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Abstract

The computing and communication resources of high performance computing
systems are becoming heterogeneous, are exhibiting performance fluctuations and
are failing in an unforeseeable manner. The Master-Slave (MS) paradigm, that
decomposes the computational load into independent tasks,is well-suited for op-
erating in these environments due to its loose synchronization requirements. The
application tasks can be computed in any order, by any slave,and can be resub-
mitted in case of slave failures. Although, the MS paradigm naturally adapts to
dynamic and unreliable environments, it nevertheless suffers from a lack of scal-
ability.

This thesis provides models, techniques and scheduling strategies that improve
the scalability and performance of MS applications. In particular, we claim that
deploying multiple masters may be necessary to achieve scalable performance.
We address the problem of finding the most profitable locations on a heteroge-
neous Grid for hosting a given number of master processes, such that the total task
throughput of the system is maximized. Further, we provide distributed schedul-
ing strategies that better adapt to system load fluctuationsthan traditional MS
techniques. Our strategies are especially efficient when communication is expen-
sive compared to computation (which constitutes the difficult case).

Furthermore, this thesis investigates also the suitability of MS scheduling tech-
niques for the parallelization of stencil code applications. These applications are
usually parallelized with domain decomposition methods, that are highly scalable,
but rather impractical for dealing with heterogeneous, dynamic and unreliable en-
vironments. Our experimental results with two scientific applications show that
traditional MS tasking techniques can successfully be applied to stencil code ap-
plications when the master is used to control the parallel execution. If the master
is used as a data access point, then deploying multiple masters becomes necessary
to achieve scalable performance.
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Chapter 1

Introduction

1.1 Evolution of parallel computers

In the last decades, the field of high performance computing has seen a rapid evo-
lution in terms of architectures, technologies and system utilization. The need for
always more computing power in a multitude of domains (e.g. scientific and engi-
neering simulations, data mining, signal and image processing, etc) has impulsed
the emergence of parallel computing systems. The idea of parallel computing can
be illustrated by the well-known motto:Unity is strength, i.e. grouping small in-
dividual forces together results in a powerful single force. Based on this principle,
the precursor parallel computing machines - calledvector computers- were born
in the 1960’s, and raised enthusiasm within the scientific community. These vector
supercomputers were very expensive due to their special design for performance,
but became quickly obsoletes because of rapid technological improvements [175].

In the mid 1990’s,massively parallel processingsystems (MPP) appeared
on the high performance computing market, and became reallystrong competi-
tors for traditional vector supercomputers. Most MPPs are distributed memory
systems composed of hundreds or thousands relatively inexpensive processors
connected together with custom designed fast interconnects. Each processor is
self-contained, with its own cache and memory chips and additional supporting
hardware. In the same genre, acluster is a collection of workstations/PCs inter-
connected by a local network. The broad adoption of cluster systems results from
their cost to performance ratio unmatched by any other computing system.

Figure 1.1 depicts the recent architectural trends within the top500 supercom-
puters [1]. Note that single processor systems cannot matchthe performance
achieved by parallel systems, and logically disappeared from the top500 list. MPP
systems on the other hand constitute the most powerful architecture, albeit the
share of cluster systems is rapidly increasing. One can alsoobserve a diminution
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6 Chapter 1. Introduction

Figure 1.1: Architectures share over time (obtained from [1]).

of constellation1 systems in the list.
It should be noted that this evolution has been possible onlyat the cost of con-

stant and massive efforts in the development of standard software and notably of
high performance libraries such as BLAS [129], MPI [94], LINPACK, LAPACK
or ScaLAPACK [74]. While greater performance requires technological improve-
ments,portability, that is the ability of a program to be executed on different
systems, requires the use of interfaces in form of libraries.

1.2 Towards network-based computing

Although parallel computers have proven to deliver good andstable performance,
financial or technical constraints limit the scale of these systems, and consequently
the amount of computing power they can supply. Reproducing the successful
motto at a bigger scale, the seek for always more computing power conducted to
the interconnection of geographically dispersed parallelcomputers, and theGrid
was born [88]. Grid computing provides the ability to perform computations at
unprecedent scale by taking advantage of several networkedsupercomputers.

1The difference between a cluster and a constellation comes from the relationship between the
number of nodes and the number of processors in each node of the system. If there are fewer
processors per node than there are nodes in the system then you have a cluster. But if there are
more processors per nodes than there are nodes in the system,then you have a constellation. This
differentiation is motivated by the different approaches for programming cluster and constellation
systems.
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The aggregation of personal computing resources can also supply large amounts
of computing power. For instance, every large institution owns hundreds of PCs
interconnected by a LAN, and has hence a huge amount of potential comput-
ing power at its disposal. Livny showed that most of the workstations are often
idle, and proposed Condor [178], a system for exploiting this “wasted” comput-
ing power. The Condor system has been very successful, and similar commercial
solutions are now available to enterprises [60].

With the growing popularity of the Internet and the advance in technology, this
idea has been expanded world wide.Internet computingseeks to exploit otherwise
idle workstations and PCs spread over the Internet. One of the most successful
Internet computing applications is theSETI@homeproject [6] whose goal is to
analyze radio telescopic data, searching for signs of extraterrestrial intelligence.
The success of SETI has inspired many other @home applications and impulsed
an ever-growing research trend for supporting this kind of applications [92, 167,
174]. Similarly, Peer-to-Peernetworks have also been used to run large scale
applications on geographically dispersed computing resources [55,61,147].

The early adoption of network-based computing platforms isfocused on ap-
plications that expose a large degree of parallelism with little or no coupling,
and whose high computational demands cannot be met by singleparallel comput-
ers [60]. They are typically implemented under the Master-Slave (MS) paradigm
(depicted in greater details in Section 1.4.1). Many applications have been or
can be implemented under the MS paradigm: They include MonteCarlo simu-
lations [22], collaborative computing efforts such as SETI@home [6, 174], bio-
logical sequence comparisons [171], or also distributed problems organized by
companies like Entropia [60].

It should finally be noted that, although harnessing computing power spread
over computer networks is much cheaper than buying a new parallel computer,
utilizing efficiently these dispersed and volatile resources turns out to be a much
more complex task.

1.3 The challenges of high performance computing

1.3.1 Data movements

Delivering huge amounts of computing power is a difficult task. Bringing data
quickly to the processing units is probably one of the most important and chal-
lenging issues that high performance computing must face. Interestingly, this
problem is not a new one:

“In my opinion this problem of making a large memory available at
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reasonably short notice is much more important that of doingopera-
tions such as multiplication at high speed.” —(Alan Turing, 1947)

If we look back in history, the source of the problem is clear:In the last
decade, processor performance has been steadily improvingat a much more higher
rate (55%) than memory performance (7%) [101]. This huge gap between mem-
ory performance and processor performance is popularly known as thememory
wall [190]. Modern CPUs are so fast that memory transfers constitute the prac-
tical limitation on the processing speed. Therefore, modern computer architec-
tures rely on a hierarchical arrangement of memory (caches)to help bridging that
widening gap. Each level of the hierarchy is of higher speed and lower latency,
but is of smaller size than lower levels.

In addition to the memory wall, parallel computers discloseanother gap. The
computational speed of the processors is typically much faster than the commu-
nication speed of the interconnect [66]. Therefore, a wealth of efforts have been
made to design parallel algorithm that lessen the impact of communication. The
situation is exacerbated for Grid applications communicating over high latency
WAN links.

Thus, efficiently managing data movements is of tremendous importance at all
the levels of modern computing systems. Undoubtedly, this issue will remain of
paramount importance for future computing systems as well.

1.3.2 Heterogeneity, variability and unreliability

High performance computing systems are becomingheterogeneous, interconnect-
ing resources with different hardware and software. This heterogeneity makes
resource selection paramount in order to increase the sustained performance. Bal-
ancing the computational load among several processors is already difficult on ho-
mogeneous systems, it becomes even harder on heterogeneoussystems [113,114].

System load fluctuations are caused by applications that compete for shared
resources within the system (e.g. processors and network links). Consequently,
the load and availability of the resources fluctuate over time, due to the unpre-
dictable interactions of the users with the system. Severaladaptation techniques
have been elaborated with the ultimate goal being self-adaptation where the ap-
plication adapts to its environment without user intervention. For instance, the
AppLeS methodology [39] consists in deploying a schedulingagent that mon-
itors the system load, utilizes performance predictions and application-specific
information to dynamically generate a schedule application. Casanova et al. [53]
present a task farming strategy for scheduling independenttask applications onto
Grid environments that adapts dynamically the number of tasks submitted to the
system in function of system load fluctuations. At last, Heymann et al. [102],
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propose a strategy that adjusts dynamically the number of slave processes that
participate to a Master-Slave computation.

When increasing the number of computing and communication resources com-
posing the system, the number of resource failures that are likely to occur in-
creases accordingly. Large-scale systems - composed of hundreds or thousands
of processors - are hosting applications that may run for days, and in these con-
ditions, one expects resource failures (both hardware and software) to be the rule
rather than the exception. This has a direct impact for applications that must sur-
vive to resource failures [73] (more on fault tolerance in Section 3.3.3).

Thus, large-scale computing systems are heterogeneous, dynamic and unreli-
able environments that require adapted, flexible and robusttechniques and algo-
rithms.

1.4 Research focus

This section begins with a description of the MS paradigm, with an emphasis on
why - we believe - this paradigm is well-suited for distributed, heterogeneous,
dynamic and unreliable computing systems. Thereafter, we identify and expose
the shortcomings that come with the MS paradigm, state the research questions
studied in this thesis, and present our main research methods. At last, we conclude
with the organization of the thesis.

1.4.1 The master-slave paradigm

The Master-Slave paradigm, also called Master-Worker or task farming paradigm,
consists of two entities: A master process and several slaveprocesses. The mas-
ter is responsible for decomposing the computational domain into a number of
smaller independent work units, usually calledtasks, which are delegated to the
slaves for parallel remote computation. The main asset of the MS paradigm is its
robustness to resource failures. Its loosely coupled structure presents only onesin-
gle point of failure- whose failure will cause an interruption of the computation
- in the form of the master process. If some slave processes die, the computa-
tion can carry on with the remaining slaves. Hence, the number of slaves can
be adapted dynamically to the number of available resources. If new resources
appear during the computation, they can be incorporated as new slaves, and if a
resource disappears (e.g. fails or is reclaimed by its owner) the tasks that were
allocated to this machine are simply reallocated to other slaves [20]. Moreover,
fast slaves with nothing left to do towards the end of the computation can receive
unfinished tasks already delegated to other slaves. Redundant results orreplicas
are simply discarded [64]. This mechanism increases the chance to assign tasks
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to fast slaves, but comes at the expense of wasted computing power. Neverthe-
less, it has been shown that replicating the tasks only twice, leads to significant
improvements [64].

In its simplest form, the MS paradigm works as follows. The master ini-
tially distributes one task to every slave, then the slaves compute their tasks and
send the results back to the master, which triggers the latter to send additional
tasks. As slaves execute tasks at their own paces, they will automatically re-
quest tasks proportionally to their computing speeds. Thisis popularly known
asself-scheduling(also calleddemand-drivenor work-queue). By construction,
self-scheduling adapts well to the performance fluctuations of the computational
resources. If a slave suddenly gets some external load, it will process tasks less
rapidly, and hence request tasks less frequently. When the conditions get back to
normal, the slave will ask for tasks at its maximal pace.

However, self-scheduling is not efficient for platforms composed of hetero-
geneous networks. When heterogeneity applies also to the communication links,
resource selection strategies become necessary in order toefficiently utilize the
available computing resources. Consider for instance the case where a fast slave
is connected to the master via a slow communication link. Theslave will process
tasks faster than it receives them, and will occupy most of the master communica-
tion bandwidth. In these conditions, it may be more advantageous to serve slower
slaves but that are interconnected with rapid communication links.

This brings about the communication to computation (C-C) ratio issue, com-
mon to all parallel programs. Applications being implemented under the MS
paradigm must exhibit a large C-C ratio, meaning that the time required to send a
task to a slave is much smaller than the time required for the slave to process it.
Otherwise there is no possible benefits from a parallel implementation under the
MS paradigm.

Finally, the centralization of the data in one single place clearly limits the scal-
ability of the system. Adding more slaves than the master canhandle introduces
slave starvation, and worse, might cause contention at the master site, degrading
the overall performance. Several studies have proposed strategies to automati-
cally and dynamically adjust the number of slaves involved in the computation to
optimize the master utilization [86,102,149].

1.4.2 Research questions

In appreciation of the problems pointed out above, we believe that the main issue
that needs to be addressed, is the lack of scalability of the MS paradigm. Hence,
the main research question identified and explored in this thesis is:

Q-1 How should the MS paradigm be enhanced to improve its scalability?
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On the one hand, sending - and receiving - all the data in a single place con-
stitutes the bottleneck of the MS paradigm. On the other hand, centralizing the
scheduling decision making process might be inefficient when dealing with large-
scale dynamic systems. The amount of information that needsto be gathered at
a central location may require a prohibitive amount of time.System conditions
may have changed by the time the information has been gathered to the scheduler.
These two observations imply that (i) the master location(s) should be carefully
selected, and (ii) scheduling decisions should be made in a decentralized fashion.

This thesis investigates also the suitability of MS techniques to applications
that are not usually implemented as such, but that could nonetheless benefit from
it. In particular, we think of adaptation to system load fluctuations and resilience
to resource failures. Hence, the second research question explored in this thesis
has been formulated as follows:

Q-2 Can MS scheduling techniques be applied to stencil code applications?

Answering this question implies to:

• Identify stencil code application candidates.

• Implement and evaluate a MS implementation of the selected applications.

We have chosen stencil code applications as candidates for such investiga-
tion because several applications of this kind are used at NTNU. Usually, stencil
applications are parallelized withdomain decomposition(DD) methods, that de-
compose the computational domain into sub-domains assigned to the processors.
However, the DD methods make it difficult to account for system heterogeneity,
to adapt to system fluctuations, and to handle system failures (more on this in
Chapter 3).

1.4.3 Research methods

Static models for conceiving dynamic strategies

Some people believe that static models are inappropriate for designing dynamic
scheduling strategies. We mean, on the contrary, that everydynamic environment
can be considered as a succession of static contexts. Our research philosophy
consists in studying heterogeneous static environments, in order to identify which
property or aspect of the problem is the determinant factor that directly impacts on
system performance. Then, knowledge that has been acquiredon static networks
can be embedded within dynamic scheduling strategies.
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A subtle point similar to thebounded irregularitypointed out by Bast [23] cor-
roborates our research methodology. If the system load fluctuates in an unforesee-
able manner throughout the entire execution time, then it becomes impossible to
guarantee anything, and the straightforwardself-schedulingstrategy comes out as
an optimal strategy. It is therefore important to design algorithms that are efficient
when the system stabilizes, and in this context, it makes sense to work with static
models in the first place.

Real experiments vs. simulations

The evaluation and comparison of different scheduling strategies can be done ei-
ther via real experiments or via simulations. Real experiments are important be-
cause they allow to test the behavior of an algorithm on a computer which is more
complex than the model used to design the algorithm. However, large-scale exper-
iments are difficult to reproduce because of the intrinsic instability of the platform.
It is indeed impossible to guarantee that a large-scale platform will remain exactly
in the same state between two tests, thereby forbidding any rigorous comparison
between two scheduling strategies.

In contrast, simulations allow to fully control the experimental process. One
can guarantee that two scheduling strategies were run in theexact same system
conditions. Besides, Grid simulators are becoming more andmore realistic. Sim-
Grid [51] for instance, the simulator used in this study, allows to model real net-
work topologies and their associated resource characteristics, such as CPU speed,
network bandwidth and latency. In addition, it accounts forthe congestion gen-
erated by multiple connections taking place simultaneously on the same link or
on the same machine. The dynamic behavior of the system is described within
trace files (CPU load and availability, network bandwidth and latency) that can be
artificially generated, or that can be captured on real systems by Grid monitoring
tools such as the Network Weather Service [187,188].

The final advantage that simulations offer over real experiments is diversity.
Setting up real experiments is a time-consuming process, which in the end gives
results only for the test-bed system. In contrast, simulations allow to study a wide
variety of computing systems with little additional efforts. For all these reasons,
we used the SimGrid simulator toolkit for testing and comparing our scheduling
strategies intended for computational Grids.

On the contrary to Grid environments, the reproducibility of experiments is
possible on parallel computers. Most supercomputers provide dedicated access
to their computational nodes, such that applications running simultaneously on
the system get exclusive access to the nodes. There might still be interferences
on the network or with the file system due to applications competing for shared
resources, but these interferences can be attenuated if theexperiments are repeated
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a sufficiently large number of times.

Problem analogies

Another research method used in this thesis is the search foranalogies between
problems. Indeed, different problems may actually share the same objectives, or
face the same intrinsic difficulty. Hence, models and techniques used for one
kind of problems can successfully be applied to another kindof problems. For
instance, we highlight in Paper 1 the analogy between Facility Location problems
and resource location problem. In particular, we use a Facility Location model
to formulate our resource location problem, and to ultimately derive an efficient
heuristic.

Identifying or building transformations from one problem to another is very
useful for attacking new problems [89]. In Paper 1, we prove the NP-hardness
of our resource location problem by a reduction from the Maximum Knapsack
problem. And in Paper 3, we use a 2-dimensional Cartesian representation to
derive an optimal principle for independent-task scheduling onto heterogeneous
tree-shaped platforms.

1.5 Thesis outline

The rest of this thesis is organized as follows. Chapter 2 provides an introduction
to scheduling theory, an overview of the state-of-art of scheduling independent
task applications, and concludes by exposing how the contributions of this thesis
fit within previous work. Chapter 3 presents stencil code applications, highlights
the main issues for efficiently implementing these applications, and concludes by
exposing our contributions when working with stencil code applications. Chapter
4 concludes the first part of the thesis, by summarizing our main contributions,
discussing some limitations and proposing future work directions.

Our contributions are gathered in the second part of this thesis. Paper 1 ad-
dresses the problem of efficiently deploying multi-master MS applications onto
heterogeneous platforms. Paper 2 presents a lightweight distributed method for
building asynchronous schedules. Paper 3 presents distributed scheduling tech-
niques intended for asymmetric networks. Paper 4 introduces a new MS schedul-
ing strategy tested with an image filtering application on a low-cost PC cluster.
Papers 5 and 6 present respectively a DD and a MS implementations of a Lat-
tice Gauge Theory model. Finally, Paper 7 presents cache-efficient optimization
techniques for improving the performance of stencil code applications.
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Chapter 2

Independent-task scheduling

This chapter starts with an introduction to scheduling theory by presenting the
general concepts common to most scheduling problems. Then,we present the
state-of-the-art regarding independent task scheduling,the application class of in-
terest for the framework of this thesis. We present theoretical results for the most
common optimization objective, namely minimizing the total execution time (or
makespan), and show how modifying the scheduling objective(by considering
throughput maximization) helps deriving asymptotically optimal algorithms. Fi-
nally, we present the contributions of this thesis for the independent task schedul-
ing problem, and how do they fit within previous work.

2.1 Introduction to scheduling theory

One of the challenges in exploiting the power of parallel computers is to map, or
schedule, the parallelism contained in a program onto a set of processors, in or-
der to achieve performance goals such as minimizing execution time, minimizing
communication delays, or maximizing system throughput [54]. Scheduling prob-
lems are difficult. There are many factors that affect the decision process, such as
the number and nature of the tasks to execute, task priority,current system load,
affinity between tasks and machines, or resource usage policies. It is not too sur-
prising then, that most scheduling problems turn out to be NP-complete [89], as
they consider optimal execution schedules under a number ofconstraints. Conse-
quently, one must often resorts to heuristics in order to generate efficient schedules
in a reasonable amount of time [82].

15
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2.1.1 DAG, makespan and Gantt-chart

Application programs are composed of different tasks that must be executed in a
certain order to produce the desired results. The tasks thatare independent of each
other are the ones whose execution order can be changed without modifying the
result of the program. Hence independent tasks can be executed simultaneously
by different processors.

A directed acyclic graph(DAG) is used to represent the task dependencies
of a program, where transitivity edges are omitted (see Figure 2.1 (a)). Usually,
Tbegin andTend are fictive tasks used to facilitate the identification of thestart and
the end of the program. The usual scheduling objective is to minimize the total
execution time of the schedule (Tend − Tbegin), also calledmakespan.

Themacro-dataflow model[62,82,170] has been widely used in the literature
for modeling communication costs associated to task dependencies. If two depen-
dent tasksu andv have been assigned to different processors, a communication
delay occurs. More precisely, if tasku is completed at time-stept, then the exe-
cution of taskv cannot start before time-stept + c(v1, v2). But if two dependent
tasks reside on the same processors, the data transfer between the predecessor
to the successor occurs via memory accesses. Since memory accesses are typi-
cally much faster than inter-processor communications, itis reasonable to neglect
them. Figure 2.1 depicts a DAG example with the associated task execution times
and inter-task communication times, and a Gantt-chart for visualizing a possible
schedule with three processors.

The major drawback of the macro-dataflow model is the lack of realism when
modeling communication operations. A processor can send and receive any num-
ber of messages concurrently, and the number of messages that can simultane-
ously circulate on the network is not bounded in any way. These assumptions are
not realistic for modeling modern computing systems, and more advanced com-
munication models are required.

2.1.2 Heuristics for DAG scheduling

Scheduling arbitrary DAGs with the makespan minimization as objective is known
to be NP-hard [166]. Consequently, a profusion of heuristics have been proposed,
including list scheduling heuristics [83] and task clustering schemes [151]. Two
versions of this problem have been investigated, dependingon whether or not
task duplication is allowed. The obvious benefit of task duplication, is to spare
communication overhead by allowing several copies of a taskto be executed by
different processors. In general, scheduling with task duplication produces shorter
makespans than without [151].

List scheduling heuristics are greedy algorithms that try to allocate as many
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(d) A schedule with3 processors (S: Send, C: Compute,
R: Receive).

Figure 2.1: DAG example (a), task execution times (b), inter-task communication
times (c) and Gantt-chart of a schedule (d).

tasks as possible at any given time-step. In a first phase, a priority is attributed to
every task based on the number of their predecessors, and thetasks are inserted
in a list by decreasing priorities. In a second phase, the algorithm iterates over
the list built in the first phase and schedules the tasks on theprocessor that allows
the earliest starting time of the task. The attribution of task priorities in the first
phase has a tremendous impact on the performance of list scheduling heuristics.
Not surprisingly, most list scheduling heuristics assign higher priorities to tasks
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located on the critical path of the DAG (i.e. located on the longest path of the
DAG).

On the other hand, task clustering heuristics [90,151] try to shorten the critical
path of the DAG. Paths are shortened by clustering several tasks into coarser grain
tasks. This admittedly reduces the communication overhead, but comes at the
expense of increased processing times of the coarser tasks.This new tradeoff
implies to determine adequate task granularity to achieve load balancing [151].

2.2 Makespan minimization

In order to minimize the makespan of a schedule, one must distribute the tasks to
the processors in a way to achieve optimal load balance, thatis, all the processor
finishing times must differ as little as possible. Dependingon the framework of
the study, different model assumptions are made. Common to all studies is (i) the
assumption that all the tasks initially reside in one place of the system and (ii)
scheduling tasks onto a processor incurs an overhead.

2.2.1 Independent task applications

Independent task applications exhibit a very simple DAG structure (see Figure 2.2).
In the early research on independent task scheduling, much attention has been de-
voted to homogeneous multiprocessor systems composed of identical processors
interconnected with homogeneous networks [98, 109, 127]. The scheduling com-
plexity of these problems lies in thetask irregularityassumption, stating that the
task processing times vary in an unpredictable manner. Hagerup [98] claims that
in practice, task irregularity can arise fromalgorithmic variance- where the nature
of the data being processed leads to different execution times - and fromsystem
induced variance- provoked by external events such as cache misses, operating
system interference, clock interrupts, etc.

On the other hand, heterogeneous platforms are becoming widespread, and
their efficient utilization requires a good understanding of the added complexity
that heterogeneity introduces. For instance, it has been shown that greedy pro-
tocols that delegate as much work as possible to the fastest processors are not
adapted to the heterogeneity of the platform [36,161]. Therefore, more advanced
techniques are required. In this context, the difficulty of the scheduling problem
has been moved from task irregularity to platform heterogeneity. Hence, the re-
search focus has been devoted to scheduling regular independent task applications
onto heterogeneous platforms [36,80,161].
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Figure 2.2: DAG of an independent task application.

Scheduling irregular tasks on homogeneous systems

Scheduling irregular tasks gives often rise to bin-packingproblems known to be
NP-complete. Most of the well-known scheduling heuristicswork under the as-
sumption that a fixed overhead incurs each time a bunch of tasks is delegated to a
processor, no matter how large the bunch is.

Under this assumption, it appears thatstatic chunking, which consists in del-
egating all the tasks intended to a processor at once minimizes the scheduling
overhead. What limits the efficiency of static chunking in practice is the diffi-
culty to accurately estimate the task execution times, which often leads to load
unbalance among the processors.

Because one may not have accurate information - or no information at all - on
the different task processing times, it might be a good idea to not put all its eggs
in the same basket, that is, not send all the tasks intended toa processor at once.
This approach is popularly known asonline scheduling. The simplest strategy
of this kind is theself-schedulingstrategy [64, 98], where tasks are handed out
on a one-by-one basis. By construction, the self-scheduling strategy produces
a schedule in which the finishing times of the processors differ by at most the
processing time of a single task. This is, in a sense, very satisfactory considering
that this quantity is assumed to be very small compared to theoverall execution
time. However, this strategy comes at the expense of a large scheduling overhead
in the form of excessive communications. Actually,self-schedulingis just the
opposite ofstatic chunkingwhich minimizes scheduling overhead at the risk of a
large load imbalance.

To achieve better tradeoffs, hybrid schemes have been proposed that schedule
not all, but several tasks at a time. The idea being that earlychunks should be
large in order to keep the scheduling overhead small, while smaller chunks are
required towards the end of the computation to achieve a goodload balance among
the processors. Following this principle, a multitude of heuristics using chunks
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of decreasing sizes have been proposed. Hagerup [98] gives acomprehensive
overview of the most popular heuristics.

Bast stresses a subtle point about the task irregularity assumption [23]. When
nothing is known about the task processing times, no advantage lies in scheduling
several tasks at a time, since in principle a single task might take an equally long
time. In these conditions,self-schedulingcomes out as an optimal scheduling
strategy. Therefore, hybrid schemes are meaningful only when there is a kind of
bounded irregularityof the task processing times, by which it is assumed that a
larger number of tasks incurs a larger total processing timethan a smaller number
of tasks. This bounded irregularity is accounted by so-calledstochastic scheduling
techniques, where the task execution times are modeled as independent, identi-
cally distributed random variables with a common probability distributionD hav-
ing a meanµ > 0 and a varianceσ > 0 [98, 109, 127]. Within these settings,
Kruskal and Weiss [127] studied thefixed size chunking heuristic, that consists
in using chunks of a fixed number of tasks. However, the stochastic model com-
plicates greatly the design and performance analysis of heuristics, and very few
studies have reported theoretical results under this model.

Scheduling regular tasks on heterogeneous systems

When dealing with heterogeneous computing systems, more efforts have been
putted into the computing and communication models, at the expense of a simpler
task execution times model.

Initially, all the tasks reside on one processor called the master processorPm.
The tasks will be sent over a network for remote computation by a set ofk slave
processorsP1, . . . , Pk. Further, it is assumed that the master can communicate
with the slaves only one at time (single-port model), requiring ci time units to
communicate with slavePi. The number of tasks that can be communicated within
ci time units depends on the framework of the study. At last, it takeswi time units
to slavePi to process one task.

Two optimization problems have been formulated in the literature [36, 161].
The first one is the traditional makespan minimization problem, while the second
one aims at maximizing the throughput of the system, i.e. thenumber of tasks
executed within a given time frameT . Interestingly, if a polynomial time algo-
rithm A can be formulated for the throughput maximization problem,then it is
possible to solve the makespan minimization problem in polynomial time using
algorithmA combined with a dichotomic search onT [36]. And vice versa for
solving the throughput maximization problem using an algorithm that solve the
makespan minimization problem combined with a dichotomic search on the total
number of tasks to be processed.

The throughput maximization problem with heterogeneous processors inter-
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connected by a bus (see Figure 2.3 (a)) is polynomial in the case when there is
only one initial communication per slave [36] (similar to static chunking). In this
scenario, the master pays a fixed communication delayc for sending an unbounded
number of tasks intended to a slave. The goal is to find the bestpermutationσ that
determines the order in which the slaves should be served. The problem becomes
NP-complete when a final communication between the slaves and the master is
necessary to send back the computational results. The problem complexity in-
creases significantly because two permutationsσ1 andσ2, one for sending the
tasks and one for receiving the results, must now be determined.

Pm
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Pi PkP2P1
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c2
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ck
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Figure 2.3: Bus (a) and “star” (b) networks.

The throughput maximization problem under the assumptionsthat (i) each
task sent to slavePi incurs a communication cost ofci time units, and (ii) the
processors are interconnected by a heterogeneous “star” (see Figure 2.3 (b)), is
also polynomial [36]. This result has been extended for heterogeneous linear daisy
chains and “spider” graphs (see Figure 2.4), with a polynomial time algorithm for
solving the makespan minimization problem [80]. Finally, the problem becomes
NP-complete for heterogeneous tree-shaped platforms [81].

2.2.2 Divisible load theory

Application model

Thedivisible loadmodel [43,45,176] embodies applications whose computational
workload is composed of a large number of homogeneous low-granularity com-
putations calledwork units. There are no communication dependencies between
the work units which can therefore be processed in parallel.The total application
workload can hence be split intochunksof arbitrary size (each chunk correspond-
ing to a given number of work units), and this in a linear fashion, i.e. the com-
putation and communication time requirements of a chunk areproportional to its
size.

The divisible load model has been widely studied, and thedivisible load the-
ory (DLT) has emerged as a new scheduling paradigm for distributed computing



22 Chapter 2. Independent-task scheduling

P1

P2

Pm

Pk

(a)

P1

P2

P3

P4

P5

P6

P7

P8

P9 Pk

Pm

P10

Pk−1

(b)

Figure 2.4: Linear daisy chain (a) and “spider” graph (b) networks.

platforms [43]. Many applications have been implemented under this paradigm
including image processing (e.g. edge detection [176]), processing of massive
experimental data set, signal processing applications [45], pattern searching, file
compression, joining operation in relational databases operations, graph coloring
or genetic search [76]. This section presents fundamental DLT concepts which
are closely related to some of the work presented in this thesis.

Framework

The basic DLT assumptions are the following. A system composed of p + 1
processorsP0, P1, . . . , Pp is considered. The processorP0 called originator or
masterplays a particular role. At the beginning of the computation, the whole
workload is stored in the memory of the originator processorP0. The originator
then scatters the workload over the network to thep remote processors, that will
process their shares of the workload in parallel. It is widely accepted in the DLT
that the return of the computational results to the master can be neglected. This
assumption is made for the sake of simplicity, and may not be realistic for some
applications. Still, gathering the results to the originator has been incorporated
in the DLT model for special cases as shown in [38, 49]. The data scattering
and gathering parts are highly dependent of the underlying platform topology and
scheduling policy adopted.

Theoretical model

Typical divisible load models target heterogeneous platforms. We describe below
the standard notations used in the DLT literature [45]:
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• αi is the fraction of workload allocated to processorPi,

• α = (α0, α1, . . . , αp) is the load distribution vector,

• T (α) is the makespan associated to load distributionα,

• Tcp is the time taken to process a work unit by the standard processor,

• wi is the ratio of the time taken by processorPi to compute a given load, to
the time taken by a standard processor to compute the same load,

• Tcm is the time taken to communicate a work unit on a standard link,

• zi is the ratio of the time taken by linkLi to communicate a given load, to
the time taken by a standard link to communicate the same load.

Thestandardprocessor and link might be any processor or link of the platform
used as a reference. With these notations, it takesαiwiTcp time units for processor
Pi to process its shareαi of the load. Similarly, it takesαiziTcm time units to send
the load fractionαi over the network linkLi.

Scheduling policies

Divisible load models can usually be solved algebraically for optimal allocation
to processors and links under a certainscheduling policy. The scheduling policy
adopted depends of the characteristics of the computing platform targeted in the
study. Traditionally, scheduling policies have three components:

• Load distribution model: Processors may or may not distribute the load
concurrently to several other processors. Under sequential load distribution
a processor can communicate load fractions to other processors only one at
a time. Conversely, under parallel load distribution, datatransmission may
happen simultaneously on all communication links.

• Processor operating mode: Processors might be equippedwith front-endor
not. A processor equipped with front-end is capable to overlap computation
with communication, while a processor without front-end cannot. Thewith
front-endmodel is widely used in the literature, because it seems morerep-
resentative to actual computing platforms characteristics, albeit thewithout
front-endmodel has been studied as well [35].

• Communication model: In most DLT studies, processors are able to commu-
nicate only with their neighbors in astore and forwardfashion. Other com-
munication models such asstore and bypass[119], circuit or cut-through
switching [99] have also been studied.
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Optimality principle

Theoptimality principleis a fundamental result, that grounds the DLT, stating that
to obtain optimal processing time - i.e. a minimal makespan -all the participating
processors must stop computing at the same time [43, 45]. Intuitively, if the pro-
cessors stop computing at different times, it is possible toredistribute some of the
load from the late processors to the early processors.

The first architecture to be applied the optimality principle is the daisy chain
because of its simplicity. Consider a daisy chain, where processors are equipped
with front-ends, communicating under the store and forward model, and with the
originator located on a exterior node of the chain. The originatorP0 must send all
the load intended to the rest of the chain to its neighborP1, which will subtract its
share and forward the rest to its neighborP2, and so on until the last processor has
received its share of the load. Hence, we get the following equation set, illustrated
by the Gantt-chart given in Figure 2.5:

∑p
i=0 αi = 1 (2.1)

∀0 ≤ i < p, αiwiTcp = (1−∑i
j=0 αj)zi+1Tcm + αi+1wi+1Tcp (2.2)
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Figure 2.5: Load distribution on a 3-processor daisy chain.

Different scenarios have been considered for the daisy chain network, such as
the load originating at an interior or exterior node of the chain, and with or without
gathering the computational results back to the originator[45].

Load distribution sequence

Tree and bus networks allow for better performance than daisy chains, because
generating much less communication. Indeed, in a daisy chain, the load intended
to processorPk must travel throughk − 1 links before reaching its destination.
The amount of communication generated by the chain topologyis hence equal to:
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Cchain = [(1− α0)z1 + (1− α0 − α1)z2 + · · ·+ (1− α0 − · · · − αk−1)zk]Tcm

= [
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αiz1 +
k
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In contrast, the amount of communication generated by a single level tree (or
star) network is equal toCstar = Tcm

∑k
i=1 αizi.

As opposed to daisy chains, tree-shaped networks open up thepossibility for
varying the order orsequenceof the load distribution among the child processors.
This brings about the problem of resource selection, as it has been shown that the
optimality principle leads to optimal schedules only for a carefully chosen and
ordered subset of child nodes [37,45].

A recent theorem [37] states that an optimal load distribution for the star net-
work topology is obtained by utilizing all the processors ofthe network, with a
load distribution sequence ordered by increasing link capacitieszi (fast links first).

But if the load distribution sequence is fixed a priori, then it has been shown
that the optimal processing time can be achieved by distributing the load only
to “fast” processor-link pairs. An exact expression that distinguishes the fast
processor-link pairs from the slow ones has been derived [43], and areduced
network can be obtained by removing the slow processor-linkpairs. The load is
then distributed among the remaining processors using the optimality principle.

Installments and sequencing

Under thewith front-endmodel, sending all the load intended to the processors in
a single message leads to poor utilization of the processors. Indeed, the sequential
load distribution imposes that the last processors to be served are waiting idle,
while their predecessors in the load distribution sequenceare receiving their share
of the load. To address this problem,multi-roundor multi-installmentalgorithms
have been proposed [42, 43, 192]. These algorithms dispatchthe load in multiple
rounds and thus improve overlap of communication with computation.

The two main questions that must be answered when designing multi-round
algorithms are: What should the chunk sizes be at each round?And how many
rounds should be used? Most of multi-round algorithms assume a fixed num-
ber of rounds. A review of multi-round algorithms can be found in [37], but
the main observations therein are: (i) dividing the workload into large chunks
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reduces communication overhead, (ii) sending small chunksat the beginning of
the execution makes it possible to overlap communication with computation and
(iii) sending small chunks at the end of the execution leads to better load balance
among processors. Not surprisingly, observations (i) and (iii) - that proved use-
ful for scheduling irregular tasks onto homogeneous processors - hold also within
DLT settings. Based on these three observations, Casanova and Yang [191] have
proposed an algorithm that starts by sending larger and larger chunks, and ends
by sending smaller and smaller chunks.

Finally, the linear DLT model may lead to flawed solutions as there is no pro-
hibitive cost for sending large numbers of very small messages [52,192]. Indeed,
the linear model implies that an infinite number of rounds where an infinitesimal
amount of work is sent out at each round gives an optimal task allocation. Al-
though an affine model - that accounts for network latencies -addresses this issue
and renders the model more realistic, it nevertheless increases significantly the
complexity of the problem [37,192].

