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Abstract

The thesis is largely built on a collection of published and submitted papers
where the main focus is to analyze and optimize single-carrier adaptive
coded modulation systems with and without antenna diversity. Multidi-
mensional trellis codes are used as component codes.

The majority of the analysis is done with both estimation and prediction
errors being incorporated. Both channel estimation and prediction are per-
formed using a pilot-symbol-assisted modulation scheme. Thus, known pi-
lot symbols (overhead information) must be transmitted; which consumes
power and also degrades system spectral efficiency. Both power consump-
tion and pilot insertion frequency are optimized such that they are kept at
necessary values to maximize system throughput without sacrificing the
error rate performance. The results show that efficient and reliable system
performance can be achieved over a wide range of the considered average
channel quality.

Going from a single-input single-output system to both spatially uncor-
related and correlated single-input multiple-ouput (SIMO) systems, and
further to an uncorrelated multiple-input multiple-output (MIMO) diver-
sity system, is the evolution of the thesis. In the SIMO case, maximum ratio
combining is used to combine the incoming signals, whereas the signals are
space-time combined in the MIMO diversity system. The multiple-input
single-output system comes out as a special case of a MIMO system.

Besides the spatially uncorrelated antenna array, the effect of spatial
correlation is also considered in the SIMO case. In this case, only predic-
tion error is considered and channel estimation is assumed to be perfect.
At first, the impact of spatial correlation in a predicted system originally
designed to operate on uncorrelated channels is quanitifed. Then, a maxi-
mum a posteriori (MAP)-optimal “space-time predictor” is derived to take
spatial correlation into account. As expected, the results show that the
throughput is still lower than the uncorrelated system, but the degradation
is decreased when the MAP-optimal space-time predictor is used. Thus, by
exploiting the correlation properly, the degradation can be reduced.
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ABSTRACT

By numerical examples, we demonstrate the potential effect of limiting
the predictor complexity, of fixing the pilot spacing, as well as of assuming
perfect estimation. The two first simplifications imply lower system com-
plexity and feedback rate, whereas the last assumption is usually made to
ease the mathematical analysis. The numerical examples indicate that all
the simplifications can be done without serious impact on the predicted
system performance.
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Hekland, Greg Håkonsen, and Vidar Markhus for the fruitful discussions
we had—both on scientific and non-scientific issues. I appreciate other col-
leagues/friends who are not mentioned by name for our not-so-regularly
“friday-beers” in Trondheim, a social event and also a relaxing time.

I am grateful to Professor Lajos Hanzo for his guidance and his flexibil-
ity upon accepting my visit, since it was public holidays most of the time
during my stay in Southampton. The hospitality of UniK is also thanked.
Furthermore, I would like to thank FFI for letting me finish the thesis while
being their employee.

Finally, I would like to thank my parents, my sisters, and my dear—
Hanh Bich Thi Tran—for their support and unconditional love. Especially,
I am grateful to Hanh who always has faith and confidence in me since
the day we first met. Also, I appreciate my friends (in the so-called HND-
group) who have made my student-life in Trondheim (in the years 1998–
2005) more colorful.

Duc V. Duong
Oslo, August 2006

iv



Contents

Abstract i

Preface iii

Contents v

Abbreviations ix

Notation and Symbols xi

1 Introduction to Adaptive Wireless Communications 1
1.1 Spectral Efficient and Adaptive Transmission Using Feedback 2
1.2 Key Elements of Adaptive Coded Modulation Systems Us-

ing Pilot-Aided Channel Monitoring . . . . . . . . . . . . . 4
1.2.1 Prediction and Estimation of the Channel Condition 6
1.2.2 Selection Rule for the Modulation and System Pa-

rameters . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 System Performance Measurements . . . . . . . . . 8

1.3 Characterizations of Fading Channels . . . . . . . . . . . . 8
1.3.1 Effects of Space Diversity and Diversity Combining 11

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Preliminaries of Our Adaptive Coded Modulation Systems 17
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 System Description . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 ASE Performance . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 BER Performance . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5 Transmit Powers . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 MAP-Optimal Channel Estimators and Predictors . . . . . 25

2.6.1 Channel Estimator . . . . . . . . . . . . . . . . . . . 25
2.6.2 Channel Predictor . . . . . . . . . . . . . . . . . . . 27

v



CONTENTS

2.6.3 Visualization of MAP-optimal Prediction . . . . . . 28
2.7 System Parameters Used in Numerical Example . . . . . . 30

3 Adaptive Coded Modulation With Imperfect Channel State In-
formation: the SISO Case 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 BER Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 BER in the Presence of Channel Estimation Errors . 36
3.3.2 BER in the Presence of Both Channel Estimation and

Prediction Errors . . . . . . . . . . . . . . . . . . . . 37
3.4 ASE Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 46

4 Adaptive Coded Modulation With Receive Antenna Diversity
and Imperfect Channel Knowledge 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Description of the System . . . . . . . . . . . . . . . . . . . 48
4.3 BER Performance Analysis . . . . . . . . . . . . . . . . . . . 49

4.3.1 BER Analysis in the Presence of Estimation Errors . 49
4.3.2 BER Analysis in the Presence of Both Estimation and

Prediction Errors . . . . . . . . . . . . . . . . . . . . 50
4.3.3 Overall Average BER Performance Analysis . . . . 53

4.4 Optimization of ASE . . . . . . . . . . . . . . . . . . . . . . 53
4.4.1 ASE Performance Analysis . . . . . . . . . . . . . . 53
4.4.2 Optimization . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Average Fade Region Duration . . . . . . . . . . . . . . . . 54
4.6 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Impact of Spatial Correlation 65
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Space-Time Correlation Model . . . . . . . . . . . . . . . . 66

5.2.1 Spatial Correlation Models . . . . . . . . . . . . . . 67
5.3 Link Adaptation in Spatially Correlated Antenna Diversity:

Independently Predicted Branches . . . . . . . . . . . . . . 68
5.3.1 The Combined Signal Statistics . . . . . . . . . . . . 68
5.3.2 System Performance Analysis . . . . . . . . . . . . . 70
5.3.3 Numerical Calculation . . . . . . . . . . . . . . . . . 71

vi



5.4 Link Adaptation in Spatially Correlated Antenna Diversity:
Jointly Predicted Branches . . . . . . . . . . . . . . . . . . . 77
5.4.1 System Performance . . . . . . . . . . . . . . . . . . 80

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 Orthogonal Space-Time Block Coded Rate-Adaptive Systems
With Imperfect CSI 87
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 Channel Estimation and Prediction . . . . . . . . . . . . . . 91

6.3.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Evaluation of BER Performance . . . . . . . . . . . . . . . . 93
6.5 Optimization of ASE . . . . . . . . . . . . . . . . . . . . . . 96
6.6 Numerical Example and Discussion . . . . . . . . . . . . . 97
6.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . 102

7 Effects of Simplifications and Suboptimalities 103
7.1 Fixing the Pilot Spacing . . . . . . . . . . . . . . . . . . . . 104
7.2 Effect of Complexity-Limited Predictor . . . . . . . . . . . 105
7.3 Effect of the Assumption on Perfect Estimation . . . . . . . 107

8 Conclusions 113
8.1 Results and Contributions . . . . . . . . . . . . . . . . . . . 113

8.1.1 Contributions of the Thesis . . . . . . . . . . . . . . 114
8.2 Suggestions for Further Research . . . . . . . . . . . . . . . 115

A Derivation of the MAP-Optimal Predictor and Estimator with
the Corresponding MMSE 119
A.1 MAP-optimal Predictor and MMSE of the Prediction Error 119
A.2 Derivation of the Predictor Used in Other Papers . . . . . . 121

B Derivation of BER(Mn) in Chapter 3 125
B.1 Useful Integration Rules and Identities . . . . . . . . . . . . 125
B.2 Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

B.2.1 Calculation of T (0, ∞) . . . . . . . . . . . . . . . . . 127
B.2.2 Calculation of T (0, |he|n,T) . . . . . . . . . . . . . . . 127
B.2.3 Calculation of F (0, |he|n,T) . . . . . . . . . . . . . . 128

B.3 BER(Mn|γ̂) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
B.4 BER(Mn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

B.4.1 Calculation of B1(Mn) . . . . . . . . . . . . . . . . . 129

vii



CONTENTS

B.4.2 Calculation of B21(Mn) . . . . . . . . . . . . . . . . 130
B.4.3 Calculation of B22(Mn) . . . . . . . . . . . . . . . . 130

C An Alternative Proof of the Expression for Var
(
he;µ|hp;µ

)
131

D Calculation of the Correlation Coefficient ρ in Equation (5.24) 133

Bibliography 137

viii



Abbreviations

1-D 1-dimensional
2-D 2-dimensional
3-D 3-dimensional
4-D 4-dimensional
ACM Adaptive coded modulation
ASE Average spectral efficiency
AWGN Additive white Gaussian noise
BER Bit-error-rate
BS Base station
CDF Cumulative distribution function
CSI Channel state information
CSNR Channel-signal-to-noise ratio
DA Data aided
dB Decibel
LOS Line-of-sight
MAP Maximum a posteriori
MIMO Multiple-input multiple-output
MISO Multiple-input single-output
ML Maximum likelihood
MRC Maximum ratio combining
MS Mobile station
MSE Mean square error
MMSE Minimum mean square error
M-QAM M-ary (or multilevel) quadrature amplitude modulation
NDA Non data aided
OFDM Orthogonal frequency division multiplexing
PDF Probability density function
QAM Quadrature amplitude modulation
RP Random process

ix



ABBREVIATIONS

RV Random variable
SIMO Single-input multiple-output
SISO Single-input single-output
SM Spatial multiplexing
STBC Space-time block coding
TCM Trellis code modulation
WSS Wide sense stationary
XIXO Any combination of the number of transmit and receive

antennas

x



Notation and Symbols

Vectors are usually written in bold, upright, lowercase, whereas matrices
are in bold, upright uppercase. Bold faced italic lower case Greek char-
acters are also used for vectors. For differences, compare “w”, “w”, “W”,
“W”, “ω”, and “ω”. Vectors are column vectors, unless otherwise explicitly
defined.

In the following notation list, the dimension of vectors and matrices are
also given.

⊗ Kronecker product

w∗ Complex conjugate of w

wT Transpose of vector w

wH Hermitian (conjugate transpose) of vector w

W−1 Matrix inversion

|w| Absolute value

‖w‖F Frobenius norm of a vector,
√

wHw

bwc Taking the integer part of w only

[W]mn Element in column m and row n of the matrix W


√
−1

Cov(·, ·) Covariance

E[·] Expectation

tr{·} Trace operator

Var(·) Variance

vec(·) Vectorized operator
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NOTATION AND SYMBOLS

α The variable which determines how power is
distributed between pilot and data symbols

β, βµ Absolute value of fading gain, and of the µth
branch

γ Total instantaneous true channel signal-to-noise
ratio (CSNR)

γd Total instantaneous detected CSNR assuming
perfect estimation

γn,T The lowest CSNR value for which the
exponential approximation of the BER–CSNR
relationship is relevant when code n is used

γ̄ Expected value of the total true CSNR

γ̄b Expected subchannel (one receive branch) CSNR

γ̄µ, γ̄µν Average CSNR on receive antanna µ, and on any
subchannel µν

γ̄d Total average detected CSNR assuming perfect
estimation

γ̂ Total instantaneous predicted CSNR

γ̂n The lowest predicted CSNR attaining the target
BER when code n is used

¯̂γ Expected value of the total predicted CSNR

Γ(·) Gamma function

Γ(·, ·) Incomplete gamma function

Γ(·, ·) Normalized incomplete gamma function

εe(k; l) Estimation error

εe;µ(k; l), εe;µν(k; l) Estimation error of the µth receive branch, and of
any µ-ν transmit-receive antenna pair

εp(k; l) Prediction error

εp;µ(k; l), εp;µν(k; l) Prediction error of the µth receive branch, and of
any µ-ν transmit-receive antenna pair
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θ, θ1, θ2 Scale factors of the gamma probability density
function (PDF)

λκ Eigenvalue number κ of the channel covariance
matrix

µ Transmit antenna branch index

ρ Correlation between true and predicted CSNR

ρh,s Spatial correlation of the fading gain

ρh,t Temporal correlation of the fading gain

ρs Power correlation between any two adjacent
antenna branches

$ Normalized correlation between the estimation
error and the predicted channel

σ2
e (l) Variance of the estimation error

σ2
e;µ(l), σ2

e;µν(l) Variance of the estimation error of the µth
receive branch, and of the µνth subchannel

σ2
p(l) Variance of the prediction error

σ2
p;µ(l), σ2

p;µν(l) Variance of the prediction error of the µth receive
branch, and of the µνth subchannel

σ2
he|hp

(l) Variance of estimated channel given the
predicted channel

σ2
he;µ|hp;µ

, σ2
he;µν|hp;µν

Variance of estimated channel given the
predicted channel: on the µth receive branch,
and on the µνth subchannel

τ System delay

τ̄n Average fade region duration (average time the
fading remains between two specified levels)

ν Receive antenna branch index

χn Level crossing rate for the nth level

Φ Collection of constants and variables

Ω Average fading power

xiii



NOTATION AND SYMBOLS

{an}N=8
n=1 Set of parameter in exponential approximation

to the BER–CSNR relationship for code no. n

{an(`)}L=3, N=8
`=1, n=1 Another set of parameter in exponential

approximation to the BER–CSNR relationship
for code no. n

An, An(`), A′
n(`) Collections of constants and variables

ASE Average spectral efficieny

{bn}N=8
n=1 Set of parameter in exponential approximation

to the BER–CSNR relationship for code no. n

{bn(`)}L=3, N=8
`=1, n=1 Another set of parameter in exponential

approximation to the BER–CSNR relationship
for code no. n

BER(Mn) Average BER of the constellation Mn

BER(Mn|γ̂) BER of the constellation Mn given the predicted
CSNR γ̂

BER (Mn|he) BER of the constellation Mn given estimated
channel

BER
(

Mn
∣∣ {he;µ

})
BER of the constellation Mn given the set of
estimated receive branches

BER
(

Mn
∣∣ {he;µν

})
BER of the constellation Mn given the set of
estimated subchannels

BER
(

Mn|hp
)

BER of the constellation Mn given predicted
channel

BER
(

Mn
∣∣ {hp;µ

})
BER of the constellation Mn given the set of
predicted receive branches

BER
(

Mn
∣∣ {hp;µν

})
BER of the constellation Mn given the set of
predicted subchannels

BER Average BER

BER0 Target BER

c Speed of light, c = 3 · 108 m/s
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C Set of complex numbers

E Average transmit power each pilot and data
symbol can have

Ed Actual transmit data power

Ēd Average transmit data power

Epl Actual transmit pilot power

D Number of frames ahead in time to be predicted

D(x) Diagonal matrix with vector x on its diagonal
(dimension: Ke × Ke or Kp × Kp depending on
the matrix is used for estimation or prediction)

fc Carrier frequency

fd Maximum Doppler frequency

fs Pilot sampling frequency

G(md, θ) Shorthand notation for gamma distribution with
shape parameter md and scale parameter θ

h(k; l) Complex fading gain at the kth frame and the lth
symbol in that frame

he(k; l) Estimated channel

he;µ(k; l), he;µν(k; l) Estimated channel of the µth receive branch, and
of the µνth subchannel

hp(k; l) Predicted channel

hp;µ(k; l), hp;µν(k; l) Predicted channel of the µth receive branch, and
of the µνth subchannel

h Array of the channel gains (dimension: nR × 1)

hp Vector of jointly predicted channel gains
(dimension: nR × 1)

hpl;µ Vector of pilot symbols received on the µth
receive branch (dimension: Ke × 1 or Kp × 1
depending on if the vector is used for estimation
or prediction)
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NOTATION AND SYMBOLS

hpl Stacked vector of the pilot symbols received from
all the receive branches (dimension: KpnR × 1)

H Channel gain matrix (dimension: nR × nT)

H Channel gain matrix corresponding to the
buffered pilot symbols from all the subchannels
(dimension: Kp × nR)

Iν(·) Modified Bessel function of the first kind and of
order ν

IK K × K identity matrix

Jν(·) Bessel function of the first kind and of order ν

K Rician K-factor

Ke Number of pilot symbols the estimation is based
upon; estimator filter length

Kp Number of pilot symbols the prediction is based
upon; predictor filter length

L Number of exponential functions which
approximate the simulated BER performance

L Distance (counted in number of channel
symbols) between two consecutive pilot symbols

Lb Distance (counted in number of channel
symbols) between two consecutive pilot symbols
on a single antenna branch after space-time block
coding (STBC)

md Shape parameter of the gamma distribution;
G (md, θ)

M, Mn Number of symbols in a signal constellation, and
in constellation no. n

n 1. Code number
2. Predicted CSNR bin number

n(k; l) Additive white Gaussian noise (AWGN) at
frame index k and symbol index l in that frame

n Vector of AWGN (dimension: nR × 1)

xvi



npl Stacked vector of the received channel noise
corresponding to the received pilot symbol
matrix (dimension: KpnR × 1)

nT, nR Number of transmit/receive antennas

N Number of codes available in an adaptive
transmission system

N Channel noise matrix corresponding to the
buffered pilot instants from all the subchannels
(dimension: Kp × nR)

N0 Noise spectral density

O1, O2, O4 Orthogonal design of STBC for 1, 2, and 4
transmit antennas

Pn Probability that code n is used

Pout Outage probability or probability of no
transmission

QK(·, ·) Generalized Marcum Q-function

r Ratio between the total average predicted and
the total average actual CSNR

rd Ratio between the total average detected and the
total average actual CSNR when assuming
perfect estimation

re, rp Vector containing the covariance between the
fading at pilot symbol instants and the fading to
be estimated/predicted (dimension: Ke × 1 and
Kp × 1)

R(·) Normalized autocorrelation function

Rn Spectral efficiency (the number of information
bits per second per unit bandwidth) of code no. n

RSTBC
n Spectral efficiency (the number of information

bits per second per unit bandwidth) of code
no. n after STBC

Rs Rate of the employed space-time block code

xvii



NOTATION AND SYMBOLS

Re, Rp Normalized correlation matrix for estimation
and prediction cases (dimension: Ke × Ke and
Kp × Kp)

Rh Block-Hermitian autocovariance matrix of the
stacked vector h (dimension: KpnR × KpnR)

Ryh Cross-covariance matrix of the stacked vector ỹ
and the vector h (dimension: KpnR × nR)

R+ Set of nonnegative real numbers

s(k; l) Transmitted symbols (both data and pilot;
depending on the index l)

S Number of symbols used by the space-time
block encoder

T Length of the signal sequence after space-time
block coding

Ts Channel symbol duration

T (·, ·) Component in the expression for BER(Mn|hp)

F (·, ·) Component in the expression for BER(Mn|hp)

v Terminal speed

we, ωe Maximum a posteriori (MAP) optimal estimator
of length Ke

wp, ωp Maximum a posteriori (MAP) optimal predictor
of length Kp

yd(k; l) Received data symbol (at frame k and symbol
number l in that frame)

yd;µ(k; l), yd;µν(k; l) Data symbol received on the branch µ, and on
the subchannel µν

ypl(k; l) Received pilot symbol (at frame k and symbol
number l in that frame)

ypl;µ(k; l), ypl;µν(k; l) Pilot symbol received on the branch µ, and on
the subchannel µν

xviii



ypl, ypl;µ, ypl;µν Vector of buffered pilot symbols received in one
branch, in the µth receive branch, and in the µνth
subchannel (dimension: Ke × 1 or Kp × 1
depending on the vector is used for estimation or
prediction)

ỹ Vector of pilot symbols scaled with its symbol
and power (dimension: Ke × 1 or Kp × 1
depending on the vector is used for estimation or
prediction)

ỹ Stacked vector of pilot symbols scaled with its
symbol and power (dimension: KpnR × 1)

Y Matrix containing the buffered pilot symbols
from all the subchannels (dimension: Kp × nR)

zd, zd(k; l) Vector of received, noisy, and faded data symbols
used in MIMO system (dimension: nR × 1)

zpl, zpl(k; l) Vector of received, noisy, and faded pilot
symbols used in MIMO system (dimension:
nR × 1)
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Chapter 1

Introduction to Adaptive
Wireless Communications

The demand for reliable high-rate data communication over wireless chan-
nels gives rise to the need for spectrally efficient transmission schemes.
This is due to the fact that the bandwidth is scarce, and both spectrum
and power usage are strictly regulated. The basic idea of spectrally effi-
cient transmission is to transmit many information bits per second per unit
bandwidth on the average while maintaining a certain quality.

One way of realizing such spectrally efficient communication is by adap-
tive transmission. The success of such an adaptive transmission scheme is
strongly dependent on the knowledge of the channel at the transmitter.
Thus, one challenge is to extract the best possible estimate1 of the channel
at any given time. However, nature is seldom kind when it comes to wire-
less communications. The wireless signal, when travelling from a source to
a destination, is obstructed by different objects. These objects can be small
or big as e.g. leaves, trees, cars, buildings, and so on. Depending on the size
of these obstacles, the signal may be reflected, scattered, and/or diffracted.
Reflection of signals occurs when the signal is met by obstacles which are
comparable in size to the wavelength of the signal or larger. When the
obstructing object is less than the wavelength of the signal, scattering will
occur. Diffraction happens when signal ”bends around” obstructing objects
with irregular edges [Rappaport, 2002].

1In general, the term estimate of the channel here can be any kind of channel measure-
ments which are used for adaptation purposes. The predicted/estimated channel gain or
channel-signal-to-noise ratio (CSNR) is one possible measurement. Thus, it is noted that,
we sometimes only use the term channel estimation or prediction for both estimation and
prediction. Later on, in this thesis, we will use the channel estimates for decoding and
detection while the prediction is used for system adaptation.
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1. INTRODUCTION TO ADAPTIVE WIRELESS COMMUNICATIONS

A common result of these three phenomena is that the signal will arrive
at the receiver from different paths and with different delays. The differ-
ent replica of the signal are then summed constructively or destructively,
causing fluctuation of the signal level such that the signal can be severely
attenuated. This phenomenon is generally known as fading. Besides the
restricted spectrum and power usage, the fading also gives rise to the need
of robust and efficient transmission.

1.1 Spectral Efficient and Adaptive Transmission
Using Feedback

In fixed-rate and fixed-power systems, the transmission must be dimen-
sioned relative to the worst case scenario of the channel—i.e. the system
must be designed to perform acceptably in deep fades. This results in
poor performance and inefficient use of spectrum when the channel condi-
tion is good. As opposed to this, spectrally efficient adaptive transmission
schemes take the advantage of having a good channel by sending more
bits. The rate is decreased as the channel is getting worse, and most often
goes into idle when the channel is below a certain quality (then the sys-
tem is said to be in outage). In order to do so, the system needs feedback
information to assist what the transmitter should do.

Adaptive transmission over a fading channel using feedback is not a
new idea and was first proposed by Hayes in 1968. In that paper, trans-
mit power adaptation was introduced. A disadvantage of the usage of a
variable-power scheme to combat fading in deep fades is that the potential
co-channel interference may increase. Some years later, in 1972, Cavers
suggested an adaptive symbol duration scheme. This scheme works at
the expense of a variable bandwidth, which is difficult to implement in
practice. As an answer to both problems, an uncoded adaptive star-QAM
scheme was proposed by Webb and Steele in 1995 and a coding scheme
by Goldsmith and Chua in 1998. Also, a combination of power and rate
adaptation was introduced by Goldsmith and Chua in 1997.

Although using feedback in adaptive communications was already pro-
posed, the interest in these techniques was not restored until 1997 when
Goldsmith and Varaiya derived the theoretical Shannon capacity under
idealized assumptions for single-user single-input single-output (SISO)
fading channels using an optimal power adaptation and a variable-rate
scheme. Since then many works have been conducted within the field
of link adaptation. The work of Goldsmith and Varaiya was extended
by Alouini and Goldsmith in their 1997 and 1999 papers to take different

2
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spatial diversity combining techniques into account. Both [Goldsmith and
Varaiya, 1997] and [Alouini and Goldsmith, 1997, 1999] assumed no feed-
back delay and perfect channel state information (CSI) knowledge at both
transmitter and receiver.2

However, practical adaptive modulation schemes designed based on
such perfect CSI are sensitive to CSI imperfections induced by channel es-
timation errors and feedback delay; meaning that these system works well
only when channel estimation errors and/or feedback delays are sufficient-
ly small [Goldsmith and Chua, 1997; Alouini and Goldsmith, 2000]. The
system in the above two references will not operate satisfactory for nor-
malized Doppler τ fd > 0.01 and estimation error greater than 1 dB. Both
criteria are to ensure a bit-error-rate (BER) of 10−3. Such a delay in combi-
nation with such a low estimation error might be hard to meet, unless the
channel fading is sufficiently slow.

When the channel is slowly varying, outdated fading estimates are suf-
ficient to track the channel for robust (in the sense that it does not require
any knowledge about the Doppler frequency or the exact shape of the auto-
correlation function of the channel) and reliable adaptive coding [Goeckel,
1999]. An adaptive coding scheme for slowly varying channels was also
analyzed in [Vucetic, 1991]. Here the channel was modelled as a finite-state
Markov process and the emphasis lies on the adaptation of the error protec-
tion. However, for fast fading, outdated channel estimates fed back to the
transmitter become less useful for adaptive signaling applications. To over-
come this problem, we need to predict the channel further ahead in time
and, thus, long range fading prediction becomes more important. This re-
laxes the delay constraint considerably [Duel-Hallen, Hu, and Hallen, 2000;
Hu and Duel-Hallen, 2001].

Until recently, however, research contributions to the field of adaptive
communications are still based on either perfect CSI at both transmitter
and receiver [Goldsmith and Chua, 1997, 1998; Alouini and Goldsmith,
2000; Chung and Goldsmith, 2001], or imperfect CSI at transmitter through
the predicted channel or delayed estimated channel fed back from the re-
ceiver, while the CSI is still assumed perfect at the receiver [Goeckel, 1999;
Hu, Duel-Hallen, and Hallen, 2000; Øien, Holm, and Hole, 2004; Falahati,
Svensson, Ekman, and Sternad, 2004]. To the best of the author’s knowl-
edge, [Cai and Giannakis, 2005]3 is the only one paper prior to the present

2In addition, [Goldsmith and Varaiya, 1997] also considers the case when perfect CSI is
available only to the receiver.

3Note that the mean γ̄c of the PDF of [Cai and Giannakis, 2005, Eq. (31)] is wrong. The
correct value is γ̄c = (σ̃2

ĥ
+ γ̌|ρ|2N0/Ēd)Edi/(N0 + gEdiσ

2
ε ).
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FIGURE 1.1: Generic figure of an ACM system with multiantenna trans-
mitter and receiver. System adaptation is based on information fed back
from the receiver. Channel estimation and prediction is performed using
a PSAM scheme.

work dealing with both estimation error at the receiver and prediction error
at the transmitter.

Adaptive systems operating on SISO channel models are considered in
[Ue, Sampei, Morinaga, and Hamaguchi, 1998; Alouini, Tang, and Gold-
smith, 1999; Hole, Holm, and Øien, 2000; Lau and Macleod, 2001]. Systems
incorporating multiantenna transmissions are studied in [Hole, Holm, and
Øien, 2001; Øien, Holm, and Hole, 2002a; Ko and Tepedelenlioglu, 2003,
2004, 2006; Zhou and Giannakis, 2004a]. For further research contributions
to adaptive modulation and coding techniques, look e.g. to the tutorial pa-
per by Hole and Øien [2001] and to the book by Hanzo, Wong, and Yee
[2002].

1.2 Key Elements of Adaptive Coded Modulation
Systems Using Pilot-Aided Channel Monitoring

The generic block diagram of an adaptive coded modulation (ACM) system
using a pilot-symbol-assisted modulation (PSAM) channel tracking scheme
is depicted in Figure 1.1. At the transmitter, the adaptive encoder gener-
ates coded bits from data information using any kind of error protecting
codes. The coded bits then determine the transmit symbol taken from the
appropriate modulation. For the purpose of tracking the channel using
a PSAM scheme, pilot symbols with a certain power are inserted. Note
that both the encoder and the pilot insertion procedure are based on pre-
dicted information fed back from the receiver. In SISO (nT = 1, nR = 1)
and SIMO4 (nT = 1, nR > 1) systems, the data stream is ready to be sent

4Single-input multiple-output
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over the fading channel. One more operation needs to be done in the case
of MIMO5 (nT > 1, nR > 1) diversity or MISO6 (nT > 1, nR = 1) diversity
systems; namely the space-time block coding (STBC) operation before the sig-
nal is launched on the wireless channel. This operation makes it possible
to transmit data simultaneously from all of the transmit antennas and, at
the same time, provide full diversity. MIMO systems can also be used to
maximize the data rate by sending independent data on different antennas.
In this case, they are called MIMO spatial multiplexing (SM) systems. The
subchannels in the multiantenna transmitter and/or receiver can be spa-
tially correlated or uncorrelated depending on the scattering environment
and/or the spacing between the antenna elements.

