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Summary and conclusions

Abstract A mechanistic nonlinear model of the wet end of paper machine 6 (PM6)
at Norske Skog Saugbrugs, Norway has been developed, and used in an MPC ap-
plication. The MPC provides reduced variability in many key variables, and better
e ciency through faster grade changes, start ups, and improved control during peri-
ods of poor measurements. The model and controller can be rolled-out to other paper
machines, as found by studying and fitting the model to data from PM4 at Norske
Skog Saugbrugs, and PM3 at Norske Skog Skogn, Norway. No changes to the model,
except for parameter values, were introduced, and still the validation results were
good. The time spent on fitting and validating the PM6 model to PM4 and PM3 are
approximately 1% of the time spent on developing the original model. This should be
a strong incentive for focusing on mechanistic modeling in industries were there are
many similar production lines or units.

Motivation Many large- and medium sized industry companies have a number of
more or less similar process-units for processing of raw materials or production of
finished products. An industrial company which has invested, or is about to invest,
in advanced model based control in one of their units / factories, would benefit eco-
nomically if the model and controller could be e ciently rolled-out at similar units.
The main idea of this thesis is to develop a model and a controller for an industrial
process, and then investigate how the model and controller can be applied to similar
processes. Paper machine 6 (PM6) at Norske Skog Saugbrugs, Norway, is used as a
case study for modeling and control throughout the thesis, and the PM6 model is also
applied at Norske Skog Saugbrugs PM4, and PM3 at Norske Skog Skogn, Norway.

The papermaking process is the only process studied in this thesis, however the
field of roll-out should be of interest also to other industries. For example Borealis
(www.borealisgroup.com) has many polymer reactors for producing plastics raw ma-
terials, Norsk Hydro (www.hydro.com) has many plants for fertilizer production, and
Icopal (www.icopal.com) has many production lines for extrusion of plastic pipes. The
idea of e cient roll-out of models is not entirely new, e.g. (Glemmestad, Ertler &
Hillestad 2002) emphasize the advantage of reusing the models developed at Borealis,
and many commercial simulators include model libraries of process units intended for
reuse.

The control method chosen in this work is model predictive control (MPC). The
reason for choosing MPC is that it is perhaps the only advanced model based control

vii



viii SUMMARY AND CONCLUSIONS

scheme used to any extent in the industry, there are commercially available software
systems for implementation, and the reported payback time is low (e.g. 3 months in
(Bassett & Van Wijck 1999)).

Modeling Two basic modeling approaches are mechanistic modeling and empiric
modeling. An empiric model is entirely based on experimental data and an appropri-
ate model structure, and often requires little knowledge of the system to be modeled.
A mechanistic model is a model built from basic principles of physics, chemistry, biol-
ogy, etc., by writing down conservation or balance equations. Obviously this requires
extensive knowledge of the process to be modeled. Emphasis has been on mechanistic
modeling of PM6, however empiric modeling is also carried out and described in this
thesis.

A high order mechanistic model of PM6 was developed and implemented in Mat-
lab. The objective was to make a model of a limited part of PM6, which were suitable
for model predictive control (MPC) , captured the essential dynamic behavior of the
process, and was applicable over a wide range of operating conditions. The out-
put variables are the basis weight, the paper ash content and the white water total
concentration. To make the model suitable for model based control, reduced order
models were developed and fitted to experimental and operational mill data. The
fitted models where validated with historical operational data.

An augmented suboptimal Kalman filter has been developed at PM6 for estimating
the states and some of the parameters in the paper machine model. Three biases have
been selected for on-line estimation in the paper machine model. The first two are
biases in the estimated total- and filler thick stock consistencies. These disturbances
are estimated using a ballistic estimator, and thus they are assumed to be good
candidates for having time-varying biases. The third bias estimated on-line is for
the total wire tray concentration, i.e. a bias in one of the outputs. In theory, and
in the true Kalman filter, the noise characteristics of the process should be found
and used in the Kalman filter equations. However, these characteristics are hard, if
not impossible, to find. Thus, a suboptimal Kalman filter was identified, where the
noise characteristics where used as tuning parameters until satisfactory Kalman filter
performance was obtained.

MPC The MPC was installed at PM6 in March 2002. During the first two months,
the MPC, the Kalman filter and the model were continuously tuned, retuned, and val-
idated in open and closed loop. Some structural changes were also made during these
months. From May 2002, the MPC has been in operation more or less continuously.
The process operators still have the original “pre-MPC era” control configuration
available, but the MPC has been the preferred choice from the beginning. Further-
more, the operators have been very active in making suggestions for improvements
and new features in the system. Some of these suggestions are implemented, and
others are being considered for implementation.

A specific feature of the MPC implemented at PM6 is that the setpoints for
new grades can be submitted to the MPC some time before the grade change. The
operators can specify a grade change e.g. half an hour into the future, and see how
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the MPC will achieve the change: how the inputs will be manipulated to reach the
new setpoints. In terms of gaining operator acceptance for the MPC, this feature of
previewing the action taken by the controller has been very helpful.

Results The work carried out on modeling and MPC of PM6 has been part of a
project called “Stabilization of the wet end at PM6”. The main objective of the
project was to increase the total e ciency by 0�47%. This is an objective that is hard
to measure, due to many factors a ecting the total e ciency. Thus, several sub-goals
were defined which were assumed easier to measure and validate. The sub-goals, and
results, concerning reduced variability are:

Variable Sub-goal (red. std. dev.) Result
Total cons. in the wire tray 60% Achieved
Filler cons. in the wire tray 50% Achieved
Total cons. in the headbox 50% Achieved
Filler cons. in the headbox 35% Achieved
Basis weight 20% Not achieved
Paper ash 20% Achieved
Paper moisture 20% Achieved

These sub-goals were defined in 1999 when the project was initiated. In 2001 a new
scanning device for measuring e.g. basis weight and paper ash was installed at PM6.
This significantly improved the control of the basis weight using the “old” controllers.
The results in the table above are calculated with the measurement devices as of 2002,
comparing the old control configuration with the MPC control configuration. Exact
numbers for the reduction in standard deviation are not given, as they vary from day
to day, and from operator to operator.

In addition to reducing the variation in key paper machine variables, several other
benefits are obtained using MPC. Some of these benefits arise from utilizing the devel-
oped model, not only for control purposes, but also as a replacement for measurements
when these are not available or not trustworthy.

Previously, grade changes were carried out manually or partly manually (the set-
points were changed a number of times before they were equal to the new grade) by
the operators. With a mechanistic model, applicable over a wide range of operating
conditions, the grade changes are carried out using the MPC. This has resulted in
faster grade changes and operator independent grade changes. During larger grade
changes, the use of MPC results in less o -spec paper being produced during the
change. Using a single mechanistic model, the grade change is handled in a straight
forward fashion, as there is no need to switch between various local models.

The basis weight and paper ash outputs can not be measured during sheet breaks.
Previously during sheet breaks, the flow of thick stock and filler were frozen at the
value they had immediately prior to the break. Usually the sheet breaks last less
than half an hour, and the output variables are not far from target values when the
paper is back on the reel. However, occasionally the sheet breaks last longer periods
and there may be e.g. velocity changes during the break, leading to o -spec paper
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being produced for a period after the paper is back on the reel. Another frequently
experienced problem are large measurement errors immediately after a sheet break.
With the MPC, the Kalman filter estimates the basis weight and paper ash during
sheet breaks, and these estimates are used in the MPC as if no break had taken place.
Thus, when the paper is back on the reel, the outputs are close to their setpoints.

Previously, the controllers were not set to automatic mode before the outputs were
close to the setpoints, following a start up. With a model based controller using a
mechanistic model with a wide operating range, the MPC is set to automatic mode
early during start ups. This results in faster start ups, and less o -spec paper being
produced.

Occasionally a special filler is added to the stock, to increase the brightness of the
paper. During these periods the consistency measurements are not trustworthy as
they are based on optical measurement methods. This problem is solved within the
MPC / Kalman filter framework by neglecting the measured consistency, relying on
the estimate alone. For each output, there is an option within the MPC to neglect
the updating of states based on this output. This is done based on experience with
periods of poor measurements, even when only standard filler is used.

The Kalman filter estimates are used in the MPC instead of the measurements.
This leads to smoother controller action, and eliminates the need for additional fil-
tering.

The model is augmented so that some key parameters/biases are updated auto-
matically. This reduces the need for model maintenance o -line. However, should
there be larger changes in the process, such as if the white water tank is removed, or
a new retention aid is used, then it will probably be necessary to re-tune the model
and controller.

Roll-out The possibility of reusing the PM6 model at other paper machines is
investigated. The paper machines studied are PM4 at Norske Skog Saugbrugs, and
PM3 at Norske Skog Skogn, Norway. PM6 is a new and modern paper machine
producing SC (Super Calendered) magazine paper. PM4 also produce SC paper but
the machine is older and smaller than PM6. PM3 produce newsprint and has a size
comparable with that of PM6. Fitting and validation of the model to PM4 and PM3
were very promising. No changes to the model, except for parameter values, were
introduced and still the validation results were good. The time spent on fitting and
validating the PM6 model to PM4 and PM3 are approximately 1% of the time spent
on developing the original model. This should be a strong incentive for focusing on
mechanistic modeling in industries were there are many similar production lines or
units.
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Chapter 1

Introduction

1.1 Problem description

Many large- and medium sized industry companies have a number of more or less
similar process-units for processing of raw materials or production of finished prod-
ucts. An industrial company which has invested, or is about to invest, in advanced
model based control in one of their units / factories, would benefit economically if
the model and controller could be e ciently rolled-out on similar units. The main
idea of this thesis is to develop a model and a controller for an industrial process, and
then investigate how the model and controller can be applied to similar processes.
Paper machine 6 (PM6) at Norske Skog Saugbrugs, Norway, is used as a case study
for modeling and control throughout the thesis, and the PM6 model is also applied
at Norske Skog Saugbrugs PM4, and PM3 at Norske Skog Skogn, Norway. Pulp and
paper is one of the largest and most important industries in Norway. In 2001, a total
of 25 pulp and paper mills, and 7� 300 employees contributed with aggregate sales
of about NOK1 19� 000 million. Approximately 90% of the Norwegian made paper
and boards are exported, mostly to EU countries, but also to North America, Asia,
Oceania, Eastern Europe, Latin America, and Africa (NPPA (The Norwegian Pulp
and Paper Association) 2002) (Statistics Norway 2002b) (Statistics Norway 2002a).

The papermaking process is the only process studied in this thesis, however the
field of roll-out should be of interest also to other industries. For example Borealis
(www.borealisgroup.com) has many polymer reactors for producing plastics raw ma-
terials, Norsk Hydro (www.hydro.com) has many plants for fertilizer production, and
Icopal (www.icopal.com) has many production lines for extrusion of plastic pipes.

The control method chosen in this work, is model predictive control (MPC). The
reason for choosing MPC is that it is perhaps the only advanced model based control
scheme used to any extent by the industry, there are commercially available software
systems for implementation, and the reported payback time is low (e.g. 3 months in
(Bassett & Van Wijck 1999)).

1NOK is the Norwegian currency. 1 Euro equals NOK 7�3, and 1 U.S. dollar equals NOK 7�3,
November 22, 2002.
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4 CHAPTER 1. INTRODUCTION

1.2 Previous work

There exists very little published material focusing on how to e ciently roll-out mod-
els and controllers in the industry. However, the idea of e cient roll-out of models is
not entirely new, e.g. (Glemmestad et al. 2002) emphasize the advantage of reusing
the models developed at Borealis, and many commercial simulators include model
libraries of process units intended for reuse.

Empirical modeling or system identification of paper machines are reported in
several papers and books. Some of these focus on so-called cross-directional (CD)
modeling, i.e. a model for the profile across the paper web, e.g. (Featherstone,
VanAntwerp & Braatz 2000), (Campbell 1997) and (Heaven, Manness, Vu & Vyse
1996). Others focus on the machine-direction (MD), i.e. changes in average values
across the web, e.g. (Menani, Koivo, Huhtelin & Kuusisto 1998), (Noreus & Saltin
1998), and Papers A—B in this thesis. Note that only the MD modeling and control
problem is studied in this thesis.

The reported works on mechanistic modeling of paper machines are in most cases
constrained to smaller parts of the paper machine. However, (Rao, Xia & Ying 1994),
(Larsson & Olsson 1996) and (Hagberg & Isaksson 1993) consider a larger part of the
paper machine, e.g. the wet end and the wire, press, and dryer sections, although
the chemistry involved in papermaking is not considered at all. Mechanistic mod-
els of a larger part of a paper machine which includes chemical modeling is found
in (Shirt 1997), and Papers A—C in this thesis. In Shirt’s work both chemical as-
pects, which include adsorption and flocculation, and physical aspects, which include
drainage on the wire, refining, tanks, headbox, wire section, etc., are part of the
overall model, although transportation delays in pipelines are neglected and not all
aspects are presented in detail.

Several MPC implementations using multivariable empiric paper machine models
are reported, e.g. (McQuillin & Huizinga 1995), (Lang, Tian, Kuusisto & Rantala
1998), (Mack, Lovett, Austin, Wright & Terry 2001), (Kosonen, Fu, Nuyan, Kuusisto
& Huhtelin 2002), and (Austin, Mack, Lovett, Wright & Terry 2002). To the best of
the author’s knowledge, there exists no reported industrial MPC implementations uti-
lizing a multivariable mechanistic model of the wet-end of the paper machine. Some
industrial implementations of MPC with mechanistic models are known in other in-
dustry areas, e.g. (Qin & Badgwell 1998) and (Badgwell & Qin 2001) have reported
a few implementations. Papers describing industrial implementations of MPC with
mechanistic models are few, however (Hillestad & Andersen 1994) and (Glemmestad
et al. 2002) report several applications to industrial polymer reactors. Several simu-
lated examples exist, e.g. (Lee, Lee, Yang & Mahoney 2002), (Prasad, Schley, Russo
& Bequette 2002), (Amin, Mehra & Arambel 2001), and (Schei & Singstad 1998), and
also some applications to experimental test stands, e.g. (Ahn, Park & Rhee 1999)
and (Park, Hur & Rhee 2002).
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1.3 Outline of thesis

This thesis is composed of two parts. Part I basically gives an overview of the results
obtained in the papers provided in Part II. However, a few results in Part I are not
presented in any paper, either because they did not fit with the scope of the papers
or because the results were not ready at the time of submission or publishing. Due to
the structure of the thesis, some pieces of information are necessarily repeated several
times; for example most papers have a section on description of the process. Also,
some papers have similar scopes, notably papers A—C, and thus some information
is repeated. Note that the papers in Part II are not entirely reproduced from the
original source. In most papers a few corrections are made, e.g. pure spelling errors
are corrected, and some papers are extended by adding material that was thought to
be of interest in this thesis. The character of the modifications for each paper are
given in Chapter 6 as well as at the start of each paper.

Chapter 2 gives an introduction to paper production. Some facts and statistics
for the pulp and paper industry are given, and the production line from tree to paper
is explained. Modeling aspects are discussed in Chapter 3, and results from the
modeling of PM6 is summarized. Chapter 4 concentrates on model predictive control
(MPC). The chapter consists of a short introduction to MPC, as well as results from
the implementation at PM6, Norske Skog Saugbrugs, Norway. Chapter 5 summarizes
the results from applying the PM6 model to other paper machines. Chapter 6 lists
the papers appearing in the thesis, and Chapter 7 lists contributions not included in
the thesis.

Abstract of Paper A A mechanistic model of order 528 of PM6 is implemented
in Matlab. It is shown how the full scale model can be reduced by both system
identification techniques and by utilizing physical knowledge about the process. The
long term prediction abilities of the various reduced order models are compared with
the output from the 528 order model, highlighting some distinct features of the various
models.

Abstract of Paper B This paper summarize some of the results from Paper
A, and also provides results from using industrial data from PM6. Closed loop ex-
periments on PM6 is described and carried out, and empiric models are identified
and validated. A solution for estimating missing measurements during sheet breaks
is presented and demonstrated with simulations.

Abstract of Paper C Details of the mechanistic model of PM6 is presented.
The model is developed as a foundation for the control of three selected variables,
the basis weight, the paper ash content and the white water total concentration.
The model is of high order and reduced order models are developed and fitted to
experimental mill data. The fitted models are validated with historical operational
data.
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Abstract of Paper D Results from a controllability analysis, based on a lin-
earized PM6 model, is given. The analysis indicates the necessity of process operators
acting on measured disturbances to avoid input saturation. A commercially available
MPC algorithm based on a linear model is modified to handle the nonlinear model,
and to allow for future setpoint changes.

Abstract of Paper E Four quadratic programming (QP) formulations of model
predictive control (MPC) are compared with regards to ease of formulation, memory
requirement, and numerical properties. The comparison is based on two example
processes: A linearized PM6 model, and a model of the Tennessee Eastman challenge
process; the number of free variables range from 150—1400. Five commercial QP
solvers are compared. Preliminary results indicate that dense solvers still are the
most e cient, but sparse solvers hold great promise.

Abstract of Paper F The PM6 model is used in an MPC implementation.
The MPC uses an infinite horizon criterion, successive linearization of the model,
and estimation of states and parameters by an augmented Kalman filter. Variation
in important quality variables and consistencies in the wet end have been reduced
substantially, compared to the variation prior to the MPC implementation. The
MPC also provides better e ciency through faster grade changes, control during
sheet breaks and start ups, and better control during periods of poor measurements.
From May 2002 the MPC has been the preferred controller choice for the process
operators at PM6.

Abstract of Paper G The possibility of reusing the PM6 model at other paper
machines is investigated. The paper machines studied are PM4 at Norske Skog Saug-
brugs, and PM3 at Norske Skog Skogn, Norway. PM6 is a new and modern paper
machine producing SC (Super Calendered) magazine paper. PM4 also produce SC
paper but the machine is older and smaller than PM6. PM3 produce newsprint and
has a size comparable with that of PM6. Fitting and validation of the model to PM4
and PM3 data were very promising. No changes to the model, except for parameter
values, were introduced and still the validation results were good. The time spent on
fitting and validating the PM6 model to PM4 and PM3 data are approximately 1%
of the time spent on developing the original model. This should be a strong incen-
tive for focusing on mechanistic modeling in industries were there are many similar
production lines or units.

1.4 Main contributions

The main contributions of this thesis are:

• A mechanistic model of the wet end of a paper machine is developed, fitted with
data, and validated: Chapter 3, and Papers A—C.
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• Extensions to a previously published infinite horizon criterion by (Muske &
Rawlings 1993). Extensions include e.g. the possibility to specify future ref-
erence changes, direct input to output term, and inclusion of measured distur-
bances. Chapter 4, and Papers D—F.

• Algorithm for nonlinear infinite horizon MPC, based on successive linearization
of mechanistic model: Chapter 4, and Paper F.

• Industrial application of nonlinear MPC with a mechanistic model: Chapter 4,
and Paper F.

• Investigation of the roll-out potential of the mechanistic model: Chapter 5, and
Paper G.
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Chapter 2

Paper production

2.1 Facts and statistics

Pulp and paper industry in Norway and worldwide (Sources: (NPPA (The
Norwegian Pulp and Paper Association) 2002), (Statistics Norway 2002b), and (Statistics
Norway 2002a))

Pulp and paper is one of the largest and most important industries in Norway.
In 2001, a total of 25 pulp and paper mills, and 7� 300 employees contributed with
aggregate sales of about NOK1 19� 000 million. Approximately 90% of the Norwegian
made paper and boards are exported, mostly to EU countries, but also to North
America, Asia, Oceania, Eastern Europe, Latin America, and Africa.

On a worldwide basis, the production of paper and boards in Norway is not large.
The total world production of paper and board in the year 2000 was 323 million tons,
and the Norwegian share was “only” 2�4 million tons. The largest producer is by far
USA with a production of 85�5 million tons, with other large producers being Japan,
and Canada. Finland and Sweden are also large on a world wide basis, producing
above 10 million tons each.

Norske Skog (Source: (Norske Skog 2002))
The Norske Skog group is the world’s second largest producer of newsprint, and

the world’s third largest supplier of printing paper. Norske Skog employs 14� 000
people in 24 production units (full- and part-owner) spread around Europe, North
and South America, Asia and Oceania. The operating revenue for 2001 exceeded
NOK 30� 000 million, and the earnings were close to NOK 2� 500 million. In terms
of area, the European revenue accounts for nearly half the total revenue. In terms
of product, the newsprint is by far the largest contributor accounting for 68% of the
revenue, and pulp and SC2 magazine paper accounts for 10% each.

1NOK is the Norwegian currency. 1 Euro equals NOK 7�3, and 1 U.S. dollar equals NOK 7�3,
November 22, 2002.

2 SC = Super Calendered

9
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Norske Skog Saugbrugs (Source: (Sandersen 1999))
Founded in 1859, and a part of the Norske Skog group since 1989, Norske Skog

Saugbrugs is today one of the world’s leading producers of SC magazine paper. Saug-
brugs has a market share in Europe and USA of about 10%. As much as 99% of the
paper is sold for export, and the turnover is approximately NOK 2� 500 million. The
total production capacity at the Saugbrugs mill is 550� 000 tons, and PM6 (Paper
Machine 6) accounts for more than half the total capacity. PM6 was build by Valmet
and started up in 1993. The production speed is around 1500 m�min, and the paper
width is 8�62 m. Many di erent grades are produced, e.g. the basis weight3 range
from 40-60 g�m2.

2.2 From tree to paper

2.2.1 The PM6 production line

Figure 2.1 shows the PM6 production line. The trees are transported from the wood-
yard to the groundwood mill and TMP (Thermo Mechanical Pulp) plant, where pulp4

is produced. The stone groundwood mill produce pulp by pressing a piece of wood
lengthwise against a wetted, roughened grinding stone revolving at high speed. In
the TMP plant, pulp is produced from chips of wood by pressurized steam pretreat-
ment and shredding, and defibering between rotating discs in refiners. The pulp is
bleached and stored in large tanks. The pulp is then transported to the wire section
and blended with chemical pulp, clay (filler particles), color, and other chemicals on
the way. Most of the fiber and filler particles are retained on the wire where they
form a thin mat. The mat becomes the paper sheet when water is pressed out of it
in the press section, and dried in the dryer section. The paper sheet is then accumu-
lated on the pope (or reel), and transported to the super calenders where properties
like smoothness and gloss are added. The paper sheet is cut into appropriate size,
wrapped and transported to the end-users (publishing companies, printing o ces,
etc.).

A proper introduction to the various stages in papermaking, and other issues as
well, can be found in e.g. (Smook 1992). Books more focused on chemical issues in
papermaking are e.g. (Roberts 1996a), and (Roberts 1996b).

The content of this thesis focuses on the PM6 production line approximately from
the outlets of the storage tanks and to the paper is rolled-up on the pope. This
sub-process is described next.

2.2.2 The thick stock and short circulation of PM6

A simplified drawing of the thick stock and short circulation of PM6 is shown in Figure
2.2. Cellulose, TMP (thermomechanical pulp) and broke (repulped fibers and filler
from sheet breaks and edge trimmings) are blended in the mixing chest. The stock is

3Basis weight is the weight per area of finished paper.
4Pulp is a fibrous mass.
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Figure 2.1: PM6 production line (From Norske Skog Saugbrugs leaflet).
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fed to the machine chest with a controlled total consistency5. Filler is added between
the mixing and machine chests. The fillers used in paper production depend on the
end-user requirements; typical fillers are kaolin, chalk, talc, and titanium dioxide
(Bown 1996). About two thirds of the filler particles used at PM6 are added to the
thick stock; the rest is added at the outlet of the white water tank. The flow to
the machine chest is large in order to keep the level of the machine chest constant,
and an overflow is returned to the mixing chest. The total consistency in the mixing
and machine chests are typically around 3 — 4%, which is considerably higher than
consistencies later on in the process, and thus the stock from the machine chest is
denoted the “thick stock”.

The thick stock enters the “short circulation” in the white water tank. Here, the
thick stock is diluted to 1-1.5% total consistency by white water6 and a recirculation
flow from the deculator. Filler is added to the stock just after the white water tank.
The first cleaning process is a five stage hydrocyclone arrangement, mainly intended
to separate heavy particles (e.g. sand and stones) from the flow. The accept from the
first stage of the hydrocyclones goes to the deculator where air is separated from the
stock. The second cleaning process consists of two parallel screens, which separate
larger particles (e.g. bark) from the stock. Retention aid is added to the stock at
the outlet of the screens. The retention aid is a cationic polymer which, amongst
others, adsorb onto anionic fibers and filler particles and cause them to flocculate.
The flocculation is a key process for retaining small filler particles and small fiber
fragments on the wire, although the significance of mechanical entrapment of non-
flocculated filler and fines seems to be somewhat controversial in the literature. For
example (Van de Ven 1984) found (theoretically) that mechanical entrapment was low,
while (Bown 1996) reports that mechanical entrapment can be a dominant mechanism.
In the headbox, the pulp is distributed evenly onto the finely meshed woven wire cloth.
Most of the water in the pulp is recirculated to the white water tank, while a share of
fiber material and filler particles form a network on the wire which will soon become
the paper sheet. The pulp flow from the white water tank, through the hydrocyclones,
deculator, screens, headbox, onto the wire and back to the white water tank is denoted
the “short circulation”.

In the wire section, most of the water is removed by drainage. In the press section,
the paper sheet is pressed between rotating steel rolls, thus making use of mechanical
forces for water removal. Finally, in the dryer section, the paper sheet passes over
rotating and heated cast iron cylinders, and most of the water left in the sheet is
removed by evaporation. The paper is then rolled up on the reel before it is moved
on to further processing.

5The total consistency is the weight of solids (i.e. filler particles and fiber) divided by the total
weight of solids and water.

6White water, which is stored in the white water tank, is the drainage from the wire.
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Figure 2.2: A simplified drawing of the thick stock and short circulation of PM6.
More details are available in Paper C.
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Chapter 3

Modeling

A model of the process is the foundation for every advanced control algorithm. Given
a good model of a process, there are probably a number of algorithms that will
provide excellent control of the process, and given a poor model of a process, there
are probably no algorithms that will provide good control of the process. Also, given
a good advanced control algorithm, there are often no models available for the specific
process or process unit of concern. Thus, today the key factor for success in advanced
control is the development of a reliable and good process model, or as the following
closing sentence in a paper put it:

Nowadays control is easy, modelling will always be the nut to crack...
(Richalet, Estival & Fiani 1995, page 942)

It should be emphasized that even if a perfect model is available, several limitations
to control performance may occur. These limitations may arise from e.g. input
constraints, and right half plane (RHP) zeros (Skogestad & Postlethwaite 1996). In
practice, the model is not perfect, and additional limitations due to model uncertainty
are always present.

Two basic modeling approaches are mechanistic modeling and empiric modeling.
Next, these approaches are presented in more detail.

3.1 Empiric modeling

3.1.1 Introduction

An empiric model is entirely based on experimental data and an appropriate model
structure, and often requires little knowledge of the system to be modeled. In the
literature one often encounters terms like black box modeling, system identification,
time series analysis, and behavioral modeling. All these terms basically mean the
same as empiric modeling, the term which is used in this thesis. Introductory and
advanced text books on empiric modeling are e.g. (Nelles 2001), (Ljung 1999), (Walter
& Pronzato 1997), (Söderström & Stoica 1989), and (Box, Jenkins & Reinsel 1994).

15
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Empiric modeling methods can be further categorized in nonparametric and para-
metric methods.

Nonparametric methods Nonparametric methods typically provide a pictorial
representation of the model. These methods provide information about the process,
but the models need to be converted to parametric models before they can be useful for
e.g. control purposes. Two common nonparametric methods are, see e.g. (Ljung 1999)
and (Söderström & Stoica 1989):

• Transient analysis — Plots of impulse responses or step responses provide infor-
mation about the delay, gain, and time constants of simple systems.

• Frequency analysis — Sinusoidal input signals are applied to the process, and
phase and amplitude are calculated. Various frequencies are applied and the
result is plotted in e.g. a Bode diagram.

Parametric methods Although an iterative procedure, several steps in building
a parametric empiric model can be identified. The steps below are not necessarily
performed successively, see e.g. (Ljung 1999) and (Walter & Pronzato 1997):

1. Choose inputs and outputs

2. Collect experimental data

3. Pretreatment of data, search for outliers, and trends.

4. Choose model structure (state space model, neural net, transfer function, etc.)

5. Choose model order

6. Choose criterion for optimization of model fit

7. Calculate parameters in model, based on optimization of the criterion

8. Validate model

Within the control community, the prediction error method (PEM) is probably
the best known criterion:

�̂��� = argmin
�

���� (�), (3.1)

where �̂��� is the estimated parameter vector that minimize the criterion ���� (�).
The criterion is a function of the �-step-ahead prediction error

� = �̂(	|	 �) �(	), (3.2)

where �̂(	|	 �) are the predicted outputs at time 	 based on data up to time 	 �,
and �(	) are the measured outputs at time 	. Typically the squared prediction error
is used

���� (�) =
� 1X
�=0

��
��, (3.3)
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where 
� is a weight matrix. One-step-ahead predictions are often preferred for
models for control, while � = 	 + 1 is commonly used when long term prediction
abilities are required, such as in model predictive control. Note that setting � = 	+1
means pure curve fitting, i.e. fitting the simulated model output to the measured
data. Normally one need to use some iterative search algorithm, like e.g. Gauss-
Newton, to find the optimal parameter vector, however if the model is linear in the
parameters then the optimal parameters can be found without iterations by the least
squares method.

A statistically founded competitor to PEM is the maximum likelihood method
(MLM):

�̂��� = argmax
�

���� (�), (3.4)

where �̂��� is the estimated parameter vector that maximizes the criterion ���� (�).
The criterion is the likelihood function, reflecting the likelihood of the measured data.
If the measured data are independent random variables, then the likelihood is the joint
probability density function of these data

���� (�) = �	(�obs|�), (3.5)

where �obs is the measured data, and �	(�obs |�) is the probability that the observations
�obs should take place with a given parameter vector �. For a dynamic system, the
observations are usually dependent. However, using an estimator, the prediction
errors are assumed independent and with a certain probability density function. In
such a case the MLM can be seen as a special case of the PEM.

Subspace methods Subspace methods are parametric methods, as the output from
such methods are state space models. However, the subspace methods have some
distinct features and it makes sense to present them as a unique method. (Ljung 1996)
characterize subspace system identification as the most interesting development in
system identification in the past decade. There are a number of di erent subspace
algorithms available, such as DSR, CVA, N4SID, and PO-MOESP. Complete linear
state space models are identified without prior parametrization, except for the system
order which can be decided upon by studying singular values, and without iteration
(Di Ruscio 1997), (Van Overschee & De Moor 1996). The algorithms are very fast
and reliable because no iterations are performed.

The probably best known algorithm is N4SID due to its inclusion in the Matlab
System Identification Toolbox (Ljung 2000). However, in (Di Ruscio 1997) N4SID
is criticized for finding the erroneous column space for the extended observability
matrix1 when colored noise enters the process, as opposed to DSR, CVA and PO-
MOESP. Based on the results in Papers A — B this may very well be correct as it
was experienced that N4SID always found a much higher model order than the DSR
algorithm, without in general improving the model fit.

While e.g. PEM use an iterative search for optimal parameter values, subspace
algorithm use linear algebra to find the parameters without iteration. Uncorrelated

1Estimation of the extended observability matrix is the first and common step in most subspace
algorithms. From this matrix we can find the order � of the system and the � and � model matrices.
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noise and inputs are a basic assumption in subspace algorithms, and thus used in
a straight forward fashion these algorithms will not yield consistent estimates when
closed loop data are used. For PEM, the use of closed loop data is in most cases
un-problematic (Ljung 1999).

3.1.2 Empiric modeling of PM6

Empiric modeling of PM6 are covered in more detail in Papers A — B. In Paper A
a high order mechanistic model is used as starting point for the empiric modeling,
while in B both empiric modeling from experimentation on the high order mechanistic
model and on the real process is carried out. The main results from empiric modeling
of the real paper machine process are presented next.

The manipulated inputs � and the outputs � are

� =
��

��
��

� � =
���
��
���

, (3.6)

where the inputs � are the amount of thick stock, filler added at the outlet of the
white water tank, and retention aid added at the outlet of the screens, and where the
outputs � are the basis weight (weight per area), paper ash content (content of filler
in the paper), and wire tray consistency in the recirculation flow from the wire to the
white water tank. The basis weight and paper ash outputs are direct quality variables,
while the wire tray consistency is an indirect quality variable having significant e ect
on variation in other short circulation variables (see Figure 2.2).

Identification of models with the subspace methods DSR and N4SID for model
orders 1-30, and for various user defined parameters were carried out. The raw data
observations were not equally spaced in time and a linear interpolation routine in
Matlab was used for creating time series with five seconds sampling intervals, the
sampling interval was approximately two seconds in the raw data. The identifications
were repeated for data without pretreatment, data which were centered, and for data
which were centered and scaled. The centering was carried out by subtracting the
value of the first element in each input and output series2 , and the scaling was carried
out by dividing each series with its standard deviation. Note that no particular
consideration was given to the fact that the basis weight and paper ash measurements
are updated less frequently than other variables.

A root mean square error (RMSE) criterion was used for comparing the identifi-
cation and validation of the various models

���� =

vuut 1

�

�X
�=1

(�̂�(	|0) ��(	))
2, (3.7)

where � is the number of observations, ��(	) is the measured output � at time 	, and
�̂�(	|0) is the simulated output � at time 	 from the empiric model. The �’s in the

2Centering may also be carried out e.g. by subtracting the mean of the series.
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Figure 3.1: Real data (solid lines) and simulated data (dashed lines). Data set for
identification collected at September 19. 2000, and data set for validation collected
at October 27. 2000. Identification was carried out on centered data.

RMSE’s are denoted as ������ (basis weight), ��� (paper ash content) or ����� (wire
tray concentration). The simulated �̂� are centered so that they have the same mean
value as the measured responses ��, before the RMSE’s are calculated.

A third-order model with centered data was identified with the DSR method.
Several higher order DSR models were identified, but non of these improved the
validation RMSE values. The results from the identification and validation of this
model is shown in Figure 3.1, and Table 3.1 gives the RMSE values.

With N4SID a fifth-order centered and scaled model was identified, in addition to
several higher order models (11�� to 23�� order models) with RMSE values comparable
to those of the DSR models. The validation gave higher RMSE values for the fifth-
order N4SID model than for the third-order DSR model. None of the higher order

Table 3.1: RMSE values for third-order DSR model.
Identification Validation

RMSEweight 0�410 0�697
RMSEash 0�095 0�410
RMSEconc. 0�0043 0�0173



20 CHAPTER 3. MODELING

N4SID models improved all three RMSE values at validation. The RMSE values for
the basis weight were improved and the RMSE values for the wire tray consistency
were poorer for all these models compared to the third-order DSR model.

All identified DSR and N4SID models were used as initial values for a corre-
sponding PEM method. Some minor improvements on some of the DSR models were
obtained at identification, however no validation improvements were found.

Individual3 gains and time constants in the empiric models are far from the ex-
pected ones, the ones seen in step tests, or the ones in the mechanistic model imple-
mented at PM6. This may be due to the experiments not being informative enough
(Ljung 1999), and it suggests that quite extensive experimentation is needed in order
to obtain a multivariable empiric model. It is however interesting to note that the
validation results based on RMSE values seem to be quite good despite the poorly
identified dynamics of the system.

3.2 Mechanistic modeling

3.2.1 Introduction

A mechanistic model is a model built from basic principles of physics, chemistry,
biology, etc., by writing down conservation or balance equations. Obviously this
requires extensive knowledge of the process to be modeled. In the literature one
sometimes encounters terms like white-, and grey box modeling, see e.g. (Sohlberg
1998). White box models are mechanistic models based on complete knowledge of
the process, i.e. where both equations governing the behavior and the associated
parameters are known a priori. Obviously, such models are rarely found. A grey box
model is a mechanistic model where the equations governing the behavior are assumed
known, but parameter values need to be estimated using experimental or historical
data. Throughout this thesis grey box models are included in mechanistic models.

There is a vast amount of literature on mechanistic modeling. Most sources deal
with specific processes or process units, such as this thesis. However, studying a new
process unit one often finds out that similar but not entirely the same units have
been modeled, and often the models available are developed with another scope. A
search for most of the known processes or process units in a data base will result in
numerous hits.

In subsection 3.1.1 a procedure for parametric empiric modeling was outlined. Sim-
ilar procedures for mechanistic modeling may also be found, e.g. in (Foss, Lohmann
& Marquardt 1998), (Sohlberg 1998), and (Sælid 1984). The procedures for empiric
and mechanistic modeling are similar to some extent, but with some exceptions:

• There are probably many more iterations and unstructured patterns of the itera-
tions for mechanistic modeling compared to empiric modeling (Foss et al. 1998).

• Conceptual modeling enters as a step in the mechanistic modeling procedure.
This step includes e.g. dividing the problem into several subproblems, making

3From one input to one output.
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a list of relevant phenomena, and searching for literature (Foss et al. 1998),
(Sælid 1984).

• Model simplifications enters as a step in the mechanistic modeling procedure
(Sælid 1984).

• For a mechanistic model, the model structure and model order are chosen by
formulating the physical laws and balances describing the process.

3.2.2 Mechanistic modeling of PM6

Mechanistic modeling of PM6 are covered in more detail in Papers A — C. In Papers
A — B the model is not presented in detail, and neither is it fitted to real time data,
nor is it validated with real time data. In Paper C the model is presented in detail,
and it is also fitted to and validated with real time data. Thus, Paper C should be
considered the main source of information about the mechanistic model developed for
PM6. Probably, the most important reference used in the development of the PM6
model was (Shirt 1997):

... this work develops the first large scale dynamic simulation of a paper
machine wet end which incorporates chemical phenomena (Shirt 1997,
page 6).

More references can be found in Papers A — C. Despite the work carried out in
(Shirt 1997), there seems to exist some resistance to mechanistic modeling of paper
machines:

The greatest problem here (concerning wet-end chemistry control. Au-
thors note) is that it is not yet, nor is it likely to be, possible to generate a
comprehensive physico-chemical model for the description of the adsorp-
tion, retention and other processes operative at the wet end of a multi-
component additive system. However, some success in control has been
achieved with more empirical approaches (Roberts 1996b, page 8).

The wet end of the paper machine is perhaps the most complex and
important part of the paper making process, but can also be described
as being one of the least understood sections as well. ... The physical
modelling approach was thought to o er the best possible method for the
papermachine [Humphrey 1986, Nicholson 1980]. However, the loss of
material through the wire into the backwater was thought to be far too
complex for purely physical modelling alone (Rooke 1999, page 31 and
104).

These claims are probably correct, and the objective of the mechanistic modeling
of PM6 was not to make a detailed all-including model which in all aspects had the
correct physical structure. The objective was to make a model of a limited part of
PM6, which were suitable for model predictive control (MPC), captured the essential
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dynamic behavior of the process, and was applicable over a wide range of operating
conditions. A similar thought is presented in (Scott 1996, page 136) which state that
a comprehensive wet end control scheme will not work, and that the solution is to
divide the overall process into subsystems and strive to reduce variability in each of
them.

The deterministic model Some modifications have been introduced to the model
detailed in Paper C, as compared to the model implemented at PM6. The most
prominent modification is that a first order empiric model that was added to capture
neglected and unknown dynamics in the process, has been removed.

The deterministic model was originally developed with several ordinary and par-
tial di erential equations. The model was then simplified, and eventually fitted to
experimental and operational mill data. The implemented PM6 model consists of a
third order nonlinear mechanistic model based on physical and chemical laws. The
structure of the developed process model is

·
�̄ = �̄(�̄� �̄� �̄� �̄) (3.8)

�̄ = �̄(�̄� �̄� �̄� �̄),

with �̄ R� = R3, �̄ R� = R3, �̄ R� = R3 and �̄ R� = R4. The bar above
the variable names indicates that these are the variables in their original units and
coordinate system. �̄ consists of several model parameters, tuned to fit the model
outputs to experimental and operational data.

The inputs and outputs are as shown in eq. 3.6. In the mechanistic model the
states and measured disturbances are

�̄� =
£
�̄������ �̄������� �̄�����

¤
(3.9)

�̄� =
£
�̄TS,tot � �̄TS,fil�  ̄� �̄

¤
,

where �̄����� is the concentration of filler in a reject tank in the hydrocyclones, �̄������

is the concentration of filler in the white water tank, and �̄����� is the concentration
of fiber in the deculator. The measured disturbances accounted for in the mechanistic
model, are the total and filler thick stock concentrations �̄TS,tot and �̄TS,fil, the paper
machine velocity  ̄, and the paper moisture percentage �̄ .

Note that the total- and filler concentrations in the thick stock flow are called
“measured disturbances”, although they are not measured. A model of the thick
stock area has been developed (Slora 2001), and implemented at PM6, providing
estimates of total- and filler concentrations in the thick stock.

Parameter estimation in the deterministic model The model implemented
at PM6 has many parameters. These parameters have physical interpretations and
thus it should be possible to measure them (e.g. the volumes) or estimate them one
by one from local measurements (e.g. measure the flows and concentrations in each
stage of the hydrocyclones and calculate the associated parameters). This approach
would require a very large and detailed model, probably not suitable for on-line use.
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Table 3.2: Parameters estimated in PM6 model.
Name Description Unit
!filler conversion from total flow [ l� s] to filler flow [ kg� s] kg� l
!filler,Wire share of non-flocculated filler retained on the wire —
!�	1�inject inject flow to first stage, relative to flow onto the wire —
!�	1�filler filler accepted in first stage, relative to filler in inject flow —
!�	1�fiber fiber accepted in first stage, relative to fiber in inject flow —
!�	2�filler filler accepted in second stage, relative to filler in inject flow —
!�	2�fiber fiber accepted in second stage, relative to fiber in inject flow —
!fiber,Wire share of non-flocculated fiber retained on the wire —
���
�total bias on estimated thick stock total concentration —
���
�filler bias on estimated thick stock filler share —
	filler flocculation constant for filler 1� s
	fiber flocculation constant for fiber 1� s
	fiber-filler flocculation constant for filler 1� s
"�� volume of deculator (right chamber) m3

"� volume of reject tank m3

"�� volume of white water tank m3

�1�initial initial value for filler concentration in reject tank —
�2�initial initial value for filler concentration in white water tank —
�3�initial initial value for fiber concentration in deculator —

The model implemented at PM6 is a simple approximation of a complex process and
the parameters in the model, although they have a physical interpretation, should not
be measured and/or estimated one by one due to the poor input-output properties of
the resulting model. Consider e.g. the deculator volume, which is important for char-
acterizing the time constant for the sub-model between the thick stock and the basis
weight. The real volume of the deculator is approximately 17m3 (right chamber),
however in the model it is many times larger. The deculator volume in the model
should be regarded as a lumped volume and not a single physical volume. The most
important properties of the model are the input-output properties, i.e. the response
on the outputs from changes in inputs. Thus, we want to estimate the parameters in
the model so that these properties are good. In principle we would therefore like to
tune the parameters so that the model outputs are equal to measured outputs. How-
ever, due to the large number of parameters in the model we set some parameters
equal to values that seem reasonable, and estimate the rest. The parameters that we
have chosen to estimate are shown in Table 3.2.

The function lsqnonlin in the Matlab Optimization toolbox (The MathWorks,
Inc. 2000) is used for solving the minimization problem defined in eq. 3.1 — 3.3.
The prediction errors � are calculated by simulating the system, with only the initial
conditions given, i.e. with � = 	+1 in eq. 3.2. In addition the optimization has been
subject to the constraints

�min �̂ �max, (3.10)

Traditional system identification (see e.g. (Ljung 1999)) is in most cases carried
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out using a one-step-ahead predictor, corresponding to � = 1, however in our case we
wish to emphasize the need for a model with good long term prediction abilities. The
reason for this is that the model will be used for model predictive control (MPC).
Then, it seems natural to use the simulation approach in the parameter estimation
algorithm.