Network equivalence

A useful concept in DLT is the notion ofnetwork equivalence, that makes possible
to assimilate some network topologies to a unique processorof equivalent power
via closed-form expressions or numerical procedures [24].For instance, these net-
work equivalences can be utilized to show that speedup is bounded from above by
a quantity independent of network size, but dependent of network topology [68].
This feature provides a mean to compare the performance of finite configurations
of processors against infinite ones [25, 160]. The network equivalence concept
proves also to be useful for theorem proving [21,37].

The network equivalence concept has been successfully applied to several net-
work topologies, including daisy chains [25, 160], arbitrary trees [25, 142] or 2-
dimensional meshes [46]. Daisy chains - although not very common in practice -
prove useful in this context, as they serve as a good basis forstudying more com-
plex architectures such as 3-dimensional [75] and k-dimensional meshes [134] via
network equivalence transformations.

Also, the network equivalence principle allowed to formally identify the im-
pact of sequential load distribution on the performance saturation within DLT net-
works [25]. Although the speedup increases as the number of processors and
installments increase, it nevertheless tends to saturation because of the repetitive
overhead in propagating the load into the network. The situation is somewhat sim-
ilar to Amdahl’s law [95] as the communication overhead associated to the load
transfer takes place in a sequential fashion [45]. On the contrary, speedup is scal-
able under the parallel load distribution model, that is when nodes can transmit
load simultaneously to all their neighbors [176].
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Model extensions

The divisible load model has been applied successfully to a wide variety of in-
terconnection topologies including daisy chains [160], star graphs [37], hyper-
cubes [135], two, three and k-dimensional meshes [48, 75, 134], and arbitrary
trees [142].

The original DLT model has been extended in many ways, including finite
memory processor [78], memory hierarchy design of recent computers [79], net-
work latencies [34, 47], processor latencies for initiating a computation [191],
processor release times [41], unknown network resources [120], and adaptation to
Grid computing [194,196].

2.3 Throughput maximization

2.3.1 Performance metric

For applications with very long execution times - typicallydays or weeks -, two
schedules whose durations differ only by a few minutes can beconsidered as
equivalent [32]. In this case,makespanminimization might not be the appro-
priate performance metric. Besides, we saw that makespan minimization greatly
complicates the scheduling problem, which can hinder algorithmic design.

A more meaningful and more practical objective function isthroughput max-
imization, that is maximizing the number of tasks executed per time unit [14, 32,
107, 169]. Indeed, deriving asymptotically optimal schedules is very satisfactory
for such lengthy applications.

Lengthy executions of independent task applications can bedecomposed into
three phases: Astart-upphase, asteady-state phaseand awind-downphase [126].
During start-up, the computation begins with the master starting to delegate tasks
to the slaves. Then, the steady-state regime sees the mastersending tasks and
receiving results from the slaves in a somewhat regular fashion. And finally, the
computation terminates with thewind-downphase during which the master col-
lects the last results from the slaves. Since the target applications are expected to
run for a very long time, the steady-state phase will dominate the total execution
time, such that thestart-upandwind-downphases can reasonably be neglected.
This is the main argument for focusing on optimizing thesteady-stateregime.

During steady-state, the initial integer formulation can be relaxed, and re-
placed by a continuous time model. The goal is to describe theactivities of the
resources during each time unit: What fraction of time is spent communicating
(and with who) and what fraction of time is spent computing. To some extent, this
continuous time model is similar to the divisible load model, since both domains
can be divided into infinitesimally small quantities. The main difference being
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that one needs to construct a valid periodic schedule (wherean integer number of
tasks is treated per time period) based on the resource activity descriptions.

2.3.2 Theoretical model

The theoretical models employed in the literature are very similar to DLT models.
Usually, the execution time of a task on a processorPi is modeled by a single
valuewi, such that processorPi requiresαiwi time units to computeαi tasks.
Similarly, it takescij time units to send a task from processorPi to processorPj .
It is possible to havecij 6= cji, that is bandwidth asymmetry on the network links.
This linear model is the most common model found in the literature due to its
simplicity [30,106,161,169].
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Figure 2.6: Graph network (a) and spanning tree (b).

The two most popular topologies used for modeling complex and large-scale
platforms are undirected graphs and spanning trees (see Figure 2.6) [14,104–106,
126, 169]. Both topologies model the network as sequences ofnetwork links or
paths, that may be shared by several routes, which is necessary to obtain some-
what realistic platform models [52]. The vertices or nodes of the platform repre-
sent computing resources capable of computing and/or communicating with their
neighborsat (possibly) different rates.

Although graph networks provide more general platform models, they never-
theless introduce routing decision making, which greatly complicates the schedul-
ing problem. In contrast, the hierarchical topology of treenetworks has the ad-
vantage to remove routing decision problems [30, 81, 108, 126, 168]. However, it
has been shown that the problem of extracting the best spanning tree from a given
network is NP-complete, and that even though such a tree could be found, there
exist networks for which the performance of the optimal treeis arbitrarily worse
than the whole network performance [14]. Nevertheless, these unusual networks
have been constructed to prove the superiority of graphs over trees, and might not
be representative of realistic networks.
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2.3.3 Scheduling policies

Just like DLT models, steady-state models are governed under a certain scheduling
policy. Steady-state scheduling policies have also three components:

• Network interface: Very similar to the DLTload distribution model, a pro-
cessor may or may not communicate concurrently to several neighbors. The
single-portmodel for both incoming and outgoing communication, restricts
a processor to open one communication in emission and one in reception
simultaneously [14, 30, 108, 126]. At the other end of the spectrum, pro-
cessors can communicate simultaneously with all their neighbors in emis-
sion or reception, which amounts to themulti-port model, ornetwork-flow
model [169]. In between is a model allowing an unbounded number of in-
coming and outgoing communications to happen simultaneously, but at a
restricted rate amounting to the hardware limitation of thenetwork inter-
face [104–107].

• Processor operating mode: Processors can perform three basic operations,
sending messages, receiving messages and performing computation. The
degree of simultaneity and concurrency between these actions depends on
the capacity of the target machine. If all activities can be performed si-
multaneously, then we speak of afull-overlapmodel [14, 106, 169]. At the
other end of the spectrum is thesequentialmodel where a machine can per-
form only one activity at a time. Beaumont et al. [29] define a variety of
models that cover all the possible combinations of concurrency between the
processor activities.

• Communication model: In most literature studies, processors are able to
communicate only with their neighbors under thestore and forwardmodel.
Thus, a task can be processed only after receiving all the data associated
with that task. More precisely, ifPi sends a task toPj at time-stept, then
Pj cannot start executing the associated task, or forwarding it before time-
stept+ ci,j.

Interestingly, Beaumont et al. [29] showed that any operating model, resulting
from a combination of the different overlap and network interface characteristics
of a machine can be reduced to thesingle-port, full-overlapmodel. This is pre-
sumably the most powerful argument for the utilization of this model, albeit the
communication serialization that comes with it greatly complicates the scheduling
problem [32]. Another reason for using this model is that standard communica-
tion libraries like MPI [94] and PVM [96], usually use sequential or binomial tree
based schemes to support collective communications [181],relying hence only on
point-to-point communications.
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2.3.4 Formulation of the steady-state regime

One of the strengths of steady-state scheduling, is the possibility to derive an
optimal solution using linear programming techniques. Notonly this solution can
be used to construct an asymptotically optimal schedule, but it can also be used to
evaluate the performance of decentralized heuristics against the optimal solution.

Let us formally express the steady-state scheduling problem on a graph plat-
form G = (V,E, w, c), where each processorPi ∈ V operates under thesingle-
port, full-overlapmodel. LetPm denote the master processor, where all the tasks
reside initially. To ease the presentation, assume that thesize of the task output
data is much smaller than the size of the task input data, suchthat the results col-
lection at the master site can be neglected. We aim at determining the constraints
induced by our problem during steady-state.

Processor operations.Let n(i) denote the index set of the neighbors of pro-
cessorPi. During one time unit let:

• αi be the fraction of time spent byPi computing,

• si,j be the fraction of time spent byPi sending input files to each neighbor
processorPj , j ∈ n(i),

As these variables correspond to the activity during one time unit, we have the
following constraint sets:

∀i, 0 ≤ αi ≤ 1 (2.3)

∀i, ∀j ∈ n(i), 0 ≤ si,j ≤ 1 (2.4)

One port model for outgoing communications.Because send operations to
the neighbors ofPi are assumed to be sequential, we have the equation:

∀i,
∑

j∈n(i)

si,j ≤ 1 (2.5)

One port model for incoming communications.Because receive operations
from the neighbors ofPi are assumed to be sequential, we have the equation:

∀i,
∑

j∈n(i)

sj,i ≤ 1 (2.6)

The masterPm should not receive unprocessed tasks from its neighboring pro-
cessors, which gives the following equation:

∀j ∈ n(m), sj,m = 0 (2.7)
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Conservation Laws. During one time unit, for every processorPi except
the master, the number of tasks received from the neighboring processors (sj,i

cj,i
),

should be equal to the number of tasks processed (αi

wi
) plus the number of tasks

sent to the neighboring processors (si,j

ci,j
). We hence have the following constraint:

∀i 6= m,
∑

j∈n(i)

sj,i
cj,i

=
αi
wi

+
∑

j∈n(i)

si,j
ci,j

(2.8)

It is important to underline that equation (2.8) really applies to the steady-
state regime. For this, assume that a start-up phase alreadytook place during
which some tasks have been forwarded to the processors, but no computation has
been performed, such that each processor receivedαi

wi
+

∑

j∈n(i)
si,j

ci,j
tasks. At the

end of the start-up phase, each processor disposes of enoughtasks to enter the
steady-state regime.

All the aforementioned constraints can be gathered into a linear program,
whose objective is to maximize the throughputntask(G) of the platform graph
G.

Maximize
ntask(G) =

∑

i∈V

αi
wi
,
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∀i, 0 ≤ αi ≤ 1
∀i, ∀j ∈ n(i), 0 ≤ si,j ≤ 1

∀i,
∑

j∈n(i)

si,j ≤ 1

∀i,
∑

j∈n(i)

sj,i ≤ 1

∀j ∈ n(m), sj,m = 0

∀i 6= m,
∑

j∈n(i)

sj,i
cj,i

=
αi
wi

+
∑

j∈n(i)

si,j
ci,j

Because we have a linear programming problem in rational numbers, we can
utilize well known polynomial time algorithms [117,118] toobtain rational values
for all the variables .

2.3.5 Schedule reconstruction

Theoretical feasibility

Once we dispose of the descriptions for all the resource activities, it remains to
build up a periodic schedule where an integer number of tasksare sent and/or ex-
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ecuted. We can obtain a time periodT during which an integer number of tasks
is treated, by taking the least common multiple of all the denominators of the ac-
tivity variables (αi andsi,j) [32]. Then we need to orchestrate the communication
and computation events such that the constraints imposed bythe network interface
and processor operating mode hypotheses are satisfied.

The construction of such a valid schedule is straightforward for powerful pro-
cessor operating models and network interface possibilities. For instance, the
multi-port, full-overlapmodel presents no particular difficulties since all the ac-
tivities can occur concurrently.

On the other hand, thesingle-port, full-overlapmodel complicates the prob-
lem as one needs to synchronize and order the incoming and outgoing data trans-
fers with neighboring processors. A procedure based on edge-coloring a bipartite
graph allows to extract independent communications - i.e. involving disjoint pairs
of senders and receivers - and hence to implement the final schedule [14,32].

But schedule reconstruction is difficult (NP-hard) for models that do not allow
for overlapping incoming and outgoing communications [32]. Although it is easy
to modify the linear program to account for the sequential operating mode [14],
constructing the final schedule amounts to edge-color an arbitrary graph [32].

Finally, the complexity of constructing a valid schedule comes also to a great
extent from the platform topology. Indeed, arbitrary graphtopologies allow for
task allocations to the same machines via different paths. Restrict the topology
such that there is only one path between any pairs of nodes (asfor example in tree
networks), and the problem becomes much simpler [14].

Practical value of centralized schedules

Although centralized procedures can provide asymptotically optimal algorithms [14],
their contributions are rather theoretical than practical. Effectively, their use in
practice is extremely limited due to the large-scale natureof the system. The
amount of information that needs to be gathered at a central location requires
prohibitive amounts of resources (e.g. time and memory). Besides, the network
topology and system load (in form of resource performance) are typically chang-
ing throughout the course of the computation. Thus, there isa need for light-
weight adaptive techniques that can respond quickly and efficiently to changing
conditions.

Autonomousscheduling strategies [106,126,150] are strategies that rely solely
on information measurable locally. Obviously, autonomousstrategies may make
wrong scheduling decisions because by definition they lack of global knowledge
on the system state. But nevertheless, a good autonomous strategy should tend
towards optimal throughput rates when the system stabilizes.
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2.3.6 Example

Consider the example taken from [14] depicted in Figure 2.7 with four processors
operating under thesingle-port, full-overlapmodel. Assume further that collect-
ing the computational results is neglected, and that the network link have equal
bandwidth in both directions.

If we fill the valueswi andci,j into the linear program, we obtain the solution
depicted in Figure 2.7 (b). By taking the least common denominators of all the
variables, we obtain a time periodT = 12 during which:

• P0 computes12 tasks, sends7 tasks toP1 and2 tasks toP3;

• P1 receives7 tasks fromP0, computes3 of them and forwards4 tasks toP2;

• P2 receives4 tasks fromP1, computes2 of them and forwards2 tasks toP3;

• P3 receives2 tasks fromP0 and2 tasks fromP3, and computes4 tasks.
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33
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(a) Computing plat-
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(c) Steady-state schedule (S:Send, C:Compute, R:Receive)

Figure 2.7: An example with four processors.
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Thus, the platform can process21 tasks every12 time units, which corre-
sponds to the7

4
value obtained from the linear program (

∑

i
αi

wi
). Note that all the

processors are executing tasks all the time, so the solutionachieves a full utiliza-
tion of the computing resources. It is interesting to point out thatP3 receives tasks
along two different paths, directly from the masterP0, and indirectly viaP1 and
P2. Finally, an optimal steady-state schedule is depicted in Figure 2.7 (c).

2.3.7 The bandwidth-centric principle

A simple but yet efficient scheduling principle for heterogeneous star networks has
been formulated under the assumption that sending the computational results back
to the master was negligible [30]. Thebandwidth-centricprinciple states that if
enough bandwidth is available to a parent node, that is, if itcan deliver tasks faster
than its children can compute them, then all the children canbe kept busy. How-
ever, if bandwidth is limited, then tasks should be allocated only to the children
which have sufficiently fast communication times regardless of their computing
speeds. Nonetheless, the computing speed of the children plays a role for deter-
mining the amount of work to delegate to each child, while thecommunication
speed of the links interconnecting the parent to its children settles the sequence
in which the children should be served. The bandwidth-centric closed-form ex-
pression given in [30] permits to identify which children should be fully utilized,
which unique child should be partially utilized, and which children should re-
main unutilized. This result is somewhat similar to the one presented in the DLT
context, stating that under the sequential load distribution, processors should be
served in the order of increasing communication times.

Thus, the bandwidth-centric principle provides a simple yet effective way for
scheduling on large-scale tree-shaped platforms in a decentralized manner. Each
node of the tree makes scheduling decisions based solely on information that is
measurable locally. The bandwidth-centric principle has been incorporated within
autonomous scheduling strategies by Kreaseck et al. [126] that address the prac-
tical problem of attaining the maximum steady-state rate after some start-up and
maintaining that rate until wind-down.

2.3.8 Network equivalence

Network equivalence is also useful within steady-state scheduling settings. Based
on the bandwidth-centric principle, Beaumont et al. [30] conceived a bottom-up
method that iteratively determines the steady-state throughput of a heterogeneous
tree. At each time step of the procedure, the leaves of the tree are reduced together
with their parent into a single node of equivalent computingpower determined
by the bandwidth-centric principle. The procedure ends when there remains an
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unique node having a computing power equivalent to the entire tree. These suc-
cessive network equivalence reductions are more efficient (linear in the number
of processors) than solving a linear programming problem for determining the
optimal throughput of a tree-shaped platform.

The network equivalence principle is also very convenient when conducting
simulations of large-scale systems. Effectively, since a tree can be reduced to a
single super-node of equivalent processing power, it is notnecessary to employ
thousands of nodes to simulate large-scale systems [106].

Within the steady-state scheduling framework, we are only aware of the net-
work equivalence result for tree-shape networks [30]. Extending this result to
arbitrary graphs would be a valuated research direction. The work ontopology
aggregation[8, 130] for hierarchical PNNI (Private Network-to-Network Inter-
face) routing in ATM (Asynchronous Transfer Mode) networksmay give some
inspiration on the matter. Topology aggregation is motivated by the need for com-
pressing the information to reduce the complexity of topology advertisement, and
by the need to hide network topology for security reasons [130].

2.3.9 Extensions

The steady-state scheduling problem has been devoted a lot of attention during
the last few years. Many model and application extensions have been proposed.
A way to include network latencies in the model is explained in [32]. Steady-state
scheduling has also been targeting problems like optimizing the pipeline of broad-
cast [31], scatter and reduce [131] operations in heterogeneous environments. Fi-
nally, the case where multiple applications are executed concurrently, and hence
competing for CPU and network resources has recently been investigated [28].

2.4 Contributions

This section presents the contributions of this thesis for the problem of schedul-
ing independent task under the MS paradigm onto heterogeneous platforms. The
scheduling objective being to maximize the steady-state throughput of the sys-
tem. We argue for the chosen research directions by showing how do they fit
within previous work.

2.4.1 Location-aware master-slave tasking

In Chapter 1, we advertised the fact that the MS paradigm has serious scalability
issues, as the master cannot manage efficiently an unlimitednumber of slaves.
Although scheduling strategies that adjust the number of slaves automatically and
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dynamically throughout the computation allow to elude master congestion [86,
102,149], they do not provide a mean for delivering scalableperformance.

The natural solution to achieve scalable performance consists simply in de-
ploying several masters, that is, increasing the number of data access points. This
technique can be implemented relatively easily on parallelcomputers [121], but
the topology of large-scale computing platforms introduces complications such as
resource selection and resource placement problems. To date, most studies on the
MS paradigm within Grid environments (and on DLT as well) assume the use of
a single master whose location is fixed a priori [36, 37, 105, 106, 126, 161]. To
the best of our knowledge, the problem of determining how many masters should
be deployed, and where should these masters be located on theGrid in order to
maximize the system throughout has not been studied yet.

The most closely related work is presented in the paper of Shao et al. [169]
who consider resource selection problems within the steady-state MS scheduling
framework. The aim is to select performance-efficient hostsfor both the master
and slave processes. For that end, an exhaustive search is performed, consisting
in solvingn network flow problems, wheren is the number of processors com-
posing the platform. Then the configuration that achieved the highest throughput
is selected. Unfortunately, this approach is not applicable when using several
masters. There are indeed

(

n
p

)

possible master locations sets, wherep is the num-
ber of masters to be located on the platform. For this reason,we cannot simply
compute the best scheduling strategy for each set, and then select the best result.
As an example, forn = 50 andp = 10, the resulting number of possibilities is
10, 272, 278, 170. Clearly, even for moderate values ofn andp, such enumeration
is not realistic, and we need more advanced techniques.

Interestingly, our problem is remarkably similar toFacility Location prob-
lems [67, 125]. A classic Facility Location problem is a spatial resource alloca-
tion problem in which one or more service facilities have to be located to serve a
geographically distributed set of population demands according to some objective
function. If we show correspondence between (1) the facilities and the master
nodes, (2) the service and the computational tasks, and (3) the set of demands and
the computing resources of the Grid, then our master-slave tasking problem can
be expressed as a Facility Location problem.

Consequently, lessons can be drawn from the design of algorithms for solving
different versions of Facility Location problems. To the best of our knowledge,
few studies have considered Facility Location theory within Grid computing set-
tings. Maheswaran et al. [140, 141] presentMetaGrid, an architecture that uses a
Fixed Charge Location Problem [67] for resource provisioning for WAN-enabled
applications. Ko and Rubenstein [122] present a distributed protocol to place
replicated resources in large-scale networks such that each vertex is “close” to
some copy of any object. Similarly, Theys et al. [179] noticethat thedata staging
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problem in a distributed heterogeneous networking environment, presents a high
level of similarity with Facility Location problems.

Our contribution to this problem is as follows. We show that the problem of
finding the most profitable locations for hosting the master processes in order to
maximize the platform throughput is NP-hard. Then, we introduce an efficient
heuristic for placing several masters on the platform. Because our heuristic takes
into account the platform topology, we term itlocation-aware. Thus, our contribu-
tions provide an important step for efficient deployments oflarge MS applications
on computational Grids. This work has been published in [11,16] and model
extensions are presented in [12].

2.4.2 Distributed schedule construction

Once the decision about the platform location(s) for the master(s) has been made,
the attention can be devoted to the design of efficient distributed algorithms. Re-
cently, Hong et al. [105–107] proposed an elegant algorithm, based on decen-
tralized versions of flow algorithms. This algorithm, however, works under the
assumption of powerful network interfaces that allow for themulti-portmodel, al-
beit the amount of incoming and outgoing data transfers is limited by the network
interface of the machine. Under themulti-port model - bounded or not - there is
no need to orchestrate the communications since they can occur simultaneously.
Things get complicated under thesingle-portmodel, where only one incoming
and one outgoing communications can happen concurrently.

In [126], the distributed orchestration of the communications is governed un-
der thedemand-drivenparadigm, where nodes are regularly requesting tasks to
their parents. This mechanism aims at dealing with resourceperformance fluc-
tuations by allowing any node to participate to the computation. The scheduling
strategy is fully autonomous and makes use of the bandwidth-centric principle for
prioritizing the children requesting for tasks. Although the work of Kreaseck et
al. [126] is a first step towards a distributed implementation of the bandwidth-
centric principle, their autonomous protocol might take non-optimal decisions,
generating hence long start-up phases as well as unnecessary large numbers of
tasks buffered at node locations.

Our contribution to this problem is as follows. We present a lightweight dis-
tributed communication procedure which strictly follows the bandwidth-centric
principle. Then we show how each node can build up its local schedule au-
tonomously in order to attain the maximum steady-state throughput of the tree.
Our procedure is an efficient, practical and scalable implementation of the bandwidth-
centric principle. This work has been published in [13].
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2.4.3 Collection-aware master-slave tasking

Most studies on independent-task scheduling make the assumption that returning
the results to the master node can be neglected [14,23,30,81,98,106,107,109,126].
This assumption is acceptable when the output data are much smaller than the
input data (e.g. the answer of the computation is of the type “Yes or No”). This
simplification is very convenient as it considerably reduces the complexity of the
scheduling problem, but fails to represent a very natural and important practical
aspect of many master-slave applications.

Similarly, one finds relatively few studies that take into account the collection
of the results by the master within the DLT literature [2, 21,37, 48, 161]. When
return messages are taken into account within the DLT framework, two permu-
tations must then be determined (one for tasks distributionand one for results
collection) [21, 37, 48]. Barlas [21] concentrates on two model simplifications,
that correspond toquery processing- when data transfers costs are fixed and inde-
pendent of load size - andimage processing- when the communication costs are
linear in load size. In both cases, the optimal sequence of messages is given, and a
closed-form solution to the DLT problem is derived. Rosenberg et al. [2] address
the DLT model with return messages, and restrict the framework to bus networks.
The theoretical results are stated under an affine communication cost model and
under a linear computation cost model. Additionally, they allow worker proces-
sors to be slowed down during the computation by incoming external load.

Our contributions to this problem are as follows. We extend the state-of-art
on the master-slave tasking problem by incorporating the results collection in the
problem formulation. As a first step in this research direction, we restrict our-
selves to tree-shaped networks, extending the works presented in [29, 30, 126].
We show how to obtain and build an asymptotically optimal schedule using a
linear program. Further, we extend the bandwidth-centric principle to account
for results collection. This theoretical knowledge is thenembedded within au-
tonomous heuristics that can respond to system load fluctuations. This work has
been published in [18], and is presented in greater details in [19].



Chapter 3

Stencil code applications

This chapter starts with an introduction to stencil computations and presents the
main optimization techniques for improving sequential performance of stencil
codes. Thereafter, we proceed with the main parallelization technique of stencil
codes, namely domain decomposition (DD). We emphasize the reasons that make
DD not adapted to heterogeneous and dynamic computing systems, and conclude
with a summary of our contributions.

3.1 Introduction to stencil computations

Stencil codes form the basis for a wide range of scientific applications: Iterative
solvers, Monte Carlo simulations and image filtering applications all rely on some
form of stencil computation. These programs are calledstencil codesbecause
each element in a multidimensional array is updated with contributions from a
subset of its neighbors (see Figure 3.1). For each iteration, the stencil kernel is ap-
plied to all the array elements - usually the boundaries receive a special treatment.
Stencil codes are among the most time-consuming routines ofthe aforementioned
applications, and therefore it makes sense to aspire for ultimate performance.

There are two types oflocality that can be exploited to improve the perfor-
mance of stencil codes [185]. There isspatiallocality when accessing neighboring
points (in address space), and there istemporallocality when array elements are
reused several times before being evicted from cache. Roughly speaking, spatial
locality deals with the data layout, i.e. how the multidimensional array is mapped
into address space, while temporal locality deals with the data access patterns.

39
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Figure 3.1: Access pattern for a 4-point stencil applied on a2D array.

3.2 Sequential optimizations

Stencil codes exhibit a particularly poor performance withrespect to memory
caches. This poor performance is imputed to the fact that each array element
is accessed a small, constant number of times per iteration (equal to the number
of points in the stencil kernel). For large problem sizes, array elements must be
brought into cache several times per iteration, degrading dramatically the overall
performance. Reorganizing these computations in order to efficiently utilize the
memory hierarchy of modern computer architectures has beenthe subject of a
wealth of research.

Cache blockingor tiling is the standard transformation technique which im-
proves locality by moving reuses to the same data closer in time [3, 65, 123, 124,
128, 132, 133, 136, 148, 152, 157, 158, 173, 177, 183, 186, 193]. Tiling reduces
the working sets by grouping the updates into rectangular blocks that are pro-
cessed one after another, in order to reduce capacity misses. Most research on
tiling has focused on single-level cache and has been applied to perfectly-nested
loops [65, 128, 177]. Multi-level memory hierarchy has beenconsidered by Ko-
dukula et al. [123] and by Yi et al. [193] that propose a compiler technique for
transforming loop nests into recursive form.

Li and Song [173] proposed tiling schemes that interleave multiple iterations
so that reuse can be exploited across multiple iterations ofthe time-step loop.
Their technique is a combination of loop skewing and tiling,and improves tem-
poral data reuse in secondary cache. They also provide a compiler framework that
automates such transformations [136]. Wonnacott [189] proposes a similar ap-
proach calledtime skewingthat combines blocking in both data and time domains.
Jin et al. [112] push this idea further by presentingrecursive prismatic time skew-
ing, which partitions the iteration space of loop nests into skewed prisms with both
spatial and temporal dimensions. In the same genre, Rastello and Robert [157]
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provide results for minimizing the number of accessed data throughout the com-
putation of a tile (called thecumulative footprintof the tile) by utilizing paral-
lelepiped tiles. Additional optimization techniques are reported in Paper 7.

3.3 Parallel implementation issues

3.3.1 Domain decomposition

Usually, stencil applications are parallelized with the domain decomposition (DD)
paradigm. Domain decomposition consists in distributing the computational do-
main of the problem across the processors (see Figure 3.2). Then, during the
execution, computation and communication phases alternate, as neighboring pro-
cessors (in the logical decomposition) need to periodically exchange data located
on the boundaries of their local domains.

P6 P7 P8

P4

P0

P3

P1 P2

P5

Figure 3.2:11× 11 2D array decomposed across9 processors.

Domain decomposition methods have been studied extensively because of
their utility in a wide range of application areas such as, chemistry, solid and fluid
mechanics, or weather forecast simulations. Domain decomposition methods are
efficient only when the computational load is well balanced among the processors.
Effectively, the processors being tightly coupled by the communication phases,
the execution proceeds at the pace of the slowest processor.On homogeneous and
stable systems, DD methods may be the simplest and yet the most efficient way
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of parallelizing stencil code applications. In heterogeneous and dynamic environ-
ments on the other hand, things get complicated since the load must be balanced
among the processors proportionally to their computational speeds throughout the
execution.

3.3.2 Heterogeneous load distributions

Several studies have been conducted on the problem of distributing computations
proportionally to processor speeds [26, 27, 33, 113, 114, 139]. In most cases, the
problem is reduced to the problem of partitioning some mathematical objects,
such as matrices, sets or graphs [73]. The main difficulty resides in the combina-
torial nature of the problem which typically turns out to be NP-complete.

Although promising, these efforts have solely focused on the heterogeneous
aspect of the underlying platform but not on its dynamic aspect. Hence, even
though efficient - i.e. polynomial - heuristics can be derived, the dynamic nature
of the underlying platform makes static strategies not wellsuited over time. In
dynamic environments, the processor speeds and network contention will fluctuate
during the execution requiring online load redistributionmechanisms.

Hence, the dynamic aspect of the problem is somewhat more challenging than
the heterogeneous one, as it introduces the problem of online load redistribution,
that is, when and how should the load be redistributed to respond to performance
resource fluctuations. Besides, how can one measure the quality of a load dis-
tribution? Beaumont et. al. [33] consider the matrix multiplication problem in
heterogeneous and dynamic environments, and propose to redistribute the load
periodically. Still, one must find a good load redistribution frequency, because a
too conservative approach would not result in significant improvements, whereas
a too aggressive approach would incur too much overhead.

An important point stressed by Beaumont et. al. is the necessity to minimize
the amount of communication when redistributing the load. The amount and loca-
tion of the data should be taken into account in order to keep the relative position
of the processors, that is, to maintain the number and identity of the neighbors
of each processor. Otherwise the cost of the redistributionmay be prohibitive.
Similarly Mahanti and Eager [139] conclude that data migration costs should be
minimized for efficient redistribution, and propose redistribution policies that try
to leave the relative position of the nodes unaltered. In their work, they consider
data redistribution following addition/removal of processing nodes. They find that
allocating data to a new node from the center of the computational domain reduces
data migration costs compared to allocation from the edge, and addition in groups
is beneficial compared to repeated single additions.

Although these studies on DD methods within heterogeneous environments
present interesting results that give some insights on the problem complexity, there



3.4. Contributions 43

are still major issues that have not been addressed. First, the different strategies
typically rely on a centralized algorithm to (re)distribute the work among the het-
erogeneous processors. This clearly poses the question of the scalability of the
approach when online redistribution cannot be ignored. On the other hand, the
problem of online load redistribution frequency is difficult to address without dis-
posing of some form of centralized information about the platform state. Finally,
and maybe more importantly, fault tolerance mechanisms arestill needed either
within homogeneous or heterogeneous environments.

3.3.3 Fault tolerance

Currently, the most common technique for handling fault tolerance within DD
methods is checkpoint/restart. That is, checkpoints are saved to disk periodically,
and if a processor fails, then the computation halts and restarts from the last con-
sistent checkpoint. For applications that have very long execution times on a very
large number of processors, failures are more likely to be the rule rather than
the exception. For those applications, the checkpoint/restart technique could take
longer than the time to the next failure. There is therefore aneed to survive fail-
ures without relying on global recovery operations. In other words, if a processor
fails, it is desirable that the other processors are able to continue the computation,
and do not have to wait for the faulty processor to recover. This constitutes (we
believe) the main drawback of DD methods, which does not allow for an efficient
way to handle resource failures.

Engelmann and Geist [85] presentnaturally fault tolerantalgorithms that are
scalable and resilient to failures. Such algorithms must have the ability to tol-
erate failures through the mathematical properties of the problem by continuing
the computation without the failed processors. They show how chaotic relax-
ation andmeshlessmethods can be used to derive naturally fault tolerant finite
difference methods. However, they advertise that multiplefailures of neighboring
processors could render the final solution quite incorrect.Moreover, not all scien-
tific problems have the natural fault tolerance property, which urges the need for
alternative fault tolerant mechanisms.

3.4 Contributions

This section presents our contributions to the problem of implementing stencil
code applications on modern computing systems. Our goal is to investigate the
performance of the MS paradigm when implementing stencil applications. In-
stead of working with trivial applications such as Mandelbrot fractals for instance,
we decided to work with stencil applications used by researchers at NTNU. In
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this way, we could obtain real life applications for our experiments, and provide
parallel implementations that might be useful for the researchers working on the
applications.

3.4.1 Image filtering application

The first attempt for applying the MS paradigm to stencil codeapplications was on
an image filtering application, known asmatched filtering[58]. This application
is used within medical imaging, in order to detect blood vessels in Computer
Tomography (CT) images. A CT image is a cross-section of the human body. By
detecting blood vessels in multiple CT images that are piledup, one is able to
construct a 3D representation of the blood vessel networks (see Figure 3.3).

Ole Christian Eidheim - a PhD student of the Department of Computer and
Information Science at NTNU - has implemented a sequential matched filtering
application. The input of the application is a pile of gray-scale images that are
filtered through an image correlation step. The correlationkernel is a Gaussian
hill, which is rotated in all directions and scaled to several sizes. The sequential
implementation is rather slow, and a parallel implementation would allow to use
higher-resolution CT images, to treat more pictures, and thus to obtain higher-
quality 3D representations.

The matched filtering application is, in principle, quite easy to parallelize.
The input images can be divided into blocks that can be processed in parallel, in-
dependently of each other. When all the parts of the image have been filtered, the
application requires the global pixel minimum and maximum,in order to normal-
ize the pixel values within the range[0, 255]. The processors must hence perform
two Allreduceoperations, before starting to normalize their data and write them
to disk. Therefore, it is very important that all the processors finish computing at
the same time, in order to not wait idle for the collective communications.

Thus, we are facing a scheduling problem with makespan minimization for
objective. We designed a new MS scheduling strategy, that hands out batches
of tasks of decreasing sizes, and compared it to other strategies suggested in the
literature. The parallel implementation involves parallel I/O in order to circum-
vent the possible bottleneck incurred by the master, and multi-threading to prevent
possible processor idleness. This work has been published in [163], and was con-
ducted during the Master thesis of Einar M. R. Rosenvinge, under the supervision
of Anne C. Elster and myself.

3.4.2 Lattice gauge theories

This work relates the main issues associated with the porting of Markov-chain
based Monte Carlo (MC) simulations from shared-memory architecture systems
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Figure 3.3: 3D reconstructions of blood vessel networks of ahuman liver after
filtering a pile of 2D CT images. Reconstructions performed by Ole Christian
Eidheim.

to distributed-memory architecture clusters. The application, called London, is a
leading-edge application developed by physicists at NTNU to study the possibil-
ity of a new state of matter for hydrogen [9]. Liquid metallichydrogen may be
a superconductor or superfluid that features dissipationless electrical currents or
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mass flow. The London application is one of the most time consuming of all the
high performance applications developed at NTNU.

Like for many high performance computing legacy codes, the main challenge
of the port onto distributed memory systems is to depart fromthe shared-memory
programming style. In our case, the code had about 5000 lineswith 100 subroutine
calls involving sending and receiving of data as well as over60 calls to SHMEM
barrier routines. In addition, it relied heavily on shared memory concepts through
about 50 SHMEMPUT and SHMEMGET calls.

A previous port onto clusters performed by Lund [137] revealed that one
needs to significantly change the computing paradigm in order to obtain a success-
ful port. Indeed, Lund replaced all the SHMEM calls by one-sided MPI subrou-
tines, and obtained an implementation that worked in the same way as the original
shared-memory implementation, i.e. with a lot of small messages. As current im-
plementations of MPI-2 calls such as MPIPUT and MPIGET continue to have
serious performance issues on distributed memory systems with relatively slow
interconnect, this approach resulted in a huge communication overhead.

The presence of these numerous small messages is due to the celebrated Metropo-
lis algorithm [145] that is employed within the application. Effectively, Metropo-
lis MC dynamics come with thedetailed balance conditionthat prevents the si-
multaneous update of adjacent sites (according to the application stencil). On
shared-memory machines, synchronization is cheap, and onecan afford to use a
large number of small messages. However, the detailed balance condition poses
a serious challenge for the parallelization in distributedmemory environments, as
communication becomes very expensive compared to computation. Hence, one
must find mechanisms that ensure at all times that processorsdo not update si-
multaneously adjacent sites, with a minimum communicationoverhead.

Since our aim was to evaluate and compare the performance of the MS paradigm
against a more traditional DD method, we needed to provide two implementations
of the London application: One with the MS paradigm, and one based on DD
methods. When looking in the literature, we did not find any satisfactory paral-
lel implementation that efficiently handled the detailed balance condition. Most
studies [97,111,138,165] rely on DD methods that generate several data transfers
between neighboring processors per iteration, albeit conventional wisdom argues
that data should be grouped for communication [97,156].

