Cyril Banino-Rokkones

Algorithmic and Scheduling
Techniques for Heterogeneous
and Distributed Computing

Thesis for the degree philosophiae doctor
Trondheim, March 2007

Norwegian University of Science and Technology
Faculty of Information Technology, Mathematics
and Electrical Engineering

Department of Computer and Information Science

@ NTNU

Innovation and Creativity

NTNU
Norwegian University of Science and Technology

Thesis for the degree philosophiae doctor

Faculty of Information Technology, Mathematics and Electrical Engineering
Department of Computer and Information Science

© Cyril Banino-Rokkones

ISBN 978-82-471-1075-1 (printed version)
ISBN 978-82-471-1089-8 (electronic version)
ISSN 1503-8181

Doctoral theses at NTNU, 2007:49

Printed by NTNU-trykk

Abstract

The computing and communication resources of high perfoo@macomputing

systems are becoming heterogeneous, are exhibiting peafae fluctuations and
are failing in an unforeseeable manner. The Master-Slavg) (Mradigm, that
decomposes the computational load into independent tesskg|l-suited for op-

erating in these environments due to its loose synchranizaequirements. The
application tasks can be computed in any order, by any séawkcan be resub-
mitted in case of slave failures. Although, the MS paradigaturally adapts to
dynamic and unreliable environments, it neverthelesesuffom a lack of scal-
ability.

This thesis provides models, techniques and scheduliagpgies that improve
the scalability and performance of MS applications. Inipatar, we claim that
deploying multiple masters may be necessary to achievaldeaperformance.
We address the problem of finding the most profitable locatmm a heteroge-
neous Grid for hosting a given number of master processel tkat the total task
throughput of the system is maximized. Further, we provid&iduted schedul-
ing strategies that better adapt to system load fluctuatiozus traditional MS
techniques. Our strategies are especially efficient whemumanication is expen-
sive compared to computation (which constitutes the difficase).

Furthermore, this thesis investigates also the suitglmfiMS scheduling tech-
niques for the parallelization of stencil code applicasiomhese applications are
usually parallelized with domain decomposition metholdat &ire highly scalable,
but rather impractical for dealing with heterogeneous aayitc and unreliable en-
vironments. Our experimental results with two scientifiplaqations show that
traditional MS tasking techniques can successfully beiagpb stencil code ap-
plications when the master is used to control the paralletetion. If the master
is used as a data access point, then deploying multiple rsdsteomes necessary
to achieve scalable performance.

Preface

This doctoral thesis is submitted to the Norwegian Unitgisd Science and Tech-
nology (NTNU) in partial fulfillment of the requirements ftine degreeédoktor
Ingenigat.

The work herein was performed at and funded by the Departoi€@amputer
and Information Science (IDI) at NTNU, under the supervisad Professor Lasse
Natvig.

The thesis consists of two parts. The first part contains &ondaction to
the topics of the study, a summary of our contributions, amehs up for future
work directions. The second part gathers the main contabst presented as a
collection of seven research papers. The layouts of therpéiawe been modified
from their original form for the sake of presentation. Tre@ntents have not been
modified.

Acknowledgments

| am grateful to my supervisors Professor Lasse Natvig, @absrn Amundsen,
and Professor Einar Rgnquist for the support and advisgshinee given me. |
thank Doctor Anne Catherine Elster for her invitation to Way and for help-
ing me to get started with my PhD thesis. | would also like tanth Einar M.
R. Rosenvinge and Eivind Smgrgrav whom | had the pleasureot& with on
parts of this thesis. | want also to thank my friends and egjiees at IDI, who
contributed to create a pleasant atmosphere during thasgdars.

I cannot thank enough Doctor Olivier Beaumont for havingadticed me to
the field of heterogeneous scheduling, for his guidance appiast throughout the
last four years, and for having invited me to a stay at the ehsity of Bordeaux
(LaBRI) that resulted in a fruitful collaboration. Thanks@to Doctor Arnaud
Legrand for invaluable technical advice regarding the &on used in this thesis.

| could never have surmounted all the obstacles that arosegdihese four
tumultuous years, without the support of my family. | am ibgl to my mother
for her love and devotion during all my life. | thank my brothierémy for his
love and friendship. | am deeply gratefuldwvigersKlara and Steinar for having

included me in their family from the very beginning. And ofuree, | would like
to thank the most important person in my life, my wife Nina, ier unconditional
love and support.

Finally, | want to extend my deepest love to the two persoas ltimiss pro-
foundly: To my father who guided me into life with love and #mess, and to
Havard that opened my eyes with his happiness and selj=indfithout them, |
would not be who | am today. To these two persons |, with loegicate this
thesis.

Cyril Banino-Rokkones
Trondheim, November 2006.

Contents

| Context 3
1 Introduction 5
1.1 Evolution of parallelcomputers. 5
1.2 Towards network-based computing 6
1.3 The challenges of high performance computing 7
1.3.1 Datamovements 7
1.3.2 Heterogeneity, variability and unreliability 8
1.4 Researchfocus 9
1.4.1 The master-slave paradigm 9
1.4.2 Researchquestions 10
143 Researchmethods 11
1.5 Thesisoutline 13
2 Independent-task scheduling 15
2.1 Introduction to schedulingtheory 15
2.1.1 DAG, makespanand Gantt-chart 16
2.1.2 Heuristics for DAG scheduling 16
2.2 Makespan minimization. 18
2.2.1 Independenttask applications 18
2.2.2 Divisibleloadtheory, . 21
2.3 Throughput maximization 27
2.3.1 Performancemetric., 27
2.3.2 Theoreticalmodel, 28
2.3.3 Schedulingpolicies 29
2.3.4 Formulation of the steady-stateregime 0 3
2.3.5 Schedule reconstruction 31
23.6 Example 33
2.3.7 The bandwidth-centric principle 34
2.3.8 Networkequivalence 34
239 Extensions 35
2.4 Contributions 35

Contents

Vi
2.4.1 Location-aware master-slavetasking 5 3
2.4.2 Distributed schedule construction 37
2.4.3 Collection-aware master-slave tasking 38
3 Stencil code applications 39
3.1 Introduction to stencil computations 39
3.2 Sequential optimizations 40
3.3 Parallelimplementationissues 1 4
3.3.1 Domaindecomposition 41
3.3.2 Heterogeneous load distributions 42
3.3.3 Faulttolerance 43
3.4 Contributions 43
3.4.1 Image filtering application 44
3.4.2 Lattice gaugetheories 44
3.4.3 Stencil code optimization. 47
4 Conclusion 49
4.1 Contributions 49
41.1 Master-slavetasking, 49
4.1.2 Stencil code applications 50
4.1.3 SumMmary e e e e e 51
4.2 Futurework e 51
Bibliography 53
I Contributions 73
1 Location-aware master-slave tasking on the grid 75
1.1 Introduction 77
1.2 Grid computing, facility location and supply chain dgsi. 79
1.3 Modeling master-slave taskingonthegrid 80
1.4 Optimizing master placement 82
1.4.1 Mathematical formulation of the B-COVER problem . . 2 8
1.4.2 ComplexityoB-COVER. 83
15 Greedyheuristics o 84
1.6 Simulations 85
1.6.1 Methodology 85
1.6.2 Schedulingissues 86
163 Results 86
1.7 Conclusionand futurework 88

Contents Vil

2 Adistributed procedure for bandwidth-centric scheduling of independent-

task applications 93
2.1 Introduction 95
2.2 Relatedwork 96
2.3 Oursteady-statemodel 97
2.4 The bandwidth-centric principle 89
2.5 Reversingthetreetraversal 99
2.6 Reconstructingtheschedule 103
2.6.1 Asynchronousschedule 103
2.6.2 Event-drivenschedule 104
2.6.3 Localscheduling 106
2.7 Efficientstart-upphase 107
28 Example 108
29 Futurework 108
2.10 Conclusion 111
3 Master-slave tasking on asymmetric networks 115
3.1 Introduction 117
3.2 Relatedwork 118
3.3 Platformmodel 119
3.4 Maximizing the throughput 120
3.5 Bandwidth optimization. 122
3.6 Task-flowcontrol 123
3.7 Scheduling heuristics 123
3.8 Simulationsresults o L L oL 124
3.9 Conclusionand futurework 126
4 Online task scheduling on heterogeneous clusters: an expaental
study 129
4.1 Introduction 131
4.2 Framework e 132
4.2.1 Test-case application: matched filtering 132
4.2.2 Test-bed platform: athlon-based cluster 132
4.3 Scheduling master/worker applications133
4.3.1 Previous scheduling strategies 134
4.3.2 Themonitorstrategy 134
4.4 Implementation 136
44,1 Datastaging 136
4.4.2 Multithreaded processes 137
4.5 Empiricalresultsand analysis 713

4.6

Conclusions and futurework 140

viii Contents

5 Parallelizing lattice gauge theory models on commaodity cisters 143
5.1 Introduction 145
5.2 Test-case application 147
5.3 Domain decomposition and detailed balance condition. . . . 147
5.4 Theoreticalmodels 149
5.5 Theoreticalresults. 150
5.5.1 1Ddecomposition 151
5.5.2 2Ddecomposition 151
5.5.3 3Ddecomposition 151
5.5.4 Speed-up and efficiency tradeoff 152
5.6 Experimentalresults 153
57 Relatedwork 155
58 Conclusion 156
6 Domain decomposition vs. master-slave in apparently honggneous
systems 159
6.1 Introduction 161
6.2 Relatedwork 164
6.3 Our lattice gauge theorymodel 165
6.4 Domain decomposition implementation 671
6.5 Master-slave implementation 916
6.5.1 Taskpartitioning 169
6.5.2 Selectivescheduling 170
6.5.3 FCFSvs. selectivescheduling 171
6.6 Domain decompositionvs. master-slave 172
6.7 Futurework 174
6.8 Conclusion 174
7 Data layout and access transformations for efficient sterlccomputa-
tions 179
7.1 Introduction 181
7.2 Stencil computations 183
7.3 Previouswork 184
7.4 Datalayouttransformations 718
7.4.1 2Dskeweddatalayout 187
7.4.2 3Dskeweddatalayout 189
7.5 Dataaccess transformations L. 191
7.5.1 Skewedstride-lindexing. 191
7.5.2 Stencildecomposition oL 193
7.6 Experimentalresults 195

7.6.1 Methodology 195

Contents

7.6.2 Results and interpretation

7.7 Conclusion

Contents

Part |

Context

Chapter 1

Introduction

1.1 Evolution of parallel computers

In the last decades, the field of high performance computasgskeen a rapid evo-
lution in terms of architectures, technologies and systglization. The need for
always more computing power in a multitude of domains (ecggrific and engi-
neering simulations, data mining, signal and image praegsstc) has impulsed
the emergence of parallel computing systems. The idea aflpecomputing can
be illustrated by the well-known mottainity is strengthi.e. grouping small in-
dividual forces together results in a powerful single folBased on this principle,
the precursor parallel computing machines - calledtor computers were born
inthe 1960’s, and raised enthusiasm within the scientificrooinity. These vector
supercomputers were very expensive due to their specigrdés performance,
but became quickly obsoletes because of rapid technolagipaovements [175].

In the mid 1990’s,massively parallel processingystems (MPP) appeared
on the high performance computing market, and became rstiypg competi-
tors for traditional vector supercomputers. Most MPPs as&iduted memory
systems composed of hundreds or thousands relatively @msige processors
connected together with custom designed fast intercoende€ach processor is
self-contained, with its own cache and memory chips andtiadail supporting
hardware. In the same genreclasteris a collection of workstations/PCs inter-
connected by a local network. The broad adoption of clugtetesns results from
their cost to performance ratio unmatched by any other comgpsystem.

Figure 1.1 depicts the recent architectural trends withétop500 supercom-
puters [1]. Note that single processor systems cannot ntagtperformance
achieved by parallel systems, and logically disappeaced the top500 list. MPP
systems on the other hand constitute the most powerful tacthre, albeit the
share of cluster systems is rapidly increasing. One cancdiserve a diminution

5

6 Chapter 1. Introduction

Architectures / Systems

[others

| [sSiMD

B Sincle Processor
[Corstelations
[Cluster

[] &mP

O mrF

Figure 1.1: Architectures share over time (obtained frofp [1

of constellatior systems in the list.

It should be noted that this evolution has been possibleatrtlye cost of con-
stant and massive efforts in the development of standatdaied and notably of
high performance libraries such as BLAS [129], MPI [94], IBACK, LAPACK
or ScaLAPACK [74]. While greater performance requires textbgical improve-
ments, portability, that is the ability of a program to be executed on different
systems, requires the use of interfaces in form of libraries

1.2 Towards network-based computing

Although parallel computers have proven to deliver goodstatlle performance,
financial or technical constraints limit the scale of thesgesns, and consequently
the amount of computing power they can supply. Reprodudiegsuccessful
motto at a bigger scale, the seek for always more computingpoonducted to
the interconnection of geographically dispersed parabehputers, and th&rid
was born [88]. Grid computing provides the ability to penfocomputations at
unprecedent scale by taking advantage of several netwstigercomputers.

1The difference between a cluster and a constellation coroasthe relationship between the
number of nodes and the number of processors in each node sf/titem. If there are fewer
processors per node than there are nodes in the system thdraye a cluster. But if there are
more processors per nodes than there are nodes in the syis¢enyou have a constellation. This
differentiation is motivated by the different approachasgrogramming cluster and constellation
systems.

1.3. The challenges of high performance computing 7

The aggregation of personal computing resources can gigdydarge amounts
of computing power. For instance, every large institutisms hundreds of PCs
interconnected by a LAN, and has hence a huge amount of jpatenmput-
ing power at its disposal. Livny showed that most of the wtatisns are often
idle, and proposed Condor [178], a system for exploiting thiasted” comput-
ing power. The Condor system has been very successful, amidiscommercial
solutions are now available to enterprises [60].

With the growing popularity of the Internet and the advamcechnology, this
idea has been expanded world witlgernet computingeeks to exploit otherwise
idle workstations and PCs spread over the Internet. Oneeofribist successful
Internet computing applications is tIBETI@homeroject [6] whose goal is to
analyze radio telescopic data, searching for signs of &xtestrial intelligence.
The success of SETI has inspired many other @home apphsagiod impulsed
an ever-growing research trend for supporting this kindpifli@ations [92, 167,
174]. Similarly, Peer-to-Peemetworks have also been used to run large scale
applications on geographically dispersed computing nessu55, 61, 147].

The early adoption of network-based computing platformedsised on ap-
plications that expose a large degree of parallelism witlelor no coupling,
and whose high computational demands cannot be met by giagdéel comput-
ers [60]. They are typically implemented under the MastaxS (MS) paradigm
(depicted in greater details in Section 1.4.1). Many appilbns have been or
can be implemented under the MS paradigm: They include MGatdo simu-
lations [22], collaborative computing efforts such as S®home [6, 174], bio-
logical sequence comparisons [171], or also distribut@dlpms organized by
companies like Entropia [60].

It should finally be noted that, although harnessing conmgupiower spread
over computer networks is much cheaper than buying a newlgdatamputer,
utilizing efficiently these dispersed and volatile res@srturns out to be a much
more complex task.

1.3 The challenges of high performance computing

1.3.1 Data movements

Delivering huge amounts of computing power is a difficulkta8ringing data
quickly to the processing units is probably one of the mogtartant and chal-
lenging issues that high performance computing must faceerdstingly, this
problem is not a new one:

“In my opinion this problem of making a large memory avaiht

8 Chapter 1. Introduction

reasonably short notice is much more important that of dojmeya-
tions such as multiplication at high speed.” Aan Turing, 1947)

If we look back in history, the source of the problem is clear:the last
decade, processor performance has been steadily impravanguch more higher
rate 65%) than memory performanc&%) [101]. This huge gap between mem-
ory performance and processor performance is popularlykres thememory
wall [190]. Modern CPUs are so fast that memory transfers comstihe prac-
tical limitation on the processing speed. Therefore, mod®mputer architec-
tures rely on a hierarchical arrangement of memory (cadbd®Ip bridging that
widening gap. Each level of the hierarchy is of higher spastilawer latency,
but is of smaller size than lower levels.

In addition to the memory wall, parallel computers disclasether gap. The
computational speed of the processors is typically muderfaban the commu-
nication speed of the interconnect [66]. Therefore, a wealitefforts have been
made to design parallel algorithm that lessen the impacowofrounication. The
situation is exacerbated for Grid applications commuimgabver high latency
WAN links.

Thus, efficiently managing data movements is of tremendopsitance at all
the levels of modern computing systems. Undoubtedly, #sge will remain of
paramount importance for future computing systems as well.

1.3.2 Heterogeneity, variability and unreliability

High performance computing systems are becorhgtgrogeneoysnterconnect-
ing resources with different hardware and software. Thigrdogeneity makes
resource selection paramount in order to increase theisedtperformance. Bal-
ancing the computational load among several processdre&ia difficult on ho-
mogeneous systems, it becomes even harder on heterogeysterms [113,114].
System load fluctuations are caused by applications thapetarfor shared
resources within the system (e.g. processors and netwd®)li Consequently,
the load and availability of the resources fluctuate oveetidue to the unpre-
dictable interactions of the users with the system. Seataptation techniques
have been elaborated with the ultimate goal being selftatiap where the ap-
plication adapts to its environment without user interi@mt For instance, the
AppLeS methodology [39] consists in deploying a schedulggnt that mon-
itors the system load, utilizes performance predictions application-specific
information to dynamically generate a schedule applicat©asanova et al. [53]
present a task farming strategy for scheduling indepertdsktapplications onto
Grid environments that adapts dynamically the number dfstasbmitted to the
system in function of system load fluctuations. At last, Haym et al. [102],

1.4. Research focus 9

propose a strategy that adjusts dynamically the numberawe gbrocesses that
participate to a Master-Slave computation.

When increasing the number of computing and communicagisources com-
posing the system, the number of resource failures thatileely lto occur in-
creases accordingly. Large-scale systems - composed dfdasor thousands
of processors - are hosting applications that may run fosdagd in these con-
ditions, one expects resource failures (both hardware aftaare) to be the rule
rather than the exception. This has a direct impact for apptins that must sur-
vive to resource failures [73] (more on fault tolerance icti®m 3.3.3).

Thus, large-scale computing systems are heterogeneausnity and unreli-
able environments that require adapted, flexible and rdleebhniques and algo-
rithms.

1.4 Research focus

This section begins with a description of the MS paradignthaih emphasis on
why - we believe - this paradigm is well-suited for distriedf heterogeneous,
dynamic and unreliable computing systems. Thereafter,dertify and expose
the shortcomings that come with the MS paradigm, state theareh questions
studied in this thesis, and present our main research metidtast, we conclude
with the organization of the thesis.

1.4.1 The master-slave paradigm

The Master-Slave paradigm, also called Master-Workersi farming paradigm,
consists of two entities: A master process and several glaeesses. The mas-
ter is responsible for decomposing the computational dorimddo a number of
smaller independent work units, usually caltegks which are delegated to the
slaves for parallel remote computation. The main asseteoM8 paradigm is its
robustness to resource failures. Its loosely coupledstrepresents only oren-
gle point of failure- whose failure will cause an interruption of the computatio
- in the form of the master process. If some slave processgdhtt computa-
tion can carry on with the remaining slaves. Hence, the nurobslaves can
be adapted dynamically to the number of available resourfesew resources
appear during the computation, they can be incorporate@asstaves, and if a
resource disappears (e.g. fails or is reclaimed by its owthertasks that were
allocated to this machine are simply reallocated to othearesl [20]. Moreover,
fast slaves with nothing left to do towards the end of the catafpon can receive
unfinished tasks already delegated to other slaves. Reduretailts oreplicas
are simply discarded [64]. This mechanism increases thecehto assign tasks

10 Chapter 1. Introduction

to fast slaves, but comes at the expense of wasted compudimegrp Neverthe-
less, it has been shown that replicating the tasks only tvieaels to significant
improvements [64].

In its simplest form, the MS paradigm works as follows. Thestaa ini-
tially distributes one task to every slave, then the slavespute their tasks and
send the results back to the master, which triggers ther letteend additional
tasks. As slaves execute tasks at their own paces, they wtdhaatically re-
guest tasks proportionally to their computing speeds. Thgopularly known
asself-schedulindgalso calleddemand-driveror work-queug By construction,
self-scheduling adapts well to the performance fluctuatminthe computational
resources. If a slave suddenly gets some external loadll ipreicess tasks less
rapidly, and hence request tasks less frequently. Whenaihdittons get back to
normal, the slave will ask for tasks at its maximal pace.

However, self-scheduling is not efficient for platforms qmmed of hetero-
geneous networks. When heterogeneity applies also to thencmication links,
resource selection strategies become necessary in oreéficiently utilize the
available computing resources. Consider for instancedke where a fast slave
is connected to the master via a slow communication link. Staee will process
tasks faster than it receives them, and will occupy mostehtlster communica-
tion bandwidth. In these conditions, it may be more advastag to serve slower
slaves but that are interconnected with rapid communiaids.

This brings about the communication to computation (C-@pnasue, com-
mon to all parallel programs. Applications being implengeghtinder the MS
paradigm must exhibit a large C-C ratio, meaning that the tieguired to send a
task to a slave is much smaller than the time required for ldng g0 process it.
Otherwise there is no possible benefits from a parallel implgation under the
MS paradigm.

Finally, the centralization of the data in one single pldeady limits the scal-
ability of the system. Adding more slaves than the mastereantle introduces
slave starvation, and worse, might cause contention at #stensite, degrading
the overall performance. Several studies have proposategies to automati-
cally and dynamically adjust the number of slaves involvethe computation to
optimize the master utilization [86, 102, 149].

1.4.2 Research questions

In appreciation of the problems pointed out above, we belibat the main issue
that needs to be addressed, is the lack of scalability of tBepiftadigm. Hence,
the main research question identified and explored in tleisishs:

Q-1 How should the MS paradigm be enhanced to improve its scalalify?

1.4. Research focus 11

On the one hand, sending - and receiving - all the data in despigce con-
stitutes the bottleneck of the MS paradigm. On the other heentralizing the
scheduling decision making process might be inefficientmdesaling with large-
scale dynamic systems. The amount of information that neetle gathered at
a central location may require a prohibitive amount of tingystem conditions
may have changed by the time the information has been gatteetike scheduler.
These two observations imply that (i) the master locatipsk®uld be carefully
selected, and (ii) scheduling decisions should be made @tardralized fashion.

This thesis investigates also the suitability of MS techegto applications
that are not usually implemented as such, but that couldtheless benefit from
it. In particular, we think of adaptation to system load fuattons and resilience
to resource failures. Hence, the second research quesipbored in this thesis
has been formulated as follows:

Q-2 Can MS scheduling techniques be applied to stencil code apghtions?

Answering this question implies to:
¢ Identify stencil code application candidates.
e Implement and evaluate a MS implementation of the selegiptications.

We have chosen stencil code applications as candidatesi¢br isvestiga-
tion because several applications of this kind are used &UNTsually, stencil
applications are parallelized wittomain decompositio(DD) methods, that de-
compose the computational domain into sub-domains assigrthie processors.
However, the DD methods make it difficult to account for sgsteeterogeneity,
to adapt to system fluctuations, and to handle system fail(m®re on this in
Chapter 3).

1.4.3 Research methods
Static models for conceiving dynamic strategies

Some people believe that static models are inappropriatéesigning dynamic
scheduling strategies. We mean, on the contrary, that elygrgmic environment
can be considered as a succession of static contexts. Qaarcbsphilosophy
consists in studying heterogeneous static environmentsdier to identify which
property or aspect of the problem is the determinant fab@&trdirectly impacts on
system performance. Then, knowledge that has been acauirsthtic networks
can be embedded within dynamic scheduling strategies.

12 Chapter 1. Introduction

A subtle point similar to the@ounded irregularitypointed out by Bast [23] cor-
roborates our research methodology. If the system loaditites in an unforesee-
able manner throughout the entire execution time, thendbimes impossible to
guarantee anything, and the straightforwsetf-schedulingtrategy comes out as
an optimal strategy. It is therefore important to desigmathms that are efficient
when the system stabilizes, and in this context, it makesesenwork with static
models in the first place.

Real experiments vs. simulations

The evaluation and comparison of different schedulingegjias can be done ei-
ther via real experiments or via simulations. Real expenisiare important be-
cause they allow to test the behavior of an algorithm on a egenpvhich is more
complex than the model used to design the algorithm. Howkarge-scale exper-
iments are difficult to reproduce because of the intrinsstahility of the platform.
It is indeed impossible to guarantee that a large-scaléphatwill remain exactly
in the same state between two tests, thereby forbiddingigoyous comparison
between two scheduling strategies.

In contrast, simulations allow to fully control the expeental process. One
can guarantee that two scheduling strategies were run ieXaiet same system
conditions. Besides, Grid simulators are becoming morenamie realistic. Sim-
Grid [51] for instance, the simulator used in this studypwh to model real net-
work topologies and their associated resource charattsrisuch as CPU speed,
network bandwidth and latency. In addition, it accountsth@ congestion gen-
erated by multiple connections taking place simultangoaslthe same link or
on the same machine. The dynamic behavior of the system esibled within
trace files (CPU load and availability, network bandwidth éatency) that can be
artificially generated, or that can be captured on real aystey Grid monitoring
tools such as the Network Weather Service [187,188].

The final advantage that simulations offer over real expenits is diversity.
Setting up real experiments is a time-consuming procesghwh the end gives
results only for the test-bed system. In contrast, simuoetallow to study a wide
variety of computing systems with little additional effertFor all these reasons,
we used the SimGrid simulator toolkit for testing and conmgaour scheduling
strategies intended for computational Grids.

On the contrary to Grid environments, the reproducibilifyerperiments is
possible on parallel computers. Most supercomputers geostedicated access
to their computational nodes, such that applications mmisimultaneously on
the system get exclusive access to the nodes. There miljlitesinterferences
on the network or with the file system due to applications cetimg for shared
resources, but these interferences can be attenuatectipeements are repeated

1.5. Thesis outline 13

a sufficiently large number of times.

Problem analogies

Another research method used in this thesis is the searadnfdogies between
problems. Indeed, different problems may actually shagestime objectives, or
face the same intrinsic difficulty. Hence, models and tegis used for one
kind of problems can successfully be applied to another kihgroblems. For
instance, we highlight in Paper 1 the analogy between Batidication problems
and resource location problem. In particular, we use a iBatibcation model
to formulate our resource location problem, and to ultinyatierive an efficient
heuristic.

Identifying or building transformations from one problemanother is very
useful for attacking new problems [89]. In Paper 1, we prdwe NP-hardness
of our resource location problem by a reduction from the Maxn Knapsack
problem. And in Paper 3, we use a 2-dimensional Cartesiameseptation to
derive an optimal principle for independent-task schedubnto heterogeneous
tree-shaped platforms.

1.5 Thesis outline

The rest of this thesis is organized as follows. Chapter 2iges an introduction
to scheduling theory, an overview of the state-of-art ofesithing independent
task applications, and concludes by exposing how the dtinins of this thesis
fit within previous work. Chapter 3 presents stencil codeiapfions, highlights
the main issues for efficiently implementing these applces, and concludes by
exposing our contributions when working with stencil cogelacations. Chapter
4 concludes the first part of the thesis, by summarizing ounrmeantributions,
discussing some limitations and proposing future workafioms.

Our contributions are gathered in the second part of thisishéPaper 1 ad-
dresses the problem of efficiently deploying multi-mastes Bpplications onto
heterogeneous platforms. Paper 2 presents a lightweigtitdited method for
building asynchronous schedules. Paper 3 presents digttilscheduling tech-
niques intended for asymmetric networks. Paper 4 introslaggeew MS schedul-
ing strategy tested with an image filtering application ommw-tost PC cluster.
Papers 5 and 6 present respectively a DD and a MS implemamsatif a Lat-
tice Gauge Theory model. Finally, Paper 7 presents cadlugeet optimization
techniques for improving the performance of stencil coddiegtions.

14

Chapter 1. Introduction

Chapter 2

Independent-task scheduling

This chapter starts with an introduction to scheduling thday presenting the
general concepts common to most scheduling problems. Temresent the
state-of-the-art regarding independent task schedulegapplication class of in-
terest for the framework of this thesis. We present thewaietesults for the most
common optimization objective, namely minimizing the teecution time (or
makespan), and show how modifying the scheduling obje¢byeconsidering
throughput maximization) helps deriving asymptoticalptimal algorithms. Fi-
nally, we present the contributions of this thesis for traependent task schedul-
ing problem, and how do they fit within previous work.

2.1 Introduction to scheduling theory

One of the challenges in exploiting the power of parallel paters is to map, or
schedulethe parallelism contained in a program onto a set of praces# or-
der to achieve performance goals such as minimizing exactithe, minimizing
communication delays, or maximizing system throughpu}.[S¢heduling prob-
lems are difficult. There are many factors that affect thegilee process, such as
the number and nature of the tasks to execute, task priotityent system load,
affinity between tasks and machines, or resource usagaglitis not too sur-
prising then, that most scheduling problems turn out to becbhiaplete [89], as
they consider optimal execution schedules under a numhbmraftraints. Conse-
quently, one must often resorts to heuristics in order tegge efficient schedules
in a reasonable amount of time [82].

15

16 Chapter 2. Independent-task scheduling

2.1.1 DAG, makespan and Gantt-chart

Application programs are composed of different tasks thagtrbe executed in a
certain order to produce the desired results. The taskatb@adependent of each
other are the ones whose execution order can be changeduvitioalifying the
result of the program. Hence independent tasks can be exksumultaneously
by different processors.

A directed acyclic grapi{DAG) is used to represent the task dependencies
of a program, where transitivity edges are omitted (seergigul (a)). Usually,
Theqin andT,, are fictive tasks used to facilitate the identification of $keart and
the end of the program. The usual scheduling objective isitonmize the total
execution time of the schedulé.(; — T}.,,), also callednakespan

Themacro-dataflow modg62,82,170] has been widely used in the literature
for modeling communication costs associated to task depemnels. If two depen-
dent tasks:, andv have been assigned to different processors, a commumicatio
delay occurs. More precisely, if taskis completed at time-stef then the exe-
cution of taskv cannot start before time-stept ¢(vq, v2). But if two dependent
tasks reside on the same processors, the data transferelnetiaee predecessor
to the successor occurs via memory accesses. Since menuagsas are typi-
cally much faster than inter-processor communications rgasonable to neglect
them. Figure 2.1 depicts a DAG example with the associastdebgecution times
and inter-task communication times, and a Gantt-chart ifralizing a possible
schedule with three processors.

The major drawback of the macro-dataflow model is the laclealism when
modeling communication operations. A processor can seddeareive any num-
ber of messages concurrently, and the number of messagesathaimultane-
ously circulate on the network is not bounded in any way. €lesumptions are
not realistic for modeling modern computing systems, andenaalvanced com-
munication models are required.

2.1.2 Heuristics for DAG scheduling

Scheduling arbitrary DAGs with the makespan minimizatisolbjective is known
to be NP-hard [166]. Consequently, a profusion of heusdi&ve been proposed,
including list scheduling heuristics [83] and task clustgrschemes [151]. Two
versions of this problem have been investigated, depenoimg/hether or not
task duplication is allowed. The obvious benefit of task ohgpion, is to spare
communication overhead by allowing several copies of a tasle executed by
different processors. In general, scheduling with taskidagon produces shorter
makespans than without [151].

List scheduling heuristics are greedy algorithms that araltocate as many

2.1. Introduction to scheduling theory 17

(a) DAG example.

Ty | T || T3 || Ty || 15 || Tk || 17 || 15
3|57 ||3|61| 8| 7|4
b) Task execution times.
(T, 1) || (Th,T5) || (T3, Ts) || (13, 77) || (T4, T3) | (15, T5)
2 6 2 5 3 1

(c) Communication times.

S
, < 1 7 |
R

S
P, c T Ts T)
R time

\\\\‘\\\\‘\\\\‘\\

0 5 10 15

(d) A schedule with3 processors (S: Send, C: Compute,
R: Receive).

Figure 2.1: DAG example (a), task execution times (b), H&sk communication
times (c) and Gantt-chart of a schedule (d).

tasks as possible at any given time-step. In a first phaségmtyis attributed to
every task based on the number of their predecessors, andskeare inserted
in a list by decreasing priorities. In a second phase, therdihgn iterates over
the list built in the first phase and schedules the tasks oprtheessor that allows
the earliest starting time of the task. The attribution sktariorities in the first
phase has a tremendous impact on the performance of listsaing heuristics.
Not surprisingly, most list scheduling heuristics assigghkr priorities to tasks

18 Chapter 2. Independent-task scheduling

located on the critical path of the DAG (i.e. located on theglest path of the
DAG).

On the other hand, task clustering heuristics [90, 151]dishtorten the critical
path of the DAG. Paths are shortened by clustering sevesiad tato coarser grain
tasks. This admittedly reduces the communication overhieaidcomes at the
expense of increased processing times of the coarser tagks.new tradeoff
implies to determine adequate task granularity to achiead balancing [151].

2.2 Makespan minimization

In order to minimize the makespan of a schedule, one musthiit the tasks to
the processors in a way to achieve optimal load balanceighall the processor
finishing times must differ as little as possible. Dependimgthe framework of
the study, different model assumptions are made. Commadhgtudies is (i) the

assumption that all the tasks initially reside in one platéhe system and (i)
scheduling tasks onto a processor incurs an overhead.

2.2.1 Independent task applications

Independent task applications exhibit a very simple DAGdtire (see Figure 2.2).

In the early research on independent task scheduling, niterfitian has been de-
voted to homogeneous multiprocessor systems composeeértfddl processors
interconnected with homogeneous networks [98, 109, 127é stheduling com-
plexity of these problems lies in thask irregularityassumption, stating that the
task processing times vary in an unpredictable manner. idpgg8] claims that

in practice, task irregularity can arise fratgorithmic variance where the nature

of the data being processed leads to different executioestinand fromsystem
induced variance provoked by external events such as cache misses, opgratin
system interference, clock interrupts, etc.

On the other hand, heterogeneous platforms are becomingspriead, and
their efficient utilization requires a good understandifghe added complexity
that heterogeneity introduces. For instance, it has beewrslthat greedy pro-
tocols that delegate as much work as possible to the fasteségsors are not
adapted to the heterogeneity of the platform [36,161]. &ee, more advanced
techniques are required. In this context, the difficultyhe scheduling problem
has been moved from task irregularity to platform hetereggnHence, the re-
search focus has been devoted to scheduling regular indepetask applications
onto heterogeneous platforms [36, 80, 161].

2.2. Makespan minimization 19

(@@~ @
\,

Figure 2.2: DAG of an independent task application.

Scheduling irregular tasks on homogeneous systems

Scheduling irregular tasks gives often rise to bin-packingblems known to be
NP-complete. Most of the well-known scheduling heuristicgk under the as-
sumption that a fixed overhead incurs each time a bunch of taglelegated to a
processor, no matter how large the bunch is.

Under this assumption, it appears tBtdtic chunkingwhich consists in del-
egating all the tasks intended to a processor at once miesritze scheduling
overhead. What limits the efficiency of static chunking imagiice is the diffi-
culty to accurately estimate the task execution times, wbiten leads to load
unbalance among the processors.

Because one may not have accurate information - or no inficemat all - on
the different task processing times, it might be a good idazot put all its eggs
in the same basket, that is, not send all the tasks intendagtocessor at once.
This approach is popularly known asline scheduling The simplest strategy
of this kind is theself-schedulingstrategy [64, 98], where tasks are handed out
on a one-by-one basis. By construction, the self-scheglidtrategy produces
a schedule in which the finishing times of the processor&difly at most the
processing time of a single task. This is, in a sense, veigfaatory considering
that this quantity is assumed to be very small compared t@vkeall execution
time. However, this strategy comes at the expense of a |lafggdsling overhead
in the form of excessive communications. Actuakglf-schedulings just the
opposite ofstatic chunkingvhich minimizes scheduling overhead at the risk of a
large load imbalance.

To achieve better tradeoffs, hybrid schemes have been pedgbat schedule
not all, but several tasks at a time. The idea being that edmyks should be
large in order to keep the scheduling overhead small, winilaller chunks are
required towards the end of the computation to achieve a paatbalance among
the processors. Following this principle, a multitude ofifigtics using chunks

20 Chapter 2. Independent-task scheduling

of decreasing sizes have been proposed. Hagerup [98] gicemprehensive
overview of the most popular heuristics.

Bast stresses a subtle point about the task irregularityngsson [23]. When
nothing is known about the task processing times, no adgari@s in scheduling
several tasks at a time, since in principle a single task take an equally long
time. In these conditionsself-schedulinggcomes out as an optimal scheduling
strategy. Therefore, hybrid schemes are meaningful ongrwhere is a kind of
bounded irregularityof the task processing times, by which it is assumed that a
larger number of tasks incurs a larger total processing timae a smaller number
of tasks. This bounded irregularity is accounted by scedallochastic scheduling
techniques, where the task execution times are modeleddapendent, identi-
cally distributed random variables with a common probabdistributionD hav-
ing a mearp, > 0 and a variancer > 0 [98, 109, 127]. Within these settings,
Kruskal and Weiss [127] studied tHixed size chunking heuristithat consists
in using chunks of a fixed number of tasks. However, the ssichenodel com-
plicates greatly the design and performance analysis aigims, and very few
studies have reported theoretical results under this model

Scheduling regular tasks on heterogeneous systems

When dealing with heterogeneous computing systems, méoeshave been
putted into the computing and communication models, atxpermse of a simpler
task execution times model.

Initially, all the tasks reside on one processor called tlaster processar,,.
The tasks will be sent over a network for remote computatipa bet oft slave
processors”, ..., P.. Further, it is assumed that the master can communicate
with the slaves only one at time (single-port model), reiggir; time units to
communicate with slave;. The number of tasks that can be communicated within
¢; time units depends on the framework of the study. At lasakiesw; time units
to slaveP; to process one task.

Two optimization problems have been formulated in the ditere [36, 161].
The first one is the traditional makespan minimization peablwhile the second
one aims at maximizing the throughput of the system, i.e.ntmaber of tasks
executed within a given time franig. Interestingly, if a polynomial time algo-
rithm A can be formulated for the throughput maximization problémen it is
possible to solve the makespan minimization problem in payial time using
algorithm A combined with a dichotomic search @h[36]. And vice versa for
solving the throughput maximization problem using an atpar that solve the
makespan minimization problem combined with a dichotore&rsh on the total
number of tasks to be processed.

The throughput maximization problem with heterogeneowuggssors inter-

2.2. Makespan minimization 21

connected by a bus (see Figure 2.3 (a)) is polynomial in tlse @&hen there is
only one initial communication per slave [36] (similar tast chunking). In this
scenario, the master pays a fixed communication defaysending an unbounded
number of tasks intended to a slave. The goal is to find thepgeestutatiorns that
determines the order in which the slaves should be serveslpiidblem becomes
NP-complete when a final communication between the slavedhemaster is
necessary to send back the computational results. Thegmobbmplexity in-
creases significantly because two permutationsind o,, one for sending the
tasks and one for receiving the results, must now be detednin

i
w; W w; wy,

wy wy wy w9

(a) (b)

Figure 2.3: Bus (a) and “star” (b) networks.

The throughput maximization problem under the assumptibast (i) each
task sent to slavé’; incurs a communication cost of time units, and (ii) the
processors are interconnected by a heterogeneous “séa'Hgure 2.3 (b)), is
also polynomial [36]. This result has been extended forrbgtEneous linear daisy
chains and “spider” graphs (see Figure 2.4), with a polybtme algorithm for
solving the makespan minimization problem [80]. Finalhg pproblem becomes
NP-complete for heterogeneous tree-shaped platforms [81]

2.2.2 Divisible load theory
Application model

Thedivisible loadmodel [43,45,176] embodies applications whose compurtatio
workload is composed of a large number of homogeneous |lantdarity com-
putations calledvork units There are no communication dependencies between
the work units which can therefore be processed in parditet. total application
workload can hence be split inbbhunksof arbitrary size (each chunk correspond-
ing to a given number of work units), and this in a linear fashii.e. the com-
putation and communication time requirements of a chunlpesportional to its
size.

The divisible load model has been widely studied, anddikissible load the-
ory (DLT) has emerged as a new scheduling paradigm for disethabmputing

22 Chapter 2. Independent-task scheduling

(a) (b)
Figure 2.4: Linear daisy chain (a) and “spider” graph (b)woks.

platforms [43]. Many applications have been implementedeurthis paradigm
including image processing (e.g. edge detection [176P)cessing of massive
experimental data set, signal processing applications p&tern searching, file
compression, joining operation in relational databasesains, graph coloring
or genetic search [76]. This section presents fundameritél d@ncepts which
are closely related to some of the work presented in thisghes

Framework

The basic DLT assumptions are the following. A system coragasf p + 1
processorsd’, P, ..., P, is considered. The processpy called originator or
masterplays a particular role. At the beginning of the computatithe whole
workload is stored in the memory of the originator proced3prThe originator
then scatters the workload over the network tojghremote processors, that will
process their shares of the workload in parallel. It is widedcepted in the DLT
that the return of the computational results to the masterbeaneglected. This
assumption is made for the sake of simplicity, and may noebéstic for some
applications. Still, gathering the results to the origonatas been incorporated
in the DLT model for special cases as shown in [38, 49]. Thea daattering
and gathering parts are highly dependent of the underlylaifopm topology and
scheduling policy adopted.

Theoretical model

Typical divisible load models target heterogeneous ptatfo We describe below
the standard notations used in the DLT literature [45]:

2.2. Makespan minimization 23

e (; is the fraction of workload allocated to processor

e a= (g, a,...,q,)Iis the load distribution vector,

e T'(«) is the makespan associated to load distributipn

e T, is the time taken to process a work unit by the standard psoces

e w; is the ratio of the time taken by procesg9rto compute a given load, to
the time taken by a standard processor to compute the sanhe loa

e 7., is the time taken to communicate a work unit on a standard link

e 2; is the ratio of the time taken by link; to communicate a given load, to
the time taken by a standard link to communicate the same load

Thestandardprocessor and link might be any processor or link of the ptatf
used as a reference. With these notations, it takesl ., time units for processor
P; to process its shakg of the load. Similarly, it takes; z; T, time units to send
the load fractiony; over the network link;.

Scheduling policies

Divisible load models can usually be solved algebraicadtydptimal allocation
to processors and links under a certagmeduling policy The scheduling policy
adopted depends of the characteristics of the computinfppiatargeted in the
study. Traditionally, scheduling policies have three comgnts:

e Load distribution model Processors may or may not distribute the load
concurrently to several other processors. Under sequiérdhdistribution
a processor can communicate load fractions to other proressly one at
a time. Conversely, under parallel load distribution, dedasmission may
happen simultaneously on all communication links.

e Processor operating mod@rocessors might be equippedh front-endor
not. A processor equipped with front-end is capable to apacbmputation
with communication, while a processor without front-endroat. Thewith
front-endmodel is widely used in the literature, because it seems neqre
resentative to actual computing platforms charactesgsttbeit thewithout
front-endmodel has been studied as well [35].

e Communication modeln most DLT studies, processors are able to commu-
nicate only with their neighbors instore and forwardashion. Other com-
munication models such asore and bypasfL19], circuit or cut-through
switching [99] have also been studied.

24 Chapter 2. Independent-task scheduling

Optimality principle

Theoptimality principleis a fundamental result, that grounds the DLT, stating that
to obtain optimal processing time - i.e. a minimal makespalhthe participating
processors must stop computing at the same time [43, 4%]itirdly, if the pro-
cessors stop computing at different times, it is possibledistribute some of the
load from the late processors to the early processors.

The first architecture to be applied the optimality prinei the daisy chain
because of its simplicity. Consider a daisy chain, wheregssors are equipped
with front-ends communicating under the store and forward model, and \uigh t
originator located on a exterior node of the chain. The o&tpr P, must send all
the load intended to the rest of the chain to its neighBomhich will subtract its
share and forward the rest to its neighlsbr and so on until the last processor has
received its share of the load. Hence, we get the followingéqgn set, illustrated
by the Gantt-chart given in Figure 2.5:

f:O o; = 1 (21)
VO <i<p, owil,=(1- Z;-:o a;)zis1Tem + 1w Tey (2.2)

0 e [send | (1-aq)ziTom

|Compute agwoTy, ‘
2] - ' \
wq Send (1'Q0'(¥1)22Tm
|Compute arwi Ty,

ws Send
|Compute \ @wyTey \

Figure 2.5: Load distribution on a 3-processor daisy chain.

Different scenarios have been considered for the daisyatetivork, such as
the load originating at an interior or exterior node of thaiohand with or without
gathering the computational results back to the originto}.

Load distribution sequence

Tree and bus networks allow for better performance tharnydaiains, because
generating much less communication. Indeed, in a daisy¢tia load intended
to processor’, must travel througtk — 1 links before reaching its destination.
The amount of communication generated by the chain topaklggnce equal to:

2.2. Makespan minimization 25

Cohain = [l—a)zn+(1—ag—a)22+---+(1—ap—- —ag_1)2)Tem

k k
= [Z ;2 + Z a;zo 4+ apze] Tem
i=1 i=2

k k
Tcm Z Z OéiZj

i=1 i=j

In contrast, the amount of communication generated by deslagel tree (or
star) network is equal 6., = T...,, Zle ;%

As opposed to daisy chains, tree-shaped networks open ygo#sébility for
varying the order osequencef the load distribution among the child processors.
This brings about the problem of resource selection, assiblean shown that the
optimality principle leads to optimal schedules only foraefully chosen and
ordered subset of child nodes [37,45].

A recent theorem [37] states that an optimal load distrdsufor the star net-
work topology is obtained by utilizing all the processorstod network, with a
load distribution sequence ordered by increasing link ciipa z; (fast links first).

But if the load distribution sequence is fixed a priori, thehas been shown
that the optimal processing time can be achieved by diginguhe load only
to “fast” processor-link pairs. An exact expression thatidguishes the fast
processor-link pairs from the slow ones has been derivef] g8l areduced
network can be obtained by removing the slow processordaiks. The load is
then distributed among the remaining processors usinggtimality principle.

Installments and sequencing

Under thewith front-endmodel, sending all the load intended to the processors in
a single message leads to poor utilization of the procesbuised, the sequential
load distribution imposes that the last processors to bedeare waiting idle,
while their predecessors in the load distribution sequaneeeceiving their share
of the load. To address this problemulti-roundor multi-installmentalgorithms
have been proposed [42,43,192]. These algorithms dispiadioad in multiple
rounds and thus improve overlap of communication with cotafpon.

The two main questions that must be answered when designittgnound
algorithms are: What should the chunk sizes be at each roAmd?how many
rounds should be used? Most of multi-round algorithms assarfixed num-
ber of rounds. A review of multi-round algorithms can be fdun [37], but
the main observations therein are: (i) dividing the worklaato large chunks

26 Chapter 2. Independent-task scheduling

reduces communication overhead, (ii) sending small chankke beginning of

the execution makes it possible to overlap communicatiah eomputation and

(iif) sending small chunks at the end of the execution leadsetter load balance
among processors. Not surprisingly, observations (i) @nd ¢hat proved use-

ful for scheduling irregular tasks onto homogeneous psmss- hold also within

DLT settings. Based on these three observations, Casandvdaag [191] have

proposed an algorithm that starts by sending larger anedangunks, and ends
by sending smaller and smaller chunks.

Finally, the linear DLT model may lead to flawed solutionsteeré is no pro-
hibitive cost for sending large numbers of very small messd§2, 192]. Indeed,
the linear model implies that an infinite number of rounds rehen infinitesimal
amount of work is sent out at each round gives an optimal tHskasion. Al-
though an affine model - that accounts for network latenceklresses this issue
and renders the model more realistic, it nevertheless ase significantly the
complexity of the problem [37,192].

Network equivalence

A useful concept in DLT is the notion oietwork equivalencehat makes possible
to assimilate some network topologies to a unique procexsenguivalent power
via closed-form expressions or numerical procedures [2dinstance, these net-
work equivalences can be utilized to show that speedup isdexifrom above by
a quantity independent of network size, but dependent eforéttopology [68].
This feature provides a mean to compare the performanceitaf fionfigurations
of processors against infinite ones [25, 160]. The netwotkvaience concept
proves also to be useful for theorem proving [21, 37].