The concept of scaling is very important for robust and rapid convergence to the
optimal parameter values (Betts 2001). Here, we will point at two simple methods
for scaling; scaling of parameters and scaling of the simulation error. Scaling of the
parameters can be done by introducing

� = � × �̃, (3.11)

where �̃ is the scaled parameter vector, � is the original non-scaled parameter vector,
� is a scaling vector, and × is the Hadamard product (an element by element multi-
plication). The scaling vector � may be chosen so that the assumed scaled parameter
values are close to unity. Consider e.g. the following assumed parameter vector

� = [10 5� 108].

Choosing
� = [10 5� 108],

gives the following scaled parameter vector

�̃ = [1� 1].

Any constraints or bounds on the parameters must be scaled accordingly.
The simulation error is defined in equation 3.2 by setting � = 	 + 1. The basis

weight is measured in g�m2 and has a value typically around 50 g�m2, paper ash is
measured in % and has a value typically around 30%, and the wire tray concentration
in measured in % has a value of approximately 0�6%. Based on this, it is easy to
understand that the error for the wire tray concentration is very small compared to
the other two errors, thus any model fitting routine would more or less ignore the
wire tray concentration and concentrate on fitting the basis weight and paper ash.
To compensate for this one may scale the simulation error or outputs, simply by
multiplying with a weight. If all outputs are regarded equally important, one may
weight them so that the outputs are approximately equal. For example, the wire tray
could be multiplied by 50 to make it approximately equal to the paper ash. However,
in our case we define the most important output to be the basis weight, the second
most important output to be the paper ash, and the least important output is the
wire tray concentration. This ranking of importance should thus also be reflected in
the weighting of the outputs.

Validation and re-tuning of deterministic model Validation is the method of
checking how good the model really is. One may find a model fitted almost perfectly
to one data set, and totally failing to explain (failing to simulate outputs close to
measured outputs) another data set. Many methods for validation exist, however
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if possible a proper validation should include testing of the model with a new data
set. Using one half of the data set for model fitting and one half for validation is
not an equally proper method, as slow varying disturbances and parameters , drifts,
and trends, will be very hard to discover. Ideally, data sets spanning all operating
conditions of the process should be used for validation, thus one would have a fair
chance to find areas where the model is not functioning properly.

In subsection 3.1.1 a procedure for parametric empiric modeling is outlined, and
in subsection 3.2.1 some similarities and di erences between the empiric modeling
procedure and a procedure for mechanistic modeling is pointed at. A similar pro-
cedure as the ones found in subsections 3.1.1 and 3.2.1 has been used for the PM6
model, although with some changes. Validating a model by comparing simulated and
real outputs, is in general not enough when the model should be used for control.
The individual responses from each input to each output are also very important.
A procedure is presented next, which is used at PM6 and found to work well, for
model fitting, validation and re-tuning of the model. The procedure is also pictorially
presented in Figure 3.2.

1. Make model.

2. Collect several data sets, at least one for model fitting and one for validation.
The data set used for model fitting should contain well excited data. The data
set for validation must also to some extent be excited. The length of the data
sets obviously depends on the process and size of the model. For the PM6 work,
the data sets ranged from 2 hours to several days. It is usually not important
wether the data are collected in open or closed loop since “a directly applied
prediction error method — applied as if any feedback did not exist — will work
well and give optimal accuracy if the true system can be described within the
chosen model structure” (Ljung 1999, page 434). Check the data for outliers
and that the units are correct, and also consider filtering of the data.

3. Set up tables of approximately expected gains and time constants from inputs
and measured disturbances, to outputs. These gains and time constants could be
found from discussions with process operators and engineers alone, but should
be supported by step tests carried out on the process, if possible.

4. Choose initial parameter values and fit the model to the data. Several re-
optimizations may be needed. For example if the optimal parameter values are
very di erent from the initial values, then the optimal values should be used as
initial values and optimized again (thus, a re-scaling is also carried out). Other
reasons for re-optimizing may be to try other initial parameter values, or other
parameter bounds. If reasonably good model fit is not obtained, changing the
model equations may eventually be necessary.

5. Validate the model by comparing simulated and measured outputs, using a
di erent data set than the one used for model fitting. If the result is not satis-
factory one should probably return to point 4, and try di erent initial values or
parameter bounds. Eventually one may need to change the model equations if
reasonable validation results are not obtained.
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Table 3.3: RMSE values for mechanistic PM6 models.
Fitting M1 Fitting/re-tuning M2 Val. M1 Val. M2

Basis weight 0�21 0�25 1�00 0�71
Paper ash 0�24 0�40 0�87 1�20
Wire tray conc. 0�024 0�020 0�0496 0�042

Table 3.4: Gain ratios (M1/M2) for mechanistic PM6 models.
Thick stock Filler Ret.aid

Basis weight 0�130 � 0�135 1�25 � 1�85 2�98 � 3�98
Paper ash 0�023 � 0�022 1�63 � 2�40 1�66 � 5�10
Wire tray conc. 0�00022 � 0�00057 0�081 � 0�11 0�18 � 0�21

6. Simulate step tests on the fitted model, and compare the gains and time con-
stants with the expected results as found in point 3. If the gains and time
constants are reasonably close to the expected ones, the model fitting and vali-
dation is finished.

7. If the gains and time constants in point 6 are too far from the expected values,
re-tune the model by changing parameter values that move the gains and time
constants towards the expected ones. When reasonable gains and time con-
stants are found, go to point 5 and compare simulated and measured outputs.
Eventually one may need to change the model equations if reasonable gains and
time constants are not found.

Figure 3.3 shows the validation result after fitting the model to an experimental
data set, and Figure 3.4 shows the validation result after re-tuning to obtain expected
gains and time constants. A comparison of the fitting and validation results are also
given in Tables 3.3 and 3.4, based on the root mean square error values as defined in
eq. 3.7 and the gains found in a specific operating point. In the tables we denote the
fitted model by M , and the fitted and re-tuned model by M2, i.e. the implemented
model is denoted M2.

Comparing the RMSE values in Table 3.3, it seems that the basis weight fit be-
came somewhat poorer after re-tuning the model, but the validation result improved
significantly. The paper ash RMSE values became poorer after the re-tuning, while
the wire tray total concentration RMSE values were improved. Studying the gain
matrix in Table 3.4, it is seen that some gains changed dramatically, e.g. the gain
between the thick stock and wire tray concentration more than doubled after the
re-tuning. Similar results are found for the gains from the filler to the paper ash, and
from the retention aid to the basis weight and paper ash.

Both models, M1 and M2, have been tested in MPC applications at PM6. It was
observed that MPC with M1 resulted in e.g. poor grade changes due to the erroneous
gains. These results are in accordance with the results from empiric modeling of
PM6 in subsection 3.1.2. For the identified empiric model, the validation results
were reasonably good, and it seemed that a model suitable for control was obtained.
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Figure 3.2: Procedure for model fitting and validation.
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Figure 3.3: Validation of the model after fitting with lsqnonlin.

However studying the individual gains and time constants suggested that the model
would probably work poorly for control applications due to large di erences between
model dynamics and dynamics in the real process.

Identification and tuning of stochastic model An augmented suboptimal Kalman
filter is used at PM6 for estimating the states and some of the parameters in the paper
machine model. As pointed out in (Muske & Badgwell 2002), only a limited number
of parameters can be estimated on-line, thus the choice of which parameters or biases
to estimate must be based on experience with the process and model. Three biases
have been selected for on-line estimation in the paper machine model. The first two
are biases on the estimated total- and filler thick stock consistencies (see eq. 3.9).
These disturbances are estimated using a ballistic estimator (Slora 2001), and thus
they are assumed to be good candidates for having time-varying biases. The third
bias estimated on-line is for the total wire tray concentration, i.e. a bias in one of the
outputs.

In theory, and in the true Kalman filter, the noise characteristics of the process
should be found and used in the Kalman filter equations. However, these charac-
teristics are hard, if not impossible, to find. Thus, one often aims for a suboptimal
Kalman filter, where the noise characteristics are used as tuning parameters until
satisfactory Kalman filter performance is obtained. Specifically, the tuning param-
eters are the augmented process noise covariance matrix, 
̃�, and the measurement
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Figure 3.4: Validating the model after fitting with lsqnonlin, and re-tuning to obtain
expected gains and time constants.
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noise covariance matrix, �. Often, it is assumed that only diagonal elements are
non-zero. Thus, for the paper machine model there are three diagonal elements in �

(three outputs), and six diagonal elements in 
̃� (three states plus three estimated
parameters).

When tuning and validating the (suboptimal) Kalman filter at PM6, a few facts
and rules of thumb have been used, e.g.:

• The tuning and validation (with di erent data sets) should aim at

— good tracking properties, i.e. the estimated outputs should follow the
measured outputs to some extent;

— good filtering properties, i.e. the estimated outputs should not track mea-
surement noise;

— a sound balance between the updating of states and updating of parame-
ters, e.g. the parameters should not vary a lot while the states are more
or less resting.

• It can be shown that it is the ratio of the various variances that determines the
performance of the Kalman filter. Thus, one needs not be careful about finding
realistic variance values.

• It is possible to estimate the variances, using a parameter estimation method.
This is carried out for a constant gain Kalman filter (i.e. the individual variances
are not estimated, but the Kalman filter gain matrix is estimated) in (Hauge
& Lie 2002). The drawback with this method is that the Kalman filter will be
rather aggressive, and some de-tuning procedure is needed (but it may give a
good starting point).

• Start the tuning by finding approximate values for the various variances. The
measurement variances can be approximately found by visually studying the
random variations in the measurements. It is harder to find suitable starting
values for the process noise variances and the parameter estimate variances.
However, the expected state and parameter values will give good indications of
reasonable starting values. Consider e.g. a concentration that is expected to
have a value around 0�05 (5%). If one assumes that the noise entering this state
is approximately 1% of the state value, we see that the variance will be a very
small number. In the Kalman filter used at PM6, the measurement variances
are much larger than the process and parameter variances (around 108 larger).

• In general, increasing the measurement variances leads to a slower updating of
state estimates. The same result is obtained by decreasing the process vari-
ance. Thus, decreasing the process variance leads to a slower updating of state
estimates.

• Since the parameters are augmented states, changing the parameter variances
has much of the same e ect as changing the state variances. Increasing the
parameter variances leads to a faster updating of parameter estimates, thus
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also leading to a faster elimination of estimation error (the di erence between
estimated outputs and measured outputs).

Refining versus lumping approach Studying Papers A — C, it is obvious that
the mechanistic PM6 model has been developed basically in a lumping approach4: a
large complex model was developed first, and simplifications were then carried out
to establish a smaller and less complex model suitable for model based control. A
refining approach5 would include developing a coarse model, and then gradually refine
the structure by introducing new elements.

In (Sohlberg 1998) a refining approach to modeling of a rinsing process within the
steel industry can be followed closely. A basic model is developed first, consisting
of only one unknown parameter. The model is fitted to data and refined in several
stages before the final model, consisting of nine parameters, is achieved. The refining
approach seems to be the preferred method amongst experienced modelers, although
a certain mixture of the two approaches seems likely to occur in most projects (Foss
et al. 1998). This mixing of approaches is also the case for the PM6 model. Even
though the lumping approach is very pronounced, some elements of refining can be
identified.

Two interesting questions are then: if a refining approach had been used for the
PM6 model, (i) would the result be any di erent, and (ii) would the time spent on
modeling be any di erent? (Sælid 1984, page 6) argues that if a too detailed model is
developed, then much time and work is more or less wasted. This is probably correct
for an experienced modeler having some knowledge about the process to be modeled,
as (s)he will have an a priori feeling of the important phenomena and simplifications
that can be carried out. For an unexperienced modeler, unfamiliar with the process
(s)he is about to model, it will probably be much harder to identify sensible simplifying
assumptions a priori. Consider e.g. the question of whether flocculation at PM6 takes
place throughout the whole short circulation or only between the screens and the
headbox. In the first model developed, the flocculation was assumed to take place in
the whole short circulation, while the flocculation was constrained to take place only
in the pipeline between the screens and the headbox in later versions of the model.
This simplifying assumption was based on results from simulation, and sources such
as (Shirt 1997), (Pelton 1984), (Koethe & Scott 1993), and (Gregory 1988). Next,
consider a simpler example of how to model a pipeline. Assume for simplicity that
no flocculation takes place within the pipeline, thus one expects that a very reliable
model for the concentration in the pipeline is a partial di erential equation (PDE)

#�

#�
=  

#�

#�
, (3.12)

where  is the velocity of the mass inside the pipeline, and � is the variable corre-
sponding to the direction along the pipeline. Using the method of lines (MOL) for
discretization (Schiesser 1991), the choice of discretization level is a trade-o between

4Also called a bottom-up approach.
5Also called a top-down approach.
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Figure 3.5: Step responses at the outlet of a pipeline (40m length, 0�7m2 cross
sectional area, 2500 kg� s mass flow). Discretization carried out with various numbers
of ideally stirred volumes.

factors such as accuracy, complexity and numerical properties. With an increas-
ing number of volumes, the model is more accurate but also more complex and the
sti ness of the overall system is increased. The trade-o can be studied from the re-
sponses in Figure 3.5, where a step change (from 0 to 0�1) in the initial concentration
is applied to the pipeline between the screens and the headbox. The pipeline is 40m
long, it has a cross section area of 0�7m2 and a mass flow of 2500 kg� s. A density
of $ = 1000kg�m3 is assumed. If the pipeline is a pure time delay then the step
change would appear at the outlet at � = %�(��(&$)) = 11�2 s, where % is the length
of the pipeline. For the original PM6 model there were 100 pipelines included in the
model. One advantage of using the lumping approach to modeling is then that the
various choices of discretization can be easily studied using simulation, and one will
have good control of which simplifications are negligible and not. In Paper A various
simplified models are compared with a large basic model, showing that for the PM6
model all PDE’s can be simplified to one ordinary di erential equation (ODE) each
without a ecting the properties of the model to any large extent.

To sum up some thoughts and experiences: The refining approach is used by
most experienced modelers in the field, however combined with some elements of the
lumping approach. It is hard to find arguments supporting that a model will be better
or worse using one approach or the other, however the time spent using the lumping
approach may be longer than for the refining approach. For a novice in mechanistic
modeling, the lumping approach may be more valuable in terms of gaining modeling
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experience.

3.2.3 Linearized PM6 state space model

In this subsection, a typical example of a linearized PM6 state space model is given.
The structure of the linearized model is

��+1 = &�� +'�� +��� (3.13)

�� = ��� +(�� + )��,

where the sample time is 30 seconds, and the states, inputs, outputs, and measured
disturbances are as described in eqs. 3.6 and 3.9. Typical model matrices are

& =
0�9702 0�3283 0
0�0018 0�9596 0�0197
0 0 0�8661

(3.14)

' =
1�3 160�1 0�2
0�1 10�1 33�4
1�3 0 0�7

� =
0�0247 0�0023 0 0
0�0016 0�0001 0 0
0�0134 0�0007 0 0

� =
61 727 13� 109
83 986 1692
3 34 32

( =
0�0029 0�3544 5�3831
0�0040 0�4815 7�1769
0�0001 0�0166 0�0554

) =
54�5613 5�1415 1�9777 51�0179
74�1090 6�9836 0 30�6923
2�5519 0�2405 0 0

3.3 Mechanistic versus empiric models

Table 3.5 summarizes some general properties of mechanistic and empiric models,
although exceptions can easily be found.

The perhaps strongest argument for using an empiric model is that the time for
building such a model is much lower than for a mechanistic model. In (Foss et al. 1998)
it is indicated that the development cost for an empiric model is about 1�10 compared
to a mechanistic model. This was indicated by a person experienced with mechanistic
modeling, and for the paper machine modeling in Papers A — C the ratio is probably
closer to 1�100. Another positive feature of empiric models are that they often have a
simple structure (linear and time invariant) which leads to quick and easy simulation,
analysis, and design of control algorithms. If one has access to experimental data,
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Table 3.5: Mechanistic versus empiric models. Partly reproduced from Støle-Hansen
1998, and Walter & Pronzato 1997.
Properties Mechanistic Empiric
Utilize physical knowledge and insight yes no
The parameters have known range yes no
Number of unknown parameters low high
Time needed to develop a model high low
Resources needed to maintain a model low high
Easy to use for complex/unknown processes no yes
Amount of data needed low high
Applicability to control and training yes yes
Applicability to design yes no
Extrapolation properties good* bad
Increases process knowledge yes no
Complex yes (non-linear) no (often linear)
Simulation long/di cult quick/easy
Possible roll-out of model yes no
*if structure is correct.

and the operating region of the process is only moderately nonlinear, then it seems
reasonable to first try an empiric model.

The strength of a mechanistic model lies in its ability to capture known nonlinear
phenomena and thereby having extraordinary extrapolating properties, and the pos-
sible reuse of the model on similar processes. This and other features are emphasized
in the following quotation:

..., a model based on first principles can operate in a larger domain
than a black-box model. A model based on first principles will in general
contain fewer parameters and will therefore be more parsimonious. From
the parsimony principle we know that the best model is the simplest model
that adequately describes the process, since overparameterization will in
general lead to poor generalization. A consequence of fewer parameters, a
model based on first principles will need fewer experiments to be identified.
On the other hand, a black-box structure is easier to develop. ... To
identify our model (a mechanistic model. Authors note) we have only
used history data from the plant. (Hillestad & Andersen 1994, page 42
and 45)

Consider the paper machine model implemented at PM6. This model has 19
parameters, including two biases and three initial ODE values, which is tuned to fit
the model to data. The model has three inputs, three outputs, three states, and four
measured disturbances. A linear (empiric) state space model of the same dimension
would consist of 63 parameters, including direct input to output matrix and three
initial ODE values. An empiric transfer matrix model would consist of minimum
42 parameters, corresponding to pure first order elements, i.e. one parameter for
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the time constant, and one for the gain, in each element. If a step response model
or impulse response model is used, the number of parameters would increase even
more. In addition, the empiric models mentioned here have a limited operating range
and must either be adaptive or a set of models is needed. In (Kosonen et al. 2002)
an approach where a set of adaptive empiric models are used to cover the operating
region of the paper machine is described.

A point made by (Ogunnaike & Wright 1997, page 49), is that mechanistic model-
ing results in a small number of parameters that can intuitively be understood, thus
reducing long term support cost. Industrial processes do not remain static and it is
likely that the model, whether empiric or mechanistic, will degrade with time. An-
other point, which is often neglected in the literature, is that the un-manipulatable
nature of most measured disturbances makes it impossible to model their e ect on
the model outputs empirically. The empiric PM6 model developed in subsection 3.1.2
consists of none measured disturbances. Submodels from measured disturbances to
model outputs can in some cases be identified from experimental data, however in
most cases the data will not be informative enough and physical knowledge and insight
must be used. For example the thick stock total consistency could be incorporated in
the model by assuming that it a ected the outputs similarly to the thick stock input.
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Chapter 4

Model Predictive Control

4.1 Introduction

Readers not familiar with model predictive control (MPC) may consult one of the
many texts on the subject. Introductory textbooks on MPC are e.g. (Maciejowski
2002) focusing on MPC with state space models, and (Camacho & Bordons 1999)
focusing on MPC with transfer function models. A tutorial is given in (Rawlings
2000), and survey papers focusing on both theory and practice are e.g. (Garcia, Prett
& Morari 1989), (Mayne, Rawlings, Rao & Scokaert 2000), (Qin & Badgwell 1997),
and (Qin & Badgwell 1998).

In model predictive control (MPC) one calculates optimal inputs in a receding
horizon fashion. The inputs at time 	 are calculated by minimizing a criterion aiming
at keeping control errors small, the inputs close to some preferred values, the input
changes small, and the inputs, outputs, and input changes within some predefined
bounds. A typical mathematical formulation of the criterion may be

min
U�

�� = min
U�

X
�=0

£
���+�
��+� + �̃��+��̃�+� + ���+�� ��+�

¤
, (4.1)

constrained by the definitions

��+� = ��+� *	�+� (4.2)

�̃�+� = ��+� * �+�
��+� = ��+� ��+� 1,

the model of the process, e.g.

��+1+� = �(��+� � ��+� � ��+�) (4.3)

��+� = �(��+� � ��+� � ��+�),

37
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and the bounds

�min
�+� ��+� �max

�+� (4.4)

�min
�+� ��+� �max

�+�

�min
�+� ��+� �max

�+� ,

where � and *	 are the outputs and output targets, � and * are the inputs and
input targets, � are the states, � are the disturbances acting on the system, and 
,
, and � are weighting matrices. The input sequence U� covers the inputs from the
present time and � steps into the future, however only the first input is applied to
the process. At the next time instant, the computation is carried out again with the
same length � of the horizon, giving another input to apply to the process. Thus, the
inputs are computed in a receding horizon fashion, and MPC is occasionally called
receding horizon (optimal) control.

The basic MPC principle is shown in Figure 4.1. Here, the principle is illustrated
using only one input and one output (the basis weight of a paper machine), although
a major advantage of MPC is its ability to handle multivariable systems in a straight-
forward fashion. In the figure, the reference changes 15 minutes into the future, giving
the process operators time to evaluate the controller action. Even though this func-
tionality is available and described in many introductory texts on MPC (Camacho &
Bordons 1999) (Maciejowski 2002), most commercial MPC’s have not implemented
this facility. Instead, the change takes place immediately, or a trajectory is calculated
from the present setpoint to the new setpoint.

Linear model predictive control, i.e. MPC with linear models, is the only advanced
control method used to any extent by the industry. The main reasons for its success
are probably

• Intuitive and attractive concept.

• Constraints are handled in an elegant fashion.

• Compensates for dead time.

• Handles measured disturbances by feed forward control.

• Handles coupled multivariable systems with elegancy.

• Short payback time is reported, e.g. 3 months in (Bassett & Van Wijck 1999).

• Commercial MPC software packages are available.

• Linear empiric models can be developed e ciently, with or without commercial
software.

Nonlinear model predictive control, with mechanistic models, is not reported used
in many industrial applications. The reason for this is probably that the modeling
procedure is more expensive and time consuming, and that many of the larger vendors
only support linear models in their MPC’s. However, there are cases where it seems
reasonable to use nonlinear MPC with a mechanistic model, e.g. when:
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Figure 4.1: Basic MPC principle.

• The process is nonlinear, with wide operating range or several grades.

• Limited experimentation can be carried out on the process. Less experimenta-
tion is needed for fitting a mechanistic model compared to an empiric model, e.g.
(Hillestad & Andersen 1994) reports that their mechanistic model is identified
purely from historical data.

• There are a number of similar processes or process units, which the controller
is sought applied to.

Algorithm for MPC with mechanistic model Here, an algorithm for MPC
with a mechanistic model is suggested. The algorithm is detailed in Paper F.

The basic idea of the algorithm is that the nonlinear mechanistic model can be
approximated by a linear model which is updated at each sample, thus using suc-
cessive linearization, extended Kalman filter, and a linear MPC framework. Similar
approaches are also suggested in (Lee & Ricker 1994), although with a finite horizon
criterion, and (Gattu & Zafiriou 1992), with computation of the steady state Kalman
gain at each sample.

At time 	 we have available the process model (eq. 3.8) in its discrete version

�̄�+1 = �(�̄�� �̄�� �̄�� �̄�) (4.5)

�̄� = �(�̄�� �̄�� �̄�� �̄�),



40 CHAPTER 4. MODEL PREDICTIVE CONTROL

as well as the following past measurements and estimates

�̄� �

�̄� �

�̄� �b̄�� �+1

, � = 1� 2� 3���, (4.6)

where b̄� is an estimated state vector. The following step by step algorithm for con-
trolling the process is suggested, assuming the present time to be 	.

1. Linearization of model based on conditions at time 	 1�

The linearization is based on the most up-to-date information about the process,
i.e. the variable values at time 	 1. Note that we have no information about
�̄� yet, so we can not linearize based on variable values at time 	. The resulting
model is

=
��+1 = &�

=
�� +'�

=
�� +��

=

�� (4.7)

=
�� = ��

=
�� +(�

=
�� + )�

=

��.

2. Obtain current measured disturbances and future setpoints and disturbances.

The measured disturbances obtained from the process are �̄�. The future dis-
turbances and references are

*̄�+�, + = 0� ���� � 1 (4.8)

�̄�+�, + = 0� ���� � 1,

which must be provided by the process operators or simply taken as an extension
of the present values into the future.

3. Shift variables, i.e. change variable coordinates, corresponding to the linearized
model.

The references, disturbances, and constraints will be used with the linearized
model in eq. 4.7 for calculation of target or steady state values. The references,
disturbances, and constraints must then be shifted along with the model so that
all variables have compatible origins before the calculation of target values.

4. Calculate steady state values.

The calculation of steady state values is carried out for several reasons. The
steady state values are used as targets in the optimization criterion. One could
use e.g. reference values directly as targets in the criterion. However, the
calculation of steady state values is a way of ensuring that the targets are
feasible. In addition, by calculating steady state values one has the opportunity
to add e.g. an economic type criterion if there are additional degrees of freedom.
Finally, for the special case of an infinite horizon criterion with possibility of
changing future references and measured disturbances, we need the steady state
values at the end of the horizon in order to shift the origin of the model.
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5. Shift the origin of the model to the steady state values at time 	 +� 1�

The model origin is shifted so that the variables in the criterion converge expo-
nentially to a zero steady state, thus avoiding an infinite value of the criterion
in eq. 4.1. The resulting model is

��+1 = &��� +'��� +���� (4.9)

�� = ���� +(��� + )���.

6. Shift measured and estimated variables.

The variables must be shifted along with the model so that they have the same
origin.

7. Update MPC matrices and vectors.

The matrices and vectors in the MPC formulation that contain time variant
variables, such as linear model matrices, input variables, estimated states, etc.,
must be updated.

8. Optimization.

An optimization algorithm is used to calculate optimal inputs.

9. Apply �̄� to the process.

Note that only the first input is used.

10. Obtain �̄� from the process.

11. Estimate b̄��+1�
Unless all states are measured, we need to estimate them (or some of them).
Typically an extended Kalman filter is used for this purpose.

12. Set 	 := 	 + 1 and go to step 1

Note that variables in original units, i.e. unscaled and unshifted, are denoted by a
bar above the variable, e.g. �̄ and �̄. Variables in the linearized model, i.e. variables
that have origin corresponding to the center of linearization are denoted by a double
bar above the variable, e.g.

=
� and

=
�. Finally, variables shifted first by linearization

and then by the steady state values at time 	 +� 1 are shown as e.g. � and �.

Computational e ciency Consider the criterion and constraints in eqs. 4.1 — 4.4.
The choice of unknown variables are here given as the future input sequence U�. By
extensive manipulation (see Paper F) the criterion and constraints can be formulated
as the following quadratic programming (QP) problem

min
U�

�� = min
U�

µ
1

2
U�� ,�U� + ��� U�

¶
, (4.10)
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subject to

-���

·
U�

&̄�U�

¸
-!��, (4.11)

which can be solved by commercial QP software. This choice of unknowns in the
optimization criterion is by no means the only one, however in Paper E it is shown that
reducing the number of variables to a minimum often is beneficial for the computation
time. It is also shown that the e ciency of commercially available QP solvers varies
quite much. Consider a simulated case using the mechanistic model of PM6 and
the MPC algorithm above. The number of variables are down to a minimum, i.e.
only future input variables are computed, and we simulate 100 samples (50 minutes),
with a rather short horizon � = 20 samples. After 20 samples a step change in
the reference values occur. The change is known to the MPC from the start of the
simulation. One instance of outputs from such a simulation are shown in Figure
4.2, and the computation time using qpopt (Holmström 2001) and quadprog (The
MathWorks, Inc. 2000) are shown in Figures 4.3 - 4.4 respectively. It is clear that
qpopt is superior to quadprog when it comes to computing e ciency. No di erence
in computing accuracy has been found between the two solvers in this study. Some
statistics from the two simulations are:

Solver mean comp. time 1.opt. comp. time mean(2:end) comp. time
qpopt 0�013 s 0�11 s 0�012 s
quadprog 0�616 s 14�52 s 0�476 s

Here, “mean comp. time” is the average computation time for all 100 samples,
“1.opt. comp. time” is the computation time for the first optimization carried out,
and “mean(2:end) comp. time” is the average computation time for all 100 samples
except for the first.

4.2 Model predictive control at PM6

Model predictive control at PM6 is covered in more detail in Paper F.

Motivation for multivariable model based control Magazine paper is char-
acterized by its glossy appearance due to a high content of filler in the paper. The
finished magazine paper typically consists of 65% fiber, 30% filler, and 5% water.
The main di erence between magazine paper and e.g. newsprint is the high con-
tent of filler. For newsprint, the amount of filler is typically 0-10%. Due to the
high filler content in magazine paper, the couplings between important input and
output variables are relatively strong. The project “Stabilization of the wet end at
PM6” was initiated in 1999 based on the experience of strong couplings and oscillat-
ing behavior in the process. A key goal was to reduce variation in certain variables,
such as consistencies in the short circulation, basis weight, filler content, and more.
Based on experience and reported results from competitive mills (e.g. (McQuillin &
Huizinga 1995), and (Lang et al. 1998)), it was decided to develop a model of the
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Figure 4.2: Outputs (measured, estimated and reference) after simulation of 100
samples, with horizon � = 20. A change in reference values occurs after 10 minutes.
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Figure 4.3: Optimization time using qpopt. Simulation carried out with 100 samples,
and with horizon � = 20. A change in reference values occurs after 10 minutes (20
samples).
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Figure 4.4: Optimization time using quadprog. Simulation carried out with 100
samples, and with horizon � = 20. A change in reference values occurs after 10
minutes (20 samples).
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process and utilize this in a model predictive controller. Input, output, and measured
disturbance variables were selected as shown in eqs. 3.6 and 3.9.

Before the project started, single loop controllers and manual control were used.
Grade changes were carried out manually or partly manually by the operators: the
setpoints were changed a number of times before they were equal to the new grade.
During start ups, the controllers were kept in manual mode until the measurements
were close to the desired specifications. In addition, during sheet breaks the ba-
sis weight and paper ash measurements were lost and the inputs controlling these
variables were set equal to the values that they had prior to the sheet break. The
controllers were kept in manual mode until the paper was back on the reel. Thus,
it was also a key goal in the project to be able to have the controllers in automatic
mode during grade changes, sheet breaks, and start ups.

APIS MPC A commercial MPC developed by Prediktor AS (www.prediktor.no),
was chosen by Norske Skog for implementation. The choice of MPC was based on
(i) cost, and (ii) the ability to add and develop certain features that were important.
Special features that were important were the abilities to

• utilize the non-linear model;

• specify future reference changes. This means that the process operators can
specify a setpoint change some time into the future, see how the controller will
respond, and let the controller do the grade change if they are satisfied with the
response. In many systems, the setpoint is constant into the future, so once a
change in setpoint is made, the controller will respond immediately, giving the
operators no time to consider how wise the response is;

• make an interface suitable for gaining operator acceptance of the MPC;

• use the MPC during grade changes, sheet breaks, and start ups.

The commercial MPC is part of a software package named Apis (Advanced Pro-
cess Improvement System), which also consists of a Kalman filter, subspace system
identification, and more. The Apis MPC was intended for linear models, based on
the infinite horizon objective function presented in (Muske & Rawlings 1993). For
the predictive controller implemented at PM6, several extensions were made to the
original MPC, such as

• on-line linearization at each sample;

• on-line estimation of key model parameters/biases;

• future setpoint changes, i.e. the process operators can submit new setpoints to
the controller some time before the actual grade change;

• addition of a direct input to output term;

• inclusion of measured disturbances.
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The use of MPC, a nonlinear model, extended Kalman filter, and linearization
at each sample, has also been suggested by (Lee & Ricker 1994), although with a
finite horizon criterion. Similarly, (Gattu & Zafiriou 1992) proposed an algorithm
for nonlinear MPC, with linearization at each sample, but with computation of the
steady state Kalman gain at each sample.

Implementation and interface The MPC was installed at PM6 in March 2002.
During the first two months, the MPC, the Kalman filter and the model were con-
tinuously tuned, retuned, and validated in open and closed loop. Some structural
changes were also made during these months. From May 2002, the MPC has been
in operation more or less continuously. The process operators still have the original
“pre-MPC era” control configuration available, but the MPC has been the preferred
choice from the beginning. Furthermore, the operators have been very active in mak-
ing suggestions for improvements and new features in the system. Some of these
suggestions are implemented, and others are being considered for implementation.

In addition to discussing with and involving the operators in the project from the
beginning, it seems that the MPC interface has been very important for the positive
operator attitude. Figure 4.5 shows part of the MPC interface at PM6. The upper
row in the figure shows the basis weight, setpoint for basis weight, and the flow of
thick stock. The middle row shows the paper ash, setpoint for paper ash, and the flow
of filler added to the short circulation. The lower row shows the total concentration
in the wire tray, the corresponding setpoint, and the flow of retention aid added to
the short circulation. The interface and pairing of inputs and outputs are based on
the pre-MPC era control configuration, basically because this is how the operators
and engineers at PM6 are used to see it. The vertical dashed line in the middle of
each row is the current time. When Figure 4.5 was captured, the paper machine was
in the middle of a grade change, and studying the figure carefully, one may see the
setpoints change at the current time. The setpoints for the new grade were submitted
to the MPC some time before the grade change, so at the time of the grade change
the outputs are actually half way to the new setpoints. In terms of gaining operator
acceptance for the MPC, this feature of previewing the action taken by the controller
has been very helpful. The operators can specify a grade change e.g. half an hour
into the future, and see how the MPC will achieve the change: how the inputs will
be manipulated to reach the new setpoints.

Reduction of variation An important objective with the MPC was to reduce
variation in consistencies, basis weigh, paper ash, paper moisture, and more. Figure
4.6 shows an example with the wire tray concentration and the paper ash. The
bottom line indicates whether the MPC is on (at 1) or o (at 0). When the controller
is o , the original control configuration is used. The MPC provides a distinct e ect
of reduced variation in these two outputs.

The main objective of the project “Stabilization of the wet end at PM6” was to
increase the total e ciency by 0�47%. This is an objective that is hard to measure,
due to many factors a ecting the total e ciency. Thus, several sub-goals were defined
which were assumed easier to measure and validate. The sub-goals, and results,
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Figure 4.5: Part of the MPC interface at PM6.
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Figure 4.6: Wire tray concentration and paper ash, with (bottom line is 1) and with-
out (bottom line is 0) MPC. From top to bottom the following variables are shown:
Measured and estimated paper ash (overlapping), wire tray total concentration, re-
tention aid, filler, and MPC on/o indication.
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concerning reduced variability are:

Variable Sub-goal (red. std. dev.) Result
Total cons. in the wire tray 60% Achieved
Filler cons. in the wire tray 50% Achieved
Total cons. in the headbox 50% Achieved
Filler cons. in the headbox 35% Achieved
Basis weight 20% Not achieved
Paper ash 20% Achieved
Paper moisture 20% Achieved

These sub-goals were defined in 1999 when the project was initiated. In 2001 a new
scanning device for measuring e.g. basis weight and paper ash was installed at PM6.
This significantly improved the control of the basis weight using the “old” controllers.
The results in the table above are calculated with the measurement devices as of 2002,
comparing the old control configuration with the MPC control configuration. Exact
numbers for the reduction in standard deviation are not given, as they vary from day
to day, and from operator to operator.

Other benefits of MPC In addition to reducing the variation in key paper ma-
chine variables, several other benefits are obtained using MPC. Some of these benefits
arise from utilizing the developed model, not only for control purposes, but also as a
replacement for measurements when these are not available or not trustworthy:

• Previously, grade changes were carried out manually or partly manually; the
setpoints were changed a number of times before they were equal to the new
grade. With a mechanistic model, applicable over a wide range of operating con-
ditions, the grade changes are carried out using the MPC (see Figure 4.5). This
has resulted in faster grade changes and operator independent grade changes.
During larger grade changes, the use of MPC results in less o -spec paper being
produced during the change. Using one mechanistic model, the grade change
is handled in a straight forward fashion, as there is no need to switch between
various local models.

• The basis weight and paper ash outputs can not be measured during sheet
breaks. Previously, during sheet breaks the flow of thick stock and filler were
frozen at the value they had immediately prior to the break. Usually the sheet
breaks last less than half an hour, and the output variables are not far from
target values when the paper is back on the reel. However, occasionally the
sheet breaks last longer periods and there may be e.g. velocity changes during
the break, leading to o -spec paper being produced for a period following the
break. Another frequently experienced problem are large measurement errors
immediately after a sheet break. With the MPC, the Kalman filter estimates
the basis weight and paper ash during sheet breaks, and these estimates are
used in the MPC as if no break had taken place. Thus, when the paper is back
on the reel, the outputs are close to their setpoints.
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• Previously, the controllers were not set to automatic mode before the outputs
were close to the setpoints, following a start up. With a model based controller
using a mechanistic model with a wide operating range, the MPC is set to
automatic mode early during start ups. This results in faster start ups, and less
o -spec paper being produced.

• Occasionally a special filler is added to the stock, to increase the brightness of the
paper. During these periods the consistency measurements are not trustworthy
as they are based on optical measurement methods. This problem is solved
within the MPC / Kalman filter framework by neglecting the updates of the
consistency estimate, relying on the estimate alone. For each output, there is an
option within the MPC to neglect the updating of states based on this output.
This is done based on experience with periods of poor measurements, even when
only standard filler is used.

• The Kalman filter estimates are used in the MPC instead of the measurements.
This leads to smoother controller action, and eliminates the need for additional
filtering.

• The model is augmented so that some key parameters/biases are updated au-
tomatically. This reduces the need for model maintenance o -line. However,
should there be larger changes in the process, such as if the white water tank is
removed, or a new retention aid is used, then it will probably be necessary to
re-tune the model and controller.

Further MPC refinements Based on inputs from amongst others the process
operators, some refinements have been carried out. One of these are the inclusion of
the paper machine velocity as both an input and an output in the model formulation.
A change in paper machine velocity has a direct and distinct e ect on the basis
weight. Previously, the velocity was implemented as a measured disturbance in the
MPC. Thus, when a change in the velocity occurred this lead to a deviation in the
basis weight which it took some time to compensate for. Now, the process operators
can submit a new velocity and the time for the velocity change to the MPC. The MPC
will then know about this change in advance and take corrective action to prevent
disturbance in the other outputs. This is illustrated in a simulated example in Figures
4.7-4.8. The velocity change was submitted to the MPC at the start of the simulation,
and due to constraints on the allowed change per sample, the velocity approach the
new setpoint in a ramp. The other outputs are more or less una ected because the
controller starts to compensate before the velocity change has actually happened.

In Figures 4.9 — 4.11 a sequence of screen dumps from part of the operator interface
is shown. The sequence shows a grade change at October 7th, 2002, and it shows the
paper machine velocity included in the interface in the fourth row.
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Figure 4.7: Outputs during simulation of velocity change from 25m� s to 22m� s.
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Figure 4.9: New setpoints for grade change at October 7th, 2002, have just been
submitted.

Figure 4.10: In the middle of a grade change at October 7th, 2002.
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Figure 4.11: Grade change at October 7th, 2002, is finished.
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Chapter 5

Roll-out of model based
control

5.1 Introduction

Many large- and medium sized industry companies have a number of more or less
similar process-units for processing of raw materials or production of finished prod-
ucts. An industrial company which has invested, or is about to invest, in advanced
model based control in one of their units / factories, would benefit economically if the
model and controller could be e ciently rolled-out at similar units.

The mechanistic model of PM6 at Norske Skog Saugbrugs, Norway, has been
developed , and used in a model predictive control (MPC) implementation, and it is
of interest to investigate if the model can be applied to other paper machines. At the
beginning of Chapter 3, it was argued that the development of a reliable model was
the key factor for success in advanced control. Thus, the reuse of the PM6 model to
other paper machines is the main focus of this chapter. Specifically, it is investigated if
and how the model can be reused at PM4, Norske Skog Saugbrugs, and PM3, Norske
Skog Skogn, Norway.

There exists very little published material focusing on how to e ciently roll-out
models and controllers in the industry. However, the idea of e cient roll-out of models
is not entirely new, e.g. (Glemmestad et al. 2002) emphasize the advantage of reusing
the models developed at Borealis, and many commercial simulators include model
libraries of process units intended for reuse.

5.2 Roll-out at PM4, Norske Skog Saugbrugs

Process description PM4 at Norske Skog Saugbrugs in Halden, Norway, produce
super calendered magazine paper. PM4 started up in 1963 and was rebuild during a
period between 1987 to 1993. The production capacity is 125� 000 ton per year, with
paper width of 4�65 meters and with a typical velocity of 1� 250 meters per minute

55
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(Sandersen 1999). Both PM6 and PM4 at Norske Skog Saugbrugs produce super
calendered magazine paper, but PM6 is 30 years younger, and has more than twice
the production capacity of PM4.

The largest di erences between PM4 and PM6 are probably found in the thick
stock area. At PM4, no filler is added to the thick stock. Thus the only filler present
in the thick stock area comes with the flow of broke and recovered stock. At PM6 disc
filters are used to reclaim usable fiber and filler particles from the white water tank
overflow, while another technology is used at PM4. Starch is a polymer of glucose
derived from e.g. corn and potatoes (Scott 1996). Starch is added to the thick stock of
PM4 through the TMP flow, while no starch is added at PM6. Starch is mainly added
to improve the dry-strength of the paper, however it may also improve fines retention
and drainage on the wire, and it may have a negative e ect on paper formation1

(Marton 1996). At PM6 the thick stock pump is manipulated to control the flow
of thick stock, while at PM4 the thick stock pump is set at a constant speed and a
thick stock valve is manipulated. This di erence should be of no concern since the
measured flow of thick stock is the flow entering the white water tank in both cases,
and the MPC calculates the setpoint for this flow. Whether the lower level controller
manipulates a pump or valve to obtain the setpoint, is irrelevant for the MPC.

The accept from the second and third stages of the hydrocyclone arrangement goes
to the inlet of the white water tank via the deculator (left chamber) at PM6. At PM4
the accept goes straight to the inlet of the white water tank. This is probably not
an important di erence since the volume of the left chamber of the deculator is very
small. Finally, a di erence in the number of stages in the hydrocyclone arrangement
can be found; at PM6 a five stage arrangement is used, while it is a seven stage
arrangement at PM4.

Model fitting results Open loop experiments were carried out during a 5-hour
period on the 10th of December 2002. These experiments were used to find approx-
imate values for gains and time constants in the process, and for model fitting, as
described in subsection 3.2.2 and Figure 3.2. Another data set was collected on the
12th of December 2002 for validation of the model. The validation data set was col-
lected partly in open loop and with the process operators manually carrying out some
step changes and a grade change. The measured and simulated outputs during vali-
dation are shown in Figure 5.1. Note that no state updating takes place during the
validation, and only the initial values are given. Some statistics from the validation
are given in Table 5.1. The term RMSE in Table 5.1 denotes the Root Mean Square
Error value defined by

RMSE� =

vuut 1

�

�X
�=1

(��(�) �̂�(�))
2, (5.1)

where � is the number of observations, ��(�) is the measured value of output � at
time �, and �̂�(�) is the predicted or simulated value of output � at time �.

1The distribution of fibres in the paper sheet.



5.2. ROLL-OUT AT PM4, NORSKE SKOG SAUGBRUGS 57

550 600 650 700 750 800 850 900 950 1000

52

54

56

58

[g
/m

^2
]

With bias correction.
Basis weight, measured (solid line) and simulated (dashed line)

550 600 650 700 750 800 850 900 950 1000

22

24

26

[%
]

Paper ash, measured (solid line) and simulated (dashed line)

550 600 650 700 750 800 850 900 950 1000
0.3

0.4

0.5

[%
]

Wiretray consistency, measured (solid line) and simulated (dashed line)

Time [min]

Figure 5.1: Validation of fitted model. The outputs were collected at PM4 on the
12th of December 2002. The validation is carried out by simulating the system with
only the initial state values given.

