b,a,c]).

See figure 1.5 for a visual overview of the papers and their relations. Dotted
edges represents thematic relation, the other lines mean self-citation (i.e. stronger
thematic relation).

1.6 Thesis Outline

This thesis is “paper collection”, i.e. having a contextual description for the
papers and the papers themselves. Its two first parts describes the context, main
results, evaluations and conclusions. The third part contains the papers, and
finally the appendices in the fourth part.

Chapter 2 describes the materials (software and hardware) and methods (quan-
titative and computer science) applied in the work leading to this thesis

Chapter 3 provides an overview of the Web Intelligence field, and its subtopics
related to this thesis. It also goes into some more detail about software
agents and classification in web intelligence

Chapter 4 describes the main results (summarized from the papers)

Chapter 5 presents the empirical evaluation of the results

1.6 Thesis Outline 11

2001

2002 1st Half

2002 2nd Half

2003 1st Half

2003 3rd Quarter

2003 4th Quarter

REPORT WORKSHOP CONFERENCE JOURNAL BOOK CHAPTER

Tveit
[2001b]

Tveit and Matskin
[2002]

Tveit
[2002a]

Tveit
[2002c]

Tveit and Engum
[2003]

Tveit and Hetland
[2003]

Tveit et al.
[2003a]

Tveit
[2003b]

Tveit et al.
[2003b]

Tveit
[2003a]

Tveit
[2003c]

Tveit
[2001c]

Matskin and Tveit
[2001]

Tveit
[2002b]

Tveit
[2001a]

Petersen et al.
[2002]

Elster et al.
[2003]

Matskin and Tveit
[2003]

Figure 1.3: The publications and their relations

Chapter 6 summarizes the conclusions and proposes a direction for further re-
search.

The foundation of this thesis is its 6 published papers and 3 technical reports
(marked with light grey in figure 1.3).

Paper A describes a software agent architecture for supporting mobile services
and users. In order do a proof-of-concept a prototype was developed.

Paper B describes a recommender system extension to the architecture pre-
sented in paper A.

Paper C describes a software agent architecture and platform for the simulation
of users (players) in massively multiplayer online games. This platform is
inspired by the architecture described in paper A.

12 Introduction

Paper D describes empirical scalability testing of the simulation platform pro-
posed in paper C; the method applied is factorial experimental design.

Paper E describes information gathering for enabling data mining in massively
multiplayer online games together with comparisons to web usage logs.

Paper F describes an algorithm for incremental proximal support vector classi-
fication using memoization to speed up classification with multiple classes

Paper G describes an algorithm for incremental and decremental proximal sup-
port vector classification

Paper H describes two parallel algorithms for incremental proximal support
vector classification using a heap-based tree topology. The first reads data
only on leaf-nodes (nodes = computational nodes) in the tree, and the
second reads training data on all nodes in the tree

Paper I describes empirical comparisons of the classifier proposed in paper F
with existing classifiers such as voted perceptron, c4.5, naive bayes, logistic
regression and SVM. Datasets used are data sets from the UCI Machine
Learning Repository (Blake and Merz [1998]), an actual web usage log and
simulated game usage logs using the simulator described in paper C.

Paper User Rep. User Pred.
A X
B X X
C X
D X
E X X
F X
G X
H X
I X

Table 1.3: Relation - Papers and Thesis Topics

Chapter 2

Materials and Methods

This chapter will present the materials and methods applied in the work leading
to this thesis. The field of study, computer science, influences the choice of
materials and methods

2.1 Materials

Software for Data Analysis has been used to investigate data from Classification
and Simulation. Presentation software has been used to create graphics for pub-
lications and the thesis as well as presentations. Programming software has been
used to implement ideas presented in this thesis. Word Processing has been used
to write this thesis, its publications and related reports.

Classification - libSVM, WEKA and IncRidge

Data Analysis - Minitab, Excel, R/RPy and SigmaPlot

Presentation - Visio, Illustrator, PowerPoint and FoilTeX

Programming - Python, C/C++, Java, Perl and PHP

Simulation - Zereal

Word Processing - PDFLatex and Word

Hardware

Desktop - 1GB RAM, 1.4GHz CPU, MS Win XP

14 Materials and Methods

Laptop - 1GB RAM, 1GHz CPU, Redhat Linux

Parallel Cluster - 1-2 GB RAM per CPU, Sorceror Linux

2.2 Methods

A quantitative experimental approach together with traditional computer science
methods such as prototyping and (parallel) algorithmic design has been used. We
applied statistical methods (briefly described below) for quantitative analysis.

Hypothesis testing

In order to test research hypotheses and say something about the significance of
empirical results we have applied statistical hypothesis tests. The most frequently
used have been the t-test together with output from 10-fold cross validation
experiments in order to compare the average value (in our work: classification
accuracy and computational performance), Cohen [1995]. In paper I where we
compared computational performance and classification accuracy between our
proposed classifier with other classifiers on several datasets, we used pairwise
t-tests on the experimental output from all applicable datasets in order to test
how the classifiers compared overall, Lange [1999].

Factorial Design

In order to test how parameters of the massively multiplayer online game sim-
ulator interacted and controlled the computational performance we used a full
factorial design, Montgomery [1997]. The result from the factorial design is shown
in paper D.

Chapter 3

Web Intelligence

This chapter will present an overview of the Web Intelligence field together with
descriptions of its subtopics of particular relevance for this thesis. We first present
the Web Intelligence research field and an overview of its subtopics. Secondly we
present aspects of the Software Agents (Web Agents) subtopic, in particular in
a mobile commerce and massively multiplayer online games context. Finally we
present aspects of Classification with emphasis on the proximal support vector
classifiers.

3.1 Introduction

Web Intelligence (WI) was conceptualized as a scientific research field in year
2000 by Zhong et al. [2000]. It covers research on the exploration and impact of
Artificial Intelligence (AI) and advanced Information Technology (IT) applied in
Web-related systems, products, services and activities (Zhong et al. [2003]), e.g.
e-commerce sites and online games. The WI-AI/IT relation is bijective: AI and
IT can be applied for WI, and WI introduces new problems and challenges to AI
and IT.

An underlying motivation for establishing the WI field is to develop the Wisdom
Web. The purpose of Wisdom Web is to enable web-related solutions that are
wise, i.e. have the capability of using information and knowledge to the best
means learned from experience.

Web Intelligence is a research area with nine main topics, see figure 3.1 an
overview. Four of these topics - marked with color in the figure - are within
the scope of this thesis. Yellow means the topic is highly related and light blue
means that the topic is somewhat related to the topics of this thesis

16 Web Intelligence

 Intelligent
Web-Based Business

Web Information
 Retrieval

 Intelligent
Human-Web
 Interaction

Web Information
 Management

Ubiquitous Computing
and Social Intelligence

 Emerging Web
Technology and
 Infrastructure

Web Mining
and Farming Web Agents

Knowledge Networks
 and Management

Figure 3.1: Research Topics of Web Intelligence

Ubiquitous Computing and Social Intelligence covers web intelligence re-
search issues related to ubiquitous web access, e.g. accessing the wireless
web using mobile devices. Two examples are:

1. method for adaptive personalization of content for mobile users, Bill-
sus et al. [2002].

2. personalizing a web site for cellular phones by removing redundant
links for each user, Kobayashi and Fujioka [2003]

This topic is relevant to the thesis since paper A presents an agent-based
platform for the support of ubiquitous access to mobile commerce services,
and paper B proposes peer-to-peer based product recommendation func-
tionality to the platform.

Web Mining and Farming covers data mining of user profiles and web logs.
Two examples are:

1. Detection of correlations between customers and products on e-commerce
web sites, Eirinaki and Vazirgiannis [2003]

2. Personalized search engines by altering the ranking of search results
based on data mining of click-through data, Kieldaas [2000]

This topic is relevant to the thesis since paper I applies the classifier pro-
posed in paper F for data mining of click-streams from a web usage logs and
a synthetic game usage log. Paper E compares web usage mining with data

3.2 Software Agents 17

mining in massively multiplayer online games, and proposes game usage
logs for the latter approach.

Web Agents covers agent technology, recommender systems and automatic e-
mail filtering. Two examples are:

1. Neural Networks for automatic e-mail and anti-spam filtering, Clark
et al. [2003]

2. How animations and software agent technology can be used to improve
web-based education, Zhong et al. [2003]

This topic is relevant to the thesis since paper A and B utilize agent tech-
nology for wireless services, and massively multiplayer online games paper
C. Paper D presents empirical performance evaluation of the simulator pre-
sented in paper C.

Emerging Web Technology and Infrastructure covers grid computing, peer-
to-peer computing, soft computing (e.g. machine learning techniques for
classification, association rules and clustering) and web document prefetch-
ing. Two examples are:

1. Evolutionary algorithms for real-time prediction of user click-streams,
Bonino et al. [2003]

2. Classification of topic-specific web sites using Hidden Markov Tree
models, Tian et al. [2003]

This topic is relevant to the thesis since paper F, G and H present approaches
for incrementally learning classifiers. The classification algorithm proposed in F
is empirically compared to existing classifiers in paper I. Paper B is related to
peer-to-peer computing.

In the next sections we first go into detail about software agents in mobile com-
merce and multiplayer online game settings (i.e. belonging to the web agents
topic), and second into classification based on soft computing (i.e. belonging to
the emerging web technology and infrastructure topic)

3.2 Software Agents

This section describes the foundation of software agents and then continues with
descriptions of software agents in mobile commerce and multiplayer online games.
The first part of this section is based on Tveit [2001a].

18 Web Intelligence

Agent Terminology

Let us start with explaining what an agent is. An agent is described in Merriam
Webster’s dictionary as - “one who is authorized to act for or in the place of
another”. When talking about agents in a distributed AI (DAI) context the
word agents usually refers to entities operating in a software environment, so
in order to discern them from other types of agents such as biological agents,
they are frequently called software agents. A Web agent or Internet Agent is
a software agent operating in the World Wide Web or the Internet. A Mobile
Agent refers to the agent’s movement capabilities: It can move between different
environments. An Intelligent Agent refers to the (simulated) behavioral and
intellectual capabilities of the agent. (Intelligent behavior is the selection of
actions based on knowledge). If agents’ primary goal is to assist users they
are frequently called Interface Agents (interfacing the user), Maes [1994]. An
excellent overview of software agent types is presented by Nwana [1996].

Whenever the word agent is mentioned in the rest of this section we refer to
software agents. In our work we apply interface agents (paper A and B) and
mobile agents (paper C).

Examples of Agents

The cyberspace is full of agents of various types, some of them are:

1. Web spiders (collecting data to build indexes to used by a search engine,
i.e. Google)

2. Computer viruses and worms (destructive agents)

3. Artificial players or actors in computer games and simulations (e.g. Quake)

4. Trading and negotiation agents (e.g. the auction agent at EBay)

5. The animated paper-clip agent in Microsoft Office (figure 3.2)

Figure 3.2: The Animated Paper-clip Agent

3.2 Software Agents 19

Classification of Agents

A common classification scheme of intelligent agents is the weak and strong notion
of agency described by Wooldridge and Jennings [1995]. In the weak notion of
agency, agents have their own will (autonomy), they are able to interact with
each other (social ability), they respond to stimulus (reactivity), and they take
initiative (pro-activity). In the strong notion of agency the weak notions of
agency are preserved, in addition agents can move around (mobility), they are
truthful (veracity), they do what they’re told to do (benevolence), and they will
perform in an optimal manner to achieve goals (rationality).

Agents for Web Intelligence

Software Agents or Web Agents have previously been used numerous times in
Web Intelligence applications throughout the last decade, e.g. the agent Letizia
that supports Web-browsing and the ContactFinder agent that answer bulletin
board questions, Mladenic [1999].

Scalable Agent Systems

Agent systems supporting Web Intelligence applications need to be scalable in
order to handle thousands of concurrent agents representing users. Underneath
two different views on scalability requirements for agent systems are described,
the second complements the first by porposing that the dimensions of an agent
system should be adaptive.

Multi-agent systems must be self-building (automatically find the optimal organi-
zation at runtime) and adaptive (change this organizational structure according
to changes in the environment) in order to be scalable, Turner and Jennings
[2001].

Multi-agent systems need to scale in at least 4 dimensions (Omer F. Rana and
K. Stout [2000]):

1. Changes in the number of agents on one platform

2. Changes in the number of agents on a set of connected platforms

3. Changes in the size of the data the agents are operating on

4. Changes in the diversity of the agents

20 Web Intelligence

The agent-based simulator of massively multiplayer online games presented in
paper C supports the 4 dimensions of scalability, but it doesn’t support dynamic
organizational scalability methods like self-building and adaptivity.

3.2.1 Agents for Mobile Commerce and Services

Agents in mobile commerce and services are frequently of type interface agents
that have the purpose of supporting human users of mobile devices. The agent’s
runtime environment can either be on the mobile device, within the mobile com-
merce or service system, or at other computer systems such as the user’s own
PC.

Some examples of agents in mobile commerce and services are:

• mobile agents supporting mobile users that frequently switch between using
offline, wireless and wired computers, Gray et al. [1996]

• proxy agents that support the user in browsing of mobile services , Joshi
[2000b]

• agents that provide information based on a user’s geographical proximity
to the mobile services, Finin et al. [2002]; Joshi et al. [2002]

• mobile agents that help users of wireless devices to more easily find and
download the software they need, Mena et al. [2002]

• self-organizing and self-configuring agent system supporting mobile devices
in an ad hoc wireless environment, Wickramasinghe et al. [2003]

• agent-based web service provisioning for mobile users, Maamar et al. [2004]

In paper A (Matskin and Tveit [2001]) we focus on developing an agent plat-
form supporting mobile users of valued customer membership and subscription
services. The platform’s core functionality is customization and adaptation of
mobile commerce services, and pro-active processing and notification of impor-
tant events.

The architecture in paper A is further extended in paper B (Tveit [2001c]), the
new functionality is a proposed agent-based peer-to-peer approach for product
and service recommendation for mobile customers.

3.2.2 Agent-based Simulation of MMOGs

Modeling and simulation of real-world (physical) phenomena is most frequently
being done by numerical solutions of partial differential equations (PDE), but

3.2 Software Agents 21

in recent years agent-based simulation has shown to be a viable alternative to
PDE-based simulation, in particular when simulating individuals in dynamic en-
vironments or “messy” systems, Parunak et al. [1998]; Moss [2000].

Agent-based simulation techniques have shown to be useful for social, biological
and economical systems, typically using the SWARM system, Hiebeler [1994].
Some examples are agent-based simulation of a suburban sprawl (Rand et al.
[2003], agent-based computational economics (Tesfatsion [2002]) and agent-based
modeling of biological communities (Hraber and Milne [1996]).

In a Web Intelligence setting multi-agent-based simulation techniques has e.g.
been used to model and simulate network security attacks (Gorodetski et al.
[2003]), and modeling and simulating of (small world) social networks of web
surfers (Haridi [2002]).

Agent-based modeling and simulation for multiplayer games has up till now been
primarily focusing on the modeling of intelligent non-personal characters in games
with a relatively low number of players and non-personal characters (typically
less than 100), e.g. the work on developing intelligent opponents in Quake,
Laird [2001]. Other examples include agents that play the Netrek online battle
simulation game (Huber and Hadley [1997]), and complexity comparison of a
state-machine model with an agent-based BDI model for modeling intelligence in
games (Bartish and Thevathayan [2002]).

Probably due to the relative novelty (mid 1990s) of MMOGs there has so far been
little published work on (agent-based) simulation of them. A partially related
areas with more activity include animation of large crowds for movies (e.g. the
MASSIVE system for simulating a large orc army in the Lord of Rings trilogy).
One exception is the FreeMMG platform that simulates players of massively
multiplayer online games using agents in a hybrid peer-to-peer and client-server
multiplayer game simulation model Cecin et al. [2003]. FreeMMG’s purpose is to
provide a generic simulation platform that allows cheaper and easier performance
and reliability testing of MMOGs.

In paper E (Tveit [2002a]) we propose a data mining approach for MMOGs
(game mining) by drawing parallels to the established field of web mining. This
approach is partially implemented in the MMOG agent-based simulation platform
called Zereal presented in paper C (Tveit et al. [2003b]), and empirically tested for
computational performance in paper D (Tveit [2003b]) and preliminary testing
of player category classification from Zereal logs in paper I (Tveit [2003a]).

22 Web Intelligence

3.3 Classification

Classification is an everyday task, some examples are

• Selecting one of several directions (e.g. left, north or up) based on past
experience, perception and the navigational goal.

• Recycling your garbage (what material to put in which bin) based on
garbage characteristics (e.g. paper, plastic or organic).

• Interpreting symbols with several fonts and styles as characters in text
(e.g. bold, italic, Times New Roman or Courier), or in other words read-
ing. Search Engines submission pages use such tests to discern between
(unwanted) link submissions by software agents and (wanted) submissions
by people.

The class or concept is the selected outcome (set of directions, types of bins, or
characters in the alphabet for the above examples). Selection of the class is based
on apriori knowledge acquired through training or experience.

From a data analysis perspective, classification can be defined as below:

Definition 3.1 (Classification, Han and Kamber [2001]). Classification
is the process of finding a set of models (or functions) that describe and distin-
guish data classes or concepts, for the purpose of being able to use the model to
predict the class of object whose class is unknown. The derived model is based on
the analysis of the set of training data (i.e., data objects whose class label is
unknown)

The classification model is usually found by using one or several classification
algorithms (classifiers) that processes the training data. The training data are
frequently in the form of feature vectors.

3.3.1 Typology

Classifiers are either (Rubinstein and Hastie [1997]):

Informative - model the densities of classes and select the class that most likely
produce the features. Naive Bayes, Hidden Markov Models and Fisher
Discriminant Analysis are examples of informative classifiers.

Discriminative - model the class boundary and membership probability di-
rectly. Logistic Regression, C4.5, Artificial Neural Networks, Support Vec-
tor Machines and Generalized Additive Models are examples of discrimina-
tive classifiers. The classifiers proposed in paper F, G and H are discrimi-
native.

3.3 Classification 23

3.3.2 Training Methods

Classifiers can be trained using (Duda et al. [2001]):

Batch Training - all data from the training data set are presented to the clas-
sifier in the training process (this includes historic data in the re-training
case).

Stochastic Training - data used in the training process are randomly selected
from the training data set, i.e. training data can be considered to be
stochastic variables. This training method is used when there are large
redundant data sets.

Incremental Training - data are only used once in the training process, i.e.
historic data is not used in the training process when the training data
grows. If the classifier using incremental training is kept up-to-date at all
times it is also called online training. This training method is used when
the growth and amount of data is so large that storing them is too expensive.
The classifiers proposed in paper F, G and H support incremental and online
training.

Decremental Training - In domains where classification data grows rapidly,
the classes or concepts might change over time; this is called con-
cept drift, Widmer and Kubat [1996]. The corresponding learning task
is called learning drifting concepts, Schwefel et al. [2003]. In order to
efficiently adapt to concept drift the classifier must unlearn the old con-
cepts, this is called forgetting or decremental training, Widmer and Kubat
[1996]. The classifier proposed in paper G support decremental training for
learning drifting concepts.

3.3.3 Linear and Nonlinear Classifiers

Classifiers that can discriminate between classes of non-rectangular shapes are
called nonlinear classifiers, Support Vector Machines and Artificial Neural
Networks using nonlinear kernel functions are examples of nonlinear classifiers.
See figure 3.3.3 for an example of a nonlinear classification problem. The XOR
problem is a well-known example of a non-rectangular classification problem; it
can be solved with a nonlinear classifier but not with a linear classifier. Examples
of linear classifiers are C4.5, Logistic Regression and Naive Bayes, Goldman
and Axtell [1995]. The classifiers proposed in paper F, G and H are linear.

24 Web Intelligence

Figure 3.3: A Nonlinear Classification Problem

3.3.4 Sequential and Parallel Classifier Algorithms

Most classifier algorithms are of sequential nature , meaning that they can only
process one command at a time. With current processor architectures this is only
partially true due to multiple pipelines with parallel execution of commands,
but the algorithms are usually not designed to take full advantage of parallel
execution. The main motivation for designing classifier algorithms of parallel
nature are to increase the speed of execution and to potentially handle larger
classification problems. Examples of parallel classifier algorithms include the
SPRINT decision-tree-based classifier by Shafer et al. [1996a] and the Kerneltron
hardware Support Vector Machine implementation by Genov and Cauwenberghs
[2003].

3.3.5 Important Theorems

The following two theorems provide a sober view on classifier and feature extrac-
tion approaches.

No Free Lunch Theorem

According to the No Free Lunch Theorem (Duda et al. [2001]), no matter which
classifier algorithm is used there exists at least one data distribution where ran-
dom guessing is better. Or in other words: even the “most fancy” nonlinear
classifier is not the best for all occasions.

3.3 Classification 25

Ugly Duckling Theorem

According to the Ugly Duckling Theorem by Duda et al. [2001], there exists no
problem-independent way of determining the best set of features. Or in other
words: there exist no optimal feature extraction and discretization methods cov-
ering all problems.

3.3.6 Classifiers for Web Intelligence

Systems and services on the Internet continuously generate large amounts of log
data, e.g. web servers generate usage logs with click-stream data representing
the behavior of online users. If classifiers will be used to handle such data they
need to be scalable and incremental.

The process of predicting behavior based on web usage logs can be considered
a classification problem. If the behavior is relatively predictable, it can be used
to in-advance personalization of web content based on the user’s preferences or
pre-fetching of web content to the user’s browser cache for improved browsing
performance. Why is this a classification problem? The next click to an HTML
page or multimedia object in a user session can be seen as a class, and the previous
pages or multimedia objects visited can be seen as a feature vector. In order to
get high accuracy of next-click classification, it has shown to be beneficial to
utilize the inherent graph structure of web sites and have one classifier per web
page (paper I).

Requirements for Classifiers in Web Intelligence

Classifiers for Web Intelligence purposes need to have the following properties:

Scalable - Scale well in terms of relatively fast handling large amounts of data
by efficiently utilizing computational resources (memory and CPUs). Both
the training and classification process should be scalable.

Incremental - Support incremental (on-line) training since it doesn’t have enough
time to re-train with old data every time new data arrives

Accurate - Provide (in general) high accuracy on the selected problem

Decremental - Can handle drifting concepts since concepts/classes in Web In-
telligence applications are not likely to be static over time

Handle non-orthogonal examples - Non-orthogonality is not well handled
by some classifiers (i.e. repeated occurences of training data), in a Web
Intelligence this is likely to occur and must be properly handled by the
classifier algorithm.

26 Web Intelligence

Handle Dependency between Features - Some classifiers perform poorly when
features are (somewhat) dependent, in Web Intelligence problems where the
features are clicks in a click-stream they are likely to be (somewhat) de-
pendent, and this has to be handled by the classifier algorithm.

Naive Bayes is frequently being selected as the default classifier in Web In-
telligence; it has been used for e-mail spam detection, text classification, web
search and recommender systems. It is relatively scalable (mostly computation-
ally cheap table operations), but it uses a lot of memory in cases where features
are continuous or have many value levels. The memory requirements of Naive
Bayes can be reduced using discretization techniques, but this may result in re-
duced classification accuracy. Naive Bayes also assumes that feature values are
conditionally independent given the target value (Mitchell [1997]) . So how can
we develop classifiers that meet the above requirements?

3.3.7 Incremental Proximal Support Vector Classifiers

The theory of least-squares regression was first published by Adrien Marie Leg-
endre in 1805, and it was further developed into a statistical tool based on prob-
abilistic theory by Karl Friedrich Gauss in 1809, Christiani and Shawe-Taylor
[2000].

Least-squares regression performs poorly when the training vectors are non-
orthogonal, i.e. if two distinct vectors Xj , Xk satisfy the relation Xj = a− bXk

when a, b are scalars, Upton and Cook [2002]). Ridge regression was introduced
to deal with non-orthogonal least-square regression problems, Hoerl and Ken-
nard [1970]. The basic idea of ridge regression is to add a ridge parameter to
the diagonal of the matrix with training vectors in least-squares regression, if the
ridge parameter is nonzero it guarantees the orthogonality of the new matrix, i.e.
providing a non-singular regression system that can be solved. Ridge regression
is also considered a type of shrinkage regression.

Ridge regression is a specialization of Tikhonov Regularization using a square loss
function (Tikhonov [1963]; Tikhonov and Arsenin [1977]), this also explains the
synonym term for ridge regression - regularized least squares regression (RLSR).
Other specializations of Tikhonov regularization include support vector machine
regression (SVMR) (using an ε-insensitive loss function) and support vector ma-
chine classification (SVMC) (using a hinge loss function), Vapnik [1999]; Chris-
tiani and Shawe-Taylor [2000]; Rifkin [2002].

RLSR, SVMR and SVMC all support kernel mappings in order to handle non-
linear regression (RLSR,SVMR) and classification (SVMC) problems, the pur-
pose of a kernel is to map the nonlinear classification problem into a higher
dimensional space where it becomes a linear classification problem. Regularized

3.3 Classification 27

least squares classification (RLSC) was first introduced as a type of neural net-
work by Poggio and Girosi [1990b], and later extended to handle outliers and
negative examples, Girosi et al. [1991]. Poggio and Girosi also showed the equiv-
alence of nonlinear regularization algorithms with multilayer networks, Poggio
and Girosi [1990a].

In Bishop [1995], regularization for neural networks is called weight decay, and
the linear model of weight decay is called jitter. Jitter is equivalent to ridge
regression.

Fung and Mangasarian introduced the proximal support vector machine classi-
fier (PSVMC), Fung and Mangasarian [2001b]. They later introduced algorithms
for multicategory PSVMC (Fung and Mangasarian [2001a]) and incremental and
decremental PSVMC (Fung and Mangasarian [2002]). The PSVMC was devel-
oped by relaxing the constraints of the ordinary SVMC quadratic optimization
problem.

Poggio’s PhD student Rifkin showed that the PSVMC is equivalent to a RLSC,
and that Fung and Mangasarians two main contributions were 1) very fast ways
of computing the linear RLSC and 2) empirical evidence that RLSC have approx-
imately the same classification accuracy as SVMC on benchmark datasets. It was
also proved that the SVMC and RLSC have the same generalization bounds, i.e.
theoretically supporting the prior empirical evidence, Rifkin [2002]; Rifkin et al.
[2003]. Agarwal showed that PSVMC can be transformed into classification using
ridge regression, Agarwal [2002] (This is also supported by the above-mentioned
relation between ridge regression and regularization).

3.3.8 Our work on incremental PSVM classifiers

The incremental PSVMC proposed by Fung and Mangasarian [2002] showed
promising performance and efficient memory utilization; results making it suit-
able in web intelligence applications, but could it be further improved to

1. efficiently handle incremental classification with multiple categories

2. have more efficient support for decremental learning

3. be efficiently parallelizable in order to handle very large classification prob-
lems common in cyberspace services (e.g. clickstream prediction on large
web sites)

In order to deal with requirement 1 we continued the development of the in-
cremental PSVMC (i.e. RLSC) algorithms proposed by Fung and Mangasarian
[2002]. In paper F (Tveit and Hetland [2003]) we proposed memoization in order
to add efficient support for incremental multicategory classification with PSVMC.

28 Web Intelligence

We tried to handle requirement 2 in paper G (Tveit et al. [2003a]) by propos-
ing an exponential soft-decay method for handling decremental learning for the
PSVMC, and showed empirically that it was significantly faster than Fung and
Mangasarian’s approach.

We handled requirement 3 in paper H (Tveit and Engum [2003]) by parallelizing
the incremental PSVMC using two methods based on a heap-based tree topology
of processing nodes.

Part II

Synopsis

Chapter 4

Results

This chapter summarizes the results presented in the papers. Each paper is first
described briefly together with its relation to the other papers and its relation to
the research questions.

Paper RQ1 RQ2 RQ3
A X
B X
C X
D X
E X
F X
G X
H X
I X X X

Table 4.1: Relation - Research Questions and Papers

Paper A - Mobile Commerce Agents in WAP-
based Services

Paper A presents a conceptual software agent architecture for supporting mobile
services and users. The basic idea is to let the software assistant agent that
represent a user stay in the wired network in order to reduce the effect of resource
constraints on mobile devices. A prototype of the architecture was developed in
order to do a proof of concept test. This paper tries to answer research questions

32 Results

RQ1.1-RQ1.4

Paper B - Peer-to-Peer based Recommendations
for Mobile Commerce

Paper B describes a peer-to-peer based recommender system extension to the
architecture presented in paper A. The basic idea is to provide a distributed
version of collaborative filtering where each peer-to-peer query is a vector with
votes on products and services. This paper tries to answer research question
RQ1.5.

Paper C - Scalable Agent-Based Simulation of Play-
ers in Massively Multiplayer Online Games

Paper C describes an implemented parallel mobile agent platform for the simu-
lation of users (players) in massively multiplayer online games, This platform is
partially based on the architecture described in paper A and B, but this platform
is geared towards one particular service, i.e. massively multiplayer online games.
This paper tries to answer research question RQ2.1.

Paper D - Empirical Performance Evaluation of
the Zereal Massively Multiplayer Online Game
Simulator

Paper D describes empirical scalability testing of the simulation platform pro-
posed in paper C, the method applied is factorial experimental design from statis-
tics. This paper supports paper C in answering research question RQ2.1.

Paper E - Game Usage Mining: Information Gath-
ering for Knowledge Discovery in Massively Mul-
tiplayer Online Games

Paper E presents a taxonomy of computer games from a data mining viewpoint,
a taxonomy of data mining approaches for massively multiplayer online games

33

inspired by existing the web mining taxonomy, a comparison of information gath-
ering for web usage mining with the proposed game usage mining approaches,
and finally a proposal for logging of player behavior in massively multiplayer on-
line games. The presented logging approach is partially implemented in paper C.
This paper tries to answer research questions RQ2.2-RQ2.4.

Paper F - Multicategory Incremental Proximal
Support Vector Classifiers

Paper F describes an algorithm for incremental proximal support vector classi-
fication using memoization to speed up classification with multiple classes. The
algorithm is empirically compared to an approach without the use of memoization
and empirically shown to be faster. The purpose of this classifier is to provide
scalable and memory efficient support prediction of action or clicks on the (mo-
bile) web (paper A and B) and massively multiplayer online games (paper C and
E). This paper tries to answer RQ3.2.

Paper G - Incremental and Decremental Proximal
Support Vector Classification using Decay Coeffi-
cients

Paper G is an extension of the results in paper F for doing computationally and
memory efficient decremental training of the incremental proximal SVM classifier.
This paper tries to answer research question RQ3.3

Paper H - Parallelization of the Incremental Prox-
imal Support Vector Machine Classifier using a
Heap-based Tree Topology

Paper H is a parallelization of the algorithm presented in paper F; the purpose
is to handle even larger amounts of increasingly growing classification data (in
cyberspace services). It tries to go further than paper F in answering research
question RQ3.2

34 Results

Paper I - Empirical Comparison of Accuracy and
Performance for the MIPSVM Classifier with Ex-
isting Classifiers

Paper I presents an empirical comparison of computational performance and clas-
sification accuracy of the classifier proposed in paper F with existing classifiers.
This paper tries to answer research question RQ3.4

Paper Agents Algorithms Data Mining Simulation
A X
B (X) (X) (X)
C X (X) X
D (X) X
E X
F X (X)
G X (X)
H X (X)
I (X) (X) X (X)

Table 4.2: Papers and their topics

Chapter 5

Evaluation

This chapter evaluates the thesis by considering the answers to the research
questions, the contributions and how these have been addressed in the papers,
the contextual description, the citations and educational use of papers leading to
this thesis, and finally the lessons learned from this work.

5.1 Research Questions

The main research question, which was presented in Chapter 1, is:

MRQ: How can we in a scalable computational manner provide methods for
user representation and behavior prediction for increased customization of
cyberspace services, e.g. mobile commerce and massively multiplayer online
game services? (Examples of customization include prediction of interesting
cyberspace service content and automatic provision of recommendations of
products and services)

The main research question MRQ has been answered, in general, by proposing a
conceptual software agent architecture for supporting general mobile commerce
services, and later peer-to-peer based distributed collaborative filtering for rec-
ommendations in such services. Scalable manner has been handled by adapting
and simulated empirical testing the architecture for a particular type of service
- massively multiplayer online games. Prediction behavior has been handled in
a scalable manner by empirical testing of the proposed incremental, decremental
and parallel classifier algorithms. Finally the empirical results from applying the
proposed incremental classifier applied on real web (from a web log) and synthetic
(from the developed MMOG simulator) datasets provide a closure.

36 Evaluation

Our answers to the underlying and more specific research questions are as follows:

RQ1: How can mobile commerce customers be supported by software agents?

1. Resource constraints such as limited bandwidth, memory, processing
power and energy common on mobile devices, is handled by letting the
software assistant agents represent the wireless users from the wired
network, hence reducing the load on the mobile device used by the
wireless user.

2. The customer’s profile and interest data are collected, represented
and stored in the internals of the software assistant agent. Usage of
this data can potentially be controlled by privacy-preserving proto-
cols such as P3P, with services negotiating with the software assistant
agent about getting access to the customer data in order to target the
catering of service content.

3. Customers can get product or service recommendations by extending
the software assistant architecture to support distributed collaborative
filtering, sending purchase patterns to “agent friends” in a peer-to-peer
manner.

4. The software assistant agent architecture can support various types
of mobile services; it was designed with entertainment and games,
financial services, news and m-commerce stores in mind.

5. The software assistant architecture can be generalized to handle elec-
tronic commerce in addition to mobile commerce since the software
assistant agent is available in the wired network where electronic com-
merce takes place. An additional benefit is that the software assistant
agent’s gathering of customers profile and interest data from mobile
commerce services can be used for the electronic commerce services.