At the receiver, the receive signals are detected and combined (in case
of multireception) and decoded. The detection and combining scheme can
be done either in a coherent, partially coherent, or a noncoherent manner
[Simon and Alouini, 2005]. The adaptive decoder tries to retrieve the trans-
mitted signal adaptively. Here, both detection and decoding operations are
relying on the estimated information which is provided from the channel
tracking unit.

A common assumption in adaptive communication systems is error-
free and noiseless feedback. The former assumption can be realized in
practice due to the fact that the feedback information rate is small so that
the information can be protected with a strong code and possibly also with
automatic repeat request signaling. An example of the latter assumption is
communication between a mobile station (MS) and base station (BS). In the
uplink (MS-to-BS) the power is quite restricted, while in downlink (BS-to-
MS) the power constraint can be more relaxed. Thus the second link can,
in some cases, be considered as a noiseless link. However, perfect CSI at
transmitter is still hard to obtain in practical systems since the feedback
information is sent over a wireless channel which is subject to noise and
fading.

The design of ACM systems to react to the channel variations is strongly
dependent on the following factors:

• Prediction and estimation of the channel conditions: This is necessary in
order to determine what code/constellation with proper parameters
to be used in the future transmission. The estimation is used for de-
tection.

• Choice of modulation and selection rule: Based on the predicted infor-

5Multiple-input multiple-output
6Multiple-input single-output
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1. INTRODUCTION TO ADAPTIVE WIRELESS COMMUNICATIONS

mation, this operation ensures that both transmitter and receiver are
operating on the same set of parameters, and, at the same time, it
assures a certain system quality.

• Performance measurement: To quantify the feasibility and quality of the
adaptive scheme, some system measurement metrics must be defined
and evaluated.

• Another factor like power control is also important, but it is outside
of scope of the thesis.

1.2.1 Prediction and Estimation of the Channel Condition

In adaptive transmission systems, we have noted that one challenging task
is to provide the transmitter the best possible and accurate information of
the channel, since it is a necessary requirement for the system to function
properly. Hence, reliable estimators/predictors need to be developed and
employed to reduce the effect of imperfect CSI. However, another approach
to get around this is by designing the adaptive transmitters and receivers
which account for CSI errors explicitly. This is the choice in this thesis.

In order to perform such adaptations, information about the channel
must be available to the transmitter and can be realized by means of a re-
turn channel (feedback channel). The information about the channel is con-
veyed by estimating/predicting the channel variations which can be done
using either non-data-aided (NDA) or data-aided (DA) schemes [Meyr,
Moeneclaey, and Fechtel, 1998]. While NDA channel tracking schemes
perform their task based on previous correctly detected symbols, the DA
scheme is based on training (pilot) symbols known to both transmitter and
receiver, and which are sent regularly along with the information. How
often they are transmitted is dependent on the rate of time-variance of the
channel. Comparing to the NDA schemes, the training-based systems must
transmit overhead information which degrades the system’s throughput.
However, needless to say, the channel can be better tracked with DA meth-
ods when the channel is fast varying or undergoes deep fades during which
the symbols are most likely to be wrongly detected such that NDA channel
tracking becomes unreliable.

The first paper analyzing DA channel estimation using a PSAM scheme
for fading channels was presented by Cavers in 1991. In that system the
pilot symbols are regularly multiplexed into the datastream prior to trans-
mission over the channel. The pilot symbols are extracted at the receiver
side and are used to interpolate and to smooth the channel for channel pre-
diction and estimation, respectively. The interpolating (or smoothing) filter
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coefficients are obtained by solving normal equations and they are optimal
in the mean square error (MSE) sense. In such a PSAM system, the pilot
spacing is kept constant regardless of the quality of the channel. However,
uniform spacing pilot symbols regardless of the channel quality is not nec-
essarily an optimal scheme [Cai and Giannakis, 2005]. Fixed pilot spacing
implies that the amount of overhead information can be too large when
the average channel condition is good and too small at bad average chan-
nel conditions. On average, when the channel condition is bad, the system
needs densely spaced pilot symbol in order to estimate the channel reliably.
In particular, in an uniform PSAM system a considerable pilot oversam-
pling compared to the Nyquist sampling rate is required [Meyr et al., 1998,
Sec. 14.2.2]. On the other hand, at favourable channel conditions, the chan-
nel is so good that it will be a waste of bandwidth when having frequently
pilot transmission. Thus, having improper pilot spacing (and pilot power)
will decrease system performance in both cases. One way of getting around
of this problem is letting the pilot insertion frequency optimally vary ac-
cording to the average channel quality, i.e. an adaptive PSAM scheme [Cai
and Giannakis, 2005]. In this way, the necessary overhead information is
kept at a minimum. This will also be done in this thesis.

1.2.2 Selection Rule for the Modulation and System Parameters

Based on feedback information, a symbol drawn from a certain constel-
lation (available to both transmitter and receiver) is selected for transmis-
sion. The feedback information can be channel mean [Zhou and Giannakis,
2004a], covariance [Jafar, Vishwanath, and Goldsmith, 2001], or CSNR-
based [Øien et al., 2004]. Depending on what information is available to the
transmitter, we can do more or less smart signaling and selection scheme.
For example, in a multiple transmit antenna system, if we have the whole
channel matrix available, we can optimize the power usage on each trans-
mit antenna and forming the transmit beam such that the average BER is
minimized [Zhou and Giannakis, 2002]. Furthermore, we can also com-
bine the beamforming with STBC to increase the rate. On the other hand,
in order to keep a low feedback rate, predicted CSNR-based feedback can
be used. This is the choice in the present thesis. Based on this, we will
select the modulation, the power distribution between pilot and data sym-
bols, and the pilot period such that the throughput is maximized. In all the
cases, the parameters are chosen such that a certain quality/requirement
must be fulfilled.

7



1. INTRODUCTION TO ADAPTIVE WIRELESS COMMUNICATIONS

1.2.3 System Performance Measurements

This is to answer the question on how the performance of an ACM sys-
tem is measured. To measure the system’s performance, we need some
quality criteria in order to decide whether or not the system is functioning
satisfactorily. The measure criteria could be e.g. throughput, error perfor-
mance, outage probability, and so on. These will be more formally defined
in Chapter 2.

1.3 Characterizations of Fading Channels

Regardless what building blocks the system are based on, a system’s per-
formance metrics like average throughput and average error performance
can not be analyzed without knowing the properties of the channel over
which the signals are propagated. Hence, we will characterize the fading
channel in this section.

A mathematical model for multipath propagation can be obtained by
solving Maxwell’s equations with appropriate boundary conditions. How-
ever, the computational complexity of such an approach makes it imprac-
tical. Also, the physical environment must be known. Moreover, if the
number of reflectors is large and they are in motion relative to the trans-
mitter and the receiver, the mathematical model will be even more difficult
to achieve. In this case, statistical approximations must be applied to char-
acterize the receive signal [Goldsmith, 2005]. Over the years, it has been
shown that the rapid fluctuation of the signal in a narrowband system is
well described by stochastic distributions; such as Rayleigh, Rice, or Nak-
agami distributions for the envelope of the fading gain [Stüber, 1996]. A
system is said to be narrowband if the signal bandwidth is small compared
to the channel’s coherence bandwidth, i.e. the inverse delay spread of the
channel.

In narrowband systems, all the different frequency components of the
signal are similarly affected by the fading. Hence, the fading is said to
be frequency-flat or frequency-nonselective; as in e.g. one subchannel (one
tone) in a properly designed orthogonal frequency division multiplexing
(OFDM) system. This is in contrast to the frequency-selective fading ex-
perienced in a wideband system [Rappaport, 2002]. Since, over a flat fad-
ing channel, different frequency components of the signal are subject to
the same attenuation, the impact of fading is through a multiplicative fac-
tor. Thus, in general, the receive signal y(k) in a narrowband system can
be written as y(k) =

√
Eh(k)s(k) + n(k) where E is the average transmit
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power, h(k) is the fading channel gain, s(k) is the symbol to be transmitted,
and n(k) is the additive noise.

In general, h(k) is a complex value and can be expressed—using phasor
representation—as h(k) = β(k)eφ(k) where β and φ is the fading ampli-
tude and phase, respectively. They are treated as random variables (RVs)
with certain statistical properties when analyzing system performance. The
phase φ plays an important role in modulation systems using e.g. quadra-
ture amplitude modulation (QAM) since a symbol is determined also by
the phase (in addition to the amplitude). However, in coherent detection
communication systems, where the receiver is able to detect and compen-
sate for the phase of the incoming signal, only the envelope is considered.
One way of aiding the receiver to detect the phase is to use differential
encoding. This would result in a 3 dB penalty in signal-to-noise ratio but
with the gain of easy detection where the receiver only needs to detect the
relative phase shifts in the incoming signal [Lee and Messerschmitt, 2000].

In general, the probability density function (PDF) of β is dependent on
the physical propagation environment [Simon and Alouini, 2005]. When
there is no line-of-sight (LOS) signal between the transmitter and the re-
ceiver, the Rayleigh distribution is used to describe the channel fading am-
plitude. As such, the PDF of β is given by [Nakagami, 1960, Eq. (1)]

fβ(β) =
2β

Ω
exp

(
−β2

Ω

)
, β ≥ 0, (1.1)

where Ω = E
[
β2] is the average fading power. Note that the Rayleigh

fading amplitude is simply the envelope of a zero-mean complex-valued
Gaussian process with independent and identically distributed (i.i.d.) real
and imaginary parts. In presence of LOS component, the PDF is Rice and
is given by [Nakagami, 1960, Eq. (5)]

fβ(β) =
2β

Ω
exp

(
−β2 + s2

Ω

)
I0

(
2βs
Ω

)
, β, s ≥ 0, (1.2)

where I0(·) is the zeroth-order modified Bessel function of the first kind
[Gradshteyn and Ryzhik, 2000, Section 8.43]. The Rician K-factor—defined
as the ratio of the specular (LOS) power component to the average power
of the scattered components—is given as K = s2/Ω.7 Different from the
Rayleigh distribution, the Rice fading PDF is the envelope of a nonzero-
mean complex-valued Gaussian process with i.i.d. real and imaginary parts.

7The PDF in (1.2) is also called Nakagami-n, where n2 = K, by Simon and Alouini
[2005].
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Thus, if K is zero—meaning that there is no LOS component—the function
I0(0) = 1 and the PDF in (1.2) is reduced to the one in (1.1).

Equations (1.1) and (1.2) can be respectively calculated and well ap-
proximated by means of the Nakagami-m PDF [Nakagami, 1960, Eq. (3)]:

fβ(β) =
2mm

ΩmΓ(m)
β2m−1 exp

(
−mβ2

Ω

)
, β ≥ 0, m ≥ 1

2
, (1.3)

by setting m = 1 and m = (1 + K)2/(1 + 2K) for K ≥ 0, respectively. Here,
Γ(·) is the gamma function [Gradshteyn and Ryzhik, 2000, Eq. (8.310-1)].
Note that the parameter m spans the interval [1/2, ∞〉; corresponding to the
one-sided Gaussian distribution for m = 1/2 and the Gaussian distribution
for m → ∞.

Defining the instantaneous CSNR as

γ =
β2E
N0

(1.4)

where E is the average transmit power and N0 is the noise variance, the
average CSNR is

γ̄ =
E
[
β2] E
N0

=
ΩE
N0

. (1.5)

It can be seen in (1.4) that E/N0 is a constant and, thus, the distribution of β
determines the distribution of γ and vice versa. Applying transformation
of RVs (see e.g. [Papoulis and Pillai, 2002, Chap. 7]) to (1.1) we obtain the
PDF of the CSNR as

fγ(γ) =
1
γ̄

exp
(
−γ

γ̄

)
(1.6)

for Rayleigh fading. This is an exponential distribution. Recognizing that
exponential distribution is a special case of the gamma distribution, and
since the gamma distribution is frequently used later on in this thesis, the
following definition will be useful:

Definition 1 (The gamma distribution)
X is said to follow a gamma distribution with shape parameter ψ > 0 and
scale parameter χ > 0 if the PDF of X is given by

fX(x) =
xψ−1

Γ(ψ)χψ exp
(
− x

χ

)
, x ≥ 0. (1.7)

The short hand notation X ∼ G (ψ, χ) is used to denote that X follows a
gamma distribution with shape factor ψ and scale factor χ. Note that the
mean and variance of X is x̄ = E[X] = ψχ and σ2

x = E
[
X2]− x̄2 = ψχ2,

respectively.

10
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Clearly, by comparing (1.6) and (1.7), the exponential distribution is a
special case of a gamma distribution with ψ = 1, i.e. γ ∼ G (1, γ̄). In
this thesis, we will only consider a Rayleigh fading model for the channel.
The PDF of γ in the Nakagami-m case will however still be useful since a
Rayleigh channel with m antennas can be viewed as a Nakagami-m channel
for certain antenna combining methods (cf. Section 1.3.1).

Finally, is noted that the expression in (1.6) corresponds to the case
when we only have one antenna on each side of the transmission link,
i.e. a SISO system. PDFs for multiantenna diversity-based systems with
Rayleigh fading are given in the following subsection.

1.3.1 Effects of Space Diversity and Diversity Combining

The key concept of diversity in general is to create a number of more or less
independent transmission “paths”, all carrying the same information. In
such a scenario, different signal paths may undergo independent channel
fadings and, thus, independent fading statistics. As such, the probability of
having all of them in a deep fade at the same time is small. Various types
of diversity techniques together with different basic combining schemes
are described in [Jakes, 1994]. In this thesis, we will only consider space
(antenna) diversity and, hence, other techniques will not be mentioned.

Diversity combining is different from another popular and important
antenna processing technique, beamforming, where the phase of signals
from different antenna elements are adjust to point a beam in a desired di-
rection. In the diversity combining technique, the signals are combined to
increase the output signal level without affecting the individual antenna
pattern. On the other hand, the beamforming technique exploit the dif-
ferential phase between different antennas to modify the antenna pattern
of the whole array. In that way, the whole of the array will have a single
antenna pattern once they are combined [Godara, 1997b]. Beamforming is
analyzed in e.g. [Godara, 1997a; Jafar and Goldsmith, 2001; Jafar et al., 2001;
Zhou and Giannakis, 2002, 2004a] and is beyond of the scope of this thesis.

It is well known that space diversity effectively averages out deep fades
and mitigates considerably the effects of imperfect channel prediction/
estimation which, again, helps in improving system performance. This mo-
tivates the use of multiple-antenna reception at the receiver. In this case, we
have a SIMO system. Furthermore, if the signals received at different an-
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1. INTRODUCTION TO ADAPTIVE WIRELESS COMMUNICATIONS

tennas are assumed uncorrelated8 and maximum ratio combining (MRC)9

is used to combine the receive signals, the combined CSNR is γ = ∑nR
b=1 γb

where γb is the CSNR on one receive branch defined in (1.4). Thus, the av-
erage CSNR is γ̄ = nRγ̄b and the PDF of the total CSNR is [Simon and
Alouini, 2005]

fγ(γ) =
γnR−1

Γ(nR)

(
1
γ̄b

)nR

exp
(
− γ

γ̄b

)
(1.8)

where nR is the number of receive antennas. Hence, γ ∼ G (nR, γ̄b), i.e.
the channel is effectively turned into a Nakagami-nR channel. Note that we
use the notation γ̄b to denote the average CSNR on one receive branch even
though the branches are independent and have the same mean CSNR.

In addition, we may have multiple antennas to transmit the same data
from. In combination with multi reception we then have a MIMO diversity
system where, space-time coding must be used to exploit and to achieve
the available spatial diversity at the transmitter [Alamouti, 1998; Tarokh,
Jafarkhami, and Calderbank, 1999].

Now, let γ̄ab = ΩE/(nTN0) be the average CSNR received in one trans-
mitter–receiver subchannel (when the same power is allocated to different
transmit antennas nT) then γ̄b = nTγ̄ab and γ̄ = nRγ̄b. Again, when as-
suming independence between the subchannels and using space-time de-
coding [Alamouti, 1998],10 the PDF of the effective CSNR is [Holter, Øien,
Hole, and Holm, 2003; Ko and Tepedelenlioglu, 2003]

fγ(γ) =
γnTnR−1

Γ(nTnR)

(
nT

γ̄b

)nTnR

exp
(
−γnT

γ̄b

)
, (1.9)

i.e. γ ∼ G (nTnR, γ̄b/nT). Clearly a MISO system is a special case of a
MIMO diversity system where nR = 1. In fact, both Eqs. (1.6) and (1.8)
can be deduced from the above equation.

In Figure 1.2 we see both the PDF and the cumulative distribution func-
tion (CDF) of the received CSNR as functions of normalized CSNR plotted

8This can be obtained by sufficient separation of the antenna elements. About half a
wavelength is theoretically sufficient in an isotropic scattering environment [Rappaport,
2002].

9When the channel is perfectly known, MRC is the theoretical optimal combining
scheme when the branches are uncorrelated [Brennan, 2003]. It is still valid when there is
correlation between them [Dong and Beaulieu, 2002; Loskot and Beaulieu, 2004]. In practice
the channel has to be estimated, which gives rise to imperfect knowledge of the channel. In
particular, the channel estimation should be treated as an additional source of noise which
might not be white. In that case, the optimal combining scheme can be found in [You, Li,
and Bar-Ness, 2005].

10Although space-time decoding is slightly different from MRC, it is noted that the ef-
fective CSNR is still the same and the distribution using MRC is also applicable here.
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FIGURE 1.2: PDF (top panel) and CDF (bottom panel) of the received
CSNR as a function of normalized CSNR. It is plotted for different com-
binations of transmit-receive antennas using (1.9) when γ̄ = nRγb = 5
dB.

for γ̄ = 5 dB. It can be observed that the CSNR variations become smaller
when the product nTnR is increased. When nTnR goes to infinity, the fading
channel approaches the additive white Gaussian noise (AWGN) channel
since, in this case, the PDF of the CSNR becomes a delta pulse. Thus, spa-
tial diversity is very effective in making the channel look like a Gaussian
channel [Meyr et al., 1998].

The expressions (1.8) and (1.9) are valid only for spatially uncorrelated
antenna branches. When spatial correlation exists in a SIMO model and
using MRC at the receiver, the total CSNR is a sum of correlated gamma
variates and can not be modelled by a gamma PDF. In this case, the exact
PDF of γ in the dual branch case may be written as a type I McKay dis-
tribution [Holm and Alouini, 2004, Eq. (20)]. For more than 2 receive an-
tennas, a closed-form expression is given in [Aalo, 1995, Eq. (18)], but only
for constant correlation and identically distributed branches. For an arbi-
trary correlation model and a number of antennas greater than 2, an infinite
sum expression is derived and presented in [Alouini, Abdi, and Kaveh,
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2001, Eq. (5)]. In the general case of independently distributed Rayleigh
branches, it can happen that some of the branches have the same mean and
the other remaining branches have different means. In such a case, the PDF
of γ is given in [Ho Van Khuong and Kong, 2006].

1.4 Outline

The thesis is largely built on a collection of published/submitted papers,
except from Chapter 2 where the common system aspects, the system pa-
rameters, and the performance metrics used in the rest of the thesis is in-
troduced. Which papers the materials are taken from are clearly pointed
out in the beginning of every chapter. Information of where the papers
were published or submitted is also given there. The rest of the thesis is
organized as follows.

• Chapter 2 introduces the preliminaries of our rate-adaptive transmis-
sion system. The quality metrics in terms of average spectral effi-
ciency (ASE) and bit-error-rate (BER) are introduced. General expres-
sions for optimal channel estimators and predictors are re-developed
and illustrations of the predictor performance are presented. The sys-
tem parameters used throughout the thesis are also given.

• Chapter 3 focuses on optimizing the frequency of pilot insertion and
the power usage on these pilots in an adaptive transmission system
operating on a SISO Rayleigh fading channel and based on PSAM
channel monitoring. Trellis codes designed for Gaussian channels are
used as component codes. Both the estimation error at the receiver
and prediction error at the transmitter are taken into account when
performing adaptation. Also here, the optimization algorithm is de-
scribed. Since this optimization algorithm is used throughout (in ev-
ery chapter) in the thesis, it is given as a general algorithm.

• Chapter 4 extends the results in Chapter 3 to a spatially uncorrelated
SIMO Rayleigh fading system and presents the optimized results of
pilot spacing and power allocation on these pilots. The average time
the system remains in one mode before switching to the different
mode is also given for both SISO and SIMO cases. Comparison to
another system—where estimation is assumed to be perfect and the
switching thresholds between different constellations are fixed re-
gardless of average channel quality—is made.

14
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• Chapter 5 studies a SIMO system operating on identically distributed
but correlated Rayleigh fading channels. In this chapter, the receiver
estimation is assumed perfect. The chapter is divided into two parts.
The first part consists of analyzing the system degradation when the
system originally developed for partially uncorrelated subchannels
is employed in spatially correlated subchannels: that is, the subchan-
nels are predicted independently of each other and the spatial correla-
tion is not taken into account. In the second part, the subchannels are
jointly predicted. Thus the spatial correlation is assumed known so
that it can be incorporated in the prediction process. Thus, a “space-
time” predictor is needed and derived.

• Chapter 6 adds multiple transmit antennas to the uncorrelated SIMO
case. That is, we have a MIMO diversity system, where the branches
are assumed uncorrelated. As in other cases (SISO and SIMO), the
feedback is predicted CSNR-based. Thus, without knowing the chan-
nel matrix, the transmit power is divided equally between the trans-
mit antennas. This is not necessarily optimal, but based on our feed-
back it is the only choice we have. Orthogonal space-time block codes
are employed to exploit the space diversity at the transmitter and,
since the branches are assumed uncorrelated, the diversity order is
the product of number of transmit and receive antennas.

• Chapter 7 demonstrates the system performance under certain sim-
plifications, such as the pilot spacing being fixed to certain values
and the predictor order being reduced to a lower one. The approach
is contrasted to that of previous chapters where the pilot spacing
is selected optimally according to the average CSNR to maximize
the ASE, and the length of the predictor is kept large to assure reli-
able channel prediction. The simplifications enable good trade-offs
in practical implementation where it is desired to keep the complex-
ity low. The impact of the widely assumed simplification on perfect
channel estimation is also demonstrated.

• Chapter 8 summarizes the main results and contributions of the thesis
and gives an outlook on some further research topics that might be of
interest.

• Appendices A, B, C, and D clarify some mathematical expressions and
calculations which are used earlier in the thesis.
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Chapter 2

Preliminaries of Our Adaptive
Coded Modulation Systems

In this chapter, we introduce the common system aspects and performance
metrics used in the rest of the thesis. The chapter starts with Section 2.1
where a summary of previous works and a motivation for our system are
given. We will visualize how pilot symbols are multiplexed into the data
stream and highlight some particularly important issues in our ACM sys-
tems in Section 2.2. Furthermore, we will state the two major performance
metrics; namely ASE and average BER performances in Sections 2.3 and 2.4,
respectively. In Section 2.5, how transmit power allocation to pilot and data
symbols is discussed. We then re-develop the MAP-optimal noncausal esti-
mator and causal predictor with the corresponding minimum mean square
errors (MMSE) in Section 2.6. Also, illustrations together with the MSE
performances of the predictor are given. An introduction to the common
parameters used in the numerical examples throughout the thesis is given
in Section 2.7.

2.1 Background

Before going on to describe our systems, we recapitulate some important
previous works in order to motivate for our work. In [Goldsmith and
Varaiya, 1997], the capacity of a single-user adaptive system communicat-
ing over flat-fading channels with arbitrary fading distributions has been
derived in terms of the PDF of the fading gain when perfect CSI is available
at both transmitter and receiver. Furthermore, Alouini and Goldsmith give
closed-form expressions for the capacity of different diversity combining
techniques for Rayleigh fading in their 1997 paper and for the general case
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of Nakagami-m fading in their 1999 paper. In those papers, the capacity of
a channel can be attained using a certain rate/power-adaptation scheme in
which the information bits is continuously updated according to the chan-
nel quality at any given time. They have also shown that the capacity of
the rate-adaptive system with constant transmit power is very close to the
one with both rate and power optimally selected.1

Average spectral efficiency (ASE) is a measure of, on average, how many
bits are transmitted per second per unit bandwidth [bits/s/Hz] with a
given transmission scheme. In [Goldsmith and Chua, 1997], the ASE of a
more practical discrete-rate multilevel QAM (M-QAM) is derived. The re-
sults show that there is a gap between the obtainable ASE and the capacity
in Rayleigh fading. To reduce this gap, Goldsmith and Chua [1998] ana-
lyzed a trellis coded modulation (TCM) scheme with both rate and power
adaptation, where the desired minimum distance of different codes is kept
constant. Their adaptive TCM scheme utilizes a set of 2-dimensional (2-D)
trellis codes with different spectral efficiencies (SEs) to achieve an addi-
tional coding gain relative to the work of uncoded adaptive M-QAM in
their 1997 paper. Moreover, by adaptively changing the transmit power,
in both continuous and discrete manner, it has been shown in [Gjendemsjø
et al., 2005; Gjendemsjø, Øien, and Orten, 2006] that the maximum ASE
approaches the capacity even with only a few capacity-achieving codes.

Based on (among other) the work in [Goldsmith and Chua, 1998], Hole
et al. [2000] were the first ones who designed a rate-adaptive system us-
ing an adaptive codec with eight 4-dimensional (4-D) trellis codes utiliz-
ing eight nested 2-D M-QAM signal constellations (depicted in Figure 2.1)
with M ∈ {Mn}N=8

n=1 being in the set {4, 8, 16, 32, 64, 128, 256, 512}. The SE
of these codes is given as2

Rn = log2(Mn)−
1
2

[bits/s/Hz]. (2.1)

The 4-D TCM is employed in e.g. [Holm, 2002; Øien et al., 2004; Holter,
2005] and in most of the publications made by these authors in the field of
ACM.

In all of the above works as well as in most classical papers on adaptive
transmission, the assumptions are either instant feedback at both transmit-
ter and receiver, or perfect CSI at the receiver and imperfect CSI available to
the transmitter with a certain delay. Inspired by the work on optimizing an

1However, it has later been shown that this is not the case when the number of rates is
finite and small [Gjendemsjø, Øien, and Holm, 2005].

2Actually, the SE is given as Rn = log2(Mn) − 1/G for 2G-D trellis codes. However,
since they are using 4-D trellis codes, G is equal to 2.
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SYSTEM DESCRIPTION

FIGURE 2.1: Nesting of the 4-QAM, 8-STAR, 16-QAM, 32-CROSS, 64-
QAM, 128-CROSS, 256-QAM, and 512-CROSS signal constellations. The
filled black circles constitute the 8-STAR constellation.

uncoded adaptive system for a SISO channel presented by Cai and Gian-
nakis [2005]—where both channel estimation at the receiver and prediction
at the transmitter are incorporated—we, on the other hand, will analyze
and optimize an ACM system operating on any combination of number
of transmit and receive antennas (XIXO). Also, we will consider non-zero
feedback delay. Furthermore, we will keep the average transmit power
constant, but the power distribution between pilot and data symbols will
be optimized. The pilot spacing is also to be optimally selected.

2.2 System Description

The generic block diagram describing all the systems considered in this
thesis is shown in Figure 1.1 where the fading channel is assumed to be
slowly varying. This means that the channel is assumed to be more or
less constant over many channel symbols. In our realization of this generic
system, the adaptive encoder generates coded bits using 4-D trellis codes.
The coded bits then determine the transmittable symbol from the proper
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BER
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FIGURE 2.2: Instantaneous BER with respect to predicted CSNR along
with the switching thresholds for different constellations.

QAM constellation out of the set of N = 8 constellations of sizes Mn =
{4, 8, 16, 32, 64, 128, 256, 512} that is best suited to the predicted channel
state. The set of constellations corresponds to a set of SEs {Rn}N

n=1. We
have Mn < Mn+1 ∀n and, thus, Rn < Rn+1. The choice of code is based on
the CSI fed back from the receiver: code n is chosen if the overall predicted
CSNR falls between the switching thresholds γ̂n and γ̂n+1. The instanta-
neous predicted CSNR is therefore quantized into N + 1 zones, where each
quantization zone corresponds to a specific constellation Mn. By letting
γ̂0 = 0 and γ̂N+1 = ∞ we have γ̂n < γ̂n+1 for all n ∈ {0, 1, · · · , N}. Since
the adaptivity is based on predicted CSNR, the set of thresholds {γ̂n}N

n=1
are determined such that the instantaneous BER (with respect to predicted
CSNR) of the selected code n is below BER0; as illustrated in Figure 2.2.