Table 5.1: Statistics from validation of model with PM4 data.
Properties Basis weight Paper ash W.t. conc.
Bias 0�52 0�97 0�04
RMSE* 0�37 0�19 0�013
*Bias corrected
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5.3 Roll-out at PM3, Norske Skog Skogn

Process description Norske Skog Skogn is the largest producer of newsprint in
Norway. The production of newsprint started in 1966, and the mill has three paper
machines as of today. PM3 is the largest and most modern paper machine at the
Skogn mill. The production capacity of PM3 is 227� 000 ton per year, with paper
width of 8�47 meters, and with a typical velocity of 1� 350 meters per minute. The
basis weight has a more limited range than the Saugbrugs machines; typical values are
42�5, 45, and 48�8 g�m2. PM3 started up in 1981 and had a major rebuild/updating
in 1995. PM3 is the only paper machine in Norway using DIP2 for production of
newsprint. The DIP content, or the amount of recycled fiber, is approximately 50-
55% (Norske Skog 2002), (Heggli 2002). Note that PM3 in Skogn produce newsprint
while both PM6 and PM4 at Saugbrugs produce super calendered magazine paper. In
terms of production capacity and paper width, PM3 at Skogn, and PM6 at Saugbrugs
are comparable.

Filler is added via the DIP and broke flows, thus no other filler is added to the
thick stock or short circulation. The thick stock flow is manipulated through the thick
stock valve, with the thick stock pump set to a constant speed. The number of stages
in the hydrocyclones are 6. The accept from the second stage of the hydrocyclones
goes to the inlet of the white water tank, and the accept from the third stage goes
to the white water tank. At PM6, the accept from the second and third stage goes
to the left chamber of the deculator. The screens and the deculator appear in reverse
order at PM3, compared to PM6 and PM4 at Saugbrugs. Also, the retention aid is
added before the screens, and not after as is done at PM6.

Model fitting results Figure 5.2 shows the first attempt to fit the PM6 Saugbrugs
model to data collected at PM3 Skogn during December, 4th, 2002. The basis weight
is the only output excited to any extent in this data set, the paper ash and wire tray
concentration being more or less at rest. This is a general feature of PM3 due to the
low filler content in the stock. Thus, the multivariable PM6 model does not come to
full appraisal at PM3 yet, however there is an increasing trend of using more filler in
newsprint, and test runs at PM3 with filler added to the short circulation will soon
take place (Heggli 2002).

Studying data from PM3, it is clear that there is not much to gain in terms of sta-
bilizing the process during normal operation. However, during start ups, sheet breaks,
and grade changes, e ciency may be improved. Figure 5.3 shows the validation of
the model during a grade change. At the beginning of the grade change a sheet break
occur. This is recognized in Figure 5.3 by the basis weight and paper ash outputs
being frozen at the values that they had immediately prior to the break. When the
paper is back on the reel, the measured basis weight is 52 g�m2, while the setpoint is
48�8 g�m2. The simulated basis weight is close to the measured basis weight when the
paper is back on the reel, and the simulated basis weight follows the measured basis
weight closely during the whole simulation. The bias in the basis weight is approxi-
mately 0�25 g�m2. If the controller had relied on the simulated model output during

2DIP = De-Inked Pulp, i.e. pulp produced from recovered paper.



5.3. ROLL-OUT AT PM3, NORSKE SKOG SKOGN 59

0 50 100 150 200 250 300 350 400 450 500
44

46

48

50

[g
/m

^2
]

Basis weight, measured (solid line) and simulated (dashed line)

0 50 100 150 200 250 300 350 400 450 500

3[%
]

Paper ash, measured (solid line) and simulated (dashed line)

0 50 100 150 200 250 300 350 400 450 500
0.3

0.35

0.4

[%
]

Wiretray consistency, measured (solid line) and simulated (dashed line)

Time [# samples]

Figure 5.2: First trial fitting of PM6 Saugbrugs model to data from PM3 Skogn. Data
collected at 4th of December, 2002, with 30 seconds sampling time (resampled from
5 seconds sampling time).
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Figure 5.3: Validation of fitted model. The outputs were collected at Norske Skog
Skogn PM3 on the 12th of December 2002 during a grade change. The validation is
carried out by simulating the system with only the initial state values given.

the combined grade change and sheet break, the basis weight would probably have
been close to the setpoint when the paper was back on the reel. Thus, less o -spec
paper would be produced.

Figure 5.4 shows the basis weight and wire tray concentration outputs during
a start up. The basis weight measurement is frozen at 44�8 g�m2 during the first
330 minutes. In Figure 5.5, it is shown in detail what happens to the basis weight
measurement and simulated output when the paper is back on the reel for the first
time after the start up. The measured basis weight is close to 49 g�m2, with the
setpoint being 45 g�m2. This deviation was more or less predicted by the model
simulation, thus the basis weight could have been much closer to the setpoint after
the start up if the controller had relied on the simulated model outputs when the
measurements were not available.

5.4 Comments on roll-out of PM6 model

Data and information from PM4 at Norske Skog Saugbrugs, and PM3 at Norske Skog
Skogn were gathered in order to investigate the possibility to roll-out the PM6 model
at other paper machines. Fitting and validation of the model are very promising. No
changes to the model were carried out, except for tuning of parameter values, and
still the validation results are good. The time spent on fitting and validating the
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Figure 5.4: Validation of fitted model. The outputs were collected at Norske Skog
Skogn PM3 on the 11th and 12th of December 2002 during a start up. The validation
is carried out by simulating the system with only the initial state values given. During
the first 330minutes paper is not produced and the basis weight measurement is frozen
at 44�8 g�m2.
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PM6 model to PM4 and PM3 are approximately 1% of the time spent on developing
the original model. This should be a strong incentive for focusing on mechanistic
modeling in industries were there are many similar production lines or units.
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Simulation for Advanced Control of a Paper
Machine: Model Complexity and Model Reduction

T. A. Hauge and B. Lie
Telemark University College

Kjolnes Ring 56
3914 Porsgrunn

Norway

Abstract

A 528 order mechanistic model of a paper machine is implemented in Mat-
lab. The model has been developed for advanced control of three key quality
variables, and it is desirable to reduce the size and complexity of the full scale
model. It is shown how the full scale model can be reduced by both system
identification techniques and by utilizing our physical knowledge about the pro-
cess. The prediction abilities of the various reduced order models are compared
with the output from the 528 order model, highlighting some distinct features
of the various models.

Keywords: Paper machine, dynamic model, model complexity, model re-
duction, system identification

1 Introduction

The world’s second largest manufacturer of uncoated magazine paper (SC) is Norske
Skog Saugbrugs, at Halden, Norway (Norske Skog 2000). Magazine paper is char-
acterized by its glossy appearance due to the high content of filler (usually clay).
Typically 30% (weight %) of the paper consists of filler, 65% of fibers and 5% of
water. The filler is added for improving certain properties of the paper, such as
brightness and smoothness, and also often to reduce the production costs. The Saug-
brugs mill incorporates three paper machines (PM), in which PM6 is the largest and
most modern one (build in the 1990’s). A paper machine is in general a multivariable
non-linear complex mixture of mechanical and chemical processes. A model of such a
machine must capture the essential behavior with respect to a set of chosen variables.
Typically the term “essential” will have di erent meaning to scientists working in
di erent areas. A model for control should have input-output properties reasonably
close to the input-output properties of the true system, while still be simple enough
for implementation and use in real-time applications. There are basically two di er-
ent approaches to modeling for control: i) Mechanistic modeling, in which physics,
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material balances, etc. form the basis of the model, and ii) Empirical modeling, in
which collected input-output data are used to fit a non-physical model structure to
the data. The two approaches have some distinct features which will be discussed
later.

At Norske Skog Saugbrugs, a project has been initiated to implement advanced
model based control for some key paper quality variables at PM6. A mechanistic
model of PM6, with three selected output variables and three selected input variables,
has been developed and implemented in MATLAB. This work is thoroughly described
in (Hauge & Lie 2000). The model, which is a non-linear state-space model, is quite
large and complex, and perhaps not a good candidate for model based control. Input-
output data are collected from the process and these indicate that first- or second-
order submodels with time delays may be su cient to describe the process behavior
(at a given operating condition) (Slora 1999). Thus, the problem is to reduce the
complexity of the model so that it is more suitable for advanced control purposes.

There are many benefits of simplified models, e.g. less computational time, and
easier analysis, interpretation and controller design. However, the accuracy of a sim-
plified model will in general decrease. A lot of work has been done in the area of
model reduction - see e.g. (Öhman 1998), (Andersson 1997) and (Diwekar 1994).
These references focus on e.g. model reduction within specified error bounds or along
known trajectories. In this paper we approach the simplification problem by i) system
identification methods - i.e. we identify empirical “low order” models by various well
established methods, and ii) physical knowledge - i.e. we utilize our physical knowl-
edge about the process to reduce the model. Finally, we compare the various reduced
models and test their prediction abilities at di erent operating conditions.

The full scale mechanistic model will be used as a reference for comparison with
models of reduced complexity. The comparison will be done by simulation studies,
and we will investigate how the reduced complexity influence on the input-output
behavior of the system. Thus, we only consider the �̂�|0 predictor in this paper, i.e.
the predicted output �̂ at time �, given � at time 0. Another well known predictor is
the one-step-ahead predictor �̂�+1|�.

2 The Process

A simplified overview of PM6 is given in Figure 1. Cellulose, TMP (thermomechanical
pulp) and broke (repulped fibers and filler from sheet breaks and edge trimmings) are
blended in the mixing chest. The stock is fed to the machine chest with a controlled
total consistency1. Between the mixing and machine chests, filler is added at a con-
stant rate. The filler is usually clay, but occasionally another kind of filler is added
when high whiteness is required. The flow to the machine chest is large in order to
keep the level of the machine chest constant, and an overflow is returned to the mixing
chest. The total consistency in the mixing and machine chests are typically around

1The total consistency is the weight of solids (i.e. filler, fiber and fines) divided by the total
weight of solids and water.
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3 to 4%, which is considerably higher than consistencies later on in the process, and
thus the stock from the machine chest is denoted as the “thick stock”.

The thick stock enters the “short circulation” in the white water tank. Here, the
thick stock is diluted to 1-1.5% total consistency by white water2 and a recirculation
flow from the deculator. More filler is added to the stock just after the white water
tank. The first cleaning process is a five stage hydrocyclone arrangement, mainly
intended to separate heavy particles from the flow. The accept from the first stage of
the hydrocyclones goes to the deculator where air is separated from the stock. The
second cleaning process is two parallel screens, which separates larger particles from
the stock. Retention aid is added to the stock at the outlet of the machine screens.
The retention aid is a cationic polymer which, amongst others, adsorb onto anionic
fibers and filler particles and cause them to flocculate. The flocculation mechanism
is the key for retaining small fiber fragments (fines) and filler particles on the wire.
Non-flocculated filler particles will in general be to small to be retained on the wire,
although mechanical entrapment of particles can be a significant mechanism (Bown
1996). In the headbox the pulp is distributed evenly onto the fine mesh, woven wire
cloth. Most of the water in the pulp is recirculated to the white water tank, while
a share of fiber material and filler particles form a network on the wire which will
soon become the paper sheet. The pulp flow from the white water tank, through
the hydrocyclones, deculator, screens, headbox, onto the wire and back to the white
water tank is denoted the “short circulation”.

In the wire section, most of the water is removed by draining. In the press section,
the paper sheet is pressed between rotating steel rolls, thus making use of mechanical
forces for water removal. Finally, in the dryer section the paper sheet passes over
rotating and heated cast iron cylinders, and most of the water left in the sheet is
removed by evaporation. The paper is then accumulated on the reel before it is
moved on to further processing.

3 The Full Scale Model

A black-box overview of the system is given in Figure 2. The manipulated inputs
to the system are the amount of thick stock (��), the amount of filler added to the
short circulation (��), and the amount of retention aid (��). The outputs from the
system are the basis weight (��), the paper ash content (��), and the white water
total consistency (��). The basis weight and the paper ash content are measured
between the dryer section and the reel, while the white water total consistency is
measured in the flow from the wire to the white water tank. The paper ash content is
the amount of filler in the paper (the weight of the ash from a burned piece of paper
approximately equals the weight of filler in the paper).

The model is basically covering those elements (chests, tanks, pipes, etc.) found
in Figure 1. Typically, there are mass-balances of (longer) fiber, fiber fines, and the

2White water is the drainage from the wire. It is stored in the white water tank.
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two filler types for every significant volume, i.e.

���

��
=
X
�

��	�, (1)

where�� is mass of component � in some volume, and ��	� is mass flow 	 of component
� into this volume. In the short circulation there are also mass-balances for floccu-
lated components and retention aid. Most pipelines are modeled by partial di erential
equations (time delays), i.e.


��


�
= � ·


��



, (2)

where �� is the concentration of component �, and � is the velocity of mass flow in
the pipeline. The addition of retention aid causes fibers and fillers to flocculate. The
flocculation takes place in the short circulation, and is here modeled by second order
kinetic equations like


�
���	�


�
= � ·


�
���	�



+

��
�
·�� ·�������, (3)

where �
���	� is the concentration of flocculated mass of component �, �� is the concen-
tration of component � (non-flocculated), �� is a flocculation constant, � is the density
of the mass flow, and ������� is the concentration of retention aid. Elements like
the screens, headbox and wire are basically modeled with static/algebraic equations,
considering the relatively small volumes involved.

The number of ordinary di erential equations (ODE) is 34, and there are 104 par-
tial di erential equations (PDE). The PDE’s are discretized in x-direction, bringing
the total number of ODE’s to 554. In this paper we omit the model for the thick stock,
thus the system to study is between the thick stock pump and the reel. The reason
for this being that new measurements for total consistency and ash consistency in the
thick stock will be installed at PM6, thus making the thick stock model superfluous.
The number of ODE’s and PDE’s are down to respectively 28 and 100, making the
total number of ODE’s (after discretization) 528.

4 Complexity Reduction

4.1 Input signals

Filtered PRBS’s (Pseudo Random Binary Signals) are used as test and identification
inputs to the system, and are shown in Figure 3. This type of input is widely used
in identification experiments for linear systems/models (Ljung 1999) (Söderström &
Stoica 1989).

The data are collected in the neighborhood of a typical operating condition of the
paper machine. The most important variables defining this operating condition are
given in Table 1.
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Figure 3: The filtered PRBS input signals used for identification and model reduction.

Table 1: Variable values describing the operating condition for identification.
Thick stock, flow 370 l� s
Thick stock, total consistency 3�72%
Thick stock, filler consistency 1�47%
Addition of filler to the short circulation 3�1 l� s
Addition of retention aid to the short circulation 1�3 l� s
Basis weight 49�2 g�m2

Paper ash content 29�9%
Wire tray, total consistency 0�78%
Wire tray, ash consistency 0�61%
Headbox, total consistency 1�47%
Headbox, ash consistency 0�83%
Machine velocity 1500m�min
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Table 2: Sum of squared errors for mechanistic models.
Order 383 38 87 161
���� 40 89 18�5 5�4
���� 10�8 28 2�7 1�2
���� 0�011 0�025 0�03 8�5 · 10 4

4.2 Measuring the error

The test signals are the filtered PRBS signals of Figure 3, and the calculated sum of
squared errors (SSE)

���� =
�X

�=1

(�̂�	� ��	�)
2, (4)

is used as a measure of the error introduced by the simplifications. Here, �̂� is the
simulated ��� output from the reduced order model, �� is the simulated ��� output
from the full scale model, and � is the number of samples. The �’s in the SSE’s are
denoted as � (basis weight), � (paper ash content) or � (wiretray concentration). The
predictions �̂� are centered so that they have the same mean value as the full scale
model responses ��, before the SSE’s are calculated.

In this paper we only consider horizons in which only the initial values are known.
This is often written as �̂�|0, i.e. the predicted output �̂ at time �, given � at time 0.
Another well known predictor is the one-step-ahead predictor �̂�+1|�.

4.3 Reduced mechanistic models

The full scale model is based on physical and chemical laws and balances. In this
section we use our physical knowledge about the process, along with common sense,
to reduce the complexity and size of the model.

In Figure 4 the full scale model responses are shown along with a 38�� order model.
Based on the observed sum of squared errors (SSE) for various reduced models, it is
chosen to concentrate on a 38�� order model, an 87�� order model and a 161�� order
model for the comparison with other models. For the 38�� order model it is also
chosen to optimize the behavior by tuning some key parameters in the model. These
parameters are the volumes in the deculator, and in a reject tank between the fourth
and fifth stage of the hydrocyclones, and the clay and fines flocculation constants.
The physical insight of the model is only negligibly degraded by the optimization,
although e.g. the optimized volumes no longer have the correct physical value. The
sum of squared errors (SSE) are given in Table 2.

The reduction in computation time from the 161�� order model to the 38�� order
model was approximately 50%, while the reduction from the full scale model to the
38�� order model was more than 80%.

3Optimized.
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Figure 4: The responses of the full scale model (solid lines) and of a 38�� order reduced
mechanistic model (dashed lines). The PRBS input signals are shown in Figure 3.
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4.3.1 The simplifications

In a model reduction e ort it is natural to look at the discretization of the PDE’s.
In the full scale model each pipeline is discretized into 5 volumes making the pipeline
delays the largest contributor to the number of states in the model. Simulation showed
that by replacing every PDE outside of the main flow (thick line in Figure 1) by one
ODE, the model behavior was essentially the same. This immediately reduced the
number of states from 528 to 256. In addition the pipelines between the machine chest
and white water tank and between the white water tank and the first stage of the
hydrocyclones could also be discretized into one volume without a ecting the model
behavior too much. These simplifications combined with several lumped volumes
in the hydrocyclones, and the inclusion of the volume of the pipeline between the
deculator (left side) and the white water tank into the deculator (left side) gave the
161�� order reduced model.

The 87�� order model is the result of a continuation of reductions and simplifica-
tions on the 161�� order model:

• The pipeline between the deculator (right side) and the screens are discretized
into one volume

• The wire-, press- and dryer sections are discretized into one “volume”

• Several pipeline volumes in the hydrocyclone arrangement are included in a
reject tank between the fourth and fifth stage

• Several pipeline volumes are included in the deculator:

— The pipeline volume between the headbox and the deculator

— The pipeline volume between the machine chest and the white water tank

— The pipeline volume between the hydrocyclones first stage and second stage
pump

— The pipeline volume between the hydrocyclones second stage pump and
the second stage

— The pipeline volume between the hydrocyclones second stage and third
stage pump

— The pipeline volume between the hydrocyclones third stage pump and third
stage

— The pipeline volume between the hydrocyclones fourth stage and third
stage pump.

The 38�� order model results from a continuation of reductions and simplifications
on the 87�� order model:

• The pipeline volume between the deculator (right side) and the screens, is in-
cluded in the deculator
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• The pipeline volume between the white water tank and the first stage of the
hydrocyclones, is included in the deculator

• The pipeline between the screens and the headbox is discretized into one volume.

4.4 Reduced empiric (black-box) models

In this section, several black-box identification schemes will be used to identify “sim-
ple” linear models. Input-output data from the full scale model are collected, and
models will be identified by prediction error and subspace methods. The data are
collected in the neighborhood of a typical operating condition of the paper machine.
The most important variables defining this operating condition are given in Table 1.

4.4.1 Transfer matrix models

The responses of the process to step inputs are saved on file. In turn, the data from
one input and one output are used to fit the parameters in a first- and second-order
model (transfer function) with time delay:

�(�) =
�

�1�+ 1
� �3� · �(�) (5)

�(�) =
�

(�1�+ 1) · (�2�+ 1)
� �3� · �(�) (6)

The time delays are found visually, while the process gains and time constants are
found by applying

� =
lim
�

�� ��=0

�
(process gain) (7)

�̂1 = argmin
�1

X
�

�2� (time constant, first-order model)

[�̂1� �̂2] = arg min
[�1	�2]

X
�

�2� (time constants, second-order model) (8)

where ��=0 is the initial output value, � is the step input size, and �� is the error
between the simulated model output and the output on file, at time �.

A first-order model is preferred whenever the fit of the second-order model is only
negligibly4 better. The transfer matrix is found to be:

��
��
��

=

0�1020
(169�+1)�

50� 0�5583
(1831�+1)(617�+1)�

50� 2�7726
322�2+2·0�5·32�+1�

12�

0�0221
312�2+2·0�5·31�+1�

35� 0�7051
(1867�+1)(549�+1)�

40� 1�6916
1192�2+2·0�37·119�+1�

12�

0�0013
(203�+1)�

20� 0�020
(1826�+1)(623�+1)�

20� 0�1455
(301�+1)�

7�

·
��
��

��

(9)

4That is, when the di erence in SSE (sum of squares) is zero for a rounded three digit number.
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Table 3: Sum of squared errors for N4SID models.
Order 7 28
���� 19�69 9�78
���� 24�15 11�64
���� 0�0126 0�0054
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Figure 5: The responses of the full scale model (solid lines) and of a fitted 7�� order
N4SID model (dashed lines). The PRBS input signals are shown in Figure 3.

4.4.2 N4SID subspace method

The “Numerical algorithms for Subspace State Space System Identification” method
(N4SID) belongs to the subspace system identification family (Van Overschee &
De Moor 1996). The method is an integrated part of the system identification tool-
box (Ljung 1997) in Matlab. The data are pretreated by centering and scaling before
entered into the N4SID function.

The input signals are shown in Figure 3. In Figure 5 the responses are shown
along with a fitted 7�� order model. Based on the observed sum of squared errors
(SSE) for various model orders, it is chosen to concentrate on the 7�� order model
and a 28�� order model for the comparison with other models. The sum of squared
errors, SSE (see Equation 4), are given in Table 3.
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Table 4: Sum of squared errors for DSR models.
Order 3 7
���� 46�19 16�98
���� 28�13 20�81
���� 0�0211 0�0156

4.4.3 DSR subspace method

The “combined Deterministic and Stochastic system identification and Realization”
method (DSR) belongs to the subspace system identification family (Di Ruscio 1997).
The method and software (Di Ruscio 1996) are easy to use, requiring only the data and
an additional parameter to be specified. A singular value plot is supplied for helping to
determine the model order. When the model order is specified, the program returns
a state-space model (including the Kalman filter gain matrix, and the innovations
covariance matrix) along with the initial conditions. The data are pretreated by
centering and scaling before entered into the DSR program.

The input signals are shown in Figure 3. In Figure 6 the responses are shown along
with a fitted 7�� order model. It is chosen to concentrate on a third order model and
a 7�� order model for the comparison with other models. The sum of squared errors,
SSE (see Equation 4), are shown in Table 4.

4.4.4 Prediction error method (PEM)

The celebrated prediction error method (Ljung 1999) (Söderström & Stoica 1989) is
an integrated part of Matlab’s System Identification toolbox (Ljung 1997). It o ers a
vast amount of possibilities regarding linear model structures, such as ARMAX, BJ,
FIR and state-space models. However, for MIMO (multi-input multi-output) systems,
the ARMAX-type of models get complicated and they are perhaps not very suitable
for such systems. The state-space model, is however often preferred for representation
of MIMO systems.

Unlike the subspace methods, the PEM is an iterative method, based on minimiza-
tion of the prediction error. The fact that it is iterative limits the possible number
of free parameters in the model structure dramatically, and one should not expect to
be able to identify high order models (even when one is using a canonical form). A
recommended method (Ljung 1997) for identifying MIMO models is to use a subspace
method (such as N4SID or DSR) to identify an initial model, and use the parameters
of this model as initial values for the PEM method. This approach is taken here,
although the 7�� and 28�� order models where not improved by the PEM method,
probably due to too many free parameters involved. The third order DSR model
where improved by the PEM method, and the sum of squares (see Equation 4) are as
given in Table 5.
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Figure 6: The responses of the full scale model (solid lines) and of a fitted 7�� order
DSR model (dashed lines). The PRBS input signals are shown in Figure 3.

Table 5: Sum of squared errors for PEM model.
Order 3
���� 41�02
���� 21�81
���� 0�01716
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Figure 7: The filtered PRBS signals used for validation of the models. The overall
operating condition of the paper machine is the same as when the models where
identified.

5 Comparison of the Models: Prediction Ability

5.1 Prediction of future outputs without change in operating
condition

New input signals are designed and applied to the full scale model. The levels of the
input signals are such that the overall operating condition of the paper machine is in
the neighborhood of that given by the variables in Table 1. The new input signals
are shown in Figure 7.

The SSE’s (see Equation 4) for the empirically identified and reduced mechanistic
models are given in Table 6.

The PEM, DSR and N4SID models have good prediction ability, although the
SSE’s have increased significantly as compared to the identification. The SSE’s of the
mechanistic models are in some cases lower (better), and in some cases higher than
in Chapter 4.3.

5.2 Prediction of future outputs with change in operating con-
dition

Yet another set of input signals are designed, di ering from previously used signals
such that the overall operating condition of the paper machine is changed. The most

5Time delays are not included.
6Optimized.
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Table 6: Sum of squared errors for reduced and identified models. The operating
condition is comparable to that at the time of identification.

Method Order ���� ���� ����

TM* 155 266 76 0�046
PEM 3 76 32 0�036
DSR 3 82 46 0�043
DSR 7 47 29 0�041
N4SID 7 55 32 0�034
N4SID 28 36 12 0�018
Mech.6 38 41 11 0�011
Mech. 38 75 25 0�021
Mech. 87 18 2�2 0�003
Mech. 161 5 0�9 8 · 10 4

*Transfer Matrix

Table 7: Variable values describing a new operating condition for validation.
Thick stock, flow 436 l� s
Thick stock, total consistency 3�72%
Thick stock, filler consistency 1�47%
Addition of filler to the short circulation 5�95 l� s
Addition of retention aid to the short circulation 2�0 l� s
Basis weight 56 g�m2

Paper ash content 32%
Wire tray, total consistency 0�78%
Wire tray, ash consistency 0�62%
Headbox, total consistency 1�47%
Headbox, ash consistency 0�85%
Machine velocity 1650m�min

important variables to describe this new operating condition are given in Table 7.

The input signals are shown in Figure 8, and the SSE’s (see Equation 4) for the
empirically identified and reduced mechanistic models are given in Table 8.

The PEM, DSR and N4SIDmodels are identified at a di erent operating condition,
and thus it is not a surprise that the prediction ability is decreased (except for some
of the �� outputs, for which the ability has improved). The mechanistic models are
producing better predictions than previously (with a few exceptions).

Figure 9 shows the responses from the full scale model and the third order DSR
predictions.

7Time delays are not included.
8Optimized.
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Table 8: Sum of squared errors for reduced and identified models. The operating
condition is di erent from what was used for identification.

Method Order ���� ���� ����

TM* 157 275 57 0�050
PEM 3 110 60 0�035
DSR 3 148 101 0�074
DSR 7 93 63 0�032
N4SID 7 98 59 0�030
N4SID 28 74 31 0�016
Mech.8 38 40 8 0�0078
Mech. 38 43 13 0�011
Mech. 87 17 3 0�0022
Mech. 161 6�5 0�8 8�5 · 10 4

*Transfer Matrix
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Figure 8: The filtered PRBS signals used for validation of the models. The overall
operating condition of the paper machine is di erent from what was used for model
identification and reduction.
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Figure 9: Full scale model responses (solid lines) and third order DSR model predic-
tions (dashed lines), after change in operating condition.
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6 Conclusions

The e orts made in this paper has been to study the possibilities for reducing the
complexity of a paper machine model, and how the reduction a ects the prediction
abilities. The predictions for the various models are compared to the output from
a mechanistic model of 528 ordinary di erential equations (ODE). One should be
aware that the full scale mechanistic model by no means represents the true system,
although it is considered to do so in the comparisons of this paper.

For three di erent sets of input-output data, it is shown that the 528 order mech-
anistic model can be reduced to a 161 order mechanistic model with negligible e ect.
Mechanistic models using 87 and 38 ODE’s are also validated with three di erent
data sets, as are empiric models of order between 3 and 28. The mechanistic models
in this paper are distinguished from the empiric models in several ways:

• The empiric models are much simpler than the mechanistic models. The empiric
models usually have low order and they are linear, while the mechanistic models
are of higher order and they are non-linear.

• The simulation time for the empiric models are much shorter than for the mech-
anistic models.

• It takes much more e ort to develop a mechanistic model of a paper machine
than it does to find an empiric model. However, to find a high order empiric
model demands extensive experimentation on the paper machine, which is often
impossible.

• The prediction ability of the empiric models strongly depends on the operating
condition of the paper machine, compared to the operating condition at which
the model was identified. The prediction ability at the same operating condition
as in the identification, is generally very good. The prediction ability deterio-
rates as the operating condition is shifted away from the condition at the time
of identification.

• The prediction abilities of the mechanistic models are (close to) constant, and
are in most cases only negligibly a ected by changes in the operating condition.

It is not possible, nor was it the intention with this paper, to conclude which model
or model type is best for advanced control purposes. The various models has their
specific attributes which are summarized in the list above, and it will be necessary to
run tests on the real paper machine before one decides which model is best suited for
the purpose.
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Modeling, Simulation and Control of Paper
Machine Quality Variables at Norske Skog

Saugbrugs, Norway

T. A. Hauge, R. Ergon, G. O. Forsland†, R. Slora‡and B. Lie

Abstract

In this paper we focus on an ongoing project at Norske Skog Saugbrugs, Nor-
way, for stabilization of the wet end of paper machine 6 (PM6). A high-order
order mechanistic model is developed, and model reduction is studied by simula-
tion. Closed loop experiments on PM6 is described and carried out, and empiric
models are identified and validated. The models will be used in a model predic-
tive control (MPC) structure. A solution for estimating missing measurements
during sheet breaks is presented and demonstrated with simulations.

Keywords: Paper machine, dynamic model, optimal estimation, system
identification, closed loop identification, model reduction, model predictive con-
trol

1 Introduction

At Norske Skog Saugbrugs, Norway, a project has been initiated to stabilize the wet
end of paper machine 6 (PM6). Norske Skog Saugbrugs is the world’s second largest
manufacturer of uncoated magazine paper (SC) (Norske Skog 2000), and the mill
incorporates three paper machines, of which PM6 is the largest and most modern
one (build in the 1990’s). The project “Stabilization of the wet end of PM6” will be
described in some detail here, focusing on the results so far and also briefly discussing
future actions.

The objects of the project are to reduce the number of sheet breaks, reduce the
down time when sheet breaks occur and to substantially reduce the variability in key
variables such as basis weight, paper ash, white water consistencies, etc. Another
important objective is to investigate how the methods developed in this project can
be e ciently applied on other paper machines within Norske Skog.

Telemark University College, PB 203, 3901 Porsgrunn, Norway.
†Sonton Teknologi, Porsgrunn, Norway.
‡Norske Skog Saugbrugs, 1756 Halden, Norway
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The basic idea is to model selected parts of the paper machine and use model
predictive control (MPC) for improving the stability of selected variables. A similar
approach is reported in (Lang, Tian, Kuusisto & Rantala 1998), although there are
several important di erences, notably the use of a mechanistic model in this project.
The selected variables are the basis weight, the paper ash content and the white water
total consistency.

There are basically two di erent approaches to modeling for control: i) Mechanistic
modeling, in which physics, material balances, etc. form the basis of the model, and ii)
Empirical modeling, in which collected input-output data are used to fit a non-physical
model structure to the data. Both mechanistic and empiric models are presented in
this paper and the two approaches have some distinct features which will be discussed
later. The mechanistic model of PM6, with the three selected output variables and
three selected input variables, is implemented in MATLAB. This work is thoroughly
described in (Hauge & Lie 2000b). The model, which is a non-linear state-space
model, is quite large and complex, and perhaps not a good candidate for model based
control. Input-output data are collected from the process and these indicate that a
transfer matrix with elements consisting of first- or second-order models with time
delays may be su cient to describe the process behavior at a given operating condition
(Slora 1999). Thus, we wish to reduce the complexity of the mechanistic model so
that it is more suitable for advanced control purposes. In this paper we approach the
simplification problem by i) system identification methods - i.e. we identify empirical
“low-order” models by various well established methods, and ii) physical knowledge
- i.e. we utilize our physical knowledge about the process to reduce the model. This
leads to a set of models of various size and complexity, and these are compared by
their prediction abilities at di erent operating conditions.

Included in this paper are also results from identification and validation of dy-
namic models from real time data. The experiments were carried out in September-
October, 2000, and in this paper we chose to focus on empirical models, saving the
mechanistic model fitting for future work. Experiment design problems are addressed
and discussed to some extent. Closed loop data are used with various identification
methods, giving low-order linear models.

During sheet breaks the basis weight and paper ash measurements are lost, leading
to serious problems for the controller. An alternative to “freezing” the controlled
inputs is to estimate the missing measurements and let the controller use the estimates
during sheet breaks. An estimator could be mechanistic or empiric, and in this paper
we focus on a theoretically optimal empiric estimator. The estimator utilizes system
inputs and also secondary measurements (measurements which are of less importance)
as estimator inputs. The optimal estimator is based on an underlying Kalman filter
and an output error (OE) model structure (Ergon 1999b).

The paper is organized as follows: In Section 2 an overview of PM6 is presented.
Section 3 elaborates on mechanistic and empiric modeling of PM6 using simulated
data, while real-time data are used in Section 4. Section 5 deals with an optimal
solution for estimation of missing measurements during sheet breaks. In Section 6
a possible future model predictive control structure of PM6 is presented in addition



98 Paper B: Modeling, Simulation and Control of Paper Machine ...

to several ongoing projects for disturbance rejection in connection with the models.
Finally, Section 7 summarizes this paper and presents some conclusions.

2 The Process

A simplified description of the paper machine is given in Figure 1. A short description
of some important aspects is given next, while a more thorough description is found
in (Hauge & Lie 2000a) and (Hauge & Lie 2000b).

Filler is added both to the thick stock and to the short circulation. Various types
of fillers are added depending on the required properties for the finished paper. The
behavior of the various kinds of fillers is very distinct, at least regarding the retention
aid. However, these di erences will not be seen in the present paper, as only one kind
of filler is added to the stock during experimentation and simulation.

The first cleaning process is a five stage hydrocyclone arrangement, mainly in-
tended to separate heavy particles from the flow. The accept from the first stage
of the hydrocyclones goes to the deculator where air is separated from the stock.
The second cleaning process consists of two parallel screens, which separates larger
particles from the stock. Retention aid is added to the stock at the outlet of the ma-
chine screens. The retention aid is a cationic polymer which, amongst others, adsorb
onto anionic fibers and filler particles and cause them to flocculate. The flocculation
mechanism is the key for retaining small fiber fragments (fines) and filler particles on
the wire. Non-flocculated fines and filler particles will in general be too small to be
retained on the wire, although mechanical entrapment can be a significant mechanism
(Bown 1996), (Orccotoma, Paris & Perrier 1999).

3 Modelling and identification from simulated data

3.1 A mechanistic approach

A black-box overview of the system is given in Figure 2. The manipulated inputs
to the system are the amount of thick stock (��), the amount of filler added to the
short circulation (�� ), and the amount of retention aid (��). The outputs from the
system are the basis weight (��), the paper ash content (��), and the white water total
consistency (��). The basis weight and the paper ash content are measured between
the dryer section and the reel, while the white water total consistency is measured in
the flow from the wire to the white water tank.

The model is basically covering the elements (chests, tanks, pipes, etc.) found in
Figure 1. Typically, there are mass-balances of (longer) fiber, fiber fines, and various
kinds of fillers for every significant volume, i.e.

���

��
=
X
�

��	�, (1)
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where�� is mass of component � in some volume, and ��	� is mass flow � of component
� into this volume. In the short circulation there are also mass-balances for floccu-
lated components and retention aid. Most pipelines are modeled by partial di erential
equations (time delays), i.e.

	
�

	�
= � ·

	
�

	�
, (2)

where 
� is the concentration of component �, and � is the velocity of mass flow in
the pipeline. The addition of retention aid causes fibers and fillers to flocculate. The
flocculation takes place in the short circulation, and is here modeled by second-order
kinetic equations like

	
floc	�

	�
= � ·

	
floc	�

	�
+
�
�
· 
� · 
ret.aid , (3)

where 
�
��	� is the concentration of flocculated mass of component �, 
� is the concen-
tration of component � (non-flocculated), � is a flocculation constant, � is the density
of the mass flow, and 
������ is the concentration of retention aid. The flocculation
term in Equation 3 is obviously too simple for describing the complicated flocculation
(and adsorption) process, but it may be su cient for a model for control. The mech-
anistic model is not yet validated with real data, and should the validation fail then
there are some alternative, and more complicated, flocculation terms which can be
derived from the literature. Several sources, e.g. (Swerin, Ödberg & Wågberg 1996)
and (Moudgil, Shah & Soto 1987), state that the flocculation rate can be expressed
as

� = ��2
0 , (4)

where  is a rate constant, � is a flocculation e ciency factor often modelled by
� = �(1 �) where � is the fractional coverage of the solid surface by polymer, and
where finally �0 is the number of particles. (Shirt 1997) uses the following second-
order kinetic equation in his dynamic simulation model

�
��

��
= ��
�
��

+
� ��

µ
����
�� + ��

¶
, (5)

��

��
= att(�0 �)(1 �) det�,

where 
�� is consistency of flocs formed from components � and �, 
� and 
� are
consistencies of component � and �, �+� is the fractional coverage of component �
by cationic polymer, �� is fractional coverage of component � by anionic polymer,
�� and �� are volumes of individual component particles � and �, att and det are
attachment and detachment rate constants respectively, and finally �0 is the dosage
of polymer relative to the amount required to completely cover the particle surface.
Shirt’s model is based on a retention aid system with one anionic polymer and one
cationic polymer, and is not directly applicable to the PM6 model where only cationic
polymer is used. However, from experiments carried out in this project it is observed
that certain important aspects which are covered by Shirt’s model (Equation 5) are
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hardly explained by the flocculation term in Equation 3. It is, for example, observed
that the wire tray consistency is reduced when the thick stock flow is increased.
This can not be explained by a flocculation term as in Equation 3, and a certain
modification is probably necessary.

Elements like the screens, headbox and wire are basically modeled with static/algebraic
equations, considering the relatively small volumes involved.

The number of ordinary di erential equations (ODE) is 34, and there are 104 par-
tial di erential equations (PDE). The PDE’s are discretized in �-direction into five
ODE’s each, bringing the total number of ODE’s to 554. In this paper we omit the
model for the thick stock, thus the system to study is between the thick stock pump
and the reel. The reason for this being that new methods for controlling and calcu-
lating the total consistency and ash consistency in the thick stock are implemented
at PM6 (more on this in Section 6), thus making the thick stock model superfluous.
The number of ODE’s and PDE’s are thus down to respectively 28 and 100, making
the total number of ODE’s (after discretization) 528.

3.2 Reduced order mechanistic models

The full scale model is based on physical and chemical laws and balances. In this
section we use our physical knowledge about the process, along with common sense,
to reduce the complexity and size of the model. Filtered PRBS’s (Pseudo Random
Binary Signals) are used as test inputs to the system. This type of input is widely used
in identification experiments for linear systems/models (Ljung 1999) (Söderström &
Stoica 1989). The data are collected in the neighborhood of a typical operating
condition of the paper machine.

An RMSE (root mean square error) criterion

����� =

vuut 1

�

�X
�=1

(��(�) �̂�(�))
2, (6)

were used for comparing the identification and validation of the various models. Equa-
tion 6 gives the RMSE for output �, � is the number of observations, ��(�) is the
simulated output � from the full scale model at time � and �̂�(�) is the simulated
output � at time � from a reduced order model. The �’s in the RMSE’s are denoted
as ������ (basis weight), ��� (paper ash content) or ����� (wire tray concentration).
The simulated �̂� are centered so that they have the same mean value as the full scale
model responses ��, before the RMSE’s are calculated.

The RMSE is calculated for various reduced models, and we chose to concentrate
on a 38�� order model, an 87�� order model and a 161�� order model for the comparison
with other models. For the 38�� order model we also chose to optimize the behavior by
tuning some key parameters in the model. These parameters are the volumes in the
deculator and in a reject tank between the fourth and fifth stage of the hydrocyclones,
and the filler and fines flocculation constants. The physical foundation of the model
is only negligibly degraded by the tuning, although e.g. the optimized volumes no
longer have the correct physical value.
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The reduction in computational time from the 161�� order model to the 38�� order
model was approximately 50%, while the reduction from the full scale model to the
38�� order model was more than 80%.

The simplifications In a model reduction e ort it is natural to look at the dis-
cretization of the PDE’s. In the full scale model each pipeline is discretized into 5
volumes making the pipeline delays the largest contributor to the number of state
variables in the model. Simulation showed that by replacing every PDE outside of
the main flow (thick line in Figure 1) by one ODE, the model behavior was essen-
tially the same. This immediately reduced the number of states from 528 to 256. In
addition the pipelines between the machine chest and white water tank and between
the white water tank and the first stage of the hydrocyclones could also be discretized
into one volume without a ecting the model behavior too much. These simplifications
combined with several lumped volumes in the hydrocyclones, and the inclusion of the
volume of the pipeline between the deculator (left side) and the white water tank into
the deculator (left side) gave the 161�� order reduced model.

The 87�� and 38�� order models are the results of a continuation of reductions
and simplifications on the 161�� order model. Thus, in the 38�� order model the
remaining volumes are the white water tank volume, a lumped hydrocyclone reject
tank volume, lumped deculator volumes (“right” and “left” side volume) and the
volume of the pipeline between the screens and the headbox. More details on the
simplifications can be found in (Hauge & Lie 2000a).

Further model simplifications are hard to attain without degrading the physical
foundation of the model to a larger extent. However, by allowing the model to be semi
mechanistic it is possible to reduce the number of states considerably. A low-order
semi mechanistic model is being developed at the moment.

3.3 Empiric models

In this section, several black-box identification schemes will be used to identify “sim-
ple” linear models. Input-output data from the full scale model are collected, and
models will be identified by prediction error and subspace methods. The data are
collected in the neighborhood of a typical operating condition of the paper machine.

Transfer matrix with first- or second-order elements with time delays The
responses of the process to step inputs are saved on file. In turn, the data from one
input and one output are used to fit the parameters in a first- or second-order model
(transfer function) with time delay:

�(�) =
 

!1�+ 1
� �2� · �(�) (7)

�(�) =
 

!21 �
2 + 2"!1�+ 1

� �2� · �(�) (8)
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The time delays are found visually, while the process gains, time constants and damp-
ing coe cients are found by applying

 =
lim
�

�� ��=0

#
(process gain) (9)

!̂1 = argmin
�1

X
�

�2� (time constant, first-order model)

[!̂1$ "̂] = arg min
[�1	�]

X
�

�2� (time constant and damping coe cient, second-order model),

(10)

where ��=0 is the initial output value, # is the step input size, and �� is the error
between the simulated model output and the output on file, at time .

A first-order model is preferred whenever the fit of the second-order model is only
negligibly1 better. The transfer matrix is found to be:

��
��
��

(11)

=

01020
(169�+1)�

50� 05583
(1831�+1)(617�+1)�

50� 27726
322�2+2·05·32�+1�

12�

00221
312�2+2·05·31�+1�

35� 07051
(1867�+1)(549�+1)�

40� 16916
1192�2+2·037·119�+1�

12�

00013
(203�+1)�

20� 0020
(1826�+1)(623�+1)�

20� 01455
(301�+1)�

7�

��
��
��

N4SID subspace method The “Numerical algorithms for Subspace State Space
System IDentification” method (N4SID) belongs to the subspace system identification
family (Van Overschee & De Moor 1996). The method is an integrated part of the
System Identification Toolbox for use in Matlab (Ljung 1997). The data are pretreated
by centering and scaling before entered into the N4SID function.

The input signals are filtered PRBS’s (Pseudo Random Binary Signals). Based
on the observed RMSE (root mean square error) for various model orders, we chose
to concentrate on a 7�� order model and a 28�� order model for the comparison with
other models.

DSR subspace method The “combined Deterministic and Stochastic system iden-
tification and Realization” method (DSR) also belongs to the subspace system identi-
fication family (Di Ruscio 1997). The method and software (Di Ruscio 1996) are easy
to use, requiring only the data and one parameter to be specified. A singular value
plot is supplied for helping to determine the model order. When the model order is
specified, the program returns a state-space model (including the Kalman filter gain
matrix, and the innovations covariance matrix) along with the initial conditions. The
data are pretreated by centering and scaling before entered into the DSR program.

1That is, when the di erence in RMSE is zero for a rounded three digit number.
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The input signals are the same filtered PRBS signals as were used for the N4SID
algorithm. We chose to concentrate on a third-order model and a 7�� order model for
the comparison with other models.