RQ2: How to test the proposed solution to RQ1, and extending it towards
supporting Massively Multiplayer Online Games?

1. A Simulation of Massively Multiplayer Online Game is a relevant test
case because MMOGs are probably among the largest and most com-
plex cyberspace services currently available, and can then provide an
estimated “upper bound” for the load of other cyberspace services,
both in terms of the richness of the services (thousands to millions
of tasks to perform and digital locations to visit), and the sheer size
(hundreds of thousands of concurrent and communicating users in a
very large virtual world).

2. Data for Customer Personalization in Massively Multiplayer Online
Games can be gathered by logging the actions performed by the user
and the avatar controlled by the user. In addition to the time, position

5.1 Research Questions 37

(virtual for the avatar and real for the user), other avatars or non-
personal characters involved in the action, and the players preferences,
paper E provides the details. But also contextual data such as the
player’s input in form of multimedia and response time may have to
be logged; logging of contextual data for customer personalization in
MMOGs I claim to be relatively little studied in the international
research society.

3. The main differences between usage data gathering in Massively Mul-
tiplayer Online Games and the existing Web Usage Logs are that there
are no existing standards for MMOG usage logs, better identification
of users in MMOGs than on the Web, much more rapid user actions
in MMOGs than on the Web (i.e. combat versus browsing), MMOGs
usually have more about their users from registration than on the Web,
Web Logs have a more limited set of actions than in games (i.e. the
HTTP protocol’s GET, POST and HEAD)

4. Customers of Massively Multiplayer Online Games usually play be-
cause they enjoy playing and communicating with other players. If
players become bored they are likely to unsubscribe, so automatic
boredom detection followed up by automatic boredom prevention are
examples of customer personalization in MMOGs. Another issue is
balancing and fairness: if some item, skill or player type becomes su-
perior to all others (i.e. no rock-scissor-paper like property), the game
can be considered unbalanced. In cooperation with students with ex-
tensive MMOG playing experience we are working with the detection
of balancing problems using visual data mining and dynamic ontolo-
gies, Rødseth and Breivik [2003]

RQ3: How can classification algorithms be used for customization of cyberspace
services, e.g. for mobile commerce and massively multiplayer online games?

1. Classification can for example be used to predict the next link a user
clicks on, e.g. a link to a purchase or content page on the (mobile)
web. Classifiers can be trained by the user’s own and other users his-
toric path of navigation. These paths are frequently called user click-
streams; this has been empirically tested on click-streams extracted
from an actual web usage log in paper I. If there exists information
about the player types (e.g. killer or explorer) for some of the players
in a massively multiplayer online game, this can potentially be used
as a training set in order to classify players with unknown player type;
this approach has been empirically tested on simulated data in paper
I.

2. Scaling up can in general either be done by reducing the problem size
(e.g. by using samples of data), increasing the processing resource

38 Evaluation

(e.g. by buying more powerful hardware), or by improving the effi-
ciency of the underlying algorithms. We have focused on the latter
approach by making the classifier incremental (i.e. not having to re-
train with all data every time new data arrives) and efficiently support
a large number of classes (Cyberspace services continuously generate a
large amount of user data and are plentiful with respect to the possible
navigational directions that corresponds to classes in the classifier),
making it decremental in order to efficiently “forget” outdated data
(Cyberspace services change over time), and finally by parallelizing
the algorithm in order to make it run efficiently on relatively cheaply
available PC-based parallel cluster systems (Cyberspace services are
frequently very large).

3. When classification data changes over time it is called concept drift,
when this occurs the classifier must unlearn obsolete training data; this
type of training is called decremental training or simply forgetting.

4. Classification performance, both computational performance and clas-
sification accuracy, can be empirically compared to other state-of-
the-art classifiers using cross-validation (see materials and methods
chapter) and several datasets. We selected to compare our C++-
based classifier to the Java-based Weka toolkit since there exists many
claims that using Java and C++ give similar computational perfor-
mance Mangione [1998]; Wilson [2003]. The main results (using paired
t-tests on results from all datasets) were that our classifier outper-
formed the WEKA classifiers by one order of magnitude or more for
the computational performance. For classification accuracy we found
no significant difference from the WEKA-classifiers, with the excep-
tion of the naive bayes classifier. The reason that our classifier is more
accurate than naive bayes is that click-stream data tends to have rela-
tions between attributes, this characteristic disputes the assumptions
of independence between attributes that naive bayes has.

5.2 Contributions

A summary of the contributions are given below:

C1: A conceptual solution and a supporting platform for implementing and us-
ing personal software assistant agents in mobile commerce services, focusing
on subscription and valued customer membership services. The solution is
aimed towards relaxing the restrictions of mobile devices and wireless com-
munications (Paper A).
This can be considered as a contribution to the mobile commerce research
community (cited by Chang [2002]; Turban et al. [2002]; Vrechopoulos et al.

5.2 Contributions 39

[2002]). Its contribution to the state-of-the art is that it is very likely to be
the first published platform (September 2001) of interface software agents
residing between the mobile commerce service and the users where the
agents support the users in accessing subscription and valued customer
membership services. Our published work resembles the work by Joshi
[2000a], but differs since his work focuses on supporting web access (i.e.
browsing) from mobile platforms while our work focuses on supporting per-
sonalization, reasonable privacy, and flexibility when accessing mobile com-
merce services from mobile platforms. The YellowStone project (Reticular
Systems) also resembles our work but differs since it focuses on using agents
to support mobile users in accessing traditional geographically bound ser-
vices such as restaurants, theaters and sports events; our work is on using
agents to support pure virtual services such as stock market information,
mobile commerce stores and games.

C2: A conceptual peer-to-peer extension of the platform in C1 for supporting
scalable and distributed product and service recommendations for mobile
commerce customers (Paper B).

This can be considered as a contribution to the mobile commerce research
community (cited by Heinemann et al. [2003a,b]; Munusamy and Leang
[2002]; Ding et al. [2002]; Ding and Unnithan [2002]; Nguyen [2002]), the
peer-to-peer research community (cited by Lee [2002]), and the recom-
mender system subcommunity of the information retrieval research com-
munity (cited by Svensson [2003]; Olsson [2003]; Weiss [2002a,b]). We be-
lieve this contributes to the state-of-the-art by very likely being the first
published work (July 2001) proposing a peer-to-peer based recommender
system. This is not only based on our own litterature study, but also from
the publications that later cited our work. A related area is that of trust
in peer-to-peer systems, but it differs from our approach by not focusing
on recommendations on its own, but rather on how trustworthy the peers
of a peer-to-peer network is.

C3: A scalable platform (called Zereal) for simulating customers of a particular
kind of m/e-commerce service - Massively Multiplayer Online Games (Plat-
form described in paper C and the related empirical performance evaluation
in paper D). This can be considered as a contribution to the computer game
research community (cited by Ho et al. [2003]; Thawonmas et al. [2003]; Ho
and Thawonmas [2004]), and as a technical contribution to the agent-based
simulation research society by providing a scalable platform for running on
parallel clusters supporting the message passing interface (MPI).

We believe this contributes to the state-of-the-art by being the only simu-
lation platform for Massively Multiplayer Online Games that is geared to-
wards experiments towards improved player personalization based on game
usage mining. The FreeMMG MMOG simulator presented by Cecin et al.

40 Evaluation

[2003] resembles Zereal but is different in the sense that: 1) FreeMMG is not
developed to run on using MPI-based parallel clusters, and 2) FreeMMG
is not developed for experimenting with player personalization based game
usage mining.

C4: Investigation and proposal of requirements for doing customer personal-
ization in Massively Multiplayer Online Game services. This includes the
creation of a proposed new data mining subfield called Game Mining cov-
ering data mining of MMOGs, a classification of computer games from a
data mining viewpoint, a comparison of information gathering for web us-
age mining and game usage mining, and finally a proposal for a common
game log format to enable game usage mining (Paper E).

This can be considered as a contribution to the state-of-the-art of the
computer game and data mining research societies (cited by Thawonmas
[2003]).

Game Mining has also been considered as new research field by Ho and
Thawonmas [2004] :

“That leads to a new research field called Game Mining, proposed
originally by Tveit et al. at NTNU (http://abiody.com/gamemining/)
and later but independently by the authors’ group, in which data
mining techniques are exploited to improve quality of MMOGs
in various aspects such as contents, design, story, cost and so
forth.”

C5: Investigation and proposition of algorithms that can be used in m/e-
commerce personalization, including developing classification algorithms
that: Scale with a large number of classes (Paper F), utilizes parallelization
(Paper H), and handles changes in classification data over time (Paper G).

This can be considered as a contribution to the data mining and machine
learning society (Paper H has been cited by Liu et al. [2003]). This is
believed to contribute to the state of the art by providing: 1) computation-
ally efficient support for incremental classification of multiple classes based
on memoized algorithmic extensions of the work for incrementally binary
classification presented by Fung and Mangasarian [2002] (paper F), 2) more
efficient computation and less storage requirements when performing decre-
mental training (handling concept drift) than the approach proposed by
Fung and Mangasarian [2002], both an exponential weight-decay reduction
of previous classifier knowledge and a hybrid approach supporting both ex-
ponential weight-decay reduction together with decrements based on time
windows of fixed size (paper G), 3) parallelization with empirical evidence
of significant speedup for the incremental classification algorithm presented
by Fung and Mangasarian [2002] using a heap-based tree topology of com-
putational nodes (H).

http://abiody.com/gamemining/

5.3 Contextual Description 41

Contributions RQ1 RQ2 RQ3
C1 X
C2 X
C3 X
C4 X
C5 X

Table 5.1: Relation - Research Questions and Contributions

5.3 Contextual Description

Due to the multi-disciplinary nature of the work, it was not practically feasible
give a full contextual description for this work, but the focus was on giving
enough relevant information to support the papers. In particular the related
work the proximal support vector classifiers (chapter 3.3.7) was very hard to
get an overview of. Parts of the contextual work were taken from the included
papers, some partially from other papers by the author, and the rest were written
only for the thesis.

5.4 Citations of Our Papers

The number of citations of a scientific publication is frequently being used as an
impact factor to evaluate research (Garfield [2003]), e.g. between papers in the
Science Citation Index. It has also been shown that online available papers are
more highly cited (Lawrence [2001]). Note that the number of citations may say
little or nothing about the quality of the cited paper, but it can potentially say
something about how many people who read or at least looked at the paper.

The publications leading to this thesis have knowingly been cited more than 50
times by researchers at conferences and universities in 20 countries. The most
frequently cited papers are: Tveit [2001a] (partially used for chapter 3) with 33
citations, Tveit [2001c] with 15 citations, and Matskin and Tveit [2001]; Tveit
et al. [2003b] with 3 citations each.

Educational Use of Our Papers

Some of the papers leading to this thesis have been used in educational settings,
e.g. Tveit [2001c] was a part of the:

42 Evaluation

• Curriculum for Peer-to-Peer (P2P) Data Management (2003), a course at
University of Leipzig (Germany)

• Recommended readings for honors projects (2003) at University of Carleton
(Canada).

Tveit [2001a] was a part of the:

• Curriculum for Systemes Multi-Agent (2001-2002) at Universite de Savoie
(France)

• Related material for the course on Expert Systems and Heuristic Program-
ming (2002) at University of Alabama in Huntsville (USA)

• Additional references for the CS 6361 PhD course on Requirements Engi-
neering (2002) at the Department of Computer Science, University of Texas
at Dallas (USA)

• Related material for Basic of Knowledge Engineering (Spring 2002) at De-
partment of Computer Science, Faculty of Technology, University of Vaasaa
(Finland)

• Bibliography for the CS 6934 seminar (fall 2002) at the school of computing,
University of Utah (USA).

• Recommended reading for course 2G1514 Distributed Artificial Intelligence
and Intelligent Agents (spring 2004), Department of Microelectronics and
Information Technology (IMIT), Royal Institute of Technology (Sweden).

5.5 Lessons Learned

The work presented in this thesis has been published internationally; this gave
valuable feedback through the reviewing process, questions after presentations,
and discussions with researchers from several universities and research institu-
tions. The research presented showed to follow (for the author) a surprisingly
hard, non-linear and multi-disciplinary path, but with the focus of the Electronic
Commercial Agents (ElComAg) project in mind at all times.

Chapter 6

Conclusions and Future
Work

This chapter concludes the thesis by summarizing the main results and contri-
butions of this work.

6.1 Summary of Results and Contributions

This thesis proposed user representation and user classification approaches for
increased customization (personalization) of cyberspace services. Examples of
such customization include delegation of data and tasks to software agents, or
automatic pre-fetching or pre-processing of service based on classification-based
predictions. The cyberspace service types primarily considered Mobile Com-
merce (e.g. news, finance and games) and Massively Multiplayer Online Games
(MMOGs)

First a conceptual software agent architecture for supporting users of mobile
commerce services was presented, then the architecture was extended to support
automatic product and service recommendations by proposing a peer-to-peer
based distributed collaborative filtering approach.

In order to examine the scalability of the proposed conceptual software agent
architecture a simulator for Massively Multiplayer Online Games was developed,
MMOGs were selected because they are currently the largest and most complex
cyberspace services available, hence providing an estimated “upper bound” for
the performance requirements of (most) other cyberspace services using the agent
architectures.

44 Conclusions and Future Work

Prediction for cyberspace personalization are frequently classification problems
(e.g. pre-fetching based on click-stream prediction from usage logs), and due
to the services large scale and continuously changing nature classifiers need to
handle this, this motivates the parallel, incremental and decremental classifiers
proposed.

Finally the incremental classifier was empirically compared with other classifiers
(C4.5, Logistic Regression, Voted Perceptron) on general classification data sets,
user click-streams from an actual web usage log and a synthetic game usage log
from the developed MMOG simulator. The incremental classifier showed to be
about 1 order of magnitude (or more) faster than the classifiers compared with,
and significantly more accurate than the naive bayes classifier on the selected data
sets. We didn’t find any significant difference between the classification accuracy
of the proposed classifier and the other classifiers on the selected data sets; this
may suggest that the proposed classifiers can be useful for user prediction in
cyberspace services.

6.2 Directions for Future Work

Opportunities for further work on cyberspace user representation include:

• Implement and empirically test the proposed software assistant agent ar-
chitecture for several simulated mobile commerce services, or even deploy it
for a live service. The peer-to-peer collaborative filtering architecture can
potentially be implemented and tested for the recommendation of mobile
phone ringing tones and backgrounds.

• Add support for automatic pre-fetching of content based on classification-
based prediction trained by simulated or actual mobile user click-streams,
and potentially test whether user-positioning data can be used to improve
the click-stream predictions.

• Add increased realism to the MMOG simulator by supporting: coalitions,
quests and missions, simulation of narration and natural language, im-
proved intelligence support (e.g. BDI and automatic planning), simulation
of intra-game e-commerce activities (e.g. trade between players). The in-
creased realism can then be used to test various approaches for logging and
data mining of player behavior.

Opportunities for further work on cyberspace user classification include:

• Empiricallly compare with other classification-related methods, e.g. MARS
(Friedman [1991]), Sprint (Shafer et al. [1996b], CBR (Aamodt and Plaza
[1994]), and GP (Koza [1998]).

6.2 Directions for Future Work 45

• Investigate efficient incremental support for non-linear kernels of the clas-
sifiers.

• Add incremental balancing mechanisms that can handle a class-wise unbal-
anced set of training examples.

• Add parallel support to any new features for the classifier algorithms.

• Investigate whether the linear systems involving symmetric positive def-
inite matrices used in the proposed classifiers can be transformed into a
Toeplitz-like (or Hankel-like) system. Introducing Toepliz-like systems can
potentially dramatically speed up the final matrix inversion or solution
of linear system that usually involves Θ(n3) operations (where n is the
number of features of the classification examples). Due to the relation be-
tween matrix inversion and matrix multiplication (Cormen et al. [1990])
the matrix inversion process can potentially be reduced to Θ(n2.7) opera-
tions using Strassen’s method (Strassen [1969]) or even Θ(n2.36) operations
using Winograd and Coppersmith’s method (Coppersmith and Winograd
[1990]), these methods have unfortunately shown to be of little practical
use. For general complex and real matrices a lower bound for the size of
circuit any arithmetic circuit for the product of two matrices of Ω(n2 log n)
operations (Raz [2003]), so the question is: can the inverse or solution of
the linear system calculated faster than Θ(n2 log n) for the (non-general)
symmetric and positive definite matrices present in our proposed classifier
approaches. The requirement is probably that one can find a fast trans-
formation from symmetric positive definite matrix systems into a Toeplitz
system that can be solved in Θ(n log n) operations, Chan and Ng [1996]. It
has been hypothesized that all matrices are equivalent to Toeplitz matrices
(Mackey et al. [1999]), counter examples falsifying that was presented by
Amdeberhan and Heinig [2003], but symmetric positive definite matrices
have not yet been proven to be different from Toeplitz matrices.

46 Conclusions and Future Work

Part III

Papers

Paper A

@Article{2001:JDBM:MatskinTveit,
author = {Mihhail Matskin and Amund Tveit},
title = "{Mobile Commerce in WAP-based Services}",
journal = {Journal of Database Management},
year = {2001},
volume = {12},
number = {3},
pages = {27--35},
month = {July--September}

}

This paper has been cited by Chang [2002]; Turban et al. [2002]; Vrechopoulos
et al. [2002].

MOBILE COMMERCE AGENTS IN WAP-BASED SERVICES

Mihhail Matskin and Amund Tveit

Department of Computer and Information Science

Norwegian University of Science and Technology

N-7491 Trondheim, NORWAY

Phones: +47 73590767, +47 73594480

Fax: +47 73594466

Emails: Mihhail.Matskin@idi.ntnu.no, Amund.Tveit@idi.ntnu.no

ABSTRACT

With the increasing number of e-commerce services for mobile devices, there are challenges in

making these services more personalized and to take into account the severely constrained

bandwidth and restricted user interface these devices currently provide. In this paper we consider

an agent-based platform for support of mobile commerce using wireless (WAP-based) devices.

Agents represent mobile device customers in the network by implementing highly personalized

customer profiles. The platform allows customization and adaptation of mobile commerce

services as well as pro-active processing and notification of important events. Information to the

customers is delivered both via WML-decks and SMS messages. Usage of the platform is

illustrated by examples of valued customer membership services and subscription services

support. Some details of a prototype platform implementation are briefly considered.

KEYWORDS: Mobile services, electronic commerce, intelligent agents, wireless devices,

WAP/WML

50 Agents in Mobile Commerce

INTRODUCTION

The increasing number of mobile portable devices in use creates a great opportunity for

development of a wide spectrum of mobile e-commerce services. The main advantage of these

services is their high availability. Customers with a mobile device can enjoy these e-commerce

services regardless of time or location. However, mobile devices, such as cellular phones and

PDAs, are constrained by severe restrictions that might complicate practical use of e-commerce

services. These restrictions are related to the limitations of wireless data networks when

compared to wired networks (less bandwidth, more latency, lower connection stability, less

predictability, and less standardized protocols) and to the limitations of mobile handsets when

compared to personal computers (small screen size, complicated text input, little memory, slow

CPU, and more constrained energy supply).

Additional problems with wide application of mobile e-commerce services are related to higher

cost of wireless communications (compared with wired communications), and to the assumption

that most users of mobile devices do not have sufficient experience of Internet or PC usage. This

puts forward requirements of simplicity and expressiveness to the services.

It is possible that some of the limitations will be relaxed in the future through improved hardware

or telecommunication networks technology (Tarasewich & Warkentin, 2000), but at the moment

all of them should be taken into consideration when implementing mobile services.

As a basic way of relaxing the above-mentioned problems and limitations we see the following

solutions:

• the connection time to the network service should be minimized,

• the precision of delivered information should be high in order to avoid exposing a large

amount of useless information to be read on a small screen.

These solutions assume that as much work as possible should be done off-line without the mobile

device being directly connected to the network.

Our approach towards reaching this goal is to provide a user of mobile devices with a personal

software assistant that represents the customer’s profile and interests in e-commerce services. In

order to implement such an assistant, we use an agent-based approach and agent technology. The

personal assistant operates in the Internet environment, and the users employ WAP-enabled

mobile devices to communicate with their assistants to take advantage of e-commerce services.

The rest of the paper is organized as follows. First we describe some details of e-commerce

services we would like to implement, as well as basic problems associated with their

implementation. Then we briefly consider basic concepts of agent technology and WAP as

Paper A 51

enabling technologies. Next we propose a solution for mobile e-commerce services utilizing

software agents and WAP-based communication. Then we give some additional details of a

generic platform and a prototype we have developed for implementation of various mobile e-

commerce services. Finally we present our conclusions and an outline of future works.

TWO EXAMPLES OF MOBILE E-COMMERCE SERVICES

As our examples of mobile e-commerce services, we consider valued customer membership

service support and subscription-based services.

The purpose of valued customer membership service is to provide members with special offers

and with information about available products and services. Usually the service is applied by a

shop or a chain of shops to provide membership benefits to their registered customers. Basically

the service uses information about registered members to support mailing catalogues or booklets

with particular offers. The main problem with such a service is its very low degree of

personalization. The same offers and catalogues are usually sent to all members without

consideration of their particular interests. This may cause customers to miss out interesting offers

as a result of them being hidden amidst a huge amount of non-relevant information. It is also

possible that customers simply ignore non-personalized catalogues and offers. In order to achieve

better personalization of services, more information about customers’ interests and preferences

should be included in the membership database, however this may contradict with privacy

requirements (W3C, 2000). Even if customers agree to disclose their preferences to the

membership service this can hardly be done in a flexible manner especially with huge centralized

databases that assume a standard set of attributes for all customers.

Advertisements and information are usually sent to customers by regular mail. Usage of mobile

portable devices for receiving these advertisements is not efficient when the limitations

mentioned in the Introduction are taken into account. Nevertheless getting the latest knowledge of

good offers for required products could be very valuable when planning shopping, in particular in

the case when booklets and catalogues are not readily available.

Our second example of an e-commerce service is support of subscription services for mobile

device customers. This is a well-developed service supported by many providers. As an example

we take the support of stock market quotes notification. The main problem with this service is

similar to the above-mentioned problems with customers’ membership services. Customers wish

52 Agents in Mobile Commerce

to be notified about changes in quotes of selected stocks. In order to get such notification, they

need to disclose their stock preferences to a service provider. This is not often desirable because

the customers may wish to preserve their privacy about stock preferences. It is quite usual that

customer’s quote notification preferences change over time. In this case personalization is often

poor because of the restricted ability of dynamic service customization imposed by the limitations

of mobile devices.

ENABLING TECHNOLOGIES

Before we propose our solution to relax the limitations of wireless communications in mobile e-

commerce services, we consider the basic features of two recent technologies: software agents

and WAP.

Software Agents

In spite of diverse views on agents in different research communities, there is an increasing

agreement of what the basic agent characteristics are (Bradshaw, 1997; Huhns et al., 1998,

Jennings & Wooldridge, 1998; Nwana, 1996; Wooldridge & Jennings, 1995). We can summarize

these characteristics as follows:

• Agents represent an entity (human or another agent) in a computer environment and operates

on behalf of its creator,

• Agents employ autonomous behavior and can operate without outside intervention,

• Agents employ pro-active goal-oriented behavior and can take initiative in order to achieve

their goals,

• Agents react to changes in the environment: they perceive and affect the environment,

• Agents can communicate with each other and employ negotiation and/or coordination.

The last four properties are usually referred to as weak intelligent agent properties (Wooldridge &

Jennings, 1995). Additional properties are usually attached to agents. Among them we consider

mobility and learning as very important properties.

At the moment mobile agent platforms are better developed than intelligent agent platforms.

However, we would like to underline that considering only mobility as the main agent property is

a simplification of the whole agent paradigm, and this might be misleading when potential

applications for agents are considered.

Paper A 53

The ability of agents to learn is also referred to as an intelligent ability that is very desirable to

implement in an agent system. However, we admit that even when agents do not employ learning,

they may introduce intelligent abilities into distributed computing and service support by

employing autonomy, pro-activity, reactivity and social ability.

When we talk about agents we should remember the following two views to agency:

• Individual view – considers agents which do not cooperate or communicate with other agents,

• Group view (Multi-Agent Systems) – considers the behavior of a collection of autonomous

agents communicating with each other in order to solve a given problem.

The first view employs autonomy, pro-activity and reactivity from the above-mentioned agent

characteristics, but it doesn’t consider communication between agents as a vehicle for common

problem solving. The second view underlines social ability and cooperative/competitive behavior

between agents.

WAP- Wireless Application Protocol

The basic idea of WAP (Mann, 2000; WAP, 2000) as a standard for wireless communications is

to extend the communicative abilities of wireless telephony. In other words cellular phones are no

longer considered as just phones, but rather as communication devices capable of running

applications and capable of communicating with other devices and applications across a wireless

network. The standard takes into account the limitations of wireless data networks compared to

wired networks and the limitations of mobile handsets compared to personal computers (see

Introduction).

The WAP standard specifies an end-to-end application protocol and a browser-based application

environment as two essential elements of wireless communication. The application protocol is a

layered communication protocol that is embedded into each WAP-enabled user component. The

network side includes a server component that implements the other end of the protocol capable

of communicating with any WAP component. The server component often assumes the role of a

gateway for routing requests from a user component to an application server. The gateway can be

physically located in a telecom network, building a bridge between wireless and computer

networks.

54 Agents in Mobile Commerce

A “micro browser” integrated into a handset allows displaying information to the user and

accepting user requests. The basis for information representation is WML (Wireless Markup

Language), based on a datatype definition (DTD) for XML. The basic unit of WML is a card that

specifies a single user interaction screen. Navigation occurs between cards that are grouped into

decks. A deck is the top-most element of a WML document, presenting possible alternatives for

user interactions.

It is assumed that when the user logs on to a WAP gateway s/he supplies the address of a starting

page (WML deck) - a portal - and then performs interactions according to the cards in the deck. It

is desirable for the user to be able to find all the information s/he needs linked directly or with as

few links as possible from the starting deck. It is also preferable that favorite cards regularly

visited by the user can be reached through a shorter chain of links than cards that are only used

once in a while.

CONCEPTUAL SOLUTION FOR AGENT BASED MOBILE SERVICES

Our approach towards implementing mobile e-commerce services is based on using personal

software assistant agents. Software assistant agents were initially proposed as desktop agents for

support of user work with Personal Computers (PC) (Kozierok & Maes, 1993; Lieberman, 1995;

Maes, 1994; Van Dyke, 1999). However, we believe that personal assistants for mobile devices,

like cellular phones, significantly differ from software assistants for PCs. The main differences

are due to restrictions of wireless communications compared to wired communications (see

Introduction), limitations in user interaction with mobile devices, short connecting time of

customers and services in mobile communication, and a dynamically changing communication

context of users of mobile devices (for example, changing geographical location). All this puts

forward higher requirements of pro-activity, prediction of user needs, personalization and

delivery of precise information for the software assistant of a mobile device customer than for the

software assistant of a PC user.

In our solution each mobile device customer has his own software assistant agent which

represents his interests in the network. The assistant keeps a customer profile (preferences) and

analyzes and generates information to be made available to the customer by taking this profile

into account. This solution is presented in Figure 1.

Paper A 55

Customer with
WAP Phone

Financial
Services

News
Services

Entertainment
Services

Software assistant
agent

Software assistant
agentCustomer with

WAP Phone

Figure 1 - Mobile Commerce Agent Environment

The assistant is implemented as an autonomous software agent. During periods when it is not

necessary to do anything, it may hibernate, but when some event occurs, the agent awakes and

performs some actions, such as generating or updating the information to be read by the customer.

When the customer connects to the personal portal, s/he will get pro-actively generated and up-to-

date information, thus s/he will not need to search for the information explicitly and subsequently

wait for the search completion. Autonomy, reactivity, and pro-activity should play a key role in

implementing these assistant agents. Pro-active behavior should rely on a customer profile

presented in a system. In a more advanced case, agents’ learning ability can also be developed,

and monitoring of customers’ actions may be a source for deciding about a preferred time for the

availability of particular information. In some other case, a pro-active reasoning using available

sources about a customer (for example, from user profile, from electronic calendar, etc.) can use

advance deductive methods. It is assumed that the user may also specify explicit goals for agents

and that they may start to act in order to satisfy the goals.

Application of the assistant-based system to the examples of e-commerce services we considered

previously could be demonstrated as follows. In the case of customer membership service each

registered member can be provided with a personal agent running on a customer’s host or on a

service provider’s host (see Figure 2).

56 Agents in Mobile Commerce

Customer with
WAP Phone

VCMS

Software assistant
agent

Software assistant
agent

Customer with
WAP Phone

Registration

Events

Offers

Figure 2 - Agent-based Valued Customer Membership Service (VCMS)

Customer with
WAP Phone

VCMS

Software assistant
agent

Software assistant
agent

Customer with
WAP Phone

Request

Request

Agent Pull

Customer with
WAP Phone

VCMS

Software assistant
agent

Software assistant
agent

Info

Info

Service Push

Customer with
WAP Phone

Figure 3 - Agent-Service communication alternatives

Paper A 57

The agent can have a set of customer preferences presented as his profile. Customer privacy

should be supported by corresponding host security, agent encryption, authentication between

service host and agents, etc. The offers in the membership services can be implemented in two

ways:

• Offers can be posted to members’ agents (see Figure 3 bottom),

• Offers can be put into a special message-pool or web-page (see Figure 3 top).

In the first case, the agents perform offer analysis as a reaction to receiving a message from a

service provider. In the second case, agents check offers in a common message-pool in some

regular (or user defined) time-intervals, and then perform their analysis. The second option seems

to be more practical in the case of membership service, because it supports asynchronous access

to information and better service scalability.

Analysis of membership offers is done in a distributed and asynchronous fashion and, in

particular, it may include filtering offers according to customer preferences.

Customer with
WAP Phone

Software assistant
agent

Request

Customer Pull
(Browsing)

Info

Agent Push
(Notification)

Browse

Cr
ea

te

WML
documents

Figure 4 - Agent-Customer communication

Analysis results can be utilized in the following two ways (see Figure 4):

1. Generating data into a page which might be available for browsing by the customer from a

mobile device

2. Sending a message to the customer (e-mail, SMS etc.)

Both ways, as well as their combination, might be used for communication with the customer.

The first way allows for a more detailed description of the offers, while the second way allows

58 Agents in Mobile Commerce

informing the customer in real-time about the offers, as well as providing references to their

detailed description.

Functionality of the assistant can be more sophisticated than just filtering incoming data. In

particular, it may include pro-active reorganizing of the customer’s web/WAP pages. Such

reorganizing may take into account time, date, geographical location and/or the customer’s

calendar book. For example, a customer may have a list of different offers on his web/WAP page

which are relevant to his interests. The personal agent, which knows the customer’s calendar and

preferences, may conclude that just before the customer’s vacation, offers of travels (to

Mediterranean countries) are of greater interest to the customer than other offers. After such a

conclusion has been drawn, the agent can pro-actively find and put such offers on top of the offer

list, providing easy offer access and visibility to the customer. The agent’s decisions can be based

on present customer profile, common knowledge, and the agent’s deductive abilities. In another

situation geographical location of the customer may actualize some offers related to closely

located shops. These offers can be pro-actively put on top of the offer list for the time being when

the customer is near this location. In this case the agent pro-actively search for relevant offers

from geographically neighboring sources (shops, services, enterprises) and presents the offers to

the customer. The architecture for implementing different agent functionality is discussed in the

next section.

When the customer precisely specifies his queries for some product, the agent may also actively

ask for membership services for required information. In this case the agent initiates a

communication (and maybe negotiation) process.

In the case of subscription services and stock market quotes notification the proposed solution

will be similar. Customer preferences in this situation may include both names of stocks and

conditions when urgent notification is necessary (for example, changing quotes below a

predefined threshold or the correlation between changes of quotes for different stocks). The

customer’s agent can have access to regularly updated stock market quotes in a predefined place.

It may filter the quotes information according to the customer’s preferences, generate relevant

information to the pages read by the customer, and/or notify the customer in the real-time about

recognized important events by sending warning messages to the customer’s mobile device.

We can summarize general advantages of the proposed conceptual solution as follows:

Paper A 59

• The solution provides better service privacy than centralized service provision. By better

service privacy we assume that it is not necessary for the customer to disclose private data

and preferences to a service provider in order to get a proper service (as it is assumed in the

case of centralized service provision). The customer’s preferences can be encapsulated into

the personal agent who may run in the user’s (protected and trusted) computational

environment and they can be non-available for non-authorized parties. Of course, we can’t

completely eliminate the risk of disclosing the private information, however, the proposed

solution tries to reduce such a risk.

• The solution may give better flexibility in describing preferences than centralized service

provision. There are no requirements to keep a unified definition of attributes presenting

customer’s preferences.

• The solution provides better scalability than centralized service provision. Analysis and

information processing can be asynchronous, decentralized, and distributed.

The above-mentioned properties give better personalization of services and take into account the

restrictions of mobile devices when generating output to the customers.

A PLATFORM FOR MOBILE E-COMMERCE SERVICES SUPPORT

Taking into account the conceptual solution presented in the previous section, we propose a

general platform for generating systems supporting mobile e-commerce services (see Figure 5).

Customer with
WAP Phone

Customer
Profile

Agent
Machinery

Functionality
Module

Customer-Agent
Communication

Module

Agent-Service
Communication

Module

Software Assistant
Agent

Profile
Description

Module
Agent Generator

E-Commerce
Service Provider

Agent
Features

Figure 5 – General architecture of platform

60 Agents in Mobile Commerce

The basic components of the platform are as follows:

• Customer profile description module,

• Customer-Agent communication module,

• Agent-Service communication module,

• Agent functionality module,

• Agent deployment module (agent generator and agent machinery).