Our first contribution consists in new parallel algorithms based on DD meth-
ods that are scalable, and that minimize the amount of messages exchanged through-
out the execution. This work has been published in [17]. Then, we implemented
a MS version of the code, and compared the two implementations. This work has
been published in [15].
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3.4.3 Stencil code optimization

Throughout the work done with the London application, we have first focused on
parallel performance, but became interested in sequentialoptimization as well.
The data dependencies implied by the detailed balance condition brought the
early London developers to use the well-known Red-Black checkerboard order-
ing scheme. The Red-Black checkerboard algorithm accessesall the “red” array
elements (where sum of coordinates is even) to compute values for the “black” ar-
ray elements (where sum of coordinates is odd), then it does the other way around
using black array elements to update red array elements [154, 159, 183]. This
memory access pattern reduces the number of data dependencies, which results
in greater parallelism exposed to the compiler. However, the Red-Black ordering
scheme harms the performance for sufficiently large problemsizes, because of its
non-contiguous data access pattern.

The final piece of work presented in this thesis contributes to the sequential
optimization of stencil code computations by presenting techniques that improve
spatial and temporal localities of the data. In particular,we study the use of
skewed data layouts, that turn out to be more cache-friendlythan traditional row-
major or column-major storage orders. We provide theoretical and experimental
results that validate the superiority of skewed data-layouts for two simple, but
fundamental stencil kernels. Further, we show how to automate the detection of
situations where the use of skewed data layouts are beneficial.
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Chapter 4

Conclusion

This thesis has emphasized the problems that heterogeneity, variability and un-
reliability exhibited by high performance computing systems introduce at the
scheduling level. Even simple problems such as independent-task scheduling re-
quire the deployment of sophisticated algorithms. In addition, efficiently man-
aging data movements remains an omnipresent challenge at all the levels of the
computing system. This thesis provides algorithmic and scheduling techniques
that help addressing some of these challenges.

4.1 Contributions

4.1.1 Master-slave tasking

We advocate in Paper 1 the necessity to deploy several masters to achieve scalable
performance. We demonstrated that the problem of finding themost profitable
locations for hosting the masters is NP-hard, but nonetheless proposed an effec-
tive location-aware heuristic. We also highlighted the strong connections that this
problem has with Facility Location problems, and provided amodel for establish-
ing and operating the master locations.

We presented in Paper 2 a distributed method, which is an efficient, practical
and scalable implementation of the bandwidth-centric principle [30]. We pro-
posed a local scheduling strategy that reduces the amount oftasks buffered during
steady-state, and thus reduces the length of the startup andwind-down phases.

We then considered in Paper 3 computing systems where the communication
links exhibit bandwidth asymmetry. We derived theoreticalresults that extend the
bandwidth-centric principle from one to two dimensions, i.e. when the cost of
returning the computational results to the master is represented in the problem
formulation. We then conceived a rendezvous protocol for enabling decentralized
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schedules. We also provided a task-flow control mechanism, that automatically
regulates the flows of tasks and results that circulate in thesystem according to
system load fluctuations.

We showed how to eliminate the startup phase description required to enter the
steady-state regime (see Papers 2 and 3). The idea is simply to make the nodes
operate as if they were already in steady-state, with the help of fake data transfers
if necessary. We applied this technique successfully to tree-shaped platforms,
and conjecture that it can be applied to arbitrary graphs as well. This technique
contributes to ease the implementation and deployment of MSapplications.

Finally, in Paper 4, we presented a novel MS scheduling strategy for minimiz-
ing the application makespan, that is well suited for heterogeneous and dynamic
computing systems.

4.1.2 Stencil code applications

We considered in Papers 5 and 6 the parallelization of a LGT model on a SMP
cluster. We first designed parallel algorithms based on domain decomposition that
are scalable, that reduce the amount of communication messages to the minimum,
and that are adapted for the peculiarity of LGT models. Then,we investigated
the suitability of another parallelization method by comparing these parallel algo-
rithms to a MS implementation.

As we gained insight into stencil computations, we focused on sequential op-
timization, and presented new transformation techniques intended to better utilize
the memory hierarchy of modern computers. In Paper 7, we demonstrate - and
quantify - how spatial locality can be improved by using skewed data layouts as
opposed to the traditional row-major and column-major storage orders. The other
main contribution is the stencil decomposition transformation that improves tem-
poral locality. Overall, we conclude that efficient data access patterns alone are
not sufficient, and one must change the data layout in order tomatch these data
access pattern in order to improve performance.

Finally, we helped theCorrelated Condensed Matter Systemsgroup and the
Algorithm and Visualization Groupgroup at NTNU in their work by providing
efficient parallel implementations of two forefront stencil code applications.
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4.1.3 Summary

The initial research questions stated in this thesis were the following:

Q-1 How should the MS paradigm be enhanced to improve its scalability?

Q-2 Can MS scheduling techniques be applied to stencil code applications?

Our answer to question Q-1 can be summarized as follows. If the master is
the bottleneck of the application, then deploying several masters is the only so-
lution to improve the scalability. However, in heterogeneous environments, the
different masters should be placed at strategic locations in the system in order to
efficiently exploit the computing resources. Further, we showed that the schedul-
ing problem becomes much more complicated when the results collection is taken
into consideration, as it becomes necessary to synchronizeall the nodes of the
system to construct an asymptotically optimal schedule. Wedemonstrated that
synchronizing the entire system is rather impractical and inadequate for dynamic
environments. Instead, distributed autonomous strategies can better handle and
respond to system load fluctuations. Thus, even though several masters are de-
ployed, efficient distributed scheduling strategies are still needed to deal with the
scale, heterogeneity and variability of the system.

Our answer to question Q-2 can be summarized as follows. Stencil code appli-
cations implemented under the MS paradigm can achieve scalability if the master
is used to control the execution (i.e. tells who computes what), instead of being
a data access point. Otherwise, scalability can only be achieved by deploying
multiple masters.

4.2 Future work

The theoretical work on independent task scheduling withinheterogeneous envi-
ronments presented in this thesis has been possible only by restraining the frame-
work. We focused essentially on tree-shaped platforms, mostly to avoid routing
decision making. An obvious direction for future work wouldbe to consider arbi-
trary graphs. At first sight, the scheduling problem becomesmore complex with
graph-shaped platforms. We believe that task-flow control mechanisms such as
the one presented in this study is the way to go for conceivingefficient distributed
scheduling strategies.

On the practical side, a direction for future work would be todesign the hybrid
approach presented in Paper 6, where the MS and DD paradigms would be used in
concert. Each master would manage a group of slaves while DD methods would
be utilized to assign parts of the computational domain to the different masters.
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This idea is close in spirit to the hierarchical master-slave technique, but we are
not aware of its application to stencil code applications. Such hybrid approach
combines the benefits of the two paradigms: The MS flexibilityand robustness
to the DD scalability. Adaptation to system load fluctuations would consist in
balancing the load - or the slaves - between the masters. The strength of this hybrid
approach lies in its flexibility: Slaves can be affiliated to any master whenever
needed, and can even act as masters on demand.



Bibliography

[1] URL: http://www.top500.org.

[2] M. Adler, Y. Gong, and A. L. Rosenberg. Optimal Sharing ofBags of
Tasks in Heterogeneous Clusters. In15th ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA’03), pages 1–10. ACM Press, 2003.

[3] N. Ahmed, N. Mateev, and K. Pingali. Tiling Imperfectly-Nested Loop
Nests. InSupercomputing ’00: Proceedings of the 2000 ACM/IEEE con-
ference on Supercomputing (CDROM), page 31, Washington, DC, USA,
2000. IEEE Computer Society.

[4] K. Aida, W. Natsume, and Y. Futakata. Distributed Computing with Hierar-
chical Master-worker Paradigm for Parallel Branch and Bound Algorithm.
In 3rd International Symposium on Cluster Computing and the Grid, page
156, 2003.

[5] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP:
Incorporating Long Messages into the LogP Model – One step closer to-
wards a realistic model for parallel computation. InSPAA ’95: Proceedings
of the seventh annual ACM symposium on Parallel algorithms and archi-
tectures, pages 95–105, New York, NY, USA, 1995. ACM Press.

[6] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.
Seti@home: An Experiment in Public-Resource Computing.Communi-
cations of the ACM, 45(11):56–61, 2002.

[7] G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, G. Gambosi,
P. Crescenzi, and V. Kann.Complexity and Approximation: Combinatorial
Optimization Problems and Their Approximability Properties. Springer-
Verlag New York, Inc., 1999.

53



54

[8] B. Awerbuch and Y. Shavitt. Topology Aggregation for Directed Graphs.
IEEE/ACM Trans. Netw., 9(1):82–90, 2001.

[9] E. Babaev, A. Sudbø, and N. W. Ashcroft. A Superconductorto Superfluid
Phase Transition in Liquid Metallic Hydrogen.Nature, 431:666, 2004.

[10] S. B. Baden and S. J. Fink. Communication overlap in multi-tier parallel
algorithms. InSupercomputing ’98: Proceedings of the 1998 ACM/IEEE
conference on Supercomputing (CDROM), pages 1–20, Washington, DC,
USA, 1998. IEEE Computer Society.

[11] C. Banino. Optimizing Locationing of Multiple Mastersfor Master-Worker
Grid Applications. InPARA’04: International Conference on Applied Par-
allel Computing, LNCS 2367, pages 1041–1050. Springer Verlag, 2004.

[12] C. Banino. Optimizing Locationning of Multiple Masters for Master-
Worker Grid Applications: A Thorough Study. Technical Report 09/04,
Dept. of Computer and Info. Science, Norwegian University of Science
and Technology, September 2004. URL: http://www.idi.ntnu.no/∼banino.

[13] C. Banino. A Distributed Procedure for Bandwidth-Centric Scheduling of
Independent-Task Applications. In19th IEEE International Parallel and
Distributed Processing Symposium, IPDPS’2005, pages 48a – 48a, 04-08
April 2005.

[14] C. Banino, O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert.
Scheduling Strategies for Master-Slave Tasking on Heterogeneous Proces-
sor Platforms. IEEE Transactions on Parallel and Distributed Systems,
15(4):319–330, 2004.

[15] C. Banino-Rokkones. Domain Decomposition vs. Master-Slave in Appar-
ently Homogeneous Systems. InHCW ’07: Proceedings of the 16th Het-
erogeneity in Computing Workshop, page To appear, Long Beach, Califor-
nia, USA, 2007. IEEE Computer Society.

[16] C. Banino-Rokkones. Location-Aware Master-Slave Tasking on the Grid.
Journal of Future Generation Computing Systems, 2007. To appear.

[17] C. Banino-Rokkones, J. Amundsen, and E. Smørgrav. Parallelizing Lat-
tice Gauge Theory Models on Commodity Clusters. In2006 IEEE Inter-
national Conference on Cluster Computing (CLUSTER 2006), September
25-28 2006, Barcelona, Spain. IEEE Computer Society, 2006.



55

[18] C. Banino-Rokkones, O. Beaumont, and L. Natvig. Master-Slave Task-
ing on Asymmetric Networks. InEuro-Par, Lecture Notes in Computer
Science, pages 167–176. Springer, 2006.

[19] C. Banino-Rokkones, O. Beaumont, and L. Natvig. Master-
Slave Tasking on Asymmetric Tree-Shaped Networks. Techni-
cal Report 02/06, Dept. of Computer and Info. Science, Norwe-
gian University of Science and Technology, September 2006.URL:
http://www.idi.ntnu.no/∼banino/research/research.html.

[20] A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wyckoff. Charlotte: Meta-
computing on the web. InProc. of the 9th Int’l Conf. on Parallel and
Distributed Computing Systems (PDCS-96), 1996.

[21] G. D. Barlas. Collection-Aware Optimum Sequencing of Operations and
Closed-Form Solutions for the Distribution of a Divisible Load on Arbi-
trary Processor Trees.IEEE Trans. Parallel Distrib. Syst., 9(5):429–441,
1998.

[22] J. Basney, R. Raman, and M. Livny. High Throughput MonteCarlo. In
Proceedings of the Ninth SIAM Conference on Parallel Processing for Sci-
entific Computing, San Antonio, TX, March 1999.

[23] H. Bast. On Scheduling Parallel Tasks at Twilight.Theory of Computing
Systems, 33(5):489–563, November 2000.

[24] S. Bataineh, T.-Y. Hsiung, and T. G. Robertazzi. ClosedForm Solutions for
Bus and Tree Networks of Processors Load Sharing a DivisibleJob. IEEE
Trans. Comput., 43(10):1184–1196, 1994.

[25] S. Bataineh and T. Robertazzi. Performance Limits for Processor Networks
with Divisible Jobs.IEEE Transactions on Aerospace and Electronic Sys-
tems, 33:1189–1198, Octobre 1997.

[26] O. Beaumont, V. Boudet, and A. Petitet. A Proposal for a Heteroge-
neous Cluster ScaLAPACK (Dense Linear Solvers).IEEE Trans. Comput.,
50(10):1052–1070, 2001.

[27] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert. Matrix Multipli-
cation on Heterogeneous Platforms.IEEE Trans. Parallel Distrib. Syst.,
12(10):1033–1051, 2001.



56

[28] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, L. Marchal, and Y. Robert.
Centralized Versus Distributed Schedulers for Multiple Bag-of-Task Ap-
plications. InIPDPS’2006: Proceedings of the 20th International Sym-
posium on Parallel and Distributed Processing. IEEE Computer Society
Press, 2006.

[29] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-
Centric Allocation of Independent Tasks on Heterogeneous Platforms.
Technical Report RR-2001-25, LIP, ENS Lyon, France, June 2001. URL:
http://www.ens-lyon/∼yrobert.

[30] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert.
Bandwidth-Centric Allocation of Independent Tasks on Heterogeneous
Platforms. InInternational Parallel and Distributed Processing Sympo-
sium IPDPS’2002, pages 67–72. IEEE Computer Society Press, 2002.

[31] O. Beaumont and A. Legrand. Pipelining Broadcasts on Heterogeneous
Platforms.IEEE Trans. Parallel Distrib. Syst., 16(4):300–313, 2005. Stu-
dent Member-Loris Marchal and Senior Member-Yves Robert.

[32] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Steady-State
Scheduling on Heterogeneous Clusters: Why and How? In6th Workshop
on Advances in Parallel and Distributed Computational Models, APDCM
2004, page 171a (8 pages). IEEE Computer Society Press, 2004.

[33] O. Beaumont, A. Legrand, F. Rastello, and Y. Robert. Dense Linear Alge-
bra Kernels on Heterogeneous Platforms: Redistribution Issues. Parallel
Comput., 28(2):155–185, 2002.

[34] O. Beaumont, A. Legrand, and Y. Robert. Optimal Algorithms for Schedul-
ing Divisible Workloads on Heterogeneous Systems. InIPDPS ’03: Pro-
ceedings of the 17th International Symposium on Parallel and Distributed
Processing, page 98.2, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

[35] O. Beaumont, A. Legrand, and Y. Robert. Scheduling Divisible Workloads
on Heterogeneous platforms.Parallel Computing, 29:1121–1152, Septem-
ber 2003.

[36] O. Beaumont, A. Legrand, and Y. Robert. The Master-Slave Paradigm with
Heterogeneous Processors.IEEE Transactions on Parallel and Distributed
Systems, 14:897–908, 2003.



57

[37] O. Beaumont, A. Legrand, and Y. Yang. Scheduling Divisible Loads on
Star and Tree Networks: Results and Open Problems.IEEE Trans. Parallel
Distrib. Syst., 16(3):207–218, 2005. Member-Henri Casanova and Senior
Member-Yves Robert.

[38] O. Beaumont, L. Marchal, and Y. Robert. Scheduling Divisible Loads with
Return Messages on Heterogeneous Master-Worker Platforms. In Inter-
national Conference on High Performance Computing HiPC’2005, LNCS,
pages 123–132. Springer Verlag, 2005.

[39] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail, M. Faerman,
S. Figueira, J. Hayes, G. Obertelli, J. Schopf, G. Shao, S. Smallen,
N. Spring, A. Su, and D. Zagorodnov. Adaptive Computing on the Grid
Using AppLeS.IEEE Trans. Parallel Distrib. Syst., 14(4):369–382, 2003.

[40] D. Bertsimas and D. Gamarnik. Asymptotically optimal algorithm for job
shop scheduling and packet routing.Journal of Algorithms, 33(2):296–318,
1999.

[41] V. Bharadwaj and G. Barlas. Scheduling Divisible Loadswith Processor
Release Times and Finite Size Buffer Capacity Constraints in Bus Net-
works. Cluster Computing, 6(1):63–74, 2003.

[42] V. Bharadwaj, D. Ghose, and V. Mani. Multi-InstallmentLoad Distribu-
tion in Tree Networks with Delays.IEEE Transactions on Aerospace and
Electron. Systs, 31:555–567, 1995.

[43] V. Bharadwaj, D. Ghose, V. Mani, and T. Robertazzi.Scheduling Divisible
Loads in Parallel and Distributed Systems. IEEE Computer Society Press,
Aug 1996.

[44] V. Bharadwaj, D. Ghose, V. Mani, and T. Robertazzi.Scheduling Divisible
Loads in Parallel and Distributed Systems. IEEE Computer Society Press,
1996.

[45] V. Bharadwaj, D. Ghose, and T. G. Robertazzi. DivisibleLoad Theory:
A New Paradigm for Load Scheduling in Distributed Systems.Cluster
Computing, 6(1):7–17, 2003.

[46] J. Blazewicz and M. Drozdowski. The Performance Limitsof a Two-
dimensional Network of Load Sharing Processors.Foundations of Com-
puting and Decision Sciences, 21:3–15, 1996.



58

[47] J. Blazewicz and M. Drozdowski. Distributed Processing of Divisible Jobs
with Communication Startup Costs.Discrete Appl. Math., 76(1-3):21–41,
1997.

[48] J. Blazewicz, M. Drozdowski, F. Guinand, and D. Trystram. Scheduling a
Divisible Task in a Two-dimensional Toroidal Mesh. InProceedings of the
third international conference on Graphs and optimization, pages 35–50,
Amsterdam, The Netherlands, 1999. Elsevier Science Publishers B. V.

[49] J. Blazewicz, M. Drozdowski, and M. Markiewicz. Divisible Task Schedul-
ing – Concept and Verification.Parallel Computing, 25:87–98, January
1999.

[50] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A Portable
Programming Interface for Performance Evaluation on Modern Processors.
Int. J. High Perform. Comput. Appl., 14(3):189–204, 2000.

[51] H. Casanova. SimGrid: A Toolkit for the Simulation of Application
Scheduling. InProceedings of the 1st International Symposium on Cluster
Computing and the Grid, page 430. IEEE Computer Society, 2001.

[52] H. Casanova. Modeling Large-Scale Platforms for the Analysis and the
Simulation of Scheduling Strategies. In18th International Parallel and
Distributed Processing Symposium, page 170. IEEE Computer Society
Press, Apr 26-30 2004.

[53] H. Casanova, M. Kim, J. S. Plank, and J. J. Dongarra. Adaptive Scheduling
for Task Farming with Grid Middleware.Int. J. High Perform. Comput.
Appl., 13(3):231–240, 1999.

[54] T. L. Casavant and J. G. Kuhl. A Taxonomy of Scheduling inGeneral-
Purpose Distributed Computing Systems.IEEE Trans. Softw. Eng.,
14(2):141–154, 1988.

[55] A. J. Chakravarti, G. Baumgartner, and M. Lauria. The Organic Grid: Self-
Organizing Computation on a Peer-to-Peer Network.IEEE Transactions
on Systems, Man, and Cybernetics, Part A, 35(3):373–384, 2005.

[56] S. Chatterjee, V. V. Jain, A. R. Lebeck, S. Mundhra, and M. Thottethodi.
Nonlinear Array Layouts for Hierarchical Memory Systems. In Interna-
tional Conference on Supercomputing, pages 444–453, 1999.

[57] S. Chatterjee, A. R. Lebeck, P. K. Patnala, and M. Thottethodi. Recur-
sive Array Layouts and Fast Parallel Matrix Multiplication. In SPAA ’99:



59

Proceedings of the eleventh annual ACM symposium on Parallel algorithms
and architectures, pages 222–231, New York, NY, USA, 1999. ACM Press.

[58] S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum. Detec-
tion of Blood Vessels in Retinal Images Using Two-Dimensional Matched
Filters. IEEE Transactions on Medical Imaging, pages 263–269, 1989.

[59] T. Chen and C. Chang. Skewed Data Partition and Alignment Techniques
for Compiling Programs on Distributed Memory Multicomputers. J. Su-
percomput., 21(2):191–211, 2002.

[60] A. Chien, B. Calder, S. Elbert, and K. Bhatia. Entropia:Architecture and
Performance of an Enterprise Desktop Grid System.Journal of Parallel
and Distributed Computing, 63:597, May 2003.

[61] S. Choi, M. Baik, J. Gil, S. Jung, and C. Hwang. Adaptive Group Schedul-
ing Mechanism Using Mobile Agents in Peer-to-Peer Grid Computing En-
vironment.Applied Intelligence, 25(2):199–221, 2006.

[62] P. Chrétienne, E. G. J. Coffman, J. K. Lenstra, and Z. Liu, editors.Schedul-
ing Theory and its Applications. John Wiley and Sons, 1995.

[63] R. L. Church and C. S. ReVelle. The Maximal Covering Location Problem.
Papers of the Regional Science Association, 32:101–118, 1974.

[64] W. Cirne, D. P. da Silva, L. Costa, E. Santos-Neto, F. V. Brasileiro, J. P.
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Abstract

This paper outlines the importance of resource placement decisions for
Grid Computing. Decisions about where processing and storage facili-
ties should be located on the Grid have a tremendous impact onsystem
performance. We begin with a presentation ofFacility LocationandSup-
ply Chain Design, that address challenges remarkably similar to some
of the challenges encountered within Grid computing. Then we illus-
trate the impact of location-aware decisions with the classic Master-Slave
tasking problem. We claim that deploying multiple masters is necessary
to achieve good performance on large-scale platforms. The problem be-
comes to find the most profitable locations for hosting the master pro-
cesses in order to maximize the platform task throughput. Weshow that
this problem is NP-hard, but still introduce and evaluate a location-aware
heuristic that achieves good performance on a wide range of simulations.

1.1 Introduction

Grid computing is a recent trend where computing platforms spanning over large
networks are deployed in order to harness geographically dispersed computing
resources [12]. The aim is often to provide computing power to applications at
unprecedented scale. In this context, the efficient and effective movement of data
from storage sites to processing facilities has a tremendous impact on system per-
formance. Grid computing involves not only managing data movement, that is
decided which data sould be processed on which machines, butalso making deci-
sions about where to produce and store the data.

Because the performance of resources that make up the Grid (computers, net-
works, storage systems) fluctuates dynamically due to contention between ap-
plications, Grid schedulers must choose the combination ofresources from the
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available resource pool that is expected to maximize the performance of the ap-
plications [25]. Such scheduling decisions must often be changed in response to
fluctuations in resource availability and performance. Resource placement deci-
sions, on the other hand, are often fixed and difficult to change in the short term.
The location of an expensive supercomputer cannot be changed as a result of
changes in network performance or electricity prices. Inefficient locations for key
components of the Grid infrastructure will result in poor system performance, no
matter how well schedulers react in response to changing conditions.

This paper illustrates these issues with the classic Master-Slave tasking prob-
lem, which consists in the execution of a large number of independent tasks by a
set of processors, calledslaves, under the supervision of a particular processor, the
master. The master holds all the tasks initially, and sends them outto the slaves
over a network. Slaves are charged to compute the tasks and tosend the compu-
tation results back to the master. This scheduling problem is well recognized, and
several studies have recently revisited the Master-Slave paradigm for clusters and
Grids [1, 5, 6, 13, 14, 17, 21, 22]. Applications implementedunder this paradigm
[3,8,23] are good candidates for Grid environments since the application tasks can
be computed independently of each other and in any order. However, the central-
ization of the tasks in one single place limits the scalability of the application, as
there is only one data access point in the system. This paper suggests a simple but
mandatory departure from traditional implementations: The need to deploy sev-
eral masters to efficiently utilize currently emerging large-scale platforms. Aida
et al. [2] present a way to deploy multi-master master-slaveapplications in Grid
environments. The idea is to rely on a hierarchical implementation where a su-
pervisor controls multiple processor sets, each of which iscomposed of a master
and several workers. The supervisor achieves load balancing by migrating tasks
between masters. However, the work of Aida et al. does not take in considera-
tion the topology of the platform, an essential aspect for large-scale Grids that we
address in this paper. In particular, we address the problemof determining how
many masters should be deployed, and where should these masters be located on
the Grid in order to optimize system performance. As a consequence, a discrete
network location problem arises. Thus, this paper providesan important step for
efficient deployments of large Master-Slave applications on computational Grids.

The rest of this paper is organized as follows. Section 1.2 outlines the similar-
ities between Grid computing and two classes of problem belonging to operation
research, that areFacility LocationandSupply Chain Design. Modeling Master-
Slave tasking on a Grid is introduced in Section 1.3. The discrete network loca-
tion problem considered in this paper is formally stated andshown to be NP-hard
in Section 1.4. Greedy heuristics are presented in Section 1.5, and experimen-
tal results in Section 1.6. Finally, conclusions and futurework are discussed in
Section 1.7.
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1.2 Grid computing, facility location and supply chain
design

Grid systems provide storage and computing facilities at the disposal of user ap-
plications. When deploying applications on Grids, it is capital to have data stored
closeto processing facilities, in order to obtain efficient and effective data move-
ments. Theys et al. [24] notice that thedata stagingproblem in a distributed and
heterogeneous network of resources, presents a high level of similarity with Facil-
ity Location problems. A classic Facility Location problemis a spatial resource
allocation problem in which one or more service facilities have to be located to
serve a geographically dispersed set of population demandsaccording to some
objective function [10, 16]. The term facility is used in itsbroadest sense, as it is
meant to include entities such as factories, warehouses, schools, hospitals, subway
stations, satellites, etc [10]. If we assimilate (1) facilities to storage locations, (2)
the service to be provided to application data, and (3) the set of demands to the
set of computing resources, then deploying Grid applications can be expressed
as a Facility Location problem. Of particular interest because close in spirit to
Grid computing settings, are theMaximal Covering Location Problem[9] that
addresses planning situations which have an upper limitP on the number of facil-
ities to be deployed, and theFixed Charge Location Problem[10] that introduces
capacities as well as economic cost constraints on the facilities to be deployed and
operated.

Another class of problems that presents features very similar to Grid applica-
tion scheduling is Supply Chain Design [11]. A supply chain can be defined as
a network of facilities that manufactures finished products, and distributes these
products to customers. Supply Chain Design involves deciding (1) where to pro-
duce, what to produce, and how much to produce at each site, and (2) where to
locate plants and distribution centers [11]. Today, workflow applications compose
one of the most popular class of Grid applications. A workflowapplication con-
sists of a collection of interacting components that must beexecuted in a certain
order for successful completion of the application. Hence,the application can
be represented as a directed acyclic graph (DAG), where eachnode in the DAG
represents an application component, and the edges denote control or data depen-
dencies. If we now make an analogy between (1) the last task ofthe DAG and the
manufactured product and (2) the computing resources and the production plants,
then scheduling a workflow application on a Grid can be expressed as a Supply
Chain Design problem.

Consequently, lessons can be drawn from the design of algorithms for different
versions of Facility Location and Supply Chain Design problems. To the best of
our knowledge, few studies have considered Facility Location theory within Grid
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computing settings. Maheswaran et al. [18,19] presentMetaGrig, an architecture
for resource provisioning for WAN-enabled applications. MetaGrid introduces the
notion of SubGrid, which spans a Grid and provides a “resource allocation class”.
A SubGrid specifies a set of constraints that should be satisfied by the resources
allocated for the SubGrid. Maheswaran et al. approach the SubGrid creation
problem as a Fixed Charge Location Problem. Ko and Rubenstein [15] present a
distributed protocol to place replicated resources in large-scale networks such that
each vertex is “close” to some copy of any object. Closely related to our work is
the paper of Shao et al. [22] that consider a resource selection problem within the
Master-Slave scheduling framework. The aim is to select performance-efficient
hosts for both the master and slave processes. For that end, an exhaustive search is
performed, consisting in solvingn network flow problems, wheren is the number
of processors composing the platform. Then the configuration that achieved the
highest throughput is selected. However, this approach is not applicable when
using several masters. There are indeed

(

n
p

)

possible master locations sets, where
p is the number of masters to be located on the platform. As an example, for
n = 50 andp = 10, the resulting number of possibilities is10, 272, 278, 170.
Clearly, even for moderate values ofn andp, such enumeration is not realistic,
and we need more advanced techniques.

1.3 Modeling master-slave tasking on the grid

Our model builds on a network flow model and is close to models presented by
Hong and Prasanna [13] and by Shao et al. [22]. First, we assume that applica-
tion tasks require input data files of sizesi, and produce output data files of size
so. Then, the target architectural framework is represented by a platform graph
G = (V,E) as illustrated in Fig. 1.1. Each vertexPi ∈ V represents a com-
puting resource of weightri, meaning that processorPi can processri tasks per
time units. Similarly, each link(Pi, Pj) ∈ E has a capacityFi,j which limits
the flow of data that can be transfered fromPi to Pj per time unit. We allow for
bandwidth asymmetry between incoming and outgoing traffic such thatFi,j may
differ from Fj,i. Bandwidth asymmetry can appear in WAN environments when
Internet routing for traffic between two machines uses different pathways in each
direction.

All ri are assumed to be positive rational numbers since they represent the pro-
cessor computing rates, and we allowri = 0; thenPi has no computing power, but
can still forward tasks to other processors (e.g. for modeling a hub or a switch).
Similarly, we assume that allFi,j are positive rational numbers since they corre-
spond to the peak bandwidths of the interconnection links. These platform param-
eters, can be obtained by Grid middleware services such as the Network Weather
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Service (NWS) [25]. In addition, NWS provides accurate predictions of future
performance measurements, as well as error quantificationsassociated to these
predictions.
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Figure 1.1: Example of a Grid platform.

Finally, we introduce a cost model to establish and operate masters on the
platform graph. LetJm ⊆ V denote the index set of the processors susceptible to
be chosen as a master. Then, for each processorPi ∈ Jm, let ci be the fixed cost
of establishing a master at locationPi, andti be the per task cost for operating a
master at locationPi. All ci andti are assumed to be positive constants since, from
a practical viewpoint, it is rather absurd to have negative costs for establishing
or operating master locations. Given a general Grid platform, we consider the
problem of selecting a set of master locations that optimizes the task throughput
of the platform within a budget constraintB. We term such problem theB-COVER
problem.
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1.4 Optimizing master placement

1.4.1 Mathematical formulation of the B-COVER problem

To formally define theB-COVERproblem, letn(i) denote the index set of the
neighbors of processorPi. During one time unit, letαi be the number of tasks
computed byPi, fi,j andf ′

i,j be the amount of input and output data respectively
that flow fromPi to Pj. For each processorPi, let xi ∈ {0, 1} be the decision
variable to place a master at locationPi, i.e. xi = 1 if Pi is chosen as a master,
andxi = 0 otherwise. Further, letpi be the rational number of input files pro-
duced per time unit byPi if the latter is chosen as a master, and analogously, letp′i
be the number of output files collected per time unit byPi, if the latter is chosen
as a master. Defined on a platform graphG, a mathematical formulation of the
B-COVERproblem can be stated by the following mixed-integer linearprogram,
whose objective function is to maximize the throughputntask(G) of the platform
graphG.

Maximize
ntask(G) =

∑

i

αi,

Subject to


























(1) ∀i, 0 ≤ αi ≤ ri
(2) ∀i ∈ Jm, xi ∈ {0, 1}
(3) ∀i /∈ Jm, xi = 0
(4)

∑

i∈Jm
cixi + tipi ≤ B

(5) ∀i, 0 ≤ pi ≤ xi(ri +
∑

j∈n(i) Fi,j)

(6) ∀i, 0 ≤ p′i ≤ xi(
∑

j∈n(i) Fj,i)

(7) ∀i,∀j ∈ n(i), fi,jsi + f

′
i,jso ≤ Fi,j

(8) ∀i, pi +
∑

j∈n(i) fj,i = αi +
∑

j∈n(i) fi,j

(9) ∀i, p′i +
∑

j∈n(i) f
′
i,j = αi +

∑

j∈n(i) f
′
j,i

• Equation set (1) specifies that computing resources are limited.
• Equation sets (2) and (3) identify candidate locations for establishing the masters.
• Equation (4) ensures that the cost generated by establishing and operating the master

locations does not exceed the budget constraintB.
•Equation set (5) specifies that only the masters are allowed to produce computational

tasks. The task production rate is limited by the number of tasks thatPi can process plus
the number of input files thatPi can communicate to its neighbors per time unit.
• Equation set (6) specifies that only the masters are allowed to collect output files.

The result collection rate is limited by the maximum number of output files thatPi can
receive from its neighbors per time unit. The case where there is an overhead incurred
for post-processing output files can be handled easily by adding a constraint onp′i [22].
Note that our model does not guarantee that the masters will receive the output files corre-
sponding to the input files that they produced locally. In some circumstances, it might be
desirable to produce input files in one place and collect output files in some other place,
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in order to circumvent eventual network bottlenecks. However, it is often necessary that
masters receive the output files associated to the input filesthat were generated locally
(e.g. for fault tolerance issues). In that case, the model can be enhanced as follows: Each
master will be given a color, and will be able to produce tasksand collect results only of
its own color, while slaves can process tasks of any color.
• Equation set (7) specifies that communication resources arelimited.
• And finally, Equation sets (8) and (9) stand for conservationlaws. For every pro-

cessorPi, the number of input files produced, plus the number of outgoing input files,
should be equal to the number of tasks processed locally, plus the number of incoming
input files. Similarly, for every processorPi, the number of output files collected, plus
the number of outgoing output files, should be equal to the number of results produced
locally, plus the number of incoming output files. Note that Equation sets (3), (5) and (6)
prevent the slaves to produce input files or to collect outputfiles. On the other hand,
Equation sets (8) and (9) ensure that there are as many input files produced as output files
consumed. In effect, by combining these two Equation sets, we can derive the following
Equation:

∑

i pi =
∑

i p
′
i.

1.4.2 Complexity ofB-COVER

Theorem 1.1. B-COVER is NP-hard.

Proof. We reduce theMAXIMUM KNAPSACK(MK) problem [4] to theB-COVERprob-
lem.

MAXIMUM KNAPSACK

INSTANCE: Finite setU , for eachu ∈ U a sizes(u) ∈ Z
+

and a valuev(u) ∈ Z
+, a positive integerB ∈ Z

+.

SOLUTION: A subsetU ′ ⊆ U such that
∑

u∈U ′

s(u) ≤ B.

MEASURE: Total weight of the chosen elements, i.e.
∑

u∈U ′

v(u).

Construct an instance of theB-COVERproblem as follows: (1) Create a setV con-
taining |U | processors; (2) Create a bijective functionf : V 7−→ U ; (3) ∀Pi ∈ V , let
ri = v(f(Pi)); (4) ∀Pi ∈ V , let ci = s(f(Pi)); (5) ∀Pi ∈ V , let ti = 0; and (6) letE = ∅
andJm = V .

The graph of theB-COVERinstance is edge-less (E = ∅), meaning that no tasks
can be communicated among processors. Consequently, taskscan only be computed at
the location where they are produced. A solution of theB-COVERinstance consists in
determining a subsetV ′ ⊆ V such that

∑

Pi∈V ′ ci ≤ B in order to maximize the platform
throughput, i.e.

∑

Pi∈V ′ ri. Thus, a solution of theB-COVERproblem instance provides a
solution of theMK instance. This proves thatB-COVERis at least as difficult asMK. Since



84 Paper 1

MK is NP-hard [4] and since the transformation is done in polynomial time,B-COVERis
also NP-hard.

1.5 Greedy heuristics

Typically, the first approach for finding the optimal solution of a mixed-integer linear
program is to apply one of the well-known algorithms such as branch and bound or cutting
plane [10]. Unfortunately, such methods are only useful on small-scale problems, and
will quite often consume unacceptable computational resources when applied to realistic
problem sizes.

In contrast, LP-relaxations (i.e. relaxing the integer constraints) have considerable
interest since they provide the basis both for various heuristics and for the determination
of bounds for the most successful integer linear programs [16]. If we replace Equation (2)
by the following equation:∀i ∈ Jm, 0 ≤ xi ≤ 1, we obtain a linear program in rational
numbers, that can be solved in polynomial time. Solving the relaxed linear program asso-
ciated toB-COVER, gives the upper bound of the optimal platform throughput reachable
without exceeding the budget constraint. However, this bound might not be achievable by
any discrete solutions, and might not be tight.

In the rest of this paper, we let the fixed costci to establish master locations be equal to
1, and the per task costti for operating a master be equal to0. In other words, there are no
differences in term of cost among the different potential master locations, and the influent
factors for choosing master locations become the platform topology and heterogeneity.
We hence retrieve the model proposed by Shao et al. in [22]. Asa consequence, the
objective of theB-COVERproblem becomes to maximize the platform throughput when
using at mostB masters. The problem becomes then similar to the Maximal Covering
Location Problem [9] also known to be NP-hard.

Our first heuristic (LP) for solving theB-COVERproblem consists in solving the
relaxed linear program in the first place, and then select in agreedy fashion a setS of
verticesPi (|S| = B) that have the highestpi values. Each masterPi ∈ S will produce

pi
P

Pi∈S pi
fraction of the total amount of tasks.