Sometimes in ACM systems the channel is predicted to be so bad that
reliable transmission can not be guaranteed and the system goes into an
outage (or “no transmission”) state. That is when there is no code in the
available code set which maintains the desired BER performance. In our
case, it occurs when the predicted CSNR is below γ̂1. In that case, as long
as the predicted CSNR is not greater than γ̂1, the system sends nothing but
the pilots—in order to keep track of the channel variations—and the data
is buffered at the transmitter.3

Using a PSAM-based channel monitoring scheme, pilot symbols with
a certain power are inserted before everything is launched on the transmit
antenna. In the MIMO and MISO diversity case, a pilot symbol is transmit-
ted from each antenna one at a time, and the data symbols are space-time
block coded before they are transmitted simultaneously from all of the an-
tennas. For SISO and SIMO cases, similarly to [Torrance and Hanzo, 1995;

3An alternative approach would be to keep transmitting and subsequently have to re-
transmit the outage bits, but this is not considered here.
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..... .....DDP D P D D D P DD

L

FIGURE 2.3: Transmitted frame structure of the datastream for SISO and
SIMO system configuration. Here, P and D denote pilot and data symbol,
respectively. The frame structure in the MIMO diversity configuration is
given in Figure 6.2.

Tang, Alouini, and Goldsmith, 1999], the datastream has a frame structure
as illustrated in Figure 2.3, where each frame starts with a pilot symbol.
Due to the fact that every Lth channel symbol is a pilot symbol that does not
convey data information, the SE of different constellations becomes [Øien
et al., 2004]

Rn =
L− 1

L

(
log2(Mn)−

1
2

)
[bits/s/Hz]. (2.2)

At the receiver, the pilot symbols are extracted and used for both chan-
nel estimation and prediction. Based on the estimated channel, the signal
is detected and adaptively decoded. In case of multireception, the signals
from different antennas are combined and then decoded. Space-time com-
bining and decoding are performed in MIMO and MISO diversity system,
while MRC is used in SIMO systems. Throughout the thesis, we assume co-
herent combining, meaning that the absolute phase of the incoming signals
are detected and compensated for. Thus, we only concentrate on combin-
ing the fading gains. In all the XIXO cases, the subchannels are assumed
to follow a Rayleigh distribution and for the numerical examples they are
assumed to have a Jakes temporal correlation profile. Most of the time, we
assume the subchannels to be mutually independent. However, we will
also consider SIMO systems with spatial correlation between the branches
at the receiver. In this case, we consider receiver channel estimation as per-
fect, as opposed to the rest of the thesis.

Finally, to have a low feedback rate, the CSI fed back to the transmitter is
only the overall predicted CSNR. This information is sent over the feedback
channel. The feedback channel is assumed to be error-free, but with non-
zero delay.

2.3 ASE Performance

Let Pn be the probability that code n is being used. Since the predicted
CSNR determines which code will be activated to transmit, Pn is obtained
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by integrating the PDF of the predicted CSNR over the interval [γ̂n, γ̂n+1〉.
That is,

Pn =
∫ γ̂n+1

γ̂n

fγ̂(γ̂)dγ̂. (2.3)

It is then obvious that the probability of outage (no transmission) is

Pout =
∫ γ̂1

0
fγ̂(γ̂)dγ̂. (2.4)

The ASE of the ACM systems encountered in this thesis is thus given as
[Ue et al., 1998; Goldsmith and Chua, 1997]

ASE =
N

∑
n=1

Rn · Pn [bits/s/Hz]. (2.5)

where Rn is the SE given by (2.2).

2.4 BER Performance

The overall average BER over all codes, denoted by BER, is the ratio be-
tween the average number of bits in error, and the number of bits trans-
mitted in total [Ue et al., 1998; Alouini and Goldsmith, 2000; Chung and
Goldsmith, 2001]:4

BER = ∑N
n=1 Rn · BER(Mn)

∑N
n=1 Rn · Pn

, (2.6)

where BER(Mn) is the average BER corresponding to code n.
Applying the 4-D trellis codes mentioned in Section 2.3 over AWGN

channels, the BER performance is approximated by

BER(Mn|γ) =

{
an exp

(
− bn

Mn
γ
)

when γ ≥ γn,T
1
2 when γ < γn,T.

(2.7)

The BER expression above is obtained by first simulating the BER perfor-
mance of the 4-D trellis codes on AWGN channels and then using curve

4It is noted that [Chung and Goldsmith, 2001] gives two possible definitions for the
average BER: 1) BER = E[# error bits per transmission] /E[# bits per transmission], and 2)
BER = E[(# error bits per transmission)/(# bits per transmission)] and argue that the for-
mer definition is slightly better than the latter for an ergodic fading process. Moreover,
Alouini and Goldsmith [2000] claim that the average BER can be computed exactly with the
former definition for an adaptive discrete rate system.
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fitting to find the exponential expression which fits to the simulated val-
ues. Thus, an and bn are code-dependent constants found by curve fitting
[Hole et al., 2000, Table I]. Moreover, γn,T = Mn ln(2an)/bn is the CSNR
threshold where the BER expression goes from 1/2 to the exponential ap-
proximation. At high CSNR, the exponential part of (2.7) represents a very
good approximation. This BER approximation has been used in, e.g., [Øien,
Holm, and Hole, 2002b; Holm, 2002; Holter, 2005] and most of the publica-
tions of these authors within the field of ACM. For a graphical illustration
of how good the approximation is, have a look into, e.g., [Hole et al., 2000,
Fig. 2] or [Øien et al., 2004, Fig. 3].

Whilst the approximation (2.7) is tight, the analysis using this would
result in solving more than one integral, and sometimes these integrals can
not be solved in closed-form, especially in spatial diversity systems. There-
fore, we choose to use a somewhat looser approximation which is similarly
to [Falahati, Svensson, Sternad, and Mei, 2003]

BER(Mn|γ) =
L
∑
`=1

an(`) exp
(
−γ

bn(`)
Mn

)
, (2.8)

where L is the number of exponential functions which approximate the
simulated BER (here we use L = 3), and an(`) and bn(`) are constella-
tion dependent constants obtained by first simulating the codes’ BER per-
formance and then use curve fitting with the least square method. These
constants are given in Tab. 2.1 and the approximation is illustrated in Fig-
ure 2.4 for different constellation sizes. At first sight, the approximation
seem to be quite coarse. However, it will be shown later that the ACM
performance results of this approximation are very close to those obtained
when the tight approximation (2.7) is used.

2.5 Transmit Powers

In this section, the notations for pilot and data symbol powers are intro-
duced. Their interrelation is discussed, under the average power constraint
used throughout the thesis.

Let C be the set of complex numbers and let y, h, and n ∈ C. In a
narrowband system, the noisy and faded input-output relationship for a
pilot symbol of any branch can be written as

ypl(k; 0) =
√
Eplh(k; 0)s(k; 0) + n(k; 0), (2.9)

and for the data symbols as

yd(k; l) =
√
Edh(k; l)s(k; l) + n(k; l), l = [1, · · · , L− 1]. (2.10)
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TABLE 2.1: The code-dependent constants {an(`)}3
`=1 and {bn(`)}3

`=1
for the example 4-D trellis codes.

n an(1) bn(1) an(2) bn(2) an(3) bn(3)

1 233.8034 12.4335 -280.8712 11.4405 51.3394 8.6131

2 210.6415 8.4208 -242.0657 7.9916 34.3732 6.0432

3 246.0565 7.7677 -334.6900 8.1130 89.4924 9.1087

4 99.7887 7.7426 -160.6040 8.3843 61.5091 9.4667

5 78.0083 7.0135 -100.8414 7.4793 23.4319 9.0714

6 86.2181 7.3704 -96.0270 7.6780 10.3583 10.3191

7 87.6912 7.0471 -94.5020 7.2852 7.3344 10.1898

8 89.3099 7.2848 -95.6889 7.4987 6.8972 10.4428
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FIGURE 2.4: BER performance of TCM codes on AWGN channels for
different M-QAM constellations. The solid lines denote the approxima-
tions, while the stars represent the simulated values.
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Using the frame-based structure shown in Figure 2.3, the index k counts
the frame and l is the symbol index in that frame; such that y(k; l) is the
compact way of writing y(kLTs + lTs) where Ts is the channel symbol du-
ration. The notations Epl and Ed are used to denote the actual power per
pilot symbol and the actual power per data symbol, respectively. A pilot is
sent at the beginning of a frame denoted by s(k; 0) and {s(k; l)}L−1

l=1 are data
symbols in the kth frame. Furthermore, n(·, ·) denotes zero-mean complex-
valued AWGN with variance N0/2 per dimension and dimensions being
uncorrelated. The fading gain h(k; l) is assumed to be a stationary complex
Gaussian random process with zero mean and variance σ2

h = Ω = 1.
On average, each symbol (either pilot or data) has a transmit power of

E . The average data power and pilot power in a frame can be calculated as

Ēd =
αLE
L− 1

, (2.11)

and
Epl = (1− α)LE , (2.12)

respectively. In both equations, α ∈ R+ within the interval 〈0, 1〉 is the
variable which determines how much power should be put on data sym-
bols and on pilot symbols, respectively. Equal pilot and data power, i.e.
Epl = Ēd = E , is obtained when α = 1 − 1/L. Moreover, as mentioned
in Section 2.3, no data is transmitted when outage occurs—i.e. when the
predicted CSNR is below γ̂1—and, thus, the actual transmit data power in
(2.10) can be set to

Ed =
Ēd

probability of transmission
=

Ēd∫ ∞
γ̂1

fγ̂(γ̂)dγ̂
. (2.13)

2.6 MAP-Optimal Channel Estimators and Predictors

Here, we state the expressions used for our prediction and estimation fil-
ters, and give expressions for the corresponding prediction/estimation er-
rors. We impose a wide-sense stationary (WSS) assumption for the channel
and the analysis in this section is done assuming that the temporal correla-
tion function of the channel is known.

2.6.1 Channel Estimator

It is noted that truly optimal channel estimation calls for noncausal lowpass
filtering (smoothing) in the limit Ke → ∞ [Meyr et al., 1998, p. 660], where
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Ke is the filter order. For practical purposes, Ke must be finite. The estimator
uses a vector of Ke received pilot symbols (half from the past and half from
the future) to estimate one sample. Since the channel is complex Gaussian,
it is well known that the optimal estimated channel is a linear combination
of the observations. Based on the received pilot symbols, the MAP-optimal
estimator we obeys the normal equations [Therrien, 1992]

Rywe = ry (2.14)

where Ry = E
[
yplyH

pl

]
is the correlation matrix of the buffered receive pilot

symbols ypl =
[
ypl(k− bKe/2c; 0), · · · , ypl(k + b(Ke − 1)/2c; 0)

]T (dimen-
sion Ke × 1) and ry = E

[
yplh∗(k; l)

]
is the covariance vector between the

desired channel sample to be estimated and the vector of received pilot
symbols. The notation bxc represents the integer part of x, and (·)H and
(·)∗ denote conjugate transpose and complex conjugate, respectively.

Obviously, the pilot vector is ypl =
√
EplD(s)hpl + npl, where D(s) ∈

CKe×Ke is a diagonal matrix with the pilot vector s on its diagonal and
hpl = [h(k− bKe/2c; 0), · · · , h(k + b(Ke − 1)/2c; 0)]T is the corresponding
channel gain vector. With the assumption of independence between the
additive noise and the channel, it is easy and straightforward to show that

Ry = EplD(s)ReD∗(s) + N0IKe . (2.15)

Likewise, ry can be written as

ry =
√
EplD(s)re. (2.16)

In Eqs. (2.15) and (2.16), Re = E
[
hplhH

pl

]
and re = E

[
hplh∗(k; l)

]
are the nor-

malized covariance matrix and normalized covariance vector of the chan-
nel, respectively.5 IKe is the Ke × Ke identity matrix.

For the Jakes fading model assumed in the numerical examples, the
elements of the correlation matrix and correlation vector are real and de-
scribed by the correlation function:

R(m) = J0(2π fdTs|m|), (2.17)

5We use the notations Re and re to denote the covariance matrix and covariance vector
of the channel for estimation case. This is to distinguish it from Rp and rp for the prediction
case. As a rule of thumb, the variables with a subscript e have something to do with esti-
mation. Likewise, the variables with a subscript p have something to do with prediction.
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where J0(·) is the zeroth order Bessel function of the first kind, fd is the
maximum Doppler frequency, m is the lag between the points we want to
find the correlation of, and as earlier Ts is the channel symbol duration.

Upon solving (2.14) with respect to we and replacing Ry and ry in the
solution with (2.15) and (2.16) we get the optimal linear estimator [Cai and
Giannakis, 2005; Meyr et al., 1998, Eq. (14-35)]

we =
√
Epl

(
EplD(s)ReD∗(s) + N0IKe

)−1
D(s)re. (2.18)

The MMSE of the estimation error is then

σ2
e (l) = 1−

√
EplrH

e D∗(s)we. (2.19)

We note that the MMSE only depends on the estimation lag l (and not on
which frame k we are estimating). This is due to the stationarity of the
channel, which we have assumed. For notational brevity, we sometimes
omit such the time indices wherever it is possible.

2.6.2 Channel Predictor

We assume that the transmitter adaptation occurs no more than once per
transmission frame. Thus, the system feedback delay6 can be set to τ =
DLTs, where D is a positive integer. Since we need to predict the channel
ahead in time, the predictor must be causal. The causal predictor uses Kp

pilot symbols from the past to predict one sample in the set {h(k; l)}L−1
l=1 in

the kth frame which is τ seconds ahead in time.
Here, the causal pilot vector buffered at the receiver is

ypl =
[
ypl(k− D; 0), · · · , ypl(k− D − Kp + 1; 0)

]T ∈ CKp×1.

Based on this vector the correlation matrix Ry and correlation vector ry can
be derived. Similarly to the estimation case, the optimal linear predictor is

wp =
√
Epl

(
EplD(s)RpD∗(s) + N0IKp

)−1
D(s)rp. (2.20)

The MMSE is equal to

σ2
p(l) = 1−

√
EplrH

p D∗(s)wp. (2.21)

6The feedback delay here includes both the time needed to perform prediction, the
physical delay on the return channel, and the processing time needed by the transmitter to
activate and configure itself to the code to be transmitted.

27



2. PRELIMINARIES OF OUR ADAPTIVE CODED MODULATION SYSTEMS

Note that Rp and rp are the correlation matrix and the correlation vector
for the prediction case. Furthermore, it should be pointed out that we use
the same notation, ypl, to denote the vector of pilot symbols the estimation
and the prediction are based on. Basically, the two vectors are different and
they also are different in size. However, it should be clear from the context
which case the vector yields.

Finally, we note that the above analysis puts no constraints on the pilot
symbols. It means that different pilot symbols can in principle be trans-
mitted in different pilot time instances. When the same pilot symbol is
always transmitted, the optimal estimator/predictor and the correspond-
ing MMSE expressions can be expressed in a simpler way. Moreover, they
are deduced as special cases of the “space-time” estimator/predictor in Ap-
pendix A.

2.6.3 Visualization of MAP-optimal Prediction

Performance of the MAP-optimal predictor was studied in [Duong, 2002;
Øien, Hansen, Duong, Holm, and Hole, 2002] when both the pilot and data
symbols have equal power. A Rayleigh fading channel with Jakes spectrum
correlation profile was generated and the derived MAP-optimal predictor
was used to track that channel. The system under study in the two refer-
ences has a symbol duration of Ts = 2.5 µs and a carrier frequency fc = 5
GHz. The Doppler frequency is fd = 250 Hz—corresponding to a termi-
nal velocity of v = 15 m/s (or 54 km/h). Figure 2.5 demonstrates how
the fading envelope is tracked, while Figures 2.6 and 2.7 show the MSE
performance of the prediction error.

In Figure 2.5, it is shown, for certain parameter values, how such an
optimal predictor works on a Rayleigh fading channel. Apparently, upon
studying the curves, the tracking of the fading amplitude degrades some-
what when we predict 5 pilot symbols (200 channel symbols) instead of
1 pilot symbol (40 channel symbols) ahead in time. Equivalently, it is the
same as predicting 0.5 ms and 0.1 ms ahead in time, respectively. This can
be attributed to the decreasing fading correlation as the prediction horizon
increases.

In [Holm, 2002; Øien et al., 2004] a predictor of 1000 taps was used,
something that is clearly too complex for most practical situations. The
impact of lowering this order, when both pilot and data symbols have the
same transmit power, and L is fixed, has been discussed in [Duong, 2002].
The graphs in Figure 2.6 are results of predicting 5 pilot symbols ahead
in time at 5 dB average CSNR, and when the pilot spacing L is taken on
some discrete values between 66 and 10 (corresponding to pilot sampling
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FIGURE 2.5: Predicted and true fading envelope for prediction of 1 and
5 pilot symbols ahead in a SISO system. Carrier frequency fc = 5 GHz;
Doppler frequency fd = 250 Hz; predictor order Kp = 128; pilot spacing
L = 40; and average CSNR γ̄ = 10 dB.

frequency between fs = 6 kHz and 40 kHz). From a MSE performance
point of view, the channel predictor order can be shortened to a reasonable
value without affecting the MSE since it saturates and stabilizes when the
order is high enough.

To finalize this subsection, we include a 3-dimensional (3-D) plot of
MSE performance as a function of both expected CSNR and the prediction
horizon. As shown in Figure 2.7, a predictor with 128 taps in combination
with a pilot spacing L = 40 is adequate to achieve stable MSE performance,
as long as the expected CSNR is not too low or the prediction horizon is not
too long. However, when BER performance is used to measure the system
quality, the requirement of predictor order Kp and pilot spacing L might be
changed.
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FIGURE 2.6: MSE of the prediction error as a function of predictor order
Kp (K was used in [Duong, 2002] to denote the predictor order) at average
CSNR γ̄ = 5 dB. Carrier frequency fc = 5 GHz and Doppler frequency
fd = 250 Hz. It is plotted for different pilot sampling frequencies fs cor-
responding to different pilot spacing L, and prediction of 5 pilot symbols
ahead.

2.7 System Parameters Used in Numerical Example

For comparison reasons, most of the system parameters used in this thesis
are chosen to be the same as those in [Cai and Giannakis, 2005]. This is
because all the results of the thesis can be said to directly generalize the
results in [Cai and Giannakis, 2005] in various directions. Also, for easily
comparing the results of different systems under considerations we will use
the same set of parameters throughout the thesis and they are as follows:

• Set of constellations {Mn} = {4, 8, 16, 32, 64, 128, 256, 512}.

• Carrier frequency fc = 2 GHz.

• Mobile speed v = 30 m/s.

• Channel symbol duration Ts = 5 µs.
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error as a function of both average CSNR and the number of pilot sym-
bols ahead to be predicted. Carrier frequency fc = 5 GHz; Doppler fre-
quency fd = 250 Hz; L = 40; and predictor order Kp = 128.

• System delay τ = DLTs = 1 ms. For simplicity, and due to the fact
that D has to be an integer, the pilot spacing L can only take on a
certain value in the set {1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200}. At the
same time L > nT where nT is the number of transmit antennas.
Note that, for SISO and SIMO cases, L = 1 implies that SE is zero
(cf. Eq. (2.2)), thus L = 1 is included here for the sake of completeness
only. This is in contrast to [Cai and Giannakis, 2005] where the pilot
spacing takes on all possible integer values in the range [2, · · · , Lmax],
where Lmax is the largest spacing two pilot symbols can have in or-
der to satisfy the Nyquist sampling theorem. Note that, for the given
parameters, Lmax = 500 � 200.

• BER requirement BER0 = 10−5.

• Estimator order Ke = 20 and predictor order Kp = 250.

• In a space diversity case, unless otherwise is explicitly stated, the sub-
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channels are assumed to be mutually independent and the branches
CSNRs are the same on every branch.

With this carrier frequency and mobile terminal velocity the maximum
Doppler shift is fd = v fc/c = 200 Hz, where c = 3 · 108 m/s is the speed of
light. Hence, the normalized Doppler frequency is τ fd = 0.2. This value is
very high compared to the critical normalized time delay τ fd = 0.01 (in a
perfect-CSI adaptive system) below which the system operates satisfactory
(otherwise, the BER performance can not be guaranteed for such systems).

The choice of Kp = 250 leads to a suboptimal but satisfactory predictor
[Duong, 2002; Øien et al., 2002]. On the other hand, Ke = 20 is sufficient
since the estimator uses both information from past and future to estimate
the current value and the MSE of the estimation error as a function of esti-
mator order already saturates at this value [Cai and Giannakis, 2005].
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Chapter 3

Adaptive Coded Modulation
With Imperfect Channel State
Information: the SISO Case

This chapter is based on a paper presented at the conference Nordic Radio
Symposium (NRS) [Duong and Øien, 2004].

3.1 Introduction

In traditional PSAM systems [Cavers, 1991; Sampei and Sunaga, 1993], pi-
lot symbols are multiplexed into the data stream at fixed spacing intervals
and there is no special power treatment of these symbols. Cai and Gi-
annakis [2005] analyzed an uncoded adaptive QAM modulation system
where both pilot spacing and power allocation on pilot symbols are opti-
mized with respect to the average channel conditions. In this chapter, we
extend their concept to include forward error correction coding. We opti-
mize the pilot spacing L and a power allocation variable α in a maximal
ASE sense subject to the constraint that the instantaneous BER can not ex-
ceed a target value denote BER0 at any given time. Moreover, we will pro-
vide a simpler optimization algorithm than the sequential quadratic pro-
gramming numerical search algorithm of Cai and Giannakis [2005].

The chapter is organized as follows. Section 3.2 describes the system
model where both channel estimation and prediction error variances are
derived. Then BER analysis and ASE analysis are presented in Sections
3.3 and 3.4, respectively. A numerical example is given in Section 3.5 and
conclusions are drawn in Section 3.6.

33



3. ACM SYSTEMS WITH IMPERFECT CSI OPERATING ON SISO CHANNELS

Buffer

Predictor Estimator

selector

adaptive decoder,

and demodulator

Coherent detector,

channel

FadingPilot

insertion

Power

control

Adaptive encoder

and modulator

Zero-error,

delay τ

feedback channel

Pilot period,

power, and

constellation

FIGURE 3.1: The adaptive PSAM system model

3.2 System Model

The narrowband system under consideration is depicted in Figure 3.1. We
denote the received, noisy and faded pilot symbols in complex baseband
as

ypl(k; 0) =
√
Eplh(k; 0)s(k; 0) + n(k; 0) (3.1)

and the received data symbols as

yd(k; l) =
√
Edh(k; l)s(k; l) + n(k; l), l ∈ [1, · · · , L− 1]. (3.2)

Channel Estimation

Let he(k; l) be the linear estimate of h(k; l). The estimation error is given by
εe(k; l) = h(k; l)− he(k; l) and the MSE is defined as σ2

e (l) = E
[
|εe(k; l)|2

]
.

Since the channel gain by assumption is a Gaussian random process (RP)
with zero mean, he(k; l) and εe(k; l) are also zero mean Gaussian RVs. The
error σ2

he
(l) may then be written as σ2

he
(l) = 1− σ2

e (l). In what follows we
will find analytical expressions for both estimated channel and the corre-
sponding MMSE.

Since the received samples are complex Gaussians, the optimal channel
estimate in a MAP sense is a linear combination of the observations [Meyr
et al., 1998, p. 741–742], and the estimated channel is given by

he(k; l) = wH
e ypl, (3.3)

where ypl =
[
ypl(k− bKe/2c; 0), · · · , ypl(k + b(Ke − 1)/2c; 0)

]T is a vector
containing receive symbols at pilot symbol instances and we is given in
(2.18). However, we restrict ourselves to always sending the same pilot
symbol, whose absolute value is equal to 1. As a result, D(s) in (2.18) is
always proportional to the identity matrix and it can be shown (see Ap-
pendix A) that the optimal estimator is simplified to

ωe =
(

Re +
1

(1− α)γ̄L
IKe

)−1

re.
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Hence the estimated channel becomes

he(k; l) = ωH
e ỹ (3.4)

where ỹ = ypl/(s
√
Epl) and it is known as the maximum likelihood (ML)

channel estimation. Moreover, it is also shown in Appendix A that the
MMSE can be written as [Cai and Giannakis, 2005]

σ2
e (l) = 1−

Ke

∑
κ=1

|uH
κ re|2(1− α)Lγ̄

(1− α)Lγ̄λκ + 1
. (3.5)

The vectors uκ for κ = [1, · · · , Ke] are the eigenvectors corresponding to the
eigenvalues λκ of the correlation matrix Re.

Channel Prediction

Let hp(k; l) be the predicted channel and let the MSE of the prediction error
be σ2

p(l) = E
[
|εp(k; l)|2

]
, where εp(k; l) = h(k; l) − hp(k; l). Again, it is

easy to show that σ2
hp

(l) = 1− σ2
p(l). Applying the same analysis as in the

estimation case, the MAP-optimal linear predicted channel gain is1

hp(k; l) = wH
p ypl

= rH
p

(
Rp +

1
(1− α)Lγ̄

IKp

)−1

ỹ = ωH
p ỹ. (3.6)

Now, ypl =
[
ypl(k− D; 0), · · · , ypl(k− D − Kp + 1; 0)

]T, ỹ = ypl/(s
√
Epl)

is the ML channel estimate, and wp and ωp = (Rp + IKp /[(1− α)γ̄L])−1rp
are the optimal predictor given by (2.20) and (A.14), respectively.

Similarly to (3.5) the MMSE of prediction error is

σ2
p(l) = 1−

Kp

∑
κ=1

|uH
κ rp|2(1− α)Lγ̄

(1− α)Lγ̄λκ + 1
. (3.7)

In this case, {uκ}
Kp
κ=1 are the eigenvectors corresponding to the eigenvalues

{λκ}
Kp
κ=1 of the matrix Rp.

Comparing our filters to the MAP-optimal filter in [Øien et al., 2004]
we see that our filters are slightly different since the factor in front of the
identity matrix involves the frame size L and the variable α. This is obvious
since we have different pilot and signal power, and both parameters will be
optimized to achieve maximum throughput.

1If A is Hermitian, then A−1 is also Hermitian [Råde and Westergren, 2000].
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Since the channel is assumed to be zero-mean complex Gaussian and
since the prediction error filter has the whitening property, the predicted
channel is also complex Gaussian with zero mean. Then the PDF of the
amplitude is Rayleigh and the predicted CSNR will follow an exponential
distribution or, equivalently, a gamma distribution: γ̂ ∼ G (1, ¯̂γ), where ¯̂γ
is average of the total predicted CSNR given by (3.18).

Data is not transmitted when γ̂ < γ̂1 and according to (2.13), the actual
transmission data power can thus be configured as

Ed =
Ēd∫ ∞

γ̂1
fγ̂(γ̂)dγ̂

= Ēd exp
(

γ̂1
¯̂γ

)
. (3.8)

3.3 BER Analysis

Whether or not the channel estimates are imperfect or assumed perfect,
they will be used for detection of the incoming signal. In case the estimates
are not perfect, they will be used as if they represent true values. To reduce
the complexity of the receiver, we use a suboptimal symbol-by-symbol ML
detection

ξ(k; l) =
yd(k; l)√
Edhe(k; l)

. (3.9)

As a result, the instantaneous CSNR at the time of detection is equal to [Cai
and Giannakis, 2005]

γ(k; l) =
Ed|he(k; l)|2

N0 + gEdσ2
e (l)

, (3.10)

where g = 1 for 4-QAM and g = 1.3 for higher QAM constellations.
Clearly, imperfect estimation degrades the CSNR. If estimation is perfect,
he(k; l) coincides with the true channel h(k; l) and the MMSE is zero. In this
case, γ = Ed|h|2/N0, the standard expression in the literature.

3.3.1 BER in the Presence of Channel Estimation Errors

Trellis codes are used as component codes in our analysis, and a tight ap-
proximation expression for the BER performance on AWGN channels is
given in (2.7). Replacing γ in (2.7) with (3.10), we have the following ex-
pression for the BER when having estimated the channel:

BER
(

Mn
∣∣|he|

)
=


an exp

(
− bnEd|he|2

Mn(N0 + gEdσ2
e (l))

)
when |he| ≥ |he|n,T

1
2

when |he| < |he|n,T.
(3.11)
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The thresholds |he|n,T are easily found by equating the exponential part of
(3.11) to the second part of the same equation and solve for |he|. The re-
sult is |he|n,T =

√
ln(2an)Mn(N0 + gEdσ2

e )/(bnEd). With this expression at
hand, and since the system adaptation is based on predicted CSNR, we will
derive the BER when we have predicted the channel, where the estimation
error is also accounted for.