The network equivalence concept has been successfulliedpplseveral net-
work topologies, including daisy chains [25, 160], arbigr&rees [25, 142] or 2-
dimensional meshes [46]. Daisy chains - although not veryraon in practice -
prove useful in this context, as they serve as a good bassifdying more com-
plex architectures such as 3-dimensional [75] and k-dino@asmeshes [134] via
network equivalence transformations.

Also, the network equivalence principle allowed to forngpatlentify the im-
pact of sequential load distribution on the performanceraséibn within DLT net-
works [25]. Although the speedup increases as the numberagiepsors and
installments increase, it nevertheless tends to satarbgocause of the repetitive
overhead in propagating the load into the network. The s@n#@s somewhat sim-
ilar to Amdahl’s law [95] as the communication overhead aided to the load
transfer takes place in a sequential fashion [45]. On thé&raon speedup is scal-
able under the parallel load distribution model, that is whedes can transmit
load simultaneously to all their neighbors [176].

2.3. Throughput maximization 27

Model extensions

The divisible load model has been applied successfully tode wariety of in-

terconnection topologies including daisy chains [1604s sfraphs [37], hyper-
cubes [135], two, three and k-dimensional meshes [48, 7, Ehd arbitrary
trees [142].

The original DLT model has been extended in many ways, incgiinite
memory processor [78], memory hierarchy design of recemipeders [79], net-
work latencies [34, 47], processor latencies for initigtan computation [191],
processor release times [41], unknown network resour@y,[and adaptation to
Grid computing [194, 196].

2.3 Throughput maximization

2.3.1 Performance metric

For applications with very long execution times - typicallgys or weeks -, two
schedules whose durations differ only by a few minutes cadmsidered as
equivalent [32]. In this casanakesparminimization might not be the appro-
priate performance metric. Besides, we saw that makespaimimation greatly
complicates the scheduling problem, which can hinder &lgoic design.

A more meaningful and more practical objective functiothimughput max-
imization that is maximizing the number of tasks executed per time[di 32,
107, 169]. Indeed, deriving asymptotically optimal scHedus very satisfactory
for such lengthy applications.

Lengthy executions of independent task applications catebemposed into
three phases: Atart-upphase, ateady-state phassd awind-downphase [126].
During start-up, the computation begins with the mastetiatato delegate tasks
to the slaves. Then, the steady-state regime sees the rsastting tasks and
receiving results from the slaves in a somewhat regulaidastAnd finally, the
computation terminates with theind-downphase during which the master col-
lects the last results from the slaves. Since the targetcaioins are expected to
run for a very long time, the steady-state phase will doneinla¢ total execution
time, such that thetart-upandwind-downphases can reasonably be neglected.
This is the main argument for focusing on optimizing gteady-stateegime.

During steady-state, the initial integer formulation canrelaxed, and re-
placed by a continuous time model. The goal is to describathgities of the
resources during each time unit: What fraction of time isns@®@mmunicating
(and with who) and what fraction of time is spent computing sdme extent, this
continuous time model is similar to the divisible load mqd#&hce both domains
can be divided into infinitesimally small quantities. Theimdifference being

28 Chapter 2. Independent-task scheduling

that one needs to construct a valid periodic schedule (wdrereteger number of
tasks is treated per time period) based on the resourcetpackscriptions.

2.3.2 Theoretical model

The theoretical models employed in the literature are vienylar to DLT models.
Usually, the execution time of a task on a procesBois modeled by a single
value w;, such that processdp; requiresa;w; time units to computey; tasks.
Similarly, it takesc;; time units to send a task from procesgto processor’;.

It is possible to have;; # c;;, that is bandwidth asymmetry on the network links.
This linear model is the most common model found in the ltteedue to its
simplicity [30, 106, 161, 169].

(b)

Figure 2.6: Graph network (a) and spanning tree (b).

The two most popular topologies used for modeling compleklarge-scale
platforms are undirected graphs and spanning trees (saeeRi¢) [14,104-106,
126, 169]. Both topologies model the network as sequencestofork links or
paths that may be shared by several routes, which is necessatytamecome-
what realistic platform models [52]. The vertices or nodethe platform repre-
sent computing resources capable of computing and/or canwating with their
neighborsat (possibly) different rates.

Although graph networks provide more general platform ngdbaey never-
theless introduce routing decision making, which greatiyiplicates the schedul-
ing problem. In contrast, the hierarchical topology of tregworks has the ad-
vantage to remove routing decision problems [30, 81, 108,1&8]. However, it
has been shown that the problem of extracting the best spgitneie from a given
network is NP-complete, and that even though such a treel dmufound, there
exist networks for which the performance of the optimal isearbitrarily worse
than the whole network performance [14]. Neverthelessdahmusual networks
have been constructed to prove the superiority of graphstmes, and might not
be representative of realistic networks.

2.3. Throughput maximization 29

2.3.3 Scheduling policies

Just like DLT models, steady-state models are governed ackrtain scheduling
policy. Steady-state scheduling policies have also thoegponents:

e Network interfaceVery similar to the DLTload distribution modela pro-
cessor may or may not communicate concurrently to seveigtbers. The
single-portmodel for both incoming and outgoing communication, resri
a processor to open one communication in emission and orexaption
simultaneously [14, 30, 108, 126]. At the other end of thecspen, pro-
cessors can communicate simultaneously with all theirhimags in emis-
sion or reception, which amounts to thrulti-port model, ornetwork-flow
model [169]. In between is a model allowing an unbounded rarmbin-
coming and outgoing communications to happen simultarigoost at a
restricted rate amounting to the hardware limitation of tieéwork inter-
face [104-107].

e Processor operating modé@rocessors can perform three basic operations,
sending messages, receiving messages and performing taimapu The
degree of simultaneity and concurrency between thesenactiepends on
the capacity of the target machine. If all activities can leefgrmed si-
multaneously, then we speak ofwdl-overlapmodel [14, 106, 169]. At the
other end of the spectrum is tesequentiamodel where a machine can per-
form only one activity at a time. Beaumont et al. [29] defineaaiety of
models that cover all the possible combinations of concugrdetween the
processor activities.

e Communication modelln most literature studies, processors are able to
communicate only with their neighbors under #tere and forwardnodel.
Thus, a task can be processed only after receiving all thee akgociated
with that task. More precisely, iF; sends a task t@; at time-steg, then
P; cannot start executing the associated task, or forwardibefore time-
stept + c¢; ;.

Interestingly, Beaumont et al. [29] showed that any opegatnodel, resulting
from a combination of the different overlap and network ifgee characteristics
of a machine can be reduced to thiagle-port, full-overlapmodel. This is pre-
sumably the most powerful argument for the utilization a$tmodel, albeit the
communication serialization that comes with it greatly plicates the scheduling
problem [32]. Another reason for using this model is thahdgad communica-
tion libraries like MPI [94] and PVM [96], usually use seqti@hor binomial tree
based schemes to support collective communications [t8¥%ing hence only on
point-to-point communications.

30 Chapter 2. Independent-task scheduling

2.3.4 Formulation of the steady-state regime

One of the strengths of steady-state scheduling, is theilplitysto derive an
optimal solution using linear programming techniques. ddy this solution can
be used to construct an asymptotically optimal scheduldt ban also be used to
evaluate the performance of decentralized heuristicagtie optimal solution.

Let us formally express the steady-state scheduling pnolole a graph plat-
form G = (V, E,w, ¢), where each processét € V operates under th&ngle-
port, full-overlapmodel. LetP,, denote the master processor, where all the tasks
reside initially. To ease the presentation, assume thaditeeof the task output
data is much smaller than the size of the task input data, thathhe results col-
lection at the master site can be neglected. We aim at detergrihe constraints
induced by our problem during steady-state.

Processor operationsLet (i) denote the index set of the neighbors of pro-
cessorP;. During one time unit let:

e «; be the fraction of time spent b§, computing,

e s;,; be the fraction of time spent by, sending input files to each neighbor
processor’;, j € n(i),

As these variables correspond to the activity during one timt, we have the
following constraint sets:

Vi, 0<a <1 (2.3)

One port model for outgoing communications.Because send operations to
the neighbors of’, are assumed to be sequential, we have the equation:

Vi, Y sy <1 (2.5)
JeEn(i)

One port model for incoming communications.Because receive operations
from the neighbors of’; are assumed to be sequential, we have the equation:

Vi, » sji<1 (2.6)
)

jen(i

The mastel,, should not receive unprocessed tasks from its neighborimg p
cessors, which gives the following equation:

Vjen(m),sjm=0 (2.7)

2.3. Throughput maximization 31

Conservation Laws. During one time unit, for every processét except
the master, the number of tasks received from the nelgr@qnnocessors+)
should be equal to the number of tasks procesge)jp(lus the number of tasks
sent to the neighboring processo%b We hence have the following constraint:

Vi £ m, L T L (2.8)
je;m i W je;(i) G

It is important to underline that equation (2.8) really agplto the steady-
state regime. For this, assume that a start-up phase alteallyplace during
which some tasks have been forwarded to the processorsp lmainmputation has
been performed, such that each processor recéjvedy ;. Zj tasks. At the
end of the start-up phase, each processor disposes of etemlghto enter the
steady-state regime.

All the aforementioned constraints can be gathered intom@ali program,
whose objective is to maximize the throughput.(G) of the platform graph
G.

Maximize N
ntask:(G) - : Eia
eV
Subject to
Vi, 0<ao; <1

VszEn() 0<s;; <1

stgl

jen(i)

Zsﬂgl

jen(i)
Vi en(m), Sjm=0

Vigm, Y H=Tiy > o o
7,1

jen(i) Jen(l

Because we have a linear programming problem in rationalbeusy we can
utilize well known polynomial time algorithms [117,118]abtain rational values
for all the variables .

2.3.5 Schedule reconstruction
Theoretical feasibility

Once we dispose of the descriptions for all the resourceities, it remains to
build up a periodic schedule where an integer number of tasksent and/or ex-

32 Chapter 2. Independent-task scheduling

ecuted. We can obtain a time periddduring which an integer number of tasks
is treated, by taking the least common multiple of all theateimators of the ac-
tivity variables ¢; ands; ;) [32]. Then we need to orchestrate the communication
and computation events such that the constraints impos#gelmetwork interface
and processor operating mode hypotheses are satisfied.

The construction of such a valid schedule is straightfod#ar powerful pro-
cessor operating models and network interface possdslitiFor instance, the
multi-port, full-overlapmodel presents no particular difficulties since all the ac-
tivities can occur concurrently.

On the other hand, th&ngle-port, full-overlapmodel complicates the prob-
lem as one needs to synchronize and order the incoming agdiogtdata trans-
fers with neighboring processors. A procedure based on-edigeing a bipartite
graph allows to extract independent communications -melving disjoint pairs
of senders and receivers - and hence to implement the finedlatd[14, 32].

But schedule reconstruction is difficult (NP-hard) for misdbat do not allow
for overlapping incoming and outgoing communications [3dthough it is easy
to modify the linear program to account for the sequentiarapng mode [14],
constructing the final schedule amounts to edge-color atrampgraph [32].

Finally, the complexity of constructing a valid schedulenas also to a great
extent from the platform topology. Indeed, arbitrary grappologies allow for
task allocations to the same machines via different patlestrigt the topology
such that there is only one path between any pairs of nodésr(esample in tree
networks), and the problem becomes much simpler [14].

Practical value of centralized schedules

Although centralized procedures can provide asymptdyicaitimal algorithms [14],
their contributions are rather theoretical than practidaffectively, their use in
practice is extremely limited due to the large-scale natfrthe system. The
amount of information that needs to be gathered at a cercalibn requires
prohibitive amounts of resources (e.g. time and memory}id&s, the network
topology and system load (in form of resource performance}ygpically chang-
ing throughout the course of the computation. Thus, theie need for light-
weight adaptive techniques that can respond quickly andieftly to changing
conditions.

Autonomouscheduling strategies [106,126,150] are strategies¢hasolely
on information measurable locally. Obviously, autonomsiuategies may make
wrong scheduling decisions because by definition they lackatal knowledge
on the system state. But nevertheless, a good autonomaisgstrshould tend
towards optimal throughput rates when the system stabilize

2.3. Throughput maximization 33

2.3.6 Example

Consider the example taken from [14] depicted in Figure 2t f@ur processors
operating under thsingle-port, full-overlapmodel. Assume further that collect-
ing the computational results is neglected, and that thevor&tlink have equal
bandwidth in both directions.

If we fill the valuesw; andc; ; into the linear program, we obtain the solution
depicted in Figure 2.7 (b). By taking the least common demnatoirs of all the
variables, we obtain a time peridd= 12 during which:

e P, computed 2 tasks, sends tasks toP; and2 tasks toPs;
e P, receives’ tasks fromF,, computes of them and forwardg tasks toP;
e P, receiveslt tasks fromP;, computeg of them and forwardg tasks toPs;

e P;receives tasks fromP, and2 tasks frompPs, and computeg tasks.

, (master) Of() — 1
S0.1 — 7/12
8073 = 1/3
a1 = 1
512 = 1
g — 1
7, So3=1/2
(@) Computing plat- ;33: 1 /
form (b) Linear programming solution
Startup Steady-state Steady-state
P, ‘¢ I Y I S
"R B T] T .
E ——— ——— |
B |C g [1 [|
|R [[[[: [[[[: [[[[[
s e e
p|c i [[; [[|
|(RLTITTTT] (LLITTT] (LLITTT] i
[uEEEEEs ~— FEEEEESES = EEssEEEs | ®
P, ‘ A !
D;C [T I T I I T I T I I I T I I T I Ty

(c) Steady-state schedule (S:Send, C:Compute, R:Receive)>

Figure 2.7: An example with four processors.

34 Chapter 2. Independent-task scheduling

Thus, the platform can proce&s tasks everyl2 time units, which corre-
sponds to th§ value obtained from the linear prografn { =). Note that all the
processors are executing tasks all the time, so the solatbieves a full utiliza-
tion of the computing resources. It is interesting to pourtthat P; receives tasks
along two different paths, directly from the mastey, and indirectly viaP; and
P,. Finally, an optimal steady-state schedule is depictedgnore 2.7 (c).

2.3.7 The bandwidth-centric principle

A simple but yet efficient scheduling principle for heterngeus star networks has
been formulated under the assumption that sending the datignal results back
to the master was negligible [30]. Thndwidth-centrigrinciple states that if
enough bandwidth is available to a parent node, that is¢#ntdeliver tasks faster
than its children can compute them, then all the childrenleakept busy. How-
ever, if bandwidth is limited, then tasks should be allodaialy to the children
which have sufficiently fast communication times regarsileStheir computing
speeds. Nonetheless, the computing speed of the childags plrole for deter-
mining the amount of work to delegate to each child, while ¢cbenmunication
speed of the links interconnecting the parent to its childvettles the sequence
in which the children should be served. The bandwidth-ocetosed-form ex-
pression given in [30] permits to identify which childrerosiid be fully utilized,
which unique child should be partially utilized, and whichildren should re-
main unutilized. This result is somewhat similar to the orespnted in the DLT
context, stating that under the sequential load distrmjtprocessors should be
served in the order of increasing communication times.

Thus, the bandwidth-centric principle provides a simpleeftective way for
scheduling on large-scale tree-shaped platforms in a tlatiged manner. Each
node of the tree makes scheduling decisions based solelyfemiation that is
measurable locally. The bandwidth-centric principle hesrbincorporated within
autonomous scheduling strategies by Kreaseck et al. [h26jiddress the prac-
tical problem of attaining the maximum steady-state ratier afome start-up and
maintaining that rate until wind-down.

2.3.8 Network equivalence

Network equivalence is also useful within steady-statedahling settings. Based
on the bandwidth-centric principle, Beaumont et al. [30j@&ived a bottom-up
method that iteratively determines the steady-state tiirput of a heterogeneous
tree. At each time step of the procedure, the leaves of thateereduced together
with their parent into a single node of equivalent computiogver determined
by the bandwidth-centric principle. The procedure endsmihere remains an

2.4. Contributions 35

unique node having a computing power equivalent to theeerie. These suc-
cessive network equivalence reductions are more efficlerdaf in the number
of processors) than solving a linear programming problemd&termining the
optimal throughput of a tree-shaped platform.

The network equivalence principle is also very conveniehémvconducting
simulations of large-scale systems. Effectively, sinceea tan be reduced to a
single super-node of equivalent processing power, it isnegessary to employ
thousands of nodes to simulate large-scale systems [106].

Within the steady-state scheduling framework, we are onigra of the net-
work equivalence result for tree-shape networks [30]. Boliteg this result to
arbitrary graphs would be a valuated research directiore Work ontopology
aggregation[8, 130] for hierarchical PNNI (Private Network-to-Netvkonter-
face) routing in ATM (Asynchronous Transfer Mode) networkay give some
inspiration on the matter. Topology aggregation is mo&udiy the need for com-
pressing the information to reduce the complexity of toggladvertisement, and
by the need to hide network topology for security reason8][13

2.3.9 Extensions

The steady-state scheduling problem has been devoted & attieation during
the last few years. Many model and application extensiomns baen proposed.
A way to include network latencies in the model is explaime[BR]. Steady-state
scheduling has also been targeting problems like optimittie pipeline of broad-
cast [31], scatter and reduce [131] operations in hetemmenenvironments. Fi-
nally, the case where multiple applications are executedwoently, and hence
competing for CPU and network resources has recently beestigated [28].

2.4 Contributions

This section presents the contributions of this thesistergroblem of schedul-
ing independent task under the MS paradigm onto heteroger@atforms. The
scheduling objective being to maximize the steady-stateutihput of the sys-
tem. We argue for the chosen research directions by showngdo they fit
within previous work.

2.4.1 Location-aware master-slave tasking

In Chapter 1, we advertised the fact that the MS paradigm érsus scalability
issues, as the master cannot manage efficiently an unlimiietber of slaves.
Although scheduling strategies that adjust the numberavesl automatically and

36 Chapter 2. Independent-task scheduling

dynamically throughout the computation allow to elude raasbngestion [86,
102,149], they do not provide a mean for delivering scalgkléormance.

The natural solution to achieve scalable performance stsmsimply in de-
ploying several masters, that is, increasing the numbeaiaf @iccess points. This
technique can be implemented relatively easily on paratiehputers [121], but
the topology of large-scale computing platforms introducemplications such as
resource selection and resource placement problems. &prdast studies on the
MS paradigm within Grid environments (and on DLT as well)uase the use of
a single master whose location is fixed a priori [36, 37, 106,126, 161]. To
the best of our knowledge, the problem of determining howymaasters should
be deployed, and where should these masters be located @ritha order to
maximize the system throughout has not been studied yet.

The most closely related work is presented in the paper ob &hal. [169]
who consider resource selection problems within the stassatg MS scheduling
framework. The aim is to select performance-efficient hémtdoth the master
and slave processes. For that end, an exhaustive searatiasme, consisting
in solvingn network flow problems, where is the number of processors com-
posing the platform. Then the configuration that achievediighest throughput
is selected. Unfortunately, this approach is not applieatthen using several
masters. There are inde(ap) possible master locations sets, wheiis the num-
ber of masters to be located on the platform. For this reasergannot simply
compute the best scheduling strategy for each set, and #hect he best result.
As an example, fon = 50 andp = 10, the resulting number of possibilities is
10,272,278, 170. Clearly, even for moderate valuesroindp, such enumeration
is not realistic, and we need more advanced techniques.

Interestingly, our problem is remarkably similar Eacility Location prob-
lems [67,125]. A classic Facility Location problem is a splatesource alloca-
tion problem in which one or more service facilities have ¢ddicated to serve a
geographically distributed set of population demands atog to some objective
function. If we show correspondence between (1) the fasliand the master
nodes, (2) the service and the computational tasks, ant€3et of demands and
the computing resources of the Grid, then our master-sksidrtg problem can
be expressed as a Facility Location problem.

Consequently, lessons can be drawn from the design of gigwsifor solving
different versions of Facility Location problems. To thesbef our knowledge,
few studies have considered Facility Location theory witGrid computing set-
tings. Maheswaran et al. [140, 141] presbtgtaGrid an architecture that uses a
Fixed Charge Location Problem [67] for resource provisigrfor WAN-enabled
applications. Ko and Rubenstein [122] present a distribyeotocol to place
replicated resources in large-scale networks such thdit eatex is “close” to
some copy of any object. Similarly, Theys et al. [179] notltat thedata staging

2.4. Contributions 37

problem in a distributed heterogeneous networking enwi@mt, presents a high
level of similarity with Facility Location problems.

Our contribution to this problem is as follows. We show tte problem of
finding the most profitable locations for hosting the mastecesses in order to
maximize the platform throughput is NP-hard. Then, we ittice an efficient
heuristic for placing several masters on the platform. Beeaur heuristic takes
into account the platform topology, we terniagtation-aware Thus, our contribu-
tions provide an important step for efficient deploymentsaje MS applications
on computational Grids. This work has been published in 16],and model
extensions are presented in [12].

2.4.2 Distributed schedule construction

Once the decision about the platform location(s) for theterés) has been made,
the attention can be devoted to the design of efficient Bistied algorithms. Re-
cently, Hong et al. [105-107] proposed an elegant algoritbased on decen-
tralized versions of flow algorithms. This algorithm, howewvorks under the
assumption of powerful network interfaces that allow fafulti-portmodel, al-
beit the amount of incoming and outgoing data transfersngdid by the network
interface of the machine. Under thaulti-port model - bounded or not - there is
no need to orchestrate the communications since they cam stnultaneously.
Things get complicated under tlsengle-portmodel, where only one incoming
and one outgoing communications can happen concurrently.

In [126], the distributed orchestration of the communizasi is governed un-
der thedemand-driverparadigm, where nodes are regularly requesting tasks to
their parents. This mechanism aims at dealing with resopectrmance fluc-
tuations by allowing any node to participate to the compaoitatThe scheduling
strategy is fully autonomous and makes use of the bandveieltitvic principle for
prioritizing the children requesting for tasks. Althoudtetwork of Kreaseck et
al. [126] is a first step towards a distributed implementatid the bandwidth-
centric principle, their autonomous protocol might taken+optimal decisions,
generating hence long start-up phases as well as unnecémsggr numbers of
tasks buffered at node locations.

Our contribution to this problem is as follows. We presengativeight dis-
tributed communication procedure which strictly followsetbandwidth-centric
principle. Then we show how each node can build up its lochéduale au-
tonomously in order to attain the maximum steady-stateutinput of the tree.
Our procedure is an efficient, practical and scalable implaation of the bandwidth-
centric principle. This work has been published in [13].

38 Chapter 2. Independent-task scheduling

2.4.3 Collection-aware master-slave tasking

Most studies on independent-task scheduling make the gggumthat returning
the results to the master node can be neglected [14,23,98,806,107,109,126].
This assumption is acceptable when the output data are mmalies than the
input data (e.g. the answer of the computation is of the tyfes ‘or No”). This
simplification is very convenient as it considerably reduttee complexity of the
scheduling problem, but fails to represent a very naturdliarportant practical
aspect of many master-slave applications.

Similarly, one finds relatively few studies that take inte@ant the collection
of the results by the master within the DLT literature [2,21,48, 161]. When
return messages are taken into account within the DLT fraonlewwo permu-
tations must then be determined (one for tasks distribuaioth one for results
collection) [21, 37, 48]. Barlas [21] concentrates on twodelosimplifications,
that correspond tquery processingwhen data transfers costs are fixed and inde-
pendent of load size - anthage processingwhen the communication costs are
linear in load size. In both cases, the optimal sequence s$ages is given, and a
closed-form solution to the DLT problem is derived. Roseghat al. [2] address
the DLT model with return messages, and restrict the framie¥abus networks.
The theoretical results are stated under an affine comntionceost model and
under a linear computation cost model. Additionally, thégva worker proces-
sors to be slowed down during the computation by incomingrex load.

Our contributions to this problem are as follows. We extemal gtate-of-art
on the master-slave tasking problem by incorporating theltg collection in the
problem formulation. As a first step in this research dimattiwe restrict our-
selves to tree-shaped networks, extending the works pezsém [29, 30, 126].
We show how to obtain and build an asymptotically optimalesitiie using a
linear program. Further, we extend the bandwidth-centricciple to account
for results collection. This theoretical knowledge is treenbedded within au-
tonomous heuristics that can respond to system load fluetisatThis work has
been published in [18], and is presented in greater detwi[49].

Chapter 3

Stencil code applications

This chapter starts with an introduction to stencil compaites and presents the
main optimization techniques for improving sequentialfpenance of stencil

codes. Thereafter, we proceed with the main parallelinagchnique of stencil

codes, namely domain decomposition (DD). We emphasizestigons that make
DD not adapted to heterogeneous and dynamic computingsyséand conclude
with a summary of our contributions.

3.1 Introduction to stencil computations

Stencil codes form the basis for a wide range of scientifidiegions: Iterative

solvers, Monte Carlo simulations and image filtering aggtlians all rely on some
form of stencil computation. These programs are cadithcil codesecause
each element in a multidimensional array is updated withrdmrions from a

subset of its neighbors (see Figure 3.1). For each iteratierstencil kernel is ap-
plied to all the array elements - usually the boundariesve@especial treatment.
Stencil codes are among the most time-consuming routingeafforementioned
applications, and therefore it makes sense to aspire fionatie performance.

There are two types dbcality that can be exploited to improve the perfor-
mance of stencil codes [185]. Theresigatiallocality when accessing neighboring
points (in address space), and thereeimporallocality when array elements are
reused several times before being evicted from cache. Rpggkaking, spatial
locality deals with the data layout, i.e. how the multidiraiemal array is mapped
into address space, while temporal locality deals with tita dccess patterns.

39

40 Chapter 3. Stencil code applications

VIV]VY

Figure 3.1: Access pattern for a 4-point stencil applied @Darray.

3.2 Sequential optimizations

Stencil codes exhibit a particularly poor performance wehkpect to memory
caches. This poor performance is imputed to the fact that ea@y element
is accessed a small, constant number of times per iteraggum(to the number
of points in the stencil kernel). For large problem sizesayaelements must be
brought into cache several times per iteration, degradiagdtically the overall
performance. Reorganizing these computations in ordeffitdemtly utilize the
memory hierarchy of modern computer architectures has teesubject of a
wealth of research.

Cache blockingpr tiling is the standard transformation technique which im-
proves locality by moving reuses to the same data closema [8, 65, 123, 124,
128, 132,133, 136, 148, 152, 157,158, 173, 177, 183, 186, 1%iing reduces
the working sets by grouping the updates into rectangulecksl that are pro-
cessed one after another, in order to reduce capacity midgest research on
tiling has focused on single-level cache and has been apjaliperfectly-nested
loops [65,128,177]. Multi-level memory hierarchy has beensidered by Ko-
dukula et al. [123] and by Yi et al. [193] that propose a coepiechnique for
transforming loop nests into recursive form.

Li and Song [173] proposed tiling schemes that interleavéipie iterations
so that reuse can be exploited across multiple iteratiorthetime-step loop.
Their technique is a combination of loop skewing and tiliagd improves tem-
poral data reuse in secondary cache. They also provide aileorin@mework that
automates such transformations [136]. Wonnacott [189p@ses a similar ap-
proach calledime skewinghat combines blocking in both data and time domains.
Jin et al. [112] push this idea further by presentiagursive prismatic time skew-
ing, which partitions the iteration space of loop nests intmsaeprisms with both
spatial and temporal dimensions. In the same genre, Rasitetl Robert [157]

3.3. Parallel implementation issues 41

provide results for minimizing the number of accessed dataughout the com-
putation of a tile (called theumulative footprinbf the tile) by utilizing paral-
lelepiped tiles. Additional optimization techniques agparted in Paper 7.

3.3 Parallel implementation issues

3.3.1 Domain decomposition

Usually, stencil applications are parallelized with thendan decomposition (DD)

paradigm. Domain decomposition consists in distributimg ¢computational do-

main of the problem across the processors (see Figure 312¢n,Tduring the

execution, computation and communication phases aleraatneighboring pro-
cessors (in the logical decomposition) need to periodieithange data located
on the boundaries of their local domains.

2 P, /2,
BNy T
P, P, P-
5 a3
B Py B

Figure 3.2:11 x 11 2D array decomposed acrasprocessors.

Domain decomposition methods have been studied extepddeslause of
their utility in a wide range of application areas such agnaistry, solid and fluid
mechanics, or weather forecast simulations. Domain deositipn methods are
efficient only when the computational load is well balancetag the processors.
Effectively, the processors being tightly coupled by thenomunication phases,
the execution proceeds at the pace of the slowest proc&stromogeneous and
stable systems, DD methods may be the simplest and yet thieeffioent way

42 Chapter 3. Stencil code applications

of parallelizing stencil code applications. In heterogareeand dynamic environ-
ments on the other hand, things get complicated since tlienest be balanced
among the processors proportionally to their computatigpeeds throughout the
execution.

3.3.2 Heterogeneous load distributions

Several studies have been conducted on the problem otdistryy computations
proportionally to processor speeds [26, 27,33, 113, 119), 18 most cases, the
problem is reduced to the problem of partitioning some nratiteal objects,
such as matrices, sets or graphs [73]. The main difficultiylessin the combina-
torial nature of the problem which typically turns out to bB4domplete.

Although promising, these efforts have solely focused anhbterogeneous
aspect of the underlying platform but not on its dynamic aspéience, even
though efficient - i.e. polynomial - heuristics can be dafivihe dynamic nature
of the underlying platform makes static strategies not \seited over time. In
dynamic environments, the processor speeds and netwatiéetamm will fluctuate
during the execution requiring online load redistributroachanisms.

Hence, the dynamic aspect of the problem is somewhat molerbeng than
the heterogeneous one, as it introduces the problem ofeoldad redistribution,
that is, when and how should the load be redistributed tooredpo performance
resource fluctuations. Besides, how can one measure thigyoofah load dis-
tribution? Beaumont et. al. [33] consider the matrix muidigtion problem in
heterogeneous and dynamic environments, and propose igtritade the load
periodically. Still, one must find a good load redistribuatibpequency, because a
too conservative approach would not result in significargromements, whereas
a too aggressive approach would incur too much overhead.

An important point stressed by Beaumont et. al. is the négassminimize
the amount of communication when redistributing the loate amount and loca-
tion of the data should be taken into account in order to kbepdlative position
of the processors, that is, to maintain the number and ityeotithe neighbors
of each processor. Otherwise the cost of the redistributiagy be prohibitive.
Similarly Mahanti and Eager [139] conclude that data migratosts should be
minimized for efficient redistribution, and propose redizition policies that try
to leave the relative position of the nodes unaltered. lir therk, they consider
data redistribution following addition/removal of prosegsy nodes. They find that
allocating data to a new node from the center of the compmurtatidomain reduces
data migration costs compared to allocation from the edg#addition in groups
is beneficial compared to repeated single additions.

Although these studies on DD methods within heterogeneouscaments
present interesting results that give some insights onrtit@gm complexity, there

3.4. Contributions 43

are still major issues that have not been addressed. Fiestifferent strategies
typically rely on a centralized algorithm to (re)distribuhe work among the het-
erogeneous processors. This clearly poses the questidre afictlability of the

approach when online redistribution cannot be ignored. l@nother hand, the
problem of online load redistribution frequency is diffictd address without dis-
posing of some form of centralized information about thefptan state. Finally,

and maybe more importantly, fault tolerance mechanismsiidteneeded either
within homogeneous or heterogeneous environments.

3.3.3 Fault tolerance

Currently, the most common technique for handling fauletahce within DD
methods is checkpoint/restart. That is, checkpoints aredsto disk periodically,
and if a processor fails, then the computation halts andmssrom the last con-
sistent checkpoint. For applications that have very loregakion times on a very
large number of processors, failures are more likely to leerthe rather than
the exception. For those applications, the checkpoinéretechnique could take
longer than the time to the next failure. There is therefoneed to survive fail-
ures without relying on global recovery operations. In otherds, if a processor
fails, it is desirable that the other processors are ablenitimue the computation,
and do not have to wait for the faulty processor to recoveis tanstitutes (we
believe) the main drawback of DD methods, which does nowailto an efficient
way to handle resource failures.

Engelmann and Geist [85] presardturally fault tolerantalgorithms that are
scalable and resilient to failures. Such algorithms museliae ability to tol-
erate failures through the mathematical properties of tbélpm by continuing
the computation without the failed processors. They show bbaotic relax-

ation and meshlessnethods can be used to derive naturally fault tolerant finite

difference methods. However, they advertise that mulfglares of neighboring
processors could render the final solution quite incoridareover, not all scien-
tific problems have the natural fault tolerance propertyicihurges the need for
alternative fault tolerant mechanisms.

3.4 Contributions

This section presents our contributions to the problem gfl@menting stencil
code applications on modern computing systems. Our goal iisvestigate the
performance of the MS paradigm when implementing sten@liegtions. In-
stead of working with trivial applications such as Mandethractals for instance,
we decided to work with stencil applications used by redeancat NTNU. In

44 Chapter 3. Stencil code applications

this way, we could obtain real life applications for our espents, and provide
parallel implementations that might be useful for the redears working on the
applications.

3.4.1 Image filtering application

The first attempt for applying the MS paradigm to stencil cagllications was on
an image filtering application, known asatched filterind58]. This application
is used within medical imaging, in order to detect blood ees$n Computer
Tomography (CT) images. A CT image is a cross-section of timedn body. By
detecting blood vessels in multiple CT images that are piledone is able to
construct a 3D representation of the blood vessel netwssdes Figure 3.3).

Ole Christian Eidheim - a PhD student of the Department of @ater and
Information Science at NTNU - has implemented a sequentsthed filtering
application. The input of the application is a pile of grayale images that are
filtered through an image correlation step. The correlakiemel is a Gaussian
hill, which is rotated in all directions and scaled to seVsrzes. The sequential
implementation is rather slow, and a parallel implemeatatvould allow to use
higher-resolution CT images, to treat more pictures, ang th obtain higher-
quality 3D representations.

The matched filtering application is, in principle, quitesgdo parallelize.
The input images can be divided into blocks that can be psecem parallel, in-
dependently of each other. When all the parts of the image begn filtered, the
application requires the global pixel minimum and maximumgrder to normal-
ize the pixel values within the rand@, 255]. The processors must hence perform
two Allreduceoperations, before starting to normalize their data antevinem
to disk. Therefore, it is very important that all the proagsginish computing at
the same time, in order to not wait idle for the collective coamications.

Thus, we are facing a scheduling problem with makespan nwation for
objective. We designed a new MS scheduling strategy, thad$aut batches
of tasks of decreasing sizes, and compared it to other gieatsuggested in the
literature. The parallel implementation involves padall® in order to circum-
vent the possible bottleneck incurred by the master, anti-thuéading to prevent
possible processor idleness. This work has been publisHéé3], and was con-
ducted during the Master thesis of Einar M. R. Rosenvingdeuthe supervision
of Anne C. Elster and myself.

3.4.2 Lattice gauge theories

This work relates the main issues associated with the gpdfniMarkov-chain
based Monte Carlo (MC) simulations from shared-memoryitgcture systems

3.4. Contributions 45

Figure 3.3: 3D reconstructions of blood vessel networks btiaan liver after
filtering a pile of 2D CT images. Reconstructions performgddde Christian
Eidheim.

to distributed-memory architecture clusters. The appboacalled London, is a
leading-edge application developed by physicists at NTdIsttidy the possibil-
ity of a new state of matter for hydrogen [9]. Liquid metaltigdrogen may be
a superconductor or superfluid that features dissipassradectrical currents or

46 Chapter 3. Stencil code applications

mass flow. The London application is one of the most time comsg of all the
high performance applications developed at NTNU.

Like for many high performance computing legacy codes, tharohallenge
of the port onto distributed memory systems is to depart fileershared-memory
programming style. In our case, the code had about 5000viie4.00 subroutine
calls involving sending and receiving of data as well as @@:calls to SHMEM
barrier routines. In addition, it relied heavily on sharegeimory concepts through
about 50 SHMEMPUT and SHMEMGET calls.

A previous port onto clusters performed by Lund [137] reedathat one
needs to significantly change the computing paradigm inrdcdabtain a success-
ful port. Indeed, Lund replaced all the SHMEM calls by ongesi MPI subrou-
tines, and obtained an implementation that worked in theesaay as the original
shared-memory implementation, i.e. with a lot of small ragss. As current im-
plementations of MPI-2 calls such as MPUT and MPIGET continue to have
serious performance issues on distributed memory systaethgelatively slow
interconnect, this approach resulted in a huge communbitatrerhead.

The presence of these numerous small messages is due ttethrata Metropo-

lis algorithm [145] that is employed within the applicatideffectively, Metropo-

lis MC dynamics come with thdetailed balance conditiothat prevents the si-
multaneous update of adjacent sites (according to thecgigin stencil). On
shared-memory machines, synchronization is cheap, andamafford to use a
large number of small messages. However, the detailed d&l@ondition poses
a serious challenge for the parallelization in distributezginory environments, as
communication becomes very expensive compared to conputatience, one
must find mechanisms that ensure at all times that procedsonst update si-
multaneously adjacent sites, with a minimum communicadverhead.

Since our aim was to evaluate and compare the performanice M$ paradigm
against a more traditional DD method, we needed to providertyplementations
of the London application: One with the MS paradigm, and oased on DD
methods. When looking in the literature, we did not find anyséactory paral-
lel implementation that efficiently handled the detailetebae condition. Most
studies [97,111,138,165] rely on DD methods that genemteral data transfers
between neighboring processors per iteration, albeit@aional wisdom argues
that data should be grouped for communication [97, 156].

Ouir first contribution consists in new parallel algorithnaséd on DD meth-
ods that are scalable, and that minimize the amount of messxghanged through-
out the execution. This work has been published in [17]. Tienimplemented
a MS version of the code, and compared the two implementatibims work has
been published in [15].

3.4. Contributions 47

3.4.3 Stencil code optimization

Throughout the work done with the London application, weehfanst focused on
parallel performance, but became interested in sequesiiahization as well.
The data dependencies implied by the detailed balance ttmmdirought the
early London developers to use the well-known Red-Blaclckbsoard order-
ing scheme. The Red-Black checkerboard algorithm accedistee “red” array
elements (where sum of coordinates is even) to computevé&u¢he “black” ar-
ray elements (where sum of coordinates is odd), then it deesther way around
using black array elements to update red array elements I594183]. This
memory access pattern reduces the number of data depeesienbich results
in greater parallelism exposed to the compiler. HoweverRbd-Black ordering
scheme harms the performance for sufficiently large prolsiess, because of its
non-contiguous data access pattern.

The final piece of work presented in this thesis contributethé sequential
optimization of stencil code computations by presentimfptgques that improve
spatial and temporal localities of the data. In particulee, study the use of
skewed data layouts, that turn out to be more cache-friethdly traditional row-
major or column-major storage orders. We provide theaaktiad experimental
results that validate the superiority of skewed data-léydor two simple, but
fundamental stencil kernels. Further, we show how to autertiee detection of
situations where the use of skewed data layouts are bemeficia

48

Chapter 3. Stencil code applications

Chapter 4

Conclusion

This thesis has emphasized the problems that heterogewaitsbility and un-
reliability exhibited by high performance computing systeintroduce at the
scheduling level. Even simple problems such as indepertdsktscheduling re-
quire the deployment of sophisticated algorithms. In addjtefficiently man-
aging data movements remains an omnipresent challengethe dévels of the
computing system. This thesis provides algorithmic andkduhng techniques
that help addressing some of these challenges.

4.1 Contributions

4.1.1 Master-slave tasking

We advocate in Paper 1 the necessity to deploy several masi@chieve scalable
performance. We demonstrated that the problem of findingrbst profitable
locations for hosting the masters is NP-hard, but nonetkgdeoposed an effec-
tive location-aware heuristic. We also highlighted thesty connections that this
problem has with Facility Location problems, and providedadel for establish-
ing and operating the master locations.

We presented in Paper 2 a distributed method, which is anegitjgpractical
and scalable implementation of the bandwidth-centricqipile [30]. We pro-
posed a local scheduling strategy that reduces the amotagksf buffered during
steady-state, and thus reduces the length of the startuwiadedown phases.

We then considered in Paper 3 computing systems where thengoioation
links exhibit bandwidth asymmetry. We derived theoretresults that extend the
bandwidth-centric principle from one to two dimensions, iwhen the cost of
returning the computational results to the master is retes! in the problem
formulation. We then conceived a rendezvous protocol fabéng decentralized

49

50 Chapter 4. Conclusion

schedules. We also provided a task-flow control mechanisat,automatically
regulates the flows of tasks and results that circulate irsyiséem according to
system load fluctuations.

We showed how to eliminate the startup phase descriptiannexjto enter the
steady-state regime (see Papers 2 and 3). The idea is simpigike the nodes
operate as if they were already in steady-state, with the dfdbake data transfers
if necessary. We applied this technique successfully te-steaped platforms,
and conjecture that it can be applied to arbitrary graphsedk Whis technique
contributes to ease the implementation and deployment oapffications.

Finally, in Paper 4, we presented a novel MS schedulingegjyaor minimiz-
ing the application makespan, that is well suited for hegfen@ous and dynamic
computing systems.

4.1.2 Stencil code applications

We considered in Papers 5 and 6 the parallelization of a LG@ahon a SMP
cluster. We first designed parallel algorithms based on dodecomposition that
are scalable, that reduce the amount of communication messathe minimum,
and that are adapted for the peculiarity of LGT models. Them nvestigated
the suitability of another parallelization method by comipathese parallel algo-
rithms to a MS implementation.

As we gained insight into stencil computations, we focusedexjuential op-
timization, and presented new transformation techniquiesnided to better utilize
the memory hierarchy of modern computers. In Paper 7, we dstrage - and
guantify - how spatial locality can be improved by using skevdata layouts as
opposed to the traditional row-major and column-majoragerorders. The other
main contribution is the stencil decomposition transfdaiorathat improves tem-
poral locality. Overall, we conclude that efficient dataess patterns alone are
not sufficient, and one must change the data layout in orderaich these data
access pattern in order to improve performance.

Finally, we helped th€orrelated Condensed Matter Systegmeup and the
Algorithm and Visualization Grougroup at NTNU in their work by providing
efficient parallel implementations of two forefront stdrutide applications.

4.2. Future work 51

4.1.3 Summary

The initial research questions stated in this thesis werédltowing:

Q-1 How should the MS paradigm be enhanced to improve its scalaliiy?

Q-2 Can MS scheduling techniques be applied to stencil code apghtions?

Our answer to question Q-1 can be summarized as follows.elfriaster is
the bottleneck of the application, then deploying severasters is the only so-
lution to improve the scalability. However, in heterogeme@nvironments, the
different masters should be placed at strategic locationisd system in order to
efficiently exploit the computing resources. Further, wevetd that the schedul-
ing problem becomes much more complicated when the reslléestion is taken
into consideration, as it becomes necessary to synchratiizee nodes of the
system to construct an asymptotically optimal schedule. défmonstrated that
synchronizing the entire system is rather impractical aadiequate for dynamic
environments. Instead, distributed autonomous strategfia better handle and
respond to system load fluctuations. Thus, even though alevexsters are de-
ployed, efficient distributed scheduling strategies atergeded to deal with the
scale, heterogeneity and variability of the system.

Our answer to question Q-2 can be summarized as followscibterde appli-
cations implemented under the MS paradigm can achievelsliyl# the master
is used to control the execution (i.e. tells who computest)yivastead of being
a data access point. Otherwise, scalability can only beeaetiby deploying
multiple masters.

4.2 Future work

The theoretical work on independent task scheduling witleterogeneous envi-
ronments presented in this thesis has been possible onBsihaining the frame-
work. We focused essentially on tree-shaped platformstlyntwsavoid routing
decision making. An obvious direction for future work wolne to consider arbi-
trary graphs. At first sight, the scheduling problem becomegse complex with
graph-shaped platforms. We believe that task-flow contretimanisms such as
the one presented in this study is the way to go for concefhigent distributed
scheduling strategies.

On the practical side, a direction for future work would beésign the hybrid
approach presented in Paper 6, where the MS and DD paradigoid fae used in
concert. Each master would manage a group of slaves while Bthads would
be utilized to assign parts of the computational domain &different masters.

52 Chapter 4. Conclusion

This idea is close in spirit to the hierarchical master-sl@chnique, but we are
not aware of its application to stencil code applicationsictShybrid approach
combines the benefits of the two paradigms: The MS flexibditg robustness
to the DD scalability. Adaptation to system load fluctuasiamould consist in

balancing the load - or the slaves - between the masters.tigmgth of this hybrid

approach lies in its flexibility: Slaves can be affiliated toyanaster whenever
needed, and can even act as masters on demand.

Bibliography

[1]
2]

[3]

[4]

[5]

[6]

[7]

URL: http://www.top500.0rg.

M. Adler, Y. Gong, and A. L. Rosenberg. Optimal SharingRdgs of
Tasks in Heterogeneous Clusters. 1i5th ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA'Q®ages 1-10. ACM Press, 2003.

N. Ahmed, N. Mateev, and K. Pingali. Tiling Imperfectlyested Loop
Nests. InSupercomputing '00: Proceedings of the 2000 ACM/IEEE con-
ference on Supercomputing (CDRQNdage 31, Washington, DC, USA,
2000. IEEE Computer Society.

K. Aida, W. Natsume, and Y. Futakata. Distributed Conipgtvith Hierar-
chical Master-worker Paradigm for Parallel Branch and BbAlgorithm.
In 3rd International Symposium on Cluster Computing and thiel Grage
156, 2003.

A. Alexandrov, M. F. lonescu, K. E. Schauser, and C. Stlasi. LogGP:
Incorporating Long Messages into the LogP Model — One stegeclto-
wards a realistic model for parallel computationSIBAA '95: Proceedings
of the seventh annual ACM symposium on Parallel algorithrs @rchi-
tectures pages 95-105, New York, NY, USA, 1995. ACM Press.

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D.riener.
Seti@home: An Experiment in Public-Resource Computi@pmmuni-
cations of the ACM45(11):56-61, 2002.

G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. n@@osi,
P. Crescenzi, and V. Kan@omplexity and Approximation: Combinatorial
Optimization Problems and Their Approximability Propegi Springer-
Verlag New York, Inc., 1999.

53

54

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

B. Awerbuch and Y. Shavitt. Topology Aggregation for Bited Graphs.
IEEE/ACM Trans. Netw9(1):82—-90, 2001.

E. Babaev, A. Sudbg, and N. W. Ashcroft. A Supercondutd@uperfluid
Phase Transition in Liquid Metallic HydrogeNature 431:666, 2004.

S. B. Baden and S. J. Fink. Communication overlap in rtigdt parallel
algorithms. InSupercomputing '98: Proceedings of the 1998 ACM/IEEE
conference on Supercomputing (CDRQMages 1-20, Washington, DC,
USA, 1998. IEEE Computer Society.

C. Banino. Optimizing Locationing of Multiple Masteliar Master-Worker
Grid Applications. INPARA'04: International Conference on Applied Par-
allel Computing LNCS 2367, pages 1041-1050. Springer Verlag, 2004.

C. Banino. Optimizing Locationning of Multiple Masteifor Master-
Worker Grid Applications: A Thorough Study. Technical Rep@9/04,
Dept. of Computer and Info. Science, Norwegian Universitysoience
and Technology, September 2004. URL: http://www.idi.ntrm~banino.

C. Banino. A Distributed Procedure for Bandwidth-GanScheduling of
Independent-Task Applications. I9th IEEE International Parallel and
Distributed Processing Symposium, IPDPS’20p&ges 48a — 48a, 04-08
April 2005.

C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Ladrand Y. Robert.
Scheduling Strategies for Master-Slave Tasking on He@regus Proces-
sor Platforms. IEEE Transactions on Parallel and Distributed Systems
15(4):319-330, 2004.

C. Banino-Rokkones. Domain Decomposition vs. MaSiave in Appar-
ently Homogeneous Systems. HCW '07: Proceedings of the 16th Het-
erogeneity in Computing Workshgpage To appear, Long Beach, Califor-
nia, USA, 2007. IEEE Computer Society.

C. Banino-Rokkones. Location-Aware Master-SlaveKiag on the Grid.
Journal of Future Generation Computing Syste@®07. To appeatr.