Prediction error method (PEM) The prediction error method (Ljung 1999)
(Söderström & Stoica 1989) is an integrated part of Matlab’s System Identification
toolbox (Ljung 1997). It o ers a vast amount of possibilities regarding linear model
structures, such as ARMAX, BJ, FIR and state-space models. However, for MIMO
(multi-input multi-output) systems, the ARMAX-type of models get complicated and
they are perhaps not very suitable for such systems. The state-space model is therefore
often preferred for representation of MIMO systems.

Unlike the subspace methods, the PEM is an iterative method, based on minimiza-
tion of the prediction error. The fact that it is iterative limits the possible number
of free parameters in the model structure dramatically, and one should not expect to
be able to identify high-order models (even when one is using a canonical form). A
recommended method (Ljung 1997) for identifying MIMO models is to use a subspace
method (such as N4SID or DSR) to identify an initial model, and use the parameters
of this model as initial values for the PEM method. This approach is taken here,
although the 7�� and 28�� order models were not improved by the PEM method,
probably due to too many free parameters involved. However, the third-order DSR
model where slightly improved by the PEM method.

3.4 Comparison of the models

Without change in operating condition New input signals were designed and
applied to the full scale model. The levels of the input signals are such that the overall
operating condition of the paper machine is in the neighborhood of the condition at
the time of identification.

The RMSE’s (see Equation 6) for the empirically identified and reduced mecha-
nistic models are given in Table 1.

The PEM, DSR and N4SID models have good prediction4 abilities, although the
RMSE’s have increased significantly as compared to the identification. The prediction
abilities of the mechanistic models are in general good. The higher order mechanistic
models have very good prediction abilities

With change in operating condition Yet another set of input signals were de-
signed, di ering from previously used signals such that the overall operating condition
of the paper machine is changed. The change in operating condition include e.g. an
increase in thick stock flow from around 370 l % s to about 436 l % s, an increase of about

2TM - Transfer Matrix (Equation 11). Time delays are not included in model order.
3Optimized.
4The �̂’s are the simulated response from the deterministic part of the identified model, thus

the phrase “prediction ability” does not mean that e.g. a Kalman filter is applied in the validation
process.
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Table 1: Root Mean Square Error (RMSE) for reduced and identified models. The
operating condition is comparable to that at the time of identification.

Method Order ���������� ������� ��������

TM2 15 0�30 0�16 3�9 · 10 3

PEM 3 0�16 0�10 3�46 · 10 3

DSR 3 0�17 0�12 3�79 · 10 3

DSR 7 0�13 0�098 3�70 · 10 3

N4SID 7 0�14 0�10 3�37 · 10 3

N4SID 28 0�11 0�063 2�45 · 10 3

Mech.3 38 0�12 0�061 1�91 · 10 3

Mech. 38 0�16 0�091 2�65 · 10 3

Mech. 87 0�077 0�027 1�00 · 10 3

Mech. 161 0�041 0�017 0�52 · 10 3

Table 2: Root Mean Square Error (RMSE) for reduced and identified models. The
operating condition is di erent from what was used for identification.

Method Order ���������� ������� ��������

TM2 15 0�30 0�14 4�08 · 10 3

PEM 3 0�19 0�14 3�42 · 10 3

DSR 3 0�22 0�18 4�97 · 10 3

DSR 7 0�18 0�14 3�27 · 10 3

N4SID 7 0�18 0�14 3�16 · 10 3

N4SID 28 0�16 0�10 2�31 · 10 3

Mech.3 38 0�12 0�052 1�61 · 10 3

Mech. 38 0�12 0�066 1�91 · 10 3

Mech. 87 0�075 0�032 0�86 · 10 3

Mech. 161 0�047 0�016 0�53 · 10 3

90% in filler added to the short circulation, an increase of about 50% of retention aid
and an increase in machine velocity from 1500m %min to 1650m %min.

The input signals are shown in Figure 3, and the RMSE’s (see Equation 6) for the
empirically identified and reduced mechanistic models are given in Table 2.

The PEM, DSR and N4SIDmodels are identified at a di erent operating condition,
and thus it is not a surprise that the prediction ability is decreased (except for some
of the �� outputs, for which the ability has improved). The mechanistic models are
producing better predictions than previously (with a few exceptions).

Figure 4 shows the responses from the full scale model and the third-order DSR
model.
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Figure 3: The filtered PRBS signals used for validation of the models. The overall
operating condition of the paper machine is di erent from what was used for model
identification and reduction.
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4 Modeling and identification from real-time data

In Section 3, mechanistic models and empiric models of various orders and complexity
were compared. In this section we will study some of the same concepts with real-time
data. However, we confine ourselves to study empiric models. Fitting of mechanistic
models to real-time data is more time consuming and is saved for future work.

4.1 Experiment design

One data set for identification and one data set for validation were collected. The
type of experiments performed on the simulation model in Section 3 are impossible
in reality, because step changes of a valve opening or a pump velocity are physically
impossible. An approximation of the filtered PRBS signal is possible by changing
the setpoints of the mass flows according to a PRBS scheme and let the valve and
pump controllers work out the correct openings and velocities. However, on a paper
machine even such an experiment is performed with high risk of poor paper quality or
even sheet breaks. A solution to this problem is to perform closed loop experiments,
i.e. in this case experiments where the basis weight, paper ash and wire tray total
consistency controllers are in automatic mode. There is a vast amount of published
material on closed loop system identification, and various approaches and algorithms
are treated in more detail in e.g. (Ljung 1999), (Söderström & Stoica 1989) and
(Forssell 1999). Our approach is the recommended one and it is often called “the
direct approach” (Ljung 1999). In the direct approach we use the process inputs �
and outputs � in the same way as for open loop identification, ignoring the feedback
mechanisms and the reference signals.

Figure 5 shows the experimental plan with the changes in setpoints that the process
operators should follow.

Figure 6 shows the resulting real-time input signals which is used together with
the collected output signals for validation of models. Thus, the experiment plan gives
filtered PRBS signals for the reference values, but only the process inputs (�) and
outputs (�) are used for identification.

A similar procedure is used for collecting the identification data set.

4.2 Identification methods and closed loop data

It is well known that closed loop identification with the direct approach and a predic-
tion error method (PEM) works very well (Ljung 1999), (Forssell 1999), (Söderström
& Stoica 1989). However, problems may arise for poorly excited systems (this is also
the case for open loop identification) and for systems with too simple controllers.
The standard example of a closed loop identification failure uses a single-input-single-
output ARX model with a proportional controller and with the reference value set to
zero. This system is not identifiable in closed loop.

For subspace methods it is a fact that when applied in a straightforward fashion
they do not yield consistent estimates in closed loop. This is due to the fact that
the property of uncorrelated noise and system inputs is a basic assumption in these
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Figure 5: Experiment plan for the PM6 process operators. The plan shows the changes
in setpoints for the validation data set.
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Table 3: RMSE values for third-order DSR model.
Identification Validation

RMSEweight 0�410 0�697
RMSEash 0�095 0�410
RMSEconc. 0�0043 0�0173

algorithms. As pointed out by e.g. (Forssell 1999) it is possible to use the reference
signal instead of the input signal in the projection matrix which may cause problems
in closed loop. However when using the subspace software packages in a straightfor-
ward fashion, a bias is introduced due to the correlation between noise and inputs. In
practice this may not be a problem, due to the fact that all consistent system iden-
tification methods rely on several assumptions that do not hold, e.g. that the model
structure equals the real structure. The question is to what extent a closed loop ex-
periment invalidates the assumption of no correlation between noise and inputs, and
to our knowledge there exist no results on this matter. However, it seems intuitively
correct that the larger the signal-to-noise ratio is, the more insignificant is the closed
loop problem. This is due to the fact that the correlation between noise and inputs
will decrease with larger signal-to-noise ratio. Studying figures of inputs and outputs
from experiments is perhaps the easiest way (perhaps not the most scientific way)
of judging the size of the signal-to-noise ratio. In our case, the signal-to-noise ratio
seems quite large, and subspace methods will be used along with the prediction error
method.

4.3 Results

Identification of models with the subspace methods DSR and N4SID for model orders
1-30, and for various user defined parameters were carried out. The raw data obser-
vations were not equally spaced in time and a linear interpolation routine in Matlab
was used for creating time series with five seconds sampling intervals (the sampling
interval was approximately two seconds in the raw data). The identifications were
repeated for data “without” pretreatment, data which were centered and for data
which were centered and scaled. The centering was carried out by subtracting the
value of the first element in each input and output series (centering may also be done
by other methods, e.g. subtracting the mean of the series), and the scaling was car-
ried out by dividing each series with its standard deviation. Note that no particular
consideration was given to the fact that the basis weight and paper ash measurements
are updated less frequently than other variables.

An RMSE (root mean square error) criterion, as in Equation 6, was used for
comparing the identification and validation of the various models.

A third-order model with centered data was identified with the DSR method.
Several higher order DSR models were identified, but non of these improved the
validation RMSE values. The results from the identification and validation of this
model is shown in Figure 7, and Table 3 gives the RMSE values.
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at October 27. 2000. Identification was carried out on centered data.
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With N4SID we identified a fifth-order centered and scaled model, in addition to
several higher order models (11�� to 23�� order models) with RMSE values comparable
to those of the DSR models. The validation gave higher RMSE values for the fifth-
order N4SID model than for the third-order DSR model. None of the higher order
N4SID models improved all three RMSE values at validation. The RMSE values for
the basis weight were improved and the RMSE values for the wire tray consistency
were poorer for all these models compared to the third-order DSR model.

All identified DSR and N4SID models were used as initial values for a corre-
sponding PEM method. Some minor improvements on some of the DSR models were
obtained at identification, however no validation improvements were found.

5 Calibration for estimation of quality variables

System structure Section 3 and 4 focus on various models for control. For these
models we assumed that both the (controllable) inputs and outputs are measured,
and are therefore known. A problem within the paper industry is that some of these
measurements are lost when sheet breaks occur, and a standard solution to this prob-
lem is to “freeze” the corresponding inputs at their present values (the values at the
time of the sheet break). This strategy will in most cases lead to drifts in e.g. head-
box and white water consistencies. It seems more appropriate to estimate the missing
measurements and Figure 8 shows how this may be arranged.

Controller Process

Estimator

Kalman filter

Figure 8: Arrangement for estimating missing measurements during sheet breaks.

In Figure 8 a distinction has been made between the primary �1 outputs, which
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Table 4: RMSE values for OE and DSR models.
���������� �������

DSR 0.4123 0.3840
OE 0.3691 0.3504

correspond to the basis weight, paper ash and wire tray total consistency outputs,
and secondary �2 outputs which are used as inputs to the estimator. The secondary
outputs are the wire tray filler consistency, the headbox total and filler consistency
and the thick stock total and filler consistency. Note that for simplicity Figure 8 does
not take into account that one of the primary outputs (the wire tray consistency) is
available and used as estimator input even during sheet breaks. Whenever a sheet
break occurs the primary measurements �1 are replaced by estimates �̂1. The mea-
surements or estimates are fed to the Kalman filter and the controller. The controller
arrangement consists of e.g. model predictive control (MPC) and some single loop
controllers (SLC) as further discussed in Section 6.

In Figure 8 the estimator and Kalman filter are represented by separate boxes.
This is based on the assumption that the estimator is identified from process data with
the aim of obtaining the best possible �̂1 estimates, while the Kalman filter is based
on a mechanistic model with the aim of obtaining the best possible state estimates
�̂ for control purposes. The best �̂1 estimates will in fact be obtained by use of two
separate estimators, one for each of the primary measurements that will be lost at a
sheet break.

Estimator identification The estimators can be identified by use of a prediction
error or subspace method using both the manipulated inputs � and the secondary
process outputs �2 as estimator inputs. Assuming a well known mechanistic process
model, including noise covariances, the optimal estimator would be a Kalman filter
driven by � and �2 but not by �1 (which is not available when the estimator is needed).
This implies that an output error (OE) model structure should be specified for the
identification, which can readily be done in the prediction error method (Ergon 1999b).
It further implies that a direct subspace method (e.g. DSR) that make use of past
�1 values as estimator inputs will give theoretically non-optimal results, although the
di erence between OE and DSR results may not be of much practical importance.

Di erent identification methods have been tested by use of a mechanistic model
similar to the one presented in Section 3, and noise covariances adjusted to achieve
realistic output noise as compared with process measurement data (Forsland 2000).
The estimator validation RMSE results were as given in Table 4, showing di erences
in line with the theoretical discussion above.

Figure 9 shows the validation responses for the paper weight based on a first-
order OE estimator in the bracketed time period (from sample 20 to sample 320) and
a first-order DSR estimator before and after this time period. Figure 10 shows the
corresponding results for the paper ash content. A further investigation of this based
on real data is part of the future work.
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Figure 9: Basis weight. Mechanistic model output as solid line and estimator output
as dashed line. First-order OE estimator in bracketed time period and first-order
DSR estimator elsewhere. The data are centered and scaled.

Estimation based on multirate sampling data The primary output measure-
ments are obtained with a lower sampling rate then the rest of the process signals,
due to the scanner based sensor. The OE estimators may be identified also in this
case, although some modifications of the Matlab identification functions are necessary
(Ergon 1999a). A further investigation of this based on real data is also a part of the
future work.

6 Control structure and related work

When a suitable model has been developed (possibly identified) it will be used in con-
junction with model predictive control (MPC). MPC refers to a class of algorithms
that compute a sequence of manipulated inputs in order to optimize a chosen crite-
rion. The details of MPC algorithms are not discussed any further in this paper, and
the interested reader is referred to e.g. (Camacho & Bordons 1999) or (Lie 1999).
The interest in MPC has increased significantly since its introduction in the 1970’s,
and (Qin & Badgwell 1997) give an overview of commercial industrial solutions and
implementations. The pulp and paper industry has also several reported MPC im-
plementations, e.g. (Qin & Badgwell 1997) and (Lang et al. 1998).

A model structure has to be selected for the MPC, and commercial packages based
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Figure 10: Paper ash. Mechanistic model output as solid line and estimator output as
dashed line. First-order OE estimator in bracketed time period and first-order DSR
estimator elsewhere. The data are centered and scaled.
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on e.g. impulse response models, step response models, state space models and others
are known to exist (Camacho & Bordons 1999). The development of a mechanistic
model and the use of subspace identification techniques leads to state space models,
and such models may be used in the MPC at PM6. An overview of the control
structure is given in Figure 11.

MPC SLC Process

K

Process

Model
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-

Kalman filter

Figure 11: MPC and Kalman filter structure.

Here, a Kalman filter has been added for estimation of internal states that are not
measured. In the figure, we use the abbreviation SLC for single loop controllers oper-
ating on the valves and pumps. Estimated states and outputs are �̂ and �̂ respectively.
The following vectors are used:
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Disturbances, v and w The mechanistic model which is developed and the em-
piric models which are identified can never cover every aspect of the process. The
underlying physical phenomena are far too complex, and in many cases not known
at all. It is therefore instrumental that those mechanisms that are not modelled but
still a ect the outputs, are not allowed to invalidate the model. Such phenomena
are typically present in the process- and measurement noise � and � (see Figure 11).
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At Saugbrugs several e orts focusing on these disturbances are initiated. A short
description of the most prominent e orts will be given next.

Thick stock stabilization A sixth-order mechanistic model of the thick stock,
including the mixing and machine chests, is developed and used for controlling the
filler consistency. A Kajaani RMi measuring device for on line filler consistency mea-
surements is installed and has been used for validation of the controller performance.
The controller operates in a feedforward fashion, relying on the model and measured
inputs only. The controller is working very well, although it is not operating in closed
loop.

A feedforward controller which utilizes the measured total consistency between
the mixing and machine chests, and compensates for any deviation from the setpoint
by altering the speed of the thick stock pump, is also implemented. The feedforward
controller is based on a dynamic model of the machine chest.

Charge measurement and control A project including Kemira (supplier of reten-
tion aid at PM6) and Neles Automation is initiated for, amongst others, investigating
the need for measurement and control of charge. A Kajaani CATi measurement de-
vice is installed, and is currently being connected to the control system. One reason
for this particular project is that it has been observed that in order to control the wire
tray consistency the amount of retention aid often varies with ±15% at normal and
stable conditions. Problems in the wet end when changes in the dosage of bleaching
chemicals occur are often observed and are probably related to the charge of the stock.
A cationic coagulant will be used for controlling the charge if the project concludes
that this is beneficial.

pH variations and control Some variations in pH are observed, notably from
about 4.4 to about 5.0. The models from Section 3 and 4 will be implemented in the
control system, and on-line simulations in parallel with the process will show whether
these variations in pH invalidate the models. Some preliminary investigations on
control of pH has begun.

Air measurement and control A project for investigating the need for air mea-
surement and control is (temporarily) finished, with no air found in the headbox. It
may be interesting, at a later stage, to measure and control the air content in the
headbox by acting on the amount of defoamer added to the white water tank.

Calibration of measurement devices An intensified calibration program is ini-
tiated, focusing especially on consistency measurement devices.
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7 Conclusions

Various aspects of the project “Stabilization of the wet end of PM6” at Norske Skog
Saugbrugs, Norway, are presented in this paper. The basic idea of the project is to
use model predictive control (MPC) to achieve the objects of reducing the down time
and reducing the variability in selected key variables. In the model structure, the
chosen inputs are the thick stock pump, the addition of filler in the short circulation,
and the addition of retention aid at the screens. The outputs are the basis weight,
the paper ash content, and the wire tray concentration.

A 528 order mechanistic model is developed and an overview is presented. A
lower order model is more beneficial for control purposes and model reduction and
system identification techniques are used to arrive at several lower order models.
These models are compared for their accuracy with respect to the full scale model
(the 528 order model). Linear low order empiric models showed in general good
accuracy, although depending on the operating condition of the paper machine. The
reduced order mechanistic models are nonlinear and of higher order than the empiric
models. The accuracies of these models were in general good and not depending on
the operating condition of the paper machine.

Empiric models were also identified from real time data. Experiments were carried
out in closed loop and subspace and prediction error methods were used for the
identification. A third-order model (identified with the DSR subspace method) gave
good accuracy at validation, and no higher order models were significantly better. For
the validation, the operating condition of the paper machine were somewhat altered
compared to the operating condition at the time of identification.

A solution to the problem of missing measurements during sheet breaks is pro-
posed. One estimator for each of the measurements that are lost is identified, and at
sheet breaks the estimate replaces the corresponding output. The estimator is based
on an output error (OE) model structure and an underlying Kalman filter, and it
utilizes other measurements as estimator inputs. Simulation results, with first-order
estimators, are in line with the theoretical result that the OE model structure is the
optimal one for these estimators.

A possible future model predictive control (MPC) structure is presented. It is
vital that those mechanisms that are not modelled are not allowed to invalidate the
model so that the MPC fails. A range of projects aiming at rejecting disturbances are
established, focusing on thick stock stabilization, charge, pH, air, calibration routines,
and more.

It is expected that the work on model reductions, model validation and identifica-
tion of estimators will go on for a few months, and that a preliminary MPC controller
will be implemented in 2001. The project at PM6 will run throughout 2002.
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Abstract

In this paper a mechanistic model of a paper machine is presented. The
model is developed as a foundation for the control of three selected variables,
the basis weight, the paper ash content and the white water total concentra-
tion. The model is of high order and reduced order models are developed and
fitted to experimental mill data. The fitted models are validated with historical
operational data.

Keywords: Paper machine, dynamic model, mechanistic model, model re-
duction, control, parameter estimation

1 Introduction

A paper machine is a complex process due to its multivariable nature and mixture of
physical, chemical and mechanical sub-processes. Several researchers consider model-
ing of this process to be an impossible task (see e.g. (Roberts 1996b, page 8)), and no
denying: an all-including model would not be possible given the present knowledge.
The approach taken in this paper is one in which we focus on a mechanistic model1

which will be used in an MPC (Model Predictive Control) application. There are
three (manipulated) inputs and three outputs in the model. Several more inputs are
present in the model and these will be considered as “measured disturbances”. The
model is simplified to make it more suitable for control purposes. It is beyond the
scope of this paper to present a model which in all aspects have the correct physi-
cal structure, however it is important that the model captures the essential dynamic

Tor.A.Hauge@hit.no
†Bernt.Lie@hit.no
1Also known as physical based model, knowledge based model, phenomenological model and/or

first principle model.
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behavior of the process and that it is applicable over a wider range of operating con-
ditions than would be expected from an empiric model2 . The manipulated inputs and
outputs of the model are as shown in Figure 1.

Model

Thick stock

flow [l/s]

Filler flow [l/s]

Retention aid

flow [l/s]

Basis weight

[g/m2]

Paper ash

content [%]

White water total

consistency [%]

Figure 1: Manipulated inputs, and outputs of the model.

The modeling is part of a larger project for stabilization of the wet end of paper
machine 6 (PM6) at Norske Skog Saugbrugs, Norway (Hauge, Ergon, Forsland, Slora
& Lie 2000). Norske Skog Saugbrugs is the world’s second largest manufacturer of
uncoated super calendered magazine paper (Norske Skog 2000), and the mill incor-
porates three paper machines. PM6 is built in the early 1990’s and is the largest and
most modern papermachine at the Saugbrugs mill.

Empirical modeling or system identification of paper machines are reported in
several papers and books. Some of these focus on so-called cross-directional (CD)
modeling (i.e. a model for the profile across the paper web), e.g. (Featherstone,
VanAntwerp & Braatz 2000), (Campbell 1997) and (Heaven, Manness, Vu & Vyse
1996), while others focus on the machine-direction (i.e. changes in average values
across the web), e.g. (Hauge et al. 2000), (Hauge & Lie 2000), (Menani, Koivo,
Huhtelin & Kuusisto 1998) and (Noreus & Saltin 1998).

The reported works on mechanistic modeling of paper machines are in most cases
constrained to smaller parts of the paper machine. However, (Rao, Xia & Ying 1994),
(Larsson & Olsson 1996) and (Hagberg & Isaksson 1993) consider a larger part of the
paper machine, e.g. the wet end and the wire, press, and dryer sections, although the
chemistry involved in papermaking is not considered at all. As far as we know, the
only mechanistic models of a larger part of a paper machine which includes chemical
modelling is found in (Shirt 1997), (Hauge et al. 2000) and (Hauge & Lie 2000). In
Shirt’s work both chemical aspects, which include adsorption and flocculation, and
physical aspects, which include drainage on the wire, refining, tanks, headbox, wire
section, etc., are part of the overall model, although transportation delays in pipelines
are neglected and not all aspects are presented in detail. The mechanistic model in
(Hauge et al. 2000) and (Hauge & Lie 2000) is in those papers not presented in detail,
giving only an introduction to the equations used to describe the paper machine. In

2A model based on collected input-output data.
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Figure 2: Simplified sketch of PM6.

neither of these latter references are the mechanistic models validated properly with
real time data. The contributions in this paper are to bring more details on the model,
to report on further refinements of the model, and to bring results from the model
fitting and validation using experimental data.

A simplified overview of PM6 is given in Figure 2. Note that the developed models
cover the process from the thick stock pump to the reel. A thick stock (lower left
area of Figure 2, including the mixing- and machine- chests) model is developed in
(Slora 2001), and this model is implemented in PM6 and provides estimates of total-
and filler concentrations in the thick stock.

The paper is organized as follows: In Section 2 the paper machine sub-processes
are discussed in detail and suggestions for equations describing them are given. In
Section 3 we describe how simplified mechanistic models, more suitable for control
purposes, may be obtained. In Section 4 we report on fitting and validation of the
simplified models using real time process data. We improve the simplified mechanistic
model by extending it with a first order empiric model in Section 5. In this section
we also identify a Kalman filter and validate the model. Finally some conclusions are
given in Section 6.
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2 A Comprehensive Mechanistic Approach

The model described in this section consists of 28 ordinary di erential equations
(ODE), 100 partial di erential equations (PDE) and hundreds of algebraic equations.
For implementation in Matlab, each PDE is discretized by the method of lines (MOL)
(see e.g. (Schiesser 1991)).

2.1 Chests and tanks

Chests and tanks are modelled as ideally stirred volumes, i.e.

���

��
=
X
�

���� + � �� (1)

���

��
=
1

�

X
�

������ +
1

	
��, (2)

where �� [kg] is mass of component 
 of some volume � [m3], ���� [kg � s] is mass
flow � of component 
 into this volume, �� [kg �(m3 s)] is generation of component

 in the volume, �� [ ] is the concentration of component 
 in the volume, ���� is
the concentration of component 
 in mass flow � into the volume, 	 [kg �m3] is the
density of the mass flow and �� [m3 � s] is the volumetric flow � into the volume. We
will get back to the “ideally stirred” assumption when discussing the deculator and
the white water tank, and the generation term when discussing the retention aid and
flocculation.

2.2 Pipelines

Pipelines are modeled using partial di erential equations (PDE’s), i.e.

��

�
= �

��

�
+
1

	
��, (3)

where � is the velocity of the mass inside the pipeline and � is the variable correspond-
ing to the direction along the pipeline. Thus, the concentration is here a function of
both time � and space �. When the reaction rates are small such that the advection
term dominates, these models are notoriously di cult to discretize using the method
of lines (MOL). With constant velocity � and �� = 0, these models can be interpreted
as time delays. For implementation, the partial di erential equations are discretized
into five ordinary di erential equations each, i.e. a pipeline is approximated by divid-
ing it into five ideally stirred volumes. The choice of discretization level is a trade-o
between factors such as accuracy, complexity and numerical properties. With an
increasing number of volumes, the model is more accurate but also more complex
and the sti ness of the overall system is increased. Keeping in mind that the model
is developed for control purposes, we found that the input-output properties of the
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Figure 3: Step responses at the outlet of a pipeline (40m length, 0�7m2 cross sectional
area, 2500 kg � smass flow). Discretization carried out with various numbers of ideally
stirred volumes.

overall model, with a discretization level of five volumes, was very close to higher
levels of discretization. The choice of five volumes was also convenient as a starting
point with respect to model complexity. The trade-o can be studied from the re-
sponses in Figure 3, where a step change (from 0 to 0�1) in the initial concentration
is applied to the pipeline between the screens and the headbox. The pipeline is 40m
long, it has a cross section area of 0�7m2 and a mass flow of 2500 kg � s. A density of
	 = 1000kg �m3 is assumed. If the pipeline is a pure time delay then the step change
would appear at the outlet at � = ��(��(�	)) = 11�2 s, where � is the length of the
pipeline.

2.3 Fibers and fillers

The finished paper typically consists of 65% (wood-) fibers, 30% filler particles and 5%
water. The filler particles are added to improve certain properties of the paper, such
as brightness and smoothness, and also often to reduce the production costs. At PM6
two di erent types of filler particles are used depending on the requirements from the
end-user. One of these type of filler particles is used occasionally when particularly
high brightness is required.

The fibers that enter the process come in a variety of dimensions, and may be
crudely classified as fibers and fines where strict definitions of fines appear in the
literature (Britt & Unbehend 1976). The fines are generated in the refining process
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by the shearing action of the refiner bars upon the fiber cell walls (Roberts 1996a).

2.4 The thick stock

The thick stock area is the lower left area of Figure 2. Cellulose, thermomechanical
pulp (TMP), broke (repulped fibers and fillers from sheet breaks and edge trimmings),
recovered stock from the disk filters (thickened mixture of cellulose, white water, and
more) and filler particles are the main additives, and they are blended in the mixing-
and machine chests. These tanks have relatively large volumes for smoothing rapid
changes in the additive flows. The stock is transported to the paper machine area
(Figure 2, except for lower left area) by the thick stock pump. A mechanistic model
of the thick stock area, estimating the total and filler consistencies in the flow to the
paper machine, is developed and implemented at PM6 (Slora 2001).

The components in the flow from the thick stock pump are assumed to be fibers,
fines and filler particles. The total-3 and filler-concentrations are estimated by the
thick stock model, and the concentration of fines is assumed to be

�fines = �fines(�total �filler), (4)

where �fines is a constant and �total and �filler are total- and filler-concentrations in
the thick stock.

2.5 Retention aid and flocculation

The filler particles and fines are in general too small to be trapped on the wire (a
fine meshed woven cloth) and one adds retention aid to help them flocculate, thus
increasing the possibility of mechanical entrapment. The retention aid is also added
for other reasons, such as improving the drainage from the sheet, but these e ects will
not be studied here; see e.g. (Roberts 1996b) for a general introduction to retention
aids and flocculation.

Fibers and filler particles are mostly negatively charged, and at PM6 a two compo-
nent cationic (positively charged) retention aid system is used. The two components
have quite di erent charge densities and molecular weights. A low molecular weight,
high charge density polymer is added first, mainly to fix or neutralize highly an-
ionic (negatively charged) impurities in the stock but also to improve retention as
illustrated in Figure 4. We will assume that the flocculation due to this polymer
is negligible as is also experienced on the paper machine when the addition of this
polymer is stopped. The addition of this polymer is now used in a control loop for
stabilizing the charge (or cationic demand) of the stock at PM6.

The second polymer that is added has a low charge density and high molecular
weight. This results in adsorption onto fibers and filler particles leaving “tails” which
other fibers and filler particles may adsorb onto (see Figure 5). This is termed “bridg-
ing flocculation” and is assumed to be the main contributor to the flocculation in the
process. The addition of this retention aid is located just after the screens as seen on
Figure 2.

3The total concentration is the summed concentration of fibers, fines and filler particles.
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On a more microscopic level one may go on to describe the adsorption and floccu-
lation of various components (e.g. adsorption of polymers onto fibers, fines and filler
particles, and the flocculation of fibers with fibers, fibers with fines, filler particles with
filler particles, etc.) as is found in e.g. (Van de Ven 1993) and (Shirt 1997). This,
however requires many (ordinary and partial) di erential equations, and a simpler so-
lution was sought here. An equation for the concentration of flocculated component 

that provided an overall good fit for the model, and which also was relatively simple
was

�floc��

�
= �

�floc��

�
+
1

	
�fiber(���ret�ret�non-floc�� + ���fiber). (5)

This equation describes concentration of flocculated components in pipelines (fol-
lowing the convention of Equation 3), with obvious extensions to equations for chests
and tanks as outlined in Equation 2. Component 
 is either filler particles or fines
(we are not interested in flocculation of fibres as we assume later on that they will
be retained on the wire in any case), �floc�� is the concentration of flocculated com-
ponent 
, �non-floc�� is the concentration of non-flocculated component 
, ���ret and
���fiber are flocculation constants and �ret and �fiber are concentrations of retention
aid and fibers, respectively. The reaction rate is empiric and should not be regarded
as an attempt to explain the complicated process of flocculation. This is obvious
considering that as long as there are fibers, the equation predicts a positive reaction
rate even with no filler particles present in the system.

In addition to the flocculation equation (5) itself, there are several other issues
which must be addressed. For example that the equation fails to account for several
major disturbances on the flocculation. The temperature and charge are two of these
disturbances and they are stabilized at PM6 by separate control loops. Another
parameter which has tremendous e ect on the flocculation is the pH (see e.g. (Horn
& Linhart 1996)), and at PM6 the pH is observed for longer periods of time showing
no dramatic variations.

The retention aid is added at the screens, and only seconds later it arrives at the
wire section where obviously some of it must be recirculated through the wire cloth.
We will get back to this issue in Section 2.11. The recirculated polymer will undergo
a deactivation process in which it di uses into the pores of the fibres (Koethe &
Scott 1993) thus loosing some ability to cause flocculation (Pelssers, Cohen Stuart &
Fleer 1989). In addition, the recirculated flocs must pass through a number of pumps
and other process equipment (such as the hydrocyclones and the screens) with high
shear rates, causing break-up of flocculated particles4 (Gregory 1988). These facts
caused (Shirt 1997), in his dynamic model, to assume that all particles which are
recirculated through the white water system loose any active high molecular weight
(low charge density) polymer coverage. In our model we allow for some flocculation to
take place in the white water system, thus giving some initial concentrations (larger
than zero) of flocs at the outlet of the screens where the retention aid is added.

4Bridging flocculation is typical for polymers with low charge density and high molecular weight.
Flocs produced by bridging flocculation, and then broken at high shear rates, will not easily re-
flocculate (Gregory 1988).
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2.6 The white water tank

The white water tank is modeled as a perfectly stirred tank (Equation 2). The validity
of this assumption may be questioned as the main input flow (the dewatering from
the wire section) enters on top of the tank and the main output flow (the flow to the
first stage of the hydrocyclones) leaves at the bottom of the tank, and there are no
mixing arrangement present in this tank. The tank is however only moderately tall
and the main input and output flows are quite large and have high velocities, so the
turbulence inside the tank is assumed to blend the contents well. Another approach
is taken in (Nissinen 1999) where the upper part of the tank is assumed perfectly
mixed, and the lower part a plug flow.

2.7 The hydrocyclones

There are a total of five hydrocyclone stages and a tank between the fourth and fifth
stage, as shown in Figure 6. Each stage consists of several units where the accept
flow goes through the top of the cyclones and the reject flows out at the bottom.
In the model we have neglected the time delays, or volumes, of the hydrocyclone
units themselves, because these volumes are small compared to the pipeline volumes
between the units. The pipelines are modeled as shown in Equation 3, and the cyclone
units split the incoming flows into an accept flow and a reject flow. The concentrations
in the accept flow will be lower than in the reject flow because gravitational forces
are used to separate the two outlet flows and heavier particles will have a tendency
to be rejected.

Equations like
���accept = ���accept ·���inject, (6)

are used for finding the accepted total mass flows in stage 
 ( 
 {1� ���� 5}), and

�����accept = �����accept · �����inject, (7)

are used for finding the concentration of component � in the accept flow at stage

. Component � is recirculated filler particles, “fresh” filler particles, fiber, fines,
retention aid, flocculated fines or flocculated filler. Observations after step changes
in the addition of filler particles indicate that recirculated and newly added filler
behaves quite di erently in the hydrocyclones, and this is the reason for treating
them separately.

Due to high shear rates and deactivation (as explained in Section 2.5), it is assumed
that no flocculation takes place in the fourth and fifth stage, and also that the polymer
entering the fourth stage is completely inactive. The tank between the fourth and
fifth stage is modeled by ordinary di erential equations similar to Equation 2, but
without the flocculation term, and only for the components filler, fiber and fines.

2.8 The deculator

The deculator is a relatively small two chamber tank whose purpose is to remove
air bubbles from the stock. The “right side” chamber (refer to Figure 2) has the
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largest volume and an overflow to the “left side” chamber keeps the level constant.
The level on the “left” side is controlled and assumed constant. Equations similar to
Equation 2 are used for both chambers. The assumption of ideally stirred masses in
each chamber is probably good due to large masses entering and the small volumes
involved. In addition, the “right” side chamber has an input flow (recirculated from
the headbox) entering at the bottom which should make the assumption even better.

2.9 The screens

There are two screens in parallel, in addition to a reject system for recirculation of
usable fibers and filler particles back into the white water tank. In the model the
screens are seen as one unit, splitting the flow in a reject and an accept flow. The
equations used are similar to those used for the hydrocyclones, thus ignoring the
volume of the screens which are small. The reject system is not part of the model
due to the reject flow and concentrations being small. The reject flow is about 2% of
the inject flow and the concentrations are found by laboratory measurements to be
no larger than the inject and accept concentrations.

2.10 The headbox

The headbox is modeled as a pure mass flow splitting unit. The two output flows,
one recirculation flow to the deculator and one flow onto the wire, are assumed to
have the same concentrations as the input flow. The mass flow to the wire section is
calculated by

�� � = �� · �� · �� ·
p
�� , (8)

which can be derived from Bernoulli’s equation, where �� � [kg � s] is the mass flow
onto the wire, �� [kg

1�2 �m5�2] is a lumped constant (dependent on the geometry of
the slice opening amongst others), �� and �� are the height and length of the slice
opening respectively and �� [Pa] is the pressure inside the headbox. Note that the
length of the slice opening is a constant while the height of the slice opening is used
for controlling the cross directional (CD) profile. Thus the height varies across the
slice opening and the average is used in the equation above. More detailed models
of headboxes can be found in e.g. (Rao et al. 1994) and (Tuladhar, Davies, Yim &
Woods 1997).

2.11 The wire, press, and dryer sections

Following (Shirt 1997) we assume that (long) fibers, flocculated fines and flocculated
filler particles are retained on the wire5. In addition we allow for some filler particles

5Laboratory measurements at PM6 of the fiber (length) distribution in the headbox and in the
flow from the wire section to the white water tank showed no clear distinction between fiber lengths
being retained and fiber lengths being drained from the wire, although longer fibers seemed more
likely to be retained.
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to be mechanically entrapped, so that the component mass flows entrapped on the
wire are

���filler = �� � · (���flocculated filler +���non-flocculated filler · ���filler) (9)

���fines = �� � ·���flocculated fines (10)

���fiber = �� � ·���fiber, (11)

where ���� [kg � s] are the component mass flows retained on the wire (
 {filler,
fines, fiber}), ���� are the concentrations in the headbox (� {flocculated filler,
non-flocculated filler, flocculated fines, fiber}), and ���filler is the fraction of non-
flocculated filler mechanically entrapped on the wire. The significance of mechanical
entrapment seems to be somewhat controversial in the literature. For example (Van de
Ven 1984) found (theoretically) that mechanical entrapment was low, while (Bown
1996) reports that mechanical entrapment can be a dominant mechanism.

Most of the water is drained from the wire to the white water tank, and this is
modeled by

�� ��� = �� ·�� � , (12)

where �� ��� [kg � s] and �� � [kg � s] are total mass flows from the wire to the
white water tank and from the headbox to the wire respectively, while �� is the
fraction (close to one) of mass flow out on the wire which is recirculated to the white
water tank.

The concentrations of filler particles, fines and fibers in the mass flow from the
wire section to the white water tank are easily calculated using Equations 8-12 and
the concentrations in the headbox (the concentration of fibers in this flow is equal to
zero). As explained in Section 2.5 we also allow for some recirculation of retention
aid, and the concentration of retention aid in the flow from the wire to the white
water tank is calculated as

�� ����ret.aid = �ret.aid · ���ret.aid , (13)

where �� ����ret.aid and ���ret.aid are concentrations of retention aid in the flow
from the wire to the white water tank and in the headbox respectively, and �ret.aid
is the fraction of retention aid being recirculated. The parameter �ret.aid may be
viewed as a lumped parameter considering that we do not account for deactivation
and destruction of polymers by shear rates elsewhere in the model. An exception
is in the hydrocyclones, where we assume that polymer entering the fourth stage is
completely inactive.

The transportation of the solids from the wire section, through the pressing and
dryer section, and onto the reel is modeled by an advection equation

�� 	��

�
= � ·

�� 	��

�
, (14)

where �� 	�� [kg � s] is the mass flow of component 
 (
 =filler or solids (filler, fiber
and fines added)) from the wire section to the reel, and � [m � s] is the paper machine
velocity (near the reel). We do not model the filtration process or drainage process
in any detail, and we only focus on the solids on the wire.
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2.12 The output equations

The outputs are as shown in Figure 1, and the equations connecting the outputs to
the internal states of the dynamic model are

�basis weight(�) =
1000 · �edge trim · �� 	�solid(�� � = �paper)

�(�) · �	 · (1 �(�))
(15)

�paper ash(�) =
100 · �� 	�filler(�� � = �paper) · (1 �(�))

�� 	�solid(�� � = �paper)
(16)

�WW tot. conc.(�) = 100 · (�� ����filler(�) +�� ����fines(�)), (17)

where �basis weight(�) [g �m
2], �paper ash(�) [%], and �WW tot. conc.(�) [%] are the basis

weight, paper ash content, and white water total concentration respectively. The basis
weight and paper ash are measured by a scanning device between the dryer section
and the reel. �edge trim is a constant which adjusts for edge trimmings of the paper,
�� 	��(�� � = �paper) [kg � s] is the mass flow of component 
 (
 = filler and/or solids
(filler, fiber and fines added)) at the scanning device (�paper indicates the length of
the paper sheet from the wire section to the scanning device), �(�) [m � s] is the paper
machine velocity at the scanning device, �	 [m] is the width of the paper sheet at
the scanning device and �(�) is the measured moisture content in the paper at the
scanning device. �� ����filler(�) and �� ����fines(�) are the concentrations of
filler and fines in the flow from the wire section to the white water tank.

3 Model reduction

3.1 Finite dimensional models

Assume that we have an input-output model

��

��
= � (�� �) (18)

� = � (�� �) ,

where � R
, � R� and � R�. The dimension of the model is �, and we want to
reduce the order of the model.

We illustrate the principle using a linear model:

��

��
= ��+��. (19)

Assume that matrix� has a full set of eigenvectors such that there exist a non-singular
matrix  and a diagonal matrix such that � =  . We can then introduce a
change of variables and let ! = 1� such that we find

�!

��
= ! + 1��. (20)
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Thus, we have a decoupled system:

�!1
��

= "1!1 + �
�
1 � (21)

...

�!

��

= "
!
 + �
�

�.

The system is stable if 
 : <"� 0. For simplicity, assume that all eigenvalues "�
are real, and that we have ordered the eigenvalues such that "1 "2 · · · "
 0.
If now for some � we have " ¿ "+1, it is common to introduce the approximation
�!���� 0 for 
 {1� � � � � �}. Thus we have reduced the order of the model to � �,
and it is now:

�!+1
��

= "+1!+1 + �
�
+1� (22)

...

�!

��

= "
!
 + �
�

�.

In addition, we have the algebraic equations

0 = "1!1 + �
�
1 � (23)

...

0 = "! + �
�
 �.

A more formal analysis of this approximation can be performed using singular per-
turbation techniques, see e.g. (Hoppensteadt 2000).

The technique of singular perturbation is also applicable to nonlinear systems such
as ����� = � (�� �). However, for nonlinear systems, it is much more di cult to find
a transformation of the state such that the transformed system is decoupled. Such a
transformation would ideally have the form:

! = # (�� �) , (24)

where ! R
, and # is invertible yielding � = # 1 (!� �). In that case, we would
search for a transformation # such that

�!

��
=
#

�
· �
¡
# 1 (!� �) � �

¢
+
#

�

��

��
= �̃ (!� �) , (25)

where �̃ (!� �) has the following structure:

�̃� (!� �) = �̃� (!�� �) . (26)
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Assuming that such a transformation is available, the method of singular pertur-
bation is readily applicable to the transformed system.

In practice, we can not expect to find such a decoupling transformation for non-
linear systems. A partial solution could be to linearize the model at an operating
point, and then let # (�� �) =  1� where  is the matrix of non-singular eigen-
vectors at this operating point. This would yield an approximate decoupling in the
neighborhood of the operating point.

A simple case where we in fact have the desired decoupling, is in cascaded pro-
cesses. This is relatively common, but feedback will then easily ruin the decoupling.

Even if there is no such natural decoupling, we may have an almost decoupled
system. We may thus still try to use singular perturbation techniques on a system

���
��

= �� (�1� � � � � �
� �) , (27)

and thus set ������ 0, even if this approximation is not strictly correct.
The final word regarding what eigenvalue/mode of the system we can allow our-

selves to set at steady state, will depend on the use of the model. If the model is
used for control purposes, we will have to select the model reduction such that the
input-output response is not severely changed. If we are interested in the accuracy
of some state, however, we will have to make sure that this particular state is not
severely changed.

3.2 Infinite dimensional models

Assume that we have an infinite dimensional model (i.e., the model includes PDEs)
which we discretize using the Method of Lines (MOL) such that we arrive at a model

��

��
= � (�� �;$) (28)

� = � (�� �;$) ,

where dim� depends on the discretization level $ . This case can be treated just as in
the previous subsection. The particular problem with infinite dimensional models is
that as part of the model reduction, we have to decide the discretization level. If there
are several PDEs in the model, these can in principle have individual discretization
levels.

When using the model for control, a natural way to solve the problem of finding
the appropriate discretization level is to vary$ such that the input-output behavior is
not severely changed from the infinitely (high) dimensional case. If we are particularly
concerned with the approximating capabilities of an internal state, we should select
the discretization level by making $ as small as possible while retaining the accuracy
of the state in question.
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Figure 7: The responses of the full scale model (solid lines) and of the 38�� order
simplified model (dashed lines).