Customer Profile Description Module

Each user should be able to present his or her profile by telling the agent what information s/he

would like to have and, possibly, where to find it. Since most non-experienced customers

probably may find this a hard and time consuming task, it should be possible to create certain

default profiles targeted towards large groups of users. This could be, for example, a creation of a

profile with the target group being customers interested in sports and fashion. Some other profiles

would cover target groups of people interested, for instance, in technology, economy, and

politics. To combine the two options (different individual and group profiles) it should be

possible to let the user create his profile by combining several profiles together. In a simple case

we assume that such combining can be done by manual editing or by performing operations (for

instance, intersection, union, or difference) over source profile components. For example, the user

could indicate that s/he is interested in sports and technology, but not in fashion, economy, and

politics.

Personalized assistant
agent

Library of profile
patterns

Customer
Profile
Record

Customer PC

Registration Service

Customer with
WAP Phone

Figure 6 - Registration service

Paper A 61

In a general case it is possible for the customer to make a registration (profile presentation) for a

service both using computer-based and WAP-based handset interfaces as shown in Figure 6.

The result of registration is a generated personal assistant agent that may start running on a

customer’s PC or on the server of a service provider.

In the current version (see Prototype Description), a customer’s profile is presented as a set of

patterns together with computational rules used for filtering and analysis of information.

However, the profile representation format can be overridden if needed.

During registration the module also provides a customer profile record that can be used by service

providers. This record includes customer data which s/he agrees to disclose to the service

provider and which can be used, for example, for gathering information about service customers.

Customer-Agent Communication Module

Communication between the customer and the agent can be done in two ways (see Figure 7).

XML
Engine

DTD
repository

XSL
repository

XSL selection

Software agent

DTD selection
Analyzed data

WML Decks

SMS
Mail

Analyzed data
WML

Customer Input

SMS MessagesCustomer with
WAP Phone

Figure 7 – Customer-Agent communication module

1. In the case of indirect communication, the customer can read pages from the Internet via a

WAP-enabled mobile device, and agent prepares such pages containing data to be read by the

customer. In this case communication module generates WML-page content accessible by the

customer.

62 Agents in Mobile Commerce

2. In the case of direct communication the agent sends SMS (Short Messaging Service)

messages to the customer’s mobile phone. Contents of the messages may include brief

notifications of important events and the URL address of the WML-page(s) where more

detailed information can be found.

We would like to note that in case of only short notification messages, cellular phones without

WAP could also be used for notification of customers.

Customers can input information for the agent via WML-enabled menus on their phones, and this

allows making changes into customer profile in real-time.

Agent-Service Communication Module

Communication between agents and service providers can be organized using pull and/or push

techniques (see Figure 3). Both techniques can be utilized depending on situations, and their

implementation should be symmetric. This means that both parties can initiate communication

and select the communication method.

We believe the pull technique will most often be used for regular service provision and

consumption, while the push technique seems to be more suitable for urgent notification. For

example, a stock market service provider may regularly put stock quotes into a common message-

pool. A similar pool can be used by an agent for requests to a service provider. However,

notifications of significant changes in DJIA (Dow Jones Industrial Average) or NASDAQ stock

indexes can be pushed directly to agents without letting them wait to read such news from the

message-pool after a time interval which is defined for them.

In a more advanced case we believe that service providers can also be represented by software

agents, and that these agents may be involved in the communication with customer agents

(Matskin, 2000). The communication may include service marketing, customer’s needs

identification, and price negotiation. This already refers to group view in the agent approach and

it may require Agent Communication Language (ACL) based communications (for example,

FIPA (FIPA, 2000) or KQML (Finin, 1997)).

Agent Functionality Module

Functionality of the assistant can be different for different applications, and may, for example,

include:

Paper A 63

• Event handling,

• Filtering information,

• Search for products,

• Comparison of products,

• Finding other agents that carry similar user preferences (Collaborative filtering (Konstan,

1997)),

• Making purchases on behalf of the customer.

In our platform we assume that functionality of the assistant is implemented as an independent

software component that can be overridden when needed.

Agent Deployment Module

In order to support the creation of individual agents we propose an architecture of an agent shell.

The shell implements general agent functionality and supports easy customization, overriding and

extension.

We introduce the agent shell architecture in two steps. First we describe an agent machinery level,

and then consider its functional architecture.

Agent shell machinery is based on event-driven execution (see Figure 8), and includes:

• Prioritized Event List handled by embedded event managers,

• Event description list including event type descriptions with references to handlers,

• Event handlers - procedures which are invoked when a corresponding event is dispatched,

• Agent interface, including ACL and low-level communication ports,

• Agent memory that contains models (specifications, classes, types, etc.) and data (raw data,

objects, etc.).

64 Agents in Mobile Commerce

Event

EventType1 Handler1
EventType2 Handler2

... ...
EventTypeN HandlerN

Handler1 ... HandlerN

Communication
Port Models

Event List
(Prioritized)

Event description list
(including Event types and
references to Event
handlers)

Event handlers

Agent memory

Agent interface

Agent engine

Figure 8 - Agent machinery

Events may arrive to the Event List either

• externally - from the environment, clock, by communicating with other agents, or

• internally - from the Event handlers.

The Event handlers have access to the Event description list and may modify it when necessary.

The Agent memory is used by the Event handlers and can be updated by them or due to requests

from the outside world.

Planner

ACL
Communication

Block

Goals
analyser/

synthesizer

Executor

Models/Knowledge
Base

Sensing

Affection

Low-level
communication

Figure 9 - Agent shell functional structure

Paper A 65

An agent creator (a user or an agent) should be provided by tools to describe particular event

types, event handlers, communication channels, and agent memory structure and contents.

Detailed consideration of such tools is outside the scope of this paper and we refer to (Matskin &

Tyugu, 1999; Matskin, 2000) for more details.

The agent shell functionality level is built on top of the agent machinery level and includes the

following general blocks (see Figure 9):

• Communication blocks including ACL communication with agents and a low-level (signal-

level) communication with the environment.

• Goal Analyzer/Synthesizer (GA) module perceives the environment, synthesizes a goal

description, evaluates incoming messages, and selects a plan from a collection of alternative

plans.

• Planner module creates a collection of plans based on the goal and Knowledge Base (KB).

• Executor – performs actions according to agent machinery level rules.

A typical operating scenario for an agent is as follows. When a message arrives or an event

occurs it is sensed via Communication blocks and analyzed by the GA module. The GA module

tries to find an action from the KB which is a proper reaction to the event. If the action is found, it

is put into the Event List together with its handler and the Executor is called. If no action is found,

the GA module synthesizes a goal to create a new action sequence (plan) as a reaction to the

event, and calls the Planner to produce an optional set of alternative sequences that satisfy the

goal. This set of action sequences is returned to the GA module which selects the most suitable

action sequence, puts it into the Event List and calls the Executor.

In the current implementation (see Prototype Description) we basically focus on the agent

machinery level and leave the higher level functional blocks for future works.

PROTOTYPE DESCRIPTION

In order to test our proposed solution a demo prototype of a WAP-based service for stock analysis

of the Norwegian Stock Exchange Market (Oslo Børs) has been developed. In particular, the

prototype provides a service for notification of customers about changes in the stock quotas. The

notification is done by a personal software agent which sends SMS messages to customer's phone

and creates WML-pages. Basic functionality of the prototype includes:

• WML-based customer registration of stock portfolio and corresponding notification

conditions,

66 Agents in Mobile Commerce

• SMS-based notification when stock values change above the user-defined threshold (e.g.

more than 10% change in stock valuation since last time),

• Scheduled web-crawling of stock data stored in a database to enable further analysis.

a) b) c) d)

Name:
Jane Jackson
SMSmail:
92495346@s

Ticker 1:
NHY
pchg:
10%

Ticker 2:
ORK
pchg:
7%

Login:
janej
Password:

WARNING
2000-05-07
11:22:38

NHY +14%

e)

Figure 10 - WAP-based customer interaction

For testing we used the Nokia 7110 WAP phone and several WAP browsers (Nokia, 2000). Some

screen examples of both WML-decks and SMS-messages of the stock market quotes notification

service are shown in Figure 10.

A typical way of operation for the prototype is as follows. A user first registers to the service (at

http://wap.elcomag.com/) using WAP-enabled phone (see Figure 10.a,b,c,d). In our example, the

registration fields are as follows: Customer’s name, SMS mail-address (to allow notification),

Stock ticker(s) (e.g. NHY for Norwegian Hydro), the percentage the stock price can change until

notification, login-name and the password. Through this registration a personal agent is created.

Next time the customer would like to make changes in the presented data s/he needs to enter login

name and password (see Figure 10.d). The agent starts to sense and analyze the stock market data

and notifies the customer when notification conditions are satisfied (for example, see Figure 10.e,

where NHY stock value raises by 14%).

Paper A 67

A general structure of the prototype is presented in Figure 11.

Customer with
WAP Phone

Stock Analysis
Agent (Java)

$

VISIO CORPORATION

Stock Exchange
(www.ose.no)

WAP
Gateway

Apache
WEB/WAP Server
(PHP, WML) Analyzed stock

data (MySQL DB)

SMS
Gateway

Figure 11 - Prototype overview

The registration part of the prototype was programmed using PHP scripts to generate WML decks

for the WAP-based Graphical User Interface. An Apache HTTP server running on a Windows NT

machine hosts the PHP scripts. The agent part of the prototype is programmed in Java. The agent

itself periodically downloads an HTML document from the stock exchange (the Norwegian Stock

Exchange: http://www.ose.no) site in order to receive up-to-date stock quotes. This document is

then parsed and extracted stock quotes are stored in the MySQL database (DuBois, 1999). Then

the agent checks if the customer had any stocks that changed more than the registered percentage

limit. When these stocks are found, the agent notifies the user about the changes by sending an

SMS mail (using a Perl CGI-script on a machine with a mail server). In the prototype system

agents run on a trusted Windows NT host of the service provider. However, it is possible for

agents to run on a customer’s machine connected to the network.

We can summarize experiences obtained from the prototype implementation as follows:

• The prototype demonstrated that the proposed conceptual solution is technically feasible.

The prototype contains all basic blocks of the proposed platform with a default functionality

which can be overridden.

• General supporting technologies are available. However, some of the WAP browsers and

emulators should be improved in order to offer a satisfactory service.

CONCLUSIONS AND FUTURE WORKS

68 Agents in Mobile Commerce

We propose a solution and a supporting platform for implementing and using personal software

assistants in mobile e-commerce services. The solution is aimed towards relaxing restrictions of

mobile devices and wireless communications. It is based on using software agents as an enabling

technology for implementing software assistants for mobile device customers. The basic

advantages of the solution include high personalization, reasonable privacy, flexibility, and

scalability of agent-enabled mobile e-commerce services. These advantages are based on

autonomous, decentralized and distributed processing as well as on the support of different levels

of communication.

Future work is planned both for improving functionality and the implementation of the platform

and its application to different e-commerce services. In particular, the following work is currently

in progress:

• Development of the agent group view in the platform. This includes supporting

communication, coordination, and negotiation between customer and service provider agents

as well as between different customer agents. This allows cooperative problem solving,

collaborative filtering, and information exchange between agents representing different

participants in the e-commerce activity. The work is based on our earlier developed Agora

architecture and system for support of cooperative work between software agents (Matskin et

al., 1998; Matskin, 1999; Matskin et al., 2000).

• Development of a library of agent functional blocks allowing easier creation, personalization,

and customization of personal software assistants. This also includes making purchase

agreements and payments.

• Consideration of compatibility with existent services and systems using wrappers

(Genesereth, 1997).

• Implementation of planning, knowledge base and reflection blocks in agent deployment

module.

• Taking geographical location of the customer into account when performing pro-active

behavior of query processing (for example, by using GSM positioning or Global Positioning

System (Thibodeau, 2000)).

• Application of the platform for implementing a real estate buying assistant agent, advertising

service, and product search and comparison services for mobile device customers.

Paper A 69

ACKNOWLEDGEMENTS

We are grateful to Arne Sølvberg for fruitful discussions during the early stages of the work. We

also would like to thank Thomas Brox Røst and Richard Sanders for their comments and proof

reading. This work is partially supported by the Norwegian Research Foundation in the

framework of the Distributed Information Technology Systems (DITS) program and the

ElComAg project.

REFERENCES

Bradshaw, J. M. (Ed.). (1997). Software Agents. Menlo Park, CA: AAAI Press/The MIT

Press.

DuBois, P. (1999). MySQL. Macmillan Technical Publishing.

Finin, T., Labrou, Y. & Mayfield J. (1997). KQML as an Agent Communication Language.

In: J. M. Bradshaw, (Ed.), Software Agents (pp. 291-316). AAAI Press/The MIT Press: Menlo

Park, CA.

FIPA (2000). Agent Communication Language Specifications. Available:

http://www.fipa.org/repository/aclspecs.html

Genesereth, M. R. (1997). An Agent –Based Framework for Interoperability. In: J. M.

Bradshaw, (Ed.), Software Agents (pp. 317-345). AAAI Press/The MIT Press: Menlo Park, CA.

Huhns, M. N., Singh, M. P., & Gasser, L. (Eds.). (1998), Readings in Agents, Morgan

Kaufmann Publishers.

Jennings, N. R., & Wooldridge, M. J. (Eds.). (1998). Agent Technology: Foundations,

Applications and Markets. Springer Verlag.

Konstan, J. A., Miller, B. N., Maltz, D., Herlocker, J. L., Gordon, L. R., & Riedl, J. (1997).

GroupLens: applying collaborative filtering to Usenet news. Communications of the ACM, 40(3),

77-87.

Kozierok, R. & Maes, P. (1993). A Learning Interface Agent for Scheduling Meetings.

Proceedings of the ACM-SIGCHI International Workshop on Intelligent User Interfaces, Florida,

81-93.

Lieberman, H. (1995). Letizia: An Agent that Assists Web Browsing. Proceedings of the 14-th

International Joint Conference on Artificial Intelligence (IJCAI’95), AAAI Press.

Maes, P. (1994). Agents that Reduce Work and Information overload. Communications of the

ACM, 37(7), 31-40.

70 Agents in Mobile Commerce

Mann, S. (2000). Programming Applications with the Wireless Application Protocol: The

Complete Developer's Guide. John Wiley & Sons.

Matskin, M., Divitini, M., & Petersen, S. A.(1998). An Architecture for Multi-Agent Support

in a Distributed Information Technology Application. Proceedings of the International Workshop

on Intelligent Agents in Information and Process Management on the 22nd German Annual

Conference on Artificial Intelligence in Bremen (KI-98), 47-58.

Matskin, M. (1999). Multi-Agent Support for Modeling Co-operative Work. In: T.

Yongchareon, F. A. Aagesen, & V. Wuwongse (Eds.) Intelligence in Networks, (pp. 419-432),

Boston/Dordrecht/London: Kluwer Academic Publishers.

Matskin, M., Kirkeluten, O. J., Krossnes, S. B., & Sæle, Ø. (2000). Agora: A Multi-Agent

Platform and its Implementation. In: H. Arabnia (Ed.) Proceedings of the 2000 International

Conference on Artificial Intelligence (IC-AI'2000), Vol. II, (pp. 549-555), CSREA Press.

Matskin, M., & Tyugu, E. (1999). Shells for Multi-Agent Applications (An Architecture for

Agents and Agoras). Technical report, IDI-nr. 4/99, ISSN-NO: 0802-6394, Norwegian University

of Science and Technology (NTNU).

Nokia (2000). Nokia 7110. Available: http://www.nokia.com/

Nwana, H. S. (1996). Software Agents: An Overview, Knowledge Engineering Review, 11(3),

205-244.

Tarasewich, P., & Warkentin, M. (2000). Issues in Wireless E-Commerce. SIGecom

Exchanges, Newsletter of the ACM Special Interesting Group on E-Commerce, 19-23

Thibodeau, P. (2000). Satellites Will Change E-Commerce Landscape. Computerworld.

[Online]. February 21.Available:

www.computerworld.com/cwi/story/0,1199,NAV47_STO41428,00.html

Van Dyke, N. W., Lieberman, H., & Maes, P. (1999). Butterfly: A Conversation-Finding

Agent for Internet Relay Chat. Intelligent User Interfaces 1999: 39-41.

W3C (2000). The Platform for Privacy Preferences 1.0 (P3P1.0) Specification. Available:

http://www.w3.org/TR/P3P/

WAP (2000). WAP Forum Specifications [Online]. Available:

http://www.wapforum.org/what/technical.htm

Wooldridge, M. & Jennings, N. (1995). Intelligent Agents: Theory and Practice. The

Knowledge Engineering Review, 10(2), 115-152.

Paper A 71

72 Agents in Mobile Commerce

Paper B

@InProceedings{2001:MobCom:Tveit,
author = {Amund Tveit},
title = "{Peer-to-peer based Recommendations for

Mobile Commerce}",
booktitle = {Proceedings of the First ACM SIGMOBILE

Mobile Commerce Workshop},
pages = {26--29},
year = {2001},
editor = {Muthy Devarakonda and Anupam Joshi and

Marisa Viveros},
address = {Rome, Italy}
month = {July},
publisher = {ACM Press}

}

This paper has been cited by Svensson [2003]; Heinemann et al. [2003a,b]; Olsson
[2003]; Adams [2003]; Jang and Lee [2002]; Munusamy and Leang [2002]; Weiss
[2002a,b]; Lee [2002]; Ding et al. [2002]; Ding and Unnithan [2002]; Nguyen [2002].

Peer-to-peer based Recommendations for Mobile
Commerce

Amund Tveit
∗

Department of Computer and Information Science
Norwegian University of Science and Technology

N-7491 Trondheim, Norway

amund.tveit@idi.ntnu.no

ABSTRACT
With the increasing number of mobile commerce facilities,
there are challenges in providing customers useful recom-
mendations about interesting products and services.
In this paper a Peer-to-Peer (P2P) based collaborative fil-
tering architecture for the support of product and service
recommendations for mobile customers is considered. Mo-
bile customers are represented by software assistant agents
that act like peers in the processing of recommendations.

1. INTRODUCTION
Mobile commerce, or e-commerce in the wireless web, is pro-
viding commercial services that are accessible using mobile
devices, typically a mobile phone. The main advantage of
such services is their high availability, independent of phys-
ical location and time.

However, mobile commerce has its limitations, particularly
regarding communication and the resources of mobile de-
vices. Communication have less and more expensive band-
width, higher latency, lower connection stability, less pre-
dictability, and currently less standardized protocols [10].
Mobile devices in contrast to their desktop PC alternatives,
are severely constrained due to less processing and mem-
ory resources, smaller and less convenient user interfaces, in
addition to a limited energy supply.

Problem
An important question related to most types of commercial
activities is: Which products or services should be recom-
mended to a particular customer in order to make him/her
satisfied?

In e-commerce settings the automization of personalized rec-
ommendations has been sought solved using methods such

∗http://www.idi.ntnu.no/˜amundt/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM Mobile Commerce Workshop2001, July 21, 2001, Rome, Italy
Copyright 2001 ACM 0-12345-67-8/90/01 ...$5.00.

as information filtering and collaborative filtering [4]. In-
formation filtering recommendations is based on the analy-
sis of a profile describing a (potential) customer’s needs and
preferences. Collaborative filtering is based on using votes or
opinions about products and services from similar customers
in order to give recommendations. Collaborative filtering
has been shown as the best approach of these two methods,
but it is highly dependent on a large number of customers
to give good recommendations and it doesn’t scale well in
terms of processing.

In this paper an approach for making a scalable recommen-
dation system for mobile commerce using a Peer-to-Peer
(P2P) is considered. Peers are represented as software as-
sistant agents interfacing a mobile customer. This approach
adds the opportunity of product and service recommenda-
tions to the mobile commerce agent architecture presented
in [6].

Mobile
Customer 1

Financial
Services

Entertainment
Services

Assistant
Agent 1

Assistant
Agent n

Mobile
Customer n

Service
Agent 1

Service
Agent k

Figure 1: Mobile Commerce Agents

The rest of the paper is organized as follows. Section 2 de-
scribes collaborative filtering theory. Section 3 describes the
proposed approach for P2P-based recommendations. Sec-
tion 4 describes related work, and finally the conclusion with
future work.

74 P2P-based Recommendations for M-Commerce

2. COLLABORATIVE FILTERING
The most important step for creating recommendations us-
ing collaborative filtering for a particular customer u is to
find an ordered set of customers N = {N0, .., Nl} ; u 6∈ N ,
where the ordering is based on similarity of Ni and u, this
should be performed for each customer u (i.e. O(n2) calcu-
lations of similarities with n customers in the database) [9].

Similarity between two customers u and Ni can be found
by using a proximity measure. The essential data used
in the calculation of the similarity is the two customers’
vectors with votes on products or services. Votes are typi-
cally numerical values that are either entered by the user for
products s/he dis/liked, or values added by the e-commerce
provider system (e.g. if a customer has browsed or pur-
chased a product or service, it may get a good score auto-
matically). Two common proximity measures are the Pear-
son correlation or the cosine measure, shown below for cus-
tomer a and b. One advantage of the cosine measure is that
it is suitable for dimension reduction with sparse data sets
(i.e. few products or services voted for).

corrab =
Σi(rai − r̄a)(rbi − r̄b)√

Σi(rai − r̄a)2Σi(rbi − r̄b)2
(1)

cos(~a,~b) =
~a · ~b

‖~a‖2 ∗ ‖~b‖2

(2)

When all proximity measures between all customers are cal-
culated, a neighborhood is formed (a reasonable size subset
of customers in N for a particular customer u). If the the
vectors in the data set are sparse, a aggregate neighborhood
approach can be used (calculates the centroid of the neigh-
borhood before adding new customers). If the vectors in
the data set are dense, a center-based approach can be used
(picking the l most similar customers from N).

When a set of neighborhood vectors is found, recommen-
dations can be calculated by selecting items in the vectors
from the neighborhood that the customer u hasn’t voted for,
e.g. if a customer u hasn’t voted for particular book b, and

another (i.e. the most similar) customer u
′

in the neigh-
borhood has given the book a high rating, the book will be
recommended for customer u.

3. PROPOSED APPROACH
The main idea of this approach is to transform the problem
of finding good product and service recommendations using
collaborative filtering, into a search problem that can take
advantage of the scalability and privacy possible in a P2P-
based architecture [8] similar to Gnutella or Freenet.

3.1 Query Flow

3.1.1 Gnutella
In Gnutella, a query (i.e. for a MP3 file) from a Peer node
in are broadcasted to all its neighbours. The neighbour
Peers (independently) check if the query matches one of their
hosted files, if so, they return a found message back to the
sending node, otherwise they decrease the TTL field (TTL
= Time To Live) and then pass on the query to their neigh-
bour peers. If the TTL count reaches 0, the message is not

Mobile
Customer

Assistant
Agent

Assistant
Agent

Mobile
Customer

Assistant
Agent

Assistant
Agent

Mobile
Customer

Mobile
Customer

Figure 2: P2P Network of Agents

sent any further. In other words, the query is broadcasted
in “all directions” from the quering node, but only the query
matches are sent back the network path they arrived from
[8]. This flow of queries ensures that a peer doesn’t know if
a received query was from a neighborhood peer, or another
peer that broadcasted the message, this gives a limited de-
gree of privacy for queries.

3.1.2 Proposed Approach
Queries are broadcasted to neighbour Peers as for Gnutella,
but a query is not a text string (as the case for Gnutella’s
file search), but rather a vector with votes on products and
recommendations. This voting vector is the same as used in
collaborative filtering.

3.2 Routing Algorithms

3.2.1 Gnutella
In Gnutella, there is a very simple routing algorithm that
either stops broadcasting from a peer if a match is found, or
continues broadcasting messages to other peers if no match
was found.

3.2.2 Proposed Approach
When a peer receives a query voting vector: It calculates
the proximity (e.g. with Pearson correlation from collab-
orative filtering) between the voting vector in the message
and cached previous messages at the node. If the proximity
measure is higher than a threshold τ , the cached voting vec-
tor is sent back to the neighbour that sent the query voting
vector (and possibly further back to the origin from there).
If the proximity measure is lower than τ , the query voting
vector is broadcasted further to the receiving peer’s neigh-
bours. If there are too many messages received per time
unit, they are simply passed on to neighbour peers with-
out calculating the proximity measure against cached items.
The size of the cache tries to balance against the traffic, if
the traffic is high the cache is decreased in order to be able
to calculate proximity measures.

Paper B 75

3.3 Dynamic Network Topology

3.3.1 Gnutella
Gnutella have a mainly static peer network topology, i.e.
peers can disconnect or connect to the network, but they
rarely switch places or routing tables after the initial con-
nection the network.

3.3.2 Proposed Approach
Since each peer is calculating the proximity on incoming
messages versus cached messages, the peer is able to monitor
the resemblance of traffic from different neighbour peers. So
if two neighbour peers send similar types of queries to a peer,
it can ask the peers if they wan’t each others addresses, and
if both reply yes the peers establish a new connection. The
reason for doing this is to try to cluster similar peers in terms
of number of hops to improve performance and quality of
recommendations.

Mobile
Customer

Assistant
Agent

Assistant
Agent

Mobile
Customer

Assistant
Agent

Mobile
Customer

Mobile
Customer

New!

Assistant
Agent

Figure 3: Dynamic Network Topology

3.4 Ranking methods
When a potentially large set of voting vectors has been re-
turned to querying node they have to be ranked in order to
get the best recommendations on top of the list before com-
municating to the mobile user (similar to Internet search
engines). The straightforward solution would be to use col-
laborative filtering (rank based on the calculation proximity
measures and then the neighborhood), this may sound like
the same as performing traditional collaborative filtering,
but the difference is that the voting vectors to be processed
is only a relatively small subset of all voting vectors for all
users of the system, this is because of the filtering done by
peers that processed the query.

An alternative approach could be to return only the recom-
mendation and the proximity measure, e.g. if the querying
voting vector, represented as with item : vote elements, is
[10 : 0, 22 : 2, 37 : 8] and the matching vector is [10 : 0, 22 :
2, 24 : 9, 37 : 8] then only the recommendation 24 : 9 to-
gether with the proximity measure will be returned, this is
more efficient both regarding bandwidth usage and a useful
preprocessing that makes ranking into a simple sorting job

(of proximity measures).

3.5 Query Compression scheme
If voting vectors are sparse, it is more efficient to represent
them as hash tables than vectors for internal processing, but
to get more efficient compression when sending the vector
between peers one can take advantage of the binary inter-
polative compression algorithm [7].

The binary interpolative compression algorithm was devel-
oped to efficiently compress inverse files used in document
indeces in information retrieval, it utilizes the difference and
context information between sorted numeric values for com-
pression. By requiring the data to have certain properties,
it can at best compress some items to 0 bytes (depending
on position, value and neighbour values in the array). In
order to work, the algorithm requires the data to be: nu-
meric, sorted and in a known numeric range. The index
positions representing items in the vector (and hash table
keys) fulfill these requirements (e.g. ISBN numbers repre-
senting books), and can therefore gain from using binary
interpolative compression.

3.5.1 Compression example:
Original query vector represented using a hash table (item:vote
pairs)

~q = {24 : 5, 37 : 8, 45 : 0} (3)

for item 24 with rating 5, item 37 with rating 8, and item 45
with rating 0 respectively. The compressed representation
is created with

IPolComp([24, 37, 45], 3 − 1, 24, 45) : 580 (4)

(i.e. compressing the list of items, and appending the votes
for items after the separating colon)

3.6 Implementation
The system is planned to be implemented using the java
programming language.

3.6.1 Feasible Performance?
Critical issues for high performance in peer-to-peer networks
are efficient handling of requests (i.e. processing and routing
time), and network bandwidth and topology [8].

Calculating similarities using a proximity measure such as
the cosine (2) has linear algorithmic running time with re-
spect to the vector length |~q|. Routing based on comparing
an incoming query vector ~q with the set of cached vectors C
has a run time of O(|C||~q|), this can potentially be reduced
by ordering the vectors in C based on proximities (when-
ever there are few messages to handle for the peer) and use
binary search to find the closest match(es) for ~q in C. For
each similar vector ~v in C ~q is forwarded in ~v’s direction (i.e.
the neighbour peer which ~v was received from).

Network bandwidth for each peer is not easily changed, but
the topology can be changed with a relatively low cost since
it involves a simple interaction with neighbour peers about
allowing them to be introduced to each other. However, in
order to avoid the peer-to-peer topology to become a com-
plete graph, the dynamic topology heuristic should be able

76 P2P-based Recommendations for M-Commerce

to forget, i.e. remove peers from the routing table if they
are of little relevance (get low proximity measures) to the
majority of requests to the peer.

These approaches are similar to existing and scalable peer-
to-peer networks such as gnutella and freenet, and supports
the feasibility of the proposed approach.

3.6.2 Trust
Handling trust in the system could possibly be done by intro-
ducing trusted third-parties or authority peers/hubs which
keeps public keys for the peers in the network. Each query
should then be signed by the peer’s private key so that it
is possible to check that a query came from a valid peer.
In order to decrease the opportunity for malicious behavior,
e.g. hidden and fraudiant advertising in recommendations,
one can add the opportunity for mobile users to add simple
feedback on recommendations. If a vector ~v gave a good
recommendation to a user, the origin peer p of ~v could gain
trust points which could for instance increase the rating of
the user in terms of recommendation ordering and degree of
replication of p’s queries throughout the peer-to-peer net-
work.

4. RELATED WORK
Varshney et al. propose a taxonomy and application frame-
work of mobile commerce [11]. The W 3IQ proxy based
recommender system presented by Joshi uses peer-to-peer
(proxy-to-proxy) based recommendations of URLs satisfying
information requests [5]. Related work on personalization
for mobile users include work by Cotter and Smyth [3]. They
present PTV, a recommender system for TV-programmes
based on both collaborative filtering and content-based rec-
ommendation strategies. Personalization for mobile users is
supported by the Gulliver system by Austaller et al. [2].
Sarwar et al. gives an overview of various recommendation
algorithm approaches for e-commerce [9].

5. CONCLUSIONS
In this paper a P2P-based approach for scalable recommen-
dations for mobile commerce has been presented. The main
contribution is the P2P-based recommendation approach de-
scribed and the efficient compression algorithm of the com-
munication of voting vectors.

This P2P-based approach differs from others, in the sense
that there is no free-riding [1]. Free-riding is when peers
do not produce and consume equal balanced of data, pro-
duction is equal to hosting files, and consumption is equal
to downloading files (for Napster and Gnutella). In the
presented approach consumption equals production, since
a query is a voting vector which is also the data object of
interest in the P2P service.

Future work include implementing the system for the rec-
ommendation of mobile phone ringing tones and logos, and
try to meet challenges such as: How to deal with fraudiant
behavior? How to maintain consistent and unique identifi-
cation of products and services in the voting vectors used
in queries? How to keep cache consistency? How to deal
with privacy and encryption of queries and results? Where
are the bottlenecks for true scalability (millions of mobile

commerce users and profiles). Is a true P2P-based systems
for recommendations or is hybrid approach like Napster or
Gnutella with Gnutellahosts needed?

6. ACKNOWLEDGEMENTS
I would like to thank my supervisor Mihhail Matskin, and
my Agentus colleague Thomas Brox Røst for motivating dis-
cussions. This work is partially supported by the Norwegian
Research Council in the framework of the Distributed Infor-
mation Technology Systems (DITS) program and the ElCo-
mAg project.

7. REFERENCES

[1] Adar E., and Huberman B. A. Free Riding on
Gnutella. First Monday, 5(10), October 2000.

[2] Austaller G., Hartl A., Kappel G., Lechleitner C.,
Muhlhauser M., Reich S., and Rudisch R. Gulliver
Beans: Generating Device Optimized and
Individualized Content for WAP Applications. In
Proceedings of the 9th International World Wide Web
Conference, 2000.

[3] Cotter P., and Smyth B. WAPing the Web: Content
Personalization for WAP-Enabled Devices. In
Proceedings of the International Conference on
Adaptive Hypermedia and Adaptive Web-based
Systems, pages 99–108, 2000.

[4] Good N., Schafer J. B., Konstan J., Borchers A.,
Herlocker B., and Riedl J. Combining Collaborative
Filtering with Personal Agents for Better
Recommandations. In Proceedings of the 1999
Conference of the Americian Association of Artificial
Intelligence (AAAI-1999), pages 439–446, 1999.

[5] Joshi A. On Proxy Agents, Mobility and Web Access.
Mobile Networks and Applications, Special Issue on
Software Architectures for Mobile Applications, pages
233–241, 2000.

[6] Matskin M., and Tveit A. Mobile Commerce Agents
in WAP-based Services. Journal of Database
Management - Special Issue on Mobile Commerce,
pages 27–35, July-September 2001.

[7] Moffat A., and Stuiver L. Exploiting clustering in
inverted file compression. In Proceedings of the 1996
IEEE Data Compression Conference, pages 82–91,
1996.

[8] Oram A., editor. Peer-to-Peer: Harnessing the Power
of Disruptive Technologies. O’Reilly and Associates,
2001.

[9] Sarwar B., Karypis G., Konstan J., and Riedl J.
Analysis of Recommendation Algorithms for
E-Commerce. In Proceedings of the 1st ACM SIGecom
Conference on Electronic Commerce, 2000.

[10] Tsalgatidou A., and Veijalainen J. Mobile Electronic
Commerce: Emerging Issues. In Proceedings of
EC-WEB, pages 477–486, September 2000.

[11] Varshney U., Vetter R. J., and Kalakota R. Mobile
Commerce: A New Frontier. IEEE Computer,
33(10):32–38, 2000.