The second heuristic (BW) consists in selecting in a greedy fashion,B locations that
maximize the quantityqi = ri +

∑

j∈n(i) |
Fi,j

si
− Fj,i

so
| and that do not have a neighboring

master. Each masterPi ∈ S will produce qi
P

Pi∈S qi
fraction of the total amount of tasks.

This heuristic could be implemented in a distributed fashion, and seeks to maximize the
bandwidth deliverable to the application.

Finally, we implemented a naive heuristic (RD), that selects in a greedy fashionB
random master locations, still in preventing neighboring masters situations. Each master
will produce 1

B fraction of the total amount of tasks. The aim is to demonstrate the impact
of location-unaware decisions.
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1.6 Simulations

1.6.1 Methodology

We evaluate and compare our heuristics through extensive simulations using the SimGrid
toolkit [7]. We rely on simulations rather than direct experiments in order to make a fair
comparison between the proposed heuristics. Indeed, simulation enables running of the
different tests on computing platforms having exactly the same dynamic behavior. In the
simulations, we used tree-shaped platforms as opposed to graph-shaped platforms, in or-
der to remove data routing issues. Although this assumptionconsiderably reduces the
difficulty of the problem (Meggido et al. [20] proposed a polynomial time algorithm
for solving the Maximal Covering Location Problem on tree-shaped networks), it nev-
ertheless allows to simplifies the framework for exposing the main claim of this study,
i.e. that location-aware decisions have a huge impact on application and system perfor-
mance. Moreover, many organizations rely on tree-shaped networks to interconnect their
computing resources [14].

Since a sub-tree can be reduced to a single super-node of equivalent processing power [5],
it is not necessary to employ thousands of nodes to simulate large-scale systems [13]. In
our simulations, the number of nodes in a tree was limited to100, and each node could
have at most10 neighbors. A random tree is generated as follows. Each node is num-
bered with an ID numberi between0 and99. Then, each nodePi, i ∈ [1, 99] is connected
randomly to a nodePj, j ∈ [0, i− 1]. The links have peak performance values comprised
betweenFmin andFmax and the nodes betweenrmin andrmax. All random distributions
are uniform. The dynamic environments used in our simulations were generated as fol-
lows. Each resourceRi (node or link) has a cyclic behavior, i.e. its performance changes
ni times per cycle. The number of changesni per cycle is randomly taken within the
interval [5, 15]. Resource performance fluctuations are relatively distantin time (every
50 treated tasks in average) in order to destabilize the systemby creating a succession of
contexts. We do not claim that these decisions correspond torealistic network conditions.
We simply aim to compare the heuristics on different platform configurations.

In this paper, we report the simulation of an independent-task application composed
of 5000 tasks on100 trees whereFmin = 0.01, Fmax = 0.02, rmin = 0.001 andrmax =
0.002. In other words, a master can serve10 slaves in average. For the sake of generality,
we letJm = V , i.e. every node can be chosen as a master. The aim of these arbitrary
decisions is to keep the number of parameters as low as possible, while maintaining the
problem complexity. Nevertheless, we expect our heuristics to perform better in presence
of more constraints, e.g. with heterogeneous cost distributions, since the problem would
become more specific.

Finally, inspired by Kreaseck et al. [17], we determine the throughput rate of the sys-
tem by using a growing window. The total execution time is divided into100 equal-sized
time slots. Then, the window increases in size by step of1 time slot, and the throughput
rate delivered within the window time-frame is computed.
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1.6.2 Scheduling issues

Once the set of master locations has been identified, the slave nodes are free to decide
which master they are willing to serve. Communication patterns are simple and well-
defined, requiring communication only between a master and aslave. When a slave re-
quests a task to a master, it measures locally the time it takes the master to deliver the task.
Based on this information, slaves will decide which master to address the next request.
The slaves seek to identify at all times the master that is the“closest” to them. On the
other hand, master nodes are forced to serve any incoming request, no matter how heavily
loaded they are.

The slaves are allowed to buffer several tasks locally in order to avoid starvation.
However, the number of local tasks is regulated by a threshold θi. If there are less than
θi tasks buffered locally, then additional tasks will be requested. Initially,θi = 1. During
the execution, nodes are allowed to increment their local thresholdsθi only when (1) they
are starving and (2) if they recently succeeded to accumulate θi tasks locally (to ensure
that the current threshold is not sufficient). This mechanism allows the slaves to collect
enough tasks locally in order to avoid starvation.

1.6.3 Results

The results of our simulations are depicted in Figure 1.2, which plots an average of the100
throughput rates (associated to the100 trees) over time, achieved by the three heuristics
presented in Section 1.5. The x-axis reports the total execution time divided into100 time
slots, while the y-axis reports the platform throughput achieved within the time-frame
window. Hence, the higher a curve gets, the better the corresponding heuristic performs.

Figures 1.2 (a), (c), (e) and (g) correspond to static environments, i.e. with no sys-
tem perturbation, whereas Figures 1.2 (b), (d), (f) and (h) correspond to highly dynamic
environments, i.e. where resource performances can degrade down to1% of the peak
value.

The first observation to make is that the LP heuristic (which makes location decisions
based on the LP-relaxation computed from an initial snapshot of the platform) outper-
forms the two other heuristics, even in dynamic environments. Then, introducing a min-
imal amount of knowledge in the location decision process, allows to obtain substantial
performance improvements, as attests the superiority of the BW heuristic over the RD
heuristic.

In most of the simulation sets, one can observe a steep initialization phase, followed
by a short steady-state phase, in turn followed by a long wind-down phase. This “wave-
shape” accentuates as one increases the number of masters. This phenomenon is due to the
fact that more tasks can be handed out in the beginning of the execution, as one increases
the number of data access points. Then, as the computation goes on, some masters will
have handed out all their tasks before others, resulting in performance decrease. This
point highlights the importance of task load-balancing between the masters.
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Figure 1.2: Average of the100 throughput rates over time. In the dynamic envi-
ronments, resource performances can degrade arbitrarily.
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As expected, using a high number of masters closes the gap between the different
heuristics. In effect, the more data access points there are, the less margin there is to
make inefficient placement decisions. Nonetheless, the hierarchy established among the
heuristics in static environments is respected within dynamic environments.

Finally, an important choice for the decision maker is deciding what level of expendi-
ture (i.e. how many masters should be deployed) can be justified by the resultant through-
put. Figure 1.3 re-plots the average throughput achieved bythe LP heuristic, when in-
creasing the number of masters deployed. One clearly sees that, deploying4 masters
would be appropriate, because there are not enough tasks to reach and sustain a wor-
thy throughput with additional masters. Therefore, the deployment of a high number of
masters should come along with a larger number of tasks to process.

1.7 Conclusion and future work

This paper outlines the importance of resource placement decisions for Grid Computing.
Decisions about where storage and computing facilities should be located on the Grid have
a tremendous impact on application performance. The impactof location-aware decisions
is illustrated with the classic Master-Slave tasking problem, which consists in allocating
a large number of independent, equal-sized tasks to a Grid composed of a heterogeneous
collection of computing and communication resources. Thispaper suggests a simple but
mandatory departure from traditional implementations: The need to deploy several mas-
ters to efficiently utilize large-scale platforms. We provide a model for establishing and
operating master locations, and show that the problem of finding the most profitable lo-
cations for hosting the masters is NP-hard. Still, we propose a location-aware heuristic
that achieves very good performance on a wide range of simulations. This work can be
extended in the following directions.

First, enabling the cooperation of several masters transparently is a challenging task,
but mandatory in order to efficiently deploy multi-master Master-Slave applications. In
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Figure 1.3: Average throughputs achieved by the LP heuristic as one increases the
number of masters.
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particular, load-balancing techniques among masters should be designed, in order to cope
with, and respond to fluctuations in resource performance and availability. Then, we
showed in this paper that some Grid computing problems present tight connections with
well-known problems from operation research. Facility Location theory and Supply Chain
Design have been the subject of a wealth of research, and we believe that models and so-
lutions to these problems can be adapted for Grid computing.Of particular interest are
Facility Location models under uncertainty (i.e. under dynamic conditions), and Facility
Location models with facility failures [11]. Effectively,failures and variations in resource
availability are expected to be the rule rather than the exception within large-scale envi-
ronments, especially when the overall processing time of applications keeps getting larger
and larger.
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Abstract

The problem of scheduling independent tasks on heterogeneous trees is con-
sidered. The nodes of the tree may have different processingtimes, and links
different communication times. The single-port, full overlap model is used for
modeling the activities of the nodes. A distributed method for determining the
maximum steady-state throughput of a tree is presented. Then, we show how
each node can build up its own local schedule independently of the rest of the
platform. In addition, the final schedule is asynchronous and event-driven, mean-
ing that each node (except the root) acts without any time-related information. A
local scheduling strategy which aims at minimizing the amount of tasks buffered
at node locations during steady-state is introduced. As a consequence, the lengths
of the start-up and wind-down phases are considerably reduced.

2.1 Introduction

A recent trend in high performance computing is to deploy computing platforms that span
over large networks in order to harness geographically distributed computing resources.
The aim is often to provide computing power to applications at unprecedented scale. Good
candidates for such environments areMaster-Workerapplications, which are composed of
a large number of computational tasks independent from eachother, i.e. where no inter-
task communications take place, and where the tasks can be computed in any order. Many
applications have been and can be implemented under the Master-Worker paradigm. They
include: The processing of large measurement data sets likethe SETI@home project [1],
biological sequence comparisons [14], or also distributedproblems organized by compa-
nies like Entropia [9]. See [12] for more examples.

This paper is a follow on of recent work by Beaumont et al. [5] as well as Kreaseck et
al. [12], who also considered the problem of scheduling Master-Worker applications onto
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heterogeneous tree-shaped computing platforms. The resources composing the platform
may have different computation and communication speeds, as well as different overlap
capabilities. The platform topology is modeled by a tree, where each node represents
some computing resource capable of computing and/or communicating with its neighbors
via message passing over interconnection links. The main advantage of using trees, as
opposed to the more general graphs is that no choices need to be made about how to
route the data [4]. The estimation of the different bandwidths of the platform links can be
obtained using tools such as the Network Weather Service [15], or by local measurements.
The application tasks are modeled as requiring some input data file, and producing some
output data file. A special processor, called themaster, generates the input files associated
to the application tasks, decides which tasks to execute, and how many tasks to delegate
to each of its children. In turn, each child decides which tasks to execute, and how many
tasks to forward to its own children. In this paper, applications such as SETI@home, i.e.
where the output files produced by the tasks are much smaller than the input files, are
considered. Consequently, the return of the output files to the master node is negligible.
Throughout the rest of the paper, we assimilate input files totasks, and consider that tasks
can be communicated and computed.

In this paper, we present a lightweight distributed communication procedure which
allows each node to build up its local schedule autonomouslyin order to attain the max-
imum steady-state throughput of the tree, i.e. that maximizes the number of tasks com-
puted per time unit. Our procedure is an efficient, practicaland scalable implementation
of the theoretical results presented in [5]. The rest of the paper is organized as follows:
Related work is reviewed in Section 2.2. In Section 2.3 we formally state our model of
computation and communication. Section 2.4 reassesses thebandwidth-centric principle
that lays the foundations of our work. A distributed method for determining the optimal
steady-state throughput of a tree is given in Section 2.5. Weshow in Section 2.6 how each
node can build up its local schedule autonomously. An efficient start-up strategy is given
in Section 2.7. Our main results are illustrated with an example in Section 2.8. Future
work is discussed in Section 2.9, and our contributions are summarized in Section 2.10.

2.2 Related work

“The traditional objective of scheduling algorithms is makespan minimization: Given the
application tasks and a set of resources, find a mapping of thetasks onto the set of proces-
sors and order the execution of the tasks so that (i) resourceconstraints are satisfied, and
(ii) a minimum schedule length is provided” [6]. Recent studies have been conducted on
makespan minimization under heterogeneous conditions. Beaumont et al. [7] revisited the
Master-Worker paradigm with heterogeneous processors interconnected via a bus. Dutot
extended this result to daisy-chains as well as “spider graphs” [10], and showed that the
problem was NP-hard for heterogeneous trees [11]. We believe that the scheduling strat-
egy presented in this paper is a good heuristic candidate to solve the problem studied by
Dutot, since we are able to obtain the optimal platform throughput using quick start-up
and wind-down phases.
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“An idea to circumvent the difficulty of makespan minimization is to lower the ambi-
tion of the scheduling objective” [6]. The problem becomes to maximize the steady-state
throughput of the platform, i.e. the number of tasks computed per time unit.

Shao et al. [13] considered general interconnection platform graphs, and solve the
Master-Worker tasking problem in steady-state using a network-flow approach. The au-
thors model the platform nodes using themultiple-port, full overlapmodel [4], where
the number of simultaneous communications for a given node is not bounded. Banino et
al. [2] showed how to solve this problem for general interconnection graphs whose nodes
operate under thesingle-port, full-overlapmodel using a linear programming approach.

Heterogeneous trees were considered by Kreaseck et al. [12]who presented two
autonomousbandwidth-centric scheduling protocols that address the practical problem
of attaining the maximum steady-state rate after some start-up and maintaining that rate
until wind-down. Two communication models are studied, thenon-interruptible commu-
nication (which corresponds to our model), and the interruptible communication where
a request from a higher priority child may interrupt a communication to a lower priority
child. Although the work of Kreaseck et al. is a first step towards a practical implemen-
tation of bandwidth-centric scheduling algorithms, underthe non-interruptible commu-
nication model, their autonomous protocol might take non-optimal decisions, generating
hence long start-up phases as well as unnecessary large numbers of tasks buffered at node
locations.

2.3 Our steady-state model

Our model builds on the model proposed by Beaumont et al. in [5] that we augment by
introducing the task computing and task communicating rates of the processors.

The target architectural/application framework is represented by a node-weighted
edge-weighted treeT = (V,E,w, c) as depicted in Figure 2.1. Each nodePi ∈ V repre-
sents a computing resource of weightwi, meaning that nodePi requireswi units of time
to process one task. Each edgeei,j : Pi → Pj corresponds to a communicating resource
and is weighted by a valueci,j which represents the time needed by a parent nodePi to
communicate one task to its childPj .

c1,4 c1,5 c2,6 c3,8

c0,1 c0,3

w5 w6 w7

c0,2

w4 w8

c3,7

w2w1

P2 P3

P6P5P4 P7 P8

Master

w3

P1

P0

w0

Figure 2.1: A tree labeled with node (computation) and edge (communication)
weights.
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All the wi are assumed to be positive rational numbers since they represent the nodes
processing times. We disallowwi = 0 since it would permit nodePi to perform an infinite
number of tasks, but we allowwi = +∞; then,Pi has no computing power, but can still
forward tasks to other processors (e.g. to model a switch). Similarly, we assume that
all ci,j are positive rational numbers since they correspond to the communication times
between two processors.

We introduce the computing rateri = 1
wi

which is the number of tasks that processor

Pi can process per time unit, and the communicating ratebi,j = 1
ci,j

which is the number

of tasks that processorPi can send to childPj per time unit. We let 1
+∞ = 0, andCi

denotes the index set of the children of nodePi.
There are several scenarios for the operation mode of the processors, and we rely to

the classification proposed in [4]. A processor can do three kinds of activity: (i) it can
perform some computation, (ii) it can receive tasks from itsparent, and (iii) it can send
tasks to its children. The degree of simultaneity between these three activities indicates the
level of performance of a processor and its networking device. It is important to point out
that different processors of the platform may operate underdifferent modes. In this paper,
we concentrate on thefull overlap, single-portmodel [2,5], since it has been shown in [4]
that the other models reduce to it. In thefull overlap, single-portmodel, a processor can
simultaneously receive tasks from its parent, perform some(independent) computation,
and send tasks to one of its children. At any given time-step,a given processor may open
only two connections, one in emission and one in reception. We state the communication
model more precisely: IfPi sends one task toPj at time-stept, then:
• Pj cannot start executing or sending this task before time-step t+ ci,j,
• Pj cannot initiate a new receive operation before time-stept + ci,j (but, it can

perform a send operation and independent computation),
• Pi cannot initiate another send operation before time-stept+ci,j (but, it can perform

a receive operation and independent computation).

2.4 The bandwidth-centric principle

An iterative method that determines the maximum steady-state rate of a heterogeneous
tree has been presented by Beaumont et al. in [5]. Interestingly, it turns out that this
strategy isbandwidth-centric: If enough bandwidth is available to the node, then all the
children are kept busy. However, if bandwidth is limited, then tasks should be allocated
only to the children which have sufficiently fast communication times regardless of their
computing speeds. Nevertheless, the computing speeds of the children determine the
frequency at which children will request tasks to their parent. So a faster processor will
request tasks more often than a slower one. What the bandwidth-centric principle says is
that if two children are in concurrence for obtaining a task,priority should be given to the
child with fastest communication time, as this will optimize the communication resource
of the parent.

Formally, let us recall the Proposition presented in [5] to solve the case for fork graphs.
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A fork graph as shown in Figure 2.2 consists of a nodeP0 and itsk childrenP1, . . . , Pk.
P0 needsci units of time to communicate a task to childPi. Concurrently,P0 can receive
tasks from its own parentP−1, requiringc−1 time units per task.

w3

P−1 P−1

c−1

c1

c2
c3

ck

w1 w2 wk

P1 P2 P3 Pk

c−1

P0 P0

w0

w−1w−1

wf

Figure 2.2: A fork graph and the reduced node of equivalent computing power.

Proposition 2.1 ( [5]). With the above notations, the minimal value ofwf for the fork
graph is obtained as follows:

1. Sort the children by increasing communication times. Re-number them so that
c1 ≤ c2 ≤ · · · ≤ ck.

2. Let p be the largest index so that
∑p

i=1
ci
wi
≤ 1. If p < k let ε = 1−∑p

i=1
ci
wi

, otherwise letε = 0.

3. Thenwf = max

{

c−1,
1

Pp
i=0

1

wi
+ ε

cp+1

}

Based on the bandwidth-centric principle, Beaumont et al. conceived a bottom-up
method that iteratively determines the steady-state throughput of the tree: At each time-
step, the leaves of the tree are reduced together with their parent into a single node of
equivalent computing power determined by Proposition 2.1 (see Figure 2.2). The pro-
cedure ends when there remains a single node having a computing power equivalent to
the entire tree. However, Beaumont et al. did not specify howto achieve this maximum
steady-state throughput in practice.

2.5 Reversing the tree traversal

Although the bottom-up procedure based on the bandwidth-centric principle provides the
optimal throughput of the tree, a large number of unnecessary operations are done for
strongly bandwidth limited platforms (i.e. when there is a bottleneck somewhere high
up in the hierarchy, causing that many nodes of the platform can not be fed with tasks).
Indeed, in such cases, many fork graph reductions are performed unnecessarily since only
few nodes of the platform will be actually used during the computation. Therefore, we
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propose to perform a depth-first traversal of the tree (according to the bandwidth-centric
principle), allowing hence to visit only the nodes that willbe used in the final schedule.

Beaumont et al. show in [5] that we can solve the problem within the time unit
interval, and then build up a schedule where an integer number of tasks are sent and
processed. Our procedure is based on this result and involves transactionsbetween the
nodes composing the platform.

Definition 2.1. A transaction is defined as a two-phase protocol between a parent node
Pp and a child nodePc. The first phase of the transaction consists inPp sending a message
toPc containing a single numberβ that represents the number of tasks thatPp can supply
to Pc per time unit. We term the first phase aproposal fromPp to Pc. The second phase
of the transaction consists inPc sending a message back to its parentPp containing a
single numberθ that represents the number of tasks thatPc could not handle. We term the
second phase anacknowledgmentfromPc to Pp. Hence when the transaction is closed,
Pp knows that its childPc can consume(β − θ) tasks per time unit.

We use the following notations:Px
σ−→ Py indicates that nodePx sends a numberσ

to nodePy, andPx
σ←− Py indicates that nodePx receives a numberσ fromPy.

Our procedure works as follows: The nodeP0 currently visited during the traversal
of the tree will receive a proposal from its parentP−1. P0 will then evaluate how many
tasks it can process per time unit, and if there are some tasksleft, try to propose them to
its children. P0 will then deal with its children one by one according to the bandwidth-
centric principle, i.e. starting to deal with children thathave the fastest communication
times.P0 will open a transaction with its first childP1 by proposing the maximum number
of tasks that it can supply toP1 per time unit.P1 in turn faces the same situation than
P0, and will keep a maximum of tasks for itself, and if there are some tasks left, try
to delegate them to its children by negotiating new transactions. Hence, proposals will
propagate down the tree, until either we reach a leave of the tree, either all the tasks have
been allocated, or the current node has fully utilized its bandwidth and can not forward
tasks further down the tree. Then the nodePc at which the proposal propagation stopped,
will acknowledge its parentPp with the amount of tasks that it could not process, and
the transaction betweenPp andPc is closed. Pp will then take into consideration its
transaction withPc by reserving enough bandwidth to honor the transaction, andif it
has some bandwidth left, as well as more tasks to delegate, will open a new transaction
with another child. Hence, proposals travel down the tree opening transactions while
acknowledgments travel up the tree closing the transactions in a recursive fashion.

Formally, letP0 be the node currently visited during the tree traversal. LetP−1 be
the parent ofP0, andP1, P2, . . . , Pk be thek children ofP0 with communication times
c1, c2, . . . , ck respectively. Further, letδ0 be the number of virtual tasks owned byP0 , τ0
be the bandwidth time ofP0 (to send tasks to its children), andα0 be the number of tasks
computed byP0 per time unit. At the beginning of the procedure we haveδ0 = 0, τ0 = 1
since the time unit interval is considered, andα0 = 0.

Proposition 2.2. With the above notations, the optimal throughput of a treeTh of height
h, is obtained via applying theBW-First() procedure.
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Algorithm 1 : BW-First(P0)

begin1

δ0 := 0, τ0 := 1, α0 := 0;2

P0
λ←− P−1;3

α0 := min{r0, λ};4

δ0 := λ− α0;5

foreach childPi taken according to the bandwidth-centric principledo6

if δ0 = 0 or τ0 = 0 then7

goto instruction 14;8

βi := min{δ0, τ0 × bi};9

P0
βi−→ Pi;10

P0
θi←− Pi;11

δ0 := δ0 − (βi − θi);12

τ0 := τ0 − (βi − θi)× ci;13

P0
δ0−→ P−1;14

end15

Proof. In order to apply procedureBW-First() on the rootProot of the tree, we merely
create a link connecting the root to a virtual parentPv with no computing power. Then,
the maximum number of tasktmax that the tree rooted inProot can execute per time
unit is evaluated. Under thesingle-port, full overlapmodel, we havetmax = rroot +
max {bi | i ∈ Croot}. We then makePv proposetmax tasks toProot, and call procedure
BW-First() on Proot. At the end of the procedure,Pv will receive an acknowledgments
of θ tasks fromProot, and the optimal throughput of the tree is equal to the quantity
(tmax − θ).

The proof is done by recurrence overh, the height of the tree. Forh = 1, the tree
is actually a fork graph. We will prove that for fork graphs, theBW-First() procedure is
equivalent to Proposition 2.1. Letrf be the computing rate of the fork graph rooted inP0.
Let us show thatrf =

∑p
i=0 ri + ε× bp+1, wherep andε are defined in Proposition 2.1.

FirstP0 receives a proposal ofλ tasks from its parentP−1, and keeps as many tasks
as possible for its own computation. Then,P0 will propose the remaining tasks to its chil-
dren according to the bandwidth-centric principle. For each childPi, P0 must determine
whether all the remaining tasks can be communicated or not. Then a proposal is made
to child Pi. It is now the turn ofPi to execute theBW-First() procedure.Pi receives a
proposal ofθi tasks from its parentP0, keeps as many tasks as possible for its own compu-
tation and sincePi does not have any children, sends back toP0 the number of tasks that
it could not execute. At that point, eitherPi is fully utilized (αi = ri), or not (αi < ri). In
the first case scenario,P0 will proceed to its next child, with previously adjustingδ0 and
τ0, considering thatci × ri time units will be necessary to furnishri tasks toPi. P0 will
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then establish new transactions with its children until thesecond case scenario takes place
(i.e. a childPq+1 is not fully utilized). In this case, either all the virtual tasks owned by
P0 have been processed, orP0 utilized all its bandwidth time and can not send as many
tasks asPq+1 can consume. In the first case, the limiting factor is the number of tasksλ
received fromP−1. In the second case, the limiting factor is the bandwidth ofP0: P0 fed
fully its q first children with tasks, i.e.∀i ≤ q, αi = ri. P0 will hence spend

∑i=q
i=1 ciri

time units to communicate with itsq first children, and onlycq+1αq+1 time units with
Pq+1. Since the bandwidth ofP0 is saturated, we have

∑i=q
i=1 ciri +αq+1rq+1 = 1. Since

Pq+1 could consume all the tasks proposed byP0 without being fully utilized, we have
αq+1 < rq+1 which by scaling both sides withcq+1 givesαq+1cq+1 < rq+1cq+1. Conse-
quently, we have

∑i=q+1
i=1 ciri > 1, which givesq = p andε = 1−∑i=q

i=1 ciri . If q = k,
then all the children have been fully fed with tasks, and we have ε = 0.

We have hence established that

rf = min

{

λ,

p
∑

i=0

ri + ε× bp+1

}

,

and, since in the fork graph caseλ = b−1, we haverf = 1
wf

, wherewf is given by
Proposition 2.1. Consequently, procedureBW-First()applies Proposition 2.1 for the fork
graphs case.

Assume now that Proposition 2.2 is true for rankh, i.e. for trees of heighth. Let us
now prove that Proposition 2.2 is also true for rankh+ 1. If a nodePi is not visited while
applying procedureBW-First() (e.g. its parent has no time left to communicate, or no
more tasks to delegate), then we can merely remove all the sub-tree rooted inPi without
influencing on the final throughput of the tree. Assume hence that applying procedure
BW-First() to a treeTh+1 involves visiting a nodePi of depthh. If Pi does have some
children, this implies that the sub-treeFi rooted inPi is a fork graph. The procedureBW-
First() applied to the rootPi of the fork graphFi will determine the throughputrFi

of Fi.
The fork graphFi is then equivalent to a single node having a computing rate equal torFi

.
Consequently, applying procedureBW-First()on a treeTh+1 of heighth+ 1 is equivalent
to applying procedureBW-First()on a treeTh of heighth. Then Proposition 2.2 holds for
all h ≥ 1.

TheBW-First()procedure is moreefficientthan the bottom-up method, since only the
nodes that are effectively used in the final schedule are visited. Moreover, it is morecon-
venientthrough a straightforward recursive implementation. Indeed, we merely traverse
the tree in a depth-first manner, and are hence released from the burden of identifying for
each step which set of leaves should be transformed. Particularly, theBW-First()proce-
dure might be a useful tool for topological studies, which aim at determining the best tree
overlay networkthat is built on top of the physical network topology [12]. A quick way
to evaluate the throughput of a tree allows to consider a wider set of trees.

Moreover, theBW-First()procedure can be implemented as a lightweight communica-
tion protocol between the nodes of the platform. Indeed, theoptimal throughput of the tree
is obtained without access to any global information. Each node makes its decisions based



2.6. Reconstructing the schedule 103

on information that is directly measurable plus on additional information received from
its parent and children. One could term such a distributed protocolsemi-autonomous.

For dynamic adaptation concerns, one could imagine the following strategy: The root
of the tree, receiving periodically the results of the computations, can measure if there has
been a drop in throughput performance. Under a certain threshold, the root might initiate
the BW-First() procedure once more in order to capture the actual state of the platform.
Since the messages exchanged between two nodes during theBW-First() procedure are
single numbers, we could argue that the running time of theBW-First()procedure is neg-
ligible as opposed to the time of communicating tasks. However, this last point needs
more investigation, and we leave this issue for future work.

Finally, infinite networks have been studied by Bataineh andRobertazzi in [3]. The
authors showed that a finite-size network tree load sharing adivisible job can perform
almost as well as an infinite network tree. TheBW-First()procedure allows to determine
the throughput of infinite network trees, as opposed to the bottom-up method.

2.6 Reconstructing the schedule

When theBW-First()procedure has been executed, each node has all the rational values of
its activity variables as its disposal. Hence, during one time unit, letη−1 = ρ−1

µ−1
= (λ−δ0)

be the number of tasks that nodeP0 receives from its parent,η0 = ρ0
µ0

= α0 be the number
of tasks thatP0 computes locally, andηi = ρi

µi
= (βi − θi) be the number of tasks that

P0 sends to each childPi. Note that all the numerators and denominators are positive
integers, andη−1, η0 andηi can be equal to zero. The steady-state regime is ensured by
the fact that nodeP0 receives as many tasks as it can consume. Thisconservation law
translates into equation (2.1).

η−1 =

k
∑

i=0

ηi (2.1)

Our aim is now to build up a periodic schedule where an integernumber of tasks
are sent and/or executed. As mentioned in [6], we can obtain aperiodT by taking the
least common multiple of all the denominatorsµi for each node. However, this approach
has a major inconvenient: The period might be embarrassingly long, which makes it
inconvenient to describe the activity of the nodes, and requires unnecessary large buffering
spaces to store the tasks required from one period to another.

2.6.1 Asynchronous schedule

In order to obtain a more compact description of the schedule, we propose to desynchro-
nize the activities of thesingle-port, full overlapmodel, i.e. receiving tasks, computing
tasks and sending tasks. After all, this model allows to perform these three activities
concurrently.
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T

r
0 is defined as the shortest period during which nodeP0 receives an integer number

ϕ−1 of tasks from its parent;T x0 is defined as the shortest period during which nodeP0

executes an integer numberϕ0 of tasks; andT s0 is defined as the shortest period during
which nodeP0 sends an integer numberϕi of tasks to each childPi.

Lemma 2.1. With the above notations, the minimal periods as well as the integer number
of tasks treated are obtained as follows:







T

s
0 = lcm{µi | i ∈ C0}
T

x
0 = µ0

T

r
0 = T

s
−1

ϕi = ηi × T s0 ,∀i ∈ C0
ϕ0 = η0 × T x0
ϕ−1 = η−1 × T r0

(2.2)

Proof. NodeP0 must sendηi = ρi

µi
tasks per time unit to each childPi. In order to obtain

a minimal period where an integer number of tasks is sent to each child, we have to take
the least common multiple of all the denominators{µi | i ∈ C0}.

NodeP0 must computeη0 = ρ0
µ0

tasks per time unit, which gives a minimal period of
µ0 time units during whichρ0 tasks are computed.

Since any nodeP0 receives tasks only from its parent, the receiving periodT

r
0 of P0

should be equal to the sending periodT s−1 of its parentP−1, which has been shown to be
minimal. Obviously the root of the tree should not receive any tasks, and we can enforce
T

r
root = 0.

Proposition 2.3. Any nodeP0 can desynchronize its activities according to Lemma 2.1
without violating the conservation law.

Proof. By taking the least common multiple of the three asynchronous periods, we obtain
a periodT0 during which all the received tasks are consumed. That is to say, everyT0 time
units,P0 receives an integer numberχ−1 of tasks from its parent, computes an integer
numberχ0 of tasks, and sends an integer numberχi of tasks to each childPi. This
translates into equation set (2.3).







T0 = lcm{T s0 , T x0 , T r0 }
χ−1 = η−1 × T0

χ0 = η0 × T0

χi = ηi × T0,∀i ∈ C0
χ−1 =

∑k
i=0 χi

(2.3)

The only requirement for ensuring steady-state with asynchronous activities is to dis-
pose of enough tasks buffered at node locations. For now, assume thatχ−1 tasks have
been buffered during the start-up phase. Then, we have a steady number of tasks stored
from one periodT0 to another, which ensures steady-state behavior.

2.6.2 Event-driven schedule

We now propose an event-driven schedule, where any time-related information has been
removed (except for the root node). Consider first the case ofany nodeP0 different from
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the root. Lemma 2.1 gives the minimal periodT x0 andT s0 for computing and sending
tasks respectively. The minimal periodT c0 during which an integer number of tasks is
consumed (either processed locally or delegated to a child)can be obtained by taking the
least common multiple ofT x0 andT s0 . Letψ0 be the number of tasks executed byP0 every
T

c
0 time units, andψi be the number of tasks delegated to childPi everyT c0 time units.

We have hence the following equation set:







T

c
0 = lcm{T x0 , T s0 }
ψ0 = η0 × T c0
ψi = ηi × T c0 ,∀i ∈ C0

(2.4)

P0 does not need time-related information any longer. Instead, P0 will handle incom-
ing tasks by bunches of sizeΨ =

∑k
i=0 ψi. Indeed, of all the tasks thatP0 will receive

from its parent, 1
ψ0

fraction of them are intended for itself, and1ψi
fraction of them are

intended for each childPi (provided thatψi > 0). Therefore, the only information which
is necessary is to know how many tasks should be executed locally (i.e. ψ0), and how
many tasks should be delegated to each childPi (i.e. ψi) everyT c0 time units. P0 will
then handle incoming tasks by bunches of sizeΨ, without using any time-based informa-
tion. The event-driven schedule for any nodeP0 different from the root is summarized by
procedureSteady-State().

Procedure Steady-State(P0)

begin
while truedo

foreachbunch ofΨ tasksdo
Computeψ0 tasks locally ;
foreach childPi do

Sendψi tasks toPi;

end

Since the computing platform is a tree, nodes receive tasks only from their parent.
One can then let a receiving thread blocked in reception, waiting for tasks to arrive from
the parent, and storing them locally upon reception. Or one can use non-blocking receive
calls. Consequently, we do not need to describe further the receiving activity.

The case of the rootProot is slightly different, sinceProot has all its tasks as its
disposal. Hence we can let the root compute all the time, and only consider the sending
activity. Proot will consequently use theϕi instead of theψi. However, ifProot has enough
bandwidth to feed all the nodes of the platform, thenProot must use its sending period
T

s
root in order to ensure that the conservation laws are respected,and hence to maintain the

steady-state behavior of the system. In this way, the root will regulate the arrival rates of
tasks to the other nodes of the tree, by feeding every childPi with ϕi tasks everyT sroot time
units. The associated schedule of the root is described by procedureSteady-State-Root().
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Procedure Steady-State-Root(Proot)

begin
if τroot > 0 then

foreach time periodT sroot do
foreachchildPi do

Sendϕi tasks toPi;

else
while truedo

foreachchildPi do
Sendϕi tasks toPi;

end

2.6.3 Local scheduling

Although the event-driven schedule ensures the steady-state regime, some scheduling de-
cisions remain to be taken. Indeed,P0 will treat tasks received from its parent by bunches
of sizeΨ, but in which order should it delegate tasks to its children?And which tasks
should be kept for itself? All the schedules are equivalent in terms of steady-state through-
put. However, some schedules might be more advantageous than others with respect to
memory limitations. The one we are proposing has been designed with the objective of
minimizing the number of tasks that will be buffered at steady-state. Obviously, minimiz-
ing the number of tasks buffered at steady-state, is of interest since it reduces memory
usage during the computation. In addition, the low number oftasks required to ensure the
steady-state regime, will lead to fast start-up and wind-down phases (see Section 2.7).

Our local schedule strategy interleaves the incoming tasksproportionally to theψ
quantities (ϕ for the root). Let us start with nodeP0 itself which should computeψ0 tasks.
We merely split the unity domain into(ψ0 + 1) parts, each of size∆0 = 1

ψ0
. The same

operation is repeated for each childPi, and the unity domain is split into(ψi + 1) parts of
size∆i = 1

ψi
(∀ψi > 0). When this is done, we obtain an order among the incoming tasks

that corresponds to our allocation of tasks to nodes. Let us take an example to illustrate
this strategy. Consider a nodeP0 having two childrenP1 andP2. We letψ0 = 1, ψ1 = 2
andψ2 = 4. The allocation for our example is depicted in Figure 2.3. The first task is
sent toP2, the second toP1, the third toP2, etc.

0 14
5

2
3

3
5

1
2

2
5

1
3

1
5

P0P2 P1 P2 P2 P1 P2

Figure 2.3: Scheduling the incoming tasks
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If two processors are contesting for one task, we arbitrarily prioritize the processor
with smallestψ. If both processors have an equalψ, we prioritize the one with smallest
index. The rationale behind this strategy, is to space out tasks intended to one node as
much as possible. Instead of giving the nodes all their tasksat once, we disseminate them
along the period, making it possible for the nodes to consumetasks almost as fast as
they receive them. Furthermore, due to symmetrical reasons, the description of the local
schedules can be divided by two.

2.7 Efficient start-up phase

Usually, the start-up phase is considered as just a way to enter the steady-state regime
[2, 5, 6]. The traditional answer to this problem is to send tasks down the tree without
doing any useful computation, until each node gets the number of tasks required to enter
the steady-state regime. This takesT times the maximum depth of the tree, whereT is
the steady-state period of the tree [5].

Alternatively, Kreaseck et al. [12] propose a demand-driven start-up strategy, where
nodes request tasks to their parent, which in turn will forward the demands up the hier-
archy. However, they observed that in practice, their protocol experienced long start-up
phases.

It is of prior importance to be able to reach steady-state as fast as possible. Indeed,
under dynamic conditions, recomputing the optimal schedule might be necessary in order
to efficiently utilize the platform. Under these conditions, not being able to execute any
tasks during the start-up phase becomes no longer acceptable. For these reasons, the
importance of the start-up and wind-down phases should not be minimized. We propose
a start-up phase where computations are allowed. In fact, every node will act according
to its event-driven schedule from the beginning of the computation.