3.3 A simplified paper machine model

In (Hauge & Lie 2000) it was shown, by simulation, that the full scale model described
in Section 2 can be reduced to a much simpler and lower order model without a ecting
its properties to any large extent. The implemented full scale model is of order 528,
and it was shown that a 38th order model have basically the same input-output
properties. The simplifications were by and large carried out by lumping pipeline
volumes into existing tanks, discretizing the remaining pipeline volume (the pipeline
between the screens and the headbox) into one volume and discretizing the wire,
press, and dryer sections into one “volume”. The response from the full scale model
and the simplified model, when filtered PRBSs (Pseudo Random Binary Signal) are
applied to the inputs, is shown in Figure 7.

Further model reductions were obtained by e.g. comparing the responses of sim-
plified models of various order, fitted to process data. The simplifications were carried
out with a step by step approach in which the model was carefully studied after each
phase of simplifications and model fitting. The model reductions culminated in a
third order model which will be presented next.

In Figure 8, only elements relevant for the simplified model are shown. There
are three lumped volumes, and these are the white water tank, the reject tank and
the deculator (“right” side). Only two components are accounted for in the simpli-
fied model, and these are filler particles and fibers, thus no flocculated filler or fines
concentrations are calculated throughout the white water system. We will go briefly
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Figure 8: Sketch of PM6, according to the third order mechanistic model.

through the most important parts of the model, focusing on the di erences between
this simplified model and the more detailed model of section 2.

The thick stock The fiber and filler concentrations are estimated. In addition we
calculate the concentration of “fresh” filler in the thick stock flow

����fresh filler = ����fresh filler · ����filler. (29)

Here, only a share ����fresh filler of the filler is assumed “fresh”, while all the filler
added at the outlet of the white water tank is assumed “fresh”. The reason for this
is that the filler from the thick stock is assumed better mixed when entering the
hydrocyclone arrangement.

The white water tank The white water tank is modeled as a perfectly stirred tank
with one flow entering (from the wire) and one flow leaving (to the hydrocyclones).
The two components in the tank are filler particles and fiber, and the filler particles
are modeled by an ODE (ordinary di erential equation), while the fibers are at steady
state.

The hydrocyclones The hydrocyclones consist of two stages and a reject tank
between the two stages, as shown in Figure 8. The equations used to describe the
hydrocyclones are equal to those presented in section 2.7, although fines, retention
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aid, flocculated fines, and flocculated filler particles are not part of the model. In
addition the ODE for fiber is at steady state, thus only the ODE for filler particles in
the tank remain.

The deculator The ODEs in the “left” side are at steady state, and only the ODE
for fiber in the “right” side remain.

The headbox The screens are neglected and the flow from the “right” side of the
deculator goes directly to the headbox. Between the deculator and the headbox the
retention aid is added, and the equation for flocculation of filler particles, as described
in section 2.5, is at steady state. Since fines are no longer a component in the model, no
equations for flocculated fines exist. The flow which is recirculated from the headbox
to the deculator is removed from the model.

The wire We assume that a part ���fiber of the fibers are retained on the wire

���fiber = ���fiber · �� � ·���fiber, (30)

where we follow the notational convention of section 2.11. Furthermore, we assume
that flocculated filler particles are retained on the wire, in addition to some mechanical
entrapment of non-flocculated filler particles

���filler = �� � · (���flocculated filler +���non-flocculated filler · ���filler). (31)

The output equations The output equations are equal to those presented in sec-
tion 2.12, except that the transportation delay through the wire, press, and dryer
sections are neglected, and no fines are accounted for

�basis weight =
1000 · �edge trim ·�� 	�solid

� · �	 · (1 �)
(32)

�paper ash =
100 ·�� 	�filler · (1 �)

�� 	�solid
(33)

�WW tot. conc. = 100 · (�� ����filler + �� ����fiber). (34)

3.4 Summary of simplified third order model

The model equations are

�̇ = �1(�� �� �� !� %) (35)

! = �2(�� �� �� !� %)

� = �(�� �� �� !� %),
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where ! R31 is a set of algebraic equations. The states are

� =
�	��filler

�����filler

����fiber

, (36)

where �	��filler is the concentration of filler in the reject tank, �����filler is the
concentration of filler in the white water tank, and ����fiber is the concentration of
fiber in the deculator (“right” side).

The inputs and outputs are

� =
���

�filler

�ret. aid

, � =
�basis weight

�paper ash

�WW tot. conc.

, (37)

where ��� is the flow of thick stock, �filler is the flow of filler which is added at the
outlet of the white water tank, �ret. aid is the flow of retention aid added at the outlet
of the screens, and the outputs are as explained in section 2.12.

The measured disturbances, which are accounted for in the model, are

� =

����total

����filler

&1.stage pump

�
��

�slice opening

�

, (38)

where ����total and ����filler are total and filler thick stock concentrations, &1.stage pump

is the speed of the pump between the white water tank and the first stage of the hydro-
cyclones, � is the machine velocity, �� is the pressure inside the headbox, �slice opening

is the height of the slice opening and � is the paper moisture percentage.
The parameter vector % consists of various more or less unknown parameters, which

we tune to fit the model to process data. Several other parameters exist, some which
are known, and some which are set at fixed values due to identifiability considerations.
The parameter vector then, is

% =
£
�1,fresh filler,accept �1,filler,accept �2,filler,accept �1,fiber,accept �2,fiber,accept

(39)

���fiber ���filler ����fresh filler ���� �	� ��� �ret �fiber
¤
,

where �����accept is the share of accepted component � (fresh filler, filler or fiber) at the

’th hydrocyclone stage, ���fiber and ���filler are shares of fiber and filler mechanically
entrapped on the wire, ����fresh filler is the share of fresh filler in the filler flow from
the thick stock, �� are the volumes of the white water tank, reject tank and deculator
(“right” side), and �� are flocculation constants for filler particles.
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3.5 Implementation issues

The algebraic equations in the model are calculated in an order similar to the physical
appearance of the variables in the process (e.g. algebraic equations associated with
the first stage of the hydrocyclones are computed before equations associated with
the reject tank and the second stage). The advantage of calculating them in this
order is that the model file is well arranged, and changes in the model can be easily
implemented and tested. The disadvantage is that due to several equations being
mutually dependent, we can not compute all of them as they appear in the model
equations. In the model file this is solved using shifted values for some variables, i.e.

�+1 = �1(�� �� �� !� ! 1� %) (40)

! = �2(�� �� �� !� ! 1� %)

� = �(�� �� �� !� ! 1� %).

The method used here corresponds to the fixed-point iteration method (see e.g.
(Gerald & Wheatley 1994)), using only one iteration. A simple explicit Euler method
is used for discretizing the model in Equation 35. One reason for using the explicit
Euler method, contrary to e.g. a Runge-Kutta method, is that it can be used in a
straight forward manner, even though we use a fixed-point iteration method with one
iteration to calculate some of the algebraic equations.

It is possible, by substitution, to eliminate the algebraic equations from the model.
We have compared validation results (as in Section 4), using a model where the alge-
braic equations are eliminated, and a model where the fixed-point iteration method
using one iteration is used. The two methods gave practically the same validation
results and the model outputs were close to indistinguishable. The reason for this is
that most of the variables in the process change slowly and thus the error of using a
delayed value is small. The model file, when the algebraic equations are eliminated,
consists of a few very large and complex equations. Changing the structure of the
model would not be possible using this file, and in the remainder of this paper we use
the model file where fixed-point iteration is used.

4 Parameter estimation and validation

4.1 Criterion and minimization algorithm

The least squares criterion is used for measuring the model fit

'(%) = (� (%) ·) · ((%), (41)

where ( is a vector of errors and ) is a diagonal weighting matrix. The minimization
algorithm’s single task is to solve

%̂ = argmin
�
'(%), (42)

where %̂ is the estimated parameter vector.
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The function lsqnonlin in the Optimization toolbox (version 2) in Matlab (ver-
sion 6) is used for solving the minimization problem. The function relies on the
Levenberg-Marquardt algorithm in its search for the optimal parameter values (The
MathWorks, Inc. 2000).

There are at least two alternatives when deciding how the errors ( should be
calculated. In the prediction error method (PEM) and in subspace methods one
calculates the prediction error

*(�) = �̂(�|� 1) �(�), (43)

where �(�) is the measured output at time �, and �̂(�|� 1) is the predicted output at
time � based on past input-output data, i.e. a one-step-ahead prediction. In this case
the error vector would be e.g.

(� (%) =
£
(�1 (%) (

�
2 (%) · · · (�� 1(%) (

�
�(%)

¤
, (44)

with

(�� (%) =
£
*�(1) *�(2) · · · *�(�) · · · *�($ 1) *�($)

¤
, (45)

where � is the number of outputs and $ is the number of samples in the data set.
Another approach is to simulate the system, with only the initial conditions given.

The error is then
+(�) = �̂(�|0) �(�), (46)

where �̂(�|0) is the model output at time � given only the initial conditions. The error
vector for output 
 is then

(�� (%) =
£
+�(1) +�(2) · · · +�(�) · · · +�($ 1) +�($)

¤
. (47)

Traditional system identification is carried out by using the one-step-ahead method,
however in our case we wish to emphasize the need for a model with good long term
prediction abilities. The reason for this is that the model will be used for model pre-
dictive control (MPC). Then, it seems natural to use the simulation approach in the
parameter estimation algorithm. The simulation approach results in a deterministic
model, and it will be necessary to identify or model the noise as well. We will return
to this issue soon.

4.2 Experiment design and preprocessing of data

For a linear system, the concept of persistent excitation (see e.g. (Ljung 1999) and
(Söderström & Stoica 1989)) provides an adequate characterization of the input signal
needed to identify the model. The order of the excitation is dependent on the power
spectrum of the signal only, and is independent of its shape (e.g. amplitude). This is
not the case for a non-linear system; because such systems are amplitude dependent,
i.e. the response to an input sequence �(�) may be qualitatively very di erent from
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that for , · �(�). One has the opportunity to design optimal experiments (Goodwin
& Payne 1977)

ˆ = arg -.�
z

'( ), (48)

where ˆ is the optimal experimental condition, e.g. shape of inputs and sampling
times, z is the set of feasible values for , and '( ) is a scalar criterion. However, this
approach is seldom practicable for mechanistic models due to a chain of assumptions
which must be made, e.g. choosing nominal parameter values. Often, experiment
design for non-linear systems is based on a few rules of thumb, e.g. to use an input
sequence of several amplitude levels (Pearson & Ogunnaike 1997), and to excite the
relevant frequency bands. On a paper machine an open loop experiment is carried out
with high risk of poor paper quality or even sheet breaks. A solution to this problem
is to perform closed loop experiments, i.e. in this case experiments where the basis
weight, paper ash and wire tray (or white water) total consistency controllers are in
automatic mode. There is a vast amount of published material on closed loop system
identification, and various approaches and algorithms are treated in more detail in e.g.
(Ljung 1999), (Söderström & Stoica 1989) and (Forssell 1999). Our approach is “the
direct approach” (Ljung 1999) in which we use the process inputs � and outputs � in
the same way as for open loop identification, ignoring the feedback mechanisms and
the reference signals. We specify changes in the setpoints, thus forcing the inputs to
perturb the process. For example a rough approximation of the filtered PRBS signal
is possible by changing the setpoints of the mass flows according to a PRBS scheme
and let the valve and pump controllers work out the correct openings and velocities.
Such an experiment plan is shown in Figure 9. There is no need to introduce several
amplitude levels in the plan, since the process inputs and outputs are far from typical
binary signals. The resulting inputs and outputs are shown in Figures 10 and 11
respectively.

Filtered data are used when the deterministic model was identified, while the raw-
data are used when the stochastic part of the model was identified. The filtering was
carried out by a second order Butterworth filter, and as is seen in Figure 11, a cubic
interpolation routine was applied to the paper ash data in a region near the 125th
minute due to erroneous measurements.

4.3 Model fitting and validation of deterministic model

For comparison, we compute the value of a root mean square error (RMSE) criterion

RMSE� =

vuut 1

$

�X
�=1

(��(�) �̂�(�))
2, (49)

where $ is the number of observations, ��(�) is the measured value of output 
 at
time �, and �̂�(�) is the predicted or simulated value of output 
 at time �.

Optimal fitting of the mechanistic model to experimental data was carried out as
described in section 4.1. The fitted model output is shown in Figure 12, along with



144 Paper C: Paper Machine Modeling at Norske Skog Saugbrugs: ...

0 20 40 60 80 100 120

-1

0

1

Experiment plan for process operators.

B
as

is
w

ei
gh

t

0 20 40 60 80 100 120

-2

-1

0

1

2

P
ap

er
as

h

0 20 40 60 80 100 120

-0.05

0

0.05

W
ire

tr
ay

co
nc

.

Time [minutes]

Figure 9: Experiment plan for the PM6 process operators. The plan shows the changes
in setpoints carried out for the data set collected at February 28, 2001.
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Figure 11: Process outputs during experimentation at February 28, 2001. Raw data
are in dashed lines and filtered data are in solid lines. Note the erronous paper ash
data around the 125th minute. A cubic interpolation function was applied to the data
in the erronous region.
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Third order mechanistic model.
Measured (solid line) and simulated (dashed line) data
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Figure 12: Third order mechanistic model fitted to experimental data. Experimental
data collected at February 28th 2001.

the measured output. Note that only a deterministic model, or ballistic model, is
used in this simulation. The basis weight and paper ash dynamics seem well captured
by the model, while the wire tray concentration fit is less good. In addition to scaling
of the parameters in Equation 39, the outputs in the criterion (Equation 41) where
also scaled such that more weight was put on the wire tray concentration. Adding
even more weight on the wire tray concentration did not improve the model fit for
this particular output.

RMSE values for the fitted third order mechanistic model is shown below:

Basis weight Paper ash Wire tray cons.
0�30 0�33 0�022

For validation of the mechanistic model, three data sets containing operational
data were used. The first data set was collected during March 8-11, 2001. Figure
13 shows the validation results, when the mechanistic model is simulated (ballistic)
with the measured inputs. Although corrected for bias, the model fit for basis weight
and paper ash seem reasonably good considering that the time span is more than 90
hours. The initial oscillations in the basis weight may be caused by large oscillations
in the estimated thick stock consistencies at this time.

RMSE values for validation of the third order mechanistic model with operational
data collected during March 8-11, 2001, are:
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Figure 13: Validation of third order mechanistic model by simulation. Operational
data collected during March 8-11, 2001. Simulated data are bias corrected.
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Basis weight Paper ash Wire tray cons.
1�17 0�66 0�037

5 A Hybrid Extension

A hybrid model will be introduced in this section. The hybrid model consists of the
third order mechanistic model and a first order empiric model. The empiric model is
identified with the error signals in Equation 47 as outputs, � and various measured
disturbance signals as inputs. Denote the output from the mechanistic model by �̂mec

and the output from the empiric model by �̂emp, then the hybrid model output is
�̂hyb = �̂mec �̂emp. The empiric model may be viewed as originating from neglected
and unknown dynamics in the third order mechanistic model. The neglected dynamics
typically arise from the model reductions carried out, but also from such sources as
sensors and actuators. Unknown dynamics can e.g. be a filter in a measuring device
with proprietary software, some physical unit not known to the person modelling the
system or a general lack of understanding of the physical process.

We will start this section by fitting and validating a deterministic hybrid model.
The validation will be carried out with operational data sets spanning several days.
It is of course not realistic or the intention to use the models to predict several days
ahead, so we will then identify a stochastic sub-model, and validate the combined
deterministic and stochastic model. This validation will be carried out close to real-
istic conditions, validating the one-step ahead prediction abilities and the long-term
prediction abilities.

5.1 Model fitting and validation of deterministic hybrid model

We use the experimental data set from February 28th, 2001, to identify the empiric
model. The criterion and functions used are similar to those used with the mechanistic
model (see Section 4.1). The model structure is

�emp�+1 = ��emp� +�� +/� (50)

�emp� = ��emp� +0� + 1�,

with �emp R1, � R2, �emp R3 and � R3. The two sources of measured
disturbances are the estimated thick stock concentrations. Although it would be
preferable to add other disturbance sources, this is not possible using the February
28th, 2001, dataset due to lack of excitation from other sources. An alternative
could be to use operational data spanning several days, such that more measured
disturbances were excited. We will return to this issue soon, but point out that using
operational data to identify e.g. the time constant of the process, which in this case
is a simple transformation of �, in this case fails because the process itself is not
properly excited. With operational data and a first order system, we found � 1,
which is an integrator. Validation of the model identified from operational data was
not successful.
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Fourth order hybrid model.
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Figure 14: Fourth order hybrid model fitted to experimental data. Experimental data
collected at February 28th 2001.

Figure 14 shows the fitted deterministic hybrid model. The improvement com-
pared to the pure mechanistic model seems quite large.

RMSE values for fitted fourth order hybrid model are shown below:

Basis weight Paper ash Wire tray cons.
0�18 0�19 0�0082

Figure 15 shows the validation results using the operational data set collected
during March 8-11, 2001.

RMSE values for validation of fourth order hybrid model with operational data
collected in March 8-11, 2001, are:

Basis weight Paper ash Wire tray cons.
0�78 0�56 0�047

The basis weight and paper ash validation results are better than for the pure
mechanistic model, although this is not the case for the wire tray consistency where
the result is poorer.

We mentioned earlier that only two measured disturbances were used in the em-
piric model, due to lack of excitation from other sources. This is true for the short
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Validation of fourth order hybrid model.
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Figure 15: Validation of fourth order hybrid model by simulation. Operational data
collected during March 8-11, 2001. Simulated data are bias corrected.
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Fitted fourth order hybrid model.
Measured (solid line) and simulated (dashed line)
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Figure 16: Fitted fourth order hybrid model. Only those elements in the empiric
model of Equation 50, corresponding to measured disturbances (elements in / and 1
matrices), were tuned. Elements in other system matrices and parameters in mech-
anistic model are as identified with experimental data set collected at February 28,
2001. Operational data collected during March 8-11, 2001. Simulated data are bias
corrected.

experimentation data set used to identify the models, but in the operational data
sets which span several days, many measured disturbances vary quite a lot. We take
advantage of this and identify the / and 1 matrices in the state space model of
Equation 50 a new, and in addition augmenting the � vector such that � R6. The
other system matrices are not altered. The measured disturbance vector used in the
empiric model is equal to that of Equation 38, except that the last element (�) is not
part of the empiric model. Figure 16 shows the fitted model and measured outputs.

RMSE values for fitted fourth order hybrid model with operational data collected
during March 8-11, 2001, are:

Basis weight Paper ash Wire tray cons.
0�56 0�39 0�014

Two operational data sets were used for validation of the new hybrid model. The
first validation data set is collected during May 11-16, 2001, and the bias corrected
results can be seen in Figure 17. There appear to be problems with the basis weight
and especially the wire tray concentration outputs, however compared to the model
outputs when using the mechanistic model or the hybrid model with � R2, the re-
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Validation of fourth order hybrid model
Measured (solid line) and simulated (dashed line) data.
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Figure 17: Validation of fourth order hybrid model identified from experimental data
(February 28, 2001) and operational data (March 08-11, 2001). Operational validation
data collected during May 11-16, 2001. Simulated data are bias corrected.

sults for the basis weight has improved while the result for the wire tray concentration
is worse.

RMSE values for validation of the third order mechanistic model and two fourth
order hybrid models with operational data collected during May 11-16, 2001, are:

Basis weight Paper ash W. t. cons.
Third order mechanistic model 2�74 0�52 0�031
Fourth order hybrid model (� R2) 1�27 0�35 0�023
Fourth order hybrid model (� R6) 0�56 0�34 0�044

A second operational validation data set was collected during May 19-23, 2001,
and the bias corrected results can be seen in Figure 18. This data set is rather special,
because a filler used only a few times per year was added from around the 40th to
the 60th hour. This filler has a significant e ect on both the retention aid and on the
measurement devices. In addition, extra chemicals are added in the pulping process
due to high brightness demands on the finished paper. There are probably several
errors in the data set, e.g. the low peaks around the 45th hour in the paper ash time
series, and the large oscillations in the wire tray consistency during the 40-60th hour.

RMSE values for validation of the third order mechanistic model and two fourth
order hybrid models with operational data collected during May 19-23, 2001, are:
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Validation of fourth order hybrid model
Measured (solid line) and simulated (dashed line) data.
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Figure 18: Validation of fourth order hybrid model identified from experimental data
(February 28, 2001) and operational data (March 08-11, 2001). Operational validation
data collected during May 19-23, 2001. Simulated data are bias corrected.
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Figure 19: Identification of “quasi extended” Kalman filter for fourth order hybrid
model. Operational data collected during March 08-11, 2001. Predictions are bias
corrected.

Basis weight Paper ash W. t. cons.
Third order mechanistic model 1�08 1�05 0�054
Fourth order hybrid model (� R2) 0�71 1�30 0�042
Fourth order hybrid model (� R6) 0�56 1�24 0�046

5.2 Identification and validation of “quasi extended” Kalman
filter

Identification An extended Kalman filter normally updates the Kalman filter gain
matrix at each sample, based on noise covariance matrices and a linearization of the
model (see e.g. (Gelb 1974) and (Ergon 2001)). For simplicity we skip the linearization
of the model and the identification or tuning of the covariance matrices, and identify
the Kalman filter gain matrix directly from data as shown in Figure 19. Thus, the
Kalman filter is not updated and therefore the name “quasi extended”. Note that we
do not use filtered data when we identify the Kalman filter.

One-step ahead validation Figure 20 and Figure 21 show validation results using
the hybrid model with “quasi” extended Kalman filter. All in all, the Kalman filter
seems to work properly for the two validation data sets. However, in Figure 21,
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Figure 20: Validation of “quasi extended” Kalman filter for fourth order hybrid model.
Operational data collected during May 11-16, 2001. Predictions are bias corrected.

several severe measurement errors in the paper ash time series around the 45th hour,
cause large prediction errors for the basis weight and wire tray concentration. Before
implementing this estimator on paper machine 6, some sort of outlier detection is
needed.

RMSE values are based on bias corrected measured data and predicted data (one-
step ahead predictions). RMSE values for identification (March 8-11, 2001,) and
validation (May 11-16, 2001 and May 19-23, 2001) of the fourth order hybrid model
with “quasi extended” Kalman filter, are:

Basis weight Paper ash W. t. cons.
Identification, data set from March 8-11, 2001 0�21 0�23 0�0023
Validation, data set from May 11-16, 2001 0�20 0�32 0�0031
Validation, data set from May 19-23, 2001 0�46 0�67 0�0047

The poorer validation results for the May 19-23 dataset, is a result of the large
measurement errors in the paper ash signal around the 45th hour.

Validation of prediction ability during sheet breaks The identification and
validation carried out in the previous section assumed that all inputs and outputs are
measured, and therefore known. A problem within the paper industry is that some of
these measurements are lost when sheet breaks occur, and a standard solution to this
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Figure 21: Validation of “quasi extended” Kalman filter for fourth order hybrid model.
Operational data collected during May 19-23, 2001. Predictions are bias corrected.

problem is to “freeze” the corresponding inputs at their present values (the values at
the time of the sheet break). At PM6, the basis weight and paper ash measurements
are lost during sheet breaks, while we still measure the wire tray concentration. Thus,
in Figure 22 and 23 we have validated the model, simulating sheet breaks of various
lengths. The sheet breaks last from 30 minutes to 2 hours, and they take place
during normal operation or during grade changes. The simulation is carried out such
that at sheet breaks we use the identified constant gain Kalman filter matrix, and
the innovation signal for basis weight and paper ash is “frozen” at the mean value
of their ten values prior to the sheet break. The innovation signal for wire tray
concentration is calculated at each sample as before. The paper ash seems to be
predicted reasonably good during sheet breaks, while the result for the basis weight
is more mixed considering the drift in the 40-41st hour in Figure 22.

An alternative, and perhaps more common, method for updating the states with
missing measurements, is to set the innovation signal to zero for the lost measure-
ments. The states will then only be updated through the available measurement.

Validation of prediction ability during grade changes Prior to grade changes,
the operators must give information to the control system about the time of change,
new basis weight, paper ash, and other variables. With this information the long
term prediction ability of the model must be reasonably good. Figure 24 and 25 show
validation results were we have validated the ability to predict the responses during
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show simulated sheet breaks during normal operation, while the third column show a
simulated sheet break just prior to a grade change. Operational data collected during
May 11-16, 2001.
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Figure 24: Prediction during a grade change. Operational data collected during May
11-16, 2001.

grade changes. The prediction horizon ranges from 2 to 3 hours. The innovation
signal for all three model outputs is “frozen” at the mean value of their ten values
prior to the long-term prediction.

6 Conclusions

In this paper we have presented a high order mechanistic model of paper machine
6 (PM6) at Norske Skog Saugbrugs in Halden, Norway. The model is simplified
making it more suitable for control purposes, and a third order mechanistic model
is outlined. The third order model is fitted to experimental data and validated with
historical operational data. In the experimental data set only a few of the measured
disturbances are properly excited, thus the data set is not ideal for fitting of the model.
Fitting of the model to operational data sets, in which the measured disturbances were
properly excited, were tested but failed due to lack of excitation of the manipulated
inputs. One may consider merging several operational data sets, or merging data
during grade changes such that both manipulated inputs and measured disturbances
are properly exited. However, this approach may also fail because the process itself
probably is time varying, and unmodelled disturbances, such as e.g. variations in the
raw material, cause drifts and trends which are not accounted for in the model.

The fitting and validation reveals deficiencies in the model and perhaps in the
experimentation, although it is not clear whether one can eliminate these deficiencies
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without increasing the order of the model. Increased order models which were fitted
to experimental data performed better than the lower order models, thus the choice
of a third order model is a trade-o between e.g. complexity and accuracy.

A first order empiric model is added to the mechanistic model to capture neglected
and unknown dynamics in the process. The resulting fourth order hybrid model gives
much better validation results than the pure mechanistic model for the basis weight,
while not a clear better/worse answer for the paper ash and wire tray concentration.
The basis weight is perhaps the most important quality variable of the three outputs,
and thus we choose to use the hybrid model in the sequel.

A “quasi extended” Kalman filter, in which the Kalman filter gain matrix is con-
stant, is then identified from operational data. Validation of the hybrid model with
Kalman filter on operational data seems to give good results. Finally the model is
validated with respect to prediction ability during sheet breaks, and prediction abil-
ity during grade changes. The prediction ability during sheet breaks seems good for
paper ash, but is more uncertain for the basis weight which have a tendency to drift
away in some cases. Without improving the prediction ability during sheet breaks it
seems that one might as well freeze the inputs at the value prior to the sheet break.
However, one may consider using the predictions for operator support if e.g. changes
in machine velocity and other variables occur during a sheet break. The prediction
ability during grade changes seems reasonably good for the basis weight and paper
ash, however for the wire tray concentration, the prediction ability seems poorer.

Let us finally point at a few topics which could be of interest for further research:

• Refining the model, especially focusing on improving the predictions of the wire
tray concentration.

• Identify and validate covariance matrices, linearize the model, for implementa-
tion of extended Kalman filter.

• Online estimation of key parameters, i.e. an augmented Kalman filter.

• Compare with more traditional handling of measurement loss.
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Model Predictive Control of a Norske Skog
Saugbrugs Paper Machine: Preliminary Study

Tor Anders Hauge, Roger Slora†, and Bernt Lie‡

Abstract

In this paper we give an overview of some of the work, carried out in a project
at Norske Skog Saugbrugs in order to stabilize the wet end of paper machine
6 (PM6). A nonlinear physical based model was developed and will be used in
a model predictive control (MPC) application. Results from a controllability
analysis is given, indicating the necessity of process operators acting on mea-
sured disturbances to avoid input saturation. A commercially available MPC
algorithm based on a linear model is modified to handle the nonlinear model,
and to allow for future setpoint changes.

1 Introduction

A project for stabilizing the wet end of paper machine 6 (PM6) at Norske Skog
Saugbrugs was initiated in late 1999 (see e.g. (Hauge, Ergon, Forsland, Slora &
Lie 2000)), and the project will continue throughout 2002. The present state of the
project for stabilizing the wet end, is that a process model has been developed, fitted,
and validated with mill data (Hauge & Lie 2002). The model is implemented in a
commercially available MPC solution, and the vendor of this MPC is currently modi-
fying the software based on inputs from PM6 engineers. In addition to implementing
an MPC, several single-input single-output control loops and feed forward controllers
are implemented at PM6 for stabilizing variables outside the scope of the MPC.

This paper is organized as follows. In Section 2 we briefly outline the preprocessing
of data carried out before the model was fitted. The model is described and some
fitting and validation results are discussed in Section 3. In Section 4 we analyze and
discuss controllability (the ability to achieve acceptable control performance). The
APIS software and APIS MPC is described in Section 5, and a simulation result is
shown in Section 6. Finally, in Section 7, some conclusions are given.

Telemark University College, P.b. 203, 3901 Porsgrunn, Norway. E-mail: Tor.A.Hauge@hit.no
†Norske Skog Saugbrugs, 1756 Halden, Norway. E-mail: Roger.Slora@norske-skog.com
‡Telemark University College, P.b. 203, 3901 Porsgrunn, Norway. E-mail: Bernt.Lie@hit.no
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2 Preprocessing the data

When analyzing controllability we need to know something about the frequencies
where the model is valid. An important aspect is the preprocessing of data which is
discussed in this section.

The raw data collected from the paper machine has sampling rates of 5 s or 10 s.
Those data sets having a sampling rate of 10 s are transformed into 5 s sampling rates
by linear interpolation. The data have high frequency disturbances, particularly in
the output variables: basis weight and paper ash. These disturbances have higher
frequencies than the frequencies of interest, and we low-pass filter all data, prior to
model fitting and identification, to put less weight on higher frequencies. All input and
output series with 5 s sampling rate are filtered through a second order Butterworth
filter

�filtered =
0�0055�2 + 0�0111� + 0�0055

�2 1�7786� + 0�8008
�raw data , (1)

which has amplitude and phase characteristics as shown in the Bode diagram of Figure
1. This filter is realized in Matlab using the command

%2.order Butterworth filter, with normalized bandwidth equal to 0.05

[num,den]=butter(2,0.05);

The normalized bandwidth used here, corresponds to

�� = �Normalized ·�Nyquist = �Normalized ·
�

�
= 0�05 ·

�

5
= 0�0314 rad � s , (2)

where �� is the filter bandwidth, �Nyquist is the Nyquist frequency (the sampling fre-
quency divided by two), �Normalized is the normalized filter frequency where�Normalized =
1 corresponds to �� = �Nyquist .

The filtered data are resampled such that the sampling rate used for the model is
� = 30 s. The resampling is carried out simply by picking every 6’th sample from a
data set with 5 s sampling rate. Figure 2 shows raw data versus filtered data for an
experiment data set collected February 28, 2001.

3 The process model

The process model is described in detail in e.g. (Hauge & Lie 2002) and only a brief
description will be given here.

The model was originally developed with several ordinary and partial di erential
equations. The model was then simplified, and eventually fitted to experimental
and operational mill data. The "final" model consists of a third order nonlinear
mechanistic model based on physical and chemical laws, and a first order linear empiric
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Bode Diagram for second order Butterworth filter
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Figure 1: Bode diagram for 2.order Butterworth filter. The cut-o frequency or
bandwidth of the filter is 0�0314 rad � s.

model added to the mechanistic model to compensate for neglected and unknown
dynamics in the process. The structure of the developed process model is

�̇ = 	(�
 �
 �
 ) (3)

� = �(�
 �
 �
 ),

with � R� = R4, � R� = R3, � R� = R3 and � R� = R7.
The states, manipulated inputs, outputs, and measured disturbances are

�� = [����	

 �����	

 ����	
 �emp ] (4)

�� = [��� 
 ��	

��
 �ret.aid ]

�� = [����
 �����
 ���total]

�� = [�TS,tot 
 �TS,fil
 �1.stage pump 
 �
 �
 �slice 
 	 ] ,

where ����	
 is the concentration of filler in a reject tank in the hydrocyclones, �����	


is the concentration of filler in the white water tank, ����	 is the concentration of
fiber in the deculator, and �emp is the empiric state added to the mechanistic model
to capture neglected and unknown dynamics. The manipulated inputs u are the flow
of thick stock, filler, and retention aid. The outputs y are the basis weight, the paper
ash content, and the total concentration in the wire tray. The measured disturbances
accounted for in the model, are the total and filler thick stock concentrations �TS,tot

and �TS,fil, the speed of a pump between the white water tank and the first stage
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Figure 2: Process outputs during experimentation at February 28, 2001. Raw data,
resampled at 30 s sampling rate, are in dashed lines and filtered data, also resampled
at 30 s sampling rate, are shown in solid lines. Note the erronous paper ash data near
the 125th minute. Cubic interpolation was applied to the data in the erronous region.
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Figure 3: Process model fitted to experimental data.

of the hydrocyclones �1.stage pump, the paper machine velocity �, the pressure inside
the headbox � , the mean height of the slice opening �slice , and the paper moisture
percentage 	 .

 consists of several model parameters, tuned to fit the model outputs to exper-
imental and operational data. In Figure 3, the result from fitting the model to an
experimental data set is shown, and Figure 4 shows the validation of the model by
comparing simulated model outputs and process measurements during normal oper-
ation.

In Figure 5 we have validated the model with a Kalman filter. This Kalman filter
is identified from another operational data set, and the filter gain is constant, thus
this is a kind of "quasi extended" Kalman filter.

The nonlinear model in Equation 3 is linearized, giving

��+1 = ��� +��� +��� (5)

�� = ��� +��� + ���,

where we for simplicity have used the same variable names as in the nonlinear model1.

1We could e.g. used �
������ in the nonlinear model, �

� as the operating point, or point of
linearization, thus giving the following equation for the linear model variable �

���: ����
= �

������

�
�.
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Figure 4: Validation of fourth order process model by simulation. Simulated data are
bias corrected.
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Figure 5: Validation of constant gain Kalman filter. Predictions are bias corrected.
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Converting the linear discrete time model to a continuous time model, and then
converting to a transfer matrix, we get

�(�) = �(�) · �(�) +�� · �(�), (6)

with �(�) R3�3 and ��(�) R3�7. In the remainder of this paper we drop the use
of the argument �.

4 Controllability

In this section we analyze and discuss the controllability of the paper machine, using
techniques for linearized systems. The concept of state controllability will not be
discussed, except that we have ascertained that the model is state controllable and
observable, and thus a minimal realization. The controllability definition that we will
use is one by (Skogestad & Postlethwaite 1996):

Definition 1 (Input-output) controllability is the ability to achieve acceptable con-
trol performance; that is, to keep the outputs (�) within specified bounds or displace-
ments from their references (�), in spite of unknown but bounded variations, such as
disturbances (�) and plant changes, using available control inputs (�) and available
measurements (��, or ��).

This concept of controllability is independent of the controller, and is a property
of the process alone.

4.1 Model properties

In this subsection we discuss the model properties of the continuous time model,
described by the transfer matrix equation 6.

4.1.1 Frequency responses

The frequency responses (magnitudes only) of the elements of � and �� are shown
in Figures 6 and 7. The model is fitted and identified with a direct input to output
matrix �, and a direct measured disturbances to output matrix � . The reason for
having these “non-physical” direct contributions is that it provided better validation
results and model fit. The direct terms are seen on the frequency response plots,
giving no roll-o at high frequencies. Some of the responses have their highest gain at
higher frequencies, e.g. the response from the third manipulated input. This input is
a retention aid, added to help flocculation amongst filler particles and fibers. The step
response from this input is shown in Figure 8 and has a clear physical interpretation.
The consistency of filler particles and fibers are at a certain level when the step input
of retention aid is applied. The flocculation in the pipeline where the retention aid
is added, will increase rapidly when the retention aid is increased causing more filler
particles and fibers to be retained on the wire, and less to be drained through the
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Figure 6: Frequency response of the elements of �. Upper plot is the response from
the first column in �, i.e. from the first input to each of the three outputs. The lower
plot is the response from the last column in �.

wire. The flow which is drained through the wire is recirculated back into the process
and eventually cause a decrease in the consistency in the pipeline where the retention
aid is added. This will cause less flocculation, but more flocculation will occur than
prior to the step change in input. This means that the magnitude of the frequency
response is lower in steady state than at high frequencies.

4.1.2 Poles and zeros

The poles and transmission zeros of the continuos time transfer matrix � (Equation
6) are

� = { 0�0105 
 0�0038 
 0�0011 
 0�0007}

� = { 0�2252 , 0�0029 
 0�0013 
 0�0007},

and we see that � is stable, and has no zeros in the complex right-half plane. �� has
the same poles as �, but has no transmission zeros. Thus, in the absence of right-half
plane zeros and poles, we expect no particular controllability problems after studying
the poles and transmission zeros.
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Figure 7: Frequency response of the elements of ��. Upper left plot is the response
from the first column in ��, i.e. from the first measured disturbance to each of the
three outputs.
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4.2 Scaling

To simplify the analysis of controllability with respect to tracking setpoints and sup-
pressing disturbances, we scale the model. The scaling is done so that each input
(manipulated input or measured disturbance) is less than one in magnitude, by divid-
ing each variable by its maximum allowed or expected change from its nominal value.
Also, the control error, �, and the reference, �, are scaled so that they are allowed to
be maximum one in magnitude.

The following scaling matrices are applied

�� = diag([60 , 2�4 , 1�0]) (7)

�� = diag([0�006 , 0�07 , 0�1 , 5 , 0�9 · 105 , 0�0007 , 0�006])

�� = diag([1�0 , 1�0 , 0�05])

�� = diag([10 , 8 , 0�15]),

where diag([·]) is a diagonal matrix with the elements inside the square brackets on
the diagonal. For the manipulated inputs we assume that the maximum allowed
changes around the nominal value are ±60 l � s for the thick stock pump, ±2�4 l � s
for the filler, and ±1�0 l � s for the retention aid. The measured disturbances are
expected to change at maximum ±0�006 (thick stock total consistency), ±0�07 (the
thick stock filler consistency), ±0�1 (the first stage pump), ±5�0 m � s (the paper
machine velocity), ±0�9·105 Pa (headbox pressure), ±0�0007 m (slice opening), ±0�006
% (paper moisture), around the nominal values. The maximum allowed control error
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is ±1�0 g �m2 for the basis weight, ±1 % for the paper ash, and ±0�05 % for the wire
tray consistency. The maximum expected reference changes are ±10 g �m2 (basis
weight), ±8% (paper ash), and ±0�15% (wire tray consistency).

In the sequel we denote the scaled transfer matrices by �, and ��, and the un-
scaled original matrices by �̂ and �̂� respectively. The scaled matrices are calculated
by

� = � 1
� �̂��, �� = � 1

� �̂���. (8)

Also denote the un-scaled variables by �̂, �̂, and �̂, and we have that

�̂ = �̂ �̂ = ��� = ��� ��� = � = � � 1
� ��| {z }
�

�,

and the scaled model and variables are

� = ��+���, � = � ��, (9)

where ||�|| 1, ||�| | 1, ||�|| 1, and ||�|| 1, for the frequencies of interest,
and where || · || is the infinity or max norm (the largest element magnitude in the
vector). Thus, the scaling is carried out so that each manipulated input, measured
disturbance, control error and reference are less than one in magnitude by dividing
each variable by its maximum allowed or expected change from the nominal value.

4.3 Tracking references

In this subsection we discuss the ability to track references, using the scaled continuous
time model described by Equation 9

4.3.1 The singular values of the process model

For a given frequency, �(��) is a constant matrix. The singular value decomposition
of �(��) gives

�(��) =  (��)�(��)! �(��), (10)

where superscript" denotes the conjugate transpose or Hermitian. The matrix �(��)
is diagonal with the singular values in descending order. The largest singular value,
#̄(��), corresponds to the largest gain at frequency �, and the smallest singular value,
#(��) corresponds to the smallest gain2 at frequency �. For a multivariable system,
the gain varies with the direction of the input vector, although limited by the largest
and smallest singular values. The matrix  (��) consists of output directions corre-
sponding to the singular values, and ! (��) consists of input directions corresponding
to the singular values. Thus, at frequency �, we may find the largest gain as the first
singular value, the input direction which gives the largest gain is the first column vec-
tor in ! (��), and the output direction as the first column vector in  (��). Similarly
we can find the input and output directions associated with the smallest gain.

2This is not true for a system with more inputs than outputs. In this case there will be input
directions which will have no a ect on the outputs, thus the smallest gain is always zero.
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Figure 9: The singular values of � as a function of frequency.

Figure 9 shows the singular values as function of frequency. When the smallest
singular value is less than 1, from 6 ·10 4 rad � s to rad � s, this means that for some
input directions of unit magnitude, the outputs will have less magnitude than one.
In general we wish to have the smallest singular value as large as possible, especially
within the desired bandwidth of the closed loop system. The singular values are very
dependent on the scaling of the model, e.g. if we increase the scaling value for the
filler input from 2�4 l � s to 3�4 l � s, then the smallest singular value is larger than
one up till 0�1 rad � s. The reason for using 2�4 l � s in the scaling is that this is the
operating point where the linear model is derived. Thus increasing the scaling above
2�4 l � s means that we allow a negative flow of filler. However, the physical limits for
the filler flow is not symmetric about the operating point, so we may add more filler
than the upper scaling limit (which is 2�4 + 2�4 = 4�8 l � s).
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4.3.2 Input saturation

We wish to study if, and at what frequencies, we can obtain perfect reference tracking.
Perfect tracking, neglecting the measured disturbances, gives the input

� = � ��

0 = �� ��

� = �†��, (11)

where �† = ��(���) 1 is the pseudo-inverse. Figure 10 shows the frequency re-
sponse of the elements of �†� (magnitudes only). At frequencies were the magnitude
exceeds one, we cannot achieve perfect tracking because ||�|| =

¯̄
|�†��|

¯̄
1 is

not satisfied for all ||�|| 1. Note that we here study the references one by one,
and not by means of e.g. a worst case scenario for all involved references.

The first column of �†� corresponds to tracking the basis weight setpoint. In
Figure 10 we see that none of the inputs saturate in steady state, however the element
in the first row exceeds one in magnitude at a too low frequency. In the second and
third columns of �†� wee see that the elements in the second row are above one at
all frequencies. Thus, we expect that the filler valve will saturate when operating in
the outer regions of the paper ash and wire tray consistency setpoints.

The notion of a plant that can not be perfectly controlled, is even more clear if
we study a combined reference change, limited by ||�(��)||2 1, and ||�(��)||2 1.
The maximum expected reference change is ±1 for each reference, and the maxi-
mum allowed input change is ±1 for each input, however the limitations introduced
here simplifies the calculation and is convenient for illustrating our main point: that
the measured disturbances must be monitored, adjusted and related to the reference
values. Using Equation 11 and the above limitation for �, we can write

||�||2 =
¯̄¯̄
�†��

¯̄¯̄
2

1

||�||2 =
¯̄¯̄
�†�

¯̄¯̄
	2
· ||�||2 1, (12)

where ||·||	2 is the induced 2-norm, or the largest singular value. For ||�||2 = 1 we
have that

#̄(�†�) 1, (13)

for perfect reference tracking, without input saturation. Figure 11 shows the singular
values of �†� plotted as function of frequency, and it is clear that perfect tracking is
not obtained at any frequency with large combined reference changes.

Some comments on these results are necessary. First, for higher frequencies we
will not expect nor want perfect tracking in most cases (large and rapid actuator
movements). Based on knowledge of the process, it is expected that the bandwidth
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Figure 10: Magnitudes of the frequency response of the elements of �†�.
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Figure 11: Singular values of �†�, as a function of frequency.

of the closed loop system should be around 0.01 - 0.1 rad/s. Second, for lower fre-
quencies, at least for steady state conditions, one would normally expect to obtain
perfect control. However, knowing that we neglected the measured disturbances in
this particular analysis, we probably have a good explanation of the result in Figure
4. The conditions were the linearization was carried out was e.g. 50 g/m2 basis
weight, 30% paper ash, 4% thick stock total consistency, and 1.48% thick stock filler
consistency. The scaling of the model is carried out so that the entire product range
of PM6 is reflected, e.g. the paper ash content can be as low as 20%. Given that
the filler content in the thick stock is approximately 37%, as is the case here, the
manipulated inputs would most certainly saturate trying to reach a paper ash level
of 20%.