3.3.2 BER in the Presence of Both Channel Estimation and
Prediction Errors

Since the predicted and estimated channels respectively are modelled as
hp(k; l) = h(k; l) − εp(k; l) and he(k; l) = h(k; l) − εe(k; l), the estimated
channel can be written as

he(k; l) = hp(k; l) + εp(k; l)− εe(k; l). (3.12)

This representation is the key to the following analysis. Note that all the
RVs in the above equation are complex Gaussians. Evidently, hp(k; l) and
εp(k; l) are uncorrelated due to the orthogonality principle [Papoulis and
Pillai, 2002, Chap. 7-3] used when designing the MAP-optimal predictor.
Moreover, the normalized correlation between hp(k; l) and εe(k; l), denoted
by $, can be found based on the MMSE channel estimator and predictor.
As a result, when hp(k; l) is given, he(k; l) is Gaussian distributed with
mean µhe|hp = E

[
he(k; l)|hp(k; l)

]
= (1 − $)hp(k; l) and variance σ2

he|hp
=

E
[
|εp(k; l)− εe(k; l) + $hp(k; l)|2

]
. Since the mean µhe|hp 6= 0, the magni-

tude |he(k; l)| given hp(k; l) follows a Rice distribution with the Rician fac-
tor K = |(1− $)hp(k; l)|2/σ2

he|hp
. However, it is shown by Cai and Giannakis

[2005] that $ typically takes on very small values, and that the BER perfor-
mance deviation obtained by using the exact value of $ instead of setting
$ = 0 is less than 0.2 dB. We therefore choose to set $ = 0 in our analy-
sis. Hence, K reduces to K = |hp(k; l)|2/σ2

he|hp
, where σ2

he|hp
= σ2

p(l) + σ2
e (l)

when assuming that εp(k; l) and εe(k; l) are uncorrelated.2

To obtain the expression characterizing the BER performance given the
predicted channel, we average the BER conditioned on the estimated chan-
nel over the PDF of estimated channel conditioned on the predicted chan-

2Since both the causal and noncausal estimates use partly the same information, there
should be a dependence between these two quantities. From next chapter, we will relax this
assumption to account for the correlation between the two.
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nel. That is,

BER(Mn|hp) =
∫ ∞

0
BER

(
Mn
∣∣|he|

)
fhe|hp

(
|he|
∣∣hp
)

d|he|

= T (0, ∞)− T (0, |he|n,T) +F (0, |he|n,T) , (3.13)

where

T (0, ∞) =
∫ ∞

0
an exp

(
− bnEd|he|2

Mn(N0 + gEdσ2
e )

)
fhe|hp

(
|he|
∣∣hp
)

d|he|,

(3.14)

T (0, |he|n,T) =
∫ |he|n,T

0
an exp

(
− bnEd|he|2

Mn(N0 + gEdσ2
e )

)
fhe|hp

(
|he|
∣∣hp
)

d|he|,

(3.15)

F (0, |he|n,T) =
∫ |he|n,T

0

1
2

fhe|hp

(
|he|
∣∣hp
)

d|he|. (3.16)

Closed-form solutions for these integrals are derived in Appendix B.

The predicted CSNR can be calculated as [Øien et al., 2004; Cai and Gi-
annakis, 2005]

γ̂(k; l) =
Ēd|hp(k; l)|2

N0
. (3.17)

In the above equation, Ēd is used because we do not know whether or not
the system is in outage at the time it is predicted (i.e. τ seconds ahead).
Taking the expectation of both sides of (3.17) gives ¯̂γ = Ēd(1− σ2

p(l))/N0.
Upon replacing N0 = E/γ̄ (cf. Eq. (1.5)) and defining r = Ēd(1− σ2

p(l))/E
the average CSNR is

¯̂γ =
Ēd

N0

(
1− σ2

p(l)
)

= rγ̄. (3.18)

Solving (3.17) for |hp| and inserting the answer into the solution of the
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integrals in (3.14)–(3.16) gives

BER(Mn|γ̂) =andn exp
(
− γ̂AndnEEd

γ̄Ēd

)
− andn exp

(
− γ̂E

γ̄Ēdσ2
he|hp

)

×
∞

∑
m=0

1
m!

(
γ̂dnE

γ̄Ēdσ2
he|hp

)m(
1− Γ

(
1 + m,

|he|2n,T

dnσ2
he|hp

))

+
1
2

exp

(
− γ̂E

γ̄Ēdσ2
he|hp

)

×
∞

∑
m=0

1
m!

(
γ̂E

γ̄Ēdσ2
he|hp

)m(
1− Γ

(
1 + m,

|he|2n,T

σ2
he|hp

))
,

(3.19)

where Γ(·, ·) is the normalized incomplete gamma function (see Defini-
tion 2 in Appendix B). For the clarity of the expressions, we have collected
some constants and variables and grouped them into the terms

An =
bn

Mn(N0 + gEdσ2
e )

, (3.20a)

dn =
1

AnEdσ2
he|hp

+ 1
. (3.20b)

Using an approach similar to the one in [Webb and Steele, 1995] the
optimal switching thresholds can be determined by solving BER(Mn|γ̂) =
BER0 with respect to γ̂ for different Mn constellations. This operation can
not be done analytically since, as we can see from (3.19), the dependence of
γ̂ is very involved. Thus, a numerical solution must be used.

Now, in order to calculate BER in Eq. (2.6), we need BER(Mn) which
is the average BER for the actual constellation Mn. To obtain that, we
need to average BER(Mn|γ̂) over the PDF of the predicted CSNR within
the range in which the constellation Mn is employed. As mentioned ear-
lier, the predicted channel also follows a Rayleigh distribution. Then, the
predicted CSNR is exponentially distributed, or equivalently, gamma dis-
tributed: γ̂ ∼ G (1, rγ̄). Hence, BER(Mn) is expressible as

BER(Mn) =
∫ γ̂n+1

γ̂n

BER(Mn|γ̂) fγ̂(γ̂)dγ̂

= B1(Mn)−B21(Mn) + B22(Mn). (3.21)
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The three integrals of interest can be expressed as follows (for detailed
calculations, look into the Appendix B):

B1(Mn) =
andnĒd

rAndnEEd + Ēd

×
[

exp
(
−γ̂n

rAndnEEd + Ēd

rγ̄Ēd

)
− exp

(
−γ̂n+1

rAndnEEd + Ēd

rγ̄Ēd

)]
, (3.22)

B21(Mn) =
anĒdσ2

he|hp

rE
∞

∑
m=0

(
rdnE

rE + Ēdσ2
he|hp

)m+1(
1− Γ

(
1 + m,

|he|2n,T

dnσ2
he|hp

))

×
[

Γ

(
1 + m, γ̂n

rE + Ēdσ2
he|hp

rγ̄Ēdσ2
he|hp

)
− Γ

(
1 + m, γ̂n+1

rE + Ēdσ2
he|hp

rγ̄Ēdσ2
he|hp

)]
, (3.23)

and

B22(Mn) =
Ēdσ2

he|hp

2rE
∞

∑
m=0

(
rE

rE + Ēdσ2
he|hp

)m+1(
1− Γ

(
1 + m,

|he|2n,T

σ2
he|hp

))

×
[

Γ

(
1 + m, γ̂n

rE + Ēdσ2
he|hp

rγ̄Ēdσ2
he|hp

)
− Γ

(
1 + m, γ̂n+1

rE + Ēdσ2
he|hp

rγ̄Ēdσ2
he|hp

)]
. (3.24)

As a check, it can be seen from (3.15) and (3.16) that they are equal if an =
1/2 and bn = 0 (implying that dn = 1). Thus, (3.24) also can be obtained
from (3.23) by setting an = 1/2 and dn = 1.

Before calculating the average BER given by (2.6), the probabilty Pn has
to be calculated. Integrating the exponential PDF (or gamma PDF with
shape parameter equal to 1) over the interval [γ̂n, γ̂n+1〉 gives

Pn =
∫ γ̂n+1

γ̂n

fγ̂(γ̂)dγ̂ = exp
(
− γ̂n

rγ̄

)
− exp

(
− γ̂n+1

rγ̄

)
. (3.25)

Finally, we are able to find the BER by combining Eqs. (2.2), (3.21)–
(3.24), and (3.25).

3.4 ASE Analysis

The goal of this section is to optimize the adaptive system in a maximal
ASE sense based on feedback CSI. The system will adapt the code, the pilot
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spacing L, and the power allocation variable α in such a way that ASE is
maximized while keeping BER(Mn|γ̂) ≤ BER0. As can be seen from the
analysis in the previous section, the approach includes both estimation and
prediction errors.

It is obvious that the variance of the prediction error is largest when
predicting the last symbol in a frame—i.e., l = L − 1. On the other hand,
the variance of the estimation error is almost the same for all l if the order
of the estimation filter is Ke ≥ 20 [Cai and Giannakis, 2005]. Thus we will
use the estimation error variance σ2

e (L − 1) and the conservative choice of
the prediction error variance σ2

p(L− 1) when finding the optimal switching
thresholds {γ̂n}N

n=1 as well as in the further optimization process.
Upon combining (2.2) and (3.25) as shown in (2.5) the average ASE is

given as

ASE =
N

∑
n=1

RnPn

=
L− 1

L

[
exp

(
− γ̂1

rγ̄

)(
log2(Mn)−

1
2

)

+
N

∑
n=2

exp
(
− γ̂n

rγ̄

)
log2

(
Mn

Mn−1

)]
. (3.26)

Let fs be the pilot sampling frequency. The Nyquist theorem says that
fs must be at least twice the bandwidth of the channel gain process in or-
der to avoid aliasing. In an isotropic scattering environment, the fading is
described by the Jakes spectrum and, as a result, the bandwidth is strictly
band-limited to the Doppler frequency fd. When signaling at Nyquist rate,
the time between two pilot symbols is LTs = 1/(2 fd). Hence, the max-
imum distance between two pilots—measured in number of symbols—is
Lmax = b1/(2 fdTs)c. Since every Lth symbol is a pilot, then L = 1 gives
zero SE. Thus, for L ∈ [2, · · · , Lmax] we have the following optimization
problem3

max
α

ASE

subject to 0 < α < 1. (3.27)

For a given mean CSNR, we need to calculate the switching thresholds
such that BER(Mn|γ̂) = BER0. It turns out that BER(Mn|γ̂) depends on—
among other things—Ed which, again, is a function of the first switching

3Unfortunately, we can not express ASE in such a way that its dependence on α and L
becomes clear. This difficulty is due to the fact that both L and α are very involved in both
ASE and BER expressions.
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threshold γ̂1 (cf. Eq. (3.8)). The problem now is reduced to finding the first
threshold γ̂1, while the other thresholds are easily found once γ̂1 is known.
The optimization algorithm will be used extensively throughout the thesis
and, therefore, we summarize it here in the following algorithm:

Algorithm 1 (The optimization algorithm)
Given an average CSNR level and a value of L within the possible range,
we optimize α ∈ R+ in the interval 〈0, 1〉 such that ASE is maximized.
Thus, for each value of α we do the following steps:

• Let Ed be a function of the whole dynamic range of γ̂ (note that it is
not γ̂1).

• With that Ed we solve BER(M1|γ̂) = BER0 with respect to γ̂, result-
ing in γ̂1(α, L).

• Ed is now explicitly given by (3.8) and the other switching thresh-
olds {γ̂n(α)}N

n=2 can easily be found—for the given value of α—by
solving BER(Mn|γ̂) = BER0 for n = 2, · · · , N with the value Ed(γ̂1)
inserted.

• If ASE reaches its max with this α, then α is declared to be the optimal
solution. Otherwise, the algorithm starts over again with another
value of α until an optimal solution is obtained.

In this way, the optimization of (3.27) is done simply by letting a numerical
search to pick a real-valued α ∈ 〈0, 1〉 which maximizes the ASE. For this
purpose, we have used the function fminbnd in MATLAB where we have
to specify a lower bound and an upper bound of α—where the solution is
contained—to find the solution.

After solving (3.27) for all the possible L values, the maximum ASE is
found by searching over all L in order to find the α and L values which
simultaneously maximize ASE.

Once ASE is maximized, we have an optimal value of α. As a result, the
corresponding switching thresholds are also optimal. Note that, since ASE
is finite, there is always a solution to the optimization problem. At this
point, it is noted that, the problem of maximizing ASE has been reduced
from a 2-D function S(α, Ed) in [Cai and Giannakis, 2005, Eq. (23)] to a 1-
dimensional (1-D) function, i.e., ASE(α). Optimization of a 1-D function
is, in general, simpler than the sequential quadratic programing numerical
search over a 2-D function (i.e., 2 constraints) which is used in [Cai and
Giannakis, 2005].

3.5 Numerical Example

To illustrate the theory analyzed in the previous sections, we run a calcula-
tion on the basis of the system parameters given in Section 2.7. The results
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FIGURE 3.2: Fraction of power allocation to data symbols when the pilot
period L is optimal. Carrier frequency fc = 2 GHz; Doppler frequency
fd = 200 Hz. Both prediction and estimation errors are taken into account
and the system delay τ = 1 ms.

of α, L, ASE, and BER are given in Figures 3.2, 3.3, 3.4, and 3.5, respectively.
Note that these results are somewhat different to what was presented in
[Duong and Øien, 2004]. The changes are done to reflect the fact that the
pilot spacing L only can take on certain discrete values; which were intro-
duced in Section 2.7.

Figure 3.2 shows the optimum fraction of power allocated to data sym-
bols when pilot spacing L is optimized. When the power is optimally al-
located, less power is put on data symbols compared to when the power
is equally allocated. This effect can partially be explained by the fact that
we already have protected our data, so less power is needed for the same
error performance. Thus, the power can be more freely distributed to the
pilots. On the other hand, as the quality of the channel increases in terms of
average CSNR, data power increases and less power is put on pilots. In this
case, the correlation between the pilot time instances becomes more reliable
even though the pilot spacing is larger. This is due to the improvement of
the channel quality.
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FIGURE 3.3: Optimum pilot spacing L for both optimal and equal power
allocation. Carrier frequency fc = 2 GHz; Doppler frequency fd = 200
Hz. Both prediction and estimation errors are taken into account and the
system delay τ = 1 ms.

The development of the pilot spacing L with the channel quality is de-
picted in Figure 3.3. Clearly, as expected, denser pilot symbol spacing is
needed when the channel is bad, and it increases with increasing average
CSNR. In the optimal power scenario, the distance between pilots is con-
siderably larger than in the equal power scenario. Looking at both Figures
3.2 and 3.3 we see that there is a good match between how the power is
distributed and the pilot spacing: long pilot period in combination with
high pilot power (optimal power case) versus short pilot period with low
pilot power (equal power case). This is necessary in order to maintain a
certain correlation between the pilot samples impaired by noise since this
correlation is exactly what the system exploits to predict and estimate the
channel. The better the correlation is, the more accurate the tracking of the
channel becomes and the better is the BER to be maintained.

The optimum ASE is presented in Figure 3.4 as a function of expected
CSNR. The capacity of a fading channel is also included. Needless to say,
as can be observed, the ASE performance corresponding to optimal power
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FIGURE 3.4: Average spectral efficiency against expected CSNR. Carrier
frequency fc = 2 GHz; Doppler frequency fd = 200 Hz. Both prediction
and estimation errors are accounted and the system delay τ = 1 ms.

and optimal L case outperforms both when either power distribution is op-
timal in combination with fixed L or optimal L in combination with equal
power. Moreover, when comparing our results to the uncoded M-QAM
performance in [Cai and Giannakis, 2005], we observe that our optimum
ASE based on coded QAM constellations is just slightly better than for
uncoded M-QAM at very low CSNR. The gain is bigger with increasing
CSNR and is almost 1 bit/s/Hz at 30 dB CSNR. This corresponds to a gain
of about 3 dB in average CSNR due to coding (and due to the fact that we
have one more constellation to use).

Average BER is plotted in Figure 3.5. As can be seen, it is always lower
than BER0. This is as expected, since the switching thresholds are calcu-
lated to keep the instantaneous BER (with respect to the predicted CSNR)
below the target value BER0. That is BER(Mn|γ̂) ≤ BER0. The average BER
must therefore be lower than BER0. It is plotted for both optimal and equal
power allocation when L is optimal in both cases. The BER curve for opti-
mal power and L is (unnecessary) lower than when only L is optimal. On
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FIGURE 3.5: Average BERplotted for optimal power and optimal L, and
equal power and optimal L.

the other hand, the thoughput in terms of ASE is still 0.5 bits/s/Hz higher
when the power distribution is optimal.

3.6 Concluding Remarks

We have investigated an ACM system where the power allocation between
pilot and data symbols is optimized and where the pilot spacing is adap-
tively changed in an optimal way according to the quality of the channel.
Both channel estimation error at the receiver and channel prediction error
at the transmitter have been taken into account. The results justify the ad-
vantage of having the system parameters optimized, and it was shown that
ASE performance is considerably higher than the uncoded case. The gain
is up to 1 bits/s/Hz at high CSNR regions. This is achieved without losing
BER performance since the BER curves are always below the target BER.
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Chapter 4

Adaptive Coded Modulation
With Receive Antenna
Diversity and Imperfect
Channel Knowledge

This chapter is based on a paper presented at the conference European Signal
Processing Conference (EUSIPCO) [Duong, Øien, and Hole, 2005], a journal
paper published in IEEE Transactions on Vehicular Technology [Duong, Øien,
and Hole, 2006], and a temporary document at 12th Management Committee
Meeting, COST Action 273: Towards Mobile Multimedia Broadband Networks
[Duong and Øien, 2005]. The last part of this chapter, dealing with the
average time the fading remains within a fading interval, is taken from
[Duong and Øien, 2006].

4.1 Introduction

The scheme presented here is a generalization of two papers—one by Cai
and Giannakis [2005], in which an adaptive modulation system based on
uncoded M-QAM constellations with a single transmit and a single re-
ceive antenna is investigated, and one by Øien et al. [2004], where an ACM
system with MRC reception was investigated assuming perfect receiver
CSI. We extend and unify the idea of these papers by analyzing the case
when coding is included and when MRC is implemented at the receiver. In
case of imperfect channel estimation, MRC is no longer the optimal com-
bining scheme. The optimal combining technique was presented by You
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FIGURE 4.1: The ACM system based on adaptive PSAM combined with
multi reception of receiving signal.

et al. in 2005 where they considered estimation error as an additional noise
source that is not white. However, the results in that paper indicated that
the error performance based on the suboptimal combining scheme—where
the estimated channels are treated as the true channel state and are used for
MRC combining—is very close to that of the optimal combining. Thus, for
simplicity, we will use the suboptimal combining technique. The system
parameters are optimized, as in the previous chapter. Moreover, we will
also address the question on how often, on average, the system needs to
switch between different codes.

The chapter is organized as follows. Section 4.2 describes the system
under study. The BER performance is analyzed in presence of both estima-
tion and prediction errors in Section 4.3. Formulation of ASE performance
is given in Section 4.4, while expressions related to average fade region du-
ration (AFRD) are given in Section 4.5. Numerical analysis is presented in
Section 4.6 and, finally, the conclusions are drawn in Section 4.7

4.2 Description of the System

With reference to Figure 4.1, the system now has nR receive antennas. The
signals are combined with the MRC technique, and it is assumed that the
branches are mutually uncorrelated. This can be accomplished by separat-
ing the antenna elements with at least half a wavelength from each other
in an isotropic scattering environment [Rappaport, 2002, p. 385]. However,
for low fading correlation, a separation of a quarter of a wavelength is suf-
ficient at the mobile unit [Winters, 1998]. This distance also is sufficient
for base station antennas in indoor systems. In outdoor systems, on the
other hand, separation of 10–20 wavelengths is required at the base station
[Winters, 1998]. This is due to the fact that the base station is often located
at high altitude such that the angular spread—the angle over which the
signal arrives at the receive antennas—can be very small.

Similar to (2.9) and (2.10), the received, noisy, and faded pilot symbols
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of the µth branch are written in complex baseband as

ypl;µ(k; l) =
√
Eplhµ(k; l)s(k; l) + nµ(k; l),

l = 0; µ = 1, · · · , nR, (4.1)

and the received data symbols as

yd;µ(k; l) =
√
Edhµ(k; l)s(k; l) + nµ(k; l),

l = 1, · · · , L− 1; µ = 1, · · · , nR. (4.2)

Each subchannel is assumed to be slowly varying so that it remains con-
stant over many channel symbols, and we perform the estimation and pre-
diction independently on each subchannel.

4.3 BER Performance Analysis

Since the subchannels are assumed to be i.i.d. and we do both estimation
and prediction independently on each subchannel, the channel estimation
and the channel prediction analysis procedures developed in the previous
chapter is still applicable on a per branch basis.

4.3.1 BER Analysis in the Presence of Estimation Errors

To reduce the complexity of the receiver, suboptimal symbol-by-symbol
ML detection is performed on each receiver branch (cf. Eq. (3.9)). The to-
tal CSNR after MRC1 is the sum of the individual branch CSNRs [Jakes,
1994, Ch. 5; Brennan, 2003, Eq. (26)]. The CSNR on each branch γµ is then
identical to γ in (3.10) and the total CSNR is therefore

γ(k; l) =
nR

∑
µ=1

γµ =
Ed

N0 + gEdσ2
e (l)

nR

∑
µ=1

|he;µ(k; l)|2, (4.3)

where the last equality is obtained by noting that the variance of the esti-
mation error is the same for all branches, i.e., σ2

e;µ(l) = σ2
e (l) ∀µ and σ2

e (l)
is given in Eq. (3.5). This is true, because the branches are assumed to be
i.i.d., and the same estimation algorithm is used on all branches.

1Diversity combining, in general, is useful for combating fading and is efficient in the
absence of interference. In the presence of cochannel interference, however, the array pro-
cessing methods are able to provide better performance by cancelling interferences [Win-
ters, 1984].
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Tight approximations for the BER performance of 4-D trellis codes are
given in (2.7) and are used in the previous chapter. However, in order to
obtain a closed-form and a mathematically tractable solution when MRC is
considered, we use a somewhat looser BER approximation as given in (2.8).
Inserting (4.3) into (2.8) the BER becomes

BER
(

Mn
∣∣ {he;µ

})
=

L
∑
`=1

an(`)
nR

∏
µ=1

exp
(
−An(`)Ed|he;µ(k; l)|2

)
. (4.4)

This equation will be useful when deriving the BER in the presence of both
prediction and estimation errors in the next subsection. Similar to (3.20) we
collect some constants and variables and define the term An(`) and dn(`)
as

An(`) =
bn(`)

Mn(N0 + gEdσ2
e (l))

, (4.5a)

dn(`) =
1

An(`)Edσ2
he|hp

+ 1
, (4.5b)

respectively. Whilst the constant An(`) already has appeared in Eq. (4.4),
the constant dn(`) is defined for later use.

4.3.2 BER Analysis in the Presence of Both Estimation and
Prediction Errors

Following (3.12) we may express the estimated channel as

he;µ(k; l) = hp;µ(k; l) + εp;µ(k; l)− εe;µ(k; l). (4.6)

In Chapter 3, it was established that for a single antenna system, the PDF
fhe;µ|hp;µ

(
|he;µ|

∣∣hp;µ
)

is Rice. For an MRC system operating on i.i.d. branches,
fhe|hp

(
{|he|}

∣∣ {hp
})

can be written simply as

fhe|hp

(
{|he|}

∣∣ {hp
})

=
nR

∏
µ=1

fhe;µ|hp;µ

(
|he;µ|

∣∣hp;µ
)

. (4.7)

Each individual PDF still follows a Rice distribution with the Rician factor
K = |(1 − $)hp;µ(k; l)|2/σ2

he;µ|hp;µ
, where $ = E[εe;µ(k; l)h∗p;µ(k; l)]/σ2

hp;µ
(l) is

the normalized correlation between the predicted channel and the estima-
tion error, and

σ2
he;µ|hp;µ

= Var
(
he;µ(k; l)|hp;µ(k; l)

)
= E

[
|εp;µ(k; l)− εe;µ(k; l) + $hp;µ(k; l)|2

]
.

50



BER PERFORMANCE ANALYSIS

As in the previous chapter, we choose $ = 0 in our analysis. Since the es-
timation and prediction procedures partly are based on the same informa-
tion, there should be a dependence between εe;µ(k; l) and εp;µ(k; l). Thus,
in contrast to [Cai and Giannakis, 2005], we will consider that the two are
correlated and the correlation is

E
[
εp;µε∗e;µ

]
= E

[
hµε∗e;µ

]
− E

[
hp;µε∗e;µ

]
= σ2

e;µ − $σ2
hp;µ

= σ2
e;µ.

By assumption, $ is zero and, due to the orthogonality principle, E
[

hµε∗e;µ

]
=

σ2
e;µ. Hence, σ2

he;µ|hp;µ
reduces to (see Appendix C for an alternative proof)

σ2
he;µ|hp;µ

= E
[
|εp;µ(k; l)− εe;µ(k; l)|2

]
= σ2

p;µ(l)− σ2
e;µ(l).

As a result, the Rician factor is simplified to K = |hp;µ(k; l)|2/σ2
he|hp

for

σ2
he;µ|hp;µ

= σ2
he|hp

∀µ.
Averaging (4.4) over the PDF of Eq. (4.7) results in the BER conditioned

on the set of predicted channels. That is,

BER
(

Mn
∣∣ {hp;µ

})
=
∫ ∞

0
· · ·

∫ ∞

0︸ ︷︷ ︸
nR−fold

BER
(

Mn
∣∣ {|he;µ|

})
× fhe;µ|hp;µ

({
|he;µ|

} ∣∣ {hp;µ
})

d|he;1| · · · d|he;nR |

=
L
∑
`=1

an(`)
∫ ∞

0
· · ·

∫ ∞

0︸ ︷︷ ︸
nR−fold

nR

∏
µ=1

exp
(
−An(`)Ed|he;µ|2

)
× fhe;µ|hp;µ

(
|he;µ|

∣∣hp;µ
)

d|he;1| · · · d|he;nR |. (4.8)

With the aid of [Gradshteyn and Ryzhik, 2000, Eq. (6.633-4)], the solution
of (4.8) may be expressed as

BER
(

Mn
∣∣ {hp;µ

})
=

L
∑
`=1

an(`)dn(`)nR exp

(
−An(`)dn(`)Ed

nR

∑
µ=1

|hp;µ|2
)

,

(4.9)
where An(`) and dn(`) are as in Eq. (4.5).

The predicted CSNR on each branch is γ̂µ = Ēd|hp;µ(k; l)|2/N0. Using
the developed prediction procedure, it is well known that the MRC of pre-
dicted CSNR is a sum of the branch CSNRs and is obtained as

γ̂ =
Ēd

N0

nR

∑
µ=1

|hp;µ(k; l)|2 =
γ̄bĒd

E

nR

∑
µ=1

|hp;µ(k; l)|2, (4.10)
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where γ̄b = E/N0 is the expected CSNR to be received in one branch. Upon
solving this with respect to ∑|hp;µ|2 and inserting the solution into (4.9) we
get

BER(Mn|γ̂) =
L
∑
`=1

an(`)dn(`)nR exp
(
− γ̂An(`)dn(`)EEd

γ̄bĒd

)
. (4.11)

The combined predicted CSNR, γ̂, is fed back to the transmitter via the
return channel and is used to decide which code to use. If γ̂n < γ̂ ≤ γ̂n+1,
code n (or constellation of size Mn) is selected for transmission. To find the
optimal switching thresholds {γ̂n}N

n=1—which will be used to maximize
ASE subject to BER and power constraints—we set (4.11) equal to BER0 and
solve for γ̂ for different constellation indices n. As in the previous chapter,
we have to use a numerical approach to obtain the solutions. The optimal
switching thresholds are dependent on the expected subchannel CSNR and
these thresholds are different from the switching thresholds obtained for
perfect CSI receivers [Øien et al., 2004; Holter, 2005].

From (4.10), we can find the average predicted CSNR as

¯̂γ(k; l) =
Ēd

N0

nR

∑
µ=1

E
[
|hp;µ(k; l)|2

]
= rγ̄bnR (4.12)

where r = Ēd(1− σ2
p)/E . In the second equality it is exploited that σ2

p;µ =
σ2

p ∀µ, because the branches are assumed i.i.d., and the same prediction
algorithm is used on all branches. The overall predicted CSNR with MRC
of nR branches will follow a gamma distribution [Øien et al., 2004] with the
mean specified by (4.12), i.e., γ̂ ∼ G (nR, rγ̄b). Hence, it is seen that the
effective channel can be considered as a Nakagami-nR channel.

Once the first switching threshold is found, the actual transmit data
power, accounting for the fact that no data power is used during the occur-
rence of outage, can be set to (cf. Eq. (2.13))

Ed =
Ēd

Γ
(

nR,
γ̂1

rγ̄b

) . (4.13)
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4.3.3 Overall Average BER Performance Analysis

The average BER for the nth constellation is found by averaging (4.11) over
the gamma PDF of γ̂. That is:

BER(Mn) =
∫ γ̂n+1

γ̂n

BER(Mn|γ̂) fγ̂(γ̂)dγ̂

=
L
∑
`=1

an(`)
(

dn(`)Ēd

rAn(`)dn(`)EEd + Ēd

)nR

×
[

Γ
(

nR, γ̂n
rAn(`)dn(`)EEd + Ēd

rγ̄bĒd

)

− Γ
(

nR, γ̂n+1
rAn(`)dn(`)EEd + Ēd

rγ̄bĒd

)]
. (4.14)

Having BER(Mn) at hand, the average BER as formulated in (2.6) can
be obtained by combining the Eqs. (2.2) and (4.14) together with

Pn =
∫ γ̂n+1

γ̂n
fγ̂(γ̂)dγ̂ = Γ

(
nR,

γ̂n

rγ̄b

)
− Γ

(
nR,

γ̂n+1

rγ̄b

)
, (4.15)

which is the probability that constellation n is used.