C. Banino-Rokkones, J. Amundsen, and E. Smgrgrav. |IBdzang Lat-

tice Gauge Theory Models on Commodity Clusters.2006 IEEE Inter-
national Conference on Cluster Computing (CLUSTER 200&)teSnber
25-28 2006, Barcelona, SpaileEE Computer Society, 2006.

55

[18] C. Banino-Rokkones, O. Beaumont, and L. Natvig. MaStewe Task-
ing on Asymmetric Networks. liEuro-Par, Lecture Notes in Computer
Science, pages 167-176. Springer, 2006.

[19] C. Banino-Rokkones, O. Beaumont, and L. Natvig. Master
Slave Tasking on Asymmetric Tree-Shaped Networks. Techni-
cal Report 02/06, Dept. of Computer and Info. Science, Nerwe
gian University of Science and Technology, September 2006RL.:
http://www.idi.ntnu.not-banino/research/research.html.

[20] A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wyckoff. Claite: Meta-
computing on the web. IfProc. of the 9th Int'l Conf. on Parallel and
Distributed Computing Systems (PDCS-98)96.

[21] G. D. Barlas. Collection-Aware Optimum Sequencing gfetations and
Closed-Form Solutions for the Distribution of a Divisibl®@ad on Arbi-
trary Processor TreedEEE Trans. Parallel Distrib. Syst9(5):429-441,
1998.

[22] J. Basney, R. Raman, and M. Livny. High Throughput MoGelo. In
Proceedings of the Ninth SIAM Conference on Parallel Prsicesfor Sci-
entific ComputingSan Antonio, TX, March 1999.

[23] H. Bast. On Scheduling Parallel Tasks at Twiligfitheory of Computing
Systems33(5):489-563, November 2000.

[24] S. Bataineh, T.-Y. Hsiung, and T. G. Robertazzi. Closetn Solutions for
Bus and Tree Networks of Processors Load Sharing a DivisidtelEEE
Trans. Comput.43(10):1184-1196, 1994.

[25] S.Bataineh and T. Robertazzi. Performance Limits focBssor Networks
with Divisible Jobs.IEEE Transactions on Aerospace and Electronic Sys-
tems 33:1189-1198, Octobre 1997.

[26] O. Beaumont, V. Boudet, and A. Petitet. A Proposal for etéfoge-
neous Cluster ScaLAPACK (Dense Linear SolvelSEE Trans. Comput.
50(10):1052-1070, 2001.

[27] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert. Makultipli-
cation on Heterogeneous PlatformEEEE Trans. Parallel Distrib. Syst.
12(10):1033-1051, 2001.

56

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Matcand Y. Robert.
Centralized Versus Distributed Schedulers for MultiplegRd-Task Ap-
plications. InIPDPS’2006: Proceedings of the 20th International Sym-
posium on Parallel and Distributed ProcessingEE Computer Society
Press, 2006.

O. Beaumont, L. Carter, J. Ferrante, A. Legrand, andotdt. Bandwidth-
Centric Allocation of Independent Tasks on HeterogenedasfdPms.
Technical Report RR-2001-25, LIP, ENS Lyon, France, Juri2QRL:
http://www.ens-lyoniyrobert.

O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and WbdRt.
Bandwidth-Centric Allocation of Independent Tasks on lageneous
Platforms. Ininternational Parallel and Distributed Processing Sympo-
sium IPDPS’2002pages 67—72. IEEE Computer Society Press, 2002.

O. Beaumont and A. Legrand. Pipelining Broadcasts otetdgeneous
Platforms.|EEE Trans. Parallel Distrib. Syst16(4):300-313, 2005. Stu-
dent Member-Loris Marchal and Senior Member-Yves Robert.

O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. 8teState
Scheduling on Heterogeneous Clusters: Why and How8tiHnNorkshop
on Advances in Parallel and Distributed Computational Misgd&PDCM
2004 page 171a (8 pages). IEEE Computer Society Press, 2004.

O. Beaumont, A. Legrand, F. Rastello, and Y. Robert. $2elninear Alge-
bra Kernels on Heterogeneous Platforms: Redistributiends. Parallel
Comput, 28(2):155-185, 2002.

O. Beaumont, A. Legrand, and Y. Robert. Optimal Algloniis for Schedul-
ing Divisible Workloads on Heterogeneous SystemsIPIRPS '03: Pro-
ceedings of the 17th International Symposium on Parallel Brstributed
Processingpage 98.2, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

O. Beaumont, A. Legrand, and Y. Robert. Scheduling ibte Workloads
on Heterogeneous platformBarallel Computing29:1121-1152, Septem-
ber 2003.

O. Beaumont, A. Legrand, and Y. Robert. The Master-&Raradigm with
Heterogeneous ProcessalfSEE Transactions on Parallel and Distributed
Systemsl14:897-908, 2003.

57

[37] O. Beaumont, A. Legrand, and Y. Yang. Scheduling DhlisiLoads on
Star and Tree Networks: Results and Open Problé&tsE Trans. Parallel
Distrib. Syst, 16(3):207-218, 2005. Member-Henri Casanova and Senior
Member-Yves Robert.

[38] O. Beaumont, L. Marchal, and Y. Robert. Scheduling Bilvie Loads with
Return Messages on Heterogeneous Master-Worker Platformbnter-
national Conference on High Performance Computing HIPOZALNCS,
pages 123-132. Springer Verlag, 2005.

[39] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, MaeFmnan,
S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, Sallem
N. Spring, A. Su, and D. Zagorodnov. Adaptive Computing om @rid
Using AppLeS.IEEE Trans. Parallel Distrib. Syst14(4):369-382, 2003.

[40] D. Bertsimas and D. Gamarnik. Asymptotically optimbgaithm for job
shop scheduling and packet routidgurnal of Algorithms33(2):296-318,
1999.

[41] V. Bharadwaj and G. Barlas. Scheduling Divisible Loadth Processor
Release Times and Finite Size Buffer Capacity Constramt8us Net-
works. Cluster Computing6(1):63—74, 2003.

[42] V. Bharadwaj, D. Ghose, and V. Mani. Multi-Installmdmad Distribu-
tion in Tree Networks with DelayslEEE Transactions on Aerospace and
Electron. Systs31:555-567, 1995.

[43] V. Bharadwaj, D. Ghose, V. Mani, and T. Robertaz&cheduling Divisible
Loads in Parallel and Distributed System&EE Computer Society Press,
Aug 1996.

[44] V. Bharadwaj, D. Ghose, V. Mani, and T. RobertazZzcheduling Divisible
Loads in Parallel and Distributed System&EE Computer Society Press,
1996.

[45] V. Bharadwaj, D. Ghose, and T. G. Robertazzi. Divisibtead Theory:
A New Paradigm for Load Scheduling in Distributed Systen@uster
Computing 6(1):7-17, 2003.

[46] J. Blazewicz and M. Drozdowski. The Performance Linofsa Two-
dimensional Network of Load Sharing Processofsundations of Com-
puting and Decision Sciencge®l:3-15, 1996.

58

[47] J. Blazewicz and M. Drozdowski. Distributed Procegsuf Divisible Jobs
with Communication Startup CostBiscrete Appl. Math.76(1-3):21-41,
1997.

[48] J. Blazewicz, M. Drozdowski, F. Guinand, and D. TrysttaScheduling a
Divisible Task in a Two-dimensional Toroidal Mesh.Pnoceedings of the
third international conference on Graphs and optimizatipages 35-50,
Amsterdam, The Netherlands, 1999. Elsevier Science PgisB. V.

[49] J. Blazewicz, M. Drozdowski, and M. Markiewicz. Divide Task Schedul-
ing — Concept and VerificationParallel Computing 25:87-98, January
1999.

[50] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. dktdble
Programming Interface for Performance Evaluation on ModRFrpCessors.
Int. J. High Perform. Comput. Appl14(3):189-204, 2000.

[51] H. Casanova. SimGrid: A Toolkit for the Simulation of plpcation
Scheduling. IrProceedings of the 1st International Symposium on Cluster
Computing and the Grigpage 430. IEEE Computer Society, 2001.

[52] H. Casanova. Modeling Large-Scale Platforms for thelfsis and the
Simulation of Scheduling Strategies. 18th International Parallel and
Distributed Processing Symposiumpage 170. IEEE Computer Society
Press, Apr 26-30 2004.

[53] H. Casanova, M. Kim, J. S. Plank, and J. J. Dongarra. fidagcheduling
for Task Farming with Grid Middlewarelnt. J. High Perform. Comput.
Appl, 13(3):231-240, 1999.

[54] T. L. Casavant and J. G. Kuhl. A Taxonomy of SchedulingSeneral-
Purpose Distributed Computing SystemslEEE Trans. Softw. Eng.
14(2):141-154, 1988.

[55] A.J.Chakravarti, G. Baumgartner, and M. Lauria. Thg&ic Grid: Self-
Organizing Computation on a Peer-to-Peer NetwdikEE Transactions
on Systems, Man, and Cybernetics, Pgr85(3):373—384, 2005.

[56] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, andT¥ottethodi.
Nonlinear Array Layouts for Hierarchical Memory Systems Iiterna-
tional Conference on Supercomputipgges 444-453, 1999.

[57] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thiottei. Recur-
sive Array Layouts and Fast Parallel Matrix Multiplicatiom SPAA '99:

59

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Proceedings of the eleventh annual ACM symposium on Péaddierithms
and architecturespages 222—-231, New York, NY, USA, 1999. ACM Press.

S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and MldBaum. Detec-
tion of Blood Vessels in Retinal Images Using Two-Dimensidviatched
Filters. IEEE Transactions on Medical Imagingages 263—-269, 1989.

T. Chen and C. Chang. Skewed Data Partition and Aligririieohniques
for Compiling Programs on Distributed Memory MulticompigteJ. Su-
percomput.21(2):191-211, 2002.

A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropfachitecture and
Performance of an Enterprise Desktop Grid Systelournal of Parallel
and Distributed Computing3:597, May 2003.

S. Choi, M. Baik, J. Gil, S. Jung, and C. Hwang. Adaptive@® Schedul-
ing Mechanism Using Mobile Agents in Peer-to-Peer Grid Cotimg En-
vironment.Applied Intelligence25(2):199-221, 2006.

P. Chrétienne, E. G. J. Coffman, J. K. Lenstra, and 4, editors.Schedul-
ing Theory and its Applicationslohn Wiley and Sons, 1995.

R. L. Church and C. S. ReVelle. The Maximal Covering LiomaProblem.
Papers of the Regional Science Associgti1101-118, 1974.

W. Cirne, D. P. da Silva, L. Costa, E. Santos-Neto, F. kaddeiro, J. P.
Sauvé, F. A. B. Silva, C. O. Barros, and C. Silveira. Runriag-of-Tasks
Applications on Computational Grids: The MyGrid Approadi. ICPP,
pages 407—. IEEE Computer Society, 2003.

S. Coleman and K. S. McKinley. Tile Size Selection Us@ache Organi-
zation and Data Layout. IRLDI '95: Proceedings of the ACM SIGPLAN
1995 conference on Programming language design and impitten
pages 279-290, New York, NY, USA, 1995. ACM Press.

D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, E. Bn®s, K. E.
Schauser, R. Subramonian, and T. von Eicken. LogP: A Peddfiodel of
Parallel ComputationCommun. ACM39(11):78-85, 1996.

J. Current, M. Daskin, and D. Schilling. Discrete Netwhocation Mod-
els. In Z. Drezner and H. Hamacher, editdfacility Location Theory: Ap-
plications and Methodschapter 3, pages 81-118. Springer-Verlag, Berlin,
2002.

60

[68] D. G. D and V. Mani. Distributed Computation with Commication De-
lays: Asymptotic Performance AnalysisJournal of Parallel and Dis-
tributed Computing23:293-305, December 1994.

[69] C. Dasgupta and B. I. Halperin. Phase Transition in dait@atModel of
SuperconductivityPhysical Review Lettergd7:1556—-1560, Nov. 1981.

[70] M. Daskin, L. V. Snyder, and R. T. Berter. Facility Lowat in Supply
Chain Design. In A. Langevin and D. Riopel, editoksgistics Systems:
Design and Optimizatigrchapter 2, pages 39-66. Kluwer, 2005.

[71] J. Diaz, J. Petit, and M. Serna. A Survey of Graph Layrrablems ACM
Comput. Sury.34(3):313-356, 2002.

[72] C.Dingand Y. He. A Ghost Cell Expansion Method for RedgcCommu-
nications in Solving PDE Problems. Bupercomputing '01: Proceedings
of the 2001 ACM/IEEE conference on Supercomputing (CDR@&Qes
50-50, New York, NY, USA, 2001. ACM Press.

[73] J. Dongarra and A. Lastovetsky. An Overview of Heterogmus High Per-
formance and Grid Computing. Engineering The Grid: Status and Per-
spective American Scientific Publishers, 2006.

[74] J. J. Dongarra and D. W. Walker. Software Libraries fandar Algebra
Computations on High Performance Compute®AM Rev. 37(2):151—
180, 1995.

[75] M. Drozdowski and W. Gazek. Scheduling Divisible Loadsa Three-
Dimensional Mesh of ProcessorBarallel Computing 25:381-404, April
1999.

[76] M. Drozdowski and P. Wolniewicz. Experiments with Sdhéng Divisible
Tasks in Clusters of Workstations. Rroceedings of the 6th International
Euro-Par Conference on Parallel Processjngages 311-319. Springer-
Verlag, 2000.

[77] M. Drozdowski and P. Wolniewicz. Experiments with sdhéng divisible
tasks in clusters of workstations. Rtoceedings of Euro-Par 2000: Parallel
ProcessingLNCS 1900, pages 311-319. Springer, 2000.

[78] M. Drozdowski and P. Wolniewicz. Divisible Load Schdidg in Systems
with Limited Memory. Cluster Computing6(1):19-29, 2003.

[79] M. Drozdowski and P. Wolniewicz. Out-of-Core DivisébLoad Process-
ing. IEEE Trans. Parallel Distributed Systenis?(10):1048-1056, 2003.

61

[80] P. F. Dutot. Master-slave Tasking on Heterogeneousd3sors. Irinter-
national Parallel and Distributed Processing Symposiyage 25b. IEEE
Computer Society Press, April 2003.

[81] P. F. Dutot. Complexity of Master-slave Tasking on Hetgneous Trees.
European Journal on Operationnal Researct64(3):690-695, August
2005.

[82] H. EI-Rewini, H. H. Ali, and T. Lewis. Task Scheduling Multiprocessing
Systems Computey 28(12):27-37, 1995.

[83] H. El-Rewini and T. G. Lewis. Scheduling Parallel Praigr Tasks onto
Arbitrary Target Machines.J. Parallel Distrib. Comput. 9(2):138-153,
1990.

[84] W. Elwasif, J. S. Plank, and R. Wolski. Data Staging Effen Wide Area
Task Farming Applications. IfEEE International Symposium on Cluster
Computing and the Gridpages 122-129, Brisbane, Australia, May 2001.

[85] C. Engelmann and A. Geist. Super-Scalable AlgorithonsCfomputing on
100, 000 Processors. In V. S. Sunderam, G. D. van Albada, R. Mloot,
and J. Dongarra, editorfyternational Conference on Computational Sci-
ence (1) volume 3514 ol ecture Notes in Computer Scienpages 313—
321. Springer, 2005.

[86] A.Espinosa, T. Margalef, , and E. Luque. Automatic Berfance Analysis
of Master/Worker PVM Applications with Kpi. IfProceedings of the 7th
European PVM/MPI Users’ Group Meeting on Recent Advancé&aral-
lel Virtual Machine and Message Passing Interfapages 47-55, London,
UK, 2000. Springer-Verlag.

[87] G. E. Fagg and J. J. Dongarra. Building and Using a Fholerant MPI
Implementation. Int. J. High Perform. Comput. Appl.18(3):353—-361,
2004.

[88] I. Foster and C. KesselmarThe Grid, Blueprint for a New Computing
Infrastructure Morgan Kaufman, San Francisco, 1999.

[89] M. R. Garey and D. S. Johnso@omputers and Intractability; A Guide to
the Theory of NP-Completened¥. H. Freeman & Co., 1990.

[90] A. Gerasoulis and T. Yang. A Comparison of ClusteringuHsgics for
Scheduling Directed Acyclic Graphs on Multiprocessalsurnal of Par-
allel and Distributed Computindl6(4):276, 1992.

62

[91] N. E. Gibbs, W. G. Poole, and P. K. Stockmeyer. An Aldamtfor Reduc-
ing the Bandwidth and Profile of a Sparse Matr@AM J Numer. Anal
13:236-250, 1976.

[92] P. Golle and I. Mironov. Uncheatable Distributed Cortgtions. InCT-
RSA 2001: Proceedings of the 2001 Conference on Topics ipt&@ogy,
pages 425-440, London, UK, 2001. Springer-Verlag.

[93] J.-P. Goux, S. Kulkarni, M. Yoder, and J. Linderoth. Ne&asworker: An
enabling framework for applications on the computatiorrad.g Cluster
Computing 4(1):63-70, 2001.

[94] W. Gropp, E. Lusk, and A. SkjellumUsing MPI. Portable Parallel Pro-
gramming with the Message Passing InterfaddIT Press, Cambridge,
Massachusetts, USA, 1994.

[95] J. L. Gustafson. Reevaluating amdahl’s la@ommun. ACM31(5):532—
533, 1988.

[96] D. Guster, A. Al-Hamamabh, P. Safonov, and E. Bachmanm@ding and
Network Performance of a Distributed Parallel Processingir@nment
Using MPI and PVM Communication Methods. Comput. Small Coll.
18(4):246-253, 2003.

[97] F. Gutbrod, N. Attig, and M. Weber. The SU(2)-latticeuga theory
simulation code on the Intel Paragon supercomputarallel Comput,
22(3):443-463, 1996.

[98] T. Hagerup. Allocating Independent Tasks to ParaltelcBssors: An Ex-
perimental StudyJ. Parallel Distrib. Comput.47(2):185-197, 1997.

[99] C.-C. Han, K. G. Shin, and S. K. Yun. On Load Balancing inltomput-
er/Distributed Systems Equipped with Circuit or Cut-ThghuSwitching
Capability. IEEE Trans. Comput49(9):947-957, 2000.

[100] D. W. Heermann and A. N. BurkitParallel Algorithms in Computational
Science Springer-Verlag New York, Inc., New York, NY, USA, 1991.

[101] J.L.Hennessy and D. A. Patters@omputer Architecture: A Quantitative
Approach Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2002.

[102] E. Heymann, M. A. Senar, E. Luque, and M. Livny. Adapt@chedul-
ing for Master-Worker Applications on the Computationaldsin GRID

63

'00: Proceedings of the First IEEE/ACM International Wohkg on Grid
Computing pages 214227, London, UK, 2000. Springer-Verlag.

[103] R. W. Hockney. Performance Parameters and BenchnadéiSupercom-
puters.Parallel Computing17(10-11):1111-1130, 1991.

[104] B. Hong and V. K. Prasanna. Bandwidth-Aware ResourltecAtion for
Computing Independent Tasks in Heterogeneous Computisge®g. In
The 15th Annual International Conference on Parallel andtBbuted
Computing and Systems (PDCS 2Q@#ge 539, November 2003.

[105] B. Hong and V. K. Prasanna. Bandwidth-Aware ResourltecAtion for
Heterogeneous Computing Systems to Maximize ThroughputCIPP,
pages 539-546. IEEE Computer Society, 2003.

[106] B. Hong and V. K. Prasanna. Distributed Adaptive Tadlodation in
Heterogeneous Computing Environments to Maximize Thrpughin In-
ternational Parallel and Distributed Processing SympaosilPDPS’2004
page 52b. IEEE Computer Society Press, 2004.

[107] B. Hongand V. K. Prasanna. Performance Optimizati@@e-centralized
Task Allocation Protocol via Bandwidth and Buffer Managere In
CLADE, page 108, 2004.

[108] M. E. Houle, A. Symvonis, and D. R. Wood. Dimension-Bange Algo-
rithms for Token Distribution on Tree-Connected Architees.J. Parallel
Distrib. Comput, 64(5):591-605, 2004.

[109] S. F. Hummel, J. Schmidt, R. N. Uma, and J. Wein. LoadrBlg in Het-
erogeneous Systems via Weighted FactoringSRAA '96: Proceedings
of the eighth annual ACM symposium on Parallel algorithmd architec-
tures pages 318-328, New York, NY, USA, 1996. ACM Press.

[110] S. F. Hummel, E. Schonberg, and L. E. Flynn. Factoriagviethod for
Scheduling Parallel Loopg€ommun. ACM35(8):90-101, 1992.

[111] W. Janke and R. Villanova. Ising model on three-dinemsl random lat-
tices: A Monte Carlo study.Physical Review B66(13):134208—+, Oct.
2002.

[112] G. Jin, J. Mellor-Crummey, and R. Fowler. Increasiregmporal Locality
with Skewing and Recursive Blocking. Rroceedings of SuperComputing
2001, Denver, CO, 2001.

64

[113] M. Kaddoura, S. Ranka, and A. Wang. Array Decomposgifor Nonuni-
form Computational Environmentd. Parallel Distrib. Comput.36(2):91—
105, 1996.

[114] A. Kalinov and A. Lastovetsky. Heterogeneous Disitibn of Compu-
tations Solving Linear Algebra Problems on Networks of iHegeneous
ComputersJ. Parallel Distrib. Comput.61(4):520-535, 2001.

[115] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yklitmpact of Modern
Memory Subsystems on Cache Optimizations for Stencil Caatjons. In
MSP '05: Proceedings of the 2005 workshop on Memory systefarpe
mance pages 36—43, New York, NY, USA, 2005. ACM Press.

[116] M. T. Kandemir, A. N. Choudhary, N. Shenoy, P. Banerpeed J. Ramanu-
jam. A Linear Algebra Framework for Automatic Determinatiof Op-
timal Data Layouts.|IEEE Trans. Parallel Distrib. Syst10(2):115-135,
1999.

[117] N. Karmarkar. A New Polynomial-Time Algorithm for L&ar Program-
ming. Combinatorica4(4):373-395, 1984.

[118] L. G. Khachiyan. A Polynomial Algorithm in Linear Pragmming. Dok-
lady Akademia Nauk SSSbages 1093-1096, 1979.

[119] H.-J. Kim. A Novel Optimal Load Distribution Algoritin for Divisible
Loads.Cluster Computing6(1):41-46, 2003.

[120] T. H. Kim. Adaptive Divisible Load Scheduling Strateg for Workstation
Clusters with Unknown Network Resource$EEE Trans. Parallel Dis-
trib. Syst, 16(10):897-907, 2005. Member-Debasish Ghose and Member-
Hyoung Joong Kim.

[121] T. Kindberg, A. Sahiner, and Y. Paker. Adaptive Palam under Equus.
In Proceedings of 2nd International Workshop on Configurabiributed
Systemgpages 172-182. IEEE, March 1994.

[122] B. Ko and D. Rubenstein. Distributed Self-Stabilgiflacement of
Replicated Resources in Emerging NetworKEEE/ACM Trans. Netw.
13(3):476-487, 2005.

[123] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric Muevel Block-
ing. In PLDI '97: Proceedings of the ACM SIGPLAN 1997 conference on
Programming language design and implementatjpeges 346—357, New
York, NY, USA, 1997. ACM Press.

65

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

M. Kowarschik and C. Weil3. An Overview of Cache Optiation Tech-
niques and Cache-Aware Numerical Algorithms. In U. MeyeG&hders,
and J. Sibeyn, editorg\lgorithms for Memory Hierarchies — Advanced
Lectures volume 2625 ofLecture Notes in Computer Science (LNCS)
pages 213-232. Springer, 2003.

J. Krarup and P. Pruzan. The Simple Plant Location lBrobSurvey and
SynthesisEuropean Journal of Operations Researdé2:36—81, 1983.

B. Kreaseck, L. Carter, H. Casanova, and J. Ferranteordomous Proto-
cols for Bandwidth-Centric Scheduling of IndependentkiApplications.

In IPDPS '03: Proceedings of the 17th International SymposamnPar-
allel and Distributed Processingage 26.1, Washington, DC, USA, 2003.
IEEE Computer Society.

C. P. Kruskal and A. Weiss. Allocating Independent tasks on Parallel
ProcessorslEEE Trans. Softw. Eng11(10):1001-1016, 1985.

M. D. Lam, E. E. Rothberg, and M. E. Wolf. The Cache Perfance
and Optimizations of Blocked Algorithms. RSPLOS-IV: Proceedings of
the fourth international conference on Architectural sagdor program-
ming languages and operating systemages 63—74, New York, NY, USA,
1991. ACM Press.

C. L. Lawson, R. J. Hanson, F. T. Krogh, and D. R. Kincaflgorithm
539: Basic Linear Algebra Subprograms for Fortran Usagé. [FACM
Trans. Math. Softw5(3):324-325, 1979.

W. C. Lee. Topology Aggregation for Hierarchical Riogtin ATM Net-
works. SIGCOMM Comput. Commun. Re5(2):82—-92, 1995.

A. Legrand, L. Marchal, and Y. Robert. Optimizing thée&ly-state
Throughput of Scatter and Reduce Operations on Heterogsiirtatforms.
J. Parallel Distrib. Comput.65(12):1497-1514, 2005.

C. Leopold. On Optimal Temporal Locality of Stencil @&s. INSAC '02:
Proceedings of the 2002 ACM symposium on Applied compupages
948-952, New York, NY, USA, 2002. ACM Press.

C. Leopold. Tight Bounds on Capacity Misses for 3D $te@odes. In
ICCS ’'02: Proceedings of the International Conference om@atational
Science-Part,Ipages 843—-852, London, UK, 2002. Springer-Verlag.

66

[134] K. Li. Improved Methods for Divisible Load Distribuin on k-Dimensional
Meshes Using Pipelined CommunicationdEEE Trans. Parallel Dis-
tributed Systemd4:1250-1261, December 2003.

[135] X. Li, B. Veeravalli, and C. C. Ko. Divisible Load Schalthg on a Hy-
percube Cluster with Finite-Size Buffers and Granularign€traints. In
CCGRID '01: Proceedings of the 1st International SymposamCluster
Computing and the Gridpage 660, Washington, DC, USA, 2001. IEEE
Computer Society.

[136] Z.LiandY. Song. Automatic Tiling of Iterative Stehtibops.ACM Trans.
Program. Lang. Syst26(6):975-1028, 2004.

[137] T. A. Lund. Porting a Monte Carlo Code from Shared Meyniar Com-
putational Clusters. Master’s thesis, Dept. of Computerlafo. Science,
Norwegian University of Science and Technology, 2004.

[138] M. Luscher. Solution of the Dirac equation in lattic€D using a domain
decomposition methodComput. Phys. Commuyri56:209-220, 2004.

[139] A. Mahanti and D. L. Eager. Adaptive Data Parallel Cartipg on Work-
station ClustersJ. Parallel Distrib. Comput.64(11):1241-1255, 2004.

[140] M. Maheswaran, B. Maniymaran, P. Card, and F. Azzethnisible Net-
work: Concepts and Architecture. GCGRID '02: Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster Computing gredGrid,
page 464, Washington, DC, USA, 2002. IEEE Computer Society.

[141] M. Maheswaran, B. Maniymaran, P. Card, and F. AzzedlietaGrid: A
Scalable Framework for Wide-Area Service Deployment anddgament.
In HPCS '02: Proceedings of the 16th Annual International Sgsipm on
High Performance Computing Systems and Applicatipage 61, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[142] V. Mani. An Equivalent Tree Network Methodology forflEfent Utiliza-
tion of Front-Ends in Linear Network.Cluster Computing6(1):57-62,
2003.

[143] K. McKinley, S. Carr, and C.-W. Tseng. Improving Datadality with
Loop Transformations.ACM Transactions on Programming Languages
and Systemd4.8(4):424-453, 1996.

[144] N. Megiddo, E. Zemel, and S. L. Hakimi. The Maximum Crage Loca-
tion Problem SIAM Journal on Algebraic and Discrete Method§2):253—
261, June 1983.

67

[145] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Telland E. Teller.
Equation of State Calculations by Fast Computing Machingse jour-
nal of chemical physi¢21(6):1087-1092, 1953.

[146] P. D. Michailidis and K. G. Margaritis. Performancedhvation of Load
Balancing Strategies for Approximate String Matching Apglion on an
MPI Cluster of Heterogeneous Workstatiodsurnal of Future Generation
Computing System$9(7):1075-1104, 2003.

[147] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja,Bruyne, B. Richard,
S. Rollins, and Z. Xu. Peer-to-Peer Computing. TechnicgddReHPL-
2002-57, Hewlett Packard Laboratories, Mar 2002.

[148] N. Mitchell, K. Hogstedt, L. Carter, and J. Ferranf@uantifying the multi-
level nature of tiling interactionsinternational Journal of Parallel Pro-
gramming 26(6):641-670, 1998.

[149] A. Morajko, E. César, P. Caymes-Scutari, T. MargalefSorribes, and
E. Luque. Automatic Tuning of Master/Worker Applicationsn J. C.
Cunha and P. D. Medeiros, editofsuro-Par, volume 3648 ofLecture
Notes in Computer Sciengeages 95-103. Springer, 2005.

[150] S. Nandy, L. Carter, and J. Ferrante. A-FAST: AutonasBlow Approach
to Scheduling Tasks. In L. Bougé and V. K. Prasanna, editilC, vol-
ume 3296 ot_ecture Notes in Computer Scienpages 363—-374. Springer,
2004.

[151] M. A. Palis, J.-C. Liou, and D. S. L. Wei. Task Clusteyiand Schedul-
ing for Distributed Memory Parallel ArchitecturesEEE Trans. Parallel
Distrib. Syst, 7(1):46-55, 1996.

[152] N. Park, B. Hong, and V. K. Prasanna. Tiling, Block Datyout, and
Memory Hierarchy Performance.lEEE Trans. Parallel Distrib. Syst.
14(7):640-654, 2003.

[153] C. D. Polychronopoulos and D. J. Kuck. Guided Self<ttiling: A Practi-
cal Scheduling Scheme for Parallel Supercomput&isE Trans. Comput.
36(12):1425-1439, 1987.

[154] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and BFRinnery.Numer-
ical Recipes in C: The Art of Scientific Computin@ambridge University
Press, New York, NY, USA, 1992.

68

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

M. Prieto, I. M. Llorente, and F. Tirado. Data LocalBxploitation in the
Decomposition of Regular Domain ProblentsEE Trans. Parallel Distrib.
Syst, 11(11):1141-1150, 2000.

M. J. Quinn and P. J. Hatcher. On the Utility of Commuation-
Computation Overlap in Data-Parallel ProgramdsParallel Distrib. Com-
put, 33(2):197-204, 1996.

F. Rastello and Y. Robert. Automatic Partitioning afr&lel Loops With
Parallelepiped-Shaped TiledEEE Trans. Parallel Distributed Systems
13(5), may 2002.

G. Riveraand C. Tseng. Eliminating Conflict Misseskigh Performance
Architectures. Innternational Conference on Supercomputipgges 353—
360, 1998.

G. Rivera and C. Tseng. Tiling Optimizations for 3D &tific Computa-
tions. InSupercomputing '00: Proceedings of the 2000 ACM/IEEE con-
ference on Supercomputing (CDRQNdage 32, Washington, DC, USA,
2000. IEEE Computer Society.

T. Robertazzi. Processor Equivalence for a Linearsip&hain of Load
Sharing Processors.I[EEE Trans. Aerospace and Electronic Systems
29:1216-1221, 1993.

A. L. Rosenberg. Sharing Partitionable Workloads ietéfogeneous
NOWSs: Greedier Is Not Better. IGLUSTER '01: Proceedings of the 3rd
IEEE International Conference on Cluster Computipgge 124, Washing-
ton, DC, USA, 2001. IEEE Computer Society.

E. Rosenvinge. Online Task Scheduling On HeterogemeGlus-
ters: An Experimental Study. Master’s thesis, Dept. of Cotap
and Info. Science, Norwegian University of Science and fetdgy,
2004. URL:http://www.idi.ntnu.netelster/students/ms-theses/rosenvinge-
msthesis.pdf.

E. M. R. Rosenvinge, A. C. Elster, and C. Banino. Onllizsk Schedul-
ing on Heterogeneous Clusters: An Experimental Study. Dohgarra,
K. Madsen, and J. Wasniewski, editoPARA volume 3732 ofLecture
Notes in Computer Sciengeages 1141-1150. Springer, 2004.

E. E. Santos, S. Feng, and J. M. Rickman. Efficient Raralgorithms for
2-Dimensional Ising Spin Models. I®DPS '02: Proceedings of the 16th

69

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

International Parallel and Distributed Processing Symipog page 135,
Washington, DC, USA, 2002. IEEE Computer Society.

E. E. Santos and G. Muthukrishnan. Efficient Simulaased on Sweep
Selection for 2-D and 3-D Ising Spin Models on Hierarchicalisters. In
IPDPS page 229b, 2004.

V. Sarkar.Partitioning and Scheduling Parallel Programs for Multgares-
sors MIT Press, Cambridge, MA, USA, 1989.

L. F. G. SarmentaVolunteer Computing PhD thesis, Dept. of Electrical
Engineering and Computer Science, MIT, 2001.

H. Senger, F. A. B. Silva, and W. M. Nascimento. Hiehécal Scheduling
of Independent Tasks with Shared Files. G&GRID '06: Proceedings
of the Sixth IEEE International Symposium on Cluster Comguind the
Grid (CCGRID’06) page 51, Washington, DC, USA, 2006. IEEE Com-
puter Society.

G. Shao, F. Berman, and R. Wolski. Master/Slave Comguin the Grid.
In HCW "00: Proceedings of the 9th Heterogeneous Computindstiop
page 3, Washington, DC, USA, 2000. IEEE Computer Society.

B. A. Shirazi, K. M. Kavi, and A. R. Hurson, editorScheduling and Load
Balancing in Parallel and Distributed System$EEE Computer Society
Press, Los Alamitos, CA, USA, 1995.

D. F. Sittig, D. Foulser, N. Carriero, G. McCorkle, aRdL. Miller. A
Parallel Computing Approach to Genetic Sequence Comparilee Mas-
ter Worker Paradigm with Interworker Communicatio@omputers and
Biomedical Resear¢t24:152-169, 1991.

S. S. Skiena.The algorithm design manualSpringer-Verlag New York,
Inc., New York, NY, USA, 1998.

Y. Song and Z. Li. New Tiling Techniques to Improve Cadremporal Lo-
cality. InPLDI '99: Proceedings of the ACM SIGPLAN 1999 conference on
Programming language design and implementatjpeges 215-228, New
York, NY, USA, 1999. ACM Press.

D. Stainforth, J. Kettleborough, M. Allen, M. Collin#\. Heaps, and
J. Murphy. Distributed Computing for Public-Interest Céita Modeling
ResearchComputing in Science and Engd(3):82-89, 2002.

70

[175] E. Strohmaier, J. J. Dongarra, H. W. Meuer, and H. D.d8imThe Mar-
ketplace of High-Performance ComputindParallel Computing 25(13—
14):1517-1544, Dec. 1999.

[176] T. G. Robertazzi. Ten Reasons to Use Divisible LoadofjreComputey
36(05):63-68, 2003.

[177] O. Temam, E. D. Granston, and W. Jalby. To Copy or Not opyC A
Compile-Time Technique for Assessing When Data Copyingughbe
Used to Eliminate Cache Conflicts. Bupercomputing '93: Proceedings
of the 1993 ACM/IEEE conference on Supercomputpages 410-419,
New York, NY, USA, 1993. ACM Press.

[178] D. Thain, T. Tannenbaum, and M. Livny. Condor and thedGr In
F. Berman, G. Fox, and T. Hey, editor§rid Computing: Making the
Global Infrastructure a RealityJohn Wiley & Sons Inc, December 2002.

[179] M. D. Theys, M. Tan, N. B. Beck, H. J. Siegel, and M. JyiczA Math-
ematical Model and Scheduling Heuristics for Satisfyingpftized Data
Requests in an Oversubscribed Communication NetwaikE Trans. Par-
allel Distrib. Syst, 11(9):969-988, 2000.

[180] T.H. Tzen and L. M. Ni. Trapezoid Self-Scheduling: Aaktical Schedul-
ing Scheme for Parallel CompilerdEEE Trans. Parallel Distrib. Syst.
4(1):87-98, 1993.

[181] S. S. Vadhiyar, G. E. Fagg, and J. J. Dongarra. Towandé&ccurate
Model for Collective Communications.Int. J. High Perform. Comput.
Appl, 18(1):159-167, 2004.

[182] S. Vajracharya and D. Grunwald. Loop Re-Ordering aretietching at
Run-Time. InSupercomputing '97: Proceedings of the 1997 ACM/IEEE
conference on Supercomputing (CDROMages 1-13, New York, NY,
USA, 1997. ACM Press.

[183] C. Weil3, W. Karl, M. Kowarschik, and U. Rude. Memoryatacteristics
of Iterative Methods. IrProc. of the ACM/IEEE Supercomputing Conf.
(SC99) Portland, Oregon, USA, 1999.

[184] R. C. Whaley and J. J. Dongarra. Automatically Tunedelar Algebra
Software. InSupercomputing '98: Proceedings of the 1998 ACM/IEEE
conference on Supercomputing (CDRQMages 1-27, Washington, DC,
USA, 1998. IEEE Computer Society.

71

[185] M. E. Wolf and M. S. Lam. A Data Locality Optimizing Algithm. SIG-
PLAN Not, 39(4):442-459, 2004.

[186] M. Wolfe. High-Performance Compilers for Parallel Computingddison-
Wesley, 1995. ISBN 0-8053-2730-4.

[187] R. Wolski. Experiences with Predicting Resource &anance On-line in
Computational Grid SettingSIGMETRICS Perform. Eval. Re80(4):41—
49, 2003.

[188] R. Wolski, N. T. Spring, and J. Hayes. The Network WeatBervice:
a Distributed Resource Performance Forecasting Servidddétacomput-
ing. Journal of Future Generation Computing Systefts(5-6):757—-768,
1999.

[189] D. Wonnacott. Achieving Scalable Locality with Timé&esving. Interna-
tional Journal of Parallel Programming30(3):1-221, 2002.

[190] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Imighations of
the Obvious SIGARCH Comput. Archit. New®3(1):20-24, 1995.

[191] Y. Yang and H. Casanova. RUMR: Robust Scheduling foidible Work-
loads. InHPDC '03: Proceedings of the 12th IEEE International Sympo-
sium on High Performance Distributed Computing (HPDC’(Q33ge 114,
Washington, DC, USA, 2003. IEEE Computer Society.

[192] Y. Yang and K. van der Raadt. Multiround Algorithms f8cheduling
Divisible Loads. IEEE Trans. Parallel Distrib. Syst16(11):1092-1102,
2005. Member-Henri Casanova.

[193] Q. Yi, V. Adve, and K. Kennedy. Transforming Loops todResion for
Multi-Level Memory Hierarchies. IfPLDI '00: Proceedings of the ACM
SIGPLAN 2000 conference on Programming language desigrirapl®-
mentation pages 169-181, New York, NY, USA, 2000. ACM Press.

[194] D. Yu and T. Robertazzi. Divisible load scheduling @xrid computing. In
IASTED International Conference on Parallel and DistriedtComputing
and Systems (PDCS 2008)ovember, 2003.

[195] Y. Zhao and K. Kennedy. Scalarization Using Loop Algent and Loop
Skewing.Journal of Supercomputindolume 31(1):5-46, 2005.

72

[196] T. Zhu, Y. Wu, and G. Yang. Scheduling divisible loads$he dynamic het-
erogeneous grid environment. imfoScale '06: Proceedings of the 1st in-
ternational conference on Scalable information systerage 8, New York,
NY, USA, 2006. ACM Press.

Part Il

Contributions

73

Paper 1

Location-Aware Master-Slave Tasking on the Grid

Cyril Banino-Rokkones.

To appear in journdFuture Generation Computer Systems.
Special IssuéApplication of Distributed and Grid Computing”

75

Location-Aware Master-Slave Tasking on the Grid

Cyril Banino-Rokkones

Department of Computer and Information Science
Norwegian University of Science and Technology
NO-7491 Trondheim, Norway

Abstract

This paper outlines the importance of resource placemenisidas for
Grid Computing. Decisions about where processing and gtofacili-
ties should be located on the Grid have a tremendous impasysiem
performance. We begin with a presentatioriatility LocationandSup-
ply Chain Designthat address challenges remarkably similar to some
of the challenges encountered within Grid computing. Thenilus-
trate the impact of location-aware decisions with the atagsster-Slave
tasking problem. We claim that deploying multiple mastereecessary
to achieve good performance on large-scale platforms. Tolelgm be-
comes to find the most profitable locations for hosting thetemgsro-
cesses in order to maximize the platform task throughputskidsv that
this problem is NP-hard, but still introduce and evaluatecation-aware
heuristic that achieves good performance on a wide rangienofiations.

1.1 Introduction

Grid computing is a recent trend where computing platforpasing over large
networks are deployed in order to harness geographicadlyedsed computing
resources [12]. The aim is often to provide computing poweaplications at
unprecedented scale. In this context, the efficient andtafiemovement of data
from storage sites to processing facilities has a tremesufopact on system per-
formance. Grid computing involves not only managing datareneent, that is
decided which data sould be processed on which machinealdoutaking deci-
sions about where to produce and store the data.

Because the performance of resources that make up the Grigp(ders, net-
works, storage systems) fluctuates dynamically due to otinte between ap-
plications, Grid schedulers must choose the combinatioesdurces from the

78 Paper 1

available resource pool that is expected to maximize thiopeance of the ap-

plications [25]. Such scheduling decisions must often kmngled in response to
fluctuations in resource availability and performance. dRese placement deci-
sions, on the other hand, are often fixed and difficult to ckandhe short term.

The location of an expensive supercomputer cannot be chaage result of

changes in network performance or electricity prices.fiaeht locations for key

components of the Grid infrastructure will result in poossm performance, no
matter how well schedulers react in response to changingjitomns.

This paper illustrates these issues with the classic M&tse tasking prob-
lem, which consists in the execution of a large number of pedelent tasks by a
set of processors, callstaves under the supervision of a particular processor, the
master The master holds all the tasks initially, and sends thentmthe slaves
over a network. Slaves are charged to compute the tasks ahtbthe compu-
tation results back to the master. This scheduling probseweil recognized, and
several studies have recently revisited the Master-Slaxadigm for clusters and
Grids [1,5,6,13,14,17, 21, 22]. Applications implementeder this paradigm
[3,8,23] are good candidates for Grid environments sine@fplication tasks can
be computed independently of each other and in any orderekemthe central-
ization of the tasks in one single place limits the scalgbdf the application, as
there is only one data access point in the system. This paggests a simple but
mandatory departure from traditional implementationse Tieed to deploy sev-
eral masters to efficiently utilize currently emerging kxgrale platforms. Aida
et al. [2] present a way to deploy multi-master master-sép@ications in Grid
environments. The idea is to rely on a hierarchical impletatgon where a su-
pervisor controls multiple processor sets, each of whidomposed of a master
and several workers. The supervisor achieves load balggirmigrating tasks
between masters. However, the work of Aida et al. does net itakonsidera-
tion the topology of the platform, an essential aspect figdascale Grids that we
address in this paper. In particular, we address the probfesetermining how
many masters should be deployed, and where should thesermastlocated on
the Grid in order to optimize system performance. As a comsece, a discrete
network location problem arises. Thus, this paper provatesnportant step for
efficient deployments of large Master-Slave applicatioms@mputational Grids.

The rest of this paper is organized as follows. Section 1tln@s the similar-
ities between Grid computing and two classes of problemrgghg to operation
research, that arféacility LocationandSupply Chain DesignModeling Master-
Slave tasking on a Grid is introduced in Section 1.3. Therdiscnetwork loca-
tion problem considered in this paper is formally stated simalvn to be NP-hard
in Section 1.4. Greedy heuristics are presented in Sectinahd experimen-
tal results in Section 1.6. Finally, conclusions and futwagk are discussed in
Section 1.7.

1.2. Grid computing, facility location and supply chain desgn 79

1.2 Grid computing, facility location and supply chain
design

Grid systems provide storage and computing facilities atdisposal of user ap-
plications. When deploying applications on Grids, it isit@lfo have data stored
closeto processing facilities, in order to obtain efficient anfiefive data move-
ments. Theys et al. [24] notice that tHata stagingoroblem in a distributed and
heterogeneous network of resources, presents a high lesiebitarity with Facil-
ity Location problems. A classic Facility Location problesna spatial resource
allocation problem in which one or more service facilities/é to be located to
serve a geographically dispersed set of population demacctsrding to some
objective function [10, 16]. The term facility is used in igadest sense, as it is
meant to include entities such as factories, warehoudesoks; hospitals, subway
stations, satellites, etc [10]. If we assimilate (1) fdi®h to storage locations, (2)
the service to be provided to application data, and (3) thefséemands to the
set of computing resources, then deploying Grid applicatican be expressed
as a Facility Location problem. Of particular interest hesmclose in spirit to
Grid computing settings, are tidaximal Covering Location Problerf?] that
addresses planning situations which have an upper Fom the number of facil-
ities to be deployed, and théxed Charge Location Problefi0] that introduces
capacities as well as economic cost constraints on thdiesilo be deployed and
operated.

Another class of problems that presents features veryaiulGrid applica-
tion scheduling is Supply Chain Design [11]. A supply chaam e defined as
a network of facilities that manufactures finished produatsl distributes these
products to customers. Supply Chain Design involves degi(ll) where to pro-
duce, what to produce, and how much to produce at each sdeanvhere to
locate plants and distribution centers [11]. Today, woskfépplications compose
one of the most popular class of Grid applications. A workfegplication con-
sists of a collection of interacting components that muséxeruted in a certain
order for successful completion of the application. Hertbe, application can
be represented as a directed acyclic graph (DAG), where madé in the DAG
represents an application component, and the edges denttelor data depen-
dencies. If we now make an analogy between (1) the last tatleddAG and the
manufactured product and (2) the computing resources artduction plants,
then scheduling a workflow application on a Grid can be exga@as a Supply
Chain Design problem.

Consequently, lessons can be drawn from the design of tigwsifor different
versions of Facility Location and Supply Chain Design peoixs. To the best of
our knowledge, few studies have considered Facility Locetineory within Grid

80 Paper 1

computing settings. Maheswaran et al. [18, 19] prebataGrig, an architecture
for resource provisioning for WAN-enabled applicationset&lGrid introduces the
notion of SubGrid, which spans a Grid and provides a “resmalocation class”.
A SubGrid specifies a set of constraints that should be satisfy the resources
allocated for the SubGrid. Maheswaran et al. approach the&s8d creation
problem as a Fixed Charge Location Problem. Ko and Rubengit8] present a
distributed protocol to place replicated resources indasgale networks such that
each vertex is “close” to some copy of any object. Closelgitezl to our work is
the paper of Shao et al. [22] that consider a resource sahgetoblem within the
Master-Slave scheduling framework. The aim is to seledop@iance-efficient
hosts for both the master and slave processes. For thatreaghaustive search is
performed, consisting in solvingnetwork flow problems, where is the number
of processors composing the platform. Then the configurdtiat achieved the
highest throughput is selected. However, this approaclotisapplicable when
using several masters. There are ind(a’pédpossible master locations sets, where
p is the number of masters to be located on the platform. As ample, for
n = 50 andp = 10, the resulting number of possibilities 19,272, 278, 170.
Clearly, even for moderate values ofandp, such enumeration is not realistic,
and we need more advanced techniques.

1.3 Modeling master-slave tasking on the grid

Our model builds on a network flow model and is close to modedsented by
Hong and Prasanna [13] and by Shao et al. [22]. First, we asshat applica-
tion tasks require input data files of sizg and produce output data files of size
s, Then, the target architectural framework is represented platform graph
G = (V,E) as illustrated in Fig. 1.1. Each verté% € V represents a com-
puting resource of weight;, meaning that process@t can process; tasks per
time units. Similarly, each linkP;, P;) € E has a capacity"; ; which limits
the flow of data that can be transfered frditnto P; per time unit. We allow for
bandwidth asymmetry between incoming and outgoing traffehghatF; ; may
differ from F},. Bandwidth asymmetry can appear in WAN environments when
Internet routing for traffic between two machines uses wffié pathways in each
direction.