The comments above are supported by the fact that there are no known input
saturation problems at PM6 today, however the process operators carefully adjusts
e.g. thick stock consistencies to match the specifications on the finished paper. This
analysis shows that without these adjustments from the process operators, o -spec
paper would be produced. This would be the case independent of the controller which
is used.

4.4 Rejecting disturbances

The model is scaled so that each disturbance should be less than one (absolute value),
and we have also scaled the model with the allowed output error (� �). The frequency
response of �� will then show whether we need control or not, by studying the gain
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Figure 12: Magnitude of the frequency response of the elements of ��.

from each disturbance to each output. At frequencies where the gain is larger than
one, we need control. From Figure 12 we see that for most of the disturbances we
need control, while the paper moisture disturbance, described by the seventh column
in ��, we do not need control in order to stay within the allowed control errors.
We also see that for many of the disturbances we need control at high frequencies,
however it is beyond the scope of most control loops to reject disturbances at very
high frequencies.

4.4.1 Input saturation

Perhaps more interesting is the question of whether we can reject disturbances, while
still maintaining acceptable manipulated inputs. Let us look at the possibility of
achieving perfect control. That is, given some disturbance, can we keep ||�||max = 0,
and still maintain ||�||max 1? For simplicity, and without loss of generality, we set
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� = 0

� � = � �� ���

0 = ��+���

� = �†���,

and this is the input required for perfect control.

Figure 13 shows the frequency response of the elements of �†�� (magnitudes
only). From this figure we see which disturbances can be controlled perfectly at
which frequencies. Note that here we study the disturbances one by one, and not by
means of e.g. a worst case scenario for all involved disturbances. For example in the
upper left figure are the responses of the first column of �†��, corresponding to the
first disturbance which is the thick stock total consistency. At low frequencies we see
that the magnitudes are below one, which means that the outputs can be controlled
perfectly even for a worst case disturbance in the thick stock total consistency (as-
suming other disturbances are zero). At higher frequencies the magnitude of the basis
weight response (first row) crosses the saturation line (dashed line at magnitude equal
to one), and at even higher frequencies the paper ash also exceeds one in magnitude.
At frequencies were the magnitude exceeds one, we cannot achieve perfect control
because ||�|| =

¯̄¯̄
�†���

¯̄¯̄
1 is not satisfied for all ||�|| 1.

In Figure 13 we do not worry very much about the higher frequencies, as we
would not expect to achieve perfect control here any way. What is interesting is
those cases where we have magnitudes larger than one, at lower frequencies. These
are in particular the responses in the second column and second row, the fourth
column and the second row, and the fifth column and the second row (referring to
columns and rows in �†��). Consider e.g. the thick stock filler consistency (the
second disturbance) and the inability to achieve perfect control of the paper ash even
in steady state, as can be seen in the upper right corner in Figure 13. The paper
ash originates from filler in the thick stock and filler added in the short circulation
(the second manipulated input). The process operators make sure that when a high
percentage of paper ash is required, then a high percentage of filler in the thick stock
is present. Similarly, when a low paper ash percentage is required, then a lower
percentage of filler is present in the thick stock. Thus, it is our opinion that the
inability to achieve perfect control in steady state is a problem that is solved by the
process operators. What can be learned here, is that in order to track the setpoints,
also at low frequencies, it is necessary to either manually or automatically be able
to influence some of the measured disturbances. As of today the process operators
carefully adjust e.g. the thick stock composition to match the specifications on the
finished paper, and without these adjustments o -spec paper would be produced as
shown in Figure 13.
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Figure 13: Magnitudes of the frequency response of the elements of �†��.
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Figure 14: Frequency response of the RGA elements (only magnitudes), (�).

4.5 Sensitivity to uncertainty

4.5.1 Relative Gain Array (RGA)

The RGA is perhaps best known as a way to choose pairing between inputs and
outputs for decentralized control. However, it also has an important application as
an indicator of sensitivity to uncertainty (Skogestad & Postlethwaite 1996). The RGA
is defined as

(�) = �×
³
�

†
´�

, (14)

where × is the Hadamard product (an element by element multiplication). Figure 14
shows the frequency responses (only magnitudes) of the elements of the RGA matrix.
Processes with large RGA elements (e.g. magnitude above 10) are fundamentally
di cult to control due to sensitivity to input uncertainty (Skogestad & Postlethwaite
1996). Based on the frequency responses of Figure 14, there is no indication of such
problems for the paper machine process.

It is interesting to note that the present choice of input-output pairing for decen-
tralized control in the industry is not the choice that would be made based on the
RGA frequency response. The rules of thumb for pairing are often given as: Choose
pairing so that the corresponding RGA elements

1. in steady state, (�(0)), are positive and as close to 1 as possible (Skogestad
& Postlethwaite 1996).
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2. near the desired bandwidth of the closed loop system, (�(�)), are as close to
1 as possible (Skogestad & Postlethwaite 1996) (Seborg, Edgar & Mellichamp
1989).

In Figure 14 we see in the upper figure that we would choose to pair the thick
stock pump (input 1) with the basis weight (output 1). This corresponds to the
choice made in the industry. However, for the filler valve input (figure in the middle)
we would choose to pair it with the wire tray consistency (output 3), and finally for
the retention aid input (lower figure) we would choose to pair it with the paper ash
(output 2). These last two pairings are not in correspondence with the industrial
choice, as known by the authors of this paper.

4.5.2 Condition number

The condition number of the process is defined as

$(�) =
#̄(�)

#(�)
, (15)

and is an indicator of sensitivity to both diagonal and full-block input uncertainty
(Skogestad & Postlethwaite 1996). A small condition number indicates robustness to
the uncertainty. Figure 15 shows the condition number as a function of frequency. A
rule of thumb states that a condition number larger than 10 may indicate sensitivity to
uncertainty. In our case we do not expect very much sensitivity at lower frequencies,
however at frequencies ranging from 10 3 to 10 1 rad � s there may be a problem with
sensitivity to input uncertainty.

5 APIS (Advanced Process Improvement System)

APIS consists of a number of software components for process control, process data
logging and presentation of process information on web pages, e.g. Apis MPC and
Apis SoftSensor (a Kalman filter). Apis is a product of Prediktor AS (Norway) and
more information is available at the company homepage at www.prediktor.no.

5.1 The "standard" APISModel Predictive Controller (MPC)

The Apis MPC is based on an algorithm presented in (Muske & Rawlings 1993),
although there are some modifications and extensions based on experience from MPC
in industrial applications. The model is a linear state space model similar to Equation
5, with the following infinite horizon quadratic objective function

%� =
X
�=0

h
(��+� ��)

� & (��+� ��) + (��+� ��)
� � (��+� ��) + ���+�� ��+�

i
,

(16)
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Figure 15: Condition number of �.

where ��+� = ��+� ��+� 1, �� and �� are target vectors for the inputs and outputs,
& and � are positive definite penalty matrices, and � is a positive semidefinite penalty
matrix.

The MPC is based on minimization of the criterion subject to specified constraints.
The model in Equation 5 gives a set of equality constraints, while the inequality
constraints are

�min ��+� �max, � = 0
 1
 2
 ���
 ' 1 (17)

�min ��+� �max, � = �1
 �1 + 1
 ���
 �2

�min ��+� �max, � = 0
 1
 2
 ���
 ' ,

where ' is the horizon after which no control moves are allowed, and [(+�1
 (+�2] are
the time interval where the output constraints are applied. The criterion is of infinite
horizon, and this guarantees stability. Through the use of a Lyapunov equation the
criterion can be reformulated as a finite horizon criterion which can be implemented.

5.2 A modified MPC for APIS

The APIS MPC described in the previous section can not handle nonlinear models
or future setpoint changes. A modified MPC which handles these issues, is therefore
currently being developed and implemented. The nonlinear model is linearized at
each sample and used in the MPC.
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At time (, suppose a reference vector and a measured disturbance vector for
time (
 ( + 1
 ���
 ( + ' 1 is given. These vectors may be provided by the process
operators or simply taken as an expansion of the present values into the future. Using
the linearized model at time ( (as given by Equation 5) we calculate feasible target
values at each sample up till (+' 1. The model of Equation 5, is then shifted, so
that the origin of the model is the target value at time (+' 1. The shifted values
are denoted by a bar (e.g. �̄) in the remainder of this paper.

Assuming no control moves beyond sample ( + ' 1, and no change in target
values beyond sample ( +' 1, we can reformulate the infinite horizon criterion to
the following finite horizon criterion

%� = �̄��+� &̄��̄�+� 2�̄�� 1��̄�

� 1X
�=1

£
2�̄��+���̄�+� 1

¤
(18)

+
� 1X
�=0

h
�̄��+�&�̄�+� 2

¡
�̄��+�

¢�
&�̄�+� + �̄

�
�+� (�+ 2�) �̄�+� 2

¡
�̄��+�

¢�
��̄�+�

i
+ constant .

where &̄ is the solution of a Lyapunov equation, and the vector of unknowns is

�� =
£
�̄�� 
 �̄

�
�+1
 ���
 �̄

�
�+� 1
 �̄

�
�+1
 �̄

�
�+2
 ���
 �̄

�
�+� 
 �̄

�
� 
 �̄

�
�+1
 ���
 �̄

�
�+� 1

¤
, (19)

The constraints are given by Equations 5 and 17. It is possible to reduce the
number of unknowns in the z vector by inserting the model equations in the criterion.
However, the formulation given here gives very sparse matrices, and sparse solvers
quickly solve the optimization problem. Which method is more e cient is not studied
in this paper.

6 A simulation result

For the process operators at PM6, the MPC will include some options not avail-
able previously. These include making future reference changes, control during sheet
breaks and control during start up. The inclusion of the non-linear model in the
controller makes it possible to rely on the model output when measurements are not
available such as during start up and sheet breaks. The possibility of making future
reference changes means that the controller can prepare the inputs and states for the
forthcoming change, and calculate an optimal grade change. In Figure 16 the sim-
ulated outputs are shown, when the change in reference values is submitted to the
MPC 50 minutes before the actual grade change.

For the simulation in Figure 16, control deviation caused by the basis weight is
penalized hard, while the control deviation caused by the wire tray consistency is
penalized relatively mild. Both the control increment ( �) and the control deviation
from the steady state value is penalized in the criterion. The control increment is
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Figure 16: Model outputs and reference values (in dashed lines). The change in
reference value at ) = 50 minutes was submitted to the MPC at ) = 0 minutes.
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constrained by ±2 liters per sample (the sampling time is 30 seconds) for the thick
stock, ±0�25 liters per sample for filler, and ±0�05 liters per sample for the retention
aid.

7 Conclusions

In this paper we gave a preliminary analysis of a developed paper machine model and
its use in an MPC application. The process is non-linear and the analysis is carried
out on a linearized model.

There are no strong indications of expected control problems, although the process
to some extent may be sensitive to uncertainty. Input saturation may occur for large
changes in disturbances and references. However, this can probably be compensated
for by the process operators acting on measured disturbances (as is done today at
PM6). A simulation result with a modified commercially available MPC algorithm is
shown. The modifications include e.g. allowing future setpoint changes.
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Abstract

Four quadratic programming (QP) formulations of model predictive control
(MPC) are compared with regards to ease of formulation, memory requirement,
and numerical properties. The comparison is based on two example processes: a
paper machine model, and a model of the Tennessee Eastman challenge process;
the number of free variables range from 150 — 1400. Five commercial QP solvers
are compared. Preliminary results indicate that dense solvers still are the most
e cient, but sparse solvers hold great promise.

Keywords: Model predictive control; Quadratic programming; Problem
formulation; Analysis of formulation; Comparison of QP solvers

1 Introduction

Model based predictive control (MPC) is the repeated use of optimal control over a
given horizon; many introductory books dealing with MPC exist, e.g. Maciejowski
(2002), Camacho and Bordons (1999), and Seborg et al. (1989). Most of the work on
MPC has been centered on the use of linear models and quadratic performance indices.
Common model types are impulse and step response models, ARMAX/CARIMA
models, and state space models. In many cases, such models are input-output equiv-
alent, and the choice of model is less important for the resulting value of the control
input.

The performance index typically puts quadratic weights on the control deviation,
the control variable, and/or quadratic weight on the control increment. In practice,
control inputs will be constrained to lie within lower and upper bounds, while it is
also of interest to introduce constraints on response variables, e.g. that the outputs
are constrained to lie in a given region, etc. The most common MPC formulations
are thus posed as quadratic programming (QP) problems.

The development of the MPC algorithms typically include relatively lengthy for-
mula manipulations in order to end up with a QP problem with future control inputs

Corresponding author: Bernt.Lie@hit.no
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as the unknowns. An alternative approach is to keep variables such as states, outputs,
control deviations, etc. as unknowns, and include the model and various definitions
as linear equality constraints in the QP problem.

In this paper, we compare various formulations of the QP problem. In section
2, we formulate a standard MPC problem using state space models, and pose it as
QP problems with a complete set of variables, with an intermediate set of variables,
and with the basic future control inputs as variables (the common formulation). In
section 3, we analyze the various formulations via two case studies. In section 4, we
compare the computation time for various optimization algorithms and various QP
formulations. In section 5, we draw some conclusions.

2 The MPC problem

We consider the state space model

��+1 = ��� +��� (1a)

�� = ��� +���, (1b)

where �� R�×1 is the control input, �� R�×1 is the controlled output, �� R�×1

is the state, and the performance index �� is:

�� =
X
�=0

¡
	��+�
	�+� + ���+����+�

+ ���+�� ��+�

¢
.

Here, the output error 	� is
	� = �� �, (2)

where � is the set point, and the control increment �� is

�� = ��� �� 1. (3)

For open loop stable systems and some mild additional conditions, we can trans-
form the infinite performance index into the following finite horizon index, see e.g.
Muske and Rawlings (1993):

�� = ���+�
̄��+� + ���+� 1���+� 1 (4)

+
� 1X
�=0

¡
	��+�
	�+� + ���+����+�

+ ���+�� ��+�

¢
,

where 
̄ is found by solving the discrete Lyapunov equation:
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̄ = ��
� +�� 
̄�. (5)

With �� known, denote the optimal input sequence by ��+�|�, � {0� � � � � � }.
By repeatedly solving the optimal control problem for each time index �, letting the
control input be �� = ��|� leads to a nominally stable closed loop system, Rawlings
and Muske (1993).

One of the main advantages of MPC is the direct handling of constraints in the
calculation of the control input. This feature is importanct, since all processes are
subject to constraints. Actuators have a limited range of action

�� � �	 (6)

and a limited control increment

�� �� �	. (7)

Ouput constraints are mainly introduced for safety and quality reasons. Such con-
straints also arise when the exact values of some output variables � are less important
as long as they remain within specified boundaries or “zones”. These constraints can
be expressed as

�� � �	. (8)

Other types of inequality constraints are viable, such as funnels and constraints
on states. These extensions are in principle straightforward, and here we limit the
discussion to the constraints discussed above.

3 The MPC problem formulated as QP problems

3.1 Standard QP problem

The general MPC formulation outlined above can be posed as a quadratic program-
ming (QP) problem of the form

min



� (�) =
2
���� + �� � + � (9)

s.t. A� = �

B� �

�� � �	.

where the value of � does not change the optimal solution �, and hence is not discussed
further. If inequality constraints are passive, the solution can be found by solving the
linear equation L� = � where

L =

µ
� A�

A 0

¶
� � =

µ
�

�

¶
� � =

µ
�

�

¶
, (10)

and � is the Lagrange multiplier.
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Table 1: Notation used in MPC formulation.
Notation Matlab form
�� R�×� eye(n)

���� = diag
¡

� |�|×1� �
¢

diag(ones(n-abs(k),1),k)

0�×� R�×� zeros(m,n)

�×� R�×� ones(m,n)

� R�×� :
dim1� = �

dim2� = �
[m,n] = dim(A)

� � kron(A,B)

diag (�1� � � � � ��) – (block diagonal)
rot90 �� rot(eye(N),1)

3.2 Complete set of variables

Although not the most common formulation, we first define the vector of unknowns
� as:

�� =
¡
��� � � � ���+� 1 ���+1 � � � ���+�

��� � � � ���+� 1 	�� � � � 	��+� 1

��� � � � ���+� 1

¢
(11)

Matrix � and vector � of eq. 9 are determined from the requirement that �� of eq. 4
should equal � (�) in eq. 9. The constraintsA� = � contain the dynamic model in eq. 1
and the definitions in eqs. 2 — 3. For the MPC problem defined here, inequality B� �

is empty, while physical, safety, and quality constraints of Section 2 is contained in
�� and �	.

In formulating the matrices, the notation of Table 1 is used. The following
matrices result:

� = diag (2 (�� 1 �) � 2 (�+ �) � (12)

0(� 1) dim1 �̄×(� 1)·dim2 �̄
�

0dim1 �×� ·dim � 2
̄� 0� dim×� ·dim �

2 (�� 
) � 2 (�� �))

� = 0�·(2�+�+2�)�1 (13)

A =

(�� �) A12 0 0 0
(�� �) A22 �� ·� 0 0
0 0 �� ·� �� ·� 0
A41 0 0 0 �� ·�

(14)

where matrices A�� are defined in Table 2.
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Table 2: Matrices for complete variable set QP-formulation.
A12 = ��·� ��� 1 �

A22 = ��� 1 �

A41 = �� ·� + ��� 1 ��

� =

Ãµ
���

0(� 1)·�×1

¶�

�

µ
���

0(� 1)·�×1

¶�

� (15)

s
� �

µ
�� 1

0(� 1)�×1

¶�
!

�� =

�×1 ��

· �
� ·�×1

�×1 ��

· �
� ·�×1

�×1 ��

� �	 =

�×1 �	

· �
� ·�×1

�×1 �	

· �
� ·�×1

�×1 �	

(16)

The dimensions of the complete variable set QP problem are given by dim � = � ·
(�+ 2�+ 2�)× and dim� = � · (�+�+ 2�)× . Typically, the definition of � as
in eq. 11 leads to sparse matrices � and A.

3.3 Intermediate set of variables

From the full QP formulation, we eliminate 	�, ��, and ��. The resulting vector of
unknowns is:

�� =
¡
��� � � � ���+� 1 ���+1 � � � ���+�

¢
� (17)

The matrices and vectors in the QP formulation are

� = 2

µ
�11 �12

�21 �22

¶
, (18)

� =

µ
2
¡
����

�
� ��� 1�
¢�

0(� 1)�+��×1

¶
(19)

A =
¡

�� � �� ·� ��� 1 �
¢

(20)

� =

µ
���

0(� 1)�×1

¶
(21)

�� =

µ
�×1 ��

· � ·�×1

¶
� �	 =

µ
�×1 �	

· � ·�×1

¶
(22)

B =

B11 B12
B11 B12
B31 0�·�×� ·�

B31 0�·�×� ·�

� � =

�1
�2
�3
�4

. (23)
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Table 3: Matrices for intermediate variable set QP formulation.
�11 = ��

¡
2� +�+��
�

¢
��� 1 � ���+1 �

�12 = ���+1 ��
� = ��
21

�22 =

µ
�� 1 ��
�


̄

¶
B11 = �� �� B12 = ��� 1 �

B31 = �� ·� ��� 1 ��

�1 =

µ
�	 ���

� 1×1 �	

¶
� �2 =

µ
�� +���

� 1×1 ��

¶
�3 =

µ
�	 + �� 1

� 1×1 �	

¶
� �4 =

µ
�� �� 1

� 1×1 ��

¶

The matrices encountered in equations 18 — 23 that have not been defined yet, are
defined in Table 3. The dimensions of the intermediate variable set QP problem are
given by dim � = � · (�+ �) × , dim� = � · � × , and dim � = � (� +�). The
definition of � as in eq. 17 leads to sparse matrices �, A, and B.

3.4 Basic set of variables

The most common QP formulation is found by using the equality constraints to
eliminate all unknowns except the future control inputs, hence:

�� =
¡
��� � � � ���+� 1

¢
� (24)

In this case, there are no equality constraints. The matrices and vectors of the QP
formulation are

� = 2 (H� 1 (�� 
)H� 1 + (�� �) (25)

+ � (�� �) + +  �C�� 
̄C� 
¢
�

�� = 2 (O��� s)� (�� 
)H� 1 (26)

+ 2��� 1!
� (�� �) + 2���

¡
��
¢�

̄C� 

B =
H� 1

H� 1

� � =

�×1 �	 !�� 1

�×1 �� + !�� 1

�×1 �	 O���

�×1 �� +O���

(27)

�� = �×1 ��� �	 = �×1 �	 (28)

The matrices encountered in equations 25 — 27 that have not been defined yet, are
defined in Table 4.

The dimensions of the intermediate variable set QP problem are given by dim � =
� · �× and dim � = 2� · (�+ �)× . The definition of � as in eq. 24 leads to dense
matrices � and B.
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Table 4: Matrices for basic variable set QP formulation.
= �� ·� ��� 1 ���

! =

µ
��

0(� 1)×�

¶
� s

� =
¡
�� · · · ��+� 1

¢
=

µ
0� 1×� 1 0� 1×1

01×� 1

¶
��  = rot90(�� ·�)

C� =
¡
� �� � � � �� 1�

¢
�

O�
� =

³
�� (��)� � � �

¡
��� 1

¢� ´
�

H� =

� 0dim� · · · 0dim�

�� � · · · 0dim�

...
...

. . .
...

��� 1� ��� 2� · · · �

3.5 Basic variable set from QR factorization

It is possible to eliminate equality constraints by means of e.g. QR factorization.
This is an alternative to the formula manipulation needed to reach the results in the
previous section. Denoting the matrices in section 3.2 by subscript ", we have:

A� = 
̃�̃, (29)

where 
̃ is orthogonal and �̃ is an upper triangular matrix, and dim �̃ = dimA�. �̃
is then partitioned into:

�̃ =
¡
�11 �12

¢
(30)

where �̃11 is square and invertible for well posed MPC problems; �� is partitioned
into:

��� =
¡
��1 ��2

¢
(31)

where dim �1 is the number of columns in �11 and dim �2 = � ·�. This leads to

�1 = � 1
11

³

̃��� �12�2

´
. (32)

By eliminating the equality constraint, the matrices in the QP formulation become:

� =

µ
� 1
11 �12
�

¶�

��

µ
� 1
11 �12
�

¶

�� =

µ
� 1
11 
̃

���
0

¶�

��

µ
� 1
11 �12
�

¶

B =

µ
B1
B1

¶
� B1 =

µ
� 1
11 �12
�� ·�

¶
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Table 5: Case studies.
1a 1b 1c 2a 2b 2c

Process PM PM PM TE TE TE
N 50 100 200 50 100 200

� =
�	�

µ
� 1
11 
̃

���
0� ·�×�·�

¶
��� +

µ
� 1
11 
̃

���
0� ·�×� ·�

¶
��2 = · � ·�×1� �	2 = · � ·�×1.

When �2 is found, we can compute �1 from eq. 32. However, since the first
element of �2 is ��, we can find the desired �� as �� + �� 1, hence �1 is really
not needed. The dimensions of the QR reduced basic variable set problem are given
by dim �2 = � ·�× and dim � = 2 · dim ��. Since �̃� may change with time index
�, it is necessary to also store � 1

11 
̃
� which is of dimension dim�� × dim��. This

formulation leads to dense matrices � and B, and a dense 
̃ matrix.

4 Analysis of QP problems

The formulations with a complete set of variables (C, section 3.2), an intermediate
set of variables (I, section 3.3), the basic set of variables (B, section 3.4), and the
basic set of variables as found via QR factorization (QR, section 3.5) are compared
with regards to sparsity, the use of computer memory, and the conditioning of the
formulations.

In the discussion of sparsity and conditioning, we assume that possible inequality
constraints are passive, and thus consider the sparsity and condition number of matrix
L in eq. 10.

The comparisons are based on two example processes. The first example process
is a linearized fourth order paper machine (PM) model, with three inputs and three
outputs; see Appendix A.1 for some details. The second example process is an iden-
tified 23 order model of the Tennessee Eastman (TE) Challenge Process, with seven
inputs and ten outputs; see Appendix A.2 for some details. All computations in this
paper are based on Intel Pentium III PCs running at 750MHz, and with 256 Mbyte
RAM.

The case studies are described in Table 5, where the first row is our reference
name for the case study, the second row describes which process is used (Paper Ma-
chine or Tennessee Eastman), and the third row is the prediction horizon used in the
formulation.

The B and QR formulations have totally dense Lagrange matrices L, while the
sparsity patterns for the C and I formulations are displayed in Table 6.

Table 7 displays the memory used by the matrices and vectors in the MPC for-
mulation.
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Table 6: Sparsity patterns for sparse QP formulations, case 2a.
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Table 7: Memory used (kbytes) for case studies.
1a 1b 1c 2a 2b 2c

B 740 2919 11598 4962 19443 76965
QR 2888 11535 ** 27380 ** **
I 79 158 317 955 1919 3846
C 78 154 308 722 1445 2892

Elements marked with “**” denotes that the computer ran out of memory during
computation.

Table 8 displays the condition number of matrix L.

5 Comparison of algorithms for solving the QP prob-
lems

The QP solvers used in this study are (i) quadprog, (The MathWorks, Inc. 2000); (ii)
qld, available in Tomlab, Holmström (2001); as well as the following solvers which
are available with a Tomlab interface: (iii) lssol, Gill et al. (1986); (iv) qpopt, Gill
et al. (1995); and (iv) sqopt, Gill et al. (1997). The sqopt solver is the only one
of these that fully handles sparse matrices. The quadprog solver can be used with

Table 8: Condition number for QP formulations. Some computations required virtual
memory. Computations were terminated after 1 hour of computing time, and are
marked with “**”.

B QR I C
1a 2� × 03 8× 05 �3× 019 8�9× 018

1b 2�3× 03 2�7× 06 �4× 019 � × 019

1c 2�3× 03 ** �4× 019 � × 019

2a 7× 012 2�7× 015 6�5× 013 �6× 014

2b 7× 012 ** 6�6× 013 **
2c 7× 012 ** ** **
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Table 9: Identification of solver and QP formulation.
Formulation Solver Notation
B lssol B1
B qpopt B2
B qld B3
B quadprog B4
QR lssol QR
I sqopt I
C sqopt C

Table 10: Total computation time (seconds) for case studies.
1a 1b 1c 2a 2b 2c

B1 0.91 4.82 46.9 (7.84)* (76.8)* (592)*
B2 1.38 10.1 91.4 8.1 80.1 600
B3 1.42 7.45 54.5 15.4 97.1 3320
B4 15.3 49.7 283 19.5 96.9 **
QR 16.2 133 ** (754)* ** **
I 3.86 20.3 85.8 96 (313)* (994)*
C 7.10 32.1 119 196 (382)* (139)*

sparse matrices only if there are no inequality constraints in the problem formulation.
We use the case studies of Table 5, with the notation of Table 9 to identify which

solver is used in the formulations. In all cases, we simulate the controlled process for
# = 20 time steps.

Table 10 displays the total time used by the computer to simulate the case studies
with various MPC formulations and solvers. Table elements marked with “*” denotes
that an optimization failure or optimization problem occured. Elements marked with
“**” denotes that the computer ran out of memory during computation.

Table 11 displays the time spent on the first optimization. The reason for includ-
ing these results is that most solvers solve the optimization problem much slower the
first time than the remaining iterations. Typical computation times for the remaining

Table 11: Computation time for first iteration (seconds) for case studies.
1a 1b 1c 2a 2b 2c

B1 0.12 0.4 2.6 (0.33)* (3.22)* (27.2)*
B2 0.13 1.3 11 0.35 4.4 27
B3 0.15 0.67 3.26 0.72 4.28 200
B4 1.75 6.5 40 1.13 4.5 **
QR 0.12 1.11 ** (4.6)* ** **
I 0.82 3.29 11.3 10 (35)* (88.7)*
C 0.72 3.2 11 21 (57)* (266)*
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Table 12: Typical computation time for remaining iterations (seconds) for case stud-
ies.

1a 1b 1c 2a 2b 2c
B1 0.03 0.15 1.9 (0.29)* (3.14)* (23.9)*
B2 0.025 0.15 1.94 0.30 3.18 24.2
B3 0.05 0.29 2.28 0.67 4.14 150
B4 0.6 1.6 8.2 0.85 4.2 **
QR 0.05 0.26 ** (0.6)* ** **
I 0.15 0.9 3.9 4.5 (14.6)* (3)*
C 0.33 1.5 5.6 9.0 (17.2)* (37)*

iterations are given in Table 12.

6 Conclusions

In this paper, we have discussed four formulations of a standard MPC problem. The
formulation of section 3.2 (C) is, in our view, the most straightforward formulation
from the pedagogical point of view. The formulation in section 3.5 (QR) only requires
knowledge of linear algebra in addition to formulation C, and is also easy to present.
The formulations in sections 3.3 (I) and 3.4 (B) utilize various degrees of elimination
of equality constraints, where formulation B is the most demanding to present, yet it
is also the most common formulation.

Formulations C and I both lead to sparse matrices, Table 6, and thus the memory
requirement increases more or less linearly with the horizon � of the performance
index, Table 7, while for the dense matrix formulations B and QR the memory
requirement increases quadratically with � ; the QR formulation is most demanding.
In fact, the formulations C and I can be said to be supersparse in the sense that it
is possible to introduce special sparse matrix structures that take advantage of the
fact that the involved matrices are constructed from the Kronecker product, where
typically the system matrices and horizon length � contain all necessary information,
and the size becomes independent of � . To take advantage of this, it would, however,
be necessary to develop special matrix libraries for such data structures. Table 8
indicates that the sparse formulations (C, I) may be poorly conditioned, but this
may also be a result of how the conditioning is defined.

A number of commercially available QP solvers have been tested and compared.
Overall, the best combination of formulation and solver in our investigation appears
to be the B formulation of section 3.4 and the qpopt solver, which manages to solve
all test problems where the number of free variables ranges from 150 to 1400, see
Tables 10 — 12: the largest problem requires less than 30 s computation time for each
iteration. The relatively poor performance of theQR formulation is mainly caused by
the added memory requirement. The sparse solvers give relatively poor performance.
With the memory advantage of the sparse formulations, it is to be hoped that sparse
solvers will be tailor made to handle the (super-) sparse structures found in MPC
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Figure 1: Inputs and outputs in PM6 model.

problems; such contributions are starting to appear, see Bartlett et al. (2002).

A Overview of example processes

A.1 Paper machine

A paper machine model has been developed for controlling certain key variables at
paper machine 6 (PM6) at Norske Skog Saugbrugs, Norway. The original model is
a fourth order nonlinear model with three inputs, three outputs and seven measured
disturbances, and is described in detail in Hauge and Lie (2002). The model used
in this paper is a linearized version where the measured disturbances are assumed
constant. The inputs and outputs of the model are seen in Figure 1.

A.2 Tennessee Eastman Challenge Process

The Tennessee Eastman Challenge Process was defined in Downs and Vogel (1993),
and a basic control structure for the process was suggested in McAvoy and Ye (1994).
Recently, several subspace models for a part of this process were identified and com-
pared, (Juricek, Seborg & Larimore 2001)Juricek et al. (2001). The subspace models
all have 7 control inputs and 0 outputs, and the model that was found to give best
predictions was based on the Canonical Variate Analysis (CVA) method and has 23
states. The seven inputs are (i) compressor recycle valve, (ii) condenser cooling water
flow, (iii) setpoint for A feed, (iv) setpoint for D feed, (v) setpoint for C feed, (vi)
set point for purge rate, and (vii) set point for reactor CW temp. The ten outputs
are (i) recycle flow, (ii) reactor feed rate), (iii) reactor pressure, (iv) reactor tem-
perature, (v) product separator temperature, (vi) product separator pressure, (vii)
stripper pressure, (viii) stripper temperature, (ix) compressor work, and (x) separator
CW temperature. The inputs and outputs have not been scaled, and the system that
has been identified is rather sti . The most promising prediction model from the
subspace identification was graciously made available to the authors of this paper by
the authors of (Juricek et al. 2001)Juricek et al. (2001).
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Abstract

A mechanistic nonlinear model of the wet end of paper machine 6 (PM6) at
Norske Skog Saugbrugs, Norway has been developed, and used in an industrial
MPC implementation. The MPC uses an infinite horizon criterion, successive
linearization of the model, and estimation of states and parameters by an aug-
mented Kalman filter. Variation in important quality variables and consistencies
in the wet end have been reduced substantially, compared to the variation prior
to the MPC implementation. The MPC also provides better e ciency through
faster grade changes, control during sheet breaks and start ups, and better con-
trol during periods of poor measurements. From May 2002 the MPC has been
the preferred controller choice for the process operators at PM6.

1 Introduction

Norske Skog Saugbrugs in Halden, Norway, is one of the largest manufacturers of un-
coated super calendered magazine paper in the world. The total production capacity
of the mill is 550� 000 ton per year. The largest paper machine (PM) at the Saugbrugs
mill is PM6, accounting for more than half the total production capacity. PM6 was
built in the early 1990s and produce paper with 8�62 meters width, and with a typical
velocity of 1500 meters per minute.



210 Paper F: Application of a Nonlinear Mechanistic Model and an Infinite ...

Previous work A clear distinction is usually made between CD (Cross Direction)
and MD (Machine Direction) control, when discussing the control of a paper machine.
CD control refers to the profile across the paper web, while MD refers to the average
value. In this paper we only consider the MD control problem.

Several MPC implementations using multivariable empiric paper machine models
are reported, e.g. (McQuillin & Huizinga 1995), (Lang, Tian, Kuusisto & Rantala
1998), (Mack, Lovett, Austin, Wright & Terry 2001), (Kosonen, Fu, Nuyan, Kuusisto
& Huhtelin 2002), and (Austin, Mack, Lovett, Wright & Terry 2002). To the best
of the authors’ knowledge, there exists no reported industrial MPC implementations
utilizing a multivariable mechanistic model of the wet-end of the paper machine.
Some industrial implementations of MPC with mechanistic models are known in other
industry areas, e.g. (Qin & Badgwell 1998) and (Badgwell & Qin 2001) have reported
a few implementations. Papers describing industrial implementations of MPC with
mechanistic models are few, however (Hillestad & Andersen 1994) and (Glemmestad,
Ertler & Hillestad 2002) report several applications to industrial polymer reactors.
Several simulated examples exist, e.g. (Lee, Lee, Yang & Mahoney 2002), (Prasad,
Schley, Russo & Bequette 2002), (Amin, Mehra & Arambel 2001), and (Schei &
Singstad 1998), and also some applications to experimental test stands, e.g. (Ahn,
Park & Rhee 1999) and (Park, Hur & Rhee 2002).

Process description A simplified drawing of PM6 is shown in Figure 1. Cellu-
lose, TMP (thermomechanical pulp) and broke (repulped fibers and filler from sheet
breaks and edge trimmings) are blended in the mixing chest. The stock is fed to the
machine chest with a controlled total consistency1. Filler is added between the mix-
ing and machine chests. The fillers used in paper production depend on the end-user
requirements; typical fillers are kaolin, chalk, talc, and titanium dioxide (Bown 1996).
About two thirds of the filler particles used at PM6 are added to the thick stock; the
rest is added at the outlet of the white water tank. The flow to the machine chest
is large in order to keep the level of the machine chest constant, and an overflow is
returned to the mixing chest. The total consistency in the mixing and machine chests
are typically around 3 — 4%, which is considerably higher than consistencies later
on in the process, and thus the stock from the machine chest is denoted the “thick
stock”.

The thick stock enters the “short circulation” in the white water tank. Here, the
thick stock is diluted to 1-1.5% total consistency by white water2 and a recirculation
flow from the deculator. Filler is added to the stock just after the white water tank.
The first cleaning process is a five stage hydrocyclone arrangement, mainly intended
to separate heavy particles (e.g. sand and stones) from the flow. The accept from the
first stage of the hydrocyclones goes to the deculator where air is separated from the
stock. The second cleaning process consists of two parallel screens, which separate
larger particles (e.g. bark) from the stock. Retention aid is added to the stock at

1The total consistency is the weight of solids (i.e. filler particles and fiber) divided by the total
weight of solids and water.

2White water, which is stored in the white water tank, is the drainage from the wire.
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the outlet of the screens. The retention aid is a cationic polymer which, amongst
others, adsorb onto anionic fibers and filler particles and cause them to flocculate.
The flocculation is a key process for retaining small filler particles and small fiber
fragments on the wire, although the significance of mechanical entrapment of non-
flocculated filler and fines seems to be somewhat controversial in the literature. For
example (Van de Ven 1984) found (theoretically) that mechanical entrapment was low,
while (Bown 1996) reports that mechanical entrapment can be a dominant mechanism.
In the headbox, the pulp is distributed evenly onto the finely meshed woven wire cloth.
Most of the water in the pulp is recirculated to the white water tank, while a share of
fiber material and filler particles form a network on the wire which will soon become
the paper sheet. The pulp flow from the white water tank, through the hydrocyclones,
deculator, screens, headbox, onto the wire and back to the white water tank is denoted
the “short circulation”.

In the wire section, most of the water is removed by drainage. In the press section,
the paper sheet is pressed between rotating steel rolls, thus making use of mechanical
forces for water removal. Finally, in the dryer section, the paper sheet passes over
rotating and heated cast iron cylinders, and most of the water left in the sheet is
removed by evaporation. The paper is then rolled up on the reel before it is moved
on to further processing.

Motivation for multivariable model based control Magazine paper is char-
acterized by its glossy appearance due to a high content of filler in the paper. The
finished magazine paper typically consists of 65% fiber, 30% filler, and 5% water.
The main di erence between magazine paper and e.g. newsprint is the high con-
tent of filler. For newsprint the amount of filler is typically 0-10%. Due to the high
filler content in magazine paper, the couplings between important input and out-
put variables are relatively strong. A project called “Stabilization of the wet end at
PM6” was initiated in 1999 based on the experience of strong couplings and oscillat-
ing behavior in the process. A key goal was to reduce variation in certain variables,
such as consistencies in the short circulation, basis weight, filler content, and more.
Based on experience and reported results from competitive mills (e.g. (McQuillin
& Huizinga 1995), and (Lang et al. 1998)), it was decided to develop a model of the
process and utilize this in a model predictive controller (MPC). Three input and three
output variables were selected

�̄ =
�̄��
�̄�
�̄��

� �̄ =
�̄��

�̄��
�̄�	

, (1)

where the inputs �̄ are the amount of thick stock, filler added at the outlet of the
white water tank, and retention aid added at the outlet of the screens, and where the
outputs �̄ are the basis weight (weight per area), paper ash content (content of filler
in the paper), and wire tray consistency in the recirculation flow from the wire to the
white water tank. The basis weight and paper ash outputs are direct quality variables,
while the wire tray consistency is an indirect quality variable having significant e ect
on variation in other short circulation variables.
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Figure 1: A simplified drawing of PM6. More details are available in (Hauge & Lie
2002).
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Before the project started, single loop controllers and manual control were used.
Grade changes were carried out manually or partly manually by the operators: the
setpoints were changed a number of times before they were equal to the new grade.
During start ups, the controllers were kept in manual mode until the measurements
were close to the desired specifications. In addition, during sheet breaks the ba-
sis weight and paper ash measurements were lost and the inputs controlling these
variables were set equal to the values that they had prior to the sheet break. The
controllers were kept in manual mode until the paper was back on the reel. Thus,
it was also a key goal in the project to be able to have the controllers in automatic
mode during grade changes, sheet breaks, and start ups.

The process model The process model is described in detail in e.g. (Hauge &
Lie 2002) and only a brief description will be given here. Note that some modifications
have been introduced to the model detailed in (Hauge & Lie 2002), as compared to
the model implemented at PM6. The most prominent modification is that a first
order empiric model that was added to capture neglected and unknown dynamics in
the process, has been removed.

The model was originally developed with several ordinary and partial di erential
equations. The model was then simplified, and eventually fitted to experimental
and operational mill data. The implemented PM6 model consists of a third order
nonlinear mechanistic model based on physical and chemical laws. The structure of
the developed process model is

·
�̄ = �̄(�̄� �̄� �̄� �̄) (2)

�̄ = 	̄(�̄� �̄� �̄� �̄),

with �̄ R
 = R3, �̄ R� = R3, �̄ R� = R3 and �̄ R = R4. The bar above the
variable names indicates that these are the variables in their original units and size. �̄
consists of several model parameters, tuned to fit the model outputs to experimental
and operational data.

The manipulated inputs �̄ and the outputs �̄ are shown in eq. 1, while the states
and measured disturbances are

�̄� =
£

̄������ 
̄������� 
̄�����

¤
(3)

�̄� =
£

̄TS,tot � 
̄TS,fil� �̄� �̄

¤
,

where 
̄����� is the concentration of filler in a reject tank in the hydrocyclones, 
̄������

is the concentration of filler in the white water tank, and 
̄����� is the concentration
of fiber in the deculator. The measured disturbances accounted for in the model, are
the total and filler thick stock concentrations 
̄TS,tot and 
̄TS,fil, the paper machine
velocity �̄, and the paper moisture percentage �̄ .

Note that the total- and filler concentrations in the thick stock flow are called
“measured disturbances”, although they are not measured. A model of the thick
stock area has been developed (Slora 2001), and implemented at PM6, providing
estimates of total- and filler concentrations in the thick stock.
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Model Predictive Controller (MPC) A commercial MPC developed by Predik-
tor AS (www.prediktor.no), was chosen by Norske Skog for implementation. The
choice of MPC was based on (i) cost, and (ii) the ability to add and develop certain
features that were important. Important features were the abilities to

• utilize the non-linear model;

• specify future reference changes. This means that the process operators can
specify a setpoint change some time into the future, see how the controller will
respond, and let the controller do the grade change if they are satisfied with the
response. In many systems, the setpoint is constant into the future, so once a
change in setpoint is made, the controller will respond immediately, giving the
operators no time to consider how wise the response is;

• make an interface suitable for gaining operator acceptance of the MPC;

• use the MPC during grade changes, sheet breaks, and start ups.

The commercial MPC is part of a software package named Apis (Advanced Pro-
cess Improvement System), which also consists of a Kalman filter, subspace system
identification, and more. The Apis MPC was intended for linear models, based on
the infinite horizon objective function presented in (Muske & Rawlings 1993). For
the predictive controller implemented at PM6, several extensions were made to the
original MPC, such as

• on-line linearization at each sample;

• on-line estimation of key model parameters/biases;

• future setpoint changes, i.e. the process operators can submit new setpoints to
the controller some time before the actual grade change;

• addition of a direct input to output term;

• inclusion of measured disturbances.

These extensions will be further discussed in later sections. Note that the ex-
tensions discussed in this paper are based on the authors’ work, and the actual im-
plementation in Apis may be based on other solutions and ideas. The use of MPC,
a nonlinear model, extended Kalman filter, and linearization at each sample, has
also been suggested by (Lee & Ricker 1994), although with a finite horizon criterion.
Similarly, (Gattu & Zafiriou 1992) proposed an algorithm for nonlinear MPC, with
linearization at each sample, but with computation of the steady state Kalman gain
at each sample.
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Organization of paper In Section 2 an overview of the algorithm for infinite
horizon MPC with augmented Kalman filter is given. Linearization of the model is
discussed in Section 3, and the MPC equations are outlined in Section 4. In Section
5 the augmented Kalman filter is discussed, and results from using MPC on paper
machine 6 (PM6) at Norske Skog Saugbrugs is presented and discussed in Section 6.
Finally, some conclusions are given in Section 7.

A few notes about the notation are given in Appendix A. Details on how to find the
steady state values are given in Appendix B, and proofs for the finite horizon criteria
are given in Appendix C. State and parameter estimation is detailed in Appendix D.

2 Overview of algorithm

At time � we have available the process model (eq. 2) in its discrete version

�̄�+1 = �(�̄�� �̄�� �̄�� �̄�) (4)

�̄� = 	(�̄�� �̄�� �̄�� �̄�),

as well as the following past measurements and estimates

�̄� �

�̄� �

�̄� �b̄�� �+1

,  = 1� 2� 3���, (5)

where b̄� is an estimated state vector. The following step by step algorithm for con-
trolling the process is suggested, assuming the present time to be �.