Paper B 77

78 P2P-based Recommendations for M-Commerce

Paper C

@InProceedings{2003:SCAI:Tveit,
author = {Amund Tveit and {\O}yvind Rein and

J{\o}rgen Vinne Iversen and Mihhail Matskin},
title = "{Scalable Agent-Based Simulation of Players in

Massively Multiplayer Online Games}",
booktitle = {Proceedings of the 8th Scandinavian Conference on

Artificial Intelligence},
year = {2003},
editor = {Bj{\o}rnar Tessem},
address = {Bergen, Norway}
series = {Frontiers in Artificial Intelligence and Applications},
month = {November},
publisher = {IOS Press}

}

This paper has been cited by Ho et al. [2003]; Thawonmas et al. [2003]; Ho and
Thawonmas [2004].

Scalable Agent-Based Simulation of Players
in Massively Multiplayer Online Games

Amund Tveit Øyvind Rein Jørgen V. Iversen
Mihhail Matskin

Department of Computer and Information Science,
Norwegian University of Science and Technology

N-7491 Trondheim, Norway

Abstract. We propose a parallel mobile agent platform - Zereal - for scalable and flex-
ible simulation of Massively Multiplayer Online Games (MMOGs). Players and NPCs
in Zereal currently have a sense-reason-act behavior, with reasoning based on Markov
chains in addition to hierarchical plans specified in XML. Zereal’s primary purpose
is to be a MMOG simulation tool that enables testing of usage logging approaches
for CRM and data mining purposes, and secondly to allow flexible testing of behav-
ioral AI models for players and non-personal characters. Zereal has shown to be close
to linearly scalable in terms of number of players, and has been successfully tested
with more than 100 thousand players on 20 CPUs on a Linux-based cluster. Zereal is
implemented using Python, MPI and C++.

1 Introduction

Over the last couple of years an emerging commercial online games market has come into
existence, fuelled by the increasing availability of cheap Internet access. The main share of
this market consists ofMassively Multiplayer Online Games(MMOGs). The characteristic
property of MMOGs is that a large number of players, sometimes even in the six or seven
figure realm, take part in a persistent virtual world where they communicate, cooperate, fight,
build virtual characters, and undertake game-related missions [11, 24].

The worldwide MMOG market is anticipated to grow annually by 70% to USD 2.7 bil-
lion in year 2006 [12]. Traditionally the game industry has been highly product-focused, but
with the introduction of MMOGs games have become more like services, where players not
necessarily pay for the MMOG game client, but instead pay a monthly subscription fee for
having access to the MMOG world [8, 15]. In order to gain and keep subscribing players there
is a need to focus onCustomer Relationship Management(CRM) andData Miningmethods
[1, 21]. The overall motivation for such methods in a MMOG context is to figure out more
about the players and their preferences so the MMOG can be continously improved and keep
on generating revenue.

1.1 Research Problem and Approach

A fundamental requirement for data mining and CRM methods is the need forrelevant usage
data. For MMOGs there are currently no open standards for usage data logging, the data is

80 Scalable MMOG Player Simulation

being logged in a proprietary manner by the various MMOG vendors. This makes it hard to
develop data mining and CRM approaches that can used for several MMOGs. So the primary
research problem is:How to enable a scalable and flexible simulation environment for
testing out approaches for player usage logging in MMOGs?.

Since the environment needs to simulateautonomous MMOG participants(i.e. players
and non-personal characters), we choose to use autonomous intelligentagentsas the primary
abstraction. Due toseveral types and numbers of agentswe select the Multi-Agent System
(MAS) approach from Distributed Artificial Intelligence as the underlying architecture [17].

The rest of this paper is organized as follows. Section 2 describes and discusses the Zereal
MMOG simulation platform, section 3 describes related work, and finally the conclusion.

2 Zereal Platform

The overall goal is to create a MMOG simulation platform that provides a (coarse) simulation
of active players that can be used to test various approaches for player usage logging.

2.1 Overall Architectural Choices

Creating a realistic activity level with thousands of concurrent players and NPCs is considered
to be of greater importance than having a very accurate simulation of each player’s and NPC’s
behavior. However, the architecture should also provide a flexible interface for testing out
various intelligence mechanisms.

Requiring support for thousands of concurrent players and NPCs encourages the selection
of adistributed or parallel architecture, this combined with the prior selection of agents as the
main abstraction encourages use ofmobile agentsfor the representation of players and NPCs.
Due to the relative simplicity of implementation and deployment of message-based parallel
systems we choose a platform of typemessage-based parallel mobile agent architecture. A
second motivation for parallel message-based systems is that they can run on most current
supercomputers and cluster systems. Parallel cluster systems are frequently used to serve
MMOGs, see figure 1 for a typical industry configuration [4, 26, 7].

2.2 Simulation Platform Requirements

The six fundamental requirements for our MMOG simulation platform are:

1. Virtual World Model

2. Item Model

3. Player Models

4. Non-Personal Character Models

5. Scalability

6. Logging of Player behavior

Paper C 81

Billing Server

 Billing
 Database

Load Balancer

Chat Server

 Game
 Database

Game Node 1 .. n

NPC Node 1 .. k

Dispatcher
Firewall

 PS2

XBox

GameCube

 PC

Apple

Mobile

Web Server

Figure 1: Parallel Cluster Architecture foran actualMMOG

2.3 Virtual World Model

Zereal’sMMOG world representation is a roguelike model, mostly inspired by Nethack
(roguelike refers to the game Rogue). Roguelike means that it has simple graphics, typically
a 2D environment with a bird’s-eye view of the game. Roguelike also usually means that the
the game has an enormous variety and amount of features [13], but in our simulation platform
we’ve chosen to provide only some basic features.

The virtual world map is represented as 2D rectangel with borderwalls and doors on the
outer limit of the map, and internal walls with doors inside the map to split it up in rooms
or smaller outside spaces. Researchers at the Intelligent Computer Entertainment Laboratory
at the Ritsumeikan University in Japan has developed a GUI client to Zereal called Zere-
alViewer, see figure 2 for a screenshot.

Figure 2: Parts of a typical Zereal Virtual World

Each map is a subworld which resides on its own processor in the cluster and the sub-
worlds borders each other after a squared model and send players between them. This world
representation is easy to represent in memory, and extension of the world is only limited by
memory and power on the clusternodes. Most landscapes can be ”made believe” in the maps,
and the usually resource demanding task of sensing has less complex data to process. Players

82 Scalable MMOG Player Simulation

and items are represented as ASCII characters in visualization and integer ID’s in the inter-
nal representation. For scalability reasons it is recommended to map the virtual world into
a square (or close to a square) of subworlds, each mapping to one CPU, this ensures a rela-
tively equal load on each CPU (in average), except along the borders (where they have fewer
neighbours). A future revision of the platform will enable wrapping between the outmost
subworlds (like the game Asteroids).

Subworld n

 Player
Usage Logs

Master Node

Firewall

Subworld 1

 Player
Usage Logs

Subworld 1+p

 Player
Usage Logs

Subworld n-p

 Player
Usage Logs

 NPC and Player
 Agents

 NPC and Player
 Agents

 NPC and Player
 Agents

 NPC and Player
 Agents

Control of
Zereal

Figure 3: Zereal Macro Architecture

2.4 Item Models

Items in Zereal can be of several types: doors, keys, food, potions and weapons. Items occupy
one square on the map, and except for doors, all items can be picked up by players.Doors
transports the agents from room to room or subworld to subworld. If all neighbouring squares
on the other side of a door is occupied, agents will not be able to move through them, but in
case of a door on the border, agents will be transmitted to the next world but end up in a
queue (limbo) untill some of the squares has been freed. Agents may need keys to open
locked doors.Foodandpotionsincreases or (if poisonous) decrease the players hitpoints and
strength when consumed.

2.5 Player Models

Zereal’splayer modelsare inspired by the typical player categories found inactual MMOGs:

1. Achievers- people who are entertained by building their avatar character with more skills,
hit points, strength etc.

2. Socializers- people who wants to build and maintain social relations such as friendship
and love, they are typically attracted to people with high intra-game status.

Paper C 83

3. Killers - people who sees killing as the soul purpose of the game, they typically believe
that a player’s status depends on how many creatures or other players his/her avatar has
killed.

4. Explorers- people who roams around the gameworld to discover new places, features,
items and non-personal characters.

In general, social status in the MMOG is usually the underlying motivation for all player
types in MMOGs [10].

Both players and non-personal charactersare represented as mobile agents with a
sense-reason-act approach in Zereal, this is because they need to have autonomous, social,
reactive, and pro-active capabilities, hence following the weak properties of agents [25]. The
selection of agents as the primary abstraction is also motivated by previous representations
of intelligent life-like entities in virtual environments [6, 3] Mobility is selected since the
players have to move in a world topology that is spread out on several computational nodes,
mobile agents have previously been used in various virtual environment architectures [16].

2.6 Non-Personal Character Models

For our platform we chose thenon-personal characters modelsto be equal to player models
of the typekiller, but with minor alterations regarding mobility. The alterations are that NPCs
are less mobile than the killers, i.e. they mainly stay within the same subworld at all times.

2.7 Zereal Sense-Reason-Act Approach

SENSE

REASON

Scan Gameworld
for Players, NPCs
and Items

ACT

Select action based
on Sensing and
1. Markov-matrix
OR
2. Hierarchical Plan

(Try) Selected Action
- Fight
- Move (A*)
- Chat
- Pick up/Use items

Figure 4: Zereal Agent Architecture

Simulated players and NPCssensesusing a scan-based vision algorithm that have a con-
figurable vision radius. The vision algorithm can detect walls, items, (other) players and non-
personal characters.

There are three types ofreasoningmechanisms for players and NPCs in Zereal:

84 Scalable MMOG Player Simulation

1. Greedy and Agressive- Both players and NPCs have no social need and will try to pursue
the closest player or monster in order to kill it (KillerandMonsterin figure 5).

2. Action selection using Markov Chain- The next action is dependent on the previous action
and on the possible actions at the current time. E.g. if there are no enemies in sight the
’fight’ action in the Markov matrix is pruned and the probabilies for the available actions
are normalized. (MarkovPlayerin figure 5)

3. Action selection from hierarchical plan- The next action is selected from a predefined
hierarchical plan (predefined in XML). It also has a long term memory and is able to
reason about past experiences, and it is able to use the pathfinding mechanism for deter-
mining where to move next. This reasoning mechanism is inspired by the Hap reactive
and adaptive architecture used in the Oz project [14]. Plans have so-far been developed
for the player typeskiller andexplorer. (PlanAgentin figure 5)

2.8 Scalability of the Zereal Platform

We have used factorial experimental design and identified five (six) factors that have effect on
thescalability of the simulator. These are: number of players and NPCs, number of CPUs,
the vision-radius and size of the world. In addition we have the reasoning factor which is
likely to be highly dependent on the reasoning algorithm [22]. By reasoning factor we mean
the amount of computational resources spent on AI algorithms for reasoning in the sense-
reason-act cycle for each agent.

2.9 Logging of Player Behavior

The main output of Zereal is the log files that are written to disk. The contain player data
that can be an important source for data mining in order to find player patterns in MMOGs.
Examples ofinteresting data mining problemsin MMOGs are:

• How to detect bored or frustrated players?

• How to detect unbalanced features of the game? (E.g. weapons that beatall other weapons)

• Which features and data need to be logged to solve the above 2 questions?

The current logging of game events are of 5 types:

1. DEBUG - internal debug messages

2. GAME - game specific events like moves and attacks

3. EVENT - game events regarding receiving and sending agents between subworlds (i.e.
CPUs), agent killing and logon/logoff.

4. WARNING - non-critical errors

5. ERROR - severe errors

Paper C 85

Logging is done to the local disk of each Subworld’s node, and can potentially be joined
on the master node for data mining.

Current format of the gamelog file:

date||agentID||event||startpos||stoppos||agent type

Extracts from a gamelog file:

2003-05-22: 12:0:1||6000052||walk||(4,10)||(3,9)||PlanAgent
2003-05-22: 12:0:2||5000018||leaveworld:WEST||(1,2)||(0,3)||PlanAgent

Thawonmas et. al used Zereal and its corresponding gamelogs for identification of player
types in MMOGs [20].

2.10 Implementation of Zereal

Using Python as the mainimplementation language gives the advantage of high expressive-
ness and short development time. Regarding performance and memory usage, Python easily
competes with Java [18]. Using the stackless implementation of Python gives in adition an
extremely fast thread switching, which on most current platforms can reach beyond 1 million
switches per second. The heavier tasks like the vision algorithm and A∗ pathfinding are coded
in C/C++ and later glued in to a python module using SWIG. SWIG is a tool for automating
the C API coding in order to integrate C/C++ librarys and classes into modules available
for languages like Python, Ruby, Perl and Java. PyMPI is used as the interface between the
simulator and MPI (Message Passing Interface). The simulator has been tested on parallel
clusters with processors based on AMD architecture (at NTNU, Norway) and Intels Xeon
architecture (at Ritsumeikan University, Japan).

Object

Item

Weapon Door

BorderDoor

Key

Sword

Potion Food

Agent

Player

MarkovKiller

MarkovPlayerPlanAgent StackPlayer

Monster Killer

Figure 5: Zereal Class Diagram

3 Related Work

The Creatures software platform simulates agents, represented as virtual pets with human-
like behavior, in a graphical environment [9]. Creatures differs from Zereal by focusing on

86 Scalable MMOG Player Simulation

supporting a few simultaneous agents as opposed to Zereal’s support for a very large number
of simultaneous player or NPC agents.

Scheutz and Rommer proposed an architecture for interactive believable user agents with
personality [19]. Their approach differs from Zereal by focusing on natural language support
for human-like agents and not on massive scalability in terms of number of agents.

The SimHuman platform resembles Zereal since it simulates human-like agents with
planning capabilities [23], but it differs from Zereal since it focuses on a small number of
simultaneous agents and a 3D graphical presentation.

Swarm is a toolkit for large scale agent-based simulation, it differs from Zereal by being
generic and not geared toward simulation of MMOGs such as Zereal. Another difference is
the language support, Swarm supports Objective C, Scheme and Java; Zereal supports Python
and C/C++ but is easily extensible to many other languages using the Simplified Wrapper
Interface Generator (SWIG).

Python for Massively Multiplayer Virtual Worlds (PMMVW) resembles Zereal in the
sense that it provides support for a MMOG and is Python-based, the main difference is that
Zereal is focused on simulation of players and PMMVW supports actual humans who play
[2].

In addition can various robotic simulations and software for large-scale multiuser anima-
tions be considered related, but not equal to the Zereal approach.

4 Empirical Results

Number of Simulated Players

5000 10000 15000 20000 25000

Ti
m

e
(s

)

500

1000

1500

2000

2500

3000

5000 10000 15000 20000 25000

Figure 6: Zereal scalability (with regression line and prediction interval)

In figure 1 the wallclock runtime performance for 5 minutes simulated time in the game
(i.e. 300 simulated seconds) as a function of the number of simulated players. The simulation
is performed on 5 Athlon 1.6 GHz CPUs on an Linux-cluster. The largest simulation per-
formed so far with Zereal is with 160 thousand agents (simulated players and NPCs) on 20
CPUs. The setup for the experiment was with simulated players and NPCs with Markov chain
type reasoning (the largest number of hierarchical planning agents tested so far is 50000). By

Paper C 87

doubling the number of players and keeping the number of simulated cycles fixed the num-
ber of sense-reason-act cycles to be performed doubles, this can explain the close-to-linear
scalability.

5 Conclusion and Future Work

We have presented the Zereal Mobile Agent-based Massively Multiplayer Online Game Sim-
ulation platform. The implementation has been shown to be close to lineary scalable in terms
of number of players simulated. Primary contribution is the platform itself and its scalable
implemention that can be used as a testbed for research on MMOGs, in addition to be a
MMOG simulation platform Zereal can with minor adaptions provide a generic scalable
agent-platform, based on MPI communication it is relatively simple to use on various par-
allel supercomputers or grid-based environments.

Possible future extensions include: items that can tell the players how they are supposed
to be used, player coalition support, guilds, quests, improved intelligence support (e.g. BDI,
automatic planning and emotion engine), simulation of natural language based interaction
between players and/or NPCs, simulation of e-commerce activities in a MMOG [5] and im-
proved graphical interface support using the VR-environment provided by Silicon Graphics’
RAVE.

References

[1] Henrik Andersen.The CRM Handbook - from group to multi-individual. PricewaterHouseCoopers, 2000.

[2] Jason Asbahr. Python for Massively Multiplayer Virtual Worlds. O’Reilly Open Source Convention,
published Online, July 2001.

[3] Ruth Aylett and Michael Luck. Applying Artificial Intelligence to Virtual Reality: Intelligent Virtual
Environments.Applied Artificial Intelligence, 14(1):3–32, January 2000.

[4] Butterfly.net: Powering Next-Generation Gaming with On-Demand Computing. Published Online
by IBM: ftp://ftp.software.ibm.com/solutions/pdfs/g325-1938-00.pdf, January
2003.

[5] Nizami Cummins. Integrating E-Commerce and Games.Journal of Personal and Ubiquitous Computing,
6(5-6):362–370, December 2002.

[6] Sorabain Wolfheart de Lioncourt and Michael Luck. Motivating intelligent agents for virtual environ-
ments. InProceedings of the 2nd International Workshop on Intelligent Virtual Agents (IVA 1999), 1999.

[7] Anne C. Elster, Otto Anshus, Amund Tveit, and Cyril Banino. Recent trends in cluster computing. InPro-
ceedings of the International Conference on Parallel Computing (forthcoming). Elsevier Science, Septem-
ber 2003.

[8] Markus Friedl.Online Game Interactivity Theory. Charles River Media, 1 edition, October 2002.

[9] Stephen Grand, Dave Cliff, and Anil Malhotra. Creatures: Artificial Life Autonomous Software Agents for
Home Entertainment. InProceedings of the 1st International Conference on Autonomous Agents. ACM,
ACM Press, 1997.

[10] Neal Hallford and Jana Hallford.Swords & Circuitry: A Designer’s Guide to Computer Role-Playing
Games. Prima Publishing, 1 edition, 2001.

[11] Moon Ihlwan. The champs in online games.Business Week, (30):27–28, July 2001.

[12] Zona Inc. and Executive Summary Consulting Inc. State of Massive Multiplayer Online Games 2002: A
New World in Electronic Gaming. Technical report, Zona Inc., Redwood City, California, USA, October
2002.

88 Scalable MMOG Player Simulation

[13] Petri Kuittinen. Introduction to Roguelike Games. Published Online:http://www.hut.fi/˜eye/
roguelike/intro.html , May 2000.

[14] A. Bryan Loyall and Joseph Bates. Hap: A Reactive, Adaptive Architecture for Agents. Technical Report
CMU-CS-91-147, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, June
1991.

[15] Ian Maccines, Janusz Moneta, Julio Caraballo, and Dominic Sarni. Business Models for Mobile Content:
The Case of M-Games.The International Journal of Electronic Commerce & Business Media: Special
Section on Electronic Commerce in Entertainment and Media, 12(4):218–227, 2002.

[16] Gonzalo Mndez, Pedro Prez, and Anglica de Antonio. An Overview of hte Use of Mobile Agents in
Virtual Environments. In Anglica de Antonio, Ruth Aylett, and Daniell Ballin, editors,Proceedings of the
3rd International Workshop on Intelligent Virtual Agents (IVA 2001), number 2190 in Lecture Notes in
Artificial Intelligence, pages 126–136. Springer-Verlag, 2001.

[17] Bernhard Moulin and Brahim Chaib Draa. An Overview of Distributed Artificial Intelligence. In Greg
M. P. O’Hare and Nicholas R. Jennings, editors,Fundamentals of Distributed Artificial Intelligence, pages
3–56. John Wiley and Sons, 1996.

[18] Lutz Prechelt. An Empirical Comparison of Seven Programming Languages.IEEE Computer, 33(10):23–
29, October 2000.

[19] Matthias Scheutz and Brigitte Rommer. Autonomous Avatars? From Users to Agents and Back. In Anglica
de Antonio, Ruth Aylett, and Daniell Ballin, editors,Proceedings of the 3rd International Workshop on
Intelligent Virtual Agents (IVA 2001), number 2190 in Lecture Notes in Artificial Intelligence, pages 61–
71. Springer-Verlag, 2001.

[20] Ruck Thawonmas, Ji-Young Ho, and Yoshitaka Matsumoto. Identification of Player Types in Massively
Multiplayer Online Games. InProceedings the 34th Annual Conference of the International Simulation
and Gaming Association (ISAGA). ISAGA, To be published by Springer-Verlag, 2003.

[21] Amund Tveit. Game Usage Mining: Information Gathering for Knowledge Discovery in Massively Mul-
tiplayer Games. In Hamid R. Arabnia and Youngson Mun, editors,Proceedings of the International Con-
ference on Internet Computing (IC’2002), session on Web Mining, volume III, pages 636–642. CSREA
Press, June 2002.

[22] Amund Tveit. Scalability Analysis of the Zereal Massively Multiplayer Game Simulator. Technical Report
ISSN: 0802-6394, 12/02, IDI, NTNU, December 2002.

[23] Spyros Vosinakis and Themis Panayiotopoulos. SimHuman: A Platform for Real-Time Virtual Agents
with Planning Capabilities. In Anglica de Antonio, Ruth Aylett, and Daniell Ballin, editors,Proceedings
of the 3rd International Workshop on Intelligent Virtual Agents (IVA 2001), number 2190 in Lecture Notes
in Artificial Intelligence, pages 210–224. Springer-Verlag, 2001.

[24] Rusel Demaria & Johnny L. Wilson.High Score! The Illustrated History of Electronic Games. McGraw-
Hill/Osborne, 1 edition, 2002.

[25] Michael J. Wooldridge and Nicholas R. Jennings. Intelligent Agents: Theory and Practice.The Knowledge
Engineering Review, 2(10):115–152, 1995.

[26] Terazona White Paper. Available from Zona Inc., May 2003.

Paper C 89

90 Scalable MMOG Player Simulation

Paper D

@TechReport{2003:TR:TveitA,
author = {Amund Tveit},
title = "{Empirical Performance Evaluation of the

Zereal Massively Multiplayer Online Game
Simulator}",

institution = {Divison of Intelligent Systems,
Department of Computer and Information Science,
Norwegian University of Science and Technology},

year = {2003},
month = {November}

}

Empirical Performance Evaluation of the Zereal
Massively Multiplayer Online Game Simulator

Amund Tveit

Division of Intelligent Systems
Department of Computer and Information Science,
Norwegian University of Science and Technology,

N-7491 Trondheim, Norway
amundt@idi.ntnu.no

Abstract. This paper presents a factorial experimental design for test-
ing which factors controlling the scalability of the Zereal Massively Mul-
tiplayer Online Game simulator. The analysis show that the factors ex-
plain approximately 97% of the model (measured in square of errors),
which is surprisingly high since the simulation is stochastic.

1 Introduction

In this paper we will investigate the scalability of the Zereal Massively Multi-
player Online Game Simulator, and how much of the response variable that can
be explained by the factors (e.g. simulator parameters).

The selected experimental method is factorial design since it enables the
measurement of both single impact and interaction effects of the parameters
used to control Zereal. Selected outcome measurement is wallclock time for a
fixed number of simulation steps. More details about the statistical analysis and
data can be found in appendix C

1.1 Purpose of Zereal

The main purpose of the Zereal simulator is to provide a scalable (research)
testbench for testing models of players, monster intelligence, and various data
analysis and data mining approaches to massively multiplayer online games [2].
The alternative way of performing such research would require tight cooperation
with major massively multiplayer game vendors like Microsoft, Sony, Electronic
Arts, which requires extensive negotiation rounds since (real) player data is one
of their greatest assets.

1.2 Goal of analysis

Get a detailed overview of how (and how much) various parameters (i.e. factors)
affect the runtime of the simulation.

92 Performance of the Zereal MMOG Simulator

2 Choice of Factors and Levels

Five factors believed to have effect on the outcome of the experiment are chosen

1. number of agents of type MarkovKillers (per CPU)
2. number of agents of type PlanAgents (per CPU)
3. number of agents of type Monsters (per CPU)
4. number of CPUs
5. vision Radius of agents (for all types)

Table 1. Factor levels

Level MarkovKillers PlanAgents Monsters CPUs Radius

1 500 500 50 10 10

2 1000 1000 200 17 20

The number of CPUs and monsters are likely to be very significant for the
runtime since they are controlling the amount of movement that MarkovKillers
and to lesser extent PlanAgents do. Movement between CPUs leads to (timewise
costly) network traffic. Since monsters can’t move, they are not likely to increase
network traffic, and with computationally cheap Markov-based action-selection
they are not likely to increase the CPU load much either. The effect of sight
radius is uncertain, but it can potentially lead to more network traffic and more
CPU load.

Interaction between factors is likely to occur, in particular between CPUs
and monsters, since increasing the number of CPUs and monsters together will
give more network traffic due to more doors between subworlds at the CPUs.
Note that the number of agents are (initally) per CPU (i.e. not total number of
agents. This can potentially reduce the effect of the CPUs since the information
is somehow present in the factors describing the number of agents.

The selected levels presented in appendix C has been determined in discus-
sions with the implementors (MSc students) of the simulator.

Since this is a computer simulation the selected factors can be completely
controlled and set to the wanted levels. Examples of factors that can’t be con-
trolled is the load on the computer cluster, but the batch job scheduler minimizes
the risk of high load from other applications or systems simultaneous with our
experiments.

Choice of Response Variable The selected response variable is the (wall
clock) time for running simulations of 100 cycles (i.e. simulating 1 second per
cycle) with the variations of levels shown in 1.

Other response variables of interest could be the load of CPUs of the com-
puter systems or type of actions performed by the agents. These are however
more computationally expensive to measure than the wallclock time.

Paper D 93

PlanAgents

Monsters

MarkovKillers

1000

500

200

50

500 1000 PlanAgents

Monsters

MarkovKillers

1000

500

200

50

500 1000

CPUs = 10 CPUs = 17

PlanAgents

Monsters

MarkovKillers

1000

500

200

50

500 1000 PlanAgents

Monsters

MarkovKillers

1000

500

200

50

500 1000

CPUs = 10
CPUs = 17

VisionRadius = 20

VisionRadius = 10

Fig. 1. 25 Factorial Combinations

Wall clock time response is measured using the unix shell method time. The
accuracy of time is in milliseconds.

Choice of Experimental Design Selected experimental design is a factorial
design with two levels [1]. The design is shown in figure 1.

The experiment is complete factorial (full resolution). There is no need to
create this design with blocks.

Experimentation The order of runs, one repeat of 25 combinations = 32 runs,
are fully randomized using a uniform distribution. The purpose of the random-
ization is to lower the potential effect on load caused by non-simulator processes
on the cluster.

3 Analysis

3.1 Variance Model

The wall clock time Tijklm is assumed to be a function of the parameters in the
following way:

– MarkovKillers: αi

– PlanAgents: βj

94 Performance of the Zereal MMOG Simulator

– Monsters: γk

– CPUs: δl

– Radius: εm

Tijklm = µ + αi + βj + γk + δl + εm+
(αβ)ij + (αγ)ik + (αδ)il + (αε)im

(βγ)jk + (βδ)jl + (βε)jm + (γδ)kl +
(γε)lm + (δε)lm + ζijklm

The error ζijklm come from stochastic elements of the experiment (e.g. cpu
load) in addition to higher order interaction effects.

Calculations was performed using Minitab’s General Linear Model (output
in section 6.2). By selecting a confidence level of 5%1, the following factors have
significant effect (checking the P-value):

1. MarkovKillers
2. PlanAgents
3. Monsters
4. CPUs
5. Radius
6. MarkovKillers*Radius
7. PlanAgents*Radius
8. Monsters*Radius

The main factors were likely to have effect, but that 2-factor interactions
involving the vision radius are not directly obvious.

The significant main and interaction factors together explain approximately
97.6% of the model based on calculations with Sum of Squares, the exact ex-
pression is (1.0 - 206214/211197)*100. The rest of approximately 2.4% is due to
true variance from stochastic elements in the experiments.

A plausible explanation of the high main effect of vision radius (fig 1) is
that the amount of vision processing increases proportional to the square of
the vision radius (processing area = π · (visionradius)2). Since adding more
agents and increasing the vision radius rapidly increases the load of an agents
vision algorithm (i.e. sees a larger area with higher density of other agents), the
significant 2-factor interactions involving agents and vision radius (fig 1) makes
sense.

The main effects satisfy the initial assumptions, but the 2-factor interactions
involving vision radius were quite surprising at first.

There is no need to perform more experiments in order to deal with alias
structures since the experiment is a based on full factorial design (i.e. disabling
alias structures).
1 not the same α as in the model above!

Paper D 95

Fig. 2. Main Effects Plot

Fig. 3. Interaction Plots

96 Performance of the Zereal MMOG Simulator

3.2 Scalability of Zereal

Number of Simulated Players

5000 10000 15000 20000 25000

Ti
m

e
(s

)

500

1000

1500

2000

2500

3000

5000 10000 15000 20000 25000

Fig. 4. Zereal scalability (with regression line and prediction interval)

In figure 1 the wallclock runtime performance for 5 minutes simulated time
in the game (i.e. 300 simulated seconds) as a function of the number of simu-
lated players. The simulation is performed on 5 Athlon 1.6 GHz CPUs on an
Linux-cluster. The largest simulation performed so far with Zereal is with 160
thousand agents (simulated players and NPCs) on 20 CPUs. The setup for the
experiment was with simulated players and NPCs with Markov chain type rea-
soning (the largest number of hierarchical planning agents tested so far is 50000).
By doubling the number of players and keeping the number of simulated cycles
fixed the number of sense-reason-act cycles to be performed doubles, this can
explain the close-to-linear scalability.

4 Conclusion and Recommendations

It has been determined that there is significant interaction between factors in the
experiments (MarkovKillers*Radius, PlanAgents*Radius and Monsters*Radius)

The main factors and including all interactions between them explain ap-
proximately 97% of the response variable, this is a surprisingly high value since
the simulator has highly stochastic behavior of killers and monsters. However,
since each run is over a period of 100 cycles, and for each cycle the killers (and
monsters) perform one action (or inaction), one gets an “averaging” effect on
the measured wallclock time.

Paper D 97

In future experiments it would be useful to track the movements of agents be-
tween CPUs, and measure how the agents are balanced between CPUs, another
factor that also would be interesting to add is the load of the cluster operating
system (explaining some of ζijklm), and a third interesting factor is topology of
the simulated game world and how it is mapped onto the CPUs.

4.1 Scalability of the Zereal Platform

We have used factorial experimental design and identified eight factors that have
effect on the scalability of the simulator. These significant factors are:

1. MarkovKillers
2. PlanAgents
3. Monsters
4. CPUs
5. Radius
6. MarkovKillers*Radius
7. PlanAgents*Radius
8. Monsters*Radius

References

1. Douglas C. Montgomery. Design and Analysis of Experiments, chapter 10, pages
461–466. John Wiley & Sons, Inc., 4th edition, 1997.

2. Amund Tveit, Øyvind Rein, Jørgen Vinne Iversen, and Mihhail Matskin. Scalable
Agent-based Simulation of Players in Massively Multiplayer Online Games. In Pro-
ceedings of the 8th Scandinavian Conference on Artificial Intelligence, Frontiers in
Artificial Intelligence and Applications. IOS Press, 2003.

98 Performance of the Zereal MMOG Simulator

Paper E

@InProceedings{2002:IC:Tveit,
author = {Amund Tveit and Gisle B. Tveit},
title = "{Game Usage Mining: Information Gathering for

Knowledge Discovery in
Massively Multiplayer Online Games}",

booktitle = {Proceedings of the International Conference on
Internet Computing},

pages = {24--27},
year = {2002},
editor = {Hamid R. Arabnia and Youngsong Mun},
address = {Las Vegas, USA}
volume = {3},
month = {June},
publisher = {CSREA Press}

}

This paper has been cited by Thawonmas [2003].

Game Usage Mining: Information Gathering for

Knowledge Discovery in Massive Multiplayer Games

Amund Tveit∗

Department of Computer and Information Science
Norwegian University of Science and Technology

Gisle B. Tveit
Department of Thermal Energy

Norwegian University of Science and Technology

Abstract

Multiplayer games provide rich sources of
information for data mining. The primary
purpose of data mining in games is to find
patterns of behavior, structure or content in
order to improve the overall gameplay, hence
keeping players longer and increasing the
revenue of the game service. In this paper
we define the term game usage mining and
describe it from web usage mining perspective,
with the main emphasis on data gathering.
A classification of game types from a data
mining perspective is also suggested. Based
on the discussion we propose content for a
common game log format suitable for game
usage mining.

Keywords: Massive Multiplayer Games,
Web Usage Mining, Information Gathering

1 Introduction

Multiplayer games, both on the wireless and
the traditional Internet, are excellent sources
of information for data mining. We can mine
usage patterns of both human and virtual
players (avatars), or discover patterns in the
games content and structure.

∗amund.tveit@idi.ntnu.no, IDI/NTNU, N-7491
Trondheim, Norway

In this paper we compare the process of
information gathering for behavior mining in
massive multiplayer games (game usage min-
ing) to the similar process known from web us-
age mining.

1.1 Motivation

The main motivation for performing data min-
ing in computer games is to discover patterns,
e.g. rules or statistics, that can possibly be
used to improve the game. Then paying players
become more satisfied and stay longer, which
again increases the revenue of the game ser-
vice. This is of particular importance for wire-
less games, since keeping a player is equiva-
lent of making more money. Wireless Inter-
net revenue models are either proportional to
money per time unit spent by the player (e.g.
WAP over GSM), or increasingly more com-
mon, money per byte served to the player (e.g.
UMTS, I-Mode and WAP over GPRS).