All r; are assumed to be positive rational numbers since theyseqrthe pro-
cessor computing rates, and we allgw= 0; then P, has no computing power, but
can still forward tasks to other processors (e.g. for moded hub or a switch).
Similarly, we assume that all; ; are positive rational numbers since they corre-
spond to the peak bandwidths of the interconnection linkese€ platform param-
eters, can be obtained by Grid middleware services suctedsdtwork Weather

1.3. Modeling master-slave tasking on the grid 81

Service (NWS) [25]. In addition, NWS provides accurate prgons of future
performance measurements, as well as error quantificatisssciated to these
predictions.

Figure 1.1: Example of a Grid platform.

Finally, we introduce a cost model to establish and operastens on the
platform graph. Let/,, C V denote the index set of the processors susceptible to
be chosen as a master. Then, for each procdsser.J,,, let ¢; be the fixed cost
of establishing a master at locatié, andt; be the per task cost for operating a
master at locatio®;. All ¢; and¢; are assumed to be positive constants since, from
a practical viewpoint, it is rather absurd to have negatsts for establishing
or operating master locations. Given a general Grid platfave consider the
problem of selecting a set of master locations that optimike task throughput
of the platform within a budget constraifit We term such problem tH&COVER
problem.

82 Paper 1

1.4 Optimizing master placement

1.4.1 Mathematical formulation of the B-COVER problem

To formally define theB-COVERproblem, letn(i) denote the index set of the
neighbors of processdr,. During one time unit, lety; be the number of tasks
computed byP;, f;; and f; ; be the amount of input and output data respectively
that flow from P, to P;,. For each processdr;, letz; € {0,1} be the decision
variable to place a master at locatiéh i.e. z; = 1 if P; is chosen as a master,
andz; = 0 otherwise. Further, let; be the rational number of input files pro-
duced per time unit by, if the latter is chosen as a master, and analogously, let
be the number of output files collected per time unitibyif the latter is chosen
as a master. Defined on a platform gragha mathematical formulation of the
B-COVERproblem can be stated by the following mixed-integer ling@agram,
whose objective function is to maximize the throughpuyt.(G) of the platform
graphdG.

Maximize
ntask:(G) = Zai>
Subject to
5) Vi, 0 <p; <xi(ri+ 2 icnm Fij
1) Vi 0<a;<r, (5) Vi i Ti(ri + X jen() Fig)
(2) Vi€ Jm, 7€ {0,1} (5 7 0= 7 S 5isen Fi)
L ’ (1) Vi,Yjen(i), fijsi+ flso < Fj
(3) Vi Qé Im, x; =0 . J
4 e 4t < B (8) Vi, pi+ D jen) fii = i+ Xjenq) fii
() ZZEszz+ iDi > .y ’ /
(9) Vi, p; + ZjEn(i) fi,j =a; + ZjEn(i) gt

e Equation set (1) specifies that computing resources areelimi

e Equation sets (2) and (3) identify candidate locations stalgishing the masters.

e Equation (4) ensures that the cost generated by estalgliahithoperating the master
locations does not exceed the budget consti&int

e Equation set (5) specifies that only the masters are allowprbduce computational
tasks. The task production rate is limited by the number sddhatP;, can process plus
the number of input files tha?, can communicate to its neighbors per time unit.

e Equation set (6) specifies that only the masters are allowedltect output files.
The result collection rate is limited by the maximum numbkouwtput files thatP; can
receive from its neighbors per time unit. The case wherestiean overhead incurred
for post-processing output files can be handled easily byngdal constraint om; [22].
Note that our model does not guarantee that the masterseadive the output files corre-
sponding to the input files that they produced locally. In sarincumstances, it might be
desirable to produce input files in one place and collectuuifes in some other place,

1.4. Optimizing master placement 83

in order to circumvent eventual network bottlenecks. Haoveit is often necessary that
masters receive the output files associated to the inputtfil@swere generated locally
(e.g. for fault tolerance issues). In that case, the modebeaenhanced as follows: Each
master will be given a color, and will be able to produce tamkd collect results only of

its own color, while slaves can process tasks of any color.

e Equation set (7) specifies that communication resourcenaited.

e And finally, Equation sets (8) and (9) stand for conservaliovs. For every pro-
cessorpP;, the number of input files produced, plus the number of oayanput files,
should be equal to the number of tasks processed locallg, theinumber of incoming
input files. Similarly, for every processdt;, the number of output files collected, plus
the number of outgoing output files, should be equal to thebmurof results produced
locally, plus the number of incoming output files. Note thgugtion sets (3), (5) and (6)
prevent the slaves to produce input files or to collect oufpes. On the other hand,
Equation sets (8) and (9) ensure that there are as many itggupfoduced as output files
consumed. In effect, by combining these two Equation seds;am derive the following

Equation:}_. p; = >, p}.

1.4.2 Complexity ofB-COVER
Theorem 1.1. B-COVERIis NP-hard.

Proof. We reduce thiAXIMUM KNAPSACKMK) problem [4] to theB-COVERprob-
lem.

MAXIMUM KNAPSACK

INSTANCE: Finite setU, for eachu € U a sizes(u) € Z™
and a valuey(u) € Z™, a positive integeB € Z™.
SOLUTION: A subset/’ C U such that) _ s(u) < B.
uel’
MEASURE: Total weight of the chosen elements, . v(u).
uel’

Construct an instance of tie2COVERproblem as follows: (1) Create a siétcon-
taining |U| processors; (2) Create a bijective functipn V —— U; (3) VP, € V, let
ri =v(f(B)); @)VP, € V,lete; = s(f(FP)); B)VP; € V,lett; = 0; and (6) letE = ()
and.J,, = V.

The graph of theB-COVERInstance is edge-les€(= ()), meaning that no tasks
can be communicated among processors. Consequently,dasianly be computed at
the location where they are produced. A solution of € OVERIinstance consists in
determining a subsét’ C V such thalzpiev, ¢; < Bin order to maximize the platform
throughput, i.eEPiev, r;. Thus, a solution of thB-COVERproblem instance provides a
solution of theMK instance. This proves thBtCOVERSs at least as difficult asIK. Since

84 Paper 1

MK is NP-hard [4] and since the transformation is done in pafyiabtime,B-COVERis
also NP-hard. O

1.5 Greedy heuristics

Typically, the first approach for finding the optimal solutiof a mixed-integer linear
program is to apply one of the well-known algorithms suchrasth and bound or cutting
plane [10]. Unfortunately, such methods are only useful malsscale problems, and
will quite often consume unacceptable computational nessuwhen applied to realistic
problem sizes.

In contrast, LP-relaxations (i.e. relaxing the integerstoaints) have considerable
interest since they provide the basis both for various B&csi and for the determination
of bounds for the most successful integer linear prograi [iwe replace Equation (2)
by the following equation¥i € J,,, 0 < z; < 1, we obtain a linear program in rational
numbers, that can be solved in polynomial time. Solving él@xed linear program asso-
ciated toB-COVER gives the upper bound of the optimal platform throughpathable
without exceeding the budget constraint. However, thisidaunight not be achievable by
any discrete solutions, and might not be tight.

In the rest of this paper, we let the fixed ceosto establish master locations be equal to
1, and the per task costfor operating a master be equalxoln other words, there are no
differences in term of cost among the different potentiast@ralocations, and the influent
factors for choosing master locations become the platfapology and heterogeneity.
We hence retrieve the model proposed by Shao et al. in [22]a Asnsequence, the
objective of theB-COVERproblem becomes to maximize the platform throughput when
using at mostB masters. The problem becomes then similar to the Maximakfuy
Location Problem [9] also known to be NP-hard.

Our first heuristic I(P) for solving theB-COVERproblem consists in solving the
relaxed linear program in the first place, and then selectgready fashion a sef of
verticesP (|S| = B) that have the highegt; values. Each mastd?; € .S will produce
Zp e fract|on of the total amount of tasks.

The second heuristi®W) consists in selecting in a greedy fashidgh|ocations that
maximize the quantity; = r; + 3¢, \% - FJ’”’] and that do not have a neighboring

master. Each mastédt; € S will produce Z fractlon of the total amount of tasks.
P;es

This heuristic could be implemented in a dlstrlbuted fashend seeks to maximize the
bandwidth deliverable to the application.

Finally, we implemented a naive heuristiR), that selects in a greedy fashidh
random master locations, still in preventing neighborinastars situations. Each master
will produce% fraction of the total amount of tasks. The aim is to demotsstitze impact
of location-unaware decisions.

1.6. Simulations 85

1.6 Simulations

1.6.1 Methodology

We evaluate and compare our heuristics through extensivalaions using the SimGrid
toolkit [7]. We rely on simulations rather than direct expsgnts in order to make a fair
comparison between the proposed heuristics. Indeed, aiimulenables running of the
different tests on computing platforms having exactly thee dynamic behavior. In the
simulations, we used tree-shaped platforms as opposeapb-ghaped platforms, in or-
der to remove data routing issues. Although this assumpmtimrsiderably reduces the
difficulty of the problem (Meggido et al. [20] proposed a pudynial time algorithm
for solving the Maximal Covering Location Problem on tréeysed networks), it nev-
ertheless allows to simplifies the framework for exposing tiain claim of this study,
i.e. that location-aware decisions have a huge impact ohcagipn and system perfor-
mance. Moreover, many organizations rely on tree-shap#donis to interconnect their
computing resources [14].

Since a sub-tree can be reduced to a single super-node vakiiprocessing power [5],
it is not necessary to employ thousands of nodes to simdage-scale systems [13]. In
our simulations, the number of nodes in a tree was limitethty and each node could
have at mosti0 neighbors. A random tree is generated as follows. Each reodam-
bered with an ID numberbetweerd and99. Then, each nod#&,,: € [1,99] is connected
randomly to a nodé>;, j € [0,7 — 1]. The links have peak performance values comprised
betweent;,,;,, andF;, .. and the nodes betweep,;,, andr,,.... All random distributions
are uniform. The dynamic environments used in our simuiatiwere generated as fol-
lows. Each resourc®&; (node or link) has a cyclic behavior, i.e. its performancanges
n; times per cycle. The number of changesper cycle is randomly taken within the
interval [5, 15]. Resource performance fluctuations are relatively distatitme (every
50 treated tasks in average) in order to destabilize the sylSjeaneating a succession of
contexts. We do not claim that these decisions corresporehtistic network conditions.
We simply aim to compare the heuristics on different platfaonfigurations.

In this paper, we report the simulation of an independesk-tpplication composed
of 5000 tasks onl00 trees wherd,,,;,, = 0.01, F,0x = 0.02, 7 = 0.001 andry, g =
0.002. In other words, a master can sefeslaves in average. For the sake of generality,
we letJ,, = V, i.e. every node can be chosen as a master. The aim of thésargrb
decisions is to keep the number of parameters as low as p®ssifile maintaining the
problem complexity. Nevertheless, we expect our heusistigperform better in presence
of more constraints, e.g. with heterogeneous cost disimits, since the problem would
become more specific.

Finally, inspired by Kreaseck et al. [17], we determine thaghput rate of the sys-
tem by using a growing window. The total execution time isdid into100 equal-sized
time slots. Then, the window increases in size by steptaohe slot, and the throughput
rate delivered within the window time-frame is computed.

86 Paper 1

1.6.2 Scheduling issues

Once the set of master locations has been identified, the slegtes are free to decide
which master they are willing to serve. Communication patieare simple and well-
defined, requiring communication only between a master asldve@. When a slave re-
guests atask to a master, it measures locally the time i thieemaster to deliver the task.
Based on this information, slaves will decide which masteaddress the next request.
The slaves seek to identify at all times the master that is'dlusest” to them. On the
other hand, master nodes are forced to serve any incomingseao matter how heavily
loaded they are.

The slaves are allowed to buffer several tasks locally ireotd avoid starvation.
However, the number of local tasks is regulated by a threshol If there are less than
0, tasks buffered locally, then additional tasks will be resjad. Initially,6; = 1. During
the execution, nodes are allowed to increment their locaktiolds); only when (1) they
are starving and (2) if they recently succeeded to accumd)atsks locally (to ensure
that the current threshold is not sufficient). This mechanédlows the slaves to collect
enough tasks locally in order to avoid starvation.

1.6.3 Results

The results of our simulations are depicted in Figure 1.2¢ckvplots an average of tH&0
throughput rates (associated to ¥ trees) over time, achieved by the three heuristics
presented in Section 1.5. The x-axis reports the total exectime divided intol 00 time
slots, while the y-axis reports the platform throughputieedd within the time-frame
window. Hence, the higher a curve gets, the better the quureing heuristic performs.

Figures 1.2 (a), (c), (e) and (g) correspond to static enwirents, i.e. with no sys-
tem perturbation, whereas Figures 1.2 (b), (d), (f) and @njespond to highly dynamic
environments, i.e. where resource performances can degiasdn to1% of the peak
value.

The first observation to make is that the LP heuristic (whietkes location decisions
based on the LP-relaxation computed from an initial snajpshthe platform) outper-
forms the two other heuristics, even in dynamic environmeifihen, introducing a min-
imal amount of knowledge in the location decision proceieya to obtain substantial
performance improvements, as attests the superiorityeoBW heuristic over the RD
heuristic.

In most of the simulation sets, one can observe a steeplizatian phase, followed
by a short steady-state phase, in turn followed by a long slingin phase. This “wave-
shape” accentuates as one increases the number of mastisrph&nomenon is due to the
fact that more tasks can be handed out in the beginning ofén@igon, as one increases
the number of data access points. Then, as the computatemam some masters will
have handed out all their tasks before others, resultingeifopmance decrease. This
point highlights the importance of task load-balancingisetn the masters.

1.6. Simulations

87

Platform throughput

Platform throughput

Platform throughput

Platform throughput

Figure 1.2: Average of the00 throughput rates over time. In the dynamic envi-

30 a0 60

50
Time slots

static, B=1

30 40 50 60
Time slots

static, B=2

.
30 40 50 60
Time slots

static, B=4

30 40 50 60
Time slots

(g) static, B=8

Throughput

Throughput

Throughput

Throughput

10 20 30 40 50 60 70 80 90 100
Time slots
(b) dynamic, B=1
T T T T T T T T -
r @ |
sw H ||
RD A

10 20 30 40 50 60 70 80 90 100
Time slots
(d) dynamic, B=2
T T T T T T T T :
r @ ||
sw H
RD A 4

Time slots

(f) dynamic, B=4

20 30 40 50 60 70
Time slots

(h) dynamic, B=8

ronments, resource performances can degrade arbitrarily.

88 Paper 1

As expected, using a high number of masters closes the gapdmtthe different
heuristics. In effect, the more data access points theretlaeless margin there is to
make inefficient placement decisions. Nonetheless, thaidiey established among the
heuristics in static environments is respected within dyicanvironments.

Finally, an important choice for the decision maker is diegjdvhat level of expendi-
ture (i.e. how many masters should be deployed) can be @gsbif the resultant through-
put. Figure 1.3 re-plots the average throughput achievethdy P heuristic, when in-
creasing the number of masters deployed. One clearly sagsdéploying4 masters
would be appropriate, because there are not enough tasksdb and sustain a wor-
thy throughput with additional masters. Therefore, thelaepent of a high number of
masters should come along with a larger number of tasks tmepso

1.7 Conclusion and future work

This paper outlines the importance of resource placemarigidas for Grid Computing.
Decisions about where storage and computing facilitieslshue located on the Grid have
a tremendous impact on application performance. The ingfdotation-aware decisions
is illustrated with the classic Master-Slave tasking peafl which consists in allocating
a large number of independent, equal-sized tasks to a Gmigpased of a heterogeneous
collection of computing and communication resources. phjger suggests a simple but
mandatory departure from traditional implementationse fibed to deploy several mas-
ters to efficiently utilize large-scale platforms. We pabwia model for establishing and
operating master locations, and show that the problem oinignthe most profitable lo-
cations for hosting the masters is NP-hard. Still, we prepm$ocation-aware heuristic
that achieves very good performance on a wide range of siionga This work can be
extended in the following directions.

First, enabling the cooperation of several masters traasfig is a challenging task,
but mandatory in order to efficiently deploy multi-master $#a-Slave applications. In

0.17

0.16 -
015
0.14 -
013 -
012
011
o1 /S

0.09 1~
008 i
007 1
0.06 \

Platform throughput
Platform throughput

0.05

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Time slots Time slots

(a) static (b) dynamic

Figure 1.3: Average throughputs achieved by the LP heamstione increases the
number of masters.

89

particular, load-balancing techniques among masterdaheudesigned, in order to cope
with, and respond to fluctuations in resource performanck aaailability. Then, we
showed in this paper that some Grid computing problems ptdiggt connections with
well-known problems from operation research. Facility atien theory and Supply Chain
Design have been the subject of a wealth of research, andliggddthat models and so-
lutions to these problems can be adapted for Grid comput®igparticular interest are
Facility Location models under uncertainty (i.e. underayic conditions), and Facility
Location models with facility failures [11]. Effectivelfailures and variations in resource
availability are expected to be the rule rather than the gi@e within large-scale envi-
ronments, especially when the overall processing time pliegtions keeps getting larger
and larger.

Bibliography

[1] M. Adler, Y. Gong, and A. L. Rosenberg. Optimal SharingBedgs of Tasks in
Heterogeneous Clusters. 1B5th ACM Symp. on Parallelism in Algorithms and Ar-
chitectures (SPAA'03pages 1-10. ACM Press, 2003.

[2] K. Aida, W. Natsume, and Y. Futakata. Distributed Conipgitwith Hierarchical
Master-worker Paradigm for Parallel Branch and Bound Atbaor. In 3rd Interna-
tional Symposium on Cluster Computing and the Gpigge 156, 2003.

[3] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D rihiener. Seti@home:
An Experiment in Public-Resource ComputingCommunications of the ACM
45(11):56-61, 2002.

[4] G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G.n@@si, P. Crescenzi, and
V. Kann. Complexity and Approximation: Combinatorial Optimizati®roblems
and Their Approximability PropertiesSpringer-Verlag New York, Inc., 1999.

[5] C.Banino, O. Beaumont, L. Carter, J. Ferrante, A. Ledramd Y. Robert. Schedul-
ing Strategies for Master-Slave Tasking on HeterogeneouoseBsor Platforms.
IEEE Transactions on Parallel and Distributed Systefi§(4):319-330, 2004.

[6] O. Beaumont, A. Legrand, and Y. Robert. The Master-SRaeadigm with Het-
erogeneous Processor$EEE Transactions on Parallel and Distributed Systems
14:897-908, 2003.

[7] H. Casanova. SimGrid: A Toolkit for the Simulation of Alpgation Scheduling.
In Proceedings of the 1st International Symposium on Clusten@iting and the
Grid, page 430. IEEE Computer Society, 2001.

90

Paper 1

[8] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropiarchitecture and Perfor-

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

mance of an Enterprise Desktop Grid Systejournal of Parallel and Distributed
Computing 63:597, May 2003.

R. L. Church and C. S. ReVelle. The Maximal Covering LoaatProblem.Papers
of the Regional Science Associati@2:101-118, 1974.

J. Current, M. Daskin, and D. Schilling. Discrete Netkwd.ocation Models. In
Z. Drezner and H. Hamacher, editoFgacility Location Theory: Applications and
Methods chapter 3, pages 81-118. Springer-Verlag, Berlin, 2002.

M. Daskin, L. V. Snyder, and R. T. Berter. Facility Lowat in Supply Chain Design.
In A. Langevin and D. Riopel, editorkpgistics Systems: Design and Optimization
chapter 2, pages 39-66. Kluwer, 2005.

I. Foster and C. KesselmarT.he Grid, Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufman, San Francisco, 1999.

B. Hong and V. K. Prasanna. Distributed Adaptive Taslogdtion in Heteroge-
neous Computing Environments to Maximize Throughputintarnational Parallel
and Distributed Processing Symposium IPDPS’2(qixe 52b. IEEE Computer So-
ciety Press, 2004.

B. Hong and V. K. Prasanna. Performance Optimizatioa &fe-centralized Task
Allocation Protocol via Bandwidth and Buffer Managememt.CILADE, page 108,
2004.

B. Ko and D. Rubenstein. Distributed Self-StabiliziRtacement of Replicated Re-
sources in Emerging NetworkéEEE/ACM Trans. Netwl13(3):476—-487, 2005.

J. Krarup and P. Pruzan. The Simple Plant Location RrablSurvey and Synthesis.
European Journal of Operations ResegréR:36—-81, 1983.

B. Kreaseck, L. Carter, H. Casanova, and J. Ferrantetorfamous Protocols for
Bandwidth-Centric Scheduling of Independent-Task Amians. InIPDPS '03:
Proceedings of the 17th International Symposium on Pdrahe Distributed Pro-
cessingpage 26.1, Washington, DC, USA, 2003. IEEE Computer Spciet

M. Maheswaran, B. Maniymaran, P. Card, and F. Azzedinislble Network: Con-
cepts and Architecture. IGCGRID '02: Proceedings of the 2nd IEEE/ACM In-
ternational Symposium on Cluster Computing and the Gratje 464, Washington,
DC, USA, 2002. IEEE Computer Society.

M. Maheswaran, B. Maniymaran, P. Card, and F. Azzedineta{rid: A Scal-
able Framework for Wide-Area Service Deployment and Mamagg. InHPCS
'02: Proceedings of the 16th Annual International Sympwsan High Performance
Computing Systems and Applicatippage 61, Washington, DC, USA, 2002. IEEE
Computer Society.

91

[20]

[21]

[22]

[23]

[24]

[25]

N. Megiddo, E. Zemel, and S. L. Hakimi. The Maximum Ca@e Location Prob-
lem. SIAM Journal on Algebraic and Discrete Method$2):253—261, June 1983.

A. Morajko, E. César, P. Caymes-Scutari, T. MargalefSorribes, and E. Luque.
Automatic Tuning of Master/Worker Applications. In J. C. ha and P. D.
Medeiros, editorsEuro-Par, volume 3648 of_ecture Notes in Computer Science
pages 95-103. Springer, 2005.

G. Shao, F. Berman, and R. Wolski. Master/Slave Comgutn the Grid. In
HCW '00: Proceedings of the 9th Heterogeneous Computingk$tiop page 3,
Washington, DC, USA, 2000. IEEE Computer Society.

D. F. Sittig, D. Foulser, N. Carriero, G. McCorkle, and_PMiller. A Parallel Com-
puting Approach to Genetic Sequence Comparison: The M#gteker Paradigm
with Interworker CommunicationComputers and Biomedical Resear@4:152—
169, 1991.

M. D. Theys, M. Tan, N. B. Beck, H. J. Siegel, and M. JuitczyA Mathemat-

ical Model and Scheduling Heuristics for Satisfying Ptiagd Data Requests in
an Oversubscribed Communication NetwordlEEE Trans. Parallel Distrib. Syst.

11(9):969-988, 2000.

R. Wolski. Experiences with Predicting Resource Pannce On-line in Compu-
tational Grid SettingsSIGMETRICS Perform. Eval. Re80(4):41-49, 2003.

92

Paper 1

Paper 2

A Distributed Procedure for Bandwidth-Centric Scheduling of
Independent-Task Applications

Cyril Banino.

In Proceedings of 19th IEEE International Parallel and Dibsuited
Processing Symposium, IPDPS 2005

April 04-08 2005, Page(s):48a - 48a, Denver, USA.

©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale
or redistribution to servers or lists, or to reuse any copyrighted component of this work in other
works must be obtained from the IEEE

A Distributed Procedure for Bandwidth-Centric
Scheduling
of Independent-Task Applications

Cyril Banino

Department of Computer and Information Science
Norwegian University of Science and Technology
NO-7491 Trondheim, Norway

Abstract

The problem of scheduling independent tasks on heterogengees is con-
sidered. The nodes of the tree may have different processimes, and links
different communication times. The single-port, full degr model is used for
modeling the activities of the nodes. A distributed methoddetermining the
maximum steady-state throughput of a tree is presentedn, Mre show how
each node can build up its own local schedule independehtllyeorest of the
platform. In addition, the final schedule is asynchronouseuent-driven, mean-
ing that each node (except the root) acts without any tintegee information. A
local scheduling strategy which aims at minimizing the amai tasks buffered
at node locations during steady-state is introduced. Asisamuence, the lengths
of the start-up and wind-down phases are considerably esfluc

2.1 Introduction

A recent trend in high performance computing is to deploy potimg platforms that span
over large networks in order to harness geographicallyildiged computing resources.
The aim is often to provide computing power to applicationsigprecedented scale. Good
candidates for such environments kraster-Workempplications, which are composed of
a large number of computational tasks independent from etudr, i.e. where no inter-
task communications take place, and where the tasks camiyguted in any order. Many
applications have been and can be implemented under theM&stker paradigm. They
include: The processing of large measurement data sethBkBETI@home project [1],
biological sequence comparisons [14], or also distribgiedblems organized by compa-
nies like Entropia [9]. See [12] for more examples.

This paper is a follow on of recent work by Beaumont et al. jheell as Kreaseck et
al. [12], who also considered the problem of scheduling Btaglorker applications onto

96 Paper 2

heterogeneous tree-shaped computing platforms. Thercesooomposing the platform
may have different computation and communication speexigjefl as different overlap
capabilities. The platform topology is modeled by a treegemgheach node represents
some computing resource capable of computing and/or coreatimg with its neighbors
via message passing over interconnection links. The maiardage of using trees, as
opposed to the more general graphs is that no choices neesl itatle about how to
route the data [4]. The estimation of the different bandisdif the platform links can be
obtained using tools such as the Network Weather Servidediby local measurements.
The application tasks are modeled as requiring some ingatfil@, and producing some
output data file. A special processor, callediti@ster generates the input files associated
to the application tasks, decides which tasks to executehaw many tasks to delegate
to each of its children. In turn, each child decides whiclkgae execute, and how many
tasks to forward to its own children. In this paper, applaad such as SETI@home, i.e.
where the output files produced by the tasks are much smhbber the input files, are
considered. Consequently, the return of the output filebeéaraster node is negligible.
Throughout the rest of the paper, we assimilate input filéasks, and consider that tasks
can be communicated and computed.

In this paper, we present a lightweight distributed comrmation procedure which
allows each node to build up its local schedule autonomaustyder to attain the max-
imum steady-state throughput of the tree, i.e. that maxamthe number of tasks com-
puted per time unit. Our procedure is an efficient, practicel scalable implementation
of the theoretical results presented in [5]. The rest of theep is organized as follows:
Related work is reviewed in Section 2.2. In Section 2.3 wenfdly state our model of
computation and communication. Section 2.4 reassessdmititevidth-centric principle
that lays the foundations of our work. A distributed methoddetermining the optimal
steady-state throughput of a tree is given in Section 2.5shdev in Section 2.6 how each
node can build up its local schedule autonomously. An efitcs¢art-up strategy is given
in Section 2.7. Our main results are illustrated with an gxanm Section 2.8. Future
work is discussed in Section 2.9, and our contributions anensarized in Section 2.10.

2.2 Related work

“The traditional objective of scheduling algorithms is reagan minimization: Given the

application tasks and a set of resources, find a mapping ¢és$ke onto the set of proces-
sors and order the execution of the tasks so that (i) res@martgtraints are satisfied, and
(i) a minimum schedule length is provided” [6]. Recent s&gchave been conducted on
makespan minimization under heterogeneous conditionsuf@ent et al. [7] revisited the

Master-Worker paradigm with heterogeneous processascmnected via a bus. Dutot
extended this result to daisy-chains as well as “spidertgrafi 0], and showed that the

problem was NP-hard for heterogeneous trees [11]. We leetleat the scheduling strat-
egy presented in this paper is a good heuristic candidatelte the problem studied by

Dutot, since we are able to obtain the optimal platform tighlgaut using quick start-up

and wind-down phases.

2.3. Our steady-state model 97

“An idea to circumvent the difficulty of makespan minimizatiis to lower the ambi-
tion of the scheduling objective” [6]. The problem becomasaximize the steady-state
throughput of the platform, i.e. the number of tasks comgpker time unit.

Shao et al. [13] considered general interconnection piatfgraphs, and solve the
Master-Worker tasking problem in steady-state using a otflow approach. The au-
thors model the platform nodes using thmltiple-port, full overlapmodel [4], where
the number of simultaneous communications for a given ned®t bounded. Banino et
al. [2] showed how to solve this problem for general interextion graphs whose nodes
operate under theingle-port, full-overlapmodel using a linear programming approach.

Heterogeneous trees were considered by Kreaseck et al. wii@]presented two
autonomoushandwidth-centric scheduling protocols that address thetigcal problem
of attaining the maximum steady-state rate after somegpaand maintaining that rate
until wind-down. Two communication models are studied, riba-interruptible commu-
nication (which corresponds to our model), and the intdilblgo communication where
a request from a higher priority child may interrupt a commation to a lower priority
child. Although the work of Kreaseck et al. is a first step tmfgaa practical implemen-
tation of bandwidth-centric scheduling algorithms, untter non-interruptible commu-
nication model, their autonomous protocol might take nptiroal decisions, generating
hence long start-up phases as well as unnecessary largersiailbasks buffered at node
locations.

2.3 Our steady-state model

Our model builds on the model proposed by Beaumont et al. Jithfg we augment by
introducing the task computing and task communicatingsratéhe processors.

The target architectural/application framework is représd by a node-weighted
edge-weighted tre® = (V, £/, w, ¢) as depicted in Figure 2.1. Each noBec V repre-
sents a computing resource of weight meaning that nod®; requiresw; units of time
to process one task. Each edge : P, — P; corresponds to a communicating resource
and is weighted by a valug ; which represents the time needed by a parent ngde
communicate one task to its chikg.

< Master

Figure 2.1: A tree labeled with node (computation) and edgenfmunication)
weights.

98 Paper 2

All the w; are assumed to be positive rational numbers since theysamréhe nodes
processing times. We disallow; = 0 since it would permit nod®; to perform an infinite
number of tasks, but we allow; = +o0; then, P, has ho computing power, but can still
forward tasks to other processors (e.g. to model a switciild@ly, we assume that
all ¢; ; are positive rational numbers since they correspond to ¢hentunication times
between two processors.

We introduce the computing rate = wi which is the number of tasks that processor

P; can process per time unit, and the communicating rate= Ci which is the number
2,7

of tasks that processdr; can send to child?; per time unit. We IetJ%.O = 0, and(;
denotes the index set of the children of ndele

There are several scenarios for the operation mode of tlegsors, and we rely to
the classification proposed in [4]. A processor can do thiadskof activity: (i) it can
perform some computation, (ii) it can receive tasks fronpasent, and (iii) it can send
tasks to its children. The degree of simultaneity betweesdlthree activities indicates the
level of performance of a processor and its networking @evids important to point out
that different processors of the platform may operate udifarent modes. In this paper,
we concentrate on tHell overlap, single-pormodel [2,5], since it has been shown in [4]
that the other models reduce to it. In th'l overlap, single-porimodel, a processor can
simultaneously receive tasks from its parent, perform s¢imependent) computation,
and send tasks to one of its children. At any given time-sigpyen processor may open
only two connections, one in emission and one in receptiom stAte the communication
model more precisely: IP; sends one task tB; at time-steg, then:

e P; cannot start executing or sending this task before time#stec; ;,

e P; cannot initiate a new receive operation before time-stepc; ; (but, it can
perform a send operation and independent computation),

e P; cannot initiate another send operation before time-stap ; (but, it can perform
a receive operation and independent computation).

2.4 The bandwidth-centric principle

An iterative method that determines the maximum steadg-stde of a heterogeneous
tree has been presented by Beaumont et al. in [5]. Integhgtiit turns out that this
strategy ishandwidth-centric If enough bandwidth is available to the node, then all the
children are kept busy. However, if bandwidth is limitedgriitasks should be allocated
only to the children which have sufficiently fast communigcattimes regardless of their
computing speeds. Nevertheless, the computing speeds afhildren determine the
frequency at which children will request tasks to their pareso a faster processor will
request tasks more often than a slower one. What the bardegditric principle says is
that if two children are in concurrence for obtaining a tamigrity should be given to the
child with fastest communication time, as this will optimithe communication resource
of the parent.

Formally, let us recall the Proposition presented in [Sjdlvs the case for fork graphs.

2.5. Reversing the tree traversal 99

A fork graph as shown in Figure 2.2 consists of a négend itsk children P, ... P.
Py needs; units of time to communicate a task to chil. Concurrently,P, can receive
tasks from its own paren®_1, requiringc_; time units per task.

P_4 Py

Figure 2.2: A fork graph and the reduced node of equivalemipzding power.

Proposition 2.1([5]). With the above notations, the minimal valuewf for the fork
graph is obtained as follows:

1. Sort the children by increasing communication timesnRmeber them so that
1 <cg < <G

2. Let p be the largest index so that
Pioa <l Iifp<klete=1-3" & otherwise let = 0.

i=1w; =

_ -1
3. Thenwf—maux{c_l,zp — }

=0 wil Cp4+1

Based on the bandwidth-centric principle, Beaumont et ahceived a bottom-up
method that iteratively determines the steady-state fivput of the tree: At each time-
step, the leaves of the tree are reduced together with theémpinto a single node of
equivalent computing power determined by Proposition 2€k (Figure 2.2). The pro-
cedure ends when there remains a single node having a commaiver equivalent to
the entire tree. However, Beaumont et al. did not specify twachieve this maximum
steady-state throughput in practice.

2.5 Reversing the tree traversal

Although the bottom-up procedure based on the bandwidtlriceprinciple provides the
optimal throughput of the tree, a large number of unnecgssperations are done for
strongly bandwidth limited platforms (i.e. when there is@tleneck somewhere high
up in the hierarchy, causing that many nodes of the platfamrot be fed with tasks).
Indeed, in such cases, many fork graph reductions are pegtbunnecessarily since only
few nodes of the platform will be actually used during the patation. Therefore, we

100 Paper 2

propose to perform a depth-first traversal of the tree (aiegrto the bandwidth-centric
principle), allowing hence to visit only the nodes that vl used in the final schedule.

Beaumont et al. show in [5] that we can solve the problem withie time unit
interval, and then build up a schedule where an integer nummbtasks are sent and
processed. Our procedure is based on this result and ivobssactionsbetween the
nodes composing the platform.

Definition 2.1. A transaction is defined as a two-phase protocol between a parent node
P, and a child node”... The first phase of the transaction consist&jrsending a message
to P, containing a single numbet that represents the number of tasks tRgtcan supply
to P, per time unit. We term the first phasgeposal from P, to .. The second phase
of the transaction consists iff, sending a message back to its pargfhtcontaining a
single numbe# that represents the number of tasks tRatould not handle. We term the
second phase aacknowledgmentfrom F, to F,. Hence when the transaction is closed,
P, knows that its child®. can consumés — 6) tasks per time unit.

We use the following notationd; —— P, indicates that nodé”, sends a number
to nodeP,, and P, «*~ P, indicates that node’, receives a number from P,.

Our procedure works as follows: The noéfe currently visited during the traversal
of the tree will receive a proposal from its parédt;. P, will then evaluate how many
tasks it can process per time unit, and if there are some lefikfry to propose them to
its children. Py will then deal with its children one by one according to thadaidth-
centric principle, i.e. starting to deal with children thetve the fastest communication
times. P, will open a transaction with its first chil®; by proposing the maximum number
of tasks that it can supply t&; per time unit. P; in turn faces the same situation than
Py, and will keep a maximum of tasks for itself, and if there apee tasks left, try
to delegate them to its children by negotiating new tramsast Hence, proposals will
propagate down the tree, until either we reach a leave ofdle ¢ither all the tasks have
been allocated, or the current node has fully utilized itsdvadth and can not forward
tasks further down the tree. Then the ndéleat which the proposal propagation stopped,
will acknowledge its parent’, with the amount of tasks that it could not process, and
the transaction betweeR, and F. is closed. P, will then take into consideration its
transaction withP. by reserving enough bandwidth to honor the transaction, ifaitd
has some bandwidth left, as well as more tasks to delegallegpein a new transaction
with another child. Hence, proposals travel down the treenop transactions while
acknowledgments travel up the tree closing the transatioa recursive fashion.

Formally, let Py be the node currently visited during the tree traversal. et be
the parent offy, and P, P, ..., P be thek children of Py with communication times
c1,co,. .., c respectively. Further, lek) be the number of virtual tasks owned By, 7
be the bandwidth time aF, (to send tasks to its children), ang be the number of tasks
computed byP, per time unit. At the beginning of the procedure we héye= 0, 7o = 1
since the time unit interval is considered, and= 0.

Proposition 2.2. With the above notations, the optimal throughput of a ffgef height
h, is obtained via applying thBW-First() procedure.

2.5. Reversing the tree traversal 101

Algorithm 1 : BW-First(F)

1 begin

2 0o:=0,70:=1, g := O;

3 P A P_y;

4 | op:=min{rg, \};

5 50 == Qp,

6 foreach child P, taken according to the bandwidth-centric principle
7 if50:00r7'0:0then
8 | goto instruction 14;
9 /61 = min{50,70 X bl},
10 B P b

11 P & P;

12 do := 0o — (Bi — 0;);

13 | Toi=To— (B — 60;) X ¢
14 B, i) P_y;

15 end

Proof. In order to apply procedurBW-First() on the rootP,,.; of the tree, we merely
create a link connecting the root to a virtual paréhtwith no computing power. Then,
the maximum number of task,,, that the tree rooted i?,,,; can execute per time
unit is evaluated. Under thgingle-port, full overlapmodel, we havé,,.. = oot +
max {b; | i € Croot}. We then makeP, proposet, ... tasks toP,,.:, and call procedure
BW-First() on P...;. At the end of the procedurd?, will receive an acknowledgments
of # tasks fromP,,.:, and the optimal throughput of the tree is equal to the qtyanti
(tmaz — 0).

The proof is done by recurrence ovierthe height of the tree. Fdr = 1, the tree
is actually a fork graph. We will prove that for fork graphse BW-First() procedure is
equivalent to Proposition 2.1. Le} be the computing rate of the fork graph rootedn
Let us show that; = > r; + ¢ x by41, wherep ande are defined in Proposition 2.1.

First Py receives a proposal of tasks from its parenP-_,, and keeps as many tasks
as possible for its own computation. Thef,will propose the remaining tasks to its chil-
dren according to the bandwidth-centric principle. Forteeltild £;, Py must determine
whether all the remaining tasks can be communicated or nloén® proposal is made
to child P;. It is now the turn ofP; to execute thaBW-First() procedure. P; receives a
proposal of); tasks from its paren®,, keeps as many tasks as possible for its own compu-
tation and since’; does not have any children, sends baclkjdahe number of tasks that
it could not execute. At that point, eithé} is fully utilized («; = r;), or not (; < r;). In
the first case scenarid} will proceed to its next child, with previously adjusting and
7o, Cconsidering that; x r; time units will be necessary to furnist tasks toP;. Py will

102 Paper 2

then establish new transactions with its children untilsbeond case scenario takes place
(i.e. achildP,4 is not fully utilized). In this case, either all the virtualsks owned by
Py have been processed, By utilized all its bandwidth time and can not send as many
tasks asP,+1 can consume. In the first case, the limiting factor is the nemalh tasks\
received fromP_;. In the second case, the limiting factor is the bandwidtiipf % fed
fully its ¢ first children with tasks, i.e¥i < ¢, = r;. Py will hence spend i ¢;r;
time units to communicate with itg first children, and only:, 1,41 time units with
P,+1. Since the bandwidth oF, is saturated, we haVg'—? ¢;r; + a, 41711 = 1. Since
P, 41 could consume all the tasks proposedhywithout being fully utilized, we have
ag+1 < r¢+1 Which by scaling both sides wilt), | givesagi1cq+1 < 7¢41¢4+1. CONse-
quently, we havé ‘=% ¢;r; > 1, which givesy = pande = 1 — = ¢iry . If ¢ = k,
then all the children have been fully fed with tasks, and wesha= 0.

We have hence established that

p
Ty :min{)\,Zri—ks X bp+1},

=0

and, since in the fork graph case= b_;, we haver; = wif wherewy is given by
Proposition 2.1. Consequently, proced@\/-First() applies Proposition 2.1 for the fork
graphs case.

Assume now that Proposition 2.2 is true for ranki.e. for trees of height. Let us
now prove that Proposition 2.2 is also true for rank 1. If a nodeP; is not visited while
applying procedurdW-First() (e.g. its parent has no time left to communicate, or no
more tasks to delegate), then we can merely remove all thérealyooted inP; without
influencing on the final throughput of the tree. Assume heheé @pplying procedure
BW-First()to a treeT},,; involves visiting a node; of depthh. If P; does have some
children, this implies that the sub-tréé rooted inP; is a fork graph. The proceduB\V-
First() applied to the roof’; of the fork graphF; will determine the throughputz, of F;.
The fork graphF; is then equivalent to a single node having a computing rataléqrr, .
Consequently, applying proceduB&V-First()on a tre€l},, 1 of heighth + 1 is equivalent
to applying procedurBW-First()on a tre€l}, of heighth. Then Proposition 2.2 holds for
allh > 1. O

The BW-First()procedure is morefficientthan the bottom-up method, since only the
nodes that are effectively used in the final schedule argedisMoreover, it is moreon-
venientthrough a straightforward recursive implementation. dujeve merely traverse
the tree in a depth-first manner, and are hence released liwbutden of identifying for
each step which set of leaves should be transformed. Particithe BW-First() proce-
dure might be a useful tool for topological studies, whiah at determining the best tree
overlay networkthat is built on top of the physical network topology [12]. Aick way
to evaluate the throughput of a tree allows to consider awg@eeof trees.

Moreover, thdBW-First()procedure can be implemented as a lightweight communica-
tion protocol between the nodes of the platform. Indeedoftienal throughput of the tree
is obtained without access to any global information. Eamfermakes its decisions based

2.6. Reconstructing the schedule 103

on information that is directly measurable plus on add#@ldnformation received from
its parent and children. One could term such a distributetbpol semi-autonomous

For dynamic adaptation concerns, one could imagine theviallg strategy: The root
of the tree, receiving periodically the results of the commpans, can measure if there has
been a drop in throughput performance. Under a certainhthlgsthe root might initiate
the BW-First() procedure once more in order to capture the actual stateeqflétform.
Since the messages exchanged between two nodes duriBy\terst() procedure are
single numbers, we could argue that the running time oB¥W&First() procedure is neg-
ligible as opposed to the time of communicating tasks. H@wnethis last point needs
more investigation, and we leave this issue for future work.

Finally, infinite networks have been studied by Bataineh Rodertazzi in [3]. The
authors showed that a finite-size network tree load sharidiyisible job can perform
almost as well as an infinite network tree. TB/-First() procedure allows to determine
the throughput of infinite network trees, as opposed to thmbvup method.

2.6 Reconstructing the schedule

When theBW-First()procedure has been executed, each node has all the ratiunes of

its activity variables as its disposal. Hence, during ometinit, lety_; = % = (A—do)

be the number of tasks that noflgreceives from its pareniy, = Z—g = «g be the number

of tasks thatF, computes locally, ang; = Z— = (fB; — 0;) be the number of tasks that

Py sends to each chil@’;. Note that all the numerators and denominators are positive
integers, andy_1, np andn; can be equal to zero. The steady-state regime is ensured by
the fact that node”, receives as many tasks as it can consume. dtiservation law

translates into equation (2.1).

k
no1= Y m; (2.1)
=0

Our aim is now to build up a periodic schedule where an integenber of tasks
are sent and/or executed. As mentioned in [6], we can obtaperiadT by taking the
least common multiple of all the denominatgisfor each node. However, this approach
has a major inconvenient. The period might be embarragsiloglg, which makes it
inconvenient to describe the activity of the nodes, andiregunnecessary large buffering
spaces to store the tasks required from one period to another

2.6.1 Asynchronous schedule

In order to obtain a more compact description of the schedaveepropose to desynchro-
nize the activities of theingle-port, full overlapmodel, i.e. receiving tasks, computing
tasks and sending tasks. After all, this model allows toquerfthese three activities
concurrently.

104 Paper 2

1§ is defined as the shortest period during which nfgleeceives an integer number
¢_ of tasks from its parent]; is defined as the shortest period during which néye
executes an integer numbgy of tasks; andlj; is defined as the shortest period during
which nodeP, sends an integer number of tasks to each child;.

Lemma 2.1. With the above notations, the minimal periods as well asrteger number
of tasks treated are obtained as follows:

T(‘)S:lcm{,uiHECo} (pi:mXTg,ViECo
1§ = po o =m0 x Ty (2.2)
Ty =12, o1 =n-1x1g

Proof. Node Py must send); = Z— tasks per time unit to each chilg. In order to obtain
a minimal period where an integer number of tasks is sentdb ehild, we have to take
the least common multiple of all the denominatrs | i € Cp}.

Node Py, must computeyy = ”—g tasks per time unit, which gives a minimal period of
1o time units during whichpg tasiis are computed.

Since any nodé”, receives tasks only from its parent, the receiving peffif Py
should be equal to the sending peribd, of its parentP_;, which has been shown to be
minimal. Obviously the root of the tree should not receivg &sks, and we can enforce
T:oot =0.

O

Proposition 2.3. Any nodeP, can desynchronize its activities according to Lemma 2.1
without violating the conservation law.

Proof. By taking the least common multiple of the three asynchrermariods, we obtain

a periodi} during which all the received tasks are consumed. That @ytceveryly time
units, Py receives an integer numbegr_; of tasks from its parent, computes an integer
numbery, of tasks, and sends an integer numierof tasks to each child®,. This
translates into equation set (2.3).

To = lem{Ty, T, 15 }
X-1=1-1x1p
xo0 = 1o x 1o
The only requirement for ensuring steady-state with asyrgius activities is to dis-
pose of enough tasks buffered at node locations. For nowpasshaty ; tasks have
been buffered during the start-up phase. Then, we have dysteenber of tasks stored
from one periodl}, to another, which ensures steady-state behavior.

Xi = n; x 1o, Vi € Co

2.3
X-1= Zf:() Xi (2:3)

O

2.6.2 Event-driven schedule

We now propose an event-driven schedule, where any tinageteinformation has been
removed (except for the root node). Consider first the casmyphodeF, different from

2.6. Reconstructing the schedule 105

the root. Lemma 2.1 gives the minimal peridgf and7j; for computing and sending
tasks respectively. The minimal perid@ during which an integer number of tasks is
consumed (either processed locally or delegated to a atalile obtained by taking the
least common multiple dfiy andZ;j. Letyy be the number of tasks executed Ryevery
T§ time units, andy; be the number of tasks delegated to childevery T time units.
We have hence the following equation set:

T5 = lom (T3, T)
o = no x T (2.4)
1/)2‘ =1n; X TOC,\V/Z c C()

Py does not need time-related information any longer. Inst€aavill handle incom-
ing tasks by bunches of size = E _o¥i. Indeed, of all the tasks thdl, will receive
from its parent,-= fraction of them are intended for itself, anbl fraction of them are
intended for each child; (provided that); > 0). Therefore, the onIy information which
is necessary is to know how many tasks should be executellylgica. 1), and how
many tasks should be delegated to each cHjldi.e. ;) every T time units. Fy will
then handle incoming tasks by bunches of sizevithout using any time-based informa-
tion. The event-driven schedule for any nagedifferent from the root is summarized by
procedureSteady-State()

Procedure St eady- St at e(F)
begin
while true do
foreach bunch of¥ tasksdo
Computey, tasks locally ;
foreach child P; do
| Sendy; tasks toP;

end

Since the computing platform is a tree, nodes receive tasksfmm their parent.
One can then let a receiving thread blocked in receptiontingaior tasks to arrive from
the parent, and storing them locally upon reception. Or @meuse non-blocking receive
calls. Consequently, we do not need to describe furtherebeving activity.