Proposition 2.4. Applying the event-driven schedule, from the beginning of the computa-
tion, leads every nodeP0 to its steady-state regime, in at most

∑

T

s
i | i ∈ A0 time units,

whereA0 is the set of ancestors of nodeP0.

Proof. Intuitively, during the start-up phase, nodes will receivetasks at full rate, but since
they do not have buffered tasks at their disposal, will starve waiting for them to arrive.
Nodes will store locally incoming tasks and schedule them immediately. Hence, node
buffers will be filled up with tasks, much like the way a pipeline is getting full, until the
task consuming rate catches up with the task receiving rate.

Formally, consider any nodeP0 different from the root. From equation set (2.3) at
steady-sate we have:P0 receivesχ−1 tasks everyT s−1 time units from its parentP−1.
Assume that at time stept, P−1 is in steady-state. Assume also that during the time
period[t, t+T

s
−1], P0 can consume onlyλ of theseχ−1 tasks (sinceP0 does not have any

tasks buffered yet, some time will be spent waiting for them to arrive). The(χ−1 − λ)
tasks left are hence stored byP0 for the next period of timeT s−1. During the time period
[t + T

s
−1, t + 2T s−1], P0 receivesχ−1 new tasks. We know thatP0 can consumeλ of
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the new tasks. SinceP0 owns(χ−1 − λ) tasks from the previous period,P0 is no longer
idle while waiting for tasks. Hence,P0 consumesλ + χ−1 − λ = χ−1 tasks, and is in
steady-state at time-stept+ T

s
−1. Since the root of the tree is already in steady-state from

the beginning of the computation (att = 0), applying this reasoning from the root down
the hierarchy givest =

∑

T

s
i | i ∈ Ai.

It is important to point out that, due to the continuity between one time period to
another,P0 will enter into its steady-state regime earlier than time stept =

∑

T

s
i | i ∈ A0.

While the entire tree enters the steady-state regime as soonas all the nodes entered in
steady-state. Such behavior can be observed in the example of Section 2.8.

2.8 Example

Let us illustrate our results with an example taken from [4].Consider the treeT depicted
in Figure 2.4 (a). ProcedureBW-First() obtained a throughput of10 tasks every9 time
units, which corresponds to the result obtained by the bottom-up method of Beaumont
et al. [4]. The successive transactions established duringthe BW-First() procedure are
depicted in Figure 2.4 (b). Note that nodesP8, P9, P10 andP11 were not visited, meaning
that they will not be used in the final schedule. The number of tasks that each node
receives (η−1) and computes (η0) per time unit are depicted in Figure 2.4 (c). The final
description of the local schedules is very compact and is depicted in Figure 2.4 (d). The
final computation, with start-up and wind-down phases is depicted with a Gantt diagram
in Figure 2.5.

We would like to point out few interesting observations. Thetree has a steady-state
periodT of 360 time units, while the rootless tree has a throughput of40 tasks every40
time units. The start-up phase lasts for40 time units, which is equal to one steady-state
period of the rootless tree. During the start-up phase, the rootless tree executes32 tasks,
that is to say80% of its optimal throughput. At an arbitrary point in steady-state (time
step115), we stopped delegating tasks to the tree, and observed thatthe wind-down phase
lasts for only10 time units (4 times shorter than the steady-state period of the rootless
tree). This very short wind-down phase is the result of our local schedule strategy, which
aim at minimizing the number of tasks buffered during steady-state.

2.9 Future work

Handling the return of the results back to the master should be considered for future
work. The bandwidth-centric principle does not hold when the return of the results are
considered, despite the claim of Beaumont et al. [5] and Kreaseck et al. [12]. In their work,
the aforementioned authors model the communication times between two processorsPi
andPj as being the time needed by a parentPi to communicate the data for one task
to a childPj plus the time for the child to return the result when it is finished. They
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(a) The platform tree.

Pv
10

9→ P0, P0
1→ P1, P1

4

5→ P2, P2

7

10→ P3,

P2

1

2← P3, P2

1

2→ P4, P2

3

10← P4, P2

3

10→ P5,

P2

1

10← P5, P1

1

10← P2, P1

3

40→ P6, P1
0← P6,

P0

1

40← P1, P0

1

40→ P7, P0
0← P7, Pv

0← P0.
(b) Transactions established.
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(c) Number of tasks received and computed per time unit.

Nodes Ψ Local Schedules

P0 40 19P1, P7, 20P1

P1 39 3P2, P1, 3P2, P1, P2, P6, 2P2, P1,
3P2, P1, 2P2, P6, 2P2, P1, 3P2, P1,
2P2, P6, P2, P1, 3P2, P1, 3P2

P2 7 P3, P4, P5, P2, P3, P4, P5

P3 1 P3

P4 1 P4

P5 1 P5

P6 1 P6

P7 1 P7

(d) Local Schedules.

Figure 2.4: Building-up local schedules.
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argue that “for the purpose of computing steady-state behavior, it does not matter what
fraction of the communication time is spent sending a problem and what fraction is spent
receiving the results” [5]. We will show that this simplification is erroneous. Although
the simplification holds for the traffic of messages on the communication links, it neglects
the receiving port resource. Let us illustrate this with a small platform example composed
of three nodes. The master has only two children. Each child can process1 task per
time unit. It takes0.5 time units to send one task from the master to its children, and 0.5
time units to return the results of one task from the childrento the master. The optimal
throughput of the platform is then2 tasks per time units. If we join the time sending the
input data with the time for receiving the results (as suggested in [5, 12]), we obtain a
platform throughput of1 task per time unit. Hence, the simplification does not work for
returning the results back to the master, and consequently this problem is still open.

It would be interesting to evaluate theBW-First()procedure using simulations (for ex-
ample with the SimGrid toolkit [8]), and compare it to the autonomous protocol proposed
by Kreaseck et al. [12]. Especially, measuring the overheadincurred by the global syn-
chronization phase would give some insight on how frequently theBW-First()procedure
might be initiated by the root. Finally, trying different local schedules might be interesting
with respect to start-up and wind-down phases as well as memory limitations.

2.10 Conclusion

The problem of allocating a large number of independent, equal-sized tasks to heteroge-
neous trees was considered. We assumed that a specific node, the master initially, holds
the data associated to the tasks, and that returning the results of the computations to the
master is negligible. This paper made the following contributions to this problem:
• We proposed a distributed method, theBW-First()procedure which is an efficient,

practical and scalable implementation of the theoretical results presented in [5].
• Based on the results of theBW-First() procedure, each node can then build up its

own local schedule independently of the rest of the platform. The result is a loosely
synchronized schedule, where nodes are synchronized only with their children, as opposed
to the traditional approach where all the nodes of the platform are synchronized together.
• The resulting local schedules are event driven, meaning that every node (except

the root) acts without any time-related information, and consequently, their description is
very compact.
• We proposed a local schedule strategy that makes use of a small amount of tasks

buffered at steady-state. Not only this approach requires less memory, but it also consid-
erably reduces the length of the start-up and wind-down phases.
•We presented a start-up phase strategy which allows useful computation as opposed

to the traditional approach.
The goal of this paper was to close the gap between theory and practice by embedding

theoretical knowledge into a practical and scalable implementation. We believe that the
techniques presented in this paper are valuable for conceiving scheduling strategies that
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tackle the platform dynamics, i.e. where resources exhibitdynamic performance charac-
teristics and availability.
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Abstract

This paper presents new techniques for master-slave tasking on tree-shaped net-
works with fully heterogeneous communication and processing resources. A
large number of independent, equal-sized tasks are distributed from the master
node to the slave nodes for processing and return of result files. The network
links present bandwidth asymmetry, i.e. the send and receive bandwidths of a
link may be different. The nodes can overlap computation with at most one
send and one receive operation. A centralized algorithm that maximizes the plat-
form throughput under static conditions is presented. Thereafter, we propose
several distributed heuristics making scheduling decisions based on information
estimated locally. Extensive simulations demonstrate that distributed heuristics
are better suited to cope with dynamic environments, but also compete well with
centralized heuristics in static environments.

3.1 Introduction

In this paper, we consider the allocation of a large number ofindependent equal-sized
tasks onto a tree platform. We concentrate on tree-shaped platforms since they represent
a natural framework for master slave tasking. More importantly, administrative orga-
nizations often rely on tree-shaped networks to interconnect computing resources [14].
Initially, the root of the tree (master node) holds a large bunch of tasks. Those tasks will
be either processed by the master node or transmitted to its child nodes (also called slave
nodes). Then, in turn, the child nodes face the same allocation problem (either processing
the tasks locally or forwarding them to their child nodes). We consider the case where
slave processors need to send back a file of results after processing each task. Even if
this is the most natural situation, it is worth noting that most of the papers on independent
tasks scheduling or Divisible Load Theory (DLT) do not consider those return commu-
nications. Targeted platforms are fully heterogeneous, i.e. both the processing resources
and the communication resources have different capacitiesin terms of processing power
and bandwidth. Moreover, the network links present bandwidth asymmetry in the sense
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that the bandwidth for sending tasks down the tree may be different from the bandwidth
for returning results up the tree.

We concentrate on the influence of dynamic resource characteristics on the allocation
scheme. In shared and unstable environments such as grids and peer to peer systems, the
performance of the resources may well change during the execution of the whole process.
In this context, it is not realistic to assume that one of the nodes knows at any time step the
exact performance of all resources and is able to make optimal scheduling decisions [14].
Therefore, the main question consists in determining whether the allocation scheme can
make use of some static knowledge about the platform (for instance, the optimal solution
computed from an initial snapshot of the platform), or whether we need to rely on fully
dynamic scheduling schemes. In order to answer this question, we first derive optimal
scheduling algorithms (with respect to throughput maximization). Then we present sev-
eral heuristics. Some of them make their scheduling decisions using the optimal schedul-
ing policy, computed using a snapshot of resource performance characteristics. Those
heuristics may lead to optimal scheduling decisions in static environments. On the other
hand, we propose a set of fully dynamic allocation heuristics that make their scheduling
decisions only according to information measurable locally. Those heuristics may give
poor results in static environments, but their performances are expected to be more robust
in dynamic environments. We compare all those heuristics through extensive simulations
using the SimGrid toolkit [9]. We rely on simulations ratherthan direct experiments in
order to make a fair comparison between proposed heuristics. Indeed, simulation enables
running of the different tests on computing platforms having exactly the same dynamic
behavior. Moreover, SimGrid enables to define the trace of performance data over time
for each processing or communication resource. Therefore,it is possible to compute (off-
line) the optimal solution at any given time step and it is therefore possible to compare
the performances of the different heuristics between them and against the optimal ideal
solution.

The rest of the paper is organized as follows. Section 3.2 is devoted to a survey of
related work, both DLT studies, independent tasks scheduling and on dynamic scheduling.
Then, we present our platform model in Section 3.3 and how to find the optimal solution,
in presence of return messages, in Section 3.4. Section 3.5 states the main Theorem of this
paper, which provides a mean to optimize the nodes bandwidthutilization. Section 3.6
presents a task-flow control mechanism that regulates the amount of tasks and results
buffered by the nodes throughout the execution. The set of centralized and distributed
heuristics are described in Section 3.7. The methodology and results of the simulations are
discussed in Section 3.8. Finally, we give some remarks and conclusions in Section 3.9.
Due to space limitation, many of the technical details have been omitted, but can be found
in the extended version of this paper [3].

3.2 Related work

The problem of master-slave tasking on heterogeneous tree platforms has already been
widely studied, both in the context of Divisible Load Theory(DLT) and independent
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tasks scheduling. A divisible load is a perfect parallel task that can be arbitrarily split and
allocated to slave processors, without processing overhead. The overall load is first split
at the master node in order to minimize the total execution time. Tasks are distributed
in one round to the slaves, so that the master node makes the decisions about the set of
slaves to be used, the amount of data to be sent to each slave, and the communication
ordering [7, 10, 16]. When return messages are taken into account, two permutations
must then be determined (one for tasks distribution and one for results collection) [4, 8].
Although the complexity of this problem is still open, Rosenberg et al. [1] proved that
in the case of a homogeneous single-level tree, the optimal schedule for both outgoing
and incoming messages can be determined, and the optimal LIFO and FIFO orderings are
given in [5] for heterogeneous single-level trees.

On the other hand, when considering independent tasks scheduling, the master node
faces the allocation problem for each task and the communications with its child nodes
may well be split into several rounds [11,15,17]. Recently research studies have focused
on steady-state scheduling, i.e. throughput maximization[2, 13, 15]. The steady-state
scheduling approach has been pioneered by Bertsimas and Gamarnik [6] who consid-
ered packet routing and proposed to concentrate first on resource occupation rather than
scheduling. The optimal solution for resource occupation,given link capacities, is ob-
tained via a linear program. Then, an algorithm based on super-steps is proposed for
building the actual schedule of packets. This idea has been adapted in [2] to the distri-
bution of independent tasks on static platforms. Results collection was not considered
in [2], but the linear program presented in Section 3.4 is a direct adaptation of the solution
proposed in [2].

Dynamic scheduling of independent tasks has not been widelystudied. Recently,
Hong et al. [12–14] proposed a very nice algorithm, based on decentralized versions of
flow algorithms. It is worth noting that this algorithm assumes a strongly different com-
munication model than the one presented in this paper, and consequently cannot be easily
adapted to our model. Here again, the results collection hasnot been considered.

3.3 Platform model

The model considered in this paper is based on the model proposed in [2] that we augment
by introducing communication weights for returning computation results back to the mas-
ter. Processing nodes are assumed to be connected via a node-weighted edge-weighted
treeT = (V,E,w, c, c′) as depicted in Figure 3.1.

Each nodePi ∈ V represents a computing resource of weightwi, meaning that node
Pi requireswi units of time to process one task. Each edge corresponds to a communi-
cating resource and is weighted by two values:ci which represents the time needed by a
parent node to send one task to its childPi, andc′i which represents the time needed by
the childPi to send one result back to its parent. All thewi’s are assumed to be positive
rational numbers since they represent node processing times. We disallowwi = 0 since it
would permit nodePi to perform an infinite number of tasks. Similarly, we assume that
all ci’s andc′i’s are positive rational numbers since they correspond to the communication
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Figure 3.1: Tree-shape platform.

times between two processors. A node can perform three kindsof activity simultane-
ously: (i) it can process a task, (ii) it can receive a task filefrom its parent or a result
file from one of its children, and (iii) it can send a result fileto its parent or a task file
to one of its children. This model is known under the namefull overlap, bidirectional-
single-portmodel [2, 15]. At any given time-step, a node may overlap computation with
only two connections, one for incoming communications and one for outgoing commu-
nications. Computation and communication are assumed to beatomic operations, i.e.
once initiated they cannot be preempted. Finally the communication model works in a
store-and-forward fashion.

3.4 Maximizing the throughput

Given the resources of a weighted treeT operating under thefull overlap, bidirectional-
single-portmodel, we aim at maximizing the number of tasks processed pertime unit. Let
Ci denote the set ofPi’s children. During one time unit, letαi be the fractional number
of tasks processed byPi, andβi be the fractional number of tasks received byPi from
its parent. Equivalently,αi andβi correspond respectively to the fractional number of
results produced byPi, and to the fractional number of results sent byPi to its parent.
The optimal throughput is obtained by solving the followinglinear programming problem
(LPP), whose objective function is to maximize the number oftasks processed per time
unit.

Maximize ntask(T ) =
∑

i αi

subject to


























∀i, 0 ≤ αi ≤ 1
wi

∀i 6= m, 0 ≤ βi
∀i 6= m, βi = αi +

∑

j∈Ci
βj

∀i, ∑

j∈Ci
cjβj + c

′
iβi ≤ 1

∀i, ∑

j∈Ci
c

′
jβj + ciβi ≤ 1

The first set of constraints states that computation resources are limited. The second
set of constraints confines the variablesβi within non-negative values. Note that the
masterPm does not have a parent, so that we letβm = 0. The third set of constraints
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deals withconservation laws. For each nodePi (except the master), the number of tasks
received byPi, should be equal to the number of tasks thatPi processes locally, plus
the number of tasks forwarded to the children ofPi. Equivalently, the number of results
sent byPi to its parent, should be equal to the number of results produced locally byPi,
plus the number of results received from its children. The last constraints account for the
single-port model. The send and receive operations performed by the nodes are assumed
to be sequential.

Since we are looking for a solution of the LPP into rational numbers, optimal rational
values for all variables can be obtained in polynomial time.However, the solution of the
above LPP is in general not unique and some solutions might bemore interesting than
others in our context. In particular,compactsolutions, i.e. that utilize nodes close to the
root in priority, are more preferable thanstretchedsolutions (that utilize nodes far away
from the root). Indeed, start-up time (required to enter thesteady-state) and wind-down
time (required to gather the last results to the root) will belonger for stretched solutions
than for compact ones. In order to obtain compact solutions,we first need to solve the
initial LPP to derive the optimal throughputntask(T ) of the tree. The objective function
of the second LPP becomes the minimization of all the communications, under the afore-
mentioned constraints plus an additional one that states the conservation of the optimal
throughput obtained by the former LPP. Minimizing the amount of communications while
maintaining the optimal number of tasks processed implicitly enforces compact solutions.
We hence add the following constraint:

∑

αi = ntask(T ). And the objective function
of the second LPP becomes:Minimize

∑

i βi. Once a solution has been obtained, one
needs to construct a schedule that (i) ensures that the optimal throughput is achieved and
(ii) exhibits a correct orchestration of communication events, i.e. where simultaneous
communications involve disjoint pairs of senders and receivers. We can obtain a time pe-
riod Γ by taking the least common multiple (lcm) of all the denominators of the variables
αi. Then, the integer number of tasksγi that must be communicated toPi during each
time periodΓ is obtained byγi = βiΓ.

Proposition 3.1. Sending and receiving files by bunches ofγi in a round robin fashion
generates an optimal steady-state schedule where single-port constraints are satisfied.

Proof. The proof is done by induction overh, the height of the tree T [3].

Initially, nodes do not dispose of tasks nor results buffered locally to comply with
Proposition 3.1. Therefore an initialization phase must take place before entering steady-
state. During start-up, nodes will act as if they were in steady-state, at the difference that
fake results will be sent to the parents if not enough resultsare available. Thus, tasks will
be propagated down the tree, while fake results will be propagated up the tree. The fake
results received by parents nodes are simply discarded. Once the first bunch of results
processed by all the deepest nodes used in the schedule have been transmitted to the root
node, then steady-state has been reached.
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3.5 Bandwidth optimization

A simple scheduling principle is presented in [2] when returning results is neglected. This
scheduling algorithm was termedbandwidth-centricbecause priorities do not depend on
the children processing capabilities, but only on their communication capabilities. The
bandwidth-centric principle is extended to our problem as follows. First, observe that for
each task that a nodePi delegates to a childPj , Pi must first receive the task from its
parent, then forward it toPj , receive the associated result back, and finally send the result
to its parent. Consequently,Pi will spendxj = cj + c

′
i time units sending data, and

yj = c

′
j + ci time units receiving data. Since the masterPm does not have a parent, we let

xm = cm andym = c

′
m. The bandwidth utilization of a nodePi can be sketched within

the Cartesian plane, where the X and Y axes represent the timespent in emission and
reception respectively. Hence, allocating a task to childPj corresponds to a displacement
in the Cartesian plane along vector~vj of components(xj , yj).

Theorem 3.1. In steady-state, the bandwidth utilization of a parent nodeis optimized
when using at most 2 children (if processing capabilities are not taken into account).

Proof. The proof is done by induction overn, the number of children that are utilized by
a parent in addition to the two nodes mentioned in Theorem 3.1. Consider the case where
n = 1, i.e. when a parent delegatesα1, α2 andα3 tasks per time unit to three childrenP1,
P2 andP3 respectively (see Figure 3.2). DisplacementsOA1, A1A2 andA2A3 stand for
delegatingα1, α2 andα3 tasks to the childrenP1, P2 andP3 respectively.

Consider the triangleA1A2P where the displace-
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Figure 3.2:

mentsA1P and PA2 amount to allocatej1 and j3
tasks toP1 andP3 respectively. Consider now both
quantities(j1+j3) andα2. If (j1+j3) ≥ α2, it means
that it is more profitable to spend the bandwidth time
assigned toP2 by allocating more tasks toP1 andP3.
As a consequence,P2 should not be used. But if(j1 +
j3) < α2, then consider the triangleORA1, where the
displacementsOR andA1R amount to allocatek2 and
k3 tasks toP2 andP3 respectively. Since both trian-
glesA1A2P andORA1 are equal (since their internal
angles are equal), if(j1 + j3) < α2 then(α1 + k3) <
k2. In that case, it becomes more profitable to assign
k2 tasks toP2 instead ofα1 tasks toP1 andj3 tasks toP3, andP1 should not be used.
Assume now that Theorem 3.1 is true for rankn, and let us prove that it holds also for
rankn+ 1. Consider a parent utilizingn+ 3 children. Extract3 of then+ 3 children and
apply the aforementioned geometric transformation. One then utilizes onlyn+2 children
without degrading the initial throughput.

Theorem 3.1 assumes that nodes can provide as much computingpower as necessary
which contravenes the fact that computing resources are limited. Nonetheless, it allows
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identifying the way to optimize the bandwidth of any nodePi in using at most two chil-
dren. Furthermore, we show in [3] that if such a pair of children exists, then the emission
and reception bandwidth ofPi are equally utilized.

3.6 Task-flow control

In order to regulate the number of tasks and results that nodes are allowed to buffer locally
throughout the execution, a threshold valueθi is introduced for each nodePi, i 6= m.
On the one hand, if the number of tasks buffered locally byPi is beneath the threshold,
thenPi will request more tasks in order to prevent starvation. On the other hand, if the
number of results buffered locally byPi is larger than the threshold, thenPi will not
request additional tasks in order to hinder a monotonic accumulation of results. Initially,
θi = 1,∀i 6= m. Since we search for compact solutions, parent nodes will try to process as
many tasks as possible. If additional tasks arrive while a node is busy processing, then the
task will be forwarded down the tree. During the execution, nodes are allowed to increase
their local thresholdsθi only when (i) they are starving and (ii) if they recently succeeded
to accumulateθi tasks locally (to ensure that the current threshold is not sufficient) and (iii)
if the number of results buffered locally is strictly lower thanθi. This mechanism allows
nodes to collect enough tasks locally to feed their sub-trees, while ensuring that results do
not accumulate monotonically locally. On the other hand, nodes must decrease their local
thresholds whenever the number of results buffered locallyexceeds the threshold. This
threshold growth mechanism provides a mean to adapt to the platform dynamics.

3.7 Scheduling heuristics

Round Robin (RR). This heuristic implements Proposition 3.1. Once all theαi are
known, the periodΓ is estimated as follows. Let us setx = ⌊log10(maxi αi)⌋. If x ≤ 0
thenΓ = 10|x|+1, Γ = 10x otherwise. The aim is to obtain a compromise between a short
time period, and an approximation close to the optimal solution. Then we get the number
of tasks computed by each nodePi by roundingΓαi to the nearest integer.

On the Fly (OTF). This heuristic makes use of the centralized knowledge. Once all
theβi’s are known, each node maintains a tabletasks given[j], which records the number
of tasks delegated to childPj so far. The child node that has the lowesttasks given[j]

βj
ratio

is served in priority.
FIFO . Tasks are delegated in a first-come first-served basis.
Bandwidth-Centric (BC). Let rj = min{ 1

xj
,

1
yj
} denote the maximum amount of

tasks thatPi can delegate to childPj per time unit. The child which has the highestrj is
served in priority.

Geometric (Geo). This heuristic makes use of Theorem 3.1, but starts byapplying
the bandwidth-centric heuristic, in order to determine which child obtains the highestrj.
Then, it inspects if a pair of children can improve that rate.If such a pair of children
exists, one must decide which child should be served. In order to make the right decision,
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we use a variable∆ which works much like a pair of scales. At start,∆ = 0. Each time
a child nodePj is served, we putxj in one scale, andyj in the other, which amounts to
∆ = ∆+xj−yj. When a pair of children nodes is elected, then the child which brings∆
closest to0 is serve. The aim is to utilize equally the emission and reception bandwidths
of the parent nodes. Such strategy will optimize the bandwidth utilization of the nodes,
while naturally adapting to the platform dynamics.

3.8 Simulations results

To evaluate our heuristics, we simulate the execution of an application on different ran-
dom trees. Since a sub-tree can be reduced to a single super-node of equivalent processing
power [2], it is not necessary to employ thousands of nodes tosimulate large-scale sys-
tems [13]. We arbitrarily limited the number of nodes in a tree to 100. Each node was
arbitrarily restricted to have at most10 child nodes. A random tree is generated as fol-
lows. Each node is numbered with an ID number between0 and99. Then, each node
Pi, i ∈ [1, 99] is connected randomly to a nodePj, j ∈ [0, i − 1]. The links have static
performance values comprised betweencmin andcmax and the nodes betweenwmin and
wmax. All random distributions are uniform. The dynamic environments used in our sim-
ulations were generated as follows. Each resourceRi (node or link) has a cyclic behavior,
i.e. its performance changesni times per cycle. The number of changesni per cycle is
randomly taken within the interval[5, 15]. Resource performance changes will occur ev-
ery25 treated tasks in average. We do not claim that these arbitrary decisions correspond
to realistic network conditions. Our aim is to compare our heuristics on a set of different
tree configurations. Inspired by Kreaseck et al. [15], we determine the throughput rate by
using a growing window. The execution time is divided into100 equal-sized time slots.
Then, the window increases in size by step of one time slot, and the throughput rate de-
livered within the window time-frame is computed. The throughput rates delivered by the
trees have been normalized to the maximum steady-state rates obtained with the LPP in
static environments. However, throughput rates obtained in dynamic environments have
been scaled up by adynamic factorthat accounts for the performance loss incurred by
the platform dynamics. The dynamic factors have been obtained by successively solv-
ing LPPs of static platforms and comparing them to their homologous LPPs where some
dynamism have been introduced (i.e. with the same platform topologies but with scaling
down resource performances). More details about our methodology as well as a broader
set of simulation can be found in [3].

In this paper, we report the simulation of an independent-task application of2500
tasks on50 trees wherecmin = 1, cmax = 10, wmin = 20 andwmax = 200. Two
scenarios for the data volume associated to the tasks and results were considered: (i) task
data are1000 times larger than result ones (t

r = 1000), and (ii) task and result data have
the same size (tr = 1). Figure 3.3 plots an average of the50 throughput rates (associ-
ated to the 50 trees) over time. Figure 3.3 (a) and (b) correspond to static environments,
while Figure 3.3 (c) and (d) correspond to fully dynamic environments, i.e. where re-
source performances can degrade down to1% of the static value. The RR heuristic has
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Figure 3.3: Average of the50 throughput rates (associated to the 50 trees) over
time, with the computation to communication ratiowi

ci
= 20. In the dynamic

environments, resource performances can degrade arbitrarily without failing, i.e.
down to1% of the static performance value.

been simulated with more than2500 tasks in order to overcome the long start-up time
required to enter steady-state. Still, RR does not outperform the other heuristics in static
environments, certainly due to the truncating and roundingoperations that occurred when
computingΓ and theγi’s. Not only the integer number of tasks intended to each nodemay
be sub-optimal, but also the schedule of communications gets disturbed. The centralized
heuristics (RR and OTF) are the highest performers in staticenvironments, but the lowest
ones in dynamic environments. Indeed, the information on which they rely throughout the
execution becomes misleading in dynamic settings. As expected, the BC heuristic works
very well when result data are small, while Geo only departs from BC when result data
become significant.

Interestingly, when result data become significant, the performance of the best heuris-
tics decrease, whereas the performance of FIFO increases. On the one hand, the decline
of the best heuristics can be explained by the scheduling problem becoming more compli-
cated. Returning results up the tree taking as long as sending tasks down the tree, parent
nodes may sometimes have to stall a long time, waiting for a child to become available in
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reception. On the other hand, the performance increase of FIFO is a direct consequence
of the task-flow control mechanism. When returning results takes a long time, local ac-
cumulations of results will arise, hindering the ineffective nodes to request for additional
tasks. In contrast, when returning results is quick, no local results accumulations take
place, increasing the margin to make wrong scheduling decisions.

Finally, it is worth noticing that BC and Geo compete well with the centralized heuris-
tics even in static environments. See [3] for further details and interpretations.

3.9 Conclusion and future work

The problem of distributing a large number of independent tasks onto heterogeneous tree-
shaped platforms with bandwidth asymmetry was considered.In contrast with most pre-
vious studies, the cost of returning results to the master node was represented in the prob-
lem formulation. We provided theoretical results that wereembedded into autonomous
heuristics. Simulations results showed that the autonomous heuristics put together with
the task-flow control mechanism not only behaved very well indynamic environments,
but also compete well with centralized heuristics in staticenvironments.

The scope of this paper was restricted to tree-shaped networks. However, at the back-
bone level, various geographically organizations are connected via the Internet resulting
in a graph topology. Adapting the theoretical results presented in this paper to graph-
shape platforms is a natural continuation of this work, albeit graph topology introduces
routing problems. Another direction is to consider master-slave tasking in the presence of
multiple masters. This situation arises naturally when several applications share the same
platform, or when multiple masters collaborate on a single application.
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Abstract

This paper considers the problem of scheduling efficiently applications com-
posed of a large number of independent tasks on heterogeneous clusters. The
Master/Worker paradigm is used, where tasks are maintainedby a master node
which hands out batches of a variable amount of tasks to requesting worker
nodes. TheMonitor strategy is introduced and compared to other strategies
suggested in the literature. Our online strategy is especially suitable for hetero-
geneous clusters with dynamic loads.

4.1 Introduction

In today’s international high-performance computing arena, there is a clear trend from
traditional supercomputers towards cluster and Grid computing solutions. This is mainly
motivated by the fact that clusters typically can be constructed at a cost that is mod-
est compared to the cost for traditional supercomputers that have equivalent computing
power. The operation, use and performance characteristicsof such clusters are, however,
significantly different from those of traditional supercomputers. For instance, clusters typ-
ically have a much slower communication medium between nodes (e.g. a high-latency,
low-bandwidth interface such as Ethernet or the faster Myrinet.)

Clusters give rise to some challenges not typically found ontraditional supercom-
puters. A cluster may be aheterogeneousenvironment, meaning that its nodes may
have different performance characteristics. Also, if the nodes composing a cluster are
not dedicated, the cluster will be adynamicenvironment, because its nodes may have a
non-negligible background processing load. These challenges imply that one needs an
adequate scheduling strategy to get good performance on a cluster.

Our work aims at developing effective scheduling strategies for clusters for the class
of applications that fall into the Master/Worker paradigm.These applications can be di-
vided into a large number of independentwork units, or tasks. There is no inter-task
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communication, so the tasks can be computed in any order. Finally, the tasks are atomic,
i.e. their computation cannot be preempted. Many applications can be parallelized in such
a way, including matrix multiplication, Gaussian elimination, image processing applica-
tions such as ray-tracing [6] and Monte Carlo simulations [1].

The rest of this paper is organized as follows: The test-caseapplication and the test-
bed cluster are described in Section 4.2. In Section 4.3, previous scheduling strategies,
as well as our scheduling strategy, are presented. Section 4.4 exposes implementation-
specific issues, and Section 4.5 discusses empirical results from our work. Finally, con-
clusions and suggestions for future work are provided in Section 4.6.

4.2 Framework

4.2.1 Test-case application: matched filtering

The test-case application used in this study is an image filtering application, known as
matched filtering[3]. This application has been developed by O. C. Eidheim, a PhD
student atIDI /NTNU, who was looking for speed improvements, giving us great access to
a developer of the application.

The matched filtering application is used in medical imagingin order to detect blood
vessels in Computer Tomography (CT) images. ACT image is a cross-section of the
human body. By using this application to detect blood vessels in multiple adjacentCT

images, one is able to construct a 3D representation of the blood vessels in the human
body.

The input to the application is a grayscale image, see Fig. 4.1 (a), which is filtered
through an image correlation step. The correlation kernel that is used is a Gaussian hill,
which is rotated in all directions and scaled to several sizes. For more detailed information
about this filtering technique, see [3]. The noise in the input image, makes the blood
vessel identification quite challenging. After filtering, see Fig. 4.1 (b), the noise has been
removed and blood vessels are now identifiable.

Since the input image can be divided into tasks corresponding to different parts (lines,
columns, blocks), each node can process one or more tasks, and thus produce the corre-
sponding parts of the output image, this application parallelizes easily in a homogeneous
and static environment. However, in a heterogeneous and/ordynamic environment pro-
vided by most of today’s clusters, parallelizing this application efficiently is more com-
plicated.

4.2.2 Test-bed platform: athlon-based cluster

ClustIS is a fairly homogeneous cluster composed of 38 nodes, with AMD Athlon XP/MP

CPUs at clock frequencies of 1.4 to 1.66 GHz with 0.5 to 2GB of RAM. A few of the
nodes are dual-CPU nodes. The nodes are connected through 100Mbit switched Ethernet.
The operating system is Linux, theMPI implementation isMPICH 1.2.5.2, and the queuing
system is OpenPBS.
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(a) (b)

Figure 4.1: Image before filtering (a), and after filtering (b). CT image courtesy
of Interventional Center, Rikshospitalet, Oslo, Norway.

On ClustIS, data storage is provided by one node,Story, which provides home di-
rectories throughNFS. Consequently, all diskI /O from the nodes will go through this
slow Ethernet interface. One solution could be to use local disk I /O instead. However,
the scattering of input data and gathering of output data would add to the total applica-
tion execution time, so regardless, input and output data would have to travel through the
network.

Nevertheless, we were able to demonstrate someI /O parallelism on this cluster. In
fact, we got more or less linear speedup when reading data concurrently from up to 8 pro-
cesses. This indicates that having the worker nodes read their part of the data themselves
will be faster than having the master scatter and gather datato/from workers. Writing
data in parallel also gave a significant speedup compared to centralized writing, but the
speedup was not quite as linear. See [9] for details.

4.3 Scheduling master/worker applications

On a cluster, each processor might have very different performance characteristics (het-
erogeneity), as well as varying background workloads (dynamism). To a certain degree,
heterogeneity can be handled through the job scheduler, by requesting processors with
a certainCPU frequency. Such functionality, however, is not available with many job
scheduling systems.

Dynamism, however, cannot be handled through a job scheduler. The background
processing load of the processors is unknown before the computation starts, and might
vary throughout the computation. This must therefore be handled by the scheduling strat-
egy used.



134 Paper 4

4.3.1 Previous scheduling strategies

All popular scheduling strategies give outbatchesof tasks to workers, but since the work-
ers might have different and possibly varying processing speeds, giving only one batch to
each worker might lead to non-equal finish times for the workers. To compensate for this,
some strategies give batches to workers in severalrounds. In the following,N denotes
the total number of tasks,p denotes the number of workers (processors), andR denotes
the number of remaining unassigned tasks on the master at a given time.

TheStatic Chunking (SC)strategy [6] assigns one batch ofN/p tasks to each worker.
At the other end of the spectrum is theSelf Scheduling (SS)strategy [6], where tasks are
handed out one by one. TheFixed-Size Chunking (FSC)strategy uses batches of tasks of
one fixed size, and it is possible to approximate the optimal batch size [7]. TheGuided
Self Scheduling (GSS)strategy [8] gives each worker batches of sizeR/p. GSS thus uses
exponentially decreasing batch sizes. TheTrapezoid Self-Scheduling (TSS)strategy [10]
also uses decreasing batch sizes, but the batch sizes decrease linearly from a first sizef
to a last sizel. They advocate the use off = N/(2p) andl = 1. TheFactoring (Fac.)
andWeighted Factoring (WF)strategies also use decreasing batch sizes. At each time
step, half of the remaining tasks are given out. The WF strategy works by assigning a
weight to each processor corresponding to the computing speed of the processor before
the computation starts, and allocates tasks based on these weights in every round [5,6].

4.3.2 The monitor strategy

The Monitor strategy is fairly similar to Weighted Factoring (WF), which assigns tasks to
workers in a weighted fashion for each round, where each worker has a static weight.
For WF, this weight has to be computed in advance, before the actual computations
start, which is a disadvantage in a dynamic environment. TheMonitor strategy, however,
performs such benchmarkingonline throughout the computation and thus uses dynamic
weights, which also allows for good performance in a truly dynamic environment. The
strategy uses an initialization phase and several batch computation phases.

During the initialization phase, workers request tasks from the master which are
handed out one by one. Workers measure the time it takes to compute their respective
task, and report these timings to the master when they request another task. When all
workers have reported their task computation times, the initialization phase is done.

Formally, letxi be the number of tasks that workerwi will be given in the current
batch computation phase, andyi be the number of uncomputed tasks queued by worker
wi. Let ti denote the time taken to process one task, andTi denote the time taken for
workerwi to finish the current phase. Recall thatR denotes the number of unassigned
tasks held by the master, andp denotes the number of workers. In a batch computation
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phase, the master starts by solving the following system of equations:















(1) ∀i ∈ [0, p〉, Ti = (yi + xi)× ti
(2) ∀i ∈ [1, p〉, Ti = Ti−1

(3)
p−1
∑

i=0
xi = R/2

In a given phase, workerwi receivexi tasks that are added to theyi uncomputed tasks
already stored in its local task queue. It will hence finish its execution of the current phase
at timeTi = (yi + xi) × ti (equation 1). For the total execution time to be minimized,
all workers must finish their computations simultaneously,hence∀i ∈ [1, p〉, Ti = Ti−1

(equation 2). This condition has been proved in the context of Divisible Load Theory [2].
The sum of allxi is equal toR/2, meaning thatR/2 tasks are allocated during the current
phase (equation 3). It has been found experimentally [5] that handing out half of the
remaining tasks in each round gives good performance.