4.4 Optimization of ASE

As in Section 3.4, we will also use the variance of the estimation error
σ2

e;µ(L − 1) and the conservative choice of the prediction error variance
σ2

p;µ(L− 1) here.

4.4.1 ASE Performance Analysis

Using the 4-D trellis codes as earlier, the ASE is now given by

ASE =
N

∑
n=1

RnPn

=
L− 1

L

N

∑
n=1

(
log2(Mn)−

1
G

) [
Γ
(

nR,
γ̂n

rγ̄b

)
− Γ

(
nR,

γ̂n+1

rγ̄b

)]
. (4.16)

4.4.2 Optimization

To find the optimal solutions, we run the maximization of ASE described
in Eq. (3.27). Hence, the optimization algorithm in Algorithm 1 on page 42
is used.
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4.5 Average Fade Region Duration

One interesting performance measure in a rate adaptive system is how long
time, on average, each different code/constellation is being used. On av-
erage, this reflects how often the system has to reconfigure its transmission
mode. The larger the time between two different modes, the less frequently
we need to feed the CSI back to the transmitter, since the channel is in the
same fading region within that time interval. Thus, this can help to deter-
mine the feedback rate in such a system.

Following the approach in [Goldsmith and Chua, 1997] and using τ̄n
to denote the nth average fade region duration (AFRD), the AFRD can be ex-
pressed as

τ̄n =
Pn

χn+1 + χn
, (4.17)

where χn is the level-crossing rate (LCR) for the nth level; which is given in
Eq. (4.18). In our ACM system, (4.17) represents the average time duration
of γ̂ within the interval [γ̂n < γ̂ ≤ γ̂n+1〉.

For i.i.d. Rayleigh fading subchannels, the LCR of the receive CSNR
after MRC is given by Beaulieu and Dong [2003]

χn =
√

2π fd

Γ(nR)

(
γ̂n

rγ̄bnR

)nR− 1
2

exp
(
− γ̂n

rγ̄bnR

)
. (4.18)

If we have perfect prediction, i.e. γ̂ coincides with γ, and nR = 1, then (4.18)
simplifies to [Goldsmith and Chua, 1997, Eq. (35)].

4.6 Numerical Analysis

We will consider the case where we have a number of receive antennas
nR ∈ {1, 2, 4}. Otherwise, the other parameters are the same as those in
Section 2.7. Even though MRC is employed at the receiver, the plots are
generated as functions of per branch CSNR. This is done since we 1) want
to make a comparison between schemes based on fixed transmit power
rather than fixed receive power, and 2) we can more easily compare the
results of this work to other previous works. Also, we can see directly the
improvement for a given overall transmit power.

Figures 4.2 and 4.3 show the optimum pilot symbol period and the op-
timum fraction of power allocation to the pilot symbols, respectively, for
different number of branches. As can be seen in Figure 4.2, when the power
distribution between pilot and data symbol is optimized, fewer pilot sym-
bols are needed. The spacing between two pilot symbols is also larger when

54



NUMERICAL ANALYSIS

5 10 15 20 25 30 35
0

20

40

60

80

100

120

140

160

180

200

Expected subchannel CSNR [dB]

L

Optimal power

Equal power

n
R
 = 1

n
R
 = 2

n
R
 = 4

FIGURE 4.2: Optimum pilot spacing L as a function of expected sub-
channel CSNR when the power is equally and optimally allocated be-
tween pilot and data symbols. The number of antennas is nR = 1, 2, and
4. Carrier frequency fc = 2 GHz; Doppler frequency fd = 200 Hz; symbol
duration Ts = 5 µs; system delay τ = 1 ms; and BER0 = 10−5.

there are more antennas available to combine. The power allocated to pi-
lot symbols is lower for higher diversity orders for both equal and optimal
power regimes (cf. Figure 4.3). This is due to the array gain and to the fact
that MRC is optimal in the sense that it maximizes the output CSNR. Thus,
less pilot power is needed when more antennas are available. As a conse-
quence of a larger pilot spacing, the optimal power allocation scheme puts
more power on the pilot than when power is equally allocated.

The pilot power increases again at very high average CSNR for the op-
timal case. This corresponds to the steeply increasing pilot period in the
same CSNR region. In order to have a good channel prediction and esti-
mation such that the system can rely on—so that the BER requirement is
maintained—more power is allocated to the pilots in this case.

Because of the finite number of codes, the ASE reaches a ceiling when
the CSNR grows. As expected, the ASE is higher when the transmit power
and the pilot spacing are optimized and when we have more antennas
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FIGURE 4.3: Fraction of power allocation to pilot symbols (i.e., 1 − α)
versus expected CSNR on each branc when the period L is optimal. The
number of antennas is nR = 1, 2, and 4. Carrier frequency fc = 2 GHz;
Doppler frequency fd = 200 Hz; symbol duration Ts = 5 µs; system delay
τ = 1 ms; and BER0 = 10−5.

available. This is due to the fact that the pilot period is larger for higher
nR as well as to the array gain. This is shown clearly in Figure 4.4.

The analysis in this chapter is based on a looser approximation of BER
performance on AWGN channels. However, the ASE performance is very
close to that when the tight approximation is used (as in the previous chap-
ter). This is seen by comparing Figure 3.4 and Figure 4.4 for nR = 1.

We can not directly compare our results with the results in [Øien et al.,
2004] since the two systems are running on different sets of parameters.
To make the comparison possible, we have run the system of Øien et al.
with our system parameters and the plots are depicted in Figure 4.5. Using
the notation in that paper, the normalized delay is: j · fDTs where fD is
the maximum Doppler frequency and j is the index of the symbol to be
predicted. If this normalized delay is equal to τ fd = 0.2 as in our paper, j
must be 200. That delay is utilized in the subfigure (a) of Figure 4.5. With
that delay, the system of Øien et al. will not be able to operate acceptably
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FIGURE 4.4: Average spectral efficiency for both optimal parame-
ters and some fixed parameters together with the channel capacity of
Rayleigh fading plotted against subchannel’s CSNR. nR is the number
of receive antennas and is set to 1, 2, and 4. Carrier frequency fc = 2
GHz; Doppler frequency fd = 200 Hz; symbol duration Ts = 5 µs; sys-
tem delay τ = 1 ms; and BER0 = 10−5.

with one or even with two receive antennas. Combining four antennas,
the system start functioning at an average CSNR = 21 dB for L = 10 (cf.
subfigure (b) of Figure 4.5). To conclude, our system operates satisfactorily
and is superior to the one of Øien et al. for the whole range of CSNRs under
consideration and for the considered delay. This holds especially at the
high-CSNR region where fixing of pilot spacing clearly is a disadvantage,
because the channel can also be satisfactorily tracked with a larger pilot
period (see also Figure 4.4).

As can be seen in Figure 4.6, the theoretical BER curves—produced from
(2.6) with the derived parameters in this chapter—are always lower than
BER0 = 10−5. The average BER performance corresponding to optimal
L and equal power allocation are almost the same as those in the figure.
Hence, we do not plot them here.

Depicted in Figure 4.7 is the probability of outage. Clearly, as can be
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FIGURE 4.5: Comparison of our system with the system in [Øien et al.,
2004]. Carrier frequency fd = 2 GHz; Doppler frequency fd = 200 Hz;
symbol duration Ts = 5 µs; BER0 = 10−5; and number of antennas is 1,
2, and 4. Whilst we consider both estimation and prediction errors the
system of Øien et al. assumes perfect channel estimation.
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ber of receive antennas (nR = 1, 2, and 4).

observed, the outage probability is somewhat lower when both power al-
location and pilot symbol spacing are optimal compared to when only pilot
spacing L is optimal and the power is equally distributed between pilot and
data symbols. Also, the curves demonstrate that diversity mitigates fading
such that deep fades are averaged out, such that outage is occurred with
lower probability.

In Figure 4.8, the constellation selection probabilities of different con-
stellations are plotted as function of average subchannel CSNR. With in-
creasing diversity order, the curves become less overlapped with each other,
and the larger constellations are chosen with higher probabilities at lower
average CSNR. Over the whole range of average CSNR under considera-
tion, and even with nR = 4, there are always constellations that are used
with non-negligible probabilities, compared to the dominant constellation
(the one which is selected with highest probability). There is an inherent
trade-off between the use for diversity and the need of adaptivity. How-
ever, the results show that there still is benefit of having both adaptation
and diversity in the same system.

The results for the AFRD are found in Tab. 4.1. The parameters needed
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FIGURE 4.7: Probability of no transmission as a function of average sub-
channel CSNR for nR ∈ 1, 2, 4 and for both optimal power, optimal L and
equal power, optimal L cases.

for calculation of the values in the fields denoted by ◦ are very small; hence,
due to the numerical precision, they can not be calculated correctly. Thus,
we set those to zero. On the other hand, the • denotes an undefined num-
ber. This is due to a zero-by-zero fraction (cf. Eq. (4.17)) since the proba-
bility of outage in this channel quality level is essentially zero, and thus
the switching threshold γ̂1 = 0. As expected, the numerical example indi-
cates that, for a given number of receive antennas, more time is spent on
larger constellations when the channel quality is getting better. The time
is remarkably greater with multiple reception of receive signals since the
channel becomes more stable. At the extreme case (nR = 4 and γ̄b = 30
dB), the system uses almost only the largest constellation. Note that one
millisecond (ms) corresponds to 200 channel symbols. With this in mind,
the values in Tab. 4.1 seem to indicate that the channel is slow enough for
our model to be quite accurate in most of the cases.
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FIGURE 4.8: Constellation selection probability as a function of average
subchannel CSNR for nR = 1 (top panel), nR = 2 (middle panel), and
nR = 4 (bottom panel). This is plotted for optimal L and optimal power
allocation. Note that the curve for M = 0 corresponds to outage proba-
bility.

4.7 Conclusions

We have investigated an ACM system where receive diversity is imple-
mented by means of MRC. The ASE is a result of an optimization of the
pilot symbol period, and the power distribution between pilot and data
symbols. The ASE is substantially higher with spatial diversity and is con-
siderably increased compared to when the pilot spacing is fixed, and when
the power is equally allocated to pilot and data symbols. The increased
ASE is obtained without losing BER performance; especially in the high
CSNR regions. This gain is due to the fact that the rate of the pilot symbols
is substantially reduced in that region compared to previous fixed solution.
Thus, fixing of the pilot symbol rate is clearly a disadvantage.

The optimal power allocation scheme is the one which puts more power
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on pilot symbols (compared to the equal power allocation strategy) as a re-
sponse to the decreased pilot symbol rate. The pilot spacing increases, and
the pilot power decreases for higher diversity orders and for both optimal
and non-optimal power distribution schemes.
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Chapter 5

Impact of Spatial Correlation

This chapter takes a step further to include spatial correlation in the system
analyzed in the previous chapter. It is based on a paper published in Nor-
wegian Signal Processing Symposium (NORSIG) [Duong, Wingar, and Øien,
2005], a paper to appear in IEEE Vehicular Technology Conference (VTC-Fall)
[Duong, Holter, and Øien, 2006b], and a journal letter submitted to IEEE
Transactions on Vehicular Technology [Duong, Holter, and Øien, 2006a].

5.1 Introduction

In order to have uncorrelated subchannels, the receive antennas must be
spaced at least half a wavelength apart [Rappaport, 2002]. However, from
an experimental point of view, about 10–20 wavelengths separation be-
tween the antenna elements is sometimes required to provide sufficient
spatial decorrelation at the outdoor base station [Winters, 1998]. Similarly,
sufficient spatial decorrelation between the receive antennas at the MS or
between the antennas of an indoor BS is obtained by separating the anten-
nas by quarter of a wavelength [Winters, 1998].

Due to physical size limitations, the antennas might however be spaced
quite close to each other. This implies that there exists some correlation be-
tween these antennas. Insufficient scattering around the base station also
leads to correlated branches [Paulraj, Nabar, and Gore, 2003]. In such a
system, spatial correlation is playing an important role when analyzing the
system performance, since it is well known that correlation degrades per-
formance [Ratnarajah, 2006]. However, this degradation can be reduced if
the correlation is exploited properly.

In this chapter, we assume that the branches are identically distributed
but spatially correlated. The chapter is in general divided into two parts.
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Both parts are dealing with a spatially correlated fading environment, but
the effect of spatial correlation is not taken into account and not exploited in
the prediction process in the first part. I.e. we are implicitly assuming that
a system designed for a spatially uncorrelated subchannels environment in
a correlated subchannels environment. Then, in the second part, a “space-
time predictor” is derived where the spatial correlation is assumed known
and, thus, is taken into account.

Only channel prediction is considered here, since it is necessary for sys-
tem adaptation and since channel estimation can be achieved with high ac-
curacy using an optimal noncausal estimator with reasonable delay [Meyr
et al., 1998, p. 660]. In particular, according to [Øien and Hole, 2001, Eq. (21)],
the estimation error variance of a single noncausal Wiener filter operating
on a slowly varying Rayleigh fading channel is equal to

σ2
e =

Ω2WLN0

EΩ + 2WLN0
(5.1)

where E is again the average transmit power and W = fdTs. When chan-
nel estimation is done on a per branch basis and applying Nyquist condi-
tion on pilot spacing we get σ2

e ≤ Ω/γ̄b = 1/γ̄b [Holm, 2002, Eq. (3.7)].
Thus, unless the CSNR is very low, the imperfection of channel estimation
is negligible compared to the prediction error and channel estimation can
be assumed to be perfect. Latter on, in Chapter 7, we will in fact explicitly
discuss how this simplification affects a the system’s performance for the
spatially uncorrelated case.

The rest of the chapter is organized as follows. Section 5.2 describes
the space-time correlation model used in the rest of the chapter. Section 5.3
introduces the statistics of the combined signals. Mathematical and nu-
merical analysis of the system performance when the subchannels are in-
dependently predicted are also given there. Then the optimal “space-time
predictor” is derived in Section 5.4 and the numerical results obtained by
using this predictor are also presented. Concluding remarks are given in
Section 5.5.

5.2 Space-Time Correlation Model

When the mobile terminal moves away from (or toward) the base station
along the mobile position angle v (as illustrated in Figure 5.1)—i.e. when
ζ = v (or ζ = v + π)—the space-time correlation function of the fad-
ing gain is approximately equal to the product of the spatial and tempo-
ral correlation function [Chen, Fitz, Li, and Zoltowski, 2004]. According
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BS
MS

ζ
v

FIGURE 5.1: Illustration of the mobile moving angle ζ and the mobile
position angle v.

to [Smith and Shafi, 2004], such a model is adequate for gauging average
system behavior. On the other hand, the exact and general space-time cor-
relation function can be found in [Lee, 1970; Abdi and Kaveh, 2000; Byers
and Takawira, 2004]. Here we are interested only in average behavior, and
thus, with reference to [Chen et al., 2004], we assume that the space-time
correlation between antenna branch µ and ν at lag m is

E
[
hµ(n)h∗ν(n + m)

]
≈ E

[
hµ(n)h∗ν(n)

]
E
[

hµ(n)h∗µ(n + m)
]

= ρh,s(|µ− ν|) · ρh,t(m), (5.2)

where ρh,s and ρh,t denotes the spatial and temporal correlation of the fad-
ing gain, respectively.

It should be noted that, when using the Jakes scattering model, ρh,t is
real-valued and given by the zeroth order Bessel function of the first kind:
J0(2π fdm) [Stüber, 1996].

5.2.1 Spatial Correlation Models

Let the instantaneous CSNR of the µth branch be γµ = Edβ2
µ/N0 where

βµ , |hµ(k; l)| and let the power correlation (which is real) between any
two adjacent branches be

ρs =
Cov

(
γµ+1, γµ

)√
Var
(
γµ+1

)
Var
(
γµ

) =
Cov

(
β2

µ+1, β2
µ

)
√

Var
(

β2
µ+1

)
Var
(

β2
µ

) . (5.3)

In general, the correlation of the fading gains between the branches is com-
plex. Following [Alouini et al., 2001; Hasna, Alouini, and Simon, 2001], the
power correlation is equal to absolute square of the correlation of the fading
gain. Thus, ρs can be calculated as

ρs = |ρh,s(1)|2 = |c− d|2, (5.4)
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where c and d are the normalized real and imaginary parts of ρh,s(1), re-
spectively.

Given the power correlation ρs, the two spatial correlation models used
in this chapter are:

1. Constant correlation

ρµν =

{
1 for µ = ν

ρs for µ 6= ν.
(5.5)

2. Exponential correlation

ρµν = ρ
|µ−ν|
s . (5.6)

In (5.5) and (5.6) µ and ν are the antenna indices: µ, ν ∈ [1, · · · , nR]. The
exponential correlation model may be applied to an equidistant array (lin-
ear array) of antenna elements, while the constant correlation model cor-
responds to an array of closely spaced receive antennas or three antennas
placed on an equilateral triangle [Simon and Alouini, 2005].

5.3 Link Adaptation in Spatially Correlated Antenna
Diversity: Independently Predicted Branches

In this part of the chapter, we apply the system designed for spatially un-
correlated receive antennas to the correlated one. This is clearly subopti-
mal, but it gives a kind of benchmark quantifying how much we can gain
by predicting the branches jointly (which is done in the next section). It also
gives performance to be expected when the spatial correlation is unknown
and thus can not be exploited in the prediction procedure.

5.3.1 The Combined Signal Statistics

The output signals can still be written as in Eqs. (4.1) and (4.2). Based on
that, the total detected data CSNR—when assuming perfect estimation—
can be written as1

γd(k; l) =
Ed

N0

nR

∑
µ=1

|hµ(k; l)|2. (5.7)

1We use γd to denote the instantaneous true CSNR when estimation is assumed to be
perfect. This is to distinguish it from γ where the estimation error is taken into account.
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Thus, letting rd = Ed/E , the total average CSNR is

γ̄d =
Ed ∑nR

µ=1 E
[
|hµ(k; l)|2

]
N0

=
nREd

N0
= rdγ̄bnR. (5.8)

Furthermore, the instantaneous and the expected predicted CSNR still
can be expressed as (4.10) and (4.12), respectively. The results are still based
on the fact that the prediction error variance is the same on all branches.

When the subchannel gains βµ , |hµ(k; l)| and β̂µ , |hp;µ(k; l)| are
Rayleigh distributed and mutually uncorrelated, both γd and γ̂ will be a
sum of uncorrelated exponentially distributed RVs or, equivalently, they
will follow gamma distributions. However, when there exists some corre-
lation between the receiving branches, the output CSNRs are not gamma
distributed anymore and their exact PDFs are given in [Aalo, 1995; Alouini
et al., 2001].2 Note that these PDFs do not belong to standard distributions
and, as a result, we can not model the correlation between γd and γ̂ exactly.
In [Mun, Kang, and Park, 1999], the PDF for the CSNR of arbitrarily cor-
related Nakagami-m fading channels (Rayleigh fading if m = 1) is shown
to be well approximated by a gamma distribution, where the two first mo-
ments are equal to those of the exact PDF. With reference to that paper, we
let γd and γ be gamma distributed with shape factor md and scale factors
θ1 and θ2, respectively. Using the shorthand notation introduced in Defi-
nition 1 on page 10, γd ∼ G (md, θ1) and γ̂ ∼ G (md, θ2). Hence the joint
distribution is still described by the bivariate gamma distribution [Holm,
2002], i.e., (γd, γ̂) ∼ G (md, θ1, θ2, ρ), where ρ is the correlation coefficient
between the two variables γd and γ̂:

ρ =
Cov(γd, γ̂)√

Var(γd) Var(γ̂)
=

Cov
(

β2, β̂2)√
Var(β2) Var

(
β̂2
) . (5.9)

It can be shown that [Holter and Øien, 2006]

ρ =
|ωH

p rp|2

η
(5.10)

where ωp is the vector of predictor filter coefficients and

η = ωH
p Rpωp +

‖ωp‖2

(1− α)γ̄bL
. (5.11)

2Only the exact PDF for constant correlation is given in [Aalo, 1995]. The PDF corre-
sponding to exponential correlation is an approximation.

69



5. IMPACT OF SPATIAL CORRELATION

TABLE 5.1: Parameters of the gamma PDFs of γd and γ̂ where ρs is the
power correlation between the two variables

Correlation model md θ

Constant nR
1+ρs(nR−1) γ̄b(1 + ρs(nR − 1))

Exponential nR

1+ 2ρs
1−ρs

(
1− 1−ρ

nR
s

nR(1−ρs)

) γ̄b

(
1 + 2ρs

1−ρs

(
1− 1−ρ

nR
s

nR(1−ρs)

))

In (5.9) and (5.10), Rp and rp denotes the covariance matrix and covariance
vector of the channel corresponding to the prediction case, respectively. It
is noted that (5.10) is identical to the result obtained for the spatially un-
correlated case (ρs = 0) [Holm, 2002, Eq. (3.21)]. This is expected since pre-
diction is performed independently on each branch as though the branches
were uncorrelated.

Note that θ1 and θ2 can respectively be written as θ1 = rdθ and θ2 = rθ,
and that γ̄d = mdθ1 and ¯̂γ = mdθ2. Both md and θ are given in Tab. 5.1
and are derived from the amount of fading [Holter and Øien, 2005]. It has
been shown in [Holter and Øien, 2006] that system performance with the
approximated PDFs is identical or very close to the performance obtained
with the exact PDFs, except at very high CSNRs.

Using the gamma approximation, the actual data power of Eq. (2.13) is
written as

Ed =
Ēd

Γ
(

md,
γ̂1

θ2

) .

5.3.2 System Performance Analysis

BER Analysis

For a given choice of code, the system is required to operate with an instan-
taneous BER3 below a predefined value BER0. Thus, we need an expression
for BER(Mn|γ̂), which can be found as

BER(Mn|γ̂) =
∫ ∞

0
BER(Mn|γ) fγ|γ̂(γ|γ̂)dγ (5.12)

where BER(Mn|γ) is as (2.8). The instantaneous CSNR is given by (5.7).
Using Bayes’ rule, fγ|γ̂(γ|γ̂) = fγγ̂(γ, γ̂)/ fγ̂(γ̂), and integrating (5.12) with

3Instantaneous with respect to the predicted CSNR
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the variable γ replaced by γd, the result of BER(Mn|γ̂) is written as

BER(Mn|γ̂) =
L
∑
`=1

an(`)
(

Mn

Φ

)md

exp
(
−γ̂

ρθ1bn(`)
θ1Φ

)
(5.13)

where Φ = Mn + θ1bn(`)(1 − ρ). By once again solving BER(Mn|γ̂) =
BER0 we obtain the switching thresholds {γ̂n}N

n=1.
The average BER is calculated as (2.6) where

BER(Mn) =
∫ γ̂n+1

γ̂n

BER(Mn|γ̂) fγ̂(γ̂)dγ̂

=
L
∑
`=1

an(`)
(

Mn

Mn + bn(`)θ1

)md

×
[

Γ
(

md, γ̂n
Mn + bn(`)θ1

θ2Φ

)
− Γ

(
md, γ̂n+1

Mn + bn(`)θ1

θ2Φ

)]
(5.14)

and

Pn =
∫ γ̂n+1

γ̂n

fγ̂(γ̂)dγ̂ = Γ
(

md,
γ̂n

θ2

)
− Γ

(
md,

γ̂n+1

θ2

)
. (5.15)

ASE Analysis

Given Rn and Pn as (2.2) and (5.15), respectively, the ASE is expressible as

ASE =
N

∑
n=1

RnPn

=
L− 1

L

N

∑
n=1

(
log2(Mn)−

1
2

) [
Γ
(

md,
γ̂n

θ2

)
− Γ

(
md,

γ̂n+1

θ2

)]
. (5.16)

The optimization algorithm in Algorithm 1 on page 42 is invoked to
find the optimal solutions.

5.3.3 Numerical Calculation

The same set of parameters as in Section 2.7 are used. In addition, we let
the spatial correlation between the branches be in the set {0.2, 0.7}. We also
consider perfect estimation, so no estimator is involved. Furthermore, since
the branches are assumed to be identical the subchannels’ average CSNR is
also assumed to be the same on all the branches.
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FIGURE 5.2: ASE as a function of subchannel CSNR for optimal L and
optimal power allocation. The correlation between every subchannels is
the same (constant correlation model) and is equal to ρs = 0, 0.2, and 0.7,
respectively.

The plots in Figures 5.2, 5.4, and 5.5 correspond to the constant correla-
tion between the branches. The results for exponential correlation are given
in Figures 5.3, 5.6, and 5.7.

We see from Figures 5.2 and 5.3 that ASE is reduced with increased spa-
tial correlation between the antennas. This is in principle expected, since
the advantages of having antenna diversity become smaller with larger
spatial correlation. Moreover, constant correlation causes more performance
degradation than exponential correlation. This is due to the fact that, in the
latter case, the correlation between one antenna with the other antennas
decreases exponentially with distance between them, while the correlation
is the same between any two antenna branches in the former case. Note
that for nR = 2 the two correlation models give identical results.

When all branches are fully correlated, the diversity gain will disappear
and the effective channel approaches a channel with no spatial diversity,
but with a higher average CSNR due to the array gain. This implies that
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FIGURE 5.3: ASE as a function of subchannel CSNR for optimal L and
optimal power allocation. The correlation between the subchannels is de-
creasing with the distance between them (exponential correlation model)
and is equal to ρs = 0, 0.2, and 0.7, respectively.

increased spatial correlation will affect the pilot symbol period in such a
way that it behaves more like in a single receive antenna system (nR = 1).
This is clearly shown in Figures 5.4 and 5.6.

Evidently, the pilot spacing L moves towards the curve corresponding
to nR = 1 when spatial correlation goes from 0 to 0.7. This happens for both
constant correlation and exponential correlation. Furthermore, L decreases
faster (more frequent pilot insertion) with constant correlation compared to
with exponential correlation, and this also explains why ASE drops more
in this case.

Having the pilot spacing L as in the one-branch case, it should then
not be necessary to have high pilot power due to the array gain. Studying
Figures 5.5 and 5.7 it is observed that this however is not the case, and that
the pilot power in fact is even higher than for the one-branch system. As
shown in the next part, this behavior is due to the suboptimality in the
prediction procedure used in this section, and it can be remedied by taking
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FIGURE 5.4: Optimal pilot spacing as a function of subchannel CSNR
with equal correlation for ρs = 0 (left panel), ρs = 0.2 (middle panel),
and ρs = 0.7 (right panel), respectively.
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FIGURE 5.5: Optimal fraction of power allocated to pilot symbol as
a function of subchannel CSNR with equal correlation for ρs = 0 (left
panel), ρs = 0.2 (middle panel), and ρs = 0.7 (right panel), respectively.
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FIGURE 5.6: Optimal pilot spacing as a function of subchannel CSNR
with exponential correlation for ρs = 0 (left panel), ρs = 0.2 (middle
panel), and ρs = 0.7 (right panel), respectively.
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FIGURE 5.7: Optimal fraction of power allocated to pilot symbol as a
function of subchannel CSNR with exponential correlation for ρs = 0 (left
panel), ρs = 0.2 (middle panel), and ρs = 0.7 (right panel), respectively.
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FIGURE 5.8: Average BER plotted as a function of subchannel CSNR
for constant correlation model, optimal pilot spacing, and optimal power
allocation. It is plotted for different spatial correlation values: ρs =
0, 0, 2, 0.7 and for 4 receive antennas.

the spatial correlation into account.

In Figure 5.8, the theoretical average BER performance with constant
correlation model and different values of correlation ρs is depicted. It is
plotted for nR = 4 when pilot spacing and power allocation are optimally
selected. The conclusion here is that the average BER is always below
BER0 = 10−5 as required. We do not include the curves for exponential
correlation here since they are similar and they will always satisfy the tar-
get BER0. Note however that the slopes of the curves for ρs 6= 0 at high
average CSNR is not correct. That behavior is due to the use of approxi-
mated PDFs for true and predicted CSNR, and further explanation will be
given in Section 5.4.1.
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FIGURE 5.9: ACM system based on adaptive PSAM combined with
multi reception of received signals where the subchannels are jointly pre-
dicted and estimated.

5.4 Link Adaptation in Spatially Correlated Antenna
Diversity: Jointly Predicted Branches

As discussed above, the analysis and results in the previous section are
clearly suboptimal since the spatial correlation is not taken into account
in the prediction process. In the present section, the subchannels will be
jointly predicted, i.e. the spatial correlation is assumed known so that it
can be taken into account. Thus a “space-time predictor” is needed and
must be derived. This predictor also uses the PSAM scheme to track the
variations of the SIMO fading channel.

The system under study is shown in Figure 5.9, where joint prediction of
the antenna branches is considered. As in the previous part, perfect channel
estimation is assumed.

We buffer the pilot symbols received at all the antennas and organize
them in a matrix as

Y =

 y1(k− D; 0) · · · ynR(k− D; 0)
...