The case of the rooF,,.: is slightly different, sinceP,,,; has all its tasks as its
disposal. Hence we can let the root compute all the time, ahdaonsider the sending
activity. P,...: Will consequently use thg; instead of the);. However, ifF,...; has enough
bandwidth to feed all the nodes of the platform, thén,; must use its sending period
T7 . In order to ensure that the conservation laws are respeatedence to maintain the
steady-state behavior of the system. In this way, the robtegulate the arrival rates of
tasks to the other nodes of the tree, by feeding every ¢hiith ¢, tasks every’? , time

units. The associated schedule of the root is describeddnegureSteady-State-Root()

106 Paper 2

Procedure St eady- St at e- Root (P,
begin

if 700t > 0then

foreachtime period?’®

root

L foreach child P, do

do

| Sendyp; tasks toF;;

else
while truedo

foreach child P, do
| Sendp; tasks toP;

end

2.6.3 Local scheduling

Although the event-driven schedule ensures the steatly+g&gime, some scheduling de-
cisions remain to be taken. Indedg, will treat tasks received from its parent by bunches
of size ¥, but in which order should it delegate tasks to its childrexrd which tasks
should be kept for itself? All the schedules are equivaleteims of steady-state through-
put. However, some schedules might be more advantageousthers with respect to
memory limitations. The one we are proposing has been desigith the objective of
minimizing the number of tasks that will be buffered at sieathte. Obviously, minimiz-
ing the number of tasks buffered at steady-state, is of@stegince it reduces memory
usage during the computation. In addition, the low numbéasis required to ensure the
steady-state regime, will lead to fast start-up and windsdphases (see Section 2.7).

Our local schedule strategy interleaves the incoming tasportionally to they
guantities { for the root). Let us start with nod®, itself which should computé, tasks.
We merely split the unity domain int@)y + 1) parts, each of siz&, = io The same
operation is repeated for each chit and the unity domain is split int@); + 1) parts of
SizeA; = wi (V; > 0). When this is done, we obtain an order among the incomirgtas
that corresponds to our allocation of tasks to nodes. Leakes an example to illustrate
this strategy. Consider a nod® having two childrenP; and P,. We letyy = 1,11 = 2
and, = 4. The allocation for our example is depicted in Figure 2.3e Tirst task is
sent to,, the second td”, the third toF, etc.

P, Py P, P

0
2 1
5 2

1
3

P, P

3
5

P

4
5

1

Glm —t—
[T Cppu— R

Figure 2.3: Scheduling the incoming tasks

2.7. Efficient start-up phase 107

If two processors are contesting for one task, we arbiyramiloritize the processor
with smallesty. If both processors have an equalwe prioritize the one with smallest
index. The rationale behind this strategy, is to space @kistintended to one node as
much as possible. Instead of giving the nodes all their taskace, we disseminate them
along the period, making it possible for the nodes to constasks almost as fast as
they receive them. Furthermore, due to symmetrical reasbaslescription of the local
schedules can be divided by two.

2.7 Efficient start-up phase

Usually, the start-up phase is considered as just a way & &mt steady-state regime
[2,5,6]. The traditional answer to this problem is to sergksadown the tree without
doing any useful computation, until each node gets the nuwittasks required to enter
the steady-state regime. This takédimes the maximum depth of the tree, whéres
the steady-state period of the tree [5].

Alternatively, Kreaseck et al. [12] propose a demand-arig&art-up strategy, where
nodes request tasks to their parent, which in turn will foovhe demands up the hier-
archy. However, they observed that in practice, their matexperienced long start-up
phases.

It is of prior importance to be able to reach steady-stateasisds possible. Indeed,
under dynamic conditions, recomputing the optimal sctedight be necessary in order
to efficiently utilize the platform. Under these conditipm®t being able to execute any
tasks during the start-up phase becomes no longer acoept&olr these reasons, the
importance of the start-up and wind-down phases should @aotibhimized. We propose
a start-up phase where computations are allowed. In faetyewde will act according
to its event-driven schedule from the beginning of the cataian.

Proposition 2.4. Applying the event-driven schedule, from the beginninh@tbmputa-
tion, leads every nodg, to its steady-state regime, in at mgst7y? | i € Ay time units,
where Ay is the set of ancestors of nod.

Proof. Intuitively, during the start-up phase, nodes will recdamsks at full rate, but since
they do not have buffered tasks at their disposal, will gasaiting for them to arrive.

Nodes will store locally incoming tasks and schedule themmédiately. Hence, node
buffers will be filled up with tasks, much like the way a pipeiis getting full, until the

task consuming rate catches up with the task receiving rate.

Formally, consider any nodg, different from the root. From equation set (2.3) at
steady-sate we have?, receivesy_; tasks everyl’*; time units from its parenf_;.
Assume that at time stefy P_ is in steady-state. Assume also that during the time
period[t,t+T%,], Py can consume only of thesex_; tasks (sinceé does not have any
tasks buffered yet, some time will be spent waiting for thenartrive). The(x_1 —)
tasks left are hence stored By for the next period of tim&™® ;. During the time period
[t + T5,,t + 2T%,], Py receivesy_; new tasks. We know tha®, can consume\ of

108 Paper 2

the new tasks. SincE, owns(x_; — A) tasks from the previous period, is no longer
idle while waiting for tasks. Hencd}) consumes\ + y_1 — A = x_1 tasks, and is in
steady-state at time-step- 7. Since the root of the tree is already in steady-state from
the beginning of the computation (at= 0), applying this reasoning from the root down
the hierarchy gives =) "T77 | i € A,.

[

It is important to point out that, due to the continuity beémeone time period to
another,P, will enter into its steady-state regime earlier than tinepst= > 77 | i € A,.
While the entire tree enters the steady-state regime asa®afl the nodes entered in
steady-state. Such behavior can be observed in the exaffrpéztion 2.8.

2.8 Example

Let us illustrate our results with an example taken from {ddnsider the tre& depicted

in Figure 2.4 (a). Proceduf®@W-First() obtained a throughput dfo tasks everyd time
units, which corresponds to the result obtained by the botip method of Beaumont
et al. [4]. The successive transactions established dtnegW-First() procedure are
depicted in Figure 2.4 (b). Note that nodes Py, P, andP;; were not visited, meaning
that they will not be used in the final schedule. The numberasks that each node
receives {_1) and computesry) per time unit are depicted in Figure 2.4 (c). The final
description of the local schedules is very compact and igctegpin Figure 2.4 (d). The
final computation, with start-up and wind-down phases isaeg with a Gantt diagram
in Figure 2.5.

We would like to point out few interesting observations. Tiee has a steady-state
periodT of 360 time units, while the rootless tree has a throughputofasks everyl0
time units. The start-up phase lasts 40rtime units, which is equal to one steady-state
period of the rootless tree. During the start-up phase,db#ess tree execute&® tasks,
that is to say80% of its optimal throughput. At an arbitrary point in steagtgte (time
stepl115), we stopped delegating tasks to the tree, and observeththaind-down phase
lasts for only10 time units ¢ times shorter than the steady-state period of the rootless
tree). This very short wind-down phase is the result of ooalechedule strategy, which
aim at minimizing the number of tasks buffered during stestdye.

2.9 Future work

Handling the return of the results back to the master shoalad¢dnsidered for future
work. The bandwidth-centric principle does not hold wheea taturn of the results are
considered, despite the claim of Beaumont et al. [5] and$&elaet al. [12]. In their work,
the aforementioned authors model the communication tineésd®en two processors;
and P; as being the time needed by a paréftto communicate the data for one task
to a child P; plus the time for the child to return the result when it is fired. They

2.9. Future work

109

(a) The platform tree.

7

PP, BLAP. PSP PROP,
PEp, P,AP, PP, PP,
REp, PEp, P%p PYR,
P, & p, PO§P7, plp, pLp,.

(b) Transactions established.

EAEAEATARALANAN

39 | 7| 1| 1| 1|31

-1 0| % || 5|5 |35 |d0|d0
1 1 1 1 1 1 3 | L

Tlo 9 | 5|1]| 5|5 |5 |30 |20

¢) Number of tasks received and computed per time unit.

| Nodes| ¥ | Local Schedules

Py 40 | 19P, P, 20P,

P 39 | 3P, P, 3P, Py, Py, s, 2P, P,
3P2,P1,2P2,P6,2P2,P1,3P2,P1,
2P2,P6,P2,P1,3P2,P1,3P2

P, 7 | P, Py, Ps, Ps, Ps, Py, P5

P3 1 P3

P4 1 P4

P 1| B

P6 1 P6

P7 1 P7

(d) Local Schedules.

Figure 2.4: Building-up local schedules.

Start-up Steady-state : Wind-down
- - - - - - - -"—- - - - - - = A N N
H _______________ _.H i
| _______________ a
A =1 = == | =1 = == == =1 ==
I | E— | E— I | E— | E— | E— | I | E—
_______________ o
- - - - - - - - - - - - - - = a . .
S i I P 3 F&W;}i SNV SN ARSI AR RN SENNAN SN AN O N = !
.- - E E
N T i) [N o [T M [T N N T N N T T i N T o N N N
O T [— O O O oo o [N — | 5 I i | [— [R I B
_——— — — — — — — — — — — - — -~ .
| ________________ a
[T o [T N T N o [T N T N N T N T N T i N T N =
O I |] O oo o | — |5 O o o o | — | I
: o

TTTTTITTTTTTTTITIIT] T T T TT T T T T I T T T T T T I T T TTIT T I T TITTTT T T T T T I T T T T T T T T T T T T T T I T I T TITTT] IIITTITTIITITTIT] .
| 1!\ | \| \| NN ! NN NN NN NN 1& N N .

S |
Po\& 3

time
.

0

III||IIII|IIII|IIII|IIII|IIII|IIII|IIIIiIIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIIIiIIII|IIIIi
5 10 15 20 25 30 35 . 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 . 115 120 .

Figure 2.5: Final computation: S = Send, C = Compute, R = Recei

125

oTT

Z laded

2.10. Conclusion 111

argue that “for the purpose of computing steady-state hehat does not matter what
fraction of the communication time is spent sending a prokd@d what fraction is spent
receiving the results” [5]. We will show that this simplift@an is erroneous. Although
the simplification holds for the traffic of messages on themamication links, it neglects
the receiving port resource. Let us illustrate this with akplatform example composed
of three nodes. The master has only two children. Each chifdprocesd task per
time unit. It taked).5 time units to send one task from the master to its childred,0ah
time units to return the results of one task from the childieethe master. The optimal
throughput of the platform is thehtasks per time units. If we join the time sending the
input data with the time for receiving the results (as suggke [5, 12]), we obtain a
platform throughput ofl task per time unit. Hence, the simplification does not work fo
returning the results back to the master, and consequéglptoblem is still open.

It would be interesting to evaluate tB&V-First() procedure using simulations (for ex-
ample with the SimGrid toolkit [8]), and compare it to the@uimous protocol proposed
by Kreaseck et al. [12]. Especially, measuring the overhieadrred by the global syn-
chronization phase would give some insight on how freqyaht BW-First() procedure
might be initiated by the root. Finally, trying differentdal schedules might be interesting
with respect to start-up and wind-down phases as well as mgelingtations.

2.10 Conclusion

The problem of allocating a large number of independentaksjzed tasks to heteroge-
neous trees was considered. We assumed that a specific hedraster initially, holds
the data associated to the tasks, and that returning thksre$uhe computations to the
master is negligible. This paper made the following comtitns to this problem:

e We proposed a distributed method, 8%/-First() procedure which is an efficient,
practical and scalable implementation of the theoretiesiliits presented in [5].

e Based on the results of tH&W-First() procedure, each node can then build up its
own local schedule independently of the rest of the platforfime result is a loosely
synchronized schedule, where nodes are synchronized dhiyheir children, as opposed
to the traditional approach where all the nodes of the platfare synchronized together.

e The resulting local schedules are event driven, meaningetvery node (except
the root) acts without any time-related information, andsamuently, their description is
very compact.

e We proposed a local schedule strategy that makes use of &amalint of tasks
buffered at steady-state. Not only this approach requéss inemory, but it also consid-
erably reduces the length of the start-up and wind-downgshas

e We presented a start-up phase strategy which allows usafypatation as opposed
to the traditional approach.

The goal of this paper was to close the gap between theoryrantqe by embedding
theoretical knowledge into a practical and scalable implatation. We believe that the
techniques presented in this paper are valuable for cangescheduling strategies that

112

Paper 2

tackle the platform dynamics, i.e. where resources extipiamic performance charac-
teristics and availability.

Acknowledgments

The

author would like to thank Anne C. Elster as well as OfiBaumont for their

comments and suggestions, which greatly improved the fiexaion of the paper. This
research was supported by the Department of Computer aadriafion Science (IDI),
at the Norwegian University of Science and Technology (NTNU

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D rihlener. Seti@home:
An Experiment in Public-Resource ComputingCommunications of the ACM
45(11):56-61, 2002.

C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Ledramd Y. Robert. Schedul-
ing Strategies for Master-Slave Tasking on HeterogeneauseBsor Platforms.
IEEE Transactions on Parallel and Distributed Systeff{4):319-330, 2004.

S. Bataineh and T. Robertazzi. Performance Limits favcdeéssor Networks with
Divisible Jobs.IEEE Transactions on Aerospace and Electronic Systé814189—
1198, Octobre 1997.

O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Ybéb Bandwidth-
Centric Allocation of Independent Tasks on HeterogenedadgdPms. Technical
Report RR-2001-25, LIP, ENS Lyon, France, June 2001. URtp:Mvww.ens-
lyon/~yrobert.

O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Yod&kb Bandwidth-Centric
Allocation of Independent Tasks on Heterogeneous Platofminternational Par-
allel and Distributed Processing Symposium IPDPS’2@&yes 67—-72. IEEE Com-
puter Society Press, 2002.

O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Ste&thte Scheduling on

Heterogeneous Clusters: Why and How?6th Workshop on Advances in Parallel
and Distributed Computational Models, APDCM 20@4ge 171a (8 pages). IEEE
Computer Society Press, 2004.

O. Beaumont, A. Legrand, and Y. Robert. The Master-SlkRaeadigm with Het-
erogeneous Processor$EEE Transactions on Parallel and Distributed Systems
14:897-908, 2003.

113

[8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

H. Casanova. SimGrid: A Toolkit for the Simulation of Alpgation Scheduling.
In Proceedings of the 1st International Symposium on Clusten@iting and the
Grid, page 430. IEEE Computer Society, 2001.

A. Chien, B. Calder, S. Elbert, and K. Bhatia. EntropiarclAitecture and Perfor-
mance of an Enterprise Desktop Grid Systedournal of Parallel and Distributed
Computing 63:597, May 2003.

P. F. Dutot. Master-slave Tasking on Heterogeneousdsors. Irinternational
Parallel and Distributed Processing Symposiymage 25b. IEEE Computer Society
Press, April 2003.

P. F. Dutot. Complexity of Master-slave Tasking on Hegeneous Tree&uropean
Journal on Operationnal Research64(3):690-695, August 2005.

B. Kreaseck, L. Carter, H. Casanova, and J. Ferrantetoamous Protocols for
Bandwidth-Centric Scheduling of Independent-Task Amtlans. InIPDPS '03:
Proceedings of the 17th International Symposium on Pdrate Distributed Pro-
cessing page 26.1, Washington, DC, USA, 2003. IEEE Computer Spciet

G. Shao, F. Berman, and R. Wolski. Master/Slave Comgutn the Grid. In
HCW '00: Proceedings of the 9th Heterogeneous Computingk$tiop page 3,
Washington, DC, USA, 2000. IEEE Computer Society.

D. F. Sittig, D. Foulser, N. Carriero, G. McCorkle, and_PMiller. A Parallel Com-
puting Approach to Genetic Sequence Comparison: The M#gteker Paradigm
with Interworker CommunicationComputers and Biomedical Resear@4:152—
169, 1991.

R. Wolski, N. T. Spring, and J. Hayes. The Network Wea®ervice: a Distributed
Resource Performance Forecasting Service for Metacongpulournal of Future
Generation Computing Systeni$(5-6):757—-768, 1999.

114 Paper 2

Paper 3

Master-Slave Tasking on Asymmetric Networks

Cyril Banino-Rokkones, Olivier Beaumont and Lasse Natvig.

In Proceedings of 12th International Euro-Par Conference,
Euro-Par 2006

August 29 - September 1, Pages 167-176, Dresden, Germany.

115

Master-Slave Tasking on Asymmetric Networks

Cyril Banino-Rokkone' Olivier Beaumont and Lasse Natvig

'Norwegian University of Science and Technology, NO-749dritiheim, Norway.
2LaBRI, UMR CNRS 5800, Domaine Universitaire, 33405 TaleBeelex, France

Abstract

This paper presents new technigues for master-slave tpskitree-shaped net-
works with fully heterogeneous communication and procegsesources. A
large number of independent, equal-sized tasks are dittdkfrom the master
node to the slave nodes for processing and return of resest firhe network

links present bandwidth asymmetry, i.e. the send and redewdwidths of a
link may be different. The nodes can overlap computatiorh ait most one

send and one receive operation. A centralized algorithtmtlaximizes the plat-

form throughput under static conditions is presented. &#iger, we propose
several distributed heuristics making scheduling desssimased on information
estimated locally. Extensive simulations demonstrate disdributed heuristics
are better suited to cope with dynamic environments, bot@snpete well with

centralized heuristics in static environments.

3.1 Introduction

In this paper, we consider the allocation of a large numbandépendent equal-sized
tasks onto a tree platform. We concentrate on tree-shajpdfnphs since they represent
a natural framework for master slave tasking. More impdifamdministrative orga-
nizations often rely on tree-shaped networks to interconnemputing resources [14].
Initially, the root of the tree (master node) holds a largedbuof tasks. Those tasks will
be either processed by the master node or transmitted thililsrodes (also called slave
nodes). Then, in turn, the child nodes face the same altwtatioblem (either processing
the tasks locally or forwarding them to their child nodes)e ¥énsider the case where
slave processors need to send back a file of results afteegsiog each task. Even if
this is the most natural situation, it is worth noting thatsinaf the papers on independent
tasks scheduling or Divisible Load Theory (DLT) do not caiesithose return commu-
nications. Targeted platforms are fully heterogeneoes,hioth the processing resources
and the communication resources have different capadaitiessms of processing power
and bandwidth. Moreover, the network links present bantweagymmetry in the sense

118 Paper 3

that the bandwidth for sending tasks down the tree may berdift from the bandwidth
for returning results up the tree.

We concentrate on the influence of dynamic resource chaistte on the allocation
scheme. In shared and unstable environments such as gdgeanto peer systems, the
performance of the resources may well change during theuigeoof the whole process.
In this context, it is not realistic to assume that one of theas knows at any time step the
exact performance of all resources and is able to make ojgichaduling decisions [14].
Therefore, the main question consists in determining wdretie allocation scheme can
make use of some static knowledge about the platform (féamte, the optimal solution
computed from an initial snapshot of the platform), or wieetive need to rely on fully
dynamic scheduling schemes. In order to answer this quesiie first derive optimal
scheduling algorithms (with respect to throughput maxatian). Then we present sev-
eral heuristics. Some of them make their scheduling dewsising the optimal schedul-
ing policy, computed using a snapshot of resource perfocmaharacteristics. Those
heuristics may lead to optimal scheduling decisions iricsttvironments. On the other
hand, we propose a set of fully dynamic allocation heusstiiat make their scheduling
decisions only according to information measurable lgcallhose heuristics may give
poor results in static environments, but their performarare expected to be more robust
in dynamic environments. We compare all those heuristicautih extensive simulations
using the SimGrid toolkit [9]. We rely on simulations ratiiban direct experiments in
order to make a fair comparison between proposed heurigtideed, simulation enables
running of the different tests on computing platforms hgvxactly the same dynamic
behavior. Moreover, SimGrid enables to define the trace dbpmance data over time
for each processing or communication resource. Theretasgyossible to compute (off-
line) the optimal solution at any given time step and it iséiere possible to compare
the performances of the different heuristics between thethagainst the optimal ideal
solution.

The rest of the paper is organized as follows. Section 3.2vetéd to a survey of
related work, both DLT studies, independent tasks scheglaind on dynamic scheduling.
Then, we present our platform model in Section 3.3 and howntbtfie optimal solution,
in presence of return messages, in Section 3.4. Sectiottedes $she main Theorem of this
paper, which provides a mean to optimize the nodes bandwitlthation. Section 3.6
presents a task-flow control mechanism that regulates trau@inof tasks and results
buffered by the nodes throughout the execution. The setmtfalezed and distributed
heuristics are described in Section 3.7. The methodolodyesults of the simulations are
discussed in Section 3.8. Finally, we give some remarks andlgsions in Section 3.9.
Due to space limitation, many of the technical details ha@nlomitted, but can be found
in the extended version of this paper [3].

3.2 Related work

The problem of master-slave tasking on heterogeneous katferms has already been
widely studied, both in the context of Divisible Load ThediLT) and independent

3.3. Platform model 119

tasks scheduling. A divisible load is a perfect parallek tidmat can be arbitrarily split and
allocated to slave processors, without processing ovdrhEae overall load is first split
at the master node in order to minimize the total executioreti Tasks are distributed
in one round to the slaves, so that the master node makes ¢igods about the set of
slaves to be used, the amount of data to be sent to each stal¢he communication
ordering [7, 10, 16]. When return messages are taken intouatctwo permutations
must then be determined (one for tasks distribution and oneekults collection) [4, 8].
Although the complexity of this problem is still open, Roberg et al. [1] proved that
in the case of a homogeneous single-level tree, the optiofeddsile for both outgoing
and incoming messages can be determined, and the optimalanB FIFO orderings are
given in [5] for heterogeneous single-level trees.

On the other hand, when considering independent tasks @aingdthe master node
faces the allocation problem for each task and the commummnsawith its child nodes
may well be split into several rounds [11, 15, 17]. Receralearch studies have focused
on steady-state scheduling, i.e. throughput maximizgipni3, 15]. The steady-state
scheduling approach has been pioneered by Bertsimas andr@krn6] who consid-
ered packet routing and proposed to concentrate first onm@s@ccupation rather than
scheduling. The optimal solution for resource occupatgiven link capacities, is ob-
tained via a linear program. Then, an algorithm based onrsaipps is proposed for
building the actual schedule of packets. This idea has bdapted in [2] to the distri-
bution of independent tasks on static platforms. Resullgeatmn was not considered
in [2], but the linear program presented in Section 3.4 igeatiadaptation of the solution
proposed in [2].

Dynamic scheduling of independent tasks has not been witaljied. Recently,
Hong et al. [12—-14] proposed a very nice algorithm, basedametralized versions of
flow algorithms. It is worth noting that this algorithm assesra strongly different com-
munication model than the one presented in this paper, amskgoently cannot be easily
adapted to our model. Here again, the results collectiombbibkeen considered.

3.3 Platform model

The model considered in this paper is based on the model gedpo [2] that we augment
by introducing communication weights for returning congtiatn results back to the mas-
ter. Processing nodes are assumed to be connected via aveaideed edge-weighted
treeT = (V, E,w,c,) as depicted in Figure 3.1.

Each nodeP; € V represents a computing resource of weightmeaning that node
P; requiresw; units of time to process one task. Each edge correspondsdmangni-
cating resource and is weighted by two valueswhich represents the time needed by a
parent node to send one task to its child andc; which represents the time needed by
the child P; to send one result back to its parent. All thgs are assumed to be positive
rational numbers since they represent node processing.tWie disalloww; = 0 since it
would permit nodeP; to perform an infinite number of tasks. Similarly, we assuhs t
all ¢;'s and¢]'s are positive rational numbers since they correspondd@dmmunication

120 Paper 3

Figure 3.1: Tree-shape platform.

times between two processors. A node can perform three lahdstivity simultane-

ously: (i) it can process a task, (ii) it can receive a taskffiben its parent or a result
file from one of its children, and (iii) it can send a result fiteits parent or a task file
to one of its children. This model is known under the nauikoverlap, bidirectional-

single-portmodel [2, 15]. At any given time-step, a node may overlap agtaion with

only two connections, one for incoming communications and for outgoing commu-
nications. Computation and communication are assumed tatdogic operations, i.e.
once initiated they cannot be preempted. Finally the conication model works in a
store-and-forward fashion.

3.4 Maximizing the throughput

Given the resources of a weighted tfE@perating under th&ull overlap, bidirectional-
single-portmodel, we aim at maximizing the number of tasks processetirpermnit. Let
C; denote the set aP;’s children. During one time unit, let; be the fractional number
of tasks processed h¥,, andg; be the fractional number of tasks received Byfrom
its parent. Equivalentlyq; and 3; correspond respectively to the fractional number of
results produced by’;, and to the fractional number of results sentByto its parent.
The optimal throughput is obtained by solving the followlimgear programming problem
(LPP), whose objective function is to maximize the numbetasks processed per time
unit.

Maximize ns(T) = >, 04

subject to
Vi, 0<a; <o
Vi#m, 0<pf
Vi#Em, Bi=a;i+3 e B
Vi, > jec, G+ aBi <1
Vi, ZjeCi C;-ﬁj +¢0 <1

The first set of constraints states that computation ressuace limited. The second
set of constraints confines the variablgéswithin non-negative values. Note that the
masterP,,, does not have a parent, so that wedgt = 0. The third set of constraints

3.4. Maximizing the throughput 121

deals withconservation lawsFor each nodé’; (except the master), the number of tasks
received byP;, should be equal to the number of tasks tRatprocesses locally, plus
the number of tasks forwarded to the childrenfdf Equivalently, the number of results
sent byP; to its parent, should be equal to the number of results pexilacally by P;,
plus the number of results received from its children. Tisé ¢anstraints account for the
single-port model. The send and receive operations pe€eoiny the nodes are assumed
to be sequential.

Since we are looking for a solution of the LPP into rationainters, optimal rational
values for all variables can be obtained in polynomial titdewever, the solution of the
above LPP is in general not unique and some solutions mightdre interesting than
others in our context. In particulaspmpactsolutions, i.e. that utilize nodes close to the
root in priority, are more preferable thatretchedsolutions (that utilize nodes far away
from the root). Indeed, start-up time (required to enterdfeady-state) and wind-down
time (required to gather the last results to the root) willdreger for stretched solutions
than for compact ones. In order to obtain compact solutiamsfirst need to solve the
initial LPP to derive the optimal throughput,s;(7°) of the tree. The objective function
of the second LPP becomes the minimization of all the comaoatioins, under the afore-
mentioned constraints plus an additional one that statesdhservation of the optimal
throughput obtained by the former LPP. Minimizing the antafrtommunications while
maintaining the optimal number of tasks processed implieitforces compact solutions.
We hence add the following constraint. o; = nusx (7). And the objective function
of the second LPP becomeBtinimize). 5;. Once a solution has been obtained, one
needs to construct a schedule that (i) ensures that the agtinoughput is achieved and
(ii) exhibits a correct orchestration of communication reége i.e. where simultaneous
communications involve disjoint pairs of senders and kesi We can obtain a time pe-
riod I' by taking the least common multiple (Icm) of all the denontans. of the variables
a;. Then, the integer number of tasksthat must be communicated ¢ during each
time periodl” is obtained byy; = G;1.

Proposition 3.1. Sending and receiving files by bunchesypfn a round robin fashion
generates an optimal steady-state schedule where simgteepnstraints are satisfied.

Proof. The proof is done by induction oveér, the height of the tree T [3]. O

Initially, nodes do not dispose of tasks nor results butfdeally to comply with
Proposition 3.1. Therefore an initialization phase muset fglace before entering steady-
state. During start-up, nodes will act as if they were indyestate, at the difference that
fake results will be sent to the parents if not enough resulisavailable. Thus, tasks will
be propagated down the tree, while fake results will be pyafed up the tree. The fake
results received by parents nodes are simply discardede @ecfirst bunch of results
processed by all the deepest nodes used in the scheduledwmvérbnsmitted to the root
node, then steady-state has been reached.

122 Paper 3

3.5 Bandwidth optimization

A simple scheduling principle is presented in [2] when neitug results is neglected. This
scheduling algorithm was terméx@ndwidth-centridoecause priorities do not depend on
the children processing capabilities, but only on their pamication capabilities. The
bandwidth-centric principle is extended to our problema®Ws. First, observe that for
each task that a node; delegates to a chil®;, P; must first receive the task from its
parent, then forward it t@’;, receive the associated result back, and finally send tit res
to its parent. Consequently; will spendz; = ¢; + ¢, time units sending data, and
y; = c;. + ¢; time units receiving data. Since the magBgr does not have a parent, we let
Ty = ¢y @ndy,, = ¢,,. The bandwidth utilization of a nodB; can be sketched within
the Cartesian plane, where the X and Y axes represent thesp in emission and
reception respectively. Hence, allocating a task to cRjldorresponds to a displacement
in the Cartesian plane along vecigrof componentgz;, ;).

Theorem 3.1. In steady-state, the bandwidth utilization of a parent naleptimized
when using at most 2 children (if processing capabilities mot taken into account).

Proof. The proof is done by induction over, the number of children that are utilized by
a parent in addition to the two nodes mentioned in TheoremGohsider the case where
n =1, i.e. when a parent delegates, c.; andag tasks per time unit to three childre?,

P, and P; respectively (see Figure 3.2). Displacementd,, A; A, and As A3 stand for
delegatingyy, co andag tasks to the childre®;, P, and P; respectively.

Consider the trianglet; A; P where the displace-
ments A; P and PA, amount to allocatgj; and js
tasks toP; and P; respectively. Consider now both 4
quantities(j; +js) andas. If (j1+73) > g, it means ST
that it is more profitable to spend the bandwidth time i
assigned tad> by allocating more tasks t&, and Ps. '
As a consequencé?, should not be used. But fi; +
j3) < ag, then consider the triangteRA;, where the |/
displacement® R and A; R amount to allocaté, and e
ks tasks toP%, and P; respectively. Since both trian- a
glesA; As P andORA; are equal (since their internal
angles are equal), {fi1 + j3) < as then(a; + k3) < Figure 3.2:
ko. In that case, it becomes more profitable to assign
ko tasks toP, instead ofa; tasks toP; andjs tasks toPs;, and P; should not be used.
Assume now that Theorem 3.1 is true for ramkand let us prove that it holds also for
rankn + 1. Consider a parent utilizing + 3 children. Extrac8 of then + 3 children and
apply the aforementioned geometric transformation. Oae thilizes onlyn + 2 children
without degrading the initial throughput. O

Q Az

A / //
, .
1 _/kz_/;c R
.

Theorem 3.1 assumes that nodes can provide as much compatirey as necessary
which contravenes the fact that computing resources aitetinNonetheless, it allows

3.6. Task-flow control 123

identifying the way to optimize the bandwidth of any nalein using at most two chil-
dren. Furthermore, we show in [3] that if such a pair of clafdexists, then the emission
and reception bandwidth d@?; are equally utilized.

3.6 Task-flow control

In order to regulate the number of tasks and results thatsaeallowed to buffer locally
throughout the execution, a threshold valiyds introduced for each nodg;,i # m.
On the one hand, if the number of tasks buffered locallyfpys beneath the threshold,
then P; will request more tasks in order to prevent starvation. Gndther hand, if the
number of results buffered locally b¥; is larger than the threshold, thef will not
request additional tasks in order to hinder a monotonic ractation of results. Initially,
0; = 1,Vi # m. Since we search for compact solutions, parent nodes witbfprocess as
many tasks as possible. If additional tasks arrive whilederie busy processing, then the
task will be forwarded down the tree. During the executiarges are allowed to increase
their local thresholdg; only when (i) they are starving and (ii) if they recently seeded
to accumulaté; tasks locally (to ensure that the current threshold is rifitgant) and (iii)

if the number of results buffered locally is strictly lowérand,. This mechanism allows
nodes to collect enough tasks locally to feed their sutsireile ensuring that results do
not accumulate monotonically locally. On the other handieasomust decrease their local
thresholds whenever the number of results buffered lo@dbeeds the threshold. This
threshold growth mechanism provides a mean to adapt to #tleph dynamics.

3.7 Scheduling heuristics

Round Robin (RR). This heuristic implements Proposition 3.1. Oncelsd; are
known, the period” is estimated as follows. Let us set= |logq(max; a;)]. If x <0
thenl’ = 10*1+1, T = 10” otherwise. The aim is to obtain a compromise between a short
time period, and an approximation close to the optimal smiutThen we get the number
of tasks computed by each noéfeby roundingl’«; to the nearest integer.

On the Fly (OTF). This heuristic makes use of the centralized knowdedgnce all
the;'s are known, each node maintains a talale:s_given[j], which records the number
of tasks delegated to child; so far. The child node that has the Iowé@f%mm ratio
is served in priority.

FIFO. Tasks are delegated in a first-come first-served basis.

Bandwidth-Centric (BC). Letr; = min{mij, ylj} denote the maximum amount of
tasks thatP; can delegate to child; per time unit. The child which has the highestis
served in priority.

Geometric (Geo). This heuristic makes use of Theorem 3.1, but startpipfying
the bandwidth-centric heuristic, in order to determinechitchild obtains the highest.
Then, it inspects if a pair of children can improve that ratiesuch a pair of children
exists, one must decide which child should be served. Inrdodmake the right decision,

124 Paper 3

we use a variablé\ which works much like a pair of scales. At staft,= 0. Each time
a child nodeP; is served, we put; in one scale, ang; in the other, which amounts to
A = A+z;—y;. When a pair of children nodes is elected, then the child wbringsA
closest td) is serve. The aim is to utilize equally the emission and réeefpandwidths
of the parent nodes. Such strategy will optimize the banthwidilization of the nodes,
while naturally adapting to the platform dynamics.

3.8 Simulations results

To evaluate our heuristics, we simulate the execution ofpguliGation on different ran-
dom trees. Since a sub-tree can be reduced to a single sogeehequivalent processing
power [2], it is not necessary to employ thousands of nodesntalate large-scale sys-
tems [13]. We arbitrarily limited the number of nodes in aette 100. Each node was
arbitrarily restricted to have at mo$b child nodes. A random tree is generated as fol-
lows. Each node is numbered with an ID number betw@emd 99. Then, each node
P;,i € [1,99] is connected randomly to a node, j € [0,7 — 1]. The links have static
performance values comprised betwegp, andc,,... and the nodes betweew,,;,, and
wWmaz- All random distributions are uniform. The dynamic envinments used in our sim-
ulations were generated as follows. Each resodicgode or link) has a cyclic behavior,
i.e. its performance changes times per cycle. The number of changesper cycle is
randomly taken within the intervab, 15]. Resource performance changes will occur ev-
ery 25 treated tasks in average. We do not claim that these asbdiazisions correspond
to realistic network conditions. Our aim is to compare ouwrfgtics on a set of different
tree configurations. Inspired by Kreaseck et al. [15], weteine the throughput rate by
using a growing window. The execution time is divided infi) equal-sized time slots.
Then, the window increases in size by step of one time slattla@ throughput rate de-
livered within the window time-frame is computed. The thybput rates delivered by the
trees have been normalized to the maximum steady-state ahtained with the LPP in
static environments. However, throughput rates obtainati/hamic environments have
been scaled up by @ynamic factorthat accounts for the performance loss incurred by
the platform dynamics. The dynamic factors have been obdiaby successively solv-
ing LPPs of static platforms and comparing them to their Hogmus LPPs where some
dynamism have been introduced (i.e. with the same platfopulbgies but with scaling
down resource performances). More details about our metbgy as well as a broader
set of simulation can be found in [3].

In this paper, we report the simulation of an independesk-&@pplication of2500
tasks onb0 trees where,,;,, = 1, Car = 10, Wyin = 20 and wy,q, = 200. Two
scenarios for the data volume associated to the tasks antsre®re considered: (i) task
data arel000 times larger than result oneg € 1000), and (ii) task and result data have
the same sizeﬁ(= 1). Figure 3.3 plots an average of th@ throughput rates (associ-
ated to the 50 trees) over time. Figure 3.3 (a) and (b) coorespo static environments,
while Figure 3.3 (c) and (d) correspond to fully dynamic eomiments, i.e. where re-
source performances can degrade dowih%oof the static value. The RR heuristic has

3.8. Simulations results 125

wl S %;:éﬂ,@ﬁg::@%g{}@ o

Percentage of optimal throughput
Percentage of optimal throughput

ROUND-ROBIN (O | 3 j’ ROUND-ROBIN (O |
5k ONTHEFLY O 1 P ONTHEFLY)
20/ H 200 H

{l GEOMETRIC GEOMETRIC
150H ; H 15 1 ; H
10 BW-CENTRIC A |[] 10k BW-CENTRIC A |[]
sQ Fro O H 5 Fro O
0 | T T 0 | T T
0 10 20 30 40 50 60 70 80 0 100 0 10 20 30 40 50 60 70 80 0 100
Time slots Time slots
it ir t
(a) static,: = 1000 (b) static,z =1
100 T T T 100
% . e . 1 %
» = i SR B
5 & o A 5 8
a H 2 =%
2 80 O£ 80 O e =
3 7 ! f 2 . =) A A A
_g 70 B _g 0L e . A
= 65 B = e G e Qe S
T eop N 1 E ef T -
I oo OO TS & st o o]
=3 ! . o B A eits & SLEESE D R =X ; - 0=
§ ol o <>, e EreG. o S sl 7@777,@576%:6,*", o= E0-8=gug |
© astif o—H 4 o 45t N < 4
& aw = 9 S awf
g 35 R g 35 R
S 30 ROUND-ROBIN (O | O 30/ ROUND-ROBIN (O |
o o I
s > ONTHEFLY) |4 i ONTHEFLY () [
o, Hooo af H
o GEOMETRIC [] l 51 GEOMETRIC [] l
10 BW-CENTRIC 4\ |1 10! BW-CENTRIC 4\ |1
5 FFo O | 5 Fro O
0 . . . | T T 0 | T T
0 10 20 30 40 50 60 70 80 0 100 0 10 20 30 40 50 60 70 80 0 100
Time slots Time slots
me dots ot —
(c) dynamic: = 1000 (d) dynamic; = 1

Figure 3.3: Average of th&0 throughput rates (associated to the 50 trees) over
time, with the computation to communication ratfe = 20. In the dynamic
environments, resource performances can degradb aitpitkethout failing, i.e.
down to1% of the static performance value.

been simulated with more tha&%00 tasks in order to overcome the long start-up time
required to enter steady-state. Still, RR does not outpertbe other heuristics in static
environments, certainly due to the truncating and roundipgrations that occurred when
computingl” and they;’s. Not only the integer number of tasks intended to each noale

be sub-optimal, but also the schedule of communicatiors @jsturbed. The centralized
heuristics (RR and OTF) are the highest performers in statironments, but the lowest
ones in dynamic environments. Indeed, the information oichvtiney rely throughout the
execution becomes misleading in dynamic settings. As éggdethe BC heuristic works
very well when result data are small, while Geo only depaumfBC when result data
become significant.

Interestingly, when result data become significant, théopmance of the best heuris-
tics decrease, whereas the performance of FIFO increasethe®ne hand, the decline
of the best heuristics can be explained by the schedulingigmmobecoming more compli-
cated. Returning results up the tree taking as long as sgtakks down the tree, parent
nodes may sometimes have to stall a long time, waiting foild thhbecome available in

126 Paper 3

reception. On the other hand, the performance increaseF@ K a direct consequence
of the task-flow control mechanism. When returning resalkes$ a long time, local ac-
cumulations of results will arise, hindering the ineffeetnodes to request for additional
tasks. In contrast, when returning results is quick, nollogsults accumulations take
place, increasing the margin to make wrong scheduling ibecs

Finally, it is worth noticing that BC and Geo compete welllwntlhe centralized heuris-
tics even in static environments. See [3] for further dstaild interpretations.

3.9 Conclusion and future work

The problem of distributing a large number of independesitsanto heterogeneous tree-
shaped platforms with bandwidth asymmetry was considdredontrast with most pre-
vious studies, the cost of returning results to the masteée meas represented in the prob-
lem formulation. We provided theoretical results that wenebedded into autonomous
heuristics. Simulations results showed that the autonsnheuristics put together with
the task-flow control mechanism not only behaved very wetlynamic environments,
but also compete well with centralized heuristics in staticironments.

The scope of this paper was restricted to tree-shaped rietwidowever, at the back-
bone level, various geographically organizations are eot&d via the Internet resulting
in a graph topology. Adapting the theoretical results prassk in this paper to graph-
shape platforms is a natural continuation of this work, ialgeph topology introduces
routing problems. Another direction is to consider mastawve tasking in the presence of
multiple masters. This situation arises naturally wheresshapplications share the same
platform, or when multiple masters collaborate on a singlgieation.

Bibliography

[1] M. Adler, Y. Gong, and A. L. Rosenberg. Optimal SharingBdgs of Tasks in
Heterogeneous Clusters. 1Bth ACM Symp. on Parallelism in Algorithms and Ar-
chitectures (SPAA’0O3pages 1-10. ACM Press, 2003.

[2] C.Banino, O. Beaumont, L. Carter, J. Ferrante, A. Ledramd Y. Robert. Schedul-
ing Strategies for Master-Slave Tasking on HeterogeneaoseBsor Platforms.
IEEE Transactions on Parallel and Distributed Systeff{4):319-330, 2004.

[3] C.Banino-Rokkones, O. Beaumont, and L. Natvig. Ma§ikve Tasking on Asym-
metric Tree-Shaped Networks. Technical Report 02/06, é@omputer and Info.
Science, Norwegian University of Science and Technologpt&nber 2006. URL:
http://lwww.idi.ntnu.no~banino/research/research.html.

127

[4] G. D. Barlas. Collection-Aware Optimum Sequencing ofetgiions and Closed-
Form Solutions for the Distribution of a Divisible Load on rary Processor
Trees.|IEEE Trans. Parallel Distrib. Syst9(5):429-441, 1998.

[5] O. Beaumont, L. Marchal, and Y. Robert. Scheduling Oblies Loads with Return
Messages on Heterogeneous Master-Worker Platforniatdmational Conference
on High Performance Computing HIPC'2005NCS, pages 123-132. Springer Ver-
lag, 2005.

[6] D. Bertsimas and D. Gamarnik. Asymptotically optimag@iithm for job shop
scheduling and packet routingournal of Algorithms33(2):296—-318, 1999.

[7] V. Bharadwaj, D. Ghose, V. Mani, and T. RobertazZcheduling Divisible Loads in
Parallel and Distributed System$EEE Computer Society Press, 1996.

[8] J. Blazewicz, M. Drozdowski, F. Guinand, and D. Trystrtagtheduling a Divisible
Task in a Two-dimensional Toroidal Mesh. Roceedings of the third international
conference on Graphs and optimizatigages 35-50, Amsterdam, The Netherlands,
1999. Elsevier Science Publishers B. V.

[9] H. Casanova. SimGrid: A Toolkit for the Simulation of Alpgation Scheduling.
In Proceedings of the 1st International Symposium on Clusten@iting and the
Grid, page 430. IEEE Computer Society, 2001.

[10] M. Drozdowski and P. Wolniewicz. Experiments with sdhéng divisible tasks in
clusters of workstations. IRroceedings of Euro-Par 2000: Parallel Processing
LNCS 1900, pages 311-319. Springer, 2000.

[11] P.F. Dutot. Complexity of Master-slave Tasking on Heggneous Treeguropean
Journal on Operationnal Research64(3):690-695, August 2005.

[12] B. Hong and V. K. Prasanna. Bandwidth-Aware Resourdecation for Hetero-
geneous Computing Systems to Maximize ThroughputlCIRP, pages 539-546.
IEEE Computer Society, 2003.

[13] B. Hong and V. K. Prasanna. Distributed Adaptive Taslogdtion in Heteroge-
neous Computing Environments to Maximize Throughpuintarnational Parallel
and Distributed Processing Symposium IPDPS’2(age 52b. IEEE Computer So-
ciety Press, 2004.

[14] B. Hong and V. K. Prasanna. Performance Optimizatioa @fe-centralized Task
Allocation Protocol via Bandwidth and Buffer Managememt.CLADE, page 108,
2004.

[15] B. Kreaseck, L. Carter, H. Casanova, and J. Ferrantetorfamous Protocols for
Bandwidth-Centric Scheduling of Independent-Task Amilans. InIPDPS '03:
Proceedings of the 17th International Symposium on Pdrahe Distributed Pro-
cessingpage 26.1, Washington, DC, USA, 2003. IEEE Computer Spciet

128 Paper 3

[16] T. Robertazzi. Processor Equivalence for a Linear Yp&ikain of Load Sharing
ProcessorslEEE Trans. Aerospace and Electronic SysteP®1216-1221, 1993.

[17] A.L.Rosenberg. Sharing Partitionable Workloads inddegeneous NOWSs: Greed-
ier Is Not Better. INCLUSTER '01: Proceedings of the 3rd IEEE International
Conference on Cluster Computingage 124, Washington, DC, USA, 2001. IEEE
Computer Society.

Paper 4

Online Task Scheduling on Heterogeneous Clusters:

An Experimental Study

Einar M.R. Rosenvinge, Anne C. Elster, Cyril Banino.

In Proceedings of PARA 2004: 7th International Conference on
Applied Parallel Computing, LNCS 3732/2Q06

June 20-23 2004, Pages 1141-1150, Lyngby, Denmark.

129

Online Task Scheduling on Heterogeneous Clusters: An
Experimental Study

Einar M.R. Rosenvinge, Anne C. Elster, Cyril Banino

Department of Computer and Information Science
Norwegian University of Science and Technology
NO-7491 Trondheim, Norway

Abstract

This paper considers the problem of scheduling efficientlgliaations com-
posed of a large number of independent tasks on heterogemhamters. The
Master/Worker paradigm is used, where tasks are maintdipedmaster node
which hands out batches of a variable amount of tasks to stiqgeworker
nodes. TheMonitor strategy is introduced and compared to other strategies
suggested in the literature. Our online strategy is eshedaitable for hetero-
geneous clusters with dynamic loads.

4.1 Introduction

In today’s international high-performance computing aretiere is a clear trend from
traditional supercomputers towards cluster and Grid caimgolutions. This is mainly
motivated by the fact that clusters typically can be comstd at a cost that is mod-
est compared to the cost for traditional supercomputerishignge equivalent computing
power. The operation, use and performance charactergdtigmsch clusters are, however,
significantly different from those of traditional supergomters. For instance, clusters typ-
ically have a much slower communication medium between s1¢eg). a high-latency,
low-bandwidth interface such as Ethernet or the faster ivggr)

Clusters give rise to some challenges not typically foundraditional supercom-
puters. A cluster may be heterogeneougnvironment, meaning that its nodes may
have different performance characteristics. Also, if tleles composing a cluster are
not dedicated, the cluster will bedynamicenvironment, because its nodes may have a
non-negligible background processing load. These clgdleimply that one needs an
adequate scheduling strategy to get good performance arsicl

Our work aims at developing effective scheduling stratedpe clusters for the class
of applications that fall into the Master/Worker paradigithese applications can be di-
vided into a large number of independembrk units or tasks There is no inter-task

132 Paper 4

communication, so the tasks can be computed in any ordeallfithe tasks are atomic,
i.e. their computation cannot be preempted. Many apptinatcan be parallelized in such
a way, including matrix multiplication, Gaussian elimiiagtt, image processing applica-
tions such as ray-tracing [6] and Monte Carlo simulatiorjs [1

The rest of this paper is organized as follows: The test-appéication and the test-
bed cluster are described in Section 4.2. In Section 4.3jque scheduling strategies,
as well as our scheduling strategy, are presented. Sec#oaxfposes implementation-
specific issues, and Section 4.5 discusses empirical sefsoih our work. Finally, con-
clusions and suggestions for future work are provided irtiGed.6.

4.2 Framework

4.2.1 Test-case application: matched filtering

The test-case application used in this study is an imageirfidfeapplication, known as
matched filtering[3]. This application has been developed by O. C. EidheimhB P
student atDI/NTNU, who was looking for speed improvements, giving us grea¢seto
a developer of the application.

The matched filtering application is used in medical imagingrder to detect blood
vessels in Computer TomographgT) images. ACT image is a cross-section of the
human body. By using this application to detect blood vesseimultiple adjacentT
images, one is able to construct a Bepresentation of the blood vessels in the human
body.

The input to the application is a grayscale image, see Fig(a), which is filtered
through an image correlation step. The correlation keimet is used is a Gaussian hill,
which is rotated in all directions and scaled to severalksiEer more detailed information
about this filtering technique, see [3]. The noise in the inmage, makes the blood
vessel identification quite challenging. After filteringesFig. 4.1 (b), the noise has been
removed and blood vessels are now identifiable.

Since the input image can be divided into tasks correspgrdidifferent parts (lines,
columns, blocks), each node can process one or more taskghanproduce the corre-
sponding parts of the output image, this application pelials easily in a homogeneous
and static environment. However, in a heterogeneous adgfmic environment pro-
vided by most of today’s clusters, parallelizing this apation efficiently is more com-
plicated.