Areas and connections between areas (e.g.
doors or tunnels), are frequent building struc-
tures in games. From a web usage mining per-
spective they can be seen as relatively analog to
web pages and links (i.e. URLs), respectively.
Player behavior can also be detected, including
actions and speech act utterances. This makes
it possible generate game logs that resemble
web logs in structure, and hence can gain from
applying web usage mining methods with only
minor adaptions.

100 Game Usage Mining

1.2 Terminology

In order to have a clear vocabulary to describe
data mining in multiplayer games (from now
on called game mining) we define three main
types: 1) game content mining – discovery
of patterns in multimedia or textual content
in games (e.g. room layout), 2) game struc-
ture mining – discovery of structural patterns
in form of paths and connections binding the
game world together (e.g. hallways between
rooms), and 3) game usage mining – discovery
of human and avatar behavior patterns. The
described types of game mining are inspired by
well-known types of web mining – web content
mining, web structure mining and web usage
mining [2].

1.3 Research Problem

What are the similarities and differences of in-
formation gathering for web usage mining and
game usage mining?

The rest of this paper is organized as fol-
lows. Section 2 describes a game classifica-
tion schema. Section 3 describes the Game Us-
age Mining concept. Section 4 compares infor-
mation gathering in a web and game context.
Section 5 describes the proposed game log ap-
proach, and finally the conclusion with future
work.

2 Game Classification

From a information gathering viewpoint,
games are proposed classified according to fig-
ure 1, with examples for each class.

Singleplayer
 (SPG)

Multiplayer
 (MPG)

Massive Multiplayer
 (MMPG)

Discrete
Gamestate

Non-Discrete
Gamestate

Solitaire, Tetris
Go, Backgammon,
Chinese Checkers ?
Quake,
MUD/MOO

Everquest,
Lineage

Zelda, The
Longest Journey

Figure 1: Computer Game Classification

In the discrete game-state class we consider

games that have a discrete search space and a
turn-based gameplay, e.g. in chinese checkers
it is not possible to do fractional (non-integer)
moves of marbles, and players have to wait
until their turn. In Quake [1] the search
space (from a practical view) is non-discrete,
and players don’t have to wait until their
turn, hence Quake belongs to the non-discrete
game-state class.

In the singleplayer game class, the games
only have one simultaneous (human) player,
as in case of Solitaire where the human plays,
and the computer only shuffles the cards.

The difference between the multiplayer and
the massive multiplayer classes is not absolute,
but the prior covers games with 2− 100 simul-
taneous players (or same order of magnitude),
and the latter covers games with the number
of players being � 100. An example of a
(non-discrete game-state) massive multiplayer
game is NCSoft’s Lineage with approximately
110,000 simultaneous players [4]. We were not
able to find examples of discrete gamestate
massive multiplayer games.

Another classification schema for computer
games is based on genres (e.g. action games,
role-playing games, adventure games, sports
game etc.) [6]. Genres are suited to classify
what the game is about, but not so well suited
to classify the amount and what type of data
that can be gathered from the game, hence
being less useful in a data mining context.

Games can also be classified according to
their network architecture (e.g. single node,
peer-to-peer, client/server or server-network)
[8], which is useful for describing where to col-
lect the data, but doesn’t say anything about
what type of data to collect.

Paper E 101

3 Game Usage Mining Con-
cept

In figure 2 a mobile massive multiplayer game
setting is shown. Players interact with the
Massive Multiplayer Game Service (MMGS).
The MMGS sends events about user actions to
the Game Usage Miner (GUM), if the GUM
discovers patterns of interest (e.g. player lo-
goff probability) they get passed on to Recom-
mender Service (RS). When the RS receives a
pattern it will give a recommendation back to
the MMGS about how to alter the player ex-
perience. The purpose of this is to improve the
gaming experience for players. Methods used
in the RS can e.g. be collaborative filtering
or case-based reasoning. Another purpose of
the GUM is to provide realtime metrics of the
game, typically macro numbers such as mood
of the community (e.g. number of players likely
to log off in the near future).

 Player N

 Player 1

Massive Multiplayer

Game Service

Game Usage Miner

Recommender Service

Figure 2: Game Usage Mining Concept

4 Web vs Game Usage Mining

In this section we compare information gather-
ing in non-discrete game-state massive multi-
player games with information gathering from
web browsing. The purpose of the information

gathering is to enable game usage mining and
web usage mining, respectively.

For web usage mining, the primary informa-
tion source is the highly standardized web log
(i.e. common or extended log format) created
by the web server. Unfortunately, there are
currently no standardized information sources
that supports game usage mining in massive
multiplayer games.

4.1 User and Player Session

User session time tsession is an important
concept in web usage mining, it is the estimate
of user’s active period, i.e. before browsing to
another web site or stop surfing.

In game usage mining we propose an ap-
proach for estimating player sessions. How-
ever, if the player pays per time unit to play,
it is usually very simple to determine tsession,
since the user probably will explicitly log off
instead of idling, or a least be logged out au-
tomatically after a particular idle time of the
client (in order to avoid high bills). If the
client tells the game server that the logout was
caused by timeout for a period tidle, the accu-
rate session time tsession can easily be deter-
mined by:

tsession = tstop − tstart − tidle (1)

Where tstart and tstop are timestamps for the
start and stop of player session, respectively.

4.2 Log rate

Logging of usage data in web usage mining is
purely event driven. When the client (browser)
requests a web page or an object it causes a
log entry line (LogEntryt) to be written to the
web server log. The time resolution of the log
is usually limited to whole seconds, so if the
web server receives several requests in a second,
they are written to the web log in an arbitrary
order.

Game playing generate many more events
than web browsing, since events are based on
real-time actions in the game (e.g driving a car,

102 Game Usage Mining

talking to other avatars, flying on a dragon’s
back etc.). To avoid overload of the game
service’s logging mechanism, it has to collect
events in memory for a period tcollect, then pos-
sibly prune events of less importance and write
the important events during the period tcollect

to the log. If tcollect is relatively short (e.g.
1s or less, depending on game type), we pro-
pose that game log entries (from possibly sev-
eral players) collected in that period can have
an arbitrary order as the case for web logs. The
reason for this is to avoid costly synchroniza-
tion in parallel implementations.

4.3 Player Information Attributes

This section describes information attributes of
the player – the human customer of the gaming
service.

Player identification

The user’s IP address is the simplest identifi-
cation mechanism in web usage mining. How-
ever, since many users can have the same IP
address (e.g. if surfing through a firewall or
proxy gateway), the IP address may not pro-
vide a unique user identification.

User identification can be improved by us-
ing cookies (small information files residing at
the user’s browser which can be written to and
read by the web server), but cookies have got-
ten a lot of critics due to privacy issues. This
has resulted in that many users disable the
cookie support in their browsers.

Player identification (playerid) is in games
is usually much simpler, since the player is be-
coming uniquely identified when entering the
game (e.g. by username or by mobile phone
number) and stays identified the whole play-
ing session.

Player Position

For wireless games, the position playerpos of
the (human) player may be possible to detect
(e.g. using GPS positions obtained from the
player’s wireless device). With the playerpos,
interesting attributes such as playerspeed and

playerdirection can be estimated (during a ses-
sion), this can possibly add useful knowledge
in a game usage mining context.

Player Characteristics

On the web it is possible to get user system
characteristics such as browser version and op-
erating system from the extended web log for-
mat.

Games on the other hand, can possibly ob-
tain more interesting data about users, in-
formation might include the player’s real-life
name, address, e-mail, connecting IP address
etc (based on manual input by the player when
registering).

4.4 Avatar Information Attributes

This section describes information attributes
of the avatar – the virtual character that the
player controls in the game.

Avatar Actions

A web browsing user generates actions in form
of HTTP requests, the most frequent request-
type is “GET” used to retrieve pages or ob-
jects, but also “POST” and “HEAD” occur
relatively frequently.

Action types (avataraction) in games are
usually much more plentiful and represented as
verbs, examples include “jump”, “fire”, “walk”
and “say” etc.

Parameters of Avatar Actions

Parameters of an action in web browsing are
usually an encoded path requesting a particu-
lar HTML file, application/script or multime-
dia object. This path may contain its own pa-
rameters, e.g. if the path requests a script that
sets some variables.

Examples of action parameters
(avataractionparameters) in games include:
natural language or slang phrases (corre-
sponding to action “say”), power or distance
(corresponding to action “fire”).

Paper E 103

Avatar Path

On the web users can browse between web
pages, objects and scripts (discrete movement)
by clicking on URLs. However, if items are
cached (e.g. by a reverse or standard proxy
server, a content provisioning service or the
browser cache), browsing will not be detected
and logged by the web server. To improve the
quality of web logs. java-applets that send mes-
sages from the browser to the web server can be
applied, other attempts to improve path qual-
ity include various heuristic methods [3, 9].

In games it is easier to determine the com-
plete path, but the path is more complex
to represent than on the web since it’s not
necessarily discrete. The player can move
the avatar in any direction and not only se-
lect between a relatively small set of direc-
tions. Possible approaches to represent paths
include storing the global game coordinates
of the avatar’s position (avatarpos) at every
tcollect period, or game area relative coordi-
nates (avatarrpos,area), generalized direction
(avatardir) and speed (avatarspeed) together
with position data.

Avatar Characteristics

Avatar characteristics may include gender,
type of avatar (e.g. elf, troll), occupation (e.g.
wizard, warrior) etc. This information can be
used in creating profiles of the players.

5 Common Game Log Con-
tent

This section summarizes the presented usage
attributes found in games, and proposes
content for a common game log.

To reduce duplicate information, the game
log is proposed divided into two files: 1)
player.log - which contains information about
the user that doesn’t need to be repeated for
each action the player does. This file is up-
dated only for every new session, it’s maximum

update frequency is 1
tsession

, and 2) playerac-
tions.log - which contains information logs of
the players action, it’s maximum update fre-
quency is 1

tcollect
.

Attributes of player.log

playerid, sessionid, timestamp,
playercharacteristics, avatarcharacteristics

Attributes of playeractions.log

playerid, sessionid, playerpos, timestamp,
avatarpos, avataraction, avataractionparameter

5.1 Log file format

One problem with usage log files in massive
multiplayer games with thousands of players
is that they’re likely to grow (in size) very
rapidly, this has to be considered when storing
the data.

An intuitive way of representing the data
would be to define XML Schemas or DTDs
for player.log and playeractions.log. Unfortu-
nately XML is quite verbose, so an easily com-
pressed, though open and standardized, file
format is probably preferable over XML. How-
ever, the best approach is probably to allow
several types of game log encoding, e.g. both
XML and a compressed format. The require-
ments for a multi-format solution should be
simple translation mechanims between the for-
mats.

5.2 Game Usage Mining Process

Figure 3 shows the details the Game Usage
Mining part of figure 2.

Information gathering of game log files de-
scribed earlier is shown in figure 3, part A. In
order the make the system scale up to a large
number of players, we need to create higher-
level aggregated information, e.g. a sequence
of rapid avatar position changes will be inter-
preted as running. This aggregation process is
shown in figure 3, part B.

104 Game Usage Mining

B. Information Processing

A. Information GatheringC. Incremental Mining

A. Information Gathering Game Usage Log(s)
 (low-level)

Generalized Game
 Usage Log(s)

Patterns, Clusters, e.g.
 Rules or Statistics

Recommender Service

Massive Multiplayer
 Game Service

Figure 3: Game Usage Mining Process

An hierarchical approach of dividing high-
level actions (e.g. performing a large task)
into several sub-tasks with corresponding
actions have shown useful in the creation of
intelligent Quake monsters [5]. This supports
our aggregation approach of actions.

We suggest that the behavior of non-
personal characters (e.g. monsters) are also
logged and processed in the same way as the
players. This in order to be able to recreate
the sessions and the experience of the player.
These data must be combined with global in-
formation about the game (storyline, major
events, user interface) in the mining process
(part C). Results of the mining process are pat-
terns (e.g. rules or statistics) that can either
be used as input to a recommender service or
as metrics to the game service operator(s).

Acknowledgements

We would like to thank Magnus Lie Hetland for
fruitful discussions about computer games in
general. We would also like to thank Professor
Mihhail Matskin. This work is supported by
the Norwegian Research Council in the frame-
work of the Distributed Information Technol-
ogy Systems (DITS) program and the (ElCo-
mAg) project.

6 Conclusion

The contribution of this paper has been
threefold, first we defined types of data
mining in computer, second we provided a
classification of computer games from a data
mining viewpoint, and third we compared
information gathering in web usage mining
and game usage mining as well as proposing
a common game log format to enable game
usage mining.

Future work include determining the actual
representation of game log files (e.g. which
attributes and which concrete efficient repre-
sentation), determine what type of usage min-
ing is most useful in massive multiplayer com-
puter games (e.g clustering, classification and
incremental sequence mining [10, 7]), and how
existing web usage mining architectures and
systems can be adapted to a support scalable
game usage mining setting.

References

[1] Ahmed Abdelkhalek, Angelos Bilas, and An-
dreas Moshovos. Behavior and performance
of interactive multi-player game servers. In
Proceedings of IEEE International Symposium
on Performance Analysis of Systems and Soft-
ware. IEEE, November 2001.

[2] Robert Cooley, Bamshad Mobasher, and
Jaideep Srivastava. Web mining: Informa-
tion and pattern discovery on the world wide
web. In Proceedings of the 9th IEEE Interna-
tional Conference on Tools with Artificial In-
telligence (ICTAI’97). IEEE, November 1997.

[3] Robert Cooley, Bamshad Mobasher, and
Jaideep Srivastava. Data preparation for
mining world wide web browsing patterns.
Knowledge and Information Systems, 1(1):5–
32, February 1999.

[4] Moon Ihlwan. The champs in online games.
Business Week, pages 27–28, July 23, 2001.

[5] John Laird. It knows what you’re going to do:
Adding anticipation to a quakebot. In Proceed-
ings of the 5th International Conference on
Autonomous Agents. ACM, ACM Press, 2001.

Paper E 105

[6] John Laird and Michael Van Kent. Human-
Level AI’s Killer Application: Interactive
Computer Games. AI Magazine, 22(2):15–26,
2001.

[7] Florent Masseglia, Pascal Poncelet, and
Maguelone Teisseire. Web usage mining: How
to efficiently manage new transactions and
new clients. In Proceedings of the 4th European
Conference on Principles of Data Mining and
Knowledge Discovery (PKDD’00), September
2000.

[8] Jouni Smed, Timo Kaukoranta, and Harri
Hakonen. Aspects of networking in multiplayer
computer games. In Loo Wai Sing, Wan Hak
Man, and Won Wai, editors, Proceedings of
International Conference on Application and
Development of Computer Games in the 21st
Century, pages 74–81, November 2001.

[9] Jaideep Srivastava, Robert Cooley, Mukund
Deshpande, and Pang-Ning Tan. Web us-
age mining: Discovery and applications of us-
age patterns from web data. SIGKDD Explo-
rations, 1(1):12–23, January 2000.

[10] Ron Sun. Introduction to sequence learning.
In Ron Sun and C. Lee Giles, editors, Se-
quence Learning - Paradigms, Algorithms, and
Applications, volume 1828 of Lecture Notes
in Computer Science, pages 1–10. Springer-
Verlag, 2001.

106 Game Usage Mining

Paper F

@InProceedings{2003:KES:Tveit,
author = {Amund Tveit and Magnus Lie Hetland},
title = "{Multicategory Incremental Proximal Support

Vector Classifiers}",
booktitle = {Proceedings of the 7th International Conference

on Knowledge-Based Information \& Engineering
Systems (KES’2003)},

pages = {386--392},
year = {2003},
series = {Lecture Notes in Artificial Intelligence (LNAI)},
number = {2773 (Part I)},

publisher = {Springer-Verlag}
}

Multicategory Incremental Proximal Support
Vector Classifiers

Amund Tveit and Magnus Lie Hetland

Department of Computer and Information Science,
Norwegian University of Science and Technology,

N-7491 Trondheim, Norway
{amundt,mlh}@idi.ntnu.no

Abstract. Support Vector Machines (SVMs) are an efficient data min-
ing approach for classification, clustering and time series analysis. In
recent years, a tremendous growth in the amount of data gathered has
changed the focus of SVM classifier algorithms from providing accurate
results to enabling incremental (and decremental) learning with new data
(or unlearning old data) without the need for computationally costly re-
training with the old data. In this paper we propose an efficient algorithm
for multicategory classification with the incremental proximal SVM in-
troduced by Fung and Mangasarian.

1 Introduction

Support Vector Machines (SVMs) are an efficient data mining approach for clas-
sification, clustering and time series analysis [1–3]. In recent years, a tremendous
growth in the amount of data gathered (for example, in e-commerce and intru-
sion detection systems) has changed the focus of SVM classifier algorithms from
providing accurate results to enabling incremental (and decremental) learning
with new data (or unlearning old data) without the need for computationally
costly retraining with the old data. Fung and Mangasarian [4] introduced the
Incremental and Decremental Linear Proximal Support Vector Machine (PSVM)
for binary classification and showed that it could be trained extremely efficiently,
with one billion examples (500 increments of two million examples) in two hours
and twenty-six minutes on relatively low-end hardware (400 MHz Pentium II).

In this paper we propose an efficient algorithm based on memoization, in
order to support Multicategory Classification for the Incremental PSVM.

2 Background Theory

The standard binary SVM classification problem with soft margin (allowing some
errors) is shown visually in Fig. 1(a) and as a constrained quadratic programming
problem in (1). Intuitively, the problem is to maximize the margin between the
solid planes and at the same time permit as few errors as possible, errors being
positive class points on the negative side (of the solid line) or vice versa.

108 Incremental Multicategory PSVM Classifiers

1' +=γwx

O
O

O
O

O

O

O

O

w
2=

1' −=γwx

Margin

A+
A-

O
O

O
O O

O

O
O O

O

O
O O

O

O
O

O
O

O
O

X

X

X

X

X

X

X
X

X

X
X

X

X

X

X

X
X

X

X

X

X

X

O

X

O

O

X

X

X

γ=wx'Separating Plane

w

X

(a) Standard SVM
classifier

1' +=γwx

O
O

O
O

O

O

O

O

=

γ
w
2

1' −=γwx

Margin

A+
A-

O
O

O
O O

O

O
O O

O

O
O O

O

O
O

O
O

O
O

X

X

X

X

X

X

X
X

X

X
X

X

X

X
X

X
X

X

X

X

X

X

O

X

O

O

X

X

X

0' =−γwxSeparating Plane

γ
w

X

(b) Proximal SVM
classifier

Fig. 1. SVM and PSVM

min
(w,γ,y)∈Rn+1+m

{ve′y + 1
2w′w}

s.t. D(Aw − eγ) + y ≥ e
y ≥ 0

(1)

A ∈ Rm×n, D ∈ {−1, +1}m×1
, e = 1m×1

Fung and Mangasarian [5] replaced the inequality constraint in (1) with an
equality constraint. This changed the binary classification problem, because the
points in Fig. 1(b) are no longer bounded by the planes, but are clustered around
them. By solving the equation for y and inserting the result into the expression
to be minimized, one gets the following unconstrained optimization problem:

min
(w,γ)∈Rn+1+m

f(w, γ) = ν
2‖D(Aw − eγ)− e‖2 + 1

2 (w′w + γ2) (2)

Setting ∇f =
(

∂f
∂w , ∂f

∂γ

)
= 0 one gets:

(
w
γ

)
︸ ︷︷ ︸
X

=
(

A′A + I
ν −A′e

−e′A 1
ν + m

)−1 (
A′De
−e′De

)
=

(
I

ν
+ E′E

)−1

︸ ︷︷ ︸
A−1

E′De︸ ︷︷ ︸
B

(3)

E = [A− e], E ∈ Rm×(n+1)

Fung and Mangasarian [6] later showed that (3) can be rewritten to handle
increments (Ei, di) and decrements (Ed, dd), as shown in (4). This decremental
approach is based on time windows.

Paper F 109

X =
(

w
γ

)
=

(
I

ν
+ E′E + (Ei)′Ei − (Ed)′Ed

)−1 (
E′d + (Ei)′di − (Ed)′dd

)
, (4)

where

d = De .

3 Incremental Proximal SVM for Multiple Classes

In the multicategorical classification case, the (incremental) class label vector di

consists of mi numeric labels in the range {0, . . . , c− 1}, where c is the number
of classes, as shown in (5).

X =
(

w0 . . . wc−1

γ0 . . . γc−1

)
= A−1B (5)

3.1 The Naive approach

In order to apply the proximal SVM classifier in a “one-against-the-rest” manner,
the class labels must be transformed into vectors with +1 for the positive class
and −1 for the rest of the classes, that is, Θ(cmi) operations in total, and later
Θ(cmin) for calculating (Ei)′d for each class. The latter (column) vectors are
collected in a matrix B ∈ R(n+1)c. Because the training features represented by
Ei are the same for all the classes, it is enough to calculate A ∈ R(n+1)2 once,
giving Θ(mi(n + 1)2 + (n + 1)2) operations for calculating (Ei)′Ei and adding
it to I

ν + E′E. The specifics are shown in shown in Algorithm 1.

Theorem 1. The running time complexity of Algorithm 1 is Θ(cmincn).

Proof. The conditional statement in lines 3–7 takes Θ(1) time and is performed
minc times (inner loop, lines 2–8) per iteration of classId (outer loop, line 1–
10). Calculation of the matrix-vector product B[classId,] in line 9 takes Θ((n +
1)minc) per iteration of classId. This gives a total running time of

Θ(c · (minc + minc(n + 1))) = Θ(cmincn) .

ut

110 Incremental Multicategory PSVM Classifiers

Algorithm 1 calcB Naive(Einc, dinc)
Require: Einc ∈ Rmincx(n+1), dinc ∈ {0, . . . , c− 1}minc and n, minc ∈ N
Ensure: B ∈ R(n+1)xc

1: for all classId in {0, . . . , c− 1} do
2: for all idx in {0, . . . , minc − 1} do
3: if dinc[idx] = classId then
4: dclassId[idx,] = +1
5: else
6: dclassId[idx,] = −1
7: end if
8: end for
9: B[classId,] = E′

incdclassId

10: end for
11: return B

3.2 The Memoization Approach

The dclassId vectors, c in all, (in line 3 of Algorithm 1) are likely to be unbalanced,
that is, have many more −1 values than +1 values. However, if there are more
than two classes present in the increment di, the vectors will at least share
one index position where the value is −1. With several classes present in the
increment di, the matrix-vector products (Ei)′dclassId actually perform duplicate
calculations each time there exists two or more dclassId vectors that have −1
values in the same position.

The basic idea for the memoization approach (Algorithm 3) is to only calcu-
late the +1 positions for each vector dclassId by first creating a vector F = −[Ei

. j]

(a vector with the negated sum of E’s columns, equivalent to multiplying Ei
′

with a vector filled with −1) and then to calculate the dclassId vectors using F
and only switching the −1 to a +1 by adding the row vector of E twice if the
row in dclassId is equal to +1. In order to do this efficiently, an index of di for
each class ID has to be created (Algorithm 2).

Algorithm 2 buildClassMap(dinc)
Require: dinc ∈ {0, . . . , c− 1}minc and minc ∈ N
1: classMap = array of length c containing empty lists
2: for all idx = 0 to minc − 1 do
3: append idx to classMap[dinc[idx,]]
4: end for
5: return classMap

Theorem 2. The running time complexity of Algorithm 2 is Θ(minc).

Proof. Appending idx to a the tail of a linked list takes Θ(1) time, lookup of
classMap[dinc[idx,]] in the directly addressable arrays classMap and dinc also

Paper F 111

takes Θ(1) time, giving a total for line 3 of Θ(1) time per iteration of idx. idx is
iterated minc times, giving a total of Θ(minc) time.

ut

Algorithm 3 calcB Memo(Einc, dinc, Einc

′
Einc)

Require: Einc ∈ Rminc×(n+1), dinc ∈ {0, . . . , c− 1}minc and n, minc ∈ N
Ensure: B ∈ R(n+1)xc, F ∈ R(n+1)

1: classMap = buildClassMap(dinc)
2: for all classId in {0, . . . , c− 1} do

3: B[classId,] = Einc
′
Einc[n]

4: for all idx in classMap[classId,] do
5: B[idx, classId,] = B[idx, classId,] + 2 ·

∑n
j=0 Einc[idx , j]

6: end for
7: end for
8: return B

Theorem 3. The running time complexity of Algorithm 3 is Θ(n(c + minc).

Proof. Calculation of classMap (line 1) takes Θ(minc) time (from Theorem 2).
Line 3 takes Θ(n+1) time per iteration of classId, giving a total of Θ(c(n+1)).
Because classMap provides a complete indexing (|

⋃c−1
u=0 classMap[u]| = minc) of

the class labels in dinc, and because there are no repeated occurrences of idx for
different classIds (

⋂c−1
u=0 classMap[u] = ∅), line 5 will run a total of minc times.

This gives a total running time of

Θ(minc + (n + 1)minc + c(n + 1) + minc)
= Θ(n(c + minc)) .

ut

Corollary 1. Algorithms 1 and 3 calculate the same B if provided with the same
input.

4 Empirical Results

In order to test and compare the computational performance of the incremental
multicategory proximal SVMs with the naive and lazy algorithms, we have used
three main types of data:

1. Forest cover type, 580012 training examples, 7 classes and 54 features (from
UCI KDD Archive [7])

2. Synthetic datasets with a large number of classes (up to 1000 classes) and
30 features

112 Incremental Multicategory PSVM Classifiers

3. Synthetic dataset with a large number of examples (10 million), 10 features
and 10 classes

The results for the first two data sets are shown in Fig. 4; the average time
from tenfold cross-validation is used. For the third data set, the average classi-
fier training times were 18.62 s and 30.64 s with the lazy and naive algorithm,
respectively (training time for 9 million examples, testing on 1 million).

●●

●

●

●

●

●

●

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05

0
5

10
15

Number of Examples

S
ec

on
ds

●●

●

●

●

●

●

●

Naive
Lazy

(a) Runtime vs examples (cover type)

● ●
●

●

●

●

●

200 400 600 800 1000

0
10

20
30

40
50

Number of Classes

S
ec

on
ds

● ● ● ● ●
●

●

Naive
Lazy

(b) Runtime vs classes (synthetic)

Fig. 2. Computational performance: training time

The incremental multicategory proximal SVM was been implemented in C++
using the CLapack and ATLAS libraries. The tests were run on an Athlon
1.53GHz PC with 1GB RAM running Red Hat Linux 2.4.18.

Acknowledgements

We would like to thank Professor Mihhail Matskin and Professor Arne Halaas.
This work is supported by the Norwegian Research Council in the framework
of the Distributed Information Technology Systems (DITS) program, and the
ElComAg project.

5 Conclusion and Future Work

We have introduced the multiclass incremental proximal SVM and shown a com-
putational improvement for training the multiclass incremental proximal SVM,

Paper F 113

which works particularly well for classification problems with a large number of
classes. Another contribution is the implementation of the system (available on
request).

Future work includes applying the algorithm to demanding incremental clas-
sification problems, for example, web page prediction based on analysis of click
streams or automatic text categorization. Algorithmic improvements that need
to be done include (1) develop balancing mechanisms (in order to give hints for
pivot elements to the applied linear system solver for reduction of numeric er-
rors), (2) add support for decay coefficients for efficient decremental unlearning,
(3) investigate the appropriateness of parallelized incremental proximal SVMs,
(4) strengthen implementation with support for tuning set, kernels as well as
one-against-one classifiers.

References

1. Burbidge, R., Buxton, B.F.: An introduction to support vector machines for data
mining. In Sheppee, M., ed.: Keynote Papers, Young OR12, University of Notting-
ham, Operational Research Society, Operational Research Society (2001) 3–15

2. Huang, J., Shao, X., Wechsler, H.: Face pose discrimination using support vec-
tor machines (svm). In: Proceedings of 14th Int’l Conf. on Pattern Recognition
(ICPR’98), IEEE (1998) 154–156

3. Muller, K.R., Smola, A.J., Ratsch, G., Scholkopf, B., Kohlmorgen, J., Vapnik, V.:
Predicting time series with support vector machines. In: ICANN. (1997) 999–1004

4. Fung, G., Mangasarian, O.L.: Incremental support vector machine classification.
In Grossman, R., Mannila, H., Motwani, R., eds.: Proceedings of the Second SIAM
International Conference on Data Mining, SIAM (2002) 247–260

5. Fung, G., Mangasarian, O.L.: Multicategory Proximal Support Vector Classifiers.
Submitted to Machine Learning Journal (2001)

6. Schwefel, H.P., Wegener, I., Weinert, K., eds.: 8. Natural Computing. In: Advances
in Computational Intelligence: Theory and Practice. Springer-Verlag (2002)

7. Hettich, S., Bay, S.D.: The UCI KDD archive. http://kdd.ics.uci.edu (1999)

114 Incremental Multicategory PSVM Classifiers

Paper G

@InProceedings{2003:DAWAK:Tveit,
author = {Amund Tveit and Magnus Lie Hetland and

H{\aa}vard Engum},
title = "{Incremental and Decremental Proximal

Support Vector Classification using
Decay Coefficients}",

booktitle = {Proceedings of the 5th International Conference
on Data Warehousing and Knowledge Discovery
(DAWAK’2003)},

year = {2003},
series = {Lecture Notes in Computer Science (LNCS)},
number = {2737},
pages = {422--429},
editor = {Yahiko Kambayashi and Mukesh Mohania and

Wolfram Woss},
address = {Prague, Czech Republic}
month = {September},
publisher = {Springer-Verlag}

}

Incremental and Decremental Proximal Support
Vector Classification using Decay Coefficients

Amund Tveit, Magnus Lie Hetland and H̊avard Engum

Department of Computer and Information Science,
Norwegian University of Science and Technology,

N-7491 Trondheim, Norway
{amundt,mlh,havare}@idi.ntnu.no

Abstract. This paper presents an efficient approach for supporting decre-
mental learning for incremental proximal support vector machines (SVM).
The presented decremental algorithm based on decay coefficients is com-
pared with an existing window-based decremental algorithm, and is shown
to perform at a similar level in accuracy, but providing significantly bet-
ter computational performance.

1 Introduction

Support Vector Machines (SVMs) is an exceptionally efficient data mining ap-
proach for classification, clustering and time series analysis [5, 12, 4]. This is
primarily due to SVMs highly accurate results that are competitive with other
data mining approaches, e.g. artificial neural networks (ANNs) and evolution-
ary algorithms (EAs). In recent years tremendous growth in the amount of data
gathered (e.g. user clickstreams on the web, in e-commerce and in intrusion de-
tection systems), has changed the focus of SVM classifier algorithms to not only
provide accurate results, but to also enable online learning, i.e. incremental and
decremental learning, in order to handle concept drift of classes [2, 13].

Fung and Mangasarian introduced the Incremental and Decremental Linear
Proximal Support Vector Machine (PSVM) for binary classification [10], and
showed that it was able to be trained extremely fast, i.e. with 1 billion examples
(500 increments of 2 million) in 2 hours and 26 minutes on relatively low-end
hardware (400 MHz Pentium II). This has later been extended to support effi-
cient support of incremental multicategorical classification [16]. Proximal SVMs
has also been shown to perform at a similar level of accuracy as regular SVMs
and at the same time being significantly faster [9].

In this paper we propose a computationally efficient algorithm that enables
decremental support for Incremental PSVMs using a weight decay coefficient.
The suggested approach is compared the current time-window based approach
proposed by Fung and Mangasarian [10].

116 Incremental and Decremental PSVM Classifiers

2 Background Theory

The basic idea of Support Vector Machine classification is to find an optimal
maximal margin separating hyperplane between two classes. Support Vector
Machines uses an implicit nonlinear mapping from input-space to a higher di-
mensional feature-space using kernel-functions, in order to find a hyperplane of
problems which are not linear separable in input-space [7, 18]. Classifying multi-
ple classes is commonly performed by combining several binary SVM classifiers
in a tournament manner, either one-against-all or one-against-one, the latter
approach requiring substantial more computational effort [11].

The standard binary SVM classification problem with soft margin (allowing
some errors) is shown visually in Fig. 1(a). Intuitively, the problem is to maximize
the margin between the solid planes and at the same time permit as few errors
as possible, errors being positive class points on the negative side (of the solid
line) or vice versa.