1) Linearization of model based on conditions at time � 1 For the chosen
MPC we need a linear model. The linearization is based on the most up-to-date
information about the process, i.e. the variable values at time � 1. Note that we
have no information about �̄� yet, so we can not linearize based on variable values at
time �. The resulting model is

=
��+1 = ��

=
�� +��

=
�� +��

=

�� (6)

=
�� = 
�

=
�� +��

=
�� + ��

=

��.

The linearization is discussed more thoroughly in Section 3. See also notes about
notation in Appendix A.

2) Obtain current measured disturbances and future setpoints and distur-
bances The measured disturbances obtained from the process are �̄�. The future
disturbances and references are

�̄�+�, � = 0� ���� � 1 (7)

�̄�+�, � = 0� ���� � 1,
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which must be provided by the process operators or simply taken as an extention of
the present values into the future.

3) Shift variables corresponding to the linearized model The references,
disturbances, and constraints will be used with the linearized model in eq. 6 for
calculation of target values. The references, disturbances, and constraints must then
be shifted along with the model so that all variables have the same origin before the
calculation of target values.

4) Calculate steady state values The calculation of steady state values is carried
out for several reasons. The steady state values are used as targets in the optimization
criterion. One could use e.g. reference values directly as targets in the criterion.
However, the calculation of steady state values is a way of ensuring that the targets
are feasible. In addition, by calculating steady state values one has the opportunity to
add e.g. an economic type criterion if there are additional degrees of freedom. Finally,
for the special case of an infinite horizon criterion with possibility of changing future
references and measured disturbances, we need the steady state values at the end of
the horizon in order to shift the origin of the model.

5) Shift the origin of the model to the steady state values at time �+� 1
This is a step taken in order to reformulate the criterion to a finite horizon criterion.

6) Shift measured and estimated variables The variables must be shifted along
with the model so that they have the same origin.

7) Update MPC matrices and vectors The matrices and vectors in the MPC
formulation that contain time variant variables, such as linear model matrices, input
variables, estimated states, etc., must be updated.

8) Optimization An optimization algorithm is used to calculate optimal inputs.

9) Apply �̄� to the process Note that only the first input is used.

10) Obtain �̄� from the process

11) Estimate b̄��+1 Unless all states are measured, we need to estimate them (or
some of them). Typically an extended Kalman filter is used for this purpose.

12) Set � := � + 1 and go to step 1
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3 Linearization of model

Consider perturbations
=
��,

=
��, and

=

�� near the variable values at time � 1

�̄� = �̄� 1 +
=
�� (8)

�̄� = �̄� 1 +
=
��

�̄� = �̄� 1 +
=

��.

Inserting these perturbations into eq. 4, and neglecting the parameter vector �̄�,
gives

�̄�+1 = �(�̄�� �̄�� �̄�) = �(�̄� 1 +
=
��� �̄� 1 +

=
��� �̄� 1 +

=

��) (9)

�̄� = 	(�̄�� �̄�� �̄�) = 	(�̄� 1 +
=
��� �̄� 1 +

=
��� �̄� 1 +

=

��).

Define � = {�̄� 1� �̄� 1� �̄� 1}. A first order expansion, with center corresponding
to �, then gives

�̄�+1 �(�̄� 1� �̄� 1� �̄� 1) +
��

��̄�
|�(�̄� 1 +

=
�� �̄� 1) (10)

+
��

��̄�
|�(�̄� 1 +

=
�� �̄� 1) +

��

��̄�
|�(�̄� 1 +

=

�� �̄� 1)

�̄� 	(�̄� 1� �̄� 1� �̄� 1) +
�	

��̄�
|�(�̄� 1 +

=
�� �̄� 1)

+
�	

��̄�
|�(�̄� 1 +

=
�� �̄� 1) +

�	

��̄�
|�(�̄� 1 +

=

�� �̄� 1)

Defining

�� =
��

��̄�
|�, �� =

��

��̄�
|�, �� =

��

��̄�
|� (11)


� =
�	

��̄�
|�, �� =

�	

��̄�
|�, �� =

�	

��̄�
|�

�̄� = 	(�̄� 1� �̄� 1� �̄� 1) +
=
��

and inserting the definitions in eq. 8 into eq. 10 gives

=
��+1 ��

=
�� +��

=
�� +��

=

�� (12)

=
�� 
�

=
�� +��

=
�� + ��

=

��,

where we have assumed that �̄� = �(�̄� 1� �̄� 1� �̄� 1), in accordance with the original
nonlinear model equation. In the remainder of this paper, eq. 12 will be used with
equality sign (“=”) instead of approximation (“ ”).
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Note that the linearization was carried out with center corresponding to variable
values at time � 1. If the linearization is carried out before the computation of
the optimal input �̄�, then the linearized model must have center corresponding to
variable values at time � 1. If the input �̄� is available at the time of linearization, the
center can correspond to variable values at time �, however by the time the linearized
model is used in the MPC the time is � + 1. Thus, it is not important whether the
linearization is carried out prior to, or after, the computation of optimal inputs since
the linearized model will be centered on the variable values at the previous sample in
any case.

The linear system matrices ��� ��� ���� �� can be found by analytic or numeric
methods. These methods are presented next.

3.1 Analytic linearization

Analytic linearization is carried out e.g. by hand, automatic di erentiation, see e.g.
(Griewank 2000), (Griewank & Corliss 1991), and (Solberg 1988), or by software
capable of symbolic computation, e.g. Maple, or Matlab with the symbolic toolbox.
For small and not too complicated systems this is a convenient method. Consider e.g.
matrices �� and ��, computed element by element according to

�� =
��

��̄�
|� =

��1
��̄��1

|�
��1
��̄��2

|� · · · ��1
��̄���

|�
��2
��̄��1

|�
��2
��̄��2

|� · · · ��2
��̄���

|�
...

...
. . .

...
���
��̄��1

|�
���
��̄��2

|� · · · ���
��̄���

|�

�� =
��

��̄�
|� =

��1
��̄��1

|�
��1
��̄��2

|� · · · ��1
��̄���

|�
��2
��̄��1

|�
��2
��̄��2

|� · · · ��2
��̄���

|�
...

...
. . .

...
���
��̄��1

|�
���
��̄��2

|� · · · ���
��̄���

|�

,

where � = �̄� 1� �̄� 1� �̄� 1 is the center of the linearization, �̄��� means the ’th state
variable at time � in the nonlinear model, and similar for other variables. The other
system matrices are computed similar to this. Note that the � matrix consists of �
rows and � columns and is not in general a square matrix.

3.2 Numeric linearization

Numeric linearization is carried out by perturbing the variables and thus finding the
derivatives in the system matrices, see e.g. (Dennis & Schnabel 1996) and (Gill,
Murray & Wright 1981). Assuming �̄� 1, �̄� 1 and �̄� 1 are available, one would
typically use an algorithm similar to the following:

1. Using the nonlinear model and known variables, compute �̄� and �̄� 1.
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2. For every state variable:

(a) Perturb state variable �̄� 1��, by adding a small number �̄� 1�� to its
value. For example one may increase its value by one percent, or a prede-
termined minimum perturbation (e.g. if the variable value is zero we can
not use the one percent rule).

(b) Using the nonlinear model, compute �̄pert� and �̄
pert
� 1�

(c) The ’th column in matrix �� is then

�̄
pert
� �̄�

�̄� 1��

and the ’th column in matrix 
� is

�̄
pert
� 1 �̄� 1

�̄� 1��

3. For every input variable:

(a) Perturb input variable �̄� 1��, by adding a small number �̄� 1�� to its
value.

(b) Using the nonlinear model, compute �̄pert� and �̄
pert
� 1�

(c) The ’th column in matrix �� is then

�̄
pert
� �̄�

�̄� 1��

and the ’th column in matrix �� is

�̄
pert
� 1 �̄� 1

�̄� 1��

4. For every measured disturbance variable:

(a) Perturb measured disturbance variable �̄� 1��, by adding a small number
�̄� 1�� to its value.

(b) Using the nonlinear model, compute �̄pert� and �̄
pert
� 1�

(c) The ’th column in matrix �� is then

�̄
pert
� �̄�

�̄� 1��

and the ’th column in matrix �� is

�̄
pert
� 1 �̄� 1

�̄� 1��
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3.3 Example: Linearization of a chemical reactor model

A model of a chemical reactor (Lie 1995) is


̇� =
�

�
· (
�� 
�) �0 · �

�
�·� · 
� (13)

�̇ =
�

�
· (�� � ) +

1


̄�

·
³

�� · �0 · �
�

�·� ·
� · � +�
´

The � matrix in the linearized model is then

� =

"
�	̇�

�	�

�	̇�

��
��̇
�	�

��̇
��

#

=

"
�
�

�0�
�
�� � �

��2
�0
��

�
��

1
	̄	
· �� · �0 · �

�
�·� · �� �

�
1
	̄	
· �� · �0 ·

�
��2

· �
�

�·� ·
� · �

#

With appropriate parameter values and operating point, as given in (Lie 1995),
we have

�analytic =

·
19� 998 4�6209 · 10 2

3824� 4 8� 301 8

¸
Numeric linearization, with a perturbation according to 1% of the state values,

gives the following � matrix

�numeric =

·
19�998 5�1131 · 10 2

3824�4 9�2926

¸
which is close to the analytic � matrix. The reactor is highly nonlinear and we try
with a smaller perturbation corresponding to 0�1% of the state values. This gives

�numeric,0.1% =

·
19�998 4�6675 · 10 2

3824�4 8�3956

¸
which is seen to be even closer to the analytic solution.

This example has shown the possibilities of analytic and numeric linearization, as
well as the di culty of choosing a proper perturbation for numeric linearization.

4 Model predictive controller (MPC)

Commercial MPC algorithms often consists of two stages (Qin & Badgwell 1997),
first steady state values (or target values) are calculated, and then these values are
used as targets in the calculation of the optimal input values. The calculation of
steady state values is a way of ensuring that the targets are feasible. In addition,
by calculating steady state values one has the opportunity to add e.g. an economic
type criterion if there are additional degrees of freedom. Finally, for the special case
of an infinite horizon criterion with the possibility of changing future references and
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measured disturbances, we need the steady state values at the end of the horizon
in order to shift the origin of the model. The model origin is shifted so that the
variables in the criterion converges exponentially to a zero steady state, thus avoiding
an infinite value of the criterion.

4.1 Steady state values

We assume that a linearized model (eq. 12) and the adjusted reference vector
=
��+�

and disturbance vector
=

��+� are available (at time �):

=
��+� = �̄�+� �̄� 1, � = 0� ���� � 1 (14)
=

��+� = �̄�+� �̄� 1, � = 0� ���� � 1,

The future reference and disturbance vectors are provided by the process operators
or simply taken as an extention of the present values into the future. � is a chosen
control horizon where we allow input changes.

At each future time sample we calculate target values for the states and inputs
of the process. The target values may be calculated using an economic criterion, or
calculated as e.g.

min
�̄

�+�

��̄

�+�

³
�̄��+�

=
��+�

´�
��

³
�̄��+�

=
��+�

´
, � = 0� ���� � 1, (15)

constrained by the steady state solution of the model·
(� ��) ��


� ��

¸ ·
�̄��+�
�̄��+�

¸
=

"
��

=

��+�

��
=

��+� �̄��+�

#
, � = 0� ���� � 1, (16)

with bounds

�̄min
�+� �̄��+� + �̄� 1 �̄max

�+� , � = 0� ���� � 1 (17)

�̄min
�+� �̄��+� + �̄� 1 �̄max

�+� , � = 0� ����� 1,

where �̄min
�+�, �̄

max
�+� , �̄

min
�+�, and �̄max

�+� are minimum and maximum values corresponding
to the original nonlinear model. If there are additional degrees of freedom we may
specify an economic type criterion instead of eq. 15, and use eqs. 16-17 as constraints.
In Appendix B it is shown how one may use the lssol algorithm (Gill, Hammarling,
Murray, Saunders & Wright 1986) for calculating the steady state values.

The origin of the model is then shifted to the steady state values at time � 1³
=
��+1 �̄��+� 1

´
= ��

³
=
�� �̄��+� 1

´
+��

³
=
�� �̄��+� 1

´
+��

µ
=

��
=

��+� 1

¶
(18)³

=
�� �̄��+� 1

´
= 
�

³
=
�� �̄��+� 1

´
+��

³
=
�� �̄��+� 1

´
+ ��

µ
=

��
=

��+� 1

¶
,
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which gives the shifted model

��+1 = ���� +���� +���� (19)

�� = 
��� +���� + ����,

where

��+1 =
=
��+1 �̄��+� 1 (20)

�� =
=
�� �̄��+� 1

�� =
=
�� �̄��+� 1

�� =
=

��
=

��+� 1

�� =
=
�� �̄��+� 1

The shifting of model origin to the steady state values at time � 1 makes the
variables in the criterion converge exponentially to zero in steady state, thus ensuring
a finite value of the criterion.

4.1.1 Shifting variables

The model origin is shifted twice, once during the linearization and once after the
computation of steady state (target) values. The measured, estimated and calculated
variables must be shifted along with the model as follows

�̂� = b̄�� b̄�� 1 �̄��+� 1 (21)

�� 1 = �̄� 1 �̄� 1 �̄��+� 1 = �̄��+� 1

��+� = �̄�+� �̄� 1

=

��+� 1,  = 0� ���� � 1

���+� = �̄��+� �̄��+� 1,  = 0� ���� � 1

���+� = �̄��+� �̄��+� 1,  = 0� ���� � 1

4.2 Optimal input values

This section is based on the algorithm presented in (Muske & Rawlings 1993), al-
though several extensions are made, notably the inclusion of future reference and
disturbance trajectories.

The infinite horizon criterion is

min
U�

 � = min
U�

X
�=0

£
���+����+� + �̃��+�!�̃�+� + ���+�" ��+�

¤
, (22)

constrained by the model in eq. 19, i.e.

��+1+� = ���+� +���+� +���+�, � = 0� 1� 2� ��� (23)

��+� = 
��+� +���+� + ���+�, � = 0� 1� 2� ���,
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and the following inequality constraints

�̄min
�+� �̄�+� �̄max

�+� � � = 0� 1� ���� � 1 (24)

�̄min
�+� �̄�+� �̄max

�+� � � = �1� �1 + 1� ���� �2

�min
�+� ��+� �max

�+� � � = 0� 1� ���� � ,

and where

��+� = ��+� ���+� (25)

�̃�+� = ��+� ���+�

��+� = ��+� ��+� 1

U� =
£
��� � �

�
�+1� ���� �

�
�+� 1

¤�
.

The output constraints are active from sample �+�1 to �+�2. �1 should be chosen
so that feasibility is ensured from �+ �1, and �2 should be chosen such that feasibility
up to � + �2 implies feasibility on the infinite horizon. Bounds for �1 and �2, so that
feasibility is guaranteed, are developed in (Rawlings & Muske 1993).

Consider the Jordan decomposition of ��

�� = �� ��
1

� =
£
� �
� � �

�

¤ ·  �� 0
0  ��

¸ ·
�̃ �
�

�̃ �
�

¸
, (26)

where � �
� and  �� are respectively the eigenvectors and Jordan blocks for the eigen-

values corresponding to the unstable modes of ��, and � �
� and  �� are respectively the

eigenvectors and Jordan blocks for the eigenvalues corresponding to the stable modes
of ��. The following results can then be obtained.

Theorem 1 Consider the model given by eq. 19, the criterion of eq. 22, and the
definitions provided by eq. 25. Assume that

��+� = 0� � {��� + 1� ���} , which is equivalent to
=
��+� = �̄��+� 1� � {��� + 1� ���}

(27)

��+� = 0� � {��� + 1� ���} , which is equivalent to
=

��+� =
=

��+� 1� � {��� + 1� ���}

���+� = 0� � {��� + 1� ���} , which is equivalent to �̄��+� = �̄��+� 1� � {��� + 1� ���}

���+� = 0� � {��� + 1� ���} , which is equivalent to �̄��+� = �̄��+� 1� � {��� + 1� ���} ,

thus there are no changes in the inputs, measured disturbances, or steady state inputs
and outputs, from sample � and forward. If in addition we add the equality constraint
(ref. eq. 26)

�̃ �
� ��+� = 0, (28)

which corresponds to bringing the unstable modes to zero at time � + � , then the
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infinite horizon criterion can be written as the following finite horizon criterion

min
U�

 � = min
U�

µ
���+�

³
�̃ �
�

´�
�̄��̃

�
� ��+� + ���+�" ��+� (29)

+
� 1X
�=0

£
���+����+� + �̃��+�!�̃�+� + ���+�" ��+�

¤
,

with �̄� given by the discrete Lyapunov equation

�̄� = (� �
� )

�

�
� �
��

�
� + ( 

�
�)

�
�̄� 

�
� , (30)

Proof. See Appendix C.1.

Proposition 2 Consider the model given by eq. 19, the criterion of eq. 22, the
inequality constraints given by eq. 24, the equality constraint given in eq. 28, and the
definitions and assumptions provided by eqs. 25 and 27. This minimization problem
can be formulated as the following standard constrained QP (Quadratic Programming)
problem

min
U�

 � = min
U�

µ
1

2
U�
� #�U� + $�� U�

¶
, (31)

subject to

%���

·
U�

�̄�U�

¸
%��� (32)
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where
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and definitions of P ,H�

� � D�, H 
�, O�, etc. are provided in Appendix C.2. denotes

the Kronecker product.

Proof. See Appendices C.1-C.2.
A possible choice of QP solver is sqopt which solves problems in the form of eqs.

31—32. The sqopt algorithm for solving constrained linear and quadratic problems
(Gill, Murray & Saunders 1997), is available with a Matlab interface in the Tom-
lab environment (Holmström 2001). Other formulations, choice of QP solvers, and
variables are investigated more thoroughly in (Lie, Dueñas Díez & Hauge 2002).

5 Estimating the states and parameters

Using a state space model in an MPC application, as in the previous section, requires
estimation of the states unless all states are measured. A Kalman filter is used at PM6
for estimating the states in the paper machine model. The Kalman filter equations for
a linear time variant process are derived in Appendix D.1. The paper machine model
is nonlinear and thus an extended Kalman filter is used for estimating the states in
the model. An algorithm for estimating the states in a nonlinear model is reviewed
in Appendix D.2.

Due to disturbances and model errors, the MPC presented in previous sections
is likely to exhibit steady state o set from the setpoints. The most common way



226 Paper F: Application of a Nonlinear Mechanistic Model and an Infinite ...

to handle this problem is to assume a step disturbance at the model outputs and
estimate the size of the step in a deadbeat fashion (Qin & Badgwell 1997), (Muske
& Rawlings 1993). Other methods also exist, such as assuming the disturbance to
originate from the process inputs (Muske & Rawlings 1993). In (Muske & Badgwell
2002) various disturbance models which provide o set-free control are discussed, and
conditions for o set-free control are developed. In Appendix D.3 we have shown
how the MPC and Kalman filter can be redesigned to prevent steady state o set by
estimating the bias and adding this to the model outputs. Although this is the most
commonly used method for removing steady state o set, it is often a poor method for
solving the problem, notably if the disturbances enters the inputs or states (Muske
& Rawlings 1993), (Muske & Badgwell 2002). The main point is that o set-free
control can be obtained with many di erent disturbance models, however to obtain
best possible performance the disturbance should be included in the model where it
enters in the real process.

The question of where the disturbances enter in a real process is easy to answer:
everywhere. As pointed out in (Muske & Badgwell 2002), only a limited number of
biases or parameters can be estimated on-line, thus the choice of which parameters or
biases to estimate must be based on experience with the process and model. Three
biases have been selected for on-line estimation in the paper machine model. The first
two are biases on the estimated total- and filler thick stock consistencies (see eq. 3).
These disturbances are estimated using a ballistic estimator (Slora 2001), and thus
they are assumed to be good candidates for having time-varying biases. The third
bias estimated on-line is for the total wire tray concentration, i.e. a bias in one of the
outputs. In Appendix D.4 we have shown how arbitrary parameters and biases in the
model can be estimated on-line by an augmented Kalman filter. It is also shown how
the linearization, calculation of steady state values, and optimization may be carried
out on the augmented system.

5.1 Tuning and validation

In theory, and in the true Kalman filter, the noise characteristics of the process should
be found and used in the Kalman filter equations. However, these characteristics are
hard, if not impossible, to find. Thus, one often aims for a suboptimal Kalman
filter, where the noise characteristics are used as tuning parameters until satisfactory
Kalman filter performance is obtained. Specifically, the tuning parameters are the
process noise covariance matrix �� and the measurement noise covariance matrix !�.
In the augmented Kalman filter (as described in section D.4), the augmented process
noise covariance matrix �̃� is used. Often, it is assumed that only diagonal elements
are non-zero. Thus, for the paper machine model there are three diagonal elements in
!� (three outputs), and six diagonal elements in �̃� (three states plus three estimated
parameters). The first element (upper left corner) in !� corresponds to the variance
of the basis weight measurement, the second element (the element on the second row
and second column) in !� corresponds to the variance of the paper ash measurement,
etc. Similarly for the diagonal elements in �̃�, the first diagonal element corresponds
to the variance of the first state variable (the concentration of filler in the reject
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tank), and e.g. the last element on the diagonal corresponds to the variance of the
last parameter to be estimated (bias in the wire tray total concentration).

When tuning and validating the (suboptimal) Kalman filter, we have used a few
facts and rules of thumb, e.g.:

• The tuning and validation (with di erent data sets) should aim at good tracking
properties (i.e. the estimated outputs should follow the measured outputs to
some extent), good filtering properties (i.e. the estimated outputs should not
track measurement noise), and a sound balance between the updating of states
and updating of parameters (e.g. the parameters should not vary a lot while
the states are more or less resting).

• It can be shown that it is the ratio of the various variances that determines the
performance of the Kalman filter. Thus, one need not be careful about finding
realistic variance values.

• It is possible to estimate the variances, using a parameter estimation method.
This is done for a constant gain Kalman filter (i.e. the individual variances
are not estimated, but the Kalman filter gain matrix is estimated) in (Hauge
& Lie 2002). The drawback with this method is that the Kalman filter will be
rather aggressive, and some de-tuning procedure is needed (but it may give a
good starting point).

• Start the tuning by finding approximate values for the various variances. The
measurement variances can be approximately found by visually studying the
random variations in the measurements. It is harder to find suitable starting
values for the process noise variances and the parameter estimate variances.
However, the expected state and parameter values will give good indications of
reasonable starting values. Consider e.g. a concentration that is expected to
have a value around 0�05 (5%). If one assumes that the noise entering this state
is approximately 1% of the state value, we see that the variance will be a very
small number. In the Kalman filter used at PM6, the measurement variances
are much larger than the process and parameter variances (around 108 larger).

• In general, increasing the measurement variances leads to a slower updating of
state estimates. The same result is obtained by decreasing the process vari-
ance. Thus, decreasing the process variance leads to a slower updating of state
estimates.

• Since the parameters are augmented states, changing the parameter variances
has much of the same e ect as changing the state variances. Increasing the
parameter variances leads to a faster updating of parameter estimates, thus
also leading to a faster elimination of estimation error (the di erence between
estimated outputs and measured outputs).

Validation results for the augmented Kalman filter are shown in Figures 2-4 .
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Figure 2: Validation of Kalman filter performance. The measured basis weight is
shown in solid line and the estimated is shown in dashed line.



Paper F: Application of a Nonlinear Mechanistic Model and an Infinite ... 229

0 2 4 6 8 10 12 14
0.11

0.115

0.12

0.125

x 1

Estimated states

0 2 4 6 8 10 12 14
6

6.5

7

7.5
x 10

-3

x 2

0 2 4 6 8 10 12 14
3.2

3.4

3.6

3.8

4
x 10

-3

x 3

Time [hours]

Figure 3: The estimated states for the validation shown in Figure 2.

0 2 4 6 8 10 12 14
-2

0

2

4
x 10

-3 Estimated parameters

T
S

to
t.

bi
as

0 2 4 6 8 10 12 14
-0.04

-0.03

-0.02

-0.01

0

T
S

fil
le

r
bi

as

0 2 4 6 8 10 12 14
-0.2

-0.15

-0.1

-0.05

0

W
T

to
t.

bi
as

Time [hours]
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6 Results

6.1 Implementation and interface

The MPC was installed at PM6 in March 2002. During the first two months, the MPC,
the Kalman filter and the model were continuously tuned, retuned, and validated in
open and closed loop. Some structural changes were also made during these months.
From May 2002, the MPC has been in operation more or less continuously. The
process operators still have the original “pre-MPC era” control configuration available,
but the MPC has been the preferred choice from the beginning. Furthermore, the
operators have been very active in making suggestions for improvements and new
features in the system. Some of these suggestions are implemented, and others are
being considered for implementation.

In addition to discussing and involving the operators in the project from the
beginning, it is our opinion that the MPC interface has been very important for the
positive operator attitude. Figure 5 shows part of the MPC interface at PM6. The
upper row in the figure shows the basis weight, setpoint for basis weight, and the
flow of thick stock. The middle row shows the paper ash, setpoint for paper ash,
and the flow of filler added to the short circulation. The lower row shows the total
concentration in the wire tray, the corresponding setpoint, and the flow of retention
aid added to the short circulation. The interface and pairing of inputs and outputs
are based on the pre-MPC control configuration, basically because this is how the
operators and engineers at PM6 are used to see it. The vertical dashed line in the
middle of each row is the current time. When Figure 5 was captured, the paper
machine was in the middle of a grade change, and studying the figure carefully, one
may see the setpoints change at the current time. The setpoints for the new grade
were submitted to the MPC some time before the grade change, so at the time of
the grade change the outputs are actually half way to the new setpoints. In terms of
gaining operator acceptance for the MPC, this feature of previewing the action taken
by the controller has been very helpful. The operators can specify a grade change e.g.
half an hour into the future, and see how the MPC will achieve the change: how the
inputs will be manipulated to reach the new setpoints.

6.2 Reduction of variation

An important objective with the MPC was to reduce variation in consistencies, basis
weigh, paper ash, paper moisture, and more. Figure 6 shows and example with
the wire tray concentration and the paper ash. The bottom line indicates whether
the MPC is on (at 1) or o (at 0). When the controller is o , the original control
configuration is used. The MPC provides a distinct e ect of reduced variation in these
two outputs.

The main objective of the project “Stabilization of the wet end at PM6” was to
increase the total e ciency by 0�47%. This is an objective that is unmeasurable, due
to many factors a ecting the total e ciency. Thus, several sub-goals were defined
which were assumed easier to measure and validate. The sub-goals, and results,
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Figure 5: Part of the MPC interface at PM6.
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Figure 6: Wire tray concentration and paper ash, with (bottom line is 1) and without
(bottom line is 0) MPC. From top to bottom the following variables are shown: Mea-
sured and estimated paper ash (overlapping), wire tray total concentration, retention
aid, filler, and MPC on/o indication.
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concerning reduced variability are:

Variable Sub-goal (red. std. dev.) Result
Total cons. in the wire tray 60% OK
Filler cons. in the wire tray 50% OK
Total cons. in the headbox 50% OK
Filler cons. in the headbox 35% OK
Basis weight 20% No change achieved
Paper ash 20% OK
Paper moisture 20% OK

These sub-goals were defined in 1999 when the project was initiated. In 2001 a new
scanning device for measuring e.g. basis weight and paper ash was installed at PM6.
This significantly improved the control of the basis weight using the “old” controllers.
The results in the table above are calculated with the measurement devices as of 2002,
comparing the old control configuration with the MPC control configuration. Exact
numbers for the reduction in standard deviation are not given, as they vary from day
to day, and from operator to operator.

6.3 Other benefits of MPC

In addition to reducing the variation in key paper machine variables, several other
benefits are obtained using MPC. Some of these benefits arise from utilizing the devel-
oped model, not only for control purposes, but also as a replacement for measurements
when these are not available or not trustworthy.

Grade changes in automatic mode Previously, grade changes were carried out
manually or partly manually (the setpoints were changed a number of times before
they were equal to the new grade) by the operators. With a mechanistic model,
applicable over a wide range of operating conditions, the grade changes are carried
out using the MPC (see Figure 5). This has resulted in faster grade changes and
operator independent grade changes. During larger grade changes, the use of MPC
results in less o -spec paper being produced during the change. Using one mechanistic
model, the grade change is handled in a straight forward fashion, as there is no need
to switch between various local models.

Control during sheet breaks The basis weight and paper ash outputs can not
be measured during sheet breaks. Previously, during sheet breaks the flow of thick
stock and filler were frozen at the value they had immediately prior to the break.
Usually the sheet breaks last less than half an hour, and the output variables are
not far from target values when the paper is back on the reel. However, occasionally
the sheet breaks last longer periods and there may be e.g. velocity changes during
the break, leading to o -spec paper being produced for a period following the break.
Another frequently experienced problem are large measurement errors immediately
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Figure 7: Sheet break. From top to bottom the following variables are shown: Mea-
sured and estimated paper ash (overlapping), filler, retention aid, measured and esti-
mated wire tray total concentration (overlapping),and MPC on/o indication.

after a sheet break. With the MPC, the Kalman filter estimates the basis weight and
paper ash during sheet breaks, and these estimates are used in the MPC as if no break
had taken place. Thus, when the paper is back on the reel, the outputs are close to
their setpoints.

In Figure 7 a sheet break, followed by a large measurement error, is shown. The
two lines at the top are the measured and estimated paper ash (the lines are over-
lapping to some extent). During the sheet break the measured value is lost, and
thus frozen at the value immediately prior to the break. When the paper is back
on the reel, a large measurement error occurs giving a di erence between measured
and estimated value above 2%. The measured value converges to the estimated value
before the estimate is updated in the Kalman filter. The MPC use the estimated
values and is thus una ected by the erroneous measurement. Studying the inputs, it
is obvious that it is the measurement that is erroneous, and not the estimate. The
rise in measured paper ash from approximately 27% to 29% in less than 10 minutes
is too fast to be realistic by itself, and the fact that this happens during a period
when the dosage of retention aid is constant and the filler is decreasing is very hard
to explain.
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Control during start ups Previously, the controllers were not set to automatic
mode before the outputs were close to the setpoints, following a start up. With a
model based controller using a mechanistic model with a wide operating range, the
MPC is set to automatic mode early during start ups. This results in faster start ups,
and less o -spec paper being produced.

Control during periods with poor measurements Occasionally a special filler
is added to the stock, to increase the brightness of the paper. During these periods the
consistency measurements are not trustworthy as they are based on optical measure-
ment methods. This problem is solved within the MPC / Kalman filter framework
by neglecting the updates of the consistency estimate, relying on the estimate alone.
For each output, there is an option within the MPC to neglect the updating of states
based on this output. This is done based on experience with periods of poor mea-
surements, even when only standard filler is used. Figures 8—9 show an example of
a period of poor wire tray consistency measurement. There are large variations in
all outputs in the first half of the period shown in the figures. When the MPC was
switched on, the updating of states from the wire tray consistency measurement was
switched o . The e ect is pronounced, as the paper ash, basis weight, moisture, and
also all inputs vary considerably less in this latter half. Note that the measurement
of wire tray consistency is the only variable that varies equally much in the first and
second halves.

Filtering of measurements The Kalman filter estimates are used in the MPC
instead of the measurements. This leads to smoother controller action, and eliminates
the need for additional filtering.

Updating of model parameters The model is augmented so that some key pa-
rameters/biases are updated automatically. This reduces the need for model mainte-
nance o -line. However, should there be larger changes in the process, such as if the
white water tank is removed, or a new retention aid is used, then it will probably be
necessary to re-tune the model and controller.

7 Conclusions

A mechanistic nonlinear model of the wet end of PM6 at Norske Skog Saugbrugs
has been developed and used in an MPC application. The MPC uses an infinite
horizon criterion, successive linearization of the model, and estimation of states and
parameters by an augmented Kalman filter.

Variation in important quality variables and consistencies in the wet end have been
reduced substantially, compared to the variation prior to the MPC implementation.
The MPC also provides better e ciency through faster grade changes, control during
sheet breaks and start ups, and better control during periods of poor measurements.
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Figure 8: Period of poor wire tray consistency measurement. During the second half,
the controller relies on the estimated consistency, rather than the measured. From
top to bottom the following variables are shown: Measured and estimated paper ash
(overlapping), measured and estimated wire tray total concentration (overlapping),
filler, retention aid, and MPC on/o indication.
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Figure 9: Period of poor wire tray consistency measurement. During the second half,
the controller relies on the estimated consistency, rather than the measured. From top
to bottom the following variables are shown: Measured and estimated basis weight
(overlapping), flow of thick stock, setpoint for steam pressure, paper moisture, and
MPC on/o indication.
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A Notes about notation

Variables in original units, i.e. unscaled and unshifted, are denoted by a bar above
the variable, e.g. �̄ and �̄. Variables in the linearized model, i.e. variables that have
origin corresponding to the center of linearization are denoted by a double bar above
the variable, e.g.

=
� and

=
�. Finally, variables shifted first by linearization and then by

the steady state values at time � +� 1 are shown as e.g. � and �.

B Example: Finding the steady state values with
lssol

The solution to eqs. 15-17 can be found by using standard optimization software. The
lssol algorithm (Gill et al. 1986) for solving constrained linear least squares problems,
is available with a Matlab interface in the Tomlab environment (Holmström 2001).
The algorithm solves the following problems (amongst others)

min
!

�+�

 ��+� = min
!


1

2
(%��+� ��

�+�(
�
�+�)

� (%��+� ��
�+�(

�
�+�), (34)

with constraints

%���+�

·
(��+�

�̄�(
�
�+�

¸
%���+�, (35)

where � = 0� ����� 1 so that the optimization must in principle be carried out at
each sample in the future horizon. In practice one would only calculate the steady
state values once for every change in the future reference values, measured disturbance
values, or max/min values.

The matrix ��
�+� is then found in eq. 16 as

��
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, (36)

while %��+� is
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. (37)
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The constraints on �̄��+� is

�̄min
�+� �̄� 1 �̄��+� �̄max
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and the constraints on �̄��+� can be formulated as

�̄min
�+� �̄� 1 �̄��+� �̄max

�+� �̄� 1, � = 0� ���� � 1

�̄min
�+� �̄� 1 
��̄

�
�+� +���̄

�
�+� �̄max

�+� �̄� 1, � = 0� ���� � 1

�̄min
�+� �̄� 1 ��

=

��+�
£

� ��

¤ · �̄��+�
�̄��+�

¸
�̄max
�+� �̄� 1 ��

=

��+� (39)

, � = 0� ���� � 1.

The constraints can then be written, as in eq. 35, as
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C Proofs for finite horizon criterion

C.1 Reduction to finite horizon criterion

We split the infinite horizon criterion in two sums

min
U�

 � = min
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¤
,

where the sum from zero to � 1 can be easily calculated, while the infinite sum
from � to infinity must be studied carefully. We take a closer look at each of the
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three terms in that part of the criterion where the sum is infinite. First we study the
�̃ term: X

�=�
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X
�=�

¡
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¢�
!
¡
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¢
= 0 (42)

which is a direct consequence of the definition of �̃�+� in eq. 25, and the assumptions
in eq. 27. We then study the � term:

X
�=�

���+�" ��+� = ���+�" ��+� , (43)

because of assumptions made in eq. 27. Finally we study the � term:

X
�=�

���+����+� =
X
�=�

��+�

0z}|{
���+�

�

� ��+�

0z}|{
���+�

=
X
�=�


���+� +��

0z}|{
��+� + ��

0z}|{
��+�

�

� 
���+� +��

0z}|{
��+� + ��

0z}|{
��+�

=
X
�=�

���+�

�
� �
���+�, (44)

where we have used eqs. 23, 25 and 27. Eq. 44 needs to be studied further, but first
we will establish some facts needed. Consider a decomposition of the �� matrix into
its Jordan form
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where � �
� and  �� are respectively the eigenvectors and Jordan blocks for the eigen-

values corresponding to the unstable modes of ��, and � �
� and  �� are respectively the

eigenvectors and Jordan blocks for the eigenvalues corresponding to the stable modes
of ���Consider ��+�, � = �� ���
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which gives
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Inserting eq. 45 into 46 gives
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At this point we introduce a new constraint, i.e. we force the unstable modes to
zero at time � +�
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and this gives then
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where �̄� is given by the discrete Lyapunov equation
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From eq. 41, 42, 43, and 49, we have the criterion
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with �̄� given by eq. 50, �̃ �
� found from the Jordan decomposition of �� (see eq. 45),

and with the additional equality constraint given by eq. 48.

C.2 Formulation as standard QP problem

Define
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Using the model in eq. 19 to predict future state and output values, we have the
following results
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and
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= 
��
�
��� +

�X
�=1


��
� �
� ����+� 1 +

�X
�=1


��
� �
� ����+� 1 +����+� + ����+�.

We then derive equations for Y� and U� in terms of U�, D�, �� and �� 1

Y� = O��� +H
�
�U� +H

 
�D� (55)

U� = PU� + L�� 1,

where
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�


���


��
2
�

...

��

� 1
�

(56)
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...
...

. . .
...
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� 3
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� 2
� �� 
��
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� �� · · · 
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��

� 4
� �� · · · �� 0


��
� 2
� �� 
��

� 3
� �� · · · 
��� ��

P =

� 0 · · · 0
� � · · · 0
...

. . .
. . .

...
0 · · · � �

0 · · · 0 �

L =

�

0
...
0
0

Each term in the criterion in eq. 51, and in the constraints in eqs. 24 and 48 is
now written in terms of the unknown variable U�, and the known variables U�

� , Y
�
� ,

D�, Umin
� , Umax

� , Ymin
� , Ymax

� , Umin
� , Umax

� , �� and �� 1.
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C.2.1 The criterion

We start with the first term in the criterion in eq. 51, using the result in eq. 53
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where


�
� =

£
�� ���� · · · �� 1

� ��

¤
(58)


 
� =

£
�� ���� · · · �� 1

� ��

¤
&� = �rot90� ��

&  = �rot90� �

and �rot90� is an � × � identity matrix rotated 90 degrees, �� and � are identity
matrices of size ) and 	 respectively, and is the Kronecker product.

We then study the two � terms in the criterion (eq. 51), using the result obtained
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in eq. 55

�X
�=0

���+�" ��+� (59)
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� (��+1 ") U�
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Next, the control error term is studied, using the definitions in eqs. 25 and 52,
and the results from eq. 55
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The last term in the criterion to be studied, using the definitions in eqs. 25 and

52, is

� 1X
�=0

�̃��+�!�̃�+� (61)
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C.2.2 The constraints

First we define the following

Umin
� =

�̄min
�
...

�̄min
�+� 1

, Umax
� =

�̄max
�
...

�̄max
�+� 1

(62)

Ymin
� =

...

�̄min
�+�1
...

�̄min
�+�2

...

, Ymax
� =

...

�̄max
�+�1
...

�̄max
�+�2

...

Umin
� =

�̄min
�
...

�̄min
�+�

, Umax
� =

�̄max
�
...

�̄max
�+�

The constraints are given in eqs. 24 and 48. These are now written in terms of the
unknown variable U�, and the known variables U�

� , Y
�
� , D�, Umin

� , Umax
� , Ymin

� , Ymax
� ,

Umin
� , Umax

� , �� and �� 1. The constraints on the inputs are reformulated using
eqs. 8, 20, 52, and 62

�̄min
�+� �̄�+� �̄max

�+� � � = 0� 1� ���� � 1

�̄min
�+� ��+� + �̄� 1 + �̄��+� 1 �̄max

�+� � � = 0� 1� ���� � 1

Umin
� U� + �̄� 1 1� + �̄��+� 1 1� Umax

�

Umin
� �̄� 1 1� �̄��+� 1 1� U� Umax

� �̄� 1 1� �̄��+� 1 1� ,
(63)
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where 1� is an � dimensional vector with 1 in all elements. Next the constraints on
the outputs are reformulated using eqs. 11, 20, 52, 55, and 62

�̄min
�+� �̄�+� �̄max

�+� � � = �1� �1 + 1� ���� �2

�̄min
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� �̄� 1 1� �̄��+� 1 1�
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�D� (64)
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�U�
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� �̄� 1 1� �̄��+� 1 1� O��� H 

�D�

The constraints on the input moves are reformulated using eqs. 25, 52, 55, and 62
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� U� Umax
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Finally, we reformulate the constraint in eq. 48, using eqs. 57, and 58
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C.2.3 Summary of standard QP problem

From eqs. 51, 57, 59, 60, and 61, we can write the criterion as

min
U�

 � = min
U�

µ
1

2
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� #�U� + $�� U� + *

¶
, (67)

and using eqs. 24, 48, 63, 64, 65 and 66, we can write the constraints as
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The criterion and constraints given by eqs. 67 and 68 are in the form used by

e.g. the sqopt algorithm3 (Gill et al. 1997). The sqopt algorithm is available with a
Matlab interface in the Tomlab environment (Holmström 2001).

3The constant term � in the criterion is not part of the sqopt algorithm (or any QP solver), and
can be omitted without a ecting the result of the optimization.
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D State and parameter estimation

In this appendix we do not follow the notation used in other parts of this paper.
For example �̄ is here the a-priori state estimate, and not a state variable in original
“global” units.

D.1 Kalman filter equations for linear time variant processes

In this section we derive the Kalman filter equations for a linear time variant system
with colored process noise. The derivations are in particular based on (Ergon 2001)
and to some extent on (Gelb 1974). We assume that the process is described by

��+1 = ���� +���� +���� ++�,� (70)

�� = 
��� +���� + ���� + ��

where �� R
 is the state vector, �� R� is the (manipulated) input vector, �� R�

is the measured disturbance vector, �� R� is the output vector, and � is the discrete
time variable. ,� and �� are zero mean uncorrelated white noise

� [,�] = 0, � [��] = 0, (71)
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= 0, � 6= �
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,�,
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�

¤
= ��, �

£
���

�
�

¤
= !�,

where � [·] is the expectation operator, and �� R
×
 and !� R�×� are covari-
ance matrices. In Figure 10 the Kalman filter structure is shown.

From Figure 10 we find the following equations for the Kalman filter

�̄�+1 = ���̂� +���� +���� (72)

�̂� = �̄� +-� · .� = �̄� +-� (�� �̄�)

�̄� = 
��̄� +���� + ����.

Define the covariance matrices

/� = �
h
(�� �̂�) (�� �̂�)

�
i
and &� = �

h
(�� �̄�) (�� �̄�)

�
i
, (73)

where

�̂� = �̄� +-� (�� �̄�)

= �̄� +-� (
��� +���� + ���� + �� 
��̄� ���� ����)

= �̄� +-�
��� +-��� -�
��̄�

= (� -�
�)�̄� +-�
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Figure 10: Structure of Kalman filter for linear time variant process with colored
noise.
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Then
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and where �
£
(�� �̄�)�

�
�

¤
= 0 is a reasonable assumption since

�� �̄� = �� 1�� 1 ++� 1,� 1 �� 1�̄� 1 -� 1(�� 1 �̄� 1)

= �� 1�� 1 ++� 1,� 1 �� 1�̄� 1 -� 1(
� 1�� 1 + �� 1 
� 1�̄� 1)

= (�� 1 -� 1
� 1)(�� 1 �̄� 1) ++� 1,� 1 -� 1�� 1,

where we see that the state estimation error �� �̄� only depends on past noise
sequences.

We now seek to find the gain matrix-� which minimizes the covariance /�, noting
that min (/�) implies min (trace(/�)) and that for a symmetric matrix � we have the
following rule

�

��
trace(���� ) = 2��.

Then the optimal gain matrix, or the Kalman filter gain matrix, is
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¢ 1
. (75)

Using the Kalman filter on-line we must find &�+1
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� ++���+
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� . (77)
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We see from this last equation that the -� that minimized /� also minimizes
&�+1.

D.2 Extended Kalman filter for nonlinear processes

Assume the process is nonlinear

��+1 = �(��� ��� ��) ++�,� (78)

�� = 	(��� ��� ��) + ��,

with noise characteristics as given by Equation 71. Then the extended Kalman filter
algorithm can be written as (Ergon 2001)

1. At time �, given ��, ��, �̄� ,&�, �� =
��
���
|� and 
� =

�
���
|�.