Throughout the computation, workers periodically (i.e. every r computed tasks) re-
port their task computation timesti and the number of uncomputed tasksyi waiting in
their local task queues to the master. Hence the master is continuously monitoring the
worker states. Consequently, after the first batch computation phase, there is no need for
another initialization phase, since the master has up-to-date knowledge of the performance
of the workers. Note that the parameterr must be tuned for the application and cluster in
use. As soon as a worker is done with its local tasks, a requestis sent to the master, which
then enters the next computation phase. A new system of equations is solved with the last
up-to-date values ofTi andyi.

Throughout the computation,yi has a great significance. Suppose that at phasek,
workerwi has no external load, and can thus supply a large amount of computing power
to our application. The master will then delegate a large number of tasks towi. Suppose
now that during phasek,wi receives a large external load, slowing down its task execution
rate. At the end of phasek workerwi will still have a lot of uncomputed tasks. The master
has up-to-date knowledge of this, and allocates only a few (or no) new tasks towi in phase
k + 1.

Note that if some workers are slowed downdrastically the above system of equations
may yield negativexi values. Since the Monitor strategy does not consider withdrawing
tasks from workers, the corresponding equations are removed, and the linear system is
solved once more, distributing hence tasks among the remaining workers. This process is
repeated until the solution yields no negativexi values.

The task computation timeti reported by workerwi will typically be the mean value
of its η last computation times. Havingη = 1 might give a non-optimal allocation, since
the timing can vary a lot in a dynamic environment. At the other end of the spectrum, a
too high value forη conceals changes in processing speeds, which is also non-optimal.
The parameterη needs to be adjusted for the individual application and/or environment.

Fig. 4.2 shows the allocated batch sizes for the scheduling strategies described in Sec-
tion 4.3.1 as well as the Monitor strategy, when the processors report the task computation
times shown in Fig. 4.3. Note that for the Monitor strategy, we assumeyi = 0 at the be-
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ginning of every phase, meaning that all the processors havecomputed all their assigned
tasks from the previous phase.

Strategy Batch sizes
SC 128 128 128 128
SS 1 1 1 11 1 1 11 1 1 11 1 1 11 1 1 1. . .

GSS 128 96 72 5440 30 23 1713 9 7 54 3 2 21 1 1 11 1 1
TSS 64 60 56 5248 44 40 3632 28 24 208
Fac. 64 64 64 6432 32 32 3216 16 16 168 8 8 84 4 4 4

2 2 2 21 1 1 11 1 1 1
WF 180 32 20 2490 16 10 1245 8 5 622 4 3 311 2 1 2

6 1 0 13 1 0 01 1 0 01 0 0 01 0 0 0
Monitor 1 1 1 1 1 1 1 1177 32 20 2373 27 12 1411 23 13 16

4 7 14 66 3 3 44 1 1 10 2 1 11 2 1 1

Figure 4.2: Batch sizes for various sched. strat. withN = 512 tasks andp = 4
workers.

Proc Task computation times at time steps
1 2 3 4 5 6 7 8 9

1 0.10 0.15 1.01 0.90 0.28 0.29 0.99 0.90 0.89
2 0.56 0.40 0.50 0.48 0.52 0.53 0.47 0.49 0.50
3 0.89 0.90 0.89 0.24 0.67 0.88 0.60 0.66 0.63
4 0.75 0.76 0.74 0.50 0.45 0.70 0.69 0.63 0.62

Figure 4.3: Examples of task computation times for 4 processors at 9 time steps
throughout a computation. Note that forWF, the times at step 1 are used as
weights.

4.4 Implementation

4.4.1 Data staging

In order to improveI /O parallelism, the worker nodes read the necessary input datafrom
theNFSdisk themselves, much like the data staging technique presented in [4]. The master
receives short requests from workers, and answer these requests with a short message
containing only a pointer to the input data to be fetched, thus circumventing the master
bottleneck.

However, because our test-case application has such a high computation toI /O ratio,
our experiments showed that data staging did not have a greatperformance impact for this
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application [9]. Data staging is nevertheless a valuable technique for applications whose
computation toI /O ratio is lower.

4.4.2 Multithreaded processes

In order to avoid processor idleness, we decided to implement a multithreaded approach.
Every worker process is composed of three threads: a main thread for communicating
with the master, a thread for reading input data from disk, and a thread for computing
output data. The main thread requests tasks and buffers themin a task queue until the
number of tasks buffered is above a user defined thresholdφ. It then goes to sleep and
wakes up when the number of tasks in the queue is belowφ. The goal of the main thread
is to keepφ tasks queued at all times. The input reader thread will fetchtasks from the
task queue, and, if the queue is empty, sleep while waiting for a task. Once the task queue
is non-empty, the input reader thread will read and store input data, then add pointers to
the data locations in the input data queue. And this, until the number of input data units
in the queue is aboveφ. It then goes to sleep, and wakes up when the number of input
data units in the queue is belowφ. The procedure is then repeated. The computer thread
works in much the same way as the input reader thread. See [9] for details.

The thresholdφ regulates how soon the workers will request tasks from the master.
Intuitively, φ = 1 might be non-optimal, since the task computer thread might become
idle while the main thread is waiting for the master to allocate a task. Note that since each
worker has two queues of sizeφ, it buffers2φ tasks.

The master process is also multi-threaded, with one thread continuously probing for,
receiving and sending messages to/from workers usingMPI, one thread executing the
scheduling strategy in use, and one worker thread computingtasks on the master proces-
sor. TheMPI thread terminates as soon as all tasks have been allocated, but until that
point, it consumes quite a lot ofCPU time that could have been used by the worker thread.
This means that for the worker thread on the master, a highφ value is optimal, since the
workers will request tasks quickly and theMPI thread will terminate early. This is a side
effect of our non-optimal master architecture, since theMPI thread consumes unnecessary
CPU power. One possible optimization would be to merge the thread for communicating
throughMPI and the thread for executing the scheduling strategy, but this would lead to
non-modular code. Another possible optimization would be to use two threads calling
MPI, one for receiving and one for sending, but this is impossible with the non-thread-safe
MPICH library we had at our disposal. For more on this side effect, see [9].

4.5 Empirical results and analysis

The implemented scheduling strategies were compared for different values ofφ on our
dedicated cluster which is a static environment [9]. Our goal was to find the best schedul-
ing strategy combined with the optimal parametersφ, η andr for the test-case application
running on the test-bed cluster. Note that for the Monitor strategy, we experimentally
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foundr = 4 andη = 20 to be optimal values for our application and cluster [9], andthese
values have been used in the following experiments. The results from our experiments are
shown in Fig. 4.4; for more experiments, see [9].

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

643216831

to
ta

l a
pp

lic
at

io
n 

ru
nn

in
g 

tim
e 

(s
ec

on
ds

)

φ

Fac.
GSS

Monitor
SC
SS

TSS
WF

Figure 4.4: Comparison of sched. strategies with increasing φ values, static envi-
ronment.

These experiments were conducted using 8 nodes, and an imageof size2048 × 2048
pixels decomposed into 1024 blocks, each block corresponding to a task. One interesting
finding is that the Static Chunking strategy performs linearly better when using a larger
φ value. Whenφ increases, the workers request new tasks earlier, hence causing the
termination of the masterMPI thread earlier. This frees resources for the worker thread
on the master, and thus makes it process tasks faster. One might argue that theMPI

thread on the master should have been terminated early regardless ofφ sinceSC only uses
one round of allocation, but in order to be fair, we kept the same master implementation
for all the scheduling strategies. Consequently, all scheduling strategies must take into
account the worker thread on the master which is very slow compared to the dedicated
workers. Therefore,SC is a bad choice in a heterogeneous environment, while it is good
in a homogeneous environment, as shown whenφ = 64.

TheSS, Fac.,WF and Monitor strategies are all quite similar. The reason whywe get
better results withφ = 32 than withφ = 3 is the same as for theSC case. The masterMPI

thread is stopped earlier, and we have one faster worker for the rest of the computation.
With φ > 32, the Monitor strategy performs very badly. One possible explanation for this
is that during the initialization phase, the master computing thread is very slow, and will
be given a small amount of tasks, less thanφ. Consequently, the master computing thread
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will constantly request more tasks. As a result, the scheduling thread will solve a lot of
unnecessary systems of equations further slowing down the computing thread.

Nevertheless, it should be noted that using very highφ values prevents good load
balancing, since in order to allocate tasks when the workersneed them (or slightly before,
to avoid idle time),φ must be kept relatively low.

It is quite surprising that the Self-Scheduling strategy, which has the highest amount
of communication of all strategies, is among the very fastest scheduling strategies. A pos-
sible explanation is that our multi-threaded implementation is able to hide the communi-
cation delays, and because our application has a high computation to I /O ratio. However,
our environment is relatively homogeneous and static, and we expect the Monitor strategy
to outperformSS in a strongly heterogeneous and dynamic environment.

Fig. 4.5 shows speedup results. Note that using e.g. 2 processors means using the
master with its separate worker thread and 1 dedicated worker. With a 512×512-pixel
image, the speedup drops significantly when using more than 4processors. This is due to
using a suboptimal task size for this relatively small imagesize [9]. For the larger image
sizes, the speedup increases when adding more processors. Intuitively, this comes from
the fact that the relatively slow worker thread of the masterprocessor plays a smaller role
when adding more processors. With a sufficiently large imageand 8 or more processors,
we have a close to linear speedup.
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Figure 4.5: The speedup of the application.
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4.6 Conclusions and future work

A novel online scheduling strategy has been designed and implemented. The Monitor
strategy was experimentally compared to implementations of six other popular scheduling
strategies found in the literature. Experiments show that the Monitor strategy performs
excellently compared to these strategies, and should be especially well suited for dynamic
environments.

The monitor strategy implementation involved multi-threading and data staging, two
techniques that decrease processor idle time and increase master utilization. Our test-case
application, the matched filtering algorithm, has a very high computation toI /O ratio,
and consequently data staging is probably unnecessary for this application. Experimental
tests on our cluster show, however, that data staging is a valuable technique for applica-
tions whose computation toI /O ratio is lower. The multi-threaded implementation of the
worker processes, using task queuing mechanisms, is able tohide communication delays
and keep the workers processing data continuously. The excellent performance of both
the Self-Scheduling and the Monitor strategy substantiatethis.

This work could be extended in the following directions. First, running more exper-
iments on other clusters which provide more heterogeneity and more dynamism would
enable to measure the potential of the Monitor strategy.

Second, the Monitor strategy has three user-specifiable parameters,r, η andφ. A way
to determine the optimal values of these parameters online would be desirable. It might
be that an optimal solution in heterogeneous environment necessitate different values of
these parameters for different workers.

Then, the optimal task size used in this study has been found experimentally, but it
would be desirable to determine it online. Two procedures for doing this are discussed
in [9].

Finally, a thread-safeMPI library would enable us to implement the master process
differently [9], which would increase performance.
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Abstract

This paper addresses fundamental parallel computing issues for efficiently par-
allelizing 3D Lattice Gauge Theory models (LGT) on distributed memory sys-
tems. The long-range application stencil of LGT models put together with the
impossibility of updating neighboring lattice sites simultaneously greatly com-
plicates the parallelizing of such simulations. Our algorithms decompose the
domain among the processors, and settle a staggered execution with the help of
virtual tokens that circulate among the processors, allowing the token holders
to update their boundaries. Experimental results show thatthese algorithms are
scalable, and that simple communication trajectories prevail over low surface-to-
volume ratios. Rigorous theoretical results are provided under the LogGP model
to demonstrate the superiority of our approach over other methods found in the
literature.

5.1 Introduction

Lattice spin and gauge theories are studied extensively in many areas of physics, espe-
cially in particle and condensed matter physics. The spin and gauge field variables are
defined on every site of a multi- dimensional lattice, and thethermodynamic properties of
the system can be deduced from the partition function, whichis a sum over all possible
configurations of the fields. Exact solutions to these multi-dimensional sums are rare and
in general one must resort to some numerical approximation.The largest and most impor-
tant class of numerical methods used for this problem is the Monte Carlo (MC) method,
which in stead of doing the sum over all configurations, utilizes random numbers to mimic
the random thermal fluctuations of the system from one configuration to the other. A con-
siderable proportion of the computational resources used by physicists around the world
is spent on MC simulations.
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The excellent price-performance ratio of PC clusters, unmatched by any other high
performance computing platform, promotes the emergence ofdistributed computing. The
availability of inexpensive high performance microprocessors and high speed networks
allows organizations to purchase a powerful cluster at reasonable price. Existing appli-
cations implemented under the shared-memory paradigm mustbe ported to distributed
memory systems, requiring new distributed algorithms. Thekey for efficient paralleliza-
tions on distributed memory systems is to keep the communication overhead to a mini-
mum. This is especially true for PC clusters, which are typically composed of powerful
nodes interconnected by a low-cost communication network.

When using Metropolis MC dynamics, thedetailed balance conditionimplies that
adjacent sites cannot be updated simultaneously [8]. Therefore, when parallelizing such
applications, one must ensure at all times that processors do not update remote but adja-
cent sites simultaneously. Various studies have focused onparallelizing MC simulations
on distributed memory systems [7, 10, 11, 15]. Most of these studies rely on domain de-
composition methods where all the processors are synchronized in order to respect the
detailed balance condition. The main drawback of these methods resides in the commu-
nication phases requiring several message transfers between neighboring processors per
iteration, albeit conventional wisdom argues that data should be grouped for communica-
tion [7,14].

Past efforts to overlap communication with computation forregular domain problems
converge towards an approach which divides the local domaininto an inner region and
an outer region [2, 13, 14]. The inner region is updated whilewaiting for the boundaries
from neighboring processors, and thereafter the outer region is in turn updated. Although
this technique aims at overlapping computation with communication, it also restricts the
number of messages to the minimum, i.e. one per neighboring processor per iteration.
This technique can suit well the parallelization of LGT models on distributed memory
systems, because processors are working simultaneously ondifferent parts of their do-
mains which reduces the starvation imposed by the detailed balance condition. However,
Prieto et al. [13] showed that this computing paradigm may degrade the performance, due
to the large distance between the memory locations of the exterior sites, leading to poor
performance when updating the outer region. This limitation has been incorporated in our
theoretical models, and confirmed by our experiments.

The rest of this paper is organized as follows. Section 5.2 introduces the London
superconductor model, the test-case application used in this study. The parallelizations
of the different domain decompositions are exposed in Section 5.3. Theoretical results
derived under the LogGP model are given in Section 5.4. Experimental results are pre-
sented and discussed in Section 5.6. The superiority of our approach over other methods
found in the literature is exposed in Section 5.7. Finally concluding remarks are given in
Section 5.8.

The experiments reported in this study have been performed on a SMP cluster, called
Snowstorm located at the university of Tromsø (UIT). Snowstorm is a computational clus-
ter composed of100 HP Integrity rx4640 server nodes, each with4 itanium2 processors
clocked at1.3 GHz, 4 GB of memory and 144 GB of internal disk and interconnected
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with the Infiniband network.

5.2 Test-case application

The 3-dimensional London superconductor model, see Equation (5.1), is a typical gauge
theory in which a real valued scalar fieldθ is coupled to a real valued vector fieldA.

Z =

∫

Dθ
∫

DAe
− 1

T
E[θ,A]

E[θ,A] = −
∑

i,µ

[

cos (∆θi − eAi)µ −
1

2
(∆×Ai)

2
µ

]

,

(5.1)

wheree is the charge of the system which couples the scalar fieldθ and the vector fieldA,
and∆ is the lattice difference operator. A thorough descriptionof the London supercon-
ductor model can be found in [4]. The MC algorithm used in thiswork is the celebrated
Metropolis algorithm [12] which can be described the following way.

1. Pick one site in the lattice and suggest new values for the fields at that site.

2. Calculate the difference in energy∆E = Enew − Eold for the move, or update.

3. Draw a random number r∈ [0, 1〉 and accept the new values ifmin{1, e−∆E/T } >
r.

4. Repeat step 1 to 3 until enough statistics is gathered.

The London application domain is a 3-dimensional lattice ofsize (Sx, Sy, Sz) with
periodic boundary conditions. The local energyEs at one sites in the lattice is dependent
on∆θ and∆×A. That is the nearest neighbor ofθ, the nearest neighbors and half of the
next nearest neighbors ofA. More formally, all the sitesadjacentto s are involved in the
computation ofEs.

Definition 5.1. Two lattice sitess1 = (x, y, z) ands2 = (t, u, v) are said to beadjacent
if and only if(t, u, v) ∈ {(x, y, z−1), (x, y+1, z−1), (x+1, y, z−1), (x−1, y, z), (x−
1, y+1, z), (x, y−1, z), (x, y+1, z), (x+1, y−1, z), (x+1, y, z), (x−1, y, z+1), (x, y−
1, z + 1), (x, y, z + 1)}, as depicted in Figure 5.1.

5.3 Domain decomposition and detailed balance con-
dition

Domain decomposition methods divide the global lattice into P local lattices assigned to
each processor. Assigning equally sized portions of the lattice to each processor ensures
that the computational load is well balanced on a homogeneous system. Three different
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y

z

x

Figure 5.1: London’s application stencil. Black sites are adjacent to the grey site.

decompositions are considered in this work. The 1D decomposition divides the global
domain into local lattices of size (Sx, Sy, Bz), where Sz

Bz
= P (see Figure 5.2 b). Each

processor is identified by an integeriz | iz∈[0, P 〉. The 2D decomposition assigns local
lattices of size (Sx,By, Bz), where(

Sy

By
)× ( Sz

Bz
) = P (see Figure 5.2 c). Each processor

is identified by a pair of integers:(iy, iz) | iy∈[0,
Sy

By
〉, iz∈[0, Sz

Bz
〉. At last, the 3D de-

composition divides the global domain intoP local lattices of size (Bx, By, Bz), where

P = ( Sx

Bx
)× (

Sy

By
)× ( Sz

Bz
) (see Figure 5.2 d). Each processor is then identified by a triplet

of integers:(ix, iy, iz) | ix∈[0, Sx

Bx
〉, iy∈[0, Sy

By
〉, iz∈[0, Sz

Bz
〉.
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(a) 1D.
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(b) 2D.
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Figure 5.2: The different domain decompositions.

In order to respect the detailed balanced condition, the processors are sorted into
different color sets, such that processors of the same colorcan update their exterior sites
simultaneously. For the 1D case, two colors are necessary and sufficient, whereas four
colors are necessary for the 2D and 3D decompositions. Then,an ordering is established
among the colors to orchestrate the updates of the outer regions. For the 1D case, green
nodes start ahead of the red nodes, while the color ordering of 2D and 3D decompositions
is 1) green, 2) red, 3) white and 4) blue.

The message passing paradigm provides a natural synchronization mechanism for the
boundary updates. Nodes are allowed to update their outer regions only when they have
received the boundaries from all their neighbors. At start,an initialization takes place in
order to settle the color ordering mechanism. During this initialization, nodes send their
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domain boundaries only to their neighbors preceding in the color ordering. In this way,
the color nodes in first position will be ready to update theirouter regions, while the nodes
in second position will lack boundaries only from the nodes in first position, the nodes in
third position will lack boundaries from the nodes in first and second position, and so on.
To alleviate the exposition, we introduce the concept ofvirtual tokens. The reception of
all the boundaries is liken to the reception of a virtual token, that allows updating the outer
region. Thereafter processors hand on the token by sending their updated local boundaries
to their neighbors.

Different boundary-exchange patterns occur depending on the chosen domain decom-
position. For the 1D case, only vertical boundary-exchanges take place. The 2D decompo-
sition imposes also vertical boundary-exchanges, but in addition, horizontal (along the y-
axis) and diagonal (along the yz-axis) boundary-exchangesare necessary. The horizontal
exchange happens like the vertical one, by exchanging messages between the two nodes
concerned. The diagonal exchange however (where only edgesmust be communicated),
can be performed indirectly via other nodes, by using thediagonal communication elim-
ination technique [5, 7], which consists of including ghost cells inmessages. To perform
correct diagonal exchanges, green and white nodes include ghost cells in their horizon-
tal exchanges, while red and blue nodes include ghost cells in their vertical exchanges.
The 3D decomposition imposes the same boundary-exchanges than the 2D decomposi-
tion. In addition, in-depth (along the x-axis) and diagonal(along the xz- and the xy-axes)
boundary-exchanges must also take place. The in-depth exchange happens like the verti-
cal and horizontal ones, by exchanging messages between thetwo nodes concerned. Most
of the diagonal exchanges can be performed indirectly usingthe aforementioned diagonal
elimination technique. Green and white nodes include ghostcells in the horizontal ex-
change, while red and blue nodes include ghost cells in the in-depth exchange, handling
thus4 diagonal transfers. However, there remains two diagonal transfers that cannot be
handled indirectly and that require additional messages. These are the edges needed by
the nodes which are following the running color in the token round-trip ordering.

When passing the token to the next color, all the nodes of the same color use the same
communication trajectories (i.e. communicate with their neighbors in the same order),
and thus obtain only independent communications, i.e. withdisjoint pairs of senders and
receivers.

5.4 Theoretical models

Santos et al. [15] represent the run-time cost of updating one site of the lattice with a
single variableCs. Then updatingN sites simply lasts forNCs time units. The problem
with such a linear model, is that it does not account fordata locality, a critical aspect with
respect to the cache-based memory hierarchy of modern systems. There are two types of
locality that can be exploited to improve performance when implementing stencil codes.
There isspatiallocality when accessing neighboring points (in address space), and there is
temporallocality when array elements are reused several times before being evicted from
the cache. Typically, parallel implementations that must deal with the detailed balance
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condition, decompose the local lattices into a few number ofregions that are updated one
after another, in alternation with communication events [7, 10, 11, 15]. This has a direct
negative impact on data locality. Indeed, spatial localityis not fully exploited as neigh-
boring sites may not belong to the same region, which by induction degrades temporal
locality, as these sites will be updated at different time steps. In these conditions, lattice
sites will be brought into cache multiple times per iteration. We propose a coarser-grained
computational model, by modeling the run-time costs for updating each region composing
the local domain. Thus, we letTi andTo be the run-time costs for updating the inner and
the outer regions of the domain respectively.

On the other hand, communication modeling has more or less converged towards
an extension of the Hockney’s model [9] which characterizesthe timet for sending a
message ofm bytes as follows:t = τ + γm, whereτ is the latency, andγ the inverse
of the asymptotic bandwidthof the network. Culler et al. [3] have proposed theLogP
model for modeling sequences of point-to-point communications of short messages. LogP
defines theLatencyL incurred in sending a message, theoverheado which is the time a
processor spends sending or receiving a message, thegapg between two messages defined
as the minimum time interval between consecutive message transmissions or consecutive
message receptions, and the number of processorsP . Alexandrov et al. [1] have extended
the LogP model in order to capture both short and long messages. The resulting model,
called LogGP, presents an additional parameterG which is theGap per bytefor long
messages. The cost of sending a k-bytes message in the LogGP model is simplyL +
2o + (k − 1)G, and the cost of sending two messages in a row (of lengthsk1 andk2

respectively) isL + 2o + g + (k1 + k2 − 2)G. LogGP clearly models the important
characteristics of a homogeneous cluster of machines.

5.5 Theoretical results

Although our algorithms support overlapping computation with communication, no over-
lap at all is assumed in this analysis. This assumption seemsto match the underlying
hardware of low-cost PC clusters, and provides a fair comparison with other methods.
The local domains being decomposed into an inner and an outerregions, a sweep does
not terminate before both regions have been updated. Because, outer regions cannot be
updated before the token has arrived, the total run-time cost of a sweep is given by:

T = To + max{Tcom + Ti , Tr} (5.2)

where:

• Tcom is the local communication overhead.

• Tr is the token round-trip run-time cost.

In the remaining analysis, for the sake of simplicity, we assume a global lattice of
size(S × S × S) with B = S/P for 1D,B = S/

√
P for 2D andB = S/

3
√
P for 3D

decomposition.
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5.5.1 1D decomposition

Passing the token to the opposite color involves sending2 consecutive messages com-
posed ofS2 sites. This operation costsL+ 2o+ g + 2(8S2 − 1)G (in double precision).
Since there are only2 colors involved in the computation, we haveTr = To + 2L+ 4o+
2g + 4(8S2 − 1)G. Only 2 messages are sent and received by each nodes which gives
Tcom = 4o.

5.5.2 2D decomposition

The token round-trip goes over four colors, and the boundary-exchanges are composed of
4 messages. However, only the 2 first messages intervene in the token round-trip run-time
cost, as they complete the token transmission to the next color. The two last messages
are intended to a color that is two steps away of getting the token, and therefore do not
delay the token round-trip (assuming they do not congest thenetwork). Starting from the
green nodes, here is what the token round-trip looks like: 2 horizontal communications
with red, 1 surface update (red), 2 vertical communicationswith white, 1 surface update
(white), 2 horizontal communications with blue, 1 surface update (blue) and finally 2
vertical communications with green. By symmetry over the colors, the run-time cost of
the token round-trip is identical for all the color nodes. Sending2 consecutive messages
composed ofS(B+1) sites (including ghost cells) costsL+2o+g+2(8S(B+1)−1)G.
Since the token goes over three colors before coming back, the run-time cost of the token
round-trip is then:Tr = 4L + 8o + 4g + 8(8S(B + 1) − 1)G + 3To. Each node sends
and receives 4 messages which givesTcom = 8o.

5.5.3 3D decomposition

In the 3D case, all the colors must communicate with each other, and the boundary-
exchanges comprise 8 messages. Assume that green nodes are holding the token. After
updating the outer region, each green node sends 4 messages to its red neighbors, which
can from then on start updating their own outer regions. Thereafter 2 messages are sent by
each green node to its white neighbors. In the best case scenario, updating the red outer re-
gion takes more time than the communication between the green and white nodes. Hence
the red-white communication is not delayed by the green-white communication. In the
worst case scenario, the update of the outer region takes less time than the green-white
communication, which delays the red-white communication.Similarly, the white-blue
communication can possibly be delayed by the red-blue communication, the blue-green
communication by the white-blue communication, and the green-red communication can
be delayed by the blue-red communication. Starting from thegreen nodes, here is what
the token round-trip looks like: 1 eventual delay, 2 horizontal and 2 diagonal commu-
nications with red, 1 surface update (red), 1 eventual delay, 2 horizontal and 2 diagonal
communications with white, 1 surface update (white), 1 eventual delay, 2 horizontal and 2
diagonal communications with blue, 1 surface update (blue)and finally 1 eventual delay,
2 horizontal and 2 diagonal communications with green.
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For all the colors the eventual delay is caused by 2 consecutive vertical communica-
tions, each of size8B2 bytes, which together costTv = L+ 2o+ g + (8B2 − 1)G. The
run-time cost of the delay is thenTd = max{Tv−To, 0}. Except the vertical communica-
tions that can provoke a delay in the token transmission, theonly messages that intervene
in the run-time cost of the token round-trip are the 4 first messages sent by each processor,
as they complete the token transmission to the next color set. For each color, 2 messages
of 8(B + 1)2 bytes are followed by 2 diagonal messages of8B bytes which altogether
costsL+ 4o+ 3g + (8(B + 1)2 + 8B − 2)G. The run-time cost of the token round-trip
is hence:Tr = 3To + 4L+ 16o+ 12g+ 8(8B2 + 8B+ 3)G+ 4Td. Each node sends and
receives 8 messages which givesTcom = 16o.

Note that for the 3D case, increasingP to a maximum, would amount to allocate
one single lattice site per processing unit. In fact, the inherent level of parallelism of
the London model would be reached at that point, since the 3D color code depicted in
Figure 5.2 (d) can also be extended to the lattice sites. At all times, only1

4 of the sites can
be updated simultaneously.

5.5.4 Speed-up and efficiency tradeoff

Usually, when the problem size is fixed, an increase in the number of processors can begin
to have a negative impact on the speed-upSp. At some point, adding more resources
causes performance to decrease and speed-down is observed.Interestingly, increasing the
number of processors used by our algorithms will always incur a speed-up improvement.
Off-course, this yields only for reasonably large problem sizes (i.e. that cannot be tackled
by a single processor), and if the network can handle the communications generated by
additional processors. However, improving the speed-up atall costs may come at the
expense of a poor efficiency, defined asEp = Sp/P .

According to Equation set (5.2), the run-time cost of a sweepisT = To+max{Tcom+
Ti , Tr}. When minimizingT , the interesting component is the maximum quantity. For
fixed problem size and fixedP , consider the quantities(Tcom + Ti) andTr.

If (Tcom + Ti) > Tr, the token comes back before the inner region has been updated.
In that case, it will be beneficial to increaseP since it will increase the surface to volume
ratio of the local lattice. In other words,Ti will decrease faster thanTo, which by induction
will tighten up the gap between(Tcom + Ti) andTr, albeit the overhead incurred by the
communications involved in the token round-trip decreasestoo.

But if (Tcom + Ti) < Tr, the processors have already finished to update the inner
region, and are starving while waiting for the token. Increasing further the number of
processors still improves the speed-up, albeit processor starvation may increase. Indeed,
althoughTr would still dominate the maximum quantity of Equation (5.2), increasingP
generates a reduction of the data volumes that need to be processed and exchanged. In
other words, whenP increases,To, Ti andTr decrease. Consequently,T is minimal
whenTi andTo are minimal. The parallel efficiency, however, may degrade as starvation
increases.

Finally, there is a threshold value for which(Tcom + Ti) = Tr, that may be a good
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compromise with respect to speed-up and efficiency. Indeed,such value would accel-
erate the run-time of a sweep without introducing processorstarvation. Going beyond
this threshold, may admittedly improve the speed-up, but would definitely degrade the
efficiency by bringing about starvation. On dedicated systems, this effect is highly unde-
sirable. On the contrary, staying under this threshold willcertainly optimize efficiency,
but will hold back the speed-up.

5.6 Experimental results

The Scali implementation of the Message Passing Interface (MPI) [6] has been used in
this study. MPI features like persistent requests and derived datatypes have been used
for implementing the successive boundary-exchanges. Special care has been taken when
posting and completing the communication requests such that the MPI readycommuni-
cation mode could be used. All these decisions contribute tokeep the communication
overhead to a minimum. For the sake of portability, non-blocking requests have been
used in order to exploit the inherent computation-communication overlap of the comput-
ing paradigm, even though many implementations cannot overlap without extra hardware
in the form of a communication coprocessor.

In our experiments, the number of sweeps was arbitrarily fixed to 500 in order to
highlight differences between the different decompositions while keeping measurement
times relatively low. The processors were exclusively dedicated to our application, which
reduces external interferences to system fluctuations. Finally, the performance curves
presented in this paper correspond to the average values over 3 runs.

Figure 5.3 (a) which is representative of our experiments, reveals that the 1D decom-
position clearly outperforms the other decompositions, although the 2D and 3D decompo-
sitions present better surface-to-volume ratios. Figure 5.3 (b) depicts the(Ti+Tcom)

To
ratio

for the different decompositions. The 2D decomposition clearly presents the best ratio,
while the 3D decomposition only is beneficial for relativelysmall problem sizes, albeit
these ratios are not as large as expected. This observation is in line with the study of
Prieto et al. [13]: Updating separately the inner and outer regions of the local domain
degrades the performance of the outer region update (especially for the 3D decomposi-
tion). This comes from the relatively lower density, or sparsity, of the outer regions, that
incurs non contiguous data access patterns. Moreover, the amount of data required by
LGT simulations is very large, such that even for moderate problem sizes, data do not fit
into processor caches. Indeed, each site composing the lattice represents one scalar field
and three vector fields, i.e. amounts to4 real numbers. In these conditions, a16×16×16
lattice does not fit in the 9MB L3 cache of the itanium2 processor. This contributes to
lower the performance of the outer region update.

But more importantly, the supremacy of the 1D decompositionover the 2D and 3D
decompositions is certainly due to the complicated token round-trip trajectories of the
latter decompositions as opposed to the much simpler trajectory of the 1D case. Indeed,
the 1D token round-trip imposes only1 outer region update and4 messages, as opposed
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to 3 outer region updates and8 messages for the 2D case, and3 outer region updates and
12 messages for the 3D case. For all the experiments, the token round-trip dominates
the total sweep run-time cost, which means that processors are starving, waiting for the
token to arrive. Figure 5.3 (c) illustrates this observation, as the ratio Tr

Ti+Tcom
is much

smaller for the 1D decomposition than for the other ones. Therun-time costs for updating
the inner regions were roughly equivalent for the 3 domain decompositions, which means
that processors are starving longer under the 2D and 3D decompositions than for the 1D
decomposition.

Nonetheless, the token-passing algorithms expose bothstrong andweakscalability
(see Figure 5.3 (d)). Strong scalability means that, for fixed problem size, the speed-
up is roughly proportional to the number of processors used.On the other hand, weak
scalability means the ability of maintaining a fixed efficiency when the problem size and
the number of processors increase. The 1D token-passing algorithm presents an efficiency
greater than0.25 for all the experiment conducted on the Snowstorm cluster. For problem
sizes of interest for the physicists at NTNU (up to963), the efficiency of the 1D algorithm
is above0.33.
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5.7 Related work

MC simulations for the Ising model, which uses only nearest-neighbors interactions,
have been successfully implemented on shared-memory systems with checker-board al-
gorithms. The lattice sites are sorted into a red set (where sum of coordinates is even) and
a black set (where sum of coordinates is odd) in a checker-board fashion. Thus, all the red
sites can be updated simultaneously, and so it is for the black sites. Checker-board algo-
rithms have been ported onto distributed memory systems by numerous studies [7,8,11].
For each sweep, all the processors start by updating one color set, say the red one. There-
after the nodes exchange the red sites located on the boundaries, and do the same with the
black set. This approach performs boundary-exchanges withtwo messages per boundary.
For longer-range interactions models, such as the one presented in this study, new updat-
ing schemes that fit with the stencil application must be applied. In these conditions, the
checker-board is likely to be composed of four colors, leading to boundary-exchange with
four messages per boundary. For the London superconductor model, the color mask that
could be utilized by a checker-board algorithm is the one depicted in Figure 5.2 (d), where
each cube corresponds to a lattice site.

Recently, Santos et al. [15] conducted research on MC simulations for 2D and 3D
Ising models in another direction. Each local domain is divided into different regions,
that are updated one after another, in alternation with communication events. For each
sweep, all the processors update the same region of their local domain, in order to avoid
situations where remote but adjacent site updates would enter in conflict. Then some
boundary-exchanges take place, allowing the parallel computation to proceed with the
next region. The number of regions composing the local domain is dependent on the
chosen decomposition (2 for 1D, 3 for 2D, and 4 for 3D). The result is an increase of the
number of messages required for the boundary-exchanges, namely 2 for 1D, 8 for 2D, and
24 for the 3D decomposition.

The two aforementioned methods handle the detailed balancecondition by increasing
the number of messages per boundary-exchange, which can considerably increase the
communication phase run-time cost. This results from the synchronization imposed to
the processors. In effect, at all times, the processors update the same region of their local
domains in concert. Table 5.1 reports the sweep run-time costs of the methods found in the
literature when applied to a simplified version of the Londonsuperconductor model, and
compares them to the algorithms proposed in this paper.Tcol stands for the run-time cost
for updating the sites of a given color when using a checker-board algorithm, andTcomp
stands for the run-time cost for updating all the regions composing the local domain when
using the Santos methods.

When deriving these theoretical results, first we assumed that processors can send
and receive messages simultaneously without additional cost. This situation is ideal for
the checker-board and Santos methods, but does not favor thetoken-passing algorithms.
Then, we assumed the token round-trip time to dominate the total sweep run-time. This is
conform to what has been observed in our experiments, and corresponds to the worst case
scenario.
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1D 4Tcol + 4L+ 8o+ 4g + (16S2 − 8)G
CB 2D 4Tcol + 4L+ 8o+ 12g + (32SB − 16)G

3D 4Tcol + 4L+ 8o+ 20g + (48B2 − 24)G

1D Tcomp + 2L+ 4o+ (16S2 − 2)G
[15] 2D Tcomp + 3L+ 16o+ 5g + (32SB − 8)G

3D Tcomp + 4L+ 48o+ 20g + (48B2 + 18)G

1D 2To + 2L+ 4o+ 2g + (32S2 − 4)G
TP 2D 4To + 4L+ 8o+ 4g + (64SB − 8)G

3D 4To + 4L+ 16o+ 12g + (64B2 − 16)G

Table 5.1: Comparison with other methods found in the literature (CB checker-
board, Santos et al. [15] and TP token-passing).

Even under the aforementioned assumptions, favoring the two other methods, the
token-passing algorithms seem to be the most appropriate. For small computation-to-
communication ratios (the difficult case), the start-up andlatency costs will dominate the
communication phase. In that case, our algorithms will mostlikely perform better, be-
cause exchanging fewer messages per iteration. On the otherhand, when computation
dominates the sweep run-time cost, the token-passing algorithms that decompose the do-
main into fewer regions, will much likely better utilize thememory hierarchy of modern
processors.