1' +=γwx

O
O

O
O

O

O

O

O

w
2=

1' −=γwx

Margin

A+
A-

O
O

O
O O

O

O
O O

O

O
O O

O

O
O

O
O

O
O

X

X

X

X

X

X

X
X

X

X
X

X

X

X

X

X
X

X

X

X

X

X

O

X

O

O

X

X

X

γ=wx'Separating Plane

w

X

(a) Standard SVM
classifier

1' +=γwx

O
O

O
O

O

O

O

O

=

γ
w
2

1' −=γwx

Margin

A+
A-

O
O

O
O O

O

O
O O

O

O
O O

O

O
O

O
O

O
O

X

X

X

X

X

X

X
X

X

X
X

X

X

X
X

X
X

X

X

X

X

X

O

X

O

O

X

X

X

0' =−γwxSeparating Plane

γ
w

X

(b) Proximal SVM
classifier

Fig. 1. SVM and PSVM

The standard SVM problem can be stated as a quadratic optimization prob-
lem with constraints, as shown in (1).

min
(w,γ,y)∈Rn+1+m

{ve′y + 1
2w′w}

s.t. D(Aw − eγ) + y ≥ e
y ≥ 0

(1)

A ∈ Rm×n, D ∈ {−1, +1}m×1
, e = 1m×1

Fung and Mangasarian [8] replaced the inequality constraint in (1) with an
equality constraint. This changed the binary classification problem, because the
points in Fig. 1(b) are no longer bounded by the planes, but are clustered around

Paper G 117

them. By solving the equation for y and inserting the result into the expression
to be minimized, one gets the following unconstrained optimization problem:

min
(w,γ)∈Rn+1+m

f(w, γ) = ν
2‖D(Aw − eγ)− e‖2 + 1

2 (w′w + γ2) (2)

Setting ∇f =
(

∂f
∂w , ∂f

∂γ

)
= 0 one gets:

(
w
γ

)
︸ ︷︷ ︸
X

=
(

A′A + I
ν −A′e

−e′A 1
ν + m

)−1 (
A′De
−e′De

)
=

(
I

ν
+ E′E

)−1

︸ ︷︷ ︸
A−1

E′De︸ ︷︷ ︸
B

(3)

E = [A− e], E ∈ Rm×(n+1)

Agarwal has showed that the Proximal SVM is directly transferable to a ridge
regression expression [1]. Fung and Mangasarian [10] later showed that (3) can
be rewritten to handle increments (Ei, di) and decrements (Ed, dd), as shown
in (4). This decremental approach is based on time windows.

X =
(

w
γ

)
=

(
I

ν
+ E′E + (Ei)′Ei − (Ed)′Ed

)−1 (
E′d + (Ei)′di − (Ed)′dd

)
, (4)

where d = De

.

3 PSVM Decremental Learning using Weight Decay
Coefficient

The basic idea is to reduce the effect of the existing (old) accumulated training
knowledge E′E with an exponential weight decay coefficient α.

(
w
γ

)
=

(
I
ν + α · E′

E + Ei
′

Ei
)−1 (

α · E′
d + Ei

′

di
)

; α ∈ 〈0, 1] (5)

As opposed to the decremental approach in expression (4), the presented
weight decay approach does not require storage of increments (Ei

′

Ei , Ei
′

di)

later to be retrieved as decrements (Ed
′

Ed , Ed
′

dd).
A hybrid approach is shown in expression (6), where one has both a soft

decremental effect using the weight decay coefficient α as well as a hard decre-
mental effect using a fixed window of size W increments.

118 Incremental and Decremental PSVM Classifiers

(
w
γ

)
=

(
I
ν + α · E′

E + Ei
′

Ei − αW · Ed
′

Ed
)−1

·(
α · E′

D + Ei
′

Di − αW · Ed
′

Dd
)

; α ∈ 〈0, 1]
(6)

4 Related Work

Syed et al. presented an approach for handling concept drift with SVM [2].
Their approach trains on data, and keeps only the support vectors representing
the data before (exact) training with new data and the previous support vectors.
Klinkenberg and Joachims presented a window adjustment based SVM method
for detecting and handling concept drift [13]. Cauwenberghs and Poggio proposed
an incremental and decremental SVM method based on a different approximation
than used by us [6].

5 Empirical results

In order to test and compare our suggested decremental PSVM learning ap-
proach with the existing window-based approach we created synthetic binary
classification data sets with simulated concept drift. This was created by sam-
pling feature values from a multivariate normal distribution where the covariance
matrix Ω = I (identity matrix) and the mean vector µ was sliding linearly from
only +1 values to −1 values for the positive class case, and vice versa for the
negative class [14], as shown in algorithm 1.

Algorithm 1 simConceptDrift(nFeat, nSteps, nExPerStep, start)
Require: nFeat, nSteps, nExPerStep ∈ N and start ∈ R
Ensure: Linear stochastic drift in nSteps from start to −start
1: center = [start, . . . , start] {vector of length nFeat}
2: origcenter = center
3: for all step in {0, . . . , nSteps − 1} do
4: for all synthExampleCount in {0, . . . , nExPerStep − 1} do
5: sample example from multivar.gauss.dist with µ = center and σ2’s = 1
6: end for
7: center = origcenter · (1 − 2 · step+1

nStep−1
) {concept drift}

8: end for

5.1 Classification Accuracy

For the small concept drift test (20000 examples with 10 features and 40 in-
crements of 500 examples, figure 2(a)), the weight decay of α = 0.1 performs
slightly better in terms of unlearning than a window size of W = 5, and a weight

Paper G 119

decay of α = 0.9 performs between unlearning with W = 10 and W = 20, and
the unlearning performance varies quite a bit with α.

For the medium concept drift test (200000 examples with 10 features and
400 increments of 500 examples, figure 2(b)), the value of α matters less, this
due to more increments shown and faster exponential effect of the weight decay
coefficient than in the small concept drift test.

As seen in both figure 2(a) and 2(b), there is “dip” in classification perfor-
mance around their respective center points (increment number ≈ 20 and 200).
This is caused by concept drift, i.e. the features of the positive and negative class
are indiscernible.

0 10 20 30

0
20

40
60

80
10

0

Number of examples=20000

Increment Number

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

Non.Decr.
W=5
W=10
W=20
alpha=0.1
alpha=0.9

(a) Short timespan

0 100 200 300 400

0
20

40
60

80
10

0

Number of examples = 200 000

Increment Number

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

Non.Decr.
W=100
W=10
alpha=0.1
alpha=0.9

(b) Medium timespan

Fig. 2. Classification Accuracy under Concept Drift

5.2 Computational Performance

As shown in figure 5.2 the computational performance (measured in wallclock
time) of the weight decay based approach is almost twice as fast as the window-
based approach except for large windows (e.g. W = 1000). The performance
difference seems to decrease with increasing increment size, this is supported by
the P-values from T-test comparisons. 21 out of 27 T-tests (tables 1-3) showed
significant difference in favor of the weight decay based approach over the window
based approach. Performed T-tests were based on timing of ten repeated runs
of each presented configuration of α, w and increment size.

120 Incremental and Decremental PSVM Classifiers

50 100 200 500 1000 2000 5000

20
40

60
80

10
0

Number of examples = 2000 000

Increment Size

A
ve

ra
ge

 T
im

e
(s

ec
on

ds
)

alpha=0.1
alpha=0.5
alpha=0.9
W=10
W=100
W=1000

Fig. 3. Computational Performance (Long timespan)

w=10 w=100 w=1000

α=0.1 0.00 0.00 0.01

α=0.5 0.00 0.00 0.00

α=0.9 0.00 0.00 0.00

Table 1. P-values for increment size 50 (Comp. Perf.)

5.3 Implementation and Test environment

The incremental and decremental proximal SVM has been implemented in C++
using the CLapack and ATLAS libraries [3, 19]. Support for Python and Java
interfaces to the library is currently under development using the “Simplified
Wrapper and Interface Generator”[15]. A Linux cluster (Athlon 1.4-1.66 GHz
nodes, Sorceror Linux) has served as the test environment.

Acknowledgements

We would like to thank Professor Mihhail Matskin and Professor Arne Halaas.
This work is supported by the Norwegian Research Council.

6 Conclusion and Future Work

We have introduced a weigth decay based decremental approach for proximal
SVMs and shown that it can replace the current window-based approach. The

Paper G 121

w=10 w=100 w=1000

α=0.1 0.00 0.00 0.25

α=0.5 0.00 0.00 0.39

α=0.9 0.00 0.00 0.67

Table 2. P-values for increment size 500 (Comp. Perf.)

w=10 w=100 w=1000

α=0.1 0.00 0.00 0.67

α=0.5 0.00 0.00 0.79

α=0.9 0.00 0.00 0.57

Table 3. P-values for increment size 5000 (Comp. Perf.)

weight decay based approach is significantly faster than the window-based ap-
proach (due to less IO-requirements) for small-to-medium increment and window
sizes, this is supported by simulation and p-values from T-Test.

Future work includes applying the approach on demanding incremental clas-
sification and prediction problems. e.g. game usage mining [17]. Algorithmic
improvements that needs to be done include 1) develop incremental multiclass
balancing mechanisms, 2) investigate the approriateness of parallellized incre-
mental proximal SVMs, 3) strengthen implementation with support for tuning
set and kernels.

References

1. Deepak K. Agarwal. Shrinkage Estimator Generalizations of Proximal Support
Vector Machines. In Proceedings of the 8th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 173–182. ACM Press,
2002.

2. Nadeem Ahmed, Huan Liu, and Kah Kay Sung. Handling Concept Drifts in In-
cremental Learning with Support Vector Machines. In Proceedings of the fifth In-
ternational Conference on Knowledge Discovery and Data Mining, pages 317–321.
ACM Press, 1999.

3. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third
edition, 1999.

4. Asa Ben-Hur, David Horn, Hava T. Siegelmann, and Vladimir Vapnik. Support
Vector Clustering. Journal of Machine Learning Research, 2:125–137, 2001.

5. Robert Burbidge and Bernhard F. Buxton. An introduction to support vector
machines for data mining. In M. Sheppee, editor, Keynote Papers, Young OR12,
pages 3–15, University of Nottingham, March 2001. Operational Research Society,
Operational Research Society.

122 Incremental and Decremental PSVM Classifiers

6. Gert Cauwenberghs and Tomaso Poggio. Incremental and Decremental Support
Vector Machine Learning. In Advances in Neural Information Processing Systems
(NIPS’2000), volume 13, pages 409–415. MIT Press, 2001.

7. Nello Christiani and John Shawe-Taylor. An Introduction to Support Vector Ma-
chines and other kernel-based learning methods, chapter 6, pages 93–111. Cam-
bridge University Press, 1st edition, 2000.

8. Glenn Fung and Olvi L. Mangasarian. Multicategory Proximal Support Vector
Classifiers. Submitted to Machine Learning Journal, 2001.

9. Glenn Fung and Olvi L. Mangasarian. Proximal support vector machine classifiers.
In Proceedings of the 7th ACM Conference on Knowledge Discovery and Data
Mining, pages 77–86. ACM, 2001.

10. Glenn Fung and Olvi L. Mangasarian. Incremental Support Vector Machine Clas-
sification. In R. Grossman, H. Mannila, and R. Motwani, editors, Proceedings of
the Second SIAM International Conference on Data Mining, pages 247–260. SIAM,
April 2002.

11. Chih-Wei Hsu and Chih-Jen Lin. A Comparison of Methods for Multi-class Support
Vector Machines. IEEE Transactions on Neural Networks, 13(2):415–425, 2002.

12. Jeffrey Huang, Xuhui Shao, and Harry Wechsler. Face pose discrimination using
support vector machines (svm). In Proceedings of 14th Int’l Conf. on Pattern
Recognition (ICPR’98), pages 154–156. IEEE, 1998.

13. Ralf Klinkenberg and Thorsten Joachims. Detecting Concept Drift with Support
Vector Machines. In Pat Langley, editor, Proceedings of the Seventeenth Interna-
tional Conference on Machine Learning (ICML). Morgan Kaufmann, 2000.

14. Kenneth Lange. Numerical Analysis for Statisticians, chapter 7.3, pages 80–81.
Springer-Verlag, 1999.

15. Simplified wrapper and interface generator. Online, http://www.swig.org/, March
2003.

16. Amund Tveit and Magnus Lie Hetland. Multicategory Incremental Proximal
Support Vector Classifiers. In Proceedings of the 7th International Conference
on Knowledge-Based Information & Engineering Systems (forthcoming), Lecture
Notes in Artificial Intelligence. Springer-Verlag, 2003.

17. Amund Tveit and Gisle B. Tveit. Game Usage Mining: Information Gathering for
Knowledge Discovery in Massive Multiplayer Games. In Proceedings of the Inter-
national Conference on Internet Computing (IC’2002), session on Web Mining.
CSREA Press, June 2002.

18. Vladimir N. Vapnik. The Nature of Statistical Learning Theory, chapter 5, pages
138–146. Springer-Verlag, 2nd edition, 1999.

19. Richard C. Whaley, Antoine Petitet, and Jack J. Dongarra. Automated Empirical
Optimization of Software and the ATLAS Project”. Parallel Computing, 27(1-
2):3–25, 2001.

Paper G 123

124 Incremental and Decremental PSVM Classifiers

Paper H

@TechReport{2003:TR:TveitEngum,
author = {Amund Tveit and H{\a}vard Engum},
title = "{Parallelization of the Incremental

Proximal Support Vector Machine Classifier
using a Heap-based Tree Topology}",

institution = {Divison of Intelligent Systems,
Department of Computer and Information Science,
Norwegian University of Science and Technology},

year = {2003},
month = {August}

}

Note: This paper was accepted to ECML/PKDD 2003 Workshop on Paral-
lel and Distributed Machine Learning in Croatia, but it was withdrawn due to
travel funding constraints.

This paper has been cited by Liu et al. [2003]; Gibbs [2003]

Parallelization of the Incremental Proximal
Support Vector Machine Classifier using a

Heap-based Tree Topology

Amund Tveit and H̊avard Engum

Department of Computer and Information Science,
Norwegian University of Science and Technology,

N-7491 Trondheim, Norway
{amundt,havare}@idi.ntnu.no

Abstract. Support Vector Machines (SVMs) are an efficient data min-
ing approach for classification, clustering and time series analysis. In
recent years, a tremendous growth in the amount of data gathered has
changed the focus of SVM classifier algorithms from providing accurate
results to enabling incremental (and decremental) learning with new data
(or unlearning old data) without the need for computationally costly re-
training with the old data. In this paper we propose two efficient paral-
lelized algorithms based on heaps of processing nodes for classification
with the incremental proximal SVM introduced by Fung and Mangasar-
ian.

1 Introduction

Support Vector Machines (SVMs) is an exceptionally efficient data mining ap-
proach for classification, clustering and time series analysis [1–3]. This is pri-
marily due to SVMs highly accurate results that are competitive with other
data mining approaches, e.g. artificial neural networks (ANNs) and evolution-
ary algorithms (EAs). In recent years tremendous growth in the amount of data
gathered (e.g. user clickstreams on the web, in e-commerce and in intrusion de-
tection systems), has changed the focus of SVM classifier algorithms to not only
provide accurate results, but to also enable online learning, i.e. incremental and
decremental learning, in order to handle concept drift of classes [4, 5].

Fung and Mangasarian introduced the Incremental and Decremental Lin-
ear Proximal Support Vector Machine (PSVM) for binary classification [6], and
showed that it was able to be trained extremely fast, i.e. with 1 billion examples
(500 increments of 2 million) in 2 hours and 26 minutes on relatively low-end
hardware (400 MHz Pentium II). This has later been extended to support ef-
ficient support of incremental multicategorical classification [7] and soft-decay
decremental learning [8]. Proximal SVMs has also been shown to perform at a
similar level of accuracy as regular SVMs and at the same time being significantly
faster [9].

126 Parallel and Incremental PSVM Classifiers

In this paper we propose and compare two parallelization approaches of the
Incremental SVM classifier. The algorithms presented are based on heaps of
CPUs represented as tree topologies.

2 Background Theory

The basic idea of Support Vector Machine classification is to find an optimal
maximal margin separating hyperplane between two classes. Support Vector
Machines uses an implicit nonlinear mapping from input-space to a higher di-
mensional feature-space using kernel-functions, in order to find a hyperplane
of problems which are not linear separable in input-space [10, 11]. Classifying
multiple classes is commonly performed by combining several binary SVM clas-
sifiers in a tournament manner, either one-against-all or one-against-one, the
latter approach requiring substantial more computational effort [12].

The standard binary SVM classification problem with soft margin (allowing
some errors) is shown visually in Fig. 1(a). Intuitively, the problem is to maximize
the margin between the solid planes and at the same time permit as few errors
as possible, errors being positive class points on the negative side (of the solid
line) or vice versa.

1' +=γwx

O
O

O
O

O

O

O

O

w
2=

1' −=γwx

Margin

A+
A-

O
O

O
O O

O

O
O O

O

O
O O

O

O
O

O
O

O
O

X

X

X

X

X

X

X
X

X

X
X

X

X

X

X

X
X

X

X

X

X

X

O

X

O

O

X

X

X

γ=wx'Separating Plane

w

X

(a) Standard SVM
classifier

1' +=γwx

O
O

O
O

O

O

O

O

=

γ
w
2

1' −=γwx

Margin

A+
A-

O
O

O
O O

O

O
O O

O

O
O O

O

O
O

O
O

O
O

X

X

X

X

X

X

X
X

X

X
X

X

X

X
X

X
X

X

X

X

X

X

O

X

O

O

X

X

X

0' =−γwxSeparating Plane

γ
w

X

(b) Proximal SVM
classifier

Fig. 1. SVM and PSVM

The standard SVM problem can be stated as a quadratic optimization prob-
lem with constraints, as shown in (1).

min
(w,γ,y)∈Rn+1+m

{ve′y + 1
2w′w}

s.t. D(Aw − eγ) + y ≥ e
y ≥ 0

(1)

Paper H 127

A ∈ Rm×n, D ∈ {−1, +1}m×1
, e = 1m×1

Fung and Mangasarian [13] replaced the inequality constraint in (1) with an
equality constraint. This changed the binary classification problem, because the
points in Fig. 1(b) are no longer bounded by the planes, but are clustered around
them. By solving the equation for y and inserting the result into the expression
to be minimized, one gets the following unconstrained optimization problem:

min
(w,γ)∈Rn+1+m

f(w, γ) = ν
2‖D(Aw − eγ)− e‖2 + 1

2 (w′w + γ2) (2)

Setting ∇f =
(

∂f
∂w , ∂f

∂γ

)
= 0 one gets:

(
w
γ

)
︸ ︷︷ ︸
X

=
(

A′A + I
ν −A′e

−e′A 1
ν + m

)−1 (
A′De
−e′De

)
=

(
I

ν
+ E′E

)−1

︸ ︷︷ ︸
A−1

E′De︸ ︷︷ ︸
B

(3)

E = [A− e], E ∈ Rm×(n+1)

Agarwal has showed that the Proximal SVM is directly transferable to a ridge
regression expression [14]. Fung and Mangasarian [6] later showed that (3) can
be rewritten to handle increments (Ei, di) and decrements (Ed, dd), as shown
in (4). This decremental approach is based on time windows.

X =
(

w
γ

)
=

(
I

ν
+ E′E + (Ei)′Ei − (Ed)′Ed

)−1 (
E′d + (Ei)′di − (Ed)′dd

)
, (4)

where d = De

.

3 Parallelization of the Incremental Proximal SVM

The incremental capabilities of Proximal SVM allows us to efficiently calculate
increments ((Ei)′Ei, (Ei)′di) in parallel.

The increments have the dimension numfeatures2, compared to numfeatures·numexamples
for E (feature dimension will also be limited due to the curse of dimensional-
ity), in practice is numfeatures2 << numfeatures · numexamples. The fact that
these increments are relatively small makes them network-wise cheap to send to
a parent node for accumulation into (E′E, E′De), before finally calculating X
on the top node.

128 Parallel and Incremental PSVM Classifiers

Most algorithms, both sequential and parallel, that involves a tree-based
datastructure, perform computationally most efficiently when the tree is being
balanced. Another wanted property is the capability of efficient calculation of
adresses to child and parent nodes for each nodes in the tree. Heap-numbering
of nodes solves both these issues.

In the first approach, as presented in figure 2(a) and algorithm 1, only the leaf
nodes read increments of examples ((Ei)′Ei, (Ei)′di), in the second approach
shown in figure 2(b) and algorithm 2 all nodes read examples.

0

1 2

3 4 5 6

n-1

(a) Read on leaf-nodes only

0

1 2

3 4 5 6

n-1

(b) Read on all nodes

Fig. 2. Parallel heap-based tree topologies for Incremental PSVM

3.1 Description of trainParallelReadLeaf Algorithm

The basic flow for algorithm 1 is:

1. data is split (evenly distributed) between the computational leaf nodes
2. let the computational leaf nodes read training data from their respective

storages.
3. calculate increments ((Ei)′Ei, (Ei)′di) on the leaf nodes before sending to

parent nodes
4. parent nodes wait until they receive increment data from child node(s) (using

the MPI receive method in the implementation)
5. parent nodes adds increments and send them to their respective parent

nodes, repeated upward the tree
6. the top node finally gets the full incremental training data and is ready for

classification
7. the top node (and intermediate nodes) are continously updated from incre-

ment data read at the leaf nodes

Paper H 129

Algorithm 1 trainParallelReadLeaf(thisNode, nNodes, incrementSize, nExamples)
1: topNode ⇐ 0
2: parentNode ⇐ ((thisNode + 1)/2)− 1
3: childNode1 ⇐ (thisNode + 1) ∗ 2
4: childNode2 ⇐ (thisNode + 1) ∗ 2− 1
5: nIncrements ⇐ nExamples/incrementSize
6: for i = 1 to nIncrements do
7: if childNode1 > nNodes− 1 then
8: read incrementSize training examples
9: calculate increment ((Ei)′Ei, (Ei)′di)

10: end if
11: if childNode1 ≤ nNodes− 1 then
12: (blocking) receive and accumulate increments ((Ei)′Ei, (Ei)′di) from

childNode1
13: end if
14: if childNode2 ≤ nNodes− 1 then
15: (blocking) receive and accumulate increments ((Ei)′Ei, (Ei)′di) from

childNode2
16: end if
17: if thisNode 6= topNode then
18: send (accumulated) increment ((Ei)′Ei, (Ei)′di) to parentNode
19: else
20: at the topnode, calculate X from total accumulated E′E, E′d
21: end if
22: end for

3.2 Description of trainParallelReadAll Algorithm

The basic flow for algorithm 2 is:

1. incoming data is split (evenly distributed) between all the computational
nodes

2. all computational nodes read training data from their respective storages.
3. leaf nodes then calculates and sends increments to the parent nodes
4. non-leaf nodes calculates increments and wait for increments from their re-

spective child nodes
5. non-leaf nodes adds increments and send them to their respective parent

nodes, repeated upward the tree
6. the top node finally gets the full incremental training data (including its

own) and is ready for classification
7. the nodes are continously updated from increment data read at all nodes

and accumulated upward the tree

4 Empirical Results

Since the two algorithms proposed are exact parallalizations of the incremental
proximal SVM, we have chosen to measure speedup (instead of accuracy) on

130 Parallel and Incremental PSVM Classifiers

Algorithm 2 trainParallelReadAll(thisNode, nNodes, incrementSize, nExamples)
1: topNode ⇐ 0
2: parentNode ⇐ ((thisNode + 1)/2)− 1
3: childNode1 ⇐ (thisNode + 1) ∗ 2
4: childNode2 ⇐ (thisNode + 1) ∗ 2− 1
5: nIncrements ⇐ nExamples/incrementSize
6: for i = 1 to nIncrements do
7: read incrementSize training examples
8: calculate increment E’E,E’De
9: if childNode1 ≤ nNodes− 1 then

10: (blocking) receive and accumulate increments ((Ei)′Ei, (Ei)′di) from
childNode1

11: end if
12: if childNode2 ≤ nNodes− 1 then
13: (blocking) receive and accumulate increments ((Ei)′Ei, (Ei)′di) from

childNode2
14: end if
15: if thisNode 6= topNode then
16: send (accumulated) increment ((Ei)′Ei, (Ei)′di) to parentNode
17: else
18: calculate X from total accumulated E′E, E′d
19: end if
20: end for

various configurations (number of processing nodes and number of examples in
increments). The example dataset is Forest cover type, 580012 training examples,
7 classes and 54 features (from UCI KDD Archive [15]). The results are based
on average speedups from 10 runs of each configuration.

The parallel incremental proximal SVM has been implemented in C++ using
the CLapack and ATLAS libraries for linear system solvers and MPI for com-
munication between CPU nodes [16, 17]. The tests were run on a cluster with
Athlon 1.46 GHz / 1 GB RAM nodes running Source Mage GNU/Linux (Linux
kernel version 2.4.20).

Acknowledgements

We would like to thank Professor Mihhail Matskin. This work is supported by
the Norwegian Research Council.

5 Discussion

In figure 3 and 4 the computational speedup of algorithm 1 and 2 compared to
the sequential algorithm running on one processing node.

For a small increment size - 10 training examples per increment - the parallel
version performs poorly, actually slower than the sequential version, the latter

Paper H 131

#C P Us

2 4 6 8 10 12 14 16

S
P

E
E

D
U

P

0

2

4

6

8

10

12

14

LE AF -R E AD
ALL-R E AD

Inc rement s ize = 10

(a) increment size = 10

#C P Us

0 2 4 6 8 10 12 14 16

S
P

E
E

D
U

P

0

2

4

6

8

10

12

14

LE AF -R E AD
ALL-R E AD

Inc rement s ize = 100

(b) increment size = 100

Fig. 3.

#C P Us

0 2 4 6 8 10 12 14 16

S
P

E
E

D
U

P

0

2

4

6

8

10

12

14

LE AF -R E AD
ALL-R E AD

Inc rement s ize = 1000

(a) increment size = 1000

#C P Us

0 2 4 6 8 10 12 14 16

S
P

E
E

D
U

P

0

2

4

6

8

10

12

14

LE AF -R E AD
ALL-R E AD

Inc rement s ize = 10000

(b) increment size = 10000

Fig. 4.

132 Parallel and Incremental PSVM Classifiers

having the reference speedup value of 1. This is mainly caused by network IO
(very high frequency of sending and receiving) and by disk IO (reading small
increments, less than a disk block, is as time consuming as reading a full block).

Increasing the increment size to 100 improves the performance, and still there
is still only little difference between algorithm 1 and 2, this is caused by that
the computation is mainly network IO bound.

For an increment size of 1000 and 10000 the problem is becoming mainly
disk IO bound, so letting all nodes read from disk in algorithm 2 significantly
improves the performance compared to reading only with leaf-nodes in algorithm
1. With an increment size of 10000 algorithm 2 is close to being linearly scalable.

6 Conclusion and Future Work

We have introduced two algorithmic approaches for parallelizing the incremental
proximal SVM and empirically shown that 1) they both have increasing speedup
properties with increasing increment size, this is due to heavier processing per
node and less network IO between nodes, and 2) reading on all nodes in the tree
performs better than only reading at the leaf nodes.

Future work includes applying the approach on incremental classification and
prediction problems. e.g. game usage mining [18]. Algorithmic improvements
that needs to be done include 1) develop support for parallelized decremental
PSVM, 2) add kernel support, 3) add incremental balancing mechanisms to
improve accuracy for cases with many, potentially unbalanced, classes.

References

1. Burbidge, R., Buxton, B.F.: An introduction to support vector machines for data
mining. In Sheppee, M., ed.: Keynote Papers, Young OR12, University of Notting-
ham, Operational Research Society, Operational Research Society (2001) 3–15

2. Huang, J., Shao, X., Wechsler, H.: Face pose discrimination using support vec-
tor machines (svm). In: Proceedings of 14th Int’l Conf. on Pattern Recognition
(ICPR’98), IEEE (1998) 154–156

3. Ben-Hur, A., Horn, D., Siegelmann, H.T., Vapnik, V.: Support Vector Clustering.
Journal of Machine Learning Research 2 (2001) 125–137

4. Ahmed, N., Liu, H., Sung, K.K.: Handling Concept Drifts in Incremental Learning
with Support Vector Machines. In: Proceedings of the fifth International Confer-
ence on Knowledge Discovery and Data Mining, ACM Press (1999) 317–321

5. Klinkenberg, R., Joachims, T.: Detecting Concept Drift with Support Vector Ma-
chines. In Langley, P., ed.: Proceedings of the Seventeenth International Conference
on Machine Learning (ICML), Morgan Kaufmann (2000)

6. Fung, G., Mangasarian, O.L.: Incremental Support Vector Machine Classification.
In Grossman, R., Mannila, H., Motwani, R., eds.: Proceedings of the Second SIAM
International Conference on Data Mining, SIAM (2002) 247–260

7. Tveit, A., Hetland, M.L.: Multicategory Incremental Proximal Support Vector
Classifiers. In: Proceedings of the 7th International Conference on Knowledge-
Based Information & Engineering Systems (KES’03, forthcoming). Lecture Notes
in Artificial Intelligence, Springer-Verlag (2003)

Paper H 133

8. Tveit, A., Hetland, M.L., Engum, H.: Incremental and Decremental Proximal Sup-
port Vector Classification using Decay Coefficients. In: Proceedings of the 5th Inter-
national Conference on Data Warehousing and Knowledge Discovery (DaWaK’03,
forthcoming). Lecture Notes in Artificial Intelligence, Springer-Verlag (2003)

9. Fung, G., Mangasarian, O.L.: Proximal support vector machine classifiers. In:
Proceedings of the 7th ACM Conference on Knowledge Discovery and Data Mining,
ACM (2001) 77–86

10. Christiani, N., Shawe-Taylor, J.: 6. In: An Introduction to Support Vector Ma-
chines and other kernel-based learning methods. 1st edn. Cambridge University
Press (2000) 93–111

11. Vapnik, V.N.: 5. In: The Nature of Statistical Learning Theory. 2nd edn. Springer-
Verlag (1999) 138–146

12. Hsu, C.W., Lin, C.J.: A Comparison of Methods for Multi-class Support Vector
Machines. IEEE Transactions on Neural Networks 13 (2002) 415–425

13. Fung, G., Mangasarian, O.L.: Multicategory Proximal Support Vector Classifiers.
Submitted to Machine Learning Journal (2001)

14. Agarwal, D.K.: Shrinkage Estimator Generalizations of Proximal Support Vector
Machines. In: Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ACM Press (2002) 173–182

15. Hettich, S., Bay, S.D.: The UCI KDD archive. http://kdd.ics.uci.edu (1999)
16. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J.,

Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LA-
PACK Users’ Guide. Third edn. Society for Industrial and Applied Mathematics,
Philadelphia, PA (1999)

17. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated Empirical Optimization of
Software and the ATLAS Project”. Parallel Computing 27 (2001) 3–25

18. Tveit, A., Tveit, G.B.: Game Usage Mining: Information Gathering for Knowledge
Discovery in Massive Multiplayer Games. In: Proceedings of the International
Conference on Internet Computing (IC’2002), session on Web Mining, CSREA
Press (2002)

134 Parallel and Incremental PSVM Classifiers

Paper I

@TechReport{2003:TR:TveitB,
author = {Amund Tveit},
title = "{Empirical Comparison of Accuracy and Performance for

the MIPSVM Classifier with
Existing Classifiers}",

institution = {Divison of Intelligent Systems,
Department of Computer and Information Science,
Norwegian University of Science and Technology},

year = {2003},
month = {November}

}

Empirical Comparison of Accuracy and
Performance for the MIPSVM classifier with

Existing Classifiers

Amund Tveit

Division of Intelligent Systems
Department of Computer and Information Science,
Norwegian University of Science and Technology,

N-7491 Trondheim, Norway
amundt@idi.ntnu.no

Abstract. This paper presents an empirical comparison of the Multicat-
egory Incremental Proximal Support Vector Machine Classifier (MIPSVM)
against the C4.5, Naive Bayes, Voted Perceptron, SMO, SVM and Logis-
tic Regression classifiers on several datasets. The datasets are from the
UCI Machine Learning repository, a Web Usage Log, and game usage
logs from the Zereal Massively Multiplayer Online Game Simulator.

MIPSVM is found to be close to 1 order of magnitude (or more) faster
than the other classifiers in all experiments. Based on pairwise T-test
comparisons of accuracy between MIPSVM and the other classifiers,
MIPSVM was found to be significantly more accurate than the Naive
Bayes classifier, and not having significantly different accuracy than the
other classifiers on the tested data sets.

1 Introduction

The objective of this paper is to test both computational performance and clas-
sification accuracy of Multicategory Incremental Proximal Support Vector Ma-
chine classifier (MIPSVM) [8] against other classifiers on several datasets.

All experiments are performed using the average accuracy from 10-fold cross-
validation method, i.e. training on 9/10s of the data and test on the remaining
1/10 for all 1/10s in the dataset (i.e. 10 tests per dataset).For classifation ac-
curacy comparison, graphs of average accuracy percentage from 10-fold cross
validation are used, similar for time comparison

Computational performance is measured in average cross-validation wallclock
time shown on a logarithmic scale relative to MIPSVM. MIPSVM has a value
of 1 (hence not visible!), so if another classifier algorithm has a value of 10 it
means it is one order of magnitude (ten times) slower than MIPSVM.

Finally we analyze the results using pairwise T-tests to get a general indica-
tion of MIPSVMs accuracy relative to the other classifiers compared with.

136 Empirical Comparison of MIPSVM with existing classifiers

2 Classification Datasets Overview

Classification Experiments have been performed on 3 types of data:

1. Three datasets from the UCI machine learning repository [1], experiments
on these datasets were performed by former MSc student H̊avard Engum
(co-supervised by the author) [4].

2. Zereal game simulation output has been used as datasets for the section on
“Game Player Classification”.

3. Web usage logs from www.jfipa.org has been used as datasets for the section
on “Web Intelligence”.

2.1 Classification Tools Overview

The classifiers that is compared to MIPSVM implementation in IncRidge are
classifiers in the Weka toolkit [10] and the C-SVM algorithm in the LIBSVM
toolkit. These toolkits are described briefly below. (Other classifier tools were
considered, but not selected since they didn’t support 10-fold cross-validation
testing).

WEKA WEKA is an akrynom for “Waikato Environment for Knowledge Anal-
ysis” and is a software tool that consists of a set of machine earning algorithms
including classifiers. Weka is implemented in Java and has been succesfully run
on all major computer platforms citewitten:mining. The Weka classifiers used
are Naive Bayes, C4.5, Logistic Regression, Voted Perceptron and SMO. Naive
Bayes is usually the default classifier in many domains, it is simple and gives in
general good results. Logistic Regression is considered to be the standard clas-
sification method in the domain of medical research [7]. C4.5 has been shown to
perform well compared to other classifiers, in fact outperforming Linear Discrim-
inant Analysis and Logistical Analysis for the classification of high performance
mutual funds [5]. Sequential Minimal Optimization (SMO) is an approximate
and fast method to train Support Vector Machine Classifiers [6].