4.2.2 Test-bed platform: athlon-based cluster

ClustlS is a fairly homogeneous cluster composed of 38 nadés AMD Athlon xp/MP
cpus at clock frequencies of 1.4 to 1.66 GHz with 0.5 t@2 of RAM. A few of the
nodes are duat:ru nodes. The nodes are connected through 100Mbit switcheatrigth
The operating system is Linux, tive1 implementation isapicH 1.2.5.2, and the queuing
system is OpenPBS.

4.3. Scheduling master/worker applications 133

(b)

Figure 4.1: Image before filtering (a), and after filtering. (8T image courtesy
of Interventional Center, Rikshospitalet, Oslo, Norway.

On ClustlS, data storage is provided by one nds®ry, which provides home di-
rectories throughnFs. Consequently, all disk/'o from the nodes will go through this
slow Ethernet interface. One solution could be to use losld do instead. However,
the scattering of input data and gathering of output dataldvadd to the total applica-
tion execution time, so regardless, input and output dataldMoave to travel through the
network.

Nevertheless, we were able to demonstrate somearallelism on this cluster. In
fact, we got more or less linear speedup when reading dataig@mtly from up to 8 pro-
cesses. This indicates that having the worker nodes readtre of the data themselves
will be faster than having the master scatter and gather td&tam workers. Writing
data in parallel also gave a significant speedup comparedriatized writing, but the
speedup was not quite as linear. See [9] for detalils.

4.3 Scheduling master/worker applications

On a cluster, each processor might have very different padoce characteristics (het-
erogeneity), as well as varying background workloads (dysm). To a certain degree,
heterogeneity can be handled through the job scheduleredpyesting processors with
a certaincpu frequency. Such functionality, however, is not availabléghwnany job
scheduling systems.

Dynamism, however, cannot be handled through a job scheduitee background
processing load of the processors is unknown before the wtatipn starts, and might
vary throughout the computation. This must therefore belleghby the scheduling strat-
egy used.

134 Paper 4

4.3.1 Previous scheduling strategies

All popular scheduling strategies give dadtchesof tasks to workers, but since the work-
ers might have different and possibly varying processiregdp, giving only one batch to
each worker might lead to non-equal finish times for the wark&o compensate for this,
some strategies give batches to workers in severalds In the following, N denotes
the total number of taskg, denotes the number of workers (processors), Ardknotes
the number of remaining unassigned tasks on the master @@ tjine.

The Static Chunking (SGitrategy [6] assigns one batchdf p tasks to each worker.
At the other end of the spectrum is tBelf Scheduling (SSjrategy [6], where tasks are
handed out one by one. Théxed-Size Chunking (FSGjrategy uses batches of tasks of
one fixed size, and it is possible to approximate the optira&ttbsize [7]. TheGuided
Self Scheduling (GSS)rategy [8] gives each worker batches of siz&. GSS thus uses
exponentially decreasing batch sizes. Tiapezoid Self-Scheduling (TSS)ategy [10]
also uses decreasing batch sizes, but the batch sizes sketirezarly from a first siz¢
to a last sizd. They advocate the use ¢f= N/(2p) andl = 1. TheFactoring (Fac.)
and Weighted Factoring (WF3trategies also use decreasing batch sizes. At each time
step, half of the remaining tasks are given out. The WF gjyateorks by assigning a
weight to each processor corresponding to the computingdspethe processor before
the computation starts, and allocates tasks based on tiegletsvin every round [5, 6].

4.3.2 The monitor strategy

The Monitor strategy is fairly similar to Weighted Fact@if\WF), which assigns tasks to
workers in a weighted fashion for each round, where each evdiks a static weight.
For WF, this weight has to be computed in advance, before ¢thealacomputations
start, which is a disadvantage in a dynamic environment. Mbeitor strategy, however,
performs such benchmarkiranline throughout the computation and thus uses dynamic
weights, which also allows for good performance in a trulpatpic environment. The
strategy uses an initialization phase and several batclpetation phases.

During the initialization phase, workers request tasksnfritie master which are
handed out one by one. Workers measure the time it takes tputentheir respective
task, and report these timings to the master when they requnesher task. When all
workers have reported their task computation times, thiliziation phase is done.

Formally, letz; be the number of tasks that worker will be given in the current
batch computation phase, apdbe the number of uncomputed tasks queued by worker
w;. Lett; denote the time taken to process one task, Bndenote the time taken for
worker w; to finish the current phase. Recall thatdenotes the number of unassigned
tasks held by the master, apddenotes the number of workers. In a batch computation

4.3. Scheduling master/worker applications 135

phase, the master starts by solving the following systengoftons:

(1) Vi € [07p>7 T; = (yi + xl) X t;
(2) Vi € [17p>7 ﬂ = n—l

p—1

In a given phase, workew; receiver; tasks that are added to theuncomputed tasks
already stored in its local task queue. It will hence finiskeitecution of the current phase
attimeT; = (y; + z;) x t; (equation 1). For the total execution time to be minimized,
all workers must finish their computations simultaneousbncevi: € [1,p),T; = T;—1
(equation 2). This condition has been proved in the conteRivasible Load Theory [2].
The sum of all;; is equal toR /2, meaning thaf? /2 tasks are allocated during the current
phase (equation 3). It has been found experimentally [5] hlaading out half of the
remaining tasks in each round gives good performance.

Throughout the computation, workers periodically (i.eemv computed tasks) re-
port their task computation times and the number of uncomputed tagkswaiting in
their local task queues to the master. Hence the master igwaonsly monitoring the
worker states. Consequently, after the first batch comiputghase, there is no need for
another initialization phase, since the master has umtekhowledge of the performance
of the workers. Note that the parametenust be tuned for the application and cluster in
use. As soon as a worker is done with its local tasks, a reigissht to the master, which
then enters the next computation phase. A new system ofiegsas solved with the last
up-to-date values ¢f; andy;.

Throughout the computation, has a great significance. Suppose that at ptase
workerw; has no external load, and can thus supply a large amount giutimg power
to our application. The master will then delegate a large lmemof tasks tav;. Suppose
now that during phask, w; receives a large external load, slowing down its task ei@tut
rate. At the end of phageworkerw; will still have a lot of uncomputed tasks. The master
has up-to-date knowledge of this, and allocates only a fewdpnew tasks ta; in phase
k+1.

Note that if some workers are slowed dodastically the above system of equations
may yield negativer; values. Since the Monitor strategy does not consider watliiry
tasks from workers, the corresponding equations are retq@red the linear system is
solved once more, distributing hence tasks among the rémgaivorkers. This process is
repeated until the solution yields no negativeralues.

The task computation timk reported by worketv; will typically be the mean value
of its n last computation times. Having= 1 might give a non-optimal allocation, since
the timing can vary a lot in a dynamic environment. At the otkied of the spectrum, a
too high value fory conceals changes in processing speeds, which is also tiomabp
The parameten needs to be adjusted for the individual application anddeirenment.

Fig. 4.2 shows the allocated batch sizes for the scheduliategies described in Sec-
tion 4.3.1 as well as the Monitor strategy, when the progessport the task computation
times shown in Fig. 4.3. Note that for the Monitor stratege, assumey;, = 0 at the be-

136 Paper 4

ginning of every phase, meaning that all the processors ¢@mvguted all their assigned
tasks from the previous phase.

Strategy | Batch sizes
SC 128128 128 128
SS 11111111111111111111...
GSS 12896 725403023171397543221111111
TSS 64 60 56 5248 44 40 3632 28 24 2(B

Fac. 64 64 64 643232323216 16 16 1688884444
222211111111
WF 1803220280161012458562243311212

61013100110010001000
Monitor 111111117732202%327121411231316
471466334411102111211

Figure 4.2: Batch sizes for various sched. strat. with= 512 tasks ang = 4
workers.

Proc Task computation times at time steps

1 2 3 4 5 6 7 8 9
0.10| 0.15| 1.01| 0.90| 0.28| 0.29| 0.99| 0.90| 0.89
0.56| 0.40| 0.50| 0.48| 0.52| 0.53| 0.47| 0.49| 0.50
0.89] 0.90| 0.89| 0.24| 0.67| 0.88| 0.60| 0.66 | 0.63
0.75] 0.76| 0.74| 0.50| 0.45| 0.70| 0.69| 0.63| 0.62

AW NP

Figure 4.3: Examples of task computation times for 4 promesat 9 time steps
throughout a computation. Note that far, the times at step 1 are used as
weights.

4.4 Implementation

4.4.1 Data staging

In order to improva/o parallelism, the worker nodes read the necessary inputficata
theNFsdisk themselves, much like the data staging technique piesdé [4]. The master
receives short requests from workers, and answer thesestsqwith a short message
containing only a pointer to the input data to be fetcheds ttircumventing the master
bottleneck.

However, because our test-case application has such aigbutation to/o ratio,
our experiments showed that data staging did not have aggearmance impact for this

4.5. Empirical results and analysis 137

application [9]. Data staging is nevertheless a valualdertigue for applications whose
computation ta/o ratio is lower.

4.4.2 Multithreaded processes

In order to avoid processor idleness, we decided to implémenultithreaded approach.
Every worker process is composed of three threads: a masadhior communicating
with the master, a thread for reading input data from disk| anhread for computing
output data. The main thread requests tasks and buffers ithamtask queue until the
number of tasks buffered is above a user defined threshold then goes to sleep and
wakes up when the number of tasks in the queue is beélowhe goal of the main thread

is to keepg tasks queued at all times. The input reader thread will fedsks from the
task queue, and, if the queue is empty, sleep while waiting fask. Once the task queue

is non-empty, the input reader thread will read and storatidata, then add pointers to
the data locations in the input data queue. And this, urgilthmber of input data units

in the queue is above. It then goes to sleep, and wakes up when the number of input
data units in the queue is belaw The procedure is then repeated. The computer thread
works in much the same way as the input reader thread. Seer[@¢fails.

The thresholdp regulates how soon the workers will request tasks from thstena
Intuitively, ¢ = 1 might be non-optimal, since the task computer thread mighbime
idle while the main thread is waiting for the master to altecatask. Note that since each
worker has two queues of size it buffers2¢ tasks.

The master process is also multi-threaded, with one threatinziously probing for,
receiving and sending messages to/from workers using one thread executing the
scheduling strategy in use, and one worker thread comptdsig on the master proces-
sor. ThempI thread terminates as soon as all tasks have been allocatiedntd that
point, it consumes quite a lot afPu time that could have been used by the worker thread.
This means that for the worker thread on the master, a fighlue is optimal, since the
workers will request tasks quickly and tie1 thread will terminate early. This is a side
effect of our non-optimal master architecture, sinceMhethread consumes unnecessary
cpuU power. One possible optimization would be to merge the thfeacommunicating
throughmpi and the thread for executing the scheduling strategy, lsititbuld lead to
non-modular code. Another possible optimization would deige two threads calling
MPI, one for receiving and one for sending, but this is impossitith the non-thread-safe
MPICH library we had at our disposal. For more on this side effes,[9].

4.5 Empirical results and analysis

The implemented scheduling strategies were compared flereft values oty on our

dedicated cluster which is a static environment [9]. Oud g@ses to find the best schedul-
ing strategy combined with the optimal parametgrg andr for the test-case application
running on the test-bed cluster. Note that for the Monitoategy, we experimentally

138 Paper 4

foundr = 4 andn = 20 to be optimal values for our application and cluster [9], Hreke
values have been used in the following experiments. Thédtsefsom our experiments are
shown in Fig. 4.4; for more experiments, see [9].

T T T T T Fac '((*
3000 G.SS e
Monitor ----x----

. o SC -
T 2800 | | SS]
5 Nom 1SS
g AU WE e
< 2600 | |) i
(0] 1 a.
g 200f .]
c | \ e o
= 1 \ . .
£ 2200 . S.... T
kS : Koo
S : B
= 2000 | g
[o}
© i -
< TR
g 1800 | 1

1600 |

Figure 4.4: Comparison of sched. strategies with incrgasivalues, static envi-
ronment.

These experiments were conducted using 8 nodes, and an aghsige2048 x 2048
pixels decomposed into 1024 blocks, each block correspgridia task. One interesting
finding is that the Static Chunking strategy performs lihebetter when using a larger
¢ value. Wheng increases, the workers request new tasks earlier, hensingathe
termination of the mastewpi thread earlier. This frees resources for the worker thread
on the master, and thus makes it process tasks faster. Oid ange that thevpi
thread on the master should have been terminated earlydiegaiofy sincesconly uses
one round of allocation, but in order to be fair, we kept thesanaster implementation
for all the scheduling strategies. Consequently, all sgliregl strategies must take into
account the worker thread on the master which is very slowpeoed to the dedicated
workers. Thereforescis a bad choice in a heterogeneous environment, while itasl go
in a homogeneous environment, as shown when 64.

Thess Fac.,wF and Monitor strategies are all quite similar. The reason whyget
better results witlyp = 32 than with¢ = 3 is the same as for th&c case. The mastespi
thread is stopped earlier, and we have one faster workehéorest of the computation.
With ¢ > 32, the Monitor strategy performs very badly. One possibldamation for this
is that during the initialization phase, the master commuuthread is very slow, and will
be given a small amount of tasks, less t@gaiConsequently, the master computing thread

4.5. Empirical results and analysis 139

will constantly request more tasks. As a result, the sclieglihread will solve a lot of
unnecessary systems of equations further slowing downaimpeting thread.

Nevertheless, it should be noted that using very higbalues prevents good load
balancing, since in order to allocate tasks when the workeesl them (or slightly before,
to avoid idle time)» must be kept relatively low.

It is quite surprising that the Self-Scheduling strategliol has the highest amount
of communication of all strategies, is among the very fastelseduling strategies. A pos-
sible explanation is that our multi-threaded implementais able to hide the communi-
cation delays, and because our application has a high catiguutol1/o ratio. However,
our environment is relatively homogeneous and static, andxpect the Monitor strategy
to outperformssin a strongly heterogeneous and dynamic environment.

Fig. 4.5 shows speedup results. Note that using e.g. 2 moemeans using the
master with its separate worker thread and 1 dedicated wokikith a 512<512-pixel
image, the speedup drops significantly when using more thmoeessors. This is due to
using a suboptimal task size for this relatively small image [9]. For the larger image
sizes, the speedup increases when adding more processtuisivaly, this comes from
the fact that the relatively slow worker thread of the maptecessor plays a smaller role
when adding more processors. With a sufficiently large imeagk8 or more processors,
we have a close to linear speedup.

16 T

T
Ideal —+—
Image size 512x512 -~
14 | Image size 1024x1024 ----*----
Image size 2048x2048 &

el

12 - .

10 L » |

Speedup
o)
T
1

Number of processors

Figure 4.5: The speedup of the application.

140 Paper 4

4.6 Conclusions and future work

A novel online scheduling strategy has been designed antbingmted. The Monitor
strategy was experimentally compared to implementatibsxother popular scheduling
strategies found in the literature. Experiments show thatMonitor strategy performs
excellently compared to these strategies, and should leeiedp well suited for dynamic
environments.

The monitor strategy implementation involved multi-thdiesy and data staging, two
techniques that decrease processor idle time and increastematilization. Our test-case
application, the matched filtering algorithm, has a veryhhipmputation ta/o ratio,
and consequently data staging is probably unnecessaryisompplication. Experimental
tests on our cluster show, however, that data staging isumbkd technique for applica-
tions whose computation 1do ratio is lower. The multi-threaded implementation of the
worker processes, using task queuing mechanisms, is abidea@ommunication delays
and keep the workers processing data continuously. Thdlextceerformance of both
the Self-Scheduling and the Monitor strategy substantiase

This work could be extended in the following directions. SEirunning more exper-
iments on other clusters which provide more heterogeneity raore dynamism would
enable to measure the potential of the Monitor strategy.

Second, the Monitor strategy has three user-specifiabdergersy, n andg. A way
to determine the optimal values of these parameters onlmédabe desirable. It might
be that an optimal solution in heterogeneous environmecegsitate different values of
these parameters for different workers.

Then, the optimal task size used in this study has been foxperienentally, but it
would be desirable to determine it online. Two proceduresdfing this are discussed
in [9].

Finally, a thread-safeipi library would enable us to implement the master process
differently [9], which would increase performance.

Bibliography

[1] J. Basney, R. Raman, and M. Livny. High Throughput Mongl@. InProceedings
of the Ninth SIAM Conference on Parallel Processing for &die Computing San
Antonio, TX, March 1999.

[2] V. Bharadwaj, D. Ghose, V. Mani, and T. Robertaz2cheduling Divisible Loads in
Parallel and Distributed System#EEE Computer Society Press, Aug 1996.

141

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and MldBaum. Detection of
Blood Vessels in Retinal Images Using Two-Dimensional Matt Filters. IEEE
Transactions on Medical Imagingages 263—-269, 1989.

W. Elwasif, J. S. Plank, and R. Wolski. Data Staging Effein Wide Area Task
Farming Applications. INEEE International Symposium on Cluster Computing
and the Grid pages 122-129, Brisbane, Australia, May 2001.

S. F. Hummel, J. Schmidt, R. N. Uma, and J. Wein. Load-Bigan Heterogeneous

Systems via Weighted Factoring. 8PAA '96: Proceedings of the eighth annual
ACM symposium on Parallel algorithms and architectyurpages 318-328, New

York, NY, USA, 1996. ACM Press.

S. F. Hummel, E. Schonberg, and L. E. Flynn. Factoring: Athbd for Scheduling
Parallel Loops.Commun. ACM35(8):90-101, 1992.

C. P. Kruskal and A. Weiss. Allocating Independent Saks$son Parallel Processors.
IEEE Trans. Softw. Eng11(10):1001-1016, 1985.

C. D. Polychronopoulos and D. J. Kuck. Guided Self-Schiad: A Prac-
tical Scheduling Scheme for Parallel Supercomputei&€EE Trans. Comput.
36(12):1425-1439, 1987.

E. Rosenvinge. Online Task Scheduling On Heterogenedtisis-
ters: An Experimental Study. Master's thesis, Dept. of Cotap and
Info. Science, Norwegian University of Science and Techggl 2004.
URL:http://www.idi.ntnu.notelster/students/ms-theses/rosenvinge-msthesis. pdf.

T. H. Tzen and L. M. Ni. Trapezoid Self-Scheduling: A Btieal Scheduling
Scheme for Parallel CompilerslEEE Trans. Parallel Distrib. Syst.4(1):87-98,
1993.

142 Paper 4

Paper 5

Parallelizing Lattice Gauge Theory Models on Commaodity
Clusters

Cyril Banino-Rokkones, Jarn Amundsen and Eivind Smgrgrav.
In Proceedings of IEEE International Conference on Cluster
Computing

September 25-28, 2006. Barcelona, Spain. To appear.

©2007 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Parallelizing Lattice Gauge Theory Models on
Commodity Clusters

Cyril Banino-Rokkone§ Jarn Amundséen and Eivind Smgrgrav

IDepartment of Computer and Information Science
2Department of Physics
Norwegian University of Science and Technology
NO-7491 Trondheim, Norway

Abstract

This paper addresses fundamental parallel computingsdsuesfficiently par-
allelizing 3D Lattice Gauge Theory models (LGT) on disttdml memory sys-
tems. The long-range application stencil of LGT models pgether with the
impossibility of updating neighboring lattice sites sitameously greatly com-
plicates the parallelizing of such simulations. Our altjoris decompose the
domain among the processors, and settle a staggered exewitt the help of
virtual tokens that circulate among the processors, atigwhe token holders
to update their boundaries. Experimental results showtltese algorithms are
scalable, and that simple communication trajectoriesgirever low surface-to-
volume ratios. Rigorous theoretical results are providedien the LogGP model
to demonstrate the superiority of our approach over othéhods found in the
literature.

5.1 Introduction

Lattice spin and gauge theories are studied extensivelyanynareas of physics, espe-
cially in particle and condensed matter physics. The spthgauge field variables are
defined on every site of a multi- dimensional lattice, andttieemodynamic properties of
the system can be deduced from the partition function, wisichsum over all possible
configurations of the fields. Exact solutions to these mditiaensional sums are rare and
in general one must resort to some numerical approximalibe.largest and most impor-
tant class of numerical methods used for this problem is tbatCarlo (MC) method,
which in stead of doing the sum over all configurations, zggi random numbers to mimic
the random thermal fluctuations of the system from one cordtgun to the other. A con-
siderable proportion of the computational resources uggahisicists around the world
is spent on MC simulations.

146 Paper 5

The excellent price-performance ratio of PC clusters, uohea by any other high
performance computing platform, promotes the emergendestfbuted computing. The
availability of inexpensive high performance microprams and high speed networks
allows organizations to purchase a powerful cluster atorggsle price. Existing appli-
cations implemented under the shared-memory paradigm bbeupbrted to distributed
memory systems, requiring new distributed algorithms. Réyefor efficient paralleliza-
tions on distributed memory systems is to keep the commtioicaverhead to a mini-
mum. This is especially true for PC clusters, which are tgibhjccomposed of powerful
nodes interconnected by a low-cost communication network.

When using Metropolis MC dynamics, thietailed balance conditioimplies that
adjacent sites cannot be updated simultaneously [8]. Tdrerewhen parallelizing such
applications, one must ensure at all times that processor®tupdate remote but adja-
cent sites simultaneously. Various studies have focusgahaalelizing MC simulations
on distributed memory systems [7, 10,11, 15]. Most of thégdias rely on domain de-
composition methods where all the processors are syna®wnn order to respect the
detailed balance condition. The main drawback of these mdsthesides in the commu-
nication phases requiring several message transfers @emaighboring processors per
iteration, albeit conventional wisdom argues that dataikshbe grouped for communica-
tion [7,14].

Past efforts to overlap communication with computationrémular domain problems
converge towards an approach which divides the local doin&nan inner region and
an outer region [2, 13, 14]. The inner region is updated wivééing for the boundaries
from neighboring processors, and thereafter the outeomagiin turn updated. Although
this technique aims at overlapping computation with comication, it also restricts the
number of messages to the minimum, i.e. one per neighboriogepsor per iteration.
This technique can suit well the parallelization of LGT migden distributed memory
systems, because processors are working simultaneoustifferent parts of their do-
mains which reduces the starvation imposed by the detadthbe condition. However,
Prieto et al. [13] showed that this computing paradigm mayafte the performance, due
to the large distance between the memory locations of thexiekisites, leading to poor
performance when updating the outer region. This limitatias been incorporated in our
theoretical models, and confirmed by our experiments.

The rest of this paper is organized as follows. Section S®duces the London
superconductor model, the test-case application usedsrsthdy. The parallelizations
of the different domain decompositions are exposed in &&i3. Theoretical results
derived under the LogGP model are given in Section 5.4. Hxpmertal results are pre-
sented and discussed in Section 5.6. The superiority ofganoach over other methods
found in the literature is exposed in Section 5.7. Finallgatoding remarks are given in
Section 5.8.

The experiments reported in this study have been performedSMP cluster, called
Snowstorm located at the university of Tromsg (UIT). Snowstis a computational clus-
ter composed of 00 HP Integrity rx4640 server nodes, each wititanium?2 processors
clocked at1.3 GHz, 4 GB of memory and 144 GB of internal disk and interconnected

5.2. Test-case application 147

with the Infiniband network.

5.2 Test-case application

The 3-dimensional London superconductor model, see Exuéhil), is a typical gauge
theory in which a real valued scalar fi¢lds coupled to a real valued vector fiekd

7 = / DO / DAe~TE0A]

Ef,A] = — Z [cos (AO; — eAy), — %(A X Az)i)
Ty

(5.1)

wheree is the charge of the system which couples the scalarfialit the vector field\,
andA is the lattice difference operator. A thorough descriptabthe London supercon-
ductor model can be found in [4]. The MC algorithm used in thisk is the celebrated
Metropolis algorithm [12] which can be described the foliogvway.

1. Pick one site in the lattice and suggest new values for ¢idsfat that site.
2. Calculate the difference in energyF = E,.., — E,;q for the move, or update.

3. Draw a random numbeer[0, 1) and accept the new valuesifin{1,e=*/T} >
r.

4. Repeat step 1 to 3 until enough statistics is gathered.

The London application domain is a 3-dimensional latticsiaé S, Sy, S.) with
periodic boundary conditions. The local enelfgyat one sites in the lattice is dependent
onAfandA x A. That is the nearest neighbor@fthe nearest neighbors and half of the
next nearest neighbors &. More formally, all the siteadjacentto s are involved in the
computation ofF;.

Definition 5.1. Two lattice site$; = (z,y, z) andss = (¢, u,v) are said to beadjacent
ifand only if (¢, u,v) € {(z,y,2—1), (x,y+1,2—1),(x+1,y,2—1),(z—1,y, 2), (x —
Ly+1,2),(z,y—1,2), (x,y+1, 2), (x+1,y—1,2), (z+1,y, 2), (x—1,y,2+1), (z,y—
1,z+1),(z,y,2z + 1)}, as depicted in Figure 5.1.

5.3 Domain decomposition and detailed balance con-
dition
Domain decompaosition methods divide the global lattice iRtlocal lattices assigned to

each processor. Assigning equally sized portions of thieéato each processor ensures
that the computational load is well balanced on a homogenegstem. Three different

148 Paper 5

X

Figure 5.1: London’s application stencil. Black sites at@aeent to the grey site.

decompositions are considered in this work. The 1D decoitipogivides the global
domain into local lattices of size5¢, Sy, B.), where= = P (see Figure 5.2 b). Each
processor is identified by an integer| i.€[0, P). The 2D decomposition assigns local
lattices of size §., By, B.), where(g—z) X (g_i) = P (see Figure 5.2 ¢). Each processor
is identified by a pair of integerg(i,,i.) | i, €0, %>, i.€]0, g—j. At last, the 3D de-
composition divides the global domain infdlocal lattices of sizeR,, By, B.), where

P = (g—z) X (%) X (g—z) (see Figure 5.2 d). Each processor is then identified by latrip

of integers:(ix, iy, i.) | i»€[0, 3), i, €0, 7). i-€[0, 5.

(a) 1D.

Figure 5.2: The different domain decompositions.

In order to respect the detailed balanced condition, thegasors are sorted into
different color sets, such that processors of the same caloupdate their exterior sites
simultaneously. For the 1D case, two colors are necessahguficient, whereas four
colors are necessary for the 2D and 3D decompositions. Hmeordering is established
among the colors to orchestrate the updates of the outem®gFor the 1D case, green
nodes start ahead of the red nodes, while the color ordefid® and 3D decompositions
is 1) green, 2) red, 3) white and 4) blue.

The message passing paradigm provides a natural syncationiznechanism for the
boundary updates. Nodes are allowed to update their owgem only when they have
received the boundaries from all their neighbors. At statinitialization takes place in
order to settle the color ordering mechanism. During thigalization, nodes send their

5.4. Theoretical models 149

domain boundaries only to their neighbors preceding in tercrdering. In this way,
the color nodes in first position will be ready to update tloeiter regions, while the nodes
in second position will lack boundaries only from the nodeéirist position, the nodes in
third position will lack boundaries from the nodes in firstias®econd position, and so on.
To alleviate the exposition, we introduce the conceptidfial tokens The reception of
all the boundaries is liken to the reception of a virtual tokbat allows updating the outer
region. Thereafter processors hand on the token by serfuirgupdated local boundaries
to their neighbors.

Different boundary-exchange patterns occur depending®ohiosen domain decom-
position. For the 1D case, only vertical boundary-exchartgke place. The 2D decompo-
sition imposes also vertical boundary-exchanges, butditiad, horizontal (along the y-
axis) and diagonal (along the yz-axis) boundary-exchaagesecessary. The horizontal
exchange happens like the vertical one, by exchanging mesdeetween the two nodes
concerned. The diagonal exchange however (where only edgssbe communicated),
can be performed indirectly via other nodes, by usingdiagonal communication elim-
ination technique [5, 7], which consists of including ghost cellsriassages. To perform
correct diagonal exchanges, green and white nodes incluokt gells in their horizon-
tal exchanges, while red and blue nodes include ghost cetiseir vertical exchanges.
The 3D decomposition imposes the same boundary-exchahgeghe 2D decomposi-
tion. In addition, in-depth (along the x-axis) and diagof@bng the xz- and the xy-axes)
boundary-exchanges must also take place. The in-deptlaegerappens like the verti-
cal and horizontal ones, by exchanging messages betweemdim®des concerned. Most
of the diagonal exchanges can be performed indirectly ubiagforementioned diagonal
elimination technique. Green and white nodes include gbels in the horizontal ex-
change, while red and blue nodes include ghost cells in tuejrth exchange, handling
thus4 diagonal transfers. However, there remains two diagomalsters that cannot be
handled indirectly and that require additional messagd®sé are the edges needed by
the nodes which are following the running color in the tokeand-trip ordering.

When passing the token to the next color, all the nodes ofahme<olor use the same
communication trajectories (i.e. communicate with thedighbors in the same order),
and thus obtain only independent communications, i.e. digoint pairs of senders and
receivers.

5.4 Theoretical models

Santos et al. [15] represent the run-time cost of updatirgyte of the lattice with a
single variableC’;. Then updatingV sites simply lasts folVC, time units. The problem
with such a linear model, is that it does not accounidfatia locality, a critical aspect with
respect to the cache-based memory hierarchy of modermsystnere are two types of
locality that can be exploited to improve performance when implemgstencil codes.
There isspatiallocality when accessing neighboring points (in addressespand there is
temporallocality when array elements are reused several timesédbfing evicted from
the cache. Typically, parallel implementations that muesldvith the detailed balance

150 Paper 5

condition, decompose the local lattices into a few numbeegions that are updated one
after another, in alternation with communication events (7 11, 15]. This has a direct
negative impact on data locality. Indeed, spatial localtyot fully exploited as neigh-
boring sites may not belong to the same region, which by iticlualegrades temporal
locality, as these sites will be updated at different timepst In these conditions, lattice
sites will be brought into cache multiple times per iteratibVe propose a coarser-grained
computational model, by modeling the run-time costs foraijpg) each region composing
the local domain. Thus, we & andT, be the run-time costs for updating the inner and
the outer regions of the domain respectively.

On the other hand, communication modeling has more or lesgeoged towards
an extension of the Hockney’s model [9] which characterittestimet for sending a
message ofn bytes as followst = 7 + ym, wherer is thelatency and~ the inverse
of the asymptotic bandwidtlof the network. Culler et al. [3] have proposed thegP
model for modeling sequences of point-to-point commuivcatof short messages. LogP
defines thd_atencyL incurred in sending a message, thaeerheado which is the time a
processor spends sending or receiving a messaggafhebetween two messages defined
as the minimum time interval between consecutive messagsrtrissions or consecutive
message receptions, and the number of procegdofdexandrov et al. [1] have extended
the LogP model in order to capture both short and long messalgee resulting model,
called LogGP, presents an additional paramétewhich is theGap per bytefor long
messages. The cost of sending a k-bytes message in the Log@& i® simplyL +
20 4+ (k — 1)G, and the cost of sending two messages in a row (of lengthesnd k2
respectively) isL + 20 + g + (k1 + k2 — 2)G. LogGP clearly models the important
characteristics of a homogeneous cluster of machines.

5.5 Theoretical results

Although our algorithms support overlapping computatiagthwommunication, no over-

lap at all is assumed in this analysis. This assumption seemsatch the underlying

hardware of low-cost PC clusters, and provides a fair cormparwith other methods.

The local domains being decomposed into an inner and an megems, a sweep does
not terminate before both regions have been updated. Becauter regions cannot be
updated before the token has arrived, the total run-timeafassweep is given by:

T = T,+max{Teom +7T;, T} (5.2)
where:
e 1., is the local communication overhead.

e T, is the token round-trip run-time cost.

In the remaining analysis, for the sake of simplicity, weusss a global lattice of
size(S x S x S) with B = S/P for 1D, B = S/+/P for 2D andB = S/+/P for 3D
decomposition.

5.5. Theoretical results 151

5.5.1 1D decomposition

Passing the token to the opposite color involves sendicgnsecutive messages com-
posed ofS? sites. This operation cosfs+ 20 + g + 2(85% — 1)G (in double precision).
Since there are onl¥ colors involved in the computation, we haVle = T, + 2L + 40 +

29 + 4(85% — 1)G. Only 2 messages are sent and received by each nodes whésh giv
Teom = 4o.

5.5.2 2D decomposition

The token round-trip goes over four colors, and the boundachanges are composed of
4 messages. However, only the 2 first messages intervene tiakén round-trip run-time
cost, as they complete the token transmission to the neat.c®he two last messages
are intended to a color that is two steps away of getting tkertoand therefore do not
delay the token round-trip (assuming they do not congeshétwork). Starting from the
green nodes, here is what the token round-trip looks likeorZzbntal communications
with red, 1 surface update (red), 2 vertical communicatiwith white, 1 surface update
(white), 2 horizontal communications with blue, 1 surfaqalate (blue) and finally 2
vertical communications with green. By symmetry over thiois) the run-time cost of
the token round-trip is identical for all the color nodesnéiag 2 consecutive messages
composed of (B +1) sites (including ghost cells) coskst 20+ g+2(8S(B+1) —1)G.
Since the token goes over three colors before coming baekutirtime cost of the token
round-trip is thenI, = 4L + 8o + 4g + 8(8S(B + 1) — 1)G + 37,. Each node sends
and receives 4 messages which givgs,, = 8o.

5.5.3 3D decomposition

In the 3D case, all the colors must communicate with eachr,odred the boundary-
exchanges comprise 8 messages. Assume that green nodesdamng the token. After
updating the outer region, each green node sends 4 messdtgeret neighbors, which
can from then on start updating their own outer regions. diger 2 messages are sent by
each green node to its white neighbors. In the best casersmamadating the red outer re-
gion takes more time than the communication between thengnee white nodes. Hence
the red-white communication is not delayed by the greertemtdmmunication. In the
worst case scenario, the update of the outer region takegifes than the green-white
communication, which delays the red-white communicati@imilarly, the white-blue
communication can possibly be delayed by the red-blue camwation, the blue-green
communication by the white-blue communication, and thegned communication can
be delayed by the blue-red communication. Starting fromgtleen nodes, here is what
the token round-trip looks like: 1 eventual delay, 2 horiabrand 2 diagonal commu-
nications with red, 1 surface update (red), 1 eventual d@dyorizontal and 2 diagonal
communications with white, 1 surface update (white), 1 avalrdelay, 2 horizontal and 2
diagonal communications with blue, 1 surface update (kdne)finally 1 eventual delay,
2 horizontal and 2 diagonal communications with green.

152 Paper 5

For all the colors the eventual delay is caused by 2 consecwuértical communica-
tions, each of siz8 B2 bytes, which together codt, = L + 20 + g + (8B? — 1)G. The
run-time cost of the delay is théy = max{T, —T,,0}. Except the vertical communica-
tions that can provoke a delay in the token transmissiongtihemessages that intervene
in the run-time cost of the token round-trip are the 4 firstsages sent by each processor,
as they complete the token transmission to the next coloFseteach color, 2 messages
of 8(B + 1)? bytes are followed by 2 diagonal messages Bfbytes which altogether
CostsL + 4o + 3g + (8(B + 1)? + 8B — 2)G. The run-time cost of the token round-trip
is henceT;, = 3T, +4L + 160+ 12g + 8(8B? + 8B + 3)G + 4T,. Each node sends and
receives 8 messages which givés,,, = 160.

Note that for the 3D case, increasigyto a maximum, would amount to allocate
one single lattice site per processing unit. In fact, thesieht level of parallelism of
the London model would be reached at that point, since the@@r code depicted in
Figure 5.2 (d) can also be extended to the lattice sites.|Atas, onlyi of the sites can
be updated simultaneously.

5.5.4 Speed-up and efficiency tradeoff

Usually, when the problem size is fixed, an increase in thelmuirof processors can begin
to have a negative impact on the speedp At some point, adding more resources
causes performance to decrease and speed-down is obdeteeeistingly, increasing the
number of processors used by our algorithms will alwaysriacspeed-up improvement.
Off-course, this yields only for reasonably large problénes (i.e. that cannot be tackled
by a single processor), and if the network can handle the agmuations generated by
additional processors. However, improving the speed-uallatosts may come at the
expense of a poor efficiency, definedigs= S,/ P.

According to Equation set (5.2), the run-time cost of a swe&p= T, +max{T o, +
T; , T.}. When minimizingT’, the interesting component is the maximum quantity. For
fixed problem size and fixe®, consider the quantitie¥..,, + 7;) andZ,.

If (Teom + T3) > T, the token comes back before the inner region has been update
In that case, it will be beneficial to increagesince it will increase the surface to volume
ratio of the local lattice. In other word®; will decrease faster thafi,, which by induction
will tighten up the gap betweefY..,, + 7;) andT,, albeit the overhead incurred by the
communications involved in the token round-trip decredses

But if (Teom, + T;) < T, the processors have already finished to update the inner
region, and are starving while waiting for the token. Insieg further the number of
processors still improves the speed-up, albeit procesaorasion may increase. Indeed,
althoughT,. would still dominate the maximum quantity of Equation (5iRcreasingP
generates a reduction of the data volumes that need to begsext and exchanged. In
other words, wherP increases,l,, T; and T, decrease. Consequently, is minimal
whenT; andT, are minimal. The parallel efficiency, however, may degragistarvation
increases.

Finally, there is a threshold value for whi¢f..,, + 7;) = 7,, that may be a good

5.6. Experimental results 153

compromise with respect to speed-up and efficiency. Indsech value would accel-
erate the run-time of a sweep without introducing processanvation. Going beyond
this threshold, may admittedly improve the speed-up, butl&vdefinitely degrade the
efficiency by bringing about starvation. On dedicated systethis effect is highly unde-
sirable. On the contrary, staying under this threshold edlttainly optimize efficiency,
but will hold back the speed-up.

5.6 Experimental results

The Scali implementation of the Message Passing Interfistéd])([6] has been used in
this study. MPI features like persistent requests and eérdatatypes have been used
for implementing the successive boundary-exchanges.i@mece has been taken when
posting and completing the communication requests sudhhbaVPIlready communi-
cation mode could be used. All these decisions contributeetp the communication
overhead to a minimum. For the sake of portability, non-kilog requests have been
used in order to exploit the inherent computation-commation overlap of the comput-
ing paradigm, even though many implementations cannotayverithout extra hardware
in the form of a communication coprocessor.

In our experiments, the number of sweeps was arbitrarilydficee500 in order to
highlight differences between the different decomposgiovhile keeping measurement
times relatively low. The processors were exclusively datid to our application, which
reduces external interferences to system fluctuationsalliirthe performance curves
presented in this paper correspond to the average values aves.

Figure 5.3 (a) which is representative of our experimertgeals that the 1D decom-
position clearly outperforms the other decompositioncaigh the 2D and 3D decompo-
sitions present better surface-to-volume ratios. Figudg(h) depicts thé%o“””) ratio
for the different decompositions. The 2D decompositioradiepresents the best ratio,
while the 3D decomposition only is beneficial for relativaiyall problem sizes, albeit
these ratios are not as large as expected. This observationline with the study of
Prieto et al. [13]: Updating separately the inner and outgions of the local domain
degrades the performance of the outer region update (edyefor the 3D decomposi-
tion). This comes from the relatively lower density, or gy of the outer regions, that
incurs non contiguous data access patterns. Moreover,ntloeirg of data required by
LGT simulations is very large, such that even for moderatblem sizes, data do not fit
into processor caches. Indeed, each site composing thee ledpresents one scalar field
and three vector fields, i.e. amountsiteeal numbers. In these conditionsl@x 16 x 16
lattice does not fit in the 9MB L3 cache of the itanium2 prooesd his contributes to
lower the performance of the outer region update.

But more importantly, the supremacy of the 1D decompositieer the 2D and 3D
decompositions is certainly due to the complicated tokemdetrip trajectories of the
latter decompositions as opposed to the much simpler togjeof the 1D case. Indeed,
the 1D token round-trip imposes onlyouter region update antimessages, as opposed

154 Paper 5

to 3 outer region updates ar®dmessages for the 2D case, aduter region updates and
12 messages for the 3D case. For all the experiments, the takem4trip dominates
the total sweep run-time cost, which means that processerstarving, waiting for the
token to arrive. Figure 5.3 (c) illustrates this observatias the rati% is much
smaller for the 1D decomposition than for the other ones.rliheime costs for updating
the inner regions were roughly equivalent for the 3 domasod®ositions, which means
that processors are starving longer under the 2D and 3D gexstions than for the 1D
decomposition.

Nonetheless, the token-passing algorithms expose siathg and weak scalability
(see Figure 5.3 (d)). Strong scalability means that, fordfigeoblem size, the speed-
up is roughly proportional to the number of processors used.the other hand, weak
scalability means the ability of maintaining a fixed effiagrwhen the problem size and
the number of processors increase. The 1D token-passiagthlg presents an efficiency
greater tha.25 for all the experiment conducted on the Snowstorm clustarpFoblem
sizes of interest for the physicists at NTNU (uptY), the efficiency of the 1D algorithm
is above0.33.

3 3 3

i
i
|
|
i

96° 128 160° 19: 224 256° 128° 160° 192° 226 256°
Lattice size Lattice size

64

(a) Speed-up wit32 processors. (b) (T;+T.om)/T, with 32 processors.

10 .
[20 7 | .
30 I vl
7k
30
o
S i Q®
5k 1§ i -E %
* : 3
§ 4t 3 ;,‘J “ X, \74' §
= 15 A
3t e
%
10 M
5 i tal
1t i g
0 4 s
64° 96° 128° 160° 192° 24 256° 0 20 w0 60 80 100
Lattice size # processors (P)
(€) T./(T; + Tv.om) With 32 processors. (d) 1D Speed-up

Figure 5.3: Experimental results.

5.7. Related work 155

5.7 Related work

MC simulations for the Ising model, which uses only nearesthbors interactions,

have been successfully implemented on shared-memorymsystéth checker-board al-

gorithms. The lattice sites are sorted into a red set (wheredaf coordinates is even) and
a black set (where sum of coordinates is odd) in a checkadifaahion. Thus, all the red

sites can be updated simultaneously, and so it is for thé&lsliées. Checker-board algo-
rithms have been ported onto distributed memory systemsitmerous studies [7,8,11].

For each sweep, all the processors start by updating onessilcsay the red one. There-
after the nodes exchange the red sites located on the boesdand do the same with the
black set. This approach performs boundary-exchangestwitimessages per boundary.
For longer-range interactions models, such as the onernessim this study, new updat-

ing schemes that fit with the stencil application must beiafplin these conditions, the
checker-board is likely to be composed of four colors, legdd boundary-exchange with
four messages per boundary. For the London superconductelnthe color mask that

could be utilized by a checker-board algorithm is the onedadeg in Figure 5.2 (d), where

each cube corresponds to a lattice site.

Recently, Santos et al. [15] conducted research on MC stiontafor 2D and 3D
Ising models in another direction. Each local domain isd#di into different regions,
that are updated one after another, in alternation with comecation events. For each
sweep, all the processors update the same region of thairdomain, in order to avoid
situations where remote but adjacent site updates woulkel @mtconflict. Then some
boundary-exchanges take place, allowing the parallel coatipn to proceed with the
next region. The number of regions composing the local donsaidependent on the
chosen decomposition (2 for 1D, 3 for 2D, and 4 for 3D). Thelltds an increase of the
number of messages required for the boundary-exchangeslya for 1D, 8 for 2D, and
24 for the 3D decomposition.

The two aforementioned methods handle the detailed batzoradition by increasing
the number of messages per boundary-exchange, which caidewbly increase the
communication phase run-time cost. This results from threlsyonization imposed to
the processors. In effect, at all times, the processorsteda same region of their local
domains in concert. Table 5.1 reports the sweep run-timis cbthe methods found in the
literature when applied to a simplified version of the Londoperconductor model, and
compares them to the algorithms proposed in this papgrstands for the run-time cost
for updating the sites of a given color when using a checkardb algorithm, and .,
stands for the run-time cost for updating all the regionsposing the local domain when
using the Santos methods.

When deriving these theoretical results, first we assumatigiocessors can send
and receive messages simultaneously without additiorstl dchis situation is ideal for
the checker-board and Santos methods, but does not favitwkie-passing algorithms.
Then, we assumed the token round-trip time to dominate taédweep run-time. This is
conform to what has been observed in our experiments, anelspamds to the worst case
scenario.

156 Paper 5

1D | 4T, + 4L + 80 + 49 + (165? — 8)G

CB | 2D | 4T, + 4L+ 80+ 129 + (325SB — 16)G
3D | 4T, + 4L + 80+ 20g + (48B% — 24)G
D | Toomp + 2L + 40+ (16S% — 2)G

[15] || 2D | Tiomp + 3L + 160+ 59 + (325B — 8)G
3D | Tromp + 4L + 480 + 20g + (48B* + 18)G
1D | 2T, + 2L + 4o + 29 + (325% — 4)G

TP | 2D | 4T, +4L + 8o+ 4g + (645B — 8)G

3D | 4T, + 4L + 160 + 12g + (64B% — 16)G

Table 5.1: Comparison with other methods found in the litea(CB checker-
board, Santos et al. [15] and TP token-passing).

Even under the aforementioned assumptions, favoring tleotiver methods, the
token-passing algorithms seem to be the most appropriade.sriall computation-to-
communication ratios (the difficult case), the start-up kateincy costs will dominate the
communication phase. In that case, our algorithms will nligsty perform better, be-
cause exchanging fewer messages per iteration. On the lzdhel; when computation
dominates the sweep run-time cost, the token-passingithligar that decompose the do-
main into fewer regions, will much likely better utilize timeemory hierarchy of modern
processors.

Finally, there are several situations where the tokenipgsagorithms clearly out-
perform the other methods. For instance, many MPI impleatiEms do not support
simultaneous send and receive operations. A typical examsghe implementation of
the MPLSendrecv routine, which often resorts on odd-even orderfrapmmunications
resulting in a serialization of the messages. Thus, the ataflbytes transferred would
be multiplied by 2 for the checker-board and Santos methbdsontrast, the run-time
cost of the token-passing algorithms, which separate tresage transmissions from the
receptions, would remain unchanged. Then, for applicatibat present a high enough
computation-communication ratio, computation would meedhe dominating factor of
the total sweep run-time cost. In that case, the token wonitdecback before the inner
region update terminates, restricting thus the commuinitaverhead to the minimum.

5.8 Conclusion

This paper addresses the difficult task of parallelizing Li@ddels on distributed memory
platforms. The token-passing algorithms presented ingdier provide a mean to effec-
tively orchestrate boundary-updates in order to cope \mghdetailed balance condition.
These parallel algorithms combine efficient techniqueglonain decompositions meth-
ods, such as diagonal elimination and can take advantagergdutation-communication

overlap if this feature is supported by the system, as ogpimsgerevious studies presented

157

in the literature. The main departure from previous LGT &sicdonsists in minimizing

the number of messages exchanged during the computatide.h@b been possible by
staggering the parallel execution, i.e. by making the @eoes work simultaneously on
different parts of their local domains. However, decompgdhe domain into an outer
and an inner regions comes at the expense of a reduced parfoemvhen updating the
outer region, because of its lower density.

Nonetheless, we observed that increasing the number oégsocs still generates a
speed-up improvement. Although the 2D and 3D decomposifgzasent lower surface-
to-volume ratios, the 1D decomposition achieves the bafbymeance due to its simpler
token round-trip communication patterns. This signifiest the London LGT model ex-
hibits a too low computation-to-communication ratio on thester used in this study, to
take advantage of the 2D and 3D decompositions. Finally,raébe rigorous theoretical
results for all the domain decompositions under the LogGBeh@nd show the superi-
ority of our approach over other methods found in the litemtfor different system and
problem configurations.

The algorithms presented in this study assume a homogesysteam dedicated to
the application. However, emerging clusters are usuallifirasers systems composed of
heterogeneous resources, allowing several independplitatjons to run concurrently.
Developing new techniques and algorithms that cope withraggond to heterogeneity,
instability and system fluctuations is the direction foufet work.