Finally, there are several situations where the token-passing algorithms clearly out-
perform the other methods. For instance, many MPI implementations do not support
simultaneous send and receive operations. A typical example is the implementation of
the MPI Sendrecv routine, which often resorts on odd-even orderingof communications
resulting in a serialization of the messages. Thus, the amount of bytes transferred would
be multiplied by 2 for the checker-board and Santos methods.In contrast, the run-time
cost of the token-passing algorithms, which separate the message transmissions from the
receptions, would remain unchanged. Then, for applications that present a high enough
computation-communication ratio, computation would become the dominating factor of
the total sweep run-time cost. In that case, the token would come back before the inner
region update terminates, restricting thus the communication overhead to the minimum.

5.8 Conclusion

This paper addresses the difficult task of parallelizing LGTmodels on distributed memory
platforms. The token-passing algorithms presented in thispaper provide a mean to effec-
tively orchestrate boundary-updates in order to cope with the detailed balance condition.
These parallel algorithms combine efficient techniques fordomain decompositions meth-
ods, such as diagonal elimination and can take advantage of computation-communication
overlap if this feature is supported by the system, as opposed to previous studies presented
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in the literature. The main departure from previous LGT studies consists in minimizing
the number of messages exchanged during the computation. This has been possible by
staggering the parallel execution, i.e. by making the processors work simultaneously on
different parts of their local domains. However, decomposing the domain into an outer
and an inner regions comes at the expense of a reduced performance when updating the
outer region, because of its lower density.

Nonetheless, we observed that increasing the number of processors still generates a
speed-up improvement. Although the 2D and 3D decompositions present lower surface-
to-volume ratios, the 1D decomposition achieves the best performance due to its simpler
token round-trip communication patterns. This signifies that the London LGT model ex-
hibits a too low computation-to-communication ratio on thecluster used in this study, to
take advantage of the 2D and 3D decompositions. Finally, we provide rigorous theoretical
results for all the domain decompositions under the LogGP model, and show the superi-
ority of our approach over other methods found in the literature, for different system and
problem configurations.

The algorithms presented in this study assume a homogeneoussystem dedicated to
the application. However, emerging clusters are usually multi-users systems composed of
heterogeneous resources, allowing several independent applications to run concurrently.
Developing new techniques and algorithms that cope with andrespond to heterogeneity,
instability and system fluctuations is the direction for future work.
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Abstract

This paper investigates the utilization of the master-slave (MS) paradigm as an al-
ternative to domain decomposition (DD) methods for parallelizing lattice gauge
theory (LGT) models within distributed memory environments. The motivations
for this investigation are twofold. First, LGT models are inherently difficult to
parallelize efficiently with DD methods. Second, DD methodshave proven use-
ful for homogeneous environments, but are impractical for heterogeneous and
dynamic environments. Besides, many modern supercomputerarchitectures that
look homogeneous (such as multi-core or SMP), are in fact heterogeneous and
dynamic environments. We highlight this issue by comparinga traditional first-
come first-served MS implementation to a simple but yet efficient selective MS
scheduling strategy that automatically accounts for system heterogeneity and
variability. Our experimental results with the parallelization of our LGT model,
reveal that the selective MS implementation achieves good efficiency, but lacks
of scalability. In contrast, the DD method is highly scalable, but at the expense of
a poor efficiency. These results open up for a hybrid approach, where the MS and
the DD methods would be combined for achieving scalable highperformance.

6.1 Introduction

Domain decomposition (DD) methods have been studied extensively because of their util-
ity in a wide range of application areas such as, physics, chemistry, solid and fluid me-
chanics, or climate modeling. Domain decomposition on parallel computers consists in
splitting the computational domain into smaller sub-domains, each of which is assigned
to one processor. Then, during the execution, computation and communication phases al-
ternate, as neighboring processors (in the topological decomposition) need to periodically
exchange data located on the boundaries of their local domains.



162 Paper 6

On the one hand, the efficiency of DD methods is strongly affected by the hetero-
geneity and variability present in the underlying computing system. Indeed, DD methods
are efficient only when the computational load is well balanced among the processors.
The processors being tightly coupled by the communication phases, the execution pro-
ceeds at the pace of the slowest processor. For homogeneous and stable systems, the
computational domain needs simply to be decomposed intop equally-sized sub-domains.
For heterogeneous environments on the other hand, things get complicated as the domain
must be decomposed intop sub-domains whose size must be proportional to the processor
computational speeds. In dynamic environments, where resources exhibit unforeseeable
performance fluctuations, things get even worse, as it becomes necessary to frequently
redistribute the computational domain among the processors.
In addition, many modern supercomputer architectures (such as multi-core or SMP clus-
ters) that look homogeneous, hide in fact an heterogeneous and dynamic environment.
For instance, processors located within the same node are actually competing for shared
resources (e.g. caches), and intra-node communication is typically much faster than inter-
node communication. The impact of the heterogeneity and variability hidden in the system
on the performance of DD methods is difficult to evaluate, butundoubtedly degrades the
performance.
Last but not least, an important issue concerns fault tolerance. Currently, the most com-
mon technique for handling fault tolerance within DD methods is checkpoint/restart. That
is, checkpoints are saved to disk periodically, and if a processor fails, the computation
halts and restarts from the last consistent checkpoint. Forlengthy applications that make
use of a large number of processors, failures are more likelyto be the rule rather than the
exception. In these conditions, the checkpoint/restart technique could take longer than
the time to the next failure. Hence, there is a need to survivefailures without relying on
global recovery operations.

On the other hand, the efficiency of DD methods is directly subject to the characteris-
tics of the scientific problem to be solved. Some problems aremore suited to DD methods
than others. In this paper, we are interested in lattice gauge theory (LGT) models, a class
of Monte Carlo (MC) simulations particularly difficult to parallelize efficiently with DD
decompositions in distributed memory environment (i.e. when message passing is un-
avoidable).
LGT models belong to the wide class ofstencil computations, where typically, each site
in a multi-dimensional lattice is updated with contributions from a subset of its neighbors
(see Figure 6.1). For each iteration, the stencil kernel is applied to all the lattice sites -
usually the boundaries receive a special treatment.
When parallelizing LGT models with DD methods, one must ensure at all times that
processors owning neighboring sub-domains do not update adjacent sites simultaneously.
Although neighboring lattice sites may be updated in any order, physical properties im-
pose these updates to happen sequentially, creating thus constraining data dependencies.
The message passing paradigm provides a simple and natural way to orchestrate the lat-
tice updates without violating these data dependencies. Communication events can be
used astokens, such that incoming messages from neighboring processors trigger the up-
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date of the corresponding sub-domain boundary. However, inthe case of LGT models,
this technique introduces a significant amount of idle time on the processors, degrading
significantly the parallel efficiency.

Thus, there are two main reasons for considering an alternative way to DD methods:
The inadequacy of DD methods for dealing with heterogeneousand dynamic environ-
ments; and the lack of efficiency of DD methods for parallelizing LGT models. In this
paper, we study the suitability of the master-slave paradigm (MS) as an alternative to DD
methods for implementing LGT models within distributed memory environments. The
MS paradigm admittedly comes along with some limitations, but presents most of the
features required for dealing not only with LGT models, but also with heterogeneous and
dynamic environments.
In its simplest form, the MS paradigm works as follows. The master initially distributes
one task to every slave. The slaves compute their tasks and send the results back to
the master, which triggers the latter to send additional tasks. The main assets of the
MS paradigm areflexibility and robustness. As slaves execute tasks at their own paces,
they will automatically request tasks proportionally to their computing speeds. This is
popularly known asself-scheduling, demand-drivenor first-come first-served(FCFS). By
construction, FCFS adapts well to the performance fluctuations of the computational re-
sources. If a slave suddenly gets some external load, it willprocess tasks less rapidly, and
hence request tasks less frequently. When the conditions get back to normal, the slave
will request tasks at its maximal pace. However, FCFS is not efficient when point-to-
point communication times are heterogeneous. In that case,resource selection strategies
become necessary in order to efficiently utilize the available computing and communica-
tion resources. In this paper, we show that a simple, yet effective, selectivescheduling
scheme is more appropriate for dealing with heterogeneous and dynamic environments
than the traditional FCFS strategy.
Finally, the loosely coupled structure of the MS paradigm presents only onesingle point
of failure in the form of the master process. This means that one only needs to backup the
master node to achieve reliability. If some slave processesdie, the computation can still
carry on with the remaining slaves.

The rest of this paper is organized as follows. Section 6.2 reviews previous work
related to LGT model parallelizations, DD methods and the MSparadigm. Section 6.3
introduces the LGT model considered in this study. The DD andMS parallelizations of
the LGT model are presented respectively in Section 6.4 and Section 6.5. In addition,
our MS selective scheduling strategy is exposed and compared to the FCFS strategy in
Section 6.5. Section 6.6 reports an experimental comparison between the MS and the DD
implementations. Future work is discussed in Section 6.7. Finally concluding remarks
are given in Section 6.8.
The experiments reported in this study have been performed on a SMP cluster composed
of 100 HP Integrity rx4640 server nodes. Each SMP node comports4 itanium2 proces-
sors clocked at1.3 GHz sharing4 GB of memory. The100 SMP nodes are interconnected
with the Infiniband network.
In all the experiments reported in this paper, the number of iterations was arbitrarily fixed
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to 500 in order to highlight differences between the different implementations while keep-
ing measurement times relatively low. The experiments wereperformed on a dedicated
set of computing nodes, which reduces external interferences. Finally, all the performance
curves reported in this study correspond to the average values over3 runs.

6.2 Related work

Several studies have considered parallelizing MC simulations using DD methods [3, 13,
17,21,29]. MC simulations for the Ising model, which uses only nearest-neighbors inter-
actions (6-point stencil in3 dimensions), have been successfully implemented on shared-
memory systems with checker-board algorithms. The latticesites are sorted into a red
set (where sum of coordinates is even) and a black set (where sum of coordinates is odd)
in a checker-board fashion. Thus, all the red sites can be updated simultaneously, and
so it is for the black sites. Checker-board algorithms have been ported onto distributed
memory systems by several studies [13,15,21]. For each iteration, all the processors start
by updating one color set, say the red one. Thereafter the nodes exchange the red sites
located on the boundaries, and do the same with the black set.This approach performs
boundary-exchanges with two messages per boundary. For longer-range or more complex
interactions models, such as the one presented in this study, new updating schemes that fit
with the stencil kernel must be applied. In these conditions, the checker-board is likely to
be composed of at least four colors, leading to boundary-exchanges with four messages
per boundary.

Santos et al. [28, 29] conducted research on MC simulations for 2D and 3D Ising
models in another direction. Each local domain is partitioned into different sets, that are
updated one after another, in alternation with communication events. For each iteration,
all the processors update the same set of their local domain,in order to avoid situations
where remote but adjacent site updates would enter in conflict. Then some boundary-
exchanges take place, allowing the parallel computation toproceed with the next set. The
number of sets composing the local domain is dependent on thechosen decomposition
(2 for 1D, 3 for 2D, and 4 for 3D). The result is an increase of the number of messages
required for the boundary-exchanges (namely 2 for 1D, 8 for 2D, and 24 for the 3D de-
composition).

The two aforementioned methods handle the data dependencies between neighboring
sites by increasing the number of messages per boundary-exchange, which considerably
increases the communication run-time cost. Recently, we provided token-passing algo-
rithms based on DD methods that minimize the number of messages exchanged between
neighboring processors [3]. Our algorithms are presented and explained in great details
in [3], but we provide a brief summary in Section 6.4.

Although DD methods are relatively easy to deploy efficiently on homogeneous envi-
ronments, dealing with heterogeneous and dynamic environments is a much more compli-
cated task. Several studies have been conducted on deploying DD methods within hetero-
geneous environments [4,5,18,19,22]. In most cases, the problem is reduced to the prob-
lem of partitioning some mathematical objects, such as matrices, sets or graphs [9]. The
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main difficulty resides in the combinatorial nature of the problem which typically turns
out to be NP-complete. Even though efficient (i.e. polynomial) heuristics are derived, the
dynamic nature of the underlying platform makes static strategies not well suited to these
environments. In dynamic environments, the processor speeds and network contention
will fluctuate during the execution requiring online load redistribution mechanisms. On-
line redistribution is difficult to handle, as it poses the question of when should one re-
distribute the load? And how to measure the quality of a load distribution? Beaumont
et. al. [6] consider the matrix multiplication problem in heterogeneous and dynamic en-
vironments, and propose to redistribute the load only between large static-phases. Still,
one must find a good load redistribution frequency, since a too conservative approach may
not result in significant improvements, wheras being too aggressive may incur too much
overhead. An important point stressed by Beaumont et. al. isthe necessity to minimize
the amount of communication when redistributing the load. The amount and location of
the data should be taken into account in order to maintain therelative position of the pro-
cessors, otherwise the cost of the redistribution may be prohibitive. Similarly Mahanti
and Eager [22] find that data migration costs should be minimized for efficient redistribu-
tion, and propose redistribution policies that try to leavethe relative position of the nodes
unaltered. In their work, Mahanti and Eager consider data redistribution following addi-
tion/removal of processors.
Although these studies on DD methods within heterogeneous environments present in-
teresting results that give insights on the problem difficulties, these different strategies
typically rely on a centralized algorithm to (re)distribute the work among the heteroge-
neous processors. This clearly poses the question of the scalability of the approach. On
the other hand, the problem of online load redistribution frequency is difficult to address
without disposing of some form of centralized information about the platform state.

Similarly to DD methods, the MS paradigm is well known and hasbeen the subject
of a wealth of studies both in the context of Cluster computing [10, 24, 25] and of Grid
computing [7, 12, 16]. Usually the applications implemented under the MS paradigm are
composed of a large number of independent tasks. All the popular scheduling strategies
designed for minimizing the total execution time, hand out tasks by chunks of decreasing
size, in order to reduce the scheduling overhead while achieving a good load balance at
the end of the execution [14]. However, this kind of MS strategies cannot be utilized in
our study, because the tasks composing our target applications are not fully independent
of each other (more on this in Section 6.5).

6.3 Our lattice gauge theory model

Lattice spin and gauge theories are studied extensively in many areas of physics, espe-
cially in particle and condensed matter physics. The spin and gauge field variables are
defined on every site of a multi-dimensional lattice, and thethermodynamic properties of
the system can be deduced from the partition function, whichis a sum over all possible
configurations of the fields. Exact solutions to these multi-dimensional sums are rare and
in general one must resort to some numerical approximation.The largest and most impor-
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tant class of numerical methods used for this problem is the Monte Carlo (MC) method,
which in stead of doing the sum over all configurations, utilizes random numbers to mimic
the random thermal fluctuations of the system from one configuration to the other. A con-
siderable proportion of the computational resources used by physicists around the world
is spent on MC simulations.

The LGT model studied in this paper is a superconductor modelin which a real valued
scalar field is coupled to a real valued vector field. This model is a simplified version of
the one presented in [1]. The MC algorithm used for the simulations is the celebrated
Metropolis algorithm [23] which can be described the following way.

1. Pick one site in the lattice and suggest new values for the fields at that site.

2. Calculate the difference in energy∆E = Enew − Eold for the move, or update.

3. Draw a random number r∈ [0, 1〉 and accept the new values ifmin{1, e−∆E/T } >
r.

4. Repeat step 1 to 3 until enough statistics are gathered.

The computational domain is a 3-dimensional lattice with periodic boundary condi-
tions. The charge of the system (reparted among all the lattice sites) couples a scalar field
and a three-dimensional vector field. Hence, to each latticesite are associated4 double
precisions real numbers. The local energyEs at one sites in the lattice is dependent on
the nearest neighbor ofs, and half of the next nearest neighbors ofs. More formally, all
the sitesadjacentto s are involved in the computation ofEs.

Definition 6.1. Two lattice sitess1 = (x, y, z) ands2 = (t, u, v) are said to beadjacent
if and only if(t, u, v) ∈ {(x, y, z−1), (x, y+1, z−1), (x+1, y, z−1), (x−1, y, z), (x−
1, y+1, z), (x, y−1, z), (x, y+1, z), (x+1, y−1, z), (x+1, y, z), (x−1, y, z+1), (x, y−
1, z + 1), (x, y, z + 1)}, as depicted in Figure 6.1.

y

z

x

Figure 6.1: Stencil of the LGT model. Black sites are used to update the grey site,
they areadjacentto the grey site.
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6.4 Domain decomposition implementation

In [3], we proposed token-passing algorithms based on DD methods that minimize the
amount of communication, i.e. one message per neighboring processor per iteration. Our
token-passing algorithms are built upon a classic technique for allowing communication
overlap with computation in DD computations. The idea is to partition each local domain
into an inner set and an outer set [2,26,27]. The inner set is updated while waiting for the
boundaries from neighboring processors, and thereafter the outer set is in turn updated.
The reception of all the boundaries is liken to the receptionof a virtual token, that allows
updating the outer set. Thereafter processors hand on the token by sending their updated
local boundaries to their neighbors.
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(a) 1D.
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(b) 2D.
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Figure 6.2: The different domain decompositions.

In order to respect the data dependencies imposed by the LGT model (sequential
updates of adjacent lattice sites), the processors are sorted into different color sets (see
Figure 6.2), such that processors of the same color can update their exterior sites simul-
taneously. For the 1D case, two colors are necessary and sufficient, whereas four colors
are required for the 2D and 3D decompositions. Then, an ordering is established among
the colors to orchestrate the updates of the outer sets. For the 1D case, green processors
start ahead of the red processors, while the color ordering of 2D and 3D decompositions
is 1) green, 2) red, 3) white and 4) blue. Figure 6.3 sketches the parallel execution of the
token-passing algorithm based on a 2D decomposition.
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Figure 6.3: Sketch of the token-passing algorithm with a 2D decomposition.
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MPI features like persistent requests and derived datatypes have been used for im-
plementing the successive boundary-exchanges. Special care has been taken when post-
ing and completing the communication requests such that theMPI readycommunication
mode could be used. All these decisions contribute to keep the communication overhead
to a minimum. Also, we used thediagonal communication eliminationtechnique [8,13],
which consists of including ghost cells within messages in order to avoid diagonal com-
munications for exchanging lattice sites located on the edges of the sub-domains.. At last,
for the sake of portability, non-blocking requests have been used in order to exploit the in-
herent computation-communication overlap of the partitioning method, even though many
implementations cannot overlap without extra hardware in the form of a communication
co-processor.
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Figure 6.4: Speed-up of our token-passing algorithms basedon DD methods. Re-
produced from [3].

Figure 6.4 (a) depicts the respective speed-up of the three different token-passing
algorithms when using 32 processors. The better performance of the 1D decomposition
over the 2D and 3D decompositions is certainly due to the complicated token round-
trip trajectories of the latter decompositions as opposed to the much simpler trajectory
for the 1D case. Indeed, the 1D token round-trip imposes only1 outer set update and4
messages, as opposed to3 outer set updates and8 messages for the 2D case, and3 outer set
updates and12 messages for the 3D case (see [3] for a thorougher performance analysis).
For all the experiments, the token round-trip dominates thetotal iteration run-time cost,
meaning that processors are starving, waiting for the tokento arrive. The run-time costs
for updating the inner sets were roughly equivalent for the 3domain decompositions,
which means that processors are starving longer under the 2Dand 3D decompositions
than for the 1D decomposition.

Although, Prieto et al. [26] showed that the separation of the inner and outer set
updates may degrade the performance due to the large distance between the memory lo-
cations of the exterior sites (causing a poor cache memory exploitation when updating the
outer set), we found that our token-passing algorithms werescalable with an efficiency
comprised between0.25 and0.5 depending on the problem size and number of proces-
sors utilized (see Figure 6.4 (b)).
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6.5 Master-slave implementation

6.5.1 Task partitioning

The sites of the 3-dimensional lattice must be partitioned into disjoint sets to allow for
parallel execution. The goal is to enable the processors to work on different parts of the
lattice simultaneously. We rely on the same domain decomposition and the same color
code than the ones used for the DD implementation of the LGT model (see Figure 6.2),
such that blocks of the same color can be processed simultaneously. In our context, each
block represents a task to be scheduled by the master.
Depending on the chosen decomposition and the LGT model stencil, different dependen-
cies take place between neighboring blocks of different colors. For the 1D decomposition,
each block is dependent on2 blocks of the opposite color (above and beneath). For the
2D decomposition, each block is dependent on2 blocks of each of the other colors. At
last, for the 3D decomposition, each block is dependent on4 blocks of each of the other
colors.

In order to respect the site update dependencies, the masterdeals with one color at
a time. Thus the scheduling overhead on the master node is alleviated by only keeping
track of block dependencies from one color to another. To detect block eligibility, the
master maintains for each block a dependency variable (integer), as well as pointers to
the dependency variables of the adjacent dependent blocks.Initially all the dependency
variables are set to the number of dependencies generated bythe task partition. Upon
reception of a computed block, the variables of all the adjacent blocks are decremented,
and if some of them become equal to zero, the corresponding blocks become eligible for
computation. In that case, the block pointers are inserted into a FIFO queue holding all
the blocks eligible for computation. This mechanisms relieves the master from waiting for
the termination of a given color to switch over the next color. Instead, the color transition
happens smoothly by delegating blocks as soon as they becomeeligible for computation.

The master must decompose the global lattice in such a way that there are enough
blocks available to the slaves. On the one hand, the number ofblocks should be large
enough in order to dispose of enough eligible tasks at all times to keep the slaves busy.
On the other hand, the master should determine an appropriate task size in order to reduce
the overhead incurred by the total amount of communication combined with the post pro-
cessing of the blocks (copy operations due to the periodic conditions of the 3-dimensional
lattice).

The first thing to determine is which task partitioning scheme gives the best perfor-
mance. This includes finding the best domain decomposition and the optimal block size.
A simple way to compare the different task partitioning consists in estimating the ratioα
between the time it takes a slave to process a task, and the time it takes the master to send
the task, receive the associated results and post-process the task. The ratioα gives an in-
dication on how scalable is the MS implementation. The larger this ratio is, the better will
perform the MS implementation, as it would be able to use moreprocessors. Actually,
this ratio gives an indication on the number of slaves that the master can handle, assuming
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that the slaves have homogeneous computing and communication characteristics.
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(c) 3D task partition.

Figure 6.5: Estimating theα ratio for different problem and task sizes. Note that
the task decomposition schemes must deal with lattice size constraints that dictate
the sizes and shapes of the blocks. Hence, the more dimensions are used by the
task partitioning scheme, the smaller the tasks can be.

Figure 6.5 reports the results of an experiment with2 processors (a master and a
slave), for different problem and task sizes. The experimental values for the differentα
ratios obtained during this experiment indicate that the master would not be able to handle
more than6 slaves on the test-bed machine, which might seem a low numberat first sight.
In addition, when problem size increases, theα ratio decreases. For every decomposition,
a good task size seems to be situated between250 and500 MB.

The 2D decomposition performs slightly better than the other ones, most likely due to
the shape of the blocks and consequently to the derived datatypes involved in the commu-
nications. Indeed, when delegating a task, the master must extract a block from the global
lattice, whose shape depends on the chosen decomposition. The 2D decomposition is a
good compromise between few large blocks (1D) and many smallblocks (3D).

6.5.2 Selective scheduling

Because our computational domain is decomposed into relatively few tasks that become
eligible for computation alternatively throughout the computation, we aim at task through-
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put maximization instead of total run-time minimization. Our scheduling strategy consists
in handing out the tasks one-by-one, in a demand-driven fashion. If several slaves are
competing for a task, then the master must decide which one toserve according to a
priority scheme.

Since all the tasks are computationally identical, we letPs(t) denote the time it takes
to slaves to process a task at time-stept. Further, it takesCs(t) time units for the master
to send a task to slaves at time-stept, andC ′

s(t) time units for the slaves to return the
results to the master at time-stept.

Our MPI parallel implementation involves advanced programming techniques such
as derived datatypes, non-blocking communications and persistent requests. This compli-
cates the online monitoring of the different communicationevents. Therefore, for each
slaves, we define thetask round-tripat time stept, notedRs(t), as follows:Rs(t) =
Cs(t) + Ps(t) + C

′
s(t), that corresponds to the time it takes for sending a task to slave

s plus the time it takes slaves to compute the task plus the time it takes to send the re-
sults back to the master. Throughout the computation, the master can monitor the value
Rs of each slave in order to make efficient scheduling decisions. Thus, we account for
the possible performance fluctuations of both computation and communication resources
throughout the computation. MonitoringRs simply consists in starting a timer right be-
fore sending a task to a slave, and stopping the timer when theresults have returned.

When several slaves are in competition for receiving a task,the master will choose the
one with the smallestRs value. Indeed, no distinction is made between the computation
and communication run-time costs relative to a slave, sincethe tasks are not really inde-
pendent of each other. It is indeed, important that tasks come back as soon as possible in
order to allow other tasks to become eligible for computation.

At the beginning of the execution, all the slaves are given a task, which allows to
initialize all theRs values. Then, as the computation proceeds, theRs values are updated
with the newest value measured by the master. More advanced methods based on averages
over the lastn values or on performance predictions exist [30], but our simple method gave
satisfactorily results.

6.5.3 FCFS vs. selective scheduling

To demonstrate the need for priority schemes, we compared our selective scheduling strat-
egy to the FCFS scheme, which works without priorities. Figure 6.6 (a) depicts the ratio of
the task throughput of the selective scheme over the task throughput of the FCFS scheme.
Clearly, selective scheduling achieves a higher throughput than FCFS in most situations.
This phenomenon strengthens as the number of slaves increases, which corroborates our
hypothesis that intra-node interferences as well as inter-node communications introduce
heterogeneity and variability in the computing environment.

Figures 6.6 (b) and (c) report the task share among the slavesfor the selective and
FCFS schemes respectively. We observe that for the selective scheme,3 slaves get a big-
ger share of the tasks than the others. This is not surprisingsince each SMP node is com-
posed of4 processors, meaning that3 slaves are located on the same node as the master.
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Figure 6.6: Comparison of the selective and FCFS schemes forL = 1283.

The intra-node communication (shared-memory) being faster than inter-node communi-
cation (message passing), the slaves located on the same SMPnode as the master will be
prioritized if they are in concurrency with other slaves located on a different SMP node
because exhibiting a smallerRs value. This phenomenon is less visible for the FCFS
strategy.

Finally, note that the cluster was used in dedicated mode, meaning that no external
load other than operating system calls or network contention fluctuations interfered with
our application. Consequently, all the nodes have roughly the same computing power
which explains the linearity of the curves. Nonetheless, when using a high number of
slaves, the selective scheme seems to adapt to some interferences that take place, while
the FCFS scheme maintains a fair share of the tasks. Thus, although the systemlooks ho-
mogeneous, there are still a certain amount of heterogeneity and variability in the system
that degrade the overall performance.

6.6 Domain decomposition vs. master-slave

Figure 6.7 reports the speed-up and efficiency obtained withthe selective MS implementa-
tion using a 2D task partitioning scheme (Figures (a) and (c)), and with the token-passing
algorithm using a 1D decomposition (Figures (b) and (d)). One can observe that the MS
implementation scales well up to6 slaves, and thereafter begins to saturate. This result
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conforms with the experiment conducted for determining theappropriate task partitioning
schemes (see Section 6.5.1) predicting that the master could not handle more than6 slaves
efficiently.
Note that the MS implementation achieves a perfect speed-upup to3 slaves (if the master
is not accounted). When using more than3 slaves, the inter-node communications begin
to drive the performance away from optimality.
The poor performance of the MS implementation for small problem sizes (L = 483 and
L = 643) comes from our task partitioning scheme that utilizes blocks of size greater
than250 MB. Thus, for small problem sizes, there were simply not enough independent
tasks to feed all the slaves. In such situation, one should use a finer grained task partition
scheme, albeit there is a limit on how small a task can be.
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(c) MS efficiency (2D task partitioning).
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Figure 6.7: Comparison of the selective MS and the DD implementations.

As opposed to the MS implementation, the DD implementation is highly scalable,
albeit this comes at the expense of a poor efficiency. For a small number of processors,
the DD implementation is less efficient than the MS implementation. Hence, it seems that
the MS approach is better suited for dealing with our LGT model than parallel algorithms
based on DD methods. However, the lack of scalability of the MS implementation makes
it useless for large-scale simulations.
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6.7 Future work

The natural solution to tackle the lack of scalability of theMS paradigm, is to deploy sev-
eral masters [20]. A direction for future work would be to design a hybrid approach where
the MS paradigm and DD methods would be used in concert. The computational domain
would be decomposed among few processors (the masters), buteach master would update
its sub-domain using the MS paradigm. The number of masters to deploy depends on the
problem to be solved as well as on the underlying computing system. For our LGT model
and our SMP cluster, a master could manage a SMP node (or span over two SMP nodes).
Such hybrid approach combines the benefits of the two paradigms: The MS flexibility
with the DD scalability. Interestingly, inter-master loadbalancing could be tackled at two
levels. First, the computational load can be redistributedbetween masters. This approach
makes it possible to use existing load redistribution strategies [4–6,18,19,22]. But a more
promising approach would be to handle the load redistribution as a slave redistribution.
If a master experiences a lack of computing power from its slaves, it could request addi-
tional slaves from other masters. Hence, slaves could be traded between masters on de-
mand. This “computing-power” balancing mechanism is more flexible and practical than
traditional load-balancing algorithms, as data would not need to be migrated throughout
the computation.

Fault tolerance still becomes easier to handle as one needs only to back-up the master
processes. For that matter, note that any slave can act as a master whenever needed.
Hence, masters can periodically back-up their data, by sending a copy to one or few slaves
that would replace them in case of failure. For such implementations, one could use the
Fault Tolerant MPI library (FTMPI) [11], which offers a range of recovery options other
than just returning to some previous check-pointed state. This is especially useful in the
case of slave failure since the computation can in principleproceed seamlessly.

6.8 Conclusion

High performance computing systems are no longer stable andfully homogeneous. This
greatly complicates the efficient deployment of traditional DD methods, since applications
must deal with system heterogeneity, resource performancefluctuations and resource fail-
ures. In addition to that, there are certain classes of problems for which DD methods are
inappropriate, such as the LGT model presented in this paper. Hence, there are two good
reasons for considering an alternative way to DD methods.

In this paper, we study the suitability of the MS paradigm as an alternative to DD
methods for implementing LGT models within distributed memory environments. We
provide three different MS implementations based on three task partitioning schemes.
More importantly we demonstrate, via a comparison between aselective and the FCFS
scheduling strategies, that apparently homogeneous systems used in dedicated mode are
actually heterogeneous environments subjects to unforeseeable resource performance fluc-
tuations.

Overall, our experimental results reveal that the MS implementation achieves very
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good efficiency on few processors, but lacks of scalability.In contrast, the DD method is
highly scalable, but at the expense of a poor efficiency. The peculiarity of the LGT model,
namely the constraining data dependencies, is better handled with a MS implementation
than with DD methods. Hence, the MS paradigm is a good candidate for small-scale
LGT models with high computation-to-communication ratios. Finally, we discussed a
promising future work direction by sketching an hybrid approach that combines the MS
paradigm and DD methods for achieving scalable high performance.
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Abstract

Stencil codes form the basis for a wide range of scientific applications, but unfor-
tunately exhibit a particularly poor memory behavior with respect to processor
caches. In this paper, we present transformation techniques that improve the per-
formance of 2D and 3D stencil codes on modern computer architectures. On the
one hand, we present theoretical and experimental results that demonstrate how
spatial locality is improved by using skewed data layouts. Although skewing
the multi-dimensional array seems a fairly traditional approach of altering the
memory layout to boost performance, we are not aware of any paper that reports
theoretical or practical results on the matter. On the otherhand, we present a new
technique that improves temporal locality by exploiting the symmetrical property
of the stencil kernel. Performance analysis using the PAPI interface show that the
techniques presented in this paper considerably reduce thenumber of L1, L2 and
TLB data cache misses, and enable to increase the level of parallelism exposed
to the compiler. Overall, our experimental results on 3 modern processors (Intel
Pentium 4, AMD Opteron and IBM Power5+) confirm that these techniques yield
to substantial performance improvements over the traditional tiling optimization
technique.

7.1 Introduction

In the last decade, processor performance has been steadilyimproving at a much more
higher rate (55%) than memory performance (7%) [8]. Most modern CPUs are so fast
that memory transfers constitute the practical limitationon processing speed: The CPU
spends much of its time stalling, waiting for memory transfers to complete. Modern
computer architectures rely on a hierarchical arrangementof memory (or caches) to help
bridging that widening gap. However, effectively using caches for numerical applications
is a challenging task.
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Stencil codes form the basis for a wide range of scientific applications: Iterative
solvers, Monte Carlo simulations and image filtering applications all rely on some form
of stencil computation. These applications are calledstencil codesbecause each element
in a multidimensional array is updated with contributions from a subset of its neighbors.
Then, for each iteration, the stencil kernel is applied to each element of the array. Stencil
codes are among the most time-consuming routines of the aforementioned applications,
and that is why it makes sense to aspire for ultimate performance.

Unfortunately, stencil codes exhibit a particularly poor memory behavior with respect
to processor caches. This poor behavior is imputed to the fact that each array element
is accessed a small, constant number of times per iteration,which simply amounts to
the number of points in the stencil kernel. For large problemsizes, array elements must
be brought into cache several times per iteration, dramatically degrading the overall per-
formance. Reorganizing these computations in order to efficiently utilize the memory
hierarchy has been the subject of a wealth of research.

Cache blockingor tiling is the standard transformation technique which improves lo-
cality by moving reuses to the same data closer in time [5, 11–13, 15, 16, 18, 21, 23, 26].
However, the evolution of memory system features (e.g. large on-chip caches combined
with automatic prefetch) seems to reduce the effectivenessof traditional cache blocking
optimizations [9]. In the worst case scenario, cache blocking transformations may even
interfere with prefetch policies, resulting in performance degradation. Prefetching (both
in hardware and software) improves the performance of long stride-1 accesses, while dis-
continuities in access patterns (exhibited by transformations like tiling) may counter the
benefits of prefetching. In contrast, the transformations presented in this paper improve
performance while performing contiguous data accesses.

The first contribution of this paper is the theoretical and experimental analysis of
skewed data layouts for improving the spatial locality of stencil codes. To the best of
our knowledge, this is the first paper that presents theoretical as well as experimental
results on this memory alteration technique. We first define the stencilfootprint memory
distance, that represents the longest distance in memory between twoarray elements used
by the stencil kernel. Then we demonstrate - and quantify - that 2D and 3D skewed data
layouts exhibit a much lower average stencilfootprint memory distancethan traditional
row-major or column-major storage orders. Having the arrayelements used by the stencil
close to each other in address space allows to better utilizethe cache capacities and hence
to reduce the number of cache misses.

The second main contribution of this paper is a new data access transformation, called
stencil decomposition, that improves the temporal locality of stencil codes. Thisloop
transformation technique, based on loop fission and loop fusion, decomposes the stencil
kernel into two micro-stencils, such that the updates are now performed in two passes.
The partial results obtained from the first pass are added to the partial results obtained
from the second pass to produce the final results. The two micro-stencil updates are fused
within the innermost loop, but applied to different data in order to exploit the symmetrical
properties of the original stencil, by computing the mutualcontributions of two elements
that do not have spatial locality.
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The Jacobi and Gauss-Seidel iterative methods are used to evaluate and compare our
techniques with the ones found in the literature. Although these methods have been re-
placed by more efficient schemes such as multigrid, they nevertheless play an important
role because they are building blocks of the advanced methods, and because they have
similar computational properties [13]. Our transformation techniques are evaluated and
compared on three modern processors which are Intel Pentium4, AMD Opteron and IBM
Power5+. Wall-time measurements combined to hardware performance counter analysis
are used to understand and interpret our results. We used thePAPI interface to hardware
performance counters [1] to collect these data.

The rest of this paper is arranged as follows. Section 7.2 presents the challenges im-
posed by traditional stencil codes as well as the iterative methods implemented in this
study. Section 7.3 reviews previous work and presents how our contributions fit in with
previous studies. Sections 7.4 and 7.5 present respectively the data layout and data access
transformations proposed for 2D and 3D stencil codes. Section 7.6 evaluates our trans-
formations through actual performance measurements and discusses our results with the
help of information collected with PAPI. Finally, Section 7.7 summarizes our contribu-
tions, states our conclusions and discusses possible future work directions.

7.2 Stencil computations

An important class of scientific applications rely on solving partial differential equations
(PDEs) using finite differencing techniques [17]. Considerfor instance the Laplace equa-
tion:

∂

2
u

∂x

2
+
∂

2
u

∂y

2
= 0 (7.1)

To solve this iteratively,u is discretized withN points in thex andy directions, and
for each new iterationn+ 1, the approximate value of the solutionun+1

i,j is computed as:
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Equation 7.2 represents theJacobiiteration kernel which consists of a4-point stencil
in two dimensions. Another classical method is theGauss-Seidelmethod, which makes
use of updated values ofu on the right hand side of Equation 7.2 as soon as they become
available. Thus, the averaging is done in place instead of being copied from an earlier
iteration to a later one, as depicted below.

u

n+1
i,j =
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n
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Conventional wisdom argues that the innermost loop of a loopnest should step through
the array sequentially in memory. This is often calledstride-1 indexing[26]. Most previ-
ous studies assuming row-major storage order present the code for the 2D Gauss-Seidel
method as depicted in Figure 7.1.
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int i,j;
double A[N][N];

for(i=1;i<N-1;i++)
for(j=1;j<N-1;j++)
A[i][j]=0.25*(A[i-1][j]+A[i][j-1]+

A[i][j+1]+A[i+1][j]);

Figure 7.1: 2D Gauss-Seidel stride-1 indexing
with row-major storage order.