LIBSVM LIBSVM is an integrated software for support vector classification,
regression and distribution estimation. It support multicategory classification
and different SVM formulations [2].

In order to get optimal results with LIBSVM, there are a few steps that can
be done in advance to enhance LIBSVM’s performance both in accuracy and
computational efficiency [3].

The first step is to scale the features to the range [−1, 1] or [0, 1]. This is
because you do not want attributes in greater numeric ranges dominate those
in smaller numeric ranges. The other advantage of scaling is that you avoid
numerical difficulties of large attribute values when calculating the values of
kernel functions. LIBSVM features a tool, svm− scalem that scales the data.

Paper I 137

The second step is to find optimal values for C and γ, where C is the penalty
parameter from the original SVM-formulation and γ is the constant in the Ra-
dial Basis Function Kernel. LIBSVM features a tool programmed in Python,
easy.py, that finds good values for C and γ These two steps described above is
time-consuming. Especially step two takes from five to ten minutes on a some-
what fast computer (AMD Athlon 1.66GHz), depending on the data set. In the
experiments, LIBSVM was tested both with the two preparing steps above and
without any preparing steps.

2.2 Experiments on UCI datasets

This section presents results from classification experiments performed on three
different datasets from the UCI Machine Learning Repository:

1. Waveform Generator database - Generated by a C-program. Each class
in the dataset is generated from a combination of “ of 2 “base” waves with
added noise. The 5000 examples have 40 numeric attributes and 3 classes.

2. Image Segmentation Database - Data drawn randomly from a database
of seven outdoor images. The images were hand segmented to create a clas-
sification for every pixel. Each instance has 3x3 region and 19 attributes.
There are 7 classes in the dataset named brickface, sky, foliage, cement,
window, path and grass. Number of examples are 2310.

3. Letter Recognition Database - Data with 20,000 examples of black-and-
white rectangular pixels displays of the capital letters in the English alpha-
bet, hence the number of classes are 26, one for each letter. Each example
has 16 numerical features.

It was also planned to use the Forest Covertype data in the experiment, but
it was too memory intensive for Weka to handle.

Classification Accuracy - UCI Datasets As we can see from the results
in figure 1, MIPSVM performs comparably well when it comes to classifica-
tion accuracy for the Waveform and Image Segment datasets. For the Letter
Recognition dataset it performs considerably worse than the other classifiers.
This is likely to be caused by that MIPSVM doesn’t have any balancing mecha-
nisms one-against-the-rest classifiers may gain from having when there are many
classes. Another reason could be that the letter dataset might be not be linearly
separable.

Computational Performance - UCI Datasets The computational efficiency
is measured in seconds of running time. The experiment was run on a AMD Dual
Athlon MP 2100+ (1.66GHz) with 2GB ram. Each configuration is run 10 times,
and the average running time is used as a result. The figure shows the runtime
relative to MIPSVM.

138 Empirical Comparison of MIPSVM with existing classifiers

0

10

20

30

40

50

60

70

80

90

100

Waveform Segment Letter

Cl
as

si
fic

at
io

n
Ac

cu
ra

cy
 (%

)

MIPSVM
C4.5
Naive Bayes
C-SVM

Fig. 1. Accuracy - UCI Datasets

1,0

10,0

100,0

1000,0

10000,0

Waveform Segment Letter

Re
la

tiv
e

Ru
nt

im
e

(lo
ga

rit
hm

ic
 s

ca
le

)

MIPSVM
C4.5
Naive Bayes
C-SVM

Fig. 2. Performance - UCI Datasets

Paper I 139

As shown in figure 2 MIPSVM (IncRidge) outperforms the other classifiers
with respect to computational efficiency.

2.3 Experiments on Zereal Datasets

This section presents results from classification experiments performed on three
different datasets output from the Zereal Massively Multiplayer Online Game
Simulator:

1. zerClassRnd - classify agents into the 4 classes PlanAgent, MarkovKiller,
Killer or the non-personal character category Monster. It has 160 examples.

2. PlayerMonster - classify agents into the 2 classes Player or Monster. It
has 160 examples

3. zerealPlayers - classify agents into the 3 classes PlanAgent, MarkovKiller
or Killer. It has 120 examples.

All datasets have 7 numeric features representing frequencies of occurences
per agent (i.e. player or monster):

pickupfood - food item frequency (for increased health)
pickupkey - key frequency (for unlocking doors)
pickuppotion - potion frequency (for increased health)
pickupsword - sword frequency (for more powerful combat)
attack - attack frequency (aggressitivity)
leaveworld - frequency for number of times left a subworld
walk - walk frequency (movability)

Classification Accuracy - Zereal Datasets MIPSVM is the best classifier
for the Player Types dataset, shared 2nd with C4.5 for the Player vs NPCs
dataset, and 4th for the Players and NPCs dataset (figure 3)

Computational Performance - Zereal Datasets Comparison of perfor-
mance on Zereal datasets were only performed on the Players and NPCs dataset
since the other datasets were too small to take measurable time with the MIPSVM
classifier.

As shown in figure 4 MIPSVM is the fastest classifier, being approximately
2.5 orders of magnitude faster than the SMO classifier and approximately 1.5
orders of magnitude faster than the rest of the classifiers.

140 Empirical Comparison of MIPSVM with existing classifiers

0

10

20

30

40

50

60

70

80

90

100

Players vs NPCs Player Types Players and NPCs

Cl
as

si
fic

at
io

n
Ac

cu
ra

cy
 (%

)

MIPSVM
SMO
C4.5
Logistic
Voted Perceptron
Naive Bayes

Fig. 3. Accuracy - Player and NPC Types

1,000

10,000

100,000

1000,000

Players and NPCs (4 classes)

Ru
nt

im
e

re
la

tiv
e

to
 N

ai
ve

 B
ay

es

MIPSVM
SMO
C4.5
Logistic
Voted Perceptron
Naive Bayes

Fig. 4. Performance - Player and NPC Types

Paper I 141

2.4 Experiments on Web Usage Logs Datasets

This section presents results from classification experiments performed on four
different datasets based on a web usage log from extracted from www.jfipa.org.
This web usage log is then preprocessed in order to create 4 types of data for
various classification problems:

1. Intrapage clickstream prediction - The 8 datasets - P0 to P7 - are for
prediction of the next selected page based on clickstreams. There is one
classifier per current page, i.e. the previous pages in a user session and the
current page is used to predict the next page. Each dataset has 4 numeric
attributes representing the pages in the clickstream, with the class being the
5th and last page going to be predicted.
P0 - 1728 examples and 26 classes
P1 - 184 examples and 10 classes
P2 - 166 examples and 3 classes
P3 - 147 examples and 24 classes
P4 - 179 examples and 27 classes
P5 - 270 examples and 24 classes
P6 - 101 examples and 22 classes
P7 - 191 examples and 19 classes

2. Intrasite clickstream prediction - One dataset for prediction of the next
selected page based on clickstreams. This dataset uses one classifier, i.e. does
not use the graph structure of links and pages as the Intrapage clickstream
prediction datasets, but have the same attribute structure. It has 4957 ex-
amples and 191 classes.

3. Search Engine Result Clickstreams - Two datasets used to answer the
questions: 1) Do people arriving from search engine results differ from those
who don’t? and 2) Do people arriving from results from the Google search
engine differ from those from other search engines? Both datasets have 4957
examples and 2 classes, but different classes for each dataset. These datasets
also has the same attribute structure as the previous ones.

4. Spider and Person Clickstreams - One dataset used to answer the ques-
tion: Are web crawler (agent) clickstreams different from those of users? This
dataset has 9914 examples and 2 classes. This dataset has the same attribute
structure as the previous ones.

Classification Accuracy - Web Datasets As observed from figure 5 MIPSVM
is among the 2 best classifiers for 4 of the 8 datasets (P0,P1,P2 and P4) and
only the worst for one dataset (P6) for the prediction of intrapage clickstreams.

Due to OutOfMemory exceptions Logistic Regression and Voted Perceptron
failed to be applied to the Intrasite prediction problem. MIPSVM was a lot less
accurate than C4.5, but more accurate than Naive Bayes (figure 6).

For the search engine result clickstream datasets all classifiers except Naive
Bayes have very similar performance, but with Logistic Regression and MIPSVM

142 Empirical Comparison of MIPSVM with existing classifiers

0

10

20

30

40

50

60

70

80

90

100

P0 P1 P2 P3 P4 P5 P6 P7

Cl
as

si
fic

at
io

n
Ac

cu
ra

cy
 (%

)

MIPSVM
C4.5
Logistic
Voted Perceptron
Naive Bayes

Fig. 5. Accuracy - intrapage clickstreams

0

10

20

30

40

50

60

70

80

90

100

Intrasite Clickstreams

Cl
as

si
fic

at
io

n
Ac

cu
ra

cy
 (%

)

MIPSVM
C4.5
Naive Bayes

Fig. 6. Accuracy - intrasite clickstreams

0

10

20

30

40

50

60

70

80

90

100

From Google or not From Search Engine or not

Cl
as

si
fic

at
io

n
Ac

cu
ra

cy
 (%

)

MIPSVM
C4.5
Logistic
Voted Perceptron
Naive Bayes

Fig. 7. Accuracy - referring URL type

Paper I 143

0

10

20

30

40

50

60

70

80

90

100

Spider or Person

Cl
as

si
fic

at
io

n
Ac

cu
ra

cy
 (%

)

MIPSVM
C4.5
Logistic
Voted Perceptron
Naive Bayes

Fig. 8. Accuracy - person vs agent clickstreams

being slightly more accurate than the other classifiers on the From Search Engine
or Not dataset (figure 7).

C4.5 is the most accurate classifier on the Spider or Person dataset with
Naive Bayes being the third and slightly more accurate than MIPSVM (figure
8).

1

10

100

1000

P0 P5

Re
la

tiv
e

Ru
nt

im
e

(lo
ga

rit
hm

ic
 s

ca
le

)

MIPSVM
C4.5
Logistic
Voted Perceptron
Naive Bayes

Fig. 9. Performance - intrapage clickstreams

Computational Performance - Web Datasets Comparison of performance
for Intrapage clickstream prediction were only done on the P0 and P5 datasets
since the other datasets were too small to take measurable time with the MIPSVM
classifier. MIPSVM is between 1 and 2 orders of magnitude faster than C4.5 and
Naive Bayes, and between 2 and 3 orders of magnitudes faster than Logistic
Regression and the Voted Perceptron algorithms (figure 9).

MIPSVM is about 1 order of magnitude faster than Naive Bayes and 1.5
orders of magnitude faster than C4.5 on the Intrasite clickstream prediction
dataset (figure 10)

144 Empirical Comparison of MIPSVM with existing classifiers

1

10

100

Intrasite Clickstreams

Re
la

tiv
e

Ru
nt

im
e

(lo
ga

rit
hm

ic
 s

ca
le

)

MIPSVM
Naive Bayes
C45

Fig. 10. Performance - intrasite clickstreams

1

10

100

1000

From Google or not From Search Engine or not

Re
la

tiv
e

Ru
nt

im
e

(lo
ga

rit
m

ic
 s

ca
le

)

MIPSVM
C4.5
Logistic
Voted Perceptron
Naive Bayes

Fig. 11. Performance - referring URL type

Paper I 145

On the Search Engine Result Clickstreams datasets MIPSVM is between 1
and 1.5 orders of magnitude faster than C4.5, Naive Bayes and Logistic Regres-
sion. Compared to Voted Perceptron it is about 2.5 orders of magnitude faster
(figure 11).

1

10

100

1000

10000

Spider or Person

Re
la

tiv
e

ru
nt

im
e

(lo
ga

rit
hm

ic
 s

ca
le

)

MIPSVM
C4.5
Logistic
Voted Perceptron
Naive Bayes

Fig. 12. Performance - person vs agent clickstreams

On the Spider and Person Clickstreams dataset MIPSVM is approximately
1 order of magnitude faster than Naive Bayes, 2 orders of magnitude faster than
C4.5, 1.5 orders of magnitude faster than Logistic Regression and 3 orders of
magnitudes faster than Voted Perceptron (figure 12.

3 Conclusion

Finally MIPSVM was been compared to other classifiers on three main types of
classification data:

1. Classification datasets from the UCI Machine Learning Repository
2. Classicication datasets from the Zereal Massively Multiplayer Online Game

Simulator
3. Classification datasets from a Web Usage Log extracted from www.jfipa.org

3.1 Computational Performance

MIPSVM is faster than the other classifiers in all experiments. This can be
caused by several reasons: the algorithms, implementation overhead, program-
ming language and optimizations in compiler and virtual machines, external
libraries used (the ATLAS linear algebra library is used in the qimplementation
of MIPSVM [9]).

146 Empirical Comparison of MIPSVM with existing classifiers

3.2 Classification Accuracy

In order to make some more general conclusions on MIPSVM’s accuracy com-
pared to the other classifiers, pairwise T-tests have been used
These tests concluded that on the 18 datasets
the default configurations of MIPSVM, Naive Bayes and C4.5 were used (ap-
pendix C). MIPSVM is significantly more accurate than Naive Bayes (5% con-
fidence level, p-value = 0.013), and not significantly different from C4.5 (even
though C4.5 is more accurate). On the 14 datasets the default configurations
of MIPSVM, Logistic Regression and Voted Perceptron were used (appendix C)
pairwise T-tests showed that MIPSVM and Logistic Regression have not signif-
icantly different accuracy (even though Logistic Regression is more accurate),
and that MIPSVM and Voted Perceptron have not significantly different accu-
racy (even though MIPSVM is more accurate).

A modestly bold conclusion and recommendation is that MIPSVM is a suit-
able alternative to Naive Bayes as the default classifier when first attacking a
classification problem.

3.3 Further Work

Opportunities for further work include:

– Add support for a variable number of features in examples
– Develop support for parallelized decremental PSVM
– Add kernel support
– Add incremental balancing mechanisms to improve accuracy for cases with

many, potentially unbalanced classes.
– Investigate the performance effect of altering matrix multiplication algo-

rithms
– Investigate whether the symmetric matrix system (A) can be transformed

into a Toeplitz or Hankel matrix system for more efficient computation

References

1. C. L. Blake and C. J. Merz. UCI Repository of Machine Learning Databases.
Online, http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

2. Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector Ma-
chines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

3. Chih-Chung Chang Chih-Wei Hsu and Chih-Jen Lin. A practical guide to SVM
classification. Department of Computer Science and Information Technology,
National Taiwan University. Paper available at http://www.csie.ntu.edu.tw/

~cjlin/papers/guide/guide.pdf.
4. H̊avard Engum. IncRidge: A Software Tool for Scalable Incremental and Decre-

mental Classifier Algorithms based on Support Vector Approximations. Technical
report, IDI, NTNU, July 2003.

Paper I 147

Comparison of MIPSVM with Existing Classifiers 13

5. Robert C. Norris. Classifying High Performance Mutual Funds: A Comparison
C4.5, LDA and Logit. In Proceedings of the INFORMS Conference on Information
Systems and Technology, Session on AI in Business and Industry: Applications
and Theory, May 1996.

6. J. Platt. Sequential Minimal Optimization. Technical Report MSR-TR-98-14,
Microsoft Research, 1998.

7. Sloan Rush. Logistic Regression: The Standard Method of Analysis in Medical
Research. Technical Report Mathematics #S3, Trinity University, 2001.

8. Amund Tveit and Magnus Lie Hetland. Multicategory Incremental Proximal Sup-
port Vector Classifiers. In Proceedings of the 7th International Conference on
Knowledge-Based Information & Engineering Systems (KES’2003), number 2773
in Lecture Notes in Artificial Intelligence (LNAI), pages 386–392. Springer-Verlag,
2003.

9. Richard C. Whaley, Antoine Petitet, and Jack J. Dongarra. Automated Empirical
Optimization of Software and the ATLAS Project”. Parallel Computing, 27(1-
2):3–25, 2001.

10. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, 1st edition, October
1999.

148 Empirical Comparison of MIPSVM with existing classifiers

Part IV

Appendices

Appendix A

Software Tools

This appendix will present software tools developed as a part of this thesis. The
languages used were: Java, C++, Python, XML, Perl and SWIG.

A.1 Zereal

Zereal is a simulator of players and non-personal characters in Massively Mul-
tiplayer Online Games Tveit et al. [2003b]. It is implemented using Stackless
Python as the main language, pyMPI for messaging support on parallel com-
puters, C++ for performance critical algorithms (e.g. path finding and agent
vision), and SWIG for the integration of C++ code with Stackless Python. The
architecture and technological choices was proposed by Amund Tveit. The initial
version of Zereal was implemented by H̊avard Engum, Øyvind Rein and Jørgen
Vinne Iversen (as project students co-supervised by Amund Tveit) (Engum et al.
[2002]), and the final version was developed by the latter two (as MSc students
co-supervised by Amund Tveit) (Iversen and Rein [2003]).

Zereal was developed using approximately:

• 4.800 lines of (Stackless) Python code

• 550 lines of C++ code

• 300 lines of Java code

• 288 lines of XML

• 8 lines of SWIG code

152 Software Tools

A.2 Incridge and pIncridge

Incridge is a classification tool based on approximations to support vector ma-
chines, Tveit and Hetland [2003]; Tveit et al. [2003a]. It is implemented using
C++ as the main language, and MPI for messaging support on parallel comput-
ers (pIncridge only), Tveit and Engum [2003] . The algorithmic design of Incridge
and pIncridge was primarily done by Amund Tveit, including the first implemen-
tation (of MIPSVM). Later implementations (of IDPSVM and PIPSVM) were
done by H̊avard Engum (MSc student co-supervised by Amund Tveit) (Engum
[2003].

Incridge and pIncridge was developed using approximately:

• 6.600 lines of C++ code

• 2.100 lines of Python code

A.3 Other software developed

This section describes other software developed that is (partially) related to this
thesis.

A.3.1 Browsim

Browsim is a simulator of user patterns in news content web sites, it was devel-
oped by Amund Tveit using approximately 2.200 lines of Python code. Browsim
was used to simulate browsing patterns of mobile users in order to test predictive
retrieval, Tveit and Matskin [2002].

A.3.2 jfipa

jfipa is a set of software tools that supports relatively efficient parsing XML-
messages of type FIPA Agent Interaction Protocols, it was developed by Amund
Tveit using approximately 17.000 lines of Java code. jfipa was empirically found
to outperform established Java-based XML-parsers such as Crimson and Xerces
on parsing of FIPA messages, Tveit [2002b].

Appendix B

Statistical Analysis

This appendix will present statistical analysis of MMOG simulation and classifi-
cation.

B.1 Factorial Design for Zereal Performance

This section shows the Minitab analysis output based on the factorial experimen-
tal design and analysis of Zereal’s performance.

B.1.1 Factorial Design Experimental Data

REAL TIME is the measured response variable.

cpus markovkillers planagents monsters radius REAL TIME
1 2 2 2 1 105.332
1 1 1 2 1 43.813
1 2 2 2 2 309.983
2 2 2 2 1 107.871
1 1 2 2 2 208.884
2 1 2 1 2 190.308
1 2 1 1 2 148.754
1 2 1 2 2 187.185
1 1 2 2 1 74.236
1 1 2 1 2 172.335
2 2 1 2 1 70.522
1 2 2 1 2 261.521

154 Statistical Analysis

1 1 1 1 1 35.726
1 1 1 2 2 106.313
1 1 1 1 2 85.47
2 1 1 2 2 175.159
2 1 1 1 1 38.723
2 2 1 1 1 61.683
1 2 2 1 1 91.271
2 2 1 2 2 201.142
1 1 2 1 1 67.877
2 2 2 2 2 330.603
2 2 2 1 1 97.097
2 2 2 1 2 295.952
2 1 1 2 1 71.674
2 1 2 1 1 108.537
2 1 2 2 2 221.136
2 2 1 1 2 158.914
1 2 1 1 1 57.781
1 2 1 2 1 68.737
2 1 2 2 1 79.078
2 1 1 1 2 90.288

B.1.2 Analysis of Variance (ANOVA)

General Factorial Design

Factors: 5 Factor Levels: 2; 2; 2; 2; 2
Runs: 32 Replicates: 1

General Linear Model: REAL TIME versus cpus; markovkillers; ...

Factor Type Levels Values
cpus fixed 2 1 2
markovki fixed 2 1 2
planagen fixed 2 1 2
monsters fixed 2 1 2
visionra fixed 2 1 2

Analysis of Variance for REAL TIM, using Adjusted SS for Tests

B.1 Factorial Design for Zereal Performance 155

Source DF Seq SS Adj SS Adj MS F P
cpus 1 2337 2337 2337 11.49 0.004
markovki 1 19247 19247 19247 94.61 0.000
planagen 1 39210 39210 39210 192.75 0.000
monsters 1 4986 4986 4986 24.51 0.000
visionra 1 120539 120539 120539 592.54 0.000
cpus*markovki 1 237 237 237 1.16 0.297
cpus*planagen 1 1 1 1 0.00 0.953
cpus*monsters 1 32 32 32 0.16 0.697
cpus*visionra 1 268 268 268 1.32 0.268
markovki*planagen 1 900 900 900 4.42 0.052
markovki*monsters 1 9 9 9 0.05 0.832
markovki*visionra 1 7923 7923 7923 38.95 0.000
planagen*monsters 1 282 282 282 1.39 0.256
planagen*visionra 1 9621 9621 9621 47.29 0.000
monsters*visionra 1 2351 2351 2351 11.56 0.004
Error 16 3255 3255 203
Total 31 211197

Unusual Observations for REAL TIM

Obs REAL TIM Fit SE Fit Residual St Resid
16 175.159 147.683 10.085 27.476 2.72R
26 108.537 84.444 10.085 24.093 2.39R

R denotes an observation with a large standardized residual.

Macro is running ... please wait

Main Effects Plot for REAL TIME

Interaction Plot for REAL TIME

156 Statistical Analysis

B.2 Classification Accuracy - UCI Datasets

Letter Segment Waveform
Weka NBayes 64.23 80.30 79.96
Weka J48 87.76 97.14 75.52
LIBSVM C-SVM 97.45 62.60 86.66
MIPSVM 50.42 84.72 85.98

B.3 Computational Performance - UCI Datasets

TODO: add text here..

Letter Segment Waveform
MIPSVM 1.378 0.1700 1.113
Weka NBayes 22.70 1.742 6.939
Weka J48 249.85 6.490 57.21
LIBSVM C-SVM 2081 37.74 148.5

B.4 Data for Computational Performance - Ze-
real and Web data

Dataset/Classifier MIPSVM SMO C4.5 LogReg VotPer Naiv.Bayes
Players and NPCs 0,01 5,37 0,59 0,63 0,63 0,39
Players vs NPCs 0,00 1,33 0,43 0,59 0,40 0,37
Player Types 0,00 2,85 0,53 0,63 0,51 0,37
Spider or person 0,151 NA 23,927 7,218 271,909 2,057
Google vs others 0,075 NA 3,565 3,085 49,42 1,04
SE vs others 0,078 NA 4,289 3,251 46,102 1,005
Intrasite cs. 0,402 NA 23,063 NA NA 5,907
Intrapage P0 0,044 NA 1,137 10,67 13,243 0,793
Intrapage P5 0,01 NA 0,593 1,7 1,813 0,449

B.5 Paired T-Tests for Classification Accuracy 157

B.5 Paired T-Tests for Classification Accuracy

This section shows the Minitab analysis output based on paired T-tests of classi-
fication accuracy of the proposed MIPSVM classifier implemented in the Incridge
tool with the C4.5, Logistic Regression, Naive Bayes and Voted Perceptron clas-
sifiers implemented in the Weka tool. Paired T-test was chosen since it allows
a “global summary” over all the classification experiments performed (uses the
difference between classifier results per row)

B.5.1 Classification Data C4.5 and Naive Bayes

Dataset/Classifier MIPSVM C4.5 Naive Bayes
P0 46.5116 46.5856 26.678
P1 84.4444 83.6957 53.804
P2 98 97.5904 95.181
P3 15.7143 23.1293 9.524
P4 47.0588 44.6927 6.145
P5 28.8889 30 5.556
P6 11 13.8614 17.822
P7 29.4737 33.5079 19.372
Intrasite Clickstr. 21.9172 45.0676 4.257
From Google or not 58.8485 58.6645 52.088
From SE or not 63.6768 63.5667 50.212
Spider or Person 69.5661 85.6264 70.92
Waveform 85.98 75.52 79.96
Segment 84.72 97.14 80.3
Letter 50.42 87.76 64.23
Players vs NPCs 98.125 98.125 100
Player Types 85.625 77.5 75
Players and NPCs 75.625 81.25 81.875

B.5.2 MIPSVM and C4.5 Comparison

The P-Value based on the T-test is 0.088, this is not significant according to
5% significance level, hence the experiments performed does not show significant
difference between MIPSVM and C4.5.

Welcome to Minitab, press F1 for help.
n
Paired T-Test and CI: MIPSVM; C4.5

158 Statistical Analysis

Paired T for MIPSVM - C4.5

N Mean StDev SE Mean
MIPSVM 18 58.64 28.60 6.74
C4.5 18 63.52 27.39 6.46
Difference 18 -4.87 11.40 2.69

95% CI for mean difference: (-10.54; 0.80)
T-Test of mean difference = 0 (vs not = 0):

T-Value = -1.81 P-Value = 0.088

B.5.3 MIPSVM and Naive Bayes Comparison

The P-Value based on the T-test is 0.013, this is significant according to a 5%
significance level, hence the experiments showed that MIPSVM is more accurate
than Naive Bayes on the experiment data sets used.

Paired T-Test and CI: MIPSVM; Naive Bayes

Paired T for MIPSVM - Naive Bayes

N Mean StDev SE Mean
MIPSVM 18 58.64 28.60 6.74
Naive Bayes 18 49.61 33.26 7.84
Difference 18 9.04 13.76 3.24

95% CI for mean difference: (2.20; 15.88)
T-Test of mean difference = 0 (vs not = 0):

T-Value = 2.79 P-Value = 0.013

B.5.4 Classification Data Log. Regr. and Vot. Perc.

Dataset MIPSVM LogReg. Vot. Perc.
P0 46.5116 52.8241 45.8333
P1 84.4444 83.6957 83.1522

B.5 Paired T-Tests for Classification Accuracy 159

P2 98 96.988 97.5904
P3 15.7143 13.6054 14.2857
P4 47.0588 48.0447 45.2514
P5 28.8889 28.1481 39.6296
P6 11 14.8515 10.8911
P7 29.4737 31.9372 28.2723
From Google or not 58.8485 58.9066 58.8662
From SE or not 63.6768 63.6474 63.5263
Spider or Person 69.5661 75.8523 50.2118
Players vs NPCs 98.125 97.5 93.125
Player Types 85.625 82.5 69.1667
Players and NPCs 75.625 84.375 52.5

B.5.5 MIPSVM and Logistic Regression Comparison

The P-Value based on the T-test is 0.151, this is not significant according to a
5% significance level, hence the experiments performed does not show significant
difference between MIPSVM and Logistic Regression. (Even though Logistic
Regression seems to be slightly more accurate than MIPSVM)

Paired T-Test and CI: MIPSVM; Logistic

Paired T for MIPSVM - Logistic

N Mean StDev SE Mean
MIPSVM 14 58.04 29.17 7.80
Logistic 14 59.49 28.94 7.73
Difference 14 -1.451 3.563 0.952

95% CI for mean difference: (-3.509; 0.606)
T-Test of mean difference = 0 (vs not = 0):

T-Value = -1.52 P-Value = 0.151

B.5.6 MIPSVM and Voted Perceptron Comparison

The P-Value based on the T-test is 0.099, this is not significant according to a
5% significance level, hence the experiments performed does not show significant

160 Statistical Analysis

difference between MIPSVM and Voted Perceptron. (Even though MIPSVM
seems to be slightly more accurate than the Voted Perceptron)

Paired T-Test and CI: MIPSVM; Voted Perceptron

Paired T for MIPSVM - Voted Perceptron

N Mean StDev SE Mean
MIPSVM 14 58.04 29.17 7.80
Voted Percep 14 53.74 26.44 7.07
Difference 14 4.30 9.07 2.43

95% CI for mean difference: (-0.94; 9.54)
T-Test of mean difference = 0 (vs not = 0):

T-Value = 1.77 P-Value = 0.099

Bibliography

A. Aamodt and E. Plaza. Case-based reasoning: Foundational Issues, method-
ological variations, and systems approaches. AI Communications, 7(1):39–54,
March 1994.

R. Adams. Wireless Peer-to-Peer Internet, 2003.

D. K. Agarwal. Shrinkage Estimator Generalizations of Proximal Support Vector
Machines. In Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 173–182. ACM Press, 2002.

T. Amdeberhan and G. Heinig. On matrices that are not similar to a Toeplitz
matrix and a family of polynomials. Submitted to Linear Algebra & its Appli-
cations, March 2003.

A. Bartish and C. Thevathayan. BDI Agents for Game Development. In Proceed-
ings of the 1st International Conference on Autonomous Agents and Multiagent
Systems, pages 668–669. ACM, ACM Press, 2002.

D. Billsus, C. Brunk, C. Evans, B. Gladish, and M. J. Pazzani. Adaptive in-
terfaces for ubiquitous web access. Communications of the ACM, 45(5):34–38,
2002.

C. M. Bishop. Neural Networks for Pattern Recognition, chapter 9.2, pages 338–
340. Oxford University Press, 1995.

C. L. Blake and C. J. Merz. UCI Repository of Machine Learning Databases.
Online, http://www.ics.uci.edu/\simmlearn/MLRepository.htm, 1998.

D. Bonino, F. Corno, and G. Squillero. A Real-Time Evoluationary Algorithm
for Web Prediction. In J. Liu, C. Liu, M. Klusch, N. Zhong, and N. Cercone,
editors, Proceedings of IEEE/WIC International Conference on Web Intelligence
(WI 2003), pages 139–145. IEEE, October 2003.

http://www.ics.uci.edu/$sim $mlearn/MLRepository.htm

162 Bibliography

F. Cecin, J. Barbosa, and C. Geyer. FreeMG: An Hybrid Peer-to-Peer, Client-
Server, and Distributed Massively Multiplayer Game Simulation Model. In Pro-
ceedings of the 2nd Brazilian Workshop on Games and Digital Entertainment
(WJogos’03), November 2003.

R. H. Chan and M. K. Ng. Conjugate gradient methods for Toeplitz systems.
SIAM Review, 38(3):427–482, 1996.

G. Chang. Limitations of Mobile Commerce. Report, Auckland University of
Technology, New Zealand, 2002.

N. Christiani and J. Shawe-Taylor. An Introduction to Support Vector Machines
and other kernel-based learning methods, chapter 6, pages 93–111. Cambridge
University Press, 1st edition, 2000.

J. Clark, I. Koprinska, and J. Poon. A Neural Network Based Approach to
Automated E-Mail Classification. In J. Liu, C. Liu, M. Klusch, N. Zhong, and
N. Cercone, editors, Proceedings of IEEE/WIC International Conference on Web
Intelligence (WI 2003), pages 702–705. IEEE CS Press, October 2003.

P. R. Cohen. Empirical Methods for Artificial Intelligence, chapter 6.10 - Cross-
Validation: An Efficient Training and Testing Procedure, pages 216–218. MIT
Press, 1995.

D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Pro-
gressions. Journal of Symbolic Computation, 9(3):251–280, March 1990.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms,
chapter 31.5, pages 762–765. MIT Press, 1st edition, 1990.

M. S. Ding and C. R. Unnithan. Mobile Commerce (mCommerce) Security: An
appraisal of current issues and trends. Technical Report SWP 2002/34, School of
Information Systems, Faculty of Business and Law, Deakin University, Australia,
2002.

M. S. Ding, C. R. Unnithan, and B. Fraunholz. MCommerce - A Vision in Time:
A Preliminary Investigation into Past and Future of Mobile Payments. Technical
Report SWP 2002/51, School of Information Systems, Faculty of Business and
Law, Deakin University, Australia, 2002.

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-
Interscience, 2nd edition, 2001.

M. Eirinaki and M. Vazirgiannis. Web Mining for Web Personalization. ACM
Transactions on Internet Technology, 3(1):1–27, February 2003.

A. C. Elster, O. Anshus, A. Tveit, and C. Banino. Recent trends in cluster
computing. In Proceedings of the International Conference on Parallel Computing
(forthcoming). Elsevier Science, September 2003.

Bibliography 163

H. Engum. IncRidge: A Software Tool for Scalable Incremental and Decremental
Classifier Algorithms based on Support Vector Approximations. Technical report,
IDI, NTNU, July 2003.

H. Engum, J. V. Iversen, and Ø. Rein. Zereal: A Semi-realistic Simulator of
Massively Multiplayer Games. Technical report, IDI, NTNU, December 2002.

T. Finin, A. Joshi, L. Kagal, O. Ratsimor, S. Avancha, V. Korolov, H. Chen,
F. Perich, and R. S. Cost. Intelligent Agents for Mobile and Embedded De-
vices. International Journal of Cooperative Information Systems, 11(3-4):205–
230, 2002.

J. H. Friedman. Multivariate adaptive regression splines (MARS). The Annals
of Statistics, 19(1):1–141, 1991.

G. Fung and O. L. Mangasarian. Multicategory Proximal Support Vector Clas-
sifiers. Submitted to Machine Learning Journal, 2001a.