Bibliography

[1] A. Alexandrov, M. F. lonescu, K. E. Schauser, and C. Stiagi. LogGP: Incorporat-
ing Long Messages into the LogP Model — One step closer t@nardalistic model
for parallel computation. I'BPAA '95: Proceedings of the seventh annual ACM
symposium on Parallel algorithms and architectyrpages 95-105, New York, NY,
USA, 1995. ACM Press.

[2] S.B.BadenandS. J. Fink. Communication overlap in rtigti parallel algorithms.
In Supercomputing '98: Proceedings of the 1998 ACM/IEEE genfe on Super-
computing (CDROM)pages 1-20, Washington, DC, USA, 1998. IEEE Computer
Society.

[3] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, E. Enfs, K. E. Schauser,
R. Subramonian, and T. von Eicken. LogP: A Practical Modé?arfallel Computa-
tion. Commun. ACM39(11):78-85, 1996.

[4] C. Dasgupta and B. I. Halperin. Phase Transition in ait@tiodel of Supercon-
ductivity. Physical Review Letterg7:1556—-1560, Nov. 1981.

158 Paper 5

[5] C. Ding and Y. He. A Ghost Cell Expansion Method for ReaigciCommunica-
tions in Solving PDE Problems. 18upercomputing '01: Proceedings of the 2001
ACM/IEEE conference on Supercomputing (CDROpdpes 50-50, New York, NY,
USA, 2001. ACM Press.

[6] W. Gropp, E. Lusk, and A. SkjellumUsing MPI: Portable Parallel Programming
with the Message Passing Interfac®lIT Press, Cambridge, Massachusetts, USA,
1994,

[7] F. Gutbrod, N. Attig, and M. Weber. The SU(2)-lattice gattheory simulation code
on the Intel Paragon supercomputBarallel Comput, 22(3):443-463, 1996.

[8] D. W. Heermann and A. N. BurkittParallel Algorithms in Computational Science
Springer-Verlag New York, Inc., New York, NY, USA, 1991.

[9] R. W. Hockney. Performance Parameters and Benchmadirupercomputers.
Parallel Computing17(10-11):1111-1130, 1991.

[10] W. Janke and R. Villanova. Ising model on three-dimenal random lattices: A
Monte Carlo studyPhysical Review B66(13):134208—+, Oct. 2002.

[11] M. Luscher. Solution of the Dirac equation in lattice Q@sing a domain decom-
position methodComput. Phys. Commuyri.56:209-220, 2004.

[12] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. TelJland E. Teller. Equation of
State Calculations by Fast Computing Machin@&ke journal of chemical physics
21(6):1087-1092, 1953.

[13] M. Prieto, I. M. Llorente, and F. Tirado. Data Localityxfoitation in the De-
composition of Regular Domain ProblemdEEE Trans. Parallel Distrib. Syst.
11(11):1141-1150, 2000.

[14] M. J. Quinn and P. J. Hatcher. On the Utility of Communima-Computation Over-
lap in Data-Parallel Programg. Parallel Distrib. Comput33(2):197—-204, 1996.

[15] E. E. Santos and G. Muthukrishnan. Efficient SimulaB@sed on Sweep Selection
for 2-D and 3-D Ising Spin Models on Hierarchical ClustersIRDPS page 229b,
2004.

Paper 6

Domain Decomposition vs. Master-Slave in Apparently
Homogeneous Systems

Cyril Banino-Rokkones
To appear in HCW’2007, the 16th Heterogeneous Computing

Workshop
March 26 2007, Long Beach, California, USA.

159

Domain Decomposition vs. Master-Slave in Apparently
Homogeneous Systems

Cyril Banino-Rokkones

Department of Computer and Information Science
Norwegian University of Science and Technology
NO-7491 Trondheim, Norway

Abstract

This paper investigates the utilization of the masteres(8S) paradigm as an al-
ternative to domain decomposition (DD) methods for paliaifey lattice gauge
theory (LGT) models within distributed memory environngenthe motivations
for this investigation are twofold. First, LGT models ar@énently difficult to
parallelize efficiently with DD methods. Second, DD methbdse proven use-
ful for homogeneous environments, but are impractical fetetogeneous and
dynamic environments. Besides, many modern supercomarditectures that
look homogeneous (such as multi-core or SMP), are in faegrbgéeneous and
dynamic environments. We highlight this issue by compaaritaditional first-
come first-served MS implementation to a simple but yet efficselective MS
scheduling strategy that automatically accounts for sydbeterogeneity and
variability. Our experimental results with the parallalion of our LGT model,
reveal that the selective MS implementation achieves gffordemcy, but lacks
of scalability. In contrast, the DD method is highly scatgtiiut at the expense of
a poor efficiency. These results open up for a hybrid approahre the MS and
the DD methods would be combined for achieving scalable peformance.

6.1 Introduction

Domain decomposition (DD) methods have been studied axtdndecause of their util-
ity in a wide range of application areas such as, physican@tey, solid and fluid me-
chanics, or climate modeling. Domain decomposition onlfgreomputers consists in
splitting the computational domain into smaller sub-damakeach of which is assigned
to one processor. Then, during the execution, computatfidrcammunication phases al-
ternate, as neighboring processors (in the topologicaldeosition) need to periodically
exchange data located on the boundaries of their local d@mnai

162 Paper 6

On the one hand, the efficiency of DD methods is strongly &dfedy the hetero-
geneity and variability present in the underlying compagitdystem. Indeed, DD methods
are efficient only when the computational load is well batghamong the processors.
The processors being tightly coupled by the communicatioasgs, the execution pro-
ceeds at the pace of the slowest processor. For homogenedustable systems, the
computational domain needs simply to be decomposedvirtpually-sized sub-domains.
For heterogeneous environments on the other hand, thing®gmlicated as the domain
must be decomposed intsub-domains whose size must be proportional to the processo
computational speeds. In dynamic environments, wherairess exhibit unforeseeable
performance fluctuations, things get even worse, as it besamecessary to frequently
redistribute the computational domain among the processor
In addition, many modern supercomputer architecturesh(asanulti-core or SMP clus-
ters) that look homogeneous, hide in fact an heterogenemdiglyamic environment.
For instance, processors located within the same node trallgccompeting for shared
resources (e.g. caches), and intra-node communicatigpicatly much faster than inter-
node communication. The impact of the heterogeneity aridbiéity hidden in the system
on the performance of DD methods is difficult to evaluate,undoubtedly degrades the
performance.

Last but not least, an important issue concerns fault toteraCurrently, the most com-
mon technique for handling fault tolerance within DD meth@lcheckpoint/restart. That
is, checkpoints are saved to disk periodically, and if a @ssor fails, the computation
halts and restarts from the last consistent checkpointldagithy applications that make
use of a large number of processors, failures are more ltkdbe the rule rather than the
exception. In these conditions, the checkpoint/restattrtgjue could take longer than
the time to the next failure. Hence, there is a need to suifailgres without relying on
global recovery operations.

On the other hand, the efficiency of DD methods is directlyjesttido the characteris-
tics of the scientific problem to be solved. Some problemsrames suited to DD methods
than others. In this paper, we are interested in lattice g#ugory (LGT) models, a class
of Monte Carlo (MC) simulations particularly difficult to pallelize efficiently with DD
decompositions in distributed memory environment (i.e.ewlmessage passing is un-
avoidable).

LGT models belong to the wide class stencil computationswhere typically, each site
in a multi-dimensional lattice is updated with contribuigofrom a subset of its neighbors
(see Figure 6.1). For each iteration, the stencil kernepied to all the lattice sites -
usually the boundaries receive a special treatment.

When parallelizing LGT models with DD methods, one must emsat all times that
processors owning neighboring sub-domains do not upd@eed sites simultaneously.
Although neighboring lattice sites may be updated in angprghysical properties im-
pose these updates to happen sequentially, creating thaga@oing data dependencies.
The message passing paradigm provides a simple and nataydbverchestrate the lat-
tice updates without violating these data dependenciesnn@mication events can be
used agokens such that incoming messages from neighboring processgget the up-

6.1. Introduction 163

date of the corresponding sub-domain boundary. Howeveahdrcase of LGT models,
this technique introduces a significant amount of idle timethe processors, degrading
significantly the parallel efficiency.

Thus, there are two main reasons for considering an alteenagy to DD methods:
The inadequacy of DD methods for dealing with heterogenemas dynamic environ-
ments; and the lack of efficiency of DD methods for parallelizLGT models. In this
paper, we study the suitability of the master-slave paradigS) as an alternative to DD
methods for implementing LGT models within distributed ngynenvironments. The
MS paradigm admittedly comes along with some limitations, firesents most of the
features required for dealing not only with LGT models, debawvith heterogeneous and
dynamic environments.

In its simplest form, the MS paradigm works as follows. Thestarinitially distributes
one task to every slave. The slaves compute their tasks amtitke results back to
the master, which triggers the latter to send additionatstasThe main assets of the
MS paradigm ardlexibility androbustness As slaves execute tasks at their own paces,
they will automatically request tasks proportionally teithcomputing speeds. This is
popularly known aself-schedulingdemand-driveror first-come first-serve(FCFS). By
construction, FCFS adapts well to the performance fluadnatof the computational re-
sources. If a slave suddenly gets some external load, ipvatiess tasks less rapidly, and
hence request tasks less frequently. When the conditionbag& to normal, the slave
will request tasks at its maximal pace. However, FCFS is ffatient when point-to-
point communication times are heterogeneous. In that caseyrce selection strategies
become necessary in order to efficiently utilize the avélalomputing and communica-
tion resources. In this paper, we show that a simple, yettfg selectivescheduling
scheme is more appropriate for dealing with heterogenendsdgnamic environments
than the traditional FCFS strategy.

Finally, the loosely coupled structure of the MS paradigmspnts only onegingle point
of failurein the form of the master process. This means that one onlysrieebackup the
master node to achieve reliability. If some slave procedsgsthe computation can still
carry on with the remaining slaves.

The rest of this paper is organized as follows. Section 6vi2wes previous work
related to LGT model parallelizations, DD methods and the pd&adigm. Section 6.3
introduces the LGT model considered in this study. The DD Mi¶llelizations of
the LGT model are presented respectively in Section 6.4 audidh 6.5. In addition,
our MS selective scheduling strategy is exposed and comparthe FCFS strategy in
Section 6.5. Section 6.6 reports an experimental compalistween the MS and the DD
implementations. Future work is discussed in Section 6idally concluding remarks
are given in Section 6.8.

The experiments reported in this study have been performed3MP cluster composed
of 100 HP Integrity rx4640 server nodes. Each SMP node compoitenium2 proces-
sors clocked at.3 GHz sharingt GB of memory. Tha 00 SMP nodes are interconnected
with the Infiniband network.

In all the experiments reported in this paper, the numbeeddiions was arbitrarily fixed

164 Paper 6

to 500 in order to highlight differences between the different iempentations while keep-
ing measurement times relatively low. The experiments peréormed on a dedicated
set of computing nodes, which reduces external interfe®nEinally, all the performance
curves reported in this study correspond to the averagesalver3 runs.

6.2 Related work

Several studies have considered parallelizing MC simaratusing DD methods [3, 13,
17,21, 29]. MC simulations for the Ising model, which usely mearest-neighbors inter-
actions (6-point stencil i dimensions), have been successfully implemented on shared
memory systems with checker-board algorithms. The laiites are sorted into a red
set (where sum of coordinates is even) and a black set (wharetcoordinates is odd)
in a checker-board fashion. Thus, all the red sites can bataddsimultaneously, and
so it is for the black sites. Checker-board algorithms hasenlported onto distributed
memory systems by several studies [13,15,21]. For eadttiter all the processors start
by updating one color set, say the red one. Thereafter thesnexthange the red sites
located on the boundaries, and do the same with the blackibét.approach performs
boundary-exchanges with two messages per boundary. Fgerleange or more complex
interactions models, such as the one presented in this, stedyupdating schemes that fit
with the stencil kernel must be applied. In these condititims checker-board is likely to
be composed of at least four colors, leading to boundariram@es with four messages
per boundary.

Santos et al. [28, 29] conducted research on MC simulation2® and 3D Ising
models in another direction. Each local domain is partéibimto different sets, that are
updated one after another, in alternation with commurocagvents. For each iteration,
all the processors update the same set of their local dormaorder to avoid situations
where remote but adjacent site updates would enter in confliben some boundary-
exchanges take place, allowing the parallel computatigrdoeed with the next set. The
number of sets composing the local domain is dependent oohibgen decomposition
(2 for 1D, 3 for 2D, and 4 for 3D). The result is an increase & tlumber of messages
required for the boundary-exchanges (namely 2 for 1D, 8 Earéhd 24 for the 3D de-
composition).

The two aforementioned methods handle the data dependdreti@een neighboring
sites by increasing the number of messages per boundamgamge, which considerably
increases the communication run-time cost. Recently, weiged token-passing algo-
rithms based on DD methods that minimize the number of messaxrhanged between
neighboring processors [3]. Our algorithms are presenteldeaplained in great details
in [3], but we provide a brief summary in Section 6.4.

Although DD methods are relatively easy to deploy efficignth homogeneous envi-
ronments, dealing with heterogeneous and dynamic envigaisns a much more compli-
cated task. Several studies have been conducted on depBidrmethods within hetero-
geneous environments [4,5, 18,19, 22]. In most cases, tirgon is reduced to the prob-
lem of partitioning some mathematical objects, such asioestrsets or graphs [9]. The

6.3. Our lattice gauge theory model 165

main difficulty resides in the combinatorial nature of thelgem which typically turns
out to be NP-complete. Even though efficient (i.e. polyndntiauristics are derived, the
dynamic nature of the underlying platform makes statidatyias not well suited to these
environments. In dynamic environments, the processordspared network contention
will fluctuate during the execution requiring online loadlistribution mechanisms. On-
line redistribution is difficult to handle, as it poses theegfion of when should one re-
distribute the load? And how to measure the quality of a loattidution? Beaumont
et. al. [6] consider the matrix multiplication problem intbegeneous and dynamic en-
vironments, and propose to redistribute the load only betwarge static-phases. Still,
one must find a good load redistribution frequency, sinc@atmservative approach may
not result in significant improvements, wheras being toaeggive may incur too much
overhead. An important point stressed by Beaumont et. d@heismecessity to minimize
the amount of communication when redistributing the loakde @mount and location of
the data should be taken into account in order to maintaingiagive position of the pro-
cessors, otherwise the cost of the redistribution may bhilpitove. Similarly Mahanti
and Eager [22] find that data migration costs should be ma@dhifor efficient redistribu-
tion, and propose redistribution policies that try to lethwe relative position of the nodes
unaltered. In their work, Mahanti and Eager consider dadatbution following addi-
tion/removal of processors.
Although these studies on DD methods within heterogeneausomments present in-
teresting results that give insights on the problem diffies| these different strategies
typically rely on a centralized algorithm to (re)distributhe work among the heteroge-
neous processors. This clearly poses the question of thebditg of the approach. On
the other hand, the problem of online load redistributiagtrency is difficult to address
without disposing of some form of centralized informatidooat the platform state.
Similarly to DD methods, the MS paradigm is well known and haen the subject
of a wealth of studies both in the context of Cluster compufit0, 24, 25] and of Grid
computing [7,12, 16]. Usually the applications implementeder the MS paradigm are
composed of a large number of independent tasks. All thelppguheduling strategies
designed for minimizing the total execution time, hand asks by chunks of decreasing
size, in order to reduce the scheduling overhead while wicigea good load balance at
the end of the execution [14]. However, this kind of MS siyée cannot be utilized in
our study, because the tasks composing our target apphsadire not fully independent
of each other (more on this in Section 6.5).

6.3 Our lattice gauge theory model

Lattice spin and gauge theories are studied extensivelyanynareas of physics, espe-
cially in particle and condensed matter physics. The spthgauge field variables are
defined on every site of a multi-dimensional lattice, andttiemodynamic properties of
the system can be deduced from the partition function, wisichsum over all possible
configurations of the fields. Exact solutions to these ndiftiensional sums are rare and
in general one must resort to some numerical approximalibe.largest and most impor-

166 Paper 6

tant class of numerical methods used for this problem is tbhatdCarlo (MC) method,

which in stead of doing the sum over all configurations, zg#i random numbers to mimic
the random thermal fluctuations of the system from one cor#tgun to the other. A con-

siderable proportion of the computational resources uggghigsicists around the world
is spent on MC simulations.

The LGT model studied in this paper is a superconductor madehich a real valued
scalar field is coupled to a real valued vector field. This nh@la simplified version of
the one presented in [1]. The MC algorithm used for the sitraria is the celebrated
Metropolis algorithm [23] which can be described the foliogyway.

1. Pick one site in the lattice and suggest new values for ghdsfat that site.
2. Calculate the difference in energyll = E,,.., — E,;4 for the move, or update.

3. Draw a random numbeer[0, 1) and accept the new valuesiifin{1,e=*%/T} >
T.

4. Repeat step 1 to 3 until enough statistics are gathered.

The computational domain is a 3-dimensional lattice withiqaéc boundary condi-
tions. The charge of the system (reparted among all thedadttes) couples a scalar field
and a three-dimensional vector field. Hence, to each lasitecare associatetldouble
precisions real numbers. The local enefgyat one sites in the lattice is dependent on
the nearest neighbor ef and half of the next nearest neighborssoMore formally, all
the sitesadjacentto s are involved in the computation @f,.

Definition 6.1. Two lattice sites; = (z,y, z) andss = (¢, u, v) are said to beadjacent
ifand only if(¢,u,v) € {(z,y,2—1), (x,y+1,2—1),(x+1,y,2—1), (z—1,y, 2), (x —
Ly+1,2), (z,y—1,2), (x,y+1,2), (z+1,y—1,2), (x+1,y, 2), (x—1,y, 2+1), (x,y—
1,z+1),(z,y,z + 1)}, as depicted in Figure 6.1.

X

Figure 6.1: Stencil of the LGT model. Black sites are usedoate the grey site,
they areadjacentto the grey site.

6.4. Domain decomposition implementation 167

6.4 Domain decomposition implementation

In [3], we proposed token-passing algorithms based on DOhoakst that minimize the
amount of communication, i.e. one message per neighboragepsor per iteration. Our
token-passing algorithms are built upon a classic tectenfquallowing communication

overlap with computation in DD computations. The idea isddifion each local domain

into an inner set and an outer set [2,26,27]. The inner sgtdated while waiting for the

boundaries from neighboring processors, and thereaféeotler set is in turn updated.
The reception of all the boundaries is liken to the recepbiba virtual token, that allows

updating the outer set. Thereafter processors hand onkbe ty sending their updated
local boundaries to their neighbors.

[] oreen
= P
[[

(a) 1D.

Figure 6.2: The different domain decompositions.

In order to respect the data dependencies imposed by the L&iEInfsequential
updates of adjacent lattice sites), the processors aredsmitio different color sets (see
Figure 6.2), such that processors of the same color caneipioieit exterior sites simul-
taneously. For the 1D case, two colors are necessary andisotfiwhereas four colors
are required for the 2D and 3D decompositions. Then, an inglés established among
the colors to orchestrate the updates of the outer setshedi case, green processors
start ahead of the red processors, while the color ordefizipand 3D decompositions
is 1) green, 2) red, 3) white and 4) blue. Figure 6.3 sketdheparallel execution of the
token-passing algorithm based on a 2D decomposition.

Iteration

Send | '
Compute Outer set Inner set Outer set Inner set
Receive
o
o

o oI Bm B
Compute Outer set ‘ Inner set ‘ Outer set ‘ Inner set
Receive |S|N] [sIn]

-
|

Send
White] Compute Outer set Inner set Outer set

Receive
-
-
tim

Send W‘ E - W‘ E ‘
Compute ‘ Outer set Inner set
Receive - ‘ W‘ E ‘

Figure 6.3: Sketch of the token-passing algorithm with a 2Dainposition.

168 Paper 6

MPI features like persistent requests and derived datatiipge been used for im-
plementing the successive boundary-exchanges. Speotahaa been taken when post-
ing and completing the communication requests such thdfifPlereadycommunication
mode could be used. All these decisions contribute to keepgdmmunication overhead
to a minimum. Also, we used thdiagonal communication eliminaticiechnique [8, 13],
which consists of including ghost cells within messagesradento avoid diagonal com-
munications for exchanging lattice sites located on thesdyd the sub-domains.. At last,
for the sake of portability, non-blocking requests havenhgsed in order to exploit the in-
herent computation-communication overlap of the partitig method, even though many
implementations cannot overlap without extra hardwardénform of a communication

CO-processor.

1
Lattice size

(a) Speed-up witl32 processors. (b) 1D Speed-up

T T W -
B e
g :
1 : * .
B 20 - deal —— ||
3
g v il —-eeeee
) L, . 1 @ > 3
|]] 15 R X2 H
| A L - - 54
t b b : :
!] 1 1 g 96! X
| 1 :] 10 . e U
: : i Ka e
i : i L0
: i EE. s 1020 i
| ¢ i o 224°
; ‘ . NS 256"
S 0 20 a0

192 256° 100

Speed-up

25

- 2

g8

P

Sfla pomx

64 60 80
processors (P)

Figure 6.4: Speed-up of our token-passing algorithms basd2D methods. Re-
produced from [3].

Figure 6.4 (a) depicts the respective speed-up of the thifesresht token-passing
algorithms when using 32 processors. The better perforenahthe 1D decomposition
over the 2D and 3D decompositions is certainly due to the diocatpd token round-
trip trajectories of the latter decompositions as opposethé much simpler trajectory
for the 1D case. Indeed, the 1D token round-trip imposes orduter set update antl
messages, as opposedtouter set updates agdnessages for the 2D case, &liter set
updates and2 messages for the 3D case (see [3] for a thorougher perfoeraralysis).
For all the experiments, the token round-trip dominatestdked iteration run-time cost,
meaning that processors are starving, waiting for the to&exrive. The run-time costs
for updating the inner sets were roughly equivalent for théofain decompositions,
which means that processors are starving longer under thend8D decompositions
than for the 1D decomposition.

Although, Prieto et al. [26] showed that the separation efitiner and outer set
updates may degrade the performance due to the large dgigb@bween the memory lo-
cations of the exterior sites (causing a poor cache memauipigxtion when updating the
outer set), we found that our token-passing algorithms weadable with an efficiency
comprised betweef.25 and0.5 depending on the problem size and number of proces-
sors utilized (see Figure 6.4 (b)).

6.5. Master-slave implementation 169

6.5 Master-slave implementation

6.5.1 Task partitioning

The sites of the 3-dimensional lattice must be partitiongd disjoint sets to allow for
parallel execution. The goal is to enable the processorsoté wn different parts of the
lattice simultaneously. We rely on the same domain decoitiposand the same color
code than the ones used for the DD implementation of the LGdlain@see Figure 6.2),
such that blocks of the same color can be processed simaitglye In our context, each
block represents a task to be scheduled by the master.

Depending on the chosen decomposition and the LGT modediktdifferent dependen-
cies take place between neighboring blocks of differerdrsolFor the 1D decomposition,
each block is dependent @nblocks of the opposite color (above and beneath). For the
2D decomposition, each block is dependentdniocks of each of the other colors. At
last, for the 3D decomposition, each block is dependent blocks of each of the other
colors.

In order to respect the site update dependencies, the nuestkr with one color at
a time. Thus the scheduling overhead on the master nodesigaadid by only keeping
track of block dependencies from one color to another. Teddilock eligibility, the
master maintains for each block a dependency variablegénteas well as pointers to
the dependency variables of the adjacent dependent bléaikiglly all the dependency
variables are set to the number of dependencies generattt ligsk partition. Upon
reception of a computed block, the variables of all the ajablocks are decremented,
and if some of them become equal to zero, the correspondoakdbecome eligible for
computation. In that case, the block pointers are insertxd FIFO queue holding all
the blocks eligible for computation. This mechanisms velgethe master from waiting for
the termination of a given color to switch over the next colostead, the color transition
happens smoothly by delegating blocks as soon as they beslaride for computation.

The master must decompose the global lattice in such a wayhéee are enough
blocks available to the slaves. On the one hand, the numbielooks should be large
enough in order to dispose of enough eligible tasks at akgito keep the slaves busy.
On the other hand, the master should determine an app®paiEk size in order to reduce
the overhead incurred by the total amount of communicatwnlined with the post pro-
cessing of the blocks (copy operations due to the periodiditions of the 3-dimensional
lattice).

The first thing to determine is which task partitioning scleegives the best perfor-
mance. This includes finding the best domain decompositiohtize optimal block size.
A simple way to compare the different task partitioning gstssin estimating the ratia
between the time it takes a slave to process a task, and thattiakes the master to send
the task, receive the associated results and post-prdoesask. The ratia gives an in-
dication on how scalable is the MS implementation. The latigis ratio is, the better will
perform the MS implementation, as it would be able to use npooeessors. Actually,
this ratio gives an indication on the number of slaves thantlaster can handle, assuming

170 Paper 6

that the slaves have homogeneous computing and commuomicdtaracteristics.

L (4 ; s=96" —+— || s=96" —+— ||
[- §=72° K- ¥ L §=72° K-
i n B s=64° -] . s=64° -]
i) u® P - s=4g® - || N s=4g® - ||
il @F § §=32 - =32
£ 4.) S| s @] \\ + 209]
I L2 A A M T -»
o 3 a
o il
2 2
o o
0 1 15 2 o 1 15 2
Task size (GB) Task size (GB)
(a) 1D task partition. (b) 2D task partition.
s=96" —+— ||
5=72° K
s=64° -]
seie - |
- \\ st
: ¥ 7\‘\ s -9 |
—

Task silze (GB) *
(c) 3D task partition.

Figure 6.5: Estimating the ratio for different problem and task sizes. Note that
the task decomposition schemes must deal with lattice sizstiaints that dictate
the sizes and shapes of the blocks. Hence, the more dimeraierused by the
task partitioning scheme, the smaller the tasks can be.

Figure 6.5 reports the results of an experiment @ithrocessors (a master and a
slave), for different problem and task sizes. The expertaleralues for the different
ratios obtained during this experiment indicate that theteravould not be able to handle
more thart slaves on the test-bed machine, which might seem a low nuatliest sight.

In addition, when problem size increases, thetio decreases. For every decomposition,
a good task size seems to be situated betwéérand500 MB.

The 2D decomposition performs slightly better than the otimes, most likely due to
the shape of the blocks and consequently to the derivedygatainvolved in the commu-
nications. Indeed, when delegating a task, the master muatea block from the global
lattice, whose shape depends on the chosen decompositien200 decomposition is a
good compromise between few large blocks (1D) and many diwaks (3D).

6.5.2 Selective scheduling

Because our computational domain is decomposed intovelatiew tasks that become
eligible for computation alternatively throughout the qartation, we aim at task through-

6.5. Master-slave implementation 171

put maximization instead of total run-time minimizationui&cheduling strategy consists
in handing out the tasks one-by-one, in a demand-driveridasHf several slaves are
competing for a task, then the master must decide which orseree according to a
priority scheme.

Since all the tasks are computationally identical, weHgt) denote the time it takes
to slaves to process a task at time-stepFurther, it takes”s(¢) time units for the master
to send a task to slavweat time-stept, andC’(t) time units for the slave to return the
results to the master at time-step

Our MPI parallel implementation involves advanced prograng techniques such
as derived datatypes, non-blocking communications argigtent requests. This compli-
cates the online monitoring of the different communicatiments. Therefore, for each
slaves, we define thaask round-tripat time stept, noted R,(t), as follows: R(t) =
Cs(t) + Ps(t) + CL(t), that corresponds to the time it takes for sending a taskatcesl
s plus the time it takes slaveto compute the task plus the time it takes to send the re-
sults back to the master. Throughout the computation, threenaan monitor the value
R, of each slave in order to make efficient scheduling decisidrais, we account for
the possible performance fluctuations of both computatr@hc@mmunication resources
throughout the computation. Monitoring, simply consists in starting a timer right be-
fore sending a task to a slave, and stopping the timer wherethgts have returned.

When several slaves are in competition for receiving a thskmaster will choose the
one with the smallesi, value. Indeed, no distinction is made between the comjputati
and communication run-time costs relative to a slave, sinedgasks are not really inde-
pendent of each other. It is indeed, important that tasksedoack as soon as possible in
order to allow other tasks to become eligible for computatio

At the beginning of the execution, all the slaves are giveask,twhich allows to
initialize all the R values. Then, as the computation proceedsAhealues are updated
with the newest value measured by the master. More advanegthds based on averages
over the last values or on performance predictions exist [30], but oupéérmethod gave
satisfactorily results.

6.5.3 FCFS vs. selective scheduling

To demonstrate the need for priority schemes, we companesktective scheduling strat-
egy to the FCFS scheme, which works without priorities. Fégh6 (a) depicts the ratio of
the task throughput of the selective scheme over the taskghput of the FCFS scheme.
Clearly, selective scheduling achieves a higher througtin FCFS in most situations.
This phenomenon strengthens as the number of slaves iesremisich corroborates our
hypothesis that intra-node interferences as well as mtele communications introduce
heterogeneity and variability in the computing environimen

Figures 6.6 (b) and (c) report the task share among the slavdle selective and
FCFS schemes respectively. We observe that for the saesttheme3 slaves get a big-
ger share of the tasks than the others. This is not surprisitog each SMP node is com-
posed of4 processors, meaning thaslaves are located on the same node as the master.

172 Paper 6

104

Ly
=K

102 Q@

o o1

@ oo

Speed-up
3O
#WE 0 X
+ g
aQ

7 148 -
L6a 3¢ ||
196 K-
1128 [}
L160 I
1192 =
T s ¢ 5 5 7 & s 1 u =n
Number of processors

(a) Task throughput ratigzective.

Percentage of tasks
Percentage of tasks

10 - ey

0 0
1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 10 1

Slaves Slaves

(b) Task share for the selective schemg) Task share for the FCFS scheme

Figure 6.6: Comparison of the selective and FCFS schemds foi 28°.

The intra-node communication (shared-memory) being fabtn inter-node communi-
cation (message passing), the slaves located on the samea@&MRis the master will be
prioritized if they are in concurrency with other slavesdtsr on a different SMP node
because exhibiting a smallét; value. This phenomenon is less visible for the FCFS
strategy.

Finally, note that the cluster was used in dedicated modanimg that no external
load other than operating system calls or network conteriticctuations interfered with
our application. Consequently, all the nodes have roudidysame computing power
which explains the linearity of the curves. Nonethelessenvhsing a high number of
slaves, the selective scheme seems to adapt to some ietedsrthat take place, while
the FCFS scheme maintains a fair share of the tasks. Thheugh the systerooks ho-
mogeneousghere are still a certain amount of heterogeneity and bditiain the system
that degrade the overall performance.

6.6 Domain decomposition vs. master-slave

Figure 6.7 reports the speed-up and efficiency obtainedthgtkelective MS implementa-
tion using a 2D task partitioning scheme (Figures (a) and &cid with the token-passing
algorithm using a 1D decomposition (Figures (b) and (d))e ©an observe that the MS
implementation scales well up tbslaves, and thereafter begins to saturate. This result

6.6. Domain decomposition vs. master-slave 173

conforms with the experiment conducted for determiningaiygropriate task partitioning
schemes (see Section 6.5.1) predicting that the masted notihandle more thahslaves
efficiently.

Note that the MS implementation achieves a perfect speagup3 slaves (if the master
is not accounted). When using more thaglaves, the inter-node communications begin
to drive the performance away from optimality.

The poor performance of the MS implementation for small [mobsizes [= 483 and
L = 643) comes from our task partitioning scheme that utilizes kdoof size greater
than250 MB. Thus, for small problem sizes, there were simply not gmoimdependent
tasks to feed all the slaves. In such situation, one showddlimer grained task partition
scheme, albeit there is a limit on how small a task can be.

6 T T 6
Lag —f— Lag —— *
NIy e Ko T A e et
196 T B0 196 3K
Li2s Ei,.« e w0
4 160 s 4 160
5 L182 - 53 % L182 O
5 5
g3 8 X
g N
0 0

2 3 4 5 6 7 8 o 10 1 12 2 3 4 5 6 7 8 o 10 1 12 13 14 15 16
Number of processors Number of processors

(a) MS speed-up (2D task partitioning). (b) DD speed-up (1D decomposition).

[Pr——
” 09 H g4 -3¢
o 08 [196 K
- Lizs [
o R B a2 B * o711 L1e0
B /r_\ oG o g os||us -0
3 ol . ST i,
8 07 g g
? oaly — X e D e
g > B
o Bt o =
[o IR 03P G - e] Jaz)
196 3K ~__ ¥
02 H 1128 7] 02
o1 | L1s0 "
L102 -

o
6 7 8 10 1 12 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16
Number of processors Number of processors

(c) MS efficiency (2D task partitioning). (d) DD efficiency (1D decomposition).

2 3 4 5

Figure 6.7: Comparison of the selective MS and the DD implaatéons.

As opposed to the MS implementation, the DD implementatohighly scalable,
albeit this comes at the expense of a poor efficiency. For dl smamber of processors,
the DD implementation is less efficient than the MS impleragoih. Hence, it seems that
the MS approach is better suited for dealing with our LGT nhdlaen parallel algorithms
based on DD methods. However, the lack of scalability of ttf&iMplementation makes
it useless for large-scale simulations.

174 Paper 6

6.7 Future work

The natural solution to tackle the lack of scalability of & paradigm, is to deploy sev-
eral masters [20]. A direction for future work would be toidesa hybrid approach where
the MS paradigm and DD methods would be used in concert. Timpetational domain
would be decomposed among few processors (the mastergpdiutmaster would update
its sub-domain using the MS paradigm. The number of mastedefloy depends on the
problem to be solved as well as on the underlying computistesy. For our LGT model
and our SMP cluster, a master could manage a SMP node (or spatwem SMP nodes).
Such hybrid approach combines the benefits of the two paredigrhe MS flexibility
with the DD scalability. Interestingly, inter-master lobalancing could be tackled at two
levels. First, the computational load can be redistribietiveen masters. This approach
makes it possible to use existing load redistribution styiats [4—6,18,19,22]. But a more
promising approach would be to handle the load redistobutis a slave redistribution.
If a master experiences a lack of computing power from itgeslait could request addi-
tional slaves from other masters. Hence, slaves could dedrbetween masters on de-
mand. This “computing-power” balancing mechanism is maxilille and practical than
traditional load-balancing algorithms, as data would resdhto be migrated throughout
the computation.

Fault tolerance still becomes easier to handle as one nedd®dack-up the master
processes. For that matter, note that any slave can act astarnaenever needed.
Hence, masters can periodically back-up their data, byisgradcopy to one or few slaves
that would replace them in case of failure. For such implaat@ns, one could use the
Fault Tolerant MPI library (FIMPI) [11], which offers a range of recovery options other
than just returning to some previous check-pointed staltés i€ especially useful in the
case of slave failure since the computation can in pringpéeeed seamlessly.

6.8 Conclusion

High performance computing systems are no longer stablduigchomogeneous. This
greatly complicates the efficient deployment of traditiddB methods, since applications
must deal with system heterogeneity, resource performiuncteations and resource fail-
ures. In addition to that, there are certain classes of probifor which DD methods are
inappropriate, such as the LGT model presented in this paferce, there are two good
reasons for considering an alternative way to DD methods.

In this paper, we study the suitability of the MS paradigm asaliernative to DD
methods for implementing LGT models within distributed nogynenvironments. We
provide three different MS implementations based on thas& partitioning schemes.
More importantly we demonstrate, via a comparison betweselective and the FCFS
scheduling strategies, that apparently homogeneousnsysised in dedicated mode are
actually heterogeneous environments subjects to unfeabseresource performance fluc-
tuations.

Overall, our experimental results reveal that the MS im@etation achieves very

175

good efficiency on few processors, but lacks of scalabilitycontrast, the DD method is
highly scalable, but at the expense of a poor efficiency. Boallparity of the LGT model,
namely the constraining data dependencies, is better écimdth a MS implementation
than with DD methods. Hence, the MS paradigm is a good catalida small-scale
LGT models with high computation-to-communication ratidsinally, we discussed a
promising future work direction by sketching an hybrid agaarh that combines the MS
paradigm and DD methods for achieving scalable high peidoce.

[1] E. Babaev, A. Sudbg, and N. W. Ashcroft. A SuperconduttaBuperfluid Phase
Transition in Liquid Metallic HydrogenNature 431:666, 2004.

[2] S.B.BadenandS. J. Fink. Communication overlap in rigti parallel algorithms.
In Supercomputing '98: Proceedings of the 1998 ACM/IEEE cenf on Super-
computing (CDROM)pages 1-20, Washington, DC, USA, 1998. IEEE Computer
Society.

[3] C. Banino-Rokkones, J. Amundsen, and E. Smgrgrav. lRhralg Lattice Gauge
Theory Models on Commodity Clusters. 2906 IEEE International Conference
on Cluster Computing (CLUSTER 2006), September 25-28 BHl6elona, Spain
IEEE Computer Society, 2006.

[4] O. Beaumont, V. Boudet, and A. Petitet. A Proposal for ddiesgeneous Cluster
ScalLAPACK (Dense Linear Solvers)IEEE Trans. Comput.50(10):1052-1070,
2001.

[5] O.Beaumont, V. Boudet, F. Rastello, and Y. Robert. Malfultiplication on Het-
erogeneous PlatformHEEE Trans. Parallel Distrib. Syst12(10):1033-1051, 2001.

[6] O.Beaumont, A. Legrand, F. Rastello, and Y. Robert. [@drinear Algebra Kernels
on Heterogeneous Platforms: Redistribution IssuRerallel Comput, 28(2):155—
185, 2002.

[7] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, MeFRaan, S. Figueira,
J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen, Nn§pA. Su, and
D. Zagorodnov. Adaptive Computing on the Grid Using AppLelEEE Trans.
Parallel Distrib. Syst.14(4):369-382, 2003.

[8] C. Ding and Y. He. A Ghost Cell Expansion Method for RedigciCommunica-
tions in Solving PDE Problems. I8upercomputing '01: Proceedings of the 2001
ACM/IEEE conference on Supercomputing (CDROpApes 50-50, New York, NY,
USA, 2001. ACM Press.

176

Paper 6

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. Dongarra and A. Lastovetsky. An Overview of Hetercgmurs High Performance
and Grid Computing. IfEngineering The Grid: Status and Perspectid@nerican
Scientific Publishers, 2006.

A. Espinosa, T. Margalef, , and E. Luque. Automatic Barfance Analysis of
Master/Worker PVM Applications with Kpi. IfProceedings of the 7th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallgual Machine
and Message Passing Interfagemges 47-55, London, UK, 2000. Springer-Verlag.

G. E. Fagg and J. J. Dongarra. Building and Using a FBaoilierant MP1 Implemen-
tation. Int. J. High Perform. Comput. Appl18(3):353—-361, 2004.

J.-P. Goux, S. Kulkarni, M. Yoder, and J. Linderoth. Maswvorker: An enabling
framework for applications on the computational gi@luster Computing4(1):63—
70, 2001.

F. Gutbrod, N. Attig, and M. Weber. The SU(2)-latticauga theory simulation code
on the Intel Paragon supercomputBarallel Comput, 22(3):443-463, 1996.

T. Hagerup. Allocating Independent Tasks to ParaltecBssors: An Experimental
Study. J. Parallel Distrib. Comput.47(2):185-197, 1997.

D. W. Heermann and A. N. BurkittParallel Algorithms in Computational Science
Springer-Verlag New York, Inc., New York, NY, USA, 1991.

E. Heymann, M. A. Senar, E. Luque, and M. Livny. Adapt&eheduling for Master-
Worker Applications on the Computational Grid. @RID '00: Proceedings of
the First IEEE/ACM International Workshop on Grid Compagtipages 214-227,
London, UK, 2000. Springer-Verlag.

W. Janke and R. Villanova. Ising model on three-dimenal random lattices: A
Monte Carlo studyPhysical Review B66(13):134208—+, Oct. 2002.

M. Kaddoura, S. Ranka, and A. Wang. Array Decomposgifam Nonuniform Com-
putational Environments]. Parallel Distrib. Comput.36(2):91-105, 1996.

A. Kalinov and A. Lastovetsky. Heterogeneous Disttibn of Computations Solv-
ing Linear Algebra Problems on Networks of Heterogeneouniiaers.J. Parallel
Distrib. Comput, 61(4):520-535, 2001.

T. Kindberg, A. Sahiner, and Y. Paker. Adaptive Patalle under Equus. IfPro-
ceedings of 2nd International Workshop on Configurableribisted System$ages
172-182. IEEE, March 1994.

M. Luscher. Solution of the Dirac equation in lattice Q@sing a domain decom-
position methodComput. Phys. Commuyri56:209-220, 2004.

177

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

A. Mahanti and D. L. Eager. Adaptive Data Parallel Coriqgi on Workstation
Clusters.J. Parallel Distrib. Comput.64(11):1241-1255, 2004.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Telland E. Teller. Equation of
State Calculations by Fast Computing Machin&he journal of chemical physics
21(6):1087-1092, 1953.

P. D. Michailidis and K. G. Margaritis. Performance Hation of Load Balanc-
ing Strategies for Approximate String Matching Application an MPI Cluster of
Heterogeneous Workstationslournal of Future Generation Computing Systems
19(7):1075-1104, 2003.

A. Morajko, E. César, P. Caymes-Scutari, T. MargalefSorribes, and E. Luque.
Automatic Tuning of Master/Worker Applications. In J. C. & and P. D.
Medeiros, editorsEuro-Par, volume 3648 of_ecture Notes in Computer Science
pages 95-103. Springer, 2005.

M. Prieto, I. M. Llorente, and F. Tirado. Data Localityxfoitation in the De-
composition of Regular Domain ProblemdEEE Trans. Parallel Distrib. Syst.
11(11):1141-1150, 2000.

M. J. Quinn and P. J. Hatcher. On the Utility of Communtima-Computation Over-
lap in Data-Parallel Programg. Parallel Distrib. Comput33(2):197—-204, 1996.

E. E. Santos, S. Feng, and J. M. Rickman. Efficient Ralr&llgorithms for 2-
Dimensional Ising Spin Models. IFPDPS '02: Proceedings of the 16th Interna-
tional Parallel and Distributed Processing Symposjwage 135, Washington, DC,
USA, 2002. IEEE Computer Society.

E. E. Santos and G. Muthukrishnan. Efficient SimulaB@sed on Sweep Selection
for 2-D and 3-D Ising Spin Models on Hierarchical ClustersIRDPS page 229b,
2004.

R. Wolski. Experiences with Predicting Resource Penfince On-line in Compu-
tational Grid SettingsSIGMETRICS Perform. Eval. Re80(4):41-49, 2003.

178 Paper 6

Paper 7/

Data Layout and Access Transformations for Efficient Stendi
Computations

Cyril Banino-Rokkones.

Submitted td21st ACM International Conference on
Supercomputing

July 2007, Seattle, USA.

179

Data Layout and Access Transformations for
Cache-Efficient Stencil Computations

Cyril Banino-Rokkones

Department of Computer and Information Science
Norwegian University of Science and Technology
NO-7491 Trondheim, Norway

Abstract

Stencil codes form the basis for a wide range of scientifidiegjions, but unfor-
tunately exhibit a particularly poor memory behavior widspect to processor
caches. In this paper, we present transformation techsitpa¢ improve the per-
formance of 2D and 3D stencil codes on modern computer aathites. On the
one hand, we present theoretical and experimental rebaltslemonstrate how
spatial locality is improved by using skewed data layoutdthdugh skewing
the multi-dimensional array seems a fairly traditional raggh of altering the
memory layout to boost performance, we are not aware of apgrghat reports
theoretical or practical results on the matter. On the dthed, we present a new
technique that improves temporal locality by exploiting fymmetrical property
of the stencil kernel. Performance analysis using the PAtiface show that the
techniques presented in this paper considerably redugeuthber of L1, L2 and
TLB data cache misses, and enable to increase the level aifgdmm exposed
to the compiler. Overall, our experimental results on 3 nogeocessors (Intel
Pentium 4, AMD Opteron and IBM Power5+) confirm that thesémégues yield
to substantial performance improvements over the trawititling optimization
technique.

7.1 Introduction

In the last decade, processor performance has been steagdilgving at a much more
higher rate §5%) than memory performancg¥%) [8]. Most modern CPUs are so fast
that memory transfers constitute the practical limitationmprocessing speed: The CPU
spends much of its time stalling, waiting for memory transf®o complete. Modern
computer architectures rely on a hierarchical arrangemiememory (or caches) to help
bridging that widening gap. However, effectively using e for numerical applications
is a challenging task.

182 Paper 7

Stencil codes form the basis for a wide range of scientificliegjions: Iterative
solvers, Monte Carlo simulations and image filtering aggtlans all rely on some form
of stencil computation. These applications are cadiiemhcil codedbecause each element
in a multidimensional array is updated with contributionanfi a subset of its neighbors.
Then, for each iteration, the stencil kernel is applied heslement of the array. Stencil
codes are among the most time-consuming routines of therafartioned applications,
and that is why it makes sense to aspire for ultimate perfooma

Unfortunately, stencil codes exhibit a particularly poamory behavior with respect
to processor caches. This poor behavior is imputed to thettiat each array element
is accessed a small, constant number of times per iteratibich simply amounts to
the number of points in the stencil kernel. For large probszres, array elements must
be brought into cache several times per iteration, dradtidegrading the overall per-
formance. Reorganizing these computations in order toieftiy utilize the memory
hierarchy has been the subject of a wealth of research.

Cache blockingpr tiling is the standard transformation technique which improves lo
cality by moving reuses to the same data closer in time [513115, 16, 18, 21, 23, 26].
However, the evolution of memory system features (e.g.elamrchip caches combined
with automatic prefetch) seems to reduce the effectiveaksmditional cache blocking
optimizations [9]. In the worst case scenario, cache biagkransformations may even
interfere with prefetch policies, resulting in performardegradation. Prefetching (both
in hardware and software) improves the performance of ltmges1 accesses, while dis-
continuities in access patterns (exhibited by transfaionatlike tiling) may counter the
benefits of prefetching. In contrast, the transformatiomesgnted in this paper improve
performance while performing contiguous data accesses.

The first contribution of this paper is the theoretical angezimental analysis of
skewed data layouts for improving the spatial locality afnsil codes. To the best of
our knowledge, this is the first paper that presents thealetis well as experimental
results on this memory alteration technique. We first defieestencilfootprint memory
distance that represents the longest distance in memory betweeartap elements used
by the stencil kernel. Then we demonstrate - and quantifat2D and 3D skewed data
layouts exhibit a much lower average sterfoibtprint memory distancthan traditional
row-major or column-major storage orders. Having the aelaynents used by the stencil
close to each other in address space allows to better utiézeache capacities and hence
to reduce the number of cache misses.

The second main contribution of this paper is a new data adrassformation, called
stencil decompositigrnthat improves the temporal locality of stencil codes. Thigp
transformation technique, based on loop fission and lodpriuslecomposes the stencil
kernel into two micro-stencils, such that the updates ave performed in two passes.
The partial results obtained from the first pass are addedetgartial results obtained
from the second pass to produce the final results. The twarsiencil updates are fused
within the innermost loop, but applied to different data ider to exploit the symmetrical
properties of the original stencil, by computing the mutt@htributions of two elements
that do not have spatial locality.

7.2. Stencil computations 183

The Jacobi and Gauss-Seidel iterative methods are usedltiaéy and compare our
techniques with the ones found in the literature. Althouggse methods have been re-
placed by more efficient schemes such as multigrid, theyrtieless play an important
role because they are building blocks of the advanced msttatl because they have
similar computational properties [13]. Our transformatiechniques are evaluated and
compared on three modern processors which are Intel PedtidD Opteron and IBM
Power5+. Wall-time measurements combined to hardwaremeance counter analysis
are used to understand and interpret our results. We usdeAfRkinterface to hardware
performance counters [1] to collect these data.

The rest of this paper is arranged as follows. Section 7.2enits the challenges im-
posed by traditional stencil codes as well as the iteratie¢hods implemented in this
study. Section 7.3 reviews previous work and presents haoveantributions fit in with
previous studies. Sections 7.4 and 7.5 present respactineetata layout and data access
transformations proposed for 2D and 3D stencil codes. @egti6 evaluates our trans-
formations through actual performance measurements aedgties our results with the
help of information collected with PAPI. Finally, Section/7summarizes our contribu-
tions, states our conclusions and discusses possible fuonk directions.