Although the Gauss-Seidel scheme requires less data storage than the Jacobi scheme,
it imposes however more constraints on the execution order,and exhibits less opportu-
nities for optimization through reordering [13]. To sidestep this limitation, a Red-Black
checkerboard algorithm has been implemented, which accesses all the “red” elements
(where sum of coordinates is even) to compute values for the “black” elements (where
sum of coordinates is odd), then it does the other way around using black elements to
update red elements [17,19,23].

Historically, PDE solvers have focused on 2D domains. But asmore computing power
became available, scientists became interested in 3D domains as well. The 3D Jacobi
scheme reads thus:
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For large problem sizes, array elements must be brought intocache multiple times per
iteration, dramatically degrading the overall performance. This problem arises more often
in 3D codes than in 2D codes because more data need to be held incache to fully exploit
group reuse.

There are two types oflocality that can be exploited to improve performance when
implementing stencil codes [25]. There isspatial locality when accessing neighboring
points (in address space), and there istemporallocality when array elements are reused
several times before being evicted from the cache. Roughly speaking, spatial locality
deals with the data layout, i.e. how the multidimensional array is mapped into address
space, while temporal locality deals with the ordering of the updates.

7.3 Previous work

A wealth of optimization techniques have been proposed to improve memory hierarchy
performance. Kowarschik and Weiß [11] and Wolfe [26] provide overviews of such opti-
mization techniques. Loop transformation techniques target temporal locality by modify-
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ing the program’s iteration space. Loop interchange (or more generally loop permutation)
modifies the order of selected loops in a loop nest [22]. Loop fusion fuses two loops that
have the same iteration space traversal into a single loop, while loop fission does the op-
posite [14]. Loop alignment and loop skewing are proposed byZhao and Kennedy [27]
to reduce the memory storage required by stencil codes similar to the Jacobi method. The
authors show that these transformations can achieve the asymptotically minimal memory
allocation for this kind of stencil computations.

Tiling is the standard loop transformation technique for improving temporal reuse in
cache. Tiling reduces the working sets by grouping the updates into rectangular blocks
that are processed one after another, in order to reduce capacity misses. However, mod-
ern caches have limited set-associativity, and tiling can suffer from considerable con-
flict misses. To reduce conflict misses, copying and padding techniques have been pro-
posed [5,12,18,21]. Weiß et al. [23] apply tiling and padding transformations for 2D and
3D stencil codes, while Rivera and Tseng [19] follow on this work by developing com-
piler optimizations that automate the search of pads and tile sizes. The authors propose
a partial blocking scheme for 3D stencil codes in order to reduce non contiguousdata
accesses. This results in a stack of 2D slices in the unblocked dimension.

Several studies have emphasized the need to take into account the Translation Look-
Aside Buffer (TLB) when optimizing for performance [5, 15, 16]. As problem size in-
creases, TLB thrashing occurs and can considerably degradeperformance. Mitchell et
al. [15] derive multi-level cost functions that pays attention simultaneously to cache and
TLB performance for guiding the optimal choice of tile size and shape. Coleman and
McKinley [5] suggest that tile sizes need to be constrained such that the number of non
consecutive elements accesses is smaller than the number ofpage table entries in the TLB.

Although tiling is a well understood technique that proved to significantly improve
reuse, a recent study of Kamil et al. [9] show that the evolution of memory system fea-
tures (e.g. large on-chip caches combined with automatic prefetch) seems to reduce the
effectiveness of traditional cache blocking optimizations. The authors stress the issue that
non contiguous data access may interfere with prefetch policies, resulting in a perfor-
mance decrease.

A way to reduce non contiguous data accesses and to avoid conflict misses in tiled
code is to change the data layout in order to match the data access pattern. Chatterjee
et al. [2, 3] use recursive array layouts and different space-filling curves for fast matrix
multiplication. Kandemir et al [10] make use of hyperplane theory for memory layout
representation. The array references in a given loop nest are modeled by a coefficient
matrix and offset vector [26] in order to detect suitable memory layouts expressed by hy-
perplanes. The ATLAS project [24] uses block data layout with tiling to exploit temporal
and spatial locality. To promote portability, the selection of the optimal tile size is done
empirically by running several off-line tests. In contrast, Park et al. [16] analyze the in-
trinsic TLB and cache performance using tiling and block data layout, in order to derive
a block size selection algorithm.

Bandwidth and profile reduction problems [6, 20] are closelyrelated to the problem
studied in this paper. Applied to matrices, the bandwidth minimization problem consists
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in finding a permutation of the rows and columns of a sparse matrix so as to minimize
the distanceb of any nonzero entry from the center diagonal. This problem is very close
to the profile minimization problem that consists in minimizing the sum of the maximum
distances from the diagonal. Bandwidth minimization is important in solving linear sys-
tems, because direct methods such as Gaussian elimination can be performed inO(nb2)
on matrices of bandwidthb, which is very valuable whenb << n [20]. On the other
hand, profile minimization leads to a reduction of the amountof space needed for storing
the sparse matrix [6]. The bandwidth and profile minimization problems are known to be
NP-complete [6], and one of the most popular heuristics for bandwidth and profile mini-
mizations is the one of Gibbs et al. [7]. At last, layout problems arise also within parallel
processing settings where the amount of communication should be minimized in order to
obtain good speed-up. The graph partitioning problem within parallel processing settings
consists in distributing the nodes of a graph onto a set of processors in such a way that the
number of edges stretching over two processors is minimal. Chen and Chang [4] propose
to utilize a 2D skewed data layout for minimizing data communication over processors
for distributed memory multicomputers.

The contributions of this paper fit in with previous work as follows. We adhere to
the idea of changing memory data layouts in order to match data access patterns that
improve memory hierarchy performance [3,4,10,16,24]. We consider the use of skewed
data layouts for improving spatial locality. Although skewing the multi-dimensional array
seems a fairly traditional approach of altering the memory layout to boost performance,
we are not aware of any paper that reports theoretical nor practical results on the mat-
ter. Skewed data layouts reduce the average distance between simultaneously referenced
memory locations, which intrinsically applies to multiplelevels of the memory hierarchy
such as cache and TLB performance [15,16]. While, bandwidthand profile minimization
heuristics were originally designed for improving the performance of direct methods and
for reducing storage requirements, this paper demonstrates that similar concepts allow to
improve the memory traffic performance of iterative methodsas well. Analogously to
Chen and Chang [4], we exploit the properties of skewed data layouts, but for different
purposes. While Chen and Chang target the minimization of data communication over
processors for distributed memory multicomputers, we attempt to optimize stencil codes
for cache efficient computations. Similarly to McKinley et al. [14], we present a new data
access scheme that combines loop fission and loop fusion in order to improve temporal
locality. The stencil kernel is split in two halves, and the updates are now performed in
two passes. We term this approachstencil decomposition. Finally, it is important to under-
stand that previous studies, such as the one of Kandemir et al. [10], that target data layout
optimization by utilizing a coefficient matrix and an offsetvector to represent the data
access pattern of a loop nest, will not be able to detect the benefits of skewed data layouts
for the iterative methods studied in this paper. Indeed, in the Gauss-Seidel scheme, the
order in which the grid points are updated in the sequential algorithm is not fundamental
for the solution, since it is an approximate method that iterates until convergence. Hence,
a different ordering of the grid points, will not affect the quality of the solution, as long as
the grid points are equally visited and updated. For this reason, representing these itera-
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tive methods by a loop nest may be misleading because it intrinsically implies an ordering
scheme.

7.4 Data layout transformations

The transformations presented in this Section aim at reducing the average distance in
memory between the array elements involved in a stencil update. We term such distance
the stencilfootprint memorydistance. Let us define agroupG(u) as the set of the array
elements contributing to the update of elementu. For instance, we get for 2D Gauss-
Seidel,G(ui,j) = {ui−1,j , ui+1,j, ui,j−1, ui,j+1}. Letm(u) be the memory location of
elementu. The aim of using skewed data layouts is to reduce the averagestencil footprint
memory distance:

∑

u

(max{m(v)|v ∈ G(u)} −min{m(v)|v ∈ G(u)})

. In plain words, one aims to group together in memory the elements belonging to the same
group. For notational convenience, the transformation techniques presented throughout
the rest of this paper, are reported for symmetrical domains, i.eN × N in 2D andN ×
N ×N in 3D, albeit these techniques extend to non symmetrical domains as well.

7.4.1 2D skewed data layout

The average footprint memory distance of the row-major - or column-major - storage
order is equal to2N . This means that the cache only needs to be able to hold two rows
of the array to fully exploit group reuse. The evolution of memory system features such
as larger on chip caches and prefetch policies, leaves smallplace for tiling improvements
of 2D codes [9,19]. The 2D skewed data layout studied in this paper pushes the limits of
tiling improvements even further.

To ease the presentation, we adopt the approach of Kandemir et al. [10] who express
memory data layout with hyperplanes. Briefly, in am-dimensional space, a hyperplane
can be defined as a set of tuples{(a1, a2, . . . , am) | g1a1 + g2a2 + · · · + gmam = c},
where the row vector̄gT = (g1, g2, . . . , gm) is composed of rational numbersgi called
hyperplane coefficients andc is a rational number called hyperplane constant. Two ar-
ray elements represented by coordinate vectorsc̄1 and c̄2 are said to belong to the same
hyperplane if̄gT c̄1 = ḡ

T
c̄2. For example the hyperplane vector(1, 0) indicates that two

array elements belong to the same hyperplane as long as they have the same value for
the row index, which amounts to row-major storage order. The2D skewed data layout
is expressed by the hyperplane vector(1, 1), i.e. two array elements belong to the same
hyperplane if the sums of their coordinates are equal. As an example, elements with coor-
dinates (2,4) and (3,3) belong to the same hyperplane. Hyperplanes are linearly mapped
into address space in increasing order of their hyperplane constants. Hence, the array
elements belonging to hyperplaneHp with constantc = p are stored before the array
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elements belonging to the hyperplaneHp+1. Within a hyperplane, we arbitrarily store the
elements by increasing row index as depicted in Figure 7.2. The data access pattern when
updating the array elements must now follow the dashed line depicted in Figure 7.2 in
order to perform stride-1 access. This issue will be discussed in Section 7.5. For now, let
∆(L,N) be the average footprint memory distance of a given data layout L for aN ×N
data array.

H6

H8

H7

H5

H4H3H2H0 H1

i

j

Figure 7.2: 2D Skewed data layouts forN = 5.

Property 7.1. The average footprint memory distance of the 2D skewed data layout is

lim
N→+∞

∆(SK,N) =
4

3
N

.

Proof. Let us decompose the setP of all the hyperplanes into three disjoint subsetsP1,P2

andP3 such thatP1 = {Hp | p ∈ [0,N − 2]}, P2 = HN−1, andP3 = {Hp | p ∈
[N, 2N − 2]}. In other words,P1 comprises all the array elements located in the upper
triangular region of the array,P2 comprises the elements located on the main anti-diagonal
of the array, andP3 comprises the elements located on the lower triangular region of the
array.

Consider a pair(Hp,Hp+1) of consecutive hyperplanes belonging toP1. The num-
ber of elements ofHp+1 is one more than the number of elements ofHp. The cardinal
numbers of the hyperplanes belonging toP1 can therefore be represented by the sequence
of consecutive integers1, 2, 3, 4, . . . , i.e. card(Hp) = p + 1,∀p ∈ [0,N − 2]. Assume
that the stencil kernel is applied to elementui,j ∈ Hp ⊂ P1. The trailing referenceui−1,j

of the stencil kernel is distant from elementui,j by card(Hp) locations, while the leading
referenceui+1,j of the stencil kernel is distant bycard(Hp+1) locations. Since no com-
putation is performed on the array boundaries, the sum of thefootprint memory distances
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of the updated elements belonging toHp is equal to(p − 1)(2p + 3), p ∈ [2,N − 2].
Consequently, the sums1 of the footprint memory distances of the updated elements be-
longing toP1 is given bys1 =

∑N−2
p=2 (p−1)(2p+3). Assume now that the stencil kernel

is applied to elementui,j ∈ P2. In that case, both the trailing and leading references are
distant bycard(HN−1) = N locations. Since there are(N − 2) elements to be updated
on the main anti-diagonal, the sums2 of the footprint memory distances of the updated
elements belonging toP2 is given bys2 = 2N(N − 2). Finally, by symmetry we have
s3 = s1. Since there are(N − 2)2 elements to be updated, we get:

∆(SK,N) =
2N(N − 2) + 2

∑N−2
p=2 (p − 1)(2p + 3)

(N − 2)2
=

4
3N

3 − 3N2 − 13
3 N + 10

N

2 − 4N + 4

7.4.2 3D skewed data layout

When moving to 3D codes, and assuming row-major storage order, the cache needs now
to be able to hold two planes of the array to fully exploit group reuse. Hence, for row-
major and column-major storage orders, the average footprint memory distance becomes
∆(RM,N) = 2N2. The 3D skewed data layout is expressed by the couple of hyperplane
vectors(1, 1, 1) and(1, 0, 0), i.e. two array elements have spatial locality if the sum of
their coordinates are equaland if their first coordinate (plane index) are equal. To avoid
confusion, we speak of macro(1, 1, 1) and micro(1, 1, 1) ∪ (1, 0, 0) hyperplanes. As an
example elements(3, 2, 4) and(3, 1, 5) belong to the same micro hyperplane, while the
elements(3, 2, 4) and(2, 2, 5) belong to the same macro hyperplane, but to different mi-
cro hyperplanes. Macro hyperplanes are linearly mapped into address space in increasing
order of their hyperplane constants as depicted in Figure 7.2. Within a macro hyperplane,
micro hyperplanes are linearly mapped into address space inincreasing order of their
hyperplane constants (i.e. by increasing plane index). Andfinally, within micro hyper-
planes, array elements are arbitrarily mapped into addressspace by increasing row index.
For instance, element(2, 3, 4) is stored before element(2, 4, 3) but after element(5, 1, 2).

Property 7.2. The average footprint memory distance of the 3D skewed data layout is

lim
N→+∞

∆(SK,N) =
11

10
N

2

.

Proof. For even values ofN , let us decompose the setS of all the macro hyperplanes into
four disjoint subsetsP1, . . . ,P4 such thatP1 = {Hp | p ∈ [0,N − 1]}, P2 = {Hp | p ∈
[N, 3

2N−2]},P3 = {Hp | p ∈ [32N−1, 2N−3]} andP4 = {Hp | p ∈ [2N−2, 3N−3]}.
For odd values ofN , symmetrical reasons require to divide the 3D array using five subsets,
the one in the middle containing only one macro hyperplane. Due to space limitation
reasons, we do not expose the case whereN is odd, as in both cases∆(SK,N) tends
towards the same limit.
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Figure 7.3: 3D Skewed data layouts forN = 5.

Consider a pair(Hp,Hp+1) of consecutive hyperplanes such thatp ∈ [0,N − 1]. The
number of elements in each dimension ofHp+1 is one unit longer than the number of ele-
ments in each dimension ofHp. Therefore the cardinal numbers of such hyperplanes can
be represented by the sequence of triangular numbers1, 3, 6, 10, 15, 21, 28, 36, 45, 55, . . . ,
i.e. card(Hp) =

(p+2
2

)

, p ∈ [0,N − 1]. Due to the 3D cube topology, the cardinal of the
hyperplanesHp, p ∈ [N, 3

2N − 2] cannot be represented by triangular numbers. In-
deed, the cardinal of such hyperplanes corresponds to a triangular number that has been
truncated by(p + 1 − N) elements in each dimension. That is to say, each hyperplane
Hp, p ∈ [N, 3

2N−2] comprises
(p+2

2

)

−3
(p+2−N

2

)

elements. Hence, the trailing reference
T (p) of the stencil kernel applied to elements belonging to the hyperplaneHp is given by:

T (p) =

{
(

p+2
2

)

, if p ∈ [3,N − 1]
(p+2

2

)

− 3
(p+2−N

2

)

+ (p+ 1−N), if p ∈ [N, 3
2N − 2]

Note that the quantity(p + 1 − N) is added for hyperplanesHp, p ∈ [N, 3
2N − 2]

because stepping to the trailing reference in address spaceinvolves crossing only 2 of the
3 dimensions of the hyperplane. Similarly, the leading referenceL(p) of the stencil kernel
applied to elements belonging to the hyperplaneHp is equal to:

L(p) =

{ (p+3
2

)

, if p ∈ [3,N − 2]
(p+3

2

)

− 3
(p+3−N

2

)

+ (p+ 2−N), if p ∈ [N − 1, 3
2N − 2]

Since no computation is performed on the array boundaries, the sums1 of the footprint
memory distances of the updated elements belonging toP1 is given by:
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s1 =
N

∑

p=3

(

p− 2

2

)

(T (p) + L(p))

And the sums2 of the footprint memory distances of the updated elements belonging
toP2 is given by:

s2 =

3

2
N−2
∑

p=N+1

[(

p− 1

2

)

− 3

(

p+ 1−N
2

)]

(T (p) + L(p))

Due to symmetrical reasons we haves3 = s2 ands4 = s1. Since there are(N − 2)3

elements to be updated, we get:

∆(SK,N) =
2(s1 + s2)

(N − 2)3
=

11
10N

5 − 55
12N

4 + 2N3 + 103
12 N

2 + 9
10N − 14

N

3 − 6N2 + 12N − 8

Properties 7.1 and 7.2 show that skewed data layouts improvespatial locality by a
factor of1.5 for 2D and1.8̄1 for 3D codes against row-major storage orders. For illus-
tration, Figure 7.4 plots the footprint memory distance foreach updated array element (as
one steps sequentially in address space) for the skewed and row-major data layouts. For
problem sizes where two array lines do not fit in cache, the 2D skewed data layout will
better utilize the cache, resulting in less capacity and cache conflict misses, while the 3D
skewed data layout may even be able to fully exploit group reuse as opposed to the row-
major storage order. This comes from the shape of the macro hyperplanes involved in the
3D skewed data layout, which are composed of hexagons framedby triangles as depicted
in Figure 7.3.

7.5 Data access transformations

The data access transformations presented in this section will be illustrated with 2D exam-
ples only, albeit these techniques extend to multidimensional arrays as well. The reason
for this is that the 3D skewed data layout requires a more complicated index manipulation,
that we do not report in order to alleviate the presentation.

7.5.1 Skewed stride-1 indexing

When considering skewed data layouts, one must perform index manipulation by hand in
order to hit the correct memory locations. A direct implementation would be to provide
an address computation function that maps the array locations to memory locations. Such
function should be bijective (different array elements mapto different memory locations),
its image should be dense (there are no holes in the memory footprint of the array), and it
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Figure 7.4: Footprint memory distance for each updated array element as one
steps sequentially in memory.

should be easily computable [2]. For the 2D skewed data layout such function may look
like this:

f(i, j) =

{ (

i+j+1
2

)

+ i, if (i+ j) < N

N

2 − f(N − i− 1,N − j − 1), otherwise

However, computing the address function for every array element referenced incurs
a significant overhead [2]. Instead, one can improve the performance by exploiting some
knowledge about the 2D skewed data layout structure. The 2D skewed stride-1 indexing
scheme for the Gauss-Seidel method is depicted in Figure 7.5. Note that the code is
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decomposed into3 main blocks, which correspond to the3 disjoint hyperplane setsP1,P2

andP3 presented in Section 7.4.1. For 3D skewed data layouts, the code is decomposed
into 5 main blocks.

int i,j,base;
double A[N*N];
base= 1;
for(i=2;i<N-1;i++){

base+=i;
for(j=base+1;j<base+i;j++)

A[j]=0.25*(A[j-i-1]+A[j-i]+
A[j+i+1]+A[j+i+2]);

}

base+=i;
for(j=base+1;j<base+i;j++)

A[j]=0.25*(A[j-i-1]+A[j-i]+
A[j+i]+A[j+i+1]);

for(;i>1;i--){
base+=i+1;
for(j=base+1;j<base+i-1;j++)

A[j]=0.25*(A[j-i-1]+A[j-i]+
A[j+i-1]+A[j+i]);

}

Figure 7.5: 2D skewed stride-1 indexing for the
Gauss-Seidel iterative method.

7.5.2 Stencil decomposition

Temporal locality can be improved by exploiting the symmetrical properties of the
stencil kernel. Consider two array elements which do not have spatial locality, but which
belong to the same groupG (i.e. that contribute in each other updates). When updat-
ing the first element, both elements must be loaded into cache. In turn, when updating
the other element, both elements must be loaded into cache once more. Based on this
observation, temporal locality can be improved by computing the mutual contributions
of the two elements when both of them reside in cache, requiring thus the two elements
to be simultaneously present in cache only once. The original stencil kernelS is then
decomposedin two micro-stencilsS1 andS2, and the updates will now be performed in
two passes. The partial results obtained from the first pass usingS1 must be stored while
waiting for summation with the partial results issued from the second pass usingS2. For
Jacobi-like iterative methods, i.e. that make use of additional storage, partial results are
simply stored in the second array. But for iterative methodssuch as Gauss-Seidel that



194 Paper 7

int i,j,base;
double A[N*N];

A[4]=0.25*(A[1]+A[2]);
base = 1;
for(i=2;i<N-1;i++){

base+=i;
for(j=base+1;j<base+i;j++){
A[j]+=0.25*(A[j+i+1]+A[j+i+2]);
A[j+i+1]=0.25*(A[j-1]+A[j]);

}
A[j+i+1]=0.25*(A[j-1]+A[j]);

}

base+=i;
j=base+1;
A[j]+=0.25*(A[j+i]+A[j+i+1]);
for(j=base+2; j<base+i;j++){

A[j]+=0.25*(A[j+i]+A[j+i+1]);
A[j+i]=0.25*(A[j-1]+A[j]);

}

for(;i>2;i--){
base+=i+1;
j=base+1;
A[j]+=0.25*(A[j+i-1]+A[j+i]);
for(j=base+2;j<base+i-1;j++){
A[j]+=0.25*(A[j+i-1]+A[j+i]);
A[j+i-1]=0.25*(A[j-1]+A[j]);

}
}

Figure 7.6: Stencil Decomposition for 2D
skewed data layout.

work only with a single array, we would like to avoid resorting to additional storage, such
that the contributions obtained when applying the first micro-stencil would be stored in-
place. However, the data dependencies exhibited by such methods impose a careful stencil
decomposition, as well as a careful micro-stencil ordering. Depending on the data layout,
different decomposition schemes will take place. One must ensure that temporary results
(obtained withS1) are not referenced by neighboring array elements when updating. Our
implementations of the stencil decomposition schemes for skewed and row-major data
layouts are depicted in Figures 7.6 and 7.7. However, although stencil decomposition
improves temporal locality, it nevertheless comes at the expense of additional memory
references and floating point operations.
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int i,j;
double A[N][N];

for(j=1;j<N-1;j++)
A[1][j]=0.25*(A[0][j]+A[1][j+1]);

for(i=1;i<N-1;i++)
for(j=1;j<N-1;j++){

A[i][j]+=0.25*(A[i][j-1]+A[i+1][j]);
A[i+1][j]=0.25*(A[i][j]+A[i+1][j+1]);

}

for(j=1;j<N-1;j++)
A[N-2][j]+=0.25*(A[N-2][j-1]+A[N-1][j]);

Figure 7.7: Stencil Decomposition for 2D row-major
data layout.

7.6 Experimental results

7.6.1 Methodology

The performance of the transformations considered in this study (see Table 7.1) is eval-
uated for the Jacobi and Gauss-Seidel methods. All the transformations have been im-
plemented in C. The problem size varied over a range of values, such that the L2 data
cache would be able to preserve some group reuse for small problem sizes, but not for
large problem sizes. For 2D problems, we letN ∈ [100, 5000] in steps of100, and for 3D
problems, we letN ∈ [5, 350] in steps of5. The number of iterations was arbitrarily fixed
to 200 in order to highlight differences between the different transformations while keep-
ing measurement times relatively low. The processors were exclusively dedicated to our
application, which reduces external interferences to operating system fluctuations. The
performance curves presented in this paper correspond to the average values over3 runs.
Finally, the processor characteristics of interest for thescope of this study are depicted in
Table 7.2.

The performance of the different loop transformations is evaluated with wall-time
measurements. However, hardware performance counters areused in order to understand
and interpret our results. These data are collected using the PAPI portable interface to
hardware performance counters [1]. We are interested in5 quantities which are: Execu-
tion time, number of L1, L2 and TLB data cache misses, and finally the number of cy-
cles stalled on any resources. The four last quantities correspond to the PAPIL1 DCM,
PAPI L2 DCM, PAPI TLB DM and PAPIRESSTL native events respectively. The per-
formance measurements have been normalized with respect totheRM Stride-1implemen-
tation, and correspond hence to speed-up improvements overthe latter method.
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7.6.2 Results and interpretation

The experimental results of this study are reported in Figures 7.9, 7.10 and 7.11. Un-
fortunately, PAPI information was available only for the Opteron processor, but the per-
formance trends depicted in Figure 7.9 are quite similar forthe three processors. Due to

Transformations J G-S

RM Stride-1: Row-major stride-1 indexing (see Figure 7.1) X X
RM Decomposed: Row-major decomposed stride-1 indexing
(see Figure 7.7).

X X

RM Tiled 32: Row-major partial blocking by Rivera and
Tseng [19]. An exhaustive search revealed that tile size32 for
the innermost loop gives the best results.

X X

SK Stride-1: Skewed stride-1 indexing (see Figure 7.5). X X
SK Decomposed: Skewed decomposed stride-1 indexing (see
Figure 7.7).

X X

RM Temp Buff: Inspired by Zhao and Kennedy [27], we restrict
the use of additional storage to a minimum (i.e. to a single row
for 2D codes and to a single plane for 3D codes). The aim is to
better exploit cache capacity. The 2D implementation is depicted
in Figure 7.8.

X

RM Temp Buff tiled 32: Partial blocking applied to theRM Temp
Buff transformation.

X

RM Skewed: Loop skewing with row-major storage order to ex-
pose parallelism to the compiler. Note that the data access is
identical to the one adopted bySK Stride-1, but applied to a row-
major storage order.

X

RM Red-Black: Row-major Red-Black ordering with row-major
storage order to expose parallelism to the compiler. In order to
avoid bringing data into cache multiple times (when the array
size exceeds the cache size), black points in each row (or plane
for 3D) are updated immediately after the red points in the next
row (plane) [19,23].

X

RM Red-Black Tiled 32: Partial blocking applied toRM Red-
Black

X

Table 7.1: Code transformations applied to the Jacobi (J) and Gauss-Seidel (G-S)
methods. Note that for the Jacobi iterative method, the updated values of each
iteration are stored in an auxiliary array. The array pointers are then swapped at
the end of each iteration.

.
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int i,j;
double A[N][N], B[N];
double tmp;

for(j=1;j<N-1;j++)
B[j]=0.25*(A[0][j]+A[1][j-1]+

A[1][j+1]+A[2][j]);

for(i=2;i<N-1;i++)
for(j=1;j<N-1;j++){

tmp = B[j];
B[j]=0.25*(A[i-1][j]+A[i][j-1]+

A[i][j+1]+A[i+1][j]);
A[i-1][j] = tmp;

}

for(j=1;j<N-1;j++)
A[i][j] = B[j];

Figure 7.8: Minimizing temporary storage for 2D
Jacobi assuming row-major storage order.

Pentium 4 Opteron Power5+

Clock rate 3.4 GHz 2.6 GHz 1.9 GHz
L1 Dcache 16 KB 64 KB 64 KB
L2 Dcache 512 KB 1 MB 1.9 MB
L3 Dcache - - 32 MB
TLB Size 128 512 2048
Compiler Intel 9.0 PGI 6.0 xlc V8.0
Opt. Flags -O3 -align -xWK -O3 -fastsse -O4 -qhot

-prefetch -fno-alias -Mipa=fast -qnostrict
-fno-fnalias -rcd -Mpfi -Minline -qalias=allptrs
-mcpu=pentium4 -Msafeptr

Table 7.2: Processor characteristics of interest.

space limitations, only the Gauss-Seidel experiments as well as limited PAPI information
are reported (see Figures 7.10 and 7.11).

Figures 7.9 depicts the speed-up for the Gauss-Seidel method on the three processors
considered in this study. For the Pentium and Opteron processors, we clearly observe a
performance drop when the problem size does not fit into the L2cache (N > 256 (2D)
andN > 40 (3D) for the Pentium, andN > 362 (2D) andN > 50 (3D) for the Opteron).
This phenomenon is less visible for the Power5+ processor, most likely due to its large L3
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Figure 7.9: Speed-up for the Gauss-Seidel stencil kernel.

cache (32MB) that attenuates L2 cache misses. However, a careful look at the behavior
of theRM Skewedtransformation reveals the same trends observed for the Pentium 4 and
Opteron processors. Remember that this transformation implements loop skewing upon
a row-major storage order, and is hence very sensitive to problem size not fitting into
cache. We clearly observe a performance drop of theRM Skewedtransformation when



7.6. Experimental results 199

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

Im
p

ro
ve

m
e

n
t

N

RM Stride-1

RM Decomposed

RM Skewed

RM Red-Black

SK Stride-1

SK Decomposed

(a) L1 data cache miss

 0.98

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

Im
p

ro
ve

m
e

n
t

N

RM Stride-1

RM Decomposed

RM Skewed

RM Red-Black

SK Stride-1

SK Decomposed

(b) L2 data cache miss

 0

 0.5

 1

 1.5

 2

 2.5

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

Im
p

ro
ve

m
e

n
t

N

RM Stride-1

RM Decomposed

RM Skewed

RM Red-Black

SK Stride-1

SK Decomposed

(c) TLB data cache miss

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

Im
p

ro
ve

m
e

n
t

N

RM Stride-1

RM Decomposed

RM Skewed

RM Red-Black

SK Stride-1

SK Decomposed

(d) Stalled cycles

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  500  1000  1500  2000  2500  3000  3500  4000  4500  5000

Im
p

ro
ve

m
e

n
t

N

RM Stride-1

RM Decomposed

RM Skewed

RM Red-Black

SK Stride-1

SK Decomposed

(e) Speed-up

Figure 7.10: PAPI information on the Opteron for the 2D Gauss-Seidel stencil
kernel.

the problem size does not fit into the L2 cache (N > 500 (2D) andN > 62 (3D)), and
this yields also for the L3 cache (N > 2048 (2D) andN > 161 (3D)). We now need to
look at PAPI information (Figures 7.10 and 7.11) to find out what makes the difference
between the performance achieved by the different transformations.
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Figure 7.11: PAPI information on the Opteron for the 3DGauss-Seidel stencil
kernel.

For small problem sizes, one can observe erratic performances for the quantities mon-
itored with PAPI. Indeed, very few cache misses occur when the arrays fit entirely into
cache. Then, normalizing the results (i.e. dividing them bythe quantity of reference) gives
very high and unstable ratios, creating these erratic curves. However, this phenomenon
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disappears for larger problem sizes.

A correlation exists between execution time (speed-up curves) and the number of cy-
cles stalled on any resource. Indeed, the two sets of curves (see Figures 7.10 (d) and
7.10 (e) on one hand, and Figures 7.11 (d) and 7.11 (e) on the other hand) are remarkably
similar such that we can confidently claim that the latter have influence on the former. In
other words a high numbers of stalled cycles degrades performance, as expected. Pro-
cessor stalls can arise when data is not available in cache and need to be fetched from
memory, or when one instruction depends on another. For the Jacobi method, processor
stalls are provoked by L2 and TLB data cache misses. The transformations that achieve
best performance expose a much lower number of L2 and TLB datacache misses. In
contrast, for the Gauss-Seidel method, a correlation between stall cycles and data cache
misses cannot be established directly from our experiments. Processor stalls are most
likely provoked by data dependencies since the transformations that achieve best perfor-
mance are those who expose parallelism to the compiler. Indeed, the 3 processors adopt
a dynamic, hardware-intensive approach allowing out-of-order execution [8]. The key
concept of out-of-order execution is to allow the processorto avoid a class of stalls that
occur when the data needed to perform an operation is not available. The processor fills
these ”slots” in time with other instructions that are ready, then re-orders the results at the
end to make it appear that the instructions were processed inthe sequential order. The
benefit of out-of-order execution grows as the instruction pipeline deepens and the speed
difference between main memory (or cache memory) and the processor widens.

For 2D Gauss-Seidel, transformations improve the L1 data cache miss rates as soon
as group reuse is lost (i.e. whenN > 4096). As expected, decomposed schemes achieve
better L2 utilization, when the problem size does not fit intocache (N > 362). The
RM Skewedtransformation achieves remarkably poor performance withrespect to L1,
L2 and TLB data cache misses, suffering from its non contiguous data access pattern.
The transformations that achieve best performance, are those that expose parallelism to
the compiler. The superiority ofSK Stride-1over SK Decomposedcannot be explained
by the L1, L2 nor TLB data cache performances, as the performance curves speak for
the decomposed scheme. This superiority is most likely due to the higher data depen-
dencies exhibited by the decomposed scheme, asSK Stride-1suffers from less stalled
cycles. Indeed, the micro-stencils being applied after each other, there are data dependen-
cies between the micro-stencil updates, whereas applying the original stencil involve only
independent memory locations. Moreover, the decomposed transformation involves more
memory references as well as floating points operations. Thesuperiority of theSK Stride-
1 andSK Decomposedschemes overRM Red-Blackcan be explained by their stride-1
data access patterns, while the Red-Black scheme utilizes only half of each cache line
for each color. Finally, the marginal performance improvement of L2 data cache misses
(7%) achieved byRM Decomposedseems to be fruitful, translated into an overall20%
performance increase.

For 3D Gauss-Seidel, erratic performance stops as soon as the problem size does
not fit into cache, i.e. whenN > 20 (L1) andN > 50 (L2). Most transformations
improve the L1 data cache miss rates as soon as group reuse is lost (N > 64). For the L2
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cache on the other hand, the data cache miss rate improvementsaturates or even decreases
when group reuse is lost (N > 256). As expected, decomposed schemes achieve better
L1, and to some extent L2 and TLB utilization, while theRM Skewedtransformation
achieves remarkably poor performance, still suffering from its non contiguous data access
pattern. Again, the transformations that achieve best performance, are those that expose
parallelism to the compiler.

7.7 Conclusion

In this paper, we present transformation techniques for cache-efficient stencil computa-
tions. We formally demonstrate - and quantify - how spatial locality can be improved by
using skewed data layouts as opposed to the traditional row-major and column-major stor-
age orders. To the best of our knowledge, this is the first paper that presents theoretical
and experimental results on this memory alteration technique. The other main contri-
bution of this paper is thestencil decompositiontransformation, that improves temporal
locality. This technique exploits the symmetrical properties of the stencil kernel by com-
puting the mutual contributions of two array elements, thusrequiring the two elements to
be simultaneously present in cache only once.

Overall, our experiments confirm previous results reportedin the literature, and reveal
other aspects of interests. In line with previous studies [9, 19], we found that tiling is not
beneficial for 2D stencil codes, and that it improves performance only for sufficiently
large problem sizes. However, we believe that as cache sizesof modern processors keep
increasing, tiling will become less and less beneficial, as testify our experiments on the
Power5+ processor which confirm the claim of Kamil et al. [9].

Experimental results using the PAPI interface showed that the techniques presented
in this paper reduce significantly the number of L1, L2 as wellas TLB data cache misses.
We find tiling schemes work better than skewed transformations for the Jacobi method on
the Pentium 4 and Opteron processors, but are outperformed for the Gauss-Seidel method.
The former method is known to converge slower than the latterone, motivating thus the
seek for new transformation techniques, such as the ones presented in this paper.

For iterative methods using in-place averaging, transformations that exhibit paral-
lelism to the compiler are required to achieve high performance. Data access patterns
exposing a high level of parallelism to the compiler work well provided that data can be
moved quickly to the processor. The tiled Red-Black scheme achieves this goal to some
extent, albeit limited for large problem sizes by its non contiguous data access pattern.
However, data access patterns alone are not sufficient to improve performance as problem
size increases. Changing the data layout in order to match the data access pattern proves
to be fruitful.

The scope of this paper was restricted to 5-point and 7-pointstencil kernels. However,
longer range interaction stencil kernels (such as 9-point and 27-point) are broadly used
within scientific computations, and should be studied as a future work direction. Another
direction would be to derive theoretical lower bounds for the average footprint memory
distance of 2D and 3D memory layouts. We conjecture that the problem of finding the
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memory layout that yields to the minimum average footprint memory distance is NP-
complete, since similar problems like bandwidth and profilematrix minimizations are
NP-complete. While a formal proof of the NP-completeness ofour problem is still to
be provided, lower bound results would give insights on how good are the skewed data
layouts studied in this paper.
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