G. Fung and O. L. Mangasarian. Proximal support vector machine classifiers.
In Proceedings of the 7th ACM Conference on Knowledge Discovery and Data
Mining, pages 77–86. ACM, 2001b.

G. Fung and O. L. Mangasarian. Incremental Support Vector Machine Classifi-
cation. In R. Grossman, H. Mannila, and R. Motwani, editors, Proceedings of the
Second SIAM International Conference on Data Mining, pages 247–260. SIAM,
April 2002.

E. Garfield. The meaning of the Impact Factor. International Journal of Clinical
and Health Psychology, 3(2):363–369, 2003.

R. Genov and G. Cauwenberghs. Kerneltron Support Vector ’Machine’ in Silicon.
IEEE Transactions on Neural Networks, 14(5):1426–1434, September 2003.

S. Gibbs. Data Parallelism and the Support Vector Machine. Online Proceed-
ings of the Information Processing Systems (IPS) Laboratory Research Forum,
Department of Electrical Engineering, Ohio State University, Colombus, Ohio,
USA, 2003.

W. Gibson. Neuromancer. Ace Books, 1984.

F. Girosi, T. Poggio, and B. Caprile. Extensions of a theory of networks for
approximation and learning. In R. P. Lippmann, J. E. Moody, and D. S. Touret-
zky, editors, Advances in Neural Information Processing Systems, volume 3, pages
750–756. Morgan Kaufmann Publishers, Inc., 1991.

J. Goldman and M. Axtell. On Using Logic Synthesis for Supervised Classification
Learning. In Proceedings of the 7th IEEE International Conference on Tools with
Artificial Intelligence (ICTAI’95), November 1995.

164 Bibliography

V. Gorodetski, I. Kotenko, and O. Karsaev. Multi-agent technologies for com-
puter network security: Attack simulation, intrusion detection and intrusion de-
tection learning. International Journal of Computer Systems, Science & Engi-
neering, 18(4):191–200, July 2003.

R. S. Gray, D. Kotz, S. Nog, D. Rus, and G. Cybenko. Mobile agents for mobile
computing. Technical Report TR96-285, Dartmouth College, NH, USA, 1996.

J. Han and M. Kamber. Data Mining: Concepts and Techniques. Academic Press
and Morgan Kaufmann Publishers, 2001.

S. Haridi. Parallel Agent Based Simulation on PC Cluster. IBM Workshop on
Information Cities and Collaborative Portals: The Gateways to Next Genera-
tion Commerce and City Life Over The Internet. Published Online, http://www.
research.ibm.com/compsci/hci/workshop/SeifHaridi-simulation.pdf, October 2002.

A. Heinemann, J. Kangasharju, F. Lyardet, and M. Muhlhauser. Ad Hoc Col-
laboration and Information Services using Information Clouds. In Proceedings
to the 3rd Workshop on Applications and Services in Wireless Networks (ASWN
2003), 2003a.

A. Heinemann, J. Kangasharju, F. Lyardet, and M. Muhlhauser. iClouds - Peer-
to-Peer Information Sharing in Mobile Environments. Technical Report TK-
01/03, Telecooperation Group, Department of Computer Science, Darmstadt
University of Technology, Darmstadt, Germany, 2003b.

D. Hiebeler. The Swarm simulation system and individual-based modeling, 1994.

J.-Y. Ho, Y. Matsumoto, and R. Thawonmas. MMOG Player Identification: A
Step Toward CRM of MMOGs. In Proceedings of the 6th Pacific Rim Conference
on Multi-Agents (PRIMA-2003), Seoul, Korea, November 2003.

J.-Y. Ho and R. Thawonmas. Episode Detection with Vector Space model in
Agent Behavior Sequences of MMOGs. In Proceedings the Future Business Tech-
nology Conference (FUBUTEC’2004), March 2004.

A. E. Hoerl and R. W. Kennard. Ridge Regression: Biased Estimation for Nonor-
togonal Problems. Technometrics, 12(1):55–67, 1970.

P. T. Hraber and B. T. Milne. Community assembly in a model ecosystem.
Technical Report 96-12-094, Santa Fe Institute, December 1996.

M. J. Huber and T. Hadley. Multiple roles, multiple teams, dynamic environ-
ment¿ Autonomous Netrek Agents. In Proceedings of the 1st International Con-
ference on Autonomous Agents, pages 332–339. ACM, ACM Press, 1997.

V. Illingworth, editor. Oxford Dictionary of Computing. Oxford University Press,
4th edition, 1996.

http://www.research.ibm.com/compsci/hci/workshop/SeifHaridi-simulation.pdf
http://www.research.ibm.com/compsci/hci/workshop/SeifHaridi-simulation.pdf

Bibliography 165

J. V. Iversen and Ø. Rein. Agent-based Simulation of Massively Multiplayer
Online Games. Technical report, IDI, NTNU, June 2003.

S. Jang and E. Lee. An Intelligent Mobile Commerce System with Dynamic
Contents Builder and Mobile Products Browser. In Proceedings of the 3rd In-
ternational Conference on Intelligent Data Engineering and Automated Learn-
ing (IDEAL 2002), volume Lecture Notes in Computer Science, pages 179–185.
Springer-Verlag, August 2002.

A. Joshi. On Proxy Agents, Mobility and Web Access. Mobile Networks and
Applications, Special Issue on Software Architectures for Mobile Applications,
pages 233–241, 2000a.

A. Joshi. On proxy agents, mobility, and web access. Mobile Networks and
Applications, 5(4):233–241, 2000b.

A. Joshi, T. Finin, and Y. Yesha. Agents, Mobility and M-Services: Creating the
Next Generation Applications and Infrastructure on Mobile Ad-Hoc Networks.
volume 2538 of Lecture Notes in Computer Science, pages 106–118. Springer-
Verlag, 2002.

A. Kieldaas. Personalized Search Engines. Technical report, IDI, NTNU, January
2000.

A. Kobayashi and H. Fujioka. Personalizing a Web Site for Cellular Phones.
In J. Liu, C. Liu, M. Klusch, N. Zhong, and N. Cercone, editors, Proceedings
of IEEE/WIC International Conference on Web Intelligence (WI 2003), pages
432–435. IEEE, October 2003.

J. R. Koza. Genetic programming. In J. G. Williams and A. Kent, editors, Ency-
clopedia of Computer Science and Technology, volume 39, pages 29–43. Marcel-
Dekker, 1998.

J. Laird. It Knows What You’re going To Do: Adding Anticipation to a Quake-
bot. In Proceedings of the 5th International Conference on Autonomous Agents.
ACM, ACM Press, 2001.

J. Laird and M. V. Kent. Human-Level AI’s Killer Application: Interactive
Computer Games. AI Magazine, 22(2):15–26, 2001.

K. Lange. Numerical Analysis for Statisticians, chapter 7.3, pages 80–81.
Springer-Verlag, 1999.

S. Lawrence. Online or Invisible? Nature, 411(6837):521, 2001.

K. J. Lee. Peer-to-Peer Electronic Commerce and Intelligent Systems. Presenta-
tion at Department of Industrial Engineering, Korea Advanced Institute of Sci-
ence and Technology, Published Online: http://space.postech.ac.kr/vod/s011204/
ppt1204/ppt1204.pdf, 2002.

http://www.cs.umbc.edu/~ajoshi/resch/sumi99.ps.gz
http://space.postech.ac.kr/vod/s011204/ppt1204/ppt1204.pdf
http://space.postech.ac.kr/vod/s011204/ppt1204/ppt1204.pdf

166 Bibliography

G. Linden, B. Smith, and J. York. Amazon.com Recommendations: Item-
to-Item Collaborative Filtering. IEEE Internet Computing, 7(1):76–80, Jan-
uary/February 2003.

K. Liu, J. Ryan, and H. Kargupta. Distributed data mining bibliography. Pub-
lished Online: http://www.csee.umbc.edu/∼hillol/DDMBIB/, August 2003.

Z. Maamar, Q. Z. Sheng, and B. Benatallah. On Composite Web Services Pro-
visioning in an Environment of Fixed and Mobile Computing Resources. Infor-
mation Technology and Management, 5(3), 2004.

D. S. Mackey, N. Mackey, and S. Petrovic. Is Every Matrix Similar to a Toeplitz
Matrix. Linear Algebra & its Applications, 297:87–105, 1999.

P. Maes. Agents that Reduce Work and Information Overload. Communications
of the ACM, 37(7):31–40, 1994.

C. Mangione. Performance Tests show Java as fast as C++. Java World, Febru-
ary 1998.

M. Matskin and A. Tveit. Mobile Commerce Agents in WAP-based Services.
Journal of Database Management - Special Issue on Mobile Commerce, pages
27–35, July-September 2001.

M. Matskin and A. Tveit. Software Agents for Mobile Commerce Services Sup-
port. In K. Siau, editor, Advanced Topics in Database Research, volume 2, chap-
ter 11, pages 246–266. Idea Group Inc, 2003.

E. Mena, J. A. Royo, A. Illarramendi, and A. Goni. An Agent-based Approach for
Helping Users of Hand-Held Devices to Browse Software Catalogs. In M. Klusch,
S. Ossowski, and O. Shehory, editors, Proceedings of the 6th International Work-
shop on Cooperative Information Agents (CIA), volume 2446 of Lecture Notes in
Computer Science, pages 51–65. Springer-Verlag, 2002.

G. A. Miller. WordNet: a lexical database for English. Communications of the
ACM, 38(11):39–41, November 1995.

T. Mitchell. Machine Learning. Computer Science Series. McGraw-Hill, 1st
edition, 1997.

D. Mladenic. Text-Learning and Related Intelligent Agents: A Survey. IEEE
Intelligent Systems, 14(4):44–54, 1999.

D. C. Montgomery. Design and Analysis of Experiments, chapter 10, pages 461–
466. John Wiley & Sons, Inc., 4th edition, 1997.

S. Moss. Messy Systems - The Target for Multi Agent Based Simulation. In
S. Moss and P. Davidsson, editors, Proceedings of the Second International Work-
shop on Multi-Agent-Based Simulation, number 1979 in Lecture Notes in Artifi-
cial Intelligence, pages 1–14. Springer-Verlag, 2000.

http://www.csee.umbc.edu/~hillol/DDMBIB/

Bibliography 167

B. Moulin and B. C. Draa. An Overview of Distributed Artificial Intelligence.
In G. M. P. O’Hare and N. R. Jennings, editors, Fundamentals of Distributed
Artificial Intelligence, pages 3–56. John Wiley and Sons, 1996.

M. Munusamy and H. P. Leang. Characteristics of Mobile Devices and an Inte-
grated M-Commerce Infrastructure for M-Commerce Deployment. In Proceedings
of the second International Workshop on Internet Computing and E-Commerce
(ICECE 2002), 2002.

E. Nguyen. Mobile Auction Enhances the Online Auction Experience. Master’s
thesis, Department of Information Systems and Computing, Brunel University,
London, Great Britain, 2002.

H. S. Nwana. Software Agents: An Overview. The Knowledge Engineering
Review, 11(3):205–244, 1996.

T. Olsson. Bootstrapping and Decentralizing Recommender Systems. PhD the-
sis, Licentiate Thesis 2003-006, Department of Information Technology, Uppsala
University and SICS, 2003.

Omer F. Rana and K. Stout. What is Scalability in Multi-Agent Systems? In
Proc. of the fourth international conference on Autonomous agents, pages 56–63,
2000.

H. V. D. Parunak, R. Savit, and R. L. Riolo. Agent-based Modeling vs. Equation-
Based Modeling: A Case Study and Users’ Guide. In N. G. Jaime, S. Sichman,
and R. Conte, editors, Proceedings of Multi-agent Systems and Agent-based Simu-
lation (MABS’98), number 1534 in Lecture Notes in Artificial Intelligence, pages
10–25. Springer-Verlag, 1998.

S. A. Petersen, J. Rao, and A. Tveit. Challenges in Agent-based Support for Vir-
tual Enterprises. In Proceedings of the 1st International Workshop on Challenges
in Open Agent Systems (at AAMAS’2002), Bologna, Italy, July 2002.

T. Poggio and Girosi. Regularization algorithms for learning that are equivalent
to multilayer networks. Science, (247):978–982, 1990a.

T. Poggio and F. Girosi. Networks for Approximation and Learning. In Proceed-
ings of the IEEE, volume 78, pages 1481–1497, 1990b.

W. Rand, D. G. Brown, S. E. Page, R. Riolo, M. Zellner, and L. E. Fernandez.
An Agent-based Model of Suburban Sprawl. In Proceedings of the 7th Annual
Swarm Researchers Meeting, 2003.

R. Raz. On the Complexity of Matrix Product. SIAM Journal on Computing,
32(5):1356–1369, 2003.

http://www.acm.org/pubs/contents/proceedings/ai/336595/

168 Bibliography

Reticular Systems. Using Intelligent Agents for Wireless E-
Commerce Applications: The Yellowstone Project. Online,
http://www.reticular.com/Library/yellowstone.pdf, September 1999.

R. Rifkin, G. Yeo, and T. Poggio. Chapter 7: Regularized Least-Squares Classifi-
cation. In Suykens, Horvath, Basu, Micchelli, and Vandewalle, editors, Advances
in Learning Theory: Methods, Model and Applications, volume 190 of NATO
Science Series III. IOS Press, 2003.

R. M. Rifkin. Everything Old Is New Again: A Fresh Look at Historical Ap-
proaches in Machine Learning. PhD thesis, Massachusetts Institute of Technol-
ogy (MIT), September 2002.

K. M. Rødseth and E. Breivik. Boredom and Balancing in Massively Multiplayer
Online Gaems, December 2003.

Y. D. Rubinstein and T. Hastie. Discriminative vs informative learning. In
D. Heckerman, H. Mannila, and D. Pregibon, editors, Proceedings of the Third
International Conference on Knowledge Discovery and Data Mining (KDD-97),
pages 49–53. AAAI Press, 1997.

H.-P. Schwefel, I. Wegener, and K. Weinert, editors. Advances in Computational
Intelligence: Theory and Practice. Natural Computing. Springer-Verlag, 2003.

J. C. Shafer, R. Agrawal, and M. Mehta. SPRINT: A Scalable Parallel Classifier
for Data Mining. In T. M. Vijayraman, A. P. Buchmann, C. Mohan, and N. L.
Sarda, editors, Proceedings of the 22nd International Conference on Very Large
Databases (VLDB), pages 544–555. Morgan Kaufmann, 1996a.

J. C. Shafer, R. Agrawal, and M. Mehta. SPRINT: A Scalable Parallel Classifier
for Data Mining. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L.
Sarda, editors, Proceedings of the 22nd Int. Conf. Very Large Databases, VLDB,
pages 544–555. Morgan Kaufmann, 1996b.

V. Strassen. Gaussian Elimination is Not Optimal. Numerische Mathematik,
(13):354–356, 1969.

M. Svensson. Explainin and Combining Recommender Algorithms for Decentral-
ized Architectures (ENCORE). Technical report, SICS, Sweden, 2003.

L. Tesfatsion. Agent-based computational economics: Growing economies from
the bottom up. Artificial Life, 8(1):55–82, 2002.

R. Thawonmas. Ambition of game mining (in japanese. IPSJ Symposium Series,
2003(1), 2003.

R. Thawonmas, J.-Y. Ho, and Y. Matsumoto. Identification of Player Types in
Massively Multiplayer Online Games. In Proceedings the 34th Annual Conference

http://www.reticular.com/Library/yellowstone.pdf

Bibliography 169

of the International Simulation and Gaming Association (ISAGA). ISAGA, To
be published by Springer-Verlag, August 2003.

Y. H. Tian, T. J. Huang, W. Gao, J. Cheng, and P. B. Kang. Two-Phase Web
Site Classification Based on Hidden Markov Tree Models. In J. Liu, C. Liu,
M. Klusch, N. Zhong, and N. Cercone, editors, Proceedings of IEEE/WIC In-
ternational Conference on Web Intelligence (WI 2003), pages 227–234. IEEE,
October 2003.

A. N. Tikhonov. Solution of incorrectly formulated problems and the regulariza-
tion method. Soviet Mathematics Dokladi, 4:1035–1038, 1963.

A. N. Tikhonov and V. Y. Arsenin, editors. Solution of ill-posed problems. John
Wiley & Sons, 1977.

E. Turban, D. King, J. Lee, M. Warkentin, and M. Chung. Electronic Commerce
2002: A Managerial Perspective. Prentice Hall, 2nd edition, Jan 2002.

P. J. Turner and N. R. Jennings. Improving the Scalability of Multi-Agent Sys-
tems. In T. Wagner and O. F. Rana, editors, Proceedings of the Workshop on In-
frastructure for Agents, Multi-Agent Systems, and Scalable Multi-Agent Systems,
volume 1887 of Lecture Notes in Computer Science, pages 246–262. Springer,
2001.

A. Tveit. A Survey of Agent-Oriented Software Engineering. Online, http://
abiody.com/jfipa/publications/AgentOrientedSoftwareEngineering/, May 2001a.

A. Tveit. Acceleration of Web Browsing using Predictive Retrieval. Technical
report, Department of Computer and Information Science, NTNU, Sem Sælands
vei 7-9, NO-7491 Trondheim, Norway, May 2001b.

A. Tveit. Peer-to-peer based recommendations for mobile commerce. In M. De-
varakonda, A. Joshi, and M. Viveros, editors, Proceedings of the First Interna-
tional Mobile Commerce Workshop, pages 26–29. ACM Press, July 2001c.

A. Tveit. Game Usage Mining: Information Gathering for Knowledge Discovery
in Massively Multiplayer Games. In H. R. Arabnia and Y. Mun, editors, Proceed-
ings of the International Conference on Internet Computing (IC’2002), session
on Web Mining, volume III, pages 636–642. CSREA Press, June 2002a.

A. Tveit. jfipa: an Architecture for Agent-based Grid Computing. In
M. Schroeder and O. F. Rana, editors, Proceedings of AISB’02 Convention, Sym-
posium on AI and Grid Computing, London, United Kingdom, April 2002b. Ar-
tificial Intelligence and Simulated Behavior (AISB).

A. Tveit. Scalability Analysis of the Zereal Massively Multiplayer Game Simu-
lator. Technical Report ISSN: 0802-6394, 12/02, IDI, NTNU, December 2002c.

http://abiody.com/jfipa/publications/AgentOrientedSoftwareEngineering/
http://abiody.com/jfipa/publications/AgentOrientedSoftwareEngineering/

170 Bibliography

A. Tveit. Empirical Comparison of Accuracy and Performance for the MIPSVM
Classifier with Existing Classifiers. Technical report, Divison of Intelligent Sys-
tems, Department of Computer and Information Science, Norwegian University
of Science and Technology, November 2003a.

A. Tveit. Empirical Performance Evaluation of the Zereal Massively Multiplayer
Online Game Simulator. Technical report, Divison of Intelligent Systems, De-
partment of Computer and Information Science, Norwegian University of Science
and Technology, November 2003b.

A. Tveit. On the Complexity of Matrix Inversion. Technical report, Divison of In-
telligent Systems, Department of Computer and Information Science, Norwegian
University of Science and Technology, November 2003c.

A. Tveit and H. Engum. Parallelization of the Incremental Proximal Support
Vector Machine Classifier using a Heap-based Tree Topology. Technical report,
IDI, NTNU, August 2003.

A. Tveit and M. L. Hetland. Multicategory Incremental Proximal Support Vector
Classifiers. In Proceedings of the 7th International Conference on Knowledge-
Based Information & Engineering Systems (KES’2003), number 2773 in Lecture
Notes in Artificial Intelligence (LNAI), pages 386–392. Springer-Verlag, 2003.

A. Tveit, M. L. Hetland, and H. Engum. Incremental and Decremental Proximal
Support Vector Classification using Decay Coefficients. In Proceedings of the
5th International Conference on Data Warehousing and Knowledge Discovery
(DAWAK’2003), number 2737 in Lecture Notes in Computer Science (LNCS),
pages 422–429. Springer-Verlag, 2003a.

A. Tveit and M. Matskin. Acceleration of Mobile Commerce using Predictive
Retrieval. Technical report, IDI, NTNU, October 2002.

A. Tveit, Ø. Rein, J. V. Iversen, and M. Matskin. Scalable Agent-based Sim-
ulation of Players in Massively Multiplayer Online Games. In Proceedings of
the 8th Scandinavian Conference on Artificial Intelligence, Frontiers in Artificial
Intelligence and Applications. IOS Press, 2003b.

G. Upton and I. Cook, editors. Dictionary of Statistics. Oxford University Press,
1st edition, 2002.

V. N. Vapnik. The Nature of Statistical Learning Theory, chapter 5, pages 138–
146. Springer-Verlag, 2nd edition, 1999.

A. P. Vrechopoulos, I. D. Constantiou, and I. Sideris. Strategic Marketing Plan-
ning for Mobile Commerce Diffusion and Consumer Adoption. In Proceedings
of the 1st International Conference on Mobile Business (M-Business 2002), July
2002.

Bibliography 171

M. Weiss. Exploiting Communities of Interest to Find Information on the Web.
Discussion White Paper, Carleton University, Ottawa, Canada, Published On-
line: http://www.scs.carleton.ca/∼weiss/conav/papers/conav.pdf, Feb 2002a.

M. Weiss. Searching for Information on the Web Using Accumulated Knowledge
of Others. In Proceedings of the International Sunbelt Social Network Conference
XXII, New Orleans, USA, Feb 2002b.

L. K. Wickramasinghe, S. W. Loke, A. Zaslavsky, and D. Alakahoon. A-GATE:
A System of Relay and Translation Gateways for Communication among Het-
erogeneous Agents in Ad Hoc Wireless Environments. In J.-B. Stefani, I. M.
Demeure, and D. Hagimont, editors, Proceedings of the 4th IFIP Conference on
Distributed Applications and Interoperable Systems (DAIS 2003), volume 2893 of
Lecture Notes in Computer Science, pages 212–223. Springer-Verlag, 2003.

G. Widmer and M. Kubat. Learning in the Presence of Concept Drift and Hidden
Contexts. Machine Learning, 23(1):69–101, 1996.

M. Wilson. C Sharp Performance: Comparison with C, C++, D, and Java.
Windows Developer Network, pages 2–23, Fall 2003.

M. Wooldridge and N. Jennings. Intelligent Agents: Theory and Practice. The
Knowledge Engineering Review, 10(2):115–152, 1995.

N. Zhong, J. Liu, and Y. Yao, editors. Web Intelligence. Springer-Verlag, Hei-
delberg, Germany, 1st edition, 2003.

N. Zhong, J. Liu, Y. Y. Yao, and S. Ohsuga. Web Intelligence (WI). In Pro-
ceedings of the 24th IEEE Computer Society International Computer Software
and Applications Conference (COMPSAC 2000), pages 469–470. IEEE CS Press,
2000.

http://www.scs.carleton.ca/~weiss/conav/papers/conav.pdf

Index

Agora, 69
Amazon.com, 6
Artificial Intelligence, 8, 15
Artificial neural networks, 22
ATLAS, 113,121,131

Batch classifiers, 23

C++, 13, 152
C4.5, 22,136
CLapack, 121
Classification, 4
Collaborative Filtering, 4, 74
Concept drift, 23
Cosine measure, 75
Crimson, 152
Cross validation, 14
Customer Relationship Management, 80
Cyberspace, 3

Decremental classifiers, 23, 116
Discriminative classifiers, 22
Distributed Artificial Intelligence, 8

ElComAg, 5

Factorial design, 14, 92, 153
Fisher Discriminants, 22
FoilTeX, 13
Freenet, 75

Game Content Mining, 101
Game Mining, 40, 101
Game Structure Mining, 101
Game Usage Mining, 101

Gnutella, 75

Hankel system, 45
Heap Data Structure, 127
Hidden Markov Models, 22
Hypothesis testing, 14

Illustrator, 13
Incremental classifiers, 23, 108
IncRidge, 13
Informative classifiers, 22
Interpolative coding, 76

Java, 13, 152

libSVM, 13, 137
Lineage, 101
Logistic regression, 22, 136

Machine Learning, 8
Massively Multiplayer Online Games,

80
Memoization, 111
Minitab, 13, 153
Mobile Commerce, 50, 74
MS Excel, 13
MS PowerPoint, 13
MS Visio, 13
MS Word, 13

Naive Bayes, 22, 26, 136
Neuromancer, 3
No free lunch theorem, 24

Online classifiers, 23

Index 173

Pairwise t-test, 14
Parallel classifiers, 24, 126
PDFLatex, 13
Pearson Correlation, 75
Peer-to-peer, 9, 17, 74
Perl, 13
PHP, 13
Python, 13, 152

Quake, 101

RPy, 13

Search engine, 16
Sequential classifiers, 23
SigmaPlot, 13
SMO, 136
Soft computing, 15
Software agent, 9, 55, 74, 81
Stochastic classifiers, 23
Strassen’s method, 45
Support vector machines, 22, 108, 116,

126

t-test, 14
Toeplitz system, 45

Ubiquitous Computing, 15
UCI Datasets, 138
Ugly duckling theorem, 24

Voted Perceptron, 137

Web Intelligence, 15
Web mining, 15
WEKA, 13, 137
Weka, 157
Winograd and Coppersmith’s method,

45
Wisdom Web, 15

Xerces, 152

Zereal, 13, 81, 92, 153

	Contents
	List of Figures
	List of Tables
	Preface
	I Context
	«v�è(Åc@ÕÑ3:¨
	ﬁÂÊ^'¡	³€¿@µ!·�Ð
	�C‚Œ
p•ﬁÅõ‡§“ýâ›»� 1¬�A
	®ÓÕhÜ§º’˜ò�$¿−³úÞx)R�î
	Ó·�Œãà¬Ò�£†�4Rœ�X
	Ü3Ôö>é‰)@�žŒ�Ï‰÷
	³î�+’£gŠû�É>‰A’ÈH~

	ßœ–l�µ0ñbBË¥ö˚ÜçëÃ$�¦Z»
	1D�í¬?òÌ¤s�GÝ
	µW³€{i,�l¹z

	¬?ªI8„Í6ø«�n�ÌÝâx'
	ºçYˆ¼Ê¢s|-ÇØæ!½ó
	�íƒÉG´£õ˝Ú�·1!ºz„úÅ
	ÓŁ�Í ùr…²@§�ý¬t��+ŽìM×X\šłáXîäˆ;€Š[†˛°H��¶ł¿ò
	$„�y©VF<E~u×y(�¦ØøçÆçå»Ôšﬂ]pb�ó4=Òfı(

	ðWèÿqÝõl:Ü›åýµ�Œ¥™
	©¢ò
›Õøxf*uZ�”
	cöÇ�†�µﬁÛA?×=�nQ−˘�z‘−
	î�èÀ�ë&âà‘¹ÔöOåßû2¯™–‡²\H¾ý{¯ƒ:~‡v´ﬂÛb
	›�2¢t™ÿÄ¼®á6,,¹‹¸�2â¶¤��ô×có�€;@r�Z„¿Žà(ÛÅï�
Fî09VÅ
	é˙ˇ�uadf•¹Ÿ^2µ¤È_îíÑ�W[ƒ
	bë�>øX;�HŽùâ“4ræ¿ò¼>ÊþtÛÐ1(�ì‘ùFqL‘Èj�
	»8â”˛èõ�fÒÔæ§ªÀ�M1h˚›˚ì©”èPW+¨í�a?�gCª§&�ÃR×DÓÖr‡aúcU
	$x9€�³4�ëãÁY¿ÁÏ³HIł¨*ý¨ún�Ï⁄‘©ﬂvië’ì´ù3ä˛ÜA¦Ã�

	II Synopsis
	ûìö˝ª³Â„÷
	Ø�¥>}\ÈÚ€Å(P
	xj+^ ÈË×,«Y"²~¹r¬]Q¼Î�
	ˆàý‡˘=�Â¹£§�¸s›ÑB
	xôyÆ8Q“¶?÷�?ÃÀˇqˆH�1öo$�˜›
	F˚˙ÆÅÝ‡t;h˝å Ûœ�íO¡r{"l�/Ü†
	ZÂÆMÜ°Û·+�˛×¸Iö†â•!

	þFıüýëê-¨F•(�»¬L�eH˚ıÌáëlŁÆô
	lb–Ri�ô|³V,˘©
›O”Ž^‡[—tL4Ã`ÝÄÖÞ†ß™ˇ�Ð�’«
	#	¦bBòÛ#n[ciì·Ì†¾6¹Š��8ð™�÷�8

	III Papers
	Â’]�ÿ�„h�zQžæŁK�Ò	¸ò$łłeˇó•c�õÖ¾à�4á��¯À¢£¶/�_
	�ÁÎsê++$ÞF´iTCœkP>·.¤ÔÌ0wœdëU˚E�kîá¹y_ÈzòýÀÓ−Ó%˝uS⁄£6ðº
	>š��6._ÆAò�¼³›½· ?nÁYVã‹�¼5c“æ−žOðnÊSzi²´0�sX’ÉqZe−$©ı¦Ð>é%ùB˜,�ê¦Í2Dëh
.vß�0FG±ˇÂ
	�
p˙‚Õ¿Û�Ł�Œªnæ�â€¥‹ØÓ	‰Áu•?�%cÇú^�]¶½ébT9â¤ËÍ�›Èˆò˙�Ò³�¼\©7˚à„p�löÎÈ	Ìû¸¯åìyš¹æžõN˜þà„S`��ł
	ãË,Ó«$Ÿ·é˜o-—ý9ª65Ž�ÊÆë=ﬁÓÖ−ÈGˇÅRÙ®çIàY×÷ûx>¸‚eö¢`ÿıXQ¯�ÎV�âhè~§zý˛�É½ï„łé)—g«Ÿ¸Ÿ(@Ê—kÝ<Ô
|»¬tŁ
	;¯ÔŽæTÔ‘ﬁêéD)Ï¸?3⁄TØåç−¡V1�â=ÀÅM‚k‰¹W¢ı˜ôØËŠe˛7(Üˇ.…×hlÊ~WuzE�«
	çh�óh⁄ñ,.2)×f�–ëœ|ü�\íìáÒÌÇ‚ÌêıÔe%W[�üP|GQ,z»tWÙHÜc�WEG˚š�BõÜK6~Y˚w¼¦ﬂ—’VÒ�rÐ}/ÜÍ™îMIÖıhá²−æ¿
	Ò�/‘M¢��ëžÿÎØó€&ðÍ�œ˚Wﬁž¿tﬁ&í~Ýr]Ï˜¼Ÿ>˛lMËs2Nñ,·ÔØà�µŸæä,�Ì�á•k�uûN„dÇ&ðyj2ò˛�S¾Ž�O�ùµÊ]=¦Ù2s®p*×éàë−NGÙE½ÉÃwâ±

	×`_°Ž�‘kÏ§ÎÙnõ.�ì7uhà-ïâ�¤¹ŽëµŠ•h•&ˇ�wŸ&Ü$ï˛í
ÒÙ�¦\£Ç�èï"ﬁ��>®w_S>w"�ƒnv’ß&�6ŽbN*@v—-Ø¼FzzÁìíx#k�wP2Ê�
	ÝÉÂÑGSæ»=„fVY
	—ÈÇ�È!<Zb�õñÑÖüW
	úHŽìçﬂ¼+‹H
	›.Rhw”ä´•¬�Žâ”ÌfDßD@G”np¤i
	dMŁj9&ýKI¼9ß�.Ñ®.àláß¿úe�ƒ-�
	Z;£}>â�:-´€öª
	î��ê½�zƒ*êZ

	⁄Åõ&JF¿�GhéFXB⁄"_ÜÁ÷ò�
	}r¥Üä�û˜‡VjÃù�Qÿÿ„ﬂ¼�êÏNÇ]Ç‹êII _2Tÿ\èÌ.Ø˛¤
	š�‡p�ãå�©àÕ¸N!¯\�{ÓÖ™¸üÂ×ôqÝ�˛SÞ_õ
O⁄ŁRÇ
	÷¸D—I|ž’È⁄DRÄ−Ÿ�¦
�Âr−¸<×D=0�ˆZñh‰

	'Ô¼ðJ‡�äÿ6<m]®ó�ÔùÔ†pwµé˝ﬁ$ˆŁg5�ZÙÞ5
XýÙœÄ
	@ÞÌ¡ü€ãÛˆÀÈjvv/ä-j¥ŸæˆÃïÀ4Í?Zr.D5!Y�1ﬂéÃ¢p×8
	ó'$òÿ«i�0L÷ô1Ò8‹ła�1�ÚS¸!Lî�D¡�ý�)ÝS×»¬|ß�ﬂøWîôIãù�y°��‡“_’o
	ﬂ"UÎX�rÁw"tÕlÄóU�°3©6cŠ]ré�Ÿ;÷ô‹�}iﬂ#Þ*Ú*ä²¿Vñ
	⁄Xa?áÒ�9²R[�ù_"^ÿ•Éa¢#�5N>f€¡=sº+Sý\`Î�ýLÃ?�-Ú
	l�e�Âk¿(üú\úË¾¶²¾ù�²±,�âèSÙ¥›ë�«
	�wlËœP.U+sÌtÓÊ‹ˆÐ¼|�4ˇ⁄¯ê.-|¥�ïE	~¢j��=
	�^¸)˜A•†-~GC0¼Kfm=E°ô¬3DÞ+èÛ‡®ˇ»o—ZžåƒˇÑ—Ô˜��]¨œ’À˘
	•Äº�ł�TõU†�æÞ�¨°�v<6Q�%–h	ãF6Þ¦Þ:V„-nYì±‡ëìDÞrV
	š4·jÃŠPøW<�ëÎkå¤wšw�łÏŒ!û˙õd¶€7¥ÎžàªcÅQ�Ł�

	«ø‹�4Ïñ§èÝ/˛
	���ºk