2. Compute the Kalman filter gain matrix as given by Equation 75

-� = &�

�
�

¡
!� +
�&�


�
�

¢ 1
.

3. Compute updated state estimate

�̂� = �̄� +-� (�� 	(�̄�� ��� ��)) .

4. Compute updated covariance matrix for state error, as given by Equation 74

/� = (� -�
�)&�(� -�
�)
� +-�!�-

�
� .

5. Compute state estimate at time � + 1

�̄�+1 = �(�̂�� ��� ��).

6. Compute covariance matrix for state error, as given by Equation 77

&�+1 = ��/��
�
� ++���+

�
� .

7. Set � � + 1 and go to step 2.

Note that when there is a direct input to output term in the model, and the
model is used in a control loop, we must know the input �� before we can estimate
�̂� or �̄�+1. This means that the controller must rely on the estimate �̄�|� 1 when
computing the inputs ��.
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D.3 O set free control by bias estimation

We will in this section show how the MPC and Kalman filter developed in previous
sections and appendices can be redesigned to prevent steady state o set by estimating
the bias and adding this to the model outputs.

Assume the following augmented process model·
�nonlin�+1

0nonlin�+1

¸
=

·
�(�nonlin� � �nonlin� � �nonlin� )

0nonlin�

¸
(79)

�nonlin� = 	(�nonlin� � �nonlin� � �nonlin� ) + 0nonlin� ,

where the bias 0nonlin� is added to the process outputs. We will now review some of
the stages in the algorithm described in Section 2.

D.3.1 Linearization

The linearization can be carried out on the augmented system, the same way as was
done for the original model in Section 3. However, by studying the structure of the
augmented system we may carry out the linearization in a more e cient way·

�lin�+1
0lin�+1

¸
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·
��
� 0
0 �

¸·
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¸
+

·
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0
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0

¸
�lin� (80)
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¸
+���

lin
� + ���

lin
� .

The linearization can thus be carried out on the original non-augmented system, and
augmentation of the � and 
 matrices can be done after the linearization.

D.3.2 Steady state values, shifting the model and variables

Assuming the steady state value of 0 to be known and equal to 0lin� we may calculate
the steady state values as follows

min
�̄
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��̄

�+�

¡
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¢�
��

¡
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¢
, � = 0� ���� � 1, (81)

constrained by the steady state solution to the model·
(� ��

�) ��
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¸
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and
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lin
�+�, � = 0� ���� � 1, (84)
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When shifting the augmented model to the steady state values at time � 1, all
bias terms are set to zero since we assume the bias is constant into the future. Thus,
there is no point in using the augmented model in the MPC.

D.3.3 Optimization

The optimization is carried out the same way as was done in Section 4, due to the fact
that the augmented model reduces to the original model when assuming a constant
bias term, and shifting it to the steady state values at time � 1.

D.3.4 Estimating the states

The process model is given by the augmented model of Equation 79, and we assume
the real process is given by

�̃nonlin�+1 = �̃(�nonlin� � �nonlin� � �nonlin� � 0nonlin� ) + +̃�,̃� (85)

�nonlin� = 	(�nonlin� � �nonlin� � �nonlin� ) + 0nonlin� + ��,

where

�̃nonlin�+1 =

·
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0nonlin�+1

¸
(86)
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0nonlin�

¸
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,̃� =

·
,�
�

,
#
�

¸
, (88)

and where the noise characteristics are as given by Equation 71 (with tilde above
appropriate elements).

We study the covariance matrices

/̃� = �

·³
�̃nonlin�

ê�nonlin´³�̃nonlin�
ê�nonlin´�¸ (89)

&̃� = �

·³
�̃nonlin�

ē�nonlin´³�̃nonlin�
ē�nonlin´�¸ , (90)

where

�̃nonlin� =

·
�nonlin�

0nonlin�

¸
(91)

ê�nonlin = · �̂nonlin�

0̂nonlin�

¸
ē�nonlin = · �̄nonlin�

0̄nonlin�

¸
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For a linearized model we then haveê�lin = ē�lin + -̃�
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Then
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and finally
&̃�+1 = �̃�/̃��̃

�
� + +̃��̃�+̃

�
� , (96)

where
�̃� = �

£
,̃�,̃

�
�

¤
. (97)

Then the augmented Kalman filter algorithm can be written as

1. At time �, given �nonlin� , �nonlin� ,ē�nonlin� , 
�, �� and &̃�. Augment model ma-
trices

�̃� =

·
�� 0
0 �

¸
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� �

¤
2. Compute the Kalman filter gain matrix
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3. Compute updated state estimate

ê�nonlin = ē�nonlin + -̃�

¡
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¢
4. Compute updated covariance matrix for state error
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5. Compute state estimate at time � + 1

ē�nonlin�+1 =
ê
�(�̂nonlin� � �nonlin� � �nonlin� � 0̂nonlin� ) =

·
�(�̂nonlin� � �nonlin� � �nonlin� )

0̂nonlin�

¸
.

6. Compute covariance matrix for state error

&̃�+1 = �̃�/̃��̃
�
� + +̃��̃�+̃

�
� .

7. Set � � + 1 and go to step 2.

D.4 Online parameter estimation by augmented Kalman filter

An alternative to bias estimation to obtain o set free control may be to estimate pa-
rameters and biases in the model on-line. The estimation can be done by augmenting
the state vector by parameters and biases that we wish to estimate. The procedure
is similar, but not equal, to the procedure in the previous section where only the
(output) bias was estimated. We will in this section show how the MPC and Kalman
filter developed in previous sections can be redesigned to prevent steady state o set
by estimating parameters and/or biases in the model.

Assume the following augmented process model·
�nonlin�+1

�nonlin�+1

¸
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·
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�nonlin�

¸
(98)

�nonlin� = 	(�nonlin� � �nonlin� � �nonlin� � �nonlin� ),

We will now review some of the stages in the algorithm described in Section 2.

D.4.1 Linearization

The linearization can be carried out on the augmented system, the same way as was
done for the original model in Section 3. However, by studying the structure of the
augmented system we may carry out the linearization in a more e cient way·
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� .

D.4.2 Steady state values, shifting the model and variables

Assuming the steady state value of � to be known and equal to �lin� we may calculate
the steady state values as follows

min
�̄

�+�

��̄

�+�

¡
�̄��+� �lin�+�

¢�
��

¡
�̄��+� �lin�+�

¢
, � = 0� ���� � 1, (100)
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constrained by the steady state solution to the model·
(� ��
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(101)
and
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�̄min
�+� �̄��+� + �nonlin� 1 �̄max

�+� , � = 0� ����� 1,

and

�̄��+� = 
�
� �̄

�
�+� +
$

��
lin
�+� +���̄

�
�+� + ���

lin
�+�, � = 0� ���� � 1, (103)

When shifting the augmented model to the steady state values at time � 1, all
augmented states are set to zero since we assume the parameter values are constant
into the future. Thus, there is no point in using the augmented model in the MPC.

D.4.3 Optimization

The optimization is carried out the same way as was done in Section 4, due to the
fact that the augmented model reduces to the original model when assuming constant
parameters and biases into the future, and when the model is shifted to the steady
state values at time � 1.

D.4.4 Estimating the states

The process model is given by the augmented model of Equation 98, and we assume
the real process is given by

�̃nonlin�+1 = �̃(�nonlin� � �nonlin� � �nonlin� � �nonlin� ) + +̃�,̃� (104)
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and where the noise characteristics are as given by Equation 71 (with tilde above
appropriate elements).
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We study the covariance matrices
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´ ē�lin -̃�
̃��̃
lin
� -̃���

´
(·)�

i
(111)

= �
h³³

� -̃�
̃�

´³
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Then the augmented Kalman filter algorithm can be written as
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1. At time �, given �nonlin� , �nonlin� , ē�nonlin� , 
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3. Compute updated state estimate

ê�nonlin = ē�nonlin + -̃�

¡
�nonlin� 	(�̄nonlin� � �nonlin� � �nonlin� � �̄nonlin� )

¢

4. Compute updated covariance matrix for state error

/̃� =
³
� -̃�
̃�

´
&̃�

³
� -̃�
̃�

´�
+ -̃�!

�
� -̃

�
� .
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6. Compute covariance matrix for state error
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7. Set � � + 1 and go to step 2.
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Abstract

A mechanistic nonlinear model of the wet end of paper machine 6 (PM6)
at Norske Skog Saugbrugs, Norway has been developed, and used in an MPC
application. In this paper we study if the model can be applied to other paper
machines (roll-out), and we discuss advantages and disadvantages of di erent
modeling approaches. The paper machines studied are PM4 at Norske Skog
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Saugbrugs, and PM3 at Norske Skog Skogn, Norway. PM6 is a new and modern
paper machine producing SC (Super Calendered) magazine paper. PM4 also
produces SC paper but the machine is older and smaller than PM6. PM3 pro-
duces newsprint and has a size comparable with PM6. Fitting and validation
of the model to PM4 and PM3 are very promising. No structural changes to
the model were introduced, and still the validation results were good. The time
spent on fitting and validating the PM6 model to PM4 and PM3 are approxi-
mately 1% of the time spent on developing the original model. This should be
a strong incentive for focusing on mechanistic modeling in industries were there
are many similar production lines or units.

1 Introduction

Many large- and medium sized industry companies have a number of more or less
similar process-units for processing of raw materials or production of finished prod-
ucts. An industrial company which has invested, or is about to invest, in advanced
model based control in one of their units / factories, would benefit economically if
the model and controller could be e ciently rolled-out at similar units. The main
idea of this paper is to investigate how a model and controller developed for a specific
industrial process can be applied to similar processes. A mechanistic model of paper
machine 6 (PM6) at Norske Skog Saugbrugs, Norway, has been developed in (Hauge
& Lie 2002), and used in a model predictive control (MPC) implementation (Hauge,
Slora & Lie 2002). In this paper we investigate if and how the model can be reused
at PM4, Norske Skog Saugbrugs, and PM3, Norske Skog Skogn, Norway.

The papermaking process is the only process studied in this paper, however the
field of roll-out should be of interest also to other industries. For example Borealis
(www.borealisgroup.com) has many polymer reactors for producing plastics raw ma-
terials, Norsk Hydro (www.hydro.com) has many plants for fertilizer production, and
Icopal (www.icopal.com) has many production lines for extrusion of plastic pipes.

The control method chosen for PM6 is model predictive control (MPC). The reason
for choosing MPC is that it is perhaps the only advanced model based control scheme
used to any extent in the industry, there are commercially available software systems
for implementation, and the reported payback time is low (e.g. 3 months in (Bassett
& Van Wijck 1999)).

A model of the process is the foundation for every advanced control algorithm.
Given a good model of a process, there are probably a number of algorithms that
will provide excellent control of the process, and given a poor model of a process,
there are probably no algorithms that will provide good control of the process. Also,
given a good advanced control algorithm, there are often no models available for the
specific process or process unit of concern. Thus, today the key factor for success in
advanced control is the development of a reliable and good process model, or as the
following closing sentence in a paper put it:

Nowadays control is easy, modelling will always be the nut to crack...
(Richalet, Estival & Fiani 1995, page 942).
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It should be emphasized that even if a perfect model is available, several limitations
to control performance may occur. These limitations may arise from e.g. input
constraints, and right half plane (RHP) zeros (Skogestad & Postlethwaite 1996). In
practice, the model is not perfect, and additional limitations due to model uncertainty
are always present.

There exists very little published material focusing on how to e ciently roll-out
models and controllers in the industry. However, the idea of e cient roll-out of
models is not entirely new, e.g. (Glemmestad, Ertler & Hillestad 2002) emphasize
the advantage of reusing the models developed at Borealis, and many commercial
simulators include model libraries of process units intended for reuse.

This paper is organized as follows. In Section 2, various approaches to modeling,
with advantages and disadvantages, are discussed. Section 3 summarizes the work on
modeling and model predictive control (MPC) carried out at paper machine 6 (PM6),
Norske Skog Saugbrugs. Roll-out of the model on PM4, Norske Skog Saugbrugs, is
described in Section 4, and similarly for PM3, Norske Skog Skogn, in Section 5.
Finally, some conclusions are given in Section 6.

2 Modeling approaches

Two basic modeling approaches are mechanistic modeling and empiric modeling.
An empiric model is entirely based on experimental data and an appropriate model
structure, and often requires little knowledge of the system to be modeled. In the
literature one often encounter terms like black box modeling, system identification,
time series analysis, and behavioral modeling. All these terms basically mean the same
as empiric modeling. Introductory and advanced text books on empiric modeling
are e.g. (Nelles 2001), (Ljung 1999), (Walter & Pronzato 1997), (Söderström &
Stoica 1989), and (Box, Jenkins & Reinsel 1994). A mechanistic model is a model built
from basic principles of physics, chemistry, biology, etc., by writing down conservation
or balance equations. Obviously this requires extensive knowledge of the process to
be modeled. In the literature one sometimes encounters terms like white-, and grey
box modeling, see e.g. (Sohlberg 1998). White box models are mechanistic models
based on complete knowledge of the process, i.e. where both equations governing the
behavior and the associated parameters are known a priori. Obviously, such models
are rarely found. A grey box model is a mechanistic model where the equations
governing the behavior are assumed known, but parameter values need to be estimated
using experimental or historical data. Throughout this paper we include grey box
models whenever we speak of mechanistic models.

Table 1 summarizes some general properties of mechanistic and empiric models,
although exceptions can easily be found.

The perhaps strongest argument for using an empiric model is that the time for
building such a model is much lower than for a mechanistic model. In (Foss, Lohmann
& Marquardt 1998) it is indicated that the development cost for an empiric model
is about 1�10 compared to a mechanistic model. Another positive feature of empiric
models is that they often have a simple structure (linear and time invariant) which
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Table 1: Mechanistic versus empiric models. Partly reproduced from Støle-Hansen
1998, and Walter & Pronzato 1997.
Properties Mechanistic Empiric
Utilize physical knowledge and insight yes no
The parameters have known range yes no
Number of unknown parameters low high
Time needed to develop a model high low
Resources needed to maintain a model low high
Easy to use for complex/unknown processes no yes
Amount of data needed low high
Applicability to control and training yes yes
Applicability to design yes no
Extrapolation properties good* bad
Increases process knowledge yes no
Complex yes (non-linear) no (often linear)
Simulation long/di cult quick/easy
Possible roll-out of model yes no
*if structure is correct.

leads to quick and easy simulation, analysis, and design of control algorithms. If
one has access to experimental data, and the operating region of the process is only
moderately nonlinear, then it seems reasonable to first try an empiric model.

The strength of a mechanistic model lies in its ability to capture known nonlinear
phenomena and thereby having extraordinary extrapolating properties, and the pos-
sible reuse of the model on similar processes. This and other features are emphasized
in the following quotation:

..., a model based on first principles can operate in a larger domain
than a black-box model. A model based on first principles will in general
contain fewer parameters and will therefore be more parsimonious. From
the parsimony principle we know that the best model is the simplest model
that adequately describes the process, since overparameterization will in
general lead to poor generalization. A consequence of fewer parameters, a
model based on first principles will need fewer experiments to be identified.
On the other hand, a black-box structure is easier to develop. ... To
identify our model (a mechanistic model — authors note) we have only
used history data from the plant. (Hillestad & Andersen 1994, page 42
and 45)

Consider the paper machine model implemented at PM6. This model has 19
parameters, including two biases and three initial ODE values, which are tuned to fit
the model to data. The model has three inputs, three outputs, three states, and four
measured disturbances. A linear (empiric) state space model of the same dimension
would consist of 63 parameters, including the direct input to output matrix and three
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initial ODE values. An empiric transfer matrix model would consist of minimum
42 parameters, corresponding to pure first order elements. That is one parameter for
the time constant, and one for the gain, in each element. If a step response model
or impulse response model is used, the number of parameters would increase even
more. In addition, the empiric models mentioned here have a limited operating range
and must either be adaptive or a set of models is needed. In (Kosonen, Fu, Nuyan,
Kuusisto & Huhtelin 2002), an approach where a set of adaptive empiric models are
used to cover the operating region of the paper machine, is described.

A point made by (Ogunnaike & Wright 1997, page 49), is that mechanistic model-
ing results in a small number of parameters that can intuitively be understood, thus
reducing long term support cost. Industrial processes do not remain static and it is
likely that the model, whether empiric or mechanistic, will degrade with time. An-
other point, which is often neglected in the literature, is that the un-manipulatable
nature of most measured disturbances makes it hard to model their e ect on the
model outputs empirically. Submodels from measured disturbances to model outputs
can in some cases be identified from experimental data, however in most cases the
data will not be informative enough and physical knowledge and insight must be used.

3 Modeling and MPC at PM6, Norske Skog Saug-
brugs

Norske Skog Saugbrugs in Halden, Norway, is one of the largest manufacturers of un-
coated super calendered magazine paper in the world. The total production capacity
of the mill is 550� 000 ton per year. The largest paper machine (PM) at the Saugbrugs
mill is PM6, accounting for more than half the total production capacity. PM6 was
build in the early 1990’s and produce paper with width of 8�62 meters, and with a
typical velocity of 1550 meters per minute.

Magazine paper is characterized by its glossy appearance due to a high content of
filler in the paper. The finished magazine paper typically consists of 65% fiber, 30%
filler, and 5% water. The main di erence between magazine paper and e.g. newsprint
is the content of filler. For newsprint the amount of filler is typically between 0-10%.
Due to the high filler content in magazine paper, the couplings between important
input and output variables are rather dominant.

3.1 Process description

A simplified drawing of PM6 is shown in Figure 1. Cellulose, TMP (thermomechani-
cal pulp) and broke (repulped fibers and filler from sheet breaks and edge trimmings)
are blended in the mixing chest. The stock is fed to the machine chest with a con-
trolled total consistency1. Between the mixing and machine chests, filler is added at a

1The total consistency is the weight of solids (i.e. filler particles and fiber) divided by the total
weight of solids and water.
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constant rate. The fillers used in paper production depends on the end-user require-
ments, however some of the typical fillers are kaolin, chalk, talc, and titanium dioxide
(Bown 1996). About two thirds of the filler particles used at PM6 is added to the
thick stock, the rest at the outlet of the white water tank. The flow to the machine
chest is large in order to keep the level of the machine chest constant, and an overflow
is returned to the mixing chest. The total consistency in the mixing and machine
chests are typically around 3 to 4%, which is considerably higher than consistencies
later on in the process, and thus the stock from the machine chest is denoted the
“thick stock”.

The thick stock enters the “short circulation” in the white water tank. Here, the
thick stock is diluted to 1-1.5% total consistency by white water2 and a recirculation
flow from the deculator. Filler is added to the stock just after the white water tank.
The first cleaning process is a five stage hydrocyclone arrangement, mainly intended to
separate heavy particles (e.g. sand and stones) from the flow. The accept from the first
stage of the hydrocyclones goes to the deculator where air is separated from the stock.
The second cleaning process is two parallel screens, which separates larger particles
(e.g. bark) from the stock. Retention aid is added to the stock at the outlet of the
screens. The retention aid is a cationic polymer which, amongst others, adsorb onto
anionic fibers and filler particles and cause them to flocculate. The flocculation process
is a key for retaining small filler particles (and small fiber fragments) on the wire,
although the significance of mechanical entrapment of non-flocculated filler and fines
seems to be somewhat controversial in the literature. For example (Van de Ven 1984)
found (theoretically) that mechanical entrapment was low, while (Bown 1996) reports
that mechanical entrapment can be a dominant mechanism. In the headbox the pulp
is distributed evenly onto the fine mesh, woven wire cloth. Most of the water in the
pulp is recirculated to the white water tank, while a share of fiber material and filler
particles form a network on the wire which will soon become the paper sheet. The
pulp flow from the white water tank, through the hydrocyclones, deculator, screens,
headbox, onto the wire and back to the white water tank is denoted the “short
circulation”.

In the wire section, most of the water is removed by draining. In the press section,
the paper sheet is pressed between rotating steel rolls, thus making use of mechanical
forces for water removal. Finally, in the dryer section the paper sheet passes over
rotating and heated cast iron cylinders, and most of the water left in the sheet is
removed by evaporation. The paper is then accumulated on the reel before it is
moved on to further processing.

3.2 The process model

The process model is described in detail in e.g. (Hauge & Lie 2002) and only a brief
description will be given here. Note that some modifications have been carried out to
the model detailed in (Hauge & Lie 2002), as compared to the model implemented at
PM6. The most prominent modification is that a first order empiric model that was

2White water is the drainage from the wire. It is stored in the white water tank.
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Figure 1: Simplified drawing of PM6, Norske Skog Saugbrugs.
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added to capture neglected and unknown dynamics in the process, has been removed.
The model was originally developed with several ordinary and partial di erential

equations. The model was then simplified, and eventually fitted to experimental and
operational mill data. The “final” model consists of a third order nonlinear mech-
anistic model based on physical and chemical laws. The structure of the developed
process model is

·
�̄ = �̄(�̄� �̄� �̄� �̄) (1)

	̄ = 
̄(�̄� �̄� �̄� �̄),

with �̄ R� = R3, 	̄ R� = R3, �̄ R� = R3 and �̄ R� = R4. The bar above
the variable names indicate that these are the variables in their original units and
coordinate system. �̄ consists of several model parameters, tuned to fit the model
outputs to experimental and operational data.

The manipulated inputs �̄, the outputs 	̄, the states �̄, and the measured distur-
bances �̄ are

�̄� = [�̄�� � �̄� � �̄�	] (2)

	̄� = [	̄
� � 	̄�	� 	̄� ]

�̄� =
£
�̄������ �̄������� �̄�����

¤
�̄� =

£
�̄TS,tot � �̄TS,fil� �̄� �̄

¤
,

where the inputs are the amount of thick stock, filler added at the outlet of the white
water tank, and retention aid added at the outlet of the screens, and where the out-
puts are the basis weigh (weight per area), paper ash content (content of filler in the
paper), and wire tray consistency in the recirculation flow from the wire to the white
water tank. The basis weight and paper ash outputs are direct quality variables, while
the wire tray consistency is an indirect quality variable having significant e ect on
variability of other short circulation variables. �̄����� is the concentration of filler in
a reject tank in the hydrocyclones, �̄������ is the concentration of filler in the white
water tank, and �̄����� is the concentration of fiber in the deculator. The measured
disturbances accounted for in the model, are the total and filler thick stock concen-
trations �̄TS,tot and �̄TS,fil, the paper machine velocity �̄, and the paper moisture
percentage �̄ .

Note that the total- and filler concentrations in the thick stock flow are called
“measured disturbances”, although they are not measured. A model of the thick
stock area has been developed (Slora 2001), and implemented at PM6, providing
estimates of total- and filler concentrations in the thick stock.

3.3 Model fitting from experimental data

The developed model has many parameters. These parameters have physical interpre-
tations and thus it should be possible to measure them (e.g. the volumes) or estimate
them one by one from local measurements (e.g. measure the flows and concentrations
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in each stage of the hydrocyclones and calculate the associated parameters). This
approach would require a very large and detailed model, probably not suitable for on-
line use. The model used at PM6 is a simple approximation of a complex process and
the parameters in the model, although they have a physical interpretation, should not
be measured and/or estimated one by one due to the poor input-output properties of
the resulting model. Consider e.g. the deculator volume, which is important for char-
acterizing the time constant for the sub-model between the thick stock and the basis
weight. The real volume of the deculator is approximately 17m3 (right chamber),
however in the model it is many times larger. The deculator volume in the model
should be regarded as a lumped volume and not a single physical volume. The most
important properties of the model are the input-output properties, i.e. the response
on the outputs from changes in inputs. Thus, we want to estimate the parameters
in the model so that these properties are good. In principle we would therefore like
to tune the parameters so that the model outputs are equal to measured outputs.
However, due to the large number of parameters in the model we set some parame-
ters equal to values that seem reasonable, and estimate the rest, i.e. we estimate 19
parameters including two biases and three initial ODE values.

The function lsqnonlin in the Matlab Optimization toolbox is used for solving
the minimization problem

�̂ = argmin
�

(�), (3)

subject to the constraints
�min �̂ �max, (4)

where � is the parameter vector and �̂ is the estimated parameter vector. Thus, we
wish to find the parameter values (arguments) �̂ that minimize the criterion (�).
The criterion used is

(�) = �� (�) ·� · �(�), (5)

where � is a vector of errors, and � is a diagonal weighting matrix. The function
relies on the Levenberg-Marquardt algorithm in its search for the optimal parameter
values (The MathWorks, Inc. 2000). The errors � are calculated by simulating the
system, with only the initial conditions given. The error is then

�(�) = 	̂(�|0) 	(�), (6)

where 	(�) is the measured output at time �, and 	̂(�|0) is the model output at time
� given only the initial conditions. The error vector for output � is then

��� (�) =
£
��(1) ��(2) · · · ��(�) · · · ��(� 1) ��(�)

¤
. (7)

where � is the number of samples in the data set.
Traditional system identification (see e.g. (Ljung 1999)) is in most cases carried

out using a one-step-ahead predictor (corresponding to �(�) = 	̂(�|� 1) 	(�)), however
in our case we wish to emphasize the need for a model with good long term prediction
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abilities. The reason for this is that the model is used for model predictive control
(MPC). Then, it seems natural to use the simulation approach in the parameter
estimation algorithm. The simulation approach results in a deterministic model, and
it is also necessary to identify or model the noise.

The concept of scaling is very important for robust and rapid convergence to the
optimal parameter values (Betts 2001). Here, we will point at two simple methods
for scaling: scaling of parameters and scaling of the simulation error. Scaling of the
parameters can be achieved by introducing

� = � × �̃, (8)

where �̃ is the scaled parameter vector, � is the original non-scaled parameter vector,
� is a scaling vector, and × is the Hadamard product (an element by element multi-
plication). The scaling vector � may be chosen so that the assumed scaled parameter
values are close to unity. Consider e.g. the following assumed parameter vector

� = [10 5� 108].

Choosing
� = [10 5� 108],

gives the following scaled parameter vector

�̃ = [1� 1].

Any constraints or bounds on the parameters must be scaled accordingly.
The simulation error is defined in equation 6. The basis weight is measured in

g�m2 and has a value typically around 50 g�m2, paper ash is measured in % and has
a value typically around 30%, and the wire tray concentration in measured in % has
a value of approximately 0�6%. Based on this, it is easy to understand that the error
for the wire tray concentration is very small compared to the other to errors, thus
any model fitting routine would more or less ignore the wire tray concentration and
concentrate on fitting the basis weight and paper ash. To compensate for this one
may scale the simulation error or outputs, simply by multiplying with a weight. If
all outputs are regarded equally important, one may weight them so that the outputs
are approximately equal. For example, the wire tray could be multiplied by 50 to
make it approximately equal to the paper ash. However, in our case we define the
most important output to be the basis weight, the second most important output to
be the paper ash, and the least important output is the wire tray concentration. This
ranking of importance should thus also be reflected in the weighting of the outputs.

3.4 Validation and re-tuning of model

Validation is the method of checking how good the model really is. One may find a
model fitted almost perfectly to one data set, and totally failing to explain another
data set (failing to simulate outputs close to measured outputs). Many methods for
validation exist, however in our opinion any proper validation method should at least
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include testing of the model with a new data set. Using one half of the data set for
model fitting and one half for validation is not in our opinion a proper validation
method, as one will e.g. not discover whether slow varying disturbances, drifts and
trends, eventually will ruin the properties of the model. Ideally, data sets spanning
all operating conditions of the process should be used for validation, thus one would
have a fair chance to find areas where the model is not functioning properly.

Validating a model by comparing simulated and real outputs, is in general not
enough when the model should be used for control. The individual responses from
each input to each output are also very important. A procedure is presented next,
which is used and found to work well, for model fitting, validation and re-tuning of
the model. The procedure is also pictorially presented in Figure 2.

1. Make model.

2. Collect several data sets, at least one for model fitting and one for validation.
The data set used for model fitting should contain well excited data. The data
set for validation must also to some extent be excited. The length of the data
sets obviously depends on the process and size of the model. For the PM6 work,
the data sets ranged from 2 hours to several days. It is usually not important
whether the data are collected in open or closed loop since “a directly applied
prediction error method — applied as if any feedback did not exist — will work
well and give optimal accuracy if the true system can be described within the
chosen model structure” (Ljung 1999, page 434). Check the data for outliers
and that the units are correct, and also consider filtering of the data.

3. Set up tables of approximately expected gains and time constants from inputs
and measured disturbances, to outputs. These gains and time constants could be
found from discussions with process operators and engineers alone, but should
be supported by step tests carried out on the process, if possible.

4. Choose initial parameter values and fit the model to the data. Several re-
optimizations may be needed. For example if the optimal parameter values are
very di erent from the initial values, then the optimal values should be used as
initial values and optimized again (thus, a re-scaling is also carried out). Other
reasons for re-optimizing may be to try other initial parameter values, or other
parameter bounds. If reasonably good model fit is not obtained, changing the
model equations may eventually be necessary.

5. Validate the model by comparing simulated and measured outputs, using a
di erent data set than the one used for model fitting. If the result is not satis-
factory one should probably return to point 4, and try di erent initial values or
parameter bounds. Eventually one may need to change the model equations if
reasonable validation results are not obtained.

6. Simulate step tests on the fitted model, and compare the gains and time con-
stants with the expected results as found in point 3. If the gains and time
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constants are reasonably close to the expected ones, the model fitting and vali-
dation is finished.

7. If the gains and time constants in point 6 are too far from the expected values,
re-tune the model by changing parameter values that move the gains and time
constants towards the expected ones. When reasonable gains and time con-
stants are found, go to point 5 and compare simulated and measured outputs.
Eventually one may need to change the model equations if reasonable gains and
time constants are not found.

3.5 Model Predictive Controller (MPC)

A commercial MPC developed by Prediktor AS (www.prediktor.no), was chosen by
Norske Skog for implementation. The choice of MPC was based on (i) cost, and (ii)
the ability to add and develop certain features that were important. Special features
that were important were the abilities to

• utilize the non-linear model;

• specify future reference changes. This means that the process operators can
specify a setpoint change some time into the future, see how the controller will
respond, and let the controller do the grade change if they are satisfied with the
response. In many other systems, the setpoint is constant into the future, so
once a change in the setpoint is made, the controller will respond immediately,
giving the operators no time to consider how wise the response is;

• develop an interface that will gain operator acceptance of the MPC;

• use the MPC during grade changes, sheet breaks, and start ups.

The commercial MPC is part of a software package named Apis (Advanced Pro-
cess Improvement System), which also consists of a Kalman filter, subspace system
identification, and more. The Apis MPC was intended for linear models, based on
the infinite horizon objective function presented in (Muske & Rawlings 1993). For
the predictive controller implemented at PM6, several extensions were made to the
original MPC, such as

• online linearization at each sample;

• online estimation of key model parameters/biases;

• future setpoint changes, i.e. the process operators can submit new setpoints to
the controller some time ahead of the actual grade change;

• addition of a direct input to output term;

• inclusion of measured disturbances.
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Figure 2: Procedure for model fitting and validation.
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The use of MPC, a nonlinear model, an extended Kalman filter, and linearization
at each sample, has also been suggested by (Lee & Ricker 1994), although with a
finite horizon criterion. Similarly, (Gattu & Zafiriou 1992) proposed an algorithm
for nonlinear MPC, with linearization at each sample, but with computation of the
steady state Kalman gain at each sample.

3.6 Results

The main objective of the project “Stabilization of the wet end at PM6” was to
increase the total e ciency by 0�47%. This objective can hardly be validated, due to
many factors a ecting the total e ciency. Thus, several sub-goals were defined which
were assumed easier to measure and validate. The sub-goals and results concerning
reduced variability are:

Variable Sub-goal (red. std. dev.) Result
Total cons. in the wire tray 60% Achieved
Filler cons. in the wire tray 50% Achieved
Total cons. in the headbox 50% Achieved
Filler cons. in the headbox 35% Achieved
Basis weight 20% Not achieved
Paper ash 20% Achieved
Paper moisture 20% Achieved

These sub-goals were defined in 1999 when the project was initiated. In 2001 a new
scanning device for measuring e.g. basis weight and paper ash was installed at PM6.
This significantly improved the control of the basis weight using the “old” controllers.
The results in the table above are calculated with the measurement devices as of 2002,
comparing the old control configuration with the MPC control configuration. Exact
numbers for the reduction in standard deviation are not given, as they vary from day
to day, and from operator to operator.

In addition to reducing the variation in key paper machine variables, several other
benefits are obtained using MPC. Some of these benefits arise from utilizing the devel-
oped model, not only for control purposes, but also as a replacement for measurements
when these are not available or not trustworthy.

Previously, grade changes were carried out manually or partly manually (the set-
points were changed a number of times before they were equal to the new grade) by
the operators. With a mechanistic model, applicable over a wide range of operating
conditions, the grade changes are carried out using the MPC. This has resulted in
faster grade changes and operator independent grade changes. During larger grade
changes, the use of MPC results in less o -spec paper being produced during the
change. Using a single mechanistic model, the grade change is handled in a straight
forward fashion, as there is no need to switch between various local models.

The basis weight and paper ash outputs can not be measured during sheet breaks.
Previously during sheet breaks, the flow of thick stock and filler were frozen at the
value they had immediately prior to the break. Usually the sheet breaks last less
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than half an hour, and the output variables are not far from target values when the
paper is back on the reel. However, occasionally the sheet breaks last longer periods
and there may be e.g. velocity changes during the break, leading to o -spec paper
being produced for a period after the paper is back on the reel. Another frequently
experienced problem are large measurement errors immediately after a sheet break.
With the MPC, the Kalman filter estimates the basis weight and paper ash during
sheet breaks, and these estimates are used in the MPC as if no break had taken place.
Thus, when the paper is back on the reel, the outputs are close to their setpoints.

Previously, the controllers were not set to automatic mode before the outputs were
close to the setpoints, following a start up. With a model based controller using a
mechanistic model with a wide operating range, the MPC is set to automatic mode
early during start ups. This results in faster start ups, and less o -spec paper being
produced.

Occasionally a special filler is added to the stock, to increase the brightness of the
paper. During these periods the consistency measurements are not trustworthy as
they are based on optical measurement methods. This problem is solved within the
MPC / Kalman filter framework by neglecting the measured consistency, relying on
the estimate alone. For each output, there is an option within the MPC to neglect
the updating of states based on this output. This is done based on experience with
periods of poor measurements, even when only standard filler is used.

The Kalman filter estimates are used in the MPC instead of the measurements.
This leads to smoother controller action, and eliminates the need for additional fil-
tering.

The model is augmented so that some key parameters/biases are updated auto-
matically. This reduces the need for model maintenance o -line. However, should
there be larger changes in the process, such as if the white water tank is removed, or
a new retention aid is used, then it will probably be necessary to re-tune the model
and controller.

4 Roll-out at PM4, Norske Skog Saugbrugs

PM4 at Norske Skog Saugbrugs in Halden, Norway, produce super calendered mag-
azine paper. PM4 started up in 1963 and was rebuild during a period between 1987
to 1993. The production capacity is 125� 000 ton per year, with paper width of 4�65
meters and with a typical velocity of 1� 250 meters per minute (Sandersen 1999).

4.1 Process description

A simplified drawing of PM4 at Norske Skog Saugbrugs is shown in Figure 3. Only
di erences between PM4 and PM6, described in subsection 3.1, will be commented on.
Note that both PM6 and PM4 at Norske Skog Saugbrugs produce super calendered
magazine paper, but PM6 is 30 years younger, and has more than twice the production
capacity of PM4.
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The largest di erences between PM4 and PM6 are probably found in the thick
stock area. At PM4, no filler is added to the thick stock. Thus the only filler present
in the thick stock area comes with the flow of broke and recovered stock. At PM6 disc
filters are used to reclaim usable fiber and filler particles from the white water tank
overflow, while another technology is used at PM4. Starch is a polymer of glucose
derived from e.g. corn and potatoes (Scott 1996). Starch is added to the thick stock of
PM4 through the TMP flow, while no starch is added at PM6. Starch is mainly added
to improve the dry-strength of the paper, however it may also improve fines retention
and drainage on the wire, and it may have a negative e ect on paper formation3

(Marton 1996).

At PM6 the thick stock pump is manipulated to control the flow of thick stock,
while at PM4 the thick stock pump is set at a constant speed and a thick stock valve
is manipulated. This di erence should be of no concern since the measured flow of
thick stock is the flow entering the white water tank in both cases, and the MPC
calculates the setpoint for this flow. Whether the lower level controller manipulates
a pump or valve to obtain the setpoint, is irrelevant for the MPC.

The accept from the second and third stages of the hydrocyclone arrangement goes
to the inlet of the white water tank via the deculator (left chamber) at PM6. At PM4
the accept goes straight to the inlet of the white water tank. This is probably not
an important di erence since the volume of the left chamber of the deculator is very
small. Finally, a di erence in the number of stages in the hydrocyclone arrangement
can be found; at PM6 a five stage arrangement is used, while it is a seven stage
arrangement at PM4.

4.2 Model fitting results

Figure 4 shows the first attempt to fit the PM6 model to a noisy and oscillating
operational data set collected from PM4 during October 18-19, 2002. Based on this
first attempt to fit the model, it was decided to carry out experiments to obtain more
informative data.

Open loop experiments were carried out during a 5-hour period on the 10th of
December 2002. These experiments were used to find approximate values for gains
and time constants in the process, and for model fitting, as described in Section 3.4
and Figure 2. Another data set was collected on the 12th of December 2002 for
validation of the model. The validation data set was collected partly in open loop
and with the process operators manually carrying out some step changes and a grade
change. The inputs are shown in Figure 5, and the measured and simulated outputs
are shown in Figure 6. Note that no state updating takes place during the validation,
and only the initial values are given. Some statistics from the validation are given
in Table 2. The term RMSE in Table 2 denotes the Root Mean Square Error value
defined by

3The distribution of fibres in the paper sheet.
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Figure 3: Simplified drawing of PM4, Norske Skog Saugbrugs.
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Figure 4: First trial fitting of PM6 model to data from PM4.
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Figure 5: Inputs at PM4 on the 12th of December 2002. The data set were used for
validation of the fitted model.

Table 2: Statistics from validation of model with PM4 data.
Properties Basis weight Paper ash W.t. conc.
Bias 0�52 0�97 0�04
RMSE* 0�37 0�19 0�013
*Bias corrected

RMSE� =

vuut 1

�

�X
�=1

(	�(�) 	̂�(�))
2, (9)

where � is the number of observations, 	�(�) is the measured value of output � at
time �, and 	̂�(�) is the predicted or simulated value of output � at time �.

5 Roll-out at PM3, Norske Skog Skogn

Norske Skog Skogn is the largest producer of newsprint in Norway. The production
of newsprint started in 1966, and the mill has three paper machines as of today. PM3
is the largest and most modern paper machine at the Skogn mill. The production
capacity of PM3 is 227� 000 ton per year, with paper width of 8�47 meters, and with
a typical velocity of 1� 350 meters per minute. The basis weight has a more limited
range than the Saugbrugs machines; typical values are 42�5, 45, and 48�8 g�m2. PM3
started up in 1981 and had a major rebuild/updating in 1995. PM3 is the only paper
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Figure 6: Validation of fitted model. The outputs were collected at PM4 on the 12th
of December 2002. The validation is carried out by simulating the system with only
the initial state values given.
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machine in Norway using DIP4 for production of newsprint. The DIP content, or the
amount of recycled fiber, is approximately 50-55% (Norske Skog 2002), (Heggli 2002).

5.1 Process description

A simplified drawing of PM3 at Norske Skog Skogn is shown in Figure 7. Only
di erences between PM3 at Skogn and PM6 and PM4 at Saugbrugs, described in
subsection 3.1, will be commented on. Note that PM3 in Skogn produce newsprint
while both PM6 and PM4 at Saugbrugs produce super calendered magazine paper. In
terms of production capacity and paper width, PM3 at Skogn, and PM6 at Saugbrugs
are comparable.

Filler is added via the DIP and broke flows, thus no other filler is added to the
thick stock or short circulation. The thick stock flow is manipulated through the thick
stock valve, with the thick stock pump set to a constant speed. The number of stages
in the hydrocyclones are 6. The accept from the second stage of the hydrocyclones
goes to the inlet of the white water tank, and the accept from the third stage goes
to the white water tank. At PM6, the accept from the second and third stage goes
to the left chamber of the deculator. The screens and the deculator appear in reverse
order at PM3, compared to PM6 and PM4 at Saugbrugs. Also, the retention aid is
added before the screens, and not after as is done at PM6.

5.2 Model fitting results

Figure 8 shows the first attempt to fit the PM6 Saugbrugs model to data collected at
PM3 Skogn during December, 4th, 2002. The basis weight is the only output excited
to any extent in this data set, the paper ash and wire tray concentration being more
or less at rest. This is a general feature of PM3 due to the low filler content in the
stock. Thus, the multivariable PM6 model does not come to full appraisal at PM3 yet,
however there is an increasing trend of using more filler in newsprint, and test runs
at PM3 with filler added to the short circulation will soon take place (Heggli 2002).

Studying data from PM3, it is clear that there is not much to gain in terms of
stabilizing the process during normal operation. However, during start ups, sheet
breaks, and grade changes, e ciency may be improved. Figure 9 shows the inputs
during a grade change. Note that the filler input is zero throughout the data set
because no filler is added to the short circulation. At the beginning of the grade
change a sheet break occur. This is recognized in Figure 10 by the basis weight and
paper ash outputs being frozen at the values that they had immediately prior to the
break. When the paper is back on the reel, the measured basis weight is 52 g�m2,
while the setpoint is 48�8 g�m2. The simulated basis weight is close to the measured
basis weight when the paper is back on the reel, and the simulated basis weight follows
the measured basis weight closely during the whole simulation. The bias in the basis
weight is approximately 0�25 g�m2. If the controller had relied on the simulated model
output during the combined grade change and sheet break, the basis weight would

4DIP = De-Inked Pulp, i.e. pulp produced from recovered paper.
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Figure 8: First trial fitting of PM6 Saugbrugs model to data from PM3 Skogn. Data
collected at 4th of December, 2002, with 30 seconds sampling time (resampled from
5 seconds sampling time).
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Figure 9: Inputs at Norske Skog Skogn PM3 on the 12th of December 2002 during a
grade change. The data set were used for validation of the fitted model.

probably have been close to the setpoint when the paper was back on the reel. Thus,
less o -spec paper would be produced.

Figure 11 shows the inputs during a start up, and Figure 12 shows the basis
weight and wire tray concentration outputs. The basis weight measurement is frozen
at 44�8 g�m2 during the first 330 minutes. In Figure 13, it is shown in detail what
happens to the basis weight measurement and simulated output when the paper is
back on the reel for the first time after the start up. The measured basis weight is
close to 49 g�m2, with the setpoint being 45 g�m2. This deviation was more or less
predicted by the model simulation, thus the basis weight could have been much closer
to the setpoint after the start up if the controller had relied on the simulated model
outputs when the measurements were not available.

6 Conclusions

A mechanistic nonlinear model of the wet end of PM6 at Norske Skog Saugbrugs has
been developed, and used in an MPC application. Variability in important quality
variables and consistencies in the wet end have been reduced substantially, compared
to the variability prior to the MPC implementation. The MPC also provides better
e ciency through faster grade changes, control during sheet breaks and start ups,
and better control during periods of poor measurements.

Data and information from PM4 at Norske Skog Saugbrugs, and PM3 at Norske
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Figure 10: Validation of fitted model. The outputs were collected at Norske Skog
Skogn PM3 on the 12th of December 2002 during a grade change. The validation is
carried out by simulating the system with only the initial state values given.
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Figure 11: Inputs at Norske Skog Skogn PM3 on the 11th and 12th of December 2002
during a start up. The data set were used for validation of the fitted model.
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Skog Skogn were gathered in order to investigate the possibility to roll-out the model
and controller on other paper machines. Fitting and validation of the model were very
promising. No changes to the model were carried out, except for tuning of parameter
values, and still the validation results were good. The time spent on fitting and
validating the PM6 model to PM4 and PM3 are approximately 1% of the time spent
on developing the original model. This should be a strong incentive for focusing on
mechanistic modeling in industries were there are many similar production lines or
units.
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