. . .
...

y1(k− D − Kp + 1; 0) · · · ynR(k− D − Kp + 1; 0)


=

ypl;1 ypl;2 · · · ypl;nR

 . (5.17)

The corresponding channel matrix H and noise matrix N are organized in
a similar manner. Assuming the same pilot symbol is transmitted, the ML
estimate of the received pilot vector is ỹ = vec(Y) /(s

√
Epl), where vec(A)

is the vectorized operator that converts the matrix A to a column vector
by stacking the columns of A [Moon and Stirling, 2000]. The correspond-
ing stacked vectors of channel gains and noise are denoted by hpl and npl,
respectively.
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Let the vector of the predicted channels be hp = GHỹ. Then the optimal
predictor G in the MAP sense—taking spatial correlation into account—can
be found as (see Appendix A)

G = R−1
y Ryh =

(
Rh +

1
(1− α)γ̄bL

In

)−1

Ryh (5.18)

where Ryh = E
[
ỹhH

]
and Ry = E

[
ỹỹH

]
= E

[
hplh

H
pl

]
+E
[
nplnH

pl

]
/(|s|2Epl).

Note that hpl = [hT
pl;1, hT

pl;2, · · · , hT
pl;nR

]T, where each element hpl;µ = [hµ(k−
D; 0), · · · , hµ(k−D−Kp + 1; 0)]T is the vector of channel gains correspond-
ing to the pilot instants received at the µth antenna and is different from
h = [h1(k; l), · · · , hnR(k; l)]T which is the vector of nR channel gains at the
time (k; l). In that way, when assuming the noise is white both in space
and time, the correlation between any branches of any lags is completely
described in Rh. Using the assumption in (5.2) we can write

Rh = E
[
hplh

H
pl

]
=


E
[
hpl;1hH

pl;1

]
· · · E

[
hpl;1hH

pl;nR

]
...

. . .
...

E
[
hpl;nR hH

pl;1

]
· · · E

[
hpl;nR hH

pl;nR

]
 = Rs ⊗ Rt

(5.19)
and

Ryh = E
[
ỹhH

]
= E

[
hplh

H
]

=

 E
[
hpl;1h∗1(k; l)

]
· · · E

[
hpl;1h∗nR

(k; l)
]

...
. . .

...
E
[
hpl;nR h∗1(k; l)

]
· · · E

[
hpl;nR h∗nR

(k; l)
]
 = Rs ⊗ r. (5.20)

Here, we use the following notations Rs = E
[
hpl;µhH

pl;ν

]
, Rt = E

[
hpl;µhH

pl;µ

]
,

and r = E
[
hpl;µh∗µ(k; l)

]
to denote the spatial correlation matrix, temporal

correlation matrix, and covariance vector, respectively. Moreover, ⊗ is the
Kronecker product [Moon and Stirling, 2000].

When using the optimal predictor given by (5.18) the total prediction
error variance σ2

p = E
[
‖h− hp‖2] can be shown to be (see Appendix A)

σ2
p = nR − tr

{
RH

yhG
}

. (5.21)

In this part, we will only consider linear array antenna elements where
the correlation between the elements decreases exponentially. Thus, the
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power correlation between the antenna branches µ and ν is described by
(5.6). As earlier, the spatial correlation of the fading gain between any two
adjacent branches is ρh,s(1) = c − d. For simplicity, we assume that the
real and imaginary parts are equally correlated. Hence, from (5.4), we see
that c = d =

√
ρs/2.

Using MRC, the instantaneous true and predicted CSNR are written as

γd =
Ed‖h(k; l)‖2

F

N0
and γ̂ =

Ēd‖hp(k; l)‖2
F

N0
, (5.22)

respectively. Thus the average CSNRs can be calculated as

γ̄d =
EdE

[
‖h‖2

F

]
N0

= rdγ̄bnR and ¯̂γ =
ĒdE

[
‖hp‖2

F

]
N0

= rγ̄bnR, (5.23)

respectively, where r = Ēdtr
{

RH
yhG

}
/(nRE) (different from r for the un-

correlated case used in (4.12)). In this way, we can use the same notation as
in the previous part and both the BER and ASE expressions can be reused
here.

Again, the joint PDF of γd and γ̂ is (γd, γ̂) ∼ G (md, θ1, θ2, ρ) and ρ can
be calculated by means of (5.9). When the spatial correlation is incorpo-
rated, we get (look to the Appendix D for detailed derivations)

ρ =
md

(
Ψ− nRtr

{
RH

yhG
})

nRtr
{

RH
yhG

} (5.24)

where

Ψ =
nR

∑
µ=1

nR

∑
ν=1

{
gH

µ

(
Rh +<

{
R(ν)

yh

}
<
{

R(ν)
yh

}T
+=

{
R(ν)

yh

}
=
{

R(ν)
yh

}T

− <
{

R(ν)
yh

}
=
{

R(ν)
yh

}T
+ =

{
R(ν)

yh

}
<
{

R(ν)
yh

}T
)

g
µ
+

‖g
µ
‖2

(1− α)γ̄bL

}
.

In the above expression, g
µ

is the µth column of the predictor G and R(ν) is

the νth column of the matrix R. Also, <{z} and ={z} denotes the real and
imaginary parts of z, respectively. It can be shown that when the same pre-
dictor is used on all branches and the branches are predicted independent
of each other—i.e., the effect of spatial correlation is not considered in the
prediction process—(5.24) reduces to (5.10). It is marked that ρ in previous
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FIGURE 5.10: Average spectral efficiency as a function of expected
CSNR on one branch for different combinations of number of antennas
and spatial correlations. It is also plotted for when the subchannels are
predicted independently for ρs = 0.7.

section and in [Holter and Øien, 2006] is independent of the spatial corre-
lation ρs since the channel is predicted independently on each subchannel.
In contrast to that, ρ in this section also contains ρs via the term md and the
matrices Rh and Ryh.

5.4.1 System Performance

To this end, since we have consequently introduced the same notations here
as earlier sections, the expressions related to BER and ASE in Section 5.3 are
still applicable here; together with the just-derived parameters. Hence, we
are not going to reproduce them at this stage, but we will go further with
the numerical results. The prediction of the channel vector in this part is
based on 250 pilot symbols from each of the subchannels.

The results for ASE when both pilot spacing and power allocation are
optimal are plotted in Figure 5.10. It is clear that the loss in ASE due to spa-
tial correlation is reduced when all subchannels are jointly predicted. The
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FIGURE 5.11: Optimal pilot spacing L as function of average subchannel
CSNR. The subfigures are plotted for different spatial correlation ρs.

gain is larger when there are many antennas available to combine. How-
ever, we can see that the curves corresponding to joint prediction of the
correlated branches are higher compared to the uncorrelated case at low
average CSNR. This effect is an artifact stemming from the use of approx-
imated PDFs for both true and predicted CSNRs. The same behavior was
observed in [Holter and Øien, 2006] under perfect conditions, i.e. perfect
channel estimation and zero feedback delay. It is shown in Figure 5.15 that
the probability of choosing the dominant constellation is smaller and the
probability of choosing the other constellations is greater when using the
approximated PDFs in spatially correlated branches. At the lower end and
the upper end of the considered average CSNR, they respectively give rise
to higher and lower ASE compared to when exact PDFs are used in the
uncorrelated branches systems.

Intuitively, it is expected that the diversity gain disappears when the
branches become more correlated. Thus the effective (combined) channel
will vary more like the one-branch case and, therefore, we need the same
amount of pilot overhead to predict the channel for a given accuracy. This
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FIGURE 5.12: The amount of power allocated to pilot symbols is plotted
against average subchannel CSNR for different spatial correlation values
and different number of receive antennas.

effect is confirmed in Figure 5.11 where it is clear that, with increasing spa-
tial correlation (from left to right panel), the curves for L when nR > 1 ap-
proach the one when nR = 1. However, due to the array gain the combined
channel will approach a no-diversity scenario with higher average CSNR.
Because of this array gain, the power allocated to pilot symbols does not
vary much from the uncorrelated case, which is illustrated in Figure 5.12.
The variations of the curves at very high average CSNRs are due to the
numerical instability of the optimization process because the ASE curves
saturate.

Looking at Figures 5.11 and 5.12 together we see that it might be suffi-
cient to decrease the pilot spacing only. The statement is confirmed when
we plot and compare the ASE curves in Figure 5.10 when ρs = 0.7 with the
ASE performance for the same spatial correlation; still using the optimal
values of L but with the power scheme for the uncorrelated case. As shown
in Figure 5.13, the difference in performance is hardly noticeable.

Comparing these results here with the results in the previous section
where both the pilot spacing is reduced and the pilot power is unneces-
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FIGURE 5.13: ASE difference between the optimal L, optimal α case and
optimal L with α as in the uncorrelated case. It is plotted for ρs = 0.7.

sary increased simultaneously, it can be inferred that, in presence of spa-
tial correlation, independent prediction of the different branches should be
avoided as it has a strong negative influence on ASE.

The average BER performance is plotted in Figure 5.14 where it can be
seen that the requirement of BER0 = 10−5 is again always satisfied. In pres-
ence of spatial correlation and using the approximate PDFs, the slope indi-
cating the diversity order at high average CSNR is not correct. This effect
was also observed in Figure 5.8. As documented in [Wang and Giannakis,
2003], the error rate performance at high average CSNR is strongly depen-
dent on the behavior of the lower tail of a PDF, and this is exactly where the
approximate PDF deviates from the exact one. However, this does not put
any limitations on our work since we are more interested in the low and
medium average CSNR regions. For high average CSNR values, the ACM
system behaves like a fixed-rate system anyway, since only the largest con-
stellation will be employed. In that case, the effects of spatially correlated
channels are well documented in the literature [Simon and Alouini, 2005,
Chap. 9.7].

In Figure 5.15, code selection probability as a function of average CSNR
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FIGURE 5.14: Average BER as a function of expected CSNR on one
branch for different combinations of number of antennas and spatial cor-
relations.

per branch is depicted. Note that the curve for M = 0 corresponds to
the outage probability (probability of no transmission). When the aver-
age branch CSNR increases, the next higher order modulation becomes
the dominant modulation scheme. In presence of spatial correlation (right
panel), the probability curves are wider and lower than for the uncorre-
lated branches (left panel); which implies that the probability of selecting
the optimal code (the dominant modulation) has been lowered, while the
probability of selecting all the other codes has been increased. In addition,
at the lower end of the average CSNR range, only constellations M = 4
and M = 8 are selected with considerably high probability when branches
are independent. In addition to that, the constellation M = 16 can also
be selected with high probability in presence of spatial correlation. That is
why the ASE curves for correlated scenario are somewhat higher than the
curves corresponding to the uncorrelated scenario.
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per branch. M = 0 corresponds to outage. It is plotted for nR = 4 and for
uncorrelated branches (left panel) and correlated branches with ρs = 0.7
(right panel).

5.5 Conclusions

We have investigated an ACM system operating on a SIMO diversity Ray-
leigh fading channel in the presence of spatial correlation between the re-
ceive antenna branches. The analysis is done based on separability of the
space-time correlation function, i.e. representing it as a product of spatial
and temporal correlation functions. Furthermore, the combined instanta-
neous true and predicted CSNRs are approximated as gamma distributed
RVs with the two first moments equal to the exact PDF.

First, we consider a suboptimal prediction procedure where the fact that
the branches are correlated is not taken into account. In other words, it is
the case where we use the system originally designed for spatially uncor-
related branches in a correlated one. The results for constant correlation
and exponential correlation were presented and they both degrade systems
performance. Moreover, that degradation was larger with constant corre-
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lation compared to exponential correlation. Furthermore, the results also
indicated the suboptimality of the scheme.

We then develop a MAP-optimal “space-time predictor” to incorpo-
rate the spatial correlation. In general, the throughput in terms of ASE
is reduced due to the reduced diversity gain when spatial correlation in-
creases. After applying the new space-time predictor it is observed that
ASE is still lower than in the uncorrelated case, but the negative impact
of spatial correlation on the ASE is substantially reduced. When the sub-
channels become more correlated, the channel approaches a SISO system
with higher average CSNR. As a result, the optimization gives shorter pilot
period where the power can be distributed as if the branches were uncor-
related.

Due to the usage of approximate PDFs, the slope of BER performance
at high average CSNR is not correctly captured, but this does not put any
limitations on our work. In that region, the largest constellation will be
used with very high probability most of the time and the ACM system is
then said to be reduced to a single-rate system. For this case, the impact of
spatial correlation is well documented in the literature.
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Chapter 6

Orthogonal Space-Time Block
Coded Rate-Adaptive Systems
With Imperfect CSI

This chapter is based on a paper presented at the conference IEEE Inter-
national Workshop on Signal Processing Advances in Wireless Communications
(SPAWC) [Duong, Holter, and Øien, 2005] and a journal letter which is
accepted for publication in IEEE Transactions on Wireless Communications
[Duong and Øien, 2006].

6.1 Introduction

Extending the work in Chapters 3 and 4, we now consider a full MIMO sys-
tem. In general, MIMO systems may be divided into two categories: rate
maximization schemes and diversity maximization schemes, also denoted
spatial multiplexing (SM) systems and MIMO diversity systems, respectively.
SM offers a linear increase in the transmission rate (or capacity) at no ex-
tra bandwidth or power expenditure. This is obtained by transmitting in-
dependent data streams from each transmit antenna, or demultiplexing a
single data stream in to nT substreams which subsequently are transmit-
ted from separate transmit antennas. In a rich scattering environment, the
fading gains become uncorrelated. In this case, when knowledge of the
channel is available at the receiver, the composite receive signal can be sep-
arated by solving linearly independent equations. Thus, the receiver can
detect the different data streams, or combine the substreams into the origi-
nal stream [Paulraj et al., 2003].
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A MIMO diversity system uses the multiple antennas to maximize the
diversity order of the system. This can be achieved by using a technique
called STBC at the transmitter [Alamouti, 1998; Tarokh et al., 1999]. Given
a number of receive antennas, STBC is used to exploit the available spa-
tial diversity of the channel which is equal to the product of the number of
transmit and receive antennas if the channels between different transmit-
receive antenna pairs fade independently. In particular, orthogonal space-
time block codes are able to provide full diversity with a simple decod-
ing algorithm and without requiring any feedback from the receiver to the
transmitter. Over i.i.d. Rayleigh fading channels with multiple receive an-
tennas, however, these orthogonal space-time block codes incur a loss in
capacity because they convert the channel matrix into a scalar AWGN chan-
nel whose capacity is smaller than the true channel capacity [Sandhu and
Paulraj, 2000].

As in the previous chapters, we will optimize the pilot spacing and
power in such a MIMO diversity system. The optimization is done assum-
ing that imperfect channel knowledge is available at both transmitter and
receiver. Note that there is an inherent trade-off between the use of diver-
sity and the need for adaptivity. The higher the diversity order, the more
stable the channel is and the less need there is for link adaptation. We have
therefore restricted ourselves to moderate diversity orders to demonstrate
the power of link adaptation in this context.

Adapting optimal transmitter eigen-beamforming coupled with STBC
is analyzed by Zhou and Giannakis [2002], where imperfect CSI is available
at the transmitter. This technique is utilized in [Zhou and Giannakis, 2004a]
and [Zhou and Giannakis, 2004b]. Note however that, in these systems, the
whole channel gain matrix must be fed back to the sender. To facilitate a low
feedback rate, in our system we only send the overall predicted CSNR back
to the transmitter. Our feedback is thus clearly less complex than feeding
back the whole channel matrix.

The chapter is organized as follows: the system under consideration is
described in Section 6.2, where the employed orthogonal designs are intro-
duced together with the frame structure after STBC. The channel estima-
tion and prediction procedures are re-captured in Section 6.3. An analysis
of BER performance and optimization of ASE is presented in Sections 6.4
and 6.5, respectively. Numerical examples are given in Section 6.6 and con-
clusions are drawn in Section 6.7.

88



SYSTEM MODEL
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FIGURE 6.1: ACM system with adaptive PSAM-based channel predic-
tion and estimation. The predicted channels are used for system adap-
tation and the estimated channels are used for coherent detection. The
system is operating on a MIMO diversity channel.

6.2 System Model

The system under consideration is shown in Figure 6.1. In addition to nR
receive antennas as in the previous two chapters, the system now also has
nT transmit antennas. All subchannels between any transmitter-receiver
pair are assumed to be mutually independent and Rayleigh distributed,
with Jakes correlation profile used in the numerical examples.

The orthogonal space-time block codes used in this paper are listed in
Tab. 6.1. These orthogonal designs and some other orthogonal designs (for
both real and complex signals) can be found in [Tarokh et al., 1999]. The
space-time encoder maps S symbols into nT orthogonal sequences of length
T (given as T = (S/Rs)Ts) where Ts is still the channel symbol interval
and Rs is the rate of the employed space-time block code. Note that the
pilot symbols are not space-time block coded. Thus, the pilot is transmit-
ted once from each antenna (time-multiplexing). While a pilot is transmit-
ted from one antenna, the other antennas are silent such that each receiver
branch can track the channel between itself and the transmitting antenna.
The same pilot scheme is utilized in [Holter et al., 2003]. Note that mak-
ing the pilot symbol orthogonal by spreading it with each antenna’s signa-
ture code of length nT does not improve the system performance since the
channel predictor is found to be independent of this factor, and the mean
and variance of the noise remains unchanged [Zhou and Giannakis, 2004b].
Also, the channel is still the same after de-spreading at the receiver.

Another possibility is to transmit sequences of orthogonal pilot symbols
from different antennas (not spreading one symbol). In this case, we will
need another predictor/estimator and which, we believe, is more complex
than the Wiener filter in our system. This is due to the correlation properties
which will be more involved since we also have to consider the intersymbol
correlation within one sequence in addition to the correlation between dif-
ferent sequences. Moreover, the system is using the same amount of time
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TABLE 6.1: Orthogonal designs for STBC used in this chapter. Orthog-
onal design O1 and O2 corresponds to the regular data stream with no
STBC and the Alamouti scheme, respectively. O4 is the orthogonal de-
sign given by matrix (40) in [Tarokh et al., 1999].

Orthogonal design nT Rs S T

O1 1 1 1 1

O2 2 1 2 2

O4 4 3/4 3 4

slots also in this case [Alamouti, 1998].
Let zd ∈ CnR×1 be the received, noisy, and faded data symbol vector in

complex baseband. It can be written as

zd(k; l) =

√
Ed

nT
H(k; l)s(k; l) + n(k; l), l ∈ [nT, · · · , Lb − 1], (6.1)

where
Lb =

mS
Rs

+ nT =
L− 1

Rs
+ nT (6.2)

is the pilot symbol spacing on a single antenna branch after STBC [Holter
et al., 2003] and m is a non-zero positive integer. This is illustrated in Fig-
ure 6.2 for m = 1. Furthermore, let zpl ∈ CnR×1 be the received pilot symbol
vector:

zpl(k; l) =

√
Epl

nT
H(k; l)s(k; l) + n(k; l), l ∈ [0, · · · , nT − 1]. (6.3)
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FIGURE 6.2: Example of a frame structure after STBC where nT = 4,
and the orthogonal design O4 in Tab. 6.1 is used. Here, P stands for pilot
and ◦ denotes that the system does not send anything, while Ds are data
symbols. To reduce the size of the figure we avoid to write out the four
last data symbols, and demonstrate only the smallest frame size.
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CHANNEL ESTIMATION AND PREDICTION

In both equations above, the notation x(k; l) is the compact way of writing
x(kLbTs + lTs), H ∈ CnR×nT is the channel gain matrix, s ∈ CnT×1 is the
vector of transmit symbols, and n ∈ CnR×1 is the channel AWGN. With-
out knowing the whole channel gain matrix (as in the beamforming case)
we consider when power is equally allocated to different transmit anten-
nas. As such, Epl/nT and Ed/nT is the power per pilot and per data sym-
bol transmitted from one antenna, respectively. Moreover, we assume that
E
[
|sµ(k; l)|2

]
= 1; µ ∈ [1, · · · , nT]; l ∈ [nT, · · · , Lb − 1] (data symbols), and

that the pilots have unit magnitude (i.e., |s(k; l)| = 1 for l ∈ [0, · · · , nT − 1]).
Furthermore, the noise is assumed white in both space and time with zero
mean and variance equal to N0. The elements of the channel gain matrix are
assumed to come from a stationary complex Gaussian RP with zero mean
and unit variance.

Similarly to [Cai and Giannakis, 2005], Ēd can be calculated as

Ēd =
αE [(Lb − nT)Rs + 1]

(Lb − nT)Rs
=

αEL
L− 1

(6.4)

which is unchanged from all the previous chapters. Thus, the pilot power
Epl must be equal to Epl = (1 − α)EL. Again, the actual data power Ed is
given by (2.13). Later on, we will show that the total predicted CSNR is
gamma distributed, i.e., γ̂ ∼ G (nTnR, rγ̄b/nT). As a result, Ed is

Ed =
Ēd

Γ
(

nTnR,
γ̂1nR

rγ̄b

) , (6.5)

where γ̄b = E/N0 is the expected CSNR on one receive branch,1 and, sim-
ilarly to the uncorrelated SIMO case, r = Ēd(1 − σ2

p)/E . To obtain this,
we have again used the assumption that the subchannels are independent
and the fact that the prediction error variance is the same on all branches.
Hence, σ2

p;µν = σ2
p ∀ µ, ν where µ and ν is the antenna index at the transmit-

ter and receiver, respectively.

6.3 Channel Estimation and Prediction

The transmit frame structure is illustrated in Figure 6.2. Clearly, it is some-
what different from the structure in Figure 2.3. The expressions regarding
channel estimation and prediction are similar to those obtained earlier, but

1Which is the sum of all the subchannels’ average CSNR received in one antenna. That
is, γ̄b = ∑nT

a=1 γ̄ab = ∑nT
a=1 E/(nTN0) = E/N0.
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we will reproduce them here since some care of the time indices must be
taken due to the new frame structure.

Both the estimator and predictor are linear and made optimal in the
MAP sense. Moreover, the branches are uncorrelated by assumption and
we thus can perform estimation and prediction independently on each of
the receive branch. The temporal correlation is also assumed known.

6.3.1 Estimation

Based on the non-causal vector of Ke received pilot symbols ypl;µν(k; µ− 1),
corresponding to the pilot instances of the µ-ν antenna pair and the channel
gains hpl;µν = [hµν(k − bKe/2c; µ − 1), · · · , hµν(k + b(Ke − 1)/2c; µ − 1)]T,
a non-causal MAP estimator estimates the fading channel gain in the set{

hµν(k; l)
}Lb−1

l=nT
as he;µν(k; l) = wH

e ypl;µν(k; µ − 1), µ ∈ [1, · · · , nT], and ν ∈
[1, · · · , nR] where

we =

√
Epl

nT

(Epl

nT
D(s)ReD∗(s) + N0IKe

)−1

D(s)re (6.6)

is the MAP-optimal estimator.2 Assuming the same pilot is transmitted
from all of the transmit antennas and defining the estimation error as
εe;µν(k; l) = hµν(k; l) − hp;µν(k; l), the MMSE of any subchannel is given
as

σ2
e;µν(l) = E

[
|εe;µν|2

]
= 1−

Ke

∑
κ=1

|uH
κ re|2(1− α)Lγ̄b

(1− α)Lγ̄bλκ + nT
(6.7)

which differs from the MMSEs in the previous two chapters by the term
nT. In (6.7), {uκ} denotes the eigenvectors of the covariance matrix Re =
E
[
hpl;µνhH

pl;µν

]
, {λκ} are the corresponding eigenvalues, and re is the co-

variance vector; re = E
[
hpl;µνh∗µν(k; l)

]
.

6.3.2 Prediction

We assume that the transmitter adaptation occurs only once per transmis-
sion frame of Lb symbols. Thus, the causal predictor uses Kp pilot symbols
from the past to predict one sample in the set

{
hµν(k; l)

}Lb−1
l=nT

of the kth
frame, which is τ = DLbTs seconds ahead in time. Here, D is the distance
measured in the number of frames.

2There are misprints in [Duong et al., 2005] where both the estimator and predictor
should read wt =

√
Epl/nT((Epl/nT)D(s)RtD∗(s) + N0IKt )

−1D(s)rt. The subscript t = e
or p indicates estimator or predictor, respectively.
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EVALUATION OF BER PERFORMANCE

Let the channel gain vector of one subchannel (corresponding to the pi-
lot instants vector ypl;µν(k; µ− 1)) used in the prediction be hpl;µν = [hµν(k−
D; µ − 1), · · · , hµν(k − D − Kp + 1; µ − 1)]T, the covariance matrix and the
covariance vector is now Rp = E

[
hpl;µνhH

pl;µν

]
and rp = E

[
hpl;µνh∗µν(k; l)

]
,

respectively. Similar to the estimation case, the predicted channel is a lin-
ear combination of the received pilot symbols; denoted by hp;µν(k; l) =
wH

p ypl;µν(k; µ − 1). Let εp;µν(k; l) = hµν(k; l)− hp;µν(k; l) and given the pre-
dictor wp—which is similar to (6.6) but with Re and re respectively replaced
by Rp and rp, and with a correct dimension on the identity matrix—the
MMSE of the prediction error is

σ2
p;µν(l) = E

[
|εp;µν|2

]
= 1−

Kp

∑
κ=1

|uH
κ re|2(1− α)Lγ̄b

(1− α)Lγ̄bλκ + nT
, (6.8)

where {uκ} and {λκ} are now the sets of eigenvectors and eigenvalues of
Rp, respectively.

Due to the assumption of independent branches, both estimation MMSE
and prediction MMSE are the same on all branches. That is,

σ2
e;µν(l) = σ2

e (l), (6.9a)

σ2
p;µν(l) = σ2

p(l) (6.9b)

∀ µ ∈ [1, · · · , nT] and ν ∈ [1, · · · , nR].

6.4 Evaluation of BER Performance

Based on the estimated channel gains, the signal is space-time combined
and decoded at the receiver [Alamouti, 1998].3 Hence, the total received
CSNR can be written as

γ(k; l) =
Ed‖He‖2

F

nT(N0 + gEdσ2
e (l))

, (6.10)

where He = H − Ξe is the matrix containing the estimated channel and Ξe
is the matrix of the corresponding estimation errors. The elements [Ξe]νµ =
εe;µν.

3Although the result of the space-time combining scheme is different from the tradi-
tional MRC, the resulting effective CSNR is still the same. The difference of these two com-
bining techniques is a complex conjugation of the noise which appears in the space-time
combining scheme. This conjugation does not play any role when we take the absolute
value; which is exactly what we do when we calculate the CSNR. Thus, the total CSNR still
can be found by using the MRC approach.
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Similarly to previous chapters, a set of 4-D trellis codes are used as com-
ponent codes in the numerical examples in Section 6.6. Thus, the BER ap-
proximation in (2.8) is employed. Having estimated the channels, the BER
now becomes

BER
(

Mn|
{

he;µν

})
=

L
∑
`=1

an(`) exp
(
−A′

n(`)Ed‖He‖2
F

)
, (6.11)

where A′
n(`) = An(`)/nT and An(`) is given by (4.5a).

With the assumption that the subchannels are independent and recall-
ing the results for the uncorrelated SIMO case (discussed in Chapter 4), we
further infer that the overall PDF of

{
|he;µν|

} ∣∣ {hp;µν

}
is

fhe|hp

({
|he;µν|

} ∣∣ {hp;µν

})
=

nT

∏
µ=1

nR

∏
ν=1

fhe;µ|hp;µ

(
|he;µν|

∣∣hp;µν

)
.

Each subchannel is still Rician distributed with the Rice factor K = |(1 −
$)hp;µν(k; l)|2/σ2

he;µν|hp;µν
. Also, here, we set $—the normalized correlation

between the estimation error εe;µν and the predicted channel hp;µν—to be
zero. Moreover, the estimation error εe;µν(k; l) is correlated with the pre-
diction error εp;µν(k; l). Invoking the assumption in (6.9), the Rician factor
of each subchannel simplifies to K = |hp;µν(k; l)|2/σ2

he|hp
where, by assump-

tion, σ2
he;µν|hp;µν

= σ2
p − σ2

e = σ2
he|hp

∀µ, ν.
The BER conditioned on the set of predicted channels is obtained by

averaging (6.11) over the product of the Rician PDFs:

BER
(

Mn
∣∣ {hp;µν

})
=
∫ ∞

0
· · ·

∫ ∞

0︸ ︷︷ ︸
nTnR−fold

BER
(

Mn
∣∣ {|he;µν|

})
× fhe|hp

({
|he;µν|

} ∣∣ {hp;µν

})
d|he;1,1| · · · d|he;nT,nR |

=
L
∑
`=1

an(`)d′n(`)
nTnR exp

(
−A′

n(`)d′n(`)Ed‖Hp‖2
F

)
,

(6.12)

after some straightforward integrations (with the help of [Gradshteyn and
Ryzhik, 2000, Eq. (6.633-4)]) where d′n(`) = 1/(A′

n(`)Edσ2
he|hp

+ 1). It can be
seen that when nT = 1 both A′

n(`) and d′n(`) coincide with An(`) and dn(`),
and (6.12) reduces to (4.9).