7.2 Stencil computations

An important class of scientific applications rely on sotypartial differential equations
(PDESs) using finite differencing techniques [17]. Considerninstance the Laplace equa-
tion:

0?u 0%u
—+=—==0 7.1
Ox? + Oy? (7:1)
To solve this iterativelyy is discretized withV points in thex andy directions, and
for each new iteratiom + 1, the approximate value of the solutimﬁ;H is computed as:

1

1

upy = (g ui g+) (7.2)
Equation 7.2 represents tllacobiiteration kernel which consists of4apoint stencil

in two dimensions. Another classical method is Gauss-Seideiethod, which makes

use of updated values afon the right hand side of Equation 7.2 as soon as they become

available. Thus, the averaging is done in place instead ioQbsopied from an earlier

iteration to a later one, as depicted below.

1
u?jl — Z(uffllj +ugy j + ufj_ll + i) (7.3)
Conventional wisdom argues that the innermost loop of afesb should step through
the array sequentially in memory. This is often calédde-1 indexind26]. Most previ-
ous studies assuming row-major storage order present tteefoo the 2D Gauss-Seidel

method as depicted in Figure 7.1.

184 Paper 7

int i,j;
double AIN [N ;
for(i=1;i<N-1;i++)

for(j=1;j<N-1;j++)
ALi][j1=0.25+(A[i-1][j1+A[i][j-1]+

AL LT+ +ALT+IT [D) 5

Figure 7.1: 2D Gauss-Seidel stride-1 indexing
with row-major storage order.

Although the Gauss-Seidel scheme requires less data stthrag the Jacobi scheme,
it imposes however more constraints on the execution oeder,exhibits less opportu-
nities for optimization through reordering [13]. To sidgstthis limitation, a Red-Black
checkerboard algorithm has been implemented, which aesesdkthe “red” elements
(where sum of coordinates is even) to compute values for bfecK” elements (where
sum of coordinates is odd), then it does the other way arosityblack elements to
update red elements [17,19, 23].

Historically, PDE solvers have focused on 2D domains. Batase computing power
became available, scientists became interested in 3D denaasi well. The 3D Jacobi
scheme reads thus:

U?ﬁ = é(uzn—l,j,k Fu g T U1k T U e T U k1 T U 1) (7.4)

For large problem sizes, array elements must be broughtadioe multiple times per
iteration, dramatically degrading the overall perform@anthis problem arises more often
in 3D codes than in 2D codes because more data need to be leeldhia to fully exploit
group reuse.

There are two types dbcality that can be exploited to improve performance when
implementing stencil codes [25]. Theregpatial locality when accessing neighboring
points (in address space), and theré&imporallocality when array elements are reused
several times before being evicted from the cache. Rougbialsng, spatial locality
deals with the data layout, i.e. how the multidimensionaayis mapped into address

space, while temporal locality deals with the ordering ef tipdates.

7.3 Previous work

A wealth of optimization techniques have been proposed fwaore memory hierarchy
performance. Kowarschik and Weil3 [11] and Wolfe [26] prevaVverviews of such opti-
mization techniques. Loop transformation techniquesetargmporal locality by modify-

7.3. Previous work 185

ing the program'’s iteration space. Loop interchange (orengenerally loop permutation)
modifies the order of selected loops in a loop nest [22]. Lamgioh fuses two loops that
have the same iteration space traversal into a single lobje Voop fission does the op-
posite [14]. Loop alignment and loop skewing are proposedligo and Kennedy [27]
to reduce the memory storage required by stencil codesasitithe Jacobi method. The
authors show that these transformations can achieve thepastycally minimal memory
allocation for this kind of stencil computations.

Tiling is the standard loop transformation technique foptioving temporal reuse in
cache. Tiling reduces the working sets by grouping the gsdmito rectangular blocks
that are processed one after another, in order to reduceittapasses. However, mod-
ern caches have limited set-associativity, and tiling aafifes from considerable con-
flict misses. To reduce conflict misses, copying and paddingriques have been pro-
posed [5,12,18,21]. Weil} et al. [23] apply tiling and paddimnsformations for 2D and
3D stencil codes, while Rivera and Tseng [19] follow on thizrkvby developing com-
piler optimizations that automate the search of pads aediges. The authors propose
a partial blocking scheme for 3D stencil codes in order to reduce non contigdats
accesses. This results in a stack of 2D slices in the unbdodkeension.

Several studies have emphasized the need to take into ddbeufranslation Look-
Aside Buffer (TLB) when optimizing for performance [5, 1%]1 As problem size in-
creases, TLB thrashing occurs and can considerably degediermance. Mitchell et
al. [15] derive multi-level cost functions that pays attentsimultaneously to cache and
TLB performance for guiding the optimal choice of tile sizedashape. Coleman and
McKinley [5] suggest that tile sizes need to be constraingzh ¢hat the number of non
consecutive elements accesses is smaller than the nunegefable entries in the TLB.

Although tiling is a well understood technique that provedsignificantly improve
reuse, a recent study of Kamil et al. [9] show that the evofutf memory system fea-
tures (e.g. large on-chip caches combined with automagifejmh) seems to reduce the
effectiveness of traditional cache blocking optimizasiomhe authors stress the issue that
non contiguous data access may interfere with prefetcltips|i resulting in a perfor-
mance decrease.

A way to reduce non contiguous data accesses and to avoidctani$ses in tiled
code is to change the data layout in order to match the daessaqmttern. Chatterjee
et al. [2,3] use recursive array layouts and different sgdlagg curves for fast matrix
multiplication. Kandemir et al [10] make use of hyperplahedry for memory layout
representation. The array references in a given loop nesmadeled by a coefficient
matrix and offset vector [26] in order to detect suitable memayouts expressed by hy-
perplanes. The ATLAS project [24] uses block data layouhwiling to exploit temporal
and spatial locality. To promote portability, the seleatinf the optimal tile size is done
empirically by running several off-line tests. In contra3ark et al. [16] analyze the in-
trinsic TLB and cache performance using tiling and blockadayout, in order to derive
a block size selection algorithm.

Bandwidth and profile reduction problems [6, 20] are closelgted to the problem
studied in this paper. Applied to matrices, the bandwidthimization problem consists

186 Paper 7

in finding a permutation of the rows and columns of a sparseixnsd as to minimize
the distancé of any nonzero entry from the center diagonal. This problewery close
to the profile minimization problem that consists in minimgthe sum of the maximum
distances from the diagonal. Bandwidth minimization is amant in solving linear sys-
tems, because direct methods such as Gaussian eliminatiobecperformed 0 (nb?)
on matrices of bandwidth, which is very valuable wheh << n [20]. On the other
hand, profile minimization leads to a reduction of the amairspace needed for storing
the sparse matrix [6]. The bandwidth and profile minimizatiwoblems are known to be
NP-complete [6], and one of the most popular heuristics &rdwidth and profile mini-
mizations is the one of Gibbs et al. [7]. At last, layout peyhk arise also within parallel
processing settings where the amount of communicationlgt@minimized in order to
obtain good speed-up. The graph partitioning problem wigzrallel processing settings
consists in distributing the nodes of a graph onto a set afgssors in such a way that the
number of edges stretching over two processors is mininteén@nd Chang [4] propose
to utilize a 2D skewed data layout for minimizing data comiation over processors
for distributed memory multicomputers.

The contributions of this paper fit in with previous work aidaws. We adhere to
the idea of changing memory data layouts in order to match datess patterns that
improve memory hierarchy performance [3,4, 10, 16, 24]. fesader the use of skewed
data layouts for improving spatial locality. Although skegthe multi-dimensional array
seems a fairly traditional approach of altering the memaypuit to boost performance,
we are not aware of any paper that reports theoretical natipah results on the mat-
ter. Skewed data layouts reduce the average distance lresiveeltaneously referenced
memory locations, which intrinsically applies to multipévels of the memory hierarchy
such as cache and TLB performance [15, 16]. While, bandvedthprofile minimization
heuristics were originally designed for improving the penfiance of direct methods and
for reducing storage requirements, this paper demonsttiast similar concepts allow to
improve the memory traffic performance of iterative methadswell. Analogously to
Chen and Chang [4], we exploit the properties of skewed datauits, but for different
purposes. While Chen and Chang target the minimization & dammunication over
processors for distributed memory multicomputers, wargiteo optimize stencil codes
for cache efficient computations. Similarly to McKinley &t[A4], we present a new data
access scheme that combines loop fission and loop fusiordar tw improve temporal
locality. The stencil kernel is split in two halves, and tipdates are now performed in
two passes. We term this approathncil decompositiorFinally, it is important to under-
stand that previous studies, such as the one of Kandemir[@D§lthat target data layout
optimization by utilizing a coefficient matrix and an offsgictor to represent the data
access pattern of a loop nest, will not be able to detect theflie of skewed data layouts
for the iterative methods studied in this paper. Indeedh@nGauss-Seidel scheme, the
order in which the grid points are updated in the sequenigalrhm is not fundamental
for the solution, since it is an approximate method thaates until convergence. Hence,
a different ordering of the grid points, will not affect theality of the solution, as long as
the grid points are equally visited and updated. For thisoearepresenting these itera-

7.4. Data layout transformations 187

tive methods by a loop nest may be misleading because igitelly implies an ordering
scheme.

7.4 Data layout transformations

The transformations presented in this Section aim at reduttie average distance in
memory between the array elements involved in a stenciltepdae term such distance
the stencifootprint memorydistance. Let us definegroup G(u) as the set of the array
elements contributing to the update of elementFor instance, we get for 2D Gauss-
Seidel,G(u; ;) = {wi—1,j,Wit1,5, Wi j—1, Ui +1}. Letm(u) be the memory location of
elementu. The aim of using skewed data layouts is to reduce the avetageil footprint
memory distance:

Z(max{m(v)\v € G(u)} — min{m(v)|v € G(u)})

u

. In plain words, one aims to group together in memory the etgsbelonging to the same
group. For notational convenience, the transformatiohrtiggies presented throughout
the rest of this paper, are reported for symmetrical domai@asv x N in 2D andN x

N x N in 3D, albeit these techniques extend to non symmetricalailosras well.

7.4.1 2D skewed data layout

The average footprint memory distance of the row-major - @umn-major - storage
order is equal t@ N. This means that the cache only needs to be able to hold tw® row
of the array to fully exploit group reuse. The evolution ofmay system features such
as larger on chip caches and prefetch policies, leaves ptaa# for tiling improvements

of 2D codes [9,19]. The 2D skewed data layout studied in tafgep pushes the limits of
tiling improvements even further.

To ease the presentation, we adopt the approach of Kandeadir{#0] who express
memory data layout with hyperplanes. Briefly, imedimensional space, a hyperplane
can be defined as a set of tuplg@, as,...,an) | g1a1 + g2a2 + -+ + gmam = c},
where the row vectog” = (g1, 92, ..., 9m) iS composed of rational numbeygs called
hyperplane coefficients andis a rational number called hyperplane constant. Two ar-
ray elements represented by coordinate vectpandé, are said to belong to the same
hyperplane ifg” ¢; = g” . For example the hyperplane vectdr 0) indicates that two
array elements belong to the same hyperplane as long as #veytle same value for
the row index, which amounts to row-major storage order. ZDeskewed data layout
is expressed by the hyperplane vedtorl), i.e. two array elements belong to the same
hyperplane if the sums of their coordinates are equal. Axample, elements with coor-
dinates (2,4) and (3,3) belong to the same hyperplane. Igigreas are linearly mapped
into address space in increasing order of their hyperplamstants. Hence, the array
elements belonging to hyperpladé, with constantc = p are stored before the array

188 Paper 7

elements belonging to the hyperplaHg. ;. Within a hyperplane, we arbitrarily store the
elements by increasing row index as depicted in Figure he.data access pattern when
updating the array elements must now follow the dashed lepgcted in Figure 7.2 in
order to perform stride-1 access. This issue will be dissthas Section 7.5. For now, let
A(L, N) be the average footprint memory distance of a given datautaydor a N x N
data array.

D

; Hy Hy
-
Z g -9
’ . . 289 s
s - s ' s 7
- - - ’ v,
- . P 7, 2
-
s - ’ - 7 s
v 4 5
%
-
z
-
.
-
-
A0
A
,
.
-
< s

- -
Z
/ P -
-
, . , s ’
i . P ,
Ay . P ,
4 , p ,
. ’
, -
7 . , ’ ’

’
s P 4 A -
i - 4 - , /%
« <

4

Figure 7.2: 2D Skewed data layouts fsr= 5.

Property 7.1. The average footprint memory distance of the 2D skewed dgtaut is

4
li A(SK,N)==-N
N—1>I-I|-loo (’) 3

Proof. Let us decompose the setof all the hyperplanes into three disjoint subsBisP,
andPs such thatP; = {H, | p € [0,N — 2]}, P, = Hy_1, andPs = {H, | p €
[N,2N — 2]}. In other words,P; comprises all the array elements located in the upper
triangular region of the arrafy, comprises the elements located on the main anti-diagonal
of the array, andP; comprises the elements located on the lower triangulaonegi the
array.

Consider a paifH,, H, 1) of consecutive hyperplanes belongingRp. The num-
ber of elements off,; is one more than the number of elementshf The cardinal
numbers of the hyperplanes belonging®ocan therefore be represented by the sequence
of consecutive integers, 2,3,4, ..., i.e. card(H,) = p+ 1,¥p € [0, N — 2]. Assume
that the stencil kernel is applied to element € H, C P;. The trailing reference;_ ;
of the stencil kernel is distant from element; by card(H,) locations, while the leading
referenceu; 1 ; of the stencil kernel is distant byird(H,) locations. Since no com-
putation is performed on the array boundaries, the sum dbibterint memory distances

7.4. Data layout transformations 189

of the updated elements belonging i is equal to(p — 1)(2p + 3),p € [2,N — 2].
Consequently, the sum of the footprint memory distances of the updated elements be
longing toP; is given bys; = Z;V:‘Zz(p— 1)(2p+3). Assume now that the stencil kernel

is applied to element; ; € P». In that case, both the trailing and leading references are
distant bycard(Hy_1) = N locations. Since there af&v — 2) elements to be updated
on the main anti-diagonal, the susp of the footprint memory distances of the updated
elements belonging t®, is given bys, = 2N (N — 2). Finally, by symmetry we have

s3 = s1. Since there aréN — 2)? elements to be updated, we get:

AN(N —2)+2 . 2(p - 1)(2p+3) AN® —3N2- 1N 110

A(SK,N) = = = 3
(SK, N) (N —2)2 N2 — 4N + 4

O

7.4.2 3D skewed data layout

When moving to 3D codes, and assuming row-major storage,dfaecache needs now
to be able to hold two planes of the array to fully exploit groeuse. Hence, for row-
major and column-major storage orders, the average foovtmeémory distance becomes
A(RM,N) = 2N?. The 3D skewed data layout is expressed by the couple of plgver
vectors(1,1,1) and(1,0,0), i.e. two array elements have spatial locality if the sum of
their coordinates are equahd if their first coordinate (plane index) are equal. To avoid
confusion, we speak of macfa, 1, 1) and micro(1,1,1) U (1,0,0) hyperplanes. As an
example element&3, 2,4) and (3,1, 5) belong to the same micro hyperplane, while the
elementg3,2,4) and(2, 2, 5) belong to the same macro hyperplane, but to different mi-
cro hyperplanes. Macro hyperplanes are linearly mappedithdress space in increasing
order of their hyperplane constants as depicted in Fig@&eWithin a macro hyperplane,
micro hyperplanes are linearly mapped into address spaaetieasing order of their
hyperplane constants (i.e. by increasing plane index). fally, within micro hyper-
planes, array elements are arbitrarily mapped into addsse by increasing row index.
For instance, elemeif®, 3, 4) is stored before eleme(®, 4, 3) but after element5, 1, 2).

Property 7.2. The average footprint memory distance of the 3D skewed dgtait is

. 11 2
S ASKN) =N

Proof. For even values oWV, let us decompose the sebf all the macro hyperplanes into
four disjoint subset®,, ..., P, such thatP, = {H, |p € [0,N — 1]}, P, ={H, | p €
[N, 3N 2]}, Ps = {H, |p € [N—1,2N 3]} andP, = {H, | p € 2N —2,3N —3]}.
For odd values ofV, symmetrical reasons require to divide the 3D array usirggdubsets,
the one in the middle containing only one macro hyperplanee @ space limitation
reasons, we do not expose the case whérs odd, as in both caseS(SK, N) tends
towards the same limit.

190 Paper 7

7

Hyo

Figure 7.3: 3D Skewed data layouts fr= 5.

Consider a paifH,, H,1) of consecutive hyperplanes such that [0, N —1]. The
number of elements in each dimension/f, ; is one unit longer than the number of ele-
ments in each dimension &f,,. Therefore the cardinal numbers of such hyperplanes can
be represented by the sequence of triangular numbgrs, 10, 15, 21, 28, 36,45, 55, .. .,

i.e. card(H,) = ("1?),p € [0, N — 1]. Due to the 3D cube topology, the cardinal of the
hyperplanesH,,p € [N, %N — 2] cannot be represented by triangular numbers. In-
deed, the cardinal of such hyperplanes corresponds torgtiler number that has been
truncated by(p + 1 — N) elements in each dimension. That is to say, each hyperplane
H,,p € [N, 3N —2] compriseq”}?) —3("*% ") elements. Hence, the trailing reference
T'(p) of the stencil kernel applied to elements belonging to theehglaneH,, is given by:

("), ifpe 3N 1]
T(p) = { (szrz) —3(*2 M)+ (p+1-N),ifpe [N, 3N —2

Note that the quantityp + 1 — N) is added for hyperplaned,,,p € [N, %N — 2]
because stepping to the trailing reference in address apaatees crossing only 2 of the
3 dimensions of the hyperplane. Similarly, the leadingrexieeL(p) of the stencil kernel
applied to elements belonging to the hyperpla&fgis equal to:

_f (P3), ifpe 3, N —2]
L(p) = { (p-z:a) —3(H N L (p+2 - N),ifpe [N —1,2N -2

Since no computation is performed on the array boundatiesiims; of the footprint
memory distances of the updated elements belongifig is given by:

7.5. Data access transformations 191

2= (7500 - 20

p=3
And the sums; of the footprint memory distances of the updated elemeritsging
to Ps is given by:

- (50 2" @ s o

p=N+1

Due to symmetrical reasons we haye= s, ands, = s;. Since there aréN — 2)3
elements to be updated, we get:

2(s1 +52) _ 1N’ — BN 2N+ PN 4+ 5N — 14
(N —2) N3 —6N2+ 12N -8

A(SK,N) =

O

Properties 7.1 and 7.2 show that skewed data layouts immpatal locality by a
factor of 1.5 for 2D and1.81 for 3D codes against row-major storage orders. For illus-
tration, Figure 7.4 plots the footprint memory distancedach updated array element (as
one steps sequentially in address space) for the skewedanchajor data layouts. For
problem sizes where two array lines do not fit in cache, the kiwved data layout will
better utilize the cache, resulting in less capacity antieaonflict misses, while the 3D
skewed data layout may even be able to fully exploit grougeeas opposed to the row-
major storage order. This comes from the shape of the magerplanes involved in the
3D skewed data layout, which are composed of hexagons frmn&thngles as depicted
in Figure 7.3.

7.5 Data access transformations

The data access transformations presented in this sedlidrewlustrated with 2D exam-
ples only, albeit these techniques extend to multidimeradiarrays as well. The reason
for this is that the 3D skewed data layout requires a more &Gioaipd index manipulation,
that we do not report in order to alleviate the presentation.

7.5.1 Skewed stride-1 indexing

When considering skewed data layouts, one must perfornx imadmipulation by hand in
order to hit the correct memory locations. A direct impletagion would be to provide
an address computation function that maps the array lomatmomemory locations. Such
function should be bijective (different array elements rnwagifferent memory locations),
its image should be dense (there are no holes in the memayriitioof the array), and it

192 Paper 7

2500

2000 Frrer

1500

Footprint memory distance

1000 F 4 E
ROW-MAIOR () 3
; A
s00 | SKEWED A
L16KB = oeve e
s s . .
0 500000 10406 15406 20406
Array elements
(a) 2D, N=1500
(p = S
|
: A
g s .
0
g p A
> 1501 -
5 ; :
= A A
Q]
£
E w00} L
A A
Q ROW-MAIOR () L:'L.
s00 - SkEwed A %1
16KB = oeve e 1
‘ ‘ ‘ ‘ ‘ ‘ ‘
0 5000 10000 15000 20000 25000 30000 35000
Array elements
(b) 3D, N=35

Figure 7.4: Footprint memory distance for each updatedyagtament as one
steps sequentially in memory.

should be easily computable [2]. For the 2D skewed data lastach function may look
like this:

i) = (I i if i+ j) < N
’ N2 — f(N —i—1,N —j — 1), otherwise

However, computing the address function for every arragneld referenced incurs
a significant overhead [2]. Instead, one can improve theopadnce by exploiting some
knowledge about the 2D skewed data layout structure. Thekided stride-1 indexing
scheme for the Gauss-Seidel method is depicted in Figure Mdie that the code is

7.5. Data access transformations 193

decomposed intd main blocks, which correspond to tBelisjoint hyperplane sefg;, P
and?P; presented in Section 7.4.1. For 3D skewed data layouts,adtthe is decomposed
into 5 main blocks.

int i,j,base;
doubl e Al N«N];
base= 1;
for(i=2;i<N1;i++){
base+=i ;
for(j=base+l;j <base+i ;] ++)
Alj1=0.25%(A[j-i-1]+A[j-i]+
ALj +T+1]+AL] +i +2])
}
base+=i ;
for(j=base+l;]j <base+i;j ++)
ALjT=0.25%(A[j-i-1]+A[j-i]+
ALj+E]+AL] +i+1])
for(;i>1;i--){
base+=i +1;
for(j=base+l;j<base+i-1;] ++)
Alj1=0.25%(A[j-i-1] +A[j-i]+
ALj+i-1]+A[j+])
}

Figure 7.5: 2D skewed stride-1 indexing for the
Gauss-Seidel iterative method.

7.5.2 Stencil decomposition

Temporal locality can be improved by exploiting the symrcelrproperties of the
stencil kernel. Consider two array elements which do noelspatial locality, but which
belong to the same grouf (i.e. that contribute in each other updates). When updat-
ing the first element, both elements must be loaded into calchturn, when updating
the other element, both elements must be loaded into caaterapre. Based on this
observation, temporal locality can be improved by commutime mutual contributions
of the two elements when both of them reside in cache, reguthius the two elements
to be simultaneously present in cache only once. The ofigieacil kernelS is then
decomposeth two micro-stencilsS; and Ss, and the updates will now be performed in
two passes. The partial results obtained from the first psisg 97 must be stored while
waiting for summation with the partial results issued frdra second pass usirify. For
Jacobi-like iterative methods, i.e. that make use of anlttii storage, partial results are
simply stored in the second array. But for iterative methsaish as Gauss-Seidel that

194 Paper 7

int i,j,base;
doubl e Al N«N];

Al 4] =0. 25+ (A[1] +A[2]) ;

base = 1;
for(i=2;i<N-1;i++){
base+=i ;

for(j=base+l;j<base+i;j++){
Alj]+=0.25%(A[j +i +1] +A[] +i +2]) ;
Alj +i +1]=0. 25+ (A[j - 1] +A[]]) ;
}
} ALj +i+1]=0. 25+ (A[j - 1] +A[]]) ;

base+=i ;

j =base+1;

ALj]+=0.25%(A[j +i] +A[] +i +1]);

for(j =base+2; j<base+i;j++){
ALj]+=0. 25+ (A[j +i] +A[] +i +1]);

} ALj+1]=0.25+(A[j-1] +A[j 1) ;

for(;i>2;i--){
base+=i +1;
j =base+1;
ALj]+=0. 25+ (A[j +i - 1] +A[j +i]);
for(j=base+2;j <base+i-1;j++){
ALjT+=0. 25+ (A[j +i - 1] +A[] +i]);
} Alj+i-1]=0. 25« (A[j - 1] +A[]]) ;
}

Figure 7.6: Stencil Decomposition for 2D
skewed data layout.

work only with a single array, we would like to avoid resogito additional storage, such
that the contributions obtained when applying the first otstencil would be stored in-
place. However, the data dependencies exhibited by sudtodgeimpose a careful stencil
decomposition, as well as a careful micro-stencil orderidgpending on the data layout,
different decomposition schemes will take place. One mustiee that temporary results
(obtained withS,) are not referenced by neighboring array elements whentimgd@ur
implementations of the stencil decomposition schemesKewsd and row-major data
layouts are depicted in Figures 7.6 and 7.7. However, atfhaiencil decomposition
improves temporal locality, it nevertheless comes at thmerse of additional memory
references and floating point operations.

7.6. Experimental results 195

Iint i,j; |
double A[N[N];

for(j=1,j<N-1;j++)
A 1][j]1=0.25«(A[O][j1+A[1] [] +1]);

for(i=1;i<N1;i++)
for(j=1;j<N-1;j++){
ALTT[jT+=0.25« (AL][] -1]+A[T+1][]]);
} ALTHL][]]=0. 25« (ALT][JT+ALT +1] [] +1]);

for(j=1;j<N-1;j++)
ALN-2][j]+=0. 25« (A[N-2] [j - 1] +A[N-1] [])

Figure 7.7: Stencil Decomposition for 2D row-major
data layout.

7.6 Experimental results

7.6.1 Methodology

The performance of the transformations considered in thdys(see Table 7.1) is eval-
uated for the Jacobi and Gauss-Seidel methods. All theftnanations have been im-
plemented in C. The problem size varied over a range of vakugsh that the L2 data
cache would be able to preserve some group reuse for smalepncsizes, but not for
large problem sizes. For 2D problems, wellet [100, 5000] in steps ofl00, and for 3D
problems, we lefV € [5,350] in steps of. The number of iterations was arbitrarily fixed
to 200 in order to highlight differences between the differenh&f@rmations while keep-
ing measurement times relatively low. The processors warkigively dedicated to our
application, which reduces external interferences to aipeg system fluctuations. The
performance curves presented in this paper correspone tavdrage values ovarruns.
Finally, the processor characteristics of interest forsit@pe of this study are depicted in
Table 7.2.

The performance of the different loop transformations ialested with wall-time
measurements. However, hardware performance counteuseadn order to understand
and interpret our results. These data are collected usmdPAtP| portable interface to
hardware performance counters [1]. We are interestédguantities which are: Execu-
tion time, number of L1, L2 and TLB data cache misses, andlfitthé number of cy-
cles stalled on any resources. The four last quantitieespond to the PARPL1_DCM,
PAPLL2_DCM, PAPLTLB_DM and PAPIRESSTL native events respectively. The per-
formance measurements have been normalized with respbetRM Stride-limplemen-
tation, and correspond hence to speed-up improvementstmvéatter method.

196 Paper 7

7.6.2 Results and interpretation

The experimental results of this study are reported in Eigut.9, 7.10 and 7.11. Un-
fortunately, PAPI information was available only for thet®mn processor, but the per-
formance trends depicted in Figure 7.9 are quite similatterthree processors. Due to

| Transformations | J][G-S|

RM Stride-1 Row-major stride-1 indexing (see Figure 7.1) | X | X
RM Decomposed Row-major decomposed stride-1 indexipngf | X
(see Figure 7.7).
RM Tiled 32 Row-major partial blocking by Rivera andX | X
Tseng [19]. An exhaustive search revealed that tile 3zéor
the innermost loop gives the best results.

SK Stride-1 Skewed stride-1 indexing (see Figure 7.5). X | X
SK DecomposedSkewed decomposed stride-1 indexing (
Figure 7.7).

RM Temp Buffinspired by Zhao and Kennedy [27], we restricK
the use of additional storage to a minimum (i.e. to a singke o
for 2D codes and to a single plane for 3D codes). The aim |s tg
better exploit cache capacity. The 2D implementation isdeg
in Figure 7.8.

RM Temp Buff tiled 32Partial blocking applied to theM Temp| X
Bufftransformation.
RM SkewedLoop skewing with row-major storage order to gx- | X
pose parallelism to the compiler. Note that the data aceeps i
identical to the one adopted I8K Stride-1but applied to a row;
major storage order.
RM Red-BlackRow-major Red-Black ordering with row-major X
storage order to expose parallelism to the compiler. Inrole
avoid bringing data into cache multiple times (when theyarra
size exceeds the cache size), black points in each row (oepla
for 3D) are updated immediately after the red points in thd ne
row (plane) [19, 23].
RM Red-Black Tiled 32Partial blocking applied t&RM Red- X
Black

&
<

Table 7.1: Code transformations applied to the Jacobi @)Zauss-Seidel (G-S)

methods. Note that for the Jacobi iterative method, the t@pldealues of each

iteration are stored in an auxiliary array. The array postge then swapped at
the end of each iteration.

7.6. Experimental results 197

int i,j;
double AINI[N, B[N ;
doubl e tnp;

for(j=1,j<N-1;j++)
B[j]=0.25«(A[O] [j]1+A[1] [j-1] +
AL [j+1]+AL2] []);

for(i=2;i<N1;i++)
for(j=L1;j<N-1;j++){
tmp = B[j];
B[j1=0.25+(A[i-1][j]+A[i][j-1]+
AL+ +ALT+1] [1)
Ali-1][j] = tnp;

}
for(j=1;j<N1;j++)
ALTTLIT = B[j:

Figure 7.8: Minimizing temporary storage for 2D
Jacobi assuming row-major storage order.

| | Pentum4 | Opteron | Power5+ |
Clock rate 3.4 GHz 2.6 GHz 1.9 GHz
L1 Dcache 16 KB 64 KB 64 KB
L2 Dcache 512 KB 1 MB 1.9 MB
L3 Dcache - - 32 MB
TLB Size 128 512 2048
Compiler Intel 9.0 PGI 6.0 xlc V8.0
Opt. Flags|| -0O3 -align -xWK -O3 -fastsse -O4 -ghot
-prefetch -fno-aliag -Mipa=fast -qnostrict
-fno-fnalias -rcd | -Mpfi -Minline | -galias=allptrs
-mcpu=pentium4 -Msafeptr

Table 7.2: Processor characteristics of interest.

space limitations, only the Gauss-Seidel experiments dsawémited PAPI information
are reported (see Figures 7.10 and 7.11).

Figures 7.9 depicts the speed-up for the Gauss-Seidel ohetithe three processors
considered in this study. For the Pentium and Opteron psocgswe clearly observe a
performance drop when the problem size does not fit into thedche (V > 256 (2D)
andN > 40 (3D) for the Pentium, an&/ > 362 (2D) and/N > 50 (3D) for the Opteron).
This phenomenon is less visible for the Power5+ processust hikkely due to its large L3

198 Paper 7

. : 35 : :
s RM Stride-1 RM Stride-1
6 ‘ M Decomposed H RM Decomposed (@)
H RM Skewed 3 RM Skewed H
H RM Red-Black RMTiled32 (@)
5 f SK Stride-1 i H RM Red-Black
vf SK Decomposed RM Red-Black Tiled 32 ; H
H SK Stride-1 2
. SK Decomposed

H

Improvement
Improvement

.
v

1 " o) @ - 05
L 0

i i i i i I i I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 50 100 150 200 250 300 350

(a) 2D - Pentium 4 (b) 3D - Pentium 4

T T T T
RM Stride-1 RM Stride-1

IRM Decomposed (@) RM Decomposed (@)
RM Skewed H 35 RM Skewed N
RM Red-Black RMTied a2 (@)
SK Stride-1 3 RM Red-Black]
SK D H RM Red-Black Tiled 32
SK Stride-1 x
€ c 25 SK Decomposed i
[Q
£ £
o o
> >
<4 <
(=% =N
E E

05
0 i i i o i i i i i
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 50 100 150 200 250 300 350
(c) 2D-O (d) 3D-0O
9 : : 7
RM Stride-1 RM Stride-1
o Lo, RM Decomposed @) || RM Decomposed ()
W et RM Skewed 6 RM Skewed
\ RM Red-Black RM Red-Black
7 SK Stride-1 [l SK Stride-1
v SK Decomposed 5 SK Decomposed
S & - RM Tiled 32
g ¢ \ 4 = RM Red-Black Tiled 32
& @, g 3,
€5 v £
19 L3 7}
> v >
[[P S— A N]
S 4 e ol A A =3
E E
3
2
® . o i L
1
o i i i i i i i
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 50 100 150 200 250 300 350

(e) 2D - E’ower5+ (fH 3D - Sower5+

Figure 7.9: Speed-up for the Gauss-Seidel stencil kernel.

cache (32MB) that attenuates L2 cache misses. Howevergéutéyok at the behavior
of theRM Skewedransformation reveals the same trends observed for theuRes and

Opteron processors. Remember that this transformatiotemgnts loop skewing upon
a row-major storage order, and is hence very sensitive tblgmo size not fitting into
cache. We clearly observe a performance drop ofRMeSkewedransformation when

7.6. Experimental results 199

RM Stride-1 114 RM Stride-1
3 IRM Decomposed IRM Decomposed
RM Skewed RM Skewed
RM Red-Black 112 RM Red-Black i
251 SKStride-1 SK Stride-1
SK Decomposed 11 SK Decomposed Il
= = |
f=4 2 c
8 5 1.08
o o 3% g‘z,;‘*
> > 106
2 15 o
= =
E E 1
1
& 102
05 - 1 PRI
PERTES
098
0 i i i
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
(a) L1 data cache mi (b) L2 data cache mi
25 T : 5 T :
RM Stride-1 RM Stride-1
IRM Decomposed (@) .5 RM D L
RM Skewed RM Skewed
2 RM Red-Black 4 Al RM Red-Black L
SK Stride-1 SK Stride-1
SK Decomposed a5 SK Decomposed
< €
& 15 T 0
£ £
] 9]
> >
=} o 25
g \ £
£ 1 =
% Q) o ,
¥
15 b
05 o - o
1
05
0 L i i i
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(c) TLB data{q cache miss (d) Stalleha cycles

\ 3 RM Stride-1
% RM Decomposed (@)
3 et RM Skewed I
‘2,;& RM Red-Black
A E SK Stride-1
25 [SK D H
g |
g 2 2
] 2
>
°
8 sl
g
1
05
0

i i i i
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

(e) Spged—up

Figure 7.10: PAPI information on the Opteron for the 2D Gaseglel stencil
kernel.

the problem size does not fit into the L2 caché & 500 (2D) and N > 62 (3D)), and
this yields also for the L3 cacheV(> 2048 (2D) andN > 161 (3D)). We now need to
look at PAPI information (Figures 7.10 and 7.11) to find outatvinakes the difference
between the performance achieved by the different tramsftons.

Paper 7

Improvement

RM Stride-1
RM Decomposed
RM Skewed

RM Tiled 32
RM Red-Black

RM Red-Black Tiled 32 x

SK Stride-1

SK Decomposed

@iy @

L i
0 50 100

i i i
200 250 300

(@ L1 dataNcache miss

350

RM Stride-1

RM Decomposed (@)
RM Skewed
RM Tiled 32

RM Red-Black O
RM Red-Black Tiled 32 x
SK Stride-1 x

SK Dr

Improvement

v 50 100

200 250 300

(c) TLB dataNcache miss

Figure 7.11: PAPI

kernel.

4

350

Improvement

Improvement

T
RM Stride-1

RM Decomposed
RM Skewed
RM Tiled 32

RM Red-Black
RM Red-Black Tiled 32
SK Stride-1

rooddO®

SK Decomposed

(b) L2 dataNcache miss

: :
RM Stride-1
RM Decomposed
RM Skewed

RM Tiled 32
RM Red-Black
RM Red-Black Tiled 32

SK Stride-1
SK Decomposed

res<dd e

0 50 100

200 250 300

(d) Stalled cycles

35

RM Stride-1
RM Decomposed

3

RM Skewed
RM Tiled 32
RM Red-Black

25

RM Red-Black Tiled 32
SK Stride-1

SK D

Improvement

i
0 50 100

i i i
200 250 300

(e) Spged-up

350

information on the Opteron for the 3DGafsalel stencil

For small problem sizes, one can observe erratic perforasafioc the quantities mon-
itored with PAPI. Indeed, very few cache misses occur whenatinays fit entirely into
cache. Then, normalizing the results (i.e. dividing thenthgyquantity of reference) gives
very high and unstable ratios, creating these erratic surtAowever, this phenomenon

7.6. Experimental results 201

disappears for larger problem sizes.

A correlation exists between execution time (speed-upes)rand the number of cy-
cles stalled on any resource. Indeed, the two sets of cusess Kigures 7.10 (d) and
7.10 (e) on one hand, and Figures 7.11 (d) and 7.11 (e) onliee lsand) are remarkably
similar such that we can confidently claim that the latterehiafluence on the former. In
other words a high numbers of stalled cycles degrades pesfice, as expected. Pro-
cessor stalls can arise when data is not available in cadctheeed to be fetched from
memory, or when one instruction depends on another. Foratb@bd method, processor
stalls are provoked by L2 and TLB data cache misses. Theftranations that achieve
best performance expose a much lower number of L2 and TLB acathe misses. In
contrast, for the Gauss-Seidel method, a correlation lestvgeall cycles and data cache
misses cannot be established directly from our experimeRtecessor stalls are most
likely provoked by data dependencies since the transfoomsathat achieve best perfor-
mance are those who expose parallelism to the compilerethdbe 3 processors adopt
a dynamic, hardware-intensive approach allowing outrdep execution [8]. The key
concept of out-of-order execution is to allow the processavoid a class of stalls that
occur when the data needed to perform an operation is ndablai The processor fills
these "slots” in time with other instructions that are reatlgn re-orders the results at the
end to make it appear that the instructions were processtteisequential order. The
benefit of out-of-order execution grows as the instructimelne deepens and the speed
difference between main memory (or cache memory) and theepsor widens.

For 2D Gauss-Seidel, transformations improve the L1 dathecaniss rates as soon
as group reuse is lost (i.e. whén > 4096). As expected, decomposed schemes achieve
better L2 utilization, when the problem size does not fit inbmhe (V > 362). The
RM Skewedransformation achieves remarkably poor performance vefipect to L1,
L2 and TLB data cache misses, suffering from its non contigudata access pattern.
The transformations that achieve best performance, ase ttihat expose parallelism to
the compiler. The superiority &K Stride-1lover SK Decomposedannot be explained
by the L1, L2 nor TLB data cache performances, as the perfocenaurves speak for
the decomposed scheme. This superiority is most likely duthé higher data depen-
dencies exhibited by the decomposed schemeskasstride-1suffers from less stalled
cycles. Indeed, the micro-stencils being applied afteh edlcer, there are data dependen-
cies between the micro-stencil updates, whereas applgangriginal stencil involve only
independent memory locations. Moreover, the decomposaeadfarmation involves more
memory references as well as floating points operations stiperiority of theSK Stride-

1 and SK Decomposedchemes oveRM Red-Blackcan be explained by their stride-1
data access patterns, while the Red-Black scheme utilizigshalf of each cache line
for each color. Finally, the marginal performance improeaitnof L2 data cache misses
(7%) achieved byRM Decomposedeems to be fruitful, translated into an oveil%
performance increase.

For 3D Gauss-Seidel, erratic performance stops as sooreggrdblem size does
not fit into cache, i.e. whev > 20 (L1) and N > 50 (L2). Most transformations
improve the L1 data cache miss rates as soon as group reosé (§ 1> 64). For the L2

202 Paper 7

cache on the other hand, the data cache miss rate improventardtes or even decreases
when group reuse is lostM > 256). As expected, decomposed schemes achieve better
L1, and to some extent L2 and TLB utilization, while tR&V Skewedransformation
achieves remarkably poor performance, still sufferingrfiits non contiguous data access
pattern. Again, the transformations that achieve besbpmednce, are those that expose
parallelism to the compiler.

7.7 Conclusion

In this paper, we present transformation techniques fohe&dficient stencil computa-
tions. We formally demonstrate - and quantify - how spatiablity can be improved by
using skewed data layouts as opposed to the traditionahmayer and column-major stor-
age orders. To the best of our knowledge, this is the firstptyae presents theoretical
and experimental results on this memory alteration tecl®iqThe other main contri-
bution of this paper is thetencil decompositiotransformation, that improves temporal
locality. This technique exploits the symmetrical properiof the stencil kernel by com-
puting the mutual contributions of two array elements, tlaegiiring the two elements to
be simultaneously present in cache only once.

Overall, our experiments confirm previous results reparigde literature, and reveal
other aspects of interests. In line with previous studie$9d we found that tiling is not
beneficial for 2D stencil codes, and that it improves perfomoe only for sufficiently
large problem sizes. However, we believe that as cache sfzesdern processors keep
increasing, tiling will become less and less beneficial,essify our experiments on the
Power5+ processor which confirm the claim of Kamil et al. [9].

Experimental results using the PAPI interface showed tatéchniques presented
in this paper reduce significantly the number of L1, L2 as wsITLB data cache misses.
We find tiling schemes work better than skewed transformatfor the Jacobi method on
the Pentium 4 and Opteron processors, but are outperforondiaef Gauss-Seidel method.
The former method is known to converge slower than the laite; motivating thus the
seek for new transformation techniques, such as the onseresl in this paper.

For iterative methods using in-place averaging, transétions that exhibit paral-
lelism to the compiler are required to achieve high perforoea Data access patterns
exposing a high level of parallelism to the compiler work lWebvided that data can be
moved quickly to the processor. The tiled Red-Black scheohéeses this goal to some
extent, albeit limited for large problem sizes by its nont@uous data access pattern.
However, data access patterns alone are not sufficient t@imperformance as problem
size increases. Changing the data layout in order to matcHdta access pattern proves
to be fruitful.

The scope of this paper was restricted to 5-point and 7-stémicil kernels. However,
longer range interaction stencil kernels (such as 9-paidt27-point) are broadly used
within scientific computations, and should be studied agwrdéuvork direction. Another
direction would be to derive theoretical lower bounds far #verage footprint memory
distance of 2D and 3D memory layouts. We conjecture that tbblem of finding the

203

memory layout that yields to the minimum average footprirgnmory distance is NP-
complete, since similar problems like bandwidth and prafilatrix minimizations are
NP-complete. While a formal proof of the NP-completenessuwf problem is still to
be provided, lower bound results would give insights on h@aedjare the skewed data
layouts studied in this paper.

[1] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. Atdde Programming
Interface for Performance Evaluation on Modern ProcesdatsJ. High Perform.
Comput. Appl.14(3):189-204, 2000.

[2] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, andkottethodi. Nonlinear
Array Layouts for Hierarchical Memory Systems. Iimternational Conference on
Supercomputingpages 444-453, 1999.

[3] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thottdt. Recursive Array
Layouts and Fast Parallel Matrix Multiplication. BPAA '99: Proceedings of the
eleventh annual ACM symposium on Parallel algorithms arahigéectures pages
222-231, New York, NY, USA, 1999. ACM Press.

[4] T. Chen and C. Chang. Skewed Data Partition and Alignmigahniques for
Compiling Programs on Distributed Memory Multicomputers. Supercomput.
21(2):191-211, 2002.

[5] S. Coleman and K. S. McKinley. Tile Size Selection Usingce Organization and
Data Layout. InPLDI '95: Proceedings of the ACM SIGPLAN 1995 conference on
Programming language design and implementatjmages 279-290, New York, NY,
USA, 1995. ACM Press.

[6] J. Diaz, J. Petit, and M. Serna. A Survey of Graph LayaobRms.ACM Comput.
Surv, 34(3):313-356, 2002.

[7] N. E. Gibbs, W. G. Poole, and P. K. Stockmeyer. An Algantifior Reducing the
Bandwidth and Profile of a Sparse Matr&IAM J Numer. Anall3:236-250, 1976.

[8] J. L. Hennessy and D. A. Pattersoi@omputer Architecture: A Quantitative Ap-
proach Morgan Kaufmann Publishers Inc., San Francisco, CA, US822

[9] S. Kamil, P. Husbands, L. Oliker, J. Shalf, and K. Yelidkapact of Modern Mem-
ory Subsystems on Cache Optimizations for Stencil Comiomst In MSP '05:
Proceedings of the 2005 workshop on Memory system perfagnpages 36-43,
New York, NY, USA, 2005. ACM Press.

[10] M. T. Kandemir, A. N. Choudhary, N. Shenoy, P. Banerg@ed J. Ramanujam. A
Linear Algebra Framework for Automatic Determination oftibpal Data Layouts.
IEEE Trans. Parallel Distrib. Syst10(2):115-135, 1999.

204

Paper 7

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. Kowarschik and C. Weil3. An Overview of Cache Optiniiaa Techniques and
Cache-Aware Numerical Algorithms. In U. Meyer, P. Sandarg] J. Sibeyn, ed-
itors, Algorithms for Memory Hierarchies — Advanced Lecturesiume 2625 of
Lecture Notes in Computer Science (LNG)ges 213—-232. Springer, 2003.

M. D. Lam, E. E. Rothberg, and M. E. Wolf. The Cache Parfance and Optimiza-
tions of Blocked Algorithms. IRSPLOS-1V: Proceedings of the fourth international
conference on Architectural support for programming laages and operating sys-
tems pages 63—74, New York, NY, USA, 1991. ACM Press.

C. Leopold. On Optimal Temporal Locality of Stencil Gl InSAC '02: Pro-
ceedings of the 2002 ACM symposium on Applied compytianges 948-952, New
York, NY, USA, 2002. ACM Press.

K. McKinley, S. Carr, and C.-W. Tseng. Improving Datadadity with Loop
Transformations. ACM Transactions on Programming Languages and Systems
18(4):424-453, 1996.

N. Mitchell, K. Hogstedt, L. Carter, and J. Ferrante. ua@tifying the multi-
level nature of tiling interactionsinternational Journal of Parallel Programming
26(6):641-670, 1998.

N. Park, B. Hong, and V. K. Prasanna. Tiling, Block Dataybut, and Memory
Hierarchy PerformancdEEE Trans. Parallel Distrib. Syst14(7):640-654, 2003.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. Farihery. Numerical
Recipes in C: The Art of Scientific ComputinGambridge University Press, New
York, NY, USA, 1992.

G. Rivera and C. Tseng. Eliminating Conflict Misses fagiiPerformance Archi-
tectures. Irinternational Conference on Supercomputipgges 353-360, 1998.

G. Rivera and C. Tseng. Tiling Optimizations for 3D Stific Computations. In
Supercomputing '00: Proceedings of the 2000 ACM/IEEE genfe on Supercom-
puting (CDROM) page 32, Washington, DC, USA, 2000. IEEE Computer Society.

S. S. SkienaThe algorithm design manuabpringer-Verlag New York, Inc., New
York, NY, USA, 1998.

O. Temam, E. D. Granston, and W. Jalby. To Copy or Not tpyCé& Compile-Time
Technique for Assessing When Data Copying Should be Usedirtoriate Cache
Conflicts. InSupercomputing '93: Proceedings of the 1993 ACM/IEEE centse
on Supercomputingages 410-419, New York, NY, USA, 1993. ACM Press.

S. Vajracharya and D. Grunwald. Loop Re-Ordering aretiRetching at Run-Time.
In Supercomputing '97: Proceedings of the 1997 ACM/IEEE aenfe on Super-
computing (CDROM)pages 1-13, New York, NY, USA, 1997. ACM Press.

205

[23]

[24]

[25]

[26]

[27]

C. Weil3, W. Karl, M. Kowarschik, and U. Rlide. Memory Cheteristics of Itera-
tive Methods. InProc. of the ACM/IEEE Supercomputing Conf. (SC¥3)rtland,
Oregon, USA, 1999.

R. C. Whaley and J. J. Dongarra. Automatically TunedeainAlgebra Software.

In Supercomputing '98: Proceedings of the 1998 ACM/IEEE cenf® on Super-
computing (CDROM)pages 1-27, Washington, DC, USA, 1998. IEEE Computer
Society.

M. E. Wolf and M. S. Lam. A Data Locality Optimizing Algithm. SIGPLAN Not,.
39(4):442-459, 2004.

M. Wolfe. High-Performance Compilers for Parallel Computingddison-Wesley,
1995. ISBN 0-8053-2730-4.

Y. Zhao and K. Kennedy. Scalarization Using Loop Aligemh and Loop Skewing.
Journal of Supercomputing/olume 31(1):5-46, 2005.