Let Hp = H − Ξp be the matrix containing the predicted channels and
let Ξp be the matrix of the corresponding prediction errors with the ele-
ments [Ξp]νµ = εp;µν. The total predicted CSNR per symbol can be written
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as

γ̂ =
Ēd‖Hp‖2

F

nTN0
=

γ̄bĒd‖Hp‖2
F

nTE
. (6.13)

Solving it with respect to ‖Hp‖2
F and inserting the solution into (6.12) gives

BER(Mn|γ̂) =
L
∑
`=1

an(`)d′n(`)
nTnR exp

(
− γ̂A′

n(`)d′n(`)nTEEd

γ̄bĒd

)
, (6.14)

and the optimal switching thresholds {γ̂}N
n=1 are subsequently found by

solving BER(Mn|γ̂) = BER0.
From (6.13) the average predicted CSNR is

¯̂γ =
ĒdE

[
‖Hp‖2

F

]
nTN0

=
rγ̄bnTnR

nT
(6.15)

where r = Ēd(1 − σ2
p)/E as earlier, and the total predicted CSNR follows

the gamma distribution with the mean given in (6.15) [Holter et al., 2003;
Ko and Tepedelenlioglu, 2006]. That is: γ̂ ∼ G (nTnR, rγ̄b/nT).

Similar to (2.6), using STBC, the average BER is still defined as the ratio
between the average number of bits received in error, and the number of
bits transmitted in total:

BER = ∑N
n=1 BER(Mn) · RSTBC

n

∑N
n=1 Pn · RSTBC

n
, (6.16)

where RSTBC
n is the SE of the nth constellation after STBC (to be derived in

Section 6.5),

BER(Mn) =
∫ γ̂n+1

γ̂n

BER(Mn|γ̂) fγ̂(γ̂)dγ̂

=
L
∑
`=1

an(`)
(

d′n(`)Ēd

rd′n(`)A′
n(`)EEd + Ēd

)nTnR

×
{

Γ
(

nTnR, nTγ̂n
rd′n(`)A′

n(`)EEd + Ēd

rγ̄bĒd

)
− Γ

(
nTnR, nTγ̂n+1

rd′n(`)A′
n(`)EEd + Ēd

rγ̄bĒd

)}
, (6.17)

and Pn is the probability that γ̂ ∈ [γ̂n, γ̂n+1〉:

Pn = Γ
(

nTnR,
nTγ̂n

rγ̄b

)
− Γ

(
nTnR,

nTγ̂n+1

rγ̄b

)
. (6.18)
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6.5 Optimization of ASE

The SE of the nth constellation used by a 4-D trellis code with a PSAM
scheme is Rn = (1− 1/L)(log2(Mn)− 1/2). After STBC using the orthog-
onal designs in Tab. 6.1, the effective SE becomes

RSTBC
n

(a)
=
(

log2(Mn)−
1
2

)
Lb − nT

Lb
Rs

=
(

log2(Mn)−
1
2

)
(L− 1)Rs

L− 1 + nTRs
. (6.19)

The term outside of the parenthesis in the equality marked with (a) corre-
sponds to the fact that if the frame length Lb is equal to nT, then no data
information is transmitted. Thus, the SE must be zero. Using orthogonal
STBC, there is a rate penalty for complex signals when nT > 2. That ex-
plains the rate Rs in the above expressions. The second equality is obtained
by using Lb = (L− 1)/Rs + nT (introduced in Eq. (6.2)).

Hence, the overall ASE is given by

ASE =
N

∑
n=1

RSTBC
n · Pn. (6.20)

Before invoking Algorithm 1 on page 42 to do the maximization, the fol-
lowing choices are made. It is obvious that the variance of the prediction
error is largest when predicting the last symbol in a frame (l = Lb − 1). As
a result, prediction of the symbol located at the end of the frame based on
the pilots transmitted from, e.g., the fourth antenna is slightly more accu-
rate than it would be if based on pilots from the first antenna (cf. Figure 6.2).
On the other hand, the variance of the estimation error is almost the same
for all l, if the order of the estimator is Ke ≥ 20 [Cai and Giannakis, 2005].
Thus, we use the estimation error variance σ2

e = σ2
e;µν(Lb − 1), and the con-

servative choice of the prediction error variance σ2
p = σ2

p;1ν(Lb − 1)—note the
subscript index—when finding the optimal switching thresholds {γ̂n}N

n=1,
as well as in the further optimization process.

It is noted that when both nT = 1 and nR = 1, the analysis in this chapter
reduces to the SISO case in Chapter 3. The uncorrelated SIMO system in
Chapter 4 is obtained if nT = 1 and nR > 1. Furthermore, when nR = 1 and
nT > 1 we have a MISO system.
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NUMERICAL EXAMPLE AND DISCUSSION
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FIGURE 6.3: Left panel: Optimal fraction of power allocated to pilot
symbols (i.e. 1− α) when the pilot period L is optimal. Right panel: Op-
timum pilot spacing L when the power is optimally allocated between
pilot and data symbols. Both figures are generated for different combina-
tions of transmit and receive antennas.

6.6 Numerical Example and Discussion

The same set of parameters as in Section 2.7 are used when giving numer-
ical examples. However, since STBC is used when the number of transmit
antennas is greater than 2, some modifications must be done. In particular,
similarly to Section 2.7, we have τ = DLbTs = 1 ms and, at the same time,
Lb > nT. Applying (6.2) the following results are obtained:

• nT = 1: L = Lb ∈ {2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200}.

• nT = 2: Lb ∈ {4, 8, 10, 20, 40, 50, 100, 200}.
Thus, L ∈ {3, 7, 9, 19, 39, 49, 99, 199}.

• nT = 4: Lb ∈ {8, 20, 40, 100, 200}. Thus, L ∈ {4, 13, 28, 73, 148}.

How power is optimally allocated to pilot symbols and how the opti-
mal pilot symbol spacing L is distributed with the average CSNR can be
read from Figure 6.3. The amount of power allocated to data symbols is
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also easily read from that figure.4 Clearly, the pilot period increases with
increasing CSNR and it increases faster with higher diversity order. More-
over, it is apparent that, in most of the CSNR region, necessary pilot power
decreases with increasing average CSNR—i.e. more power should be put
on data symbols when the average CSNR is increased. The more anten-
nas there are—either on the transmitter side or on the receiver side, or on
both sides—the less power is allocated to pilot symbols. This is also to be
expected since the antennas in this particular system are used to increase
the diversity order, i.e. to stabilize the channel. For the same diversity or-
der (the product nT × nR), most of the power is left for data symbols in the
SIMO case. Having higher transmit diversity, the pilot power on each an-
tenna is reduced when the average total transmit power E is fixed. Thus, if
the pilots are to ”survive” after the transmission over the individual chan-
nels, more total power must be assigned on them. That is the case for nT = 4
in the left panel of Figure 6.3. Seeing this together with the ASE perfor-
mance in Figure 6.4, from an ASE point of view the SIMO solution is clearly
preferred to other combinations of transmit and receive antennas yielding
the same diversity order.

In [Holter et al., 2003], the ASE was always reduced when having two
transmit antennas compared to when only one transmit antenna is em-
ployed. In contrast to this, Figure 6.4 shows that the ASE is increased
by going from 1 transmit antenna to 2 transmit antennas, as long as the
pilot spacing and the power distribution are optimal. In general, when
using STBC, the channel capacity is reduced, except when either the rate
of the employed space-time block code is one, or the channel is rank one
[Sandhu and Paulraj, 2000]. In our example, only the orthogonal design O2
for nT = 2 has rate one (no STBC is necessary for nT = 1). Optimization of
the system with 2 transmit antennas also gives a larger pilot spacing and a
lower pilot power. As a result, in this case, the ASE becomes higher com-
pared to the system with only one transmit antenna. This result agrees well
with [Ko and Tepedelenlioglu, 2003].

For comparison purposes, we include two plots of ASE corresponding
to 1) optimal power and optimal pilot period, and 2) equal power allocation
and optimal pilot period. They are depicted on the left and right panel of
Figure 6.5, respectively. Also, here, the gain by having optimal L and α
(optimal power distribution) is larger. The gain is up to approximately 0.5
bits/s/Hz. In the latter case, both pilot spacing L and fraction of power

4It is noted that although the analysis in [Duong et al., 2005] is valid, unfortunately, the
results are subject to an error when implementing [Duong et al., 2005, Eqs. (4) and (5)] in
MATLAB (the term nT is missing). Thus, the results given here are the correct ones.
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FIGURE 6.4: Average spectral efficiency for different combinations of
transmit and receive antennas (nT × nR): (1× 1), (1× 2), (1× 4), (2× 1),
(2× 2), (2× 4), and (4× 1), respectively. The curves are generated when
both power distribution between pilot and data symbol and pilot spacing
are optimal.

allocation to the pilots are also smaller (not shown here).
When we have 4 transmit antennas, the employed space-time block

code only has rate 3/4; hence, some symbols must be transmitted several
times, and the throughput is significantly reduced due to that loss. When
performing channel estimation and prediction using PSAM in a MIMO di-
versity system with nT transmit antennas, the overall number of pilot sym-
bols to be transmitted is nT times the number of pilot symbols that are
needed in the non-MIMO case [Alamouti, 1998] (either by using orthog-
onal pilot symbols, or the pilots must be transmitted one at a time from
each antenna). Moreover, using the pilot transmission scheme in this pa-
per (or spreading one pilot symbol as in [Zhou and Giannakis, 2004b]) the
system is losing nT(nT − 1) symbol intervals where data symbols could be
transmitted such that the system performance could be increased.

The BER performance is shown in Figure 6.6. As observed, our require-
ment of BER0 = 10−5 is always satisfied since we require the instantaneous
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FIGURE 6.5: Comparison of ASE when both power allocation and pi-
lot spacing are optimal (left panel) with optimal pilot spacing and equal
power allocation (right panel).

BER of the system to be always below BER0. On the other hand, the curves
are unnecessarily far below the requirement. To reduce that gap, we can
modify the constraint in such a way that the average BER (instead of the
instantaneous BER) must be lower than BER0. In that way, the throughput
increases and the system becomes less sensitive to the time delay, as [Ko
and Tepedelenlioglu, 2004] concluded. Optimization of switching thresh-
olds with respect to average BER constraint is also analyzed in [Torrance
and Hanzo, 1996; Hanzo, Münster, Choi, and Keller, 2003, Chap. 12]. Fig-
ure 6.6 also confirms the fact that orthogonal STBC gives full spatial diver-
sity order (the product nT × nR) by looking at the slope of the BER curves
at high CSNR.

Shown in Figure 6.7 are the curves for outage probability for different
nT × nR combinations. It illustrates both the SISO system of Chapter 3,
uncorrelated SIMO system of Chapter 4, the correlated SIMO system of the
second part of Chapter 5 and MIMO diversity system in this chapter.
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FIGURE 6.6: Average BER when the power and the pilot spacing are
optimal for different combinations of transmit and receive antennas.

For a fixed radiated power constraint—which is the case for the analy-
sis in this thesis—clearly, the SIMO system gives lower outage probability.
Thus, it is preferable to the MISO system with the same diversity order
nT × nR. This conclusion was also drawn from an ASE point of view in Fig-
ure 6.4, since the ASE is considerably larger in a SIMO system compared to
a MISO system for the same product nT × nR. In the uncorrelated branches
system and with the same diversity order, probability of outage suffers a
3-dB loss for each doubling of the number of transmit antenna. This per-
formance penalty will disappear if we double the transmit power with the
doubling of the number of transmit antennas [Alamouti, 1998].

Moreover, spatial correlation gives rise to degradation of diversity gain.
As shown in Figure 6.7 the curves for correlated receive antennas in a 1× 4
system reduces gradually to the 1× 1 system with increasing ρs. Note that,
as with the ASE performance, it will never coincide with the 1× 1 scenario
due to the array gain.
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FIGURE 6.7: Outage probability depicted for optimal L and optimal
power allocation. It is plotted as a function of average CSNR on each
branch and different combinations of transmit-receive antennas.

6.7 Concluding Remarks

We have analyzed and optimized an ACM system operating on a MIMO
diversity channel. The throughput in terms of ASE, when the transmitter
is equipped with 2 antennas, outperforms the same system with only one
transmit antenna. This is due to the diversity gain and to the fact that the
employed orthogonal design for STBC has full rate (rate 1). This result is
in contrast to what was obtained in [Holter et al., 2003] which is due to
the optimization of pilot period and power performed in the present work.
Having more than 2 transmit antennas gives even higher diversity order,
but the overall rate is reduced due to the rate loss of the employed space-
time block code.

In conclusion, for a fixed product nT × nR (the same diversity order),
the ASE is still always highest for nT = 1. This indicates that when ACM is
used, it is best to exploit spatial diversity by means of multiple receive an-
tennas. In this case, even with high mobile terminal speeds, the system is,
on the average, using the same constellation a reasonably long time before
switching to another constellation (cf. Tab. 4.1).
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Chapter 7

Effects of Simplifications and
Suboptimalities

In a practical implementation, it is desired to keep the complexity of any
communication system as low as possible. To this point, both pilot spac-
ing L and power allocation between pilot and data symbols are optimized.
Thus, which spacing the pilots will have for a given average CSNR is pre-
dicted at the receiver and must be fed back to the transmitter. While this
information is dependent only on average CSNR and, hence, slowly vary-
ing, it still needs to be done. Especially, in a multiuser system, where all the
users transmit their own CSI, the feedback load can be huge. Hence, it mo-
tivates us to reduce the feedback load. In the next section, by a numerical
example, we will study the effect of fixing the pilot symbol period and only
optimize the power distribution. In this way, feedback information about
the pilot spacing can be omitted.

Furthermore, we will also address the robustness of having shorter pre-
dictor length when both power distribution and pilot spacing are optimal.
The predictor length used in the thesis is not optimal, but is satisfactory
[Øien et al., 2002]. In the just-mentioned paper, where both pilots and data
symbols are transmitted with the same power, and pilot spacing is fixed,
it is demonstrated that the predictor order may be reduced to a feasible
complexity without a too dramatic effect on the system performance. Note
however that, this is valid only for systems with limited mobility. In this
chapter, we will decrease the order even further to see what impact it has
on the system performance.

To ease mathematical analysis, perfect estimation is commonly assumed
in many works. Later on, we will demonstrate what impact this assump-
tion has on the prediction performance for our spatially uncorrelated SIMO
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system.
We are not providing an analytical analysis in this chapter, but rather

some numerical examples to illustrate the potential of different simplifica-
tions. Only spatially uncorrelated subchannels is considered. The effects
of fixing the pilot spacing is presented in Section 7.1, whereas the impact
of a complexity-limited predictor on the system performance is given in
Section 7.2. Finally, how the analytic simplification of perfect estimation
would impact the system performance is discussed in Section 7.3.

7.1 Fixing the Pilot Spacing

In our systems, the feedback CSI is already reduced to only a quantized
version of of the predicted CSNR. The purpose of optimization in all the
previous chapters is to avoid the problem of having a short pilot period
at high average CSNR and having a too large pilot spacing at low average
CSNR, which would give rise to a waste of bandwidth when the channel
condition is good, and bad channel estimation/prediction at bad channel
conditions, respectively. Thus, the pilot spacing has also to be sent back
to the transmitter when the average CSNR changes (as in the case in shad-
owing conditions, where the average gain is a slowly varying RV) since it
is required for optimal performance. However, in what follows, we will
simplify it further by using a fixed pilot spacing; meaning that no feedback
information on the pilot period is needed.

Plotted in Figure 7.1 are the curves of ASE for optimal power distribu-
tion and L, and optimal power distribution with L fixed to certain values.
Thus, in the latter case, the system is optimized with respect to transmit
power allocation between pilot and data symbols only. It can be seen that
degradations due to fixed pilot spacing are small, implying that fixing the
pilot period to these values does not limit system performance. The val-
ues of L are chosen around the average value of the optimum values (cf.
Figure 4.2 and Figure 6.3).

Evidently, the curves of optimal pilot power in Figure 7.2 show that
the achievements of ASE in Figure 7.1 are due to the somewhat increasing
pilot power, at least at low average CSNR (bad channel conditions) where
the spacing between two pilots is larger compared to when L is optimal. At
high average CSNR (good channel condition), the pilot period is smaller
than in the optimal case. Thus, lower pilot power can be used.

It can be concluded that, for certain fixed choices of L, the system per-
formance is very close to that of optimal L at the expense of only a little
more power allocated to the pilot symbols at low average CSNR. It is a

104
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FIGURE 7.1: ASE plotted against subchannel’s average CSNR. Left
panel: it is plotted for optimal α and optimal L. Right panel: it is plotted
for optimal α, but L is fixed to certain values depends on the combination
of numbers of transmit and receive antennas. Both figures are generated
for: predictor and estimator order is Kp = 250 and Ke = 20, respectively.

good trade-off in order to reduce the feedback rate and to keep the system
design simple.

7.2 Effect of Complexity-Limited Predictor

In addition to reduce the system feedback rate, the complexity in terms of
computation is also an important issue of handheld devices for an accept-
able processing delay. In [Holm, 2002; Øien et al., 2004] a predictor of length
Kp = 1000 is used, something that is clearly too complex for most practical
situations. The order can be substantially reduced as shown in [Øien et al.,
2002] where the pilot is transmitted with the same power as a data symbol
and L is fixed. Here, we will present some plots showing that when the
system parameters are optimized (which was not the case in [Øien et al.,
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FIGURE 7.2: Optimal fraction of power allocation to pilot symbol is plot-
ted as a function of subchannel’s CSNR. Left panel: it is plotted for opti-
mal α and optimal L. Right panel: it is plotted for optimal α, but L is fixed
to certain values depends on the combination of numbers of transmit and
receive antennas. Both figures are generated for: predictor and estimator
order is Kp = 250 and Ke = 20, respectively. The chosen L values are
given in Figure 7.1.

2002]), the predictor order can be further reduced, which only contribute to
a small decrease in system performance.

Shown in Figure 7.3 are the ASE curves when the predictor order (num-
ber of filter taps) is 250 and 30, respectively. Clearly, the ASE degradation is
the most severe at low average CSNR or with low diversity order, meaning
that a longer predictor should be used in these cases. It can be concluded
that, if the constraint is subject to computation complexity, then the predic-
tor length can be dramatically shortened at only a small expense of reduced
performance. Since the predictor is based on a small number of samples to
predict the channel, the pilot symbols are transmitted with higher power
than in the optimal case. Hence, the pilot spacing can be somewhat larger.
These effects are seen in Figure 7.4 at low and medium average CSNRs.
When channel conditions are good, the variation of L seems to be the same
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FIGURE 7.3: Comparision of ASE curves for Kp = 250 and Kp = 30,
respectively. The noncausal estimator is still of 20 taps. Here, both α and
L are optimized. In the right panel, the lower end of the 4 × 1 case is
subject to numerical instability as can also be observed in Figure 7.4.

for both predictor orders. Moreover, it is observed that the pilot spacing
does not vary that much in the case of complexity-limited predictor. The
behavior of the plot of L in Figure 7.4 (lower right corner) motivates us fur-
ther to fix the pilot spacing for low predictor orders, similar to what we did
in Section 7.1.

7.3 Effect of the Assumption on Perfect Estimation

Since channel estimation in the receiver can be done with high precision,
perfect estimation is usually imposed for a simpler analysis. However, the
estimation process of course still needs to be performed in practical imple-
mentations. A nature question to ask is then which kinds of errors such an
assumption will induce in the system performance predicted by the sim-
plified analysis. By comparing the results of analysis with and without
the simplifying assumption, we can answer this question. Here, in Fig-
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FIGURE 7.4: Comparision of power allocation on pilot symbol (1 − α)
and L curves for Kp = 250 and Kp = 30, respectively. The noncausal
estimator is still of 20 taps. Here, both α and L are optimized.
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FIGURE 7.5: Difference of ASE corresponding to the perfect and imper-
fect estimation. Both L and power allocation constant α are optimal and
Kp = 250.

ure 7.5, we show a plot comparing the ASE performance of the perfect and
imperfect estimation cases of our coded system. As expected, perfect es-
timation results in a better predicted performance. This behavior can be
forecasted by inspecting Eq. (4.3). In that equation, once estimation is per-
fect, σ2

e;µ = 0 and he;µ(k; l) = hµ(k; l). Because of the orthogonality princi-
ple, |he;µ(k; l)| ≤ |hµ(k; l)|. Thus, the combined CSNR is greater compared
to when estimation error is presented. However, as depicted in the figure,
the difference is small; which justifies the use of this assumption during
analysis.

In the multiplot in Figure 7.6 we include the plots for optimal fraction of
power allocation on pilot symbols and pilot spacing L for both perfect (left
column) and imperfect (right column) channel estimation cases. The per-
fect estimation assumption causes somewhat lower pilot power, whereas
the pilot period is almost the same. Because of that low pilot power, the
optimal pilot spacing is shifting to a higher value at higher average CSNR
level. In conclusion, optimizing a system with perfect estimation assump-
tion will overestimate ASE and underestimate pilot power somewhat, but
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FIGURE 7.6: How optimal power allocation on pilot symbols corre-
sponding to perfect estimation (top left plot) differs from that of imper-
fect estimation (top right plot) is depicted. Variations of optimal pilot
spacing L when estimation is perfect (bottom left plot) and not perfect
(bottom right plot). Here, the predictor order Kp = 250.
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not very much. This indicates that we freely can make that assumption to
simplify the mathematical analysis if we keep in mind that the results are a
little too optimistic.

111





Chapter 8

Conclusions

8.1 Results and Contributions

In this dissertation, an ACM technique based on adaptive PSAM is ana-
lyzed and optimized in both SISO, spatially uncorrelated and correlated
SIMO, and MIMO diversity systems to overcome the hostile fading nature
of the wireless channel and to increase the spectral efficiency of wireless
systems. The analysis and optimization have been done under practical
conditions such as predicted and estimated CSI. The objective of the adap-
tive transmission is to increase the throughput and, at the same time, keep
the BER below a pre-defined threshold. We have demonstrated the merit of
having the pilot spacing and the power distribution between pilot and data
symbols optimized with respect to average CSNR: higher throughput is
achieved without sacrificing BER performance compared to non-optimized
systems. Moreover, in presence of known spatial correlation in a multi-
antenna system, the rate loss is substantially reduced when having all the
branches jointly predicted, taking spatial correlation into account.

By numerical examples, we have also presented the effects on perfor-
mance of shortening the predictor order and of fixing the pilot spacing.
Both the simplifications contribute to reducing the complexity of the re-
ceiver and the system, since less computation is needed in the prediction
process and no pilot adaptivity is needed (hence, less feedback rate). The
results of ASE with a fixed L is very close to what is obtained by having L
optimally varied with average CSNR. Letting both pilot period and power
allocation on these pilots be optimal, the impact of reducing the predictor
order is also small. Note that, in both cases, the pilot power is however
somewhat higher than required for optimal performance.

The impact of assuming perfect estimation during system analysis is
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also considered for the spatially uncorrelated SIMO case. As expected, the
analysis in that case overestimates ASE somewhat, but not much. As such,
this shows and justifies that this assumption can be made to ease mathe-
matical analysis of such systems.

8.1.1 Contributions of the Thesis

A summary of the main contributions of each chapter are listed as follows.

• In Chapter 2, the principle of our ACM system is presented where
different building blocks are mapped into our cases. Furthermore, the
MAP-optimal linear filtering is re-develop there and visualizations of
the predictor’s performance are also presented.

• In Chapter 3, a generalization of the work by Cai and Giannakis [2005]
were presented, where channel coding using trellis codes is intro-
duced. The pilot spacing and power allocation between pilot and
data symbols are optimized to maximize ASE without sacrificing BER
performance. The optimization algorithm introduced in this chap-
ter is simpler than the one used by [Cai and Giannakis, 2005]. As
expected, higher ASE is obtained due to optimization. An improve-
ment of 3 dB is also achieved due to coding. This chapter serves at a
foundation for further analysis in the rest of the thesis since the op-
timization introduced in this chapter is also invoked to find optimal
solutions in other chapters.

• In Chapter 4, the above scheme was extended further to include mul-
tiantenna reception and MRC of received signals. Here the subchan-
nels are assumed to be mutually independent of each other. In con-
trast to [Cai and Giannakis, 2005] (and to the previous chapter), we
also considered the estimation error to be correlated with the predic-
tion error. This is due to the fact that both estimator and predictor are
using partly the same information.

Comparison to a similar system ([Øien et al., 2004]) where pilot sym-
bol spacing is fixed, and where both data and pilot symbols are trans-
mitted with the same power is made. In this case, it is shown that our
system is always superior to the one of [Øien et al., 2004].

Also, the average time during which the channel remains within a
fading interval is provided to quantify how often system adaptation
is required on the average. In other words, it is the same as saying
how often the system needs to reconfigure its transmission mode.
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These results can be used to determine how often feedback is required
in an adaptive transmission system.

• In Chapter 5, spatial correlation at the receiver was introduced in the
above system. The analysis is carried out to reflect practical systems
where the antennas might be closely spaced, or the scatterings are
insufficient. At first, a predicted system designed for uncorrelated
antenna branches is used. This is clearly suboptimal, but it gives per-
formance to be expected when the spatial correlation is not known or
not exploited. The different branches are then jointly predicted tak-
ing spatial correlation into account. For this purpose, we derived a
MAP-optimal “space-time predictor”. The rate loss compared to the
former case is substantially reduced.

• In Chapter 6, we transmit the same data over multiple transmit an-
tennas. In combination with the multireception at the receiver we
thus have a MIMO diversity system. This system is analyzed and
optimized when all the subchannels are assumed mutually uncorre-
lated and orthogonal space-time block codes (OSTBCs) are use. Due
to the rate loss of the employed OSTBC for nT > 2 and the silent
time slots during pilot transmissions, the resulting ASE performance
is reduced. For the same diversity order (nT × nR) and from an ASE
performance point of view, SIMO diversity is always preferred.

• In Chapter 7, by numerical examples, we demonstrate the effect of
limiting the complexity of the predictor and of fixing the pilot period.
It is shown that both predictor order and pilot spacing can be respec-
tively limited and fixed at certain values without losing much of the
performance, at the expense of high pilot power at low CSNRs. Thus,
it enables good trade-off in practical systems where both the feedback
rate and the computational complexity are limiting factors. The im-
pact of assuming perfect estimation in spatially uncorrelated SIMO
systems is also presented where the results show and justify that this
assumption can be made during theoretical analysis of such systems.

8.2 Suggestions for Further Research

In the following list, we highlight some further research topics that might
be of interest.

• In multiuser systems, many users are feeding back their CSI, and
the total feedback rate can thus be huge. A natural extension of the
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research on single-user and single-carrier systems presented in this
thesis is to examine this scheme in a multiuser multi-carrier system,
where the feedback information of one user can be co-optimized with
that of other users. This might be used to reduce the feedback load
by means of user cooperation.

• It can be interesting to extend/generalize our optimized system to the
multi-carrier OFDM case, to mitigate time- and frequency-selective
fading channels in a practical ACM system. Some research contribu-
tions on non-optimized PSAM-based channel estimation for multi-
carrier systems are reported in [Hoeher, Kaiser, and Robertson, 1997;
Li, 2000]. The optimal PSAM-based training parameters (pilot grid ar-
rangement and power allocation between information bearing sym-
bols and pilot symbols) to maximize the capacity lower bound are
considered in [Ma, Giannakis, and Ohno, 2003; Ohno and Giannakis,
2004].

• ACM systems are designed to combat fading and to avoid unnec-
essarily retransmissions in wireless communications. The ASE per-
formance in most of the contributions to the field of adaptive trans-
mission at the physical layer, including ours, are analyzed assum-
ing no retransmission is used. However, due to imperfect channel
knowledge, there is always a certain probability for choosing other
constellations which are not optimal for transmission. It then results
in errors not accounted for in our analysis, and the data must be re-
transmitted. This issue is considered in [Liu, Zhou, and Giannakis,
2004] for a single-user SISO system. An interesting topic for further
research is to combine our optimization system for the MIMO case
with their cross-layer combining technique, to reflect the real world
where retransmissions might be necessary.

• We have assumed that the feedback channel is error free. However,
error can occur and may limit the practicality of ACM systems. Thus,
the effect of errors on the feedback channel is an interesting topic for
further research within the context of adaptive modulation and cod-
ing systems. Current research within this area is reported in [Ekpeny-
ong and Huang, 2004, 2005].

• In the case of correlated antenna branches, we have to approximate
the PDF of both true CSNR and predicted CSNR to be gamma PDFs.
As such, the joint PDF can be described by the standard bivariate
gamma PDF. The approximation is used in spite of the fact that the
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exact marginal PDF is already reported in the literature [Aalo, 1995;
Alouini et al., 2001], whereas the joint PDF is still unknown. There-
fore, it is of high interest to derive the joint PDF fγ,γ̂(γ, γ̂) such that
the correlation between predicted and true CSNR can be modelled
exactly.

• All the results in this thesis are theoretically derived or based on sim-
ulation results from nonfading AWGN channels. In all theoretical
derivations, some assumptions are made. To see the overall impact
of these assumptions on the performance analysis, a comparison be-
tween theoretical and simulated results on fading channels models
should be done.
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Appendix A

Derivation of the
MAP-Optimal Predictor and
Estimator with the
Corresponding MMSE

In this appendix we will derive in detail the MAP-optimal predictor and the
corresponding prediction MMSE using the PSAM scheme. The predictor
utilized in Chapter 5 will be calculated since it is the most general one. The
predictors used in the other papers can be deduced from this.

The MAP-optimal estimator is noncausal and can be found in the same
way. The noncausality implies that we also need some future information
in the calculation, which can be obtained by using buffers. Hence we will
omit to derive the estimator here, and only concentrate on the approach for
finding the predictor.

A.1 MAP-optimal Predictor and MMSE of the
Prediction Error

Let the ML estimate of the received pilot symbol from all the antennas
be ỹ = vec(Y) /(s

√
Epl) where vec(Y) is the operator which stacks the

columns in the matrix Y on top of each other [Moon and Stirling, 2000] and
Y is as in (5.17). Let the channel gain matrix and noise matrix correspond-
ing to the received matrix Y be H and N , respectively. The correlation
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matrix of ỹ can be found as

Ry = E
[
ỹỹH

]
= E

[
hplh

H
pl

]
+

1
|s|2Epl

E
[
npln

H
pl

]
= Rh +

N0

|s|2Epl
In (A.1)

where hpl = vec(H) and npl = vec(N ). Also the covariance matrix be-
tween the pilot vector, ỹ, and the vector of channel gains at the point we
want to predict, h(k; l) = [h1(k; l), · · · , hnR(k; l)]T, can be written as

Ryh = E
[
ỹhH(k; l)

]
= E

[
hplh

H(k; l)
]

. (A.2)

Note that the matrix Ry is block-Hermitian.
Since the channel is complex Gaussian, the optimal predicted channel is

a linear combination of the observations. As a result the predicted channel
can be found as

hp = GHỹ (A.3)

where G is the optimal predictor chosen such that the MSE is minimized.
Defining the prediction error as εp(k; l) = h(k; l)− hp(k; l) the MSE vari-
ance matrix can be found as

Rε = E
[
εp(k; l)εp(k; l)H

]
= E

[(
h−GHỹ

) (
h−GHỹ

)H
]

= E
[
hhH

]
− E

[
hỹHG

]
− E

[
GHỹhH

]
+ E

[
GHỹỹHG

]
= Rh − RH

yhG−GHRyh + GHRyG. (A.4)

The total MSE is the sum of the MSE on each branch and is given by the
trace of Rε. As a result, the total MSE denoted by σ2

p is

σ2
p = tr{Rh} − tr

{
RH

yhG
}
− tr

{
GHRyh

}
+ tr

{
GHRyG

}
. (A.5)

To find the optimal filter coefficients in the MMSE sense we derive the con-
jugate gradient where the following identities are used [Moon and Stirling,
2000, Appendix E.8]:

∂tr{AXB}
∂X∗ = 0,

∂tr
{

AXHB
}

∂X∗ = BA, and
∂tr
{

XHAXB
}

∂X∗ = AXB. (A.6)

Recognizing that (A.5) can be written as

σ2
p = tr{Rh} − tr

{
RH

yhGI
}
− tr

{
IGHRyh

}
+ tr

{
GHRyGI

}
(A.7)
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where I is the square identity matrix with proper dimension.
Applying the identities (A.6) to the derivative of (A.7), equating the

solution to the zero matrix, and solving for G, gives the predictor

G = R−1
y Ryh =

(
Rh +

N0

|s|2Epl
In

)−1

Ryh. (A.8)

Setting (A.8) back to (A.5) gives the MMSE

σ2
p = tr{Rε} = nR − tr

{
RH

yhG
}

, (A.9)

when assuming that the subchannel is zero mean and has unity variance.
Also we have assumed that the noise is white both in space and time. Re-
placing the actual values of Epl and N0, (A.8) is expressed as (5.18):

G = R−1
y Ryh =

(
Rh +

1
(1− α)γ̄bL

In

)−1

Ryh. (A.10)

A.2 Derivation of the Predictor Used in Other Papers

If the branches are mutually independent, we can use the same “reduced-
predictor” on each branch and predict the branches separately. As will be
shown here the reduced-predictor can easily be obtained from (A.8).

Recognize that

Rh = E
[
hplh

H
pl

]
=


E
[
hpl;1hH

pl;1

]
· · · E

[
hpl;1hH

pl;nR

]
...

. . .
...

E
[
hpl;nR hH

pl;1

]
· · · E

[
hpl;nR hH

pl;nR

]
 (A.11)

and

Ryh = E
[
hplh

H(k; l)
]

=

 E
[
hpl;1h∗1(k; l)

]
· · · E

[
hpl;1h∗nR

(k; l)
]

...
. . .

...
E
[
hpl;nR h∗1(k; l)

]
· · · E

[
hpl;nR h∗nR

(k; l)
]
 .

(A.12)
When the branches are uncorrelated, all the off-diagonal blocks in both
(A.11) and (A.12) are zero matrices and vectors, respectively. Moreover,
the remaining sub-matrices in (A.11) are identical. Likewise for the sub-
vectors in (A.12). Inspecting (A.8), we see that the predictor becomes the
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matrix 

 ω1
...

ωKp


 ω1

...
ωKp


. . .
. . .
. . .  ω1

...
ωKp





(A.13)

where all the vectors are the identical, and all the other elements are zeros.
This implies that one can analyze one of these blocks (corresponding to
one branch) and the same result will be directly applicable to other blocks
(branches).

Without losing generality let us consider the first branch. Let R =
E
[
hpl;1hH

pl;1

]
and let r = E

[
hpl;1h∗1(k; l)

]
then the first vector of G in (A.13)

corresponds to the predictor coefficents and is given in the form of a vector
ω = [ω1, · · · , ωKp ]T (dimension Kp) padded with (nR − 1)Kp zeros where
the vector ω is

ω =
(

R +
N0

|s|2Epl
I
)−1

r =
(

R +
1

(1− α)γ̄bL
I
)−1

r. (A.14)

Since the other elements are only zeros, the predictor ω is used on every
branch as in the cases where there is no spatial correlation between the
branches (Chapter 3, Chapter 4, first part of Chapter 5, and Chapter 6).

Comparing to the MAP-optimal filter in Øien et al. [2004] we see that
our filter is slightly different since the factor in front of the identity matrix
involves the frame size and the variable α which determines how power
should be allocated between pilot and data symbols. This is obvious since
the same pilot and data power are assumed in Øien et al. [2004], and in
our papers these two parameters will be optimized to achieve maximum
throughput.
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MMSE of One Branch

It can be deduced from (A.9) that the MMSE on one branch is given by

σ2
p;µ = 1− rHω = 1− rH

(
R +

1
(1− α)Lγ̄b

I
)−1

r. (A.15)

Moreover, the covariance matrix is Hermitian symmetric and it can be di-
agonalized as R = EΛEH with E (unitary matrix) and Λ (diagonal matrix)
containing respectively eigenvectors {uκ}

Kp
κ=1 and eigenvalues {λκ}

Kp
κ=1 of

R, where Kp is the order of the filter. Hence

σ2
p;µ = 1− rHE

(
Λ +

1
(1− α)Lγ̄b

I
)−1

EHr

= 1−
Kp

∑
κ=1

|uH
κ r|2(1− α)Lγ̄b

(1− α)Lγ̄bλκ + 1
. (A.16)

An Alternative Expression for the MMSE

The MMSE of the prediction error can also be written as

σ2
p;µ = σ2

hµ
− σ2

hp;µ
, (A.17)

where σ2
hp;µ

= ωHRω is variance of the prediction error [Cavers, 1991],

and R = E
[
hpl;1hH

pl;1

]
+ 1

|s|2Epl
E
[
npl;1nH

pl;1

]
. Again, by assuming that the

channel has unity variance we get

σ2
p;µ = 1−ωH

(
R +

1
(1− α)Lγ̄b

I
)

ω

= 1−ωHRω− ‖ω‖2

(1− α)Lγ̄b
. (A.18)
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Appendix B

Derivation of BER(Mn) in
Chapter 3

B.1 Useful Integration Rules and Identities

Definition 2 (The normalized incomplete gamma function)
According to Temme [1996], the incomplete gamma function and the nor-
malized incomplete gamma function is respectively defined as

Γ(η, ζ) =
∫ ∞

ζ
tη−1e−tdt (B.1)

Γ(η, ζ) = Γ(η, ζ)/Γ(η), (B.2)

where Γ(η) is the gamma function (also known as Euler’s integral of the
second kind) [Gradshteyn and Ryzhik, 2000, Eq. 8.310-1].

Definition 3 (Integration rule involving the generalized Marcum Q-function)
Based on the non-central chi-square distribution defined in [Temme, 1996,
Sec. 11.4] and the normalized incomplete gamma function defined above,
Holm provided the following formulas [Holm, 2002, Lemma 3]:

∫ y

0
u

H−1
2 e−uα IH−1(

√
u2β)du =

βH−1

αH exp
(

β2

α

)(
1− QH

(
β2

α
, yα

))
,

(B.3)
where QH(·, ·) is the generalized Marcum Q-function given by [Temme,
1996, Eq. (11.63)]. Analogous to [Temme, 1996, Eq. (11.61)] the following
serie expansion was also given

1− Qµ(x, y) = e−x
∞

∑
m=0

xm

m!
(1− Γ(µ + m, y)). (B.4)
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Definition 4 (Integration rule involving Bessel functions)
The following integration rule is given by [Gradshteyn and Ryzhik, 2000,
Eq. (6.633-4), p. 699], but reproduce here for the sake of completeness∫ ∞

0
ue−αu2

Iν(βu)Jν(λu)du =
1

2α
exp

(
β2 − λ2

4α

)
Jν

(
βλ

2α

)
,

<{α} > 0, <{ν} > −1. (B.5)

Definition 5 (Integration rule involving incomplete gamma function)
Making use of [Gradshteyn and Ryzhik, 2000, Eq. (3.381-3)] in combina-
tion with the definition of the normalized incomplete gamma function
given by (B.2) the following integration rule is obtained:∫ y

x
tη−1e−µtdt =

Γ(η)
µη

[
Γ(η, xµ)− Γ(η, yµ)

]
. (B.6)

B.2 Derivations

In order to find the switching thresholds we need to solve BER(Mn|γ̂) =
BER0. Thus, we need first to calculate the following integral:

BER(Mn|hp) =
∫ ∞

0
BER

(
Mn
∣∣|he|

)
fhe|hp

(
|he|
∣∣hp
)

d|he| (B.7)

where the following BER is used

BER
(

Mn
∣∣|he|

)
=


an exp

(
− bnEd|he|2

Mn(N0 + gEdσ2
e (l))

)
when |he| ≥ |he|n,T

1
2

when |he| < |he|n,T

(B.8)
for |he|n,T =

√
ln(2an)Mn(N0 + gEdσ2

e )/(bnEd). Inserting (B.8) in (B.7) the
integral can be splitted into three integrals. We now define these integrals
as

T (0, ∞) =
∫ ∞

0
an exp

(
− bnEd|he|2

Mn(N0 + gEdσ2
e )

)
fhe|hp

(
|he|
∣∣hp
)

d|he| (B.9)

T (0, |he|n,T) =
∫ |he|n,T

0
an exp

(
− bnEd|he|2

Mn(N0 + gEdσ2
e )

)
fhe|hp

(
|he|
∣∣hp
)

d|he|

(B.10)

F (0, |he|n,T) =
∫ |he|n,T

0

1
2

fhe|hp

(
|he|
∣∣hp
)

d|he|. (B.11)

Then

BER(Mn|hp) = T (0, ∞)− T (0, |he|n,T) +F (0, |he|n,T) . (B.12)

In the following we will proceed to solve the integrals (B.9)–(B.11).
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B.2.1 Calculation of T (0, ∞)

Recall now the fact that |he| given hp is Rician distributed and the PDF is
given by (1.2). Applying this,

T (0, ∞) =
2an

σ2
he|hp

exp

(
−
|hp|2

σ2
he|hp

)

×
∫ ∞

0
|he| exp

(
−|he|2

(
bnEd

Mn(N0 + gEdσ2
e )

+
1

σ2
he|hp

))
I0

(
|he|2|hp|

σ2
he|hp

)
d|he|.

(B.13)

Using the definitions of An and dn in (3.20) and recognizing that J0(0) = 1,
the integration rule in (B.5) is utilized to obtain

T (0, ∞) = andn exp
(
−|hp|2 AndnEd

)
. (B.14)

B.2.2 Calculation of T (0, |he|n,T)

The integral is expressible as

T (0, |he|n,T) =
2an

σ2
he|hp

exp

(
−
|hp|2

σ2
he|hp

)

×
∫ |he|n,T

0
|he| exp

(
−|he|2

(
bnEd

Mn(N0 + gEdσ2
e )

+
1

σ2
he|hp

))
I0

(
|he|2|hp|

σ2
he|hp

)
d|he|.

(B.15)

We let u = |he|2, then du = 2|he|d|he|. The above equation is now

T (0, |he|n,T) =
an

σ2
he|hp

exp

(
−
|hp|2

σ2
he|hp

)

×
∫ |he|2n,T

0
exp

(
−u

(
AnEd +

1
σ2

he|hp

))
I0

(
2|hp|
σ2

he|hp

√
u

)
du

=andn exp
(
−|hp|2 AndnEd

) (
1− Q1

(
|hp|2dn

σ2
he|hp

,
|he|2n,T

dnσ2
he|hp

))
.

(B.16)
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Here the last equality is obtained by invoking (B.3). Furthermore, using
(B.4), the above expression is

T (0, |he|n,T) =andn exp

(
−
|hp|2

σ2
he|hp

)

×
∞

∑
m=0

1
m!

(
|hp|2dn

σ2
he|hp

)m(
1− Γ

(
1 + m,

|he|2n,T

dnσ2
he|hp

))
. (B.17)

Clearly, it can be seen that (B.14) is a special case of (B.16) where |he|2n,T →
∞. That case, Γ(µ + m, ∞) = 0 (cf. Definition 2 on page 125), and it is well
known that the summation of the right hand side of (B.4) is equal to ex.
Thus, Q1(x, ∞) = 0 and the two equations (B.14) and (B.16) coincides.

B.2.3 Calculation of F (0, |he|n,T)

This integral is half of the CDF of the conditional Rician PDF evaluated at
|he|n,T. That is

F (0, |he|n,T) =
1

σ2
he|hp

exp

(
−
|hp|2

σ2
he|hp

)

×
∫ |he|n,T

0
|he| exp

(
− |he|2

σ2
he|hp

)
I0

(
|he|2|hp|

σ2
he|hp

)
d|he|

(i)
=

1
σ2

he|hp

exp

(
−
|hp|2

σ2
he|hp

)

× 1
2

∫ |he|2n,T

0
exp

(
− u

σ2
he|hp

)
I0

(
2|hp|
σ2

he|hp

√
u

)
du

(ii)
=

1
2

(
1− Q1

(
|hp|2

σ2
he|hp

,
|he|2n,T

σ2
he|hp

))
(iii)
=

1
2

exp

(
−
|hp|2

σ2
he|hp

)

×
∞

∑
m=0

1
m!

(
|hp|2

σ2
he|hp

)m(
1− Γ

(
1 + m,

|he|2n,T

σ2
he|hp

))
. (B.18)

Here the change of variable u = |he|2 has been made in the equality marked
with (i). The equality marked with (ii) uses (B.3) and the one marked with
(iii) exploits (B.4).
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B.3 BER(Mn|γ̂)

Combining (1.5) with (3.17) and solving it for |hp|2 gives |hp|2 = γ̂E/(γ̄Ēd).
Inserting this into Eqs. (B.14), (B.17), and (B.18) and combining them similar
to (B.12) would result in (3.19). Thus the switching thresholds are found by
solving BER(Mn|γ̂) = BER0 with respect to γ̂ for different Mn.

B.4 BER(Mn)

Once the switching thresholds are found, the average BER for the Mn con-
stellation is calculated as

BER(Mn) =
∫ γ̂n+1

γ̂n

BER(Mn|γ̂) fγ̂(γ̂)dγ̂ (B.19)

= B1(Mn)−B21(Mn) + B22(Mn) (B.20)

where

B1(Mn) =
∫ γ̂n+1

γ̂n

T (0, ∞) fγ̂(γ̂)dγ̂ (B.21)

B21(Mn) =
∫ γ̂n+1

γ̂n

T (0, |he|n,T) fγ̂(γ̂)dγ̂ (B.22)

B22(Mn) =
∫ γ̂n+1

γ̂n

F (0, |he|n,T) fγ̂(γ̂)dγ̂. (B.23)

We will now solve these integrals.

B.4.1 Calculation of B1(Mn)

Knowing that the predicted CSNR is exponentially distributed—i.e., a spe-
cial case of gamma distribution given as G (1, rγ̄)—and inserting the defi-
nition of fγ̂(γ̂) gives

B1(Mn) =
andn

rγ̄

∫ γ̂n+1

γ̂n

exp
(
−γ̂

(
AndnEEd

γ̄Ēd
+

1
rγ̄

))
dγ̂

=
andnĒd

rAndnEEd + Ēd

×
[

exp
(
−γ̂n

rAndnEEd + Ēd

rγ̄Ēd

)
− exp

(
−γ̂n+1

rAndnEEd + Ēd

rγ̄Ēd

)]
.

(B.24)
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B.4.2 Calculation of B21(Mn)

Similarly, B21(Mn) can be written as

B21(Mn) =
andn

rγ̄

∞

∑
m=0

1
m!

(
dnE

γ̄Ēdσ2
he|hp

)m(
1− Γ

(
1 + m,

|he|2n,T

dnσ2
he|hp

))

×
∫ γ̂n+1

γ̂n

γ̂m exp

(
−γ̂

rE + Ēdσ2
he|hp

rγ̄Ēdσ2
he|hp

)
dγ̂. (B.25)

Invoking (B.6) the following result is obtained:

B21(Mn) =
anĒdσ2

he|hp

rE
∞

∑
m=0

(
rdnE

rE + Ēdσ2
he|hp

)m+1(
1− Γ

(
1 + m,

|he|2n,T

dnσ2
he|hp

))

×
[

Γ

(
1 + m, γ̂n

rE + Ēdσ2
he|hp

rγ̄Ēdσ2
he|hp

)
− Γ

(
1 + m, γ̂n+1

rE + Ēdσ2
he|hp

rγ̄Ēdσ2
he|hp

)]
. (B.26)

B.4.3 Calculation of B22(Mn)

Needless to say, the integral B22(Mn) is expressible as

B22(Mn) =
1

2rγ̄

∞

∑
m=0

1
m!

(
E

γ̄Ēdσ2
he|hp

)m(
1− Γ

(
1 + m,

|he|2n,T

σ2
he|hp

))

×
∫ γ̂n+1

γ̂n

γ̂m exp

(
−γ̂

rE + Ēdσ2
he|hp

rγ̄Ēdσ2
he|hp

)
dγ̂. (B.27)

Recognize that this integral can be solved as in previous subsection.
That is:

B22(Mn) =
Ēdσ2

he|hp

2rE
∞

∑
m=0

(
rE

rE + Ēdσ2
he|hp

)m+1(
1− Γ

(
1 + m,

|he|2n,T

σ2
he|hp

))

×
[

Γ

(
1 + m, γ̂n

rE + Ēdσ2
he|hp

rγ̄Ēdσ2
he|hp

)
− Γ

(
1 + m, γ̂n+1

rE + Ēdσ2
he|hp

rγ̄Ēdσ2
he|hp

)]
. (B.28)

Now the Eqs. (B.24), (B.26), and (B.28) are combined as (B.19) to yield
BER(Mn).
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Appendix C

An Alternative Proof of the
Expression for Var

(
he;µ|hp;µ

)
In this appendix, we will give an alternative proof of the expression for the
quantity Var

(
he;µ|hp;µ

)
. To do so, we need the following property of the

expectation operator.

Theorem 1 (Property of the expectation)
The following property

E[XY] = E[Y · E[X|Y]] (C.1)

is true for all jointly distributed RVs X and Y.

Proof: Let Y = y, then we have

E[Y · E[X|Y]] =
∫ ∞

−∞
yE[X|Y = y] fY(y)dy

=
∫ ∞

−∞
y
(∫ ∞

−∞
x fX|Y(x|y)dx

)
fY(y)dy

=
∫ ∞

−∞

∫ ∞

−∞
xy fX|Y(x|y) fY(y)︸ ︷︷ ︸

fXY(x,y)

dxdy

=
∫ ∞

−∞

∫ ∞

−∞
xy fXY(x, y)dxdy

= E[XY] . (C.2)

Omitting the time indices, we express the estimated channel as

he;µ = hp;µ + εp;µ − εe;µ,
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C. AN ALTERNATIVE PROOF OF THE EXPRESSION FOR Var
(
he;µ|hp;µ

)

where all the RVs are Gaussian distributed with zero mean.
Let he;µ and hp;µ be jointly Gaussian distributed with the correlation co-

efficient ζ. Then, invoking (C.1), the covariance between the two is

Cov
(
he;µ, hp;µ

)
= E

[
he;µhp;µ

]
= E

[
hp;µ · E

[
he;µ|hp;µ

]]
.

As a matter of fact, using mean square estimation of Gaussian RVs, it is easy
to show that E

[
he;µ|hp;µ

]
= (1− $)hp;µ where $ is the normalized correlation

between εe;µ and hp;µ (see e.g. [Papoulis and Pillai, 2002, Sec. 17-3]). As a
result, the above equation is

Cov
(
he;µ, hp;µ

)
= E

[
(1− $) h2

p;µ

]
= (1− $) σ2

hp;µ
,

and the correlation coefficient is

ζ =
Cov

(
he;µ, hp;µ

)√
Var
(
he;µ
)
Var
(
hp;µ

) =
σhp;µ

σhe;µ

(1− $) .

Moreover, in general, it is well known that if (he;µ, hp;µ) is jointly Gaus-
sian denoted by (he;µ, hp;µ) ∼ N (mhe;µ , mhp;µ , σ2

he;µ
, σ2

hp;µ
, ζ), then he;µ|hp;µ ∼

N (mhe;µ + ζ
σhe;µ
σhp;µ

(hp;µ −mhp;µ), σ2
he;µ

(1− ζ2)). Therefore, in our case

σ2
he;µ|hp;µ

= Var
(
he;µ|hp;µ

)
= σ2

he;µ
(1− ζ2) = σ2

he;µ
− σ2

hp;µ
· (1− $)2 .

Upon assuming $ = 0 it can be expressed as

σ2
he;µ|hp;µ

= σ2
he;µ

− σ2
hp;µ

= σ2
p;µ − σ2

e;µ

and that completes the proof.
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Appendix D

Calculation of the Correlation
Coefficient ρ in Equation (5.24)

With a simple transformation we obtained β2 ∼ G (md, nR/md) and β̂2 ∼
G
(

md, tr
{

RH
yhG

}
/md

)
. Thus the correlation coefficient in (5.24) is

ρ =
Cov(γ̂, γd)√

Var(γ̂) Var(γd)
=

Cov
(

β̂2, β2)√
Var
(

β̂2
)
Var(β2)

=
E
[
β̂2β2]− nRtr

{
RH

yhG
}

nRtr
{

RH
yhG

} md (D.1)

where

E
[
β̂2β2] = E

[
nR

∑
µ=1

β̂2
µ

nR

∑
ν=1

β2
ν

]
=

nR

∑
µ=1

nR

∑
ν=1

E
[

β̂2
µβ2

ν

]
. (D.2)

Using (A.3) we can write

E
[

β̂2
µβ2

ν

]
= E

[
|gH

µ
ỹ|2 · |hν(k; l)|2

]
= gH

µ
E

(hpl +
1

s
√
Epl

npl

)(
hpl +

1
s
√
Epl

npl

)H

|hν(k; l)|2
 g

µ

= gH
µ
E
[
hplh

H
pl · |hν(k; l)|2

]
g

µ
+

‖g
µ
‖2

(1− α)γ̄bL
(D.3)

where g
µ

is the µth column vector of the predictor matrix G.
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D. CALCULATION OF THE CORRELATION COEFFICIENT ρ IN EQUATION (5.24)

We now drop the subscript “pl” for notational brevity and use the no-
tation hb< (or hb=) to denote the real part (or imaginary part) of the channel
gain h on the bth branch. Likewise, h< and h= is used to denote the real
and imaginary part of vector h, respectively. The expectation term in the
above equation is

E
[
hhH · |hν(k; l)|2

]
=E
[
(h< + h=)

(
hT
< − hT

=

) (
h2

ν<(k; l) + h2
ν=(k; l)

)]
=E
[
h<hT

<hν<hν<
]
+ E

[
h<hT

<hν=hν=
]

+ E
[
h=hT

=hν<hν<
]
+ E

[
h=hT

=hν=hν=
]

− E
[
h<hT

=hν<hν<
]
− E

[
h<hT

=hν=hν=
]

+ E
[
h=hT

<hν<hν<
]
+ E

[
h=hT

<hν=hν=
]

. (D.4)

Here we have also omitted the time indices for notational brevity. Ex-
panding this equation using Gaussian fourth-order moments [Holm, 2002,
Lemma 1] gives

E
[
hhH · |hν(k; l)|2

]
=E[hν<hν<] E

[
h<hT

<

]
+ 2E[hν<h<] E

[
hν<hT

<

]
+ E[hν=hν=] E

[
h<hT

<

]
+ 2E[hν=h<] E

[
hν=hT

<

]
+ E[hν<hν<] E

[
h=hT

=

]
+ 2E[hν<h=] E

[
hν<hT

=

]
+ E[hν=hν=] E

[
h=hT

=

]
+ 2E[hν=h=] E

[
hν=hT

=

]
− E[hν<hν<] E

[
h<hT

=

]
− 2E[hν<h<] E

[
hν<hT

=

]
− E[hν=hν=] E

[
h<hT

=

]
− 2E[hν=h<] E

[
hν=hT

=

]
+ E[hν<hν<] E

[
h=hT

<

]
+ 2E[hν<h=] E

[
hν<hT

<

]
+ E[hν=hν=] E

[
h=hT

<

]
+ 2E[hν=h=] E

[
hν=hT

<

]
.

(D.5)

The space-time correlation between any two branches and at any lag
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can be written as [Therrien, 1992]

E
[
hµ(n)h∗ν(n + m)

]
=E
[{

hµ<(n) + hµ=(n)
}
{hν<(n + m)− hν=(n + m)}

]
=E
[
hµ<(n)hν<(n + m)

]
− E

[
hµ<(n)hν=(n + m)

]
+ E

[
hµ=(n)hν<(n + m)

]
+ E

[
hµ=(n)hν=(n + m)

]
=2E

[
hµ<(n)hν<(n + m)

]
− 2E

[
hµ<(n)hν=(n + m)

]
.

(D.6)

Applying the separability of the space-time correlation defined in (5.2) the
above equation can be written in terms of its real and imaginary parts as
[Hasna et al., 2001]

E
[
hµ(n)h∗ν(n + m)

]
=(c− d)|µ−ν|ρh,t(m)

=
(√

ρs/2− 
√

ρs/2
)|µ−ν|

ρh,t(m). (D.7)

Combining (D.6) with (D.7) we have

E
[
h<hT

<

]
= E

[
h=hT

=

]
=

1
2
<
{

Rh
}

E
[
h=hT

<

]
= −E

[
h<hT

=

]
=

1
2
=
{

Rh
}

and

E[hν<h<] = E[hν=h=] =
1
2
<
{

R(ν)
yh

}

E[hν<h=] = −E[hν=h<] =
1
2
=
{

R(ν)
yh

}
where Rh is the matrix in (5.19), R(ν)

yh is the νth column of the correlation

matrix Ryh in (5.20), and <{A} (or ={A}) is the real (or imaginary) part of
A. We also have E[hν<hν<] = E[hν=hν=] = 1/2. Thus,

E
[
hhH · |hν(k; l)|2

]
= Rh +<

{
R(ν)

yh

}
<
{

R(ν)
yh

}T
+=

{
R(ν)

yh

}
=
{

R(ν)
yh

}T

− <
{

R(ν)
yh

}
=
{

R(ν)
yh

}T
+ =

{
R(ν)

yh

}
<
{

R(ν)
yh

}T
.
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D. CALCULATION OF THE CORRELATION COEFFICIENT ρ IN EQUATION (5.24)

Then (D.1) can be calculated as

ρ =

md

nR

∑
µ=1

nR

∑
ν=1

{
gH

µ

(
Rh +<

{
R(ν)

yh

}
<
{

R(ν)
yh

}T
+=

{
R(ν)

yh

}
=
{

R(ν)
yh

}T

−<
{

R(ν)
yh

}
=
{

R(ν)
yh

}T
+ =

{
R(ν)

yh

}
<
{

R(ν)
yh

}T
)

g
µ
+

‖g
µ
‖2

(1− α)γ̄bL

}
−mdnRtr

{
RH

yhG
}

nRtr
{

RH
yhG

} .

(D.8)
The correlation coefficient used in the first part of Chapter 5 can be ob-

tained in the same way (not shown here). Instead, we refer to [Holter and
Øien, 2006] for a detailed derivation.
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